
Creating transformations for matrix obfuscation

Stephen Drape and Irina Voiculescu

Oxford University Computing Laboratory,
Wolfosn Building, Parks Road,

Oxford, UK, OX1 3QD
{sjd,irina}@comlab.ox.ac.uk

Abstract. There are many programming situations where it would be
convenient to conceal the meaning of code, or the meaning of certain
variables. This can be achieved through program transformations which
are grouped under the term obfuscation. Obfuscation is one of a number
of techniques that can be employed to protect sensitive areas of code.
This paper presents obfuscation methods for the purpose of concealing
the meaning of matrices by changing the pattern of the elements.
We give two separate methods: one which, through splitting a matrix,
changes its size and shape, and one which, through a change of basis in
a ring of polynomials, changes the values of the matrix and any patterns
formed by these. Furthermore, the paper illustrates how matrices can
be used in order to obfuscate a scalar value. This is an improvement on
previous methods for matrix obfuscation because we will provide a range
of techniques which can be used in concert.
This paper considers obfuscations as data refinements. Thus we consider
obfuscations at a more abstract level without worrying about implemen-
tation issues. For our obfuscations, we can construct proofs of correctness
easily. We show how the refinement approach enables us to generalise and
combine existing obfuscations. We then evaluate our methods by con-
sidering how our obfuscations perform under certain relevant program
analysis-based attacks.

Key words: Obfuscation, Matrix Operations, Information Hiding,
Program Transformations

1 Introduction

An obfuscation is a behaviour-preserving program transformation whose aim is
to make an input program “harder to understand”. The landmark paper by Coll-
berg et al. [6] gives a range of transformations which can be used as obfuscating
transformations. The purpose of such transformations is to decrease the oppor-
tunities for a user to reverse engineer a commercially supplied program [1, 6].
In this paper, we interpret “harder to understand” as keeping some information
secret for as long as possible from some set of adversaries.

After the proof of Barak et al. [1], there seems little hope of designing a
perfectly-secure software black-box, for any broad class of programs. To date,

no one has devised an alternative to Barak’s model, in which we would be able
to derive proofs of security for systems of practical interest. These theoretical
difficulties do not lessen practical interest in obfuscation, nor should they prevent
us from placing appropriate levels of reliance on obfuscated systems in cases
where the alternative of a hardware black-box is infeasible or uneconomic [10].

The view of obfuscation from Collberg et al. [6] concentrates on concrete
data structures such as variables and arrays. However, the thesis of Drape [8]
viewed obfuscations at a more abstract level by considering an abstract data-
type and defining operations for this data-type — thus we should obfuscate the
data-type according to these operations. This work had lead to the development
of the specification of obfuscations for imperative programs [10] and for creating
obfuscations which impede the effectiveness of program slicing [18].

The focus of this paper consists of a data-type for finite matrices having
four operations: scalar multiplication, addition, transposition and multiplica-
tion, specified mathematically. We use data refinement [7] to provide a way of
proving the correctness of our obfuscated operations. Thus we are guaranteed
that our obfuscations are behaviour-preserving. We will review a previous matrix
obfuscation, called matrix splitting [8], and we will discuss problems with this
obfuscation. We will then describe a new technique for matrix obfuscation and
we also show how matrices can be used to obfuscate another data-type. Since
we consider our operations at a more abstract level than program code, we will
be able to discuss how we can generalise our obfuscations.

The notion of “harder to understand” can be a little vague as it is not easy
to measure — the creation of a suitable measure of the quality of an obfuscation
is an open problem. When creating obfuscations we will make reference to an
attack model including what analysis techniques we expect to perform. In the
work of Majumdar et al. [18], the obfuscations were created with the intention
of trying to protect against an attacker armed with a program slicer. In this
paper, we adopt the attack model of Drape [8] in which, when defining data-
types, we also specify a set of assertions which are true for the operations of
that data-type. According to [8], the comparison between the assertions proofs
for unobfuscated and obfuscated operations gives a measure of the effectiveness
of the obfuscation. In this paper, we do not show such proofs but example proofs
for various data-types can be found in [8].

2 Preliminaries

In this section we will discuss how we can prove the correctness of our obfusca-
tions and we will define a data-type for matrices.

2.1 Obfuscation as data refinement

In Drape’s thesis [8], data obfuscation was considered as a data refinement [7].
Suppose that a data-type D is obfuscated using an obfuscation O to produce a

data-type E. Under the refinement approach, an abstraction function

af :: E → D

and a data-type invariant dti are needed such that, for x :: D and y :: E:

x y ⇐⇒ (x = af (y)) ∧ dti(y) (1)

The term x y is read as “x is obfuscated by y”.
For a function f :: D → D, an obfuscated function fO is correct with respect

to f if it satisfies:

(∀x :: D; y :: E) x y ⇒ f(x) fO(y)

Using Equation (1) we can rewrite this as

f · af = af · fO (2)

The abstraction function af is surjective and so we have a function cf :: D → E,
called the conversion function, which satisfies af · cf = id. Thus we can rewrite
Equation (2) to obtain:

f = af · fO · cf (3)

and we can use this equation to prove the correctness of fO.
If we also have that cf · af = id then we can rewrite Equation (2) to obtain:

fO = cf · f · af (4)

Thus when af is bijective then we can use Equation (4) to give us a way of
deriving an obfuscated operation fO from the original operation f .

2.2 Matrices

A matrix is an array of numbers which are arranged in a meaningful tabular
form. It is usually two-dimensional and can have any width and height. It is also
possible to use multi-dimensional matrices and, even though these are harder to
write down, it is fairly easy to manipulate them in a computer program.

The matrix M which has r rows and c columns (for natural numbers r and
c) will be denoted by Mr×c. The element of M that is located at row i and
column j will be written as M(i, j), and, for simplicity, assumed to be rational.
The operation dim (M) returns the dimensions of M.

In Figure 1 we define a data-type for matrices — for the rest of the paper
we will suppose that Matrix α is Qr×c which denotes matrices with r rows and
c columns with rational number elements. From our data-type, we would like to
obfuscate matrices with the following matrix operations: scalar multiplication,
addition, transposition and multiplication. In the lower part of Figure 1 we have
a possible (but not complete) set of assertions. As we stated in Section 1, we
should aim to obfuscate our operations with the intention that they make the
proofs of correctness for assertions harder.

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Matrix (α)

scale :: α → Matrix α → Matrix α
add :: Matrix α×Matrix α → Matrix α

transpose :: Matrix α → Matrix α
mult :: Matrix α×Matrix α → Matrix α

transpose · transpose = id
transpose · (scale s) = (scale s) · transpose

transpose (mult(M,N)) = mult (transpose N, transpose M)
add(M,N) = add(N,M)

Fig. 1. A data-type for Matrices

Note that for addition the matrices must have the same size and for multipli-
cation we need the matrices to be conformable, i.e. the number of columns of the
first is equal to the number of rows in the second. We can define the operations
element-wise in the usual way. We assume that basic arithmetic operations take
constant time and so the computational complexities of add(M,N), scale s M
and transpose M are all r×c and the complexity of mult(M,P) is r×c×d where
(r, c) = dim(M) = dim(N) and (c, d) = dim(P).

Matrices are used for a wide variety of applications such as solving systems of
equations, wavelets, graph theory and graphics. There are applications when it is
desirable to hide the meaning of a matrix. One such case is when, in expressing a
rigid body transformation by way of a matrix, the matrix has a particular struc-
ture. For example, the two-dimensional translation of an object by displacements
(dx, dy) is usually written in the form1 0 dx

0 1 dy

0 0 1


Should somebody wish to hide the fact that a particular matrix is a translation
matrix, they should aim to design an obfuscation method which changes not
only the values, but also the visible pattern of these values.

3 Splitting method

Now that we have defined our data-type for matrices and given equations for
proving the correctness of matrix obfuscations we are ready to discuss our first
obfuscation technique. Collberg et al. [6] discuss an obfuscation called an array

split. This obfuscation was generalised in Drape [9] and so we can apply the
concept of splitting to other data-types such as matrices.

3.1 Defining a matrix split

Suppose that we want to split a matrix Mr×c into n matrices, called the split
components,

M 〈M0, . . . ,Mn−1〉sp

where Mi has size ri×ci for i : [0..n).
For this characterisation, M is represented by n matrices using a split, called

sp, which consists of a choice function:

ch :: [0..r)× [0..c) → [0..n)

and a family F of injective functions where F = {ft}t:[0..n) such that for each t:

ft :: ch−1{t}� [0..rt)× [0..ct)

We define the relationship between M and the split components element-wise by
using the choice function and the appropriate function from F to decide where
an element is mapped to:

Mt(ft(i, j)) = M(i, j) where t = ch(i, j) (5)

The requirement that we have a family of injective functions ensures that we
can recover a matrix (and thus its properties) from the split components.

Equation (5) can be considered to be the definition of a conversion function
and so for a matrix split

cf (M(i, j)) = Mt(ft(i, j)) where t = ch(i, j) (6)

The corresponding abstraction function for some split component Mt is

af (Mt(i, j)) = M(ft
−1(i, j)) (7)

where ft
−1 · ft = id (which is valid as ft is injective). Using these definitions we

can check that af · cf = id.
As an example, consider how we could define a split in which a matrix Mr×2c

is split vertically into two matrices Mr×c
0 and Mr×c

1 . The choice function is
defined to be

ch(i, j) = j div c

and the family of functions is:

F = {ft = (λ (i, j) . (i, j mod c)) | t = 0 ∨ t = 1}

The process of splitting a matrix is analogous to the concept of a partitioned
(or block) matrix discussed by Horn and Johnson [15] in which a matrix can be
represented by a sequence of smaller submatrices.

3.2 Splitting in squares

We now describe a simple matrix split that splits a square matrix into four
matrices — two of which are square. Suppose that we have a square matrix
Mr×r and choose a positive integer k such that k < r. The choice function
ch(i, j) is defined as

ch(i, j) = 2 sgn (i div k) + sgn (j div k)

where sgn is the signum function. The family of functions F is defined to be

F = {fp = (λ (i, j) . (i− k (p div 2), j − k (p mod 2))) | p ∈ [0..3]}

We call this split the (k×k)-square split since the first component of the split is
a k×k square matrix.

So if
M(i, j) = Mt(ft(i, j)) where t = ch(i, j)

then we can write

Mn×n 〈Mk×k
0 ,Mk×(n−k)

1 ,M(n−k)×k
2 ,M(n−k)×(n−k)

3 〉sk

where the subscript sk denotes the (k×k)-square split. Using this split, how can
we define our matrix operations given in Figure 1?

The operations for scale and add are fairly straightforward. If

M 〈M0, . . . ,M3〉sk
and N 〈N0, . . . ,N3〉sk

then

scale s M 〈scale s M0, . . . , scale s M3〉sk

add(M,N) 〈add(M0,N0), . . . , add(M3,N3)〉sk

The proofs for these definitions can be found in [8]. Also in [8] it was shown that

MT 〈M0
T ,M2

T ,M1
T ,M3

T 〉sk

which corresponds to the following property for partitioned matrices:(
M0 M1

M2 M3

)T

=
(

M0
T M2

T

M1
T M3

T

)
The obfuscated operation has complexity n×n.

Finally let us consider how we can multiply split matrices. Let

Mn×n 〈M0, M1, M2, M2〉sk

Nn×n 〈N0, N1, N2, N3 〉sk

By considering the partitioned matrix product(
M0 M1

M2 M3

)
×

(
N0 N1

N2 N3

)

we obtain the following result:

M ×N 〈(M0 ×N0) + (M1 ×N2), (M0 ×N1) + (M1 ×N3),
(M2 ×N0) + (M3 ×N2), (M2 ×N1) + (M3 ×N3)〉sk

The computation of M×N using normal matrix multiplication requires n3

element multiplications. If we multiply the split matrices, does this calculation
require more multiplications? If we use the definition of split matrices to add up
the number of multiplications required by each component then we find that the
total number of multiplications is still n3.

3.3 Review of matrix splitting

Using our matrix split, we have seen that we can easily define obfuscated oper-
ations for our matrix data-type. All of the obfuscated operations have a similar
complexity to the original versions. Since the matrix split is a generalisation of
an array split then we could use matrix splits as obfuscation for arrays. We could
do this by folding an array into a matrix, splitting the matrix and then flattening
the components back into arrays.

For our matrix data-type (defined in Figure 1) we considered four matrix op-
erations. Could we define obfuscations for other matrix operations? Computing
inverses and determinants for dense matrices which have been split can prove
to be difficult. We can, however, define obfuscations of these operations using
results for partitioned matrices — we omit the details here.

4 Using the Bernstein basis

We have seen that we can obfuscate a matrix by splitting it into many matrices.
We can easily define obfuscations for simple operations but it is harder to define
obfuscations for calculating inverses and determinants. We will now define an
obfuscation that is based on the fact that the elements of a two-dimensional
matrix can be used to define the coefficients of a bivariate polynomial.

We denote by P[x, y] the set of polynomials of variables x and y, with rational
coefficients. For a given n ∈ N, there are several ways to define bases for the
ring of degree-n polynomials (see, for example, Lorentz [17]). One is the power
basis

(
1 x . . . xn

)
and another is the Bernstein basis

(
Bn

0 (x) Bn
1 (x) . . . Bn

n(x)
)

where Bn
k (x) =

(
n
k

)
xk(1− x)n−k, ∀x ∈ [0, 1], k = 0, . . . , n are the corresponding

Bernstein Polynomials [3].

4.1 Power-form and Bernstein-form polynomials

A power-form polynomial p ∈ P[x, y] of degree m ∈ N in x and n ∈ N in y is
given by:

p(x, y) =
m∑

i=0

n∑
j=0

aijx
iyj , (8)

where aij ∈ Q. For given m, n ∈ N there are m+1 univariate degree-m Bernstein
polynomials in x, and n+1 univariate degree-n Bernstein polynomials in y. Any
bivariate power-form polynomial can be represented on the interval [0, 1] using
its equivalent Bernstein form as

pB(x, y) =
m∑

i=0

n∑
j=0

cijB
m
i (x)Bn

j (y) (9)

where cij are the Bernstein coefficients corresponding to the degree-n base. The
two representations p(x, y) and pB(x, y) are equivalent and it is possible to con-
vert one into the other. In the case of bivariate polynomials this conversion
requires some care and is based on the univariate case shown by Farouki and
Rajan [11].

The polynomials in Equations (8) and (9) can also be written as matrix
multiplications:

p(x, y) =
(
1 x . . . xm

) a00 . . . a0n

...
. . .

...
am0 . . . amn




1
y
...

yn

 = XAY

pB(x, y) =
(
Bm

0 (x) Bm
1 (x) . . . Bm

m(x)
)  c00 . . . c0n

...
. . .

...
cm0 . . . cmn




Bn
0 (y)

Bn
1 (y)
...

Bn
n(y)

 = BX
m CBY

n

Rewriting the vector BX
m of Bernstein polynomials in terms of matrix multi-

plication gives:

BX
m =

(
Bm

0 (x) Bm
1 (x) . . . Bm

m(x)
)

=
((

m
0

)
(1− x)m . . .

(
m
m

)
xm

)
=

((
m
0

) (
1 +

(
m
1

)
(−x) + . . . +

(
m
m

)
(−x)m

)
. . .

(
m
m

)
xm

)

=
(
1 x . . . xm

)︸ ︷︷ ︸
X


1 O(

m
0

)(
m
1

)
(−1)1

(
m
1

)(
m−1

0

)
(−1)0

...
. . .(

m
0

)(
m
m

)
(−1)m

(
m
1

)(
m−1
m−1

)
(−1)m−1 . . .

(
m
m

)(
m−m

0

)
(−1)0


︸ ︷︷ ︸

Um

= X Um, ∀x ∈ [0, 1].

So BX
m = X Um

Similarly BY
n = Vn Y

and pB(x, y) = BX
m C BY

n = X Um C Vn Y

Now we can compute the Bernstein coefficients matrix C:

X A Y = X Um C Vn Y

C = (Um)−1 A (Vn)−1 ∀x, y ∈ [0, 1]

4.2 Bernstein coefficients and obfuscation of matrices

The correspondence shown in Section 4.1 between the matrix of a polynomial’s
power-form coefficients and that of the Bernstein-form coefficients of the same
polynomial is unique, because they represent the same element in the ring of
polynomials. We have also shown that the transformation between the matrix
representations is well-defined.

(∀A ∈ Qα×β) (∃! p ∈ P[x, y] of degree α− 1 in x and β − 1 in y) p = X A Y
Furthermore (∃! C ∈ Qα×β) p = pB = X Uα−1 C Vβ−1 Y

Thus C is the matrix of coefficients of the Bernstein-form polynomial pB. We
will call the operation that transforms A into C the Bernstein Obfuscation of A,
thus A C. For matrix S the abstraction function af for this obfuscation is:

af (S) = Ua SVb where (a + 1, b + 1) = dim(S) (10)

We can also define a conversion function cf as follows:

cf (S) = Ua
−1 S Vb

−1 where (a + 1, b + 1) = dim(S) (11)

It is straightforward to show that these functions are bijections.

4.3 Bernstein example

Using the formulae in Section 4.1, it is possible to work out the Bernstein form
of a polynomial given in power form. Let us take the two-dimensional translation
matrix defined in Section 2.2

A =

1 0 dx

0 1 dy

0 0 1


The corresponding Bernstein-form matrix is

C = U2
−1AV2

−1 =

1 1 1 + dx

1 5
4

3
2 + dx + 1

2dy

1 3
2 3 + dx + dy


It is easy to verify that the polynomials corresponding to A and C are the same,
that is X A Y = X U2 C V2 Y. We can see that this obfuscation conceals the
fact that C represents a translation.

4.4 Operations for the Bernstein Obfuscation

Now that we have an obfuscation for matrices we can define obfuscations for our
matrix operations (given in Figure 1). If op denotes a matrix operation then opB
will denote the Bernstein obfuscated operation. In the following definitions, for
matrix S we assume dim(S) = (a + 1, b + 1).

We can use Equation (4) to derive the Bernstein obfuscated scalar multiplica-
tion (we omit the details). We find that scaleB S = scale S and so the operation
is unchanged by the obfuscation.

In Appendix A.2 we prove that for a matrix S

transposeB(S) = Ub
−1 Vb

T ST Ua
T Va

−1

When performing matrix splits, it was hard to write an obfuscation for matrix
inversion. However using the Bernstein obfuscation we are able to write such an
obfuscation. For some square obfuscated matrix S:

inverseB(S) = Ua
−1 Va

−1 S−1 Ua
−1 Va

−1

We omit the details of the proof.
We also found it difficult, for split matrices, to define a determinant oper-

ation. However, in Appendix A.2, we derive the following obfuscation of the
determinant operation under the Bernstein operation:

detB(S) = det(Ua)× det(S)× det(Vb)

As with scalar multiplication, matrix addition is unchanged under the Bern-
stein obfuscation:

addB(S,T) = S + T

We omit the details of the proof.
Finally, we can derive an obfuscation for matrix multiplication

multB(S,T) = SVb Ub T

This derivation can be found in Appendix A.3.

4.5 Review of the Bernstein obfuscation

In Section 4.4 we stated that determinants and inverses of matrices can be com-
puted easily when matrices have been obfuscated using the Bernstein method —
this is an immediate advantage of this method over the matrix splitting method.

One drawback of obfuscating matrices with the Bernstein method is, as shown
in Section 4.4, that when scaling and adding matrices, the operations them-
selves are not obfuscated. This slight disadvantage is clearly outweighed by the
method’s major advantage, namely that the obfuscated matrices have an entirely
different structure from the original entities. Any symmetry or other patterns
are shuffled in the transformation, thus making it difficult for an attacker to

guess their original meaning. This obfuscation technique would work with any
change of basis transformation, which would help to strengthen this technique
by allowing us to create a set of different obfuscations.

We have explained how the bivariate case works because most programs use
two-dimensional matrices. However, conversion between the power form and the
Bernstein representation is possible regardless of the number of variables (see
Geisow [13] and Garloff [12, 19]). Berchtold’s thesis [2] and the book [14] give
formulae and algorithms for the computation of the Bernstein form of bivariate
and trivariate polynomials. Thus we could adapt the method to more (or, indeed,
fewer) variables for use in programs with matrices of higher dimensions (or with
arrays).

The important advantages of this method are obtained at the cost of its
complexity. For each obfuscated matrix there are several matrices to compute,
invert and multiply together. One way in which these computations can be kept
low is by way of storing (rather than calculating) a table of the

(
n
k

)
combinations

(such as in the form of Pascal’s triangle). If the matrices to be obfuscated are of
similar sizes, then it should be possible to store, for significant values of a, the
matrices Ua and U−1

a .

5 Using matrices to obfuscate a number

Up to now we have discussed creating obfuscation for a matrix data-type but we
can use matrices to obfuscate other data-types. As an example, let us see how we
could use matrices to obfuscate rational numbers with three rational operations:
+, × and −1. So, for a number n we want a matrix S such that n S for some
abstraction function af . We need matrix operations plus, times and recip such
that, if n S and p T then

n + p plus(S,T) n× p times(S,T) n−1 recip(S)

5.1 Using determinants

We can define the abstraction function to be the determinant of the matrix. So,
for example,

af
(

a b
c d

)
= det

(
a b
c d

)
= a× d− b× c

We now need to define a suitable conversion function — remember that we are
free to choose any conversion function cf such that af ·cf = id. We could choose
the conversion function to be:

cf (n) =
(

n 0
0 1

)
We can immediately see that af (cf (n)) = n (but cf · af = id does not hold).
We can define plus to be

plus(
(

m 0
0 1

)
,

(
n 0
0 1

)
) =

(
m + n 0

0 1

)

However we can only use this definition of plus for matrices that are in a very
specific form — it is fairly easy to understand what the function is doing and
so it is not a good obfuscation. (Referring back to the assertion definition of
obfuscation, any assertions about plus, such as commutativity, can be proved
easily for this matrix version.) Instead we would like a function that can be
applied to more general matrices and so we need a different conversion function.

Let us suppose that to obfuscate a number n we pick a matrix S that has
n as an eigenvalue. If S is a 2 × 2 matrix then S has two eigenvalues (which
may be the same). So that we can recover n from S then we could fix the other
eigenvalue of S and we will suppose that S had the eigenvalues 1 and n. With
these eigenvalues, the trace of the matrix must be n + 1. Thus, we can define

cf (n) =
(

a b
c d

)
where ad− bc = n ∧ a + d = n + 1

This conversion function allows some freedom in choosing the elements of the
matrix that represents n. Suppose that we choose values of a and non-zero b.
We propose the following conversion function:

cf (n) =
(

a b
(a−1)(n−a)

b n + 1− a

)
where b 6= 0 (12)

We can check that trace(cf (n)) = n + 1 and det(cf (n)) = af (cf (n)) = n. Thus,
we can define

n

(
a b
c d

)
⇐⇒ n = af (

(
a b
c d

)
) ∧ a + d = n + 1

5.2 Arithmetic operations

Now let us define arithmetic operations using our obfuscation. We suppose that

n

(
a b
c d

)
and p

(
e f
g h

)
using the conversion function. We need to find

definitions for plus, times and recip.
First we want an operation that adds together n and p. We propose

plus(
(

a b
c d

)
,

(
e f
g h

)
) =

 a + e− 1 bf

(a+e−2)(d+h−1)
bf d + h


We can check that the trace of the resulting matrix is

a + e− 1 + d + h = (a + d− 1) + (e + h− 1) + 1 = n + p + 1

as required. We can also check that the determinant is n + p.
For a multiplication operation, we propose

times(
(

a b
c d

)
,

(
e f
g h

)
) =

 (a + d)(e + h) + 1 bf

−(a+d)(e+h)(a+d+e+h)
bf 1− a− d− e− h



Finally, for a reciprocal operation, we propose:

recip(
(

a b
c d

)
) =


d

a+d−1 b

(a−1)(d−1)

b(a+d−1)2
a

a+d−1


Note that this operation is undefined if a + d− 1 = 0 i.e. if n = 0.

More details of the development of the definitions for these operations can
be found in Appendix A.4. Note that we are free to create many different def-
initions for each of these operations since we have some degree of flexibility in
our conversion function.

5.3 Review of number obfuscation

Under this obfuscation, several arithmetic operations (on four numbers) are re-
quired, hence the complexity of each operation is increased. Thus this obfuscation
should not be used where an increase of complexity is a concern.

We could use this obfuscation to obfuscate certain constants in a program or
to obfuscate a variable (in a similar way to a variable split that was discussed
in Collberg et al. [6]). If we choose this matrix transformation to obfuscate a
rational variable then we risk adversely affecting the efficiency of a program. If
the variable that we choose is used extensively then the obfuscation will add
many arithmetic operations whenever the variable is used.

6 Evaluation of techniques

As stated in the Introduction, when creating obfuscations we should make refer-
ence to an attack model and any analyses we expect to run. For a human reader,
our obfuscated operations are harder to understand because the obfuscated op-
erations are not the expected matrix operations. To understand the Bernstein
obfuscated operations, an attacker needs to have familiarity with change of basis
transformations and, more importantly, needs to realise the connection between
matrices and polynomial bases.

Following the assertion attack model of Drape [8], when defining the matrix
data-type (as seen in Figure 1) we stated a number of assertions that we expect
our operations to satisfy. In most cases (except for the Bernstein obfuscations
of add and scale), the proofs of the assertions (which we omit) are more compli-
cated — example assertion proofs can be found in Drape [8]. One way of at least
checking whether the assertions of the obfuscated operations hold is to generate
a large set of random examples. In the case of functional languages (e.g. Haskell),
such a checking exists in the form of QuickCheck [5], which is based precisely on
sets of otherwise difficult to prove assertions.

Majumdar et al. [18] describe another attack model for obfuscation in which
obfuscations were created with the aim of protecting against an adversary armed
with a static program slicer. Majumdar et al. found that adding arrays to code

fragments reduces the effectiveness of program slicing. Thus a particularly effec-
tive obfuscation against a slicing attack should be the determinant obfuscation
described in Section 5.1 as it replaces numbers by array-like objects.

The data refinement approach means that we create obfuscations for a set of
defined operations. If we want to obfuscate other operations or data-types then
we may have to use different obfuscations. For instance, the determinant opera-
tion (discussed in Section 5.1) would not be suitable to obfuscate the individual
elements of a matrix as the complexity of the matrix operations would drasti-
cally increase. Future work would be to see whether these obfuscations would be
suitable if we allowed an update operation so that we could change individual
elements of a matrix (rather than by using algebraic matrix operations).

One advantage of specifying obfuscations as data refinements is that we can
easily produce equations which help us to prove the correctness of our obfus-
cations. In the Appendix we give some examples of correctness proofs using
equations given in Section 2.1. Another advantage of using data refinement is
we can compose our obfuscation functions to help us create more complicated
obfuscations. For example, we can create an inverse operation for split matrices
by using the Bernstein obfuscation:

inversesp = cf sp · af B · inverseB · cf B · af sp

In a similar way we can combine our number obfuscation (from Section 5.1)
with our other matrix obfuscations so that we can build a more complicated
obfuscation for numbers and we could also combine different change of basis
transformations.

7 Conclusions

An obfuscation should make a program (or a method within a program) harder
to understand. When obfuscating matrices one ideally aims to change the struc-
ture or the elements within the matrix. Our splitting obfuscation (Section 3.2)
changes the size and shape of the matrix (but not the individual elements),
whereas the Bernstein obfuscation (Section 4.2) does not alter the size and shape
of the matrix, but changes its elements (thus changing their pattern). An ad-
vantage of considering obfuscations as data refinements is that obfuscations can
then be written as functions, which gives us the ability to compose different ob-
fuscations together. Thus, we can create an obfuscation that changes both the
structure and the elements. Obviously, if efficiency is a concern then we have to
restrict how complicated we make our obfuscations — there is usually a trade-off
between how complicated the obfuscations are and efficiency. One way to allevi-
ate the slow-down of a program is, as discussed in Section 4.5, is to pre-compute
and store some of the data used frequently. The trade-off between space and time
complexity will depend on the individual applications for which the obfuscation
method is used.

Evidently, these operations rely on exact arithmetic being available for ratio-
nal numbers. This is not a major inconvenience, though, since multi-precision ra-

tional operations nowadays are either supported by programming languages (e.g.
Java) or through integrated packages (see, for example, MP [4] or LiDIA [16]).

In this paper we have used a variety of methods, both from number the-
ory and from previous work in obfuscation. Our methods bring improvements
on previous methods for matrix (and array) obfuscation because, as discussed
in Section 6, we have provided a range of techniques that can be used to cre-
ate transformations which provide greater obscurity. We do not give concrete
programming details of our matrix operations, since we considered obfuscation
at an appropriate level of abstraction, such that implementing these operations
(and their obfuscations) is a straightforward exercise.

References

1. Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai,
Salil P. Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. In
Proceedings of the 21st Annual International Cryptology Conference on Advances
in Cryptology, pages 1–18. Springer-Verlag, 2001.

2. Jakob Berchtold. The Bernstein basis in set-theoretic geometric modelling. PhD
thesis, University of Bath, 2000.

3. Serge Bernstein. Démonstration du théorème de Weierstrass fondée sur le calcul
des probabilités. Comm. Kharkov Math. Soc., 13(1–2):49–194, 1912.

4. Richard P. Brent. A FORTRAN multiple–precision arithmetic package. ACM
Transactions on Mathematical Software, 4(1):57–70, 1978.

5. Koen Claessen and John Hughes. QuickCheck: a lightweight tool for random testing
of Haskell programs. In ACM SIGPLAN Notices, 2000.

6. Christian Collberg, Clark Thomborson, and Douglas Low. A taxonomy of obfus-
cating transformations. Technical Report 148, Department of Computer Science,
University of Auckland, July 1997.

7. Willem-Paul de Roever and Kai Engelhardt. Data Refinement: Model-Oriented
Proof Methods and their Comparison. Cambridge Tracts in Theoretical Computer
Science. Cambridge University Press, 1998.

8. Stephen Drape. Obfuscation of Abstract Data-Types. DPhil thesis, Oxford Univer-
sity Computing Laboratory, 2004.

9. Stephen Drape. Generalising the array split obfuscation. Information Sciences,
177(1):202–219, January 2007.

10. Stephen Drape, Clark Thomborson, and Anirban Majumdar. Specifying imperative
data obfuscations. In Proceedings of the 10th Information Security Conference (ISC
’07), volume 4779 of Lecture Notes in Computer Science, pages 299–314. Springer,
October 2007.

11. R. T. Farouki and V. T. Rajan. Algorithms for polynomials in Bernstein form.
Computer Aided Geometric Design, 5:1–26, 1988.

12. J. Garloff. Convergent bounds for the range of multivariate polynomials. Interval
Mathematics 1985, Lecture Notes in Computer Science, 212:37–56, 1985.

13. Adrian Geisow. Surface Interrogations. PhD thesis, University of East Anglia,
1983.

14. Abel Gomes, Irina Voiculescu, Joaquim Jorge, Bryan Wyvill, and Callum Gal-
braith. Implicit Curves and Surfaces: Mathematics, Data Structures and Algori
thms. Springer Verlag, to appear 2009.

15. Roger A. Horn and Charles R. Johnson. Matrix Analysis. Cambridge University
Press, 1985.

16. LiDIA Group, Darmstadt University of Technology. www.cdc.informatik.tu-
darmstadt.de/TI/LiDIA.

17. George G. Lorentz. Bernstein Polynomials. Chelsea Publishing Company, New
York, 1986.

18. Anirban Majumdar, Stephen J. Drape, and Clark D. Thomborson. Slicing obfus-
cations: design, correctness, and evaluation. In DRM ’07: Proceedings of the 2007
ACM workshop on Digital Rights Management, pages 70–81, New York, NY, USA,
2007. ACM.

19. M. Zettler and J. Garloff. Robustness analysis of polynomials with polynomial pa-
rameter dependency using Bernstein expansion. IEEE Transactions on Automatic
Control, 43(3):425–431, 1998.

A Correctness Proofs

In this appendix we outline some proofs of correctness for the various obfusca-
tions given in the main body of the paper. For our proofs we will use the results
of Section 2.1 along with the results of the following section.

A.1 Non-homogeneous operations

Suppose that we have a operation

f :: B → C

where B and C are the state spaces of two data-types. Let af B and af C be
abstraction functions for some obfuscations of B and C. How do we define a
correct obfuscation fO of f? Suppose x :: B and x y and consider:

f(x) fO(y)
≡ {Equation (1) using af C}

f(x) = af C(fO(y))
≡ {Equation (1) using af B}

f(af B(y)) = af C(fO(y))

Thus
f · af B = af C · fO (13)

Some operations, have type:

f :: D ×D → D

for some data-type D. If af is an abstraction function for D then the corre-
sponding abstraction for D ×D is

cross(af , af)

where cross is an operation with type

cross :: (α → γ, β → δ) → (α, β) → (γ, δ)

which satisfies
cross (f, g) (a, b) = (f a, g b) (14)

Thus if fO is an obfuscation of f then using Equation (13) we have that

f · cross(af , af) = af · fO (15)

We will be able to use this equation to prove the correctness of binary matrix
operations such as addition and multiplication.

A.2 Unary operations under the Bernstein obfuscation

Let us consider the operation transpose. As a shorthand, we will use the usual T

notation. For a matrix S we propose that if f = T then

fB(S) = Ub
−1 Vb

T ST Ua
T Va

−1 where (a + 1, b + 1) = dim(S)

We prove this using Equation (3) for some unobfuscated matrix M:

af (fB(cf (M)))
= {definition of cf }

af (fB(Ua
−1 M Vb

−1))

= {definition of fB with (a + 1, b + 1) = dim(Ua
−1 M Vb

−1)}

af (Ub
−1 Vb

T (Ua
−1 M Vb

−1)
T

Ua
T Va

−1)

= {(B C)T = CT BT }

af (Ub
−1 Vb

T Vb
−1T

MT Ua
−1T

Ua
T Va

−1)

= {CT (C−1)T = (C−1 C)
T

= IT = I}
af (Ub

−1 MT Va
−1)

= {definition of af with (b + 1, a + 1) = dim(Ub
−1 MT Va

−1)}
Ub(Ub

−1 MT Va
−1)Va

= {associativity of matrix multiplication and inverses}
MT

= {definition of f}
f(M)

The determinant operation det is different to the other matrix operations
we have considered as the output from this operation is a number rather than
another matrix. Thus to derive a determinant operation for Bernstein obfuscated

matrices we consider det · af (since numbers are not obfuscated, the conversion
function is id) as follows:

detB(S)
= {deriving equation}

det(af (S))
= {definition of af with (a + 1, b + 1) = dim(S)}

det(Ua S Vb)
= {det(B C) = det(B)× detC}

det(Ua)× det(S)× det(Vb)

A.3 Binary operations under the Bernstein obfuscation

For a binary matrix operation ⊗, we use the non-homogeneous equations de-
fined in Section A.1. If cross(af , af) is the abstraction function for Matrix α×
Matrix α then the corresponding conversion function is cross(cf , cf) (this fol-
lows from the definition of cross). So, for example, to obfuscate an operation ⊗
we use Equation (15) and multiply by cf to get cf · (⊗) · cross(af , af).

Now we will use this equation to derive a definition for multiplication. Sup-
pose that we have two matrices S and T with (a + 1, b + 1) = dim(S) and
(b + 1, c + 1) = dim(T) (thus the matrices are conformable). Then, writing mult
as the prefix matrix multiplication operator in the place of ⊗ in the equation
above (but using normal matrix multiplication elsewhere), we can use this equa-
tion to derive an obfuscation:

cf (mult(cross(af , af) (S,T)))
= {definition of cross}

cf (mult(af (S), af (T)))
= {definition of af with appropriate dimensions}

cf (mult(Ua S Vb,Ub T Vc))
= {definition of mult}

cf (Ua S Vb Ub T Vc)
= {definition of cf with (a + 1, c + 1) = dim(Ua S Vb Ub T Vc)}

Ua
−1 (Ua S Vb Ub T Vc)Vc

−1

= {associativity of matrix multiplication and inverses}
SVb Ub T

Thus, multB(S,T) = SVb Ub T where (a + 1, b + 1) = dim(S).

A.4 Arithmetic operations for the number obfuscation

In Section 5.1 we define an obfuscation for numbers by representing a number
as the determinant of a matrix. In this section, we discuss the definitions of

the arithmetic operations in more details. We suppose that n

(
a b
c d

)
and

p

(
e f
g h

)
using the conversion function defined in Section 5.1. We need to

find definitions for plus, times and recip.
First we want an operation that adds together n and p. We need to find a

matrix that satisfies (
j k
l m

)
= plus(

(
a b
c d

)
,

(
e f
g h

)
)

Under our obfuscation we know that a + d = n + 1 and e + h = p + 1 and so
the resulting matrix must obfuscate n + p = a + d + e + h − 2. Thus we need
j + m = a + d + e + h − 1 so let us take j = a + e − 1 and m = d + h. We are
free to choose any non-zero value for k so we take k = b × f . Finally, from the
definition of cf we need

l =
(j − 1)(n + p− j)

k

=
((a + e− 1)− 1)((a + d + e + h− 2)− (a + e− 1))

bf

=
(a + e− 2)(d + h− 1)

bf

Thus,

plus(
(

a b
c d

)
,

(
e f
g h

)
) =

 a + e− 1 bf

(a+e−2)(d+h−1)
bf d + h


Note that this operation is commutative (as with +) but, as we free to choose
any non-zero value of k, we could easily make this operation non-commutative.

Next, we need to a find a matrix that satisfies(
j k
l m

)
= times(

(
a b
c d

)
,

(
e f
g h

)
)

We know that n = a + d − 1 and p = e + h − 1 and so we need our resulting
matrix to obfuscate n × p = (a + d − 1)(e + h − 1). Expanding this expression
we obtain:

n× p = (a + d)(e + h)− (e + h)− (a + d) + 1

So we take j = (a + d)(e + h) + 1 and m = 1− (a + d)− (e + h). We can choose
any non-zero value for k so (as before) let us take k = b×f . Using the definition

of cf , we have that

l =
(j − 1)(n× p− j)

k

=
(((a + d)(e + h) + 1)− 1)((a + d− 1)(e + h− 1)− ((a + d)(e + h) + 1))

bf

=
−(a + d)(e + h)(a + d + e + h)

bf

Thus

times(
(

a b
c d

)
,

(
e f
g h

)
) =

 (a + d)(e + h) + 1 bf

−(a+d)(e+h)(a+d+e+h)
bf 1− a− d− e− h


Finally, we would like to find a matrix that satisfies(

j k
l m

)
= recip(

(
a b
c d

)
)

Under our obfuscation, we know that n = a + d− 1 and so we need the result of
the operation to obfuscate 1

n = 1
a+d−1 . We need the trace of the result matrix

to be 1 + 1
n and so:

j + m = 1 +
1
n

= 1 +
1

a + d− 1
=

a + d

a + d− 1

So let us take j = d
a+d−1 and m = a

a+d−1 . Again, we have a free choice for
non-zero k so let’s take k = b. From the definition of cf we need

l =
(j − 1)(1

n − j)
k

=
(

1
b

) (
d

a + d− 1
− 1

) (
1

a + d− 1
− d

a + d− 1

)

=
(

1
b

) (
1− a

a + d− 1

) (
1− d

a + d− 1

)

=
(1− a)(1− d)
b(a + d− 1)2

Hence,

recip(
(

a b
c d

)
) =


d

a+d−1 b

(a−1)(d−1)

b(a+d−1)2
a

a+d−1


Note that this operation is undefined if a + d− 1 = 0 i.e. if n = 0.

We can easily prove that these operations are correct by using Equations (2)
or (15) as appropriate. The proofs of correctness are fairly straightforward (as
we used our conversion function to define our matrices); they essentially check
that the determinants of the matrices are correct.

