Oxford University Computing Laboratory

MSc in Computer Science

Functional Cryptography

Using a functional language to implement
some cryptographic algorithms

Stephen Drape

September 2001



Contents

Introduction.

11 Cryptography
111  Some terms and definitions
112 Ciphers
1.1.3  The importance of cryptography
114  Choosing ciphers
1.2 Functional Programming
1.2.1  The functional style of programming
122 Lists
1.2.3  Some other functions
1.2.4  Why use functional programming?
1.25 Hugs
13 The Focus
The Caesar Cipher
21 What is the Caesar cipher?
211  The enciphering part
2.1.2  Weaknesses of the Caesar cipher
2.2 Frequency Analysis
221  Functional frequency analysis
23 Other Techniques
231 Words
2.3.2  List of candidates
2.3.3  Error checking
24 Using Files
2.4.1  Files in Haskell
25 Testing the Caesar cipher programs
251  Using the file handling functions
25.2  Aninteractive Caesar function
2.6 Problems with the Caesar cipher
The Vigenere Cipher
31 The Fall of Caesar
3.1.1  Description of the Vigenere cipher
3.1.2  Functional Vigenere cipher
3.1.3  Using the key to decrypt a Vigenére cipher
3.1.4  Weaknesses of the Vigenere cipher
3.2 Cracking using Procedural Programming methods
3.2.1 A variation on the Vigenere cipher
3.2.2  Creating a ciphertext
3.2.3 Usingacrib
3.2.4  Finding the length of the key
3.25  Finding the key
3.3 Problems with the Vigenére cipher

From Private To Public

41 Other Private Key Algorithms
411  Substitution Cipher
4.1.2  The Playfair Cipher
4.1.3 The Book cipher
414  The One-Time Pad
4.2 The Key Distribution Problem
4.2.1  Public Key Algorithms
The Knapsack Algorithm
51 The Knapsack Problem

511 Creating a system
5.1.2  Superincreasing sequences
5.1.3  Making a public key system

12

13

14

15

17

25

26

28

29



Contents

52 Implementing the Knapsack algorithm in Haskell
521  Creating superincreasing sequences
5.2.2  Encrypting
53 Decrypting a Knapsack algorithm
53.1  The Euclidean algorithm
5.3.2  Reconstructing the text
54 Comments on the Knapsack algorithm
541 Problems with the implementation
5.4.2  Security of the Knapsack algorithm
6. The RSA system
6.1 The Mathematics of RSA
6.1.1  Description of RSA
6.1.2  Exponentiation
6.1.3  Primes and Factors
6.1.4  Primality testing
6.1.5 Choosing the numbers in RSA
6.2 RSA using Haskell
6.2.1  Converting the text
6.2.2  Chopping up the text
6.2.3  Functional RSA
6.2.4  Testing RSA
6.3 Decrypting using the public key
6.3.1  Rebuilding the text
6.3.2 A decoding function
6.4 Limits of the implementation
6.4.1  Using large numbers
7. Elgamal Encryption
7.1 The Elgamal algorithm
7.1.1 Discrete Logarithms
7.1.2  Developing the system
7.1.3 Random numbers
7.2 Haskell implementation
7.21  Reusing functions
7.2.2  Encryption
7.2.3  Decryption
7.3 Additional Testing
7.3.1  Tests with files
732 GHC
8. Conclusions
8.1 Creating efficient functions
8.2 Timings
8.3 Revisiting the aims
84 Further topics
8.5 Acknowledgements
Bibliography

Appendix A - Full Listings of Files Created

Appendix B - Comparison To Oberon

Appendix C - Finding primes

Appendix D - Sample Text Files

31

34

38

39

43

46

47

49

50

53

55
56
57
57
57

58
59
69
72
73



Chapter 1 Introduction

The aims of this project are listed below:

e To give an overview of cryptography by examining some cryptographic
algorithms.

* To look at some of the techniques used in both creating and breaking ciphers.

* To briefly consider some of the issues associated with different algorithms
such as security, ease of implementation and efficiency.

* To present applications of functional programming.

* To exploit the style of functional programming and try to create efficient
implementations.

The main areas of this project are Cryptography and Functional Programming. The
following sections will look at these two topics.

1.1 Cryptography

Cryptography is the study of the ways in which the contents of a message can be
disguised. The main aim of cryptography is to mask a message in such a way that it
would be unreadable to anyone intercepting the transmission of the message.

1.1.1 Some terms and definitions

The process of disguising a message will be called encryption (also known as
enciphering or encoding) and recovering the contents of a message will be called
decryption (deciphering or decoding). The original message is called the plaintext
and after encryption it is known as the ciphertext. The ciphertext can consist of a
series of letters or numbers - depending on the algorithm used. The algorithms in this
project used to encrypt messages are examples of ciphers. A cipher replaces each
letter in the plaintext by another letter or a number, thus creating the ciphertext (by
contrast, a code usually replaces a whole word or phrase with a character). A cipher
usually makes use of a key. A key is a sequence of characters (either letters or
numbers) which encrypts a plaintext in a particular way. Cracking or breaking
describes the process of recovering a plaintext without the knowledge of a key.

1.1.2 Ciphers

A cipher [Wsh] can be thought as having a function €, which takes a plaintext and
produces a ciphertext. If M is the plaintext, C the ciphertext and K the key then C =
€(M, k). There should also be a decryption function d such that, for some key K’
(which could be the same as k), M = d(C, k') = d(e(M, k), k). Any cryptographic
algorithm which is developed should satisfy the latter property.

1.1.3 The importance of cryptography

Cryptography is used in a wide range of areas from smart cards to military
communications. The use of cryptography has been important throughout history - an
example is the cracking of the Enigma ciphers during the Second World War [Sgh].
However, with the increased use of technology such as mobile phones and the
Internet, cryptographic algorithms need to be applied quickly and efficiently and they
should guarantee a high level of security.
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Chapter 1 Introduction

1.1.4 Choosing ciphers

The ciphers which are implemented in this project have been picked for a number of
reasons. All of the ciphers chosen are easy to understand and do not rely on any deep
knowledge of cryptography. The earlier ciphers will be used to show how ciphers may
be broken, and the latter ciphers will highlight the reliance that modern cryptographic
algorithms have on “hard” Mathematical problems. Both encryption and decryption
functions will be developed for each cipher. The encryption function will be applied
to text strings and its ciphertext could consist of another text string or a sequence of
integers. Correspondingly, the decryption function will take in a ciphertext and
produce a text string.

1.2 Functional Programming

Most implementations of cryptographic algorithms use imperative languages.
However, this project will use a functional language instead - the language that will
be used is called Haskéll. (Most of this section refers to [Brd].)

1.2.1 The functional style of programming

A functional program is built from expressions (the functions). A program is
executed by evaluating an expression. Expressions may be defined using standard
functions, usually contained in the Prelude. Associated with each expression is its
type - this determines what the expression takes in as arguments and what the output
should be. The first line of function usually gives its type (although it is not required
by Haskell) and is of the form function:: a -> b. For example, a function which
calculates the length of a string should take in a string as the input and produce an
integer as the output. Some example types are Int (limited precision integers),
I nt eger (arbitrary size of integers), Char (characters), String (list of characters),
Bool (True or False values), [a] (lists of type a). The last type is an example of a

polymorphic type.
122 Lists

One of the most useful types in Haskell is the list. A list is built up by using : . The
empty list is denoted by []. For example 1: 2: 3: [] is a list with 1 as the first element
(called the head of the list), followed by 2 and the last element is 3 - in Haskell,
[1, 2, 3] can be used as a shorthand for this list. The usual convention for a list is of
the form x: xs, where x is the head of the list and xs is the rest of the list (called the
tail). A recursive function can therefore be defined easily on lists by an expression of

the form: fo[] e
f (x:xs) (g x) : (f xs)

[£ hastype [a] -> b g hastype a -> b e has type b.]

Some useful prelude functions for lists:

take n xs  displays the first n elements of Xs.

drop n xs  removes the first N elements of XS and shows the remainder of the list.
map f xs applies the function f to each element of xs.

filter t xs uses a Boolean test t and prints the elements of Xs that satisfy the test.

S. Drape Functional Cryptography 2
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xs !'!' n produces the nth element of the list (counting starts at 0).
[a..Db] the list of integers from a to b inclusive (also used with characters).
XS ++ ys joins two lists together.

length xs  shows the length of the list.
reverse xs reverse the order of the list.
zip xs ys  makes a list of pairs (a,b) where a is from xSand b from ys.

f ol dr is a function which can represent a recursion on lists:

foldr t: (a->b->Db) ->b -> [a] -> Db
foldr £ e [] = e
foldr £ e (x:xs) = £ x (foldr f e xs)

[foldri,foldl andfoldl 1 are similarly defined.]

Strings are also lists, so String = [Char]. "abc" is a shorthand for
Ial:lbl:lcl:[]

1.2.3 Some other Prelude functions

- Functions are needed to convert between characters and their ASCII values.
chr takes an ASCII values and returns the corresponding character and or d returns
the ASCII values for a given character. The types of these functions are:

ord :: Char -> Intand chr:: Int -> Char

- fst and snd are used with pairs: f st (a, b) =a and snd( a, b) =b

- mod x d works out x (mod d) and rem x d works out the remainder when X is
divided by d. When x and d are both positive, then mod and r emgive the same values.
However, they can give different answers when one of the numbers is negative. In
most cases, rem will be used as it is generally requires less reduction steps.
Corresponding, the quotient can be given by using di v or quot and again these agree
for positive numbers. Also useful will be:

divMod x d = (div x d, mod x d) and quotRem x d = (quot x d, rem x d)

- A function can be specified by using the following notation
\ variables -> expression

€d, \ab->a*hb

defines a function which takes two values and returns their product. This notation
saves writing a separate function for something which may be only used once (i.e. a
local definition).

1.2.4 Why use functional programming?

Functional programming is rarely used with cryptography as imperative languages are
considered faster and use “traditional” programming concepts such as arrays, pointers
and modules. However, functional programming does have several advantages, some
are which are highlighted below.

* Functional programs are built up function by function. This means that a

complicated problem can be simplified by breaking up the problem and then
writing a function for each small step. Once a function is created, it can often

S. Drape Functional Cryptography 3
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be adapted easily for other programs. Creating efficient programs can be
achieved by concentrating on individual functions instead of looking at the
program as a whole.

* Functional programs are quite easy to test and debug. Functions can be tested
individually. This means that the places where errors occur can be spotted
quickly and the offending function can be changed. In the implementation of
each cipher, sample output from many functions will be shown.

* Functionality can be utilised to assist with proofs for correctness. In
imperative languages, concepts such as invariants have to be used to prove
correctness.

* Haskell is a lazy functional language. This means that results are only worked
out on demand. Laziness can be exploited in programs. For instance, consider

the functions: 1ist = map (210) [2..100]
first = head list

To evaluate first, only the head of the list worked out as the rest of |i st is
not needed. An imperative program would have to work out the whole list and
then just return the first element.

* Most of the cryptographic algorithms used are based on mathematical
functions. These should be easier to create in a functional environment, as the
language is designed to deal with functions.

125 Hugs

Most of the programs in this project are executed by Hugs (Haskell Users Gofer
System). Listings of the Haskell files are contained in Appendix A - all the files are
“literate” (with extension .lhs). In a literate file, all the lines of code are prefixed by
“>” and then comments can be added in between the pieces of code. The files were
created and executed using a remote login to the Sun machines in the Engineering
Department. Any timings that are given have been produced using these machines.

When giving sample output from functions, the number of reduction steps needed and
the number of cells used are shown. (In complicated calculations, the number of
garbage collections is also displayed). These numbers give an indication of how many
steps have to be performed to evaluate the expression and how much space was
consumed. These are not accurate measures of complexity or the time taken although
they are a useful guide to help with deriving efficient programs.

1.3 The Focus

The focus of the project is to implement cryptographic algorithms using Haskell.
During the implementation, issues relating to both cryptography and functional
programming can be discussed. The main purpose is to present cryptography from a
new angle - namely by studying functional programming. During the course of the
project, insight into both cryptography and functional programming should be gained.

This project builds on work studied in the courses:
*  Functional Programming
* Advanced Functional Programming
* Procedural Programming.

S. Drape Functional Cryptography 4



Chapter 2 The Caesar Cipher

The Caesar cipher is one of the simplest ciphers known. It is easy to apply but very
insecure. It is useful to see this cipher as an example for discussing the techniques
used in making encryption and decryption algorithms. One way of breaking the
Caesar cipher uses a technique known as frequency analysis. The purpose of this
chapter is to implement a functional program which can encipher texts using the
Caesar cipher. Also, a cracking program is to be developed - the aim of this program
is to produce an algorithm that displays the most likely plaintext after applying a
series of tests.

2.1 Whatis the Caesar cipher?

The Caesar cipher [Sgh, Wsh] acts on a string of letters by transposing each letter of
the plaintext by a given number of places - this defines the key. The key can either be
a number (between 0 and 25) or a letter (A represents 0, B represents 1, etc.).

For example:

Suppose the key is 12
Plaintext THE HOUND OF THE BASKERVILLES
Ciphertext FTQ TAGZP AR FTQ NMEWQDHUXXQE

To encipher each letter, each letter is shifted the appropriate number of places right
along the alphabet cycling where necessary. It is often useful to write down the
alphabet with the shifted alphabet underneath.

So, for a shift of 12
ABCDEFGHIJKLMNOPOQRSTUVWIXYZ
MNOPQRSTUVWXYZABCDETFGHTIUJZ KL

When using the Caesar cipher, the cipher is only applied to uppercase letters, leaving

the blanks alone. To achieve this, all lowercase letters need to be converted to

uppercase and any symbols (such as numbers, +, &, .) need to be removed or ignored.

To decipher, it is necessary to shift the alphabet back (or forward) by the correct
number of places. So for example, to decipher a message with a key of 12, either shift
the alphabet to the left by 12 places or right by 14 places. So the same algorithm can
be used to encipher and decipher a message. In fact, if c(S, m) represents a Caesar
cipher with shift sapplied to a message m, then

c(-s,c(s,m)=m (assuming Mjust contains uppercase letters and blanks)

2.1.1 The enciphering part

To use a Caesar cipher, it is necessary to change all the lowercase letters to upper
letter. To do this, first define a function capitalise:

> capitalise :: Char -> Char
> capitalise ¢ = if isLower c¢ then chr (off + ord c) else c
> where off = ord 'A' - ord 'a'

This function makes use of the Prelude boolean test i sLower to test whether a
character is a lowercase letter.

S. Drape Functional Cryptography 5



Chapter 2 The Caesar Cipher

To use this in a string (remembering string = [Char] ):

> caps :: String -> String
> caps = map capitalise

Next, it is necessary to remove all the unwanted characters. To do this, a boolean test
i swant ed is created which tests whether a character is an uppercase letter or a blank.
i sWant ed can then be used with fi | t er for use on a string.

> isWanted :: Char -> Bool
> isWanted ¢ = (c==' ") || (isUpper c)

This uses another Prelude test called i sUpper .
To shift each letter according to the key, it is necessary to define a function which

changes each uppercase letter (cycling where necessary) and leaves blanks

unchanged:

> nlett :: Int -> Char -> Char

> nlett n c

> | ¢c>="A" && c<='Z"'" = chr(ord 'A' + (mod(ord c - ord 'A' + n) 26))
> | otherwise = c

To work on a string, it will be necessary to use map.

Putting all these parts together gives a definition for caesar:

> caesar :: Int -> String -> String
> caesar n s = map (nlett n) (filter isWanted (caps s))

Some examples using these functions:

Main> caps "abcdE £"

"ABCDE F"

(310 reductions, 397 cells)
Main> nlett 3 'G'

IRT

(62 reductions, 97 cells)
Main> caesar 1 "h a 1 4*7"
"I B M "

(547 reductions, 707 cells)

Now, using the plaintext in Section 2.1:

Mai N> caesar 12 "THE HOUND OF THE BASKERVILLES"
"FTQ TAGZP AR FTQ NMEWQDHUXXQE"

(2377 reductions, 3107 cells)

Main> caesar (-12) "FTQ TAGZP AR FTQ NMEWQDHUXXQE"

"THE HOUND OF THE BASKERVILLES"
(2377 reductions, 3107 cells)

2.1.2 Weaknesses of the Caesar cipher

The Caesar cipher is a very elementary cryptographic algorithm. It is quick to apply

S. Drape Functional Cryptography 6



Chapter 2 The Caesar Cipher

and the key that is needed is only a small number (or a letter). Having such a simple
key means that the encryption is weak and once the key is known, it is very easy to
decrypt a Caesar message. One way of finding the key relies on a method known as
frequency analysis.

2.2 Frequency analysis

English (as with all languages) uses certain letters more than others. By studying the
frequency of letters in the ciphertext, it is possible to guess what some of the letters in
the ciphertext represent. Just finding what one letter in the ciphertext represents is
enough to find the whole plaintext. So, frequency analysis is a very powerful tool for
this cipher.

For English, the six most common letters in are:

E T A I N @)
(A table of letter frequencies is printed in [Wsh].)
2.2.1 Functional frequency analysis

The frequency of a particular character is computed by counting up the number of
occurrences of that character in the ciphertext — this can be achieved functionally by
using filter and then | ength. The function freq takes in a list of letters and a
ciphertext and creates a list of pairs of the form (frequency, letter). The reason for
creating the list in this way is so that the letter with the highest frequency can be
quickly identified. The function anal yse can be changed to check for characters other
than uppercase letters.

> freq :: String -> String -> [ (Int,Char)]

> freq [] _ = []

> freq (l:1s) xs = (length (filter (==1) xs),1l): (freq ls xs)
> analyse :: String -> [ (Int,Char)]

> analyse = (freqg ['A'..'Z']).caps

For example:

Main> analyse "the quick brown fox jumped over the lazy sleeping dog"
[(1,"A),(1,°B),(1,°C),(2,'D),(6,"E),(1,"F),(2,°G),(2,"H),(2,°
1), (1,"J3),(1,"K),(2,"L"),(1,'"M),(2,"N),(4,°0),(2,"P),(1,"°Q),(
2,'R),(2,'S),(2,"T),(2,"U),(1,"V),(1,"W),(1,"X),(1,'Y),(1,'Zz
)]

(6856 reductions, 6925 cells)

From this example, it can be seen that every letter occurs at least once. The fifth
element (6,' E') has the highest first component - this means that the letter “E” has
the highest frequency (which equals 6).

It is now necessary to give the letter with the maximal value (if two letters have
maximal values, then the leftmost letter is given)

First define a function which finds the maximum first component of a list of pairs:

S. Drape Functional Cryptography 7



Chapter 2 The Caesar Cipher

> maxpair :: [(Int,a)] -> (Int,a)

> maxpair = foldrl (maxfst)

where:

> maxfst :: Ord e => (e, f) -> (e, f) -> (e, f)

> maxfst (a,b) (c,d) = if a>=c then (a,b) else (c,d)

Now use naxfst to find the letter (the second component) for which this maximum
OCCUrs:

> maxlet :: String -> Char
> maxlet = snd.maxpair.analyse

For example:

Main> maxlet "the quick brown fox jumped over the lazy sleeping dog"
IEI
(6265 reductions, 5626 cells)

max| et could be used to help to decipher a ciphertext by supposing that the most
frequent letter of the ciphertext corresponds to “E” in the plaintext. However, in
general, more sophisticated methods are needed.

2.3  Other techniques

Despite needing to find just one letter, using only a frequency analysis would not
guarantee deciphering a ciphertext. Generally, E is the most common letter in English
words but it is possible to find pieces of text which have few occurrence of the letter
E. So to completely decipher a plaintext, it is necessary to consider other ways of
deciding what individual letters are.

A starting point for further analysis could be to create a list of potential plaintexts.
This is done by finding the most frequent letter in the ciphertext (by using frequency
analysis) and supposing that it was one of the most frequent letters in English. This
would create the required list of plaintexts. These potential plaintexts could then be
studied further. An alternative could be to suppose one of the six most frequent letters
in the ciphertext corresponds to “E”. This would fail if the frequency of “E” in the
plaintext is low.

Of course, the easiest way to see the plaintext is to generate all 26 possibilities - but
this is against the spirit of this project and, for more complicated ciphers, it would be
infeasible to output all the possible plaintexts.

23.1 Words

The implementation of the Caesar cipher means that any blanks in the original text are
unchanged. This weakness can be exploited. Searches for one and two letter words
and double letters within the text will help in analysing the text.

Using small words and double letters gives a way of assessing each of the potential
plaintexts. Each word (or double letter) could be compared to a list of candidates and

S. Drape Functional Cryptography 8



Chapter 2 The Caesar Cipher

each word that is not in the list would generate an error. The plaintext with the
smallest number of errors is likely to be the correct ciphertext.

2.3.2 List of candidates
One letter words:

A I

Two letter words:

AM AN AS AT BE BY CcO DO EG GO HE

HI IE IN IS T ME MR MY NO OF OH

OK ON OP OR OX Pl SO TO UP us WE
Common double letters:

CC DD EE FF GG LL NN 00 PP RR SS TT
2.3.3 Error checking

There needs to be a list of potential candidates for the tests. As the number of
candidates is fairly small, they can be stored within the program itself:

> onelett =["A","I"]

> twol —_ [ "AM"’ "AN"’ "AS"’ "AT"’ "BE"’ "BY"’ "CO"’ "DO"’ "EG"’ "GO"’ "HE"’ "HI "]
> tw02 = ["IE","IN","IS","IT","ME","MR","MY","NO","OF","OH","OK"]

> two3 - ["ON", "OP ", "OR‘ , n Oxn , n PI n , n Sol , n To| , n UP" , n US" , n VE"]

> twolett = twol++two2++two3

> doubles = "CDEFGLNOPRST"

Also, the six most frequent letters in English needs to be listed:

> mostfreqg :: [Int]
> mostfreq = map (\s -> ord s - ord 'A') ['E','T','A','I"','N",'0"]

This gives the list [ 4, 19, 0, 8, 13, 14] .

Next, a list of possible plaintexts need to be created using the six most frequent
letters:

> posslist :: String -> [String]
> posslist ss = map (flip caesar ss) (map (+f) mostfreq)
> where £ = ord '"A'- ord(maxlet ss)

f1i p is a function defined in the Prelude, where:
flip :: (b->a->c¢c) ->a->b->c
flip £t xy =£f vy x

The Haskell prelude has a function words that chops up a string up into words (i.e. text
separated by blanks).

S. Drape Functional Cryptography 9



Chapter 2 The Caesar Cipher

To obtain words of size n, first define a boolean test that checks whether a string (list)
is of size n.

> len :: Int -> [a] -> Bool
> len n ss = (length ss == n)

Now, use | en and wor ds to filter out words of length n.

> sizeword :: Int -> String -> [String]
> sizeword n ss = filter (len n) (words ss)

For example:

Main> sizeword 2 "to be or not to be"
[lltolll n be"' "Or"' lltolll n bell]

(770 reductions, 1148 cells)

To find all the double letters in a text, use:

> doub :: String -> String

> doub [] = []

> doub [x] = []

> doub (x:y:xs) = if (x==y) then x:doub xs else doub (y:xs)

Main> doub "bookkeeping"
n Okell
(89 reductions, 133 cells)

To work out the number of errors for each test, the appropriate list is created and
compared with the list of candidates. The number of errors can be obtained by
counting up the number of elements in the created list which do not match a
candidate. To assist in this process, it is helpful to create a function which checks
whether an element is not a member of a given list:

> notmember :: Egq a => [a] -> a -> Bool
> notmember [] _ = True
> notmember (x:xs) y = if (x == y) then False else notmember xs y

To find the numbers of errors in a given string:

> errorsl :: String -> Int

> errorsl ss = length (filter (notmember onelett) (sizeword 1 ss))
> errors2 :: String -> Int

> errors2 ss = length (filter (notmember twolett) (sizeword 2 ss))
> errors3 :: String -> Int

> errors3 ss = length (filter (notmember doubles) (doub ss))

> errors :: String -> Int

> errors ss = (errorsl ss) + (errors2 ss) + (errors3 ss)

The last thing to do is to create the number of errors for each potential plaintext and
pick the text with the lowest number of errors. A list of pairs consisting of elements of
the form (Text, Errors in Text) will be created by the mapping err :

S. Drape Functional Cryptography 10



Chapter 2 The Caesar Cipher

> err :: String -> (String, Int)
> err a = (a, errors a)

Next, functions will be needed to find the element with the lowest second component:

> minsnd :: Ord f => (e, f) -> (e,f) -> (e, f)

> minsnd (a,b) (c,d) = if b <=d then (a,b) else (c,d)
> minpair :: [(a,Int)] -> (a,Int)

> minpair = foldrl minsnd

(These functions are analogous to nmaxf st and naxpai r defined in 2.2.1)

Finally, a definition for decode:

> decode :: String -> String
> decode = fst.minpair. (map err). (posslist)

To demonstrate the functions, the string "LG Tw GJ FGL LG TW LZSL AK LZW
| MAKLAGF" will be used:

Doing a frequency analysis:

Main> analyse "LG TW GJ FGL LG TW LZSL AK LZW IMWKLAGE"
[(2,"A),(0,°B),(0,°C),(0,"D),(0,"E),(2,"F),(5"'G),(0,"H), (1,°
1'),(1,°3),(2,°K),(7,"L"),(1,"M),(0,"N),(0,"0),(0,"P),(0,"Q), (
0,'R),(1,'S),(2,'T),(0,"U),(0,"V),(4,"W),(0,"X),(0,'"Y),(2,'Z
)]

(4750 reductions, 5147 cells)
Finding the letter with the greatest frequency:

Main> maxlet "LG TW GJ FGL LG TW LZSL AK LZW IMWKLAGE"
K
(4159 reductions, 3848 cells)

Generating a list of possible texts:

Main> posslist "LG TW GJ FGL LG TW LZSL AK LZW IMWKLAGE"

["EZ MP ZC YZE EZ MP ESLE TD ESP BFPDETZY","TO BE OR NOT TO BE THAT
IS THE QUESTION","AV IL VY UVA AV IL AOHA PZ AOL XBLZAPVU","ID QT DG
CDI ID QT IWPI XH IWT FJTHIXDC","NI VY IL HIN NI VY NBUN CM NBY
KOYMNCIH","O0J WZ JM IJO OJ WZ OCVO DN OCZ LPZNODJI"]

(22377 reductions, 27604 cells)

(The second text looks the most likely!)

To look at the number of “errors” in each list:

Main> map errors (posslist "LG TW GJ FGL LG TW LZSL AK LZW IMWKLAGE")
[6,0,6,6,6,6]
(38185 reductions, 52016 cells)

The second text has the least number of errors.
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Chapter 2 The Caesar Cipher

Finally, cracking the text:

Main> decode "LG TW GJ FGL LG TW LZSL AK LZW IMWKLAGE"
"TO BE OR NOT TO BE THAT IS THE QUESTION"
(38907 reductions, 52923 cells)

2.4 Using Files

Cryptographic algorithms are often used on large pieces of text - checking the
functions in the last section meant using the same piece of text repeatedly. It is useful
to have the facility to read in a piece of text and then apply the cipher to the text. The
output from an algorithm will be either a string of letters or a list of numbers. It is also
beneficial to having a routine which will save the output from a cipher and then read it
back in when decoding.

2.4.1 Files in Haskell

Functional file handling makes use of the IO() monad. It is necessary to convert
between strings and 10().

Some useful functions:

> isText :: Char -> Bool

> isText c

> | ord ¢ < 32 = False
> | ord c > 127 = False
> | otherwise = True

- This filters out any unwanted characters.

> file :: String -> String -> (String -> String) -> IO()
> file infn outfn func = do xs <- readfFile infn
> writeFile outfn (filter isText (func xs))

- This is used to read in a file infn, apply the function func to the text of infn and then
save the result in the file outfn.

> fileshow :: String -> (String -> String) -> IO ()
> fileshow infn func = do xs <- readFile infn
> putStr (filter isText (func xs))

- This reads in a file of name infn, applies the function func and then displays the
result to the screen.

These 3 functions and the Prelude function
writeFile :: FilePath -> String -> IO ()

allow functions to be written which deals with files.

In this and subsequent sections, a standard convention will be used:
Srepresents an action to or from the screen
and  F represents an action with a file.

So caesar SF means a function that takes an input from the screen and outputs it to a
file. caesar stands for caesar SS.

Using this convention, six functions can be defined:
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> caesarSF :: Int -> String -> String -> IO()
> caesarSF n ss outfn = writeFile outfn (show(caesar n ss))

> caesarFS :: Int -> String -> IO()
> caesarFS n infn = fileshow infn (show. (caesar n))

> caesarFF :: Int -> String -> String -> IO()
> caesarFF n infn outfn = file infn outfn (caesar n)

> decodeSF :: String -> String -> IO()
> decodeSF ss outfn = writeFile outfn (show(decode ss))

> decodeFF :: String -> String -> IO()
> decodeFF infn outfn = file infn outfn decode

> decodeFS :: String -> IO()
> decodeFS infn = fileshow infn decode

The file handling functions for the other implementations have a similar structure.
The actual functions will not always be stated, however they can be found in the
relevant place in the program listings - contained in Appendix A.

2.5 Testing the Caesar cipher programs

This section shows the output obtained from the functions developed in this chapter -
particularly using the file handling routine. As is the case with functional programs,
individual parts can be tested. The test files filel... filed are shown in Appendix D.

2.5.1 Using the file handling functions

a) Shifting filed by 15 letters (note that the letters are converted to uppercase)
Main> caesarFS 15 "file4"

"IWT FJXRZ QGDLC UDM YJBETS DKTG IWT APON HATTEXCV SDV"

(6169 reductions, 7599 cells)

b) Shifting file3 by 23 letters saving the result to file3cae
Main> caesarFF 23 "file3" "file3cae"
(20399 reductions, 25079 cells)

C) Decoding file3cae

Main> decodeFS "file3cae"

THE DOCTOR PUTS HIS HAND ON ACES SHOULDER BEFORE THEY WENT INTO THE CHURCH
TIME TO LEAVE HE SAID ACE LOOKED INTO THE DOCTORS GREY EYES WE DID GOOD
DIDNT WE PERHAPS SAID THE DOCTOR TIME WILL TELL IT ALWAYS DOES

(179410 reductions, 239860 cells, 1 garbage collection)

[Notice that all the punctuation has been removed and the text converted to upper case
letters.]

d) Doing a frequency analysis on file2 (note no “E’s)

Main> fileshow "file2" (show.analyse)
[(24,"A),(6,'B),(12,'C),(11,'D),(0,"E),(7,"F),(7,"'G),(13,"H),
(35,"1"),(2,"3"),(2,"K'),(21,"L"), (5 "'M),(19,"N),(27,"O0),(9,'"P ), (
1,'Q),(12,'"R),(26,'S),(23,'T),(18,"U),(3,"V),(11,"W), (0,"X ), (
7,'Y),(0,"Z")]

(46540 reductions, 41950 cells)

S. Drape Functional Cryptography 13



Chapter 2 The Caesar Cipher

e) Decoding file2cae (created by a shift of 7)

Main> decodeFS "file2cae"

INCURABLY INSOMNIAC ANTON VOWL TURNS ON A LIGHT WITH A LOUD AND LANGUOROUS
SIGH VOWL SITS UP STUFFS A PILLOW AT HIS BACK DRAWS HIS QUILT UP AROUND HIS
CHIN PICKS UP HIS WHODUNIT AND IDLY SCANS A PARAGRAPH OR TWO BUT JUDGING ITS
PLOT IMPOSSIBLY DIFFICULT TO FOLLOW IN HIS CONDITION ITS VOCABULARY TOO
WHIMSICALLY MULTISYLLABIC FOR COMFORT THROWS IT AWAY IN DISGUST

(312752 reductions, 417572 cells, 1 garbage collection)

Not all texts can be decoded. Decoding could fail if:
* The text contains few occurrences of the “most frequent” letters.
* There are no one or two letter words.
* The text does not consists of standard English.

2.5.2 An interactive Caesar function

The Haskell prelude contains a function:

interact :: (String -> String) -> IO ()

This can be used so that the Caesar cipher can be applied instantly to the keys that the
user types in. A termination key will be required and ‘# will be used.

So, an interactive version of the Caesar cipher can be specified:

> icaesar :: Int -> IO()
> icaesar n = interact ((caesar n). (takeWhile (/="#")))

The cipher will work on letters, leave spaces alone, terminate on ‘# and ignore all
other symbols.

For example,

Main> icaesar 15

PQOR STUVW

(909 reductions, 1108 cells)

[The keys pressed were: abc 3def* (gh# ]

2.6 Problems with the Caesar cipher

As can be seen from this chapter, the Caesar cipher is a very simple cipher to crack.
The creation of a cracking program is not very difficult. The main techniques used to
decode were using a frequency analysis and looking at one and two letter words. Any
cipher which transposes the letters in the text can be broken by using frequency
analysis. A better cipher would have to destroy the frequency of the letters of the
original text or remove the blanks.
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This chapter will look at a cipher — the Vigenere cipher — that is based on the
principles of the Caesar cipher. A functional program to encipher a message using the
traditional Vigenere cipher will be developed. The cracking will follow the methods
of the first practical in the Procedural Programming course. However, instead of
using Oberon, Haskell will be used. The methods outlined in this course use a
modification of the Vigenere cipher.

3.1 The Fall of Caesar

As seen in the previous chapter, the Caesar cipher is very insecure. The main
weakness with the Caesar cipher is that by performing a frequency analysis on the
ciphertext, the most frequent letters can be determined. A more secure system needs
to hide the frequency of the letters of the plaintext. One way to do this is to use
different alphabets for differently placed letters in the plaintext. One cipher that does
this is the Vigenere cipher.

3.1.1 Description of the Vigenere cipher

The Vigenere cipher [Sgh] uses a word as its key. Each letter of the key word acts as a
shift for a Caesar cipher. The plaintext is written down with the key repeatedly written
above the plaintext. Each letter of the plaintext is shifted according to what letter it is
below (A represents a shift of O, .., Z a shift of 25). To work properly, blanks need to
be removed.

For example, if the plaintext is THE BODY IN THE LIBRARY and the key
MARPLE, then the message is encrypted as follows:

Key MARPL EMARPL EMARPLEM
Plaintext THEBODY! NTHEL| BRARY
Ciphertext FHVQZHKI EI SI XI SGLVK

The frequency of the letters in the plaintext cannot be determined. From the example,
it can be seen that “I” in the ciphertext can represent “I”, “T” or “E” in the plaintext.
This means that a standard frequency analysis outlined in Chapter 2 cannot be used
here. In fact, the Vigenere cipher uses many different alphabets to encrypt its
messages, hence it is an example of a polyalphabetic cipher (Caesar is a
monoal phabetic cipher).

As the Vigenere cipher is based on the techniques used in the Caesar cipher, it should
not be too difficult to construct algorithm which will encipher messages using the
Vigenere cipher.

3.1.2 Functional Vigenere cipher

The program for the Vigenere cipher in Haskell will make use of the functions
capitalise, caps and nl ett from Section 2.1.2.

As letters are used instead of numbers, a function will be needed to convert a letter
into a number - this is so that nl et t can be used.

S. Drape Functional Cryptography 15



Chapter 3 The Vigenére Cipher

> toval :: Char -> Int
> toval ¢ = ord ¢ - ord 'A'

To define a Vigenere cipher, first use a function which uses nl ett with the key and
the plaintext:

> vig' :: String -> String -> String
> Vig' nn = nn
> vig' (k:ks) (t:ts) = (nlett (toval k) t) : vig' ks ts

It is necessary to keep repeating the key when encrypting the plaintext. The Prelude
has a function cycl e:

cycle 1 [a]l -> [a]

cycle [] = error "Prelude.cycle: empty list"
cycle xs = xs' where xs'=xs++xs'

For example, cycle “abcd” = “abcdabcdabc. ... ... §

Only upper case letters are encrypted - a filter is used to remove other characters. So,
the function for the Vigenere cipher is:

> vig :: String -> String -> String
> vig ks ss = vig' (cycle(cap ks)) (filter isUpper (cap ss))

For example,

Main> vig "marple" "the body in the library"”

" FHVQZHKI EI SI XI SGLVK"
(2037 reductions, 2620 cells)

3.1.3 Using the key to decrypt a Vigenere cipher

If the key is known, then a deciphering processing is quite straightforward. The only
work required is to convert the key so that it can be used with the function vi g.

For example, to decrypt the ciphertext above, the key needed is “OAJLPW™.
The following table can be used to convert the encrypting key:

Encrypting A B C D E

Decrypting A Z Y X W

a function r evl et can be obtained:

> revlet :: Char -> Char
> revlet 'A' = 'TA'
> revlet ¢ = chr (ord 'B' + ord 'Z' - ord c)

This can be used to specify a function which reverses a key:

> revkey :: String -> String
> revkey xs = map (revlet) (cap xs)
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Now, a function can be defined for decrypting a Vigenere cipher:

> vigrev :: String -> String -> String
> vigrev k ss = vig (revkey k) ss

Using the example above,

Main> revkey "marple"
"OAJLPW
(352 reductions, 433 cells)

Main> vigrev "marple" "FHVQZHKI El SI XI SGLVK"
" THEBODYI NTHELI| BRARY"
(1759 reductions, 2350 cells)

A harder task, when decrypting a Vigenere cipher, would be to insert all the spaces
that occur in the plaintext back into the correct places!

3.1.4 Weaknesses of the Vigenére cipher

Despite being more secure than the Caesar cipher, the Vigenere cipher still has
weaknesses. Looking again at the example in Section 3.1.1:

Key MARPL EMARPL EMARPLEM
Plaintext THEBODY!| NTHEL| BRARY
Ciphertext ~ FHVQZHKI EI SI XI SGLVK

In this “Y” twice is mapped to “K” and “I” is also mapped to “I”’ twice. The periods
of repeat between these letters are 12 and 6 respectively, which are both multiples of
the key length (i.e. 6). Finding the lengths of repeats in a ciphertext can give a list of
candidates for the length of the key. Further analysis can then be performed to try to
determine the key.

3.2 Cracking using Procedural Programming methods

The first practical of the Procedural Programming course [P1] was concerned with
developing an encryption program in Oberon for a different form of the Vigenere
cipher and the developing programs to crack the cipher.

3.2.1 A variation on the Vigenére cipher

The practical used a modified version of the Vigenere cipher. This cipher still uses a
word as the key but it encrypts all the characters in a piece of text including the
blanks.

The text is encrypted using ‘exclusive or’ (xor), denoted by L. This function is used
on binary digits (actually it is usually used with truth values; 1 can represent TRUE
and O can represent FALSE) and has the rules:

0do0=0=101 and O001=1=100
[ is commutative and associative. It also obeys the law:

(@0byOb=a [the cancelling law],
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which is useful in encryption - applying the same key twice gives back the original
text.

U can be used with decimal numbers by converting the numbers to binary and then
using [] bitwise and then converting back to decimal.

To develop functions which mimic U, it is necessary to consider the binary
representation of the integers used and checking the matching bits. This is equivalent
to recursively checking the remainder mod 2, dividing the numbers by two and then
rechecking. A list is made which consists of just Os and 1s that can then be converted
back to an integer.

The following functions implement []:

> xor :: Int -> Int -> Int

> xor a b = twopw(xor' a b)

> xor' :: Int -> Int -> [Int]

> xor' 0 0 = []

> xor' a b = if mod a 2 == mod b 2 then 0:xx

> else 1:xx

> where xx = xor' (div a 2) (div b 2)
> twopw :: [Int] -> Int

> twopw = foldr (\ a b -> a + (2*b)) 0

To use U with characters:

> chars :: Char -> Char -> Char
> chars a b = chr (xor (ord a) (ord b) )

If both m and n are 7 bit (i.e. between 0 and 127) then so will be the result.
To create a cipher:

ciphertext = plaintext [J key’

where key' is the repeated key.

U is used character-wise on each element of the plaintext.
3.2.2 Creating a ciphertext.
The function chars can be used to turn a plaintext into a ciphertext using a key (in

fact a ciphertext can be turned back into the corresponding plaintext by using the
same functions and the same key).

> vig :: String -> String -> String

> vig ks ss = vig' (cycle ks) ss

> vig' :: String -> String -> String

> vig' _ [] =[]

> vig' (t:ts) (s:ss) = (chars t s) : (vig' ts ss)

The usual output is just gibberish, so file handling versions are used. Slight changes
are needed from the functions in Section 2.4.1, as non-text characters cannot be
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filtered out - the functions can be found in Appendix A.
3.2.3 Using a crib

One method the Procedural Programming practical applied to crack this Vigenere
cipher was the use of a crib. The idea is to use a suspected piece of the plaintext
(called a crib) to try and recover the key. This feels like little bit like cheating!
However, during the Second World War, German ciphers were often broken by
guessing what certain pieces of the ciphertext were. In particular, the first message of
the day that was sent was usually the weather report. By supposing that the plaintext
contained the German word “wetter”, information could often be gained about the
text. As the key for the ciphers were not normally changed throughout the day,
breaking the first message of the day gave a tremendous advantage [Sgh].

Using the example in Section 3.1.1 (looking simply at letters), the ciphertext was:
FHVQZHKI EI SI XI SGLVK

Suppose that it is known that “BODYINTHE” occurs in the plaintext. This can then
be used to try to find the key by trying this piece of text at various positions of the
ciphertext. The aim of this checking is to find a repeating pattern for the key - to do
this the length of the crib must be greater than the key length. [In this example, the
reversing can be done by using a function such as vi grev, defined in Section 3.1.2.
For the Crypt cipher, U can be used with the cancelling law].

Suppose that the piece was tried starting at the second place in the ciphertext:

Piece of text BODYINTHE
Ciphertext FHVQZHKI ElI SI XI SGLVK
Implied key GHNBZXPXE

No repetition occurs here, so this not likely to be the correct place.

However, if checking was started at the fourth place in the ciphertext:

Piece of text BODYINTHE
Ciphertext FHVQZHKI EI SI XI SGLVK
Implied key PLEMARPLE

Here a clear repeat can be seen and the period of repeat corresponds to the length of
the key. The key can be determined by working back along the ciphertext.

The first function needed checks for a repeat. To help to eliminate accidental
matching, the function implemented will only check for a repeat of at least two
characters. The period of repetition is needed as this corresponds to the length of the
key - this is worked out by the function r epl en (0 denotes no repeat).

> rep :: Eg a => [a] -> Int -> Bool
> rep xs n = and (zipWith (==) xs (cycle (take n xs)))
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> test :: Int -> [Bool] -> Int

> test _ [] =0

> test n (x:xs)= if x == True then n else (test (n+l) xs)
> replen :: Eg a => [a] -> Int

> replen xs = test 1 (map (rep xs) [l..(length xs)-2])

For example:

Main> replen "abcabcab"

3

(353 reductions, 519 cells)
Main> replen "abcabcac"

0

(838 reductions, 1267 cells)
Main> replen "abcda"

0

(326 reductions, 491 cells)

Now, the crib needs to be tried at each possible position of the ciphertext. The
resulting text needs to be checked to see whether it repeats. The next function makes a
list of triples consisting of (key, length of repeat, position).

> criblist :: Int -> Int -> String -> String -> [(String,Int,Int)]
> criblist 0 _ _ _ = []

> criblist 0 _ _ [] = []

> criblist k n cs (s:ss) = (vig ss cs, replen (vig ss cs), n-k):

> criblist (k-1) n cs ss

The syntax for cri bl i st is:
criblist (counter) (max. position) (crib) (text)

filel has been encrypted with a key and the result has been stored in filelcode - this
will be used as an example.

The crib “chance led” will be used with filelcode - the first 10 positions are shown.

Main> fileshow "filelcode" (show. (criblist 10 10 "chance led"))

[("w p'nj2Jgr",0,0), ("by(cl W ACKns0",0,1),("r!lagC "z1a",0,2),("*en| E
g68 0", 0, 3), ("ngsHasting", 8,4), ("l zdA ulygf7",0,5), ("gNcx7" +06A", 0, 6),
("Efw fn#?@",0,7), ("a~5khfsl}7",0,8), ("u<de 6\ ENQ 6v", 0, 9)]

(68034 reductions, 91252 cells)

It is now necessary to choose the correct element of the list created by the function
criblist. The element wanted is the one with a non-zero second component. If no
such element exists then ‘-1’ is returned.

> headl:: [(String,Int,Int)] -> (String, Int,Int)

> headl [] = ("",-1,-1)

> headl (x:xs8) = x

> snd' :: (a,Int,c) -> Bool

> snd' (a,b,c) = b==

> crib' :: String -> String -> (String,Int,Int)

> crib' cs ss = headl (dropWhile snd' (criblist k k cs ss))
> where k = length ss - length cs
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Using filelcode:

Main> fileshow "filelcode" (show. (crib' "chance led"))
("ngsHasting", 8, 4)
(27677 reductions, 36371 cells)

The element returned from cri b' is of the form (string, key length, position in text)
(or (“’,-1,-1) if a key cannot be found).

The key can now be obtained from the first component of cri b’ .

> crib :: String -> String -> String

> crib cs ss = if k>0 then take k (drop (k- (mod (p+l) k))
> (cycle (take k xs)))
> else []

> where (xs,k,p) = crib' cs ss

To find the key used on filel:

Main> cribFS "chance led" "filelcode"
"Hastings"
(27456 reductions, 36107 cells)

Checking this:

Main> vigFS "Hastings" "filelcode"
Pure chance led my friend

Victory Ball.
(179044 reductions, 230907 cells)

It is possible for the cri b function to fail. The crib could be too short or it could give
an incorrect key if the crib contains repeated characters.

Main> cribFS "chance le" "filelcode"

Main> cribFS "widespread" "filelcode"
"Ulvx| bd\ DEL"

Main> cribFS "widespread " "filelcode"
"Hasti ngs"

3.24 Finding the length of the key

The aim of this section is to try to find the length of the key by shifting the ciphertext
by a set amount and counting how many matches occur. (Remember in Section 3.1.4,
the matches occurred with shifts of multiples of the key length). The shift with the
greatest number of matches is likely to correspond to the key length (or a multiple of
the key length).

The first step is to define a function which counts the number of matches between two
strings. A “match” is counted if the strings have the same character in the same place.
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> matches :: String -> String -> Int

> matches [] _ =0

> matches _ [] =0

> matches (s:ss) (t:ts) = if s==t then 1 + xx else xx
> where xx = matches ss ts

The text needs to be shifted one place at a time and the number of matches needs to be
counted.

> shifts :: String -> String -> [Int]
> shifts []1 _ = []
> shifts ss ts = matches ss ts : shifts (tail ss) ts

Simply defining a function such as:
analyse ss = shifts (tail ss) ss
would just out a (potentially long) list of numbers.

A better idea is to define a function that allows the list to be displayed with a label
indicating the position in the string:

display :: Show a =>[a] -> Int -> Int -> String
display _ 0 =[]
display _ =[]

vV V. V V V

[
display (t:ts) n e =
((show n)++":\t"++ (show t)++"\n")++display ts (n+l) (e-1)

‘\t’ is the tab character and ‘\n’ represents newline.

The syntax for this function is:
display (string) (start label) (no. of elements)

For any examples used, the first 25 shifts will be considered.
Finally:

> analyse' :: String -> String
> analyse' ss = display (shifts (tail ss) ss) 1 25

> analyse :: String -> IO()
> analyse = putStr.analyse'

For an example, file3 has been encrypted with a key word and the result is stored in
file3code.

Main> analyseFS "file3code"
2
6
3

= o wwN

1
2
3
4:
5:
6 .
-
8
S.
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22: 0
23: 4
24: 12
25: 0

(18220 reductions, 30157 cells)

From the results above, it seems that the length of the key is 4 and this will be used in
the next section.

3.2.5 Finding the key

Once a potential key length is known then it is necessary to try to guess the characters
that occur in the key word. Again, the ciphertext is shifted (by multiples of the key
length) and matches are looked for. By exploiting the fact that blanks are frequent in
written English, characters are guessed by supposing that they correspond to a blank
in the plaintext (if considering blanks is inconclusive then “E” could be searched for -
although both upper and lower case “E”s would have to be used). Only printable
characters (i.e. those with ASCII values between 32 and 127) are considered.

The first function test for equality. If the strings match then the place where they
match is recorded as the second component of a tuple.

> eq :: Int -> String -> String -> [ (Char,Int)]

> eq _ [] _ =[]

> eq _ _ ] =[]

> eq n (s:ss) (t:ts) = if (s == t) then (s,n):xx else xx
> where xx = eq (n+l) ss ts

The next function is used with map. On the first component, it tries to work out what
the character in the key would be; the second component is taken modulo K (the key
length).

> tries :: Int -> (Char,Int) -> (Char,Int)
> tries k (a,b) = (chars a ' ',mod b k)

Now the list of possible characters in the keyword needs to be worked out:
[i sText was defined in Section 2.4.1.]

> list' :: Int -> String -> String -> [ (Char,Int)]

> 1list' _ [] _ =[]

> 1list' k ss ts = (filter (isText.fst) (map(tries k) (eq 0 ss ts))) ++
> (list' k (drop k ss) ts)

> list :: Int -> String -> [ (Char,Int)]

> list k ss = list' k (drop k ss) ss

For example,
Main> 1listFS 4 "file3code"
[C<,2),(!,3),0!",2),. ...,

It is quite hard to pick a potential keyword from the list, so it might to useful to know
how many times each pair occurs. A third component could be added to each element
in the list which corresponds to the frequency.
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> accum :: [(Char,Int)] -> [(Char,Int,Int)]

> accum [] = []

> accum ((a,b) :ss) = (a,b,c) : accum ss'

> where ¢ = 1+ (length(filter(==(a,b)) ss))
> ss' = filter (/= (a, b)) ss

- The list obtained from this function has elements of the form (Character, Position,
Frequency).

It is useful to filter out those elements which do not occur very often (i.e. those with a
low third component):

> best :: Int -> Int -> String -> [ (Char,Int,Int)]

> best n k ss = filter3rd n (accum (list k ss))

where

> gt3rd :: Ord ¢ => ¢ -> (a,b,c) -> Bool

> gt3rd n (a,b,c) = c>=n

> filter3rd :: Int -> [(Char, Int,Int)] -> [(Char,Int,Int)]

\

filter3rd n [] = []
> filter3rd n ss = filter (gt3rd n) ss

The syntax is
best (min no of occurrences) (key length) (text)

Using the same example:

Main> bestFS 10 4 "file3code"
[('<,2,10),('!",3,66),(";"',2,10),('"W,0,21),('0',2,105), (' h',1,15),(
'd,3,10),('\'',1,15),("-',1,15),('*",2,15),('u', 3,10)]

(222398 reductions, 300033 cells, 1 garbage collection)

The key is likely to be the characters with the greatest third component (the
frequency) for each place in the text (corresponding to the second component). To
define a function which tries to find the key, first use:

> maxs :: Ord ¢ => (a,b,c) -> (a,b,c) -> (a,b,c)

> maxs (a,b,c) (d,e,f) = if ¢ <f then (d,e,f) else (a,b,c)
> maxlist :: [ (Char,Int,Int)] -> (Char,Int,Int)

> maxlist = foldr (maxs) ('?',0,0)

> first (a,b,c) -> a

> first (a,b,c) = a

> third (a,b,c) -> c

> third (a,b,c) = c

> eg2nd :: Eg b => b -> (a,b,c) -> Bool

> eg2nd n (a,b,c) = n ==

The function below returns the character which has the largest third component for
those elements which have a second component equal to n. If there are no elements
which have a second component equal to n, then ‘?” is returned.
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> find :: Int -> [(Char,Int,Int)] -> Char
> find n ss = (first (maxlist(filter (eg2nd n) ss)))

Finally, a function which returns a likely key:

> key :: Int -> String -> String

> key k ss = reverse(key' k (best 1 k ss))

> key' :: Int -> [(Char,Int,Int)] -> String
> key' 0 _ = []

> key' n ss = find (n-1) ss: (key' (n-1) ss)

Using file3code,

Main> keyFS 4 "file3code"
n W]O! n
(223179 reductions, 300512 cells, 1 garbage collection)

Checking this key:

Main> vigFS "Who!" "file3code"
The Doctor

always does."
(60540 reductions, 78101 cells)

This gives the correct answer.
It is possible that this function will fail. Failure could occur if the plaintext does not

contain many spaces or if the list generated by best contains elements which have a
large third component that were not in the original keyword.

3.3 Problems with the Vigenere cipher

Even though the Vigenere cipher is more secure than the Caesar cipher, it is still
vulnerable to attack. The cipher still keeps the characteristics of the plaintext (such as
the frequency of blanks) which makes it susceptible to attack. Once the key has been
found, it is very simple to decrypt the ciphertext.

S. Drape Functional Cryptography 25



Chapter 4 From Private To Public

In the previous chapters, two algorithms were discussed. The purpose of this chapter
is to take a brief look at some other algorithms (without implementing them in
Haskell) and to discuss why a new type of cryptographic system is needed.

4.1 Other Private Key Algorithms

The Caesar cipher and the Vigenere cipher are both examples of private key
algorithms. A private key algorithm is one in which the encryption and decryption of
a text uses the same key. Hence, the key must be kept secret and only given to the
people who need it. This section briefly looks some other private key algorithms.

4.1.1 Substitution Cipher

To use a substitution cipher [Wsh], it is necessary to form a permutation of the
alphabet to use as the key.

For example, if the permutation was:

WUDOAHLM ..
then in the message, A would be substituted by W.,..., F would be substituted by H and
SO on.

As with the Caesar cipher, this substitution cipher is monoalphabetic and so it is
vulnerable to frequency analysis. It also can be quite difficult to remember the order
of the letters which constitute the key.

To overcome the vulnerability, it is possible to produce adaptations of this cipher that
are harder to crack.

4.1.2 The Playfair Cipher

One such adaptation of the substitution cipher replaces digrams (groups of two letters)
instead of single letters. This type of substitution masks the frequency of the
individual letters and so makes decryption harder. One such example is the Playfair
cipher [Wsh]. To use this, needs a grid of letters. I and J are usually put in the same
cell in the grid.

BQLATI/J
WP ZCR
S DOKN
EHMT X
GUF YV

To encrypt each digram, it is necessary to find the position of each of the letters in the
grid. There are a number of ways to form the ciphers. Here is one way:
o If the letters form the diagonal of a rectangle, then the opposite corners form
the code - e.g. CM is mapped to ZT.
e If the letters are in the same row then the letters to the immediate right are
taken (wrapping around where necessary). Similarly, if the letters occur in the
same column then the letters below are taken - e.g. RP is mapped to WZ .
o If a letter is repeated then another letter (such as X) can be inserted between
the repeats.
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For example:

Toencrypt  THE LITTLE GREY CELLS
break the text into digrams

TH EL- I T- XT- LE- GR- EY- CE- LX- LS
and then use the grid

XM MB- AX- EX- BM VW TG WI- | M BO

So, the encrypted message would be XMMBAXEXBMVWTGWTIMBO.
To decrypt, the receiver needs a copy of the grid and simply reverses the process.

Unfortunately, this cipher is also breakable. The cipher is cracked by looking at
common digrams in English.

4.1.3 The Book cipher

The Book cipher [Sgh] uses (not surprisingly) a book to generate a sequence of
letters. One way to use the cipher is to label each word in a section of a book with a
number. Each number corresponds to the letter which starts the word. There could be
various numbers for a particular letter and so a frequency analysis would not work on
the text.

The key in this kind of cipher consists of the book used and the starting place in the
book. If the sequence of letters does not contain all the letters of the alphabet then it
may not be possible to encipher the plaintext.

4.1.4 The One-Time Pad

The One-Time Pad is quite a remarkable cipher. If used properly, it is unbreakable
[Wsh]. To use the One-Time Pad, it is necessary to generate a sequence of random
letters (i.e. each letter of the alphabet has an equal chance (=1/26) of occurring). Each
letter of the plaintext is shifted according to the corresponding letter in the random
sequence (in the same way as the key is used in the Vigenere cipher).

For example,

To encrypt the message
BE SEEING YOU

using the sequence

Al ENDSKLZW
Plaintext BESEEINGYOU
Sequence ATITENDSKTLAZW
Ciphertextt B MW R HA X R Y N Q

To ensure complete security, a different One-Time Pad must be used for each
message that is sent.

Despite being completely secure, the One-Time Pad has a number of drawbacks:
* The sequence of random letters needs to be as long as the message
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e There is no easy way of generating completely random letters - a
pseudorandom routine may lose security.

* The sequence of letters must be distributed to everyone who needs to decode
the message

4.2 The Key Distribution Problem

The main problem with the cryptographic methods mentioned so far is their reliance
on the secrecy of the key. Once the key is known, the encrypted message can be
deciphered very easily (assuming knowledge of the particular method is known). This
means that the key has be distributed securely amongst the people who need to use it
and this is the major drawback in private key algorithms — this is known as the Key
Distribution Problem [Wsh, Sgh]. It would be better if the security of an encrypted
message did not depend on knowledge of the key used to encrypt a message. This
leads us to the creation of public key algorithms.

4.2.1 Public Key Algorithms

A public key algorithm usually has two keys. One key is used for encryption and the
other for decryption. Each user of a system has a pair of keys. The encryption key
(also known as the public key) can be made available to everyone (hence the term
public) and the decryption key (also known as the private key) should only be known
to the user.

The essential part of a public key system is the idea of a one way encryption function.
The function needs to be easy to apply using the encryption key but it should be hard
to undo the encryption even with knowledge of the encryption key. The function also
needs to have a trapdoor - i.e. a way to invert the function using a decryption key.

The following chapters will look at different public key algorithms and how they may
be implemented in Haskell.
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In the last chapter, the idea of a public key system was introduced. This chapter
outlines one of the earliest public key systems and gives an implementation in

Haskell.

5.1 The Knapsack Problem

This section looks at the development of a public key system based on the Knapsack
problem [Wsh, Sch]. The Knapsack Problem can be stated in the following way:

Given positive integers Sand &,,a,,...,a, (called weights),
is is possible to find X, X,,..., X,, where X {03} Ui, such that S= Z (x @&)7?

An alternative formulation is called the Subset Sum:
Given Sand A={a,,...,a,}, is there a subset X [J A such that S= ZXi ?
¥ OX
This is considered to be a “hard” problem. How could this be used as the basis for a
public key system?

5.1.1 Creating a system

One way to create a cryptographic system using the Knapsack problem could be as
follows [Wsh]:

- The message first needs to be converted to binary. This could be achieved by using
the ASCII values for each character in the message and then changing the values to 7
bits.

eg. For ABC,
The ASCII values of the letters are 65, 66 and 67
The corresponding binary values are 1000001, 1000010 and 1000011
So ABC becomes 100000110000101000011.

- Now, choose a sequence of weights. If there are n weights, then the binary message
needs to be split up into blocks of size n. A sum, like the one above, can be formed by
making the bits in each block act as the X values. So, the message has been converted
to a list of integers.

Unfortunately, it may not be possible to reverse this process and completely
determine the original message even with the knowledge of the sequence of weights.

Suppose that the sequence of weights is [200, 10, 12, 23, 35, 45, 80] and the
ciphertext contains the number 280.

280 could correspond to any or 1111100, 1000110, 1011010 or 1000001 (the
characters ‘I’, ‘E’, ‘Z” and ‘A’).

This is not acceptable for a cryptographic system.
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5.1.2 Superincreasing sequences

A cryptographic system that uses the Knapsack problem needs to be easily reversible
without giving any ambiguities in the plaintext.

One way to adapt the Knapsack problem is by using a superincreasing sequence.
t-1

A sequence &,,a,,...,@, is said to be superincreasing if Ut (1<t<n), a, >Za,.

i=1

The advantage of (&) being a superincreasing sequence is that there is a simple
algorithm for finding the subset X L1 Awhere A= {a,} and S= Z ax.

z,OX
The algorithm goes as follows:

There are two cases to consider at each step -
n-1

(a)if S=a,, then as a, > Zai , &, UX. Then look at S—a, and a_,.
i=1

(b) otherwise, a, J X. Now look at Sand a,_,

Also, the set X is uniquely determined and so no ambiguities will arise.

This means that with a superincreasing sequence as a key, a message can be converted
into a sequence of integers. Then, by using the algorithm outlined above, the
ciphertext can be converted back into the message. However, this just leads to another
private key system - as both encryption and decryption use the same key. A public
key system using the Knapsack problem needs to have a superincreasing sequence as
the decryption key but have a non-superincreasing sequence as the encryption key.

5.1.3 Making a public key system

To use the Knapsack problem as a public key system, it is necessary to define an
encryption key and a decryption key.

The decryption key is a superincreasing sequence. To make an encryption key, the
superincreasing sequence is multiplied by a number w modulo n.

The encryption process
* A superincreasing sequence, of length K, is transformed by multiplying by w
modulo n.

* The plaintext text is converted into binary and split into blocks of size k.
* The modified sequence is used to convert each block into a number.
* The ciphertext is therefore a sequence of numbers.

The decryption process
* Each number in the ciphertext is multiplied by a number a with the property
that axw =1 (mod n). So in fact @ = w" modulo n.

* The numbers are now converted to binary by using the algorithm outlined in
Section 5.1.2.
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* The binary numbers are converted back to characters.
Choice of multiplier and modulus

* N needs to be greater than the sum of the numbers in the superincreasing
sequence, so that the modified sequence can be converted back without any
ambiguity.

* W and n need to be coprime. This is so that W' exists modulo n. (By the
Euclidean algorithm [Dbn], there are a and b such that a w + b n = ged (w, n).
So if w and n are coprime then gcd (W, n) =1 and a= w (mod n). )

5.2  Implementing the Knapsack algorithm in Haskell

This section will look at how to implement the Knapsack algorithm in Haskell. Two
main functions will be developed - one to encipher a message using a sequence and
one to decipher a ciphertext using a superincreasing sequence.

5.2.1 Creating superincreasing sequences

It is useful to have a function which will test whether a given sequence is
superincreasing or not.

For a given sequence, it is necessary to find the partial sum at each stage and then
compare to the next term.

scanl is a Prelude function that applies a function to the initial segments of a list

scanl : (a -> b ->a) ->a -> [b] -> [a]
scanl f g xs = g : (case xs of
[] -> [
x:xs -> scanl £ (f g x) xs)
In particular, scan1 (+) 0 will calculate the partial sums of a sequence.

Main> scanl (+) 0 [1,2,3,4]
[0,1,3,6,10]
(81 reductions, 181 cells)

The following functions tests whether a given sequence is superincreasing or not:

> testSup :: Integral a=>[a]-> Bool
> testSup xs = and(zipWith (>) xs (scanl (+) 0 xs))

Main> testSup [1,4,8,20]
True

(90 reductions, 183 cells)
Main> testSup [1,2,4,7]
Fal se

(83 reductions, 133 cells)

It is also useful to have a function, which will take in a sequence and make a
superincreasing sequence:
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> super :: Num a => [a] -> [a]

> super [] = []

> super (x:xs) = sup2 xs [x]

> sup2 :: Num a => [a] -> [a] -> [a]
> sup2 [l vy =Y

> sup2 (x:xs) y = sup2 xs (y++[l+x+(sum y)])

The first term of the created superincreasing sequence is the same as the original list.
The remaining terms of the list are used to generate the rest of the sequence.

Main> super [1,0,0,0]
[1,2,4,8]

(116 reductions, 190 cells)
Mai n> super [1,5,3,0,1]
[1,7,12,21, 43]

(155 reductions, 275 cells)

5.2.2 Encrypting
This section is concerned with implementing the encryption process which was

outlined in Section 5.1.3. The first function needed converts an integer to a string
representing the number in binary:

> bin' :: Int -> String -> String

> bin' 0 ys = ys

> bin' n ys = bin' g (chr(ord '0' + p) :ys)
> where (q,p) = quotRem n 2
> bin :: Int -> String

> bin n = bin' n ""

Main> bin 29

"11101"

(198 reductions, 283 cells)
Main> bin 149

"10010101"

(303 reductions, 436 cells)

When creating the code, it is necessary to ensure that the size of the binary strings is
the same for each character. Here is a function which packs in zeros at the front of the
binary string, where necessary:

> zeros' :: Int -> String -> String

> zeros' 0 s = s

> zeros' n s = zeros' (n-1) ('0':s)

> zeros :: Int -> String -> String

> zeros n s = if n>1 then zeros' (n-1l) s else s
> where 1 = length s

Main> zeros 7 (bin 29)
"0011101"

(310 reductions, 422 cells)
Main> zeros 10 (bin 149)
"0010010101"

(436 reductions, 599 cells)
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Main> zeros 3 (bin 149)
"10010101"
(369 reductions, 509 cells)

In this implementation, the size of each binary string will need to be 7 (corresponding
to a number between 0 and 127). [Note: if exactly 7 numbers constitute the encryption
key sequence, then a frequency analysis can be used on the ciphertext as each number
in the ciphertext will usually correspond to exactly one character in the plaintext.]

Now, a function which converts a text string into a binary string:

> input :: String -> String
> input nn =nmn
> input (x:xs) = (zeros 7(bin (ord x)))-++input xs

Main> input "abc"
"110000111000101100011"
(980 reductions, 1405 cells)

The function conbi ne takes a binary string and a sequence of numbers as its input. It
produces an integer by matching up each place of the string with the numbers in the
sequence and then summing the resulting list.

> combine :: String -> [Integer] -> Integer

> combine "" _ =0

> combine _ [] =0

> combine (s:ss) (x:xs) = (kn s x) + (combine ss xs)
> kn :: Num a => Char -> a -> a

> kn '"l' n =n

> kn '0" n =0

Main> combine "1011"™ [5,8,17,34]

56

(35 reductions, 54 cells)
(56=5+17+34)

When using the Knapsack algorithm, the long string of 1s and Os needs to be split into
blocks of size equal to the sequence length. The function codi ng takes a value n, a
binary string and a sequence and chops the string into blocks of size n which are then
put into conbi ne. It is more efficient to have n defined as an input rather than using

a wher e clause and defining n=length xs at each stage.

> coding :: Int -> String -> [Integer] -> [Integer]
> coding n "" xs = []

> coding n ss xs = (combine ys xs):(coding n zs xs)
> where (ys,zs)= splitAt n ss

The Prelude function spl i t At is given by the rule:
splitAt n xs = (take n xs, drop n xs)

Finally, a function can be defined which takes in a text string and a sequence. The text
string needs to be changed into a binary string, by use of the function i nput .
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> knapsack :: [Integer] -> String -> [Integer]
> knapsack xs ss = coding n (input ss) xs
> where n = length xs

Main> knapsack [10,23,76,4] "Sherlock"

[ 86, 103, 86, 80, 76, 113, 76, 37, 14, 90, 113, 4, 109, 90]
(3357 reductions, 5347 cells)

Main> knapsack [10,23,76,4,47] "Sherlock"
[86,113,57,14,113,74,99, 84,113,127, 133, 10]
(3324 reductions, 5289 cells)

The function knapsack will work for any sequence of integers, but to enable a
ciphertext to be decoded, a modified superincreasing sequence must be used.

It is useful to have a function which will convert a superincreasing sequence given a
suitable multiplier and modulus - the function convert does this:

> convert :: Integral a=>[a] -> a -> a -> [a]

> convert xs w n

> | gcdwn /=1 = error "not coprime"

> | n <= sum xs = error "modulus too small"
> | otherwise =map (\a -> rem (a*w) n) xs

[A third test could be included using the function t est Sup to check whether xs is a
superincreasing sequence].

S}WHaX: convert (superinc seq) (multiplier) (modulus)

Main> convert [4,9,19,35,79] 23 151
[ 92, 56, 135, 50, 5]
(314 reductions, 532 cells)

For completeness, here is a function will takes in a piece of text, a superincreasing
sequence, a multiplier and a modulus as the input and applies the Knapsack coding
after first converting the sequence into a non-superincreasing sequence:

> knapmod :: [Integer] -> Integer -> Integer -> String ->[Integer]
> knapmod xs w n ss= knapsack (convert xs w n) ss

Swﬂax: knapmod (superinc seq) (multiplier) (modulus) (text)

Main> knapmod [4,9,19,35,79] 23 151 "Dr. Watson"

[97, 190, 135, 282, 135, 50, 282, 148, 246, 61, 153, 288, 338, 241]
(4362 reductions, 7034 cells)

Main> knapsack [92,56,135,50,5] "Dr. Watson"

[97, 190, 135, 282, 135, 50, 282, 148, 246, 61, 153, 288, 338, 241]
(4118 reductions, 6544 cells)

5.3  Decrypting a Knapsack algorithm

The aim of this section is to produce Haskell functions that will, given the decryption
key, decrypt a ciphertext created from the Knapsack algorithm.
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5.3.1 The Euclidean Algorithm

So, for the Knapsack algorithm, the decryption key consists of a sequence (e), a
multiplier W and a modulus n and the encryption key just comprises the sequence (d)
where d = w x & (mod n). The first part of the decryption process is to multiply the

each number in the ciphertext by the inverse of the multiplier. Since, the multiplier
and the modulus are coprime, the inverse exists [Section 5.1.3]. To find the inverse,
the Extended Euclidean algorithm [Dbn] will be used.

First, a description of the Euclidean Algorithm:

To find the greatest common divisor (gcd) of aand b :
@ definer, =b

(b) find the integers @, and r, such thata=qb+r;
(©) now find g, and r, such that (r, =)b=q,r, +1,
(d) continue the process until Cks.t. r, =0LCr,_, #0
(e) the gcd of aand bisr,_,

The Haskell definition of gcd is along the following lines:
> ged x vy = if y==0 then x else gcd y (rem x y)

If the steps for the Euclidean algorithm are traced backwards, it is possible to express
the gcd as a linear combinations of & and b - this is known as the Extended Euclidean
algorithm. This finds a (mod b) if @ and b are coprime (see Section 5.1.3).

(a) Suppose that r, _; is the gcd of aand b.
Then 3 = 4fy, +hpand sofy =0 3= 4f
(b) Looking at the previous st€p: I,_, =0 _,l,_3 + I,

Then r,_, =1,y = Oyl -3 and 80 I = 3 = 04 (Nog ~ Oiafi—s)
(c) Continuing this process enables the gcd to be expressed in terms of a and b.

To construct a function to work out the coefficient of a (the coefficient of b is not
needed) first look at the forward and backwards steps together:

a=qgb+r, r=a
b=%Q+Q 2=b—%ﬁ=b—qxa-b%):-mb+bﬂ+QMﬂ
=0, 1 3 =1, — 0y, = (a—-qb) —g,(-ag, +b(1+0q,q,))

At the kth stage, the new coefficient of a is worked by a" - (q x &), where ( is the
quotient, & the coefficient of a at stage k—1 and &' the coefficient at stage k—2.

This leads to the function euc:

> euc' :: Integral a => a ->a ->a ->a -> a
> euc' b r ccl

> | r == = cl

> | otherwise = euc' r p (cl- (g*c)) c

> where (gq,p) = quotRem b r
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> euc :: Integral a => a -> a -> a
> euc a b = mod (euc' a b 0 1) b

So, for wand n, where w and n are coprime (i.e. gcd (w, n) = 1),
W X (euc W n) =1 (mod n)

Main> euc 10 21

19

(151 reductions, 261 cells)
Main> mod (10* (euc 10 21)) 21
1

(218 reductions, 347 cells)

So, to change back a sequence which has been multiplied by a number, it is necessary
to use euc in a function similar to convert (Section 5.2.2).

> unconvert :: Integral a=>[a] -> a -> a -> [a]
> unconvert xs wn = map (\a -> rem (a*(euc w n)) n) xs

Main> convert [5,8,15,34] 13 70

[ 65, 34, 55, 22]

(288 reductions, 483 cells)

Main> unconvert [65,34,55,22] 13 70
[5, 8, 15, 34]

(902 reductions, 1630 cells)

5.3.2 Reconstructing the text

Once the superincreasing sequence has been recovered (by using convert), it is
necessary to reconstruct the binary string, chop the string up into blocks of length 7,
change each block back to a decimal ASCII value and so find the corresponding
character.

Reconstructing the binary string can be achieved by using the algorithm outlined in
Section 5.1.2 - remembering that ‘1’ corresponds to a number in the sequence being
included.

The first operation needed is one to construct the binary string. makebi n takes an
integer and a (superincreasing) sequence and creates a binary string using the
algorithm outlined in Section 5.1.2. The intermediate stages in the fold produce
elements of the form (string, number).

> makebin :: Integral a => a -> [a] -> String

> makebin n ys = fst (foldr (\x (xs,p) ->

> if x > p then ('0':xs,p) else
> ("l':xs,p-x)) ("",n) ys )

Next, undo is a function that takes a list of codes and applies makebi n to each code.

> undo :: Integral a=>[a] -> [a] -> String
> undo xs ys = foldr (\ x ss-> (makebin x ys)++ss)

nn XS
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Main> undo [63,64,65] [1,2,4,8,16,32,64]
"111111000000011000001"
(710 reductions, 1000 cells)

The following function chops up the binary string into blocks of size 7 and finds the
ASCII code for each block:

> ascii :: Integral a=>String -> [a]

> ascii [] = []

> ascii xs = todec ys:ascii zs

> where (ys,zs) = splitAt 7 xs

The function t odec converts a binary string into a decimal number.

> todec :: Integral a => String -> a
> todec = foldl (\s x -> if x=='0" then (2*s) else 1+(2*s)) O

Finally, putting all these functions together gives a definition for decode:

> decode :: Integral a => [a] -> [a] -> a -> a -> String
> decode xs ys w n = map chr (filter (>0)

> (ascii (undo

> (unconvert xs w n) ys)))

(The filter is needed to get rid of any zeros occurring doing the coding process.)
Swﬂax: decode (code) (s.i. sequence) (multiplier) (mod)

Using the example in Section 5.2.2:

Main> decode [97,190,135,282,135,50,282,148,246,61,153,288,338,241]
[4,9,19,35,79] 23 151

"Dr. Watson"

(7077 reductions, 11543 cells)

To construct file handling versions of decode, it is useful to define a function
decl i st which will be used as a function within fi | e and fi | eshow. r ead is used to
save writing a list parser (lists are declared as a Read type).

> declist :: (Integral a,Read a) => [a] -> a -> a -> String -> String
> declist ys x n xs = decode (read xs) ysS x n

For further details of the file handling versions, see Appendix A.

Now trying some examples:

Main> testSup [1,7,12,29,54,107,218,432]
True
(146 reductions, 232 cells)

Main> convert [1,7,12,29,54,107,218,432] 137 900
[137,59, 744, 373, 198, 259, 166, 684]
(406 reductions, 721 cells)

Main> knapFF [137,59,744,373,198,259,166,684] "filel" "filelkn"
(322343 reductions, 492836 cells, 2 garbage collections)
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Main>
Pure .
(10333

54

decodeFs [1,7,12,29,54,107,218,432] 137 900 "filelkn"
........ the affair at the Victory Ball.
07 reductions, 1603225 cells, 7 garbage collections)

Comments on the Knapsack algorithm

This section briefly looks at some of problems both with the Knapsack algorithm and
its implementation.

54.1

54.2

Problems with the implementation

The implementation requires that the text is converted to and from binary. If
the plaintext has length n, then the binary string has size 7n. It takes a lot of
work to create and use the binary strings.

To be secure, the superincreasing sequence needs to have a length of hundreds
of elements - this is difficult to achieve.

If the key sequence used has length S and the plaintext has length n then the
length of the ciphertext is around 7n/ s. This means that for a large plaintext, a
large key will be needed to ensure that the ciphertext is not too unmanageable.
The values in the superincreasing sequence are usually at least double the
previous values. This means that the values become large quite quickly.
Instead of using all ASCII values between O and 127, just the values of the
required characters could be used. This would therefore reduce the size of the
binary strings used.

Security of the Knapsack algorithm

Despite the fact that the general Knapsack (Subset Sum) problem is very difficult to
solve, the Knapsack algorithm has been shown to be insecure [Sch, W1]. Using a
superincreasing sequence weakens the “hardness” of the Knapsack problem. This

means

that Knapsack algorithms are generally not used and so other public key

algorithms will have to be implemented.
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In this chapter, another Public Key system - RSA - will be considered. Like the
Knapsack algorithm, RSA is based on a “hard” mathematical problem.

6.1 The Mathematics of RSA

RSA [Wsh] derives its name from its three originators - Rivest, Shamir and Adleman.
The core of the security of the RSA system is the belief that factoring an integer,
made by multiplying two large primes, is considered to be “hard”. This section gives a
description of the RSA systems and looks at some of the mathematics behind the
system.

6.1.1 Description of RSA

Before a message can be sent, the receiver needs to do the following things:

* Find two large primes p and Q.

*  Work out the product n = pqg.

* Pick an integer d, which is coprime to (p—1)(q—1)

*  Work out the integer € such that ed = 1 (mod (p — 1)(¢ — 1)) (by using the
Extended Euclidean algorithm outlined in Section 5.3.1)

The public key consists of the integers e and n.
The private key consists of the integers d and n.

Encryption: A message M is encrypted by performing the calculation:
C=M" (mod n)

Decryption: The message is recovered by working out:
M = C* (mod n)

An essential property of RSA is that a message should remain unchanged after
encryption and decryption. Showing this property will make use of a result known as
Fermat’s Little Theorem [LN1]:

Suppose pisprimeand 1< a< pthena®™ =1 (mod p)

Consider the text M’, which is obtained after encrypting M and then performing
decryption on the result:

M’ =C? (modn) = (Me)d (modn) = M* (modn)

Ased =1 (mod(p-2)(q-1)), then[A suchthat ed =1+A(p-D(q-2)

M’ = M FAP-Da-D (modn) = M M A(p-1)(a-1) (modn)

Consider M' (modp) =M A*@P =M (modp) [1] By Fermat's Little Theorem
Consider M' (modq) = M "™ =M (modqg) [2] By Fermat's Little Theorem
As n = pq, putting [1] and [2] together gives M' = M (modn)

The security of the RSA system depends on the secrecy of p and q. If p and q are
known, then (p — 1)(q — 1) can be determined and so the decryption key d can be
worked out. It will be seen later that factoring a large number is difficult to perform.
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6.1.2 Exponentiation

When using RSA, calculations of expressions of the form M® (mod n) and C’ (mod n)
are needed and it is likely that d or e will be very large. It is therefore necessary to
find an efficient way of performing exponentiations reasonably quickly. Just using the
exponentiation operator (*) will not always work. Instead a program which works out
exponentiation more quickly can be developed - this program exploits the fact that all
of the exponentiations will be performed using a modulus

> power :: Integral a=> a -> a -> a -> a
> power x pm= loop 1 x pm

> loop :: Integral a => a ->a ->a ->a -> a

> loop v z pm

> | p==20 =y

> | even p = loop y (rem (z*z) m) (quot p 2) m
> | otherwise = loop (rem (y*z) m) z (p-1l) m

power x p m works out X’ (mod m).

The function | oop splits up the exponent p into powers of 2. The variable z works out
the different powers of 2 and y accumulates the necessary powers of 2. For example,
X* is calculated by X' x x° x x*.

power is only better than ~ when the base or exponent is very large.

This calculation:
Main> rem (27123456) 10000
1936
(531 reductions, 45676 cells)

takes much longer to work out than:
Main> power 2 123456 10000
1936
(689 reductions, 1422 cells)

The Haskell implementation of RSA will use the function power rather than ~, as the
implementation needs a reliable function, even if it could be less efficient for certain
cases.

6.1.3 Primes and Factors

Using RSA requires finding two large primes. The generation of two large primes can
require a great deal of calculation. One way to find primes could be to generate a list
of primes and choose a candidate from the list. A method of generating primes is
called the Sieve of Eratosthenes [Brd]. To apply the sieve, first write down a list of
consecutive numbers from 2 upwards. Now, cross out all the factors of 2 that are
bigger than 2, then cross out all the factors of 3 that are greater 3 and so on.

In Haskell:
> primes :: [Integer]
> primes =(map head.iterate sieve) [2..]
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> sieve :: [Integer] -> [Integer]
> sieve (p:xs) = [x|x<- xs, rem x p /= 0]

For example, to find the 100th prime:

Main> primes !! 99
541
(81202 reductions, 169763 cells)

The 1000th prime is harder to work out:

Main> primes !! 999
(1441042 reductions, 3069473 cells, 72 garbage collections)
ERROR: Garbage collection fails to reclaim sufficient space

This method is simple to understand but it consumes a lot of space. Another method,
based on sieving, is demonstrated in Appendix C.

6.1.4 Primality testing

If a list of primes cannot be generated quickly then a test could be devised to check
whether a number is prime or not. One test could be to see if the number has any
factors. The ideal list of factors to try would be the primes. However, as seen in the
last section, a list of primes takes a long time to generate.

The following program [P2] first checks whether 2 or 3 is a factor. It then uses the list
of numbers 5,7,11,13,17,19,... to check for divisors. The numbers in this list differ
alternately by 2 and 4 (the difference is represented by the variable ).

> factor :: Integer -> (Integer,Integer)

> factor n = factorFrom 2 n 2

> factorFrom m n s

> lr == 0 (m, q)

> g <= m = (n,1)

> |lm == 2 = factorFrom 3 n 2

> |lm == = factorFrom 5 n 2

> |otherwise = factorFrom (m+s) n (6-S)
> where (g,r) = quotRem n m

This program is fairly quick for numbers with reasonably small factors but it fails to
find an answer for large factors.

To check that the 15 digit number 100000000000031 is prime,
Main> factor 100000000000031
(100000000000031,1)
(183333396 reductions, 303651140 cells, 1267 garbage collections)

takes about 5 minutes.
In general, finding factors of a large number is considered to be a “hard” problem -

this is basis for the security of RSA. Therefore, another method to test for primes is
needed.
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Rabin-Miller Test [LN1]

Nnis an odd integer. The following algorithm tests whether nis prime.

1. Find ¢ and k such that qis odd and n=2"q+ 1
Choose a random integer X such that 2 < X< n
Work out y = X’ (mod n)
If y=1 then “True”
Forj=1,2,.k

If y=n-—1 then “True”

Else if y = 1 then “False”

Else lety = y2 mod n
6. Then “False”

S A

This algorithm is based on Fermat’s Little Theorem (Section 6.1.1). It is possible that
the Rabin-Miller algorithm returns “True” when n is not prime. However, if the
algorithm is repeated 10 times (and so using different random numbers X), then the

chance of an error is less than 1 in a million.
A Haskell implementation of Rabin-Miller will now be developed.

The first task is to find the numbers ¢ and K in Step 1:

> stepl :: Integer -> (Integer,Integer)
> stepl n = stepl' (n-1) O

> stepl' :: Integer -> Integer -> (Integer,Integer)
> stepl' m k

> | even m = stepl' (quot m 2) (k+1)

> | otherwise = (m, k)

-stepl n returns (g, K).

Next steps 2 to 4:

> test :: Integer -> Integer -> Bool

> test n x

> | even n = False

> | v ==1 = True

> | otherwise = testing n y 1

> where y = power x g n

> where g = fst(stepl n)
Step 5:

> testing :: Integer -> Integer -> Integer -> Bool
> testing n y j

> | 37 > snd(stepl n) = False

> | v == n-1 = True

> | y == = False

> | otherwise = testing n (rem (y*y) n)

An example:

Main> test 1729 16

True

(347 reductions, 724 cells)
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But 1729 is composite, as 7 x 13 x19 = 1729.

However,

Main> test 1729 15

Fal se

(707 reductions, 1511 cells)
Main> test 1729 17

Fal se

(582 reductions, 1223 cells)

Using the example from earlier and 5 numbers typed in at random:

Main> map (test 100000000000031) [6456456,43421,12038347,234724,
86258463]

[ True, True, True, True, True]

(10246 reductions, 26855 cells)

The test is calculated quite quickly. It is a reasonable test if enough trials are
computed.

6.1.5 Choosing the numbers in RSA

To make RSA work easily and securely, the numbers used in the encryption and
decryption process have to be chosen carefully.

* pand g need to be “large”. Current systems require p and q to be at least a
hundred digits long.

* e is usually fairly small. This is so that the encryption process works fairly
quickly and also so that d is large - and therefore harder to find.

* Ifp—1orqg—1 has only small factors then n could be factored more easily.

6.2 RSA using Haskell

The next section shows how a small system could be implemented using Haskell. The
Euclidean algorithm function euc was outlined in Section 5.3.1 and power was
described in Section 6.1.2. It is useful to create a function in Haskell that will work
out the private key d given €, p and Q.

> private :: Integral a => a -> a -> a -> a

> private e p g

> | gcd e pp /=1 = error "Not coprime"
> | otherwise = euc e pp

> where pp = (p-1)*(Qg-1)

Swﬂax: private (public) (prime) (prime)

6.2.1 Converting the text

The RSA system works on numbers and so it is necessary to convert the plaintext to a
sequence of numbers. This will be done by using ASCII values. A block of text will
be converted to a single number by supposing that each character acts as a digit in
base 128 working from right to left (so the rightmost character is the “unit”).
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e.g. For the text “AB”, ‘A’ has value 65 and ‘B’ has value 66. So “AB” would have
value 66 + (65 x 128) = 8386.

The function accum combines a sequence of integers as though they were digits in
base 128.

> accum :: Integral a=>[a] -> a
> accum = foldl (\a b -> (a*128)+b) O

Main> accum [65, 66]

8386
(50 reductions, 62 cells)

bl ocks takes a list of strings and applies accumto each element of the list.

> blocks :: Integral a=>[String] -> [a]
> blocks [] = []
> blocks (x:xs) = (accum(map (fromInt.ord) x)):(blocks xs)

Main> blocks ["AB","XYZ"]
[ 8386, 1453274]
(142 reductions, 225 cells)

6.2.2 Chopping up the text

Before the conversion outlined above can take place, the plaintext needs to be
chopped up into blocks.

The size of the blocks is determined by n - the product of the primes. For this function

to work properly, n needs to be bigger than 128. The function chunk n actually works
out (log n)/(log 128).

> chunk :: Integral a=>a -> a
> chunk n = chunky n 0 1

> chunky :: Integral a => a -> a -> a -> a

> chunky n p ¢

> | n < c = p-1

> | otherwise = chunky n (p+l) (128%*c)

Main> chunk 127

0

(63 reductions, 79 cells)
Main> chunk 130

1

(88 reductions, 119 cells)
Main> chunk 39443

2

(113 reductions, 158 cells)

The next function chop splits the text up into the correct sized chunks:

> chop :: Integral b => [a] -> b -> [[a]l]
> chop xs m = chop' xs (toInt (chunk m))
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> chop' [a] -> Int -> [[a]ll

> chop' [] p = []

> chop' xs p = ys: (chop' zs p)

> where (ys,zs) = splitAt p xs

Main> chop "abcdefgh" 130
["a","b","c","d","e","f","g","h"]
(568 reductions, 888 cells)
Main> chop "abcdefgh" 17000
["ab","cd","ef", "gh"]

(513 reductions, 783 cells)
Main> chop "abcdefgh" 3000000
["abc", "def","gh"]

(518 reductions, 786 cells)

6.2.3 Functional RSA

Now using the results from the previous section, a function that implements RSA can
be defined:

> rsa :: Integral a=> a -> a -> String -> [a]
> rsa em ss = map (\x -> power x e m) (blocks (chop ss m))

Swﬂax: rsa (public key) (product of primes) (string)
6.24 Testing RSA
First pick two “primes”: 1009 and 3511, 1009 x 3511 = 3542599.

Using Rabin-Miller and a list of random integers:

Main> and(map (test 1009) [45,675,163,300,216,983])
True

(4146 reductions, 8555 cells)

Main> and (map (test 3511) [2540,549,184,91,1642,284])
True

(3646 reductions, 7224 cells)

These numbers seem to be prime (in fact as the numbers are small, f act or could be
used to check).

Now, choosing 11 as the public key - work out the private key:

Main> private 11 1009 3511
964931
(382 reductions, 668 cells)

Using the product and the public key:

Main> rsa 11 3542599 "Attack of the Cybermen”
[ 1645685, 186203, 2341696, 2027503, 3286308, 3506632, 2536082, 2376872]
(2809 reductions, 5418 cells)
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6.3 Decrypting using the public key

This section considers the implementation of Haskell functions to decode an RSA
encrypted text.

6.3.1 Rebuilding the text

It is first necessary to define a function which reverses the accumfunction defined in
Section 6.2.1.

> unaccum :: Integral a => a -> String

> unaccum n = unaccum' n ""

> unaccum' :: Integral a => a -> String -> String
> unaccum' 0 ys = ys

> unaccum' n ys = unhaccum' g ((ascii r):ys)

> where (gq,r) = quotRem n 128

> ascii :: Integral a => a -> Char

> ascii = chr.tolnt

Main> unaccum 8386
n ABII
(107 reductions, 156 cells)

Next, a function which applies unaccumto a list of integers, combining the results into
a single string.

> undo :: Integral a=> [a] -> String
> undo = foldr (\x xs -> unaccum x ++ xs) []

Main> undo [8386,1453274]
" ABXYZ"
(254 reductions, 386 cells)

(Compare to the example for bl ocks in Section 6.2.1.)
6.3.2 A decoding function

Using the functions in the previous section, decode can be defined as follows:

> decode :: Integral a => [a] -> a -> a -> String
> decode xs d m = undo (map (\x -> power x d m) xs)
Swﬂax: decode (coded seq) (private) (product of primes)

Using the example from Section 6.2.4, the private key was found to be 964931:

Main> decode [1645685,186203,2341696,2027503,3286308,3506632,2536082,
23768721 964931 3542599

"Attack of the Cybermen"

(8316 reductions, 18035 cells)

Now, try the file handling versions (see Appendix A) - this time, choose the primes
9887 and 16427 and let the public key be 7. The product is 162413749.
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Main> private 7 9887 16427
139189231
(278 reductions, 474 cells)

Main> rsaFS 7 162413749 "filel2"
[ 31478925, 11961319, 9744060, ..... , 39001933, 90437329]
(62620 reductions, 103804 cells)

Main> rsaFF 7 162413749 "file2" "filel2rsa"
(62619 reductions, 103807 cells)

Main> decodeFS 139189231 162413749 "file2rsa"
Incurably insomniac ......... throws it away in disgust.
(382663 reductions, 715716 cells, 3 garbage collections)

6.4 Limits of the implementation

To ensure that the ciphertext created by the RSA system is secure, it is usually
necessary to use primes in the order of at least a hundred digits.

6.4.1 Using large numbers

To test out the implementation, try a modulus at least 1024-bit. The primes chosen
are.
3 +268and 2" + 643

Using Rabin-Miller and some randomly typed in numbers:

Main> and (map (test (271024+643)) [948354047,32232834478,
23567236735,325782367,2401785783, 102392356723901])

True

(185602 reductions, 3443624 cells, 15 garbage collections)

Main> and (map (test (372004268)) [3252345,2143124,547568756735,
120937384, 2932, 23032673567, 257825782578] )

True

(103872 reductions, 716028 cells, 3 garbage collections)

So, it seems that the numbers chosen are fairly likely to be prime.

Working out the product:

Main> (37200+268)* (271024+643)
47749244432555561900726242552530468536075904054454582734426811054859768640070280980144
75956371853040860932906015547257210579086773998115122921884042937828524939708210034135
29285908225827778957507948998511288453248410729174757480917687018676239189937032982858
56691160895883383746739394983335620611512349584782390316001067217918564131036518530461
963975782714453200855787344792643909270800127590997799880071

(660 reductions, 1958 cells)

To save typing, n will be represented by (34200+268) *(271024+643) (the actual
number could be stored in a file and read in).

Now, choose 5 as the public key and then work out the private key:

Main> private 5 (37200+268) (271024+643)
95498488865111123801452485105060937072151808108909165468853622109719537280140561960289
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51912743670127859168565712939928317342393053323870706264921954420971033647869884907170
39309162282109109764295475594744979478629668282554138673502924180403865590391578410359
26532590821214163054276297778432335057120529158026573102659697760535502873207883847195
94278363875294481328253027423014340412932517653397775339589

(968 reductions, 3052 cells)

Again, to save typing private 5 (37200+268) (271024+643) will be used instead
of the private key.

Using filel, which has around 600 characters.

Main> rsaFF 5 ((37200+4268)* (271024+4643)) "filel™ "testl"
(65503 reductions, 143280 cells)

This operation took less than a second.

Now, to decode -

Main> decodeFS (private 5 (37200+268) (271024+643))
((372004268) * (271024+643)) "testl"

Pure chance .... Victory Ball.

(456811 reductions, 5997267 cells, 27 garbage collections)

This operation took about 20 seconds in total.

For a larger file, the Haskell file knap.lhs will be used - it consists of over 5000
characters.

Main> rsaFF 5 ((37200+268)*(271024+643)) "knap.lhs" "test2"
(465700 reductions, 1015421 cells, 4 garbage coll ections)

This took about a second.

Main> decodeFS (private 5 (37200+268) (271024+643))
((37200+268) * (271024+643)) "test2"

** Test and create superincreasing sequences > testSup :: Integral
a=>[a] -> Bool

(3274719 reductions, 43462498 cells, 243 garbage collections)

The whole decryption process took just over 2 minutes - each block of text took about
5 seconds to decode

Generally, the implementation gives a reasonable level of security as it can cope with
quite large numbers but the decryption part is slower than encryption.
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Elgamal encryption is another public key system and, in common with the other
systems, it is based on a mathematically “hard” problem.

7.1 The Elgamal algorithm

This section describes the Elgamal algorithm [Sch] and takes a brief look at the
underlying mathematics.

7.1.1 Discrete Logarithms

Suppose that a and Yy are positive real numbers. How easy is it to find X such that:

a=y?
In fact, it is very easy,
lo
x=log, y = O10 Y
log;,a

Most scientific calculators have a log button which will work this answer out.

However, if &, y and X are all integers and p is a prime, then finding X such that:

a* =y (mod p)
is much harder particularly if p is large. This type of problem is known as a Discrete
Logarithm.

There are many algorithms used to try to solve this type of problem although none can
be guaranteed to find a “quick” solution. (Baby Step/Giant Step and Pohlig-Hellman
are two such algorithms [BBS].)

A public key system based on a discrete logarithm problem should be secure if p is
large enough and p — 1 has a large prime factor.

7.1.2 Developing the system

The receiver needs to decide on a large prime p and a number g (< p) - both of these
can be shared amongst the other users. The receiver then needs to decide on a private
key X and work out:

y = g*(mod p)

To encrypt a message M, a number K is chosen at random. This K should be coprime
to p— 1 - this is not essential but it adds to the security of the system. The message C
consists of a pair (a, b) where

a=g*(mod p) and b= y*M (mod p)
To decrypt a plaintext consisting of pairs (a, b), perform the following calculation:
= RX (modp) = bxa™(modp)= bx (a‘l)x(mod p)
a
a™* can be worked out by using the Euclidean Algorithm.

It is necessary to check that a text which has been encrypted and then decrypted
remains unchanged.
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Suppose that N is the text obtained by encrypting M and then decrypting the result.
k k k
y'M y'M y'M
«~(mod p) ==+ (mod p) = (mod p) = M (mod p)
(9") (9" y*

b
N —g(mod p) =

Comments:

* A different random number can be used for each message and therefore for
each block of the message. The decryption does not rely on the random
number. This adds to the security of the system as the same message can be
encrypted differently even using the same values of p, g and X.

* The encryption process generates two parts for the ciphertext - space could be
a problem with large plaintexts.

7.1.3 Random numbers

In the encryption part of the Elgamal system, a random number is needed. It is
therefore necessary to find a way to generate a list of random numbers. Unfortunately,
it is not possible to obtain completely random numbers from a computer. A common
way of producing a sequence of “random” numbers (although not cryptographically
secure) is by using a relationship of the form:

r,=sxr,_, +t (mod n), the first value r, is usually called the seed.

By looking in the C program random.c which was used in the second Operating
Systems [P3] practical, some suitable values can be obtained. In this program,
s= 1103515245, t = 12345 and n = 2147483648 = 2™,

A Haskell function can then be specified:

> random :: Integral a => a -> [a]
> random s= tail (iterate f s)
> where f x = rem (1103515245*x + 12345) 2147483648

The seed itself also needs to be random. It is possible to use information such as the
time of day and how long a user takes to type in a command to generate seeds.
However, for simplicity, in the implementation a number will be just be typed in.

7.2 Haskell implementation

This section will show to how to implement a version of Elgamal in Haskell.

7.2.1 Reusing functions

As with RSA, Elgamal works on numbers and so many of the functions developed in

the RSA chapter to convert to and from strings can be reused. The list below details
the sections in which the relevant definition for each function can be found.

e Section 5.3.1 euc

e Section 6.1.2 power

e Section 6.2.1 blocks, chop
e Section 6.3.1 undo
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7.2.2 Encryption

The encryption function which deals with text will be developed in stages. The first
stage is to produce a function which will take in a list of random numbers and another
list of numbers which represents the ciphertext.

> elg :: Integral a => a -> a -> [a]l -> a -> [a]l -> [(a,a)]
> elg gy ks p xs =

> zip (map (\k -> power g k p) ks)

> (zipWith (\k m -> rem (m* (power y k p)) p) ks xs)
Syntax: elg g y (random list) p (input list)

The list of random numbers needs to be at least as long as the length of the input text.
An example:
Pick p=719, g= 85 and x=290. Now find y:

Main> power 85 290 719
122
(362 reductions, 695 cells)

Main> elg 85 122 [12,20,12] 719 [453,941,529]
[(482,135), (192, 361), (482,610)]
(1190 reductions, 2317 cells)

If the random list is too small, only some of the plaintext will be encrypted:

Main> elg 85 122 [12,20] 719 [453,941,529]
[(482,135), (192, 361)]
(822 reductions, 1599 cells)

Now, a function is needed that makes use of r andomdefined in Section 7.1.3. random
will take the place of ks in el g. All of the elements generated by r andomwill need to
be coprime to the prime p. The test cpomcan be used with filter.

> cpm :: Integral a => a -> a -> Bool
> cpm a b = (gcd a b) == 1

Main> filter (cpm 12) [2..12]
[5,7,11]
(1193 reductions, 1736 cells)

A seed is needed for r andom- this will be taken as an argument in the function. The
length of the input list will determine the start of the random list. Note, when using a
text string (see later), the length after conversion to a list of integer is used, not the
length of the text.

elgamal :: Integral a => a -> a -> a -> a -> [a] -> [(a,a)]
elgamal g vy k p xs = elg g y rand p XS
where rand = drop (length xs) (filter (cpm (p-1))
(map (\n -> rem n p) (random k)))

Swﬂax: elgamal g vy (seed) (prime) (message list)

S. Drape Functional Cryptography 51



Chapter 7 Elgamal Encryption

Using the same values for g, y and p as above:
Main> elgamal 85 122 9 719 [10,34,56]
[ (342, 302), (408, 215), ( 358, 406) ]

(4209 reductions, 8122 cells)

Main> elgamal 85 122 9 719 [78,56,49]
[ (342, 630), (408, 481), (358, 535) ]
(4206 reductions, 8118 cells)

Notice that the first components of the elements are the same in the two ciphertexts.
However, using a longer list changes the values:

Main> elgamal 85 122 9 719 [78,56,49,105]
[ (408, 28), (358, 406), (395, 428), (530, 562)]
(5289 reductions, 10215 cells)

Finally, a function which will take a string as the plaintext and apply the Elgamal
encryption to it (and as usual, a file handling version can be defined).

> elgtext :: Integral a => a -> a -> a -> a -> String -> [(a,a)]
> elgtext g v k p ss =
elgamal g y k p (blocks(chop ss p))

>
Swﬂax: elgtext g y (seed) (prime) (string)

An example - choose p= 17467, g=476 and Xx=917.

Main> power 476 917 17467

5088
(479 reductions, 987 cells)
So, y =5088.

Main> elgtext 476 5088 62 17467 "Hello World"

[ (4089, 14736), (14653, 5661), (11169, 10345), (5559, 3580), (3122, 3169), (136
0, 10615) ]

(14911 reductions, 30252 cells)

7.2.3 Decryption

As with the encryption part, the decryption function will be defined initially to work
with just integers. The first stage is to take in the list of pairs which make up the
ciphertext and convert each pair back to the corresponding integer of the plaintext.
The integer is created by using the rule in Section 7.1.2.

> decode' :: Integral a => [(a,a)] -> a -> a -> [a]

> decode' ys x p = foldr(\ (a,b) xs ->

> (rem (b*power (euc a p) x p) p):xs) [] ys
Swﬂax: decode' (coded pairs) (private) (prime)

Using the last example in Section 7.2.2 - p= 17467 and x=917.

Main> decode' [(4089,14736), (14653,5661), (11169,10345), (5559, 3580),
(3122,3169), (1360,10615)] 917 17467

[ 9317, 13932, 14240, 11247, 14700, 100]

(4663 reductions, 9447 cells)
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The output list now has to be turned back into a string - this can be achieved by using
the function undo.

Main> undo [9317,13932,14240,11247,14700,100]
"Hello World"
(568 reductions, 857 cells)

This leads to a function which will turn a list back into a string:

> decode :: Integral a => [(a,a)] -> a -> a -> String
> decode ys x p = undo (decode' ys x p)

Swﬂax: decode (coded pairs) (private) (prime)

Main> decode [(4089,14736), (14653,5661), (11169,10345), (5559, 3580),
(3122,3169), (1360,10615)] 917 17467

"Hello World"

(5149 reductions, 10179 cells)

7.3 Additional Testing

This section will produce some more testing with the Elgamal implementation by
using the file handling versions.

7.3.1 Tests with files

This follows the pattern of Section 6.4.1 in that the time to encrypt and decrypt large
files will be considered. First the relevant numbers need to be chosen.

p=2"""+643 x=3%+123, g=4"+7
Now working out y:

Main> power (4775+7) (37100+123) (271024+643)
155192139965914370597194870990263624288093832245103268634666391077300
157400416759176717221144011181919594586137356247178023628492845459923
039767181925861124890644349256939607051094352038808248321798161760868
444187694769167845745030125438274009611342411667831482320582030335332
188069994750785174924699826586425

(8006 reductions, 126880 cells)

However, power (4775+7) (37100+123) (271024+643) will be used instead of the
full value fory.

Again, using filel.

Main> elgFF (4775+7) (power (4775+7) (37100+123) (271024+643)) 493
(271024+643) "filel"™ "testle"
(123892 reductions, 537289 cells, 2 garbage collections)

This took about 2 seconds.

Main> decodeFS (371004+123) (271024+643) "testle"
Pure chance...... Victory Ball.
(478800 reductions, 1920168 cells, 8 garbage collections)
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The decryption took about 3 seconds.

The Elgamal encryption and decryption process seems to be much quicker that RSA
However, the Elgamal encryption fails with large files.

Taking the same values for p, X, g and y as above and using the Haskell file knap.lhs.

Main> elgFF (4775+7) (power (4775+7) (371004+123) (271024+643)) 629
(271024+643) "knap.lhs" "test2e"
(877255 reductions, 3233779 cells, 15 garbage collections)

This took about 6 seconds.

Main> decodeFS (37100+123) (271024+643) "testle"
(1078099 reductions, 1634099 cells, 40 garbage collections)
ERROR: Garbage collection fails to reclaim sufficient space

This fails due to lack of space.
732 GHC

The Elgamal implementation using Hugs fails to work with large numbers and files.
Another compiler which could be used is ghc (Glasgow Haskell Compiler) [W2]. To
use ghc, a function Mai n with type | () needs to be defined - in this case Mai n will be
defined using the decodeFS expression defined above. The file is then compiled and
made into an executable program.

To compile and create an executable program called decode.
% ghc -02 -o decode decode. |l hs

Running:

Q

% decode
** Test and create superincreasing sequences> testSup :: Integral

So, compiling in ghc successfully decodes the file.
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In the previous chapters, various implementations have been developed. This last
chapter looks at some general issues and summarises some conclusions.

8.1 Creating efficient functions

Some of the reasons, outlined in Section 1.2.4, for using functional programming
were that programs could be built up by using one function at a time and efficiency
can be achieved by looking at these individual functions. To demonstrate this, the
original functions used for Section 5.2.2 are shown and the reasons for any changes
are given. The original functions are suffixed by “0” to distinguish them from the
actual functions used.

The first function developed in Section 5.2.2 was bi n. The original version was:

> bin0 :: Integral a=>a -> String

> bin0O 0 =""

> bin0 n = (bin0 g) ++ [chr(ord '0'+p)]
> where p = remn 2

> g = quot n 2

This version uses ++ which is often expensive to use. This was used because the
binary string needs to be built up from the right. An alternative would be to create the
string from left to right and then r ever se the result - however this would mean that
rever se would be used for each for letter of the plaintext and this could become quite
inefficient. Instead, an extra string was taken in as a parameter (initially the string is
empty) and the binary string is accumulated in this extra string. The other slight
change made was the use of quot Reminstead of working out quot and r emseparately.

The next function that was changed was zer os. Here is the original version:

> zerosQ :: Int -> String -> String
> zerosO n s = if n>1 then zerosO n ('0':s) else s
> where 1 = length s

This version uses | engt h at every stage. The length of the string increases by one at
each stage and the function stops when the list reaches the correct size. However, the
number of zeros needed can be determined at the start of the loop (it is N — S, where s
is the length of input string) and so this can be passed into the function as an extra
parameter.

The functions i nput and conbi ne both stayed the same, so here is the original
version of codi ng:

> coding0 :: String -> [Integer] -> [Integer]

> coding0 "" xs = []

> coding0 ss xs = (combine (take n ss) xs): (coding0 (drop n ss) xs)
> where n = length xs

Two changes were made to this function. First, split At is used rather than using
take and drop separately. Using split At means that the list ss is only traversed
once. As the length of the list xs is not changed by the function, it can be passed in as
a parameter. In fact, in Section 5.2.2, it is worked out in the function knapsack.
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Changes were made to many other functions in each of the chapters. Combining
changes made to functions means that efficient programs could be developed. Other
methods of efficiency could be by using theorems such as Fusion [Brd] or by using
program transforms [DMS].

8.2 Timings

One of the main reasons that functional programming is not widely used for
cryptography is that it is perceived as being “slow”. This section will compare the
times for the RSA and Elgamal implementations with another cryptographic
algorithm, called PGP, that is used on the ECS network.

PGP stands for Pretty Good Privacy - the details are explained in [Sch] - it is based on
RSA. To compare the versions, PGP is set up with a 1024-bit key and a key word.
The programs are to be used with file4 (this is so that each program encrypts and
decrypts no more than one block of text).

To speed up the RSA and Elgamal functions, ghc is used. Two versions of each
algorithm need to be created to handle the encryption and the decryption processes.

For RSA,e=5,p= 3" + 268 and q= 2™ 4+ 337 (so the modulus is approximately
1024 bits) and the programs are called rsae and rsad. For Elgamal, the values are the
same as those in Section 7.3.1 (the programs are called elge and €l gd).

To work out the times of the functions, the UNIX command timex is used. Example
timings are given below:

PGP -encryption elge rsae
real 0.15 0.21 0.05
user 0.11 0.17 0.01
sys 0.02 0.02 0.02

PGP -decryption elgd rsad
real 1.16 0.18 1.46
user 0.31 0.13 0.89
sys 0.07 0.02 0.03
Comments:

* The real time value for PGP decryption is high. This is because a password
needs to be typed in before decryption can take place.

* RSA encryption is very quick, however the decryption time is slow. This
happens because the encryption process deals with a small power (7) while the
decryption has to deal with a much larger power (around 1024 bit).

* Elgamal encryption takes the longest - the calculation is more complex than
RSA and involves random numbers. However, Elgamal is the fastest for
decryption.

* The time for the RSA decryption algorithm is (approximately) directly
proportional to the number of elements in the list which constitutes the
ciphertext. This means that RSA becomes very slow for large files.

The times for the Haskell implementations compare fairly well with PGP.
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8.3 Revisiting the aims

One of the aims set out in Chapter 1 was to examine some cryptographic techniques.
The algorithms implemented can be split into two main areas - private key and public
key. The two private key algorithms were found to be insecure since functions could
be created which could crack ciphertexts encrypted using these algorithms. The public
key algorithms which were used relied on “hard” mathematical problems. All of the
algorithms were quite easy to implement. Splitting up each algorithm into
mathematically self-contained parts and writing a function for each part, achieved the
implementation. The security of each algorithm was discussed, including the size of
numbers needed for the key.

Another aim of the project was to consider an application using the functional style of
programming. One of the most widely used features of functional programming is the
list. All of the implementations used lists and techniques such as accumulating
parameters and using tuples were employed to aid efficiency. The programs
developed compared reasonably well with standard implementations and they were
quite compact in comparison to imperative programs. The functional style did not
really hinder the implementations - everything could be achieved by Haskell.

8.4 Further topics

There are a number of ways in which this project could be extended:

e Other public key algorithms could be implemented such as DES [Sch]. A
developing area is Elliptic Curve cryptography and it would be interesting to
see how these could be implemented in Haskell [BBS].

* Digital signatures are used to sign and verify documents over the Internet.
Functional digital signatures could be created.

* Hugs was the main compiler used for this project - other compilers such as ghc
could be tried instead. Also, other functional languages such as ML could be
compared with Haskell.

» Efficiency is a major concern for cryptography - can the algorithms be made
to run more efficiently?
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Chapter 2
caesar.lhs

> nlett :: Int -> Char -> Char

> nlett n c

> | c>='A'" && c<='Z' = chr(ord 'A' + (mod (ord c - ord 'A' + n) 26))
> | otherwise = cC

> capitalise :: Char -> Char

> capitalise ¢ = if isLower c¢ then chr (off + ord c) else c

> where off = ord 'A' - orxrd 'a'

> caps :: String -> String

> caps = map capitalise

> isWanted :: Char -> Bool

> isWanted ¢ = (c==' ') || (isUpper c)

> caesar :: Int -> String -> String

> caesar n s = map (nlett n) (filter isWanted (caps s))

> uncaesar :: Int -> String -> String

> uncaesar n = caesar (-Nn)

> freqg :: String -> String -> [(Int,Char)]

> freq [1 _ = []

> freq (l:1s) xs = (length (filter (==1) xs),1l): (freqg ls xs)

> analyse :: String -> [(Int,Char)]

> analyse = (freqg ['A'..'Z']).caps

> maxfst :: Ord e => (e, f) -> (e, f) -> (e, f)

> maxfst (a,b) (c,d) = if a>=c then (a,b) else (c,d)

> maxpair :: [(Int,a)] -> (Int,a)

> maxpalr = foldrl (maxfst)

> maxlet :: String -> Char

> maxlet = snd.maxpair.analyse

> mostfreqg :: [Int]

> mostfreq = map (\s -> ord s - ord 'A') ['E','T','A','I','N','0"]
> posslist :: String -> [String]

> posslist ss = map (flip caesar ss) (map (+f) mostfreq)

> where f = ord 'A'- ord(maxlet ss)

> len :: Int -> [a] -> Bool

> len n ss = (length ss == n)

> sizeword :: Int -> String -> [String]

> sizeword n ss = filter (len n) (words ss)

> doub :: String -> String

> doub [] = []

> doub [x] = []

> doub (x:y:xs) = 1f (x==y) then x:doub xs else doub (y:xs)

> onelett =["A","I"]

> twol = [llAMu, llANu, llASu, llATu, llBEu, llBYu, llcou, llDou, llEGu, llGou, llHEu, llHIu, IIIEII]
> twoz = [“IN“, “IS“, “IT“, “ME“, “MR“, “MY“, IINOIII “OF“, “OH“, “OK“, “ON“, IIOPII]
> tw03 = [lloRll, lloXll, llPIll, llSoll, llToll, llUPll, llUSll, llell]

> twolett = twol++two2++two3

> doubles = "CDEFGLNOPRST"

> notmember :: Eq a => [a] -> a -> Bool

> notmember [] _ = True

> notmember (x:xs) y = if (x == y) then False else notmember xs y
> errorsl :: String -> Int

> errorsl ss = length (filter (notmember onelett) (sizeword 1 ss))
> errors2 :: String -> Int

> errors2 ss = length (filter (notmember twolett) (sizeword 2 ss))
> errors3 :: String -> Int

> errors3 ss = length (filter (notmember doubles) (doub ss))

> errors :: String -> Int

> errors ss = (errorsl ss) + (errors2 ss) + (errors3 ss)

> minsnd :: Ord £ => (e, f) -> (e, f) -> (e, f)
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> minsnd (a,b) (c,d) = if b <=d then (a,b) else (c,d)

> minpair :: [(a,Int)] -> (a,Int)

> minpair = foldrl minsnd

> err :: String -> (String, Int)

> err a = (a, errors a)

> decode :: String -> String

> decode = fst.minpair. (map err). (posslist)

> isText :: Char -> Bool

> isText c

> | ord ¢ < 32 = False

> | ord ¢ > 127 = False

> | otherwise = True

> file :: String -> String -> (String -> String) -> IO()
> file infn outfn func = do xs <- readFile infn

> writeFile outfn (filter isText (func xs)
> fileshow :: String -> (String -> String) -> IO ()

> fileshow fn func = do xs <- readFile fn

> putStr (filter isText (func xS))
> caesarSF :: Int -> String -> String -> IO()

> caesarSF n ss outfn = writeFile outfn (show(caesar n ss))
> caesarFS :: Int -> String -> IO()

> caesarFS n infn = fileshow infn (show. (caesar n))

> caesarFF :: Int -> String -> String -> IO()

> caesarFF n infn outfn = file infn outfn (caesar n)

> decodeSF :: String -> String -> IO()

> decodeSF ss outfn = writeFile outfn (show(decode ss))
> decodeFF :: String -> String -> IO()

> decodeFF infn outfn = file infn outfn decode

> decodeFS :: String -> IO()

> decodeFS infn = fileshow infn decode

> icaesar :: Int -> IO()

> icaesar n = interact ((caesar n). (takeWhile (/='#")))

Chapter 3
vig.lhs

> nlett :: Int -> Char -> Char

> nlett n c

> | c>='A' && c<='Z' = chr(ord 'A' + (mod (ord c - ord 'A' + n) 26))
> | otherwise = cC

> capitalise :: Char -> Char

> capitalise ¢ = if isLower c¢ then chr (off + ord c) else c
> where off = ord 'A' - ord 'a'

> cap :: String -> String

> cap = map capitalise

> toval :: Char -> Int

> toval ¢ = ord ¢ - ord 'A'

> vig :: String -> String -> String

> vig k s = vig' (cycle(cap k)) (filter isUpper (cap s))
> vig' :: String -> String -> String

> vigl nn = nn

> vig' (k:ks) (t:ts) = (nlett (toval k) t) : vig' ks ts
> ivig :: String -> IO()

> ivig ks = interact ((vig ks). (takeWhile (/='#")))

> revlet :: Char -> Char

> revlet 'A' = 'A'

> revlet ¢ = chr (ord 'B' + ord 'Z' - ord c)

> revkey :: String -> String

> revkey xs = map (revlet) (cap xs)

> vigrev :: String -> String -> String

> vigrev k ss = vig (revkey k) ss
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> isText :: Char -> Bool

> isText c

> | ord c < 32 = False

> | ord ¢ > 127 = False

> | otherwise = True

> file infn outfn func = do xs <- readFile infn

> writeFile outfn (filter isText (func xs))
> fileshow :: String -> (String -> String) -> IO ()

> fileshow fn func = do xs <- readFile fn

> putStr (filter isText (func xs))
> vigSF :: String -> String -> String -> IO()

> vigSF ks ss outfn = writeFile outfn (show(vig ks ss))
> vigFS :: String -> String -> IO()

> vigFS ks infn = fileshow infn (vig ks)

> vigFF :: String -> String -> String -> IO()

> vigFF ks infn outfn = file infn outfn (vig ks)

newvig.lhs

** Definition for xor **

> twopw :: [Int] -> Int

> twopw = foldr (\ a b -> a + (2*b)) 0

> xor' :: Int -> Int -> [Int]

> xor' 0 0 = []

> xor' a b = if mod a 2 == mod b 2 then 0:xx
> else l:xx
> where xx = xor' (div a 2) (div b 2)
> xor :: Int -> Int -> Int

> xor a b = twopw(xor' a b)

> chars :: Char -> Char -> Char

> chars a b = chr (xor (ord a) (ord b) )

** Vigenere cipher **

> vig' :: String -> String -> String

> vig' _ (] =1

> vig' (t:ts) (s:ss) = (chars t s) : (vig' ts ss)
> vig :: String -> String -> String

> vig ks ss = vig' (cycle ks) ss

** Test for a repeating string **

> rep :: Eq a => [a] -> Int -> Bool

> rep xs n = and (zipWith (==) xs (cycle (take n xs)))

> test :: Int -> [Bool] -> Int

> test _ [] =0

> test n (x:xs)= if x == True then n else (test (n+l) xs)
> replen :: Eg a => [a] -> Int

> replen xs = test 1 (map (rep xs) [1l..(length xs)-2])

** Crib part **

> criblist :: Int -> Int -> String -> String -> [(String,Int,Int)]
> criblist 0 _ _ _ =[]

> criblist 0 _ _ [] =[]

> criblist k n cs (s:ss) = (vig ss cs, replen (vig ss cs), n-k)

> criblist (k-1) n cs ss

> headl:: [(String,Int,Int)] -> (String, Int, Int)

> headl [] = ("",-1,-1)

> headl (x:xs) = X

> snd' :: (a,Int,c) -> Bool

> snd' (a,b,c) = b==

> crib' :: String -> String -> (String, Int, Int)

> crib' cs ss = headl (dropWhile snd' (criblist k k cs ss))

> where k = length ss - length cs

> crib :: String -> String -> String

> crib cs ss = if k>0 then take k (drop (k- (mod (p+1) k))

> (cycle (take k xs))) else []
> where (xs,Xk,p) = crib' cs ss

S. Drape Functional Cryptography



Appendix A Full Listings of Files Created

** Check for matches **

> matches :: String -> String -> Int

> matches [] _ =0

> matches _ [] =0

> matches (s:ss) (t:ts) = if s==t then 1 + xx else xx

> where xx = matches ss ts

> shifts :: String -> String -> [Int]

> shifts [] ts = []

> shifts ss ts = matches ss ts : shifts (tail ss) ts

> display :: Show a =>[a] -> 1Int -> Int -> String

> display _ _ O = []

> display [] _ _ = 1]

> display (t:ts) n e =

> ((show n)++":\t"++(show t)++"\n")++display ts (n+l) (e-1)
> analyse' :: String -> String

> analyse' ss = display (shifts (tail ss) ss) 1 25

> analyse :: String -> IO()

> analyse = putStr.analyse'

> isText :: Char -> Bool

> isText c

> | ord c < 32 = False

> | ord ¢ > 127 = False

> | otherwise = True

> eq :: Int -> String -> String -> [(Char,Int)]

>eq _ [1 _ =[]

>eq_ _ [l =[]

> eq n (s:ss) (t:ts) = if (s == t) then (s,n):xx else xx
> where xx = eq (n+l) ss ts
> tries :: Int -> (Char,Int) -> (Char,Int)

> tries k (a,b) = (chars a ' ',mod b k)

> list' :: Int -> String -> String -> [(Char,Int)]

> list' _ []1 _ =[]

> list' k ss ts = (filter (isText.fst) (map (tries k) (eq 0 ss ts))) ++
> (list' k (drop k ss) ts)

> list :: Int -> String -> [(Char,Int)]

> list k ss = list' k (drop k ss) ss

> accum :: [(Char,Int)] -> [(Char,Int,Int)]

> accum [] = []

> accum ((a,b) :ss) = (a,b,c) : accum ss'

> where ¢ = 1+(length(filter(==(a,b)) ss))
> ss' = filter (/= (a, b)) ss
> gt3rd :: Ord ¢ => ¢ -> (a,b,c) -> Bool

> gt3rd n (a,b,c) = c>=n

> filter3rd :: Int -> [(Char, Int,Int)] -> [(Char,Int,Int)]
> filter3rd _ []1 = []

> filter3rd n ss = filter (gt3rd n) ss

> best :: Int -> Int -> String -> [(Char,Int,Int)]

> best n k ss = filter3rd n (accum (list k ss))

> maxs :: Ord ¢ => (a,b,c) -> (a,b,c) -> (a,b,c)

> maxs (a,b,c) (d,e,f) = if ¢ <f then (d,e,f) else (a,b,c)
> maxlist :: [(Char,Int,Int)] -> (Char,Int,Int)

> maxlist = foldr (maxs) ('?',0,0)

> first :: (a,b,c) -> a

> first (a,b,c) = a

> third :: (a,b,c) -> ¢

> third (a,b,c) = ¢

> eg2nd :: Eg b => b -> (a,b,c) -> Bool

> eg2nd n (a,b,c) = n ==

> find :: Int -> [(Char,Int,Int)] -> Char

> find n ss = (first (maxlist(filter (eg2nd n) ss)))

> key' :: Int -> [(Char,Int,Int)] -> String

> key' 0 _ =[]

> key' n ss = find (n-1) ss: (key' (n-1) ss)

> key :: Int -> String -> String
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> key k ss = reverse(key' k (best 1 k ss))
** File handling part **

> file :: String -> String -> (String -> String) -> IO()
> file infn outfn func = do xs <- readFile infn

> writeFile outfn (func xs)
> fileshow :: String -> (String -> String) -> IO ()

> fileshow filename func = do xs <- readFile filename
> putStr (func xs)

vigSF :: String -> String -> String -> IO()

vigSF ks ss outfn = writeFile outfn (vig ks ss)
vigFS :: String -> String -> IO()

vigFS ks infn = fileshow infn (vig ks)

vigFF :: String -> String -> String -> IO()

vigFF ks infn out = file infn out (vig ks)

vV V.V V VYV

analyseFS :: String -> IO()

analyseFS infn = fileshow infn analyse'

1istFS :: Int -> String -> IO()

1listFS k infn = fileshow infn (show. (list k ))
bestFS :: Int -> Int -> String -> IO()

bestFS n k infn = fileshow infn (show. (best n k))
keyFS :: Int -> String -> IO()

keyFS k infn = fileshow infn (show. (key k))
cribFS :: String -> String -> IO0()

cribFS c¢s infn = fileshow infn (show.crib cs)

VVVVVVYVVYVYV

Chapter 5
knap.lhs

** Test and create superincreasing sequences

> testSup :: Integral a=>[a]-> Bool

> testSup xs = and(zipWith (>) xs (scanl (+) 0 xs))
> super :: Num a => [a] -> [a]

> super [] = []

> super (x:xs) = sup2 xs [x]

> sup2 :: Num a => [a] -> [a] -> [a]

> sup2 [] y =y

> sup2 (x:xs) y = sup2 xs (y++[1l+x+(sum y)]1)

** Encrypting

> bin' :: Int -> String -> String

> bin' 0 ys = ys

> bin' n ys = bin' g (chr(ord '0' + p) :ys)

> where (q,p) = quotRem n 2

> bin :: Int -> String

> bin n = bin' n ""

> zeros' :: Int -> String -> String

> zeros' 0 s = s

> zeros' n s = zeros' (n-1) ('0':s)

> zeros :: Int -> String -> String

> zeros n s = if n>1 then zeros' (n-1) s else s

> where 1 = length s

> input :: String -> String

> input nn =nn

> input (x:xs) = (zeros 7(bin (ord x)))++input xs
> combine :: String -> [Integer] -> Integer

> combine "" _ =0

> combine _ [] =0

> combine (s:ss) (x:xs) = (kn s x) + (combine ss xs)
> kn :: Num a => Char -> a -> a

>kn 'l' n=n

> kn '0' n=20

> coding :: Int -> String -> [Integer] -> [Integer]
> coding _ "" _ =[]

> coding n ss xs = (combine ys xs):(coding n zs xs)
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>

> knapsack
> knapsack
>

Format:

> convert
> convert
> | gcd w
> | n <=
> | other

\2

knapmod
knapmod

\2

Format:

> iknapsac
iknapsac

\2

isText

isText c
| ord c
| ord c
| other

vV V V VYV

file
file inf

fileshow
fileshow

V VVVVYV

> knapSF
> knapSF n
> knapF$S
> knapFS n
> knapFF
> knapFF n

** FEuclide

euc :: I
euc a b
euc'
euc' b r
| r ==
| other

V VV VVVYV

Format:

> unconver
> unconver

Format:

** Reconst

makebin
makebin

vV V. V VvV

\2

undo
undo xs

\2

ascii
ascii []
ascii xs

vV V V VvV

\2

todec
> todec =

S. Drape

where (ys,zs)= splitAt n ss
[Integer] -> String -> [Integer]
xs ss = coding n (input ss) xs

where n = length xs

knapsack (text string) (sequence)

Integral a=>[a] -> a -> a -> [a]
XS W n
n /=1 = error "not coprinme”
sum xXs = error "modulus too small”
wise =map (\a -> rem (a*w) n) xs

[Integer] -> Integer -> Integer -> String ->[Integer]
xs W n ss= knapsack (convert xs w n) ss

knapmod (s.i. sequence) (multiplier) (mod) (text)

k :: [Integer] -> IO()

k ns = interact (show. (knapsack ns).(takeWhile (/="#')))
Char -> Bool

< 32 = False

> 127 = False

wise = True

String -> String -> (String -> String) -> IO()

n outfn func = do xs <- readFile infn
writeFile outfn (filter isText (func xs))

String -> (String -> String) -> IO ()
filename func = do xs <- readfFile filename
putStr (filter isText (func xs))
[Integer] -> String -> String -> IO()
s ss outfn = writeFile (outfn) (show(knapsack ns ss))
[Integer] -> String -> IO()
s infn = fileshow infn (show. (knapsack ns))
[Integer] -> String -> String -> IO()
s infn outfn = file infn outfn (show. (knapsack ns))

an algorithm

ntegral a => a -> a -> a
= mod (euc' a b 0 1) b
Integral a => a -> a ->a -> a -> a

ccl
=cl
wise = euc' r p (cl- (g*c)) c
where (g,p) = quotRem b r
euc (number) (mod)

t :: Integral a=>[a] -> a -> a -> [a]
t xs wn =map (\a -> rem (a*(euc w n)) n) xs

unconvert (sequence) (multiplier) (mod)
ruction the text

Integral a => a -> [a] -> String
n ys = fst (foldr (\x (xs,p) ->
if x > p then ('0':xs,p) else
("1':xs,p-x)) ("",n) ys

Integral a=>[a] -> [a] -> String
ys = foldr (\ x ss-> (makebin x ys)++ss) "" xs

Integral a=>String -> [a]
=[]
= todec ys:ascii zs
where (ys,zs) = splitAt 7 xs

Integral a => String -> a
foldl (\s x -> if x=='0' then (2*s) else 1+(2*s)) O
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> decode :: Integral a => [a] -> [a] -> a -> a -> String

> decode xs ys w n = map chr (filter (>0)

> (ascii (undo

> (unconvert xs w n) ys)))

Format: decode (code) (s.i. sequence) (multiplier) (mod)

> declist :: (Integral a, Read a) => [a] -> a -> a ->

> String -> String

> declist ys x n xs = decode (read xs) ys x n

> decodeFS :: (Integral a, Read a) => [a] -> a -> a -> String -> I0()
> decodeFS ys x n infn = fileshow infn (declist ys x n)

> decodeFF :: (Integral a, Read a) => [a] -> a -> a -> String ->

> String -> IO()

> decodeFF ys x n infn outfn =

> file infn outfn (declist ys x n)

> decodeSF :: (Integral a) => [a] -> [a] -> a -> a -> String -> IO0()
> decodeSF xs ys x n outfn =

> writeFile (outfn) (show(decode xs ys x n))

Chapter 6
rsa.lhs

** Tests for factors **

> factor :: Integer -> (Integer, Integer)

> factor n = factorFrom 2 n 2

> factorFrom m n s

> lr == = (m,q)

> lg <=m = (n,1)

> |lm == 2 = factorFrom 3 n 2

> |m == = factorFrom 5 n 2

> |otherwise = factorFrom (m+s) n (6-S)
> where (g,r) = quotRem n m

** Rabin-M | er

> stepl :: Integer -> (Integer, Integer)

> stepl n = stepl' (n-1) O

> stepl' :: Integer -> Integer -> (Integer,Integer)
> stepl' m k

> | even m = stepl' (quot m 2) (k+1)

> | otherwise = (m, k)

> test :: Integer -> Integer -> Bool

> test n x

> | even n = False

> |y ==1 = True

> | otherwise = testing n y 1

> where y = power x g n

> where g = fst(stepl n)

> testing :: Integer -> Integer -> Integer -> Bool
> testing n y j

> | j > snd(stepl n) = False

> | y == n-1 = True

> |y ==1 = False

> | otherwise = testing n (rem (y*y) n) (j+1)

** Power function

> power :: Integral a=> a -> a -> a -> a
> power x pm= loop 1 x pm

Format: power (base) (index) (mod)

> loop :: Integral a => a ->a ->a->a -> a

> loocp y zpm

> | p==0 =Yy

> | even p = loop y (rem (z*z) m) (quot p 2) m
> | otherwise = loop (rem (y*z) m) z (p-1) m

wn
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> euc :: Integral a => a -> a -> a

> euc a b = mod (euc' a b 0 1) b

> euc' :: Integral a => a ->a ->a ->a -> a
> euc' b r ccl

> | r == =cl

> | otherwise = euc' r p (cl- (g*c)) c

> where (g,p) = quotRem b r

** Works out a public key

> private :: Integral a => a -> a -> a -> a

> private e p g

> | ged e pp /=1 = error "Not coprime”
> | otherwise = euc e pp

> where pp = (p-1)*(g-1)

Format: private (public) (prime) (prime)

** Encryption

> accum :: Integral a=>[a] -> a

> accum = foldl (\a b -> (a*128)+b) O

> blocks :: Integral a=>[String] -> [a]

> blocks [] = []

> blocks (x:xs) = (accum(map (fromInt.ord) x)):(blocks xs)
> chunk :: Integral a=>a -> a

> chunk n = chunky n 0 1

> chunky :: Integral a => a -> a -> a -> a

> chunky n p ¢

> | n < c = p-1

> | otherwise = chunky n (p+1l) (128*c)
> chop :: Integral b => [a] -> b -> [[a]]

> chop xs m = chop' xs (toInt (chunk m))

> chop' :: [a] -> Int -> [[all]

> chop' [] p = []

> chop' xs p = ys: (chop' zs p)

> where (ys,zs) = splitAt p xs

> rsa :: Integral a=> a -> a -> String -> [a]

> rsa e m ss = map (\x -> power x e m) (blocks(chop ss m))
Format: rsa (public) (product of primes) (string)

** Decryption

> unaccum :: Integral a => a -> String

> unaccum n = unaccum' n ""

> unaccum' :: Integral a => a -> String -> String

> unaccum' 0 ys = ys

> unaccum' n ys = unaccum' g ((ascii r):ys)

> where (g,r) = quotRem n 128

> ascii :: Integral a => a -> Char

> ascii = chr.toInt

> undo :: Integral a=> [a] -> String

> undo = foldr (\x xs -> unaccum x ++ xs) []

> decode :: Integral a => [a] -> a -> a -> String

> decode xs d m = undo (map (\x -> power x d m) xs)
Format: decode (coded seq) (private) (product of primes)
> isText :: Char -> Bool

> isText c

> | ord c < 32 = False

> | ord ¢ > 127 = False

> | otherwise = True

> file :: String -> String -> (String -> String) -> IO()
> file infn outfn func = do xs <- readFile infn

> writeFile outfn (filter isText (func xs)
> fileshow :: String -> (String -> String) -> IO ()

> fileshow filename func = do xs <- readFile filename
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> putStr (filter isText (func xs))
> rsaSF :: Integral a => a -> a -> String -> String -> IO()

> rsaSF e m ss outfn = writeFile (outfn) (show(rsa e m ss))

> rsaFS :: Integral a => a -> a -> String -> IO0()

> rsaFS e m infn = fileshow infn (show. (rsa e m))

> rsaFF :: Integral a => a -> a -> String -> String -> IO()

> rsaFF e m infn outfn = file infn outfn (show. (rsa e m))

> declist :: (Integral a, Read a) => a -> a -> String -> String
> declist d n ss = decode (read ss) d n

> decodeSF :: Integral a => [a] -> a -> a -> String -> IO()

> decodeSF ss d n outfn = writeFile outfn (decode ss d n)

> decodeFS :: (Integral a, Read a) => a -> a -> String -> IO()
> decodeFS d m infn = fileshow infn (declist d m)

> decodeFF :: (Integral a, Read a) =>

> a -> a -> String -> String -> IO()
> decodeFF d m infn outfn = file infn outfn (declist d m

\2

irsa :: Integral a => a -> a -> I0()
> irsa e m = interact (show.(rsa e m).(takeWhile (/="#')))

Chapter 7
elgamal.lhs

> power :: Integral a=> a -> a -> a -> a

> power x pm= loop 1 x pm

> loop :: Integral a => a ->a ->a->a -> a

> loocp y z p M

> | p==0 =Yy

> | even p = loop y (rem (z*z) m) (quot p 2) m
> | otherwise = loop (rem (y*z) m) z (p-1) m
> euc :: Integral a => a -> a -> a

> euc a b = mod (euc' a b 0 1) b

> euc' :: Integral a => a ->a ->a ->a -> a

> euc' b rccl

> | r == = cl

> | otherwise = euc' r p (cl- (g*c)) c

> where (g,p) = quotRem b r

> random :: Integral a => a -> [a]

> random s = tail(iterate f s)

> where f x = rem (1103515245*x + 12345) 2147483648
> accum :: Integral a=>[a] -> a

> accum = foldl (\a b -> (a*128)+b) 0

> blocks :: Integral a=>[String] -> [a]

> blocks [] = []

> blocks (x:xs) = (accum(map (fromInt.ord) x)):(blocks xs)
> chunk :: Integral a=>a -> a

> chunk n = chunky n 0 1

> chunky :: Integral a => a -> a -> a -> a

> chunky n p ¢

> | n < c = p-1

> | otherwise = chunky n (p+1l) (128*c)

> chop :: Integral b => [a] -> b -> [[a]]

> chop xs m = chop' xs (toInt (chunk m))

> chop' :: [a] -> Int -> [[al]

> chop' [] p = []

> chop' xs p = ys: (chop' zs p)

> where (ys,zs) = splitAt p xs

** Encryption **

> elg :: Integral a => a -> a -> [a] -> a -> [a] -> [(a,a)]

> elg gy ks p xs =

> zip (map (\k -> power g k p) ks)

> (zipWith (\k m -> rem (m*(power y k p)) p) ks xs)

> elgamal :: Integral a => a -> a ->a -> a -> [a] -> [(a,a)]
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> elgamal g v k p xs = elg g y rand p xs

> where rand = drop (length xs) (filter (cpm (p-1))
> (map (\n -> rem n p) (random k))
> cpm :: Integral a => a -> a -> Bool

> cpm a b = (gcd a b) ==

> elgtext :: Integral a => a -> a -> a -> a -> String -> [(a,a)]
> elgtext gy k p ss =

> elgamal g v k p (blocks(chop ss p))

> unaccum :: Integral a => a -> String

> unaccum n = unaccum' n ""

> unaccum' :: Integral a => a -> String -> String
> unaccum' 0 ys = ys

> unaccum' n ys = unaccum' g ((ascii r):ys)

> where (g,r) = quotRem n 128

> ascii :: Integral a => a -> Char

> ascii = chr.toInt

> undo :: Integral a=> [a] -> String

> undo = foldr (\x xs -> unaccum x ++ xs) []

** Decryption **

> decode' :: Integral a => [(a,a)] -> a -> a -> [a]

> decode' ys x p = foldr(\ (a,b) xs ->

> (rem (b*power(euc a p) x p) p):xs) [] ys
Format: decode' (coded pairs) (private) (prime)

> decode :: Integral a => [(a,a)] -> a -> a -> String

> decode ys x p = undo (decode' ys x p)
Format: decode (coded pairs) (private) (prime)

> isText :: Char -> Bool

> isText c

> | ord c < 32 = False
> | ord ¢ > 127 False
> | otherwise True

file :: String -> String -> (String -> String) -> IO()
file infn outfn func = do xs <- readFile infn
writeFile outfn (filter isText (func xs))
fileshow :: String -> (String -> String) -> IO ()
fileshow filename func = do xs <- readFile filename
putStr (filter isText (func xs))

vV V.V V VYV

elgSF :: Integral a => a -> a -> a -> a -> String -> String -> IO()
elgSF g v k p ss outfn = writeFile (outfn) (show(elgtext g yv k p ss))
elgFS :: Integral a => a -> a -> a -> a -> String -> IO()

elgFS g v k p infn = fileshow infn (show. (elgtext g v k p))

elgFF :: Integral a => a -> a -> a -> a -> String -> String -> IO()
elgFF g y k p infn outfn = file infn outfn (show. (elgtext g y k p))

V VVVVYV

\2

declist :: (Integral a, Read a) => a -> a -> String -> String
declist x p ss = decode (read ss) x p

\2

decodeSF :: Integral a => a -> a -> [(a,a)] -> String -> I0()

decodeSF x p ss outfn = writeFile outfn (decode ss x p)

decodeFS :: (Integral a, Read a) => a -> a -> String -> IO0O()

decodeFS x p infn = fileshow infn (declist x p)

decodeFF :: (Integral a, Read a) => a -> a -> String -> String -> IO()
decodeFF x p infn outfn = file infn outfn (declist x p)

vV V.V V VYV
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The variation of the Vigenere cipher and the cracking method discussed in Chapter 3
were based on the Oberon programs created in the first Procedural Programming
practical. As a comparison, the original Oberon programs are presented here:

crypt.m [used to encrypt a given file]

MODULE crypt;
IMPORT Args, Files, Out, Err, Strings, Bit;

CONST
MaxText = 2048; MaxKey = 64;
VAR
i, N, K: INTEGER; ch: CHAR;
text: ARRAY MaxText OF CHAR;
key, fname: ARRAY MaxKey OF CHAR;
in: Files.File;

BEG N
IF Args.argc < 2 THEN
Err.String("Usage: crypt key [file]"); Err.Ln;

HALT (2)
END;
Args.GetArg(l, key); K := Strings.Length(key);
IF Args.argc = 2 THEN in := Files.stdin
ELSE
Args.GetArg (2, fname);
in := Files.Open(fname, "r");
IF in = NIL THEN
Err.String("crypt: can't read "); Err.String(fname); Err.Ln;
HALT (1)
END
END;
N := 0;

WHILE (N < MaxText) & ~Files.Eof (in) DO
Files.ReadChar(in, text[N]);

N :=N + 1

END;

i:=0;
WHILE i<N DO

ch := key[i MOD K];
text[i]:= CHR(Bit.Xor (ORD (text[i]),ORD(ch)));
i:=1+1

END;

i = 0;

WHILE i < N DO
Out.Char (text[i]);
i =1+ 1

END;

Out.Ln;

END crypt.

crib.m [finds the key by using a crib]
MODULE crib;
IMPORT Args, Files, Out, Err, Strings, Bit;

CONST
MaxText = 2048; MaxKey = 64;

VAR
i, j, kX, 1, s, N, K: INTEGER;
ch: CHAR; found :BOOLEAN;
crib,text: ARRAY MaxText OF CHAR;
key, fname: ARRAY MaxKey OF CHAR;
in: Files.File;

BEGA N
IF Args.argc < 2 THEN
Err.String("Usage: crypt key [file]"); Err.Ln;
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HALT (2)
END;

Args.GetArg(l, crib); K

Comparison To Oberon

:= Strings.Length(crib);

IF Args.argc = 2 THEN in := Files.stdin
ELSE
Args.GetArg (2, fname);
in := Files.Open(fname, "r");
IF in = NIL THEN
Err.String("crypt: can't read "); Err.String(fname); Err.Ln;
HALT (1)
END
END;
N := 0;
WHILE (N < MaxText) & ~Files.Eof (in) DO
Files.ReadChar(in, text[N]);
N =N+ 1
END;
s:=0; j:=K;found := FALSE;
WHILE (s + K < N) DO
i:=0;
WHILE i < K DO
ch := crib[i];
key[i]:= CHR(Bit.Xor (ORD (text[i+s]),ORD(ch)));
i:=1i+1;
END;

l:= 0; found:=FALSE;

WHILE (1 < K)&(~found) DO

k:=0;1:=1+1;
WHILE (l<= K-2) &
k:=k+1;
END;
found := (1+k=K); j
END;
s:=s+1;

IF found & (j<K)THEN

(key[k]=key[1l+k]) DO

:=K-k;

1:=0; k:=((s-1) MOD 3j);

WHILE (1<j) DO
i:=((1-k) MOD 3J);
Out.Char (key[i]);
1:=1+1;

END;

Out.Ln;
END;
END;
END crib.

crackl.m [outputs potential key lengths]

MODULE crackl;
IMPORT Args, Files, Out,

CONST

Err;

MaxText = 2048; MaxKey = 64;

VAR
i, s, N: INTEGER;

count: ARRAY 31 OF INTEGER;
text: ARRAY MaxText OF CHAR;
fname: ARRAY MaxKey OF CHAR;

in: Files.File;

BEG N
IF Args.argc <= 1 THEN in := Files.stdin
ELSE
Args.GetArg(l, fname);
in := Files.Open(fname, "r");
IF in = NIL THEN
Err.String("crypt: can't read "); Err.String(fname);
HALT (1)
END
END;
N := 0;
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WHILE (N < MaxText) & ~Files.Eof (in) DO
Files.ReadChar(in, text[N]);

N =N+ 1

END;

s:=1;

WHILE s<=30 DO
count [s]:=0;
i:=0;

WHILE i+s<N DO
IF text[i]=text[s+i] THEN

count [s] :=count[s]+1;
END;
i:=1i+1;
END;
Out.Int(s,1);0ut.String(": ");Out.Int (c
s:i=s+l;

END;

END crackl.

crack2.m

MODULE crack2;

IMPORT Args, Files, Out, Err, Bit, Conv;

CONST
MaxText = 2048; MaxKey = 64;
VAR
i,s, N, K, ch: INTEGER;
text: ARRAY MaxText OF CHAR;
key, fname: ARRAY MaxKey OF CHAR;
in: Files.File;

BEG N
IF Args.argc < 2 THEN

Err.String("Usage: crypt key [file]l");
HALT (2)
END;

Args.GetArg(l, key); K := Conv.IntVal (key
IF Args.argc = 2 THEN in := Files.stdin
ELSE

Args.GetArg (2, fname);
in := Files.Open(fname, "r");
IF in = NIL THEN
Err.String("crypt: can't read "); Err
HALT (1)
END
END;
N:= 0;

WHILE (N < MaxText) & ~Files.Eof (in) DO
Files.ReadChar(in, text[N]);

N :=N + 1

END;

s:=0;
WHILE s + K < N DO
i:=0;
WHILE i+s < N DO
IF text[i]=text[i+s] THEN
ch:= Bit.Xor ((ORD(text[i])),32);
IF (ch > 31) & (ch < 129) THEN
Out.Int((i MOD K),1);Out.String("
END;
END;
i:=1i+1;
END;
s:=s+K;
END;

END crack2.
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ount[s],1);0ut.Ln;

[tries to find the key of a given length]

Err.Ln;

) i

.String(fname); Err.Ln;

") ;Out.Char (CHR(ch) ) ;Out.Ln;
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Finding primes

An alternative to the simple prime sieve outlined in Chapter 6 is given below:

> data Wheel = Wheel Int [Int] [Int]

> wheels = Wheel 1 [1] [] : zipWith3 nextSize wheels prime squares
> nextSize (Wheel s ms ns) p g = Wheel (s*p) ms' ns'

> where

> (xs,ns') = span (<=q) (foldr (turn 0) (roll (p-1)
> ms' = foldr (turn 0) xs ms

> roll 0 _ = []

> roll t o =

> foldr (turn o) (foldr (turn o) (roll (t-1) (o+s)
> turn o n rs = let n' = o+n in [n'| mod n' p >0] ++
> prime = spiral wheels prime squares

> spiral (Wheel s ms ns ws) ps gs = foldr (turn 0) (
> where roll o = foldr (turn o) (foldr (turn o) (roll
> turn o n rs = let n' = o+n in

> if n'==2 || n' < head gs then n':rs

> else dropWhile (<n') (spiral ws (tail ps)
> squares = [p*p | p <- prime]

Some tests:

Main> prime !! 99

541

(1898 reductions, 2395 cells)

Main> prime !! 999

7919

(416355 reductions, 596

This method uses less reduction steps and less cells than the versions in Chapter 6.

s) ns)

) ns) ms
rs

roll s) ns
(o+s)) ns)

(tail gs))

270 cells, 2 garbage collections)

Full details of how the sieve works is given in [Rcn].
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The file handling versions of the implementation required the use of some example
files. Here are the files which were used.

filel “The Affair of the Victory Ball” by Agatha Christie

Pure chance led my friend Hercule Poirot, formerly chief of the
Belgian force, to be connected with the Styles case. His success
brought him notoriety, and he decided to devote himself to the
solving of problems in crime. Having been wounded in the Somme and
invalided out of the Army, I finally took up my quarters with him in
London. Since I have a first-hand knowledge of most of his cases, it
has been suggested to me that I select some of the most interesting
and place them on record. In doing so, I feel that I cannot do better
than begin with that strange tangle which aroused such widespread
public interest at the time. I refer to the affair at the Victory
Bal | .

file2 “A Void” by Georges Perec (translated by Adair)

Incurably insomniac Anton Vowl turns on a light. With a loud and
languorous sigh Vowl sits up, stuffs a pillow at his back, draws his
quilt up around his chin, picks up his whodunit and idly scans a
paragraph or two; but, Jjudging its plot impossibly difficult to
follow in his condition, its vocabulary too whimsically multisyllabic
for comfort, throws it away in disgust.

file3 “Remembrance of the Daleks” by Ben Aaronovitch

The Doctor puts his hand on Ace's shoulder before they went into the
church. "Time to leave," he said. Ace looked into the Doctor's grey
eyes. "We did good didn't we?" "Perhaps," said the Doctor. "Time will
tell- it always does."

file4 A line that uses all 26 letters

the quick brown fox jumped over the lazy sleeping dog

S. Drape Functional Cryptography 73



