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Abstract

This paper introduces two related methods of generating a new cryptographic prim-
itive termed digest which has similarities to ε-balanced and almost universal hash func-
tions. Digest functions, however, typically have a very short output, e.g. 16-64 bits, and
hence they are not required to resist collision and inversion attacks. They also have the
potential to be very fast to compute relative to long-output hash functions. The first
construction uses Toeplitz matrix multiplication, which is similar to a Toeplitz based
universal hashing algorithm of Krawczyk, whose security requirements can be reduced to
the underlying ε-biased sequences of random variables. The second is based on integer
multiplications which have, perhaps surprisingly, a similar structure to Toeplitz matrix
multiplication. However, due to the complication of carry bits, a rigorous mathematical
proof of the second construction cannot be provided. We instead exploit the short output
of digest functions to carry out statistical analysis, including chi-square tests, quantile-
quantile plots and maximum median calculation, of digest collision and distribution test
results to argue for the security of the second construction.

1 Introduction

In this paper, we investigate the design, constructions and security of a new cryptographic
primitive termed (ε-balanced) digest function, which was recently introduced in [?]. Digest
functions have similarities to cryptographic hash and universal hash functions, the second
of which was extensively studied in the early nineties by many researchers [?, ?, ?, ?, ?].
The main difference between digest functions and nearly all other families of hash functions
is that digest functions typically have a very short output in the range between 16 and 64
bits. For this reason, it is not possible to generate digest functions which can resist collision
and inversion attacks in the same way as cryptographic hash functions. This feature however
opens the way for efficiently computed digest functions arising from both their short output
and the potential of parallel computation. We observe that parallelism is unfortunately not
available with many current cryptographic hash functions, such as SHA-I and MD5, whose
design strictly follows the sequential Merkle-Damg̊ard construction [?].1 The main goal of this

1There have been a number of newly proposed cryptographic hash functions, such as MD6 [?] and SAND-
storm [?] (both of which were entered into the hash competition [?] organised by NIST recently), which
make use of the hash-tree structure introduced by Merkle [?] to benefit from parallel computation. We note
that there are two weaknesses of a hash-tree construction: (1) the speed-up factor of parallel computation is
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paper is therefore to study efficient digest constructions which are provably secure regarding
their security properties, including distribution and some other imposed restrictions in a
digest function, e.g. the likelihood of digest collision with respect to distinct keys are taken
into consideration.

The specification of a short-output digest function arose from a new (and non-standard)
family of authentication protocols [?, ?, ?, ?] which can create secure communication from
human trust and human interactions to overcome the needs for passwords as in Bluetooth and
security certificates as in PKI. In this new authentication technology, to complete a protocol
run, devices’ human owners have to manually compare a short digest of the information they
want to authenticate. It is therefore desirable to design efficient and secure short-output
digest functions which can be implemented in small devices and lightweight cryptographic
applications. Another application of digest functions is a new family of digital signature
schemes where the use of a cryptographic hash function is replaced by digest to potentially
increase efficiency. A typical example of this new type of digital signature is Flexi-MAC [?]
whose single certificate can be checked to various degrees, depending on the perceived security
threat, the time and computing power available.

Although short-output digest functions can be computed by just truncating the first small
number of bits of a cryptographic or universal hash function, as discussed in Section ??, we
will point out that this strategy does not exploit the short output of digest and parallel
computation to increase computational efficiency. We subsequently prove that a well-studied
universal hashing algorithm based on Toeplitz matrix multiplication and ε-biased sequences
of random variables can generate digests with the properties we require in Definition ??.

The second main contribution of this paper is the discovery of a structural similarity
between Toeplitz matrix multiplication and the “school book” algorithm for integer long
multiplication. Even though these are not exactly the same due to the effect of carry bits in
integer multiplications, this work suggests another method using word multiplications which
can be computed efficiently on any processor. We note that carry bits in integer multiplication
make it not feasible to give a mathematical proof of digest properties, we will instead exploit
the short output of digest functions to facilitate our digest collision and distribution tests
with statistical analysis. This approach includes computing the p-values in chi-square tests,
quantile-quantile plots and the maximum median calculation of collision and distribution test
results on word multiplication based digest algorithm. This will suggests carry bits in integer
long multiplication do not introduce much bias into the digest computation regime relative
to the Toeplitz based method. To the best of our knowledge, this is the first time when
statistical approach has been used to analyse the security properties of hash, universal hash
and digest functions. Without carry bits our word multiplication based digest construction is
identical to the Toeplitz one, and indeed such a carry-less instruction for word multiplication
has been introduced into the next generation of Intel processor [?].

Both our digest constructions in this paper can benefit from parallel computation should
they be computed in multi-core microprocessors, such as a 48-core CPU recently announced
by Intel [?].

bounded above by the depth of the hash tree, i.e. logn where n is the length of input messages, relative to
the sequential Merkle-Damg̊ard construction; and (2) to the best of our knowledge, there might be security
weaknesses due to the variable depth of the tree arising from variable length input message, and thus this
structure has not been widely adopted to construct efficient hash functions for commercial purposes.
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2 Notation

Every operator used in this paper is bitwise, which is equivalent to working over the finite
field F2. Therefore, we will replace bitwise exclusive-OR and bitwise AND with addition (or
summation) and multiplication in F2, respectively. We note that addition is equivalent to
subtraction in F2, and so we will stick to the use of addition to simplify the notation. Also,
to avoid confusion, ‘×’ and ‘*’ are used to indicate finite field multiplication and respectively
integer multiplication.

In this paper, we only consider non-zero messages representable by M bits, and hence the
set of all messages is denoted X = {1...(2M − 1)}. K, M and b are the bitlengths of digest
or hash key, input message, and digest or hash output.

Definition 1 [?] An ε-balanced universal hash function is a set of 2K hash functions hk()
where k ∈ {0...(2K−1)} such that hk : X → Y ; hereX = {1...(2M−1)} and Y = {0...(2b−1)}.
Moreover, for every non-zero message m and every hash output y ∈ Y , we have:

Pr{k∈R}[digest(k,m) = y] ≤ ε

Extending the definition of an ε-balanced universal hash function, we define an ε-balanced
digest function as follows.2

Definition 2 [?] A ε-balanced digest function: digest : R×X → Y where R = {0...(2K −
1)}, X = {1...(2M − 1)} and Y = {0...(2b − 1)} are the set of all keys, input messages and
digest outputs, and moreover:

• for every m ∈ X and y ∈ Y , Pr{k∈R}[digest(k,m) = y] ≤ ε

• for every m,m′ ∈ X (m 6= m′) and any θ ∈ R: Pr{k∈R}[digest(k,m) = digest(k +
θ,m′)] ≤ ε

Note that any function satisfying Definition ?? also satisfies both Definition ?? and the
requirements of an ε-almost universal hash function defined in [?, ?].

Definition 3 [?, ?] Let S be a distribution of sequences of length l. Let (α, s) denote the
scalar (or inner) product modulo 2 of α ∈ {0, 1}l and s ∈ {0, 1}l.

• S is said to pass the linear test α ∈ {0, 1}l with bias ε if |Pr{s∈S}[(α, s) = 1]− 1/2| ≤ ε.

• S is said to be an ε-biased distribution if it passes all linear tests α 6= 0 with bias ε.

Definition 4 A Toeplitz or diagonal-constant matrix A is a (not necessary square) matrix
where each descending diagonal from left to right is constant, i.e. for all pairs of indexes (i, j):
Ai,j = Ai+1,j+1.

2In the second requirement of a digest function, we can replace +θ with ⊕θ since the bitwise exclusive-or
operator is equivalent to addition over the finite field F2.
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3 Background information

It would be a great mistake to compute digest(k,m) as some function f() of k and some
similar length digest′(m), i.e. digest′() is not collision-resistant or the lengths of digest′ and
digest are similar, which it might be tempting to do.

digest(k,m) = f(k, digest′(m))

This is because an intruder could search for a set of different input messages all digesting
to the same value digest′(m) irrespective of the value of k, i.e. any pair m and m′ of these
would violate the second requirement of a digest function. We therefore need to embed the
key k fundamentally into the calculation of digest(k,m): it cannot be an afterthought.

Although digest output is short, it is challenging to construct digest algorithms that have
both efficiency and provable security relative to the digest’s requirements. Thus the majority
of short-output digest constructions invented to date [?, ?, ?] make use of cryptographic hash
functions, as seen in the following examples.

Pasini and Vaudenay [?], Gehrmann et al.[?], and the Bluetooth white-paper [?] suggested
the following scheme:

digest(k,m) = truncb (hash(k ‖ m))

where truncb() function truncates to the leading b bits. We make two observations about
this.

1. The definition of a cryptographic hash function does not normally specify the distri-
bution of individual groups of bits, and so whether or not this is a good idea will very
much depend on the properties we require of the hash function and the properties we
want from the digest function. It follows that a specific analysis would be required for
any particular standard cryptographic hash function proposed.

2. Computing a longhash operating on long words as in the sequential Merkle-Damg̊ard
construction can be potentially expensive, i.e. neither does the Merkle-Damg̊ard struc-
ture permit parallelism nor exploit the short output of a digest function to increase
efficiency.

Taking a different approach, Gehrmann and Nyberg [?] proposed using error-correcting codes,
such as the extended Reed-Solomon codes, to construct the digest function. This has the
advantage of having a coherent mathematical structure. On the other hand, to have uncondi-
tional security, the algorithm limits the bitlength of the input message to some fixed number,
such as 128 or 256, which is the length of a dataword input by the algorithm. To digest
any significant amount of data, the algorithm first compresses the input message into that
number of bits by using a cryptographic hash which can be inefficient as discussed above.
This feature also makes the scheme be potentially vulnerable to attacks should the intruder
find (off line) a collision on the cryptographic hash, i.e. this is equivalent to finding a pair
of distinct messages which violate the second requirement of a digest function. The reason
for this weakness is because the input message is not entirely linked to the key in digest
computation, as discussed at the beginning of this section.

4 Toeplitz matrix product construction of a digest function

We now describe a universal hash function construction using Toeplitz matrixes whose binary
elements are drawn from ε-biased sequences of (pseudo)random bits. This construction was
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proved by Krawczyk in [?] to satisfy the requirements of an ε-balanced universal hash function.
We will then show the same algorithm can be used to generate a digest function with the
properties we require.

Suppose we want to compute a b-bit universal hash of a (non-zero) M -bit message m,
then the key k must be drawn from an ε-biased distribution R of length K = M + b − 1.
Using the key k, we can generate a Toeplitz matrix A(k) of M rows and b columns. Using
matrix product, we define:

hk(m) = m×A(k) (1)

The symbol ‘×’ represents the product of the vector m and the matrix A(k) in F2.

Theorem 1 [?] hk(m) defined in Equation (??) above satisfies the definition of an ε-
balanced universal hash function.

Readers who are interested in the proof of this theorem can find it in the paper of Krawczyk [?]
(Theorem 9, Lemma 10 and Theorem 5). The proof makes use of a known relation between
Discrete Fourier Transform of matrix multiplication and ε-biased distributions.

If we replace a universal hash function hk(m) with a digest function digestT (k,m), where
index T indicates a Toeplitz based digest construction, we have:

digestT (k,m) = m×A(k) (2)

Theorem 2 digestT (k,m) defined in Equation (??) above satisfies the definition of an ε-
balanced digest function.

Proof The first requirement of an ε-balanced digest function is satisfied thanks to Theo-
rem ??.

An observation on the digest construction using Toeplitz matrix multiplication is that
this construction is linear in terms of both input message m and key k. The latter is true
because for any k and θ of length K = M +b−1 bits, we always have A(k+θ) = A(k)+A(θ)
and hence digestT (k + θ,m) = digestT (k,m) + digestT (θ,m).

For any pair of distinct messages (m,m′) and any θ of length K bit, a digest collision
digestT (k,m) = digestT (k + θ,m′) is equivalent to:

digestT (k,m) = digestT (k + θ,m′)
m×A(k) = m′ ×A(k + θ)
m×A(k) = m′ ×A(k) +m′ ×A(θ)

(m−m′)×A(k) = m′ ×A(θ)
digestT (k,m−m′) = m′ ×A(θ)

Since we have fixed m, m′ and θ, let us denote m′′ = m −m′ and α = m′ × A(θ). And the
second requirement of a digest function is satisfied because:

Pr{k∈R}[digestT (k,m) = digestT (k + θ,m′)] = Pr{k∈R}[digestT (k,m′′) = α] ≤ ε

The inequality in the above equation is true thanks to the first requirement of a digest
function (or Theorem ??).

5



In the above Toeplitz based digest computation, the key k is assumed to have a bitlength of
K = M + b− 1 which can be long if the input message is large. In practice, however, a key
is normally of the size of a typical cryptographic hash function, say r = 160 or 256 bits, and
hence we need to derive the required number K of bits pseudorandomly from the initial r
bits.

One possible way is to use a Linear Feedback Shift Register (LFSR) as suggested by Alon
et al. [?] (Proposition 1 of Section 3). In this LFSR construction, the first r/2 bits of key
k will be used to select the linear structure of the underlying r/2-bit LFSR used, i.e. this is
equivalent to selecting an irreducible polynomial of degree r/2. This LFSR is then seeded by
the other r/2 bits of key k. This construction has been shown by Alon et al. [?] to produce
an ε-biased distribution on length K = M + b − 1 with ε = K

2r/2
, where each sequence is

generated out of r initial bits.
There are a number of other well-studied constructions of ε-biased sequences due to Alon

et al. [?], including Legendre symbol construction and scalar product construction, both of
which can be found in their paper.

4.1 Efficiency of Toeplitz matrix based digest functions

Given an ε-biased sequence of length K = M + b − 1 bits,3 it is straightforward to de-
sign a customised hardware implementation of digestT (k,m), which can also benefit from
parallelism.

We first look at the complexity of a sequential implementation of this algorithm. The
cost of multiplying a M -bit vector by a M × b matrix is 2Mb bit operations, which are either
AND or XOR in this case. On a w-bit microprocessor, we can expect this to take at least
2Mb/w bitwise word operations. This figure clearly shows that the cost of computing digest
function is at least proportional to its output length. To simplify the calculation, we assume
that w equals b, and so this is equivalent to 2M word operations. Since the latency of most
logical instructions (AND, OR, NOT, and XOR) of modern microprocessors is 1 clock cycle,
executing 2M bitwise word operations takes 2M arithmetic clock cycles.

As regards parallel computation, we observe that a matrix multiplication permits paral-
lelism in two distinct ways. First, each digest output bit can be computed on its own, and
hence the complexity can be improved by a factor of b. Secondly, a M × b matrix multipli-
cation can be split into t = M/w parallel w × b matrices multiplications with their resulting
b-bit vectors being XORed to produce the digest value. The second method is thus t = M/w
times more efficient than the sequential computation.

5 Comparing Toeplitz matrix and integer long multiplication

In this section, we will show a structural similarity between the “school book” algorithm for
integer long multiplication and Toeplitz matrix multiplication. This similarity, in the next
section, will lead to a more efficient algorithm for digest function.

Suppose as in the Toeplitz-based method of Section ??, key k is drawn from an ε-biased
distribution R of length K = M + b − 1. Consider a “school book” algorithm for integer
long multiplication of two numbers k and m represented in binary, i.e. k = (k1 . . . kK) and

3The K-bit ε-biased sequence can be derived (off-line) pseudorandomly from a shorter key and stored in
both devices for subsequent digest computation.
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m = (m1 . . .mM ). The following is, however, only a part of the table that is used to carry
out the integer long multiplication.

k1 k2 · · · kb−1 kb · · · kK
m1 · · · mM

mM × k1 mM × k2 · · · mM × kb−1 mM × kb · · · · · ·
· · · mM−1 × k2 mM−1 × k3 · · · mM−1 × kb mM−1 × kb+1 · · ·
· · · mM−2 × k3 mM−2 × k4 · · · mM−2 × kb+1 mM−2 × kb+2 · · ·
...

...
...

...
...

...
...

· · · m1 × kM m1 × kM+1 · · · m1 × kK−1 m1 × kK
· · · d1 d2 · · · db−1 db · · · · · ·

We are only interested in the overlap of the expanded multiplication, where each bit of
the resulting product (d1 . . . db) is influenced directly by every bit of the message m. In other
words, each carry bit ci which is instrumental in the computation of di is considered to have
an indirect impact.

We note that the overlapping part of the expanded multiplication can be interpreted as
a matrix of b columns and M rows. Moreover, the bits kis in each row of this matrix are
shifted by 1 position to the right hand side as we move from one to the upper row. This
means that if we reverse the order of these rows in the expanded multiplication, we will have
the property of a Toeplitz matrix. As a result, the b-bit digest value is equivalent to:

digestM (k,m) = m×A(k) + (c1 . . . cb) (3)

Note that the index “M” in digestM (k,m) indicates an integer long multiplication based
digest construction. Here A(k) is a Toeplitz matrix of b columns and M rows, which is
constructed by the same K = M + b − 1 bits of (or derived from) key k, and (c1 . . . cb) is a
bit vector whose elements are carry bits which are instrumental in the computation of the
corresponding output or digest bits.

The above description demonstrates a structural similarity between integer long multipli-
cation and Toeplitz matrix multiplication, however they are not equivalent due to the impact
of carry bits which are accumulated from db all the way to d1 in an integer long multiplication.
Nevertheless, it opens the way for devising new digest constructions using word multiplica-
tions which can be computed fast on any microprocessor. This will be addressed in the next
section.

6 Word multiplication based digest functions

Although the Toeplitz matrix based digest function can be computed efficiently on cus-
tomised hardware, many applications of digest functions will need to carry out this opera-
tion in software on standard and sometimes basic microprocessors. In this section, we will
show that another digest function digestWM (k,m) with strong structural similarities to both
digestT (k,m) and digestM (k,m) can be calculated using standard integer multiplication for
half or whole word blocks that are implemented efficiently in just about all microprocessors.
This method is inspired by the relation between the “school book” algorithm for integer long
multiplication and Toeplitz matrix multiplication, as demonstrated in Section ??.
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r1 r4r3r2

m1m3 m2

m1 * r1 m1 * r2

m2 * r2 m2 * r3

m3 * r3 m3 * r4

d

PRNG(k) =   r1 || r2 || r3 || r4
m           = m3 || m2 || m1

digest(k,m) = Low(m1 * r1) + Up (m1 * r2) +
     Low(m2 * r2) + Up (m2 * r3) +

                       Low(m3 * r3) + Up (m3 * r4)

*

Figure 1: Word multiplication model digestWM (k,m). Each parallelogram equals the expan-
sion of a word multiplication between a b-bit key block and a b-bit message block.

Let us divide message m into b-bit blocks [m1, . . . ,mt=M
b

]. We generate (t + 1) pseudo-

random b-bit blocks ri derived from key k.4 In the following equation, the index “WM” of
digestWM (k,m) indicates a b-bit word multiplication based digest function.

digestWM (k,m) =
t∑
i=1

[Low(mi ∗ ri) + Up(mi ∗ ri+1)] (4)

Here, * refers to a word multiplication of two b-bit blocks which produces a 2b-bit output.
The output of each word multiplication can be partitioned into the lower and upper (b-bit)
halves by applying Low() and Up() functions respectively. Both ‘+’ and

∑
used in Equation

(??) above are additions in F2.
To see why digestWM (k,m) resembles digestM (k,m), we give a simple example when the

bitlength of the input message is M = tb = 3b in Figure ??.
As was pointed out in Section ??, there may be some asymmetry due to carry bits in

integer or word multiplications. However, the effect of carry bits in this construction is
reduced significantly relative to an integer long multiplication of digestM (k,m) as described
in Section ??, where carry bits are accumulated from the least to the most significant bits of
the product. In contrast, by partitioning an integer long multiplication into multiple (b-bit)
word multiplications, carry bits are only accumulated locally, i.e. up to 2b− 1 bits to the left
hand side of each position as opposed to M(M + b− 1) bits in an integer long multiplication
of Section ??.

4Any pseudorandom number generator (PRNG) which produces ε-biased sequences can be used here. A
possible candidate is a LFSR whose linear structure and initial seed are derived from key k as described in
Section ??.

8



The above construction produces a b-bit digest, in practice, we might want to construct
longer digests whose output is a multiple of b, i.e. xb-bit digest function. Using the same
idea, it is not hard to generalise the above algorithm to multiple-word digest construction as
follows.

We still divide m into b-bit blocks [m1, . . . ,mt=M
b

]. However, we will need to generate
t + x pseudorandom b-bit blocks ri derived from key k to compute a xb-bit digest. For all
j ∈ {1...x}, we then define:

dj =
t∑
i=1

[Low(mi ∗ ri+j−1) + Up(mi ∗ ri+j)]

And
digestWM (k,m) = (d1 · · · dx)

Note that the negative and biased impact of carry bits in integer multiplications can be elimi-
nated entirely if we make use of the carry-less multiplication instruction, termed PCLMULQDQ
in the next generation of Intel processors [?], that computes the carry-less multiplication of
two 64-bit operands without the generation or propagation of carry bits.5 This will make
digestWM (k,m) identical to digestT (k,m) as defined in Equation (??) of Section ??.

6.1 Efficiency of word multiplication based digest functions

Given an ε-biased sequence of length K = M + b − 1, the computation of a (b = 64)-bit
digestWM (k,m) as defined in Equation (??) consists of 2t = 2M/b word multiplications and
2t = 2M/b bitwise XOR operations.6 In the worst case, each word multiplication takes w = b
clock cycles to complete, but it is always significantly faster in many modern microprocessors
which have RISC pipeline instructions. For example, AMD (K8 and K10) and Intel CPUs [?]
can dispatch a 64 × 64 = 128-bit MUL once every 2-4 cycles with a latency of 4-7 cycles.
To simplify the calculation, we only consider non-pipeline execution, and thus the number
of arithmetic clock cycles of computing a (b=64)-bit digestWM (k,m) in an AMD CPU is
2M
64 4 + 2M

64 = 5M/32 compared to 2M arithmetic clock cycles of computing digestT (k,m) of
Section ??.

Another observation we want to make is that the computation of digestT (k,m) is done via
many (2M) logical instructions (AND, OR and XOR) as opposed to a significantly smaller
number of MUL and logical instructions in digestWM (k,m). As a consequence, the number
of control clock cycles (e.g. loop indexing, fetching and writing) involved in digestWM (k,m)
is potentially reduced by a factor of 2M

2M/b+2M/b = b/2 relative to digestT (k,m).
The word multiplication based method also permits a high level of parallelism in multi-

core processors [?] thanks to its modular structure, i.e. the digest computation can be easily
split into many groups of equal or different sizes of independent word multiplications.

5The primary purpose of this new instruction is for computing the Galois Hash, which is the underlying
computation of the Galois Counter Mode (GCM) and AES-GCM.

6There is no cost of applying Low() and Up() functions to the product of 2 word operands because in
a 64/32-bit processor the multiplication result of two 64/32-bit words is typically stored in two 64/32-bit
registers which are the upper and lower halves of the product.
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7 Statistical tests of word and Toeplitz matrix multiplications

Since if digest keys are derived from a standard pseudorandom number generator (PRNG),
which produces ε-biased sequences of pseudorandom bits, clearly we should expect good
statistical results on Toeplitz based digest construction digestT (k,m) thanks to its mathe-
matical structure (Theorem ??).7 In this section, we concentrate on verifying the quality
of word multiplication based digest function digestWM (k,m) with respect to its distribution
and collision properties.

In our digest collision tests, we consider N pairs of distinct messages in combination with
a large set K of keys. For each ith pair of messages (mi,m

′
i), xi denotes the number of

distinct keys from set K of all keys which result in digest collisions. What we want to verify
is the following null hypothesis H0:

H0: The observed numbers of collision keys of all N trials {x1, . . . , xN} should fall into a
binomial distribution: xi ∼ Binom(‖K‖, ε), where ε is the pairwise-collision probability
of a digest function and ‖K‖ is the cardinality of set K.

The motivation behind this null hypothesis comes from the fact that in an ideal digest function
the chance ε that a pair of distinct messages digesting to the same value under key k1 is
the same as and independent from under another randomly chosen (different) key k2. To
check the accuracy of this hypothesis, we first carry out the chi-square test to compute the
corresponding p-value [?]:

p-value = Pr(X 2
V > Observed X2)

Secondly we compare the distribution of {x1 . . . xN} against an ideal binomial distribution
Binom(‖K‖, ε) by plotting their quantiles against each other. This is called the Quantile-
Quantile or Q-Q plot [?]. If the two distributions being compared are similar, then the points
in the Q-Q plot will approximately lie on the line y = x, which is also drawn in each Q-Q
plot to illustrate any difference between the two.

To calculate the collision probability of a digest construction, we will look at the maximum
x′ of the set {x1 · · ·xN}. And suppose that the null hypothesis H0 is correct then the value
of x′ should be very near to the maximum median x at which all N trials from the binomial
distribution Binom(‖K‖, ε) are 50% likely to be less than x. This means that

(Pr{xi ≤ x})N =

(
x∑
t=0

(
‖K‖
t

)
εt(1− ε)‖K‖−t

)N
≈
(

1
σ
√

2π

∫ x

−∞
ε−

(t−µ)2

2σ2 dt

)N
= 1/2

Here Pr{xi ≤ x} is the probability that the ith trial (the number of collision keys for the
ith pair of messages) is smaller than x, and µ = ‖K‖ε and σ2 = ‖K‖ε(1 − ε). Since all N
trials are themselves independent, we need to raise Pr{xi ≤ x} to the power of N . The
approximation between the cumulative binomial distribution function and the cumulative
normal distribution function is due to the DeMoive-Laplace limit theorem [?]. The point x,
which is used to check the accuracy of x′ (the observed maximum number of collision keys
across N pairs of messages), can then be found by using tabulations of the probability mass
functions of the normal distribution [?]. For example, when N = 216, ε = 2−10 and ‖K‖ =

7Statistical test results of Toeplitz based digest functions can be found in additional supporting information
section at the end of this paper.
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102400, 1024000 and 10240000, then the expected values for observed x′s are respectively 142,
1134 and 10424, as given in Tables ??, ??, ?? and ??.

Regarding a digest distribution test, the main difference between this and collision one
is that we will fix N distinct pairs of message and digest output, and then for each ith pair
(mi, di) we denote yi the number of keys from setK satisfying the equation digestWM (k,mi) =
di. Since for any pair (mi, di), the probability that key k1 satisfying digest(k1,mi) = di is the
same as and independent from another randomly chosen key k2, the set {y1 . . . yN} should
also fall into a binomial distribution, i.e. yi ∼ Binom(‖K‖, ε). As a result, the same methods
of analysing collision tests (chi-square test, Q-Q plots and max median) described above
apply to distribution tests.

In our tests, we generate 32-bit digest functions, and so it is sufficient to consider 32-bit
input messages. The resulting length for digest keys that are pseudorandomly generated in
our test is therefore 64 bits. Since digest keys are usually not influenced by an attacker at the
point when they are invented in many applications of digest functions [?, ?, ?, ?, ?], we use
the Mersenne Twister pseudorandom number generator [?] to derive large sets K of 64-bit
keys.

A problem in carrying out collision (and distribution) tests is that it is very expensive
when we want to acquire meaningful and reliable results about collision (and distribution)
on the whole of a 32-bit digest output.8 For this reason, we will only consider collisions on
groups of 10 adjacent bits of a digest output, which perhaps unexpectedly gives us evidence
on any difference in distribution between these group of bits potentially caused by the impact
of carry bits in integer multiplication. This also makes the expected probability of a pairwise
10-bit digest collision be ε = 2−10 in all of our tests. In particular, we will look at the following
three groups of bits: 10LSB, 10MIB and 10MSB which denote the 10 least, the 10 middle
and respectively the 10 most significant bits of a 32-bit digest output of digestWM (k,m).

As opposed to digest keys, input messages are public and can be under the control of an
attacker, we therefore consider the following four types of input messages:

• Series 1: Pseudorandom messages derived from the Mersenne Twister [?];

• Series 2: Sequential (or cluster) messages where the initial message or pair of messages
is derived from the Mersenne Twister;

• Series 3: Sparse and cluster messages where the initial pair of messages in collision tests
is (1,28 + 1); and

• Series 4: Dense and cluster messages where the initial pair of messages in collision tests
is (232 − 1,232 − 257).

7.1 Analysis of statistical test results

We have implemented our tests relative to three different numbers of keys, i.e. capitals A, B
and C denote 102400, 1024000 and 10240000 which are the cardinalities of set K. However,
due to lack of space, we will only give p-values of chi-square tests and their Q-Q plots for the

8For example, to have around 1024 = 210 32-bit digest collisions for each pair of messages, we need to
consider or generate pseudorandomly 232 × 210 = 242 distinct keys. Since there are 216 pairs of messages in
our tests, the number of digest computations is 2 × 216 × 242 = 259 or 259 × 211 = 270 bit operations, i.e.
each 32-bit digest computation of a 64-bit key and 32-bit messages requires two 32-bit word multiplication
adding up to 2× 25 × 25 = 211 bit operations. This therefore goes beyond the computation capability of our
computers, and it will be much more than this for longer digest functions and longer messages.
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case of 10240000 keys as presented in Tables ??, ??, ??, ??, ?? and ??. We note that to ensure
uniformity in our computation of p-values in chi-square tests for collision and distribution,
we always use the same set of bins (or intervals) to count the observed occurrences in each
interval.9

Since a large number of tables reporting the statistical results of our collision and distribu-
tion tests considered here do not always make it easy to see their purposes and importance,
we summarise the contents of all of these tables in the following figure. Another digest
construction termed digestXWM (k,m) will be described at the end of this section.

Table Digest Digest ‖K‖ N Tests
method property

?? digestWM () distribution C 218 Chi-square and Q-Q plot
?? digestWM () distribution A,B,C 218 mean, max (no of keys) and variance
?? digestWM () collision C 216 Chi-square and Q-Q plot
?? digestWM () collision A,B,C 216 mean, max (no of keys) and variance
?? digestXWM () collision C 216 Chi-square and Q-Q plot
?? digestXWM () collision A,B,C 216 mean, max (no of keys) and variance
?? digestXWM () distribution C 218 Chi-square and Q-Q plot
?? digestXWM () distribution A,B,C 218 mean, max (no of keys) and variance
?? digestT () distribution C 217 Chi-square and Q-Q plot
?? digestT () distribution A,B,C 217 mean, max (no of keys) and variance
?? digestT () collision C 216 Chi-square and Q-Q plot
?? digestT () collision A,B,C 216 mean, max (no of keys) and variance

It is clear from Tables ?? that the distribution property of digestWM (k,m) approaches
optimality (i.e. as in an ideal binomial distribution) because of the right range of the observed
p-values and nearly all the points in the Q-Q plots approximately lie on the line y = x in
Series 1-4. This observation is strengthened by results reported in Table ?? which indicates
that the ratio between max and mean numbers of keys converges to 1 as the cardinality of
set K increases. Please note that to exploit the 10-bit digest output and to discover if any
correlation exits among all distinct digest values with respect to the same message, in our
distribution tests we always pair each message with each of every possible digest output from
0 to 1023 = 210 − 1, i.e. in Table ??, N = 218 pairs are made up from 28 distinct messages
and 210 digest values. As a result, the mean values of numbers of keys in all distribution
tests equal ‖K‖ε exactly as seen in Tables ??, ?? and ??. What we are interested in are the
distribution properties of {y1 . . . yN} represented by p-value, Q-Q plot, max and variance.10

As regards collision property, Table ?? suggests when input messages are pseudorandomly
generated (Series 1-2), the numbers of collision keys in digestWM (k,m) fall into a binomial
distribution (i.e. the null hypothesis H0 is accurate), because both p-values are in the right
range and nearly all points in the Q-Q plots lie approximately on the line y = x. Moreover,
the maximum number of observed collision keys across all N pair of distinct messages, their

9The sets {x1, . . . , xN} and {y1, . . . , yN} are counted into the following 16 intervals: [0,9650), [9650,9700),
[9700,9750), [9750,9800), [9800,9850), [9850,9900), [9900,9950), [9950,10000), [10000,10050),[10050,10100),
[10100,10150), [10150,10200), [10200,10250), [10250,10300), [10300,10350), [10350,+∞), and therefore the
degree of freedom in all chi-square tests is 15. Here 10000 = 10240000 ∗ 2−10 = Nε is the expected value of
mean of number of keys across N trials in our chi-square tests.

10When each message is not paired up with each of every possible digest output, it is highly unlikely that
the observed value of mean equals ‖K‖ε exactly. This has been tested and yielded similar statistical results
as the above case.
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mean and variance values (Series 1-2 of Table ??) are all near to the expected values in an
ideal scenarios. As in distribution tests, the ratio between the maximum number of observed
collision keys and Mean converges to 1 with each additional order of magnitude in the size
of the set K, i.e. 10-time increase in the number of keys.

We also obtain similar results regarding 10MSB, 10 MIB and 10MSB in both distribution
and collision tests of digestWM (k,m) when messages are pseudorandomly generated as seen
in Series 1-2 of Tables ??-??, and Series 1-4 of Table ??-??. This suggests that the digest
output bits are equivalent in their quality, and thus carry bits in integer multiplication does
not introduce much bias into the digest computation regime.

However, when it comes to either sparse or dense (and cluster) messages as seen in Series
3-4 of Table ??, we detect unsatisfactory behaviours. For example, there are many points in
Q-Q plots moving far away (both above and below) from the line y = x, and their p-values
are extremely small compared to Series 1-2. To confirm the negative impacts of dense and
sparse messages, we look at the ratio between Max and Mean numbers of collision keys in
Series 3-4 of Table ??, and realise that it is around 2 and does not seem to improve even
when we increase the number of keys. We therefore conclude that the null hypothesis H0

stated above is not correct in this case.
To fix this weakness, we need to destroy known patterns within input messages. In other

words, we want to randomise input messages in an unpredictable, but also deterministic, way
prior to them being processed by our digest schemes. One possible and efficient way is to
exclusive-or the message with the output of some function f() applying to the key k, resulting
in the following improved digest construction:

digestXWM (k,m) = digestWM (k,m⊕ f(k))

Since k is random and fresh in each protocol session, and so is the modified version of m.
In particular, when we try f(k) = k1 ⊕ k2, where k1 and k2 are the two (32-bit) halves of
key k, then we seem to be able to get around the negative impact caused by very dense or
sparse messages (except a bias in the 10MIB relative to 10MSB and 10LSB of a 32-bit digest
output) as reported in Series 3-4 of Tables ??-??. Devising good ways to randomise input
messages is therefore a subject for future research.

Testing results regarding distribution and collision properties of both digestT (k,m) and
digestXWM (k,m) can be found in the additional supporting information at the end of this
paper.

8 Conclusions and future research for short-output functions

There are two main contributions about a new short-output digest function presented in this
paper. First, we prove that Toeplitz matrix multiplication coupled with ε-biased sequences
of (pseudo)random variables can be used to generate digest functions with the properties
we require. Secondly, a structural similarity between Toeplitz matrix and the “school book”
algorithm for integer long multiplications exists as pointed out in Section ??. This similarity
leads us to introduce more efficient digest computation based on word multiplications which
can be calculated fast in any processors. Although there can be bias due to carry bits in
an integer multiplication, we have conducted statistical and collision tests to show that no
significant difference seems to exist between our two digest constructions.

It is clear that both of our digest constructions (digestT (k,m) and digestWM (k,m))
permit parallel computation in multi-core processors to increase efficiency. This is however
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only possible if the key k is either really long, i.e. the same order as message bitlength
K = M + b − 1, or derived (off-line) from a short number of bits in advance. We note that
there is a theoretical bound on the digest (or universal hash) key length which says that the
message length can grow exponentially with the key length: K ≥ log(M/b) [?]. This suggests
that other digest constructions which require shorter key length might exit.
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10LSB 10MIB 10MSB
Pseudorandom 32-bit messages.

Series 1C p-value = 0.2316 p-value = 0.1379 p-value = 0.1986

Cluster 32-bit messages: the initial message is derived pseudorandomly.
Series 2C p-value = 0.5744 p-value = 0.958 p-value = 0.4005

Sparse and Cluster 32-bit messages: the initial message is 1.
Series 3C p-value = 0.2192 p-value = 0.1688 p-value = 0.2438

Dense and Cluster 32-bit messages: the initial message is 232-1.
Series 4C p-value = 0.5379 p-value = 0.905 p-value = 0.6854

Table 1: Chi-square and Q-Q plots of distribution test results of 32-bit digestWM (k,m):
N = 218 pairs of message and digest output (m, d) over ‖K‖ = 10240000 keys. In each Q-Q
plot, the vertical (Keys) and horizontal (Binom) axes denote quantiles on observed keys and
respectively binomial distribution.
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Test No of Map Expected Mean & Max Observed Observed Observed
Series keys range numbers of keys, Mean Max Variance

‖K‖ and Variance µ′ y′ σ′2

µ = ‖K‖ε ΣN
i=1yi/N

σ2 = ‖K‖ε(1− ε) max of ΣN
i=1

(yi−µ′)2
N∫ y

−∞ ε
− (t−µ)2

2σ2 dt = 2−1/N {y1 . . . yN}
Pseudorandom 32-bit messages.

1A 102400
10LSB

100 - 145 - 99.90
100.00 148 100.45

10MIB 100.00 149 99.86
10MSB 100.00 148 99.80

1B 1024000
10LSB

1000 - 1144 - 999.0
1000.00 1139 1001.43

10MIB 1000.00 1149 998.39
10MSB 1000.00 1146 1002.97

1C 10240000
10LSB

10000 - 10445 - 9990
10000.00 10442 10049.08

10MIB 10000.00 10481 9941.39
10MSB 10000.00 10401 10027.96

Cluster 32-bit messages: the initial message is derived pseudorandomly.

2A 102400
10LSB

100 - 145 - 99.90
100.00 148 99.63

10MIB 100.00 149 99.94
10MSB 100.00 152 99.99

2B 1024000
10LSB

1000 - 1144 - 999.0
1000.00 1143 998.92

10MIB 1000.00 1141 1002.83
10MSB 1000.00 1149 1001.46

2C 10240000
10LSB

10000 - 10445 - 9990
10000.00 10437 10036.47

10MIB 10000.00 10449 9999.81
10MSB 10000.00 10419 9944.26

Sparse and Cluster 32-bit messages: the initial message is 1.

3A 102400
10LSB

100 - 145 - 99.90
100.00 155 99.38

10MIB 100.00 149 99.10
10MSB 100.00 150 99.90

3B 1024000
10LSB

1000 - 1144 - 999.0
1000.00 1147 996.47

10MIB 1000.00 1142 991.83
10MSB 1000.00 1139 987.38

3C 10240000
10LSB

10000 - 10445 - 9990
10000.00 10490 10022.99

10MIB 10000.00 10443 9914.02
10MSB 10000.00 10430 10063.45

Dense and Cluster 32-bit messages: the initial message is 232 − 1.

4A 102400
10LSB

100 - 145 - 99.90
100.00 155 99.54

10MIB 100.00 148 100.31
10MSB 100.00 152 100.08

4B 1024000
10LSB

1000 - 1144 - 999.0
1000.00 1146 1002.80

10MIB 1000.00 1137 1001.23
10MSB 1000.00 1143 998.89

4C 10240000
10LSB

10000 - 10445 - 9990
10000.00 10486 9998.82

10MIB 10000.00 10477 9986.94
10MSB 10000.00 10473 10032.88

Table 2: Comparing the mean, max (no of keys) and variance of distribution test results
of 32-bit digestWM (k,m) against their expected values in an ideal binomial distribution:
N = 218 distinct pairs of message and digest output (m, d). The set {y1 . . . yN} denotes the
number of keys observed and counted for all N pairs (m, d).

16



10LSB 10MIB 10MSB
Pseudorandom 32-bit messages.

Series 1C p-value = 0.6868 p-value = 0.4816 p-value = 0.4816

Cluster 32-bit messages: the initial pair of messages is derived pseudorandomly.
Series 2C p-value = 0.6366 p-value = 0.5683 p-value = 0.3670

Sparse and Cluster 32-bit messages: the initial pair of messages is (1,28 + 1).
Series 3C p-value = 2.2e-16 p-value = 2.2e-16 p-value = 2.2e-16

Dense and Cluster 32-bit messages: the initial pair of messages is (232 − 1, 232 − 257).
Series 4C p-value = 2.2e-16 p-value = 2.2e-16 p-value = 2.2e-16

Table 3: Chi-square and Q-Q plots of collision test results of 32-bit digestWM (k,m): N = 216

pairs of 32-bit messages over ‖K‖ = 10240000 keys. In each Q-Q plot, the vertical (Collision)
and horizontal (Binom) axes denote quantiles on observed collision keys and respectively
binomial distribution.
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Test No of Map Expected Mean & Max Observed Observed Observed
Series keys range numbers of collision Mean Max Variance

‖K‖ keys, and Variance µ′ x′ σ′2

µ = ‖K‖ε ΣN
i=1xi/N

σ2 = ‖K‖ε(1− ε) max of ΣN
i=1

(xi−µ′)2
N∫ x

−∞ ε
− (t−µ)2

2σ2 dt = 2−1/N {x1 . . . xN}
Pseudorandom 32-bit messages.

1A 102400
10LSB

100 - 142 - 99.90
100.10 156 99.5

10MIB 99.61 162 98.1
10MSB 99.99 140 99.8

1B 1024000
10LSB

1000 - 1134 - 999.0
999.91 1153 993.9

10MIB 999.98 1128 994.3
10MSB 999.97 1134 1000.5

1C 10240000
10LSB

10000 - 10424 - 9990
10000.73 10412 10039.8

10MIB 10000.36 10433 10010.3
10MSB 9999.99 10404 10102.2

Cluster 32-bit messages: the initial pair of messages is derived pseudorandomly.

2A 102400
10LSB

100 - 142 - 99.90
100.05 153 99.0

10MIB 99.97 143 100.4
10MSB 100.04 145 99.1

2B 1024000
10LSB

1000 - 1134 - 999.0
1000.07 1135 1004.7

10MIB 1000.03 1133 1000.6
10MSB 999.68 1146 1004.4

2C 10240000
10LSB

10000 - 10424 - 9990
9999.74 10406 10037.5

10MIB 10000.10 10431 10026.4
10MSB 10000.41 10415 9998.5

Sparse and Cluster 32-bit messages: the initial pair of messages is (1,28 + 1).

3A 102400
10LSB

100 - 142 - 99.90
100.32 214 114.2

10MIB 100.02 195 101.8
10MSB 100.12 224 99.99

3B 1024000
10LSB

1000 - 1134 - 999.0
1002.80 2059 2434.8

10MIB 1000.27 1976 1355.1
10MSB 1000.01 1998 1061.6

3C 10240000
10LSB

10000 - 10424 - 9990
10027.32 20123 155437.4

10MIB 10003.16 19348 44738.7
10MSB 10005.45 20047 17346.7

Dense and Cluster 32-bit messages: the initial pair of messages is (232 − 1, 232 − 257).

4A 102400
10LSB

100 - 142 - 99.90
100.06 202 99.8

10MIB 100.02 163 100.3
10MSB 100.18 224 100.2

4B 1024000
10LSB

1000 - 1134 - 999.0
1000.29 2059 1069.7

10MIB 1000.45 1692 1077.6
10MSB 999.97 2003 1062.7

4C 10240000
10LSB

10000 - 10424 - 9990
10003.03 19905 17230.5

10MIB 10003.72 17478 19184.4
10MSB 10005.41 20090 17413.0

Table 4: Comparing the mean, max (no of keys) and variance of collision test results of 32-
bit digestWM (k,m) against their expected values in an ideal binomial distribution: N = 216

pairs of 32-bit messages. The set {x1 . . . xN} denotes the number of collision keys observed
and counted for all N trials.
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A Additional supporting information about statistical test re-
sults of Toeplitz based and improved word multiplication
based digest functions

Please see Tables ??-?? for testing results of digestT (k,m), and Tables ??-?? for testing
results of digestXWM (k,m).
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10LSB 10MIB 10MSB
Pseudorandom 32-bit messages.

Series 1C p-value = 0.1139 p-value = 0.9219 p-value = 0.090

Cluster 32-bit messages: the initial pair of messages is derived pseudorandomly.
Series 2C p-value = 0.9015 p-value = 0.2727 p-value = 0.5111

Sparse and Cluster 32-bit messages: the initial pair of messages is (1,28 + 1).
Series 3C p-value = 0.0730 p-value = 4.155e-10 p-value = 0.4952

Dense and Cluster 32-bit messages: the initial pair of messages is (232 − 1, 232 − 257).
Series 4C p-value = 0.6578 p-value = 6.616e-12 p-value = 0.4497

Table 5: Chi-square and Q-Q plots of collision test results of 32-bit digestXWM (k,m) (input
messages are XORed with two 32-bit halves of keys prior to multiplication): N = 216 pairs of
32-bit messages over ‖K‖ = 10240000 distint keys. In each Q-Q plot, the vertical (Collision)
and horizontal (Binom) axes denote quantiles on observed collision keys and respectively
binomial distribution.
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Test No of Map Expected Mean & Max Observed Observed Observed
Series keys range numbers of collision Mean Max Variance

‖K‖ keys, and Variance µ′ x′ σ′2

µ = ‖K‖ε ΣN
i=1xi/N

σ2 = ‖K‖ε(1− ε) max of ΣN
i=1

(xi−µ′)2
N∫ x

−∞ ε
− (t−µ)2

2σ2 dt = 2−1/N {x1 . . . xN}
Pseudorandom 32-bit messages.

1A 102400
10LSB

100 - 142 - 99.90
99.96 141 99.5

10MIB 100.00 147 98.1
10MSB 100.10 143 100.1

1B 1024000
10LSB

1000 - 1134 - 999.0
1000.01 1136 997.2

10MIB 999.89 1148 1010.0
10MSB 1000.05 1143 996.6

1C 10240000
10LSB

10000 - 10424 - 9990
9999.82 10389 10007.3

10MIB 10000.52 10474 10033.5
10MSB 9999.73 10439 9996.1

Cluster 32-bit messages: the initial pair of messages is derived pseudorandomly.

2A 102400
10LSB

100 - 142 - 99.90
99.98 150 100.1

10MIB 100.01 144 99.7
10MSB 100.02 148 99.1

2B 1024000
10LSB

1000 - 1134 - 999.0
999.91 1159 997.6

10MIB 999.98 1132 999.6
10MSB 1000.00 1142 994.5

2C 10240000
10LSB

10000 - 10424 - 9990
9999.89 10485 9937.5

10MIB 10000.17 10417 10037.8
10MSB 9999.82 10430 10073.5

Sparse and Cluster 32-bit messages: the initial pair of messages is (1,28 + 1).

3A 102400
10LSB

100 - 142 - 99.90
100.01 147 99.6

10MIB 100.02 143 98.4
10MSB 100.14 147 99.2

3B 1024000
10LSB

1000 - 1134 - 999.0
999.84 1129 1002.1

10MIB 1000.04 1359 1010.3
10MSB 999.79 1133 1002.1

3C 10240000
10LSB

10000 - 10424 - 9990
9999.58 10427 10058.8

10MIB 10000.69 13734 10834.1
10MSB 10002.48 10425 9905.4

Dense and Cluster 32-bit messages: the initial pair of messages is (232 − 1, 232 − 257).

4A 102400
10LSB

100 - 142 - 99.90
99.99 145 98.7

10MIB 99.95 144 98.8
10MSB 100.13 145 99.4

4B 1024000
10LSB

1000 - 1134 - 999.0
999.70 1142 990.1

10MIB 1000.01 1374 1004.7
10MSB 999.95 1143 994.4

4C 10240000
10LSB

10000 - 10424 - 9990
9999.48 10398 10044.7

10MIB 9999.25 13707 11166.1
10MSB 10001.97 10503 9926.0

Table 6: Comparing the mean, max (no of keys) and variance of collision test results of
32-bit digestXWM (k,m) (input messages are XORed with two 32-bit halves of the key prior
to multiplication) against their expected values in an ideal binomial distribution: N = 216

pairs of 32-bit messages. The set {x1 . . . xN} denotes the number of collision keys observed
and counted for all N trials.
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10LSB 10MIB 10MSB
Pseudorandom 32-bit messages.

Series 1C p-value = 0.1577 p-value = 0.3704 p-value = 0.1214

Cluster 32-bit messages: the initial message is derived pseudorandomly.
Series 2C p-value = 0.7553 p-value = 0.8318 p-value = 0.934

Sparse and Cluster 32-bit messages: the initial message is 1.
Series 3C p-value = 0.1064 p-value = 0.9174 p-value = 0.6268

Dense and Cluster 32-bit messages: the initial message is 232 − 1.
Series 4C p-value = 0.0003124 p-value = 0.5064 p-value = 0.6865

Table 7: Chi-square and Q-Q plots of distribution test results of 32-bit digestXWM (k,m)
(input messages are XORed with two 32-bit halves of keys prior to multiplication): N = 218

pairs of 32-bit messages over ‖K‖ = 10240000 distint keys. In each Q-Q plot, the vertical
and horizontal axes denote quantiles on observed (collision) keys and respectively binomial
distribution.
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Test No of Map Expected Mean & Max Observed Observed Observed
Series keys range numbers of keys, Mean Max Variance

‖K‖ and Variance µ′ y′ σ′2

µ = ‖K‖ε ΣN
i=1yi/N

σ2 = ‖K‖ε(1− ε) max of ΣN
i=1

(yi−µ′)2
N∫ y

−∞ ε
− (t−µ)2

2σ2 dt = 2−1/N {y1 . . . yN}
Pseudorandom 32-bit messages.

1A 102400
10LSB

100 - 145 - 99.90
100.00 151 100.34

10MIB 100.00 151 99.76
10MSB 100.00 158 99.71

1B 1024000
10LSB

1000 - 1144 - 999.0
1000.00 1146 995.60

10MIB 1000.00 1160 999.70
10MSB 1000.00 1165 1002.67

1C 10240000
10LSB

10000 - 10445 - 9990
10000.00 10456 10031.05

10MIB 10000.00 10428 9968.10
10MSB 10000.00 10439 9907.97

Cluster 32-bit messages: the initial message is derived pseudorandomly.

2A 102400
10LSB

100 - 145 - 99.90
100.00 146 99.80

10MIB 100.00 149 99.67
10MSB 100.00 148 100.06

2B 1024000
10LSB

1000 - 1144 - 999.0
1000.00 1142 997.07

10MIB 1000.00 1141 997.58
10MSB 1000.00 1150 1000.52

2C 10240000
10LSB

10000 - 10445 - 9990
10000.00 10425 10038.38

10MIB 10000.00 10490 9983.42
10MSB 10000.00 10463 10009.36

Sparse and Cluster 32-bit messages: the initial message is 1.

3A 102400
10LSB

100 - 145 - 99.90
100.00 149 99.67

10MIB 100.00 151 100.12
10MSB 100.00 153 99.94

3B 1024000
10LSB

1000 - 1144 - 999.0
1000.00 1149 996.76

10MIB 1000.00 1150 999.42
10MSB 1000.00 1137 997.70

3C 10240000
10LSB

10000 - 10445 - 9990
10000.00 10436 9989.51

10MIB 10000.00 10440 9960.43
10MSB 10000.00 10440 9989.53

Dense and Cluster 32-bit messages: the initial message is 232 − 1.

4A 102400
10LSB

100 - 145 - 99.90
100.00 153 100.15

10MIB 100.00 147 99.79
10MSB 100.00 147 99.78

4B 1024000
10LSB

1000 - 1144 - 999.0
1000.00 1144 1001.88

10MIB 1000.00 1145 1002.80
10MSB 1000.00 1150 995.98

4C 10240000
10LSB

10000 - 10445 - 9990
10000.00 10447 9982.14

10MIB 10000.00 10418 9987.62
10MSB 10000.00 10450 10011.10

Table 8: Comparing the mean, max (no of keys) and variance of distribution test results
of 32-bit digestXWM (k,m) against their expected values in an ideal binomial distribution:
N = 218 distinct pairs of message and digest output (m, d). The set {y1 . . . yN} denotes the
number of keys observed and counted for all N pairs (m, d).
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Pseudorandom 32-bit messages
Series 1C p-value = 0.1684

Cluster 32-bit messages: the initial message is derived pseudorandomly.
Series 2C p-value = 0.283

Sparse and Cluster 32-bit messages: the initial message is 1.
Series 3C p-value = 0.627

Dense and Cluster 32-bit messages: the initial message is 232 − 1.
Series 4C p-value = 0.227

Table 9: Chi-square and Q-Q plots of distribution test results of 32-bit digestT (k,m): N =
217 pairs of 32-bit messages over ‖K‖ = 10240000 keys. In each Q-Q plot, the vertical and
horizontal axes denote quantiles on observed keys and respectively binomial distribution.
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Test No of 64-bit Expected Mean & Max Observed Observed Observed
Series random keys numbers of keys, Mean Max Variance

‖K‖ and Variance µ′ x′ σ′2

µ = ‖K‖ε ΣN
i=1yi/N

σ2 = ‖K‖ε(1− ε) ΣN
i=1

(yi−µ′)2
N∫ x

−∞ ε
− (t−µ)2

2σ2 dt = 2−1/N maximum of
{y1 . . . yN}

Pseudorandom 32-bit messages.
1A 102400 100 - 144 - 99.90 100.00 145 100.19
1B 1024000 1000 - 1139 - 999.0 1000.00 1147 1002.38
1C 10240000 10000 - 10439 - 9990 10000.00 10436 9997.77

Cluster 32-bit messages: the initial message is derived pseudorandomly.
2A 102400 100 - 144 - 99.90 100.00 148 99.95
2B 1024000 1000 - 1139 - 999.0 1000.00 1152 1003.82
2C 10240000 10000 - 10439 - 9990 10000.00 10427 9920.94

Sparse and Cluster 32-bit messages: the initial message is 1.
3A 102400 100 - 144 - 99.90 100.00 145 99.53
3B 1024000 1000 - 1139 - 999.0 1000.00 1130 982.61
3C 10240000 10000 - 10439 - 9990 10000.00 10445 9949.84

Dense and Cluster 32-bit messages: the initial message is 232 − 1.
4A 102400 100 - 144 - 99.90 100.00 143 100.16
4B 1024000 1000 - 1139 - 999.0 1000.00 1143 998.97
4C 10240000 10000 - 10439 - 9990 10000.00 10409 9910.73

Table 10: Comparing the mean, max (no of keys) and variance of distribution test results
of 32-bit digestT (k,m) (Toeplitz method) against their expected values in an ideal binomial
distribution: N = 217 pairs of 32-bit messages. The set {y1 . . . yN} denotes the number of
collision keys observed and counted for all N trials.
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Pseudorandom 32-bit messages
Series 1C p-value = 0.4752

Cluster 32-bit messages: the initial pair of messages is derived pseudorandomly.
Series 2C p-value = 0.2469

Sparse and Cluster 32-bit messages: the initial pair of messages is (1,28 + 1).
Series 3C p-value = 0.05804

Dense and Cluster 32-bit messages: the initial pair of messages is (232 − 1, 232 − 257).
Series 4C p-value = 0.06694

Table 11: Chi-square and Q-Q plots of collision test results of 32-bit digestT (k,m): N = 216

pairs of 32-bit messages over ‖K‖ = 10240000 keys. In each Q-Q plot, the vertical and
horizontal axes denote quantiles on observed keys and respectively binomial distribution.
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Test No of 64-bit Expected Mean & Max Observed Observed Observed
Series random keys number of collision Mean Max Variance

‖K‖ keys and Variance µ′ x′ σ′2

µ = ‖K‖ε ΣN
i=1xi/N

σ2 = ‖K‖ε(1− ε) ΣN
i=1

(xi−µ′)2
N∫ x

−∞ ε
− (t−µ)2

2σ2 dt = 2−1/N maximum of
{x1 . . . xN}

Pseudorandom 32-bit messages.
1A 102400 100 - 142 - 99.90 99.99 146 99.1
1B 1024000 1000 - 1134 - 999.0 1000.12 1153 997.6
1C 10240000 10000 - 10424 - 9990 10000.69 10425 9958.3

Cluster 32-bit messages: the initial pair of messages is derived pseudorandomly.
2A 102400 100 - 142 - 99.90 100.04 146 99.4
2B 1024000 1000 - 1134 - 999.0 1000.09 1144 993.3
2C 10240000 10000 - 10424 - 9990 10000.31 10409 10016.5

Sparse and Cluster 32-bit messages: the initial pair of messages is (1,28 + 1).
3A 102400 100 - 142 - 99.90 100.20 142 99.6
3B 1024000 1000 - 1134 - 999.0 999.85 1137 1003.7
3C 10240000 10000 - 10424 - 9990 9998.26 10444 10005.6

Dense and Cluster 32-bit messages: the initial pair of messages is (232 − 1, 232 − 257).
4A 102400 100 - 142 - 99.90 100.06 142 99.7
4B 1024000 1000 - 1134 - 999.0 1000.16 1127 1005.6
4C 10240000 10000 - 10424 - 9990 9999.42 10461 9940.6

Table 12: Comparing the mean, max (no of keys) and variance of collision test results of
32-bit digestT (k,m) (Toeplitz method) against their expected values in an ideal binomial
distribution: N = 216 pairs of 32-bit messages. The set {x1 . . . xN} denotes the number of
collision keys observed and counted for all N trials.
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