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Abstract. We present a method for automatically creating large-scale semantic
networks from natural language text, based on deep semantic analysis. We pro-
vide a robust and scalable implementation, and sketch various ways in which the
representation may be deployed for conceptual knowledge acquisition. A transla-
tion to RDF establishes interoperability with a wide range of standardised tools,
and bridges the gap to the field of semantic technologies.

1 Introduction

Graph-based models for representing conceptualisations have a long-standing history,
ranging from expressive logical frameworks (as laid out in Peirce’s work and further
developed into conceptual graphs [1]) to widely applied graph-based Semantic Web
formalisms like the Resource Description Framework (RDF) [2]. Graph-based repre-
sentations of knowledge have been shown to provide both intuitive and formally rigor-
ous access to the represented information.

In the variety of graph-based KR formalisms, two directions can be identified, re-
flecting the separation of AI approaches into associative/statistic and symbolic. These
differing perspectives also show up when addressing the task of processing natural
language for explicating the implicit conceptual information contained in a textual re-
source. Depending on the output of such an elicitation step and on the way the result is
used, we can roughly distinguish between primarily symbolic approaches (such as cate-
gorial grammars or discourse representation theory) and statistical ones (such as vector
space models, or hidden Markov models). This distinction carries over to the case when
natural language is transformed into graph-based representations.

Research into symbolic approaches has resulted in systems which are able to pro-
cess natural language text to create Conceptual Graphs and use them for scenario recog-
nition [3–5]. However, complete correctness of knowledge acquired from text cannot
be guaranteed, while at the same time, logical representations are inherently extremely
sensitive to flawy data.

Statistically oriented approaches, using representations such as association networks,
and co-occurrence graphs are more tolerant to the small but inevitable errors in the ac-
quisition process, and can naturally deal with noisy data. However, there is a great deal
of valuable information unveiled by a syntactical and discourse-theoretic analysis even
if the resulting structure is meant to be deployed in a statistic way. In general, recent
developments in statistic text analysis witness a stronger appreciation of symbolic NLP
preprocessing.

Hence, we advocate a graph-based conceptual model which provides a semantic
middleground: while it exhibits structural dependencies way beyond mere co-occur-
rence, it still features a fault tolerant way of representing the conceptual semantics of
the original textual resource rather than providing a crisp logical description.

We further develop the ASKnet system [6] for conceptual knowledge acquisition
and representation. AskNet provides a framework for acquisition of graph-based seman-
tic networks from English text and is described in Section 2. In Section 3, we describe
the additional steps that allow us to apply the framework to the problem of representing
the conceptual backbone of a given text corpus in an aggregated yet structurally infor-
mative way. Furthermore, in Section 4, we provide a translation of the described graph



model into RDF and sketch the plethora of benefits that arise from the interoperability
achieved by the alignment with this wide-spread, standardised, graph-based Semantic
Web KR formalism.

2 AskNet

The ASKNet system uses  tools to extract semantic information from text, and then,
through a novel use of spreading activation theory, combines that information into an
integrated large-scale semantic network. By mapping together concepts and objects that
relate to the same real-world entities, ASKNet is able to produce a single unified entity
relationship style semantic network. Combining information from multiple sources re-
sults in a representation which can reveal information that could not have been obtained
from analysing the original sources separately.

The & toolset [7] is used to parse and analyse text before it is used to create
ASKNet networks. This allows ASKNet to create networks using entities and relation-
ships taken directly from naturally occurring text, and allows for an almost limitless
variety of relations. The & toolset contains an efficient and robust dependency parser
and named entity recogniser, as well as a semantic analysis tool called Boxer [8], which
converts the parsed text into a series of first-order logic predicates in a discourse repre-
sentation structure. Figure 1 gives an example of Boxer output, and the corresponding
ASKNet network fragment.

ASKNet is capable of efficiently generating integrated semantic networks on a scale
never seen before. In [6] the speed and robustness of ASKNet was demonstrated by
creating networks consisting of over 1.5 million nodes and 3.5 million edges — more
than twice as large as any manually created semantic network — in less than 3 days.

Large scale networks such as ConceptNet [9] and WordNet [10] have been shown to
be useful for question answering [11] and predictive text entry [12]. However, ASKNet
is unique in that it can construct networks directly from natural language text, and ex-
tracts its relations directly from the text, rather than relying on a set of pre-defined
relations. This results in networks which can be created and adapted to new domains
very rapidly, while at the same time allowing for an extremely wide variety of relations.

2.1 The Network

The semantic networks created by ASKNet consist of object nodes and attribute nodes
linked by directed labelled relations. Object nodes (rectangle) correspond roughly to
discourse referents (e.g., nouns, pronouns), attribute nodes (oval) correspond to modi-
fiers (e.g., adjectives and adverbs) and relation nodes (diamond) correspond to events
and binary relations.

The nested structure of the network allows for concepts and relations to be combined
to form more complex concepts, allowing for arbitrary complexity. An example network
is given in Figure 1.



Fig. 1. Left: Boxer output and corresponding network fragment for the sentence “John scored a
great goal.” Right: A simplified Semantic Network created from the sentences “Yesterday John
heard that ABC Inc. hired Susan. Bob decided that ABC Inc. will move to London. Susan met
Bob twice.”

2.2 Spreading Activation

ASKNet builds on the concept of relationships in the human brain, which are seman-
tically linked [13] so that thinking about (or firing) one concept primes other related
concepts making them more likely to fire in the near future. Each node within the net-
work can receive activation. If this activation reaches a set threshold the node will fire,
sending its activation to its neighbours, with the proportions dictated by the strength
of the connecting relationships. This can in turn cause other nodes to fire, spreading
activation throughout the network.

By firing one or more nodes and analysing the way in which activation spreads
through the network, we can determine the semantic distance between various entities
and concepts. This allows us to determine how closely related two entities or concepts
are even if they are not directly linked. Nodes which send similar amounts of activation
to similar sets of concepts are determined to be semantically related. The details of the
spreading activation algorithm can be found in [6]

2.3 Information Integration

One of the most important aspects of ASKNet is the way in which it integrates informa-
tion from different sources in order to create a single cohesive network. This process,
called the update algorithm, uses ASKNet’s spreading activation algorithm, combined
with lexical information stored in the nodes to decide which nodes refer to the same
real world object, and therefore should be mapped together.

In the example shown in Figure 2, ASKNet attempts to integrate the network frag-
ment relating to George Bush’s 2000 U.S. election victory into an existing network.
ASKNet first uses string and named entity similarity to produce an initial mapscore
for the mappings between nodes. In our example, the mapscore (bu,georgebush) and
(bu,johnbush) would likely be approximately equal, as in both cases they are of the
same named entity type, and all labels in both target nodes contain the label of the



Fig. 2. An example update network created from the sentence “Bush beat Gore to the White-
house” being added to a network containing information about United States politics, along with
some extraneous information regarding famous authors and university lecturers.

source node. In order to improve these scores, the update algorithm is run. We will
briefly walk through an example of steps taken by the update algorithm to refine the
relative scores for the bu node.

The source node (bu) is provided with activation and fired. Activation spreads through
the network fragment, with various amounts ending in each of the test nodes (go and
wh). The activation in each of those nodes is then transferred to the main network. In
this case, the activation from wh will be sent to whitehouse, and the activation from go
will be split between gorevidal and algore depending on their current mapscore. For
example, if the current mapscore for (go,gorevidal) is twice that of (go,algore), then
algore will recieve 1/3 of the activation and gorevidal will receive 2/3.

Once the activation is placed into the main network and allowed to fire, activation
will be spread to connected nodes. All mapscores of the source node are then updated.
In our example, the score (bu,georgebush) will likely be increased, as georgebush will
have received activation, whereas (bu,johnbush) will decrease as johnbush received no
activation.



The update algorithm becomes a reinforcing loop, gradually improving scores for
mappings that are likely to be connected, and decreasing scores for unrelated pairs.
Eventually, pairs with a score above a set threshold are mapped together, thus integrat-
ing the new fragment into the existing network. In our example, this would map bu to
georgebush and go to algore. Further details of the update algorithm are given in [6].
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Fig. 3. Graphical representation for topic: “Elian Gonzalez Custody Battle”.

2.4 Evaluation

Network Creation Speed: By processing approximately 2 million sentences of news-
paper text from the New York Times, we were able to build a network of over 1.5 million
nodes and 3.5 million links in less than 3 days [6]; a vast improvement over manually
created networks for which years or even decades are required to achieve networks of
less than half this size [14]. Because the spreading activation algorithms are localised,
once the network becomes so large that the activation does not spread to the majority of
nodes, any increase in the size of the network ceases to have an effect on the algorithm.
Therefore the average time to add a new node to the network is asymptotic and allows
the integration process to scale easily to extremely large networks.



Network Precision: In [6] networks were built using documents from the 2006
Document Understanding Conference (), and the “core” of each network was ex-
tracted for evaluation. Examples of the graphical representations of the network cores
used for evaluation are shown in Figure 3.

These network cores were given to human evaluators, who were asked to label each
path, node and named entity tag within the network as correct or incorrect. An overall
average precision of 79.1% was assigned by the judges [6], which is highly promising
for such a difficult task.

3 Developments for Conceptual Knowledge Acquisition

We propose to develop the AskNet approach further for conceptual knowledge acquisi-
tion. This involves the development of both the building processes as well as the pro-
cessing of the resulting network. The core idea is to integrate the information on con-
cepts, instead of Named Entities, in order to construct a network representing concepts
and relations between them.

Figure 4 shows a subgraph of a sample network, which was built from a few para-
graphs taken from Graduate Studies Handbooks. Multiple occurrences of the same re-
lations have been pictured as overlapping. As this was a small and domain-specific
text collection, it was not necessary to distinguish between different senses of a term
and thus the integration algorithm simply mapped object nodes with the same label
together. We will discuss word sense disambiguation in the next section.

The resulting structure of the network is as follows. From one object node to the
next (i.e., without interfering object nodes) are relations which syntactically occurred
in the text, such as student complete dissertation and progress of student. Due to the
use of Boxer, these relations are normalised, e.g., the latter relation may have been
expressed as student’s progress in the text. As can be seen, the frequencies of these re-
lations provide ground for weighting. The details of the weighting depend on the further
application. For example, the complete relations going from student to credit, module,
dissertation and work can either be kept separately or be joined together, resulting in
one subject link from student to complete and four object links from complete to the
others with according weighting.

Looking at the whole semantic network, it provides a dense and interconnective rep-
resentation of the concepts and their relations in a cross-sentence and cross-document
way. For example, out of the 120 and 180 occurrences of dissertation and module in
the text, respectively, the two co-occurred in a sentence only 8 times. However, the net-
work shows that there is a strong connection between the two concepts, as they are both
strongly and directly connected to the concept student. In particular, the connecting
relations are explicitly specified and can hence be directly identified.

In the next section we will sketch ways in which the building and integration process
as well as the resulting network can be used for conceptual knowledge acquisition.



Fig. 4. Subgraph displaying selected concepts and relations from sample network.

3.1 Word Sense Induction and Disambiguation

One of the core challenges in conceptual knowledge acquisition from text is the gap
between terms and concepts. Terms can be polysemous, (e.g., bank can refer to a river
bank as well as to a financial institution) and on a more finely grained level, terms often
have sense variants, for example bank referring the bank building. Therefore, in order
to acquire knowledge about concepts from text, it is crucial to both identify different
senses of a term and disambiguate instances of the term in text.

The currently best performing Word Sense Disambiguation (WSD) techniques are
supervised in two respects [15]. Firstly, they are given a sense inventory such as Word-
Net [16] which has been built beforehand and provides a list of possible senses of
each term. Secondly, they are trained on a corpus such as SemCor [17], which has been



hand-tagged with the senses of the inventory. This leads to certain limitations. The large
amount of hand-tagged data needed means that the improvement of the performance of
general WSD relies to a great extent on the extension of these resources. In addition,
the adaptation of supervised techniques to specific domains may require additional an-
notated corpora. Similarly, domain-specific sense inventories are not readily available.

Unsupervised Word Sense Induction and Discrimination (WSID) attempts to tackle
these issues [15]. The goal is to induce word senses directly from the corpus in an unsu-
pervised manner. Most work in WSI is based on the vector space model of meaning. For
a target word, the contexts in which it occurs are represented as vectors. These are then
clustered using vector similarity measures, giving different senses of the word. Once
established, a new instance of the term can be classified by measuring its similarity to
the clusters.

Different graph-based models have been used for WSD and WSID. Many approaches
use a machine readable dictionary such as WordNet to build a graph representation
[18–22]. WordNet provides senses of terms in the form of synsets, semantic relations
between synsets (e.g., hyponymy and meronymy) and a gloss for each sense. This
network-like structure can be translated into graphs in various ways, depending how
much and which information is used. Recently, the network structure provided by Wiki-
pedia links [23, 24] has also been exploited for WSD. Rather than relying on a pre-
existing network resource, approaches such as those described in [25–27] build co-
occurrence networks directly from text.

As we build networks directly from text, our approach is most related to those which
use co-occurrence networks. However, our representation is semantically richer. In ad-
dition, the update algorithm provides us with a new method of network building and
use. In the next two sections we sketch different ways in which our approach can be
used for WSI and WSID.

Word Sense Induction Two strategies could be followed to use the semantic network
for unsupervised Word Sense Induction.

The first strategy uses the update algorithm described in Section 2 to detect different
senses of terms. Previously, the update algorithm aimed to have exactly one node per
named entity in the network, merging all occurrences of the entity into this node. For
WSI, the aim is to have one node per word sense, merging into that node all occurrences
of the word used in that particular sense.

The update algorithm is used to decide which mapping is most suitable or to create
a new node if none of them reaches a certain threshold. The spreading activation set-
ting allows for finely-grained parameter tuning, which can be exploited. For example,
different types of nodes and links can be set to contribute more or less in the process.
The update algorithm can also take into account relation labels, which can potentially
improve the network’s disambiguation ability.

A network constructed in this manner can then be used for word sense disambigua-
tion. Following a similar approach, the update algorithm can assign words in a sentence
to a particular word sense, and return the mapping that would have been created during
the building phase.
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Fig. 5. Illustrating examples for the two WSI strategies.

The second strategy does not disambiguate during the construction of the network
but simply merges all occurrences of a word into one node while building the network
from a corpus. The rationale is that we expect the network around a polysemous word to
show subclusters, corresponding to different contexts in which the word is used. These
subclusters of context in turn represent different senses. Once the clusters are identified,
new instances can be classified using a similarity measure between the context of the
instance and the clusters established.

This approach is in line with [25], who showed that co-occurrence graphs build from
a collection of paragraphs in which a target word appears exhibit small world strucutre,
i.e., they contain the expected highly dense subgraphs corresponding to different senses.

Supervised WSD and Domain Adaptation ASKNet networks can also be used for
Supervised Word Sense Disambiguation. Using a tagged corpus, a network is built inte-
grating nodes with the same sense tag. New instances can then be disambiguated using
the update algorithm as described in the previous section.

In particular, the semantic network built from a general, sense-tagged corpus such as
SemCor could provide a ground for semi-supervised domain adaptation. This scenario
of domain adaptation supplements a supervised, generic WSD with untagged examples



from the specific domain [28]. Good results on that task would show that supervised
generic systems can be tweaked at little cost to be more suitable for domain specific
WSD. A network built from a generic corpus can easily be extended by feeding domain
specific text into the integration process. We would expect some senses of a term to be
further extended by adding domain specific documents, and other senses to appear as
new nodes, leading to a domain-tuned disambiguation network.

3.2 Network as Context

The second group of applications exploits the network as a representation of meaning.
In NLP, one of the most common representations of the meaning of a term is in the form
of a vector based on the context in which the term appears. Similarity of terms can then
be computed using vector similarity measures [29]. The vector space model has been
used in a variety of tasks relevant to conceptual knowledge acquisition, in particular
in the field of ontology learning [30]. Examples are term similarity, hierarchical and
non-hierarchical clustering.

Vectors can be built in different ways, depending on what is considered the context
of a term. In its simplest form, the vector is built from the words which co-occur with
the target word in a document, paragraph or window. Co-occurrence based vectors have
been widely used, but with fast and robust syntactic parsers becoming available, there is
a great deal of current work in exploiting more refined vector representations, extract-
ing words which stand in a syntactic relationship to the target word [31–33, 29]. Most
approaches take several syntactic relationships into account, collecting triples such as
banana AdjMod tasty and banana dirObj eat, but the restriction to specific relations
such as attributes is also possible [34].

We propose to construct the vector space representation for a target word using the
semantic network as context. Not only will this allow us to use the syntactic and seman-
tic dependencies connected to our node, but also to exploit the information contained in
the wider network. For example, in Fig. 4 the network surrounding module contains the
syntactic relations student take module, module carry credit and mark for module. This
would provide similar information to that used for the syntactic vector space models
described above. However, the network structure provides a far richer context, includ-
ing relation strengths and complex, multi relation chains. Thus, not only do we know
that module is syntactically connected to credit and student, but credit and student are
connected through complete, and that both credit and student are connected to disser-
tation.

A vector representation of the context of a target word in the network can be con-
structed using spreading activation. In [6] we showed that using the activation received
by a node when its prime is fired outperforms purpose-built vector space models on pre-
dicting priming effects in human subjects, and performs as well as top scoring systems
in judging the semantic relatedness of terms. The spreading activation relatedness mea-
sure reflects the interconnections between objects over the network. In our example,
the activation student receives directly from module would be reinforced by activation
from module via credit and work and dissertation would indirectly receive activation
through credit and student. Therefore, by activating the target node and constructing
the vector from the nodes that have received activation with their activation scores as



values we can leverage the rich network structure to create a more robust vector-based
representation.

This approach can be tested in several task which have used vector representation,
such as finding synonyms and conceptual clustering.

4 RDF Serialisation

We have implemented a serialisation of our graph model into the Semantic Web Re-
source Description Framework.1 As RDF itself is a graph-based datamodel, a transla-
tion is rather straightforward. Node types are explicitly indicated via rdf:type and
node labels are associated as untyped literals via rdf:label.2 Table 1 shows a small
graph and its translation into RDF.3

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix x: <http://example.org/> .

@prefix link: <http://example.org/link/> .

@prefix nodeType: <http://example.org/nodeType> .

x:id1 rdf:type nodeType:Object ; rdf:label "bank" .

x:id2 rdf:type nodeType:Event ; rdf:label "store" .

x:id3 rdf:type nodeType:Attribute ; rdf:label "safely" .

x:id4 rdf:type nodeType:Object ; rdf:label "money" .

x:id5 rdf:type nodeType:Prep ; rdf:label "of" .

x:id6 rdf:type nodeType:Object ; rdf:label "customer" .

x:id1 link:subLink x:id2 .

x:id2 link:attLink x:id3 .

x:id2 link:objLink x:id4 .

x:id4 link:subLink x:id5 .

x:id5 link:objLink x:id6 .

Table 1. Graph and its RDF serialisation.

By bridging the gap to the Semantic Web world, a variety of RDF tools can be used.
RDF databases (so-called triple stores, such as Jena (http://jena.sourceforge.net/)) can
be used for storage and querying of large-scale networks. In particular, with SPARQL
[36], we are endowed with a standardised querying language allowing for retrieval of
graph patterns and – by virtue of query output via CONSTRUCT – on-the-fly creation
of new networks. As an example, the following SPARQL query would produce a new
graph containing all object nodes that are linked to nodes with label ”student” over a
preposition node:

CONSTRUCT * WHERE { ?x ?p ?y . ?p rdf:type nodeType:prep .

?x rdf:type nodeType:Object ; rdf:label ?xn .

?y rdf:type nodeType:Object ; rdf:label ?yn .

FILTER (?xn="student" || ?yn="student") }

1 We assume the reader to be familiar with the basics of the RDF language (cf. [35] for an
introduction into RDF and SPARQL).

2 In order to incorporate edge weights in the representation, some more considerations have to be
taken: encoded in the natural way, weighted labeled edges correspond to a 4-ary relationship
〈source, label, target, weight〉. However, this issue can be solved by a well-established
best practice for such situations in RDF called reification.

3 Note that for maximal interoperability, the actual output generated by our system follows the
RDF/XML serialisation. However, for the sake of brevity and understandability as well as a
better alignment with the SPARQL notation, we use Turtle syntax in our examples.
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Fig. 6. Complete network representation of Fig. 4 showing hubs.

This query would create the union of graph fragments corresponding to phrases like
“progress of student” or “student in department”.

Moreover RDF-compatible graph-drawing tools with versatile layout libraries greatly
facilitate to visualise and explore the networks. They can make a variety of information
immediately visible, such as hubs or clusters. For instance, Fig. 6 was created with the
RDFScape plugin for the graph-drawing tool Cytoscape (http://www.cytoscape.org/),
which on top of its visualisation functionality also provides intuitive methods for filter-
ing, navigating and manipulating large graphs.

Beyond the advantage of a lot of tools becoming available, providing an RDF in-
terface also enables interoperability on the level of resources. In the course of the
Linked Data initiative (http://linkeddata.org/), more and more data from various do-
mains is made publicly available, with RDF taking the role of a lingua franca of data
exchange and syndication. External resources – no matter whether lexical (e.g., Wordnet
[37]), encyclopedic (as in DBpedia (http://wiki.dbpedia.org)) or highly structured on-
tological ones (such as OpenCyc (http://sw.opencyc.org/) or DOLCE (http://www.loa-
cnr.it/DOLCE.html)) – can be easily accessed and integrated with graph models that
have been created by our approach, enabling intense usage of background knowledge
of any kind and countering potential problems with graph sparseness.



5 Conclusion

We have presented an approach for building large scale semantic networks automat-
ically from text, employing deep semantic processing. Our graph model provides a
well-balanced middle ground between purely symbolic and numerical approaches to
graph-based knowledge representation. We have identified several ways in which our
semantic network models can be used for conceptual knowledge acquisition. Our im-
plementation of the building algorithm is highly competitive in terms of coverage and
performance. Providing an encoding into the RDF standard allows us to employ seman-
tic technologies for conveniently managing large networks.

Future work includes a rigorous evaluation in order to investigate the added value of
our approach compared to other graph representations generated from text such as co-
occurrence graphs, resources such as ConceptNet and WordNet as well as task specific
non graph-based methods. We aim to evaluate our framework in several scenarios, two
of which have been described above – Word Sense Induction and Disambiguation as
well as further tasks typically addressed by a vector space representation of meaning.
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