
Stratagems for
Effective Function Evaluation
in Computational Chemistry

Gwyn S. Skone

Keble College

Doctor of Philosophy

University of Oxford
Mathematical, Physical, and Life Sciences Division

Computing Laboratory

May 2010

Version 1.0 (beta) submitted November 2009 and examined February 2010.
Version 1.1 (revised) submitted April 2010 and approved May 2010.
Final printing July 2010.

Abstract

In recent years, the potential benefits of high-throughput virtual screening to the drug

discovery community have been recognized, bringing an increase in the number of tools

developed for this purpose. These programs have to process large quantities of data,

searching for an optimal solution in a vast combinatorial range. This is particularly

the case for protein-ligand docking, since proteins are sophisticated structures with

complicated interactions for which either molecule might reshape itself. Even the very

limited flexibility model to be considered here, using ligand conformation ensembles,

requires six dimensions of exploration — three translations and three rotations — per

rigid conformation. The functions for evaluating pose suitability can also be complex to

calculate. Consequently, the programs being written for these biochemical simulations

are extremely resource-intensive.

This work introduces a pure computer science approach to the field, developing

techniques to improve the effectiveness of such tools. Their architecture is generalized

to an abstract pattern of nested layers for discussion, covering scoring functions, search

methods, and screening overall. Based on this, new stratagems for molecular docking

software design are described, including lazy or partial evaluation, geometric analysis,

and parallel processing implementation. In addition, a range of novel algorithms are

presented for applications such as active site detection with linear complexity (PIES)

and small molecule shape description (PASTRY) for pre-alignment of ligands. The

various stratagems are assessed individually and in combination, using several modified

versions of an existing docking program, to demonstrate their benefit to virtual screening

in practical contexts. In particular, the importance of appropriate precision in calculations

is highlighted.

3

Contents

Abstract 3

List of Symbols and Abbreviations 8

List of Figures 10

List of Tables 13

List of Listings 14

Acknowledgements 15

1 Introduction 17
1.1 Biochemistry . 17

1.1.1 Drug Discovery . 18

1.2 Computer Science . 20
1.2.1 This Thesis . 21

2 Literature Review 23
2.1 Molecular Representation . 23

2.2 Molecular Comparison . 28

2.3 Protein Structure Prediction . 29
2.3.1 Native Structure Prediction — The Folding Problem 30
2.3.2 Complexed Structure Prediction — The Docking Problem 32

2.4 Current Areas of Research . 47
2.4.1 Lead Compound Identification . 49
2.4.2 Reviews . 51

3 Early Work 53
3.1 FFT Alignment . 53

3.2 Sphere Trees . 54
3.2.1 Bonded Sphere Trees for Molecular Representation 55
3.2.2 Test Program (cSpheres) . 57

3.3 Scoring Functions and Search Methods . 59
3.3.1 Piecewise Linear Potential . 61
3.3.2 XScore . 61
3.3.3 Search Methods . 63

3.4 The DOX Family . 64
3.4.1 DOX . 64
3.4.2 DOXGA . 65
3.4.3 OrthoDOX . 65

3.5 XScore Implementation . 66
3.5.1 Surface Calculations . 66
3.5.2 Recalibration . 67

4

Contents

4 Stratagems From Computer Science 69

4.1 Context and Existing Technology . 69

4.2 Stratagems for Consideration . 70
4.2.1 Scoring . 70
4.2.2 Searching . 71
4.2.3 Screening . 73

4.3 Applications and Examples . 75
4.3.1 Geometric Guidance . 77
4.3.2 Efficient Exploration . 78
4.3.3 Properties, Priority, and Parallelization 79

4.4 Assessment Criteria . 80

5 Geometric Guidance 83

5.1 Quaternion Rotations . 83
5.1.1 Comparison with Euler Angles . 85

5.2 Predicted Pocket Positioning . 87
5.2.1 PIES . 87
5.2.2 PASS . 96
5.2.3 Comparison of Pocket Detection Methods 97
5.2.4 Pre-Positioned Docking Results . 99
5.2.5 Automatic Search Extents . 101

5.3 Shape Descriptors . 106
5.3.1 USR . 106
5.3.2 PASTRY . 107
5.3.3 Comparison of Shape Descriptors 108
5.3.4 Ligand Alignment Using Known Poses 111
5.3.5 Pre-Aligned Docking Results . 113

6 Efficient Exploration 117

6.1 Local Optimization . 117
6.1.1 Local Searches Versus GA Generations 120

6.2 Look-Up Table Interpolation . 121

6.3 Lazy Evaluation: Caching Look-Up Tables 125

6.4 Early Rejection . 127
6.4.1 Scoring-Based Early Rejection . 128
6.4.2 Pose-Based Early Rejection . 134
6.4.3 Quota-Based Early Rejection . 137

7 Properties, Priority, and Parallelization 143

7.1 Knowledge Bases . 143
7.1.1 Normalized Scores . 146

7.2 Learnable Properties . 148
7.2.1 Conformation Prioritization . 150

7.3 Job Control . 151

7.4 Multi-Processor Distribution . 153

5

Contents

8 Comparisons and Conclusions 157

8.1 Results: Assessment of Stratagems . 157

8.2 Future Work: More Stratagems to Consider 160
8.2.1 Pharmacophores and Alignment . 160
8.2.2 Directed Search Heuristics . 161
8.2.3 Search Methods . 162
8.2.4 Sphere Tree Representations . 163

8.3 Conclusions . 163
8.3.1 Scoring, Searching, and Screening 165
8.3.2 A Strategy . 166

A Fundamentals of Protein Structure 171

A.1 Introduction . 171
A.1.1 Primary Structure . 172
A.1.2 Secondary Structure . 173
A.1.3 Tertiary Structure . 174
A.1.4 Quaternary Structure . 174

A.2 Protein Behaviour and Interactions . 174
A.2.1 Folding . 174
A.2.2 Binding . 174
A.2.3 Structure Identification . 175
A.2.4 Biochemistry . 176

B FFT Tesselation Test 177

B.1 Implementation . 177
B.1.1 Background . 177
B.1.2 Interface . 178
B.1.3 Testing . 180
B.1.4 Extension . 182

B.2 Gradual Refinement Algorithm . 183
B.2.1 Pipelined Architecture . 183
B.2.2 Development . 184

C Dotty Surfaces 187

C.1 Motivation . 187

C.2 Method . 188

D XScore Calibration 191

D.1 Training Cases and Function Data . 191

E Test Configurations 195

E.1 Molecule Test Cases . 197
E.1.1 1AF2 . 197
E.1.2 1K3U . 197
E.1.3 The Astex Diverse Set . 199
E.1.4 The Astex Mini Set . 200

E.2 Hardware Platforms . 200

E.3 DOX Editions: Strategies and Codes . 201

6

Contents

F Technical Implementation Details 203
F.1 Operational Overview . 203
F.2 Ligand Conformation Containers . 207
F.3 Search Methods . 207
F.4 Pre-Positioning . 208
F.5 Scoring Functions and Ligand Contexts . 210
F.6 Molecular Knowledge Bases . 212

F.6.1 File-Based Implementation . 212
F.6.2 Ideogen: Standalone Server Utility 214

F.7 Learnable Properties and Syllabi . 214
F.7.1 Syllabus Configuration and Use . 217

F.8 Job Control and Parallel Execution . 217
F.8.1 Distributed Job Processing . 218
F.8.2 Sample Execution Sequence . 223

References 227

List of Tests Performed 245

Index 247

7

List of Symbols and Abbreviations

Editions of the DOX software, testing various stratagems from this
thesis, are denoted by boxed mnemonic codes in this document.

A table describing these is given in Table E.3 (p.202).

3D Three dimensions/dimensional . 19

Å Angstrom
(length unit = 10−10m = 0.1nm) . 19

FFT Fast Fourier Transform
(algorithm) . 36

GA Genetic Algorithm
(search method) . 36

HAC Heavy Atom Count
(molecular size property = number of non-hydrogen atoms) 98

LUT Look-Up Table
(pre-calculated data structure) . 65

MD Molecular Dynamics
(modelling technique) . 39

MKB Molecular Knowledge Base
(data storage) . 143

MOL2 Tripos Mol2 file
(molecular file format) . 213

NMR Nuclear Magnetic Resonance
(imaging method) . 19

O Order of magnitude
(worst-case complexity notation) . 89

PASS Putative Active Sites with Spheres
(pocket detection method) . 96

PASTRY Pocket Alignment with Spheres and Thin Radial Yokes
(shape descriptor/alignment method) 107

PDB Protein Data Bank
(structure repository and molecular file format) 19

PIECE Pocket Identification by Encroaching Cubes for Efficiency
(pocket detection method, derived from PIES) 95

PIES Pocket Identification by Encroaching Spheres
(pocket detection method) . 87

PLP Piecewise Linear Potential
(scoring function) . 61

PRM Probabilistic Road Map
(search method) . 46

8

List of Symbols and Abbreviations

RCD Rigid Cluster Decomposition
(molecule analysis) . 41

RMSD Root-Mean-Square Deviation
(displacement measure) . 19

SA Simulated Annealing
(search method) . 38

SAS Solvent-Accessible Surface
(molecular boundary) . 24

SDF Structure-Data File
(molecular file format) . 144

TCMD Traditional Chinese Medicines Database
(structure repository) . 19

USR Ultra-fast Shape Recognition
(shape descriptor) . 29

VdW Van der Waals
(atomic radius/interaction) . 24

XML Extensible Markup Language
(structured data format) . 178

ZINC ZINC Is Not Commercial [Is Not Commercial...]
(structure repository) . 19

9

List of Figures

1.1 The human recombinant beta-secretase protein with a ligand proposed as a
treatment for Alzheimer’s disease (PDB code 2HM1) 18

2.1 Three molecular structure representations . 23
2.2 Four molecular surface definitions . 25
2.3 One slice from a possible spatial occupancy grid for water (H2O) 36

3.1 Efficient collision detection using the roots of dual-concentric sphere trees . . 55
3.2 Abstract data structure for bonded sphere trees 56
3.3 Illustration of a simple molecular bonded sphere tree with three levels 56
3.4 cSpheres interface for building and testing sphere tree representation 58
3.5 Two molecules juxtaposed manually in cSpheres 58
3.6 3D view of a sphere tree in cSpheres . 58
3.7 Potential functions used by PLP and XScore . 61
3.8 Abstract form of a general docking process . 63

4.1 The research roadmap, linking the stratagems and practical applications . . . 76
4.2 Sample result graphs illustrating assessment criteria 80

5.1 Comparison of quaternions with Euler angles for rotation representation,
showing the improved speed and results when using quaternions 86

5.2 Grid-based concavity measure used by PIES 88
5.3 PIES-5-3-7 pocket detection analysis of 1AF2 protein 88
5.4 Detail of 1AF2 active site as identified by PIES-5-3-7 showing native ligand

pose . 89
5.5 Effects of PIES parameters on processing Astex Diverse Set, comparing

calculation times and accuracy of results, marking the combination selected
for normal use . 93

5.6 Quantitative assessment of PIES parameters’ effects, showing the best
combinations and the selected option . 94

5.7 Diagram showing placement of PASTRY onto PIES, including the alignments
interpolated to generate poses . 95

5.8 Comparison of pocket detection methods’ rankings of the correct active site
in Astex Diverse Set cases, showing the higher success rates of PIES and PIECE 98

5.9 Pocket detection calculation times relative to molecule size, validating the
complexities of the PIES and PASS algorithms 99

5.10 Comparison of configurations from Table 5.1 for pre-positioning ligands in
predicted pockets, showing similarity of docking time and results 100

5.11 Search boxes automatically generated for 1AF2 using PIES-5-3-7 and
PASS-8-1.8-55 in combination . 101

5.12 Automatic search box docking results, demonstrating benefit of pocket
prediction when docking without user direction 103

5.13 Comparison of search narrowing parameters, showing shorter run times
using quick and maximal use, but better result reliability when retaining
more boxes . 105

5.14 Construction of yokes in PASTRY shape descriptor 107
5.15 Graphical representations of USR and PASTRY shape descriptors for the

ligands of the Astex Mini Set . 109

10

List of Figures

5.16 Ranking of Astex Mini Set pairs by similarity using both USR and PASTRY
demonstrating by symmetry of pattern the agreement between the methods’
results . 110

5.17 Alignment of one USR descriptor to another by collimation of extremities . . 111
5.18 Ensembles of 100 pre-aligned poses of 1AF2 using PASTRY and USR showing

range and diversity of placements . 112
5.19 Accuracy of pre-alignment methods when generating poses based on prior

knowledge, showing superior proximity to crystal structure using PASTRY . . 113
5.20 Comparison of configurations from Table 5.3 for pre-alignment of ligands

based on prior knowledge, showing similarity of docking time and results . . 115

6.1 Comparison of local optimization periods in a Lamarckian GA, showing
the balance between time cost and improved results, and particularly the
demerit of not optimizing the final population 121

6.2 Assessment of frequent local optimization versus more GA generations,
showing better selectivity and time of longer searches with fewer optimiza-
tions . 122

6.3 Effect of LUT stratagems on docking time and result accuracy, showing
benefit of interpolation and little effect of caching 124

6.4 Caching statistics showing coverage of LUTs when docking with XScore . . . 126
6.5 Scoring threshold rejection behaviour, showing the threshold’s effect on the

number of poses discarded after each ligand atom, the smoothing effect of
prioritization, and the truncating effect of limited rejection 130

6.6 The linearly proportional effect of scoring thresholds on docking time using
prioritization and/or rejection . 131

6.7 Effect of early rejection using scoring thresholds on docking time and results,
showing improved accuracy and longer time at larger thresholds 132

6.8 Effect of early rejection using scoring thresholds and atom prioritization on
docking time and results, similar to the unordered examples of Figure 6.7 . . 133

6.9 Effect of increasing pose merging similarity thresholds in a search method,
with the resulting increase to docking time but limited improvement in results 136

6.10 Illustration of result collection during quota-based early rejection and the
definition of the worst-case score . 138

6.11 Effect of quota size in quota-based rejection on docking time and accuracy,
highlighting conformational bias of smaller quotas 141

7.1 Comparison of single file and MKB implementations, and learning proce-
dures, showing improved docking accuracy and time with the new design . 146

7.2 Thorough multi-target comparison of docking time and results for SDF and
MKB molecular storage, confirming quicker execution and equivalent results 147

7.3 Relationship between ligand size and docking time improvement using
MKB storage: time only increased for some of the smallest molecules 147

7.4 Effect of simple job priority parameters on docking time and results using a
single processor thread, showing the slight speed-up with sufficiently many
jobs . 152

7.5 Architectural overview of OrthoDOX parallel docking 154
7.6 Effect of distributed parallel processing on docking time, using configura-

tions from Table 7.2, confirming the expected inverse proportion to processor
count . 155

7.7 Effect of distributed parallel processing on docking results, using configura-
tions from Table 7.2, showing comparable result quality from all arrangements 156

11

List of Figures

8.1 Comparison of 20 strategies derived from this thesis, showing their relative
merits for speed and accuracy . 158

8.2 The research roadmap of stratagems, as explored by this thesis 166
8.3 Quantitative comparison of strategies, offering a crude preference ranking . . 167

A.1 Amino acid structure . 172
A.2 Backbone linking . 172
A.3 Alpha helix bonding . 173
A.4 Beta sheet bonding . 173

B.1 Original Java user interface for FFT docking program 179
B.2 Updated Java user interface for pipelined docking, showing gradient

descent refinement in progress . 186

C.1 Molecular volume components . 187
C.2 Clipping surfaces between atoms . 189
C.3 Random surface dots in cSpheres, without interior removal 190

E.1 Ligand and docked structure of 1AF2 . 198
E.2 Ligand and docked structure of 1K3U . 198

F.1 UML overview of all major classes in the DOX system 204
F.2 Ownership relationship between classes used by search methods, and the

corresponding GA classes used in their implementation 208
F.3 File-based implementation of molecular knowledge bases, showing the

stages involved in the entry update cycle . 213
F.4 Containment relationships between the classes used by the learning system . 217

12

List of Tables

3.1 Weighting coefficients for XScore function . 63
3.2 Nested loop composition of a general (naive) docking process 64

5.1 Pre-positioning configurations for pocket placement tests 100
5.2 Comparison of USR and PASTRY calculation times 108
5.3 Pre-positioning configurations for pre-alignment tests 114

6.1 Effect of LUT parameters on calculation and caching times 127

7.1 Learnable molecular properties implemented in DOX 149
7.2 Job Manager configurations for parallel docking tests 154

8.1 Default parameters as used for the large-scale comparison in Figure 8.1 . . . 157

A.1 The alpha amino acids . 172

B.1 Timing data for Java vs. C++ FFT execution . 181
B.2 Original scoring function for FFT algorithm . 182
B.3 Algorithm parameters and results for Java/C++ FFT implementation 182

E.1 The Astex Diverse Set of receptor-ligand complexes 199
E.2 Hardware configurations used for testing . 200
E.3 The editions of DOX and the stratagems enabled in each 202

F.1 Command line parameters for OrthoDOX with summary descriptions. 205
F.2 Education kinds and specification string patterns for use in syllabus files and

pre-positioning ‘align’ entries . 216
F.3 Instructions that a Controller can send to Managers 220
F.4 Messages that Managers can send to the Controller 221

13

List of Listings

3.1 Construction of SpatialOccupancy data . 67

5.1 PIES pocket detection algorithm outline [part 1 of 2] 90
5.2 PIES pocket detection algorithm outline [part 2 of 2] 91
5.3 Multi-box search narrowing algorithm outline 102

6.1 Lamarckian Genetic Algorithm outline, showing local optimization stage . . 118
6.2 Nelder-Mead simplex optimization algorithm outline 119
6.3 Piecewise linear interpolation algorithm . 123
6.4 Scoring-based early rejection algorithm outline 128
6.5 Pose merging algorithm outline . 135
6.6 Quota-based rejection algorithm outline . 139

B.1 FFT correlation alignment algorithm . 181
B.2 Gradient descent pose refinement algorithm 185

E.1 GA search method configuration file . 195
E.2 XScore scoring function configuration file . 196

F.1 Transcript of DOX output when redocking 1LRH 206
F.2 Pre-positioning configuration options . 209
F.3 Example transcript of Ideogen MKB server program 215

14

Acknowledgements

Any project of this nature is dependent on many people, both directly and indirectly. I am
grateful to all those who have helped me in the last four years, even if simply with their
friendship. Since attempting to list everyone would inevitably omit someone, I refrain
from an absurd fawning roll-call here∗, and mention only a significant few:

My great supervisory double-act —
Dr. Stephen Cameron (who took me on despite three years as my
undergraduate tutor) and
Dr. Irina Voiculescu (who was largely responsible for my original
arrival in Oxford);

InhibOx Ltd. for funding, facilities, and conversations over coffee;
Ben Fellows and Colin Gray for accommodation and encouragement;
Martin Esslin, Anthony O’Reilly, and TAFF for healthy distraction;
My family for unflinching support;
Rex and Pépe for entertainment; and
Carolina Johnson, my wife, for everything.

∗ I could offer an example from the references, but this margin is too narrow to contain it.

15

Chapter 1
Introduction

“Begin at the beginning,” the King said, very gravely, “and go on till you
come to the end: then stop.”

‘Alice’s Adventures in Wonderland’, Lewis Carroll

1.1 Biochemistry

The study of proteins is a significant field for chemistry, biology, and other sciences

because of their central importance to the human body. These large (thousands of atoms)

molecules have a clear structure: a backbone chain of amino acids folded into a stable

globular arrangement. They can be found in many of the physiological systems: keratin

is the principal component of skin and hair, myosin is required for muscle contraction,

myoglobin transfers oxygen to muscles for respiration, and haemoglobin carries that

oxygen in red blood cells. About 99% of the protein ingested as food is retained for

use in the body, of which they comprise around 20–30%. An explanation of some basic

protein terminology is given in Appendix A (p.171); see also [Branden & Tooze, 1999;

Berg et al., 2002].

Unsurprisingly, these molecules are often a major factor in the cause and effect

of diseases. They can become damaged, their balance with other molecules can be

upset, or foreign proteins (such as viruses) can interfere with normal activity. For

example, the human recombinant beta-secretase protein is a cleaving enzyme, an

overabundance of which is a cause of Alzheimer’s disease. Many other diseases have

had proteins identified as pharmacological targets, including Huntington’s, Parkinson’s,

cystic fibrosis, and some cancers [Soto, 2001]. Consequently, investigating their

behaviour and interactions — and how these may be influenced — is a major topic of

medical research.

17

Chapter 1. Introduction

Grey/Green: Carbon Red: Oxygen Blue: Nitrogen
Yellow: Sulfur Cyan: Fluorine

Receptor

Ligand
Docked

Figure 1.1: The human recombinant beta-secretase protein with a ligand proposed as a
treatment for Alzheimer’s disease (PDB code 2HM1)

1.1.1 Drug Discovery

Many drugs are now understood to work by delivering ligands (small molecules) into

the body that chemically bind with the problematic protein, interrupting the undesirable

behaviour [Lybrand, 1995]. For example: a potential treatment for Alzheimer’s

by inhibiting the beta-secretase protein is under development [Freskos et al., 2007].

Figure 1.1 shows the molecular structures as space-filling atomic spheres, with the

proposed ligand (isophthalate hydroxyethyl amine) bound in place. Identifying suitable

ligands and developing them into pharmaceutical compounds like this is called rational

drug discovery. There are three significant questions to be considered when assessing

potential ligands: can it bind, how does it bind, and what effect does it have once bound?

The first two are particularly suited to computer modelling in silico, since pursuing

them by laboratory experiments in vitro (in glass (test tubes)) is extremely costly, and

experimenting in vivo (in the body) without prior research is obviously unacceptable.

The rapid improvement of information technology through recent decades has

facilitated the development of computational chemistry. Software models of molecules

18

1.1. Biochemistry

have been devised, and these may be shared, studied, and used to simulate chemical

properties. Techniques such as x-ray diffraction and nuclear magnetic resonance

(NMR) imaging can reveal the physical arrangement of atoms. The ability to visualize

simply this three-dimensional (3D) shape is of great use for understanding a molecule.

However, it is the scope for algorithmic analysis which provides most interest, and

computerized structural calculations have been used for more than 30 years [Bourne &

Weissig, 2003; Richards, 2007]. Today, this is supported by the prevalence of publicly-

accessible repositories such as the Protein Data Bank (PDB) [Bernstein et al., 1977,

www.pdb.org] with over 50000 entries, ZINC Is Not Commercial [Irwin & Shoichet,

2005, zinc.docking.org], and the Traditional Chinese Medicines Database (TCMD)

[Kan et al., 1996].

The search for ligands that could bind to an identified target is often now performed

by computer, using high-throughput virtual screening. This refers to the processing of a

database of ligand-like molecules — perhaps millions — and attempting to place each in

a stable arrangement bound to the protein. Exploring these positions is called docking to

a receptor, and the relative geometry of a docked ligand is called a pose.

Poses can be compared quantitatively: for two positions of the same ligand, the root-

mean-square deviation (RMSD) is widely used as the measure of how close they are:

RMSD(A, B) =

√
1
n

n

∑
i=1

|ai − bi|2

where the pose A = {a1, a2, . . . , an}, the ai are the vectors of the atomic centres, and

pose B is similarly defined. When performing a docking for which a naturally-occurring

(or native) bound pose is known, an RMSD of 2Å (2×10−10 m) from that is generally

considered to be an acceptable result, with 1Å being very good.

This application of computers to the problem of rational drug discovery — filtering

possible inhibitor ligands before synthesis in the laboratory — is a proven science.

Approved medicinal compounds, such as the human immunodeficiency virus (HIV)

treatments Viracept and Sustiva and the influenza drug Zanamivir [von Itzstein et al.,

1993], have already been developed using these structural tools. Before computer

modelling was introduced to the field, the preliminary research to identify and develop

a new drug candidate would typically take 15 years [Lunney, 2001]. Virtual screening

19

Chapter 1. Introduction

is now a standard tool for pharmaceutical research [McGaughey et al., 2007], and

continues to improve as computational power increases. In order to leverage massive

processing power, several public projects have used screensavers to distribute molecular

modelling tasks across the world: FightAIDS@home, Folding@home, Rosetta@home, and the

Cancer Screensaver Project (which also studied anthrax [Richards, 2002]) being notable

examples.

Protein-ligand docking for high-throughput virtual screening remains an active area

of interest, and has the potential to reduce further the time and financial cost of bringing

new medicinal drugs to widespread availability [Lunney, 2001; Leach et al., 2006].

1.2 Computer Science

Computer science can offer a different perspective on the existing techniques and

tools, perhaps contributing new approaches to the problem of molecular modelling

and docking in particular. Whilst the task may be concerned with microscopic objects,

there are parallels with more readily visualized situations, and this appeals to the

overarching field of spatial reasoning. Indeed, parallels can be drawn with robotics

for motion simulation, as reviewed in [Parsons & Canny, 1994]. Besides geometry,

though, general principles from pure computer science can be relevant to bioinformatics,

offering refinements to the way molecular data are processed while still making use of

established, proven methods.

Ligand docking is an ideal application for computational modelling because the

combinatorial search required to find optimal alignments of even rigid bodies is

massive. Although the issue of representation — how to describe chemical phenomena

mathematically so that poses can be evaluated — is central, it must be surrounded by

the question of what to do with those models once designed. That is a broad algorithmic

problem with many general features worth studying, and is the subject of this work.

Certainly, there are some things that I do not propose to do here. Devising

new models of molecular interaction would require a more detailed understanding

of biochemistry. Comparisons of existing methods are useful (some are referenced in

Chapter 2), but others would be better-placed to contribute them. Developing and/or

20

1.2. Computer Science

applying new search algorithms to the problem of molecular docking could improve

efficiency, as could introducing more sophisticated behaviour for adaptively varying

the search parameters or scope according to the contextual requirements and data.

These possibilities are discussed in §8.2.3 (p.162), but investigating a new search method

properly was beyond the available timeframe for this work. A related problem is that

of how to represent molecular flexibility in (for example) a hierarchical pattern and use

this for interaction simulation. Although I briefly study this in §3.2 (p.54), it has not been

pursued with a detailed exploration, making way for the wider scope of investigation

discussed instead.

1.2.1 This Thesis

The plan for this thesis was not to build an entirely new system for protein-ligand

docking. It was to take a contemporary tool as an example, dismantle it to identify

the significant aspects of its operation, and then try to reassemble the parts with

improvements into a more efficient form. As a result, this work aims to demonstrate

how a range of techniques and principles can be applied to virtual screening software in

general. Chapter 3 (p.53) makes some abstractions about docking for virtual screening,

providing a framework in which important features can be identified. This can also

help to understand the components of such systems, clarifying the parts to be refined

by strategic processing designs. Chapter 4 (p.69) then introduces stratagems for this

purpose, discusses their relationships, and outlines the sequence in which they were

originally devised and developed for application.

This work considers several aspects of docking program design, ranging over all

levels of the problem from scoring function evaluation up to search method management,

with the topics collected into three parts:

Geometric Guidance (Chapter 5) studies the representation of molecular shapes and their

applications for guiding docking searches.

Efficient Exploration (Chapter 6) considers how best to perform these searches, and in

particular how to avoid unnecessary work.

Properties, Priority, and Parallelization (Chapter 7) discusses the separation of docking pro-

cedures into independent units, their distribution for efficient processing, and how

information might be gathered about them to learn from previous results.

21

Chapter 1. Introduction

All the suggested techniques presented in those chapters have been implemented in

a commercial docking tool, DOX (introduced in §3.4 (p.64)). The principles encapsulated,

however, are not specific to that system. Any existing or future molecular modelling tool

for virtual screening could reasonably take advantage of the methods espoused here,

supporting biochemistry research with efficient, effective computation.

22

Chapter 2
Literature Review

Any man who reads too much and uses his own brain too little falls into lazy
habits of thinking, just as the man who spends too much time in the theatres
is apt to be content with living vicariously instead of living his own life.

Albert Einstein

This chapter presents a survey of the field of molecular computation, and protein

modelling in particular. It is a broad overview of recent and established work, with a

focus on docking tools in preparation for my own foray into that area.

2.1 Molecular Representation

All computational biochemistry relies, to some degree at least, on a representation of the

molecule(s) being studied. Depending on the particular focus of investigation, the precise

data required may vary, and so there have been several different methods proposed. The

simplest is the ball and stick model: this is based on the chemistry teacher’s visual aid of

small hard spheres representing atoms connected by thin rigid rods or springs. A cross-

sectional ball and stick diagram of a water molecule is shown in Figure 2.1a. Since this

is a direct analogy of currently-understood molecular physics, it is often taken as a basis

from which other representations are formed. One common variation, known as space-

filling, uses the atomic (or other) radii to draw solid spheres, overlapping where they

bond. Several models are developments from this, including those mentioned below.

(a) Ball and stick (b) Dot surface (c) Surface patches

Figure 2.1: Three molecular structure representations

23

Chapter 2. Literature Review

An excellent review of many common modelling designs may be found online

[Connolly, 1996]; this includes details of 3D graphical output programs, links to

organizations producing the work referenced, and summaries of known applications of

the techniques described. More recent reviews discuss general shape representations

[Putta & Beroza, 2007] and the use of pharmacophores [Leach et al., 2010].

Connolly is a significant figure in the field, having contributed the dot surface

representation [Connolly, 1983a] for calculating the external boundary of a molecule.

This is a solvent-accessible surface, i.e. it is a shell of points around the molecule whereby

a sphere (representing the solvent) may make contact with any such point without being

penetrated by any other. Figure 2.1b shows a sketched projection of the dot surface for

water. A simple description of the construction algorithm and methods of displaying the

surface graphically are given in [Connolly, 1983b].

An extension of Connolly’s method was developed by [Lin et al., 1994]. This used the

dots generated by the existing algorithm to identify critical points on the surface and the

patches around them, categorized according to their approximate shape (convex, saddle,

etc.), thus simplifying the model. In Figure 2.1c, the light grey patches are caps, the dark

grey areas are belts (saddles), and the black regions are pits.

Since atoms are not solid, but a cloud of electrons around a central nucleus, defining

their surface (and hence a molecule’s) is a problem with several solutions. Figure 2.2

shows three common surface definitions, all based on the Van der Waals (VdW) radius.

This is the contact distance between atoms of the same element, and so provides a good

basic notion of the size of an atom. The solvent-accessible surface (SAS) is often used for

interaction because it allows for the fact that some crevices are too small to be useful in

docking (§2.3.2 (p.32)). It is defined as all points corresponding to the centre of a probe

sphere in contact with the VdW surface. The smooth molecular surface is similar to the

SAS, but using the probe’s boundary instead, leaving a more rounded contour where

atomic interactions are likely to occur.

An alternative geometric representation, based on Delaunay triangulation, is given

by the alpha-shape algorithm [Edelsbrunner & Mücke, 1994]. This allows a surface to be

built from triangles around the molecule, with a parameterized approximation, and has

been used for identifying significant features in the shape of a protein’s surface.

24

2.1. Molecular Representation

Van der Waals surface: equal to union of
atoms’ VdW spheres

Solvent-accessible surface: determined by
probe spheres rolling on VdW surface

Smooth molecular surface (with probe
spheres)

Smooth molecular surface (re-entrant
sections emphasized)

Dark grey shading indicates the interior of the molecule

Figure 2.2: Four molecular surface definitions

It is sometimes useful to identify the secondary structure (regular patterns discussed

in §A.1.2 (p.173)) of a protein, as well as its surface, perhaps for noting the less flexible

sections of its backbone. One program for such analysis is JOY [Mizuguchi et al., 1998],

which takes data from the PDB and annotates the residues that form alpha helices, beta

sheets, hydrogen bonds, or are accessible to solvents. It can also align common sequences

of residues between two proteins.

Depending on the application for which a model is used, the geometric arrangement

of atoms and the outer boundary of a molecule may well be insufficient for any useful

results to be obtained. If a representation is to be physically and dynamically accurate,

it must incorporate some element of the interactions between particles, as well as the

attributes of the atoms themselves. Bonds between atoms (the stick in ball and stick) can

take several forms, each of which has properties such as strength, torsional constraints,

and elastic limits. These bonds introduce significant constraints to the molecule, which

are often critical to the understanding of a dynamic system.

25

Chapter 2. Literature Review

A review of early molecular modelling software is given by [Cohen et al., 1990]. Two

of the earliest programs developed for analysing these forces in detail were AMBER in

the 1970s [Case et al., 2005] and CHARMM [Brooks et al., 1983; Brooks et al., 2009], but

these were preceded by a method reported for refining structural data by force field

calculations [Levitt & Lifson, 1969]. They have been reused as calculation bases for other

frameworks, such as NAMD [Phillips et al., 2005].

Adaptations of Newton’s methods have also been tried, with some success. An

example, with discussion of progress and potential work, is [Ponder & Richards, 1987];

many of the other refinement articles mentioned later in this document include or

cite similar minimization approaches. More recently, methods such as the Mining

Minima Optimizer [Head et al., 1997] and Convex Global Underestimator [Foreman

et al., 1999] have emerged to improve the reliability of calculations founded on

energy considerations. A further recent development of these has been the Iterative

Convex Quadratic Approximation minimization algorithm [Marcia et al., 2005], which

is designed to cope with many local minima successfully.

Hierarchical Representations

When considering the flexibility of a molecule, in particular when rigid regions have

been identified and locked, it is helpful to represent the structure in a hierarchical or

multi-scale form. This prioritizes the modes of flexibility according to their likelihood

and range, keeping the rigid regions together as leaves of the tree. The generation of

such a tree may be done using a decomposition method such as in FIRST [Jacobs et al.,

1999], or using a simpler atom clustering technique such as the k-means reduced point

method [Glick et al., 2002a; Glick et al., 2002b].

When exploring molecular conformation space, Monte Carlo methods can be

initialized using information about protein domains to improve their efficiency. This

allows some hierarchical information to be used for simplifying simulated annealing

calculations [Maiorov & Abagyan, 1997].

Folding prediction can also be helped by such multi-scale methods by incrementally

building stable units and composing those in turn. The applicability of multi-scale

methods to molecular simulation is wide; a general framework in which to build such

26

2.1. Molecular Representation

systems is the MMTSB Tool Set, which allows existing force fields, models, and other

simulation scripting programs to be combined with a hierarchical architecture [Feig et al.,

2004]. Even grid-based calculation methods can have multi-scale principles applied,

where both long and short range factors are combined [Skeel et al., 2002].

Another use for hierarchical representations is the comparison of molecular shapes.

The removal of fine detail at intermediate levels allows more generalized shape

descriptions to be matched [Sharf & Shamir, 2004].

Quantum Physics

In addition to geometry and dynamics, the minute scale of the systems under

consideration means that quantum effects may not be negligible. This is an aspect

of molecular modelling that seems to have remained a speciality, and not commonly

incorporated into applications. Most software algorithms developed for protein

modelling tend to ignore quantum behaviour, since it is hard to solve and possibly

of uncertain relevance. However, it has been argued [Miller, 2005] that it is unsafe to

dismiss these issues without consideration, and there are some tools in existence which

do provide for quantum calculations in protein modelling [Peters et al., 2006; Raha et al.,

2007; Taft et al., 2008; Rosales-Hernandez et al., 2009].

An example of an application of quantum physics to the molecular modelling

problem is the representation of hydrogen bonds. [Morozov et al., 2004] describes the

significance of these concerns to the proper description of hydrogen bonds in the context

of protein structure.

It is suggested that combining quantum and classical mechanical approaches to the

protein modelling problem is a useful direction of enquiry, since it is likely that the

larger-scale interactions may show insignificant quantum effects to be worth the higher

complexity calculations. Hence, hybrid methods have been investigated, and a good

survey of the implementations and the principles at work is [Sherwood, 2000].

An extremely detailed description of Q-Chem 2, an implementation of many

important quantum calculations, is provided in [Kong et al., 2000]. This is a general

package for electronic structure analysis, and not a biomolecule-specific system. Another

27

Chapter 2. Literature Review

program for performing quantum chemistry simulations is GAMESS [Schmidt et al., 1993],

with its associated graphical viewer program QMView. Quantum algorithms such as

these are readily and usefully parallelized, and the advent of the internet and distributed

computing has proved beneficial to scientists using such packages. [Baldridge et al., 2002]

discusses the practicalities of running a system such as GAMESS in a grid architecture.

2.2 Molecular Comparison

An area of study related to molecular representation is structural comparison. If two

molecules have been stored in some computer-based description, it may be useful to

have some measure of their structural similarity. This could be measured at the primary

level using common subsequences of amino acids, or at higher levels with (for example)

duplicated groups of helices. This may be useful for identifying families of proteins

with common functional behaviour or ligand binding affinities. In theory, two proteins

sharing a significant proportion of their primary or higher-level structure will have a

relatively recent evolutionary ancestor, and so should have more in common than two

completely dissimilar molecules. For a selection of practical examples demonstrating the

relevance of structural likeness, see [Orengo et al., 1999; Eckert & Bajorath, 2007].

Comparative techniques can assist with the folding problem (§2.3.1 (p.30)). If one

structure is known in detail, and another protein is known to have a significantly

similar primary structure, then there is a likely and useful starting point for the physical

conformation search. This is explored in [Sánchez & Šali, 1997].

Restricting the structure comparison to a small section of a molecule can provide a

useful tool for the docking problem (§2.3.2 (p.32)). By using a comparison algorithm to

test the similarity of one molecule with the inverse of another (i.e. the complement of its

spatial occupancy), the suitability of the two geometries for binding may be assessed.

This is based on the assumption that ligands can only dock where there is sufficient

geometric complementarity, like a jigsaw puzzle. An implementation of this, using

techniques from computer vision and geometric hashing, is given in [Fischer et al., 1993b].

A more recent geometric hashing method, based on neighbouring triples of atom types,

is that of [Kinnings & Jackson, 2009].

28

2.3. Protein Structure Prediction

A genetic algorithm for the comparison of Connolly dot surfaces is presented in

[Poirrette et al., 1997], using mostly geometric alignment with some hydrogen bond

comparisons to rate the placement of a trial surface. Small molecule shape descriptors

which can be used to compare ligand shapes include spherical harmonics [Ritchie, 1998;

Ritchie & Kemp, 1999; Morris et al., 2005] which have also been used for docking

[Mavridis et al., 2007], the Ultra-fast Shape Recognition (USR) method [Ballester &

Richards, 2007], and the Gaussian functions and histograms presented in [Kazhdan,

2004].

A popular structure comparison engine is the Dali system, developed at the European

Molecular Biology Laboratory. This provides both an interactive web server and an email

server for receiving a protein structure (as a set of atomic coordinates) and comparing it

with all the molecules in the PDB to return a list of close relatives. The algorithm is based

on pairwise distances between alpha carbons, using statistics from empirical findings

to weight the combinations. For a full explanation of the methods employed and some

protein family trees, see [Holm & Sander, 1993]; a more succinct summary of Dali’s uses

is given in [Holm & Sander, 1995].

The algorithms used by the Dali server have been incorporated into a stand-alone

program of use for simple comparisons between two molecules, returning a result file

showing the common sections of the backbones and a score indicating the closeness of the

match. This program (which is also available as an online web interface) is called DaliLite

[Holm & Park, 2000; Holm et al., 2008]. The Dali team also produced a summary of three

distinct methods (Suppos, Comp3D, and Dali) for structure comparison, and described

some useful published datasets of protein groupings [Holm et al., 1992]. These were

generated from the PDB by a combination of these three programs.

2.3 Protein Structure Prediction

There are two major fields of computational research concerning proteins: structure

prediction and automated docking. Both have been active areas of work for several years,

and there are several organizations and facilities in place to support their development.

Most notably, the Protein Data Bank (PDB) [Bernstein et al., 1977; Berman et al., 2000]

29

Chapter 2. Literature Review

has made a large repository of existing protein structure data publicly available, with

facilities for indicating the motifs of secondary and tertiary structure, other atoms

involved in mediating hydrogen (or other) bonds, and notes concerning possible flaws

and other details regarding the information. All these data are provided in a number of

formats which may be parsed easily, and have been adopted by many protein structure

based projects as a standard method for data transfer.

To aid the assessment and development of new methods in computational biochem-

istry, international meetings of researchers have been organized to demonstrate and

compare results in a friendly competition environment. The most relevant of these are

the Meeting on Critical Assessment of Techniques for Protein Structure Prediction (CASP)

and its sibling Critical Assessment of Predicted Interactions (CAPRI) [Wodak & Méndez,

2004]. Many of the methods that have been introduced have reported on their results

from these events, which helps to give an impression of their success and a reference

point for comparison.

An indication of the importance of proteins as a sphere of study may be found

in [Burley, 2000]. This cites developments in crystallographic imaging techniques,

along with achievements such as the Human Genome Project [Collins & McKusick,

2001], as examples of important work that demands continued effort to develop their

benefits. An excellent and extensive review of computation projects from all aspects

of protein modelling is given in [Xu et al., 2000]. A recent review, reporting from a

pharmaceutical conference, is [Snow, 2008]. Assessment of protein structure models for

folding prediction is discussed in [Kihara et al., 2009].

2.3.1 Native Structure Prediction — The Folding Problem

The fold of a protein — the geometric conformation of the chain of backbone bonds in the

molecule — is of interest in bioinformatics because it can be used to identify classes of

proteins with similar function and/or behaviour (especially with regard to docking). In

addition, an understanding of how proteins fold into their native conformation can help

to analyse how and why they may fold incorrectly on occasion. Malformed proteins are

known to be a cause of several debilitating diseases [Soto, 2001], and the role of folding

prediction for drug discovery is discussed in [Grant, 2009].

30

2.3. Protein Structure Prediction

The study of how proteins fold has been ongoing for around half a century. The

development of tools such as nuclear magnetic resonance (NMR) and facilities such as

the PDB have undoubtedly helped to sustain and propel this research, but the advent of

computer technology for automating the prediction methods being proposed has been a

significant step forward. It has been noted [Honig, 1999] that the prediction of protein

structure is not the same as understanding how it folds, but that these are related. The

former may be helped by the latter, but this is not the only means of determining a

protein’s atomic layout.

In 1999, the Current Opinion in Structural Biology journal included a section describing

the latest understanding of native protein structures. The editorial reviews the work

done, and summarizes the basic principles of folding [Dobson & Ptitsyn, 1999]. The

following article in the same journal gives a much more detailed description of the topics

and summarizes the Levinthal Paradox, the motivation for developing algorithms for

folding other than naive combination evaluation [Dobson & Karplus, 1999].

Two significant theories in the biochemical folding problem are directed pathways

(funnels in the intramolecular energy landscape [Bryngelson & Wolynes, 1987]) and

chaperones (molecules present in the environment that guide the protein as it folds

[Ellis & Hartl, 1999; Hardesty et al., 1999]).

A review of computer algorithms for predicting protein folds, and in particular the

sources of error in such methods, may be found in [Finkelstein, 1997]. A diverse range of

techniques have been tried, including Markov models [Karplus et al., 1998; Karplus et al.,

1999], Monte Carlo potential constraint simulations [Kolinski & Skolnick, 1994; Skolnick

et al., 1997], and the prediction of likely geometry using empirical knowledge based on

recognized peptides [Baker, 2000]. Recently, methodology from machine learning has

been applied to a scoring-based system of string kernels [Rangwala et al., 2006]: this

report also includes an excellent introduction to the essential aspects of folding and

structure prediction. These reviews are updated by [Dill et al., 2007; Chen et al., 2008;

Dill et al., 2008].

The folding problem may also be reversed: given a desired structure, can an amino

acid sequence be selected that would fold to that shape? This too has been investigated:

a recent thesis describing four algorithms for the purpose is [Hom, 2005]. One potential

31

Chapter 2. Literature Review

benefit of such work is the synthesis of good proteins that might be beneficial to the body

in fighting disease, either by displacement of mis-folded proteins or supplementation of

desirable ones.

2.3.2 Complexed Structure Prediction — The Docking Problem

The prediction of how two molecules might bind together is of great importance in

bioinformatics because many proteins bind ligands as a central part of their function.

For example: haemoglobin is the protein that provides the oxygen carrying capacity of

blood. It shows four domains in the tertiary structure, each of which has a haem group

at the centre, containing an iron atom. The usual ligand, an oxygen molecule, is able

to bond with one of these irons until the blood carries it to a part of the body with low

O2 concentration and it breaks off again [Shikama & Matsuoka, 2003]. In fact, other

molecules can bind to haemoglobin, notably carbon monoxide, which is the cause of

carbon monoxide’s toxicity.

The problem of automated docking prediction is complicated by the possibility that

either molecule may flex as it interacts. To use the haemoglobin example again, the

binding of an oxygen molecule causes a small shift in and around the domain containing

it. As a consequence, the forces present become increasingly favourable for binding as

the haem groups are filled, up to the point where all four are occupied. As oxygen is

removed, the protein returns to its native conformation. This flexibility in proteins (and

ligands) can be critical for binding.

There have been a number of reviews of computational tools for protein docking

prediction. [Jones & Willett, 1995] summarizes the methods, programs, and directions of

research from the time; this is updated by [Lengauer & Rarey, 1996; Taylor et al., 2002;

Smith & Sternberg, 2002], and more recently by [Perola et al., 2004; Kontoyianni et al.,

2004; Leach et al., 2006]. These articles differentiate between protein-ligand and protein-

protein interactions: the principles are similar, but in the latter case the second molecule is

much larger and may have an active site of its own. A review of free tools for all aspects

of computational drug discovery, including website references, is given in [Villoutreix

et al., 2007].

32

2.3. Protein Structure Prediction

One of the central assumptions about docking is that the two molecules must have a

sufficient geometric complementarity to bind: that is, they must fit together physically. If

the surfaces are of completely different topographies, there is unlikely to be sufficient

surface contact to provide a good bond. Early docking prediction was achieved by

manual methods, with the computers providing some form of scoring to assist the human

operator in deciding how to improve a visually aligned pair of molecules. A graphics

terminal would display a simple rendering of the two molecules (typically by their

VdW surfaces), and the user would manipulate one of them until they appeared well

juxtaposed. A very early example without energy calculation is [Busetta et al., 1983]. A

better demonstration of the technique is [Pattabiraman et al., 1985], where the interaction

energy (Coulombic plus VdW) of the complexed molecule is calculated and shown in

real-time to facilitate a more interactive style of alignment.

A relatively recent and novel variation on the manual docking method is introduced

in [Nagata et al., 2002]. This prototype uses force feedback technology to drive a

simulator for ligand docking. The user is again presented with a graphic rendering

of the molecules’ structures, and a joystick (albeit a specially designed one) is used to

move the ligand into position. However, the system calculates the repulsion from the

electrostatic forces between the molecules, and uses this to drive a tactile output in the

joystick. The intention is to allow the operator to discover the optimal binding site for

a ligand by feeling their way around the protein. The prototype system was limited

by available computing power — the graphics and joystick feedback were handled

by separate machines linked by a network — and several areas for improvement are

identified at the end of the paper.

For a thorough exploration of the mechanisms, principles, and methods of protein

docking, set in the context of the PDB see [Jones & Thornton, 1996]. Another review

is [Halperin et al., 2002]; one with particular emphasis on screening drug candidates

is [Kitchen et al., 2004]. Several significant figures from the field contributed an

introductory chapter to a book describing the general process of drug discovery and how

molecular docking is applicable [Lang et al., 2007]. A more general summary is given by

[Morris & Lim-Wilby, 2008], the concluding chapter to a molecular modelling book. For

some recent advances and success stories, see [Song et al., 2009; Villoutreix et al., 2009].

33

Chapter 2. Literature Review

Active Site Prediction

As briefly mentioned above, proteins often exhibit an active site: a particular area of

the molecule where ligands (or some usual ligand) normally bind. This is sometimes

a crevice or other prominent geometric feature, but may also be an area with smoother

shape but favourable electrostatic forces (for example). Identifying the active site (also

known as the binding site) of a protein is likely to help in the assessment of whether

and how a ligand might be docked. For those proteins whose native and complexed

structures are documented, it is sometimes possible to determine the active site quite

simply; using knowledge derived from known structures, predictive methods may be

developed.

Active site proposals can be generated as a side-effect of docking algorithms by

assessing a scoring function with a probe ligand. [Kuntz et al., 1982] gives an example of

this, in the context of rigid geometric docking.

Reviews of active site prediction techniques are given in [Sotriffer & Klebe, 2002;

Campbell et al., 2003; Laurie & Jackson, 2006] with reference to its applications in

the more general docking problem. It can be seen from this that the shape of the

molecule alone is not always sufficient data from which to reliably identify the active

site. Evolutionary tracing — based on functional and structural similarity (§2.2 (p.28)) —

has been used with experimentally determined sites to provide a basis for predicting the

sites on related proteins [Skolnick & Brylinski, 2009]. In addition, empirical data about

the tendencies of certain peptides to be present at binding sites can be used to estimate

probabilities that some section of a backbone is part of the active region [Lichtarge &

Sowa, 2002; Yao et al., 2003]. Alternatively, the understanding of a receptor’s function

in terms of known patterns of peptides folded near the surface can help identify sites

[Wass & Sternberg, 2009].

An earlier algorithm for identifying active sites primarily on the basis of geometry

(using the alpha-shape representation) is given in [Peters et al., 1996]. For a method

that does not consider the biochemistry of the molecules, some very good results were

obtained: the author claims that 95% of the test cases were solved correctly, although

rarely with all atoms involved in binding identified. However, restricting a docking

34

2.3. Protein Structure Prediction

search to a particular region of a protein is a great improvement over a global search,

and so this is still a useful achievement.

Analysis of a molecule’s SAS (see p.24) can identify closed internal cavities, although

this work may not detect open cavern active sites [Alard & Wodak, 1991]. Other

geometric algorithms include the grid-based methods POCKET [Levitt & Banaszak, 1992]

and LIGSITE [Hendlich et al., 1997]. Sphere-based methods exist to provide arguably

more precise results, such as SURFNET [Laskowski, 1995] and PASS [Brady & Stouten,

2000], which stack probes on the molecule’s atoms and identify dense regions of these. It

is often the case that geometry alone can be useful, since the largest cleft in a receptor’s

surface is often the correct one [Laskowski et al., 1996].

A method that starts from geometric data but then refines its search using

hydrophobicity and an atomic interaction scoring function is presented in [Ruppert et al.,

1997]. This places many probe spheres around the surface of the protein, and then

ranks them according to their individual local binding affinity. It then clusters the most

promising scores, and the highest ranked cluster is assumed to be the binding site. A

more recent algorithm for active site prediction integrated with docking is implemented

in the LigandFit program [Venkatachalam et al., 2003].

Geometric Alignment

One of the longest-established rigid docking tools with an automated search is the DOCK

program [Kuntz et al., 1982; Lorber & Shoichet, 1998]. This remains a popular tool

for generating conformations, sometimes used as a starting point for other refinement

studies [Wei et al., 2002]. This was initially a purely geometric method (although in

recent years it has been extended to use many other techniques as well); one of the first

improvements was the ellipsoid algorithm [Billeter et al., 1987]. A near-contemporary

geometric method was developed at Texas A&M University, applying combinatorial

principles to both protein docking and graph clique detection problems [Kuhl et al.,

1986]. A review of five geometric matching algorithms, including Kuhl’s, suitable for

incorporation into the DOCK program (then in its fourth incarnation) was produced by

DOCK’s authors [Ewing & Kuntz, 1997]. This concluded that Kuhl’s work and the single

graph matching method developed from it would be the best route forward for their

rigid approach to the docking problem.

35

Chapter 2. Literature Review

Black circles: true VdW radii of atoms.
White cells: external, zero score for FFT docking;
Dark grey cells: surface coating, positive score;
Light grey cells: buried interior, larger score of either sign.

Figure 2.3: One slice from a possible spatial occupancy grid for water (H2O)

A simple but generally useful geometric method assigns values to cubes of the

molecule’s space in a lattice: positive for the surfaces/boundaries, negative for one

interior, positive for the other, and zero externally. Figure 2.3 illustrates such a matrix

for water. The score for a pose is the summation of the products of overlapping grid

values. The precision of the method is determined by the spatial occupancy matrix: using

more elements for a smaller volume each improves the match between representation

and reality.

The calculation of this function is efficiently implemented with the convolution

operation [Katchalski-Katzir et al., 1992], observing that the inverse Fourier transform

of the product of the Fourier transforms of two input functions is proportional to the

convolution of those two inputs [Papoulis, 1962]. Hence, the well-established Fast

Fourier Transform (FFT) algorithms can be used to implement a rapid version of the

exhaustive search. Some extensions of the method are discussed in [Vakser, 1996; Vakser

et al., 1999]. A more recent validation of the basic procedure is given in [Tovchigrechko

et al., 2002].

Where a complete scoring function is not used over the entire molecular space,

topographical features of the surface are used to reduce the amount of data being

considered. These sections are then aligned, with little regard for other parts of

the structure. One method, applying geometric hashing techniques for improved

performance, is given in [Fischer et al., 1993a]; a more recent variation is the Quadratic

Shape Descriptor [Goldman & Wipke, 2000a; Goldman & Wipke, 2000b]. This method

introduces a scale for assigning continuous real values to the contour shapes of surface

patches, then uses this to compare patches from a protein and a ligand.

Genetic algorithms (GAs) have been investigated as another means of searching

the large combinational space efficiently. The usual approach involves generating

a population of 6-tuples (three rotation and three translation values), scoring the

36

2.3. Protein Structure Prediction

population according to geometric overlap and/or some other function, then breeding

a new generation from the fittest candidates. This process is repeated for a predefined

number of generations, whereupon the highest-ranked surviving candidate is the result.

The AutoDock program [Morris et al., 1998] was originally based on simulated

annealing (see p.38), but has been adapted to use both traditional and Lamarckian GA

searches. Lamarckian GAs use small local searches to refine the scores at each generation.

The KENOBI program uses the motifs of secondary structure to guide such an

alignment, scoring according to the alignment of alpha helices and beta strands

[Szustakowski & Weng, 2000]. Connolly’s dot surface representation was used as the

basis for another program [Gardiner et al., 2001], developed from a GA for surface

comparison [Poirrette et al., 1997].

Geometry is not the sole factor determining a good docking solution, and as such

is not the only direction from which the problem may be approached (although it may

well be the easiest). A more chemistry-oriented method is used in the LIGIN program,

described by [Sobolev et al., 1996]. This algorithm categorizes the atoms in the protein

and ligand using eight labels — hydrophilic, hydrogen-bonding, etc. — and uses a

flexible polyhedron search method to refine many randomly-generated ligand positions

according to both shape and the complementarity of adjacent atom types.

Electrostatics and Dynamics

The original FFT method of [Katchalski-Katzir et al., 1992] was open to improvement, and

a few attempts have been made to extend the procedure to incorporate other factors than

surface contact alone. Electrostatic interaction — the forces of attraction and repulsion

between the atomic charges — is an important consideration in molecular work. A

straightforward solution is shown in [Gabb et al., 1997]: this gives an algorithm whereby

the Coulombic electric field of the molecules is represented in the same manner as

their spatial occupancy for FFT-based convolution. This allows both geometric and

electrostatic alignment to be carried out simultaneously.

A more comprehensive energy function computed over a grid and used with the

FFT method is given in [Mandell et al., 2001]. This combines both the VdW interaction

37

Chapter 2. Literature Review

with Poisson-Boltzmann electrostatics, while accounting for any hydrophobic effects by

weighting VdW terms. The total function is the summation of these. Despite the more

precise energy function, however, the reported results are not significantly better than

those of [Gabb et al., 1997].

ZDOCK is a recent FFT-based program that uses a combined scoring function of

electrostatics, desolvation, and shape complementarity [Chen et al., 2003]. It produced

some reasonable docking results, and is the basis for the RDOCK system (see below).

An attempt to improve the speed of the basic FFT method was proposed, and

implemented as the program Hex, in [Ritchie & Kemp, 2000]. This suggests the use of

spherical polar representations of the molecules, converting the traditional translation

and rotation 6-tuples into a single intramolecular distance and five Euler angles. Most

recently, a system called PIPER has been developed from the original FFT method using

potential-based scoring and eigenvectors for calculation [Kozakov et al., 2006].

An alternative to the FFT for fast grid searching is the use of Boolean operations over

matrices [Palma et al., 2000]. This method only allows geometric considerations in the

grid search, but can exploit low-level bitwise manipulation to find initial alignments to

be ranked using a function incorporating other considerations.

Simulated annealing (SA) is a time-step refinement procedure. A recent docking

program based mostly on SA is HADDOCK [Dominguez et al., 2003]. The two molecules

are placed about 150Å apart, at random orientations. They are then subjected to energy

minimization by rotation alone, then by translation and rotation. This, unusually, was

implemented in the Python scripting language.

Another algorithm for energy minimization is the Mining Minima process [Head

et al., 1997]. This has been used to guide a ligand docking procedure [David et al., 2001],

and further refined to include flexibility into the molecules [Kairys & Gilson, 2002]. This

has produced some very good results.

Explicitly geometric algorithms (such as Fischer’s computer vision method [Fischer

et al., 1993b]) cannot have electrostatics so directly incorporated, owing to the lack of a

grid-based function or universally defined scoring method. In these cases, it is sometimes

useful to use the shape docking technique, and then attempt to refine the result using

38

2.3. Protein Structure Prediction

energy considerations. The RDOCK program [Li et al., 2003] is an example of this: it uses

the authors’ previous rigid docking project ZDOCK to produce initial guesses for docked

conformations, then applies three energy minimization algorithms to each complex,

searching for a better arrangement. Although the original ZDOCK performed well at

the first CAPRI challenge, RDOCK has improved the docking results.

The LigandFit program also uses a grid-based method to identify binding sites

and generate alignments, then refines the possibilities using energy calculations

[Venkatachalam et al., 2003]. The active sites are identified using a flood-filling algorithm,

then the ligand is randomly placed in the site and tested for an approximate shape match.

Successful placements are ranked in a list of the conformations seen. Finally, the best N

arrangements are refined by a Broyden-Fletcher-Goldfarb-Shanno rigid-body method, a

variation on gradient descent. This has resulted in some very good docking results.

A summary of the application of Molecular Dynamics (MD) and free energy

calculations to the problem of ligand binding is given in [Åqvist et al., 2002]; for

comprehensive methods reviews see [Adcock & McCammon, 2006; Alonso et al., 2006;

Skjevik et al., 2009].

Quantum Effects

For a discussion of the general techniques and implementations used for performing

calculations of quantum effects in molecular representations, see p.27.

One algorithm that explicitly considers quantum mechanical issues is the Quantum

Stochastic Tunnelling (QSTUN) method [Todorov et al., 2003]. This is an optimization

method based on SA, using Monte Carlo techniques to explore the potential energies

of the conformations under consideration while avoiding traps in local minima by

transforming the energy landscape non-linearly (the STUN algorithm). The QSTUN

method has been implemented in the program EasyDock [Mancera et al., 2004], and

although this is not significantly more accurate than other tools available, it does run

faster for moderately flexible ligands.

Another implementation that makes use of quantum effects in docking has been

developed for the CHARMM [Brooks et al., 2009] molecular calculations program. These

39

Chapter 2. Literature Review

scripts combine quantum mechanics and classical dynamics with a Poisson-Boltzmann

model to form a representation of the ligand for docking. An evaluation of the

suitability of this method is given in [Gräter et al., 2005], which concludes that the energy

calculations are quite valid for the purpose, producing some good docking results.

Flexible Docking

In reality, the (widely-used) assumption that molecules are rigid ball and stick

arrangements is invalid. Very few molecules are completely inflexible; even with the

stability introduced by secondary structure motifs, proteins can bend or twist and often

do when a ligand is introduced (such as in the description of haemoglobin on p.32). The

necessity of flexibility in the molecular representation is demonstrated well in [Erickson

et al., 2004], where the amount of movement in a protein clearly affects the accuracy

of docking results in well-established software tools; the observation is supported by

[Fradera et al., 2002; Teague, 2003].

The rigid docking problem is relatively simple to formulate, even if not so easy to

perfect, since there are only six parameters to a solution: three dimensions each of

translation and rotation for the ligand relative to the protein. Once either molecule is

permitted to deviate from its initial shape, the complexity of the task is multiplied many

times over [Cavasotto & Orry, 2007].

To avoid this complication, some rigid docking procedures allow a soft docking

factor, whereby the surface of the protein is thickened to allow a non-perfect alignment

to be accepted if it is close to an active site — this simulates a very limited amount of

overall bending in either molecule. This can be seen in most of the FFT-based methods,

and also in the feature-matching method of [Schneidman-Duhovny et al., 2003].

A compromise between full receptor flexibility and none at all is the use of side

chain rotation in the representation: while the backbone is held rigid in some chosen

arrangement, the short amino acid side chains are twisted according to some force field.

This technique has been growing in popularity for docking, such as in the RosettaLigand

program [Meiler & Baker, 2006; Davis & Baker, 2009].

A hybrid solution to the problem is the refinement of approximate docking results.

Generally, this would involve a rigid docking run to produce the best inflexible

40

2.3. Protein Structure Prediction

conformation, followed by some adjustment mechanism to settle the arrangement into a

more favourable interaction. The dynamics of the approximate complexed system have

been used quite successfully in this way [May et al., 2003].

The flexibility problem, when approached more thoroughly, may be divided into two

separate issues: the determination of how a molecule could move, and the application

of this information to the docking representation. A notable approach to the former

task was implemented in a real-time program called FIRST [Jacobs et al., 1999; Jacobs

et al., 2001]. This work exploits the fact that, although proteins are pliable in general,

they do tend to form quite rigid substructures (helices, sheets, domains, etc.). The

purpose of FIRST is to perform a rigid cluster decomposition (RCD), i.e. to identify which

atoms within a protein are immobile relative to which others. This is achieved using an

algorithm called the Pebble Game, a graph-based distance constraint analysis method.

The relevance of such work is emphasized by the prevalence of rotatable bonds in protein

side chains [Rader et al., 2002].

This work has been used in various projects (ROCK, FRODA, and RCNMA to name

three) to build conformation databases for later docking use [Lei et al., 2004; Wells et al.,

2005; Gohlke & Thorpe, 2006]. The importance of such information to the docking

problem has been recognized [Carlson & McCammon, 2000], and working applications

have also been published [Zavodszky et al., 2004].

Other methods of identifying protein flexibility have been explored, including

neural networks trained with primary structure sequence data and predicted secondary

structure motifs [Schlessinger et al., 2006]. A review of some more direct approaches

is given in [Teodoro et al., 2001], along with an algorithm based on singular value

decomposition of matrices derived from the dynamics of the molecular system. Another

brief summary of flexible docking schemes may be found in the introduction to

[Diller & Merz, 2001]. A description and comparison of four techniques (random walk,

simulated annealing, stochastic approximation with smoothing, and terminal repeller

unconstrained subenergy tunnelling (TRUST)) is performed in [Diller & Verlinde, 1999],

where both speed and accuracy are assessed.

Conformation Ensembles The information gathered about molecular flexibility may

be applied to most models of structure, even if only in a rudimentary manner. For a

41

Chapter 2. Literature Review

number of years, flexibility has been incorporated mostly as a refinement step, typically

by random perturbations of otherwise rigid models: [McMartin & Bohacek, 1997] for

example. A similar, although arguably more systematic, approach is to use conformation

databases or ensembles [Lorber & Shoichet, 1998]. This pre-generates a list of possible

final states for the flexible molecule, then passes each in turn to a rigid model for

assessment.

Plainly, this is a naive solution, but in some cases it may help to avoid significantly

mis-evaluating good results. The main disadvantage of this is that it does not allow for

induced changes in the course of molecular interaction. These conformation ensembles

are the basis of the FLOG docking program [Miller et al., 1994], which was based on the

same methodology as the DOCK system, and also the work of [Diller & Merz, 2001].

The same principle has been applied to the receptor molecule. Clearly, since this

involves a much larger number of atoms, there will be many more conformations to

generate and test, but otherwise the process is the same. A recent example of this

is [Cavasotto & Abagyan, 2004], where MD calculations are used to find backbone

arrangements for the protein. Some good results appear to have been produced, which

underlines the theory that receptor flexibility is important to the docking problem

[Totrov & Abagyan, 2008]. Several significant researchers in the field collaborated on an

extensive perspective article on the matter [Cozzini et al., 2008]; other reviews of methods

are [McCammon, 2005; B-Rao et al., 2009].

Similarity Two modified versions of the DOCK program were developed to use

similarity between structures as an additional factor for inclusion in a docking

method [Fradera et al., 2000]. This is designed to exploit whatever prior knowledge

might exist about either the protein or ligand involved in a docking procedure by

weighting conformations according to whether they do or do not resemble a hypothesis

arrangement. For example, if a protein P is known to bind a ligand L, the structurally

guided docking method for P with new ligand L′ will favour conformations where L′ is

in some way similar to the bound L. This algorithm has produced good docking results,

although it does depend on the pre-determined crystallographic structure data available.

42

2.3. Protein Structure Prediction

A variation of DOCK uses similarity to organize ligand conformations from the

ensemble into a hierarchy, and can then discard branches of this tree if their shapes do

not fit the target binding site [Lorber & Shoichet, 2005].

The same techniques were developed into a program called MacDOCK, which was

again built on the DOCK foundation [Fradera et al., 2004]. This allowed the weighting of

scores to be guided by either the structural similarity of the ligand or the arrangement

of a few anchor points involved in covalent bonding. In some test cases, a hybrid of

both ligand- and anchor-based weighting proved more successful at predicting docked

conformations. One of the main contributions of MacDOCK was the demonstration that

the consideration of covalent bonding can improve the accuracy of docking methods, as

shown in its improvement on DOCK’s basic method.

GAs Genetic algorithms lend themselves to the flexible docking problem by allowing

conformations to change in as many variables as required. An example of the successful

application of this technique is the docking of a potential HIV inhibitor by evolutionary

programming [Gehlhaar et al., 1995]. Evolutionary programming is a variation on a

typical GA, in which the scoring function is used to compete the members of each

generation between themselves: random pairs of candidate solutions are compared using

the scoring (energy) function, and those that win the most competitions are used to build

the next generation by the usual genetic operations. Gehlhaar’s method allowed all nine

rotating bonds in the ligand to move, and was able to reproduce the correct docked

arrangement several times.

The GOLD program is another GA implementation for fully flexible docking. It

is described in great detail in [Jones et al., 1997; Verdonk et al., 2003], where much

consideration is not only given to whether it works, but also why it fails when it does.

One interesting case given is a fairly good docking result (judged by comparing graphical

renderings of the molecules) with a relatively poor root-mean-square deviation (RMSD),

used to make the point that mid-range RMSD values should be investigated carefully

using graphical tools to ascertain whether they are in fact better than might be assumed.

Indeed, using aggregated RMSD values for comparing programs is unreliable because

factors other than the algorithms can influence their results, such as the quality and

selection of input data [Hawkins et al., 2008].

43

Chapter 2. Literature Review

DARWIN is a GA-based program for docking [Taylor & Burnett, 2000]. It is based on

the CHARMM system, and is designed to be run in a parallel environment. It has been

developed not only for docking single protein-ligand pairs, but also for screening large

databases of molecules as potential ligands for a protein. Moderately successful results

are given, but DARWIN suffers from the local minima trap that plagues many docking

programs.

AutoDock is another program whose GA has been used for flexible docking [Morris

et al., 1998]. A new scoring algorithm, DrugScore, was developed to replace the original

regression-based energy function, and tested to provide a comparison [Sotriffer et al.,

2002]. DrugScore improved the ranking of results in moderately flexible cases, although

not when molecules were rigid or showed complex structural changes in the docked

state.

Energy/Dynamics An energy-mapping method of flexible docking in AutoDock is given

in [Österberg et al., 2002]. This uses multiple conformations of a protein to build

a single, combined interaction energy map. In effect, this allows multiple dockings

to be performed simultaneously. Consequently there is a problem with the risk of

multiple high-scoring conformations presenting themselves where sufficient moderately

acceptable mappings coincide. In tests, this did not manifest itself significantly, but it is

noted as an area for work.

A docking algorithm that does represent both the receptor and ligand with full

flexibility is given in [Tatsumi et al., 2004]; this uses harmonics and dynamics to

simulate the protein’s movements, but then uses only the active site atoms to align

the smaller molecule. An older procedure that explicitly considered the surrounding

water molecules in SA calculations was that of [Mangoni et al., 1999]; the execution

is extremely slow, but for complexes where the solvent water is critical to the docking

this is perhaps necessary. An extensive review of approaches to receptor flexibility and

attempts to implement them concluded that the problem is a major focus for future work

and probably requires multiple approaches to solve [Teodoro & Kavraki, 2003].

Incremental Construction Incremental construction algorithms are a very different

approach to the flexible docking problem. Rather than contorting a ligand until it fits

44

2.3. Protein Structure Prediction

well, the ligand is broken up into small pieces of a few atoms each, and then gradually

reconstituted in possible active sites.

The FLEXX program [Kramer et al., 1999] implements such an algorithm, breaking the

ligand at all its single bonds — i.e. the points at which most flexibility is present. A small

number of base fragments are used to create several well-fitting arrangements within

the predicted active site. Another fragment is then added back in to each starting state,

and a scoring function is used to settle the best arrangements again. This is repeated

until the complete ligand has been formed, and the scoring function used to rank all the

conformations found. Although this does permit full ligand flexibility to be considered,

often successfully, a few large cases were not docked at all.

An improvement to that program was developed, primarily to include flexibility

in the protein as well as the ligand [Claußen et al., 2001]. FLEXE uses much the same

method as FLEXX, but with a set (or ensemble) of possible protein conformations; these

are compared and sections of the molecule that are very similar across structures are

identified. As the alignment is built up, the various structural shapes present in the

ensemble are used to allow for alternative protein conformations. In particular, the

algorithm allows the segments of the ensemble members to be combined, thus creating

new protein arrangements as required to accommodate the ligand. Although FLEXE is

not significantly more accurate or successful than FLEXX, it does generally produce good

results in less time.

Another tool, based on a similar method, is described by [Zsoldos et al., 2003].

Alternatively, rather than breaking up a supplied ligand, a library of potential ‘fragments’

can be used to build a speculative ligand [Chen & Shoichet, 2009].

Path Planning Path planning is a field of robotics and spatial reasoning theory that

has found applications in the molecular modelling area. Essentially, it involves treating

the ligand as a robot, and attempting to navigate this automaton into the receptor’s

active site. In the simple, rigid case, this is a 6-dimensional problem; when flexibility

is considered (i.e. the robot has joints), the situation is far less tractable. Algorithms for

searching such conformation spaces are an active area of research; the kind attracting the

most interest from the docking field is the roadmap model.

45

Chapter 2. Literature Review

Roadmaps are graphs of possible transitions and states in a conformation space;

to find a path from a start state to a goal requires a graph exploration algorithm —

a well-researched field. Docking can be simulated either forwards or in reverse (and

escape times predicted), using such methods [Apaydin et al., 2002]. One of the

most attractive features of these methods is that they do not perform an exhaustive

conformational search; rather, they explore possible motion according to its potential

usefulness. Consequently, they can be quite efficient, especially where effective tuning

and look-up is applied to the exploration parameters [Jaillet et al., 2005; Yershova &

LaValle, 2006].

A ligand docking method of this kind is described in [Singh et al., 1999]. This treats

the ligand as a structure analogous to a robotic arm, with rotating bonds between rigid

sections. One terminal atom is chosen to be the base of the robot, with five degrees

of freedom (three for position and two angles for bond direction). The electrostatic

potentials of the protein are calculated on a fine grid, and define the space in which the

ligand robot moves. A probabilistic roadmap (PRM) algorithm is then used to navigate

the ligand to a randomly docked low-energy position near the protein’s surface. Each

docking route and goal is scored by Dijkstra’s algorithm, and these scores are used to

predict the true active site, as well as the dynamics of the ligand’s entry. This method

does not appear suitable for reliable docking prediction, but may have some use for

investigating the means by which docking occurs, as the authors note.

Other roadmap-based algorithms include combining PRM with A* search [Isto, 2003],

weighted path variations [Apaydin et al., 2001; Apaydin et al., 2004; Apaydin, 2004],

and enhanced-boundary PRM using interaction energies [Bayazit et al., 2000; Bayazit,

2003]. Another exploration method is the rapidly-exploring random tree; this is used in

[LaValle & Kuffner, 1999; Kuffner & LaValle, 2000]. The use of Voronoi volumes to guide

the search through narrow passages in the conformation space is a recent development

[Cortés et al., 2005; Yershova et al., 2005].

A related, but not map-based, algorithm is described by [Carpin & Pillonetto, 2005].

This uses a random-walk exploration method, rather than a mapping style, to explore

the conformation space. The authors claim that it has shorter execution times than PRM

methods and similar speeds to those using random trees. Another general conformation

46

2.4. Current Areas of Research

space search method is given in [LaValle et al., 1999], where kinematics (realistic smooth

motion constraints) are applied to the exploration routes.

Hinge-bent docking, the term commonly used to identify the approach of dividing a

molecule into several rigid sections, appears to be the usual technique for incorporating

flexibility directly into a representation. It is reasonably simple, at least in comparison

with full dynamic simulation, and is a fair model of the overall motion of many

structures. Selecting the points at which hinges should be included is a problem,

especially in larger molecules. A method of identifying the critical hinges is described

in [Teodoro et al., 2002], with particular reference to receptor flexibility. An example of

the application of hinges to both molecules for docking is given in [Sandak et al., 1998].

2.4 Current Areas of Research

None of the algorithms seen for either folding or docking prediction claims to be totally

reliable or precise. This is hardly surprising, given the immense complexity of the

problems. To properly model the chemistry of even a small molecule is a phenomenal

challenge, and identifying any simplifications that can be made without sacrificing

quality of representation is a major factor in achieving reasonable simulations in a useful

time. A typical ligand might contain tens of atoms, each bond may have a torsional angle,

and each atom might have a variable bond angle. Many bonds can vary in length slightly

according to the surrounding forces and atoms involved. Hence, there are many degrees

of freedom to be considered in any molecular simulation [Teodoro et al., 2001].

The timing aspect is also a problem: most of the algorithms described take several

minutes to perform a single run, in some cases taking hours to properly analyse a model.

Although parallel processing improves this, only a massive array of machines could

conceivably process a large library of molecules, as is often the ultimate goal for these

programs.

The folding problem (§2.3.1 (p.30)) requires both biochemical and computational

research, and this is ongoing [Chikenji et al., 2006; Scott et al., 2006]. Increased

understanding of how proteins circumvent the Levinthal Paradox in vivo will probably

aid their simulation in silico.

47

Chapter 2. Literature Review

The docking problem (§2.3.2 (p.32)) certainly presents plenty of scope for exploration.

The existing methods group into several general categories: FFT-based, GAs, SA/MD,

and shape complementarity (including incremental construction).

FFT methods can provide a good starting point for a search, especially where multiple

scoring functions are used, such as in [Gabb et al., 1997]. They are, however, restricted

in the scale of a search they can perform, owing to the size of the matrices required to

accommodate a useful precision and/or range. An exhaustive search such as that is

unlikely to be practicable.

GAs have proven useful [Morris et al., 1998], but their non-deterministic nature makes

proving their capabilities hard. In addition, the scoring functions used to compare

candidates may have room for improvement to optimize their effect; recent achievements

include [Pei et al., 2006]. Simulated annealing and molecular dynamics approaches

are based around attempts to directly model the physical interactions of proteins and

ligands. Although these may prove complicated to design and implement, they have

shown promise [Dominguez et al., 2003]. The reviews of [Adcock & McCammon,

2006; Skjevik et al., 2009] explore all the currently known methods of applying MD to

simulation; the former identifies major areas for improvement as efficiency, stability,

solvents, and electrostatics.

The purely shape-based approaches would seem to be naive, despite good results

from the quadratic shape descriptor (QSD) algorithm [Goldman & Wipke, 2000b],

primarily because they neglect all information about the model except geometry.

They do provide a useful guide to the initial alignment of a ligand, but for an

accurate judgement of binding affinity other considerations must be included, including

electrostatic potential barriers and hydrophobic interactions.

As computational power increases over time, the models used to represent protein

behaviour can be made more sophisticated, including more of the factors influencing

molecular behaviour. In particular, quantum effects should be investigated, if only

to establish their precise importance [Miller, 2005]. With the increases in biochemical

understanding provided by (amongst other research) new methods of structure

determination, the constituent algorithms for MD and GA simulations can be reviewed

and improved. Hybrid methods, using one algorithm followed by or in parallel with

48

2.4. Current Areas of Research

another, might be worth considering; the refinement and checking of approximate results

is a common technique in programs already described, and should be considered as an

overall pattern for simulation.

2.4.1 Lead Compound Identification

One of the primary applications for biochemical research, in particular the study of

protein behaviour and interactions, is rational drug discovery/design (also known as

lead compound identification). This is the exploration of molecules suitable for use in

medicinal compounds. As already mentioned (p.17), many diseases are understood to be

caused by unwelcome proteins in the body; binding a suitable ligand to these proteins

can alter their interactions and thus inhibit the disease. Suitable ligands are those that

may be delivered in some convenient form, may be synthesized easily, have low toxicity,

will be metabolized by the body safely in a useful timeframe, and will only influence the

intended target protein. Finding such ligands is the goal of lead compound identification.

Currently, a new drug can take fifteen years of research and development before it is

ready to be offered to patients [Lunney, 2001]. Much of this is spent testing compounds

in laboratories: clearly, the advancement of computational lead compound identification

can reduce the cost of research and deliver new medicines sooner (and cheaper) than has

been possible in the past.

There are two main approaches to lead compound identification in use: screening

(drug discovery), in which a library of potential ligands is docked to a target protein

in order to assess which may be worth further investigation, and de novo design (drug

design), in which a hypothetical ligand is constructed and tested using biochemical

details of the target.

Screening

In simplistic terms, screening requires only a docking program, a database of molecules,

and a lot of time. For a given target protein, the docking procedure scores each of the

potential ligands from the database with respect to its binding affinity, and eventually

produces a list of the candidates ranked according to their predicted therapeutic

potential. This is a slow process: ten years ago a typical database of commercially

49

Chapter 2. Literature Review

available compounds — the Available Chemicals Directory [Symyx, 1982-2009] —

contained around 50 000 molecules, today it has grown to more than a million. In 1996,

the DOCK program could test 800 orientations of a ligand per second, and would have

taken around two weeks to screen the (smaller) ACD. This is described in [Gschwend

et al., 1996], along with a summary of modifications to DOCK for improved screening.

A survey of the progress made with flexible docking methods in screening is given

in [Carlson, 2002]. It includes the interesting suggestion of reverse screening, i.e. the

selection of one potential ligand molecule, and docking it to a library of proteins in a

search for an application. This is of use in testing for side-effects, as might occur if

a ligand bound to the wrong protein. It does, however, rely on full flexibility in the

representation to be reliable.

One of the most comprehensive screening programs to consider flexibility is Glide,

which claims to perform a complete search of the conformational space of a ligand by a

three-stage process [Friesner et al., 2004; Halgren et al., 2004; Friesner et al., 2006].

As has been noted, screening requires a substantial quantity of computing power

to complete in a useful time. Although supercomputers have been used, this is an

expensive and still limited option. One cheap way of harnessing an immense quantity

of processors is to employ grid computing, or massively parallel processing, and share

the docking jobs amongst many mid-range desktop computers. A good example of

this in practice is the recent Cancer Screensaver Project, which recruited 1.5 million

computers in a year to screen billions of ligands for their applicability to cancer, and

later, anthrax [Richards, 2002]. The vast supply of results from this project will require

further refinement and investigation, providing a strong motivation for continued work

on screening techniques.

De novo Design

The field of de novo ligand design, where the inhibitor for a protein is invented according

to its desired function rather than being selected from a list, would require a review of its

own. Designing molecules requires a significant amount of biochemical understanding,

more than can be introduced here, but a justification for research and summary of

techniques are given in [Zeng, 2000]. It can be noted here that a substantial intersection

50

2.4. Current Areas of Research

between standard docking procedures and the ligand design problem occurs where

incremental construction algorithms are used (p.44). Such a program, if allowed to

combine fragments from many molecules or even single atoms, is one form of basic de

novo design.

2.4.2 Reviews

For further information about the topics introduced by this chapter, see the following

published reviews:

The drug discovery context: [Lybrand, 1995; Finn & Kavraki, 1999; Cavasotto & Orry, 2007;

Lang et al., 2007; Snow, 2008; Skjevik et al., 2009; Song et al., 2009; Villoutreix et al., 2009].

Protein modelling: [Cavasotto & Orry, 2007; Putta & Beroza, 2007; Leach et al., 2010].

Quantum effects: [Miller, 2005; Raha et al., 2007; Taft et al., 2008].

Molecular similarity: [Campbell et al., 2003; Kazhdan, 2004; Eckert & Bajorath, 2007].

Folding prediction: [Dill et al., 2007; Dill et al., 2008; Chen et al., 2008; Grant, 2009; Kihara

et al., 2009].

Docking in general: [Taylor et al., 2002; Kitchen et al., 2004; Leach et al., 2006; Villoutreix

et al., 2007; Morris & Lim-Wilby, 2008; Kolb et al., 2009].

Active site prediction: [Sotriffer & Klebe, 2002; Campbell et al., 2003; Tompa et al., 2005;

Laurie & Jackson, 2006].

Scoring functions for docking: [Leach et al., 2006; Warren et al., 2006; de Azevedo & Dias,

2008].

Flexible docking: [Teague, 2003; Teodoro & Kavraki, 2003; Cozzini et al., 2008; B-Rao et al.,

2009].

51

Chapter 3
Early Work

You have talked so often of going to the DOX — and well, here are the
DOX, and you have reached them, and you can stand it.
It takes off a lot of anxiety.

‘Down and Out in Paris and London’ [adapted], George Orwell

Before investigating stratagems for virtual screening, I worked on the smaller projects

described in this chapter. These provided an opportunity to explore computational

chemistry techniques and tools, such as docking algorithms and molecular representa-

tions. The last of these projects, implementing XScore in the DOX program, then inspired

the major theme of this thesis.

3.1 FFT Alignment

The FFT grid search algorithm introduced by [Katchalski-Katzir et al., 1992] has provided

a basis for several docking methods (see §2.3.2 (p.36)) and is a good example of a simple

molecular modelling algorithm. Since it is the most efficient means of performing an

exhaustive search of translation space, it is a useful starting point for placing a ligand

close to possible binding sites. Partly for this reason, I constructed a program to

implement the algorithm as a way to start working with molecular models in software.

The original implementation described in that paper was done in Fortran for use

on a Convex C-220. In summary, it uses the FFT to perform convolutions of scoring

functions, recording peaks in the resulting functions that represent optimal alignments of

receptor and ligand. I coded a version of this procedure using a combination of Java and

C++. This would allow the algorithm to run on a wide range of modern workstations

with minimal porting work. The development was initially done with Java alone, but

eventually some incorrect FFT calculations could not be explained by any analysis of the

53

Chapter 3. Early Work

code and I decided that it was safer not to rely on the Java Virtual Machine for heavy

computation. Consequently, I ported the FFT code to a separate C++ program, which

was then used as a calculation engine by the Java-based user interface.

The FFT implementation was wrapped in an interface for pipelined docking. I

designed this to provide a standard Java pattern for algorithms that align two molecules,

such that they might be chained together to refine a pose according to different criteria.

As an example, I added a rudimentary gradient descent method in this pattern, and

the program allowed this to be used after the FFT to settle a pose more precisely. The

methods appeared to be reasonably successful in their goal — that of docking a ligand —

but were of only limited, academic interest. In comparison with current docking tools,

they were overly simple, but could still provide a quick scan of possible translations if

this were relevant as a preliminary stage for another algorithm.

Full details of this pilot project, which helped to inspire some of the stratagems of

Chapter 4, are given in Appendix B (p.177).

3.2 Sphere Trees

The starting point for all physical modelling systems must be the form in which they

describe the world of interest. By way of unifying the hierarchical flexibility and

rigid cluster decomposition concepts mentioned in §2.1 (p.26), I began to consider the

application of sphere tree models [Hubbard, 1996] to the representation of proteins and

other molecules. Sphere Trees (or Sphere Hierarchies: both terms are used) are a means of

representing shapes using successive refinements to an approximate boundary. The root

of the model is a single sphere which bounds the entire object. For each node M in the

model, its child nodes {N1, N2, . . . , Nn} are a set of smaller spheres whose union contains

the same subset of the object’s volume as M (and generally less volume than M itself).

Hence, each complete level of the tree bounds the shape represented more precisely than

the parent level.

The two primary advantages of using sphere trees are that point membership

classification (and hence collision detection) may be performed quickly and efficiently,

and that the model may be easily updated if the underlying object is rotated or translated.

54

3.2. Sphere Trees

Case A (d > r1 + r2)
is trivially not a collision, since the root nodes’
outer boundaries do not intersect.

Case B (r1 + r2 ≥ d ≥ s1 + s2)
cannot yet be determined without exploring a
deeper level of the hierarchy for more detail.

Case C (s1 + s2 > d)
is clearly a collision, since the inner boundaries
meet and so the volumes cannot fail to touch.

Figure 3.1: Efficient collision detection using the roots of dual-concentric sphere trees

Collision detection is optimized by the ability to identify quickly when some subdivision

of the shape cannot contain a test point. Updating the model when an orthogonal

transformation (translation or rotation) is applied requires only that the spheres’ centres

be transformed similarly. All point tests are performed recursively through the tree

structure from the root to the leaves, terminating early if sufficient information has been

obtained from the nodes visited to avoid exploring every child.

An extended version of the sphere tree model is a dual-concentric sphere tree, in

which each node sphere has a pair of radii associated with it — one guaranteed to

completely enclose the shape, the other completely enclosed by the shape [Pitt-Francis &

Featherstone, 1998]. This allows not only a trivial case to be caught when two shapes

are sufficiently far apart not to touch, but also the converse, when they are too close

together for there to be a gap. Figure 3.1 shows the three possible situations, with

dotted lines indicating the outer radius and solid lines marking the inner radius for

two top-level spheres enclosing irregular objects. The outer sphere is required to be the

smallest possible enclosure, and the inner sphere is then concentric with it. These are

both uniquely defined for any given shape.

3.2.1 Bonded Sphere Trees for Molecular Representation

The sphere tree paradigm lends itself perfectly to the representation of proteins and other

molecules, especially where some hierarchical flexibility information is available. The

leaves of the tree can directly correspond with the atoms: each sphere has its atom’s

55

Chapter 3. Early Work

Figure 3.2: Abstract data structure for
bonded sphere trees

Atomic spheres shown in red
Mid-level node spheres in light grey
Intermediate level node bonds in blue
Overall boundary sphere in darker grey

Figure 3.3: Illustration of a simple molecular
bonded sphere tree with three levels

centre and VdW radius. This makes the sphere tree a perfect representation: unlike most

geometric shapes which might be modelled to an approximation with very small spheres,

the model fits the object exactly. The root of the model is, of course, the entire molecule

with an enclosing boundary. Figure 3.2 shows the abstract data structure, as applied

to a molecule. The number of levels in the hierarchy is arbitrary: in practice, it would

probably be determined algorithmically.

The intermediate levels are, starting from the root, increasingly detailed rigid cluster

decompositions (RCDs). Each level of the tree has an energy level associated with it —

the energy required to induce movement between the constituent nodes at that depth.

The child nodes of the root are thus formed from the output of a very strict decomposition

that only separates the most loosely-coupled domains. Building such a model could be

automated using a tool such as FIRST (see p.41), obtaining several decompositions at

various energy levels, and using those with significant variation from their predecessor

to extend the branches of the sphere tree.

To maintain the constraints on flexibility which exist between rigid clusters, it is

necessary to include some model of inter-atomic bonds. Just as each level of the sphere

tree contains a set of nodes, it should also hold a set of bonds. A bond B at level L may

be modelled as ((a1, n1), (a2, n2)) : a1 6= a2 ∧ n1 6= n2 where the ax are the atoms (i.e. leaf

56

3.2. Sphere Trees

nodes) connected by the interaction, and nx is the node in L which has ax as a descendant.

The effect of this arrangement is that the bonds at any given level are only those which

cross the boundaries of that level’s nodes. In particular, the root level has no bonds, since

all are enclosed within the root node, and the leaf level includes all the molecule’s bonds.

Thus, it is intended that the intermediate levels collect only the information relevant to

the flexibility permitted by their decomposition.

Figure 3.2 gives an illustration of this arrangement. Bond A is one of the least stiff

interactions, and thus appears at all levels (except the root) linking some pair of nodes

in each. Bond B, however, is less flexible, and is treated as rigid (and thus not present)

in the first (coarsest) decomposition. Figure 3.3 artificially shows this on a picture of

the HIV-1 protease. The black lines denote the bonds along the backbone, with the blue

links indicating those retained at the level of the two clusters (pale grey circles). Note the

successive improvements to the representation’s precision by each level of the hierarchy.

3.2.2 Test Program (cSpheres)

To investigate the behaviour and usefulness of the bonded dual-concentric sphere tree

concept, I built a simple test program called cSpheres, whose user interface is shown in

Figure 3.4. This began with the classes for physical objects (atoms, bonds, and molecules)

and their modelled counterparts (nodes (cluster and leaf), cluster bonds, and sphere

trees). The design is such that a molecule may be loaded in (from either a PDB file

or a custom sphere tree format) and modelled as a two-level bonded sphere tree: the

leaves and the root. Any level may be replicated and then partitioned (to maintain

completeness), with the bonds present in each level updated automatically.

If any node of the tree is moved, the bonds are used to ensure that the new

position is acceptable. Bonds may also have their directions changed, in which case

all connected nodes are repositioned together in accordance with the motion. If a

cluster node’s position changes, all its child nodes are relocated appropriately. These

updates are applied lazily, however, to reduce the processing time required for large-

scale movements: the cluster whose position is changed marks its children as dirty with

the required transformation, but their position data are only recalculated when required.

Collision detection and point membership classification (determining whether a point

57

Chapter 3. Early Work

Figure 3.4: cSpheres interface for building and testing sphere tree representation

Figure 3.5: Two molecules juxtaposed manually
in cSpheres

Figure 3.6: 3D view of a sphere tree in
cSpheres

is inside, outside, or on the boundary) of molecules is implemented using the dual-

concentric shortcuts discussed earlier.

This program includes a graphical user interface for loading or drawing molecules,

manually grouping atoms into clusters to build a sphere tree, and interactively moving

the bonds to adjust the conformation. The sphere tree is illustrated using dotted lines for

58

3.3. Scoring Functions and Search Methods

the outer spheres and thick solid lines for the inner spheres. Figure 3.4 shows a contrived

test case with a three-level model. The bonds between the mid-level clusters are drawn as

straight lines between atom centres, but spheres from all levels are shown. Dragging any

circle moves the corresponding node of the model by adjusting bond angles and pulling

other nodes to accommodate the new position, but preventing any motion beyond the

bonds’ range limits. Dragging the largest circle — the root node — moves the entire

molecule. If two molecules are present, they are prevented from overlapping: changes

that would result in atom clashes are rejected and undone. This means that a manual

docking can be performed, as illustrated in Figure 3.5.

Although the underlying implementation classes use 3D coordinates, the interface

only allows movement in the X-Y plane for simplicity in development. The Z coordinates

are retained if molecular data are loaded. A view of the spatial arrangement is offered

(Figure 3.6), but this is non-interactive except for camera movement. This display was

reused for surface dot distribution tests; see Appendix C (p.187).

There were two main intentions for this work. One was to build an automated

clustering algorithm (based initially on a k-means reduced point method [Glick et al.,

2002a], and later on FIRST decompositions), thus constructing a useful sphere tree for a

molecule without human intervention. The other was to use this hierarchical model as

part of an automatic docking procedure, such that the least rigid receptor bonds would

be moved first if necessary to accommodate a ligand.

These projects were superseded, though, in favour of the scoring function stratagems

work. It is still suggested that sphere tree representations are a valuable topic for research

in this field, however, and this is discussed in §8.2.4 (p.163).

3.3 Scoring Functions and Search Methods

The screening of drug-like compounds for applicability to a particular target molecule

(usually a protein) is an important aspect of the pharmaceutical industry’s research and

development. When docking ligands as part of a screening procedure, a lynchpin of the

method is often the means by which a proposed arrangement may be rated: a scoring

function.

59

Chapter 3. Early Work

Many have been proposed and implemented, each focused on a different aspect

of molecular interaction [Leach et al., 2006]. Some are purely geometric, such as the

FFT method, while others use electrostatic potential fields to calculate forces: [Kozakov

et al., 2006] for example. The hydrophobicity of molecular surface regions can be used

in a scoring function by returning better values for poses that result in hydrophobic

atoms being buried [Mandell et al., 2001]. Certain kinds of bonding between molecules,

hydrogen bonds in particular, add stability to a protein-ligand complex and so have

been used to enhance scoring functions by rewarding well-aligned bonding atom pairs

[Poirrette et al., 1997; Schnecke & Kuhn, 2000]. Ionic interactions may be used similarly.

Empirical functions, which combine several such terms in experimentally-determined

proportions, are often found to be most generally applicable.

Equation 3.1 shows the general form of such a function: it accumulates a total score

over all pairs of atoms and the interactions considered. The independent interaction

functions are denoted by F1, F2, . . . , FNint . The special case where the number of

interactions Nint = 1 represents single physical functions, such as basic potentials.

Score(R, L) = ∑
l∈Latoms

∑
r∈Ratoms

Nint

∑
i=1

Fi(r, l) (3.1)

An established and well-documented example of an early empirical scoring function

is Böhm’s [Böhm, 1994]. This accounts for several different molecular interactions

(hydrogen bonds, ionic pairs, bond rotations, and lipophilic (similar to hydrophobic)

interfaces) in the total score. The detail of how those terms are calculated is derived

from observations of experimental cases and refined approximations based on training

runs. This function provides a moderately sophisticated model for many other functions,

including ChemScore [Eldridge et al., 1997], XScore [Wang et al., 2002], and those of

AutoDock [Morris et al., 1998].

Reviews of several recent and established scoring functions are numerous, often

giving an overview of their methods and idiosyncrasies [Halperin et al., 2002; Kitchen

et al., 2004]. In addition, comparisons have been performed to quantify, approximately at

least, which functions are most suitable in which circumstances, both academically and

industrially [Rocchia et al., 2002; Wang et al., 2003; Warren et al., 2006].

60

3.3. Scoring Functions and Search Methods

LennardJonesp,q,c(d) =

(c
d

)p − 2
(c

d

)q
(3.2)

Figure 3.7: Potential functions used by PLP and XScore

3.3.1 Piecewise Linear Potential

Any expectation that the most sophisticated functions are the most accurate or reliable

is disproved by the usefulness of such simple methods as the Piecewise Linear Potential

(PLP) function, which can screen comparatively large numbers of ligands very quickly

and with fair success in many simple cases [Gehlhaar et al., 1995; Böhm & Stahl, 2000;

Wang et al., 2003]. PLP simply models the potential between atoms using a five-part

approximation of a Lennard-Jones function [Jones, 1924]. Figure 3.7 illustrates the linear

form of this function. Atoms are classified according to whether they are likely to form

a hydrogen bond, and the coefficients of the interaction function adjusted accordingly.

Since this evaluation requires only a few arithmetic operations and treats all atoms of the

same type as having the same radius (regardless of their element), it allows very fast,

high-resolution scoring to be performed in reasonable time.

3.3.2 XScore

Many ligands in screening databases involve more complex interactions than PLP can

consider. For this reason, it is generally necessary to have a selection of scoring functions,

and screen each candidate with the appropriate choice. One possible choice for a more

intricate assessment of docking suitability is the XScore function [Wang et al., 2002; Wang,

2003]. This includes terms for hydrogen bonding, VdW potential, and three different

hydrophobic interactions. To achieve the subtle variety of interactions, it requires a wider

61

Chapter 3. Early Work

range of atom types than PLP: polar, hydrophobic, and hydrogen bond donor, acceptor, or

both. Rather than selecting one interaction between pairs of atoms, it calculates a score

for all interactions (although these will be zero for some atom combinations). These

various terms are then combined in weighted sums to produce three subtotals, whose

mean is the overall docking score.

An overview of XScore’s definition is given in Equation 3.3: X(L, R) is the score

returned for the pre-positioned ligand L and receptor R. This summarizes the terms used

and how they are combined — note that it is an average of three functions (indexed by i).

See [Wang et al., 2002] for the full details of each . The ki, ti, hi, vi, and bi are constants

used as weighting factors, while T, Hi, V, and B are functions of atoms l and r.

I observed that the averaging of three sub-functions is superfluous: distributing

multiplication over commuted summation allows the division by 3 to be subsumed into

the coefficients. These weightings may then be gathered and each term included only

once, as shown in Equation 3.4. This reduction from 15 to 7 coefficients will make tuning

their values much more straightforward.

X(L, R) =
1
3

3

∑
i=1

(
ki + ∑

l∈L

(
tiT(l) + hiHi(l, R) + ∑

r∈R
(viV(l, r) + biB(l, r))

))
(3.3)

=
3

∑
i=1

ki

3
+ ∑

l∈L

(
3

∑
i=1

ti

3
T(l) +

3

∑
i=1

hi

3
Hi(l, R) + ∑

r∈R

(
3

∑
i=1

vi

3
V(l, r) +

3

∑
i=1

bi

3
B(l, r)

))

= k′ + ∑
l∈L

(
t′T(l) +

3

∑
i=1

h′iHi(l, R) + ∑
r∈R

(
v′V(l, r) + b′B(l, r)

)
)

(3.4)

= k′ + t′ ∑
l∈L

T(l) +
3

∑
i=1

h′i ∑
l∈L

Hi(l, R) + v′ ∑
l∈L

∑
r∈R

V(l, r) + b′ ∑
l∈L

∑
r∈R

B(l, r) (3.5)

T(l) is a rotor-count score for ligand atoms, returning either 0, 0.5, or 1. V(l, r) is

an 8-4 Lennard-Jones function between l and r (Equation 3.2 in Figure 3.7, with p=8,

q=4, and c determined by the radii of l and r). B(l, r) is a hydrogen bonding function

which depends on the distance between atoms and the bond angles that would result,

or zero if l and r do not form a hydrogen bond. H1(l, R) is a function proportional

to the SAS area associated with l and buried through the SAS of R, or zero if l is not

hydrophobic. H2(l, R) ≡ ∑r∈R
(
Hp(l, r)

)
, where Hp(l, r) is a capped linear function

of the atomic separation distance, or zero if l or r is not hydrophobic. H3(l, R) is the

62

3.3. Scoring Functions and Search Methods

Coefficient Originals Updated
k Constant (2.69, 2.78, 3.10) 2.86 2.60
t Rotor count (−0.159, −0.100, −0.169) −1.43×10−1 4.86×10−2

h1 Hydrophobic burial 7.10×10−3 1.53×10−3

h2 ... atomic contact 3.73×10−2 1.14×10−2

h3 ... environment match 6.02×10−1 3.60×10−1

v VdW potential (−2.01, −0.96, −2.14)× 10−3 −1.70×10−3 −2.12×10−3

b Hydrogen bonding (0.307, 0.412, 0.311) 3.43×10−1 1.51×10−1

Values in brackets are the separate values (i ∈ {1, 2, 3}) from the XScore authors’ definitions.

Table 3.1: Weighting coefficients for XScore function

Figure 3.8: Abstract form of a general docking process

hydrophobic scale (‘log P’ value) of l if the sum of the log P values of all receptor atoms

within 6Å is less than −0.5, or zero otherwise [Wang et al., 2000].

XScore’s authors chose coefficients using regression analysis with a training set. Their

weightings are shown in Table 3.1. For a receptor R and two poses L1 and L2 of the same

ligand, X(L1, R) > X(L2, R) implies that L1 has a better placement than L2.

3.3.3 Search Methods

A scoring function does not select conformations and poses to consider: it merely

evaluates the suitability of those presented to it. Before an implementation can be useful,

some other algorithm is required to provide a framework in which it will be used, such

as in Figure 3.8. Several techniques for this task have been published, including genetic

63

Chapter 3. Early Work

For each... Order
SEARCH 1. ligand

2. conformation 102

3. pose (102)6 = 1012

Score 4. ligand atom 101

5. receptor atom 103

6. interaction 101

...calculate contribution

Table 3.2: Nested loop composition of a general (naive) docking process

algorithms, probabilistic roadmaps, and molecular dynamics simulations. These are

discussed, with references to reviews, in §2.3.2 (p.32). Whichever framework is chosen, it

must read molecular data sources, rotate and position the protein and ligand into poses

to be considered, call the scoring function with those poses as input, and aggregate the

resulting scores to produce a ranked list of the best cases as the final output.

In summary, a docking system can be thought of as the bipartite Search/Score

architecture of Figure 3.8, with a more detailed stratification of six layers as in Table 3.2.

The orders of magnitude given therein are approximate scales, illustrating the problem’s

enormity. Note, however, that although myriad poses are possible even in the

rigid, six-dimensional case, few search methods would consider them all exhaustively.

Consequently, the third layer could consider anywhere from thousands to billions of

arrangements, depending on how well it chooses the cases to score. The fourth, fifth,

and sixth layers correspond directly to the summations of Equation 3.1 (p.60).

3.4 The DOX Family

3.4.1 DOX

I reimplemented XScore as an extension to an existing system called DOX [DOX, 2009],

which performs a simple exhaustive search of rotational and translational space around

a centre point given as input. Previously, DOX offered only PLP; however, the object-

oriented code had been designed to allow interchangeable scoring function classes. The

open source OpenBabel project [OpenBabel, 2008] provides the molecular file interfaces

and chemical classes (OBMol, OBAtom, OBBond, etc.). The Boost libraries [Boost, 2009] are

64

3.4. The DOX Family

used for some large-scale array manipulations, command line parsing, and file system

interaction.

The existing DOX system included facilities for pre-calculated look-up tables (LUTs)

for the interactions defined by a scoring function. These are 3D functions generated

for each receptor R, interaction i, and ligand atom type t such that F∗
R,i,t(x, y, z) is the

contribution from an atom of type t placed at position (x, y, z) to its ligand’s interaction i

with R. The general form of an empirical scoring function (Equation 3.1 (p.60)) can then

be simplified to Equation 3.6.

Score(R, L) = ∑
l∈Latoms

Nint

∑
i=1

F∗
R,i,ltype(lx, ly, lz) (3.6)

PLP requires four LUTs per receptor since it models one interaction for four atom types:

donor, acceptor, both, and non-polar. XScore required thirty-seven, as described later.

3.4.2 DOXGA

Since the exhaustive search performed by DOX is very slow to complete, its creators

developed an alternative program called DOXGA, based on GAlib [Wall, 1996]. This (as

the name implies) uses a genetic algorithm to explore poses, and produces approximately

equivalent results. Since much of the code for DOXGA was shared with DOX, the same

XScore implementation could be used in both search frameworks. Once the scoring

function was seen to work exhaustively, the GA code has been used for all work since.

The appropriate parameters for the GA are very much dependent on the function

used. In the original implementation, a population of 20 was evolved for 30 generations

by default. This is barely sufficient for PLP and completely inadequate for the

complexity of XScore. I introduced a scoring function complexity property, a constant

static real-valued property of all scoring function classes, which may be used to set

these parameters proportionally to the function in use. This number approximately

corresponds to the value of Nint in Equation 3.1: it is defined as 2 by PLP and 6 by XScore.

3.4.3 OrthoDOX

Some of the later work discussed in this document, especially parallel execution

and molecular property learning, led me to redesign the DOX software substantially.

65

Chapter 3. Early Work

The architecture of the code was too monolithic, and although some separation of

components into classes was evident they were still too interdependent and inflexible. In

addition, to make the screening of a database distribute between multiple processes, an

overhaul of the design was unavoidable. The reworked software, whose client/server

design for parallel execution took an extensive time to hone, is named OrthoDOX.

Technical details of this system are given in Appendix F (p.203).

3.5 XScore Implementation

My implementation of XScore calls for 37 LUTs. The three potential terms (V, B, and

H2) each require 12 atom types (common ligand elements — carbon, oxygen, etc.) since

atomic radii feature in their definitions. The summation part of H3 can be calculated as

a single LUT only, since it is independent of the ligand. T is a constant property of the

ligand and thus does not require a LUT. H1 can be partially pre-calculated, but not as an

inter-atomic function, since it is based on whole molecules.

3.5.1 Surface Calculations

To estimate ligand surface area, I created a general SpatialOccupancy class to produce a

3D grid of cubes over any molecule’s space. Each cube is classified as internal, external,

or surface, and also notes the type of the atom occupying that point of space. This is

somewhat akin to the matrix used in the FFT docking method described in §2.3.2 (p.36),

but with more general element values. Its construction is summarized in Listing 3.1.

The volume of overlap between molecules can be estimated by obtaining the pairs

of coinciding cubes from two such representations and comparing their classifications.

To calculate XScore’s H1 term, the index list of surface cubes can be iterated and those

points quickly checked against the receptor’s volume. Counting those cubes that fall

within the protein’s space provides a passable approximation of the buried surface area

in a method introduced by [Böhm, 1994]. A much more accurate solution would be to

generate mathematically even distributions of random points on the smooth molecular

surface of the molecule, and test these to obtain a proportion of the full, analytical surface

area. I took a diversion to investigate this possibility, the details of which are discussed

in Appendix C (p.187), but concluded that the fast indexed grid would suffice.

66

3.5. XScore Implementation

Create a lattice L larger than the spatial extents of the molecule
Set each element of L to ‘external’
For each atom A in the molecule do

For each element E in L within A’s radius of A’s centre do
Begin
Set E to ‘internal’
For each neighbour E’ of E do

If E’ is not ‘internal’ then
Set E’ to ‘surface’

End
Create lists of lattice element references IE, IS, and II
For each element E in L do

Begin
If E is ‘external’ then Append E to IE
If E is ‘surface’ then Append E to IS
If E is ‘internal’ then Append E to II
End

//SpatialOccupancy class then contains L, IE, IS, and II

Listing 3.1: Construction of SpatialOccupancy data

3.5.2 Recalibration

Inevitably, subtle discrepancies in the XScore algorithm’s interpretation may have

resulted in variations between my version and the original. The function as given in

Equation 3.5 (p.62) is equivalent to the definition Equation 3.3, but the coefficients appear

outside all the atom iterations. I thus demonstrate that the weightings can be applied

after all other calculations, and hence that pre-calculating unweighted LUTs is a valid

optimization to make. This point is crucial to the usefulness of LUT calculation: if the

weightings are revised at a later stage or are varied for certain dockings, then the LUTs

remain relevant without needing recalculation. The fact that coefficients only need to

be applied at the very end of the function’s calculation also allows swifter execution by

eliminating their multiplications from the atom iteration loops.

Once the implementation was completed, I recalibrated the weighting coefficients

using the training set provided by the function’s authors. This involved scoring 100

protein-ligand complexes in their native complexes, and performing a linear multivariate

regression with the individual function terms (V, H1, etc.) against experimentally

determined expected values supplied with the training set. The data used for the

regression are shown in Appendix D (p.191), and my resulting coefficients appear as the

last column in Table 3.1 (p.63). These mostly have the same order of magnitude, but some

do show discrepancies with the function’s authors’ values. I cannot be certain that my

67

Chapter 3. Early Work

atom type assignments, the rules for which were encoded for me (see Listing E.2 (p.196)),

always agree with theirs. Similarly, the log P function I used and my buried surface

area estimates may vary, resulting in the different weightings. The rotor count received

a very small coefficient of the opposite sign, but as a constant function of a ligand it is of

no relevance to individual docking searches and should not affect results.

68

Chapter 4
Stratagems From Computer Science

stratagem
2 Any artifice or trick; a device or scheme for obtaining an advantage.

The Oxford English Dictionary, 2nd ed.

4.1 Context and Existing Technology

As already introduced by §3.4 (p.64), I had access to and was familiar with a working

receptor-ligand docking tool, DOX. The exhaustive search version was discarded once

the genetic algorithm variant DOXGA was demonstrated to work, and so that became

known as DOX for brevity. These console-based programs were developed in C++ using

a mostly object-oriented design, and was compiled for use on typical x86 Windows-based

desktop computers. For large-scale screening of a ligand database, a small Linux cluster

was available based on the Rocks platform. Consequently, a port to Linux was in progress,

since the libraries employed in the project (Boost for general data processing, OpenBabel

for molecular file parsing, and the GAlib classes) were all cross-platform compatible.

These test platforms’ specifications are given in §E.2 (p.200).

The basic DOX system using the PLP scoring function, according to its authors’

own unpublished evaluation, was a reasonable ligand docking tool. It successfully

implemented well-established methods for a rigid-body search, and produced acceptable

poses for the examples tested — a particular target of interest was cyclin-dependent

kinase (CDK 2) with the staurosporine inhibitor. Using my incorporation of the XScore

function, when it was completed, the CDK 2 example was again docked correctly.

The use of stochastic search methods, such as GAs, particularly highlighted the

balance to be made between speed and reliability. A comprehensive docking search

is practically unattainable, because the scale of the problem is too expansive, and

69

Chapter 4. Stratagems From Computer Science

so sampling techniques are an established way to cover a large combinatorial space

efficiently. However, the fundamental problem with sampling is that there is a risk of

false negatives: the omission of a good result from any output because it was never

considered. Molecular interactions are a suitable candidate for this kind of search

because the search space includes a large undesirable region and few small goal areas.

Sampling allows the glut of poor ligand placements to be avoided and the most attractive

examples pursued instead. Whilst it is an imperfect method, stochastic searching is

one of the best practices available in the field, and DOX was a fair but unsophisticated

demonstration of this.

4.2 Stratagems for Consideration

Over a long period of time working with the existing DOX implementation, I noted

several points to consider regarding the best way to complete certain tasks (the surface

area calculation of §3.5.1 (p.66), for example). These generally concerned either the

accuracy of the results, the time and resources required to complete the procedure, or

both. Even small improvements to either of these are potentially quite significant, since

the practical application of such docking tools for virtual screening (§2.4.1 (p.49)) requires

that millions of ligands be processed for any given receptor. Regardless of the search

method in use, it is generally possible to divide the task into several layers, as shown in

Table 3.2 (p.64). These can be summarized as scoring (atoms and interactions), screening

(ligands and conformations), and searching (poses).

The problem can be abstracted thus: for a set P = {p1, p2, . . . , pn} of n items, where n

is very large, we define a comparison operator C(pi, pj) based on an evaluation function

S(p) such that C(pi, pj) ≡
(
S(pi) ≺ S(pj)

) ⇐⇒ pi is better than pj. We seek the best p,

such that ∀q ∈ P, q 6= p : C(p, q) is true.

4.2.1 Scoring

The evaluation S(p) generally employs a scoring function Score(R, L), as introduced

in §3.3 (p.59). S(p) updates a ligand L to the pose specified by p, and then applies the

scoring function to the new arrangement. The calculation of S(p) must be done quickly,

70

4.2. Stratagems for Consideration

since it will be required a vast number of times, and the precision should be appropriate

to the situation.

Look-Up Tables

As discussed in §3.5 (p.66), the DOX framework already permitted the pre-calculation of

scoring function terms in look-up tables (LUTs) to speed the evaluation of docked poses.

This produces a very large amount of data and takes a substantial amount of time for

each receptor, although it needs to be done only once.

Interpolation Interpolation is important for the accuracy of LUTs. It may be impractical

to generate LUTs at a very fine resolution — the memory demanded by XScore’s 37 tables

becomes colossal for larger receptors — but subtle changes in ligand alignment need to

be distinguishable. Thus, it is desirable to interpolate values when retrieving data.

Caching Although the pre-calculation of the LUTs is reasonable for a receptor that will

be a repeated target, it may still be unnecessary. Rather than generating entire LUTs for

generous bounding regions (to ensure that the ligand will not protrude out of bounds), I

suggest that a caching mechanism could be employed. This then requires no lengthy pre-

calculation to initialize the docking, but instead fills in the entries as and when required.

Early Rejection

The use of scoring functions to assess a ligand and receptor pose quantitatively is

inexact. Values produced by any such calculation must be interpreted and used with care,

treating them with appropriate precision. Consequently, there is little point in calculating

unreasonable detail, especially if a judgement can be made about the result before it is

completely evaluated.

4.2.2 Searching

It is unfeasible to evaluate S(p) for every p ∈ P because P is far too large. Typically,

a search must focus on a small population P′ ⊂ P, and the selection of P′ needs to be

reasonable. We should avoid choosing elements that can be predicted to be unfavourable,

71

Chapter 4. Stratagems From Computer Science

and those that are chosen should be handled in a way that allows their suitability to be

established as quickly as possible.

Local Optimization

Local searches can be used to overcome the limits of a relatively coarse search of pose

space, refining a moderately well-scoring result to find the best nearby pose [Hart, 1994;

Morris et al., 1998]. Similarly, they can be used to improve the likelihood of a GA finding

the best result by ensuring that any strong genomes are optimized. However, their

excessive use will most likely be counter-productive, expending time for only minor

improvements to the poses found.

Prioritization

Where it is possible to choose the arrangement of data for processing, it should be done

in such a way that the most significant information is processed first. If calculations are

making use of early rejection, then this will ensure that better judgements can be made

about what their appropriate level of detail should be.

Early Rejection

There is little to be gained — probably nothing whatsoever — from repeatedly evaluating

a function for near-identical data. Instead, one could assume that F(x1) ≈ F(x2) if some

similarity measure of x1 and x2 is above a threshold level; a simple example would be

a scoring function and two poses of the same ligand. The computation time saved by

using this shortcut should be used instead to cover a greater diversity of values.

Structural Decomposition

The geometry of molecules is crucial to their ability to dock, and thus their volumes can

be compartmentalized into regions according to the likelihood and/or mode of binding.

If substructural motifs can be identified, then they provide another source of information

about the interactions being simulated. These clues about the possible arrangements and

outcomes should be used to avoid searching for poses that are unlikely to be of interest.

72

4.2. Stratagems for Consideration

Heuristics

To respond to the disproportionate range of unsuitable poses that a search method

might examine, some bias is worth considering. Search methods often produce implicit

information about their progress. Assuming that the algorithm iteratively refines a

set of candidates, the current items for assessment provide an approximate indication

of the general standard of results being discovered. If several distinct searches are

necessary, but with an expectation that not all of them will produce favourable results,

then processing may be biased to prefer those making encouraging progress.

4.2.3 Screening

The evaluation S(p) involves a particular ligand conformation Lk. Finding the best p

for L1 is only one part of the docking task: this search must be repeated for L2, L3, and

so on. Over time, the set of poses P′ considered by each search could be reduced using

accumulated experience and general knowledge. The thoroughness of the searches could

also vary, depending on the properties of Lk.

Spatial Indexing

Analysing the space around two solid bodies — a ligand and receptor, for example — will

typically require frequent point membership classifications: categorizing space as inside,

outside, or on the surface of a shape. To make such decisions quickly, volumetric LUTs

can be constructed as a grid over the space of interest and labelling each cell in that lattice

according to its occupancy. My work implementing XScore involved the development

(described in §3.5.1 (p.66)) of a SpatialOccupancy class to perform this kind of grid-based

decomposition. When generating the data for such a representation, it is perhaps also

worthwhile to index the classifications assigned, so that they can be iterated separately

and systematically.

Search Methods

Genetic algorithms are a well-established option for efficient searching of ligand

placements, but they are not necessarily the best in all situations. Biochemistry literature

73

Chapter 4. Stratagems From Computer Science

features numerous methods for applying GA work to docking, as reviewed in §2.3.2

(p.36) and discussed further in §8.2.3 (p.162). Since I already had a working GA system

available to me, I chose to exploit this foundation as a test-bed for other stratagems,

rather than starting with nothing. The intention was to explore abstract techniques for

improving tools in general, not the construction of a particular complete system.

Early Rejection

The parameters for the output from a docking system provide some guidance for the

search. Not only do they define the final processing of results, but they can be used to

eliminate wasted effort at earlier stages. If it appears unlikely that a particular search job

will produce any results that will be retained in the final output, then it could be rejected

to make way for another that might prove more successful. The output from a docking

search is often constrained by a count, and this quota defines a worst acceptable score.

Once the required number of result poses has been collected, this is the least preferable

score in the list. Any pose with a score worse than this can be guaranteed not to appear

in the final output from the docking routine, and so should be avoided.

Deferred Evaluation

Permitting the suspension and resumption of searches according to their progress could

make efficient use of processing resources. This would require some interface for the

dynamic priority rating of jobs to select which should be started, continued, or stopped.

Although a time and space cost is inevitably incurred by storing search states, the

potential benefit is that ligand conformations that are proving unlikely to bind could

be ignored until all alternatives have proven worse. This is a more cautious approach

than early rejection.

Machine Learning

The application of prior knowledge learnt from completed dockings to the guidance

of new cases is a field that has attracted much interest already. Ligands can be

described and compared using many properties. If information can be collected about

a particular target’s previous results, this should help subsequent docking searches

74

4.3. Applications and Examples

to predict whether and how another ligand might bind. There could be a speed

improvement if reasonable initial predictions of docking poses can be made and thus

searches abbreviated. Even if the docking search is not directly improved, useful

information may be collected about a receptor’s behaviour of interest for other analysis.

Parallel Execution

High-throughput processing such as this cannot be discussed without considering

the options for execution in parallel. Some search methods are embarrassingly

parallel, including most population-based algorithms. These have clearly segmented

implementations, and so it is relatively straightforward to consider distributing the

members of the search population between several processors. At a higher level, where

multiple complete searches are required with different inputs then these too can be

performed on different processors and the results collated afterwards. This separation

of tasks is the obvious extension of the job control design for deferred evaluation.

Shape Classification

As already noted with structural decomposition, the geometry of molecules determines

how they might bind. The shape of a ligand may provide useful information to reduce

the amount of repetitive work the docking search has to do. In combination with a

machine learning mechanism, descriptors of ligands can be collected to identify a general

pattern of what shapes dock well with a particular receptor, and where. Not only can the

receptor provide guidance about where its surface pockets may support docking, each

ligand processed can be used to illuminate better the likely outcomes of later searches.

4.3 Applications and Examples

Having collected these stratagems, I had to consider how to make sense of them in a

practical situation. Starting with the simple list, I associated each with one or more

aspects of the DOX system to which they were relevant and ideas for how they could

be used. Several items appeared to be interrelated, with common areas for application

or dependencies for implementation. After much thought and discussion, I began to

75

Chapter 4. Stratagems From Computer Science

Figure 4.1: The research roadmap, linking the stratagems and practical applications

76

4.3. Applications and Examples

formulate a logical thread from one to another, and eventually, I constructed the roadmap

shown in Figure 4.1. The diagram illustrates the stratagems (as shaded boxes) in their

three layers, and their practical applications (in ovals), with dashed lines marking the

connections. A combination of necessity and practicality then determined the order in

which these should be investigated. That sequence is marked with heavy arrows, tracing

the work plan from look-up table behaviour, through job-based parallel execution, to

geometrically-guided heuristic searches.

The applications to be discussed have been divided, like Gaul, unevenly into

three areas. These are not chronological with my experiments, but are rather a

thematic presentation. The chapters cover the issues of geometry, searching and scoring

algorithms, and higher-level task organization. Here, I introduce the experiments to be

described and compared.

4.3.1 Geometric Guidance

To make much of the later geometric work possible, it is important that rotations

in a docking system are represented using quaternions. These are an alternative

mathematical construction to the traditional Euler angles method. An explanation of

quaternions and the relative merits of the two systems are provided in §5.1 (p.83).

Structural decomposition for predicting the active site on a receptor can guide the

initial placement of ligands. If an automatic pocket detection algorithm is employed,

some likely poses could be selected to prime the search population. Depending on

the information produced about the pockets, the ligand conformations could even be

placed analytically in these volumes, avoiding unnecessary atomic clashes. A number

of algorithms have been developed for this task in recent years, as discussed in §2.3.2

(p.34). I present my own novel method in §5.2 (p.87), which employs the spatial indexing

already being used for XScore.

Although in some circumstances it is reasonable to expect manually-chosen limits

to be imposed on a docking, investigating new molecule complexes may well require

multiple binding sites — or even the receptor’s entire surface. Automatic pocket

detection may offer binding sites on which to concentrate a search, but several areas must

77

Chapter 4. Stratagems From Computer Science

still be tried if any leads are to be found reliably. Heuristics for gradually narrowing

those search extents are demonstrated in §5.2.5 (p.101).

Several general molecular shape representations exist (see §2.2 (p.28)), and these

provide a good use for the learnable properties in §4.3.3: collecting geometric information

about the best previous docking arrangements. Simple shape descriptors can be used

to characterize a ligand in a manner that supports this kind of analysis better than a

complete atomic model. The information thus gathered can then identify ligands that

are likely to fit well again, and can also provide good example poses to which new

ligands can be aligned rapidly, generating pertinent initial states for a search. Shape

classification is used to pre-align ligands in §5.3 (p.106).

4.3.2 Efficient Exploration

Local optimization was already present in the DOX system, with an implementation

of the simplex optimizer [Nelder & Mead, 1965] applied after every generation to each

genome in the GA population. It would be faster to include this stage after every nth

generation, or perhaps only the final population, and so avoid diverting excessive time to

detailed local searches. The consequences for result quality are discussed in §6.1 (p.117).

Look-up tables are discussed and the benefit of interpolation is assessed in §6.2

(p.121). A lazy implementation, caching data rather than pre-calculating it all, is tested in

§6.3 (p.125), having proved useful with the earlier pocket detection work in §5.2.5 (p.101).

Early rejection is relevant to all levels of docking. It may well be possible to deduce

that a partially-calculated pose score can be expected to fall beyond any acceptable range

if completed. If the number of atoms as yet unconsidered is insufficient to redeem it,

then that incomplete score should be returned as the result so that the docking algorithm

can continue. Since the atoms exposed on a molecule’s surface tend to make the greatest

contribution to any interaction, these can be prioritized for first consideration. Selectively

approximating a scoring function with an early exit in this way is tested in §6.4.1 (p.128).

Any search method, including a GA, is constrained in its ability to find results by the

population size used and the extent of the search bounds. If several of the poses under

consideration become very similar, the exploration’s performance will be diminished by

78

4.3. Applications and Examples

focusing too much one possibility, especially if large regions are still untested. Such

duplications should be identified and merged, replacing one with an alternative case

to try instead. This is applied to the GA search method in §6.4.2 (p.134).

It may be reasonable to predict mid-way through a search whether it seems likely that

any poses will be found that will be preferred to the worst-case score in the result quota.

If not, the search should be terminated early and another conformation considered. Since

the worst-case score for a receptor will only improve with each docking completed, the

prioritization of conformations may be significant. This high-level rejection is discussed

in §6.4.3 (p.137).

4.3.3 Properties, Priority, and Parallelization

A mechanism for associating information about molecules with their docking results

must be devised to support machine learning. Somewhat akin to current pre-

calculations of LUT data, a database should be created for each receptor storing

properties of ligands and poses along with a measure of their success, updated

automatically each time a conformation is docked. Making this usefully flexible and

easily amended with new data is a primary requirement, allowing for the possibility of

parallel screening (see below) needing shared access. The details of molecular knowledge

bases (MKBs) are given in §7.1 (p.143), and the design and application of learnable

properties are described in §7.2 (p.148).

Task prioritization should be done with a scheme that uses the shape classification

work discussed above, such that jobs consistent with known good results are boosted and

those with sufficiently low ratings are frozen or discarded altogether. In particular, the

input conformation ensembles should be ordered before any searches begin, to collect

results from the most promising cases first. This idea is discussed in §7.2.1 (p.150).

Consequently, I replaced DOX’s existing database conformation evaluation loop with

a job management procedure. To support this, I included a simplistic job priority

function, based on intermediate GA population scores, to control deferred evaluation

of conformations. This design is compared with sequential evaluation in §7.3 (p.151).

Parallel execution can be achieved by splitting the input database of ligands and

running separate docking instances for each batch on separate computers. This can

79

Chapter 4. Stratagems From Computer Science

Of these two fictitious editions, ‘Ex1’ is faster and much more precise in its docking
results, and selects the correct ligand conformation more successfully.

Figure 4.2: Sample result graphs illustrating assessment criteria

be partially automated using well-designed shell scripts and job queueing tools. It is

preferable to have a completely integrated implementation, dynamically balancing the

workload between processors and coordinating data updates to and from the knowledge

bases, so that a single command can be issued to start an autonomous distributed

screening system. A working cross-platform example of this is presented in §7.4 (p.153),

quantifying the potential acceleration of screening.

4.4 Assessment Criteria

The following three chapters discuss the preceding applications of the stratagems. For

this purpose, I built many different editions of the DOX system, each with a code

identifying the particular combination of modifications present. The edition codes are

printed monospaced and boxed in this thesis. A list of these program editions and

the stratagems in each is given in Table E.3 (p.202). When comparing the behaviour

of these versions, assessing the relative merits of a particular technique or parameters,

I have collated the following data from the program’s standard output transcripts and

result data files:

Loading time: The time taken to read and parse data for the docking run, and prepare all

internal states up to the point of beginning the first search algorithm.

Docking time: The time taken to perform the docking search algorithms for all ligand

conformations supplied. In the example of Figure 4.2, ‘Ex1’ takes 10 minutes while ‘Ex2’

takes 15 minutes, as shown by the grey bars. The inputs processed in this time would be

specified by a ‘Test used’ caption in the figure, as explained in Appendix E (p.195).

80

4.4. Assessment Criteria

Results by RMSD: The percentages of results within four ranges of RMSD (up to 1, 2,

3, and 4Å) from the crystallographically identified correct binding pose of the ligand(s)

being docked. These data are shown as stacked bar charts to make the distribution of

results clear. A standard colour code has been used: the proportion of poses within 1Å

is shown by a blue bar; the proportion within 2Å is marked by the top of the green bar,

those within 3Å with a yellow bar, and those within 4Å with red. An RMSD within 2Å is

widely considered a good result: taller green bars are good and taller blue bars are better.

Figure 4.2 provides an illustrative example: of the result poses obtained from the ‘Ex1’

edition, 40% were within 4Å RMSD, 30% within 3Å, 20% within 2Å, and 10% within 1Å.

This compares favourably with the ‘Ex2’ data, where only 4% of results were within 2Å,

even though an almost similar proportion was within 4Å.

Rank and frequency of crystal structure: Where an input database of multiple conforma-

tions is screened, the output list indicates which conformation is represented in each

pose result. In particular, the native bound conformation can be identified. Its number

and ranks of appearances are shown using bar charts, with two bars per test case, as a

measure of the screening method’s tendency to select the correct ligand shape. On these

charts, the black outer rectangles extend from the highest to lowest rankings of the true

conformation, with an inner grey bar indicating the frequency of that conformation in

the results. Higher, taller rectangles are therefore preferable, but full-height bars would

indicate bias that would be undesirable in a screening situation.

Figure 4.2 shows that the native conformation appeared 5 times in the results from

‘Ex1’, from 10th position to 30th. ‘Ex2’ only returned it twice, at ranks 25 and 35.

These measures provide simple comparisons between editions and configurations of

the docking system. In many published assessments, RMSD is used as a primary metric

of success with the 2Å threshold used to identify correctly-placed results [Cavasotto &

Abagyan, 2004; Erickson et al., 2004; Meiler & Baker, 2006]. The selectivity measure,

however, is of limited relevance to the question of whether a system is suitable for blind

screening. Where an ensemble of ligand conformations is generated for docking to a

hitherto untried target, it is unlikely that the exact ideal conformation will in fact be

produced. Hence, the tendency of a search to choose ideal shapes is only of interest if

the most similar example will be most preferred — not at all certain once conformations

vary significantly.

81

Chapter 5
Geometric Guidance

“Round objects!”
“Who is Round, and to what does he object?”

‘Yes Minister’, Jonathan Lynn & Antony Jay

Protein-ligand docking is governed substantially by the shapes of the molecules

involved. The interactions between them are often concentrated at their boundaries,

and the extreme repulsion of atoms when colliding ensures that there cannot be any

significant overlap. Consequently, the geometry of the molecules is an important source

of guidance when searching for a good binding pose. This chapter discusses how best to

represent, manipulate, and exploit raw shape data to improve the efficiency of docking

searches. Where experimental results are presented, codes are used to identify the tests

used: these are explained in Appendix E (p.195).

5.1 Quaternion Rotations

In order to represent the ligand poses being scored, it is necessary to use (at least) a

translation and rotation. The position is trivially modelled as a 3D vector, but rotations

lend themselves to multiple designs. The analogue of the translation’s vector for precise,

explicit use is a 3×3 matrix, which can be multiplied by a vector to perform the rotation.

A more natural implementation is to employ three Euler angles, which correspond to

three component rotations about prescribed axes. These are convenient to understand

and describe in code, and conversions to matrix form are well-known. However, they

have certain disadvantages:

• The convention of which axes the angles rotate about must be chosen and

used consistently; this varies between implementations. A common choice is

analogous to describing a person’s longitude, latitude, and compass bearing from

an equatorial origin.

83

Chapter 5. Geometric Guidance

• The problem of gimbal lock can occur: this is when a degree of freedom is lost

because two of the axes are aligned. In the above convention, a person at the north

pole has + 1
2 π latitude, but longitude and bearing degenerate into the same axis.

• Discontinuities occur in the representation: for example, a person walking up the

Greenwich meridian and passing the north pole instantaneously switches from 0

longitude to ±π, and also from a bearing of 0 to ±π. This makes calculating relative

rotations and interpolation difficult.

• Composing rotations is difficult to do without incurring rounding errors, because

the second rotation must be applied to the coordinate frame resulting from the first.

In practice, this often has to be done by multiplying the corresponding matrices, an

inefficient method and one less convenient for display to humans.

• When selecting rotations at random, as often must be done for a docking search,

a uniform selection of angles will result in a significant clustering of rotations

around polar arrangements. This can be avoided by selecting cosine values for

the degenerating angles instead of the angle values themselves.

• The use of Euler angles relies heavily on trigonometric functions, and the

computational cost these involve.

A third representation applies unit quaternions to the problem. Quaternions

are hypercomplex numbers with one real and three imaginary parts (i, j, k) where

i2 = j2 = k2 = ijk = −1 [Hamilton, 1967]. Their use for rotation is an established

technique in engineering and robotics since it allows a continuous representation of all

possible rotations. Whereas the space of Euler angle rotations may be thought of as the

volume of a cuboid of dimensions (2π, π, 2π), the space of all quaternion rotations is

the surface of a unit 4-sphere. A quaternion rotation Q may be written as a normalized

4-vector:

Q = [a, x, y, z] : |Q| = 1 ⇐⇒ a2 + x2 + y2 + z2 = 1 (5.1)

in which case the spatial interpretation of Q is a rotation of 2 arccos(a) about the axis

in the direction [x, y, z] from the origin. The special case of a zero axis, when x = y =

z = 0, is consistent since the requirement that Q be normalized implies that a = 1, and

thus 2 arccos(a) = 0 defines the null rotation. Since this representation always explicitly

defines the axis of rotation, there is no confusion about frames of reference. The angle-

axis interpretation is reasonably easily understood by users.

84

5.1. Quaternion Rotations

Applying a rotation to a vector in space does not require any trigonometry but may

be done directly by multiplication. Specifically, the transformation of a point v by Q is

given by
[
vx, vy, vz

] 7→ [
v′

x, v′
y, v′

z
]

where

v′
x = vx + 2 ((−QyQy − QzQz)vx+ (QxQy − QaQz)vy+ (QaQy + QxQz)vz)

v′
y = vy + 2 ((QaQz + QxQy)vx+(−QxQx − QzQz)vy+ (QyQz − QaQx)vz)

v′
z = vz + 2 ((QxQz − QaQy)vx+ (QaQx + QyQz)vy+(−QxQx − QyQy)vz)

(5.2)

Rotations may be composed by conventional quaternion multiplication: performing Q1

then Q2 is equivalent to Q′ where

Q′ = Q2Q1 =




Q2a

Q2x

Q2y

Q2z







Q1a

Q1x

Q1y

Q1z



=




(
Q2aQ1a − Q2xQ1x − Q2yQ1y − Q2zQ1z

)
(
Q2aQ1x + Q2xQ1a + Q2yQ1z − Q2zQ1y

)
(
Q2aQ1y − Q2xQ1z + Q2yQ1a + Q2zQ1x

)
(
Q2aQ1z + Q2xQ1y − Q2yQ1x + Q2zQ1a

)




(5.3)

The inverse of a rotation Q is simply the same rotation angle about the reversed axis,

corresponding to the hypercomplex conjugate:

Q−1 = [Qa,−Qx,−Qy,−Qz] (5.4)

Thus, a relative rotation from orientation Q1 to Q2 is easily calculated as Q2Q−1
1 .

Smoothly distributed rotations may be generated at random by picking values of

a, x, y, z uniformly in the range [−1,+1], discarding those for which a2 + x2 + y2 + z2 > 1

(i.e. that fall outside the unit 4-sphere), and normalizing the resulting quaternions. An

alternative method, which avoids the wastage of rejected selections, is to pick the values

of a, x, y, z each from a standard Gaussian distribution (expectation zero and arbitrary

variance), and normalize these. This may be achieved by applying an inverse cumulative

distribution function to uniform random variables in (0, 1) [Shoemake, 1992].

5.1.1 Comparison with Euler Angles

A significant improvement over an explicit matrix representation is to store rotations

as three angles, disallowing their direct composition, and calculating the matrix only

when it is required. When matrices are used, their values must be kept normalized to

ensure that a true rotation is represented — rounding errors could introduce skewing or

distorting effects when applying the transformation to a molecule’s pose.

85

Chapter 5. Geometric Guidance

Test used [see Appendix E]:
10× 1AF2 on Eurymedon P q

Figure 5.1: Comparison of quaternions with Euler angles for rotation representation,
showing the improved speed and results when using quaternions

To demonstrate this, I created a general Rotation class to represent and apply

rotations defined by three values or an angle-axis specification, making it possible to

use either Euler angles or quaternions interchangeably according to compiler directives

(see §E.3 (p.201)). A comparison of the P and q editions — identical except for the

rotation implementation — demonstrates clearly the great improvement in efficiency

offered by quaternions. Figure 5.1 shows a 50% reduction in run time with more results

placed very close — within 1Å RMSD — to the true pose when docking the 1AF2 test

86

5.2. Predicted Pocket Positioning

case. Faster execution is a consequence of the reduced data size and fewer arithmetic

operations demanded by quaternions, and the improved results can be explained by the

more uniform behaviour in the genetic algorithm.

The existing implementation using Euler angles used three angles as the search

variables, which results in a bias towards selecting polar poses. To repair this, the

inclination (latitude) parameter could be searched by cosine value instead, making

random selections more evenly distributed. However, this will then make small

mutations in the search have widely different effects depending on the value: a change

in the cosine value from 0.00 to 0.01 represents a movement by 0.573° but 0.99 to 1.00

represents 8.11°.

5.2 Predicted Pocket Positioning

The task of searching all possible poses for a ligand conformation is one of huge

combinatorial scope. Any means of focusing this into a smaller range of possibilities

is helpful. This is why the prediction of active sites, discussed in §2.3.2 (p.34), is a topic of

interest. If a receptor can be analysed before any ligands are presented to estimate where

a ligand is likely to bind, then this information can be used to initialize any search poses

and improve the likelihood of finding a good placement.

Since active sites are generally large crevices on the receptor’s surface [Laskowski

et al., 1996], the identification of significant concave regions around a molecule is a

desirable facility to have. If the representation of the pocket shapes can be used to

calculate preferable orientations of the ligand as well as translations, then this is a bonus.

5.2.1 PIES

Although several approaches to pocket detection have been published and reviewed

[Sotriffer & Klebe, 2002], the XScore implementation work led me to invent a geometric

method of my own based on a predicted concavity measure calculated from the already-

defined SpatialOccupancy data.

My Pocket Identification by Encroaching Spheres (PIES) algorithm provides a simple

method for identifying cavernous sections of a molecular surface in a space-filling form,

87

Chapter 5. Geometric Guidance

Dark grey voxels: ‘Internal’
Light grey voxels: ‘Surface’
White voxels: ‘External’

The dashed circle marks the Cavern radius and the
dotted circle the Fill radius from the crossed surface
point being considered.
To determine whether this is a concave point, the
inverse proportion of external points within the dashed
circle is counted: 49/9.
If this is greater than Threshold, the external voxels
within the dotted circle are added to the pocket.

Figure 5.2: Grid-based concavity measure used by PIES

Ligand shown as dark sticks
to left of label ‘2’.

Top four ranked pockets
numbered. 28 pockets
identified in total.

Ligand in second pocket,
filling 48% of pocket volume.

Correct pocket is 11% of
total volume of all identified
pockets.

Calculation took 4.3 seconds
(using Eurymedon).

Figure 5.3: PIES-5-3-7 pocket detection analysis of 1AF2 protein

suitable for initializing a docking procedure. It uses a rectilinear lattice to represent

the volume of the molecule, and the ratio of occupied to unoccupied cubes in spherical

regions centred on the boundary to estimate the concavity at each point, as illustrated in

Figure 5.2. The atomic radii are inflated by 0.5Å to eliminate any small crevices (thinner

than 1Å), smoothing the molecular surface (akin to a solvent-accessible boundary),

simplifying its processing, and avoiding an excess of undesirably small pockets.

The unoccupied volume near the concave boundary points is collected into spheres,

and these are clustered together if they are sufficiently close (that is, the radius of their

union is within 20% of the existing size, a limit chosen experimentally to balance output

detail with simplicity). Finally, those clusters containing volumes above a given size

88

5.2. Predicted Pocket Positioning

Yellow jacks mark
lattice points filling
the pocket.

Grey rods are the
alignment axes
identified.

Figure 5.4: Detail of 1AF2 active site as identified by PIES-5-3-7 showing native ligand pose

are recorded as the predicted pockets, with lines between the member spheres’ centres

and enclosed within the cluster recorded for use as alignment axes. The overall method,

described in full in Listings 5.1 and 5.2, requires six inputs:

Mol: the molecule to be analysed,

Res: the resolution of the lattice to be used (typically 1Å),

Threshold, Cavern, Fill: the ratio and radii for concavity estimation,

MinSize: the minimum acceptable size for the clusters collected (1
4

(
Fill
Res

)3
by default).

The resolution and minimum cluster size are not generally specified and the defaults

above used. MinSize is based on a minimum equivalence to the volume of a spherical

cone of the Fill sphere with diameter also equal to Fill (approximately 1
16 of the sphere),

a value that seems to work well experimentally. The particular parameters used are

denoted PIES-cavern-fill-threshold. Increasing the Cavern produces fewer clusters and with

fewer spheres each. Using a larger Fill increases the number of clusters, making them

larger. Raising the Threshold reduces the number and size of clusters.

The construction of the SpatialOccupancy data is linear in the number of atoms N,

while the number of boundary points for iteration should be at most proportional to N

for all reasonable receptors. The number of clusters that may be generated is bounded

by the number of surface points, and these are only iterated in non-recursive patterns, so

the overall complexity should be approximately O(N).

My SphereCluster implementation (used for all collections of volumes) keeps its list

of voxels (volume elements) ordered by non-increasing distance from their centroid,

and maintains the outer bounding sphere. This allows overlaps to be identified more

efficiently, in the same manner as with sphere trees (shown in Figure 3.1 (p.55)). More

89

Chapter 5. Geometric Guidance

Strip any hydrogen atoms from Mol
Increase the radius of each atom in Mol by 0.5Å
Create Mesh, the spatial occupancy mesh for Mol with resolution Res
For each voxel V labelled ‘Edge’ in Mesh do

Begin
N := the number of voxels in Mesh within Cavern radius of V F
NO := the number of these labelled ‘Outside’
If NO > 0 and N/NO > Threshold then

Begin
Create cluster C1
Add to C1 the ‘Outside’ voxels in Mesh within Fill radius of V F
If size of C1 ≥ MinSize then Append C1 to S
End

End

//S contains many small spherical clusters in the pockets

I := 1
For each cluster C1 in S do

Begin
Label C1 with I
For each cluster C2 in S where C2 precedes C1 in S do

If C1 and C2’s labels differ and their separation ≤ Res then
Label with I all clusters in S with the same label as C2

Increment I
End

Sort S by the clusters’ labels

//S now has the same clusters labelled by pocket numbers

I := 0
N := 0
For each cluster C1 in S do

Begin
If I 6= C1’s label then

Begin
If I 6= 0 and N > Cavern then

Begin
Label Group with N
Append Group to Final
End

Clear Group list
I := C1’s label
N := 0
End

Append C1 to Group
N := N + size of C1
End

If I 6= 0 and N > Cavern then
Begin
Label Group with N
Append Group to Final
End

//Final is a list of cluster lists, one per sufficiently large pocket

F marks lines modified in PIECE (§5.2.1 (p.94)). continued in Listing 5.2...

Listing 5.1: PIES pocket detection algorithm outline [part 1 of 2]

90

5.2. Predicted Pocket Positioning

...continued from Listing 5.1
For each list of cluster Group in Final do

Begin
I := 1
While I 6= 0 do

Begin
I := 0
For each cluster C1 in Group do

Begin
Find C2 in Group which merged with C1 has least radial increase
If the radius increase < 20% then

Begin
Merge C2 into C1
Remove C2 from Group
Increment I
End

End
End

Append SphereAxis (Group, {}) to Output
End

//Output contains a SphereAxis for each pocket
//SphereAxes are clusters with a list of SphereAxis references

For each array of SphereAxes X in Output do
For each SphereAxis A in X do

For each SphereAxis B in X where B 6= A do
Begin
V := the midpoint between A and B
If V is inside a member of X padded by Fill/8 then

Append B’s index in X to A’s array of integer
End

Return Output
//Output contains the list of pockets as lists of spheres
//with alignment axes inside them

Listing 5.2: PIES pocket detection algorithm outline [part 2 of 2]

importantly in this application, finding the minimum separation of points in two clusters

subject to a maximum acceptable distance — an operation required for merging the

spheres into coalescing clusters — can be accomplished quickly because it is easily

possible to select and consider only those points that may be within that range.

My implementation of this algorithm, as the PropPlacePIES class, provides several

outputs besides that used by the docking software and recorded with the receptor. The

spheres used to enclose the pockets are recorded, colour-coded by cluster rank, to make

it possible to see which pockets were identified with what preference. Figure 5.3 shows

this representation for the 1AF2 receptor, where the second-ranked pocket contains the

true binding site, and is approximately twice the size of the ligand.

91

Chapter 5. Geometric Guidance

The active site is shown again in Figure 5.4 with more detailed output data: this

includes the precise volume (as lattice cells) of the pocket identified and the lines offered

for alignment. The yellow markers illustrate the necessity of the spheres in the method:

the actual volume of the pocket is quite limited and, although it coincides well with the

native pose of the ligand, it does not envelop it. The use of spheres to encroach upon the

receptor’s surface allows the pocket representation to fill up and provide a larger, more

useful space in which to position ligands, while retaining the important details of the

shape in a simpler description.

Parameters

The three parameters that are available for user input — the Cavern and Fill radii and the

Threshold value — need to be chosen, ideally maximizing the flexibility of the method’s

application. To assess the variables’ effects properly, I ran the PIES algorithm for every

member of the Astex Diverse Set (listed in §E.1.3 (p.199)) using 40 different configurations:

Cavern ∈ {4, 5, 6, 7, 8}, Fill ∈ {2, 3}, and Threshold ∈ {5, 6, 7, 8}.

Figure 5.5 compares three important statistics about each of the variations, aggregated

over the 85 examples used. The timings show a clear trend: increasing either of the radius

values increases the calculation time, and increasing the concavity threshold decreases

it. At smaller cavern sizes, the threshold is inversely proportional to the successful

rankings of the correct pocket, but with larger caverns this trend is reversed and the top-3

rankings become fairly stable. This should be expected: small caverns are insufficient for

the concavity measure to be accurate. The fill radius has little effect on rankings, but

does influence the size of the pockets. A larger fill results in the pockets chosen being

much less specific than with small fills: they are larger, and indeed there tends to be at

least 200% more pocket volume altogether. However, it is preferable to have the pocket

volumes up to around half the size of the ligand because this provides some useful shape

information for alignment and flexibility in positioning.

Selecting a particular configuration from these statistics is not simple. A choice that

minimizes calculation time cost but maintains a high rate of successful and usefully-sized

pocket selection is sought, and so I express this requirement as a formula to quantitatively

evaluate each set of results. The formula and its graphs are shown in Figure 5.6. The

92

5.2. Predicted Pocket Positioning

Times:

Parameters

Rankings of correct pocket:

Correct pocket volume as proportion of ligand volume:

Test used [see Appendix E]: 1× Astex Diverse Set on Eurymedon A

(PIES calculation only, various parameters)

Figure 5.5: Effects of PIES parameters on processing Astex Diverse Set, comparing
calculation times and accuracy of results, marking the combination selected for normal use

93

Chapter 5. Geometric Guidance

Assessment formula used (for the 85 cases of the Astex Diverse Set):

#(rank = 1)− #(rank > 3)
85

+
#(pocket/ligvol ≤ 40%)− #(pocket/ligvol > 60%)

170
− minutes

15

Test used [see Appendix E]: 1× Astex Diverse Set on Eurymedon A

(PIES calculation only, various parameters)

Figure 5.6: Quantitative assessment of PIES parameters’ effects, showing the best
combinations and the selected option

peaks of the function are the favourable configurations, reducing the number of areas

to consider enormously. The pattern that emerges is that for the smaller fill radius the

cavern size and threshold need to be proportional — increasing one must be matched

with an increase to the other. With the larger fill, the best options are smaller caverns

with larger thresholds.

Although the best option by this crude rating is PIES-6-3-8, this is relatively slow

compared with the otherwise similar second and third cases, 5-2-5 and 5-3-7 respectively.

The latter produced more pockets between 20% and 40% of ligand volume, which

should be beneficial for pre-positioning. Hence, I have used PIES-5-3-7 as the standard

configuration in this work. The effect of pre-alignment using PIES for docking is

discussed in §5.2.4 (p.99).

PIECE

As a simplifying adaptation of the PIES algorithm, the concavity measure was altered

to count the voxels within Cavern- and Fill-half-sided cubes of each surface point, rather

94

5.2. Predicted Pocket Positioning

Light grey lines: PIES pocket clusters
Grey dashed lines: PIES alignment axes
Black outlines: PASTRY core and yokes

The core is placed between A, the pocket
centroid position, and B, a randomly chosen
sphere centre. The rotation directs one yoke at
Y, the far end of an alignment axis. The core’s
translation is then interpolated with the
positioning of the chosen yoke’s tip at Y
(shown as dotted outlines).

Figure 5.7: Diagram showing placement of PASTRY onto PIES, including the alignments
interpolated to generate poses

than spheres. The lines in the PIES algorithm (Listing 5.1) that are changed by this are

marked with stars. This derivative method is called Pocket Identification by Encroaching

Cubes for Efficiency (PIECE). To compensate for the greater volumes being considered by

the same parameters, I reduced the radii and used PIECE-4-2-7 for comparison.

PIECE is quicker to calculate. The entire Astex Diverse Set can be analysed in nearly

30% less time for very little change to the algorithm. A comparison of PIES and PIECE

is given in §5.2.3 (p.97), evaluating their ability to correctly identify pockets. Although

PIECE appears much more successful, it is also the case that the pockets it produces are

much larger and thus indiscriminate than PIES, making it arguably less useful overall.

The use of cubic volumes to fill the pockets makes the method dependent on the provided

orientation of the molecule to be assessed, which is undesirable. Consequently, I have

continued to use PIES in this work; the time cost is acceptable for more precise pockets.

Placement with PASTRY

When poses must be generated in a pocket identified by PIES, the PASTRY shape

descriptor (introduced in §5.3.2 (p.107)) may be used to assist with positioning. Figure 5.7

illustrates the poses that may be interpolated from four arrangements of a particular

random selection of pocket cluster, alignment axis, and yoke. The yokes are chosen with

probabilities proportional to their weights, so that larger appendages on a ligand are

more likely to be accommodated in the pocket. If a pocket with a single sphere is used,

the ligand is simply placed with its core in the centre and oriented at random.

Pre-alignment for docking using PIES, PIECE, and PASTRY is evaluated in §5.2.4 (p.99).

95

Chapter 5. Geometric Guidance

5.2.2 PASS

Having developed the PIES method, I compared it with some similar algorithms. While

a few methods were based on rectilinear lattices, POCKET and LIGSITE in particular, they

employed scan-line techniques for cavity detection. The interior-exterior ratio concavity

measure I present does have some similarities with the Putative Active Sites with Spheres

(PASS) algorithm described by [Brady & Stouten, 2000].

PASS finds every point where a probe sphere may be stacked on the surface of the

protein by resting between three atoms. Each probe is assigned a burial score equal

to the number of atoms within an 8Å radius. Probes scoring less than a threshold (55

being recommended by the algorithm’s authors) are discarded. The process is then

repeated, stacking another layer of probe spheres atop those already placed, maintaining

the neighbourhood atom count and disallowing any new probes that would overlap with

old ones. When no more probes can be added, each is given a weighting determined by

its neighbours’ burial scores, and the weightiest well-separated probes are selected as

active site points (ASPs). If pocket-filling volumes are required, those probes touching

an ASP probe are grouped with it, and their neighbours are recursively accumulated.

Several parameters are required:

Probe: the radius of the probe spheres,

BCmin: the minimum burial count score for a probe to be retained,

BCrad: the radius within which to count burial counts,

Weed: the minimum separation of probe centres (1Å),

Accretion: a smaller radius for non-primary probe spheres (0.7Å),

ASPrad: the minimum separation of ASPs (8Å),

PWmin: the minimum weighting for ASP acceptance (1100).

The values in brackets are fixed in my implementation based on the recommendations

of the original definition. The first three, however, may be varied, and in this work a

configuration is written in the form PASS-BCrad-probe-BCmin, although I have used the

authors’ values: PASS-8-1.8-55. For full discussion of the behaviour of the method, the

reader is referred back to [Brady & Stouten, 2000].

The task of finding triples of atoms that can support a probe sphere is, naively, O(N3)

in the receptor size, making the overall algorithm cubic in complexity. In practice, this

96

5.2. Predicted Pocket Positioning

can be reduced close to O(N2) if, for each atom, all sufficiently close atoms are identified

and this small list is then used to complete the triples. Assigning the probe burial counts

requires a linear scan of the atoms for each (potential) probe, but since a relative minority

of the atom triples will result in probes this is an insignificant factor in the execution.

Calculating the probe weightings is quadratic in the number of probes retained, which in

turn is partly proportional to the size of the molecule. Although this does not necessarily

add a large cost to the calculation, for some inputs it could become significant.

My implementation of the algorithm, PropPlacePASS, reused the SphereCluster class

for collecting probes, since this provides an efficient storage method for the pocket

volumes and the collection of probes to ASPs.

Spatial Indexing

The use of spatial indexing should reduce the calculation of PASS further towards

linear complexity, by allowing the identification of near-neighbouring atoms from pre-

collected regions rather than the entire molecule. Only one iteration over the atoms is

then required, and the number of neighbourhood atoms to consider for each will be

approximately constant (proportional to the Probe parameter). Building the index is

a linearly complex process, as is coating the receptor with probe spheres. Calculating

burial scores for the probes can also employ the index for efficiency.

I made these improvements to the implementation by defining a subclass of the

SphereCluster (see p.89) called IndexedCluster which maintains a collection of buckets

containing the points. Each bucket corresponds to a cube of space; the size of the cubes is

defined when the class is constructed. With the use of spatial indexing, one would expect

PASS to be much better than cubic, between O(N2) and O(N).

5.2.3 Comparison of Pocket Detection Methods

Statistics about the pockets identified and the correct binding site are calculated and

recorded by my implementations. The entire Astex Diverse Set has been analysed with

both PIES-5-3-7 and PASS-8-1.8-55, and in every case (except two using the indexed PASS

method) the true binding site was identified amongst the results produced.

97

Chapter 5. Geometric Guidance

Test used [see Appendix E]: 1× Astex Diverse Set on Eurymedon A

(PIES and PASS calculation only)

Figure 5.8: Comparison of pocket detection methods’ rankings of the correct active site in
Astex Diverse Set cases, showing the higher success rates of PIES and PIECE

Figure 5.8 summarizes the results from each method. In more than half (53%) of the

cases, the top ranked pocket by PIES was the correct one, and 84% had the correct site in

the top 3. PASS (with indexing) ranked the correct pocket first in 47% of the cases, and in

the top 3 for 74%. Comparing these data shows that PIES is slightly more successful at

selecting the pockets over the diverse set of examples.

The calculation times differ much more. The PIES method almost universally

produced its results in under ten seconds, mostly under five. The PASS algorithm,

however, varied much more and had a substantial proportion of cases which took more

than two minutes to complete. Figure 5.9 shows the relationship between receptor size

(measured by heavy atom count (HAC)) and the pocket detection times. This allows the

complexity of the methods to be verified: the lines are least-squares fitted in the form

t = kNp for time t and heavy atom count N. The PIES method (blue circles) shows a

linear trend — the exponent is almost exactly 1 — whereas PASS (red squares) exhibits

polynomial behaviour. The dotted lines show the best fits of precisely quadratic curves,

reinforcing the conclusion that PASS must be O(N2). The adapted version of PASS that

employed spatial indexing (green triangles) was substantially improved, and resulted

in an exponent of approximately 1.5. This is much better, and serves to emphasize the

98

5.2. Predicted Pocket Positioning

PASS-8-1.8-55: t = 2.03x2.47

Indexed PASS-8-1.8-55: t = 4.55x1.57

PIES-5-3-7: t = 0.75x1.06
x =

N
1000

N is heavy atom count

Dotted lines mark quadratic curves fitted to the data for comparison with powers.
Test used [see Appendix E]: 1× Astex Diverse Set on Eurymedon A

(PIES and PASS calculation only)

[1OF6 is an extreme case (N = 20 925, nearly twice the size of the second largest molecule)
which has been omitted for clarity in the graph. It did not contradict the trends shown.]

Figure 5.9: Pocket detection calculation times relative to molecule size, validating the
complexities of the PIES and PASS algorithms

benefits of indexing as an optimization stratagem. Good sorting algorithms are generally

O(N log N), and so even with efficient data storage for handling the probes it is unlikely

that PASS could be made linear. Indeed, it is probably hard to improve on O(N1.5).

5.2.4 Pre-Positioned Docking Results

Having established that these methods can identify the correct binding site of a wide

range of receptors, the question arises of whether this aids docking searches. To find

out, I redocked the Astex Mini Set using the A edition of DOX. This includes all the

geometric properties (both pockets and ligand shapes) and allows the PrePositions class

(see §F.4 (p.208)) to recognize the additional place option. I tested seven pre-positioning

configurations, as listed in Table 5.1: entirely random, or either 50% or 100% of initial

poses generated using the top five pockets from either PIES-5-3-7, PIES-5-3-7 with

99

Chapter 5. Geometric Guidance

Name random place
None 100%

1/2Pass 50% 1 5 PlacePASS-8-1.8-55
Pass 0% 1 5 PlacePASS-8-1.8-55

1/2Pies 50% 1 5 PlacePIES-5-3-7
Pies 0% 1 5 PlacePIES-5-3-7

1/2PiesPastry 50% 1 5 PlacePIES-5-3-7 AlignPASTRY
PiesPastry 0% 1 5 PlacePIES-5-3-7 AlignPASTRY

Table 5.1: Pre-positioning configurations for pocket placement tests

Test used [see Appendix E]: 1× Astex Mini Set on Eurymedon A (various place options)

Figure 5.10: Comparison of configurations from Table 5.1 for pre-positioning ligands in
predicted pockets, showing similarity of docking time and results

100

5.2. Predicted Pocket Positioning

Green: Final boxes chosen and
Correct bound ligand pose
Red: Predicted boxes before combining

Test used [see Appendix E]: 1× 1AF2 on
Eurymedon CA

(search box prediction only, 5 each from PIES
and PASS, maximum overlap 12.5%)

Figure 5.11: Search boxes automatically generated for 1AF2 using PIES-5-3-7 and
PASS-8-1.8-55 in combination

PASTRY, or PASS-8-1.8-55. Using the methods in combination together would confuse the

results, but permitting the inclusion of random poses alongside those calculated allows

for the possibility that analytical pose selection is too precise. I tried the usual 240-

generation GA search with each of these, but also 120 and 60 generations, to establish

whether the use of pocket detection can replace the early part of a stochastic search.

As Figure 5.10 shows, there is little difference noticeable between the various

configurations. With 240 generations the results are fractionally better when using PIES,

but this is not substantial. Crucially, even without any guidance from pocket predictors, a

short search of 60 generations was still capable of identifying a comparable set of poses.

These tests were performed using a search box definition based on the known pocket,

and so the scope for refinement by a pocket detection algorithm is quite limited. A well-

chosen box alone is evidently sufficient to guide a docking.

5.2.5 Automatic Search Extents

The search box must be supplied somehow. Rather than expecting a human to analyse

every unknown receptor and provide manual input about which site to test, the pocket

detection methods can be used to determine a search box (or boxes) automatically. This

in turn can define the LUT extents to be calculated and considered.

Since it is inconvenient to handle several search regions or LUTs for a single receptor,

and since we may find that the active sites chosen by a computational method intersect,

the multiple search box situation provides a useful application for the caching LUTs

101

Chapter 5. Geometric Guidance

//NarrowEvery and NarrowTo are input parameters
//Prepare boxes...
Create BS, an empty list of boxes
For each place property P do

Append to BS the search boxes proposed by P
//Prepare searches...
Let SN := count of BS
Construct SN search algorithm instances, S[1..SN]
Initialize each S[i] to explore extents BS[i]
//Perform usual searches...
For Steps := 1 to MaxSteps do

Begin
For each search AS in S do

Begin
Step AS forward
//Local optimization and/or elitism here, if necessary
End

If (SN > NarrowTo > 0) and (Steps mod NarrowEvery = 0) then
Begin
//Squash the least promising box
Obtain Top[1..SN], the best scores from each search
Find QI, the index of the worst score in Top
Terminate search S[QI], and remove it from S
Decrement SN
End

End
Return combined result poses from remaining searches

Listing 5.3: Multi-box search narrowing algorithm outline

described in §6.3 (p.125). Rather than deferring the calculation of a scoring function

for efficiency reasons, the lazy evaluation paradigm allows any irregular part of the

receptor’s surrounding volume to be considered. To support this, I adapted the

PrePositions class to allow multiple search boxes to be defined simultaneously. These

can be provided directly in the configuration file, or defined by the poses returned from

a place entry. However, if two boxes overlap substantially (by more than a configurable

proportion), they are automatically combined into one for simplicity. Figure 5.11 shows

the resulting boxes for 1AF2 using both PIES and PASS.

Since searching multiple regions takes proportionally more time than one single

region, I also added a periodic narrowing heuristic to the GA, as described in Listing 5.3.

This abandons the least well-scoring box after every n generations, up to a limiting point,

in order to reduce the time taken and eliminate undesirable poses. Multi-box searching

may require more time to consider each pocket, but the amount of LUT data that will be

calculated is tightly bounded and so the time cost should not be substantially worse than

a single unconstrained exploration. Provided that the narrowing algorithm does not

102

5.2. Predicted Pocket Positioning

LUT sizes: None: 47 263 178 entries, PASS: 11 150 653 entries, PIES: 20 083 857 entries
Test used [see Appendix E]: 1× Astex Diverse Set on Eurymedon CA

(various search box predictions, crystal conformations only)

Figure 5.12: Automatic search box docking results, demonstrating benefit of pocket
prediction when docking without user direction

discard the correct binding site, the selective methods should be able to dock a ligand

more accurately, since they will concentrate the search on likely poses.

I ran three of the configurations (‘None’, ‘PASS’, and ‘PIES’) listed in Table 5.1 again

using the new CA edition, redocking the Astex Diverse Set ligands’ crystal structures to

their respective proteins. Five search boxes were constructed using the pocket detection

algorithm in each case, padded by 5Å to ensure sufficient LUT coverage for the search

to explore. The boxes were narrowed every 12 generations until two remained, and

the search finished after 120 steps, with a thorough local optimization to conclude

(see Listing E.1 (p.195)). For comparison purposes, the unguided (None) search was

performed using the entire volume of the receptor as one box, also padded by 5Å. In

all executions, the look-up tables were initially empty.

As Figure 5.12 shows, using a pocket detection method does improve the accuracy of

the docking results. Without any guidance, the search method was generally unable to

identify the correct binding poses. The greater number of search algorithm instances

necessitated by using several search boxes does increase the time cost, although not

103

Chapter 5. Geometric Guidance

always significantly. The total search volume in the unguided case was more than 4

times that of the PASS-prepared method, and so this greater calculation demand balances

the multiple search cost. PIES tended to generate larger pocket volumes, around 1.8 times

those of PASS and so more time was spent calculating data in that case. To compensate

for this, the LUT padding could probably be reduced when using PIES.

The problem of discarding the correct binding site when narrowing should be

considered. The PASS tests dropped the true pocket in 15% of cases, whereas PIES did so

in 25%. Consequently, the PIES tests were unable to produce as many well-placed poses.

From this one can conclude that a method predicting larger pockets requires longer

between narrowings to ensure that each pocket is properly evaluated before dismissal.

To investigate the effect of the two parameters — narrowing period and the minimum

number of search boxes to retain — I used the Astex Mini Set with 15 different

configurations of the heuristic. The period was varied between 6 and 30 generations, and

the limit was 1, 2, or 3 boxes remaining. These combinations are compared in Figure 5.13,

where (for example) the configuration labelled ‘12to2’ had a narrowing period of 12 and

kept 2 boxes. The docking times were increased by completing more boxes, and therefore

searches, and by allowing longer between eliminations. Completing the full 5 box search

took about 72 minutes, and using the narrowing technique reduced this by between 6%

and 17% for the configurations shown.

The poses found using these automatic searches are not generally as close to the

native structures as the results from manually specified single box searches, but this is

unsurprising since the predicted pockets provide a much less constrained docking range.

Good results within 2Å are still returned, though, and the minimum number of boxes

substantially governs how many. Eliminating boxes (assuming they do not contain the

correct binding site) prevents a large number of distracting candidates from being present

in the output, regardless of their scores. For this reason, the result RMSD distributions

on the graph are better for smaller values of NarrowTo.

Of course, discarding the correct box will abandon all the best poses. This fault

occurred at an approximately constant rate of around 5–10% when retaining three boxes,

but when reducing down to a single box the rate was over 30% with all but the slowest

period. That particular configuration, ‘30to1’, makes the final narrowing only after

104

5.2. Predicted Pocket Positioning

‘ptoq’: p=period, q=minimum boxes retained. Fault rate is the proportion of cases and
executions in which the correct binding pocket was discarded by narrowing.

Black time line shows the ‘Never’ case in which no narrowing takes place.
Test used [see Appendix E]: 3× Astex Mini Set on Eurymedon CA

(5 boxes from PIES, various narrowing periods and limits, crystal conformations only)

Figure 5.13: Comparison of search narrowing parameters, showing shorter run times using
quick and maximal use, but better result reliability when retaining more boxes

the last generation of the GA, and so has the best available information with which to

choose. However, a greater time reduction with lower fault rate is available using a swift

narrowing to two or three boxes — ‘6to3’ and ‘12to2’ being good examples.

In order to maximize the probability of the correct box being selected, it is worth using

a consensus of PIES and PASS: using the top 5 from each, 95% of the Astex Diverse Set

pockets are identified. To improve the final results, the post-processing could include an

additional narrowing stage, where only the best boxes are combined in the output; this

105

Chapter 5. Geometric Guidance

will not significantly alter the time taken, but could filter out unwanted poses. However,

it may be more helpful to label each output pose with its box, so that a human assessing

the results could select the binding sites of interest conveniently.

5.3 Shape Descriptors

The similarity of molecules, and particularly ligands, can be a useful source of

information when docking. Often, this involves reducing the complex definition of a

molecular shape (as a union of spheres) to some simpler and more convenient form.

Several methods for performing this are mentioned in §2.2 (p.28). These techniques can

be applied to both the selection of which ligands warrant consideration and where they

might be placed.

A learning mechanism is required to fully benefit from such methods, so that there

can be accumulated data with which to compare or align later cases. That component is

discussed in §7.2 (p.148). I discuss two shape descriptors here: the existing USR method

and my own PASTRY algorithm for comparison.

5.3.1 USR

The Ultra-fast Shape Recognition (USR) method [Ballester & Richards, 2007] was

developed to provide an efficient means of filtering compound databases for ligands

matching a given pattern. It does this by calculating the first three statistical moments

for the sets of atomic distances from each of four significant points, giving a vector

U = [U1, . . . , U12] of 12 real numbers altogether. The significant points are defined as:

a. the molecule’s centroid

b. the atomic centre closest to the centroid

c. the atomic centre furthest from the centroid, and

d. the atomic centre furthest from c.

For two USR descriptors UA and UB, the similarity function is defined as:

SimilarityUSR(UA, UB) =
12

12 + ∑12
i=1 |UA,i − UB,i|

which gives the desired value of one when UA ≡ UB and tends to zero as the descriptors

become increasingly different.

106

5.3. Shape Descriptors

For the outermost remaining non-core atom with the core at C
of radius r:

1. Let T be the atomic centre and d = |T − C| its distance
from the centre.

2. Define a semi-infinite cylinder from C through T with a
radius s = d − r, 3 ≤ s ≤ r.

3. Redefine T as the centroid of all remaining atoms within
this cylinder, and then discard them.

4. Extend the yoke by 1.6Å: T becomes T + 1.6
|T−C| (T − C).

5. Add the point T and its weight d − r to the list of yokes.

Figure 5.14: Construction of yokes in PASTRY shape descriptor

5.3.2 PASTRY

The Pocket Alignment with Spheres and Thin Radial Yokes (PASTRY) description is an

alternative representation of ligand shapes I developed for use when pre-positioning

ligands into automatically determined active sites (see §5.2.1 (p.95)). It is based on the

observation that ligands tend to have approximately radial arm structures, converging

in a central body. These arms are what determine a good docking: they need to be buried

in the necessary crevice of the receptor’s surface. The PASTRY description reduces a

ligand to a core spherical volume and one or more cylindrical yokes (or weighted points)

representing the protruding structures.

The core is defined as the sphere centred on the whole molecule’s centroid, C, and

sized as follows: for the list of all non-hydrogen atomic centres A1, . . . , AN ordered by

decreasing distance from C, its radius r extends to the first Ai with N−i
N−1 − |Ai−C|

|A1−C| < − 1
8

or AN if none meet this condition. The left-hand side of the inequality is a crude but

efficient measure of an atom’s packing based on its proximity to the centroid relative to

an evenly distributed expectation (expected minus actual). A positive value indicates a

tightly packed atom, rather than an extended frond, but a margin of − 1
8 is used because

experimentally this produced the most desirable core selections. The atoms within the

core are removed from the list to leave the outer points. Groups of atoms are removed

from this list and used to define the yokes of protruding structure. Figure 5.14 illustrates

how this is done.

A PASTRY descriptor with n yokes has the form P = {(C, r), (T1, w1), . . . , (Tn, wn)},

107

Chapter 5. Geometric Guidance

USR PASTRY
85 Calculations 112 ms 124 ms 10.5% longer
852 Comparisons 8.3 ms 12.4 ms 48.5% longer

Mean total time to process all 85 conformations.
Test used [see Appendix E]: 10× Astex Diverse Set on Eurymedon A (shape comparison only)

Table 5.2: Comparison of USR and PASTRY calculation times

and for two cases PA and PB the similarity function is defined as:

SimilarityPASTRY(PA, PB) =
W(1) + ∑N

i=2 W(i)A(1, i)A(2, i)
N

where W(i) =
min(|VA[i]|, |VB[i]|)
max(|VA[i]|, |VB[i]|)

A(i, j) = 1 −
∣∣arccos(V̂A[i] · V̂B[i])− arccos(V̂A[j] · V̂B[j])

∣∣
π

with VX [i] = PX,Ti − PX,C and N = min(#PA, #PB)− 1 (i.e. the smaller number of yokes

minus one). This gives the desired value of one when PA ≡ PB, and tends to zero as the

lengths or angles between the yokes vary between the two examples.

5.3.3 Comparison of Shape Descriptors

Figure 5.15 illustrates both the USR and PASTRY descriptors as they apply to the Astex

Mini Set. The four points of USR are marked with coloured spheres, and the two or more

points of PASTRY are connected by yellow lines from the core to the yokes’ tips.

To assess the rapidity with which these descriptors are calculated, I added some

simple clock-based timing code to the functions. Unfortunately, the (optimistically)

millisecond resolution of the clock function was insufficient to register anything for these

methods. Instead, I resurrected some old code for rudimentary profiling using the high-

resolution performance counter functions in Windows. On the Eurymedon hardware

(see §E.2 (p.200)), this provided a resolution of nearly 4.5µs. Table 5.2 compares the

timings. Although PASTRY does show a slightly slower computation, it does arguably

provide a greater level of information about the shape of a ligand. Whereas the

USR points can be used to reduce a ligand to a centre and two extremities, the more

sophisticated nature of PASTRY can accommodate any number of spokes in the shape of

the molecule.

108

5.3. Shape Descriptors

1HNN 1HP0

1HWW 1LRH

1N1M 1OF1

1Q1G 1SG0

1TZ8 1W2G

1X8X 1XOQ

USR spheres
(defined in
§5.3.1 (p.106)):

grey: a,
red: b,
green: c,
blue: d.

PASTRY yokes
(§5.3.2 (p.107)):

yellow rods
from core’s
centre to tip of
yoke.

Figure 5.15: Graphical representations of USR and PASTRY shape descriptors for the ligands
of the Astex Mini Set

109

Chapter 5. Geometric Guidance

Test used [see Appendix E]: 1× Astex Mini Set on Eurymedon A (shape comparison only)

Figure 5.16: Ranking of Astex Mini Set pairs by similarity using both USR and PASTRY
demonstrating by symmetry of pattern the agreement between the methods’ results

To evaluate the suitability of my new method, Figure 5.16 compares the similarity

values produced by both methods for the members of the Astex Mini Set with itself. The

78 unique pairs of molecules were scored and ranked, with rank 1 being the most similar

(the matching pairs), and these rankings plotted as shown in the graph. The symmetry of

the pattern seen across the reflexive cases (the white dividing line through the red points)

is a demonstration of the approximate agreement between USR and PASTRY. Although

the similarity values themselves differ quite substantially — USR had a mean similarity

over the non-identical pairs of 0.07, whereas PASTRY’s mean was 0.82 — they do at least

provide a comparable ordering on ligand pairs.

The utility of a slower, more complicated shape descriptor is dubious at first

consideration, but PASTRY was designed for another purpose than solely comparing

ligands. It was intended to be used in conjunction with pocket-detection methods such

as PIES (§5.2.1 (p.87)) to allow positioning of ligands in useful sites analytically, and also

for pre-aligning one ligand to another to create similar poses for docking (as discussed

below). The dual-use nature of the data produced helps to justify a higher time cost.

110

5.3. Shape Descriptors

Figure 5.17: Alignment of one USR descriptor to another by collimation of extremities

5.3.4 Ligand Alignment Using Known Poses

An important application of shape descriptors is that of estimated pre-alignment, reusing

the results of previous dockings. If a ligand with a shape descriptor D has been docked

reasonably well, it would be prudent to try any future ligands with shapes similar to

D in the same pose first, on the basis that they may well have a corresponding binding

mode. To do this, we require the similarity functions discussed above and also a method

for generating poses based on a previous arrangement.

Since the USR method was not originally designed for this purpose, I devised

the derivative property PropAlignUSR to work alongside PropShapeUSR. The alignment

property uses the same definition of the significant points as given in §5.3.1, but then

uses the three atomic centre points rather than distance distributions as the data for

consideration. This retains the geometry of the molecule as a fan: the angle at the

centremost atom (b in the USR definition on page 106) between the two external atoms.

Figure 5.17 illustrates this diagrammatically. If a particular example has been selected for

pre-positioning a new ligand, the translation is chosen to superimpose the apexes, and

then rotations are interpolated between the alignments of the two rays (cases (1) and (3)

in the figure). If only one pose is required, then only the midpoint of the two rotations

is used, as in case (2) in the diagram. To allow more variety in the poses generated, a

random number of cases created are aligned with the two rays swapped, meaning that

atom d2 is directed to c1 and c2 to d1.

When aligning PASTRY descriptors, a similar procedure is used, but random

pairs of yokes (one from each descriptor) for alignment are chosen with probabilities

111

Chapter 5. Geometric Guidance

Random poses USR

Test used [see Appendix E]: 1× 1AF2
on Eurymedon A (100 poses, pre-
alignment only, trained by 1AF2#2 +
Mini-Set)

PASTRY

Figure 5.18: Ensembles of 100 pre-aligned poses of 1AF2 using PASTRY and USR showing
range and diversity of placements

proportional to their weights’ rankings. A second pair of yokes, similarly chosen, is used

to orient the ligand by random degrees around the axis defined by the first yoke. The

translations are interpolated between the cores or the yokes’ tips being superimposed.

When each ligand is introduced in DOX and a search is consequently initialized, the

number of poses (population size) required is passed to the loaded PrePositions object.

For each configured alignment property (see §F.4 (p.208)), some number of Opinions are

obtained from the appropriate Education entry in the molecular knowledge bases (see

§7.2 (p.148)). These prior result poses are then used to produce a list of starting points

defining the poses for an initial population.

Figure 5.18 shows a set of 100 poses of the 1AF2 ligand generated by each of three

alignment methods: USR, PASTRY, and uniformly random poses. The large, magenta

molecule in each picture shows the correct binding pose. These poses were generated

based on the education gleaned from a single docking run of the Astex Mini Set and the

second (i.e. first non-crystal) conformation of the 1AF2 ligand. Although USR appears to

place the ligand much closer to the correct pose, it tends not to find the right orientation

112

5.3. Shape Descriptors

Test used [see Appendix E]: 10× 1AF2 on Eurymedon A

(100 poses, pre-alignment only, trained by 1AF2#2 + Mini Set)

Figure 5.19: Accuracy of pre-alignment methods when generating poses based on prior
knowledge, showing superior proximity to crystal structure using PASTRY

very well. PASTRY does produce a much broader range of translations, but proved

much more successful at rotating the ligand. Figure 5.19 compares statistics about each

method’s poses, and shows that PASTRY achieved a better mean RMSD than USR, with

significantly more well-placed starting points. Both methods, however, outperformed a

purely random selection of translations and rotations.

5.3.5 Pre-Aligned Docking Results

It is possible to use the poses generated by pre-alignment to prior examples as the starting

population of a docking search. In order to assess the effect of this, I carried out a similar

set of tests to those performed for pocket detection (§5.2.4 (p.99)). The Astex Mini Set was

redocked using half or all the population pre-aligned using USR or PASTRY — the cases

are listed in Table 5.3.

A randomly selected set of 12 other ligands from the Astex Diverse Set was used for

training: 1GPK, 1JD0, 1MEH, 1N46, 1P62, 1R1H, 1R55, 1SJ0, 1T40, 1T46, 1YGC, 2BR1.

Starting with no data at all, these were docked to each receptor of the Astex Mini Set and

113

Chapter 5. Geometric Guidance

Name random align
None 100%

1/2Usr 50% 1 5 0.5 AlignUSR=*
Usr 0% 1 5 0.5 AlignUSR=*

1/2Pastry 50% 1 5 0.5 AlignPASTRY=*
Pastry 0% 1 5 0.5 AlignPASTRY=*

Table 5.3: Pre-positioning configurations for pre-alignment tests

the learnt shape suitabilities retained in the receptors’ MKBs (see §7.2 (p.148) for details of

the learning system). This preparatory stage is not counted in the timing results. Again,

the searches were tried using 240, 120, and 60 generations.

As occurred when using pocket predictors in §5.2.4 (p.99), the effect of pre-aligning

within an already constrained search space is limited. Figure 5.20 shows that the poses

returned are of similar quality regardless of any estimated positioning, although the

time cost is negligible. Predicted alignments do provide an alternative source of box

definitions that could be used with the caching LUT search described in §5.2.5 (p.101). If

pocket detection is already in use, the boxes automatically generated tend to be quite

large, and so pre-alignment may help to place initial poses sensibly, accelerating the

exploration and thus facilitating quicker search narrowing. Other applications for these

kinds of methods are discussed in §8.2.1 (p.160).

114

5.3. Shape Descriptors

Test used [see Appendix E]: 1× Astex Mini Set on Eurymedon A

(trained by 12 randomly selected cases, various alignment options)

Figure 5.20: Comparison of configurations from Table 5.3 for pre-alignment of ligands
based on prior knowledge, showing similarity of docking time and results

115

Chapter 6
Efficient Exploration

If Edison had a needle to find in a haystack, he would proceed at once with
the diligence of the bee to examine straw after straw until he found the
object of his search.
I was a sorry witness of such doings, knowing that a little theory and
calculation would have saved him ninety per cent of his labour.

Nikola Tesla

The needle in haystack analogy is representative of the vast combinatorial space to be

considered when assessing receptor-ligand interactions for docking. In practice, though,

the search is not entirely blind; points can be evaluated on a continuous scale of binding

affinities, not simply as right or wrong. Since a full exploration of the entire scope of

poses is impractical, any available information that can direct or expedite it should be

considered. This chapter discusses how to search thoroughly, but not too thoroughly, in

order to find good ligand arrangements efficiently.

6.1 Local Optimization

It is plainly inappropriate to attempt a full exhaustive search of the whole pose space

for a ligand. The scale of the search is prohibitive: if we consider a sphere of radius

r with surface area s = 4πr2, a spherical cap subtending an angle of π
180 has height

h = r
(
1 − cos

(
2 π

180

)) ≈ 3.8r × 10−5 and surface area sc = 2πrh. Then

s
sc

=
4πr2

2π3.8r2 × 10−5 ≈ 52525

orientations must be considered to ensure a maximum difference of 1°, and the range

of translations is generally tens of Angstroms in each dimension, resulting in thousands

of positions at even a coarse resolution. A 1° rotation is enough to move the outermost

atoms of a mid-sized ligand by 0.1Å, a distance which can produce significant variation

in close-range interactions. Of course, this also means that a purely stochastic method has

117

Chapter 6. Efficient Exploration

Initialize GA population
Evaluate (score) initial population
For G := 1 to NGens do

Begin
//Main GA evolution loop
Generate offspring from current population
Evaluate population
If G mod OptFreq = 0 then //If an appropriate generation...

Call OptimizePopulation //...perform local optimization stage
End

If OptFinal then
Call OptimizePopulation //Optimize final generation if required

Procedure OptimizePopulation
Begin
For each genome P in current population do

Begin
Create simplex for the pose of P
Optimize simplex
Restore optimized pose and score to P
End

End

Listing 6.1: Lamarckian Genetic Algorithm outline, showing local optimization stage

a vast space to cover, and for this reason a hybrid method of large-scale and small-scale

searches is perhaps useful.

A good example of such a design is the Lamarckian Genetic Algorithm [Hart, 1994;

Hart et al., 1994], as incorporated into the AutoDock program [Morris et al., 1998] amongst

others. This is named after Jean Baptiste de Lamarck (1744–1829), who suggested

that the effects of both nature and nurture can be inherited by offspring [Lamarck,

1809]. Although, as a biological theory, this has been dismissed, implementations of

evolutionary search algorithms are free to incorporate such phenomena as desired.

After the offspring have been created from a population, a small-scale exploration of

the scoring function is used to find a locally-optimal pose for each. These refined

arrangements are then returned to the GA population, before the next generation cycle

begins, as outlined in Listing 6.1.

One algorithm for such a local search is the Nelder-Mead Simplex Method [Nelder &

Mead, 1965], which finds an optimal interpolation between several sample vertices —

generally n + 1 for an n-dimensional space. Even with a small search range of ±3Å

in each translation (approximately equal to the diameter of most ligand atoms) and

around ±10° for each rotation, this method is much slower than one generation of a GA.

118

6.1. Local Optimization

//For an N-dimensional search space on function F:
Create N+1 vertices, V[0..N]
Initialize V with diverse values in the space
While termination conditions are not met do

Begin
Order V by their values in F, best first
//Reflect worst point through centroid of others:
Calculate C, the centroid of vertices V[0..N-1]
Let vertex R := C + 2*(C - V[N])
If R is better than V[0] then

Begin
//New best case, so pursue it
Let vertex R’ := C + 3*(C - V[N])
Replace V[N] with the better of R and R’
End

Else If R is worse than V[N-1] then
Begin
//Very bad case, so try a constrained leap...
Let R := C + 0.5*(C - V[N])
If R is better than V[N] then

Replace V[N] with R
Else

//...if that didn’t work, contract all points towards the best
For I := 1 to N do

Replace V[I] with V[I] + (V[0] - V[I])/2
End

Else
//Must be a non-extreme case, so replace the worst
Replace V[N] with R

End
Return V[0]

Listing 6.2: Nelder-Mead simplex optimization algorithm outline

However, if an approximately correct pose is found, the optimizer will be much more

efficient at settling it into the bound state, since it is a deterministic, analytical method.

The algorithm is described in Listing 6.2.

The time spent on local optimization of poses is limited to a maximum number

of cycles, to avoid seeking gratuitous precision if a pose is not near any minima in

the scoring function. Using the simplex in this manner on every generation incurs a

substantial time cost: Figure 6.1 illustrates the dramatic rise from minutes to many hours

on the second column (note the truncated time bar in the second column). Alternatively,

only the final set of poses could be refined, ensuring that if the GA gets close to a good

pose it will be valued as such in the output. This option, the final column, shows

quite respectable results for a much more acceptable time cost. Indeed, this serves as

a validation of the use of optimization, demonstrating the improvement to result quality

119

Chapter 6. Efficient Exploration

possible with the method.

A compromise between time and efficacy might be to refine populations periodically,

allowing a longer progression by the GA mutations and crossovers before stopping to

survey the localities chosen. This could be a more sensible approach since it should

ensure that the populations change significantly between optimizations, avoiding wasted

time searching very similar regions and finding the same pose. To test this, I added

the facility to specify the frequency of local searches to DOX and tried several different

values. These results are also shown in Figure 6.1.

Firstly, it is interesting to note that the results offered by more frequent optimization

are almost equivalent in some cases (40, 80, and 120), and substantially worse in others

(160 and 200). The cases where the optimization period is not a factor of the total

number of generations did not optimize the final population, and this would explain the

substantial drop in result quality. For the best effect from the overall search, optimization

must be applied to the final result set, regardless of whether it has been used at any

intermediate stage. Otherwise, the GA will apparently rock the carefully-settled poses

out of place. However, it would also seem that optimizing intermediate generations is

largely a waste of time. Despite each diversion to refine a generation taking (in this case)

more than three minutes, there is little improvement to justify it.

6.1.1 Local Searches Versus GA Generations

Since it is clear that the local search is crucial to finding the best pose from an initial

exploration by the GA, perhaps its periodic application would make fewer generations

necessary overall. Figure 6.2 shows the time and results from various combinations

of optimization periods and GA generations. All the parameters used were chosen

so that the final generation would be optimized. Varying the number of generations

produces the expected linear effect on docking time, with a gradient proportional to

the optimization period. Surprisingly, though, the twelve different configurations had

effectively equivalent result quality. The number of good poses (within 1 and 2Å RMSD)

varied very little, and the ranking of the correct ligand conformation declined with more

generations when optimizing frequently. From these results, one can conclude that,

whilst a final local optimization is necessary, repeatedly optimizing the intermediate

populations is of no real benefit.

120

6.2. Look-Up Table Interpolation

Test used [see Appendix E]:
5× 1AF2 on Eurymedon K

(various optimization periods)

Figure 6.1: Comparison of local optimization periods in a Lamarckian GA, showing the
balance between time cost and improved results, and particularly the demerit of not
optimizing the final population

6.2 Look-Up Table Interpolation

The values in a look-up table (LUT) may only be calculated at discrete points in the space

represented: they cannot be a full record of a function. However, the scoring functions

used for docking are inherently continuous. Since ancient times, interpolation has been

used to ameliorate this discrepancy, estimating a requested data point from proportions

of the nearest available known values [Meijering, 2002]. For an N-dimensional LUT,

121

Chapter 6. Efficient Exploration

Test used [see Appendix E]: 5× 1AF2 on Eurymedon K

(various generation counts and optimization periods)

Figure 6.2: Assessment of frequent local optimization versus more GA generations,
showing better selectivity and time of longer searches with fewer optimizations

122

6.2. Look-Up Table Interpolation

Given requested coordinates X[1..N] on a function F:
Calculate array O[1..N], the floors of X[1..N]
Calculate array D[1..N], equal to abs(X[1..N] - O[1..N])
Create array I[1..N], where I[i] = i
Order I by decreasing values of D[I[i]]
Let array V[1..N] be zeroed
Let R := F(V)
For each i in I do

Begin
Let LV := V
Increment V[i]
Let R := R + (F(V)-F(LV))*D[i]
End

Return R

Listing 6.3: Piecewise linear interpolation algorithm

assuming a unit resolution, this could be calculated as a piecewise linear interpolation,

as described in Listing 6.3. One could also interpolate gradients to calculate the value

requested, which would obtain a smoother function than this first-order interpolation,

but it would be slower to use and might mask narrow contours in the function.

The practical benefit of interpolating a scoring function is that regions of steep

gradient will be better searched by softening the edges around isolated extreme values.

Without this, a pose close to a good position might still be scored badly if the LUT

rounding falls away towards a nearby bad clash. In addition, two points within a range

determined by the LUT’s resolution will be evaluated as having the same function value.

This could stymie any use of gradients by a search method, masking even a steep region

of the function.

Although the DOX system used piecewise linear interpolation as part of the LUT

implementation, I adapted it to allow this to be selectively enabled. When disallowed, the

LUTs simply return the closest available value to the coordinates requested. The first two

columns of Figure 6.3 displays the effect of the interpolating LUTs on a docking search

by comparing editions i and P , excluding and including the technique respectively. The

result accuracy is worse in the i edition — the lack of any interpolation prevents the

scoring function from distinguishing between similar poses, and so the proportion of

results very close (within 1Å RMSD) to the correct pose is reduced. The selection of

the correct conformation is also somewhat worse, because similar molecular shapes will

evaluate identically on the discrete scoring grid.

123

Chapter 6. Efficient Exploration

Test used [see Appendix E]:
10× 1AF2 on Eurymedon i P C

LUT resolution: 1Å,
13×15×14 units

Figure 6.3: Effect of LUT stratagems on docking time and result accuracy, showing benefit
of interpolation and little effect of caching

Understandably, the additional arithmetical operations required to interpolate return

values did add a time cost of around 7% to the docking process. This will partly be due

to the local optimization (§6.1 (p.117)) stages taking longer to converge in a smoother

function space. Reducing storage requirements with the use of interpolation permits a

sensible balance of precision in the LUT generation with the benefits of pre-calculation.

124

6.3. Lazy Evaluation: Caching Look-Up Tables

6.3 Lazy Evaluation: Caching Look-Up Tables

The use of lazy evaluation in programming allows complex expressions be computed

only when their result becomes necessary for the task at hand. Detailed calculations

that later prove irrelevant are avoided; for example, the product zF(· · ·) will be reduced

immediately to zero if z is zero, without reference to even the definition of F. A more

familiar example in computer programming is that of short-circuited Boolean operators,

where the evaluation of p ∧ q only evaluates q if p is true.

This principle is applicable to docking procedures also. Empirical scoring functions

(see Equation 3.1 (p.60)) are often quite complex to calculate, and generating look-up

tables is a costly process in terms of both time and storage. Although these costs are

often acceptable in professional situations, they are still substantial when considered for

a high-throughput application. One way to reduce these in a reasonably transparent way

and without affecting results is to use lazy evaluation for the LUTs, rather than compiling

them in full before docking commences.

To eliminate the overhead time cost of creating a LUT large enough to accommodate

any prospective ligand position, I introduced caching LUTs to DOX. For the purposes

of pre-calculation, these are simply filled with null values (defined according to the

individual interaction functions). Then, whenever the table is accessed, the element

looked-up is checked against this special value, and replaced with the properly-

calculated figure if necessary. This way, rather than evaluating the scoring function

exactly once per parameter, it is at most once depending on whether the parameter is

ever considered.

Implementing this in DOX was reasonably straightforward, with a subclass of the

RealWorldArray data storage class. I made the new class output statistics about the

number of hits and misses in each LUT at the program’s termination. Figure 6.4 shows

what was found: note the logarithmic scale of the vertical axis. The misses — requests

for elements not yet calculated — were invariably far fewer than half the size of the

table. The number of hits — when results were reused — tended to be exponentially

greater than the number of misses. This supports the use of pre-calculation, certainly,

but perhaps does not especially warrant the cached implementation. However, if we

consider the number of tables that were used (in the XScore case), only 8 of 37 were ever

125

Chapter 6. Efficient Exploration

Test used [see Appendix E]: 10× 1AF2 on Eurymedon C

Figure 6.4: Caching statistics showing coverage of LUTs when docking with XScore

accessed at all. This is because of the need to allow for various relatively unusual atom

types being present in either molecule, but since these occurrences are rare their tables are

almost never used. In fact, overall, only 5.6% of all LUT elements were ever calculated.

Admittedly the 1AF2 case is a fairly small example, but the LUTs must be allocated with a

large margin to allow for all reasonable translations, and it is here that the caching model

could provide much efficiency.

The fact that the same calculations are performed, merely at different times, in the

caching and non-caching designs means that the results should be unchanged between

the two (except for some inevitable variation due to the GA). Figure 6.3 shows that the

quality of results is not significantly affected by caching. The fully-calculated version P

was run with pre-calculated LUTs, whereas the caching edition C started with no data

whatsoever. Initializing an empty LUT took about the same time as loading complete

tables, and reading saved data occurs in the caching system as well on all but the first

execution with each receptor, so there is no great effect on that preparatory stage.

It would seem that the time saving is primarily in the avoidance of a full pre-

calculation. The docking time shown in Figure 6.3 includes the normal docking

procedure plus the calculation of 5.6% of the possible LUT data; the overall search

time is slightly reduced nonetheless. Calculating data as and when it is required does

make effective use of any hardware memory optimizations available in the computer by

126

6.4. Early Rejection

No caching P Caching C

Scaling Resolution Loading Docking Loading Docking
2 1.0Å 14.10 595.47 4.70 605.73
3 1.0Å 25.59 612.63 4.84 653.74
2 0.5Å 49.31 606.88 5.78 661.48

All times in seconds. Test used [see Appendix E]: 1× 1AF2 on Eurymedon C (various LUT sizes)

Table 6.1: Effect of LUT parameters on calculation and caching times

avoiding a later retrieval step. Given the much greater proportion of hits in the tables,

the time should fall further on subsequent dockings to the same receptor.

From the hit/miss statistics, one can estimate that a full LUT calculation would

take up to 1
5.6% ≈ 18 times the cost of LUT misses (although this ignores the likely

benefits of compiler loop optimizations and the better use of memory). In fact, a full,

uncached pre-calculation took less than 15 seconds using P , so the cost of cache misses

is disproportionately high.

A much larger LUT, either for a larger molecule or using a finer resolution may show

a greater divergence when caching is employed. Table 6.1 lists the timings for three

different LUT parameter combinations. Reducing the resolution to 0.5Å or increasing

the LUT range to triple the reference ligand’s extents (rather than double) makes a very

small change to the caching initialization time, but does dramatically slow the full pre-

calculation. However, the increased cost of cache misses adds at least as much to the

docking time as in the pre-calculation edition’s loading procedure.

A full LUT implementation is sometimes preferable if well compiled and optimized.

The use of caching, whilst theoretically preferable, must be implemented with consid-

eration of the executing hardware’s own caching strategies to work well. However, the

facility to perform calculations flexibly and on demand will still be beneficial in certain

situations: for example, if the region of interest for searching is not predetermined (as in

§5.2.5 (p.101)).

6.4 Early Rejection

For a processor-intensive task such as docking, it is worth giving some consideration

to the information sought from the process — a scoring of the suitability of a ligand

127

Chapter 6. Efficient Exploration

Create S and T, both reals equal to zero
For each atom A in ligand do

For I := 1 to N int do
Begin
Look up T from receptor table I for the atom type of A
Add T to S
//The inserted exit point...
If abs(S) > abs(Threshold) Then Return S
End

Return S

Listing 6.4: Scoring-based early rejection algorithm outline

for binding to a receptor, and some poses that demonstrate the fit. An important

observation that should be exploited is the relative vagueness of this requirement. These

scores (particularly when using empirical functions) are inevitably inaccurate estimates

of physical properties, and so should not be interpreted as having a high degree of

precision. The qualitative meaning of a score — the interpretation as being plausibly-

docked or not — is often more important than its quantitative value.

6.4.1 Scoring-Based Early Rejection

The values returned by a scoring function fall generally on a (possibly unbounded) scale

of real numbers. These represent assessments of a ligand’s placement from various

degrees of abysmal through to a relatively narrow band of good scores. One can select

a threshold on this scale to cap a bottomless pit of values that represent indubitably

unsuitable positions — if a ligand is buried or clashes significantly, it does not matter

how bad its score is, merely that it is bad. Sometimes, then, a less accurate value might be

equally serviceable and quicker to obtain when this value is needed only to demonstrate

the impossibility of a pose [Skone et al., 2009].

It is also worth remembering that suitable binding states form a very small subset of

the search space, and so it is a minority of calculations that need a complete and detailed

evaluation. Consequently, much time can be wasted on the execution of scoring functions

for arrangements that will, upon human assessment or aggregation in a best-n list, be

promptly discarded again. It would be efficient to predict whether a score will fall into

the pit, and produce an estimated indicative result instead of a fully-calculated value.

In order to avoid spending time and resources pursuing work that will lead nowhere

useful, an early exit point is introduced into the computation loops. Specifically, after

128

6.4. Early Rejection

the accumulation of each ligand atom’s contribution, the running total is used to decide

whether it is still possible to reach an appealing final score. This is after each iteration of

the outermost summation in the generalized scoring function of Equation 3.6 (p.65):

Score(R, L) = ∑
l∈Latoms

Nint

∑
i=1

F∗
R,i,ltype(lx, ly, lz)

If this incomplete sum has passed a certain threshold which indicates that it is beyond

the realm of suitability, then the score is approximated to the current total and returned

immediately.

The prospect of abandoning outright some cases without fully evaluating them might

seem to jeopardize good results, but provided a sensible rejection threshold is used the

method can be justified. Almost all scoring functions include a simple potential term —

typically based on Van der Waals radii — and these have by far their largest values at

short, clashing distances, as shown in Figure 3.7 (p.61). Hence, an unacceptably buried

ligand will aggregate quickly a very poor total whose magnitude dwarfs any favourable

interactions that might still occur.

Atom Prioritization

A natural extension to this design is to look for the worst atomic contributions first in

the hope that the rejection threshold will be passed as soon as possible. Referring back

to the general scoring function above, the commutativity of summation allows us to

accumulate the atoms’ terms in any order. It would make sense to assess them arranged

by the relative likelihood of clashing with a receptor’s surface. A simple implementation

could use the distance of each atom from the ligand’s centroid, ranking the farthest

first. It might seem more effective to sort the ligand’s atoms by their distance from

the receptor’s centroid, thus ensuring that those closest to the interaction surface would

be seen first, whereas sorting relative to the ligand merely delays assessment of the

atoms that are least likely to clash. This more comprehensive approach has one major

disadvantage, however: it would necessitate a sorting operation for every pose, rather

than every ligand, which is unacceptably expensive.

For efficiency, scoring calculations that are not rejected within the first few atoms

might be allowed to complete in full without further interference. This would eliminate

129

Chapter 6. Efficient Exploration

O
R

O
rd

er
in

g
an

d
re

je
ct

io
n

O
R

(8
)O

rd
er

in
g

an
d

re
je

ct
io

n
w

it
hi

n
8

R
R

ej
ec

ti
on

R
(8

)R
ej

ec
ti

on
w

it
hi

n
8

Test used [see Appendix E]: 10× 1AF2 on Eurymedon R OR

(various scoring thresholds, all or 8 atoms)

Figure 6.5: Scoring threshold rejection behaviour, showing the threshold’s effect on the
number of poses discarded after each ligand atom, the smoothing effect of prioritization,
and the truncating effect of limited rejection

130

6.4. Early Rejection

Test used [see Appendix E]: 10× 1AF2 on Eurymedon O R OR

(various scoring thresholds, all or 8 atoms)

Figure 6.6: The linearly proportional effect of scoring thresholds on docking time using
prioritization and/or rejection

the test required after each atom and might shrink the already small cost of watching for

early rejection opportunities. It might, of course, also be insignificant.

To demonstrate the behaviour of these stratagems, I ran the DOX program and

recorded how many atoms were considered before each score calculation was abandoned

at several threshold values. The four cases — unordered R and ordered OR , with and

without a limiting atom count — are shown in Figure 6.5. The larger, and thus more

relaxed, thresholds rejected fewer poses. Prioritizing the atoms, in this 1AF2 case,

increased the number of poses abandoned, as well as smoothing the graph slightly

because the likelihood of each atom contributing the fatal term decreases with its index.

With the smaller thresholds, around two-thirds of poses generated in the search were

being abandoned within three atoms. These translate into roughly proportional time

reductions, as shown by Figure 6.6 alongside the constant time for ordering without

rejection using edition O . A clear trend towards longer run times can be seen as the

threshold is relaxed, as would be expected from the reduced proportion of cases that will

be abandoned. The limited (‘(8)’) methods are slower than their unlimited counterparts,

and the unordered method is slightly faster by what appears to be a constant factor in

the unlimited case.

131

Chapter 6. Efficient Exploration

R — Threshold Rejection

Test used [see Appendix E]: 5× Astex Mini Set on Eurymedon R (various scoring thresholds)

Figure 6.7: Effect of early rejection using scoring thresholds on docking time and results,
showing improved accuracy and longer time at larger thresholds

132

6.4. Early Rejection

OR — Threshold Rejection with Atom Prioritization

Test used [see Appendix E]: 5× Astex Mini Set on Eurymedon OR (various scoring thresholds)

Figure 6.8: Effect of early rejection using scoring thresholds and atom prioritization on
docking time and results, similar to the unordered examples of Figure 6.7

133

Chapter 6. Efficient Exploration

Astex Mini Set Assessment

To assess whether or not these configurations still produce acceptable results, I redocked

the Astex Mini Set (see §E.1.4 (p.200)) at several rejection thresholds to allow for variation

in molecular shapes. Figure 6.7 shows the timings and results for the early rejection

method, and Figure 6.8 shows the same statistics when atom prioritization is employed.

The previous observation that docking time is correlated with rejection threshold still

holds true here. The accuracy of the results also improves with more relaxed thresholds,

particularly at the transition from a cut-off of 1000 to 1250. With close inspection of

the algorithm’s behaviour, this transpired to be the point at which no evaluations were

abandoned after a single atom for any of the 12 test cases. A marked step in run time also

occurred at this point, which corresponds to the vastly increased number — hundreds of

thousands — of evaluations that are then at least twice as long.

6.4.2 Pose-Based Early Rejection

Any search method based on random variation, such as a GA, suffers from a risk that

its candidate results will develop a homogeneity and cease to explore some regions

of the search space. If multiple minima/maxima (depending on the goal) exist, this

can mean that one or more are invisible to the search. One way of avoiding this, and

making more efficient use of time, is to define some measure of similarity between search

candidates, and maintain a certain minimum. Hence, if two cases under consideration

become sufficiently similar, they are merged into the first, and the second is replaced with

a completely new case. The retention of one of the pair ensures that this will not eliminate

an easily-found optimum. This should avoid duplicate scoring function evaluations, as

well as maintaining a broader exploration.

DOX’s search method was adapted to maintain diversity using a very simple method,

outlined in Listing 6.5. The similarity measure was defined as the Manhattan distance

between translations and absolute value of the cosine of the angle between rotation

quaternions: for poses P1, P2 with Pi = (Ti, Ri) for vector Ti and quaternion Ri,

SimilarityPose(P1, P2) = |T1x − T2x| + |T1y − T2y| + |T1z − T2z| + |R1 · R2|

134

6.4. Early Rejection

For each generation do
Begin
Get current population P
Sort P by scores
For n := 1 to size of P - 1 do

If comparison of P[n] and P[n+1] < MinDifference then
Replace P[n] with a new, random pose

Perform normal search progression step
End

Listing 6.5: Pose merging algorithm outline

At the start of each generation, the population has any easily-discovered converging

members merged before the usual genetic operators are applied. The use of sorting and

a single comparison scan allows the checking to be done in O(N log N) time (N being

the population size), rather than the exhaustive O(N2) alternative, by assuming that

poses sufficiently similar to be merged will have similar scores. Admittedly, this is not

especially reliable, but the efficiency consideration is overriding.

For the 1AF2 test case used here (see §E.1 (p.197)), 53 conformations each had a

population of 96 cases evolved for 240 generations; thus 1 221 120 cases were evaluated

altogether (ignoring the simplex optimizer). Figure 6.9 shows the proportion of these

cases that were deemed too similar to another and merged at a wide range of threshold

measures. There is a limiting point where only one member of each generation

remains. In this example, it occurs when 95 members out of each population are

discarded (possibly by similarity with a prior randomly-generated replacement), giving a

maximum of 53×95×240 = 1 208 400 merges, or 99%. Thresholds above 18 tended towards

this limit, corresponding to a maximum variation permitted in the search space.

The rotations cannot differ by more than 1, the maximum absolute value of the cosine

function. The translations are constrained to a box of dimensions (5.6, 6.6, 6.5) and thus

a maximum variation of 18.7, however this range is determined by the active site in

question. From these calculations, an upper bound of approximately 20 can be placed on

the similarity threshold for this example.

The effect of the threshold on docking time was proportional to the number of cases

merged. Overall, the application of this technique did increase docking time by 21% in

comparison with the equivalent P edition (see Figure 6.3 (p.124)) when using a threshold

135

Chapter 6. Efficient Exploration

Test used [see Appendix E]: 3× 1AF2 on Eurymedon M (various similarity thresholds)

Figure 6.9: Effect of increasing pose merging similarity thresholds in a search method, with
the resulting increase to docking time but limited improvement in results

136

6.4. Early Rejection

of zero to prevent merges occurring. This is variable depending on the population size,

because of the sorting stage.

Considering the result quality, however, it appears that the overall benefit of merging

similar poses is somewhat limited. The proportion of results within 2Å is slightly

reduced, but the very good poses within 1Å are retained. The selection of the correct

conformation was mostly unaffected by the method, but there is a very slight broadening

trend in its highest rankings. Increasing the rate of case merging appears to allow the

correct conformation to peak slightly higher in the results, but also to drop lower. This

suggests that the introduction of random poses can destabilize the search slightly, which

is unlikely to be desirable behaviour. Certainly, thresholds above 6, when the proportion

of cases being merged is rising dramatically, are not especially helpful and introduce an

unjustifiable time cost.

6.4.3 Quota-Based Early Rejection

Having established in §6.4.1 (p.128) a means of using quickly-calculated approximate

scores to abbreviate steps in a search method, the overall exploration process may also

be improved. The same principle of stopping as soon as an unfavourable outcome is

predictable can be reapplied here [Skone et al., 2009].

The issue of pose selection has been well-studied already under the umbrella of

search algorithms (see §2.3.2 (p.32)). However, the selection of a useful termination

condition (see Figure 3.8 (p.63)) also warrants consideration. In general, this condition

is usually the completion of a predefined number of steps or the emergence of some

quality or consistency in the results. This kind of stopping point makes the search a

probabilistically complete algorithm: unlike a complete algorithm which finds the best

result on every occasion in a fixed time, this will usually find the best result given long

enough, and the probability increases if more iterations are permitted.

The results will be aggregated with those from every other conformation being

docked. If a quota is imposed on the final number of results that may be returned from all

cases, then it is possible that most of the results from an individual search will fall off the

bottom of the list and be discarded before the final set is recorded. Since the set of results

will almost always need further detailed analysis, the quantity of output data is often

137

Chapter 6. Efficient Exploration

Example scored pose lists after ligand conformations L1, . . . , L4
L1 L2 L3 L4
Pose1a 9 Pose1a 9 Pose1a 9 Pose4a 10
Pose1b 8 Pose1b 8 Pose1b 8 Pose1a 9
Pose1c 4 Pose2a 7 Pose2a 7 Pose1b 8
Pose1d 1 Pose2b 6 Pose2b 6 Pose2a 7

Pose1c 4 Pose1c 4 Pose2b 6
Pose2c 2 Pose2c 2 Pose1c 4

Figure 6.10: Illustration of result collection during quota-based early rejection and the
definition of the worst-case score

limited to a certain number of docked poses, and so this concept of a quota is justifiable.

Indeed, most docking tools expect a limit on the number of results to be given as one of

their inputs. Rather than doggedly pursuing a docking of a relatively unsuitable ligand

conformation, only to produce results that will ultimately be omitted from any output

(or else ignored in later analysis), the termination condition could take into account the

results already present in the final list and give up early on unpromising examples. By

starting with a widely varying set of cases and progressively reducing that variation, this

is an approach with superficial similarities to simulated annealing.

One simple way to do this would be to track the worst score present in the final result

list (after its quota has been filled), and abandon searches that have not scored at least as

well after some number of cycles. This uses a failure to find any slightly interesting poses

after a shorter search as the basis for deducing a dearth of good poses in the whole space.

That deduction, although not reliable, may be rational if made only when the search has

been afforded opportunity to make a reasonable exploration of the space. It must be

assumed that the scores found in each cycle tend to improve over time. This requirement

should be acceptable, though, since even a completely random selection method carrying

over the best result from each cycle will, in general, maintain a roughly constant quality

of poses. The probabilistic completeness of the overall search is thus retained.

Figure 6.10 illustrates this with an artificial example of a search method producing 4

results and using a quota of 6. After conformations L1 and L2 were docked, and their

results merged into the list, the quota of 6 poses had been filled. Before this point, no

quota-based rejection was permitted; there was now a worst-case score of 2. The search

with L3 was abandoned after some specified cycle since no pose had yet been found with

138

6.4. Early Rejection

//Assuming positive scores are desirable
Create an empty scored pose list, Results
Create a globally-accessible value, W
Create a Boolean flag, Reject
Initialize W to negative infinity
For each conformation C do

Begin
Set Reject to false
Create search population P for C
Set G to 1
While G ≤ generations and Reject is false do

Begin
Progress P one step using the search method
If G ≥ MinGens and best score in P < W then

Set Reject to true
Increment G
End

If Reject is false then
Merge P into Results

End
Return Results

Listing 6.6: Quota-based rejection algorithm outline

Score(R, L3) ≥ 2. After L4, which did meet this requirement, the worst-case score rose

to 4.

It may be helpful to extend the quota specification slightly, by allowing the output

count to differ from the quota used to determine the worst case. For example, to use the

illustration of Figure 6.10 again, the result list quota of 6 might be cut to the top 4 for

the final output. A larger quota than the final result list size could be used to offer the

individual conformations a better chance of reaching the worst-case score, and thus not

be discarded, while still only returning a manageable batch of results.

The main loop in DOX, which iterates through the ligand conformations, was

modified to check whether the result container is full and, if so, report the worst score

recorded to the genetic algorithm classes. That code, in turn, had a test inserted at the end

of each generation to terminate the procedure if no genome in the population has scored

as well as the worst case, provided at least some minimum number of generations have

been completed. A summary of this method is shown in Listing 6.6.

If a conformation was rejected in this manner, the subsequent local optimization

stage (§6.1 (p.117)) would also be skipped; hence, rejecting a conformation after the

final generation still reduces the work to be done. Note that if a quota q is used with

139

Chapter 6. Efficient Exploration

a search population of size p, the first
⌈

q
p

⌉
conformations in the input ensemble cannot

be rejected, since the quota will not have been met when their searches begin.

Eight different quota values (from 100 to 1500) were used for redocking the 1K3U test

case (see §E.1.2 (p.197)) with eleven different arrangements of the ligand conformation

input database. These each had the correct conformation at a different index position,

to assess whether using quotas biases the search. As intended, Figure 6.11 shows that

the docking time increases linearly with quota size. The effect on result proximity to the

correct binding pose is very limited, with some slight improvement of the proportions in

each RMSD range as the quota increases, but not a consistent trend.

However, it would seem that quotas do skew the likelihood of ligand conformations

appearing in the results by their ranking in the input. The three-dimensional chart in

Figure 6.11 shows that the crystal conformation was only reliably returned in the results

when it was the first structure presented for docking. Indeed, at small quotas, it was

very much preferred (as the safe candidate). At higher quotas — 900 and above — it

was still retrieved when near the top of the input, around the top 20 cases. In general,

though, once the true binding pose of the ligand was no longer guaranteed retention it

was usually lost from the results altogether, indicating that quotas are not an appropriate

technique for virtual screening.

140

6.4. Early Rejection

Test used [see Appendix E]: 11× 1K3U on Eurymedon N

(various result quotas, minimum 120 of 240 generations)

Figure 6.11: Effect of quota size in quota-based rejection on docking time and accuracy,
highlighting conformational bias of smaller quotas

141

Chapter 7
Properties, Priority, and Parallelization

Major Premise: Sixty men can do a piece of work sixty times as quickly as
one man.
Minor Premise: One man can dig a posthole in sixty seconds; therefore —
Conclusion: Sixty men can dig a posthole in one second.
This may be called the syllogism arithmetical, in which, by combining
logic and mathematics, we obtain a double certainty and are twice blessed.

‘The Devil’s Dictionary’, Ambrose Bierce

Effectively completing a large batch of molecular docking tasks requires organization.

Dividing the work up into distinct, self-contained units allows them to be handled

flexibly, executing whenever and wherever appropriate using the available processors.

Storing information with a structured but convenient form not only improves data

management, but also makes it easier to accumulate and use experience to guide future

searches. This chapter discusses possible methods for collecting molecular properties

and managing individual docking cases — whether on one computer or many — to

coordinate an efficient use of available computing resources.

7.1 Knowledge Bases

To support parallelized docking and the flexible storage of molecules with their

associated data, I developed the Molecular Knowledge Base (MKB) interface. Technical

details of this structure, its operation and my file-based implementation, are given in §F.6

(p.212). The requirements for the design were to:

• Store full structure information for molecules of any size.

• Store and/or calculate arbitrary data entries using identifying names.

• Allow multiple conformations of the same molecule to be kept together.

• Associate data entries with a molecule, and optionally a particular conformation.

• Operate independently of scoring functions, search methods, etc.

143

Chapter 7. Properties, Priority, and Parallelization

• Calculate missing entries automatically when they are requested for the first time.

• Provide notifications of updated entries, allowing clients to retrieve the new data.

• Permit shared access in network environments, merging changes automatically.

These last three points in particular distinguish the MKB from a simple data file, calling

for some kind of management code overseeing input and output transactions.

This specification is for a format in which molecular data may be managed; it is not

itself a piece of software. It could be fulfilled by a variety of underlying implementations:

a database system would be appropriate (especially in some industrial situations), but for

this work I have used a directory of files per molecule for simplicity. This is still more

adaptable than the commonly-used flat file formats, such as PDB and SDF. The PDB

format is generally only used for single conformations and has no structured facility for

custom data fields. Structure-Data Format (SDF) is convenient for ensembles of small

molecule conformations (fewer than 1000 atoms), and does allow for arbitrary data items

to be included provided that the data are formatted as plain text with limited line length.

The previous implementations of DOX kept the receptor’s structure in a PDB file,

while the ligands had to be in SDF format. The stored scoring function data, however,

would be in a single file per receptor/function combination, possibly in a different file-

system location, named using the molecule’s title (not filename) and function’s name,

and with all LUTs serialized one after another. Although this conveniently holds all

the calculated data in one monolithic unit, it does not associate it with any particular

structure file, instead requiring users to ensure they provide the correct data file to match

the target. More importantly for this work, there is no provision for information not

based on scoring function and receptor, such as molecular shape properties for either

target or ligand. Besides rectifying this unruliness, an additional convenience of the

more flexible method is that fewer command line parameters are required to configure a

docking since all data sources are implicitly specified by the choice of molecules.

At the same time as revising all data storage, I took the opportunity to make

several other aspects of the code’s class hierarchies more clearly delineated and flexibly

configurable, including scoring functions, search methods, conformation collections,

internal ligand pose models, and search space parameters. Any edition of DOX

incorporating knowledge base storage has this new architecture.

144

7.1. Knowledge Bases

The overall effect of docking a given ligand/receptor complex should be practically

unchanged by the new internal logic. Obtaining data through an MKB interface is

schematically no different from parsing the provided structure and data files, but

delegates the storage issues to the back-end implementation. The raw data itself — when

passed to the scoring functions, search methods, and other processing algorithms — will

be identical, and so the output should be unaffected by the design. An added benefit

of abstracting data storage is that entries requested can be retained in memory for quick

reference during program execution.

In Figure 7.1, the first two columns compare the previous version P with the

equivalent redesigned system K . Rather than showing no difference at all, the

redeveloped edition is 7.5% faster and at least equivalently successful in redocking the

1AF2 test case. The speed is an effect of the increased efficiency of the new code design:

the elimination of all unnecessary copying and reprocessing of molecular data.

Figure 7.2 compares the two storage methods by redocking the entire Astex Diverse

Set (see §E.1.3 (p.199)), providing a more thorough test with a wide variety of molecule

sizes and conformation counts. Using MKBs resulted in a total docking time of just under

58 hours: a 10% reduction relative to the flat file system. Loading pre-calculated data

from disk and configuring the docking parameters is around twice as fast, although this

is of lesser importance for high-throughput use. Most importantly, the result RMSDs

are unaffected (perhaps slightly improved) by the new architecture, reaffirming that the

redesign does not interfere with the docking algorithms themselves.

There is some variation in the timing data. Although the overall improvement was a

10% speed-up, a minority of individual cases did take longer in K . Ligand 1W1P required

nearly triple the time for docking. This is one of the very simplest cases, with only

11 heavy atoms, so I plotted Figure 7.3 to show the relationship between the ligands’

sizes and the improvement seen with the MKB edition. This shows that, in general, the

cases that slowed down are those that had fewer atoms and therefore conformations.

However, for most cases, and in particular those of any complexity, the new design is

almost universally better.

145

Chapter 7. Properties, Priority, and Parallelization

Test used [see Appendix E]:
10× 1AF2 on Eurymedon
P K S F

Syllabus for S F :
AlignUSR and AlignPASTRY;
all with weight 1 and no
attenuation or minimum
significance.

Figure 7.1: Comparison of single file and MKB implementations, and learning procedures,
showing improved docking accuracy and time with the new design

7.1.1 Normalized Scores

One disadvantage of encouraging the use of various interchangeable scoring functions

is that they cannot be assumed to provide comparable scores. The values that might

be returned often fall in completely different ranges, and may not have a fixed bound

at all. To counteract this problem, I introduced the additional measure of a normalized

score: one scaled in relation to all other scores produced by a function for a particular

receptor. This is enabled by automatically creating an entry in the receptor’s MKB called

146

7.1. Knowledge Bases

Test used [see Appendix E]: 1× Astex Diverse Set on Eurymedon P K

Figure 7.2: Thorough multi-target comparison of docking time and results for SDF and MKB
molecular storage, confirming quicker execution and equivalent results

Case 1W1P omitted for clarity.
Test used [see Appendix E]: 1× Astex Diverse Set on Eurymedon P K (crystal structures only)

Figure 7.3: Relationship between ligand size and docking time improvement using MKB
storage: time only increased for some of the smallest molecules

147

Chapter 7. Properties, Priority, and Parallelization

‘sfRange.FunctionName’ which tracks the maximum and minimum values produced

by the named function. As part of the IScoringFunction interface, this behaviour is

incorporated automatically into all scoring functions. Normalized scores are calculated

thus:

Fnormalized(R, L) = 2
(

F(R, L)− sfRange(F)worst

sfRange(F)best − sfRange(F)worst

)
− 1

giving a value in the range [−1,+1]. If only one score has been calculated — that is,

the best and worst scores are equal — the normalized score is defined to be the neutral

value zero. Note that a normalized version of a score is not constant and could change

if recalculated; however, as an assessment of relative virtue for such applications as

learning, this is an improvement on unscaled values.

7.2 Learnable Properties

Although an MKB entry class may be defined for any purpose and data whatsoever,

the primary application is likely to be calculating and storing some property of the

molecule. If these attributes have some potential for identifying traits of well-docking

ligands, it is desirable to be able to accumulate such knowledge automatically. To

enable this, I propose a learning mechanism based on a standardized LearnableProperty

MKB entry class. A Syllabus may be defined, listing learnable property names to be

collected for the molecules considered, and used when assessing a new case. Education

entries are updated using the learnable properties of docking results, and can produce

an opinion for any given property value based on the accumulated examples. Interface

specifications for the learning system are given in §F.7 (p.214).

The learning process uses a supervised case-based reasoning method. Learnable

properties are required to provide their value(s) in unidimensional (fixed or variable

length) array form, and also a method by which two such values may be compared on the

scale [0, 1]. A method to generate poses and/or search boxes (§5.2.5 (p.101)) for a ligand

based on a particular property value is also required, but this is free to return fewer than

the requested number if appropriate.

When a docking search completes for a conformation, the properties specified in the

syllabus are calculated (or loaded from the MKB), their values are adjusted to represent

148

7.2. Learnable Properties

Name Kind Description
AtomCount L/R A simple integer property giving the HAC of the molecule.
PlacePIES-c-f-t R The PIES pocket prediction method of §5.2.1 (p.87).
PlacePIECE-c-f-t R The PIECE variation on PIES.
PlacePASS-b-p-t R The PASS pocket prediction method of §5.2.2 (p.96).
ShapeUSR L The USR shape descriptor from §5.3.1 (p.106).
AlignUSR P A descendant of the above for pre-alignment purposes.
AlignPASTRY P The PASTRY descriptor from §5.3.2 (p.107).

Kinds: R=receptor property, L=ligand property, P=ligand pose property.

Table 7.1: Learnable molecular properties implemented in DOX

each result pose (if necessary), and each case is added to the appropriate education

with a weighting determined by its normalized score (§7.1.1 (p.146)). Hence, a wealth

of examples are aggregated to provide probabilities of high docking affinity for a given

ligand descriptor. If a previously-unseen value is presented for assessment, an opinion

is formed by interpolation from the most similar examples. If multiple properties are

listed in the syllabus, the assessments from each of these are combined in a weighted

mean to estimate the expected suitability of the case in question. This is similar to a

naive Bayesian classifier, estimating the probability of classifying a ligand conformation

as dockable, although the features are combined disjunctively rather than conjunctively.

Since a ligand may dock well even if only some properties are suitable, and it is

quite possible that multiple correlating features might be used (two shape descriptors,

perhaps), I chose to avoid multiplying probabilities in order to maintain reasonable

scores for prioritization.

Including the learning process at the end of each conformation’s docking search will

inevitably increase the overall screening time. Figure 7.1 includes statistics for the S

edition of DOX, which learns about the shape properties of each ligand case, but does

nothing with the information accumulated. This learning version produces very similar

results — as it should — but increased the time taken substantially. The syllabus used

listed the two shape descriptors discussed in §5.3 (p.106), USR and PASTRY, and these

required calculating for every result pose. Naturally, expanding this list of properties

would add to the delay in the overall process.

I have developed or reimplemented several properties to be used with the learning

mechanism, listed in Table 7.1. Admittedly, the ‘Place...’ properties are not intended

for learning, only for pre-alignment, but the LearnableProperty interface lends itself

149

Chapter 7. Properties, Priority, and Parallelization

to the situation by enforcing the pose generation method and providing a convenient

data storage format. The similarity measure required by the superclass is implemented

as the proportional volume of intersection. They all record their pockets as lists of

spheres, and so can be treated as learnable values. One could apply them to ligands as

excessively sophisticated shape descriptors — there is no technical impediment to such

use in DOX — and so obtain comparisons of the molecules’ relative concavity, but this is

unlikely to be useful.

7.2.1 Conformation Prioritization

Using the information accumulated by this learning mechanism, a database of ligand

conformations may be appraised to establish which of the presented molecules are more

likely to bind to the receptor. If a ligand is seen of similar shape to one that docked

well previously, then it may be surmised that it will bind in a similar pose. A set of

inputs might then be ordered according to these estimated suitabilities, and cases that

appear promising may be considered sooner. The syllabus provides a central point to

make such judgements, obtaining an opinion independently from each property and

combining these in a weighted mean.

I added a Sort method to the IConfContainer class, performing a quick-sort on the

ligand conformations using any given comparator function, and defined such a function

to use the syllabus for prioritization. This sort algorithm is well-known to be generally

O(N log N) in the number of cases [Hoare, 1962]. Assessing each example (which is

done at most once per case by using a cache) requires obtaining an opinion in O(PE)

(but O(P log E) if the property value has been seen before), where E is the size of the

education data and P is the number of properties being used.

The F edition incorporates this pre-processing and Figure 7.1 shows its effect. With

the 1AF2 example, there is apparently a small decrease in run time, despite using a

syllabus of two properties with approximately 5300 opinions for each. Processing the

opinions as part of the sorting stage may cause their data to be pre-arranged in memory,

allowing the learning steps to be quicker after each conformation is docked, and thus a

net benefit is obtained. The results themselves are unaffected by the different order of

docking. This is as it should be, since the individual cases are independent. If, however,

150

7.3. Job Control

the quota-based rejection stratagem discussed in §6.4.3 (p.137) were to be introduced, this

independence would be lost.

7.3 Job Control

The knowledge base architecture also introduced job control to the system, encapsulating

a particular docking search procedure (including receptor, ligand conformation, and

parameters) into a Job object that is simply started and stopped, with all search

operations handled internally. Establishing the concepts of a search, its state, and

the cases under consideration not only provides for the suspension, resumption, and

abandonment of cases, it will also facilitate the distribution of a virtual screening

task over many processors by allocating each a subset of the jobs. The design and

implementation details of job-based docking are given in §F.8 (p.217). This framework

could be adapted easily for many other large-scale parallelizeable search problems.

I implemented one class of priority function in DOX, SimplePriority, offering

parameters to control the maximum number of jobs that may be active concurrently and

the maximum absolute value of a job’s priority (effectively the number of steps that it

may take before another must be considered). The class causes new jobs to be started

whenever possible, and adds the normalized scores (§7.1.1 (p.146)) of each job’s best

search cases to their priorities. If the quota-based early rejection stratagem from §6.4.3

(p.137) is in use, this priority function also checks the worst-case value; if appropriate, it

will reject a job outright.

The J edition operates using this job-based system. Although the job-control

stratagem automatically incorporates parallel execution capabilities (§7.4 (p.153)), it is

still possible to run in a single processor mode. Since the jobs are not executed in

separate threads here, increasing the number that may be in progress contemporaneously

should not speed up the docking search, except by perhaps making better use of available

memory. However, we should also see no significant loss of results.

Figure 7.4 compares several configurations of the simple priority function. As

predicted, the docking results show no particular trend correlating with either the

number of jobs permitted or the maximum number of steps they can take uninterrupted.

151

Chapter 7. Properties, Priority, and Parallelization

Test used [see Appendix E]: 5× 1AF2 on Eurymedon J (various job and step count limits)

Figure 7.4: Effect of simple job priority parameters on docking time and results using a
single processor thread, showing the slight speed-up with sufficiently many jobs

Allowing multiple jobs to be under simultaneous consideration slows the docking

process at small numbers. It is better to take one complete case at a time than to interleave

a few — this is understandable since it does make optimal use of any hardware caching

facilities. However, if enough jobs are loaded alongside each other (around 8 in this

case), this can reduce the docking time very slightly. Note the scale of the time graph in

Figure 7.4, though; the variation in time is proportionally very small — around 2% —

and so this is not a significant effect.

152

7.4. Multi-Processor Distribution

7.4 Multi-Processor Distribution

Screening a list of ligands and their conformations for binding poses with a receptor

is a task ideal for parallel execution. Genetic algorithms, in general, are regarded

as embarrassingly parallel: the evaluation of each member of a population is an

independent procedure, and so the search lends itself to being divided across multiple

processors. Here, I choose instead to distribute the molecular conformations across

execution processes and keep each of their searches on a single thread. Practical

difficulties would arise with a multi-threaded design since the OpenBabel libraries are

not thread-safe, and so the molecular data structures would need redeveloping before

the intended work could proceed. In essence, OrthoDOX merely permits the automatic

allocation (and reallocation) of an input ensemble across many instances of a single-

processor knowledge base edition. This practice has been used manually in industrial

situations; it seems appropriate to mechanize the operation. The configuration and

protocol used by the distributed docking system are described in §F.8.1 (p.218).

Discussions with experienced modellers in the field suggested a more subtle reason

for not attempting a more complicated parallelization: the inter-process communication

overheads could outweigh the benefits of a distributed system. The facilitation of

interchangeable search methods in the software also precludes any assumptions about

their suitability (or mode) of distribution. Whilst a search method is not prevented from

multi-threading its own code, the overall OrthoDOX system has to treat each individual

search as an indivisible unit. Thus, the client/server architecture with independent

processes treating each conformation as a separate job was chosen. Technically, there is

a single executable which may run in either Controller or Job Manager mode, according

to its command line invocation. Figure 7.5 gives an overview of the components in this

design, illustrating how data passes between the parts of the system.

To investigate the benefits of this collaborative docking system, the Tom cluster of

32 processors (see §E.2 (p.200)) was used to execute 32 OrthoDOX Manager processes.

Thirteen different subsets of these were used for redocking all 433 conformations from

the Astex Mini Set against one of those targets (1LRH). Table 7.2 lists the configurations.

No more than 4 Managers were started on each host to avoid having more processes

running than processors. Exceeding this level would be detrimental to the system’s

153

Chapter 7. Properties, Priority, and Parallelization

Figure 7.5: Architectural overview of OrthoDOX parallel docking

Name Hosts Managers Managers per host Jobs per Manager
1on1 1 1 1 433
2on1 1 2 2 217
2on2 2 2 1 217
4on1 1 4 4 109
4on2 2 4 2 109
4on4 4 4 1 109
8on2 2 8 4 55
8on4 4 8 2 55
8on8 8 8 1 55
16on4 4 16 4 28
16on8 8 16 2 28
24on8 8 24 3 19
32on8 8 32 4 14

Table 7.2: Job Manager configurations for parallel docking tests

154

7.4. Multi-Processor Distribution

Black outlines mark expected times inversely proportional to number of processors.
Test used [see Appendix E]: 10× Astex Mini Set to 1LRH on Tom J

(parallel, various Manager configurations)

Figure 7.6: Effect of distributed parallel processing on docking time, using configurations
from Table 7.2, confirming the expected inverse proportion to processor count

efficiency, as the operating system would be forced to suspend Managers frequently as

it scheduled CPU time between them. The priority function for these tests was set to

allow only 8 active jobs on each Manager, with a consecutive step limit of 8. The XScore

function used a scaling power of 1 to account for the different sizes of the ligands in the

input database; i.e. a pose of a ligand with N heavy atoms that scores S is evaluated as

S
(

N−1) [Pan et al., 2003].

One would expect to see an inverse linear correlation between the number of

processors employed and the time taken to dock the conformations in a database. That

is, the docking times ought to be in the ratio of the last column in Table 7.2, with the

largest team of Managers (‘32on8’) completing the same task in approximately 3% of the

single processor’s time. Figure 7.6 shows that this cluster managed around 4.5%, which

is reasonable considering that a backup process was competing for the last processor’s

time. It is also important to note that the timings available are imprecise, owing to a

substantial latency in the network communication between Managers and the Controller

introducing an error margin of several seconds. In the cases where the same number

of processors were used, but distributed between machines differently, the times were

practically identical. Evidently, multi-core processors are just as capable as the equivalent

number of separate computers.

155

Chapter 7. Properties, Priority, and Parallelization

Test used [see Appendix E]:
10× Astex Mini Set to 1LRH
on Tom J (parallel, various
Manager configurations)

Figure 7.7: Effect of distributed parallel processing on docking results, using configurations
from Table 7.2, showing comparable result quality from all arrangements

Importantly, as shown in Figure 7.7, there appears to be very little difference in

the quality of results produced by any configuration. Schematically, the distributed

docking system is completely equivalent to the previous software design, and so the

final collection of poses produced by the controller should not be affected by where the

individual conformations were handled.

156

Chapter 8
Comparisons and Conclusions

All knowledge is of itself of some value. There is nothing so minute, or
inconsiderable, that I would not rather know it than not.

Dr. Samuel Johnson

8.1 Results: Assessment of Stratagems

The combinations of stratagems already discussed, with some others for completeness,

are assessed once more here using the 12 test cases in the Astex Mini Set (see §E.1.4

(p.200)). With each strategy, only one configuration was used: these are listed in Table 8.1

and are based on the results found earlier in this thesis. The total docking time and

average results from each design are shown in Figure 8.1. Refer to Appendix E (p.195)

for details of the editions and their codes. Note that q is the original version, from before

my investigations began, whereas x has none of the discussed stratagems.

Cases Parameter Value
All Maximum results 100

Population 96
Generations 240
Random starting poses 1 part

P Optimization period Final generation only
Optimization range Translations ±1Å

Rotation components ±0.5
R Scoring threshold 1500
M Similarity threshold 5
N Result quota 300

Minimum generations 120
F Syllabus properties USR and PASTRY, equally weighted

C/A(p) Pocket predictions 1 part from top 5 PASS-8-1.8-55
1 part from top 5 PIES-5-3-7

(a) Pose pre-alignment 1 part from top 5 USR
1 part from top 5 PASTRY

Table 8.1: Default parameters as used for the large-scale comparison in Figure 8.1

157

Chapter 8. Comparisons and Conclusions

Where tests failed to select the correct conformation in the top 100 results, this has been
treated as a highest rank of 101 for statistical purposes.

Test used [see Appendix E]: 1× Astex Mini Set on Eurymedon x B i P q O R OR M ORM N

ORN K ORK F FN ORFN A CA ORCA (using default parameters as listed in Table 8.1)

Figure 8.1: Comparison of 20 strategies derived from this thesis, showing their relative
merits for speed and accuracy

158

8.1. Results: Assessment of Stratagems

Applying spatial indexing (B) increases the speed dramatically, especially so in

these tests because XScore performs surface-based calculations. Adding a final local

optimization stage (i) does lengthen the execution, but in conjunction with interpolating

the LUT data (P) it also improves the results. Quaternion representation of rotations

is substantially faster than Euler angles (q), taking around half the docking time and

producing better results.

Ordering atoms for scoring (O) makes little discernible difference, but rejecting using

a conservative scoring threshold (R) reduced the time by about 5% — whether or not

the atom ordering was applied. The results are hardly damaged, with the proportion of

poses within 2Å RMSD dropping from 26% to 23% over this test set. When early rejection

for merging of similar poses (M) was used, the threshold chosen caused 14.5% of all

cases to be replaced. It is therefore no surprise that this had a detrimental effect on the

docking speed, increasing it by 27%. It also produced poorer result accuracy, although

its selectivity was effectively equivalent. Combining this with scoring thresholds (ORM)

almost restores the original docking time with no further loss of results, however.

Applying a quota to the number of results (N) is fast: it cuts the docking time

by a quarter. This comes at a price, however. As discussed in §6.4.3 (p.137), the

disproportionate preference introduced for the first conformations presented makes the

comparably-good results shown here deceptive. Later, when job prioritization means

that the correct conformation is no longer guaranteed retention, the results will be lost.

Scoring thresholds alongside quotas (ORN) do not appear to have any effect, since their

efficiencies are dwarfed by the rejection of entire searches.

The knowledge base redesign of the system (K) made data handling more efficient

by minimizing recalculation of even small data structures, and so reduced docking time

by 16%. Curiously, the results also improved substantially, which I can only explain

by concluding that some subtle behavioural flaws were eliminated in the process. The

greater quantity of good results shows clearer the effect of scoring threshold rejection (

ORK): there is a drop in results within 2Å for a fairly small gain in speed. Prioritizing

conformations (F) makes no difference to accuracy — provided that all cases are

processed in full — and only has a very slight time delay for sorting. This makes sense,

since the order of docking should be irrelevant to the output. However, introducing the

159

Chapter 8. Comparisons and Conclusions

quota rejection scheme (FN), now that the correct conformation is not guaranteed safety,

demonstrates the danger of that technique. It is extremely fast, but too risky for practical

use. Combining this with scoring thresholds (ORFN) is at least as bad.

Pre-positioning in predicted pockets (A (p)) does require slightly more time to

complete, but is still quicker than the pre-MKB system. When the search is otherwise

constrained, though, it makes little difference to the outcome. The same can be said of

pre-alignment to prior knowledge (A (a)). Searching a receptor’s entire environment is far

slower, naturally, and the size of the receptor will determine the time required. However,

with automatic selection and elimination of search boxes (CA), a number of good results

can still be obtained. Finding 12% of poses within 2Å RMSD is reasonable, especially

when considered with the fact that at least two different boxes have been retained in these

searches, and these tend to be relatively large. The selection of the correct conformation

was tolerable, even if it was not always placed so close to the crystal structure, and

filtering the results by search box would improve the ranking substantially. Introducing

scoring thresholds as well (ORCA) makes no difference to the large time requirements,

and does set back the result accuracy, suggesting that it causes too much approximation

in the more expansive search space.

8.2 Future Work: More Stratagems to Consider

Inevitably, there will be many stratagems that have been overlooked by this thesis. It

is impossible in one project to cover every conceivable approach to even the relatively

specific task of rigid protein-ligand docking using scoring functions. Some ideas

emerged too late in the work to be incorporated, while others would have been too

diverting to combine with those included here. I introduce now some notable examples

that deserve (or are already the subject of) further study.

8.2.1 Pharmacophores and Alignment

Simplified descriptions of a ligand’s shape (such as PASTRY or USR, §5.3 (p.106)) can be

helpful for alignment, and several methods could be used for this purpose [Kazhdan,

2004]. However, they do ignore many other important factors by hiding the underlying

160

8.2. Future Work: More Stratagems to Consider

structure. Molecules can be decomposed into small sections of common chemical motifs,

known as pharmacophores [LaValle et al., 1999; Daeyaert et al., 2004]. These typically

include various types of ring, charge concentrations, hydrophobic regions, hydrogen

bond termini, and suchlike. Tools for annotating a molecule with its pharmacophores

already exist, and these could be used to define molecular properties for use with

knowledge bases (§7.1 (p.143)) — this is another form of structural decomposition, acting

on internal volume rather than surface concavities. Later cases could then be pre-aligned

using their common pharmacophores as well as overall shape.

If these decompositions are recorded as learnable properties, the significant phar-

macophores in a particular receptor might be automatically identified. In turn, this

information would be valuable for understanding better the biochemistry of a particular

target, and designing ligands accordingly.

8.2.2 Directed Search Heuristics

Applying knowledge garnered from previous executions to picking starting points, as in

§5.3.4 (p.111), is a relatively limited use of that information. One could also guide the

search towards preferred configurations by weighting the exploration steps. This bias

must not prevent the search from reaching any part of the space, of course. Obvious

gravitational points in this scheme would be the receptor’s predicted pockets, pre-

aligned poses using shape descriptors, and (if available) pharmacophore tethers. Where

an unconstrained search is used with a cached LUT (such as in §5.2.5 (p.101)), this could

provide an alternative to pockets for box selection.

Alternatively, a simpler method might be to offer suggestions into the search method

as it proceeds. For example, each generation of a GA could have one or more population

members introduced to replace the worst. These would be generated based on the learnt

preferences, or even simple poses that have scored well in the past and been collected in

the receptor’s knowledge base.

Using my job control design from §7.3 (p.151), it would also be quite straightforward

for successful poses discovered with one conformation to be injected directly to other

jobs for consideration. This would transcend the outer abstract search method layers of

Table 3.2 (p.64), effectively searching by conformation and pose at the same time.

161

Chapter 8. Comparisons and Conclusions

8.2.3 Search Methods

There are many techniques for exploring a large combinatorial search space. Evolution-

ary programming methods (genetic algorithms being the major example) have several

variations. Other population-based procedures include particle swarms and ant colonies,

and the issues discussed in this work would certainly apply to them directly. Tabu

methods can also improve upon the behaviour of more stochastic searches by providing

a repulsion from known results [Pei et al., 2006].

When using conformation ensembles to model ligand flexibility, the time taken to

perform the full docking process is linearly proportional to the number of cases provided.

As an alternative, the conformation index could be incorporated into the search as an

additional dimension, alongside the usual translation and rotation values. This would

require substantially longer to find optimal solutions than a single-conformer search, but

could be more efficient than fully docking each case separately.

The principle of appropriate processing, as exemplified by the early rejection work in

§6.4 (p.127), uses an understanding of what information is relevant to avoid unnecessary

precision. If more informative inputs than only a maximum result count are provided

to a docking system, then further efficiencies could be made. One example would be

a ‘good enough’ threshold, used to indicate that some representative poses are needed

rather than a comprehensive docking. The suggestions generated by pocket prediction

and pre-alignment methods could be assessed against the given normalized score (§7.1.1

(p.146)). If these poses compare favourably then they would be returned immediately,

avoiding a lengthy search procedure, but if insufficient placements can be found using

predictive methods then a normal docking would be started and pursued long enough

to find some results of that standard.

Another use for the normalized scores, and the learning mechanism that motivated

them, would be to intelligently select a cut-off score instead of the fixed quota method

discussed in §6.4.3 (p.137). The quota system’s main flaw is that it heavily prefers early

conformations from the input because it cannot reject anything until the result list is full.

Using learnt successes from the receptor’s knowledge base, the worst-case score could be

replaced with a minimum-acceptable suitability — the evaluation of admissibility then

based on longer-term data rather than the current task’s progress alone. Although this

162

8.3. Conclusions

would make little difference to the very first few cases docked to a new receptor, it may

be possible to use it more aggressively without the detrimental biasing effect.

8.2.4 Sphere Tree Representations

Due to time constraints, it was not possible for me to pursue the hierarchical model of

molecular structure prototyped in cSpheres (§3.2 (p.54)), but it has not been dismissed

outright. Many aspects of that work could warrant further attention. The construction

of intermediate levels in sphere trees automatically from the molecular data would

require a clustering algorithm as discussed in §2.1 (p.26). Receptors, however, should

perhaps have their interiors represented as a solid unit since these cannot generally flex

significantly to accommodate a ligand. The atoms near surfaces should be partitioned

variably, but some inner core should be treated as constant throughout the tree.

Extending the interaction between sphere trees from hard to soft collisions is

necessary. Some form of potential function would have to be used to model electrostatics

and other effects, but more subtle is the question of how this is applied to parent

nodes in the tree. Simply summing the atoms’ contributions would probably produce

overestimates, although it may be a reasonable starting point for investigation. Once

a useful behaviour is established, however, the ultimate goal would be to perform

automatic flexible docking with both ligand and receptor molecules represented in this

form. Methods such as roadmap path planning (see §2.3.2 (p.45)) suit the hierarchical

model for molecular dynamics simulation. However, given some bound pose of the

sphere tree, this structural decomposition might also lend itself to the incremental

construction of alternative ligands.

8.3 Conclusions

Embarking on this kind of research in such a broad field is like opening Pandora’s

box: there is a limitless range of questions to answer about the best approaches to the

construction of protein-ligand docking tools. In this thesis I have presented a selection of

factors and demonstrated their effect in a real-world context.

163

Chapter 8. Comparisons and Conclusions

When handling rotations in a physical system, the algebraic behaviour of quaternions

(§5.1 (p.83)) befits more complicated processing than alternative systems such as triples of

angles, which is necessary if one is to exploit geometric clues when analysing molecular

interactions. A case in point is the pre-alignment of ligands to previously-successful

arrangements (§5.3 (p.106)), for which relative orientations can be calculated directly

using quaternions. One of the most important geometric hints available is that of the

receptor’s surface pockets (§5.2 (p.87)). Automatically identifying these can help to focus

a search and save time when the correct active site is unknown.

There are many issues to be considered when performing the docking search

algorithm itself. Combining large-scale and small-scale explorations (§6.1 (p.117)), is

useful for optimizing any good results found, but frequent periodic use with Monte Carlo

searching is of little benefit compared with one final refinement. Where pre-calculated

data are employed, they should be interpolated to support the precision of the positions

being sampled (§6.2 (p.121)). Although deferring calculations until they are required

(§6.3 (p.125)) makes relatively little difference to the time cost of constrained docking, it

could still be worthwhile when the search space is not defined in advance and will be

generated automatically (§5.2.5 (p.101)).

Early rejection of unprofitable work is an important principle with many applications.

Curtailing the evaluation of scoring functions when their results are predictably bad

(§6.4.1 (p.128)) is worthwhile, but the enormous efficiency possible must be balanced with

the risk of losing results. Maintaining search case diversity (§6.4.2 (p.134)) provides a

moderate benefit when exploring such a large space as is necessary for this kind of work,

but excessive use could introduce a diversion from converging good results. Result quota

consideration (§6.4.3 (p.137)) is unsuitable for screening conformations sequentially, and

of doubtful use with a prioritized job-based design. The technique of eliminating cases

that trail behind alternatives is still relevant, though — narrowing a multi-box search

(§5.2.5 (p.101)) being a useful example. Partial evaluation methods such as these are

worth considering, but they are tools whose utility depends on their situation. Their

purpose is to allow faster, less accurate searches where the requirement is to find good

results, but not necessarily all. Using a stochastic search method implies a similar

expectation, however.

164

8.3. Conclusions

Executing searches in parallel across as many processors as possible is an effective

way to maximize throughput for screening (§7.4 (p.153)). Although the 32-core cluster

used limits the demonstration that can be provided here, it is clear that more processors

would continue to improve the pace of a docking system — as long as enough inputs

are provided to occupy them. It is as much an enhancement of capacity as speed. Job-

based processing (§7.3 (p.151)) is a necessary feature of such architecture, but allowing

deferred and/or prioritized evaluation of conformations makes little other difference to

the overall behaviour. A versatile configuration architecture and information storage

mechanism (§7.1 (p.143)) is needed to underpin much of the above, and certainly can

be at least as expeditious as a simpler fixed-content design. Making simulation tools

with an inflexible data foundation can unnecessarily hamper any further attempts at

sophistication. Using such a knowledge base for the accumulation of experience based

on molecular properties (§7.2 (p.148)) can identify patterns of preferences and their best

poses. Future ligands can then be prioritized using this resource, and pre-aligned to

obtain promising lead results quite accurately.

8.3.1 Scoring, Searching, and Screening

Referring back to the roadmap described in §4.3 (p.75) and whose illustration is

reproduced (at a smaller scale) in Figure 8.2, this thesis has demonstrated that efficient

evaluation is both relevant and possible in all three layers of a docking tool. The

research workflow (marked by the heavy arrows) has been helpful for investigating the

construction of docking software for virtual screening; although it will not apply directly

in every situation, I suggest that the basic order of consideration is useful.

Scoring must be done to an appropriate precision, with only as much detail as is

required to discern good poses. When docking is required to compare a collection of

ligands, the numbers returned as scores are not important in themselves — only their

relative values matter — and scoring threshold early rejection provides an effective

approximation in this circumstance.

Searching should be guided quickly to the poses most sensible in the context,

increasing thoroughness for the most promising cases and eliminating the worst.

Features of the receptor, particularly its geometry, determine where a ligand can bind

165

Chapter 8. Comparisons and Conclusions

Figure 8.2: The research roadmap of stratagems, as explored by this thesis

and thus which poses a search method ought to assess. Pocket detection algorithms

are one good source of this guidance; wherever it comes from, narrowing a search by

dismissing unfruitful regions is a useful shortcut for exploration.

Screening can be organized for optimal resource usage, sharing work between parallel

computation processes and managing data to facilitate quick retrieval. Information about

the molecules, such as structural features, should be indexed in forms suitable to its

application, not merely its versatility. Collecting patterns from results provides a means

of prioritizing future work and starting searches in the most probable areas. It could also

lead to an accumulation of knowledge from which it may be possible to learn about a

molecule’s general behaviour, contributing to any wider study.

8.3.2 A Strategy

To more clearly evaluate the editions of DOX considered, I defined a rating function

based on the statistics in Figure 8.1 (p.158). This positively scores higher proportions

of close (low RMSD) result poses and frequencies of selecting the correct ligand

conformation. Penalties are deducted for the mean and top-ranked RMSD values being

166

8.3. Conclusions

Assessment formula used (constant c added to give zero score for q , positive is good):

within1
10%

+
within2

25%
+ within4 − toprmsd − meanrmsd

4
− ranktrue

100
+

freqtrue
25%

− hours + c

Data from Figure 8.1 (p.158).

Figure 8.3: Quantitative comparison of strategies, offering a crude preference ranking

large, the correct conformation ranking poorly, and slow execution. The scores assigned

are shown in Figure 8.3, relative to the q edition that preceded any of this work.

Remembering that the quota-based rejection will have been unduly favoured by this

measurement, the ranking offered by this gauge fits with the discussion above. Even

so, quotas noticeably worsen the rating, except in comparison with the most simple

editions. The MKB designs are all preferable to the older system, except when using

the completely self-guided multi-box searches (CA/ORCA). Pre-alignment methods and

scoring-based early rejection are, in the cautious configurations used here, reasonable

contributions to the docking algorithms. In the non-MKB systems, using scoring

thresholds also receives a similar rating, but pose merging is poor. Allowing for the

limited results of multi-box searching, though, it is clear that using quaternions is

universally better.

167

Chapter 8. Comparisons and Conclusions

Summary

There are certain stratagems that can improve the efficacy of docking software for virtual

screening if incorporated into the algorithms’ design and development. To summarize

them as a simple strategy, the key recommendations are to:

• Use quaternions to represent angles and rotations.

• Avoid calculating with unwarranted precision, especially scoring functions.

• Use geometric clues, such as pockets and good previous poses, to guide searches.

• Architect the code in an adaptable, modular form to support further improvements.

The topics presented in this thesis should be generally applicable to the continued

development of useful tools in the field of computational chemistry. Of course, each

potential application will have its own idiosyncrasies that affect the effect of any given

factor — with any implementation, your mileage may vary. However, I hope that this

smorgasbord of stratagems has contributed some helpful ideas to the already thriving

drug discovery community.

168

Appendices

Appendix A
Fundamentals of Protein Structure

We may, I believe, anticipate that the chemist of the future who is interested in
the structure of proteins, nucleic acids, polysaccharides, and other complex
substances with high molecular weight will come to rely upon a new structural
chemistry, involving precise geometrical relationships among the atoms in the
molecules and the rigorous application of the new structural principles, and that
great progress will be made, through this technique, in the attack, by chemical
methods, on the problems of biology and medicine.

Linus Pauling

This appendix is a modified version of [Skone & Cameron, 2007]

A.1 Introduction

Proteins are of great importance to biological and medical research, and are one of

the primary foci of biochemistry. This is largely because of their significance in the

function of living cells — indeed, the word protein is derived from the Greek for ‘primary

importance’. These molecules have a polymeric structure, referred to as a polypeptide.

This is constructed from the genetic code stored in DNA by a transcribing process: each

set of three genetic nucleotides (called a codon) represents one of twenty amino acids.

Amino acids are small molecules (tens of atoms) that bind together in a chain; the

individuals in the chain are called residues. Each has the same basic structure featuring a

central alpha carbon atom and a terminal each of COOH and NH3 (shown in Figure A.1).

To construct a protein, two hydrogen atoms and the oxygen ion break off to form a

water molecule, then the terminal carbon bonds with the nitrogen of the next residue.

This linkage, shown in Figure A.2, is called a peptide bond. The thread of carbons and

nitrogens is known as the backbone of the protein.

The twenty common amino acids are identified by either three-letter or single-letter

codes, allowing a protein sequence to be written as a simple string. Amino acids have

171

Appendix A. Fundamentals of Protein Structure

Figure A.1: Amino acid structure Figure A.2: Backbone linking

Group
Amino Acid

Notation

Acidic: Negatively charged, and reactive with water.
Glutamic Acid Glu E
Aspartic Acid Asp D

Aliphatic Alanine: Slightly hydrophobic. Ala A
Valine: More hydrophobic. Val V
Leucine Leu L
Isoleucine Ile I

Aromatic: Large, bulky, and hydrophobic.
Phenylalanine Phe F
Tyrosine Tyr Y
Tryptophan Trp W

Basic Lysine: Side chain is hydrophobic, but overall structure is
hydrophilic with positive charge.

Lys K

Arginine Arg R
Histidine His H

Polar: Generally on outside of protein, and often on active site of enzymes.
Glutamine Glu Q
Asparagine Asn N
Serine Ser S
Threonine Thr T

Sulphur-containing Methionine Met M
Cysteine: The most reactive amino acid. Pairs of Cysteine
can form covalent disulphide bonds between their side
chains, adding structural stability to proteins.

Cys C

Unique conformation: Not usually found in motifs of secondary structure.
Glycine Gly G
Proline Pro P

Table A.1: The alpha amino acids

certain properties, including charge and hydrophobicity, which help to determine their

interactions with each other and the protein’s environment.

A.1.1 Primary Structure

The alpha amino acids may be grouped under seven headings, shown in Table A.1. Short

sequences of amino acids are referred to as peptides; proteins with many similar peptides

172

A.1. Introduction

Figure A.3: Alpha helix bonding Figure A.4: Beta sheet bonding

in their backbones are described as homologous. The sequence of amino acid residues

along a backbone is referred to as the protein’s primary structure.

A.1.2 Secondary Structure

The threadlike protein structure is generally arranged in a globular form. The backbone is

twisted and bonded together in a stable conformation shortly after the protein is formed.

The arrangement taken by a protein (when subjected to no external constraints) is called

the native conformation. Certain patterns, or motifs, are seen in most protein structures:

two of the most common are alpha helices and beta sheets. These are particularly rigid

and provide a great contribution to the structural integrity of the molecule. The alpha

helix is a spiral of residues around an axis, with a hydrogen bond formed between each

residue and its fourth successor (as shown in Figure A.3).

The beta sheet is a set of approximately straight sections of backbone aligned in a

plane, with hydrogen bonds formed between adjacent residues. Sections of backbone

that are part of neither a helix nor a sheet are described as loops or turns. Figure A.4

shows the alignment of beta strands in a sheet, with a loop/turn between the strands.

The arrangement of helices, sheets, loops, and turns is collectively referred to as the

secondary structure of a protein.

173

Appendix A. Fundamentals of Protein Structure

A.1.3 Tertiary Structure

Some proteins exhibit a higher level of conformational grouping: these subsections of the

protein with an independently stable arrangement are termed domains. The grouping of

large sections of a protein backbone into domains is referred to as its tertiary structure.

The largest known protein (Titin) has around 300 domains [Labeit et al., 1997]. Tertiary

structure may influence secondary structure by preventing helices or sheets from forming

by the intervention of other sections of the backbone.

A.1.4 Quaternary Structure

Certain proteins have multiple backbones or distinct subunits. There are several such

arrangements within this quaternary structure class, such as homodimers, oligomers,

and concatomers. Homodimers are chains of identical subunits; concatomers are similar,

but the subunits may not be identical. Oligomers contain several copies of a protein

arranged around each other. Viruses, for example, are icosahedral oligomers.

A.2 Protein Behaviour and Interactions
A.2.1 Folding

Proteins contort into their native conformations in an extremely short time, a phe-

nomenon that is clearly not random. The principal factors governing this process are

the laws of thermodynamics, in the context of the electrostatic forces and hydrophobic

interactions present between residues. In the body, proteins fold under the influence of

their environment, i.e. the cell and other proteins surrounding the newly synthesized

amino acid chain [Gething & Sambrook, 1992]. Consequently, it is not always possible

for a protein to be denatured (unfolded) and refolded correctly in vitro.

A.2.2 Binding

Proteins may bind with other molecules, typically by hydrogen bonding or ionic

interaction. These bindings are normally reversible, such that the protein returns to its

original form after the second molecule is detached. The general term ligand refers to

174

A.2. Protein Behaviour and Interactions

a small non-protein molecule bound to a receptor protein. The structure of a protein

may incorporate active sites — areas of the molecular surface where ligands tend to bind

[Liang et al., 1998]. The protein may deform slightly around or between the active sites

when a ligand is present, owing to the forces between the two molecules, particularly by

moving the amino acids’ side chains or adjusting the relative position of entire domains

[Ansari et al., 1994].

A.2.3 Structure Identification

The molecular structure of proteins is of critical importance to understanding their

functions and interactions. Two methods are well-established for obtaining data about

the atomic arrangement of proteins and other large molecules: X-ray diffraction [Drenth,

1999] and Nuclear Magnetic Resonance (NMR) [Wüthrich, 1986; Wüthrich, 1990].

X-ray diffraction is the older method; it requires that the protein be in a solidified

crystalline state, often cryogenically frozen, and mounted in careful alignment with the

detecting apparatus. It has been estimated [Abola et al., 2000] that it takes around ten

minutes to arrange and obtain data from a single crystal, excluding the time to purify,

crystallize, and freeze the sample and then analyse the raw data. X-ray diffraction is a

time-consuming process with limited resolution, but it remains important because of its

ability to handle larger proteins than NMR with relative ease of execution.

NMR is a more recent development which allows the distances between atoms to be

measured with reasonable accuracy, and thus a picture of the entire molecule’s structure

to be constructed. It requires the use of powerful magnets, and is a similar process to

that used in medical MRI scanners. NMR permits proteins to be scanned in solution,

rather than a crystalline form, which avoids the possibility of structural deformation

as a consequence of solidification. In addition, the conformational flexibility induced by

ligand-binding may be investigated. The data produced by NMR is collated by computer,

and possibly refined to settle on precise atomic coordinates. A more recent development

in this refinement stage is the inclusion of a solvent in the calculations [Linge et al., 2003].

The accuracy of a 3D representation of a protein, whether it be decoded from

experimental data or generated by a computer prediction, is often described in terms

of the RMSD of the atomic coordinates in the structure from some reference set of values.

175

Appendix A. Fundamentals of Protein Structure

However, assessing the accuracy of experimentally determined structures is a difficult

and non-standardized issue [Snyder et al., 2005].

A.2.4 Biochemistry

There are numerous properties associated with proteins. The most relevant to

computational biochemistry are the Van der Waals atomic radii, charge distribution,

overall hydrophobicity, and bond lengths and flexibility. A summary description

of many of these may be found in [Richards, 1977], and a detailed exploration of

thermodynamics and energy calculations in [Robertson & Murphy, 1997]. Bonds and

their elasticity are dealt with in [Sinha & Smith-Gill, 2002], with examples given

demonstrating the importance of flexibility in understanding the function and behaviour

of some proteins in vivo.

For more information regarding protein science, the reader is referred to [Branden &

Tooze, 1999] or [Berg et al., 2002].

176

Appendix B
FFT Tesselation Test

On two occasions I have been asked, “Pray, Mr. Babbage, if you put into
the machine wrong figures, will the right answers come out?”
I am not able rightly to apprehend the kind of confusion of ideas that could
provoke such a question.

Charles Babbage

B.1 Implementation

This was an implementation of a simple rigid docking method in a graphical Java

program. It was used as an early programming and familiarization exercise, with

emphasis on good coding practices. See §3.1 (p.53) for the context of this work.

B.1.1 Background

The FFT geometric alignment method for protein-ligand docking seeks the optimal

relative translation of two functions representing the spatial occupancy of the molecules

[Katchalski-Katzir et al., 1992]. Two lattices, R and L, are created for the receptor and

pre-rotated ligand, as described in §2.3.2 (p.35). A particular translation (a, b, c) of the

ligand may then be scored by summing the pointwise products of R and L:

Sa,b,c = ∑
x,y,z

Rx,y,z · Lx+a,y+b,z+c

The maximal value in S is then the optimal docking translation. However, this is a costly

function to evaluate in full since it involves six nested summations altogether. A more

efficient way of calculating S is found by observing that it is a cross-correlation of R and

L, and applying the cross-correlation theorem [Papoulis, 1962]:

S = R ? L = F−1
(
F (R) · F (L)

)
where F is the Fourier transform.

177

Appendix B. FFT Tesselation Test

Since fast, discrete Fourier transforms are well established [Cooley & Tukey, 1965;

Elliott & Rao, 1982] and have a complexity of O(N log N), this allows the correlation

function to be computed in O(D3 log D3) rather than O(D6), where the lattice size is

N = D × D × D.

B.1.2 Interface

The Java classes I developed include the user interface, which provides controls for

setting all the variables in the algorithm (such as grid resolution and the scoring

functions), facilities for loading and viewing a molecule, and displays of the results of

a docking — both the complexed structure as an image and the translation/rotation

values determined. It also allows for the retrieval and display of the complete matrix

of convolution for the most promising orientational arrangements. Figure B.1 shows the

program interface after a docking has been performed.

Representation

The molecules are stored as collections of solid spheres. Three classes — Molecule,

Residue, and Atom — work together to model a protein (or other molecule if Residue

is not used), while retaining some of the biochemical data about it. The Molecule class

is able to read and parse structure files in both the original PDB format and its newer

Extensible Markup Language (XML) style. It can also write an XML file to be used later,

perhaps when a molecule has been constructed or modified manually. If the Molecule

represents a protein with multiple chains, it can select either a single chain or all of them

together for modelling.

The docking procedure does not use the Molecule class directly; it docks two objects

of the Model class. This is a collection of coloured SolidParts (typically Balls), which

provide spatial classification functions (testing whether a point is inside, outside, or on

the surface). A Model may be built from a Molecule by creating a Ball for each Atom,

coloured according to chain. The Model class also provides a method for generating a

Java3D [Java3D, 2008] BranchGroup object to render a view of the shapes being docked.

178

B.1. Implementation

Post-docking result display, with full view of controls

Ligand selection: 2D & 3D view Top results table & matrix listing

Red: Receptor, Blue: Ligand.

Figure B.1: Original Java user interface for FFT docking program

179

Appendix B. FFT Tesselation Test

Algorithm

The two molecules to be docked are loaded into the program from prepared data files and

the corresponding Models constructed. As an alternative (primarily for initial testing),

the user can manually build a shape by drawing coplanar spheres directly within the

interface. The parameters for docking (grid size, scoring functions, molecular surface

thickness, and number of angular arrangements to explore) are also adjustable. An object

of the Aligner class is constructed with the required parameters to initiate the search.

The Aligner class takes copies of the geometric Models and uses them to produce the

matrices of scores to be convolved. I implemented the algorithm in a function that takes

a list of orientations (triples of axis rotation angles), the required scale and dimension

of the scoring matrix for the ligand, a translation for each matrix relative to its shape’s

centre, and some parameters concerning the precise method and output required. The

outline of the algorithm is given in Listing B.1.

B.1.3 Testing

Initially, all the matrix operation functions contained Java code acting directly on the

data, with the exception of the (I)FFT which was in a separate FDFT class. Since the

FFT code was translated from C source [Press et al., 1992], I conducted an experiment

to compare the relative execution speeds of the two languages. I wrote a simple program

to forward and then inverse Fourier transform an array of random data, first in Java and

then ported almost unchanged into C++. The program repeated the transform cycle ten

times, with different data in the source array each time, and reported how many seconds

the transforms took to execute. Table B.1 lists these results with the comparison between

the two implementations: it shows that, as expected, the Java program is slower, taking

around 23% longer to complete the task.

Upon closer inspection, it transpired that the values in the matrix returned after the

inverse transformation did not always match the original data used, with errors of the

order 103 or more. The C++ program did not exhibit this behaviour, whereas the Java

code might run a single execution before a series of failures. Since the code was almost

identical, it seemed unlikely that the error lay there, so to avoid possible confusion later

(and in the light of the unfavourable timings) I abandoned the Java FFT code.

180

B.1. Implementation

//Preparation...
Create A, a 3D lattice, of the given dimension adim
Create B, a 3D lattice, of the given dimension adim
For each element E in A do

Begin
Classify point E, offset by aOffset1, on the receptor’s volume
Set E to the receptor score corresponding to E’s classification
End

Apply the Fast Fourier Transform to A
Conjugate each element of A
Create TOPS, an array of scored poses

//Search the rotations...
Let DA equal 2*π/angleSteps
For each rotation R in angleSteps do

Begin
Orient the ligand using R
For each element E in B do

Begin
Classify point E, offset by aOffset2, on the ligand’s volume
Set E to the ligand score corresponding to E’s classification
End

Apply the Fast Fourier Transform to B
Calculate C, the pointwise product of A and B
Apply the Inverse Fast Fourier Transform to C
Find PEAKS, the topcount highest-valued elements in C
For each element E in PEAKS do

Begin
Create a pose, P, with E’s value as its score
Set P’s rotation to R
Set P’s translation to E’s point offset by aOffset2
Append P to TOPS
End

End
Return TOPS

Listing B.1: FFT correlation alignment algorithm

Java C++
FFT IFFT FFT IFFT

Run time (seconds) 4.15 4.90 3.70 3.67
(Combined) 9.05 7.37

Comparison with other language 112% 134% 89% 75%
(Combined) 123% 81%

Test used [see Appendix E]: 10× (I)FFT of 1283 array on Eurymedon

Table B.1: Timing data for Java vs. C++ FFT execution

181

Appendix B. FFT Tesselation Test

Exterior Surface Interior
Ligand 0 1 1
Receptor 0 −15 1

Table B.2: Original scoring function for FFT algorithm

Grid dimension 32 32 64 64 128 128
Grid resolution Å 1.8 1.8 1.2 1.2 0.6 0.6
Surface tolerance Å 0.8 0.8 0.8 0.8 0.8 0.8
Angle step ° 40 20 72 40 72 40
Run time s 60 380 110 590 1500 8190
Rank of correct alignment >1000 >1000 26 60 18 91

Table B.3: Algorithm parameters and results for Java/C++ FFT implementation

To allow the existing Aligner class to use the C++ code for Fourier transforms,

I changed all the matrix-handling functions to send instructions to another process,

rather than using local data. Overall, the small overhead of inter-process communication

did not noticeably slow the docking procedure, and did make the results reliable.

Results

I explored the parameters for the FFT algorithm to establish how to obtain useful results.

In the original implementation, the scoring function was proposed as given in Table B.2.

I used these unchanged to dock the turkey ovomucoid inhibitor into alpha-chymotrypsin

(PDB code 1CHO); parameters and run times are shown in Table B.3.

The results indicate that the method works, but the parameters can make a significant

difference to the run time and ordering of results. The test case used provided the protein

and ligand in the docked conformation, therefore the correct result was the zero rotation

and zero translation. This was easy to identify in the ranking, and was also guaranteed

to be one of the arrangements tested by the search algorithm.

B.1.4 Extension

Since it is a straightforward addition, I added a refinement facility to the Aligner class.

The refinement performed is simply a repeated run of the algorithm, but with a finer grid

localized to a potential active site (determined from the results of an initial, coarser run).

To enable this, two new functions were added:

182

B.2. Gradual Refinement Algorithm

public double[]
align (int angleSteps, double angleHalfRange,

int adim, double ascale,
double finA, double finB,
double fonA, double fonB,
double foffA, double foffB,
double atol, Point3d aOffset1, Point3d aOffset2,
int topcount, boolean aspeed)

public double[]
refine (double[][] seeds, int angSteps, double angDelta,

int newDim, double newScale, double newTol,
Point3d newOffset1, Point3d newOffset2, int topcount)

These both call the existing process function, having set up the parameters appropriately.

The refine method’s seeds parameter is an array of conformations to refine, where each

entry is a 7-element array containing the result data returned from a previous alignment

run. The refinement explores rotations of ±angDelta around each axis from the seed

conformation, using new spatial occupancy scoring grids centred at the new offsets.

The user interface provides a second button to start a refinement from the results of any

completed alignment. The highest-scoring results are used as seeds automatically.

B.2 Gradual Refinement Algorithm

As can be seen from the literature review (§2.3.2 (p.32)), there are many approaches to the

docking problem. None of these are perfect, but it has been noted [Halperin et al., 2002;

Friesner et al., 2004] that there may be much to be gained from using several in sequence

or combination. For this reason, I transformed the docking code described above to fit a

framework so that other algorithms might be used to refine its results.

B.2.1 Pipelined Architecture

I defined a Java interface for classes implementing docking algorithms. The Pipelined

interface requires that classes expose methods providing:

• Lists of algorithm parameters (names, types, and default values),

• Descriptions of the values returned by the algorithm,

• A run function to initiate an execution of the algorithm, using the supplied

parameters, callbacks, and Environment,

• A result function to create an Environment modelling some output data.

183

Appendix B. FFT Tesselation Test

The Environment class is a container for two Molecules — the receptor and ligand —

with methods for translating and rotating them. The parameters are all passed in an

array, and the callbacks are references to objects implementing either ProgressCallback

or ResultCallback which contract methods for updating a status display or recording

reported results.

In addition, I defined an abstract PipelineStage class, providing a simple implemen-

tation of the Pipelined interface suitable for most purposes. This features a constructor

which takes several parameters defining the characteristics of the algorithm; these are

stored privately and are used to fulfil the interface requirements.

PipelineStage (String name,
String[] paramNames,
Object[] paramDefs, Class[] paramTypes,
String[] resultNames, String[] stageDataNames)

This PipelineStage class also defines some additional methods to offer a persistent

Environment and parameter data. These may be set once and are recorded for future

executions of the algorithm; parameters may then be changed individually rather than

by supplying the complete set. Instantiable subclasses — those performing a docking

procedure — need then only override the default zero-parameter constructor to call

the new inherited one, and three other functions: getLabel() to identify the algorithm,

run() to implement it, and result(Object[] resultData) to return the conformation

associated with a result.

B.2.2 Development

I adapted the existing FFT-based algorithm to fit this interface: the Aligner class is mostly

unchanged except for the addition of the three required methods.

To improve the conformations produced by the grid-based algorithm, which will

typically only produce very close placements if the grids and rotation steps happen

to coincide on the correct binding site precisely, I implemented a new algorithm in

the Pipelined interface. This uses a gradient descent to pull the ligand towards the

receptor incrementally, aiming to minimize the distances between pairs of surface atoms.

This Potential class has parameters for the number of atom pairs to consider when

calculating a motion step, the thickness of the surface layer from which to consider atoms,

184

B.2. Gradual Refinement Algorithm

Find LC, the ligand’s centroid
Find RC, the receptor’s centroid
Find C, the midpoint of LC and RC
Find R, half the separation of the centroids (plus a padding value)
Discard atoms not on the surface of either molecule
Discard any atoms not within R from C
Create the Cartesian product of the molecules’ remaining atoms, PS
Create a Movement object, M
Let M’s translation be an unspecified large value
Let Q be the supplied iteration limit
Let T be the supplied minimum translation length
Let MS be an empty list of Movements
While the magnitude of M’s translation > T and Q > 0 do

Begin
Sort PS in decreasing order of magnitude using a potential function
Find N, an integer based on a proportion or count of PS
Let N’ equal N Let V be the zero vector
While N’ > 0 do

Begin
Add the ligand-to-receptor vector represented by PS[N’] to V
Decrement N’
End

Divide V by N
Set M’s rotation according to the moment of V about LC
Set M’s translation according to the magnitude of V
Append M to MS
Decrement Q
End

Return MS

Listing B.2: Gradient descent pose refinement algorithm

the radius beyond which atoms will be ignored, and stopping conditions (minimum

adjustment distance or maximum iteration count). Figure B.2 shows this new program

executing: each adjustment made to the conformation is listed above the picture of the

new arrangement. The algorithm used in this refinement is described in Listing B.2.

This code exhibits sensible behaviour, i.e. a ligand does not generally penetrate the

receptor significantly, and settles (with oscillation) into a small area on the protein’s

surface.

185

Appendix B. FFT Tesselation Test

Initial state Interface atoms during processing

End result Native (correct) conformation

Figure B.2: Updated Java user interface for pipelined docking, showing gradient descent
refinement in progress

186

Appendix C
Dotty Surfaces

Pythagoras as a mater of fact is at the root of all geom. Insted of growing
grapes figs dates and other produce of greece Pythagoras aplied himself to
triangles and learned some astounding things about them which hav been
inflicted on boys ever since.

‘Down With Skool!’, Geoffrey Willans & Ronald Searle

C.1 Motivation

One of the more complex components of the XScore function’s computation is the

calculation of molecular surfaces in the H1 term (§3.5.1 (p.66)).

Methods for real-time construction and display of such surfaces have been estab-

lished for more than two decades [Bash et al., 1983]. These usually generate a set of

points for painting. The points drawn by graphics procedures are not always truly even,

especially around the intersection of atomic surfaces. Here, though, the requirement is

for a mathematically even distribution of points. To simplify calculations of surface areas,

such as the buried surface required by XScore, a Monte Carlo method could be used to

sample points on surface patches and thus estimate a proportion of the total area.

White: Atomic spheres;
Grey: Torus holes precisely in contact with spheres;
Black: Concave spherical triangle faces of internal volume.

Figure C.1: Molecular volume components

187

Appendix C. Dotty Surfaces

C.2 Method

Molecular surface areas and volumes can, of course, be computed analytically as

discussed in §2.1 (p.23). A common method takes a probe sphere and treats points that

it cannot touch without overlapping an atom as being inside the molecule. Equations

can be derived from the decomposition of a molecular volume into atomic spheres, the

inner faces of tori interposing these spheres, and spherical triangles at the intersection of

three such tori. Figure C.1 illustrates these three parts. Full mathematical definitions for

the required terms are well-known [Connolly, 1985], while programs to calculate these

equations in O(N log N) time are available [Sanner et al., 1995].

To be useful, a method such as this must be able to generate points at random with a

uniform distribution over a sphere or inward-facing torus surface. Efficient formulae for

these and similar distributions exist [Williamson, 1987], and these have been used to add

a surface calculation facility to the cSpheres program (§3.2 (p.54)), as shown in Figure C.3.

The displayed 3D plot includes the triangles whose edges are the axes of toroidal patches

and whose faces mark areas closed by concave pits.

The algorithm begins by identifying pairs of atoms that are close enough to prevent

a probe sphere (of given radius) passing between them. These pairs define edges in a

graph of surfaces, which will later be used to form the tori for saddle-shaped patches

of dots. Next, for each triple of edges that form a closed loop, a triangular surface is

created if the probe sphere could not pass through the loop. The set of all these edges

and triangles defines the pale shape visible in Figure C.3, which denotes the enclosed

polyhedral volume between atom centres.

To generate the dots, spheres are created centred on the vertices of the surface graph.

These have the same radii as the corresponding atoms. Similarly, tori are created for each

edge in the graph, such that their boundaries exactly meet those of the spheres on either

side. Finally, spheres are created for each triangular face in contact with the three vertex

spheres.

Each of these shapes then has dots placed randomly over its exterior in quantity

proportional to its total surface area, and then clipped by the planes defined by its

intersections with adjacent shapes. For example, the torus between two spheres has two

188

C.2. Method

Solid black lines: Clipping planes;
Dashed grey line: Torus axis;
Black dots: Retained surface regions;
White circles: Atomic spheres;
Light grey: Probe sphere locus;
Dark grey: Enclosed interior space.

Figure C.2: Clipping surfaces between atoms

clipping planes perpendicular to its axis, defined by the circles where each sphere meets

the torus’ surface (see Figure C.2).

In practice, many molecules produce triangular faces in their surface graphs which

are buried within the true surface and so are inaccessible from the outside environment.

To eliminate these, a gift-wrapping algorithm to identify reachable triangles has been

investigated, but this was unreliable, in particular when very thin triangles occur.

Consequently, this surface area work has not been incorporated into the XScore function

calculation.

189

Appendix C. Dotty Surfaces

Figure C.3: Random surface dots in cSpheres, without interior removal

190

Appendix D
XScore Calibration

It’s clearly a budget. It’s got a lot of numbers in it.

George W. Bush

D.1 Training Cases and Function Data

These 128 protein-ligand complexes were used as examples to calculate the term

weightings for the XScore implementation discussed in §3.5 (p.66) by linear regression.

The pKi values are the desired scoring function outputs from experimental data, sourced

from the XScore definition in [Wang et al., 2002].

PDB Code pKi ∑ T ∑ H1 ∑ H2 ∑ H3 ∑ V ∑ B
1A94 8.10 30 1856 213.40 8.18 1538.32 5.02
1AAQ 7.84 18 1567 160.13 5.84 1109.00 5.57
1ACJ 6.33 0 1012 139.76 2.72 684.78 0
1ADF 5.76 11 108 6.12 0.62 1210.88 1.98
1ANF 6.03 4 0 0 0 855.98 3.39
1APU 7.29 16 1640 140.20 5.77 1141.45 4.54
1APV 8.08 15 1535 116.70 5.70 1153.05 5.44
1BAI 7.86 30 1599 181.39 8.18 1565.78 4.38
1BLL 5.22 14 879 60.10 4.23 484.55 3.19
1BXQ 7.90 18 1722 172.12 5.84 1364.89 5.77
1CPS 6.15 4 670 105.89 2.51 592.90 0.35
1CSC 5.34 23 424 36.17 2.06 1108.92 4.87
1CTT 4.50 2 86 9.80 0.28 441.28 1.58
1D3Q 5.92 11 1530 175.47 6.59 880.19 0
1D3T 6.26 11 1407 146.60 5.56 933.83 0
1DBB 6.81 1 1196 152.64 5.03 721.07 0
1DBJ 7.23 0 1097 156.54 4.75 710.65 0
1DBK 6.83 0 1161 148.31 4.47 694.40 0
1DBM 6.65 6 1195 216.83 5.42 931.79 0
1DIH 6.38 13 226 41.43 0.82 1255.45 1.57
1DWB 4.36 1 445 39.10 1.54 337.41 2.36
1DWC 6.46 10 882 113.09 4.01 919.37 3.30
1DWD 7.13 10 1025 178.58 5.32 1074.66 2.92
1EED 8.02 19 2007 200.62 8.06 1372.64 4.40
1ELC 6.24 14 1472 178.22 6.70 1035.04 0.96
1EPO 8.56 17 1397 153.51 6.72 1414.18 6.45
1EPP 7.18 24 1826 178.60 7.02 1453.13 4.30
1ETT 6.58 7 1199 134.65 4.48 1088.09 1.55

191

Appendix D. XScore Calibration

PDB Code pKi ∑ T ∑ H1 ∑ H2 ∑ H3 ∑ V ∑ B
1FBC 5.80 6 0 0 0 449.61 2.28
1FBF 5.56 6 0 0 0 439.60 2.19
1FBP 4.85 4 0 0 0 503.05 1.12
1FQ4 7.64 16 1304 198.01 5.27 1352.35 2.53
1FQ5 10.56 10 2317 315.96 11.55 1747.50 5.42
1FQ6 7.68 16 1461 216.92 6.90 1163.18 2.06
1FQ8 7.86 17 1426 199.38 6.72 1385.91 1.35
1HBV 6.78 15 1641 195.72 6.52 1242.82 0.92
1HEW 5.07 13 482 26.84 1.54 791.18 2.17
1HPV 6.28 11 1453 165.52 4.40 1120.44 2.20
1HRI 4.95 9 715 141.79 2.68 794.75 0
1HTF 7.43 13 1653 235.19 6.69 1127.75 2.79
1HTG 9.17 18 2121 334.16 8.20 1649.73 2.95
1HVI 9.24 21 1693 270.54 7.46 1520.69 2.64
1HVJ 8.91 21 1733 270.95 7.85 1530.30 2.39
1HVK 9.58 21 1832 298.80 7.46 1633.27 3.31
1HVL 8.75 21 1700 275.27 7.46 1555.57 3.33
1HVS 8.74 21 1658 259.97 7.46 1547.22 3.02
1L82 3.38 5 0 0 0 164.09 0.99
1L83 5.04 0 726 149.68 1.69 267.38 0
1L86 3.43 5 0 0 0 165.64 0.90
1L87 3.35 5 0 0 0 118.09 0.92
1LDM 6.01 11 224 37.02 0.82 1426.62 4.05
1LGR 4.00 4 0 0 0 684.59 0.95
1LYB 8.72 23 1848 182.92 8.21 1312.29 5.51
1MCB 5.51 15 959 147.00 4.00 1140.39 1.21
1MCF 6.02 23 1066 179.54 4.78 1281.39 0.81
1MCH 5.64 23 1122 176.33 4.78 1357.17 2.57
1MCJ 5.29 10 960 129.80 3.22 894.36 0
1MCS 5.86 15 872 149.43 3.61 1209.51 1.47
1MDQ 6.14 4 0 0 0 874.79 4.46
1MFC 5.40 8 453 46.04 1.42 846.86 0.43
1MFE 4.76 6 290 32.80 0.90 734.34 0.17
1NNB 4.74 6 320 25.74 0.79 589.48 1.67
1PGP 4.29 7 0 0 0 465.00 1.74
1PPK 7.13 16 1652 121.41 5.25 1116.70 4.31
1PPL 8.01 17 1795 178.82 6.48 1334.97 5.11
1PPM 7.54 18 1513 162.04 5.33 1353.92 4.33
1PSO 9.03 23 1831 176.62 8.21 1371.09 5.74
1RNE 8.91 20 2157 259.57 9.66 1692.54 2.29
1RPA 4.04 3 0 0 0 241.88 1.32
1RUS 3.53 4 0 0 0 267.08 0.41
1SNC 5.33 6 358 45.22 0.98 547.70 0.75
1TMT 6.90 12 867 123.40 3.30 956.10 5.18
1ULB 3.89 0 0 0 0 409.71 2.15
1XLI 4.81 1 128 16.98 0.65 454.80 3.30
2DBL 7.53 6 1181 200.62 6.17 849.16 0
2DRI 6.41 0 0 0 0 430.17 3.04
2ER0 8.13 26 1945 227.13 8.84 1647.87 3.07
2ER6 7.64 29 1418 213.50 6.59 1918.27 5.25
2ER7 9.16 31 2441 254.96 9.19 2136.21 5.66
2ER9 8.09 26 2089 182.83 7.63 1801.25 3.49
2IFB 6.78 14 1580 232.96 5.97 671.14 0
2LDB 5.96 11 208 39.60 0.82 1164.25 3.54
2MCP 3.61 4 0 0 0 349.97 1.00
2MSB 2.60 15 0 0 0 481.91 2.42
2PHH 5.52 1 332 78.44 1.26 312.94 3.37

192

D.1. Training Cases and Function Data

PDB Code pKi ∑ T ∑ H1 ∑ H2 ∑ H3 ∑ V ∑ B
2R04 6.58 10 1321 220.51 4.14 978.70 0
2RNT 5.27 8 0 0 0 986.50 3.50
2YPI 4.00 3 0 0 0 283.18 1.97
3CSC 5.42 22 547 43.71 2.58 1022.22 2.03
3ER3 8.13 24 2019 218.04 8.64 1736.75 5.25
3PGM 2.95 4 0 0 0 −72.23 5.29
3TS1 5.29 9 519 76.50 1.45 1110.47 3.43
4DFR 6.18 9 479 85.73 2.04 946.73 3.32
4ER1 9.29 20 2336 344.88 11.89 1737.29 2.37
4ER2 7.49 23 1944 151.43 7.31 1337.52 4.53
4ER4 8.02 30 2181 232.98 8.11 2029.98 5.30
4EST 6.42 14 1416 148.37 5.25 885.21 2.47
4FAB 6.93 2 842 146.12 2.66 696.04 1.27
4GR1 1.30 23 94 4.96 1.56 499.46 0
4HVP 8.20 29 1741 209.02 7.49 1482.30 5.40
4MDH 5.61 11 263 36.48 0.82 1368.87 1.24
4PHV 9.49 12 2210 380.17 7.68 1563.97 3.84
4TMN 7.45 14 1471 161.82 5.33 1087.29 5.93
4TS1 4.42 3 526 69.66 1.45 519.46 3.20
5ACN 3.35 4 219 24.49 0.90 397.66 0
5ENL 4.49 3 0 0 0 217.77 3.07
5ER2 8.80 28 2349 236.93 9.79 1938.23 7.30
5HVP 8.33 21 1811 149.10 7.18 1205.83 5.75
5ICD 4.72 4 9 6.99 0.51 311.67 2.08
5LDH 5.42 15 267 50.35 1.48 993.56 2.99
5TIM 3.76 0 0 0 0 133.16 0
5TMN 6.10 14 1205 149.82 4.62 993.50 2.52
5XIA 4.55 4 0 0 0 404.65 3.75
6ACN 3.34 4 213 25.31 0.90 378.02 0
6APR 7.97 23 1819 193.45 8.21 1177.62 4.50
6ENL 4.29 3 0 0 0 235.78 0.10
6TMN 5.91 14 1188 149.68 4.62 970.95 3.25
7ACN 6.08 4 98 23.97 0.51 523.26 2.67
7CAT 5.25 13 101 37.06 0.82 1164.06 2.98
7HVP 8.23 26 1670 210.56 7.65 1643.86 4.94
8ACN 5.76 4 105 14.77 0.39 488.32 2.42
8ATC 6.54 6 96 11.60 0.39 534.05 1.52
8CPA 7.00 13 1282 156.85 3.79 977.12 2.92
8HVP 6.93 28 1527 174.96 8.21 1480.40 5.46
8ICD 4.76 4 59 9.04 0.51 313.44 1.01
9HVP 8.72 20 2115 323.09 8.85 1546.87 2.70
9ICD 5.11 6 0 0 0 622.52 1.91
9RUB 3.14 8 8 5.27 −0.28 412.25 0.38

Correlation (R2): 0.377 0.759 0.735 0.759 0.701 0.290
Gradient (m): 0.129 0.00201 0.0155 0.474 0.00303 0.519

Weighting (mR2): 0.049 0.00153 0.0114 0.360 0.00212 0.151
Intercept (c): 4.713 4.406 4.460 4.471 3.370 4.948

Correlated intercept (cR2): 1.775 3.344 3.278 3.392 2.361 1.437
Mean correlated intercept: 2.60

193

Appendix E
Test Configurations

“Is this a question?”
“If it is, then this might be an answer.”

From an Oxford entrance examination

Test results presented in this thesis are labelled in the pattern:

Test used: N× case on platform Ed (parameters)

which indicates the number of executions (N) where multiple runs were averaged, the

choice of target(s), the hardware platform, and program editions used. Unless otherwise

specified in the text, all tests used a population size of 96 and 240 generations to search

with the XScore function and return 100 result poses — the configurations shown in

Listings E.1 and E.2. Local simplex optimizations (where used) terminated when either

500 cycles had been performed or the simplex’s best and worst vertices’ scores converged

Genetic
population *16
generations *40
mingens *20
keeptop 0
keepevery 0
keepmax *10
mutation 0.06
crossover 0.8
irregularcross 0.4
NMgenerations 3
NMmutation 0.5
NMcrossover 0.3
optimizeTol 0.002
optimizeSteps 500
optimizeRange 1.0
optimizeAngleRange 0.5
optimize final
similarity 2
scoreSaveGens 0
scoreFlushGens 0

In the tests using edition CA in §5.2.5
(p.101), the following amendments are
made:
generations *20
narrowEvery *2
narrowTo 2
optimizeSteps 1000
optimizeRange 2.0
optimizeAngleRange 1.0

In the multiple and larger search extents of
those tests, a briefer GA search is used to
find poses for a longer local optimization.
The number of search boxes is narrowed
until only two remain.

Listing E.1: GA search method configuration file

195

Appendix E. Test Configurations

XScore
const 2.59758140
rotor 0.04855673
hydroS 0.00152764
hydroC 0.01140664
hydroM 0.35982438
vdW 0.00212340
hbond 0.15061649
abandonat -1500
; Hydrophobic atoms: These are defined as carbon atoms and halogens
; that do not match one of the specialized definitions below.
type [#6] HYDROPHOBIC
type [#15] HYDROPHOBIC
type [#16] HYDROPHOBIC
type [F,Cl,Br,I] HYDROPHOBIC
; Polar atoms: O and N not matching DONOR or ACCEPTOR definitions.
type [#7] POLAR
type [#8] POLAR
; Polar atoms are also C atoms attached to heteroatoms.
; Here we define heteroatoms as N, O, P, S and halogen.
type [#6][#7] POLAR
type [#6][#8] POLAR
type [#6][#15] POLAR
type [#6][#16] POLAR
type [#6][F,Cl,Br,I] POLAR
; Polar atoms are also P or S attached to heteroatoms.
type [#15][#7] POLAR
type [#15][#8] POLAR
type [#15][#15] POLAR
type [#15][#16] POLAR
type [#15][F,Cl,Br,I] POLAR
type [#16][#7] POLAR
type [#16][#8] POLAR
type [#16][#15] POLAR
type [#16][#16] POLAR
type [#16][F,Cl,Br,I] POLAR
; Donor atoms: These are N bearing a hydrogen.
type [#7D1]-A DONOR
type [#7D1]-a DONOR
type [#7D1]=C DONOR
type [#7D2](-A)-A DONOR
type [#7D2](-A)-a DONOR
type [#7D2](-a)-a DONOR
type [nD2H1](:a):a DONOR
; Zinc, a special but omitted case highlighted by 1AF2:
type [#30] DONOR
; Both atoms: These are O atoms with a hydrogen.
type [#8D1]-A BOTH
type [#8D1]-a BOTH
type [OX2H2] BOTH
; Acceptor atoms: These are N and O atoms with no hydrogens.
type [#7D1]#C ACCEPTOR
type [nD2H0](:a):a ACCEPTOR
type [#8D1]=* ACCEPTOR
type [#8D1]=*[#8D1] ACCEPTOR
type [#8D1]*=[#8D1] ACCEPTOR
type [#8D2](A)A ACCEPTOR
type [#8D2](A)a ACCEPTOR
type [#8D2](a)a ACCEPTOR

NB. The atom typing rules (lines beginning ‘type’) were prepared for me by Daniel
Robinson (then of InhibOx) to the specifications of [Wang et al., 2002].

Listing E.2: XScore scoring function configuration file

196

E.1. Molecule Test Cases

to within 0.2%. This appendix describes all the possible test cases, platforms, and edition

strategies. A full list of all tests discussed in this thesis is given on page 245.

E.1 Molecule Test Cases

The tests are all re-dockings — searches for experimentally-determined complexes —

to assess whether the correct pose could be found reliably by the docking procedure.

Each result was compared with the true crystal structure pose using the root-mean-

squared deviation (RMSD) of the ligand’s atoms’ centres: a value of 2Å RMSD is typically

considered close enough to be regarded as successful.

The individual cases 1AF2 and 1K3U were used for docking an ensemble of

conformations to a receptor. The Astex Diverse Set and Astex Mini Set provided

collections of ligands for screening, in some instances using multiple conformations of

each ligand.

E.1.1 1AF2

The PDB entry 1AF2 is taken from a comparative study of XScore by its authors [Wang

et al., 2003]. It models cytidine deaminase with its ligand uridine, as shown in Figure E.1.

53 conformations are present in the input ensemble, with the first being the correct crystal

structure. This particular complex has been used for many behaviour tests because it is

relatively small, making repeated testing tractable, and it has an open, exposed active

site allowing much variation in plausible poses.

E.1.2 1K3U

The PDB entry 1K3U is taken from the Astex Diverse Set (see below). The receptor

is tryptophan synthase and the ligand is the allosteric effector N-[1H-indol-3-yl-

acetyl]aspartic acid. 101 conformations are present in the ligand ensemble, and 11

versions have been assembled with the crystal structure at positions 1, 11, 21, etc.,

respectively. This ligand binds at a completely enclosed site, as shown by the cut-away

protein image in Figure E.2. This complex has been used for the quota-based rejection

197

Appendix E. Test Configurations

Figure E.1: Ligand and docked structure of 1AF2

Green/grey: Carbon Red: Oxygen Blue: Nitrogen Yellow: Sulfur

Figure E.2: Ligand and docked structure of 1K3U

198

E.1. Molecule Test Cases

PDB code Conf’s HAC PDB code Conf’s HAC PDB code Conf’s HAC
1G9V 51 25 1N2V 28 15 1TT1 71 15
1GKC 201 22 1N46 8 27 1TZ8 ? 72 20
1GM8 201 24 1NAV 39 21 1U1C 51 20
1GPK 3 18 1OF1 ? 37 18 1U4D 3 18
1HNN ? 3 14 1OF6 37 13 1UML 101 33
1HP0 ? 49 19 1OPK 72 27 1UNL 401 26
1HQ2 4 14 1OQ5 25 26 1UOU 5 15
1HVY 201 32 1OWE 17 22 1V0P 401 29
1HWI 279 30 1OYT 70 30 1V48 51 22
1HWW ? 9 12 1P2Y 7 12 1V4S 31 23
1IA1 5 19 1P62 49 18 1VCJ 201 25
1IG3 27 18 1PMN 201 31 1W1P 2 11
1J3J 3 16 1Q1G ? 74 20 1W2G ? 49 17
1JD0 13 13 1Q41 1 21 1X8X ? 37 13
1JJE 201 25 1Q4G 25 17 1XM6 138 19
1JLA 51 27 1R1H 401 29 1XOQ ? 51 24
1K3U 101 21 1R55 401 23 1XOZ 7 29
1KE5 281 23 1R58 201 22 1Y6B 201 34
1KZK 401 41 1R9O 25 18 1YGC 201 38
1L2S 101 18 1S19 218 30 1YQY 401 23
1L7F 210 23 1S3V 191 27 1YV3 3 22
1LPZ 51 30 1SG0 ? 9 17 1YVF 101 27
1LRH ? 7 14 1SJ0 201 33 1YWR 401 35
1M2Z 65 28 1SQ5 101 15 1Z95 101 29
1MEH 101 23 1SQN 3 22 2BM2 101 30
1MMV 401 15 1T40 51 28 2BR1 101 29
1MZC 401 35 1T46 101 37 2BSM 51 26
1N1M ? 36 12 1T9B 136 22 Total: 85 9596 1933
1N2J 25 10 1TOW 51 19 All conf’s: 255621

Conf’s = number of conformations in ligand ensemble
Starred cases are the members of the mini-set (see text)

Table E.1: The Astex Diverse Set of receptor-ligand complexes

testing in §6.4.3 (p.137) because it has sufficiently many atoms to generate a reasonable

number of conformations. The quota method required a larger range of input ensemble

arrangements than would have been available with 1AF2.

E.1.3 The Astex Diverse Set

The Cambridge Crystallographic Data Centre and Astex Therapeutics collaborated on

the development of a test suite of relevant and varied receptor-ligand complexes,

originally for the assessment of GOLD [Verdonk et al., 2003]. This Astex Diverse Set

[Hartshorn et al., 2007] contains 85 examples of pharmaceutical or agrochemical targets

with drug-like ligands, all of which have fairly accurate structural data and are quite

199

Appendix E. Test Configurations

Name Processor Clock Cores L2 Cache RAM OS
Eurymedon Athlon64 2.20 GHz 1 0.5 MB 1 GB Windows
Tom 8× Opteron x64 1.95 GHz 2 dual = 4 2 MB 4 GB Linux

RAM = random-access memory size, per machine. OS = operating system.

Table E.2: Hardware configurations used for testing

different from each other. The members of this set are listed in Table E.1, along with an

indication of their ligands’ sizes. The number of conformations of each ligand, generated

using the online FROG tool [Bohme Leite et al., 2007], is also shown. In each case, the

correct crystal structure has been included as the first conformation.

E.1.4 The Astex Mini Set

I chose a subset of twelve cases from the Astex Diverse Set, to be used for quicker trials

when multiple molecules are still necessary, referred to as the Astex Mini Set in this

document. The complexes in this set are starred in Table E.1, and were chosen as those

for which the basic XScore implementation in DOX edition P was able to find more than

5% of results within 1Å RMSD. They vary in size from 12 to 24 heavy atoms, and have

ensembles ranging from 3 to 74 conformations, 433 in all. The total heavy atom count

for all conformations, to give a relative scale of the docking task, is 7888 compared with

255621 for the full Diverse Set.

E.2 Hardware Platforms

Different hardware systems were used for certain test executions, depending on the

practical requirements. Specifically, parallelized docking (§7.4 (p.153)) had to be trialled

in a multi-processor cluster environment. The computers used are denoted by name,

as listed in Table E.2. Eurymedon is a fairly typical desktop machine, operating as a

32-bit system, on which DOX is run as any other console program. Tom is the head

node of a cluster with 7 additional working computation nodes, all of which have the

same specification. These are rack-mounted servers with four logical processors each,

connected via gigabit Ethernet and remotely-accessible from Tom. On both systems, DOX

has been compiled as a statically-linked native executable.

200

E.3. DOX Editions: Strategies and Codes

E.3 DOX Editions: Strategies and Codes

The DOX system (introduced in §3.4 (p.64)) was used as an example with which to

demonstrate the effect of the stratagems in various combinations. This was achieved by

wrapping all new programming code in preprocessor directives that enabled or disabled

the changes according to definitions in the compiler options, each one corresponding to

a particular stratagem. Hence, a vast range of editions can be built as needed. Those

editions that have been compiled and used for tests in this thesis are shown in Table E.3.

Some stratagems are dependent on others to work: these requirements are

automatically enforced as follows:

Extensive local optimization ⇒ Local optimization

Predicted pocket placement ⇒ Quaternions and Learnable properties

Conformation prioritization ⇒ Learnable properties

Shape descriptors ⇒ Learnable properties

Learnable properties ⇒ Knowledge base storage

Jobs & parallelization ⇒ Knowledge base storage

Directed search ⇒ Quaternions and knowledge base storage

The editions featuring knowledge base storage had a substantial redesign of all inputs

and components into a more flexible architecture. Consequently, some tests (such as the

optimization frequencies in §6.1 (p.117)) had to be performed using the newer design,

although the K edition is abstractly the same system as P .

Edition q was the original form of the DOX code before my investigations began. I

created three cases (x , B , i) with features excluded in order to test their effects.

201

Appendix E. Test Configurations

Stratagem Applications

Q
uaternions

Spatialindexing

LU
T

interpolation

Localoptim
ization

LU
T

caching

A
tom

prioritization

Scoring-based
rejection

Pose-based
rejection

Q
uota-based

rejection

K
now

ledge
base

storage

Jobs
&

parallelization

Learnable
properties

Shape
descriptors

C
onform

ation
prioritization

Predicted
pocketplacem

ent

Edition

§5.1

§3.5.1

§6.2

§6.1

§6.3

§6.4.1

§6.4.1

§6.4.2

§6.4.3

§7.1

§7.4

§7.2

§5.3

§7.2.1

§5.2

Subsets of existing code:
x Nothing

B Basic ¥ ¥ ¥
i No interpolation ¥ ¥ ¥
q No quaternions ¥ ¥ ¥
Function evaluation stratagems:
P Optimize ¥ ¥ ¥ ¥
C Cache ¥ ¥ ¥ ¥ ¥
O Order atoms ¥ ¥ ¥ ¥ ¥
R Rejection threshold ¥ ¥ ¥ ¥ ¥
OR Order+Reject ¥ ¥ ¥ ¥ ¥ ¥
M Merge ¥ ¥ ¥ ¥ ¥
ORM OR+Merge ¥ ¥ ¥ ¥ ¥ ¥ ¥
N Quota (number) ¥ ¥ ¥ ¥ ¥
ORN OR+Quota ¥ ¥ ¥ ¥ ¥ ¥ ¥
Job control and geometric properties:
K Knowledge base ¥ ¥ ¥ ¥ ¥
ORK OR+Knowledge base ¥ ¥ ¥ ¥ ¥ ¥ ¥
J Jobs ¥ ¥ ¥ ¥ ¤ ¥
S Learn shapes ¥ ¥ ¥ ¥ ¤ ¤ ¥
F Prioritize jobs (first) ¥ ¥ ¥ ¥ ¤ ¤ ¥ ¥
FN Prioritize+Quota ¥ ¥ ¥ ¥ ¥ ¤ ¤ ¥ ¥
ORFN OR+FN ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¤ ¤ ¥ ¥
A Pre-align ¤ ¥ ¥ ¥ ¤ ¤ ¥ ¥
CA Cache+Align ¤ ¥ ¥ ¥ ¥ ¤ ¤ ¥ ¥
ORCA OR+CA ¤ ¥ ¥ ¥ ¥ ¥ ¥ ¤ ¤ ¥ ¥

Stratagems implicitly included as prerequisites of others are marked with hollow squares.

Table E.3: The editions of DOX and the stratagems enabled in each

202

Appendix F
Technical Implementation Details

I like work: it fascinates me. I can sit and look at it for hours.

‘Three Men in a Boat’, Jerome K. Jerome

This appendix presents a summary of the OrthoDOX software’s architecture, as refined

to test the stratagems. It was developed from an existing docking tool, called DOXGA,

introduced in §3.4 (p.64). Figure F.1 shows the major classes and their relationships,

coloured by the parts of the system to which they belong.

F.1 Operational Overview

DOX is a console program: it provides all its status displays on the standard output

and error text streams, and once started requires no interaction from the user. All the

necessary input is provided by the initial command line (as described by Table F.1) and

some plain text files. A sample transcript from an execution is reproduced in Listing F.1,

starting with the command line used and showing the output as appears on screen

(minus some spacing).

The ApplicationContext class is used to create a static global object containing the

objects needed to perform the docking task. It parses the program’s command line to

obtain values for the execution parameters, loads the knowledge bases, and reads the

specified configuration files to construct and set up the necessary objects. The use of files

allows related settings to be kept in logical groups for easy reuse. These files define:

• Search methods (ISearchMethod)

• Scoring functions (IScoringFunction)

• Search extents and pre-positioning (PrePositions)

• Prioritization functions (IPriorityFunction)

• Properties for learning (Syllabus)

• Managers for parallel processing (ManagerLinks or a JobManager)

203

Appendix F. Technical Implementation Details

G
lo

ba
lc

on
fig

ur
at

io
n

Se
ar

ch
m

et
ho

ds
an

d
pr

e-
po

si
ti

on
in

g
M

ol
ec

ul
ar

co
lle

ct
io

ns
an

d
da

ta
so

ur
ce

s
Jo

b
co

nt
ro

la
nd

pa
ra

lle
le

xe
cu

ti
on

Sc
or

in
g

fu
nc

ti
on

s
an

d
th

ei
r

da
ta

M
ol

ec
ul

ar
pr

op
er

ti
es

an
d

m
ac

hi
ne

le
ar

ni
ng

Figure F.1: UML overview of all major classes in the DOX system

204

F.1. Operational Overview

Parameter Default Description
jobconfig ? The configuration file name for the job control system,

listing Managers and their ID numbers.
id 0 The unique positive ID for a Manager process. Specify zero

or omit to run as the Controller.
receptor ? Specifies the MKB of the master protein. Append a hash

symbol and number to specify a particular conformation
to use, e.g. ‘mkbpath#3’. The first conformation is assumed
otherwise.

points ? Specifies the path to a starting point file, listing points and
optionally rotations to use as initial poses and range limits
when searching.

ligands ? Specifies the MKB of the ligand to be docked, or else a plain
text file listing MKBs and conformation masks.

output ? Specifies the SDF file in which to record the results.
maxresults 100 Specifies the maximum number of results to return. Setting

this to zero ensures that all results are saved to the output.
commonkb Specifies an MKB used for storing receptor- and ligand-

independent data.
function ? Specifies the scoring function configuration file to be used.

This lists the name of the scoring function, and any
parameters it requires.

loadgrid true Specifies whether to use a pre-calculated LUT. If this
argument is false, the program recalculates all scoring
function data.

savegrid true Specifies whether to save any new LUT data at the end of
execution.

method Specifies the search method configuration file to use for
docking. If omitted, the ligand conformations supplied are
scored without any translation/rotation.

priority Specifies the prioritization configuration file to use for job
control on the Managers. If not specified, the ‘simple’
priority is used, with its default parameters.

stop Terminates Manager processes remotely. Ignores all but the
jobconfig option, since no docking is performed once the
Managers have ended. Specify zero as the argument to
terminate all Managers, or an ID to terminate only one.

auto 0 Specifies the ID for a local Manager process to automati-
cally spawn, use, and then terminate. This must appear in
the job configuration file. The default value of zero does not
create a local Manager.

test Tests the communication between Controller and the Man-
agers by attempting to connect, displaying the responses,
but not running any further.

? Starred parameters are required as a minimum configuration for docking.
When starting a Manager process, only jobconfig and a non-zero id are needed.

Table F.1: Command line parameters for OrthoDOX with summary descriptions.

205

Appendix F. Technical Implementation Details

orthodox --receptor rec-1lrh.mkb --ligands 1lrh --points empty.box
--output Results/test1lrh-ORK1.sdf --function xscore.sf --method ga.sm

Program execution started at: 6/11/09 2:12:26
==================

OrthoDOX
==================
Version 1.3.0 (Stratagem development edition)

Copyright (c) 2007- InhibOx Ltd.
Portions (c) 2008- The University of Oxford.

Written by Gwyn Skone
with Daniel Robinson
and Romesh Ranawana

STRATAGEMS: LUTs (interpolation), Quaternions, Optimization, Indexing, Atom ordering,
Early rejection (thresholds)

> Processing command line options and loading inputs.
Data path: D:/Molecules/Astex
Loading receptor knowledge base (rec-1lrh.mkb).
Loading ligand conformations (1lrh).
Loading search space extents and points (empty.box).
Preparing scoring function (xscore.sf) "XScore".
Copying protein data...
Identifying atom types...

Preparing search method (ga.sm) "Genetic Algorithm".
> Preparing look-up tables.
Loading data...
Loading vdW function...
Loading hydrogen bonding function...
Loading hydrophobic potential function...
Loading hydrophobic environment function...
Loading spatial occupancy mesh...

> Evaluating database. 6/11/09 2:14:18
7 conformations from 1 ligand.
1 (0.0%) 0, 1 02:14:18 Got 96+0. -8.7464 0.8600 *
2 (14.3%) 0, 2 02:14:26 Got 93+0. -8.6460 0.8510
3 (28.6%) 0, 3 02:14:33 Got 95+0. -8.5987 0.8467
4 (42.9%) 0, 4 02:14:40 Got 94+0. -8.5750 0.8446
5 (57.1%) 0, 5 02:14:47 Got 90+0. -8.5531 0.8426
6 (71.4%) 0, 6 02:14:54 Got 93+0. -8.4455 0.8329
7 (85.7%) 0, 7 02:15:02 Got 94+0. -8.4025 0.8291
> (100.0%) 02:15:09 Best score -8.7464

Normalized 0.8600
> Post processing. 6/11/09 2:15:09
Writing results...
Data table written to Results/test1lrh-ORK1-data.txt
Search results summary: (where RMSDs were calculable)

<=1A: 21 21.0% (21.0%)
<=2A: 62 62.0% (83.0%)
<=3A: 15 15.0% (98.0%)
<=4A: 2 2.0% (100.0%)
Mean: 1.52 angstroms from 100 cases

100 results written to Results/test1lrh-ORK1.sdf

SF counters: 174521 0 0 0 3400 3461 7333 3384 2858 2306 2234 741 599 301 300 170 167
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Program execution started at : 6/11/09 2:12:26 taking 112.609 0:01:52.61
Database evaluation started at: 6/11/09 2:14:18 taking 50.125 0:00:50.13
Database evaluation ended at : 6/11/09 2:15:09
Program execution finished at : 6/11/09 2:15:09

Optional diagnostic/debugging outputs printed in grey.

Listing F.1: Transcript of DOX edition ORK output when redocking 1LRH

206

F.2. Ligand Conformation Containers

The search methods, scoring functions, and prioritization functions use abstract

interfaces for interchangeable docking components. Their configuration files each have a

name as the first line; the ApplicationContext translates this name by means of a factory

function into an object of the appropriate subclass. Any subsequent lines in the files

contain name-value pairs which are passed to that object for interpretation.

F.2 Ligand Conformation Containers

In older editions of DOX, ligands are loaded into a ConfContainerFile object from a

multi-molecule SDF file. With the MKB design, more than one source can be used

by listing their paths in a text file, and each ligand’s conformations can be filtered to

a specific subset. These are collected in a ConfContainerMKBBase object for use as one

database.

The conformation container interface imposes methods for both sequential and

random access of loaded molecules. The FirstConf and NextConf methods allow

iteration, returning a ConfID structure for each case which specifies the ligand and

conformation indices, and the absolute position in the entire list. Molecular structures

(as OpenBabel OBMol objects) can be obtained using these data. If case prioritization is

in use, the members of a container can be sorted in preference order. Each member is

assessed using the loaded syllabus, and those ratings used to sort the list of indices for

iteration.

F.3 Search Methods

Only one search method is currently implemented: the genetic algorithm. However,

the search method interface is designed to support at least any population-based

algorithm. It incorporates a SearchState, which is a collection of active and set-aside

SearchCase objects with some overall status data. The search cases represent individual

poses under consideration, with a score (from the scoring function) and flags to mark

particularly good or bad cases. Both of these classes, as well as the overall ISearchMethod,

provide non-specific data fields for associating the necessary structures for the particular

207

Appendix F. Technical Implementation Details

Job
(GASearchMethod, GASimpleGA)

SearchState
(GAPopulation)

SearchCase1
(GAGenome)

SearchCase2
(GAGenome) ... SearchCaseN

(GAGenome)

Figure F.2: Ownership relationship between classes used by search methods, and the
corresponding GA classes used in their implementation

algorithm being performed. The implementations are required to provide several

additional functions:

Init is called to prepare any associated data objects that might be required.

InitState should create and initialize SearchCase objects using the provided

PrePositions object and add them to the provided SearchState.

FreeState can clean-up any associated data objects created for a search once it has

terminated.

Step should perform some cycle of the search algorithm. In the GA, this is one

generation, however it can be any procedure using the data in the search cases.

Progress must return an indication of whether the search has finished (from its

termination conditions) or should be rejected, and how many results are currently

available. In the GA, this is merely a generation count test.

Results should append the best poses found to a provided result list.

The SearchState belongs to a Job object (see §F.8 (p.217)) which provides the

molecular data to be used, as illustrated in Figure F.2. It is the Job that calls the

appropriate methods as necessary to drive the docking and collate the results with those

from other conformations.

F.4 Pre-Positioning

The geometry of the search environment is defined using boxes: two points in space

marking the minimum and maximum x, y, and z axis extents respectively. The pre-

positioning configuration, parsed and stored in a PrePositions object, specifies the

208

F.4. Pre-Positioning

reach x1 y1 z1 x2 y2 z2
box ((MKBpath | *L | *R | *C)#conf | sdFile)
reference ((MKBpath | *L | *R | *C)#conf | sdFile)
pad margin
scale factor
res resolution
overlap (proportion | pc%)
try (x y z | centre) [rX rY rZ]
random [define] (ratio | pc%)
place [box] ratio cases ReceptorProperty[*] [params]
if rating EducationSpec
align ratio cases similarity EducationSpec [params]

Keywords are in bold; square brackets mark optional parts; round brackets and vertical
bars indicate a selection. Education specifications are listed in Table F.2 (p.216).

Listing F.2: Pre-positioning configuration options

box(es) for a search method to explore, and the size of any look-up tables should they be

required. In addition, a list of Start objects is generated upon request, each representing

a pose that can be used by a search method’s InitState function to seed the initial

candidates. If no search is requested (no method option is given on the command line),

then only the Start poses will be scored and output.

The pre-positioning configuration is a list of command-like lines of text, each

matching one of the patterns in Listing F.2. Some entries are only recognized by certain

editions of DOX.

Reach entries specify the two points that define a box to add to the search extents. Box

entries use either an MKB conformation or an individual molecule file to define a box; the

MKB name can be *L, *R, or *C to use the ligand, receptor, or common knowledge base

respectively. Pad and scale add to or multiply the dimensions of the hull of all search

boxes to define the LUT sizes. Res defines the resolution to use if LUTs are calculated. A

reference entry can be used to load a molecule with which to calculate result RMSDs,

but without allowing it to affect the search. The first box entry is used as a reference if no

others are provided. An overlap sets the proportional intersection (from 0 to 1, and 0.125

by default) above which two boxes will be merged to reduce the search complexity. This

is particularly relevant when using multiple place entries, since at least some of their

suggestions should match.

Try entries specify translations, and optionally rotations, to include in the list of Start

poses. Try centre uses the midpoint of the search extents. A random entry controls the

209

Appendix F. Technical Implementation Details

minimum proportion of search cases that should be initialized at random, without pre-

alignment. It may specify either a ratio or a percentage; it defaults to 100% when no

align or place lines are present and 0% otherwise. If define is specified, then the pre-

positioning system explicitly generates random Start poses, otherwise their selection is

left to the search method in use.

Place entries use a receptor property to generate Start poses. If the box flag is

included, they also define additional search boxes. These are typically active site

prediction methods, and are normally ligand-independent. Appending an asterisk

indicates that the property is independent of the receptor conformation, although this

is unlikely to be the case. A limit on how many poses should be generated is specified

as a ratio relative to other sources, along with the number of places to consider if the

property predicts multiple pockets. Parameters can be added to the end of the line if

required by the method chosen. The line place 1 4 PlacePIES-5-3-7 will place a single

share of poses in the top 4 pockets identified by the PlacePIES-5-3-7 receptor property.

If entries may be included to control which pre-alignment properties are used:

a minimum opinion rating for the ligand’s specified property must be met if any

subsequent align entries are to be used for that case. These conditions are not

cumulative, and any align entries before an if line are always used. Align entries specify

the education data (see §F.7 (p.214)) to use when generating Start poses. The cases and

similarity values are used to select the set of opinions from the knowledge base on which

the poses will be based. Again, the proportion of all poses to generate, and parameters

for their creation, may be specified in the line. The line align 2 3 0.4 AlignUSR=* will

use the top 3 previous AlignUSR values with a similarity of at least 0.4 to the new ligand

conformation’s AlignUSR value to generate a double helping of poses.

F.5 Scoring Functions and Ligand Contexts

The scoring function superclass contracts several functions from its implementations:

GetSFcomplexity returns a number indicating an approximate relative complexity,

compared with a single smooth interaction potential, that may be used to adjust search

parameters accordingly. For example, PLP returns 2 but XScore returns 6.

210

F.5. Scoring Functions and Ligand Contexts

CreateLigandContext must construct and return an empty ILigandContext object of the

type used by the scoring function.

DoCalculateScore is the scoring function itself: a ligand context is provided as the

argument, and its floating-point evaluation should be returned.

NormalizeScore can take a score and its ligand context and adjust it onto the range

[−1,+1] representing the worst and best possible values. If not implemented, scoring

function ranges are automatically used, as described in §7.1.1 (p.146).

HighIsGood returns a Boolean value indicating whether to maximize the scoring

function in the search.

Calc should generate any LUTs required with the dimensions provided as arguments.

LoadMKB should read the relevant LUT entries from the appropriate MKB.

SaveMKB should commit any changes to the LUTs back to the knowledge bases.

I adapted the existing PLP code to fit this interface — a fairly trivial problem — and

implemented XScore for it also. In addition, I created an alignment scoring function,

AlignFunction, which expects to be given a receptor with the same number of atoms as

the ligands docked, and scores poses simply using their RMSD. This allows the docking

system to be used for superposition by RMSD minimization, a utility briefly helpful for

some early test case analysis.

Ligand contexts are wrappers around an OBMol object that handle all pose transfor-

mations internally. They store the atom positions for both the original source data and

a current translation and rotation, and provide setTransform methods to allow a search

method to update the pose. The atomic centres are listed in an AtomPositionContainer

object, which may be ordered or unordered depending on whether atom prioritization

(§6.4.1 (p.129)) has been enabled. In either case, the external behaviour of the class is the

same; the order in which atomic vectors will be presented for iteration is undefined for

the rest of the system.

For each scoring function, a subclass of ILigandContext should be defined, supplying

the prep_ligand method to perform any necessary processing on ligands, such as

stripping or adding hydrogens or identifying and assigning atom types. Thus, to

evaluate a pose, the ligand context’s setTransform function is called to specify the

geometry, and then that object is passed to the scoring function’s CalculateScore method.

211

Appendix F. Technical Implementation Details

F.6 Molecular Knowledge Bases

The molecular knowledge base design requires client and server interfaces. Both of

these must be able to store and retrieve multiple conformations associated with integer

identifiers. The client contracts methods to retrieve entries from and record them back

to the knowledge base, calculating them upon request if they are not available. It also

collects recently-loaded entries for quick access should they be requested again. The

server only has to process new data: it must identify newly-committed entries and store

them in the knowledge base, resolving any clashing updates if necessary.

MKB entries are accessed by name and conformation number (zero if they apply to

the ligand in general, not any particular shape). They also have an internal revision

number, incremented by the server whenever a new version is committed, to identify

any clashes between multiple clients’ edits. The standard base class, MKBEntry, handles all

the semantics of interacting with the client or server. Each possible entry type (molecular

properties, scoring function LUTs, etc.) must complete four additional functions:

IsPersistent returns a Boolean indicating whether the value should be recorded in the

MKB, or recalculated whenever it is requested.

Calc is the calculation function which should retrieve the molecule conformation and

generate the appropriate data for the entry.

Load/Save should read/write the entry’s value from/to the provided data stream (for

transfer with the data repository). These may do nothing if IsPersistent returns false.

In addition, a static EntryFactory object must also be defined to convert the entry name

strings to the appropriate MKBEntry classes for instantiation.

F.6.1 File-Based Implementation

I used a basic file structure to keep the implementation simple. Figure F.3 illustrates the

files used in the design: a file-based MKB is a single file-system directory, and all data are

stored together in that location. It might be preferred in some situations to use a database

management system for the back-end storage, and this could be transparently switched

at a later stage.

212

F.6. Molecular Knowledge Bases

Filenames: # denotes the client’s ID; i is the entry’s associated conformation index.

Figure F.3: File-based implementation of molecular knowledge bases, showing the stages
involved in the entry update cycle

The molecular conformations are recorded as a conventional MOL2 file. I chose this in

preference to the SDF because it permits more than 1000 atoms per structure, a necessary

feature for use with receptors. The conformation indices are assigned sequentially

by default, but standard MOL2 format comment lines can be used to override the

numbering.

Data entries are stored in individual files, named using the entry name and

conformation index. When a client commits an entry, it writes the new value to a file

prefixed ‘temp’ first, and when this is complete it is renamed to a prefix of ‘new’. These

filenames include a number unique to the particular client, so that multiple clients could

update the same entry concurrently. The server periodically checks for these new data

files. When one is available, its name is parsed to identify the entry being updated, and

then it is renamed to ‘merge.dat’ to avoid further updates from the same client colliding

with the resolution process. The revision numbers of the current entry file and the new

data are compared to check for conflicting updates. If they differ, and a resolver function

is provided by the entry type’s EntryFactory, then that function is given both versions of

the data to merge. Otherwise, the new data is used as-is. The new value is written to a

‘merged.dat’ file, and when this is complete it replaces the proper entry. The server then

calls a notification function so that the change can be reported back to clients.

213

Appendix F. Technical Implementation Details

F.6.2 Ideogen: Standalone Server Utility

Since the existing DOX programs are not expected to be their own MKB servers, I created

a simple program to provide that functionality on any computer. This program, Ideogen,

also acted as a test implementation for development, including a utility for converting

existing LUT data rather than recalculating it all. It requires an MKB path as a parameter

to start, and then provides a command-driven interface to create and manage that

knowledge base. A transcript of a typical execution is shown in Listing F.3; at the end

of the listing the program continues to run, periodically checking for newly-committed

entries until interrupted.

F.7 Learnable Properties and Syllabi

Learnable properties, a class of MKB entry, may have one or more values. These must be

either LearnableValueFixed or LearnableValueVar objects, depending on whether their

length is constant. If the values’ elements are not a fundamental data type, a templated

function is required to provide conversions of individual elements to and from strings.

The superclass contains the remaining logic needed to encode each value as a single

string, and decode such a string back into an approximation of the original data. This

may be an imperfect conversion, since decoding is required only for estimating the

similarity of a dissimilar value. The Load and Save methods from MKBEntry simply

read and write these strings, but can be overridden to record additional precision or

supporting data. The individual properties are still required to provide a Calc function

which should construct the appropriate value objects and pass them to the AddValue

method. They must also define a Similarity method which, for a given value of the

same type, should return a real number in [0, 1] to be used when estimating suitabilities

of unfamiliar values.

Since geometric properties, particularly those concerned with alignment, will change

their values according to a ligand’s pose, the Docked method is invoked whenever post-

docking values are required. It is given the updated ligand context, and provides an

opportunity for the property to revise its values accordingly. The LearnableValue...

classes can contain both pre- and post-docking values, but only the undocked case is

214

F.7. Learnable Properties and Syllabi

ideogen rec-1af2.mkb

IDEOGEN: rec-1af2.mkb
Opening knowledge base...
Reading MKB conformations... 1

::help
COMMANDS:
- HELP
- MINIO [OFF]
- TITLE [newtitle]
- MERGE [mergefile]
- DROP [mergefile]
- CLEAN
- START [checkdelay]
- EXIT
Conformations:
- SETMOL filename
- ADDMOL filename
- MOLCOUNT
- MOLTOTAL
- SORTMOL confindex ordering
- PRINTMOL confindex [format]
- EXPORT filename [format [confindex]]
Entries:
- LIST
- ADD entryname confindex filename
- HAS entryname [confindex]
- PRINT entryname confindex
Utility:
- GRIDS scoringfunction gridfile
- OLDGRIDS scoringfunction gridfile

::list
Conf.# Rev. Name

2 education.AlignPASTRY
2 education.AlignUSR
48 sfRange.XScore
6 XScoreLUThbond
6 XScoreLUThydenv
6 XScoreLUThydpot
6 XScoreLUTvdw
6 XScoreSpatOcc

1 3 PrePosSuggestions
9 entries.
::clean

Cleaning up MKB...
Discarding MKB entry education.AlignPASTRY from ID 15944... succeeded.
Discarding MKB entry education.AlignUSR from ID 15944... succeeded.
Discarding MKB entry sfRange.XScore from ID 16173... succeeded.
Deleting temporary file temp.26888.0.XScoreLUTvdw...
Deleting merge file...
Deleting resolution file...

Done.
::start

Monitoring MKB for committed data (^C to stop)...
Merging MKB entry sfRange.XScore... storing new entry... succeeded.

Listing F.3: Example transcript of Ideogen MKB server program

215

Appendix F. Technical Implementation Details

Kind Specification Pattern MKB Purpose
Specific ligProp[*]=[*] Receptor Learns about ligands that dock

well to a particular receptor.
Common ligProp[*]=+ Common Learns about ligands that dock

well in general.
Relative ligProp[*]=recProp[*] Common Learns about the relationship be-

tween a receptor property and
ligand property. The opinions
contain pairs of values, one from
each property.

Square brackets mark optional parts. Bold symbols are literal. Asterisk suffixes indicate
conformation-independence of the properties and/or learning.

Table F.2: Education kinds and specification string patterns for use in syllabus files and
pre-positioning ‘align’ entries

recorded in the knowledge base since this is the one that matches the stored source

structure.

Learnable properties also have GeneratePoses and GenerateBoxes methods, which

do nothing in the base class but are designed to support the pre-positioning system

(§F.4 (p.208)). GenerateBoxes can return a list of boxes in response to a ‘place’ entry.

GeneratePoses receives a ligand context and a number of poses requested by an ‘align’

entry, and can return a list of Start objects with suggested alignments to try.

The learning mechanism collects good and bad poses from docking searches by

associating property values with normalized scores in Opinion structures, and then

accumulating these in an Education MKB entry. Each Education object is the set of all

such information about a particular learnable property’s past successes. Three kinds of

Education are possible, distinguished by their names and the knowledge base in which

they are stored. Table F.2 lists these kinds, together with their corresponding string

patterns used for loading Education entries in a syllabus (see below).

The Education class provides an Opine function to obtain an Opinion for a given

property value (or values, in the case of a relative education). If the case has not

been seen before, an assessment is calculated based on comparable values using their

Similarity methods for a weighted interpolation. The Teach function takes a post-

docking LearnableProperty object and its normalized score, and creates or amends

the appropriate Opinion record accordingly. The Guess function obtains the top-rated

opinions from an Education, optionally subject to a minimum similarity to a given

property value.

216

F.8. Job Control and Parallel Execution

Syllabus

Lesson1

Education1

Opinion1,1

Opinion1,2
...

Opinion1,N

Lesson2

Education2

Opinion2,1

Opinion2,2
...

Opinion2,N

...

LessonM

EducationM

OpinionM,1

OpinionM,2
...

OpinionM,N

Lessons also hold the property names to use when obtaining new values to learn.

Figure F.4: Containment relationships between the classes used by the learning system

F.7.1 Syllabus Configuration and Use

As illustrated by Figure F.4, a Syllabus object contains a list of Lesson objects, each

of which refers to a particular Education and controls how it should be used for

assessing and learning from properties. Each line of the Syllabus configuration contains

a education specification string (see Table F.2), and also provides weighting, attenuation,

and minimum significance values for the resulting Lesson.

To learn from a docking result, its ligand context is passed to the Syllabus object’s

Learn method, which passes it in turn to each Lesson. If its normalized score’s absolute

value meets the minimum significance level, then the necessary LearnableProperty

entries are obtained and passed to the education’s Teach method with the attenuated

score. An attenuation parameter of a scales the nth best score from a set of c results by

max
(
0, 1 − a

(n−1
c−1

))
. Consequently, if a > 1 then only the top 1

a of the cases will be

considered.

For the prioritization of ligand conformations, each is passed to the Assess method

of the Syllabus for evaluation. This calculates a weighted average of the Opinion scores

obtained from each Lesson using its Education. Those values are used to impose an

ordering on the cases in the conformation container.

F.8 Job Control and Parallel Execution

The job control design takes a complete docking task — its receptor, ligand, search

method, and scoring function — and encapsulates it in a single object. This Job provides

217

Appendix F. Technical Implementation Details

only a few essential public methods. It is constructed using a job descriptor structure

and an ISearchMethod object. The job descriptor provides the ConfID of the ligand, as

obtained from a conformation container, and an appropriate ligand context to use. The

search method will already have references to the scoring function and receptor.

The Job class provides a Resume method which causes the search to be progressed

some number of steps, determined by the job’s priority. This returns a Boolean indicating

whether the search still has more work to do. The first time Resume is called on a particular

object, the Job allocates a SearchState and passes it to the search method for initialization

with SearchCase objects. The Job also provides methods to retrieve the search results,

both intermediate and confirmed.

The priority can be obtained and changed using GetPriority and SetPriority: the

floating-point positive or negative infinity values immediately finish or reject the search

respectively. A GetProgress method returns a structure indicating whether the Job has

been started, finished, or rejected yet, and whether the search method considers its state

rejectable (in the GA, this is when a certain number of generations have completed). An

IPriorityFunction may use this progress data as part of its implementation, which must

provide two methods:

Prioritize should consider a Job, alongside some additional statistics about all jobs, and

return a new floating-point priority. Again, the special ±∞ values can be used to end a

job immediately with or without rejection.

Start receives only the overall statistics, and must return a Boolean value indicating

whether another Job should be started. Note that this function must not always return

false, otherwise execution will deadlock.

The SimplePriority function takes the best score in the search state, normalizes it, and

adds it to the current Job priority (with a capping value). Its Start method simply returns

true whenever fewer than a certain number of jobs are active.

F.8.1 Distributed Job Processing

There are two modes in which the parallelized OrthoDOX system can run:

Controller: invoked by a user with all the usual docking parameters, and outwardly

equivalent to the single-processor version.

218

F.8. Job Control and Parallel Execution

Manager: one of many instances silently running as a docking processor node, awaiting

instructions from a Controller to load and execute Jobs.

A job configuration file is used to list the Managers available in an environment with

their unique integer identifiers. Each is also given a relative load capacity, so that faster

computers can be allocated a greater share of docking tasks automatically.

The Controller program does not perform any docking, but is responsible for

reconciling data updates produced by the Managers as they work. Hence, it uses

MKBServer objects to access the molecules being studied. As its ApplicationContext

parses the docking parameters, it records them in a JCParams structure. The job

configuration file is then used to create a ManagerLink object for each Manager that

should be available — an internal representation of the state and behaviour of the remote

process through which all communication is transparently handled. Once a connection is

established with the Managers, those that are responding are sent the JCParams data and

a list of ligand conformations to dock. The Controller then monitors the status reports

being returned, merging new MKB entries as appropriate, until all the conformations

have been processed. If one Manager finishes ahead of the others, the Controller will give

it a number of additional jobs taken from another Manager, thus dynamically balancing

the workload. Finally, it combines all the results received into the final output files.

The Managers are started using no command line parameters other than the job

configuration filename and a Manager ID. The ApplicationContext is supplemented by

a single JobManager class, which processes any instructions received from a Controller

to create and manage JobBatch objects. Each set of jobs received is treated as a batch so

that multiple Controllers might be able to use the same set of Managers concurrently

(although this is not yet fully implemented). To start work, a JobBatch parses the

JCParams data received, loads the appropriate MKB clients, sets up all the objects

previously handled by the ApplicationContext alone (see §F.1 (p.203)), and constructs the

individual Job objects for the ligand conformations. These are then sequentially started

and resumed, with status reports and results sent back when appropriate. The batch is

not unloaded, even when completed, until requested by the Controller. Managers do

not terminate themselves unless a break signal (Ctrl+C) is received at the console or a

Controller is invoked with the stop command line parameter.

219

Appendix F. Technical Implementation Details

hello Requests acknowledgement to check whether the Man-
ager is live and communicating successfully.

reset Instructs the Manager to drop all unstarted and reject
all active jobs, clear all receptor data, and zero all
statistics. Generally sent when the Controller starts up,
after hello.

chatter [on] Enables or disables extra status reports from the Man-
ager. Normally only job state transitions are reported —
starting, finishing, etc. — but after chatter on all cycles
are reported with the new job priorities.

mkbchange entry/conf kb Notifies the Manager of a changed entry in an MKB. The
string kb is the MKB’s relative path.

start batchID Indicates that a new conformation batch has been cre-
ated, and instructs the Manager to load the appropriate
input file and start docking.

add batchID filename Specifies that batch batchID should be extended using
the conformations listed in the given file.

report [jobID] Requests a status report. If jobID is omitted, requests a
summary of statistics for each batch; if a job ID is given,
then only the status and priority of that job is required.

finish [jobID] Instructs the Manager to immediately treat the specified
job as finished, recording the best available results and
stopping its search. If no job ID is given, all active jobs
should be finished.

reject [jobID] Instructs the Manager to immediately reject the speci-
fied job, stopping its search without recording results.
If no job ID is given, all active jobs should be rejected.

drop count [batchID] Requests that the Manager should relinquish up to
count unstarted jobs, either from the specified batch or
any if none is given. The dropped jobs must be reported
to the Controller.

worst score batchID Informs the Manager that only results with a score of at
least score will be retained in the output file, because
the quota of results has been reached and this is the
worst of those.

stop Requests that the Manager process should terminate.
After this, any further instructions may not be received.

Table F.3: Instructions that a Controller can send to Managers

Communication Protocol

I wanted to make the communication between the Controller and Managers simple,

traceable, and cross-platform compatible. Since the file-based MKBs must be accessible

to all Managers, it can be assumed that some file-system directory will be available for

shared access.

220

F.8. Job Control and Parallel Execution

hello Acknowledges a received hello instruction, or
indicates readiness to receive.

started jobID Reports an unstarted job taking its first search
step. It cannot be dropped after this point.

progress steps priority jobID Reports a job’s status: number of steps executed
and current priority.

finished outFile best jobID Reports a job finishing, its best score, and the
name of its results file.

rejected bestScore jobID Reports a job as having been rejected.
done Reports that the Manager has no jobs waiting or

active in any batch, and has thus gone idle. It is
still possible to extend those batches.

status ws as fs rs batchID Reports statistics about the jobs in a batch. Sent
when a batch is loaded before starting the first
job, and also whenever report is received.
ws = the number of jobs waiting and droppable,
as = number started (active),
fs = number finished,
rs = number rejected.

dropped [jobID] Informs the Controller of jobs that have been
dropped. When a Manager receives a drop

instruction, it sends a series of dropped jobid

messages followed by a lone dropped.
failed batchID Reports that an error occurred during the load-

ing of a new batch. If this is sent, the batch will
not be processed.

crashed message Reports an exception. If this message is sent to
the Controller, the Manager will have automati-
cally stopped docking and reset itself, but should
then be able to start new batches.

farewell Indicates that the Manager is terminating, and
will not respond to any further instructions.

Table F.4: Messages that Managers can send to the Controller

Each Manager is configured with a unique communication path, typically a

subdirectory of a shared directory, to which the Controller and Manager processes must

both have full read/write access. Their contents may be safely deleted when neither part

of the system is running, however. The job configuration file lists these directories, with

their paths as seen by each component of the system. Two files are created per Manager,

one for communication in each direction, with additional files as required for starting

batches and reporting results. These all contain plain text, using line-based instructions

to pass information between the programs.

To start a batch of jobs on a Manager, the Controller creates a file with a listing of

221

Appendix F. Technical Implementation Details

the parameters defining the task, named using the batch number and the suffix ‘.in’.

The contents of relevant configuration files (scoring function, search method, etc.) are

inserted in the appropriate places, rather than being transmitted separately. All MKB

paths are made relative to a standard data directory. The final part of the file lists the

ligand conformations to be docked. If more jobs should be given to a Manager, for load

balancing, another file is created with only this last section, named with the suffix ‘.in2’.

Once these files are ready, an instruction is sent through the normal channel to notify the

Manager of the filename it should process.

When jobs finish, their results are recorded in a file named according to the batch and

job numbers with the suffix ‘.out’. The file contains a block of lines for each result, in the

following pattern (ending with a blank line):

jobid
score scoreVal normalScore SFname
trans (tx ty tz)
rotate [ra rx ry rz]
data value name

where jobid has the form batch*ligand#conformation containing index numbers defined

by the Controller and MKBs. The data lines are determined by the scoring function, and

may be several. When such a file is written, the Manager notifies the Controller of its

availability as part of the message reporting the job finishing.

Table F.3 lists the messages that may be sent from the Controller to Managers,

and Table F.4 lists the response and status messages that Managers can send back.

Periodically, each program sends a hello signal to the other, regardless of any other

activity, to confirm that the system is still working. The following section demonstrates

the operation of this design in the context of a simple docking execution.

222

F.8. Job Control and Parallel Execution

F.8.2 Sample Execution Sequence

The following pages describe the sequence of events in a hypothetical docking execution.

It is assumed that the ligand conformations are divided between two Managers, but one

of these is shown in full here for clarity. Only the steps for job redistribution are included

for Manager 2. The priority function allows only two jobs active on each Manager, and

quota-based rejection is enabled. Text in shaded boxes shows communication sent to the

other process; the Controller’s messages are preceded by the recipient Manager number.

Controller Manager 1 Manager 2

Invoked by user at command line. Running on each computer available for use.

Loads job configuration file.

1: hello

2: hello

hello hello

Live Manager count incremented
twice, establishing connections.

Loads target data, including MKB
servers, and writes 1.in file.

1: start 1

2: start 1 Reads 1.in file and loads target data,
including MKB clients, as a batch.

Creates one job per conformation, 8
in all.

Also begins
docking.

status 8 0 0 0 1

Initializes the Manager Link’s batch
status with 8 waiting jobs and no
others.

Checks priority function for
permission to start a job. Granted.

Picks and starts job 1.

started 1*0#1

Updates batch status: 7 waiting, 1
active.

Checks priority function for
permission to start a job. Granted.

Picks and starts job 2.

started 1*0#2

Updates batch status: 6 waiting, 2
active.

Checks priority function for
permission to start a job. Refused.

Selects and resumes job 1.

Updates priority of job 1.

Checks priority function for
permission to start a job. Refused.

Selects and resumes job 2.

223

Appendix F. Technical Implementation Details

Controller Manager 1 Manager 2

Updates priority of job 2.

Checks priority function for
permission to start a job. Refused.

Selects and resumes job 1, which
finishes.

Writes the results from job 1 to file
1-1.out.

finished 1-1.out -3.141 1*0#1

Updates batch status: 6 waiting, 1
active, 1 finished.

Checks priority function for
permission to start a job. Granted.

Parses results from file 1-1.out and
inserts them into the main result
list.

Picks and starts job 3.

Checks the quota, which is not yet
filled.

started 1*0#3

Updates batch status: 5 waiting, 2
active, 1 finished.

Checks priority function for
permission to start a job. Refused.

Selects and resumes job 2, which
finishes.

Writes the results from job 2 to file
1-2.out.

finished 1-2.out -2.718 1*0#2

Updates batch status: 5 waiting, 1
active, 2 finished.

Passes results to Syllabus for
learning.

Parses results from file 1-2.out and
inserts them into the main result
list.

Commits changed education.X
MKB entry.

Checks the quota, which is now
filled with a worst-case score of
–1.414.

Checks priority function for
permission to start a job. Granted.

1: worst -1.414 1 Picks and starts job 4.

Resolves new data to MKB(s). started 1*0#4

2: mkbchange education.X/0 rec Notes the worst-case score of –1.414
in the statistics for batch 1.

Updates batch status: 4 waiting, 2
active, 2 finished.

Checks priority function for
permission to start a job. Refused.

Marks
education.X

as dirty.
Selects and resumes job 3.

Updates priority of job 3; it is
rejected using the worst-case score.

rejected -1.250 1*0#3

Updates batch status: 4 waiting, 1
active, 2 finished, 1 rejected.

Checks priority function for
permission to start a job. Granted.

Picks and starts job 5.

224

F.8. Job Control and Parallel Execution

Controller Manager 1 Manager 2

started 1*0#5 Completes
last job.

Updates batch status: 3 waiting, 2
active, 2 finished, 1 rejected.

Checks priority function for
permission to start a job. Refused.

done

Identifies the slowest Manager from
which to reallocate jobs: Manager 1.

Selects and resumes job 4.

1: drop 2 1 Updates priority of job 4.

Prepares a list of additional jobs for
Manager 2.

Finds 2 waiting jobs to drop: jobs 7
and 8.

dropped 1*0#7

Appends 1*0#7 to the additional job
list.

dropped 1*0#8

Appends 1*0#8 to the additional job
list.

dropped

Writes the additional list to the
1a.in2 file.

Checks priority function for
permission to start a job. Refused.

2: add 1 1a.in2 Selects and resumes job 5.

Updates priority of job 5. Loads extra
jobs from

1a.in2.
. .

Remaining jobs finish.
Results are collected. done done

. .

1: reset

2: reset

Writes user output files: poses in
SDF format and data table in plain
text.

Unloads batch and all associated data objects.

Terminates. Continues running for future access.

225

References

[Abola et al., 2000] Abola, E., Kuhn, P., Earnest, T., & Stevens, R.C. 2000. Automation of X-ray
crystallography. Nature Struct. & Mol. Biol., 7, 973–977. Nature Publishing. (ref. p.175)

[Adcock & McCammon, 2006] Adcock, S.A., & McCammon, J.A. 2006. Molecular Dynamics:
Survey of Methods for Simulating the Activity of Proteins. Chem. Rev., 106, 1589–1615.
American Chemical Society. (ref. p.39, 48)

[Alard & Wodak, 1991] Alard, P., & Wodak, S.J. 1991. Detection of Cavities in a Set of
Interpenetrating Spheres. J. Comput. Chem., 12, 918–922. Wiley Periodicals. (ref. p.35)

[Alonso et al., 2006] Alonso, H., Bliznyuk, A.A., & Gready, J.E. 2006. Combining docking and
molecular dynamic simulations in drug design. Med. Res. Rev., 26, 531–568. Wiley Periodicals.
(ref. p.39)

[Ansari et al., 1994] Ansari, A., Jones, C.M., Henry, E.R., Hofrichter, J., & Eaton, W.A. 1994.
Conformational Relaxation and Ligand Binding in Myoglobin. Biochemistry, 33, 5128–5145.
American Chemical Society. (ref. p.175)

[Apaydin, 2004] Apaydin, M.S. 2004. Stochastic Roadmap Simulation: An Efficient Represen-
tation And Algorithm For Analyzing Molecular Motion. Ph.D. thesis, Stanford University.
(ref. p.46)

[Apaydin et al., 2001] Apaydin, M.S., Singh, A.P., Brutlag, D.L., & Latombe, J-C. 2001. Capturing
Molecular Energy Landscapes with Probabilistic Conformational Roadmaps. Pages 932–939
of: Proc. IEEE Int. Conf. Rob. Autom., vol. 1. IEEE. (ref. p.46)

[Apaydin et al., 2002] Apaydin, M.S., Guestrin, C.E., Varma, C., Brutlag, D.L., & Latombe,
J-C. 2002. Stochastic roadmap simulation for the study of ligand-protein interactions.
Bioinformatics, 18, S18–S26. Oxford University Press. (ref. p.46)

[Apaydin et al., 2004] Apaydin, M.S., Brutlag, D.L., Guestrin, C., Hsu, D., & Latombe, J-C. 2004.
Stochastic Conformational Roadmaps for Computing Ensemble Properties of Molecular
Motion. Pages 131–147 of: Proc. Int. Workshop Algorithmic Foundations of Robotics, vol. V.
Springer. (ref. p.46)

[Åqvist et al., 2002] Åqvist, J., Luzhkov, V.B., & Brandsdal, B.O. 2002. Ligand Binding Affinities
from MD Simulations. Acc. Chem. Res., 35, 358–365. American Chemical Society. (ref. p.39)

[Baker, 2000] Baker, D. 2000. A surprising simplicity to protein folding. Nature, 405, 39–42.
Macmillan Magazines. (ref. p.31)

[Baldridge et al., 2002] Baldridge, K.K., Greenberg, J.P., Elbert, S.T., Mock, S., & Papadopoulos, P.
2002. QMView and GAMESS: Integration into the World Wide Computational Grid. Pages
64–88 of: Proc. Supercomputing (ACM/IEEE 2002 Conference). IEEE. (ref. p.28)

[Ballester & Richards, 2007] Ballester, P.J., & Richards, W.G. 2007. Ultrafast Shape Recognition
to Search Compound Databases for Similar Molecular Shapes. J. Comput. Chem., 28, 1711–
1723. Wiley Periodicals. (ref. p.29, 106)

[Bash et al., 1983] Bash, P.A., Pattabiraman, N., Huang, C., Ferrin, T.E., & Langridge, R. 1983.
Van Der Waals Surfaces in Molecular Modeling: Implementation with Real-Time Computer
Graphics. Science, 222, 1325–1327. American Association for the Advancement of Science.
(ref. p.187)

[Bayazit, 2003] Bayazit, O.B. 2003. Solving Motion Planning Problems By Iterative Relaxation
Of Constraints. Ph.D. thesis, Texas A&M University. (ref. p.46)

227

References

[Bayazit et al., 2000] Bayazit, O.B., Song, G., & Amato, N.M. 2000. Ligand Binding with OBPRM
and Haptic User Input: Enhancing Automatic Motion Planning with Virtual Touch. Tech. rept.
TR00-025. Texas A&M University. (ref. p.46)

[Berg et al., 2002] Berg, J.M., Tymoczko, J.L., & Stryer, L. 2002. Biochemistry. 5th edn. W.H.
Freeman. ISBN 0-716-74684-0. (ref. p.17, 176)

[Berman et al., 2000] Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H.,
Shindyalov, I.N., & Bourne, P.E. 2000. The Protein Data Bank. Nucleic Acids Research, 28,
235–242. Oxford University Press. (ref. p.29)

[Bernstein et al., 1977] Bernstein, F.C., Koetzle, T.F., Williams, G.J., Meyer, Jr., E.F., Brice, M.D.,
Rodgers, J.R., Kennard, O., Shimanouchi, T., & Tasumi, M. 1977. The Protein Data Bank.
A computer-based archival file for macromolecular structures. J. Mol. Biol., 112, 535–542.
Academic Press. (ref. p.19, 29)

[Billeter et al., 1987] Billeter, M., Havel, T.F., & Kuntz, I.D. 1987. A new approach to the problem
of docking two molecules: The ellipsoid algorithm. Biopolymers, 26, 777–793. John Wiley &
Sons. (ref. p.35)

[Böhm, 1994] Böhm, H-J. 1994. The development of a simple empirical scoring function to
estimate the binding constant for a protein-ligand complex of known three-dimensional
structure. J. Comput. Aided Mol. Des., 8, 243–256. ESCOM Science. (ref. p.60, 66)

[Böhm & Stahl, 2000] Böhm, H-J., & Stahl, M. 2000. Structure-based library design: molecular
modelling merges with combinatorial chemistry. Curr. Opin. Chem. Biol., 4, 283–286. Elsevier
Science. (ref. p.61)

[Bohme Leite et al., 2007] Bohme Leite, T., Gomes, D., Miteva, M.A., Chomilier, J., Villoutreix,
B.O., & Tufféry, P. 2007. Frog: A FRee Online druG 3D conformation generator. Nucleic Acids
Research, 35, W568–W572. Oxford University Press. (ref. p.200)

[Boost, 2009] Boost. 2009. Boost C++ Libraries.
http://www.boost.org (ref. p.64)

[Bourne & Weissig, 2003] Bourne, P.E., & Weissig, H. (eds). 2003. Structural Bioinformatics.
Wiley-Liss. ISBN 0-471-20199-5. (ref. p.19)

[Brady & Stouten, 2000] Brady, Jr., G.P., & Stouten, P.F.W. 2000. Fast prediction and visualization
of protein binding pockets with PASS. J. Comput. Aided Mol. Des., 14, 383–401. Kluwer
Academic Publishers. (ref. p.35, 96)

[Branden & Tooze, 1999] Branden, C., & Tooze, J. 1999. Introduction to Protein Structure. 2nd
edn. Garland. ISBN 0-815-32305-0. (ref. p.17, 176)

[B-Rao et al., 2009] B-Rao, C., Subramanian, J., & Sharma, S.D. 2009. Managing protein flexibility
in docking and its applications. Drug Discovery Today, 14, 394–400. Elsevier Science. (ref. p.42,
51)

[Brooks et al., 1983] Brooks, B.R., Bruccoleri, R.E., Olafson, B.D., States, D.J., Swaminathan, S., &
Karplus, M. 1983. CHARMM: A program for macromolecular energy, minimization, and
dynamics calculations. J. Comput. Chem., 4, 187–217. Wiley Periodicals. (ref. p.26)

[Brooks et al., 2009] Brooks, B.R., Brooks III, C.L., Mackerell, Jr., A.D., Nilsson, L., Petrella, R.J.,
Roux, B., Won, Y., Archontis, G., Bartels, C., Boresch, S., Caflisch, A., Caves, L., Cui, Q.,
Dinner, A.R., Feig, M., Fischer, S., Gao, J., Hodoscek, M., Im, W., Kuczera, K., Lazaridis,
T., Ma, J., Ovchinnikov, V., Paci, E., Pastor, R.W., Post, C.B., Pu, J.Z., Schaefer, M., Tidor, B.,
Venable, R.M., Woodcock, H.L., Wu, X., Yang, W., York, D.M., & Karplus, M. 2009. CHARMM:
The Biomolecular Simulation Program. J. Comput. Chem., 30, 1545–1614. Wiley Periodicals.
(ref. p.26, 39)

[Bryngelson & Wolynes, 1987] Bryngelson, J.D., & Wolynes, P.G. 1987. Spin glasses and the
statistical mechanics of protein folding. Proc. Natl. Acad. Sci. USA, 84, 7524–7528. National
Academy of Sciences. (ref. p.31)

228

References

[Burley, 2000] Burley, S.K. 2000. An overview of structural genomics. Nature America, 932–934.
Macmillan Magazines. (ref. p.30)

[Busetta et al., 1983] Busetta, B., Tickle, I.J., & Blundell, T.L. 1983. DOCKER, an interactive
program for simulating protein receptor and substrate interactions. J. Appl. Cryst., 16, 432–
437. International Union of Crystallography. (ref. p.33)

[Campbell et al., 2003] Campbell, S.J., Gold, N.D., Jackson, R.M., & Westheady, D.R. 2003. Ligand
binding: functional site location, similarity and docking. Curr. Opin. Struct. Biol., 13, 389–395.
Elsevier Science. (ref. p.34, 51)

[Carlson, 2002] Carlson, H.A. 2002. Protein flexibility and drug design: how to hit a moving
target. Curr. Opin. Chem. Biol., 6, 447–452. Elsevier Science. (ref. p.50)

[Carlson & McCammon, 2000] Carlson, H.A., & McCammon, J.A. 2000. Accommodating Protein
Flexibility in Computational Drug Design. Mol. Pharmacol., 57, 213–218. American Society
for Pharmacology and Experimental Therapeutics. (ref. p.41)

[Carpin & Pillonetto, 2005] Carpin, S., & Pillonetto, G. 2005. Motion Planning Using Adaptive
Random Walks. Transactions on Robotics, 21, 129–136. IEEE. (ref. p.46)

[Case et al., 2005] Case, D.A., Cheatham III, T.E., Darden, T., Gohlke, H., Luo, R., Merz, Jr.,
K.M., Onufriev, A., Simmerling, C., Wang, B., & Woods, R.J. 2005. The Amber Biomolecular
Simulation Programs. J. Comput. Chem., 26, 1668–1688. Wiley Periodicals. (ref. p.26)

[Cavasotto & Abagyan, 2004] Cavasotto, C.N., & Abagyan, R.A. 2004. Protein Flexibility in
Ligand Docking and Virtual Screening to Protein Kinases. J. Mol. Biol., 337, 209–225. Elsevier
Science. (ref. p.42, 81)

[Cavasotto & Orry, 2007] Cavasotto, C.N., & Orry, A.J.W. 2007. Ligand Docking and Structure-
based Virtual Screening in Drug Discovery. Curr. Topics Med. Chem., 7, 1006–1014. Bentham.
(ref. p.40, 51)

[Chen et al., 2007] Chen, M.E., Cang, H.X., & Nymeyer, H. 2007. NOC.
http://noch.sourceforge.net (ref. p.253)

[Chen et al., 2003] Chen, R., Li, L., & Weng, Z. 2003. ZDOCK: An Initial-Stage Protein-Docking
Algorithm. Proteins, 52, 80–87. Wiley-Liss. (ref. p.38)

[Chen & Shoichet, 2009] Chen, Y., & Shoichet, B.K. 2009. Molecular docking and ligand
specificity in fragment-based inhibitor discovery. Nature Chemical Biology, 5, 358–364. Nature
Publishing. (ref. p.45)

[Chen et al., 2008] Chen, Y., Ding, F., Nie, H., Serohijos, A.W., Sharma, S., Wilcox, K.C., Yin, S., &
Dokholyan, N.V. 2008. Protein folding: Then and now. Arch. Biochem. Biophys., 469, 4–19.
Elsevier Science. (ref. p.31, 51)

[Chikenji et al., 2006] Chikenji, G., Fujitsuka, Y., & Takada, S. 2006. Shaping up the protein
folding funnel by local interaction: Lesson from a structure prediction study. Proc. Natl.
Acad. Sci. USA, 103, 3141–3146. National Academy of Sciences. (ref. p.47)

[Claußen et al., 2001] Claußen, H., Buning, C., Rarey, M., & Lengauer, T. 2001. FLEXE — Efficient
Molecular Docking Considering Protein Structure Variations. J. Mol. Biol., 308, 377–395.
Academic Press. (ref. p.45)

[Cohen et al., 1990] Cohen, N.C., Blaney, J.M., Humblet, C., Gund, P., & Barry, D.C. 1990.
Molecular Modeling Software and Methods for Medicinal Chemistry. J. Med. Chem., 33,
883–894. American Chemical Society. (ref. p.26)

[Collins & McKusick, 2001] Collins, F.S., & McKusick, V.A. 2001. Implications of the Human
Genome Project for Medical Science. JAMA, 285, 540–544. American Medical Association.
(ref. p.30)

[Connolly, 1983a] Connolly, M.L. 1983a. Analytical Molecular Surface Calculation. J. Appl.
Cryst., 16, 548–558. International Union of Crystallography. (ref. p.24)

229

References

[Connolly, 1983b] Connolly, M.L. 1983b. Solvent-Accessible Surfaces of Proteins and Nucleic
Acids. Science, 221, 709–713. American Association for the Advancement of Science. (ref. p.24)

[Connolly, 1985] Connolly, M.L. 1985. Computation of Molecular Volume. J. Am. Chem. Soc.,
107, 1118–1124. American Chemical Society. (ref. p.188)

[Connolly, 1996] Connolly, M.L. 1996. Molecular Surfaces: A Review. Network Science.
http://www.netsci.org/Science/Compchem/feature14.html (ref. p.24)

[Cooley & Tukey, 1965] Cooley, J.W., & Tukey, J.W. 1965. An Algorithm for the Machine
Calculation of Complex Fourier Series. Math. Comput., 19, 297–301. American Mathematical
Society. (ref. p.178)

[Cortés et al., 2005] Cortés, J., Siméon, T., Ruiz de Angulo, V., Guieysse, D., Remaud-Siméon,
M., & Tran, V. 2005. A path planning approach for computing large-amplitude motions of
flexible molecules. Bioinformatics, 21, i116–i125. Oxford University Press. (ref. p.46)

[Cozzini et al., 2008] Cozzini, P., Kellogg, G.E., Spyrakis, F., Abraham, D.J., Costantino, G.,
Emerson, A., Fanelli, F., Gohlke, H., Kuhn, L.A., Morris, G.M., Orozco, M., Pertinhez, T.A.,
Rizzi, M., & Sotriffer, C.A. 2008. Target Flexibility: An Emerging Consideration in Drug
Discovery and Design. J. Med. Chem., 51, 6237–6255. American Chemical Society. (ref. p.42,
51)

[Daeyaert et al., 2004] Daeyaert, F., de Jonge, M., Heeres, J., Koymans, L., Lewi, P., Vinkers,
M.H., & Janssen, P.A.J. 2004. A Pharmacophore Docking Algorithm and its Application to the
Cross-Docking of 18 HIV-NNRTIs in their Binding Pockets. Proteins, 54, 526–533. Wiley-Liss.
(ref. p.161)

[David et al., 2001] David, L., Luo, R., & Gilson, M.K. 2001. Ligand-receptor docking with
the Mining Minima optimizer. J. Comput. Aided Mol. Des., 15, 157–171. Kluwer Academic
Publishers. (ref. p.38)

[Davis & Baker, 2009] Davis, I.W., & Baker, D. 2009. RosettaLigand Docking with Full Ligand
and Receptor Flexibility. J. Mol. Biol., 385, 381–392. Elsevier Science. (ref. p.40)

[de Azevedo & Dias, 2008] de Azevedo, Jr., W.F., & Dias, R. 2008. Computational Methods for
Calculation of Ligand-Binding Affinity. Curr. Drug Targets, 9, 1031–1039. Bentham. (ref. p.51)

[DeLano, 2006] DeLano, W. 2006. PyMOL.
http://www.pymol.org (ref. p.253)

[Dill et al., 2007] Dill, K.A., Ozkan, S.B., Weikl, T.R., Chodera, J.D., & Voelz, V.A. 2007. The
protein folding problem: when will it be solved? Curr. Opin. Struct. Biol., 17, 342–346.
Elsevier Science. (ref. p.31, 51)

[Dill et al., 2008] Dill, K.A., Ozkan, S.B., Shell, M.S., & Weikl, T.R. 2008. The Protein Folding
Problem. Ann. Rev. Biophys., 37, 289–316. Annual Reviews. (ref. p.31, 51)

[Diller & Merz, 2001] Diller, D.J., & Merz, Jr., K.M. 2001. High Throughput Docking for Library
Design and Library Prioritization. Proteins, 43, 113–124. Wiley-Liss. (ref. p.41, 42)

[Diller & Verlinde, 1999] Diller, D.J., & Verlinde, C.L.M.J. 1999. Optimization Algorithms for the
Purpose of Molecular Docking. J. Comput. Chem., 20, 1740–1751. Wiley Periodicals. (ref. p.41)

[Dobson & Karplus, 1999] Dobson, C.M., & Karplus, M. 1999. The fundamentals of protein
folding: bringing together theory and experiment. Curr. Opin. Struct. Biol., 9, 92–101. Elsevier
Science. (ref. p.31)

[Dobson & Ptitsyn, 1999] Dobson, C.M., & Ptitsyn, O.B. 1999. Folding and Binding: The
Biological Consequences of Physical Principles. Curr. Opin. Struct. Biol., 9, 89–91. Elsevier
Science. (ref. p.31)

[Dominguez et al., 2003] Dominguez, C., Boelens, R., & Bonvin, A.M.J.J. 2003. HADDOCK: a
protein-protein docking approach based on biochemical or biophysical data. J. Am. Chem.
Soc., 125, 1731–1737. American Chemical Society. (ref. p.38, 48)

230

References

[DOX, 2009] DOX. 2009. Ligand-Protein Docking. InhibOx Ltd.
http://www.inhibox.com/docking (ref. p.64)

[Drenth, 1999] Drenth, J. 1999. Principles of Protein X-Ray Crystallography. Springer-Verlag.
ISBN 0-387-98587-5. (ref. p.175)

[Eckert & Bajorath, 2007] Eckert, H., & Bajorath, J. 2007. Molecular similarity analysis in virtual
screening: foundations, limitations and novel approaches. Drug Discovery Today, 12, 225–233.
Elsevier Science. (ref. p.28, 51)

[Edelsbrunner & Mücke, 1994] Edelsbrunner, H., & Mücke, E.P. 1994. Three dimensional alpha-
shapes. ACM Transact. Graph., 13, 43–72. ACM Press. (ref. p.24)

[Eldridge et al., 1997] Eldridge, M.D., Murray, C.W., Auton, T.R., Paolini, G.V., & Mee, R.P. 1997.
Empirical scoring functions: I. The development of a fast empirical scoring function to
estimate the binding affinity of ligands in receptor complexes. J. Comput. Aided Mol. Des.,
11, 425–445. Springer. (ref. p.60)

[Elliott & Rao, 1982] Elliott, D.F., & Rao, K.R. 1982. Fast Transforms: Algorithms, Analyses,
Applications. Academic Press. ISBN 0-122-37080-5. (ref. p.178)

[Ellis & Hartl, 1999] Ellis, R.J., & Hartl, F.U. 1999. Principles of protein folding in the cellular
environment. Curr. Opin. Struct. Biol., 9, 102–110. Elsevier Science. (ref. p.31)

[Erickson et al., 2004] Erickson, J.A., Jalaie, M., Robertson, D.H., Lewis, R.A., & Vieth, M.
2004. Lessons in Molecular Recognition: The Effects of Ligand and Protein Flexibility on
Molecular Docking Accuracy. J. Med. Chem., 47, 45–55. American Chemical Society. (ref. p.40,
81)

[Ewing & Kuntz, 1997] Ewing, T.J.A., & Kuntz, I.D. 1997. Critical Evaluation of Search
Algorithms for Automated Molecular Docking and Database Screening. J. Comput. Chem.,
18, 1175–1189. Wiley Periodicals. (ref. p.35)

[Feig et al., 2004] Feig, M., Karanicolas, J., & Brooks III, C.L. 2004. MMTSB Tool Set: enhanced
sampling and multiscale modeling methods for applications in structural biology. J. Mol.
Graph. Model., 22, 377–395. Elsevier Science. (ref. p.27)

[Finkelstein, 1997] Finkelstein, A.V. 1997. Protein structure: what is it possible to predict now?
Curr. Opin. Struct. Biol., 7, 60–71. Current Biology. (ref. p.31)

[Finn & Kavraki, 1999] Finn, P.W., & Kavraki, L.E. 1999. Computational Approaches to Drug
Design. Algorithmica, 25, 347–371. Springer-Verlag. (ref. p.51)

[Fischer et al., 1993a] Fischer, D., Norel, R., Nussinov, R., & Wolfson, H.J. 1993a. 3D Docking of
Protein Molecules: Combinatorial Pattern Matching. Lect. Notes. Comput. Sci., 684, 20–34.
Springer-Verlag. (ref. p.36)

[Fischer et al., 1993b] Fischer, D., Norel, R., Wolfson, H.J., & Nussinov, R. 1993b. Surface Motifs
by a Computer Vision Technique: Searches, detection, and implication for Protein-Ligand
recognition. Proteins, 16, 278–292. Wiley-Liss. (ref. p.28, 38)

[Foreman et al., 1999] Foreman, K.W., Phillips, A.T., Rosen, J.B., & Dill, K.A. 1999. Comparing
Search Strategies for Finding Global Optima on Energy Landscapes. J. Comput. Chem., 20,
1527–1532. Wiley Periodicals. (ref. p.26)

[Fradera et al., 2000] Fradera, X., Knegtel, R.M.A., & Mestres, J. 2000. Similarity-Driven Flexible
Ligand Docking. Proteins, 40, 623–636. Wiley-Liss. (ref. p.42)

[Fradera et al., 2002] Fradera, X., De la Cruz, X., Silva, C.H., Gelpi, J.L., Luque, F.J., & Orozco, M.
2002. Ligand-induced changes in the binding sites of proteins. Bioinformatics, 18, 939–948.
Oxford University Press. (ref. p.40)

[Fradera et al., 2004] Fradera, X., Kaur, J., & Mestres, J. 2004. Unsupervised guided docking of
covalently bound ligands. J. Comput. Aided Mol. Des., 18, 635–650. Springer. (ref. p.43)

231

References

[Freskos et al., 2007] Freskos, J.N., Fobian, Y.M., Benson, T.E., Moon, J.B., Bienkowski, M.J.,
Brown, D.L., Emmons, T.L., Heintz, R., Laborde, A., McDonald, J.J., Mischke, B.V., Molyneaux,
J.M., Mullins, P.B., Prince, D.B., Paddock, D.J., Tomassellia, A.G., & Winterrowd, G. 2007.
Design of potent inhibitors of human β-secretase. Part 2. Bioorg. Med. Chem. Lett., 17, 78–
81. Elsevier Science. (ref. p.18)

[Friesner et al., 2004] Friesner, R.A., Banks, J.L., Murphy, R.B., Halgren, T.A., Klicic, J.J., Mainz,
D.T., Repasky, M.P., Knoll, E.H., Shelley, M., Perry, J.K., Shaw, D.E., Francis, P., & Shenkin, P.S.
2004. Glide: A New Approach for Rapid, Accurate Docking and Scoring. 1. Method and
Assessment of Docking Accuracy. J. Med. Chem., 47, 1739–1749. American Chemical Society.
(ref. p.50, 183)

[Friesner et al., 2006] Friesner, R.A., Murphy, R.B., Repasky, M.P., & Sherman, B.W. 2006. Use of
the Glide extra precision methodology for docking and scoring. In: 232nd ACS Nat. Meet.
American Chemical Society. (ref. p.50)

[Gabb et al., 1997] Gabb, H.A., Jackson, R.M., & Sternberg, M.J.E. 1997. Modelling Protein
Docking using Shape Complementarity, Electrostatics and Biochemical Information. J. Mol.
Biol., 272, 106–120. Academic Press. (ref. p.37, 38, 48)

[Gardiner et al., 2001] Gardiner, E.J., Willett, P., & Artymiuk, Peter J. 2001. Protein Docking
Using a Genetic Algorithm. Proteins, 44, 44–56. Wiley-Liss. (ref. p.37)

[Gehlhaar et al., 1995] Gehlhaar, D.K., Verkhivker, G.M., Rejto, P.A., Sherman, C.J., Fogel, D.B.,
Fogel, L.J., & Freer, S.T. 1995. Molecular recognition of the inhibitor AC-1343 by HIV-1
protease: Conformationally flexible docking by evolutionary programming. Chemistry &
Biology, 2, 317–324. Current Biology. (ref. p.43, 61)

[Gething & Sambrook, 1992] Gething, M.J., & Sambrook, J. 1992. Protein folding in the cell.
Nature, 355, 33–45. Nature Publishing. (ref. p.174)

[Glick et al., 2002a] Glick, M., Grant, G.H., & Richards, W.G. 2002a. Docking of Flexible
Molecules Using Multiscale Ligand Representations. J. Med. Chem., 45, 4639–4646. American
Chemical Society. (ref. p.26, 59)

[Glick et al., 2002b] Glick, M., Robinson, D.D., Grant, G.H., & Richards, W.G. 2002b. Identifica-
tion of Ligand Binding Sites on Proteins Using a Multi-Scale Approach. J. Am. Chem. Soc.,
124, 2337–2344. American Chemical Society. (ref. p.26)

[Gohlke & Thorpe, 2006] Gohlke, H., & Thorpe, M.F. 2006. A Natural Coarse Graining for
Simulating Large Biomolecular Motion. Biophys. Journal, 91, 2115–2120. Biophysical Society.
(ref. p.41)

[Goldman & Wipke, 2000a] Goldman, B.B., & Wipke, W.T. 2000a. Quadratic Shape Descriptors.
1. Rapid Superposition of Dissimilar Molecules Using Geometrically Invariant Surface
Descriptors. J. Chem. Inf. Comput. Sci., 40, 644–658. American Chemical Society. (ref. p.36)

[Goldman & Wipke, 2000b] Goldman, B.B., & Wipke, W.T. 2000b. Quadratic Shape Descriptors.
2. Molecular Docking Using Quadratic Shape Descriptors (QSDock). Proteins, 38, 79–94.
Wiley-Liss. (ref. p.36, 48)

[Grant, 2009] Grant, M.A. 2009. Protein structure prediction in structure-based ligand design
and virtual screening. Comb. Chem. High Throughput Screening, 12, 940–960. Bentham. (ref. p.30,
51)

[GraphicsMagick, 2003] GraphicsMagick. 2003. GraphicsMagick.
http://www.graphicsmagick.org (ref. p.253)

[Gräter et al., 2005] Gräter, F., Schwarzl, S.M., Dejaegere, A., Fischer, S., & Smith, J.C. 2005.
Protein-Ligand Binding Free Energies Calculated with Quantum Mechanics/Molecular
Mechanics. J. Phys. Chem., 109, 10474–10483. American Chemical Society. (ref. p.40)

[Gschwend et al., 1996] Gschwend, D.A., Good, A.C., & Kuntz, I.D. 1996. Molecular Docking
towards Drug Discovery. J. Mol. Recog., 9, 175–186. John Wiley & Sons. (ref. p.50)

232

References

[Halgren et al., 2004] Halgren, T.A., Murphy, R.B., Friesner, R.A., Beard, H.S., Frye, L.L., Pollard,
W.T., & Banks, J.L. 2004. Glide: A New Approach for Rapid, Accurate Docking and Scoring.
2. Enrichment Factors in Database Screening. J. Med. Chem., 47, 1750–1759. American
Chemical Society. (ref. p.50)

[Halperin et al., 2002] Halperin, I., Ma, B., Wolfson, H., & Nussinov, R. 2002. Principles of
Docking: An Overview of Search Algorithms and a Guide to Scoring Functions. Proteins,
47, 409–443. Wiley-Liss. (ref. p.33, 60, 183)

[Hamilton, 1967] Hamilton, W.R. 1967. On Quaternions; or On a New System of Imaginaries
in Algebra. In: Halberstam, H., & Ingram, R.E. (eds), The Mathematical Papers of Sir William
Rowan Hamilton. Cambridge University Press. (ref. p.84)

[Hardesty et al., 1999] Hardesty, B., Tsalkove, T., & Kramer, G. 1999. Co-translational Folding.
Curr. Opin. Struct. Biol., 9, 111–114. Elsevier Science. (ref. p.31)

[Hart, 1994] Hart, W.E. 1994. Adaptive Global Optimization with Local Search. Ph.D. thesis,
University of California, San Diego. (ref. p.72, 118)

[Hart et al., 1994] Hart, W.E., Kammeyer, T.E., & Belew, R.K. 1994. The Role of Development in
Genetic Algorithms. Tech. rept. CS94-394. University of California, San Diego. (ref. p.118)

[Hartshorn et al., 2007] Hartshorn, M.J., Verdonk, M.L., Chessari, G., Brewerton, S.C., Mooij,
W.T.M., Mortenson, P.N., & Murray, C.W. 2007. Diverse, High-Quality Test Set for the
Validation of Protein-Ligand Docking Performance. J. Med. Chem., 50, 726–741. American
Chemical Society. (ref. p.199)

[Hawkins et al., 2008] Hawkins, P.C.D., Warren, G.L., Skillman, A.G., & Nicholls, A. 2008. How
to do an evaluation: pitfalls and traps. J. Comput. Aided Mol. Des., 22, 179–190. Springer.
(ref. p.43)

[Head et al., 1997] Head, M.S., Given, J.A., & Gilson, M.K. 1997. Mining Minima — Direct
Computation of Conformational Free Energy. J. Phys. Chem., 101, 1609–1618. American
Chemical Society. (ref. p.26, 38)

[Hendlich et al., 1997] Hendlich, M., Rippmann, F., & Barnickel, G. 1997. LIGSITE: Automatic
and efficient detection of potential small molecule binding sites in proteins. J. Mol. Graph.
Model., 15, 359–363. Elsevier Science. (ref. p.35)

[Hoare, 1962] Hoare, C.A.R. 1962. Quicksort. Comput. J., 5, 10–16. Brit. Comput. Soc. (ref. p.150)

[Holm & Park, 2000] Holm, L., & Park, J. 2000. DaliLite workbench for protein structure
comparison. Bioinformatics, 16, 566–567. Oxford University Press. (ref. p.29)

[Holm & Sander, 1993] Holm, L., & Sander, C. 1993. Protein Structure Comparison by
Alignment of Distance Matrices. J. Mol. Biol., 233, 123–138. Academic Press. (ref. p.29)

[Holm & Sander, 1995] Holm, L., & Sander, C. 1995. DALI: a network tool for protein structure
comparison. Trends Biochem. Sci., 20, 478–480. Elsevier Science. (ref. p.29)

[Holm et al., 1992] Holm, L., Ouzounis, C., Sander, C., Tuparev, G., & Vriend, G. 1992. A database
of protein structure families with common folding motifs. Protein Science, 1, 1691–1698. Cold
Spring Harbor Laboratory Press. (ref. p.29)

[Holm et al., 2008] Holm, L., Kääriäinen, S., Rosenström, P., & Schenkel, A. 2008. Searching
protein structure databases with DaliLite v.3. Bioinformatics, 24, 2780–2781. Oxford University
Press. (ref. p.29)

[Hom, 2005] Hom, G.K. 2005. Advances in computational protein design: Development of more
efficient search algorithms and their application to the full-sequence design of larger proteins.
Ph.D. thesis, California Institute of Technology. (ref. p.31)

[Honig, 1999] Honig, B. 1999. Protein Folding: From the Levinthal Paradox to Structure
Prediction. J. Mol. Biol., 293, 283–293. Academic Press. (ref. p.31)

233

References

[Hubbard, 1996] Hubbard, P.M. 1996. Approximating Polyhedra with Spheres for Time-Critical
Collision Detection. ACM Transact. Graph., 15, 179–210. ACM Press. (ref. p.54)

[Irwin & Shoichet, 2005] Irwin, J.J., & Shoichet, B.K. 2005. ZINC — A Free Database of
Commercially Available Compounds for Virtual Screening. J. Chem. Inf. Model., 45, 177–182.
American Chemical Society. (ref. p.19)

[Isto, 2003] Isto, P. 2003. Adaptive Probabilistic Roadmap Construction With Multi-Heuristic
Local Planning. Ph.D. thesis, Helsinki University of Technology. (ref. p.46)

[Jacobs et al., 1999] Jacobs, D.J., Kuhn, L.A., & Thorpe, M.F. 1999. Flexible and rigid regions
in proteins. Pages 357–384 of: Thorpe, M.F., & Duxbury, P.M. (eds), Rigidity Theory and
Applications. Kluwer Academic/Plenum Publishers. ISBN 0-306-46115-3. (ref. p.26, 41)

[Jacobs et al., 2001] Jacobs, D.J., Rader, A.J., Kuhn, L.A., & Thorpe, M.F. 2001. Protein Flexibility
Predictions Using Graph Theory. Proteins, 44, 150–165. Wiley-Liss. (ref. p.41)

[Jaillet et al., 2005] Jaillet, L., Yershova, A., LaValle, S.M., & Simeon, T. 2005. Adaptive tuning of
the sampling domain for dynamic-domain RRTs. Pages 2851–2856 of: Proc. Int. Conf. Intelligent
Robots and Systems. IEEE. (ref. p.46)

[Java3D, 2008] Java3D. 2008. Java 3D API. Sun Microsystems Inc.
http://java.sun.com/javase/technologies/desktop/java3d (ref. p.178)

[Jones & Willett, 1995] Jones, G., & Willett, P. 1995. Docking small-molecule ligands into active
sites. Curr. Opin. Biotechnol., 6, 652–656. Current Biology. (ref. p.32)

[Jones et al., 1997] Jones, G., Willett, P., Glen, R.C., Leach, A.R., & R.Taylor. 1997. Development
and Validation of a Genetic Algorithm for Flexible Docking. J. Mol. Biol., 267, 727–748.
Academic Press. (ref. p.43)

[Jones, 1924] Jones, J.E. 1924. On the Determination of Molecular Fields. II. From the Equation
of State of a Gas. Pages 463–477 of: Proc. R. Soc. Lond. A, vol. 106. Royal Society. (ref. p.61)

[Jones & Thornton, 1996] Jones, S., & Thornton, J.M. 1996. Principles of protein-protein
interactions. Proc. Natl. Acad. Sci. USA, 93, 13–20. National Academy of Sciences. (ref. p.33)

[Kairys & Gilson, 2002] Kairys, V., & Gilson, M.K. 2002. Enhanced Docking with the Mining
Minima Optimizer: Acceleration and Side-Chain Flexibility. J. Comput. Chem., 23, 1656–1670.
Wiley Periodicals. (ref. p.38)

[Kan et al., 1996] Kan, W.K., SiuI, Y.T., & But, P.P.H. 1996. TCMD: An On-line Database of
Traditional Chinese Medicine. Page 821 of: AMIA Annual Fall Symp. American Medical
Informatics Association. (ref. p.19)

[Karplus et al., 1998] Karplus, K., Sjölander, K., Barrett, C., Cline, M., Haussler, D., Hughey, R.,
Holm, L., & Sander, C. 1998. Predicting Protein Structure Using Hidden Markov Models.
Proteins, Suppl. 1, 134–139. Wiley-Liss. (ref. p.31)

[Karplus et al., 1999] Karplus, K., Barrett, C., Cline, M., Diekhans, M., Grate, L., & Hughey, R.
1999. Predicting Protein Structure Using Only Sequence Information. Proteins, 3, 121–125.
Wiley-Liss. (ref. p.31)

[Katchalski-Katzir et al., 1992] Katchalski-Katzir, E., Shariv, I., Eisenstein, M., Friesem, A.A.,
Aflalo, C., & Vakser, I.A. 1992. Molecular Surface Recognition: Determination of geometric
fit between proteins and their ligands by correlation techniques. Proc. Natl. Acad. Sci. USA,
89, 2195–2199. National Academy of Sciences. (ref. p.36, 37, 53, 177)

[Kazhdan, 2004] Kazhdan, M.M. 2004. Shape Representations and Algorithms for 3D Model
Retrieval. Ph.D. thesis, Princeton University. (ref. p.29, 51, 160)

[Kihara et al., 2009] Kihara, D., Chen, H., & Yang, Y.D. 2009. Quality Assessment of Protein
Structure Models. Curr. Protein Pept. Sci., 10, 216–228. Bentham. (ref. p.30, 51)

234

References

[Kinnings & Jackson, 2009] Kinnings, S.L., & Jackson, R.M. 2009. LigMatch: A Multiple
Structure-Based Ligand Matching Method for 3D Virtual Screening. J. Chem. Inf. Model.,
49, 2056–2066. American Chemical Society. (ref. p.28)

[Kitchen et al., 2004] Kitchen, D.B., Decornez, H., Furr, J.R., & Bajorath, J. 2004. Docking And
Scoring In Virtual Screening For Drug Discovery: Methods And Applications. Nature
Reviews (Drug Discovery), 3, 935–949. Nature Publishing. (ref. p.33, 51, 60)

[Kolb et al., 2009] Kolb, P., Ferreira, R.S., Irwin, J.J., & Shoichet, B.K. 2009. Docking and
chemoinformatic screens for new ligands and targets. Curr. Opin. Biotechnol., 20, 429–436.
Elsevier Science. (ref. p.51)

[Kolinski & Skolnick, 1994] Kolinski, A., & Skolnick, J. 1994. Monte Carlo Simulations of
Protein Folding. I. Lattice Model and Interaction Scheme. Proteins, 18, 338–352. Wiley-Liss.
(ref. p.31)

[Kong et al., 2000] Kong, J., C.A.White, Krylov, A.I., Sherrill, D., Adamson, R.D., Furlani, T.R.,
Lee, M.S., Lee, A.M., Gwaltney, S.R., Adams, T.R., Ochsenfeld, C., Gilbert, A.T.B., Kedziora,
G.S., Rassolov, V.A., Maurice, D.R., Nair, N., Shao, Y., Besley, N.A., Maslen, P.E., Dombroski,
J.P., Daschel, H., Zhang, W., Korambath, P.P., Baker, J., Byrd, E.F.C., Van Voorhis, T., Oumi,
M., Hirata, S., Hsu, C-P., Ishikawa, N., Florian, J., Warshel, A., Johnson, B.G., Gill, P.M.W.,
Head-Gordon, M., & Pople, J.A. 2000. Q-Chem 2 — A High-Performance Ab Initio Electronic
Structure Program. J. Comput. Chem., 21, 1532–1548. Wiley Periodicals. (ref. p.27)

[Kontoyianni et al., 2004] Kontoyianni, M., McClellan, L.M., & Sokol, G.S. 2004. Evaluation of
Docking Performance: Comparative Data on Docking Algorithms. J. Med. Chem., 47, 558–
565. American Chemical Society. (ref. p.32)

[Kozakov et al., 2006] Kozakov, D., Brenke, R., Comeau, S.R., & Vajda, S. 2006. PIPER: An FFT-
Based Protein Docking Program with Pairwise Potentials. Proteins, 65, 392–406. Wiley-Liss.
(ref. p.38, 60)

[Kramer et al., 1999] Kramer, B., Rarey, M., & Lengauer, T. 1999. Evaluation of the FLEXX
Incremental Construction Algorithm for Protein-Ligand Docking. Proteins, 37, 228–241.
Wiley-Liss. (ref. p.45)

[Kuffner & LaValle, 2000] Kuffner, Jr., J.J., & LaValle, S.M. 2000. RRT-Connect: An Efficient
Approach to Single-Query Path Planning. Pages 995–1001 of: Proc. IEEE Int. Conf. Rob. Autom.,
vol. 2. IEEE. (ref. p.46)

[Kuhl et al., 1986] Kuhl, F.S., Crippen, G.M., & Friesen, D.K. 1986. A combinatorial algorithm
for calculating ligand binding. J. Comput. Chem., 5, 24–34. Wiley Periodicals. (ref. p.35)

[Kuntz et al., 1982] Kuntz, I.D., Blaney, J.M., Oatley, S.J., Langridge, R., & Ferrin, T. 1982.
A geometric approach to macromolecule-ligand interactions. J. Mol. Biol., 161, 269–288.
Academic Press. (ref. p.34, 35)

[Labeit et al., 1997] Labeit, S., Kolmerer, B., & Linke, W.A. 1997. The Giant Protein Titin:
Emerging Roles in Physiology and Pathophysiology. Circ. Res., 80, 290–294. American Heart
Association. (ref. p.174)

[Lamarck, 1809] Lamarck, J.B. 1809. Philosophie Zoologique. Translation by Elliot, H.,
Macmillan, 1914. (ref. p.118)

[Lang et al., 2007] Lang, P.T., Aynechi, T., Moustakas, D., Shoichet, B., Kuntz, I.D., Brooijmans,
N., & Oshiro, C.M. 2007. Molecular Docking and Structure-Based Design. Pages 3–23 of:
Huang, Z. (ed), Drug Discovery Research: New Frontiers in the Post-Genomic Era. John Wiley &
Sons. ISBN 978-0-471-67200-5. (ref. p.33, 51)

[Lang et al., 1988] Lang, R., et al. 1988. GhostScript.
http://pages.cs.wisc.edu/~ghost (ref. p.253)

[Laskowski, 1995] Laskowski, R.A. 1995. SURFNET: A program for visualizing molecular
surfaces, cavities, and intermolecular interactions. J. Mol. Graph., 13, 323–330. Elsevier
Science. (ref. p.35)

235

References

[Laskowski et al., 1996] Laskowski, R.A., Luscombe, N.M., Swindells, M.B., & Thornton, J.M.
1996. Protein clefts in molecular recognition and function. Protein Science, 5, 2438–2452.
Cold Spring Harbor Laboratory Press. (ref. p.35, 87)

[Laurie & Jackson, 2006] Laurie, A.T., & Jackson, R.M. 2006. Methods for the prediction of
protein-ligand binding sites for structure-based drug design and virtual ligand screening.
Curr. Protein Pept. Sci., 7, 395–406. Bentham. (ref. p.34, 51)

[LaValle & Kuffner, 1999] LaValle, S.M., & Kuffner, Jr., J.J. 1999. Randomized Kinodynamic
Planning. Pages 473–479 of: Proc. IEEE Int. Conf. Rob. Autom., vol. 1. IEEE. (ref. p.46)

[LaValle et al., 1999] LaValle, S.M., Finn, P.W., Kavraki, L.E., & Latombe, J-C. 1999. Efficient
Database Screening for Rational Drug Design Using Pharmacophore-Constrained Confor-
mational Search. Pages 250–260 of: Proc. Int. Conf. Comput. Mol. Biol. ACM Press. (ref. p.47,
161)

[Leach et al., 2006] Leach, A.R., Shoichet, B.K., & Peishoff, C.E. 2006. Prediction of Protein-
Ligand Interactions. Docking and Scoring: Successes and Gaps. J. Med. Chem., 49, 5851–5855.
American Chemical Society. (ref. p.20, 32, 51, 60)

[Leach et al., 2010] Leach, A.R., Gillet, V.J., Lewis, R.A., & Taylor, R. 2010. Three-Dimensional
Pharmacophore Methods in Drug Discovery. J. Med. Chem., 53, 539–558. American Chemical
Society. (ref. p.24, 51)

[Lei et al., 2004] Lei, M., Kuhn, L.A., Zavodsky, M.I., & Thorpe, M.F. 2004. Sampling protein
conformations and pathways. J. Comput. Chem., 25, 1133–1148. Wiley Periodicals. (ref. p.41)

[Lengauer & Rarey, 1996] Lengauer, T., & Rarey, M. 1996. Computational methods for
biomolecular docking. Curr. Opin. Struct. Biol., 6, 402–406. Current Biology. (ref. p.32)

[Levitt & Banaszak, 1992] Levitt, D.G., & Banaszak, L.J. 1992. POCKET: A computer graphics
method for identifying and displaying protein cavities and their surrounding amino acids.
J. Mol. Graph., 10, 229–234. Elsevier Science. (ref. p.35)

[Levitt & Lifson, 1969] Levitt, M., & Lifson, S. 1969. Refinement of Protein Conformations using
a Macromolecular Energy Minimization Procedure. J. Mol. Biol., 46, 269–279. Elsevier Science.
(ref. p.26)

[Li et al., 2003] Li, L., Chen, R., & Weng, Z. 2003. RDOCK: Refinement of Rigid-body Protein
Docking. Proteins, 53, 693–707. Wiley-Liss. (ref. p.39)

[Liang et al., 1998] Liang, J., Edelsbrunner, H., & Woodward, C. 1998. Anatomy of protein
pockets and cavities: Measurement of binding site geometry and implications for ligand
design. Protein Science, 7, 1884–1897. Cold Spring Harbor Laboratory Press. (ref. p.175)

[Lichtarge & Sowa, 2002] Lichtarge, O., & Sowa, M.E. 2002. Evolutionary predictions of binding
surfaces and interactions. Curr. Opin. Struct. Biol., 12, 21–27. Elsevier Science. (ref. p.34)

[Lin et al., 1994] Lin, S.L., Nussinov, R., Fischer, D., & Wolfson, H.J. 1994. Molecular surface
representations by sparse critical points. Proteins, 18, 94–101. Wiley-Liss. (ref. p.24)

[Linge et al., 2003] Linge, J.P., Williams, M.A., Spronk, C.A.E.M., Bonvin, A.M.J.J., & Nilges, M.
2003. Refinement of protein structures in explicit solvent. Proteins, 50, 496–506. Wiley-Liss.
(ref. p.175)

[Lorber & Shoichet, 1998] Lorber, D.M., & Shoichet, B.K. 1998. Flexible ligand docking using
conformational ensembles. Protein Science, 7, 938–950. Protein Society / Cambridge
University Press. (ref. p.35, 42)

[Lorber & Shoichet, 2005] Lorber, D.M., & Shoichet, B.K. 2005. Hierarchical docking of
databases of multiple ligand conformations. Curr. Topics Med. Chem., 5, 739–749. Bentham.
(ref. p.43)

[Lunney, 2001] Lunney, E.A. 2001. Computing in Drug Discovery — the design phase. Comput.
Sci. Eng., 3, 105–108. IEEE Computer Society / American Institute of Physics. (ref. p.19, 20, 49)

236

References

[Lybrand, 1995] Lybrand, T.P. 1995. Ligand-protein docking and rational drug design. Curr.
Opin. Struct. Biol., 5, 224–228. Current Biology. (ref. p.18, 51)

[Maiorov & Abagyan, 1997] Maiorov, V., & Abagyan, R. 1997. A New Method for Modeling
Large-Scale Rearrangements of Protein Domains. Proteins, 27, 410–424. Wiley-Liss. (ref. p.26)

[Mancera et al., 2004] Mancera, R.L., Källblad, P., & Todorov, N.P. 2004. Ligand-Protein Docking
using a Quantum Stochastic Tunnelling Optimization. J. Comput. Chem., 25, 858–864. Wiley
Periodicals. (ref. p.39)

[Mandell et al., 2001] Mandell, J.G., Roberts, V.A., Pique, M.E., Kotlovyi, V., Mitchell, J.C., Nelson,
E., Tsigelny, I., & Eyck, L.F. Ten. 2001. Protein docking using continuum electrostatics and
geometric fit. Protein Eng., 14, 105–113. Oxford University Press. (ref. p.37, 60)

[Mangoni et al., 1999] Mangoni, M., Roccatano, D., & Di Nola, A. 1999. Docking of Flexible
Ligands to Flexible Receptors in Solution by Molecular Dynamics Simulation. Proteins, 35,
153–162. Wiley-Liss. (ref. p.44)

[Marcia et al., 2005] Marcia, R.F., Mitchell, J.C., & Rosen, J.B. 2005. Iterative Convex Quadratic
Approximation for Global Optimization in Protein Docking. Comput. Optim. Appl., 32, 285–
297. Springer. (ref. p.26)

[Mavridis et al., 2007] Mavridis, L., Hudson, B.D., & Ritchie, D.W. 2007. Toward High
Throughput 3D Virtual Screening Using Spherical Harmonic Surface Representations. J.
Chem. Inf. Model., 47, 1787–1796. American Chemical Society. (ref. p.29)

[May et al., 2003] May, A., Eisenhardt, S., Schmidt-Ehrenberg, J., & Cordes, F. 2003. Rigid Body
Docking for Virtual Screening. Tech. rept. ZIB-Report 03-47. Konrad-Zuse-Zentrum, Berlin.
(ref. p.41)

[McCammon, 2005] McCammon, J.A. 2005. Target flexibility in molecular recognition. Biochim.
Biophys. Act., 1754, 221–224. Elsevier Science. (ref. p.42)

[McGaughey et al., 2007] McGaughey, G.B., Sheridan, R.P., Bayly, C.I., Culberson, J.C., Kreat-
soulas, C., Lindsley, S., Maiorov, V., Truchon, J-F., & Cornell, W.D. 2007. Comparison of
Topological, Shape, and Docking Methods in Virtual Screening. J. Chem. Inf. Model., 47,
1504–1519. American Chemical Society. (ref. p.20)

[McMartin & Bohacek, 1997] McMartin, C., & Bohacek, R.S. 1997. QXP: Powerful, rapid
computer algorithms for structure-based drug design. J. Comput. Aided Mol. Des., 11, 333–
344. Kluwer Academic Publishers. (ref. p.42)

[Meijering, 2002] Meijering, E.H.W. 2002. A chronology of interpolation: From ancient
astronomy to modern signal and image processing. Proc. IEEE, 90, 319–342. IEEE. (ref. p.121)

[Meiler & Baker, 2006] Meiler, J., & Baker, D. 2006. ROSETTALIGAND: Protein-Small Molecule
Docking with Full Side-Chain Flexibility. Proteins, 65, 538–548. Wiley-Liss. (ref. p.40, 81)

[Miller et al., 1994] Miller, M.D., Kearsley, S.K., Underwood, D.J., & Sheridan, R.P. 1994. FLOG:
A system to select quasi-flexible ligands complementary to a receptor of known three-
dimensional structure. J. Comput. Aided Mol. Des., 8, 153–174. Springer. (ref. p.42)

[Miller, 2005] Miller, W.H. 2005. Quantum Dynamics of Complex Molecular Systems. Proc.
Natl. Acad. Sci. USA, 102, 6660–6664. National Academy of Sciences. (ref. p.27, 48, 51)

[Mizuguchi et al., 1998] Mizuguchi, K., Deane, C.M., Blundell, T.L., Johnson, M.S., & Overington,
J.P. 1998. JOY — sequence-structure representation and analysis. Bioinformatics, 14, 617–623.
Oxford University Press. (ref. p.25)

[Morozov et al., 2004] Morozov, A.V., Kortemme, T., Tsemekhman, K., & Baker, D. 2004. Close
agreement between the orientation dependence of hydrogen bonds and QM calculations.
Proc. Natl. Acad. Sci. USA, 101, 6946–6951. National Academy of Sciences. (ref. p.27)

[Morris & Lim-Wilby, 2008] Morris, G.M., & Lim-Wilby, M. 2008. Molecular Docking. Pages
365–382 of: Kukol, A. (ed), Molecular Modeling of Proteins. Humana Press. ISBN 1-588-29864-7.
(ref. p.33, 51)

237

References

[Morris et al., 1998] Morris, G.M., Goodsell, D.S., Halliday, R.S., Huey, R., Hart, W.E., Belew,
R.K., & Olson, A.J. 1998. Automated Docking Using a Lamarckian GA and an Empirical
Binding Free Energy Function. J. Comput. Chem., 19, 1639–1662. Wiley Periodicals. (ref. p.37,
44, 48, 60, 72, 118)

[Morris et al., 2005] Morris, R.J., Najmonovich, R.J., Kahraman, A., & Thornton, J.M. 2005. Real
spherical harmonic expansion coefficients as 3D shape descriptors for protein binding
pocket and ligand comparisons. Bioinformatics, 21, 2347–2355. Oxford University Press.
(ref. p.29)

[Nagata et al., 2002] Nagata, H., Mizushima, H., & Tanaka, H. 2002. Concept and prototype of
protein-ligand docking simulator with force feedback technology. Bioinformatics, 18, 140–
146. Oxford University Press. (ref. p.33)

[Nelder & Mead, 1965] Nelder, J.A., & Mead, R. 1965. A Simplex Method for Function
Minimization. Comput. J., 7, 308–313. Brit. Comput. Soc. (ref. p.78, 118)

[OpenBabel, 2008] OpenBabel. 2008. OpenBabel Tools and Libraries.
http://www.openbabel.org (ref. p.64)

[Orengo et al., 1999] Orengo, C.A., Todd, A.E., & Thornton, J.M. 1999. From protein structure to
function. Curr. Opin. Struct. Biol., 9, 374–382. Elsevier Science. (ref. p.28)

[Österberg et al., 2002] Österberg, F., Morris, G.M., & Sanner, M.F. 2002. Automated Docking
to Multiple Target Structures: Incorporation of Protein Mobility and Structural Water
Heterogeneity in AutoDock. Proteins, 46, 34–40. Wiley-Liss. (ref. p.44)

[Palma et al., 2000] Palma, P.N., Krippahl, L., Wampler, J.E., & Moura, J.J.G. 2000. BiGGER: A
New (Soft) Docking Algorithm for Predicting Protein Interactions. Proteins, 39, 372–384.
Wiley-Liss. (ref. p.38)

[Pan et al., 2003] Pan, Y., Huang, N., Cho, S., & MacKerell, A.D. 2003. Consideration of
Molecular Weight during Compound Selection in Virtual Target-Based Database Screening.
J. Chem. Inf. Comput. Sci., 43, 267–272. American Chemical Society. (ref. p.155)

[Papoulis, 1962] Papoulis, A. 1962. The Fourier Integral and Its Applications. McGraw-Hill.
ISBN 0-070-48447-3. (ref. p.36, 177)

[Parsons & Canny, 1994] Parsons, D., & Canny, J. 1994. Geometric Problems in Molecular
Biology and Robotics. Proc. Int. Conf. Intell. Syst. Mol. Biol., 2, 322–330. Am. Assoc. Artificial
Intelligence. (ref. p.20)

[Pattabiraman et al., 1985] Pattabiraman, N., Levitt, M., Ferrin, T.E., & Langridge, R. 1985.
Computer Graphics in Real-time Docking with Energy Calculation and Minimization. J.
Comput. Chem., 6, 432–436. Wiley Periodicals. (ref. p.33)

[PDB, 1977] PDB. 1977. Protein Data Bank.
http://www.pdb.org

[Pei et al., 2006] Pei, J., Wang, Q., Liu, Z., Li, Q., Yang, K., & Lai, L. 2006. PSI-DOCK: Towards
Highly Efficient and Accurate Flexible Ligand Docking. Proteins, 62, 934–946. Wiley-Liss.
(ref. p.48, 162)

[Perola et al., 2004] Perola, E., Walters, W.P., & Charifson, P.S. 2004. A Detailed Comparison of
Current Docking and Scoring Methods on Systems of Pharmaceutical Relevance. Proteins,
56, 235–249. Wiley-Liss. (ref. p.32)

[Peters et al., 1996] Peters, K.P., Fauck, J., & Frömmel, C. 1996. The Automatic Search for Ligand
Binding Sites in Proteins of Known Three-dimensional Structure Using only Geometric
Criteria. J. Mol. Biol., 256, 201–213. Academic Press. (ref. p.34)

[Peters et al., 2006] Peters, M.B., Raha, K., & Merz, Jr., K.M. 2006. Quantum mechanics in
structure-based drug design. Curr. Opin. Drug. Discov. Devel., 9, 370–379. Thomson Reuters.
(ref. p.27)

238

References

[Phillips et al., 2005] Phillips, J.C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E.,
Chipot, C., Skeel, R.D., Kale, L., , & Schulten, K. 2005. Scalable Molecular Dynamics with
NAMD. J. Comput. Chem., 26, 1781–1802. Wiley Periodicals. (ref. p.26)

[Pitt-Francis & Featherstone, 1998] Pitt-Francis, J., & Featherstone, R. 1998. Automatic Genera-
tion of Sphere Hierarchies from CAD Data. Pages 324–329 of: Proc. IEEE Int. Conf. Robotics and
Automation, vol. 1. IEEE. (ref. p.55)

[Poirrette et al., 1997] Poirrette, A.R., Artymiuk, P.J., Rice, D.W., & Willett, P. 1997. Comparison of
protein surfaces using a genetic algorithm. J. Comput. Aided Mol. Des., 11, 557–569. Springer.
(ref. p.29, 37, 60)

[Ponder & Richards, 1987] Ponder, J.W., & Richards, F.M. 1987. An efficient Newton-like
method for molecular mechanics energy minimization of large molecules. J. Comput. Chem.,
8, 1016–1024. Wiley Periodicals. (ref. p.26)

[Press et al., 1992] Press, W.H., Teukolsky, S.A., Vetterling, W.T., & Flannery, B.P. 1992. Numerical
Recipes in C: The Art of Scientific Computing. 2nd edn. Cambridge University Press.
ISBN 0-521-43720-2. (ref. p.180)

[Putta & Beroza, 2007] Putta, S., & Beroza, P. 2007. Shapes of Things: Computer Modeling
of Molecular Shape in Drug Discovery. Curr. Topics Med. Chem., 7, 1514–1524. Bentham.
(ref. p.24, 51)

[Rader et al., 2002] Rader, A.J., Hespenheide, B.M., Kuhn, L.A., & Thorpe, M.F. 2002. Protein
unfolding: rigidity lost. Proc. Natl. Acad. Sci. USA, 99, 3540–3545. National Academy of
Sciences. (ref. p.41)

[Raha et al., 2007] Raha, K., Peters, M.B., Wang, B., Yu, N., Wollacott, A.M., Westerhoff, L.M., &
Merz. Jr., K.M. 2007. The role of quantum mechanics in structure-based drug design. Drug
Discovery Today, 12, 725–731. Elsevier Science. (ref. p.27, 51)

[Rangwala et al., 2006] Rangwala, H., Deronne, K., & Karypis, G. 2006. Protein Structure
Prediction using String Kernels. Tech. rept. DTC Research Report. University of Minnesota.
(ref. p.31)

[Richards, 1977] Richards, F.M. 1977. Areas, Volumes, Packing, and Protein Structure. Ann. Rev.
Biophys. Bioeng., 6, 151–176. Annual Reviews. (ref. p.176)

[Richards, 2002] Richards, W.G. 2002. Virtual screening using grid computing — the
screensaver project. Nature Reviews (Drug Discovery), 1, 551–555. Nature Publishing. (ref. p.20,
50)

[Richards, 2007] Richards, W.G. 2007. From Diatomics to Drugs and Dividends. J. Mol. Graph.
Model., 26, 596–601. Elsevier Science. (ref. p.19)

[Ritchie, 1998] Ritchie, D.W. 1998. Parametric Protein Shape Recognition. Ph.D. thesis,
University of Aberdeen. (ref. p.29)

[Ritchie & Kemp, 1999] Ritchie, D.W., & Kemp, G.J.L. 1999. Fast Computation, Rotation and
Comparison of Low Resolution Spherical Harmonic Molecular Surfaces. J. Comput. Chem.,
20, 383–395. Wiley Periodicals. (ref. p.29)

[Ritchie & Kemp, 2000] Ritchie, D.W., & Kemp, G.J.L. 2000. Protein Docking using Spherical
Polar Fourier Correlations. Proteins, 39, 178–194. Wiley-Liss. (ref. p.38)

[Robertson & Murphy, 1997] Robertson, A.D., & Murphy, K.P. 1997. Protein Structure and the
Energetics of Protein Stability. Chem. Rev., 97, 1251–1267. American Chemical Society.
(ref. p.176)

[Rocchia et al., 2002] Rocchia, W., Sridharan, S., Nicholls, A., Alexov, E., Chiabrera, A., & Honig,
B. 2002. Rapid Grid-Based Construction of the Molecular Surface and the Use of Induced
Surface Charge to Calculate Reaction Field Energies: Applications to the Molecular Systems
and Geometric Objects. J. Comput. Chem., 23, 128–137. Wiley Periodicals. (ref. p.60)

239

References

[Rosales-Hernandez et al., 2009] Rosales-Hernandez, M.C., Bermúdez-Lugo, J., Garcia, J.,
Trujillo-Ferrara, J., & Correa-Basurto, J. 2009. Molecular Modeling Applied to Anti-Cancer
Drug Development. Anti-Cancer Agents Med. Chem., 9, 230–238. Bentham. (ref. p.27)

[Ruppert et al., 1997] Ruppert, J., Welch, W., & Jain, A.N. 1997. Automatic identification and
representation of protein binding sites for molecular docking. Protein Science, 6, 524–533.
Cambridge University Press. (ref. p.35)

[Sánchez & Šali, 1997] Sánchez, R., & Šali, A. 1997. Advances in Comparative Protein-Structure
Modelling. Curr. Opin. Struct. Biol., 7, 206–214. Current Biology. (ref. p.28)

[Sandak et al., 1998] Sandak, B., Wolfson, H.J., & Nussinov, R. 1998. Flexible Docking Allowing
Induced Fit in Proteins: Insights From an Open to Closed Conformational Isomers. Proteins,
32, 159–174. Wiley-Liss. (ref. p.47)

[Sanner et al., 1995] Sanner, M.F., Olson, A.J., & Spehner, J-C. 1995. Fast and Robust
Computation of Molecular Surfaces. Pages 406–407 of: Proc. 11th Ann. Symp. Comp. Geom.
ACM Press. (ref. p.188)

[Schenk et al., 2000] Schenk, C., et al. 2000. MiKTeX.
http://www.miktex.org (ref. p.253)

[Schlessinger et al., 2006] Schlessinger, A., Yachdav, G., & Rost, B. 2006. PROFbval — predict
flexible and rigid residues in proteins. Bioinformatics, 22, 891–893. Oxford University Press.
(ref. p.41)

[Schmidt et al., 1993] Schmidt, M., Baldridge, K.K., Boatz, J.A., Elbert, S., M. Gordon, J.H. Jenson,
Koeski, S., Matsunaga, N., Nguyen, K.A., Su, S.J., Windus, T.L., Dupuis, M., & Montgomery,
J.A. 1993. The General Atomic and Molecular Electronic Structure System. J. Comput. Chem.,
14, 1347–1363. Wiley Periodicals. (ref. p.28)

[Schnecke & Kuhn, 2000] Schnecke, V., & Kuhn, L.A. 2000. Virtual screening with solvation and
ligand-induced complementarity. Perspect. Drug Discov. Des., 20, 171–190. Kluwer Academic
Publishers. (ref. p.60)

[Schneidman-Duhovny et al., 2003] Schneidman-Duhovny, D., Inbar, Y., Polak, V., Shatsky, M.,
Halperin, I., Benyamini, H., Barzilai, A., Dror, O., Haspel, N., Nussinov, R., & Wolfson, H.J.
2003. Taking Geometry to Its Edge: Fast Unbound Rigid (and Hinge-Bent) Docking. Proteins,
52, 107–112. Wiley-Liss. (ref. p.40)

[Scott et al., 2006] Scott, K.A., Alonso, D.O.V., Pan, Y., & Daggett, V. 2006. Importance of Context
in Protein Folding: Secondary Structural Propensities versus Tertiary Contact-Assisted
Secondary Structure Formation. Biochemistry, 45, 4153–4163. American Chemical Society.
(ref. p.47)

[Sharf & Shamir, 2004] Sharf, A., & Shamir, A. 2004. Feature-sensitive 3D Shape Matching.
Pages 596–599 of: Proc. Comp. Graph. Int. IEEE. (ref. p.27)

[Sherwood, 2000] Sherwood, P. 2000. Hybrid Quantum and Molecular Mechanics Approaches.
Pages 285–305 of: Proc. Modern Methods and Algorithms of Quantum Chemistry, vol. 3. John von
Neumann Institute for Computing. (ref. p.27)

[Shikama & Matsuoka, 2003] Shikama, K., & Matsuoka, A. 2003. Human haemoglobin: A new
paradigm for oxygen binding involving two types of αβ contacts. Eur. J. Biochem., 270, 4041–
4051. FEBS. (ref. p.32)

[Shoemake, 1992] Shoemake, K. 1992. Uniform Random Rotations. Pages 124–132 of: Kirk, D.
(ed), Graphics Gems III. Academic Press. ISBN 0-124-09673-5. (ref. p.85)

[Singh et al., 1999] Singh, A.P., Latombe, J-C., & Brutlag, D.L. 1999. A Motion Planning
Approach to Flexible Ligand Binding. Pages 252–261 of: Proc. Int. Conf. Intell. Syst. Mol. Biol.
Am. Assoc. Artificial Intelligence. (ref. p.46)

[Sinha & Smith-Gill, 2002] Sinha, N., & Smith-Gill, S.J. 2002. Protein Structure to Function via
Dynamics. Protein Pept. Lett., 9, 367–377. Bentham. (ref. p.176)

240

References

[Skeel et al., 2002] Skeel, R.D., Tezcan, I., & Hardy, D.J. 2002. Multiple Grid Methods for
Classical Molecular Dynamics. J. Comput. Chem., 23, 673–684. Wiley Periodicals. (ref. p.27)

[Skjevik et al., 2009] Skjevik, Å.A., Teigen, K., & Martinez, A. 2009. Overview of computational
methods employed in early-stage drug discovery. Fut. Med. Chem., 1, 49–63. Future Science.
(ref. p.39, 48, 51)

[Skolnick & Brylinski, 2009] Skolnick, J., & Brylinski, M. 2009. FINDSITE: a combined
evolution/structure-based approach to protein function prediction. Brief. Bioinform., 10, 378–
391. Oxford University Press. (ref. p.34)

[Skolnick et al., 1997] Skolnick, J., Kolinski, A., & Ortiz, A.R. 1997. MONSSTER — A Method
for Folding Globular Proteins with a Small Number of Distance Restraints. J. Mol. Biol., 265,
217–241. Academic Press. (ref. p.31)

[Skone, 2010] Skone, G.S. 2010. Stratagems for Effective Function Evaluation in Computational
Chemistry. Ph.D. thesis, University of Oxford. (ref. p.253)

[Skone & Cameron, 2007] Skone, G.S., & Cameron, S.A. 2007. Protein Structure Computation.
Pages 135–140 of: Proc. FBIT 2007. IEEE. (ref. p.171)

[Skone et al., 2009] Skone, G.S., Voiculescu, I., & Cameron, S.A. 2009. Knowing When To Give
Up: Early-Rejection Stratagems in Ligand Docking. J. Comput. Aided Mol. Des., 23, 715–724.
Springer. (ref. p.128, 137)

[Skórczyński & Deorowicz, 2005] Skórczyński, A., & Deorowicz, S. 2005. LaTeX Editor.
http://www.latexeditor.org (ref. p.253)

[Smith & Sternberg, 2002] Smith, G.R., & Sternberg, M.J.E. 2002. Prediction of protein-protein
interactions by docking methods. Curr. Opin. Struct. Biol., 12, 28–35. Elsevier Science.
(ref. p.32)

[Snow, 2008] Snow, C.D. 2008. Hunting for predictive computational drug-discovery models.
Expert Rev. Anti Infect. Ther., 6, 291–293. Expert Reviews. (ref. p.30, 51)

[Snyder et al., 2005] Snyder, D.A., Bhattacharya, A., Huang, Y.J., & Montelione, G.T. 2005.
Assessing Precision and Accuracy of Protein Structures Derived From NMR Data. Proteins,
59, 655–661. Wiley-Liss. (ref. p.176)

[Sobolev et al., 1996] Sobolev, V., Wade, R.C., Vriend, G., & Edelman, M. 1996. Molecular
Docking Using Surface Complementarity. Proteins, 25, 120–129. Wiley-Liss. (ref. p.37)

[Song et al., 2009] Song, C.M., Lim, S.J., & Tong, J.C. 2009. Recent advances in computer-aided
drug design. Brief. Bioinform., 10, 579–591. Oxford University Press. (ref. p.33, 51)

[Soto, 2001] Soto, C. 2001. Protein misfolding and disease; protein refolding and therapy. FEBS
Letters, 498, 204–207. Elsevier Science. (ref. p.17, 30)

[Sotriffer & Klebe, 2002] Sotriffer, C., & Klebe, G. 2002. Identification and mapping of small-
molecule binding sites in proteins: computational tools for structure-based drug design. Il
Farmaco, 57, 243–251. Elsevier Science. (ref. p.34, 51, 87)

[Sotriffer et al., 2002] Sotriffer, C.A., Gohlke, H., & Klebe, G. 2002. Docking into Knowledge-
Based Potential Fields: A Comparative Evaluation of DrugScore. J. Med. Chem., 45, 1967–
1970. American Chemical Society. (ref. p.44)

[StarUML, 2005] StarUML. 2005. StarUML.
http://staruml.sourceforge.net (ref. p.253)

[Symyx, 1982-2009] Symyx. 1982-2009. Available Chemicals Directory. Symyx Technologies,
Inc.
http://www.symyx.com/products/databases/sourcing/acd (ref. p.50)

[Szustakowski & Weng, 2000] Szustakowski, J.D., & Weng, Z. 2000. Protein Structure Alignment
Using a Genetic Algorithm. Proteins, 38, 428–440. Wiley-Liss. (ref. p.37)

241

References

[Taft et al., 2008] Taft, C.A., Semighini, E.P., & Silva, C.H.T.P. 2008. Applications of quantum
mechanics to drug design. Pages 1–32 of: Taft, C.A., & Silva, C.H.T.P. (eds), Current Methods in
Medicinal Chemistry and Biological Physics. Research Signpost. ISBN 978-81-308-0292-3. (ref. p.27,
51)

[Tatsumi et al., 2004] Tatsumi, R., Fukunishi, Y., & Nakamura, H. 2004. A Hybrid Method of
Molecular Dynamics and Harmonic Dynamics for Docking of Flexible Ligand to Flexible
Receptor. J. Comput. Chem., 25, 1995–2005. Wiley Periodicals. (ref. p.44)

[Taylor & Burnett, 2000] Taylor, J.S., & Burnett, R.M. 2000. DARWIN — A Program for Docking
Flexible Molecules. Proteins, 41, 173–191. Wiley-Liss. (ref. p.44)

[Taylor et al., 2002] Taylor, R.D., Jewsbury, P.J., & Essex, J.W. 2002. A review of protein-small
molecule docking methods. J. Comput. Aided Mol. Des., 16, 151–166. Kluwer Academic
Publishers. (ref. p.32, 51)

[Teague, 2003] Teague, S.J. 2003. Implications of Protein Flexibility for Drug Discovery. Nat.
Rev. Drug Discovery, 2, 527–541. Nature Publishing. (ref. p.40, 51)

[Teodoro & Kavraki, 2003] Teodoro, M.L., & Kavraki, L.E. 2003. Conformational Flexibility
Models for the Receptor in Structure Based Drug Design. Curr. Pharm. Des., 9, 1635–1648.
Bentham. (ref. p.44, 51)

[Teodoro et al., 2001] Teodoro, M.L., Phillips, Jr., G.N., & Kavraki, L.E. 2001. Molecular Docking:
A Problem with Thousands Of Degrees Of Freedom. Pages 960–965 of: Proc. IEEE Int. Conf.
Rob. Autom., vol. 1. IEEE. (ref. p.41, 47)

[Teodoro et al., 2002] Teodoro, M.L., Phillips, Jr., G.N., & Kavraki, L.E. 2002. A Dimensionality
Reduction Approach to Modeling Protein Flexibility. Pages 299–308 of: Proc. Int. Conf.
Comput. Biol., vol. 1. ACM Press. (ref. p.47)

[Todorov et al., 2003] Todorov, N.P., Mancera, R.L., & Monthoux, P.H. 2003. A new quantum
stochastic tunnelling optimisation method for protein-ligand docking. Chem. Phys. Lett.,
369, 257–263. Elsevier Science. (ref. p.39)

[Tompa et al., 2005] Tompa, M., Li, N., Bailey, T.L., Church, G.M., de Moor, B., Eskin, E., Favorov,
A.V., Frith, M.C., Fu, Y., Kent, W.J., Makeev, V.J., Mironov, A.A., Noble, W.S., Pavesi, G., Pesole,
G., Régnier, M., Simonis, N., Sinha, S., Thijs, G., van Helden, J., Vandenbogaert, M., Weng,
Z., Workman, C., Ye, C., & Zhu, Z. 2005. Assessing computational tools for the discovery
of transcription factor binding sites. Nature Biotechnology, 23, 137–144. Nature Publishing.
(ref. p.51)

[Totrov & Abagyan, 2008] Totrov, M., & Abagyan, R. 2008. Flexible ligand docking to multiple
receptor conformations: a practical alternative. Curr. Opin. Struct. Biol., 18, 178–184. Elsevier
Science. (ref. p.42)

[Tovchigrechko et al., 2002] Tovchigrechko, A., Wells, C.A., & Vakser, I.A. 2002. Docking of
Protein Models. Protein Science, 11, 1888–1896. Cold Spring Harbor Laboratory Press. (ref. p.36)

[Vakser, 1996] Vakser, I.A. 1996. Low-Resolution Docking — Prediction of Complexes for
Underdetermined Structures. Biopolymers, 39, 455–464. John Wiley & Sons. (ref. p.36)

[Vakser et al., 1999] Vakser, I.A., Matar, O.G., & Lam, C.F. 1999. A systematic study of low-
resolution recognition in protein-protein complexes. Proc. Natl. Acad. Sci. USA, 96, 8477–8482.
National Academy of Sciences. (ref. p.36)

[Venkatachalam et al., 2003] Venkatachalam, C.M., Jiang, X., Oldfield, T., & Waldman, M. 2003.
LigandFit: a novel method for the shape-directed rapid docking of ligands to protein active
sites. J. Mol. Graph. Model., 21, 289–307. Elsevier Science. (ref. p.35, 39)

[Verdonk et al., 2003] Verdonk, M.L., Cole, J.C., Hartshorn, M.J., Murray, C.W., & Taylor, R.D.
2003. Improved Protein-Ligand Docking Using GOLD. Proteins, 52, 609–623. Wiley-Liss.
(ref. p.43, 199)

242

References

[Villoutreix et al., 2007] Villoutreix, B.O., Renault, N., Lagorce, D., Sperandio, O., Montes, M., &
Miteva, M.A. 2007. Free resources to assist structure-based virtual ligand screening
experiments. Curr. Protein Pept. Sci., 8, 381–411. Bentham. (ref. p.32, 51)

[Villoutreix et al., 2009] Villoutreix, B.O., Eudes, R., & Miteva, M.A. 2009. Structure-based virtual
ligand screening: recent success stories. Comb. Chem. High Throughput Screening, 12, 1000–
1016. Bentham. (ref. p.33, 51)

[von Itzstein et al., 1993] von Itzstein, M., Wu, W.Y., Kok, G.B., Pegg, M.S., Dyason, J.C., Jin, B.,
Van Phan, T., Smythe, M.L., White, H.F., Oliver, S.W., Colman, P.M., Varghese, J.N., Ryan, D.M.,
Woods, J.M., Bethell, R.C., Hotham, V.J., Cameron, J.M., & Penn, C.R. 1993. Rational design of
potent sialidase-based inhibitors of influenza virus replication. Nature, 363, 418–423. Nature
Publishing. (ref. p.19)

[Wall, 1996] Wall, M. 1996. GAlib. Massachusetts Institute of Technology.
http://lancet.mit.edu/ga (ref. p.65)

[Wang, 2003] Wang, R. 2003. X-Score. University of Michigan.
http://sw16.im.med.umich.edu/software/xtool (ref. p.61)

[Wang et al., 2000] Wang, R., Gao, Y., & Lai, L. 2000. Calculating partition coefficient by atom-
additive method. Perspect. Drug Discov. Des., 19, 47–66. Kluwer Academic Publishers.
(ref. p.63)

[Wang et al., 2002] Wang, R., Lai, L., & Wang, S. 2002. Further development and validation of
empirical scoring functions for structure-based binding affinity prediction. J. Comput. Aided
Mol. Des., 16, 11–26. Kluwer Academic Publishers. (ref. p.60, 61, 62, 191, 196)

[Wang et al., 2003] Wang, R., Lu, Y., & Wang, S. 2003. Comparative Evaluation of 11 Scoring
Functions for Molecular Docking. J. Med. Chem., 46, 2287–2303. American Chemical Society.
(ref. p.60, 61, 197)

[Warren et al., 2006] Warren, G.L., Webster Andrews, C., Capelli, A-M., Clarke, B., LaLonde,
J., Lambert, M.H., Lindvall, M., Nevins, N., Semus, S.F., Senger, S., Tedesco, G., Wall, I.D.,
Woolven, J.M., Peishoff, C.E., & Head, M.S. 2006. A Critical Assessment of Docking Programs
and Scoring Functions. J. Med. Chem., 49, 5912–5931. American Chemical Society. (ref. p.51,
60)

[Wass & Sternberg, 2009] Wass, M.N., & Sternberg, M.J.E. 2009. Prediction of ligand binding
sites using homologous structures and conservation at CASP8. Proteins, 77, 147–151. Wiley-
Liss. (ref. p.34)

[Wei et al., 2002] Wei, B.Q., Baase, W.A., Weaver, L.H., Matthews, B.W., & Shoichet, B.K. 2002. A
Model Binding Site for Testing Scoring Functions in Molecular Docking. J. Mol. Biol., 322,
339–355. Academic Press. (ref. p.35)

[Wells et al., 2005] Wells, S., Menor, S., Hespenheide, B., & Thorpe, M.F. 2005. Constrained
geometric simulation of diffusive motion in proteins. Physical Biology, 2, 127–136. Institute
of Physics. (ref. p.41)

[Williamson, 1987] Williamson, J.F. 1987. Random selection of points distributed on curved
surfaces. Phys. Med. Biol., 32, 1311–1319. Institute of Physics. (ref. p.188)

[Wilson & Madsen, 2001] Wilson, P.R., & Madsen, L. 2001. The Memoir Class for Configurable
Typesetting.
http://tug.ctan.org/tex-archive/macros/latex/contrib/memoir (ref. p.253)

[Wodak & Méndez, 2004] Wodak, S.J., & Méndez, R. 2004. Prediction of protein-protein
interactions: the CAPRI experiment, its evaluation and implications. Curr. Opin. Struct. Biol.,
14, 242–249. Elsevier Science. (ref. p.30)

[Wüthrich, 1986] Wüthrich, K. 1986. NMR of Proteins and Nucleic Acids. John Wiley & Sons.
ISBN 0-471-82893-9. (ref. p.175)

243

References

[Wüthrich, 1990] Wüthrich, K. 1990. Protein Structure Determination in Solution by NMR
Spectroscopy. J. Biol. Chem., 265, 22059–22062. American Society for Biochemistry and
Molecular Biology. (ref. p.175)

[Xu et al., 2000] Xu, D., Xu, Y., & Uberbacher, E.C. 2000. Computational Tools For Protein
Modelling. Curr. Protein Pept. Sci., 1, 1–21. Bentham. (ref. p.30)

[Yao et al., 2003] Yao, H., Kristensen, D.M., Mihalek, I., Sowa, M.E., Shaw, C., Kimmel, M.,
Kavraki, L., & Lichtarge, O. 2003. An Accurate, Sensitive, and Scalable Method to Identify
Functional Sites. J. Mol. Biol., 326, 255–261. Academic Press. (ref. p.34)

[Yershova & LaValle, 2006] Yershova, A., & LaValle, S.M. 2006. Improving motion planning
algorithms by efficient nearest-neighbor searching. Transactions on Robotics, 22. IEEE.
(ref. p.46)

[Yershova et al., 2005] Yershova, A., Jaillet, L., Siméon, T., & LaValle, S.M. 2005. Dynamic-
Domain RRTs: Efficient Exploration by Controlling the Sampling Domain. Pages 3856–3861
of: Proc. IEEE Int. Conf. Rob. Autom. IEEE. (ref. p.46)

[Zavodszky et al., 2004] Zavodszky, M.I., Lei, M., Thorpe, M.F., Day, A.R., & Kuhn, L.A. 2004.
Modelling Correlated Main-Chain Motions in Proteins for Flexible Molecular Recognition.
Proteins, 57, 243–261. Wiley-Liss. (ref. p.41)

[Zeng, 2000] Zeng, J. 2000. Computational Structure-Based Design of Inhibitors that Target
Protein Surfaces. Comb. Chem. High Throughput Screening, 3, 355–362. Bentham. (ref. p.50)

[ZINC, 2005] ZINC. 2005. ZINC Is Not Commercial.
http://zinc.docking.org

[Zsoldos et al., 2003] Zsoldos, Z., Szabo, I., Szabo, Z., & Johnson, A.P. 2003. Software tools for
structure based rational drug design. J. Mol. Struct. (Theochem), 666, 659–665. Elsevier Science.
(ref. p.45)

All websites checked on 1st May 2010.

244

List of Tests Performed

For explanations of the notation, see Appendix E (p.195).

1AF2 on Eurymedon P q . 86

Astex Diverse Set on Eurymedon A . 93
PIES calculation only, various parameters

Astex Diverse Set on Eurymedon A . 94
PIES calculation only, various parameters

Astex Diverse Set on Eurymedon A . 98
PIES and PASS calculation only

Astex Diverse Set on Eurymedon A . 99
PIES and PASS calculation only

Astex Mini Set on Eurymedon A . 100
various place options

1AF2 on Eurymedon CA . 101
search box prediction only, 5 each from PIES and PASS, maximum overlap 12.5%

Astex Diverse Set on Eurymedon CA . 103
various search box predictions, crystal conformations only

Astex Mini Set on Eurymedon CA . 105
5 boxes from PIES, various narrowing periods and limits, crystal conformations only

Astex Diverse Set on Eurymedon A . 108
shape comparison only

Astex Mini Set on Eurymedon A . 110
shape comparison only

1AF2 on Eurymedon A . 112
100 poses, pre-alignment only, trained by 1AF2#2 + Mini-Set

1AF2 on Eurymedon A . 113
100 poses, pre-alignment only, trained by 1AF2#2 + Mini Set

Astex Mini Set on Eurymedon A . 115
trained by 12 randomly selected cases, various alignment options

1AF2 on Eurymedon K . 121
various optimization periods

1AF2 on Eurymedon K . 122
various generation counts and optimization periods

1AF2 on Eurymedon i P C . 124

1AF2 on Eurymedon C . 126

1AF2 on Eurymedon C . 127
various LUT sizes

1AF2 on Eurymedon R OR . 130
various scoring thresholds, all or 8 atoms

245

List of Tests Performed

1AF2 on Eurymedon O R OR . 131
various scoring thresholds, all or 8 atoms

Astex Mini Set on Eurymedon R . 132
various scoring thresholds

Astex Mini Set on Eurymedon OR . 133
various scoring thresholds

1AF2 on Eurymedon M . 136
various similarity thresholds

1K3U on Eurymedon N . 141
various result quotas, minimum 120 of 240 generations

1AF2 on Eurymedon P K S F . 146

Astex Diverse Set on Eurymedon P K . 147

Astex Diverse Set on Eurymedon P K . 147
crystal structures only

1AF2 on Eurymedon J . 152
various job and step count limits

Astex Mini Set to 1LRH on Tom J . 155
parallel, various Manager configurations

Astex Mini Set to 1LRH on Tom J . 156
parallel, various Manager configurations

Astex Mini Set on Eurymedon x B i P q O R OR M ORM N ORN K

ORK F FN ORFN A CA ORCA 158
using default parameters as listed in Table 8.1

(I)FFT of 1283 array on Eurymedon . 181

246

Index
Program names are listed in italics;
Implementation classes, functions, and inputs are printed in monospaced type.

Symbols
1AF2 (PDB code): 86, 88, 89, 91, 101, 102,

112, 113, 122, 126, 127, 130, 131, 135,
136, 145, 150, 152, 196–199, 215

1K3U (PDB code): 140, 141, 197–199

A
active site: 32–35, 39, 40, 43–46, 51, 53,

77, 87, 89, 91, 92, 96–99, 101, 103, 104,
106, 107, 135, 164, 172, 175, 182, 184,
197, 210, see also pocket

AddValue: 214
align: 210, 216
Aligner: 180, 182, 184
AlignFunction: 211
alpha helix: 173
alpha-shape: 24, 34
Alzheimer’s: 17, 18
AMBER: 26
amino acid: 17, 28, 31, 40, 171, 172, 174,

175
anthrax: 20, 50
ApplicationContext: 203, 207, 219
Assess: 217
Astex Diverse Set: 10, 13
Astex Diverse Set: 92–95, 97–99, 103, 105,

108, 113, 145, 147, 197, 199, 200
Astex Mini Set: 10, 11
Astex Mini Set: 99, 100, 104, 105,

108–110, 112, 113, 115, 132–134, 153,
155–158, 197, 200

Atom: 178
atom: 17, 19, 23–26, 28, 30, 32, 34–37, 41,

42, 44–47, 51, 55–68, 70, 78, 83, 89, 90,
96–99, 107, 111, 117, 118, 126, 128–131,
133, 134, 144, 145, 155, 159, 163, 171,
175, 184, 185, 188, 189, 196, 197, 199,
200, 202, 206, 211, 213

- heavy: 98, 99, 145, 155, 200
AtomPositionContainer: 211
AutoDock: 37, 44, 60, 118

B
backbone: see main chain
Ball: 178
ball and stick: 23, 25, 40
beta sheet: 25, 173
beta-secretase: 17, 18
binding site: see active site
biochemistry: 17, 20, 22, 23, 30, 34, 73,

161, 171, 176
bioinformatics: 20, 30, 32
bond: 23, 25, 27, 29, 30, 32, 33, 41, 43,

45–47, 56–62, 161, 171–173, 176
Boost: 64, 69
box: 209, 210
BranchGroup: 178

C
C++: 53, 54, 69, 180–182
caching: 71, 78, 101, 114, 124–127, 150,

152, 161, 200, 202
Calc: 211, 212, 214
CalculateScore: 211
cancer: 17, 20, 50
CAPRI: 30, 39
carbon: 18, 29, 32, 66, 171, 196, 198
carbon monoxide: 32
CASP: 30
chaperone: 31
CHARMM: 26, 39, 44
chatter: 220
ChemScore: 60
collision: 54, 55, 57, 163
command line: 65, 144, 153, 203, 205,

209, 219, 223
Comp3D: 29
comparison: 20, 27–30, 34, 37, 41–44, 47,

51, 54, 60, 70, 72, 81, 85, 86, 95, 97–100,
103, 105, 106, 108, 110, 111, 115, 121,
134–136, 146, 147, 150, 157, 158, 167,
180, 181, 195, 209, 210, 214, 216

complexity: 89, 96–99, 135, 150, 178, 188
computational chemistry: 18, 53, 168
computer science: 20, 69

247

Index

ConfContainerFile: 207
ConfContainerMKBBase: 207
ConfID: 207, 218
Controller: 153, 155, 205, 218–225
Convex Global Underestimator: 26
CreateLigandContext: 211
cSpheres: 10, 12
cSpheres: 57, 58, 163, 188, 190
cystic fibrosis: 17

D
Dali: 29
DaliLite: 29
DARWIN: 44
decomposition: 26, 41, 54, 56, 57, 59, 72,

73, 75, 77, 161, 163, 188
deferred evaluation: 74, 75, 79, 165
define: 210
de novo: 49–51
descriptor: 29, 36, 48, 75, 78, 95, 106–111,

149, 150, 161, 201, 202, 218
directed pathway: 31
disease: 17, 18, 30, 32, 49
distributed: see parallel
DoCalculateScore: 211
DOCK: 35, 42, 43, 50
Docked: 214
docking: 19–24, 28–30, 32–51, 53, 54, 59,

61–64, 66–71, 73–75, 77–81, 83, 84, 86,
88, 91, 94, 95, 99–101, 103, 104, 106,
107, 110–113, 115, 117, 120, 121,
123–127, 131–136, 138, 140, 141,
143–157, 159, 160, 162–165, 167, 168,
177–180, 182–184, 186, 197, 200, 203,
205, 207, 208, 211, 214, 216–223

DOX: 22, 53, 64, 65, 69–71, 75, 78–80, 99,
112, 120, 123, 125, 131, 134, 139, 144,
149–151, 166, 200–204, 206, 207, 209,
214

DOXGA: 65, 69, 203
drop: 221
dropped: 221
drug: 18–20, 30, 32, 33, 49, 51, 59, 168,

199
DrugScore: 44
dynamics: 27, 37, 39–41, 44, 46, 48, 64,

163

E
early rejection: 71, 72, 74, 78, 79, 127–134,

137–139, 141, 151, 159, 160, 162, 164,
165, 167, 197, 202, 206, 218, 223

EasyDock: 39
editions of DOX
- A : 93, 94, 98–100, 108, 110, 112, 113,

115, 158, 160
- B : 158, 159, 201
- C : 124, 126, 127
- CA : 101, 103, 105, 158, 160, 167, 195
- F : 146, 150, 158, 159
- FN : 158, 160
- i : 123, 124, 158, 159, 201
- J : 151, 152, 155, 156
- K : 121, 122, 145–147, 158, 159, 201
- M : 136, 158, 159
- N : 141, 158, 159
- O : 131, 158, 159
- OR : 130, 131, 133, 158
- ORCA : 158, 160, 167
- ORFN : 158, 160
- ORK : 158, 159, 206
- ORM : 158, 159
- ORN : 158, 159
- P : 86, 123, 124, 126, 127, 135, 145–147,

158, 159, 200, 201
- q : 86, 157–159, 167, 201
- R : 130–132, 158, 159
- S : 146, 149
- x : 157, 158, 201
Education: 112, 148, 216, 217
EntryFactory: 212, 213
Environment: 183, 184
Euler angle: 38, 77, 83–87, 159
Eurymedon (computer): 88, 93, 94,

98–101, 103, 105, 108, 110, 112, 113,
115, 122, 126, 127, 130–133, 136, 141,
147, 152, 158, 181, 200

F
FFT: see Fourier transform
FightAIDS@home: 20
FIRST: 26, 41, 56, 59
FirstConf: 207
FLEXE: 45
FLEXX: 45
FLOG: 42
fluorine: 18
folding: 20, 26, 28, 30–32, 47, 51, 174

248

Index

Folding@home: 20
format: 30, 57, 144, 150, 178, 213, 215, 225
- MOL2: 213
- PDB: 57, 144
- SDF: 11, 144, 147, 205, 207, 213

Fortran: 53
Fourier transform: 36–38, 40, 48, 53, 54,

60, 66, 177–182, 184
FreeState: 208
FRODA: 41
FROG: 200

G
GAlib: 65, 69
GAMESS: 28
Gaussian distribution: 85
Gaussian function: 29
GenerateBoxes: 216
GeneratePoses: 216
generation: 26, 37, 43, 65, 78, 101–105,

114, 118–120, 122, 124, 135, 139, 141,
150, 157, 161, 195, 208, 218

genetic algorithm: 29, 36, 37, 43, 44, 48,
63, 65, 69, 72–74, 78, 79, 87, 101, 102,
105, 118–122, 126, 134, 139, 153, 161,
162, 195, 206–208, 218

geometry: 19, 20, 24, 25, 27–31, 33–38,
48, 56, 60, 72, 75, 77, 78, 83, 87, 99, 111,
164, 165, 168, 171, 177, 180, 202, 208,
211, 214

getLabel: 184
GetPriority: 218
GetProgress: 218
GetSFcomplexity: 210
Glide: 50
GOLD: 43, 199
gradient descent: 39, 54, 184–186
grid: 27, 28, 35–39, 46, 53, 66, 67, 73,

88–90, 92, 96, 123, 177, 178, 180–184,
206, 215

grid computing: 50
Guess: 216

H
HADDOCK: 38
haemoglobin: 17, 32, 40
hardware: 108, 126, 127, 152, 195, 200
heavy atom: see atom:heavy
hello: 220, 221
heuristics: 73, 77, 78, 102, 104, 161

Hex: 38
hierarchical: 21, 26, 27, 43, 54–57, 59, 144,

163
HighIsGood: 211
HIV: 19, 43, 57
human immunodeficiency virus: see

HIV
Huntington’s: 17
hydrogen: 25, 27, 29, 30, 37, 60–63, 90,

107, 161, 171, 173, 174, 196, 206, 211
hydrogen bond: 27, 62

I
IConfContainer: 150
id: 205
Ideogen: 14
Ideogen: 214, 215
if: 210
ILigandContext: 211
in silico: 18
in vitro: 18, 174
in vivo: 18, 176
incremental construction: 44, 48, 51, 163
IndexedCluster: 97
indexing: 73, 77, 97–99, 159, 202, 206
influenza: 19
inhibitor: 18, 19, 43, 49, 50, 69, 182
Init: 208
InitState: 208, 209
interpolation: 71, 78, 84, 95, 111, 112,

118, 121, 123, 124, 149, 159, 164, 202,
206, 216

IPriorityFunction: 203, 218
IScoringFunction: 148, 203
ISearchMethod: 203, 207, 218
IsPersistent: 212
Iterative Convex Quadratic

Approximation: 26

J
Java: 53, 54, 177–183, 186
JCParams: 219
Job: 151, 208, 217–219
job: 50, 74, 75, 77, 79, 80, 151–155, 159,

161, 164, 165, 201, 202, 204, 205, 208,
217–225

JobBatch: 219
jobconfig: 205
JobManager: 203, 219
JOY: 25

249

Index

K
KENOBI: 37
keratin: 17

L
lazy evaluation: 23, 78, 102, 125
Learn: 217
LearnableProperty: 148, 149, 216, 217
LearnableValueFixed: 214
LearnableValueVar: 214
Lesson: 217
Levinthal Paradox: 31, 47
LigandFit: 35, 39
LIGIN: 37
LIGSITE: 35, 96
Load: 212, 214
LoadMKB: 211
look-up table: 65–67, 71, 73, 77–79,

101–104, 114, 121, 123–127, 144, 159,
161, 202, 205, 206, 209, 211, 212, 214

LUT: see look-up table

M
MacDOCK: 43
machine learning: 31, 65, 74, 75, 78, 79,

106, 114, 146, 148–150, 161, 162,
201–204, 214, 216, 217, 224

main chain: 17, 25, 29, 30, 34, 40, 42, 57,
171–174

Manager: 153–155, 203, 205, 219–225
ManagerLink: 203, 219
Markov model: 31
mechanics: 40
merging: 91, 135–137, 144, 159, 167, 215,

219
method: 209
Mining Minima: 26, 38
MKB: 11, 14, 79, 80, 112, 114, 143–148,

151, 153, 159–162, 165, 167, 201–203,
205–207, 209–216, 219, 220, 222–224

MKBEntry: 212, 214
MKBServer: 219
MMTSB: 27
Model: 178, 180
MOL2: see format:MOL2
Molecular Knowledge Base: see MKB
Molecule: 178, 184
Monte Carlo: 26, 31, 39, 164, 187
multi-scale: see hierarchical

N
NAMD: 26
narrowing: 78, 102, 104, 105, 114, 164,

166
NextConf: 207
nitrogen: 18, 171, 198
NMR: see nuclear magnetic resonance
normalized score: 146, 148, 149, 151, 162,

216, 217
NormalizeScore: 211
nuclear magnetic resonance: 19, 31, 175

O
OBAtom: 64
OBBond: 64
OBMol: 64, 207, 211
OpenBabel: 64, 69, 153, 207
Opine: 216
Opinion: 112, 216, 217
optimization: 26, 39, 48, 55, 67, 72, 78, 99,

102, 103, 117–122, 124, 126, 127, 135,
139, 157, 159, 164, 195, 201, 202, 206

OrthoDOX: 66, 153, 154, 203, 205, 218
overlap: 209
oxygen: 17, 18, 32, 66, 171, 198

P
pad: 209
parallel: 20, 28, 44, 47, 48, 50, 65, 66, 75,

77, 79, 80, 85, 87, 107, 143, 151,
153–156, 165, 166, 200–204, 217, 218

parameter: 21, 40, 46, 65, 74, 80, 87, 89,
92–97, 102, 104, 105, 120, 125, 127, 144,
145, 151, 152, 157, 158, 180, 182–184,
195, 203, 205, 210, 214, 217–219, 222

Parkinson’s: 17
partial evaluation: 164
PASS: 35, 96–99, 101–105, 149, 157
PASTRY: 95, 101, 106–113, 149, 157, 160
path planning: 45, 163
PDB: 10, 18, 19, 25, 29, 31, 33, 57, 144,

178, 182, 197, 199, see also format:PDB
peptide: 31, 34, 171, 172
pharmaceutical: 18, 20, 30, 59, 199
pharmacophore: 24, 160, 161
PIECE: 90, 95, 98, 149
PIES: 87–99, 101–105, 110, 149, 157, 210
Pipelined: 183, 184
PipelineStage: 184

250

Index

PIPER: 38
place: 99, 102, 209, 210, 216
PLP: 61, 62, 64, 65, 69, 210, 211
POCKET: 35, 96
pocket: 75, 77, 78, 87–105, 107, 110, 113,

114, 149, 150, 157, 160–162, 164, 166,
168, 201, 202, 210, see also active site

population: 36, 65, 71, 75, 77–79, 112,
113, 118, 120, 121, 135, 137, 139, 140,
153, 157, 161, 162, 195, 207

Potential: 184
potential: 18, 20, 26, 31, 38, 39, 43–46,

48–50, 60, 61, 63, 66, 74, 80, 97, 129,
148, 163, 168, 182, 185, 206, 210

pre-alignment: 78, 94, 95, 110–115, 149,
157, 160–162, 164, 165, 167, 202, 210

pre-positioning: 62, 94, 99, 100, 107, 111,
114, 160, 203, 204, 208–210, 216

prep_ligand: 211
PrePositions: 99, 102, 112, 203, 208
prioritization: 26, 72, 74, 78, 79, 129–131,

133, 134, 143, 149–152, 155, 159,
164–166, 201–203, 205, 207, 211, 217,
218, 220, 221, 223–225

Prioritize: 218
process: 183
processor: 50, 75, 80, 127, 143, 151–153,

155, 165, 200, 218, 219
Progress: 208
ProgressCallback: 184
PropAlignUSR: 111
PropPlacePASS: 97
PropPlacePIES: 91
PropShapeUSR: 111
Protein Data Bank: see PDB

Q
Q-Chem 2: 27
QMView: 28
QSD: 48
QSTUN: 39
quantum: 27, 28, 39, 40, 48, 51
quaternion: 77, 83–87, 134, 159, 164, 167,

168, 201, 202, 206
quota: 74, 79, 137–141, 151, 157, 159, 160,

162, 164, 167, 197, 199, 202, 220, 223,
224

R
random: 209
RCNMA: 41
RDOCK: 38, 39
reach: 209
RealWorldArray: 125
reduced point: 26, 59
reference: 209
refine: 183
report: 221
res: 209
Residue: 178
result: 183, 184
ResultCallback: 184
Results: 208
Resume: 218
review: 23, 24, 26, 30–35, 39, 41, 42, 44,

48, 50, 51, 60, 64, 183
RMSD: 19, 43, 81, 86, 104, 113, 120, 123,

140, 145, 159, 160, 166, 175, 197, 200,
206, 209, 211

robotics: 20, 45, 46, 84
ROCK: 41
Rocks: 69
root-mean-square deviation: see RMSD
Rosetta@home: 20
RosettaLigand: 40
Rotation: 86
run: 183, 184

S
Save: 212, 214
SaveMKB: 211
scale: 209
scoring function: 21, 34–36, 38, 43, 45, 48,

51, 53, 59–61, 63–65, 69–72, 78, 102,
118, 119, 121, 123, 125, 128, 129, 134,
143–146, 148, 160, 164, 168, 178, 180,
182, 191, 196, 203–205, 207, 210–212,
217, 218, 222

screening: 19–22, 33, 44, 49, 50, 53, 59,
61, 66, 69, 70, 73, 79–81, 140, 149, 151,
153, 164–166, 168, 197

screensaver: 20, 50
SDF: see format:SDF
search method: 21, 37, 47, 59, 63, 64, 69,

70, 73, 75, 78, 79, 103, 123, 134,
136–139, 143–145, 153, 161, 162, 164,
166, 195, 203–205, 207–211, 217, 218,
222

251

Index

SearchCase: 207, 208, 218
SearchState: 207, 208, 218
SetPriority: 218
setTransform: 211
shape: 19, 21, 24, 27, 29, 31, 34, 36–40, 43,

45, 48, 54–56, 73, 75, 78, 79, 81, 83, 87,
92, 95, 99, 106–111, 114, 123, 134, 144,
149, 150, 160, 161, 178, 180, 188, 201,
202, 212

side chain: 40, 41, 172, 175
Similarity: 214, 216
similarity: see comparison
SimplePriority: 151, 218
simulated annealing: 26, 37, 38, 41, 48,

138
software: 18, 21, 26, 27, 40, 53, 65, 66, 91,

144, 153, 156, 165, 168, 203
SolidPart: 178
Sort: 150
space-filling: 18, 23, 87
spatial reasoning: 20, 45
SpatialOccupancy: 66, 73, 87, 89
sphere: 18, 23–25, 30, 35, 54–59, 84, 85,

87–89, 91, 92, 95–97, 106–109, 117, 150,
163, 178, 180, 187–189

sphere tree: 54–59, 89, 163
SphereCluster: 89, 97
spherical harmonics: 29
Start: 209, 210, 216, 218
Step: 208
stop: 219
stratagem: 21, 53, 54, 59, 69, 70, 74–77,

80, 99, 124, 131, 151, 157, 160, 166, 168,
201–203, 206

strategy: 157, 166, 168
string kernels: 31
structure
- primary: 28, 41, 172, 173
- quaternary: 174
- secondary: 25, 37, 40, 41, 172–174
- tertiary: 30, 32, 174

STUN: 39
sulfur: 18, 198
Suppos: 29
surface: 23–25, 29, 33–37, 40, 46, 59, 60,

66–68, 70, 73, 75, 77, 78, 84, 87–89, 92,
94, 96, 107, 117, 129, 159, 161, 163, 164,
175, 178, 180, 182, 184, 185, 187–190

- dots: 23, 24, 29, 37, 188–190
- patches: 23, 36, 187
- smooth: 24, 25, 66
- solvent-accessible: 24, 25

- Van der Waals: 24, 25, 33
SURFNET: 35
Syllabus: 148, 203, 217

T
Teach: 216, 217
threshold: 72, 81, 88–90, 92, 94, 96,

128–137, 157, 159, 160, 162, 165, 167,
202, 206

time: 20, 23, 32, 33, 38, 40, 41, 43, 45–50,
57, 61, 66, 70–74, 78–81, 86, 92, 93, 95,
98–100, 102–106, 108, 110, 114, 115,
119–122, 124–128, 131–138, 140, 141,
143–147, 149, 150, 152, 155, 157,
159–164, 174, 175, 180–182, 187, 188,
218

Tom (computer): 153, 155, 200
Traditional Chinese Medicines

Database: 19
TRUST: 41
try: 209

U
USR: 29, 106, 108–113, 149, 157, 160, 210

V
Van der Waals: 24, 25, 33, 36, 37, 56, 61,

63, 129, 176, 196, 206, see also
surface:Van der Waals

W
water: 23, 24, 36, 44, 171, 172

X
x-ray diffraction: 19, 175
XScore: 53, 60–67, 69, 71, 73, 77, 87, 125,

126, 155, 159, 187, 189, 191, 195–197,
200, 210, 211

Z
ZDOCK: 38, 39
zinc: 196
ZINC Is Not Commercial: 19

252

Colophon

This document was typeset using LATEX, MiKTEX [Schenk et al., 2000], the Memoir
package [Wilson & Madsen, 2001], and much wrangling [Skone, 2010]. The text font
is URW Palladio, a Palatino clone, with additional shapes from Pazo Math. The headings
and captions are set in URW Classico (Optima), and the monospaced code font is Bera
Mono, based on Bitstream Vera. The source files were written using LaTeX Editor (LEd)
[Skórczyński & Deorowicz, 2005], and the index was compiled with the help of the
MakeIndex tool and my own program Tin. Bibliographic references were managed using
Microsoft Excel and Access, and then Word was used to convert that data into a BIBTEX
source list. Matilda would have been helpful, but unfortunately arrived too late.

The graphs were produced by Excel; their data was extracted from DOX’s outputs
using utilities I created in Borland (now Embarcadero) Delphi. Most of the illustrations
were drawn in PowerPoint, and the UML diagram in Figure F.1 was constructed with
StarUML [StarUML, 2005]. Where necessary, PrimoPDF rendered these graphics into
Portable Document Format (PDF); GhostScript [Lang et al., 1988] was then used to
generate Encapsulated PostScript (EPS) files for printing. Molecular line diagrams were
produced with NOC [Chen et al., 2007]. Three-dimensional molecular images were ray-
traced using PyMOL [DeLano, 2006] and saved as Portable Network Graphics (PNG)
files. These and screen output bitmaps were converted to EPS by GraphicsMagick
[GraphicsMagick, 2003].

GSS. Oxford, Andover, and Seattle. 2005–2010.

end.

