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Abstract. The relationship between automata and logics has been in-
vestigated since the 1960s. In particular, it was shown how to determine,
given an automaton, whether or not it is definable in first-order logic
with label tests and the order relation, and for first-order logic with the
successor relation. In recent years, there has been much interest in lan-
guages over an infinite alphabet. Kaminski and Francez introduced a
class of automata called finite memory automata (FMA), that represent
a natural analog of finite state machines. A FMA can use, in addition to
its control state, a (bounded) number of registers to store and compare
values from the input word. The class of data languages recognized by
FMA is incomparable with the class of data languages defined by first-
order formulas with the order relation and an additional binary relation
for data equality.
We first compare the expressive power of several variants of FMA with
several data word logics. Then we consider the corresponding decision
problem: given an automaton A and a logic, can the language recognized
by A be defined in the logic? We show that it is undecidable for several
variants of FMA, and then investigate the issue in detail for deterministic
FMA. We show the problem is decidable for first-order logic with local
data comparisons – an analog of first-order logic with successor. We also
show instances of the problem for richer classes of first-order logic that
are decidable.

Logics are natural ways of specifying decision problems on discrete struc-
tures, while automata represent natural processing models. On finite words from
a fixed (finite) alphabet, Büchi [1] showed that monadic second-order logic has
the same expressiveness as deterministic finite state automata, while results of
Schützenberger and McNaughton and Papert showed that first-order logic with
the label and order predicates has the same expressiveness as counter-free au-
tomata [2, 3]. The latter theorem gives a decidable characterization of which
automata correspond to first-order sentences. Decidable characterizations have
also been given for first-order logic with the label and successor predicates [4].
These characterizations have been extended to many other contexts; for example
there are characterizations of the tree automata that correspond to sentences in
logics on trees [5].

Automata processing finite words over infinite alphabets (so called data
words) are attracting significant interest from the database and verification com-
munities, since they can be often used as low-level formalisms for representing
and reasoning about data streams, program traces, and serializations of struc-
tured documents. Moreover, properties specified using high-level formalisms (for



x ∼ r1 =⇒ store x in r1

true =⇒ store x in r1

x � r1 =⇒ store x in r1

x � r1 =⇒ store x in r1

x ∼ r1 =⇒ store x in r1

x = r1 ⇒ store x in r1 x = r1 ⇒ store x in r1

x �= r1 ⇒ store x in r1

x �= r1 ⇒ store x in r1

true⇒ store x in r1
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Fig. 1. A finite-memory automaton.

instance, within suitable fragments of first-order logic) can be often translated
into equivalent automaton-based specifications, easing, in this way, the various
reasoning tasks.

Different models of automata which process words over infinite alphabets
have been proposed and studied in the literature (see, for instance, the surveys [6,
7]). Pebble automata [8] use special markers to annotate locations in a data word.
The data automata of [9] parse data words in two phases, with one phase applying
a finite-state transducer to the input data word and another deciding acceptance
on the grounds of a classification of the maximal sub-sequences consisting of the
same data values. Of primary interest to us here will be a third category, the
finite memory automata [10], also called register automata, which make use of a
finite number of registers in order to store and eventually compare values in the
precessed data word.

It is known that the languages accepted by finite memory automata are
strictly contained in the languages definable in monadic second-order logic with
the successor relation and a binary relation to test data equality [8]. The first
order variant of this logic is incomparable in expressive power with deterministic
finite memory automata: The set of words of even length can be recognized by
a finite memory automaton but can not be defined in first-order logic; on the
other hand the set of words that have two positions with the same value can be
expressed in first-order logic, but it can not be recognized by any deterministic
finite memory automaton.

We will compare the expressive power of several restrictions of deterministic
finite memory automata with restrictions of MSO. We consider the class of finite
memory automata with a bounded number of registers as well as the class that
can only perform “local” data comparisons (within a fixed distance). We will
also look at several variants of first-order logic – we will look at logic where we
can use equality between any two symbols in the word, as well as logics where
one can only compare symbols “locally”. We will look at logics where the word
ordering relation is present, as well as logics where only the successor relation
is available. We will also consider “non-uniform first-order definability” where a
different formula is used depending on the alphabet.

Our main goal is to find effective characterisations for these logics with re-
spect to the automata models described above. That is, we present algorithms
that can decide questions of the form: Given an automaton and a logic, can the
language of the automaton be defined in the logic?



x � r1, x � r2 ⇒ store x in r1, delete r2

x � r1 ⇒ store x in r1

true ⇒ store x in r1
x ∼ r1

⇒ store
x in r1

x ∼ r1 ⇒ store x in r1

x � r1 ⇒ store x in r2

x ∼ r1 ⇒ store r2 in r1, store x in r2

x ∼ r2 ⇒ store x in r1, delete r2

true ⇒ store x in r1

x = r1 ⇒ store x in r1

x = r1
⇒ store

x in r1

x �= r1, x �= r2 ⇒ store x in r1, delete r2

x �= r1 ⇒ store x in r2

x �= r1 ⇒ store x in r1

x = r2 ⇒ store x in r1, delete r2

x = r1 ⇒ move r2 to r1, store x in r2
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Fig. 2. A finite-memory automaton recognizing a first-order definable language.

Example 1. Consider the automaton from Figure 1. We have had used an in-
tuitive notation in the figure – a more precise syntax is given in Section 1. An
edge is labeled with g ⇒ a where, g is a guard (precondition) and a an action
(postcondition); both g and a refer to the current symbol as x, and the ith reg-
ister as ri. This automaton accepts exactly the data words w such that there
are an even number of places n ≤ ∣w∣ with w(n) ≠ w(n − 1). Our algorithms
can check that this language is not definable in first-order logic with order and
data equality, even in the non-uniform model. The automaton from Figure 2
accepts words such that for every n with w(n) = w(n−1) there is y > x such that
w(y) ≠ w(y + 1) ≠ w(y + 2) and w(y) ≠ w(y + 2). Our techniques can determine
that this language is first-order definable: in fact, definable using only local data
comparisons.

We first show that one can not hope to characterize logical classes for many
powerful classes of automata on infinite alphabets – for example, we show this
for non-deterministic memory automata, and for two-way deterministic memory
automata.

We thus focus on Deterministic Memory Automata (DMAs). We give a
method for deciding non-uniform FO definability for two special classes of DMAs
– 1-memory DMA and window automata (automata that can only make data
comparisons locally). We then provide a decidable criterion for a DMA being ex-
pressible within the local variants of first-order logic. We then turn to non-local
FO definability. The general question of decidability of non-local definability
is open; however, we provide effective necessary and sufficient conditions for a
subclass of DMA, the window automata, to be non-locally FO definable.

Organization: Section 1 explains the automata and logic formalisms that
are the core topic of this paper, and their relationships. Section 2 gives undecid-
ability results for several powerful models. Section 3 gives decidable criteria for
non-uniform first order definability within certain classes of memory automata.
Section 4 gives a decision procedure for first-order definability with only local
data comparisons. Section 5 investigates the broader question of deciding first-
order definability with unrestricted data comparisons. We do not resolve this
question, but provide effective necessary conditions and effective sufficient crite-
ria. Section 6 gives conclusions. All proofs can be found in the appendix.



1 Preliminaries

We fix an infinite alphabet D of (data) values. A (data) word is a finite sequence
of values from the infinite alphabet D. Two words u and v are said to be iso-
morphic, and we denote it by u ≃ v, if ∣u∣ = ∣v∣ and u(i) = u(j) iff v(i) = v(j)
for all pairs of positions i, j in u. The ≃-equivalence class of a word u, denoted
by [u]≃ or simply by [u], is called the ≃-type of u. A (data) language is a set of
data words. Given two words u and v, we write u =L v if either both u and v are
in L, or both are not. From now on, we tacitly assume that any data language
L is closed under ≃-preserving morphisms, namely, ≃ refines =L.

1.1 Finite-memory automata

In this section, we introduce a variant of Kaminski’s finite-memory automata
[10] that recognize data languages over an infinite alphabet D. These automata
process data words by storing a bounded number values into their memory and
by comparing them with the incoming input values.

Definition 1. A k-memory automaton (k-MA) is a tuple A = (Q0, . . . ,Qk, qI , F, T ),
where Q0, . . . ,Qk are pairwise disjoint finite sets of states, qI ∈ Q0 is an initial
state, and F ⊆ Q0 ∪ . . .∪Qk is a set of final states. T is a finite set of transitions
of the form (p,α,E, q), where p ∈ Qi for some i ≤ k, α is the ≃-type of a word of
length i + 1, E ⊆ {1, . . . , i + 1}, and q ∈ Qj with j = i + 1 − ∣E∣.

A configuration of a k-MA A is a pair (p, ā) consisting of a state p ∈ Qi,
with 0 ≤ i ≤ k, and a memory content ā ∈Di. The initial configuration is (qI , ε),
where ε denotes the empty memory content. The automaton can move from a
configuration (p, ā) to a configuration (q, b̄) by consuming an input symbol a iff
there is a transition (p,α,E, q) ∈ T such that the word ā ⋅ a has ≃-type α and b̄
is obtained from ā ⋅ a by removing all positions in E.

We enforce the following sanity conditions to every transition (p,α,E, q) of
a k-MA. First, we assume that E is non-empty whenever q ∈ Qk (this is in order
to guarantee that the length of the target memory content b̄ never exceeds k).
Then, we assume that if the ≃-type α is of the form [ā ⋅a], with ā(j) = a for some
1 ≤ j ≤ ∣ā∣, then E contains at least the index j (this is in order to guarantee
that the target memory content b̄ contains pairwise distinct elements).

A run of A is defined in the usual way. If u is a data word and A has a run
on u from a configuration (p, ā) to a configuration (q, b̄), then we denote this
by writing either uA(p, ā) = (q, b̄) or (p, ā) uÐÐÐÐ→

A
(q, b̄), depending on which is

more convenient. The language recognized by A, denoted L(A), is the set of all
words u such that uA(qI , ε) = (p, ā), for some p ∈ F and some ā ∈D∗.

A finite-memory automaton A = (Q0, . . . ,Qk, T, I, F ) is deterministic if for
each pair of transitions (p,α,E, q), (p′, α′,E′, q′) ∈ T , if p = p′ and α = α′, then
E = E′ and q = q′. Similarly, A is complete if for every state q ∈ Qi and every ≃-
type α with i+1 variables, T contains a transition rule of the form (p,α,E, q). We
abbreviate any deterministic and complete k-memory automaton by (k-)DMA.



Minimal deterministic finite-memory automata. Bouyer et. al. have given an
algebraic characterization of the languages that are accepted by a generalization
of DMA [11]. A Myhill-Neorde style characterization of the languages that are
accepted by DMA was given by Francez and Kaminski in [12]. They state as an
open question whether one can compute, given a DMA, a minimal DMA that
accepts the same language. In [13] we gave a positive answer to this question.
Precisely, we show that given a DMA that accepts a language L, one can com-
pute a DMA AL that has the minimum number of states and that stores the
minimum number of data values for every consumed input word. A semantics-
based definition of the set of values that need to be stored by any DMA A in
order to recognize a given language L is as follows:

Definition 2. Let L be a language. A value a is L-memorable in a word u if a
occurs in u and there is a word v and a value b ∉ u ⋅v such that u ⋅v ≠L u ⋅v[a/b].

We denote by memL(u) the sequence consisting of the L-memorable values of u
in the order of their last appearance in u.

In [13], we showed that a language is DMA-recognizable iff the following
equivalence relation has finite index:

Definition 3. Given a language L, we define the equivalence ≡L ⊆ D∗ × D∗

such that u ≡L v iff memL(u) ≃ memL(v) and for all words u′, v′ ∈ D∗, if
memL(u) ⋅ u′ ≃ memL(v) ⋅ v′ then u ⋅ u′ =L v ⋅ v′.

Let L be a language with equivalence ≡L of finite index. We can define the
canonical automaton for L as the k-memory automatonAL = (Q0, . . . ,Qk, qI , F, T ),
where k is the maximum length of memL(u) over all words u ∈D∗; Qi, with 0 ≤
i ≤ k, contains all ≡L-equivalence classes [u]≡L , with u ∈ D∗ and ∣memL(u)∣ = i;
qI is the ≡L-equivalence class of the empty word; F = {[u]≡L ∣ u ∈ L}; T contains
all transitions of the form ([u]≡L , α,E, [u ⋅ a]≡L), where u ∈ D∗, a ∈ D, α is the
≃-type of memL(u) ⋅ a, and E is the set of positions in memL(u) ⋅ a that have to
be removed from memL(u) ⋅ a to obtain memL(u ⋅ a).

Theorem 1 ([13]). Given a DMA A that recognizes L, the canonical automaton
for L can be effectively computed from A.

We will extensively exploit the following property of a canonical automaton
AL: after parsing an input word u, the automaton AL stores exactly the sequence
memL(u) of L-memorable values of u. It is also worth remarking that if two
words lead to distinct states in the canonical automaton AL, then they belong
to distinct ≡L-equivalence classes.

Local finite-memory automata. A DMA A is l-local if for all configurations (p, ā)
and all words u of length l, if uA(p, ā) = (q, b̄), then b̄ contains only values that
occur in u. We call local any DMA that is l-local for some l ∈ N. Then we can
show:

Proposition 1. The following problem is decidable: Given a DMA A, is A local?
If A is local then we can compute the minimum number l for which A is l-local.
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Fig. 3. A DWA that recognizes the language L = {aba . . . ba ∈D∗ ∣ a ≠ b}.

1.2 Window automata

The class of languages recognized by local DMA can be equivalently defined
using another model of automaton, which makes no use of memory:

Definition 4. An l-window automaton (l-WA) is a tuple A = (Q, qI , F, T ),
where Q is a finite set of states, qI ∈ Q is an initial state, F ⊆ Q is a set
of final states, and T is a finite set of transitions of the form (p,α, q), where
p, q ∈ Q and α is the ≃-type of a word of length at most l.

An l-WA A = (Q, qI , F, T ) processes an input word u = a1 . . . an from left to right,
starting form its initial state qI , as follows. At each step of the computation, if A
has consumed the first i symbols of the input word and has moved to state p, and
if T contains a transition of the form (p,α, q), with q ∈ Q and α = [ai+2−l . . . ai+1],
then A consumes the next symbol ai+1 of u and it moves to the target state q.
The notions of successful run and recognized language are as usual.

An l-WA is deterministic (denoted l-DWA) if for every pair of transitions
(p,α, q), (p′, α′, q′) ∈ T , if p = p′ and α = α′, then q = q′. Figure 3 shows an
example of a 3-DWA.

A path is a sequence of consecutive transitions in an automaton. A path ρ in
a DWA is realizable if there is a word u that induces a run along ρ. For example,
the path

p0
[abc]ÐÐÐ→ p1

[aaa]ÐÐÐ→ p2

is not realizable: Assume that a window automaton uses the first transition to
move from position i to i + 1 in the input word. This is only possible if the
positions i − 1, i, i + 1 have pairwise different values. Then the next transition
can not be used, as it requires that positions i, i + 1, i + 2 have the same value.
A DWA A is realizable if all paths in A is realizable. Observe that an l-DWA is
realizable iff for all transitions (p, [a1 . . . an], q), (q, [b1 . . . bm], r),

1. if n ≥m − 1, then an−m+2 . . . an ≃ b1 . . . bm−1

2. if n <m − 1, then a1 . . . an ≃ bm−n . . . bm−1.

Hence, it is decidable whether a DWA is realizable. In addition, for every DWA,
there is an equivalent realizable DWA. Note that the DWA shown in Figure 3 is
realizable.

Proposition 2. For every l-local DMA, there is an equivalent l-DWA and, vice
versa, for every l-DWA, there is an equivalent l-local (l-)DMA.
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Fig. 4. The inclusions between DMA and DWA.

In contrast to the above result, there is a non-local 1-DMA that recognizes the
language L = {a1 . . . an ∈D∗ ∣ a1 = an}, which is clearly not WA-recognizable.

Figure 4 shows the inclusions that hold between DMA and DWA.

1.3 Logics for Data Words

MSO(∼,<) denotes monadic second-order logic with predicates ∼ and <, inter-
preted respectively by the data-equality relation and by the total order re-
lation over the positions of a given data word. FO(∼,<) is the restriction of
MSO(∼,<) that only uses quantification over first-order variables. An example
of an FO(∼,<) formula is ∀x, y (x ∼ y → x = y), which requires all values in a
data word to be distinct (observe that = can be defined in terms of <). Note that
the language defined by the above formula is not DMA-recognizable.

We also consider fragments of FO(∼,<) where the predicates are replaced
by local variants. For instance, +1 denotes the successor relation, which holds
between two positions x and y (denoted y = x+1) iff y is the immediate successor
of x. We denote by FO(∼,+1) the first-order logic where the total order < has
been replaced by the successor relation +1.

There is also a local variant of the data-equality relation: given l ∈ N, x ∼l y
can be viewed as a shorthand for the formula y = x + l ∧ x ∼ y. We accordingly
denote by FO(∼≤l,<) the logic with the predicates < and ∼i, for all i ≤ l. For
example, the formula ∀x, y ∃z (x ∼5 y → y ≁ z) requires that if position y has
the same value as its fifth neighbor x to the left, then there is a position z that
has a different value than x and y.

It is easy to see that, for each number l, the language Ll = {a1 . . . an ∈ D∗ ∣
n ≥ l, a1 = al} can be defined in FO(∼≤l,<), but not in FO(∼≤l−1,<). Hence
the family of logics FO(∼≤l,<), where l ranges over N, forms an infinite (strictly
increasing) hierarchy. Note also that FO(∼,+1) can express properties like “the
first letter is equal to the last letter”, which can not be expressed in FO(∼≤l,<)
for any l ∈ N.

For each n ∈ N, let Dn be a subset of D consisting of exactly n elements. We
say that a language L ⊆ D∗ is definable in non-uniform FO(∼,<), abbreviated
NUFO(∼,<), if for each n ∈ N, the language LN = L∩D∗

n can be defined in FO(∼
,<) (under the assumption that input words are over the finite alphabet Dn).
Non-uniform variants of the other logics considered above are defined similarly.

Example 2. Consider the language L2× of all words u whose length is two times
the number of distinct values that occur in u. L2× can not be defined in FO(∼,<),
but it is definable in NUFO(∼,<) since L2× ∩D∗

n is finite for every n ∈ N.
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Fig. 5. An overview over some logics for data words.

The above example shows that the non-uniform definability is much weaker than
uniform definability (indeed, it can easily be shown that there are continuumly
many non-uniformly definable languages for any of our signatures). Nonetheless,
the following proposition shows that definability in the “local logic” FO(∼≤k,<)
is equivalent to definability in NUFO(∼≤k,<), provided that we restrict to DMA-
recognizable languages.

Proposition 3. Let L be a language recognized by a DMA and let l ∈ N. L
can be defined in NUFO(∼≤l,<) iff it can be defined in FO(∼≤l,<). An analogous
result holds when < is replaced by +1.

We do not know whether Proposition 3 holds also for the unrestricted logics
FO(∼,<) and FO(∼,+1).

Figure 5 gives an overview over the logics considered so far.

1.4 DMA vs Logics

Recall that the class of languages recognized by (deterministic) finite-state au-
tomata strictly includes the class of languages over finite alphabets defined with
first-order logic. This result does not extend to languages over infinite alpha-
bets: the language of all words with pairwise distinct symbols can be defined in
first-order logic with the (unrestricted) data-equality relation, but it can not be
recognized by any DMA. As with languages over finite alphabets, the set of all
(data) words of even length is clearly recognized by a 0-DMA, but it can not
be defined in first-order logic. Hence, first-order logics and DMA are, in general,
expressively incomparable.

For the restricted logics the situation is different. It follows from the next
proposition that any language that is definable in MSO(∼≤l,+1) is recognized by
an l-DMA. This also shows that local DMA are closed under the usual boolean
operations, projection, concatenation, and Kleene star.

Proposition 4. A language L can be defined in MSO(∼≤l,+1) iff it can be rec-
ognized by an l-local DMA.

Figure 6 gives an overview over the relationships between logics and DMA.
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Fig. 6. Comparing the expressive power of automata with that of logics.

Given that logics and automata are incomparable, we will focus on the prob-
lem of deciding when an automaton-recognizable language is definable within a
given logic. The dual problem of determining when a logical sentence corre-
sponds to a logic is not explored here – but it is easily shown to be undecidable
for our most powerful logics, since the satisfiability problem for these logics is
undecidable [8].

2 Undecidability Results

In this section we show that there is no hope for achieving effective characteri-
zations of fragments of FO(∼,<) within several classes of languages recognized
by automaton-based models stronger than DMA. We first consider the class of
languages recognized by non-deterministic finite-memory automata (NMA):

Theorem 2. Let L be a logic that is at most as expressive as FO(∼,<) and
that can define the universal language D∗. The following problem is undecidable:
Given an 3-NMA A, can L(A) be defined in L?

The proof (see the appendix) is by reduction from the the Post Correspon-
dence Problem (PCP) and it is along the same lines as the proof of Neven et al.
that universality is undecidable for NMA [8].

Below, we show that similar negative results hold for two-way deterministic
finite-memory automata DMA (2-way DMA) and for the weakest variant of
pebble automata, namely, weak one-way pebble automata (weak 1-way DPA).
We briefly sketch the distinctive features of these two models of automaton (see
[8] for formal definitions). A 2-way DMA can revisit the same positions in a
given input word several times, by moving its head in either direction. A pebble
automaton, on the other hand, has the ability to mark a finite number of word
positions by placing pebbles on them. The guards of the transitions of a 1-way
DPA allow it to compare the current input value with the values of the positions
marked by pebbles, but only the most recently placed pebble can be moved and



only to the right. Moreover, in the weak variant of DPA, new pebbles are placed
at the first position of the word. The proof of the following result is similar to
that of Theorem 2 (and it can be found in the appendix).

Theorem 3. Let L be a logic that is at most as expressive as FO(∼,<) and
that can define the universal language D∗. The following problem is undecidable:
Given a 2-way 3-DMA A or a weak 1-way DPA A with 3 pebbles, can L(A) be
defined in L?

3 Characterizations of Non-Uniform FO

In this section we will look for effective characterizations of NUFO(∼,<). Pre-
cisely, we will show that definability in NUFO(∼,<) is decidable for languages
recognized by local DMA and 1-memory DMA (these two models are incompa-
rable in expressive power).

Theorem 4. The following problem is decidable: Given a local DMA A, is L(A)
definable in NUFO(∼,<)?

The idea of the proof is to show that L = L(A) is definable in NUFO(∼,<) iff
LN = L ∩ DN is definable in FO(DN ,<), where N is a suitable number that
depends only on A. The latter statement is decidable because LN is a regular
language over a finite alphabet and an effective characterization of regular lan-
guage definable in FO(DN ,<) is known from [14]. One direction of this claim
is straightforward: if L is definable in NUFO(∼,<), then LN is clearly definable
in FO(DN ,<). For the opposite direction, we assume that L is not definable in
NUFO(∼,<). In this case, one can prove that there is a (potentially very big)
number n such that Ln = L ∩Dn can not be defined in FO(Dn,<). It follows
from [14] that the minimal DFA An recognizing Ln has a counter. We then prove
that there is a (potentially) much smaller alphabet DN for which the minimal
DFA AN recognizing LN = L ∩DN has a counter. Thus LN can not be defined
in FO(DN ,<). The full proof is in the appendix.

Below, we show that the analogous problem is decidable for 1-memory DMA.
Observe that 1-DMA are incomparable with local DMA: On the one hand, the
language of all words where the first value is equal to the last one is recognizable
by 1-DMA, but not by local DMA. On the other hand, the language of all words
where the third value is equal to either the first value or the second value is
recognizable by local DMA, but not by 1-DMA.

Theorem 5. The following problem is decidable: Given a 1-DMA A, is L(A)
definable in NUFO(∼,<)?

The proof (see the appendix) exploits, first, the fact that it is decidable
whether a given DMA A is local. If A is local, then Theorem 4 can be applied
and we are done. If A is not local, then A must contain certain ‘non-local cycles’.
By distinguishing several cases, depending on the way these cycles occur in A,
it can be decided whether A is definable in NUFO(∼,<).



4 Characterizations of Local FO

In this section we give effective characterizations for first-order logics with local
predicates, namely, FO(∼l,<) and FO(∼l,+1). There are actually two variants of
the definability problem for each of these logics. The first variant takes as input a
DMA A and a number l and asks whether L(A) is definable in FO(∼l,<) (resp.,
FO(∼l,+1)). The second variant takes as input a DMA A and asks whether
there is a number l such that A is definable in FO(∼l,<) (resp., FO(∼l,+1)).
The following theorem shows that both variants of the definability problems for
FO(∼l,<) and FO(∼l,+1) are decidable.

Theorem 6. The following problem is decidable: Given a DMA A, is there an
l such that L(A) is definable in FO(∼≤l,<)? If such an l exists, then we can
compute the minimal l0 such that L(A) is definable in FO(∼≤l0 ,<). Analogous
results hold when < is replaced by +1.

The proof exploits the fact that it is decidable whether a given (canonical) DMA
A is local and, in such a case, one can compute the smallest l0 such that A is
l0-local. We first show that if A is not local, then L(A) is not definable in
FO(∼≤l,<) (nor in FO(∼≤l,+1)). Otherwise, if A is l-local, then we can reduce
the FO(∼≤l,<) definability problem for L to a classical first-order definability
problem for a regular language abs(L) over a finite alphabet, whose symbols are
≃-types of words of length at most l. The argument for FO(∼≤l,+1) is similar.
The full proof is in the appendix.

As an example, consider the 3-local DMA A equivalent to the 3-DWA de-
picted in Figure 3: if thought of as a DFA, such an automaton contains a counter
over the ≃-type [aba], where a ≠ b. It can then be proved that the data language
L(A) can not be defined in FO(∼l,<), for any l ∈ N.

The next corollary follows from Theorem 6 and Proposition 3.

Corollary 1. The following problem is decidable: Given a DMA A, is there an
l such that L(A) is definable in NUFO(∼≤l,<)? If such an l exists, then we can
compute the minimal l0 such that L(A) is definable in NUFO(∼≤l0 ,<). Analogous
results hold when < is replaced by +1.

5 Necessary and sufficient conditions for FO(∼,<)

The ultimate goal would be to decide, given a DMA, whether or not its language
can be defined in the unrestricted first-order logic FO(∼,<). We present a partial
decision procedure that classifies DWA (or, equivalently, local DMA) according
to the FO(∼,<) definability of their recognized languages. For certain DWA, the
algorithm answers correctly whether the recognized languages are definable in
FO(∼,<) or not; for other DWA, the algorithm can only output “don’t know”.

Given a k-DWA A, we denote by L≥k(A) the set of words in L(A) that have
length at least k. In the rest of this Section, we will only prove results about
languages of the form L≥k(A). This simplifies the presentation (for instance, we
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Fig. 7. Two DWA. While L(A1) can be defined in FO(∼,<), L(A2) can not.

can assume that all ≃-types in the transitions of a k-DWA have length exactly k)
and or results easily generalize to arbitrary languages. As an example, the left
DWA A1 in Figure 7 recognizes language {u = aba . . . ba ∣ ∣u∣ ≥ 3, a ≠ b}, which
is L≥3(A) where A is the DWA shown in Figure 3. Similarly, the right DWA A2

recognizes the language of all constant words of odd length at least 3. Note that
neither L≥3(A1) nor L≥3(A2) are definable in FO(∼≤l,<) for any l. On the other
hand, L≥3(A1) can be defined in FO(∼,<), while L≥3(A2) can not. For the sake
of simplicity, we will often write L(A) instead of L≥k(A)

To be able to effectively separate DWA recognizing languages in FO(∼,<)
from DWA recognizing languages not in FO(∼,<), we extend DWA with some
additional information. Precisely, we label the transitions with “parametrized
types”, which specify data-equalities between the local neighborhood of the cur-
rent position and the local neighborhood of some other fixed position in the
string (i.e., the parameter).

For u ∈ Dk and v ∈ Dl, the k-parametrized l-type of (u, v) is the ≃-type of
u ⋅ v, that is the set of words that are isomorphic to u ⋅ v. We shortly denote this
set by [u; v]. The set of all k-parametrized l-types is by Tk,l. To avoid confusion,
we will refer to standard ≃-types [v] as unparametrized types through the rest
of this section.

Definition 5. A parametrized k-window automaton (k-PWA) is a tuple A =
(Q, qI , F, T ), where Q is a finite set of states, qI ∈ Q is an initial state, F ⊆ Q is
a set of final states, and T ⊆ Q × Tk−1,k ×Q is a finite set of transitions.

The input to a k-PWA A is a pair of words (u,w) ∈ Dk−1 × D∗, called a
parametrized word. A configuration of A is a pair (p, i), where p is a state of
A and i (≥ k) is a position in w. The automaton A processes a parametrized
word (u,w) in a single run, from left to right, starting from the initial configura-
tion (qI , k). At each step of the computation, A can move from a configuration
(p, i) to a configuration (q, i + 1) iff there is a transition of the form (p,α, q),
with u ⋅ w[i − k + 2, i + 1] ∈ α. The notions of successful run and recognized
(parametrized) language L(A) are as usual. A k-PWA A = (Q, qI , f, T ) is de-
terministic (k-DPWA) if for every pair of transitions (p,α, q) and (p,α′, q′) in
T , α = α′ implies q = q′. Note that a parametrized k-window automaton can be
thought of as an window automaton that has k predicates for the first k symbols
in the input string which it can evaluate when transitioning to a new state.

A path ρ in a PWA A is realizable if there is a parametrized word (u,w) that
induces a run of A along it. A PWA A is realizable if all paths in it are realizable.
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Fig. 8. The parametrized versions of the DWA of Figure 7

It is easy to see that for any given k-PWA A, there is an equivalent realizable
k-PWA A′, which can be computed from A. Moreover, it can be decided whether
a given PWA A is realizable or not (this test is similar to that for WA described
in Section 1).

Definition 6. Given a k-DWA A = (Q, qI , F, T ) and a word u of length k − 1,
the u-parametrized version of A is the k-DPWA Pu(A) = (Q̃, q̃I , F̃ , T̃ ), where
Q̃ = Q × Tk−1,k−1, q̃I = (qI , [u;u]), F̃ = {(p, [v;w]) ∈ Q̃ ∣ p ∈ F}, and T̃ contains
(p, [u;a1 . . . ak−1]) [u;a1 . . . ak]ÐÐÐÐÐÐÐ→ (q, [u;a2 . . . ak]) iff (p, [a1 . . . ak], q) ∈ T .

Figure 8 shows the ab-parametrized version of A1 and the aa-parametrized ver-
sion of A2. Note that both are realizable.

We call counter of a DPWA B any cycle of transitions of the form

p1
ᾱÐÐÐ→ . . . ᾱÐÐÐ→ pm

ᾱÐÐÐ→ p1

where m > 1, p1, . . . , pm are pairwise distinct states of B and ᾱ is a non-empty
sequence of (k − 1)-parametrized k-types.

The following result gives a sufficient condition for a language recognized by
a DWA to be definable in FO(∼,<).

Proposition 5. Let A be a DWA. If Pu(A) is counter-free for all u ∈ Dk−1,
then L(A) is definable in FO(∼,<).

The converse of the above proposition does not hold. Consider, for instance,
the DWA A3 in Figure 9: although Pab(A3) has a counter (because [ab, cdc] =
[ab, dcd]), L(A3) is still definable in FO(∼,<). We will thus distinguish between
two kinds of counters, which we call “good” and “bad”. We will show that if a
DPWA contains a bad counter, then it recognizes a language that is not definable
in FO(∼,<). In order to define bad counters, we need to consider a slightly
modified (and more general) version of the automaton given in Definition 6.

Definition 7. Let A = (Q, qI , F, T ) be k-DWA and let u, v ∈ Dk−1. The (u, v)-
parametrized version of A is the k-DPWA Pu,v(A) = (Q̃, q̃I , F̃ , T̃ ), where Q̃ =
Q × Tk−1,k−1, q̃I = (qI , [u; v]), F̃ = {(p, [v;w]) ∈ Q̃ ∣ p ∈ F}, and T̃ contains
the transition (p, [w;a1 . . . ak−1]) [w;a1 . . . ak]ÐÐÐÐÐÐÐ→ (q, [w;a2 . . . ak]) iff w ∈ Dk−1 and

(p, [a1 . . . ak], q) ∈ T . We denote by P(A) the set {Pu,v(A) ∣ u, v ∈Dk−1}.



p1
[abc][abc]

p0 p2

[aba]

[aba]

p3

A3 :

(p0, [ab, ab]) (p1, [ab, bc]) (p2, [ab, cd]) (p3, [ab, dc])
[ab, abc]

[ab, cdc]

[ab, dcd]

Gab(A3) :

[ab, bcd]

Monday, 5 April 2010

Fig. 9. A FO(∼,<) definable DWA and its parameterized version.

Let A be a k-DWA and B be the (u, v)-parametrized version of A. A bad
counter of B is a sequence of transitions

p1
ᾱ1Ð→ . . .

ᾱn−1ÐÐÐ→ pn
ᾱnÐ→ pn+1

ᾱÐ→ . . .
ᾱÐ→ pn+m

ᾱÐ→ pn+1

such that

1. n ≥ 0 and m ≥ 2,
2. p1, . . . , pn+m are pairwise distinct states, and p1 is of the form (p, [u,u]),
3. ᾱ1, . . . , ᾱn, ᾱ ∈ T lk−1,k for some l > 0, and loc(ᾱ1) = . . . = loc(ᾱn) = loc(ᾱ).

Here loc ∶ Tk−1,k → Tk is defined by loc([u, v]) = [v] and loc is extended to strings
over Tk−1,k in the usual way.

Similarly to a DWA, a DPWA A can be thought of as a deterministic finite-
state automaton over the alphabet Tk−1,k of k − 1-parametrized k-types. We
say that A is canonical if A is minimal as a DFA. Clearly, a canonical DPWA
contains only reachable states and for all pairs of states p ≠ q, there is a ᾱ-
labelled path that starts at p leads to an accepting state, while the ᾱ-labelled
path that starts at q leads to a rejecting state. We can finally show that the
absence of bad counters is a necessary condition for FO definability:

Proposition 6. Let A be a canonical DWA. If there a DPWA B ∈ P(A) that
contains a bad counter, then L(A) is not definable in FO(∼,<).

6 Conclusion

In this work we have studied a number of variants of first-order logic, and also
introduced several natural subclasses of memory automata. We overviewed the
relationships of the logics to one another, the relationships of the automata
to one another, and the relationships of the logic and the automata. We then
investigated the decidability of definability in logical classes within memory au-
tomata. We have shown that the problem is undecidable for natural extensions of
deterministic memory automata, and decidable with certain restrictions on the



logics or the automata. Finally, we provide necessary and sufficient conditions
for determining when a memory automaton is definable within a logic.

The main question left open is an effective characterization of which deter-
ministic memory automata are definable in first-order logic with unrestricted
data comparison. The conditions we give in Section 5 for window automata are
a step towards this. Another significant open question is the relationship be-
tween non-uniform and uniform (non-local) definability. Non-uniform first-order
definability is weaker then first-order definability for the vocabularies with un-
restricted data equality, but we do not know if this separation is witnessed by
languages accepted by DMAs.
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A Appendix

A.1 Proofs from Section 1

Proposition 1. The following problem is decidable: Given a DMA A, is A
local? If A is local then we can compute the minimum number l for which A is
l-local.

Proof. We need some preliminary definitions. A loop C in a DMA A is a cycle
of consecutive transitions in A. A loop C is simple if C contains exactly one
transition departing from each of its states. The period of a simple loop is the
number of distinct states that occur in it. Let us consider a simple loop C of
period m:

p1 ÐÐÐ→
φ1,E1

. . . ÐÐÐÐÐÐ→
φm−1,Em−1

pm ÐÐÐÐ→
φm,Em

p1

We say that C is local if for all j < min(E1∪ . . .∪Em), there is an index i ≤m
such that φi is the ≃-type of a word of the form ā ⋅ b, with ā(j) = b. The intuition
is that C is local iff, for every infinite word u that cycles through C and every
value a that is stored at some point along the corresponding run, a occurs in
every subword of u of length m. It is easy to see that A is local iff every simple
loop in A is local. Moreover, the latter property can be effectively checked by
examining all (finitely many) simple loops in the DMA A.

We now show how to compute, from a given local k-memory DMA A, the
minimum number l such that A is l-local. From the definition of local simple
loop, it immediately follows that A is local only if it is k∣T ∣-local, where T is
the set of transitions of A. This implies that every value that gets stored at
some point along a computation of A is later, after at most k∣T ∣ steps, either
removed from the memory or “renewed” (in the sense that this value reoccurs
in the input). We can thus examine all sequences of transitions of length k∣T ∣ in
order to find the longest sequence where a value is being stored without getting
renewed. If n is the length of such a sequence, then l = n + 1. ⊓⊔

Proposition 2. For every l-local DMA, there is an equivalent l-DWA and, vice
versa, for every l-DWA, there is an equivalent l-local (l-)DMA.

Proof. Let A be an l-local DMA. We sketch the construction of an l-DWA B
equivalent to A. From the locality property of A, we know that every value
that is stored by A must occur within the last l symbols of the consumed input
word (hence A can store at most l values). We define the state space of B as
Q × {�,1, . . . , l}l. B will maintain the following invariant while processing an
input word u: if B is in state (q, i1, . . . , il), then the last occurrence in u of the
value stored by A into the memory position j (if any) is at the last but ij-th
position. Such an invariant can be guaranteed by a suitable definition of the set
T of transitions of B.

Conversely, any given l-DWA can be simulated by an l-local l-DMA that
always stores the last l consumed values. ⊓⊔



Proposition 3. Let L be a language recognized by a DMA and let l ∈ N. L
can be defined in NUFO(∼≤l,<) iff it can be defined in FO(∼≤l,<). An analogous
result holds when < is replaced by +1.

Proof. Let us fix a k-DMA that recognizes L. We prove the proposition in the
case of signatures with the order <. The interesting direction is from left to
right. We assume that L can not be defined in FO(∼≤l,<). Then, for each d ∈ N,
there exist two words u and v such that u ∈ L, v ∉ L, but u and v can not be
distinguished by FO(∼≤l,<) formulas of quantifier depth d.

Let u = a1 . . . an be a word with more than k + l different symbols. Consider
a run

(p0, ā0)
a1Ð→ . . .

anÐ→ (pn, ān)

of A on u. As A is k-memory DMA, there must be x, y ≤ ∣u∣ such that

1. neither ax nor ay occur in āy,
2. x + l < y,
3. u(x) ≠ u(y), and
4. for all z with x < z < y, u(x) ≠ u(z) and u(z) ≠ u(y).

We define u′ = a1 . . . ax . . . ay−1(ay . . . an)[ay/ax]. Observe that at position y, A
can not distinguish between ax and ay as both do not occur in āy. Hence u′ ∈ L.
Observe also that, for all positions x′, y′ in u, the two structures (u,x′, y′) and
(u′, x′, y′) satisfy the same set of atomic FO(∼≤l,<) formulas. Thus, u and u′

can not be distinguished in FO(∼≤l,<).
By iterating the above construction one can obtain a word ũ ∈ L that can

not be distinguished from u by any FO(∼≤l,<) formula. Moreover, ũ contains
at most k + l distinct symbols. Using the same argument, one can obtain a
word ṽ ∉ L over an alphabet of size l that can not be distinguished from v by
any FO(∼≤l,<) formula. Since u and v can not be distinguished by FO(∼≤l,<)
formulas of quantifier depth d, by transitivity the same holds for ũ and ṽ.

Now, let D2k+2l be a finite alphabet that contains all symbols in ũ and in
ṽ. Since ũ ∈ L ∩D2l and ũ ∉ L ∩D2l, it follows that no FO(∼≤l,<) formula can
define L ∩D2l and hence L is not NUFO(∼≤l,<) definable. ⊓⊔

Proposition 4. A language L can be defined in MSO(∼≤l,+1) iff it can be
recognized by an l-local DMA.

Proof. We first give some preliminary definitions. Given a natural number l, we
denote by T≤l the finite alphabet that consists of all ≃-types of words of length
at most l. Given a data word u = a1 . . . an ∈D∗, we then denote by abs≤l(u) the
word α1 . . . αn over the finite alphabet T≤l, where αi is either the ≃-type of the
prefix a1 . . . ai or the ≃-type of the subword ai−l+1 . . . ai, depending on whether
i ≤ l or i > l. Similarly, given a data language L ⊆ D∗, we denote by abs≤l(L)
the language over T≤l that contains all and only the words of the form abs≤l(u),
with u ∈ L.



Now, it is easy to see that MSO(∼≤l,+1) is exactly as expressive as MSO(T≤l,+1)
up to the encoding of data languages via abs≤l. More precisely, a data language
L is definable in MSO(∼≤l,<) iff abs≤l(L) = {abs≤l(u) ∣ u ∈ L} is definable in
MSO(T≤l,<): Suppose that L is defined by an MSO(∼≤l,<) sentence φ. We define
a mapping f from MSO(∼≤l,<) formulas to MSO(T≤l,<) formulas by exploiting
structural induction as follows. We first consider atoms of the form x ∼i y, with
i ≤ l. Let Ui be the subset of T≤l that consists of all and only the ≃-types of
words u such that i ≤ ∣u∣ ≤ l and u(∣u∣ − i) = u(∣u∣). We then define

f(x ∼i y) = (y = x + i) ∧ ⋁
α∈Ui

α(x)

The definitions in the remaining cases are as follows: f(x < y) = (x < y), f(¬φ) =
¬f(φ), f(φ ∧ ψ) = f(φ) ∧ f(ψ), f(∃xφ) = ∃xf(φ), and f(∃Xφ) = ∃Xf(φ). A
straightforward proof by induction shows that f satisfies the following property:
for every MSO(∼≤l,<) formula ψ with free variables x1, . . . , xn,X1, . . . ,Xm, ev-
ery data word u ∈ D∗, every n-tuple of positions i1, . . . , in ≤ ∣u∣, and all unary
predicates P1, . . . , Pm ⊆ {1, . . . , ∣u∣}, we have

(u, i1, . . . , in, P1, . . . , Pm) ⊧ ψ iff (abs≤l(u), i1, . . . , in, P1, . . . , Pm) ⊧ f(ψ).

In particular, this shows that f(φ) defines exactly the language abs≤l(L). The
proof for the other direction exploits similar arguments and thus it is omitted.

Next, observe that any l-DWA A can be thought of as a deterministic finite
automaton (DFA) over the finite alphabet T≤l. In particular, any realizable l-
DWA that recognizes L also recognizes abs≤l(L) when it is considered as a DFA.
From the equivalence of MSO and finite automata over finite alphabets, it follows
that abs≤l(L) is definable in MSO(T≤l,<) iff abs≤l(L) is recognized by a realizable
l-DWA A when considered as a DFA. Moreover, the latter property holds iff L
is accepted by an l-local DWA. Finally, by Proposition 2, l-DWA are exactly as
expressive as l-local DMA (in fact, a data language L is recognized by an l-DWA
iff it is recognized by an l-local DMA). ⊓⊔

A.2 Proofs from Section 2

Theorem 2. Let L be a logic that is at most as expressive as FO(∼,<) and
that can define the universal language D∗. The following problem is undecidable:
Given an 3-MA A, can L(A) be defined in L?

Proof. The proof is by reduction from the Post Correspondence Problem (PCP).
An instance of the PCP is a finite set I = {(u1, v1), . . . , (uk, vk)} consisting of
pairs of words over a binary alphabet {a, b}. We say that I has a solution if there
is a sequence of indices i1, . . . , im such that ui1 ⋅ . . . ⋅uim = vi1 ⋅ . . . ⋅vim . It is known
that the following problem is undecidable [15]: Given a PCP instance I, does I
have a solution?

Let us fix a PCP instance I = {(u1, v1), . . . , (uk, vk)}. In [8] Neven et al.
encode a candidate solution of I of the form S = (ui1 , . . . , uim ; vj1 , . . . , vjn),



with n,m ≥ 1 and i1, . . . , im, j1, . . . , jn ∈ {1, . . . , k}, by means of a data word
enc(S) = ◽u ◽ v, where ◽ ∈ D is used as a delimiter and u and v are two words,
with no occurrences of ◽, that represent, respectively, the sequence ui1 , . . . , uim
and the sequence vj1 , . . . , vjm in S. They also prove that the following language,
which consists of all words that are not encodings of valid solutions of I, is
recognized by a 3-memory MA:

Lno-sol
I = {v ∈D∗ ∣ if v = enc(S), then S is not a solution of I}

By adopting a slightly modified notion of encoding, we can also allow encodings
of candidate solutions that start with arbitrarily long prefixes of the form ◽i, with
◽ ∈ D and i ≥ 1. Accordingly, we modify the definition of the language Lno-sol

I

in such a way that it contains all words that are not (generalized) encodings of
valid solutions of I. Note that Lno-sol

I is still recognized by a 3-MA. Moreover,
the following language is also recognized by an MA:

Lodd = { ◽2j+1 u ◽ v ∣ ◽ ∈D, j ∈ N, u, v ∈ (D ∖ {◽})∗}.

As MA are closed under union, there is a 3-MA that recognizes the language
LI = Lno-sol

I ∪Lodd.
We now prove that LI can be defined in the logic L iff I has no solution (this

would complete the proof of the theorem). If I has a solution S, then we let ui be
an encoding of S of the form ◽iu ◽ v, for all i ≥ 1. We then observe that u2d ∉ LI
and u2d+1 ∈ LI . Moreover, the two words u2d and u2d+1 can not be distinguished
by any FO(∼,<) formula of quantifier depth d (the proof is a straightforward
generalization of the proof that a2d and a2d+1 can not be distinguished by FO(<)
formulas of quantifier depth d — see, for instance, [8]). Therefore, since L was
assumed to be at most as expressive as FO(∼,<), no formula in L can define LI .
For the opposite direction, we assume that I has no solution. Then LI coincides
with the universal language D∗, which can be defined in L by hypothesis. ⊓⊔

Theorem 3. Let L be a logic that is at most as expressive as FO(∼,<) and
that can define the universal language D∗. The following problem is undecidable:
Given a 2-way 3-DMA A or a weak 1-way DPA A with 3 pebbles, can L(A) be
defined in L?

Proof (sketch). We first prove the claim for 2-way 3-DMA A. We claim that
there is a 2-way DMA Adup that recognizes the language

Ldup = { ◽ u ◽ u ∣ ◽ u contains only pairwise distinct symbols}.

Indeed, Adup can check that the following properties hold:

1. The input word is of the form ◽u ◽ v.
2. ◽u and ◽v contain only pairwise distinct symbols.
3. a, b are neighbours in ◽u iff a, b are neighbours in ◽v.



Making use of a construction in [8], it is easy to see that, for any given PCP
instance I, there also exist a 2-way 3-DMA that recognizes the language Lno-sol

I .
The rest of the proof is along the same lines of the proof of Theorem 2.

As for 1-way DPA, in [8] it is shown that there is a 1-way DPA Asol
I that

recognizes the language

Lsol
I = {v ∈D∗ ∣ v encodes a solution of I}.

Since Lsol
I is the complement of Lno-sol

I and 1-way DPA are closed under comple-
ment, there is a 1-way DPA with 3-pebbles that recognizes Lno-sol

I as well. The
rest of the proof is again similar to the proof of Theorem 2. ⊓⊔

A.3 Proofs from Section 3

Theorem 4. The following problem is decidable: Given a local DMA A, is L(A)
definable in NUFO(∼,<)?

Proof. Let A = (Q, qI , F, T ) be an l-local DMA with memory size k, let L = L(A)
and N = l + kl∣Q∣ + 1. Hereafter, we will abbreviate L ∩D∗

n by Ln. Clearly, if L
is definable in NUFO(∼,<), then LN is definable in FO(DN ,<). It remains to
show the converse, namely:

If LN is definable in FO(DN ,<), then L is definable in NUFO(∼,<). (⋆)

(here FO(DN ,<) denotes classical first-order logic with predicates of the form x <
y and a(x), for all a ∈DN ). This will complete the proof of the theorem because
(i) LN is a regular language over a finite alphabet and (ii) it is known from [14]
that the problem of checking whether a given regular language is definable in
classical first-order logic is decidable. Below, we show the contrapositive of the
above property (⋆).

Assume that L is not definable in NUFO(∼,<). Then, there is some natural
number n such that Ln can not be defined in FO(∼,<). The following lemma
shows that FO(∼,<) interpreted by words over the finite alphabet Dn has the
same expressive power as FO(Dn,<) .

Lemma 1. Let L ⊆ D∗ be an isomorphism-closed language and let n ∈ N. Then
Ln can be defined in FO(∼,<) over Dn iff Ln can be defined in FO(Dn,<).

Proof. First assume that there is an FO(∼,<) formula φ that defines Ln ⊆ D∗
n.

We will abbreviate L∩D∗
n by Ln throughout this proof. Let ψ be the FO(Dn,<)

obtained from φ by replacing every occurrence of x ∼ y by ⋁a∈Dn a(x) ∧ a(y). A
simple proof by structural induction shows that ψ defines L ∩D∗

n.
For the other direction, let ψ be an FO(Dn,<) formula that defines Ln. We

assume that ψ is of the form Q1x1 . . .Qnxn. θ where each Qi is a quantifier and
θ is a quantifier-free formula. Note that negations can be removed from θ by
first pushing them down to the atoms and then replacing every literal ¬a(x)



by ⋁b∈Dn∖{a} b(x). Hence, we can assume θ to be in positive disjunctive normal
form, namely, θ is a disjunction of clauses, where each clause is a conjunctions of
positive atoms. Moreover, we can assume that no clause contains two conjuncts
of the form a(x) and b(x), with a ≠ b. Therefore, the symbols of Dn induce
a partition of the variables that occur in each clause. Assume that θ contains
exactly m clauses and, for each 1 ≤ i ≤m, let Xi,a be the set of all variables that
occur in the i-th clause with the predicate a. We define

θ̃ = ⋁
i≤m

⎛
⎝ ⋀

a ∈Dn
x,y ∈Xi,a

(x ∼ y) ∧ ⋀
a,b ∈Dn, a≠b

x ∈Xi,a, y ∈Xi,b

(x ≁ y)
⎞
⎠

By exploiting the fact that L is closed under isomorphism, one can show that
Q1x1 . . .Qnxn. θ is equivalent to Q1x1 . . .Qnxn. θ̃. ⊓⊔

Now, we need to introduce some definitions and another technical lemma. Let
c̄ = (c1, . . . ,cm) be a tuple of configurations of A. Given a word u = a1 . . . an, we
define the c̄-trace of u as the sequence γ = c̄0 . . . c̄n of tuples of configurations of
A, where c̄j = (c1,j , . . . ,cm,j) and each ci,j is the configuration reached by A after
reading the prefix a1 . . . aj of the word u, starting from the configuration ci (by
convention, we let ci,0 = ci). Given two words u and u′ with the corresponding
c̄-traces γ and γ′, we say that γ mimics γ′ if (i) u and u′ coincide on all positions
that are associated with values in c̄ and (ii) the two sequences obtained from γ
and γ′ after projecting the states coincide (in other words, γ and γ′ differ only in
the memory contents). The following lemma shows that the c̄-trace of any given
word u can be mimicked by the c̄-trace on another word u′ over an alphabet of
bounded size (note that this result does not depend on the locality of A).

Lemma 2. Let A be a k-DMA and let c̄ be an m-tuple of configurations of A.
For any subset ∆ of D that contains at least the values in c̄ plus mk+1 additional
symbols, one can find a word u′ ∈ ∆∗ such that the c̄-trace of u′ mimics the c̄-
trace of u.

Proof. Let A, c, and ∆ be as in the statement of the lemma. As a preliminary
step, we introduce a transformation f on c̄-traces, which only depends on c̄ and
∆. Given a word v = b1 . . . bn and its c̄-trace γ = c̄0 . . . c̄n, we consider the leftmost
position x in v that is labeled by a value bx ∈D ∖∆ (if such a position does not
exist, then we simply let f(γ) = γ). Let b′x be a value from ∆ that occurs neither
in the memory contents of c̄0, nor in the memory contents of c̄x−1 (note that
such a value exists since, by definition, ∆ contains more values than those in c̄0

and in c̄x−1). We then define

f(γ) = c̄0 . . . c̄x−1 (c̄x . . . c̄n) [bx⤡b′x]

where (c̄x . . . c̄n) [bx⤡b′x] denotes the sequence obtained from c̄x . . . c̄n by sub-
stituting every occurrence of bx by b′x and, vice versa, every occurrence of b′x by
bx. By a slight abuse of notation, we also let f(v) = b1 . . . bx−1(bx . . . bn)[bx⤡b′x].
Note that the position of the leftmost occurrence in f(v) of a value from D ∖∆



(if any) is strictly greater than the position of the leftmost occurrence in v of a
value from D ∖∆.

Below we prove that f(γ) is exactly the c̄-trace of f(v) and, furthermore, it
mimics the c̄-trace γ of v. As γ = (c1,0, . . . ,cm,0) . . . (c1,n, . . . ,cm,n) is a trace of
v = b1 . . . bn, we know that for each index 1 ≤ i ≤ m, there is a run of A on v of
the form

ci,0
b1ÐÐÐÐÐÐ→αi,1,Ei,1

ci,1
b2ÐÐÐÐÐÐ→αi,2,Ei,2

. . . bnÐÐÐÐÐÐ→αi,n,Ei,n
ci,n.

Let us consider the run of A on f(v) = b′1 . . . b′n that starts at configuration ci,0:

c′i,0
b′1ÐÐÐÐÐÐ→α′i,1,E

′

i,1
c′i,1

b′2ÐÐÐÐÐÐ→α′i,2,E
′

i,2
. . . b′nÐÐÐÐÐÐ→α′i,n,E

′

i,n
c′i,n

(note that c′i,0 = ci,0).
Recall that x is the leftmost position in v that is labeled by a value bx ∈D ∖∆.
Since ∆ contains all values in c̄ and b′x does not occur in c, we have that v and
f(v) coincides on all positions that are associated with values in c̄. Moreover,
by construction, all values that occur in the memory content of c′i,x belong to
the set ∆. We now exploit an induction on j ≤ n to show that (i) α′i,j = αi,j ,
(ii) E′

i,j = Ei,j , and (iii) c′i,j = f(γ)(i)(j), where f(γ)(i)(j) denotes the j-th
configuration of the tuple that appears at position i of f(γ). All cases with j < x
are trivial, by construction. For j = x, we observe that bx does not occur in ∆.
Since ci,x−1 contains only values from ∆, it follows that the guard αi,x requires
that “the input value is not stored in the current memory”. Hence αi,x is also
satisfied by the memory content of ci,x−1 and by the input value b′x Since A is
deterministic, we obtain (i) α′i,x = αi,x, (ii) E′

i,x = Ei,x, and (iii) c′i,x = f(γ)(i)(x).
The invariant is thus preserved for j = x. As for the remaining case j > x, one
can easily see that the invariant is preserved because b′j satisfies the same ∼-
relationships with each value of the memory content of c′i,j as bj does with each
value of the memory content of ci,j . The above arguments prove that f(γ) is
the c-trace of f(v) and that it mimics the c-trace γ of v.

We conclude the proof as follows. Let u = a1 . . . an be as in the statement
of the lemma and let γ be the corresponding c̄-trace. We define a new word u′

starting from u by iteratively applying f until a fixed point is reached (this hap-
pens after at most ∣u∣ iterations, since each iteration moves the first occurrence
of a symbol from D∖∆ to the right). From the properties of f mentioned above,
it follows that u′ ∈∆∗ and, by transitivity, the c̄-trace of u′ mimics that of u. ⊓⊔

Now, recall that from previous assumptions, A recognizes L and Ln = L∩D∗
n.

Clearly, the language Ln is recognized by a deterministic finite state automaton
An: the states of An are the (finitely many) configurations of A where the mem-
ory values are restricted to range over Dn, the transitions of An mimic those of
A in the obvious way, and the initial and final states of An coincide with the
initial and final configurations of A, respectively. The aboe defined DFA An is
said to be the projection of A onto the finite alphabet Dn. We also denote by A′

n

the minimum DFA that recognizes Ln (this can be obtained by collapsing states
of An). The following result shows that the projection of a canonical DMA A′

onto a sufficiently large alphabet Dn is a minimal DFA recognizing Ln.



Proposition 7. Let A′ be a canonical k-DMA that recognizes a language L.
For every n ≥ 2k + 1, the minimal DFA A′

n that recognizes Ln = L ∩D∗
n can be

obtained from the projection of A′ onto the finite alphabet Dn.

Proof. Let us fix a natural number n ≥ 2k + 1 and let A′
n be the minimal DFA

recognizing Ln = L ∩ D∗
n. From standard results in automata theory, we can

identify each state of A′
n with some equivalence class of the form [u]≡Ln , where

u ∈D∗
n and ≡Ln is the Myhill-Nerode equivalence such that u ≡Ln v iff, for every

word s ∈ D∗
n, u ⋅ s ∈ Ln iff v ⋅ s ∈ Ln. Similarly, from the results in [13], we can

identify each state of the canonical DMA A′ with an equivalence class of form
[u]≡L , where u ∈ D∗ and ≡L is the equivalence over data words introduced in
Section 1.1. In order to prove the proposition, it is sufficient to show that, for
any pair of words u, v ∈ D∗

n, u ≡Ln v iff u ≡L v. The right-to-left direction is
trivial. Below, we prove the contrapositive of the left-to-right direction.

Suppose that u and v are two words over Dn such that u /≡L v. From Def-
inition 3, we have that either memL(u) /≃ memL(v) or there exist two words
u′, v′ ∈ D∗ such that memL(u) ⋅ u′ ≃ memL(v) ⋅ v′ and u ⋅ u′ ≠L v ⋅ v′. We only
consider the second, more interesting, case (the proof in the first case uses
similar arguments). Suppose that u′ and v′ are two words over D∗ such that
memL(u) ⋅ u′ ≃ memL(v) ⋅ v′ and u ⋅ u′ ≠L v ⋅ v′. We first consider the c-trace
of u′, where c is the configuration reached by A′ after reading u, starting from
its initial configuration. Since n ≥ 2k + 1 and the language L is closed under
≃-isomorphisms, we can assume that the finite alphabet D∗

n contains at least the
values in c and k+1 additional values not in c. We can thus apply Lemma 2 (with
m = 1) and devise the existence of another word u′′ ∈ Dn whose c-trace mimics
that of u′. Since A′ is canonical, the L-memorable values in u coincide with the
values stored in the configuration c and hence, since u′ and u′′ coincide on all
positions associated with values in c, it follows that memL(u) ⋅u′ ≃ memL(u) ⋅u′′.
Moreover, since the c-trace of u′′ mimics that of u′, we have u ⋅ u′ =L u ⋅ u′′. By
using analogous arguments, one can show that there is a word v′′ ∈ Dn such
that memL(v) ⋅ v′ ≃ memL(v) ⋅ v′′ and u ⋅ u′ =L u ⋅ u′′. Finally, by transitivity, we
conclude that u ⋅ u′′ ≠L v ⋅ v′′. This implies that u and v are distinguishable by
the Myhill-Nerode equivalence ≡Ln and this completes the proof of the proposi-
tion. ⊓⊔

We turn back to the proof of Theorem 4. By previous assumptions and
Lemma 1, we know that there is a natural number n such that Ln can not
be defined in FO(Dn,<). Let A′

n be the minimal DFA that recognizes Ln. From
[14], it follows that A′

n has a counter C over a word u ∈ D∗
n (intuitively, C is a

cycle of consecutive transitions that read non-trivial repetitions of the same word
u). Moreover, let A′ be the canonical DMA equivalent from A. From Proposition
7, A′

n coincides with the projection of A′ onto the finite alphabet Dn. We can
thus assume that the counter C of A′

n is of the form

c1
uÐÐÐ→ . . . uÐÐÐ→ cm

uÐÐÐ→ c1



where m ≥ 2 and c1, . . . ,cm are pairwise distinct configurations of A′ featuring
only values of u. Moreover, as A′ is also l-local, the memory content in each
configuration ci contains only values that occur in the l-length suffix of u and
hence m ≤ l∣Q∣.

Now, let N = l + kl∣Q∣ + 1 and c̄ = (c1, . . . ,cm). Since N ≥ l +mk + 1 and L
is closed under ≃-isomorphisms, we can assume that DN contains all values in
c̄ plus mk + 1 additional values. We can thus apply Lemma 2 and devise the
existence of a word u′ ∈DN whose c̄-trace mimics that of u. Let γ be the c̄-trace
on u and let γ′ be the c̄-trace on u′. We claim that γ′ induces a counter of AN
on u′. Indeed, since γ′ mimics γ, we know that the two words u and u′ coincide
on all positions that are associated with values in c̄. For the same reason, the
two sequences γ and γ′ coincide up to a renaming of the values that do not
occur in c̄. Hence, since An moves from the configuration ci to the configuration
c(i mod m)+1 by reading u, AN does the same by reading u′. This shows that C
is a counter of AN on u′.

Towards a conclusion, we observe that N ≥ mk + 1 ≥ 2k + 1 and hence, by
Proposition 7, AN is the minimal DFA that recognizes LN . By applying again
the results from [14], we conclude that LN is not definable in FO(DN ,<). ⊓⊔

Theorem 5. The following problem is decidable: Given a 1-DMA A, is L(A)
definable in NUFO(∼,<)?

Proof. The proof is by case analysis. Let A = (Q, qI , F, T ) be a canonical 1-DMA
that recognizes a language L.

We distinguish two types of transitions in A: those for which the target
memory content is non-empty and it does not depend on the input value (namely,
those triples (p, [ab],E, q), with p, q ∈ Q1, a ≠ b ∈D, and E = {2}), and those for
which the target memory content is either empty or it is uniquely determined by
the input value. We call the former type of transitions non-local and the latter
type local. From the proof of Proposition 1, we recall that the period of a simple
loop C in A is the number of its states and C is local iff it contains at least one
local transition. Moreover, we say that two simple loops intersect if they share
at least one control state.

We now distinguish between the following three cases:

1. there is a non-local simple loop in A with period strictly greater than 1;
2. there is a simple loop in A with period strictly greater than 1 that intersects

a non-local simple loop (with period 1);
3. for every pair of intersecting simple loops in A, either both loops are local,

or both have period 1.

In the sequel, we prove that, in each of the above cases, there is an effective
procedure that decides whether the language L is definable in NUFO(∼,<) (in
fact, in the first two cases, the procedures turn out to be trivial, namely, they
always return false).



Lemma 3. If A contains a non-local simple loop of period strictly greater than
1, then L is not definable in NUFO(∼,<).

Proof. Let C be a non-local simple loop in A of period m > 1 and let p1, . . . , pm
be the sequence of states in C ordered according to the transitions that connect
them. Since non-local transitions do not modify the memory content and C
contains only non-local transitions, we know that there exist two words u and
v such that (i) uA(qI , ε) = (p1, ā) (namely, A reaches C after reading u) and
(ii) vA(pi, ā) = (p(i mod m)+1,ā) for all i ≤ m (namely, after reading u, A cycles
through C by reading repetitions of v). Let N be the number of distinct values
that occur in u and in v. Below, we prove that LN = L ∩DN is not definable in
FO(DN ,<), and hence, by Lemma 1, L is not definable in NUFO(∼,<).

Suppose, by way of contradiction, that there is an FO(DN ,<) formula φ of
quantifier depth d that defines the language LN . Since A is in canonical form
C features at least two different states, say p1 and p2, we know from the results
presented in Section 1.1 (see also [13]) that there is a word s ∈D∗

N such that

(u ⋅ vm
d

⋅ s) ≠L (u ⋅ vm
d+1 ⋅ s).

To obtain a contraction it is sufficient to show that φ cannot distinguish between
the two words (u ⋅ vmd ⋅ s) and (u ⋅ vmd+1 ⋅ s). This can be done by exploiting the
fact that φ has quantifier depth d and by using the following game argument:
Duplicator has a winning strategy in the d-round Ehrenfeucht-Fräıssé game for
FO(DN ,<) interpreted over (u ⋅ vmd ⋅ s) and (u ⋅ vmd+1 ⋅ s). ⊓⊔

Lemma 4. If A contains a simple loop of period strictly greater than 1 that
intersects a non-local simple loop with period 1, then L is not definable in
NUFO(∼,<).

Proof. Let C be a simple loop with period m > 1 and let C ′ be a non-local
simple loop with period 1 that intersects C. Let p be a control state shared by
the two loops C and C ′ and let q be the successor of p in C. Clearly, since C and
C ′ are distinct, we have p ≠ q. Now, let w be an infinite word that eventually
cycles through C. By using a simple counting argument, one can find a memory
content ā, a prefix u and a subword v of w such that (i) uA(qI , ε) = (p, ā), (ii) ∣v∣
is a multiple of the period m of C, and (iii) vA(p, ā) = (p, ā). This means that
the infinite word u ⋅ vω eventually cycles through C, exactly as w does. Let N
be the number of distinct values that occur in u and in v. Below, we prove that
L2N = L∩D2N is not definable in FO(D2N ,<), and hence, by Lemma 1, L is not
definable in NUFO(∼,<).

Suppose, by way of contradiction, that there is an FO(D2N ,<) formula φ
that defines the language L2N = L ∩ D∗

2N . Let d be the quantifier depth of φ
and let v′ be an isomorphic copy of v consisting of fresh values from D2N ∖DN

(thus, v and v′ feature disjoint sets of values). By construction, we have that
(v′)A(p, ā) = (p, ā), as it happens for v. However, while v follows the transitions
in C, v′ follows the unique transition of C ′. In particular, we have (v(1))A(p, ā) =
(q, b̄), for some memory content b̄, and (v′(1))A(p, ā) = (p, ā) (note that since C ′



is a non-local simple loop, the transition that consumes the symbol v′(1) does
not modify the memory content). We can then proceed as in the proof of Lemma
3, first showing that there is a word s ∈D∗

2N such that

(u ⋅ (v ⋅ v′)2d ⋅ s) ≠L (u ⋅ (v ⋅ v′)2d+1 ⋅ s).

and then showing that φ cannot distinguish between these two words. ⊓⊔

Lemma 5. Suppose that for every pair of intersecting simple loops in A, either
both loops are local, or both have period 1. Let B be the local DMA obtained
from A by removing all transitions of non-local simple loops (of period 1) and of
simple loops (of period 1) that intersect non-local simple loops. We have that L
is definable in NUFO(∼,<) iff L(B) is definable in NUFO(∼,<).

Proof. Let us fix, in A, a simple loop C of period 1 and a non-local simple loop
C ′ of period 1 that intersects C. Furthermore, let (p,α,E, p) and (p,α′,E′, p) be
the transitions of C and C ′, respectively, and let A′ be the DMA obtained from
A by removing these two transitions. Since C ′ is non-local, we have that α′ is the
≃-type of a word of the form ab, with a ≠ b. Moreover, since A is deterministic and
C intersects C ′, α is the ≃-type of a word of the form aa (hence C is local). This
implies that A contains no transitions, other than (p,α,E, p) and (p,α′,E′, p),
departing from state p (namely, p is a sink state in A′). Therefore, depending on
whether p is final or not, we have L = L(A′) ⋅D∗ or L = L(A′). In both cases, we
have that A is definable in NUFO(∼,<) iff L(A′) is definable in NUFO(∼,<).

To conclude the proof, it is sufficient to observe that the local DMA B is
obtained from A by iterating the above construction on each pair of intersecting
simple loops C and C ′ of period 1, where C is local and C ′ is non-local. ⊓⊔

Theorem 4, together with Lemma 3, Lemma 4, and Lemma 5, finally gives a
proof of Theorem 5. ⊓⊔

A.4 Proofs from Section 4

Theorem 6. The following problem is decidable: Given a DMA A, is there an
l such that L(A) is definable in FO(∼≤l,<)? If such an l exists, then we can
compute the minimal l0 such that L(A) is definable in FO(∼≤l0 ,<). Analogous
results hold when < is replaced by +1.

Proof. In [13] we have shown that, given a DMA A, one can compute an equiv-
alent canonical DMA. We thus assume that A is a DMA already in canonical
form. By Proposition 1, one can check whether A is local and, in such a case,
compute the minimum number l0 such that A is l0-local. It follows from the next
lemma that if A is not local, then L(A) can not be defined in FO(∼≤l′ ,<) (nor
in FO(∼≤l′ ,+1)) for any l′ ∈ N. It also follows that if A is l0-local but not l′-local
for any l′ < l0, then L(A) can not be defined in FO(∼≤l′ ,<) (nor in FO(∼≤l′ ,+1)).



Lemma 6. If a canonical DMA A is not l-local, then L(A) is not definable in
FO(∼≤l,<).

Proof. Suppose that A is a canonical DMA that is not l-local and let L be
the recognized language. By definition, there is a word v of length l and two
configurations (p, ā) and (q, b̄) such that vA(p, ā) = (q, b̄) and b̄ contains a value
a that does not occur in u. Clearly, a occurs in ā. Let u be a word that induces
a run of A from the initial configuration to the configuration (p, ā) (such a run
exists since all states of A are reachable). Now, recall that a canonical DMA
stores only memorable values. Since a is stored after reading u ⋅ v, then a is L-
memorable in u ⋅ v. Thus, by definition of memorable value, there is a data word
s and a value b such that u ⋅ v ⋅ s ≠L u ⋅ v ⋅ (s[a/b]). As a does not occur in v and
∣v∣ = l, one can show, using a simple game-theoretic argument, that u ⋅ v ⋅ s and
u ⋅ v ⋅ (s[a/b]) can not be distinguished in FO(∼l,<). ⊓⊔

We now consider the case of A being a l0-local, but not l′-local for any l′ < l0.
By Proposition 2, one can compute an l0-DWA B equivalent to A. We can further
assume that B is realizable. We denote by FO(T≤l,<) the first-order logic over the
finite vocabulary T≤l. A similar argument as in the proof of Proposition 4 shows
that L(B) is definable in FO(∼≤l,<) iff abs≤l(L(B)) is definable in FO(T≤l,<)
(abs is defined in the proof of 4). This reduces the problem of deciding whether
L(A) is FO(∼≤l0 ,<) decidable to an analogous problem over DFA. It was shown
in [14] that the latter problem is decidable.

We recall the basic facts that have been disclosed so far: (i) one can decide
whether the given canonical DMA A is local and, in such a case, compute the
minimum l0 such that A is l0-local, (ii) if A is not local then L(A) can not
be defined in FO(∼≤l,<) for any l ∈ N (iii) if A is l0-local then L(A) and l0
is minimal then we know that L(A) can not be defined in FO(∼≤l,<) for any
l < l0 and we can also check whether L(A) can be defined in FO(∼≤l0 ,<). Still,
it is not clear how one can decide whether L(A) is definable in FO(∼≤l,<), for
some l > l0, if L(A) is not definable in FO(∼≤l0 ,<). The following lemma gives
a straightforward answer to such a question: since A is l0-local by hypothesis it
follows that if L(A) is not definable in FO(∼≤l0 ,<), then it is not definable in
FO(∼≤l,<), for any l > l0, either. This concludes the proof Theorem 6.

Lemma 7. Let A be an l0-local DMA. If L(A) is not definable in FO(∼≤l0 ,<),
then L(A) is not definable in FO(∼≤l,<) for all l > l0.

Proof. We exploit an induction on l−l0. The base case l−l0 = 0 is trivial. Let l ≥ l0
and assume that L = L(A) is not definable in FO(∼≤l,<). We have to prove that
L is not definable in FO(∼≤l+1,<) either. Let us fix an arbitrary natural number
d for the quantifier depth of formulas. Since there exist no FO(∼≤l,<) formula
of quantifier depth d that defines L, there exist two words u and v such that
(i) u ∈ L, (ii) v ∉ L, and (iii) Duplicator has a winning strategy in the d-round
FO(∼≤l,<)-game on u and v. Below, we show that there exist two corresponding
words ũ ∈ L and ṽ ∉ L and a winning strategy for Duplicator in the d-round



FO(∼≤l+1,<)-game on ũ and ṽ (this would immediately imply that L can not be
defined by any FO(∼≤l+1,<) formula of quantifier depth d).

We first define ũ starting from u. Suppose that u = a1 . . . an and that there
are two positions x and y such that such y = x + (l + 1), ax = ay, and ax ≠ az for
all intermediate positions z with x < z < y. Let u′ = a1 . . . ay−1 ⋅ (ay . . . an)[ay/b],
where b is a fresh value that does not occur in u. Observe that for any two
positions x′ and y′, with x′ ≤ y′ ≤ x′ + l, we have u(x′) = u(y′) iff u′(x′) = u′(y′).
In addition, since abs≤l0(u) = abs≤l0(u′), we have u′ ∈ L. By iterating the above
construction, one obtain a word ũ from u such that

1. ũ ∈ L;
2. if y ≤ x + l, then ũ(x) = ũ(y) iff u(x) = u(y);
3. if y = x + (l + 1), then ũ(x) ≠ ũ(y).

A similar construction can be used to obtain a word ṽ ∉ L from v that satisfies
properties analogous to 2. and 3. above.

We now show that the same strategy used by Duplicator to win the d-round
FO(∼≤l,<)-game on u and v can be used to win the d-round FO(∼≤l+1,<)-game
on ũ and ṽ. Suppose that the play in the FO(∼≤l+1,<)-game on ũ and ṽ has pro-
gressed up to the i-th round and that the pebbles lie at positions x1, . . . , xi in ũ
and at positions y1, . . . , yi in ṽ. Suppose that Spoiler places a new pebble at po-
sition xi+1 in ũ (the case of a new pebble placed at position yi+1 in ṽ can be dealt
with by symmetric arguments). Duplicator must respond by choosing a suitable
position yi+1 in ṽ in such a way that the two resulting structures (u,x1, . . . , xi+1)
and (v, y1, . . . , yi+1) satisfy the same atomic formulas in FO(∼≤l+1,<). Due to
property 2. above, the configuration reached after Spoiler action can be viewed
as a configuration in the FO(∼≤l,<)-game on u and v. Duplicator can thus re-
spond by using the winning strategy in that game. This guarantees that the two
resulting structures (u,x1, . . . , xi+1) and (v, y1, . . . , yi+1) satisfy the same atomic
formulas in FO(∼≤l,<). From property 2., it then follows that (ũ, x1, . . . , xi+1)
and (ṽ, y1, . . . , yi+1) satisfy the same atomic formulas in FO(∼≤l,<). Finally, from
property 3., the same holds for the atomic formulas in FO(∼l+1,<). This shows
that ũ ∈ L and ṽ ∉ L can not be distinguished by any FO(∼≤l+1,<) formula of
(arbitrary) quantifier depth d and hence L can not be defined in FO(∼≤l+1,<).

⊓⊔

A.5 Proofs from Section 5

Proposition 5. Let A be a DWA. If Pu(A) is counter-free for all u ∈ Dk−1,
then L(A) is definable in FO(∼,<).

Proof. We fix a k-DWA A that recognizes L. Observe that A accepts exactly
the words w such that (w[1, k − 1],w) is accepted by Pw[1,k−1](A) (recall that
Pu(A) is the u-parametrized version of A). Then L = ⋃u∈Dk−1 Lu where

Lu = {w ∈D∗ ∣ w[1, k − 1] ≃ u and (u,w) ∈ L(Pu(A))}.



The automaton Pu(A), can be thought of as a deterministic finite-state au-
tomaton over the alphabet Tk−1,k of (k−1)-parametrized k-types. We denote this
automaton by Bu. Note that, since Pu(A) is realizable, L(Bu) ⊆ T ∗k−1,k coincides
with the language absk−1,k(L(Pu(A))), where absk−1,k maps parametrized words
to sequences of Tk−1,k-types in the obvious way (see the proof of Theorem 6 for
similar notations and arguments).

Now fix an u ∈ Dk−1 and suppose that Bu is counter-free. It follows from
standard results in automata theory [14] that the language L(Bu) is definable
in FO(Tk−1,k,<). Similar arguments as in Proposition 4 show that L(Bu) is
definable in FO(Tk−1,k,<) iff Lu is definable in FO(∼,<).

In order to complete the proof, it is sufficient to observe that the above
languages Lu are uniquely determined by the ≃-type of u and hence there exist
at most ∣Tk−1∣ such languages. Since L = ⋃u∈Dk−1 Lu and FO(∼,<) definable
languages are closed under finite unions, we conclude that L can be defined in
FO(∼,<). ⊓⊔

Proposition 6. Let A be a canonical DWA. If there a DPWA B ∈ P(A) that
contains a bad counter, then L(A) is not definable in FO(∼,<).

Proof. Let A be a canonical k-DWA and assume that P(A) contains a k-DPWA
B = (Q,T, qI , F ) = Puin,vin(A) with a bad counter

p1
ᾱ1Ð→ . . .

ᾱn−1ÐÐÐ→ pn
ᾱnÐ→ pn+1

ᾱÐ→ . . .
ᾱÐ→ pn+m

ᾱÐ→ pn+1

By definition of bad counter, we have:

1. n ≥ 0 and m ≥ 2,
2. p1, . . . , pn+m are pairwise distinct states, and p1 is of the form (p, [uin, uin]),
3. ᾱ1, . . . , ᾱn, ᾱ ∈ T lk−1,k for some l > 0, and loc(ᾱ1) = . . . = loc(ᾱn) = loc(ᾱ).

Let ᾱin be a sequence of (k−1)-parameterized k-types that labels a path from qI
to p1. As B is canonical, there is a sequence ᾱout of (k−1)-parameterized k-types
such that there is a ᾱout-labelled path that leads from pn+1 to an accepting state
and there is a ᾱout-labelled path that leads from pn+2 to a rejecting state. For
all r ∈ N, we define

γ̄+r = ᾱin ⋅ ᾱ1 ⋅ . . . ⋅ ᾱn ⋅ ᾱmk2r ⋅ ᾱout

γ̄−r = ᾱin ⋅ ᾱ1 ⋅ . . . ⋅ ᾱn ⋅ ᾱmk2r+1 ⋅ ᾱout

Given a path ρ in a DPWA, we say that (u, a1 . . . an) is a free parametrized
word realizing ρ if (u, a1 . . . an) induces a run along ρ and, for all i ≤ n, if
(u, a1 . . . ai−1a

′
i . . . a

′
n) induces a run along ρ for some a′i . . . a

′
n, with a′i not oc-

curring in a1 . . . ai−1, then ai does not occur in a1 . . . ai−1 either.
Let (uin, u

+
r ) be the free parametrized word realizing the (unique) path in B

that is labelled γ̄+r . Similarly (uin, u
−
r ) is the free parametrized word realizing the

γ̄−r -labelled path in B. By definition the parametrized word (uin, u
+
r ) is accepted



by B and hence u+r ∈ L(A). Symmetrically, (uin, u
−
r ) ∉ L(B) and since both A

and B are deterministic u−r ∉ L(A).
We will show that no FO(∼,<) formula of quantifier depth r′ = r − ⌈log(k)⌉

can distinguish between u+r and u−r . We will do so by showing that Duplica-
tor has a winning strategy for the r′-round FO(∼,<)-game on u+r and u−r . This
game is defined as follows: There are two players, called Spoiler and Duplicator.
At the beginning of round i ≤ r′ the game boards consists of two structures
(u+r , x1, . . . , xi−1) and (u−r , y1, . . . , yi−1). Spoiler places a pebble i either at a po-
sition of u+r or at a position of u−r . If he picks position xi in u+r , then Duplicator
picks a position yi in u−r . If Spoiler picks a position in u−r , then Duplicator picks
a position in u+r . In either case, the new game board is (u+r , x1, . . . , xi) and
(u−r , y1, . . . , yi). Note that multiple pebbles can be placed at the same position.
This concludes round i. If i < r′ then the players proceed to play round i + 1,
and if i = r′ then the game ends. Duplicator wins the game if for all i, j ≤ r′
the same atomic FO(∼,<) formulas are true on (u+r , xi, xj) as on (u−r , yi, yj).
Otherwise Spoiler wins. It has been shown in [16] that Duplicator has a winning
strategy for the r′-round FO(∼,<)-game on u+r and u−r iff u+r and u−r can not be
distinguished by FO(∼,<) formulas of quantifier depth r′. The FO(<)-game is
played in the same way, the only difference being that the winning condition is
with respect to FO(<) instead of FO(∼,<).

Beside the main game on u+r , u−r , Duplicator will play a surrogate r-round
FO(<)-game on the structures a2r , a2r+1. It is known that Duplicator has a
winning strategy for this game [16]. Duplicator will use this strategy for her
strategy in the main game.

Assume that the players have played i < r′ rounds, the game board of
the main game is (u+r , x1 . . . xi), (u−r , y1 . . . yi), and the board of the surrogate
game is (a2r , x′1 . . . x

′
i), (a2r+1, y′1 . . . y

′
i). We call a position x on u+r small if

x ≤ ∣ᾱin ᾱ1 . . . ᾱn∣. If x > ∣ᾱin ᾱ1 . . . ᾱn ᾱ
mk2r ∣ then we call x big. If x is nei-

ther small nor big then we call x interesting. Similarly we call y on u−r small if
y ≤ ∣ᾱin ᾱ1 . . . ᾱn∣, big if y > ∣ᾱin ᾱ1 . . . ᾱn ᾱ

mk2r+1∣, and interesting otherwise.
Duplicator will maintain the following invariant:

1. (a2r+1 , x′1 . . . x
′
i), (a2r+1+1, y′1 . . . y

′
i) is a winning position for the FO(<)-game

with r + 1 − i rounds left to play.
2. For all j ≤ i, if either xj or yj is small then xj = yj .
3. For all j ≤ i, if either xj or yj is big then xj + ∣ᾱ∣ = yj .
4. For all j ≤ i, if either xj or yj is interesting then xj = yj mod ∣ᾱ∣.
5. For all j ≤ i, if xj is interesting then ∣ᾱin ᾱ1 . . . ᾱn∣ + (x′j − 1)∣ᾱ∣ ≤ xj ≤

∣ᾱin ᾱ1 . . . ᾱn∣ + x′j ∣ᾱ∣.
6. For all j ≤ i, if yj is interesting then ∣ᾱin ᾱ1 . . . ᾱn∣ + (y′j − 1)∣ᾱ∣ ≤ yj ≤

∣ᾱin ᾱ1 . . . ᾱn∣ + y′j ∣ᾱ∣.

Lemma 8. If xi, xj on u+r and if yi, yj on u−r are all interesting and if ∣xi−xj ∣ ≤
k∣ᾱ∣ or ∣yi − yj ∣ ≤ k∣ᾱ∣ then xi − xj = yi − yj.

Proof. Assume towards a contradiction that ∣xi − xj ∣ ≤ k∣ᾱ∣ and xi − xj ≠ yi − yj .
Then ∣x′i − x′j ∣ ≤ k. If follows from invariant 4 above that x′i − x′j ≠ y′i − y′j . As



the surrogate game has ⌈log(k)⌉ more rounds than the main game, there are at
least ⌈log(k)⌉ rounds left in the surrogate game. But then the position in the
surrogate game is not a winning position, contradicting invariant 1. ⊓⊔

For all i ≤ r′, Duplicator uses the following strategy in the i-th round:

1. If Spoiler picks a small position the Duplicator picks the same position in
the other word.

2. If Spoiler picks a big position the Duplicator picks a position such that
xi + ∣ᾱ∣ = yi

3. Now assume that Spoiler picks an interesting position xi on u+r . Then there
is an x′ such that ∣ᾱin ᾱ1 . . . ᾱn∣ + (x′ − 1)∣ᾱ∣ ≤ xi ≤ ∣ᾱinf ᾱ1 . . . ᾱn∣ + x′∣ᾱ∣.
Now Duplicator turns to the surrogate game and places pebble x′i on position
x′ of the structure a2r – giving rise to the game board (a2r , x′1, . . . , x

′
i),

(a2r+1, y′1, . . . , y
′
i−1). She then uses her winning strategy for the surrogate

game to determine the next move y′i. Then Duplicator turns back to the
main game, and places the pebble yi such that ∣ᾱin ᾱ1 . . . ᾱn∣ + (y′i − 1)∣ᾱ∣ ≤
yi ≤ ∣ᾱin ᾱ1 . . . ᾱn∣ + y′i∣ᾱ∣ and xi = yi mod ∣ᾱ∣.

4. The case where Spoiler picks an interesting position on u−r is symmetric to
case 3.

To show that Duplicator’s strategy is a winning strategy we will make use of
the following lemma.

Lemma 9. Let i ∈ N. If x, x′, and x′ + ∣ᾱ∣ are interesting positions in u+r such
that ∣x − x′∣ ≥ k∣ᾱ∣ then

u+r (x) = u+r (x′) iff u+r (x) = u+r (x′ + ∣ᾱ∣).

Proof. We only show the direction from left to right. The proof of the other
direction is similar. We will call a value a that occurs in u+r recurrent if there are
two positions y, y′ in u+r that both have value a and y = y′ mod ∣ᾱ∣. We first show
that if a is recurrent, x and x+ ∣ᾱ∣ are interesting positions in u+r , and u+r (x) = a
then u+r (x + ∣ᾱ∣) = a. This proves the claim for recurrent values.

Assume that a is recurrent, u+r (x) = a, and x and x + ∣ᾱ∣ are interesting
positions in u+r . As a is recurrent there are positions y, y′ (we assume y < y′) in u+r
with value a and y = y′ mod ∣ᾱ∣. Recall that (uin, u

+
r ) is a free realizing relativized

word for a γ̄+r -labelled path. As (uin, u
+
r ) is free y and y′ can only have the same

value if either a occurs in uin or if there are positions y = y1 < . . . < yl = y′ in γ̄+r
that have value a and yi+1 − yi ≤ ∣ᾱ∣ for all i ≤ l.

We first consider the case where a occurs in uin. As x and x+∣ᾱ∣ are interesting
positions, γ̄+r (x) and γ̄+r (x + ∣ᾱ∣) must be the same parameterized type. Hence
this type must be of the form [uin,w] where the last letter of w is a. It follows
that u+r (x + ∣ᾱ∣) must be a.

Now assume that there are positions y = y1 < . . . < yl = y′ in γ̄+r that have
value a and yi+1 − yi ≤ ∣ᾱ∣ for all i ≤ l. As loc(ᾱ1) = . . . = loc(ᾱn) = loc(ᾱ) there
are positions y′′ = y′1 < . . . < y′l′ = y that also have value a and yi+1 − yi ≤ ∣ᾱ∣ for
all i ≤ l′. In addition ∣ᾱin − ᾱ∣ ≤ y′′ < ∣ᾱin∣. As p1 is of the form (p, [uin, uin]) it



follows from the definition of B that a must occur in uin. We have already dealt
with this case above.

We still need to consider non-recurrent values. Observe that a non-recurrent
value a can occur at most ∣ᾱ∣−1 times in u+r . As two occurrences of a are atmost
∣ᾱ∣ symbols apart it follows that non-recurrent values are at most k∣ᾱ∣ positions
apart. Hence the claim also holds for non-recurrent values. This completes the
proof of the claim. ⊓⊔

We now show that Duplicator’s strategy is a winning strategy. Assume that
(u+r , x1 . . . xr′), (uir, y1 . . . yr′) is the game board at the end of round r′. We need
to check that for all i, j ≤ r′, the same FO(∼,<) formulas are true on (u+r , xi, xj),
(uir, yi, yj).

It is easy to show that if xi < xj and yi ≮ yj then the position in the surrogate
game is not a winning position (the formal argument that involves invariant
1,4,5, and 6 is omitted). Now consider the atomic formula x ∼ y. We proceed by
case distinction. Observe that by the invariant, xi is small iff yi is small, xi is
interesting iff yi is interesting, and xi is big iff yi is big. The same is true for xj
and yj . We assume that xi < xj and yi < yj .

1. The case where xi, xj , yi, yj are all small is trivial because of invariant 2.
2. Assume that xi and yi are small and xj and yj are interesting. Then the

positions xi in u+r and yi in u−r have the same value. By Lemma 8 it holds
that ∣xi − xj ∣ > k∣ᾱ∣ and ∣yi − yj ∣ > k∣ᾱ∣ or xi − xj = yi − yj . If xi − xj = yi − yj
then we are done. Otherwise it follows from Lemma 9 and invariant 4 of the
invariant that xi and xj have the same value iff yi and yj have the same
value.

3. Now consider the case where xi and yi are small and xj and yj are big. In
this case xj − xi ≥ k because by definition ∣ᾱ∣ > 1 and ᾱ is iterated at least k
times when constructing γ̄+r . The same argument show that yj −yi ≥ k. As u+r
and u−r are free words, either xj and xi are on positions with different values
and yj and yi are on positions with different values, or there are interesting
position with the same values as position xj and yj have in their respective
words. In the first case we are done and we have dealt with the second case
under 2.

4. The argument for the case where xi, xj , yi, yj are all interesting is the same
as under 2. above.

5. In case that xi and yi are interesting and xj and yj are big we are done if
xi − xj = yi − yj . Otherwise it follows from Lemma 8 that ∣xi − xj ∣ > k∣ᾱ∣ and
∣yi − yj ∣ > k∣ᾱ∣. Then it follows from Lemma 9 and invariant 4 that xi and xj
have the same value iff yi and yj have the same value.

6. The case that xi, xj , yi, yj are all big is trivial because of invariant 3. ⊓⊔
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