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Abstract. This survey article introduces into the essential concepts and
methods underlying rule-based query languages. It covers four comple-
mentary areas: declarative semantics based on adaptations of mathemat-
ical logic, operational semantics, complexity and expressive power, and
optimisation of query evaluation.

The treatment of these areas is foundation-oriented, the foundations
having resulted from over four decades of research in the logic program-
ming and database communities on combinations of query languages and
rules. These results have later formed the basis for conceiving, improv-
ing, and implementing several Web and Semantic Web technologies, in
particular query languages such as XQuery or SPARQL for querying
relational, XML, and RDF data, and rule languages like the “Rule Inter-
change Framework (RIF)” currently being developed in a working group
of the W3C.

Coverage of the article is deliberately limited to declarative languages
in a classical setting: issues such as query answering in F-Logic or in
description logics, or the relationship of query answering to reactive rules
and events, are not addressed.

1 Introduction

The foundations of query languages mostly stem from logic and complexity the-
ory. The research on query languages has enriched these two fields with novel
issues, original approaches, and a respectable body of specific results. Thus, the
foundations of query languages are arguably more than applications of these
two fields. They can be seen as a research field in its own right with interesting
results and, possibly, even more interesting perspectives. In this field, basic and
applied research often are so tightly connected that distinguishing between the
two would be rather arbitrary. Furthermore, this field has been very lively since
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the late 1970s and is currently undergoing a renaissance, the Web motivating
query and rule languages with novel capabilities. This article aims at introducing
into this active field of research.

Query languages have emerged with database systems, greatly contributing to
their success, in the late 1970s. First approaches to query languages were inspired
by mathematical logic. As time went by, query languages offering syntactical con-
structs and concepts that depart from classical logic were being developed, but
still, query languages kept an undeniably logical flavour. The main strengths of
this flavour are: compound queries constructed using connectives such as “and”
and “or”; rules expressed as implications; declarative semantics of queries and
query programs reminiscent of Tarski’s model-theoretic truth definition; query
optimisation techniques modelled on equivalences of logical formulas; and query
evaluators based on methods and heuristics similar to, even though in some cases
simpler than, those of theorem provers.

With the advent of the Web in the early 1990s things have changed. Query
languages are undergoing a renaissance motivated by new objectives: Web query
languages have to access structured data that are subject to structural irreg-
ularities – so-called “semi-structured data” – to take into account rich textual
contents while retrieving data, to deliver structured answers that may require
very significant reorganisations of the data retrieved, and to perform more or
less sophisticated forms of automated reasoning while accessing or delivering
meta-data. All these issues have been investigated since the mid 1990s and still
are. Further issues of considerable relevance, which, up till now, have received
limited attention, include: query processing in a distributed and decentralised
environment, query languages for search engines, search as a query primitive,
and semantical data alignment.

The current query language renaissance both, takes distance from the logical
setting of query languages, and builds upon it. On the one hand, recent Web
query languages such as XPath and XQuery seem to be much less related to logic
than former relational query languages such as SQL and former object-oriented
query languages such as OQL. On the other hand, expressly logic-based Web
query languages such as the experimental language Xcerpt [28,141,30,29] have
been proposed, and Semantic Web query languages such as RQL, RDQL, and
SPARQL clearly have logical roots (see [14,73] for surveys on Web and Seman-
tic Web query languages). Furthermore, language optimisers and evaluators of
XPath and XQuery exploit techniques formerly developed, thus bringing these
languages back to the logical roots of query languages. At the beginning of this
ongoing query language renaissance, a principled and summarised presentation
of query language foundations surely makes sense.

1.1 What Are Query Languages? Tentative Definitions

A first definition of what query languages are considers what they are used
for: they can be defined as specialised programming languages for selecting and
retrieving data from “information systems”. These are (possibly very large) data
repositories such as file systems, databases, and (all or part of) the World Wide
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Web. Query languages are specialised inasmuch as they are simpler to use or
offer only limited programming functionalities that aim at easing the selection
and retrieval of data from information systems.

A second attempt at defining what query languages are is to consider their
programming paradigms, i.e., the brand of programming languages they belong
to: query languages are declarative languages, i.e., languages abstracting out
how (query) programs are to be evaluated. This makes query languages both
easier to use – an advantage for the human user – and easier to optimise – an
advantage for the computer. The declarativity of query languages is the reason
for their close relationship to logic: declarative languages are all in some way or
other based on logic.

A third approach to define what query languages are considers their major
representatives: SQL for relational databases, OQL for object-oriented data-
bases, XPath and XQuery for HTML and XML data, and RQL, RDQL, and
SPARQL for RDF data. Forthcoming are query languages for OWL ontologies.
Viewed from this angle, what have query languages in common? First, a sepa-
ration between query programs and accessed data, requiring to compile query
programs without any knowledge at all or with only limited knowledge of the
data the compiled query programs are to access. Second, a dedication to data
models, many, if not all, of which are strongly rooted in logic.

Query languages, as a research field, can also be defined by the issues being
investigated. Central issues in query languages research include:
– query paradigms (e.g., visual, relational, object-oriented, and navigational

query languages),
– declarative semantics,
– complexity and expressive power,
– procedural semantics,
– implementations of query evaluators,
– query optimisation (e.g., equivalence of queries).

Further query language issues include: integrity constraints (languages, expres-
sive power, complexity, evaluation, satisfiability, maintenance); incremental or
distributed evaluation of queries; evaluation of queries against data streams;
storage of large collections of queries (e.g., for publish-subscribe systems); ap-
proximate answers; query answering in presence of uncertain information; query
answering in presence of inconsistent information; querying special data (e.g.,
constraints, spatial data, graphic data); algorithms and data structures for effi-
cient data storage and retrieval.

1.2 Coverage of This Survey

This survey article on the foundations of query languages is focused on logic,
complexity and expressive power, and query optimisation. The reasons for such
an admittedly limited focus are manifold. First, this focus arguably provides
with a corner stone for most of the past and current research on query languages.
Second, this focus covers a rather large field that could hardly be enlarged in
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a survey and introductory article. Third, such a focus provides with a unity of
concerns and methods.

1.3 Structure of This Survey

This survey article is organised as follows. Section 1 is this introduction. Section 2
introduces a few general mathematical notions that are used in later sections.
Section 3 is devoted to syntax. It introduces the syntax of classical first-order
predicate logic,1 then of fragments of first-order predicate logic that characterise
classes of query languages. This section shows how the syntax of the various
practical query languages can be conveyed by the syntax of first-order predicate
logic. Section 4 introduces into classical first-order model theory, starting with
Tarski model theory, the notion of entailment, Herbrand interpretations, and
similar standard notions, explaining the relevance of these notions to query lan-
guages. After this main part, the section covers Herbrand model theory and finite
model theory, which have a number of interesting and rather surprising proper-
ties that are relevant to query languages. Section 5 then treats the adaptations
of classical model theory to query and rule languages, covering minimal model
semantics and fixpoint semantics and discussing approaches to the declarative
semantics of rule sets with negation. A subsection on RDF model theory rounds
out this section. Sections 6 and 7 introduce into the operational semantics of
query programs, considering positive rule sets and rule sets with non-monotonic
negation, respectively. These two sections present (terminating) algorithms for
the (efficient) evaluation of query programs of various types. Section 8 is devoted
to complexity and expressive power of query language fragments. Section 9 in-
troduces into query optimisation, successively considering query containment,
query rewriting, and query algebras.

The purpose of Sections 3 and 4 is to make the article self-contained. Therefore
these sections are entirely expository. They should make it possible for readers
with limited knowledge of mathematical logic – especially of classical first-order
predicate logic – to understand the foundations of query languages. For those
readers who already have some of that knowledge and mathematical practice,
the sections should help recall notions and state terminologies and notations.

2 Preliminaries

2.1 General Mathematical Notions

By a function we mean, unless otherwise stated, a total function.
We consider zero to be the smallest natural number. The set of natural num-

bers is � = {0, 1, 2, 3, . . .}.

Definition 1 (Enumerable). A set S is called enumerable, if there is a sur-
jection � → S. A set S is called computably enumerable (or recursively enumer-
able), if it is enumerable with a surjection that is computable by some algorithm.
1 Sometimes called simply “first-order logic”, a short form avoided in this article.
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Note that any finite set is enumerable and computably enumerable. The infinite
set of all syntactically correct C programs is computably enumerable and thus
enumerable. Its subset consisting of all syntactically correct C programs that do
not terminate for each input is enumerable, but not computably enumerable.

2.2 Logic vs. Logics

The development of logic started in antiquity and continued through mediae-
val times as an activity of philosophy aimed at analysing rational reasoning.
In the late 19th century parts of logic were mathematically formalised, and in
the early 20th century logic turned into a tool used in a (not fully successful)
attempt to overcome a foundational crisis of mathematics. The fact that logic is
not restricted to analysing reasoning in mathematics became somewhat eclipsed
during those decades of extensive mathematisation, but came to the fore again
when computer science discovered its close ties to logic. Today, logic provides
the foundations in many areas of computer science, such as knowledge represen-
tation, database theory, programming languages, and query languages.

Logic is concerned with statements, which are utterances that may be true or
false. The key features of logic are the use of formal languages for representing
statements (so as to avoid ambiguities inherent to natural languages) and the
quest for computable reasoning about those statements. “Logic” is the name of
the scientific discipline investigating such formal languages for statements, but
any of those languages is also called “a logic” – logic investigates logics.

3 Syntax: From First-Order Predicate Logic to Query
Language Fragments of First-Order Predicate Logic

This section introduces the syntax of first-order predicate logic, which is the most
prominent of logics (formal languages) and occupies a central position in logic
(the scientific discipline) for several reasons: it is the most widely used and most
thoroughly studied logic; it is the basis for the definition of most other logics;
its expressive power is adequate for many essential issues in mathematics and
computer science; its reasoning is computable in a sense to be made precise in
Section 4; it is the most expressive logic featuring this kind of computability [110].

Practical query and rule languages depart from first-order predicate logic in
many respects, but nonetheless they have their roots in and can conveniently be
described and investigated in first-order predicate logic.

Subsection 3.1 below contains the standard definitions of first-order predicate
logic syntax. The second subsection 3.2 discusses fragments (or sublanguages) of
first-order predicate logic that correspond to common query or rule languages.
The last subsection 3.3 discusses several modifications of the standard syntax
that are used in some areas of computer science.

3.1 Syntax of First-Order Predicate Logic

First-order predicate logic is not just a single formal language, because some of
its symbols may depend on the intended applications. The symbols common to
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all languages of first-order predicate logic are called logical symbols, the symbols
that have to be specified in order to determine a specific language are called the
signature (or vocabulary) of that language.

Definition 2 (Logical symbol). The logical symbols of first-order predicate
logic are:

symbol class symbols pronounced
punctuation symbols , ) (
connectives 0-ary ⊥ bottom, falsity symbol

� top, truth symbol
1-ary ¬ not, negation symbol
2-ary ∧ and, conjunction symbol

∨ or, disjunction symbol
⇒ implies, implication symbol

quantifiers ∀ for all, universal quantifier
∃ exists, existential quantifier

variables u v w x y z . . .
possibly subscripted

The set of variables is infinite and computably enumerable.

Definition 3 (Signature). A signature or vocabulary for first-order predicate
logic is a pair L =

(
{Funn

L}n∈�, {RelnL}n∈�
)

of two families of computably enu-
merable symbol sets, called n-ary function symbols of L and n-ary relation sym-
bols or predicate symbols of L. The 0-ary function symbols are called constants
of L. The 0-ary relation symbols are called propositional relation symbols of L.

Note that any of the symbol sets constituting a signature may be empty. More-
over, they need not be disjoint. If they are not, the signature is called overloaded .
Overloading is usually uncritical, moreover it can be undone by annotating each
signature symbol with its symbol class (Fun or Rel) and arity whenever required.

First-order predicate logic comes in two versions: equality may or may not
be built-in. The version with built-in equality defines a special 2-ary relation
symbol for equality, written = by some authors and written .= or differently by
authors who want to avoid confusion with the same symbol at the meta level. In
this article we assume first-order predicate logic without equality, unless built-in
equality is explicitly mentioned.

Definition 4 (L-term). Let L be a signature. We define inductively:
1. Each variable x is an L-term.
2. Each constant c of L is an L-term.
3. For each n ≥ 1, if f is an n-ary function symbol of L and

t1, . . . , tn are L-terms, then f(t1, . . . , tn) is an L-term.

Definition 5 (L-atom). Let L be a signature. For n ∈ �, if p is an n-ary
relation symbol of L and t1, . . . , tn are L-terms, then p(t1, . . . , tn) is an L-atom
or atomic L-formula. For n = 0 the atom may be written p() or p and is called
a propositional L-atom.
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Definition 6 (L-formula). Let L be a signature. We define inductively:
1. Each L-atom is an L-formula. (atoms)
2. ⊥ and � are L-formulas. (0-ary connectives)
3. If ϕ is an L-formula, then

¬ϕ is an L-formula. (1-ary connectives)
4. If ϕ and ψ are L-formulas, then

(ϕ ∧ ψ) and (ϕ ∨ ψ) and (ϕ ⇒ ψ) are L-formulas. (2-ary connectives)
5. If x is a variable and ϕ is an L-formula, then

∀xϕ and ∃xϕ are L-formulas. (quantifiers)

In most cases the signature L is clear from context, and we simply speak of
terms, atoms, and formulas without the prefix “L-”. If no signature is specified,
one usually assumes the conventions:

p, q, r, . . . are relation symbols with appropriate arities.
f, g, h, . . . are function symbols with appropriate arities �= 0.
a, b, c, . . . are constants, i.e., function symbols with arity 0.

The set of terms is a formal language for representing individuals about which
statements can be made. The set of formulas is the formal language for represent-
ing such statements. For example, constants a and b might represent numbers,
function symbol f an arithmetic operation, and relation symbol p an arithmetic
comparison relation. Then the term f(a, f(a, b)) would also represent a number,
whereas the atomic formula p(a, f(a, b)) would represent a statement about two
numbers.

Unique Parsing of Terms and Formulas. The definitions above, in particular
the fact that parentheses enclose formulas constructed with a binary connective,
ensure an unambiguous syntactical structure of any term or formula. For the
sake of readability this strict syntax definition can be relaxed by the convention
that ∧ takes precedence over ∨ and both of them take precedence over ⇒. Thus,
q(a) ∨ q(b) ∧ r(b) ⇒ p(a, f(a, b)) is a shorthand for the fully parenthesised form
((q(a) ∨ (q(b) ∧ r(b))) ⇒ p(a, f(a, b))). Likewise, one usually assumes that ∧
and ∨ associate to the left and ⇒ associates to the right. As a further means to
improve readability, some of the parentheses may be written as square brackets
or curly braces.

Definition 7 (Subformula). The subformulas of a formula ϕ are ϕ itself and
all subformulas of immediate subformulas of ϕ.
– Atomic formulas and ⊥ and � have no immediate subformulas.
– The only immediate subformula of ¬ψ is ψ.
– The immediate subformulas of (ψ1 ∧ ψ2) or (ψ1 ∨ ψ2) or (ψ1 ⇒ ψ2) are ψ1

and ψ2.
– The only immediate subformula of ∀xψ or ∃xψ is ψ.

Definition 8 (Scope). Let ϕ be a formula, Q a quantifier, and Qxψ a subfor-
mula of ϕ. Then Qx is called a quantifier for x. Its scope in ϕ is the subformula ψ
except subformulas of ψ that begin with a quantifier for the same variable x.

Each occurrence of x in the scope of Qx is bound in ϕ by Qx. Each occurrence
of x that is not in the scope of any quantifier for x is a free occurrence of x in ϕ.
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Example 9 (Bound/free variable). Let ϕ be
(
∀x[∃xp(x)∧q(x)]⇒[r(x)∨∀xs(x)]

)
.

The x in p(x) is bound in ϕ by ∃x. The x in q(x) is bound in ϕ by the first ∀x.
The x in r(x) is free in ϕ. The x in s(x) is bound in ϕ by the last ∀x.

Let ϕ′ be ∀x
(
[∃xp(x) ∧ q(x)] ⇒ [r(x) ∨∀xs(x)]

)
. Here both the x in p(x) and

the x in r(x) are bound in ϕ′ by the first ∀x.

Note that being bound or free is not a property of just a variable occurrence,
but of a variable occurrence relative to a formula. For instance, x is bound in
the formula ∀x p(x), but free in its subformula p(x).

Definition 10 (Rectified formula). A formula ϕ is rectified, if for each oc-
currence Qx of a quantifier for a variable x, there is neither any free occurrence
of x in ϕ nor any other occurrence of a quantifier for the same variable x.

Any formula can be rectified by consistently renaming its quantified variables.
The formula (∀x[∃xp(x)∧q(x)] ⇒ [r(x)∨ ∀xs(x)]) from the example above can be
rectified to (∀u[∃vp(v)∧ q(u)] ⇒ [r(x)∨ ∀ws(w)]). Note that rectification leaves
any free variables free and unrenamed. Another name for rectification, mainly
used in special cases with implicit quantification, is standardisation apart .

Definition 11 (Ground term or formula, closed formula). A ground
term is a term containing no variable. A ground formula is a formula contain-
ing no variable. A closed formula or sentence is a formula containing no free
variable.

For example, p(a) is a ground atom and therefore closed. The formula ∀x p(x) is
not ground, but closed. The atom p(x) is neither ground nor closed. In Example 9
above, the formula ϕ is not closed and the formula ϕ′ is closed.

Definition 12 (Propositional formula). A propositional formula is a for-
mula containing no quantifier and no relation symbol of arity > 0.

Propositional vs. Ground. Propositional formulas are composed of connectives
and 0-ary relation symbols only. Obviously, each propositional formula is ground.
The converse is not correct in the strict formal sense, but ground formulas can
be regarded as propositional in a broader sense:

If L is a signature for first-order predicate logic, the set of ground L-atoms is
computably enumerable. Let L′ be a new signature defining each ground L-atom
as a 0-ary relation “symbol” of L′. Now each ground L-formula can also be read
as a propositional L′-formula.

Note that this simple switch of viewpoints works only for ground formulas,
because it cannot capture the dependencies between quantifiers and variables.

Definition 13 (Polarity). Let ϕ be a formula. The polarities of occurrences
of its subformulas are positive or negative as follows:
– The polarity of ϕ in ϕ is positive.
– If ψ is ¬ψ1 or (ψ1 ⇒ ψ2) and occurs in ϕ,

the polarity of ψ1 in ϕ is the opposite of the polarity of ψ in ϕ.
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– In all other cases, if ψ is an occurrence in ϕ of a subformula with immediate
subformula ψ′, the polarity of ψ′ in ϕ is the same as the polarity of ψ in ϕ.

The polarity counts whether an occurrence of a subformula is within the scope
of an even or odd number of negations. The left-hand immediate subformula of
an implication counts as an implicitly negated subformula.

Definition 14 (Universal formula). A formula ϕ is universal, iff each oc-
currence of ∀ has positive and each occurrence of ∃ has negative polarity in ϕ.

For instance, ∀x ([¬∀y p(x, y)] ⇒ [¬∃z p(x, z)]) is a universal closed formula,
whereas ∀x ([¬∀y p(x, y)] ⇒ [¬∀z p(x, z)]) is not universal.

Definition 15 (Prenex form). A formula ϕ is in prenex form, iff it has the
form Q1x1 . . .Qnxn ψ where n ≥ 0 and the Qi are quantifiers and ψ contains no
quantifier. The quantifier-free subformula ψ is called the matrix of ϕ.

Obviously, a formula in prenex form is universal iff it does not contain ∃. Each
formula can be transformed into an equivalent formula in prenex form (equivalent
in the sense of |=| from Section 4).

Notation 16 (Term list notation). Let u = t1, . . . , tk be a list of terms, let
f and p be a k-ary function and relation symbol. Then f(u) is a short notation
for the term f(t1, . . . , tk) and p(u) for the atom p(t1, . . . , tk).

Let x = x1, . . . , xn be a list of variables and ϕ a formula. Then ∀xϕ is a
short notation for ∀x1 . . . ∀xn ϕ and ∃xϕ for ∃x1 . . .∃xn ϕ. In the case n = 0
both ∀xϕ and ∃xϕ stand for ϕ.

Definition 17 (Universal/existential closure). Let ϕ be a formula. Let x be
the list of all variables having a free occurrence in ϕ. The universal closure ∀∗ϕ
is defined as ∀xϕ and the existential closure ∃∗ϕ as ∃xϕ.

Technically, a quantifier-free formula such as ((p(x, y) ∧ p(y, z)) ⇒ p(x, z)) con-
tains free variables. It is fairly common to use quantifier-free notations as short-
hand for their universal closure, which is a closed universal formula in prenex
form, in this case ∀x∀y∀z((p(x, y) ∧ p(y, z)) ⇒ p(x, z)).

3.2 Query and Rule Language Fragments of First-Order Predicate
Logic

Notation 18 (Rule). A rule ψ ←ϕ is a notation for a not necessarily closed
formula (ϕ ⇒ ψ). The subformula ϕ is called the antecedent or body and ψ the
consequent or head of the rule. A rule ψ ←� may be written ψ ← with empty
antecedent. A rule ⊥←ϕ may be written ←ϕ with empty consequent.

Implicit Quantification. Typically, a rule is a shorthand notation for its univer-
sal closure. The set of free variables in a rule ψ ←ϕ can be partitioned into the
variables x that occur in ψ and the variables y that occur in ϕ but not in ψ.
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Then the universal closure ∀x∀y(ψ ←ϕ) is equivalent to ∀x(ψ ←∃yϕ) in the
sense of |=| (Section 4). Thus, the free variables occurring only in the rule an-
tecedent can be described as implicitly universally quantified in the entire rule
or implicitly existentially quantified in the rule antecedent. The two alternative
descriptions mean the same, but they can be confusing, especially for rules with
empty consequent.

Definition 19 (Literal, complement). If A is an atom, both A and ¬A are
literals. The literal A is positive, the literal ¬A is negative, and the two are a
pair of complementary literals. The complement of A, written A, is ¬A, the
complement of ¬A, written ¬A, is A.

Definition 20 (Clause). A clause is a disjunction of finitely many literals. A
clause is written A1 ∨ . . . ∨ Ak ← L1 ∧ . . . ∧ Ln in rule notation, which stands
for the disjunction A1 ∨ . . . ∨ Ak ∨ L1 ∨ . . . ∨ Ln with atoms Ai and literals Lj,
k ≥ 0, n ≥ 0. A clause represents its universal closure.

Any formula of first-order predicate logic can be transformed into a finite set of
clauses with essentially the same meaning (see Section 4).

3.2.1 Logic Programming
Logic programming considers clauses with non-empty consequent as programs
and clauses with empty consequent as goals used for program invocation. The
operational and declarative semantics of logic programs depend on whether the
antecedent is a conjunction of atoms or of arbitrary literals and whether the
consequent is just a single atom or a disjunction of several atoms.

Definition 21 (Clause classification). Let k, n ∈ �, let A, Aj , Bi be atoms
and Li be literals. The following names are defined for special forms of clauses.

Name Form

H
or

n
cl

au
se definite clause A ← B1 ∧ . . . ∧ Bn k = 1, n ≥ 0

unit clause2 A ← k = 1, n = 0
definite goal ← B1 ∧ . . . ∧ Bn k = 0, n ≥ 0

empty clause3 ← k = 0, n = 0

normal clause A ← L1 ∧ . . . ∧ Ln k = 1, n ≥ 0
normal goal ← L1 ∧ . . . ∧ Ln k = 0, n ≥ 0
disjunctive clause A1 ∨ . . . ∨ Ak ← B1 ∧ . . . ∧ Bn k ≥ 0, n ≥ 0
general clause A1 ∨ . . . ∨ Ak ← L1 ∧ . . . ∧ Ln k ≥ 0, n ≥ 0

A finite set of definite clauses is called a definite program. Definite programs
invoked by definite queries represent a fragment of first-order predicate logic with
especially nice semantic properties. In the context of the programming language
2 Unit clauses are also called facts, which is meant in a purely syntactic sense although

the word suggests a semantic sense.
3 The empty clause is usually denoted � in the literature on automated deduction.
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Prolog this fragment is sometimes called “pure Prolog”. The generalisation to
normal clauses and normal queries allows to use negation in antecedents, which
may be handled as in Prolog by negation as failure. Programs with disjunctive
clauses are investigated in the field of disjunctive logic programming.

Definite programs do not have the full expressive power of first-order predi-
cate logic. For example, given relation symbols person , male, female , it is not
possible to express with definite clauses that each person is male or female. This
requires a disjunctive clause male(x)∨female(x) ← person(x) or a normal clause
male(x) ← person(x)∧¬female (x). The two are equivalent in the classical sense
of |=| (see Section 4), but their operational treatment might be different.

3.2.2 Datalog
Logic-based formalisations of query languages can be based on concepts of logic
programming, but with a number of specifics:

– Function symbols other than constants are excluded. Thus, the only terms
are variables and constants.

– Relation symbols are partitioned into those that may occur in the data to
be queried, called extensional, and those that may not, called intensional.

– Clauses are assumed to be range restricted, which essentially requires that
all variables in the consequent of a clause also occur in its antecedent.

Definition 22 (Database schemaand instance, extensional, intensional).
Let L =

(
{Funn

L}n∈�, {RelnL}n∈�
)

be a signature with Funn
L = ∅ for n > 0.

A database schema over L is a nonempty, finite subset D ⊆
⋃

n∈�RelnL . The
relation symbols in D and any atoms constructed with them are called exten-
sional. The other relation symbols and atoms are called intensional.

A database instance for D is a finite set of extensional ground atoms.

Definition 23 (Range restricted). A general clause is range restricted if
each variable occurring anywhere in it occurs in a positive literal of its antecedent.

Specialised to definite clauses, range restriction means that each variable occur-
ring in the consequent also occurs in the antecedent of the clause.

Definition 24 (Datalog). A datalog clause is a range restricted definite clause4

whose consequent is an intensional atom.
A datalog program is a finite set of datalog clauses.

In a database instance, the set of all extensional atoms sharing the same n-ary
relation symbol amounts to an extensional specification of an n-ary relation.
These relations are also referred to as the extensional database (EDB). In a
datalog program, the set of all datalog clauses whose consequent atoms share the
same n-ary relation symbol amounts to an intensional specification of an n-ary
relation. These relations are also referred to as the intensional database (IDB).

4 Some authors define datalog clauses without requiring that they are range restricted.
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The antecedent of a datalog clause may contain both extensional and intensional
atoms, thus accessing both kinds of relations.

Note that range restriction implies that datalog unit clauses are ground. Such
clauses are typically needed as base cases for recursive definitions.

The distinction between extensional and intensional is a pragmatic one. It
is useful in processing datalog programs written for querying: clauses whose
consequents contain only intensional atoms can be pre-processed, e.g., rewritten
or compiled, without knowledge of the database instance to be queried.

On the other hand the distinction is no point of principle. Any pair of a datalog
program and a database instance can be fused into an exclusively intensional
form by writing each extensional atom from the database instance as a datalog
unit clause and redeclaring all relation symbols as intensional. Conversely, any
such “fused” datalog program can be separated into an intensional and a (new)
extensional part: provided that a relation symbol r occurs in the consequents
of unit clauses only, each of these unit clauses r(c1, . . . , ck) ← is written as
an extensional atom r′(c1, . . . , ck) with an additional interfacing datalog clause
r(x1, . . . , xk) ← r′(x1, . . . , xk) for a new relation symbol r′. The new relation
symbols are then declared to be extensional.

Many variants of datalog have been defined by modifying the plain version
introduced here. Such restricted or extended versions of datalog are motivated by
their interesting expressive power and/or complexity or by their correspondence
to classes of queries defined by other formalisation approaches. See Section 8 for
more details and [46] for a survey. Here we list just some of these versions of
datalog.
– Monadic datalog is datalog where all intensional relation symbols are unary.
– Nonrecursive datalog is datalog without direct or indirect recursion.
– Linear datalog is datalog where each clause antecedent contains at most one

intensional atom (thus restricting the form of recursion).
– Disjunctive datalog is datalog with disjunctive instead of definite clauses.
– Datalog¬ is datalog with normal instead of definite clauses.
– Nonrecursive datalog¬ is datalog¬ without direct or indirect recursion.
– Disjunctive datalog¬ is datalog¬ with general instead of normal clauses.

3.2.3 Conjunctive Queries
The most trivial form of nonrecursive datalog is obtained by disallowing inten-
sional relation symbols in rule antecedents. If in addition the datalog program
is restricted to just one clause, the consequent of this clause contains the only
occurrence of an intensional relation symbol. By a wide-spread convention this
unique intensional relation symbol is called the answer relation symbol and the
rule is called a conjunctive query.

Definition 25 (Conjunctive query). A conjunctive query is a datalog rule
ans(u) ← r1(u1) ∧ . . . ∧ rn(un) where n ≥ 0, the ri are extensional and ans
is an intensional relation symbol, u, u1, . . . , un are lists of terms of appropriate
length, and the rule is range restricted, i.e., each variable in u also occurs in at
least one of u1, . . . , un.
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A boolean conjunctive query is a conjunctive query where u is the empty list,
i.e., the answer relation symbol ans is propositional.

The following examples of conjunctive queries assume that parent is a 2-ary
and male and female are 1-ary extensional relation symbols. The first two are
examples of boolean conjunctive queries.
ans() ← parent(mary , tom) is Mary a parent of Tom?
ans() ← parent(mary , y) does Mary have children?
ans(x) ← parent(x, tom) who are Tom’s parents?
ans(x) ← female(x)∧parent(x, y)∧parent(y, tom) who are Tom’s grandmothers?
ans(x, z) ← male(x) ∧ parent(x, y) ∧ parent(y, z) who are grandfathers and

their grandchildren?

The class of conjunctive queries enjoys interesting complexity properties (see
Section 8), but its expressive power is limited. Given only the extensional relation
symbols above, the following query types cannot be expressed as conjunctive
queries:

1. who are parents of Tom or Mary?
requires disjunction in rule antecedents or more than a single rule.

2. who are parents, but not of Tom?
requires negation in rule antecedents.

3. who are women all of whose children are sons?
requires universal quantification in rule antecedents. Note that variables oc-
curring only in the antecedent of a conjunctive query (such as y in the ex-
amples above) are interpreted as if existentially quantified in the antecedent.

4. who are ancestors of Tom?
requires recursion, i.e., intensional relation symbols in rule antecedents.

Conjunctive queries have been extended to make some of these query types
expressible and to allow comparisons with classes of relational algebra queries.

Basic conjunctive queries as defined above correspond to the SPC subclass
of relational algebra queries constructed with selection, projection, cartesian
product (or, alternatively, join).

Conjunctive queries extended with disjunction in rule antecedents correspond
to the SPCU subclass of relational algebra queries, which incorporates union.

Conjunctive queries extended with negation, disjunction, and quantification
in rule antecedents (but no recursion) are known as first-order queries and cor-
respond to the full class of relational algebra queries.

However, for an exact correspondence first-order queries have to be restricted
to domain independent queries. This is a semantic characterisation that excludes
queries for which the answers depend on information that may not be completely
available. For instance, the set of answers to ans(x) ← ¬parent(x, x) comprises
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all of humanity – or, depending on the domain of individuals under consideration,
all mammals or all vertebrates. This problem does not arise iff the query is
domain independent. Unfortunately, domain independence is undecidable.5 But
there are several syntactic, i.e., decidable, criteria that are sufficient for domain
independence. Range restricted general clauses (Definition 21), for example, are
domain independent.

Another subclass of first-order queries restricts rule antecedents to formulas
from the so-called guarded fragment of first-order predicate logic, where quanti-
fiers have to be “guarded” by atoms containing the quantified variables (see the
subsection on range restricted quantification on page 18). The guarded fragment
corresponds to the semijoin algebra, the variant of the full relational algebra ob-
tained by replacing the join operator by the semijoin operator [105]. See Section 9
for more details.

In summary, the various extensions to conjunctive queries cover all of the
query types above except the last one, which requires recursion. Some of the
extensions are obviously not datalog, but only from a syntactic point of view.
They can be expressed with nonrecursive datalog¬ provided that more than one
rule is allowed. In other words, the expressive power of datalog is strictly greater
than that of relational algebra, and the add-on is due to recursion.

3.2.4 Single-Rule Programs (sirups)
Datalog programs containing a single non-unit clause and possibly some unit
clauses have been introduced in order to study various “degrees” of recursion.
They are called single-rule programs , sirups for short.

Pure sirups are datalog programs consisting of a single rule and no unit-clause.
In particular, conjunctive queries are pure sirups. Single ground fact sirups are
datalog programs consisting of a single rule and at most one ground unit clause.
General sirups are datalog programs consisting of a single rule and some unit
clauses. For each of these classes its linear subclass is also of interest.

It turns out that even such strongly restricted classes of sirups have essentially
the same complexity and expressive power as general datalog programs [79].

3.3 Syntactic Variations of First-Order Predicate Logic Relevant to
Query Languages

Programming and modelling languages from various areas of computer science
often provide constructs that resemble terms or formulas of first-order predi-
cate logic. Such constructs sometimes deviate from their logical counterparts in
certain aspects, which in most cases are more a matter of convenience than of
fundamental principles. By considering such constructs as syntactic variants –
typically, more convenient ones – of logical terms or formulas, logic’s semantic
apparatus becomes applicable and can be used to define the meaning of such
constructs.
5 Basically, because if ϕ is not domain independent, then (ϕ∧ψ) is domain independent

iff ψ is unsatisfiable, an undecidable property.
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3.3.1 Variations from Object-Oriented and Knowledge
Representation Formalisms

Record-like Structures. Language constructs resembling records or structures of
imperative programming languages are meant for collecting all data about some
real object in a single syntactic unit:

Person
firstName: Mary
lastName: Miller
bornIn: 1984

Regardless of its concrete syntax, such a construct can be seen as syntactic
sugar for the ground atom person(Mary ,Miller , 1984) or for the ground formula
person(c) ∧ firstName(c)=̇Mary ∧ lastName(c)=̇Miller ∧ bornIn(c)=̇1984.
The former translation is sufficient for simple structures, the latter, assuming
built-in equality, can represent more complex ones.

Cyclic Structures. Some object-oriented programming or modelling languages
allow self-references such as:

Employee
firstName: Mary
lastName: Miller
bornIn: 1984
superior: SELF

Here the keyword SELF refers to the very syntactic unit in which it occurs.
First-order predicate logic does not support “cyclic terms” or “cyclic formulas”,
thus there is no direct translation to logic.

Constructs like SELF represent implicit references, in contrast to explicit ref-
erences such as unique identifiers or keys. Implicit references have the purpose
to restrict the user’s possibilities for manipulating references, but they are im-
plemented using explicit references. Roughly speaking, implicit references are
explicit references with information hiding. Translating explicit references to
logic is straightforward, and it is just the information hiding aspect that has
no counterpart in logic. Logic – like the relational and other data models – can
represent information, but is not concerned with information hiding.

Object Identity. Another feature of object-oriented programming or modelling
languages is a so-called “object identity”, which allows to distinguish between
objects that are syntactically equal, such as two objects representing two people
whose personal data happens to coincide:

Person
firstName: Mary
lastName: Miller
bornIn: 1984

Person
firstName: Mary
lastName: Miller
bornIn: 1984

Logic is referentially transparent, meaning that it does not distinguish be-
tween syntactically equal “copies”. Thus, there is no direct translation to logic
of objects with object identity.
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As in the case of cyclic structures, object identity is a concept for implicit ref-
erence, which is based on explicit references but hides some information. Again,
it is only the information hiding aspect that cannot be translated to logic.

Positions vs. Roles. The position of arguments in a term or atom such as
person(Mary ,Miller , 1984) is significant. Exchanging the first two arguments
would result in the representation of a different person.

Some languages allow to associate an identifier, a so-called role, with each
argument position. An argument is then written as a pair role −� term, such as
person(firstName −�Mary , lastName −�Miller , bornIn −�1984), alternatively
person(lastName −�Miller , firstName −�Mary , bornIn −�1984), which are con-
sidered to be the same. The record-like constructs above correspond most natu-
rally to such a notation using roles.

A syntax with roles has several advantages. It admits arbitrary orderings of
arguments and is therefore more flexible. It improves readability, especially with
high numbers of arguments. Moreover, it can handle “don’t care” arguments
more conveniently by simply omitting them rather than representing them by
wildcard variables. Such arguments are frequent in queries,

Nevertheless, it does not change the expressive power. The standard syn-
tax person(Mary ,Miller , 1984) can be seen as an abbreviated form of a role-
based notation person(1 −�Mary , 2 −�Miller , 3 −�1984) using positions as
roles. Conversely, the role identifiers can simply be numbered consecutively, thus
transforming the role-based notation into the notation using positions as roles,
of which the standard syntax is just an abbreviated form.

3.3.2 Variations from Relational Databases
Atoms vs. Tuples. In logic, an atom person(Mary ,Miller , 1984) formalises a
statement about two names and a number. Logic is concerned with statements
that may be true or false. Relational databases, on the other hand, are concerned
with relations or tables, which are sets of tuples. Under this perspective the point
of the example above is that the tuple of the two names and the number belongs
to the relation, formalised (Mary ,Miller , 1984) ∈ person . Obviously, the two
formalisations are directly interchangeable.

The different concerns of the two fields also result in different notions of
variables. In logic, variables are used as placeholders for the things about which
statements are made, as in person(Mary ,Miller , x). In relational databases, vari-
ables are used as placeholders for tuples, as in x ∈ person , with notations like
x3 or x.3 for accessing a single coordinate of a tuple x, here the third one.

Positions vs. Roles, continued. The alternative to base the notation on positions
or on roles also exists for the tuple notation. A standard tuple is a member of a
cartesian product of sets and therefore ordered. Another possibility is to regard
a tuple as an unordered collection of pairs role −�value. In the latter case the
notation for accessing a single coordinate of a tuple x is xbornIn or x.bornIn
using the role instead of the position.
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Combined, those alternatives result in four notational variants, which are
interchangeable:

Atom
positions person(Mary ,Miller , 1984)
roles person(firstName −�Mary , lastName −�Miller , bornIn −�1984)

Tuple
positions (Mary ,Miller , 1984) ∈ person
roles (firstName −�Mary , lastName −�Miller , bornIn −�1984) ∈ person

Relational Calculus. Relational calculus was the first logic-based formalisation
of query languages. Early versions of the relational calculus were called “tu-
ple calculus” and “domain calculus”. The difference was mainly which of the
notational variants above they used.

A relational calculus query has the form {u | ϕ} where u is a list of terms,
i.e., variables or constants, ϕ is a formula, and the variables in u are exactly the
free variables in ϕ.

Recall conjunctive queries (Definition 25) and their extensions. The relational
calculus query above can be seen as simply another notation for ans(u) ← ϕ.
The discussion about the correspondence to relational algebra depending on the
syntactic form of ϕ is therefore as in the subsection on conjunctive queries.

Relational Algebra. Relational algebra is not a logic-based approach and does
not really belong in this subsection, but it was the first formalisation of query
languages and usually the frame of reference for later ones.

Relational algebra considers relations in the mathematical sense and a small
number of operators with which relational expressions can be constructed. Typ-
ical operators are selection, projection, cartesian product, union, intersection,
set difference, division, join. Some of these operators can be defined in terms
of others. Various classes of relational algebra queries are characterised by the
subset of operators they may use.

3.3.3 Logical Variations
Range Restricted Quantification. Both natural language and mathematics tend
to exercise some control over the range of quantified variables.

Rather than saying “for everything there is something that is the first one’s
parent”, formalised as ∀x∃y parent(y, x), it would seem more natural to say
“for every person there is a person who is the first one’s parent”, formalised
as ∀x(person(x) ⇒ ∃y(person(y) ∧ parent(y, x))). Similar examples abound in
mathematics, where theorems rarely start with “for everything there is some-
thing such that . . . ”, but more typically with “for every polynomial P there is
an integer n such that . . . ”

The characteristic of formulas resulting from such statements is that each
quantifier for a variable is combined with an atom that restricts the range of the
quantified variable. This intuition can be formalised as follows.
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Definition 26 (Formula with range restricted quantification). Let L be
a signature. L-formulas with range restricted quantification, here abbreviated
RR-formulas, are defined inductively:
1. Each quantifier-free L-formula is an RR-formula.
2. Each L-formula constructed from a connective and an appropriate number

of RR-formulas is an RR-formula.
3. If ϕ is an RR-formula and A is an atom and x is a subset of the free variables

in A, then ∀x(A ⇒ ϕ) and ∃x(A∧ϕ) are RR-formulas. The atom A is called
the range for the variables in x.

The atom A combined with a quantifier is also called a guard. The guarded
fragment discussed earlier in connection with conjunctive queries is a further
restriction of this class of formulas, with the additional requirement that all
variables that are free in ϕ also occur in A. This enforces a kind of layering: all
variables that are free in a subformula occur in the atom guarding the innermost
quantifier in whose scope the subformula is.

[26] gives a generalisation of Definition 26 allowing for non-atomic ranges.

Many-Sorted First-Order Predicate Logic. In the field of programming languages
it is advantageous to associate types with expressions. The same idea for first-
order predicate logic is to associate sorts6 with terms.

This requires a new symbol class called sort symbols. A signature then specifies
for each relation symbol p not just an arity n, but an n-tuple of sort symbols
written (s1 × . . . × sn), and for each function symbol f not just an arity n, but
an (n+1)-tuple of sort symbols written (s1 × . . .× sn → sn+1), where s1, . . . , sn

are the argument sorts and sn+1 is the result sort of the symbol. Moreover, each
variable is associated with a sort symbol.

With these modifications it is straightforward to extend the definitions of
terms and atoms by the obvious compatibility requirements between argument
sorts and result sorts of subterms.

Example 27 (Many-sorted first-order predicate logic)
Sort symbols {person, company}
Signature
2-ary relation symbol married : person × person

employs : company × person
constant Tom : person Web5 .0 : company

Mary : person
1-ary function symbol founder : company → person

Formulas married(Tom ,Mary) ∧ employs(Web5 .0 ,Tom)
∃x:company employs(x, founder (Web5 .0 ))
∀x:company ∃y:person employs(x, y)

In this example, founder (Tom) is not a term because of the clash between the
subterm’s result sort person and the required argument sort company . Likewise,
married(Tom ,Web5 .0 ) is not a formula.
6 The word type would clash with historically established terminology.
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Classical first-order predicate logic is the special case of the many-sorted ver-
sion with exactly one sort symbol, which is not explicitly written.

Many-sorted first-order predicate logic can be translated into the classical
version. Each sort symbol s is translated into a unary relation symbol ŝ. Part
of the signature information from the example above translates as p̂erson(Tom)
and ∀x( ̂company(x) ⇒ p̂erson(founder (x)). The last of the formulas from the
example translates as ∀x( ̂company(x) ⇒ ∃y(p̂erson(y) ∧ employs(x, y))). Note
that the translation results in a formula with range restricted quantification, the
fragment discussed earlier.

Thus, introducing sorts does not affect the expressive power. But it allows
static sort checking and thus improves error detection. Moreover, a many-sorted
formalisation of a problem needs fewer and smaller formulas than the corre-
sponding classical formalisation.

The idea of introducing sorts can be extended to hierarchies or networks of
sorts without losing these advantages.

4 Declarative Semantics: Fundamentals of Classical
Model Theory

The classical semantics of first-order predicate logic, i.e., the attribution of mean-
ing to formulas of first-order predicate logic, follows an approach proposed by
Alfred Tarski in the 1930s. This approach has a salient characteristic: The inter-
pretation of a compound term and the truth value of a compound formula are
defined recursively over the structure of the term or formula, respectively. As
a consequence, to know the truth value in an interpretation I of a compound
formula ϕ, it suffices to know the values in I of the immediate constituents of ϕ.
This is clearly advantageous for computing, as it provides with a well-defined,
finite, and restricted computation scope. However, this approach to semantics
has a considerable drawback: its allowing for any kind of sets for interpreting
terms makes it apparently incomputable.

A theorem due to Jacques Herbrand shows that this drawback is overcome
if only universal formulas are considered: If such formulas are true in some
interpretation, whose domain may well not be computably enumerable, then
they are also true in a so-called Herbrand interpretation, whose domain is the
computably enumerable set of all variable-free terms of the given signature.
Furthermore, a technique known as Skolemization7 transforms every formula
into a universal formula while preserving satisfiability, i.e., the interpretability of
a formula as true in some interpretation. Herbrand’s theorem and Skolemization
make entailment, and thus query answering, semi-decidable and thus amenable
to computing.

The first and main subsection below introduces more precisely the notions,
techniques, and results mentioned above as well as the treatment of equality in

7 Named after Thoralf Skolem, one of its inventors. Moses Schönfinkel independently
proposed it as well.
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first-order predicate logic. The subsection is concluded by remarks on inadequa-
cies of classical semantics for query languages. The shorter subsections following
the main one show how some, if not all, of these inadequacies can be overcome.
Alas, these solutions bear new problems.

4.1 Classical Tarski Model Theory

In the following, a signature L for first-order predicate logic is assumed.

4.1.1 Interpretations, Models, and Entailment

Definition 28 (Variable assignment). Let D be a nonempty set. A variable
assignment in D is a function V mapping each variable to an element of D. We
denote the image of a variable x under an assignment V by xV .

Definition 29 (L-Interpretation). Let L be a signature. An L-interpretation
is a triple I = (D, I, V ) where
– D is a nonempty set called the domain or universe (of discourse) of I.

Notation: dom(I) := D.
– I is a function defined on the symbols of L mapping

• each n-ary function symbol f to an n-ary function f I : Dn → D.
For n = 0 this means f I ∈ D.

• each n-ary relation symbol p to an n-ary relation pI ⊆ Dn.
For n = 0 this means either pI = ∅ or pI = {()}.

Notation: fI := f I and pI := pI .
– V is a variable assignment in D.

Notation: xI := xV .

The domain is required to be nonempty because otherwise neither I nor V would
be definable. Moreover, an empty domain would cause anomalies in the truth
values of quantified formulas. As before, when the signature L is clear from
context, we drop the prefix “L-” and simply speak of interpretations.

Definition 30. The value of a term t in an interpretation I, denoted tI, is an
element of dom(I) and inductively defined:
1. If t is a variable or a constant, then tI is defined as above.
2. If t is a compound term f(t1, . . . , tn), then tI is defined as fI(tI1 , . . . , tIn)

Notation 31. Let V be a variable assignment in D, let V ′ be a partial function
mapping variables to elements of D, which may or may not be a total function.
Then V [V ′] is the variable assignment with

xV [V ′] =
{

xV ′
if xV ′

is defined
xV if xV ′

is undefined

Let I = (D, I, V ) be an interpretation. Then I[V ′] := (D, I, V [V ′]).
By {x1 �→d1, . . . , xk �→dk} we denote the partial function that maps xi to di and

is undefined on other variables. In combination with the notation above, we omit
the set braces and write V [x1 �→d1, . . . , xk �→dk] and I[x1 �→d1, . . . , xk �→dk].
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Definition 32 (Tarksi, model relationship). Let I be an interpretation and
ϕ a formula. The relationship I |= ϕ, pronounced “I is a model of ϕ” or “I sat-
isfies ϕ” or “ϕ is true in I”, and its negation I �|= ϕ, pronounced “I falsifies ϕ”
or “ϕ is false in I”, are defined inductively:

I |= p(t1, . . . , tn) iff (tI1 , . . . , tIn) ∈ pI (n-ary p, n ≥ 1)
I |= p iff () ∈ pI (0-ary p)
I �|= ⊥
I |= �
I |= ¬ψ iff I �|= ψ
I |= (ψ1 ∧ ψ2) iff I |= ψ1 and I |= ψ2
I |= (ψ1 ∨ ψ2) iff I |= ψ1 or I |= ψ2
I |= (ψ1 ⇒ ψ2) iff I �|= ψ1 or I |= ψ2

I |= ∀x ψ iff I[x �→ d] |= ψ for each d ∈ D
I |= ∃x ψ iff I[x �→ d] |= ψ for at least one d ∈ D

For a set S of formulas, I |= S iff I |= ϕ for each ϕ ∈ S.

Definition 33 (Semantic properties). A formula, or a set of formulas, is
valid or a tautology iff it is satisfied in each interpretation
satisfiable iff it is satisfied in at least one interpretation
falsifiable iff it is falsified in at least one interpretation
unsatisfiable or inconsistent iff it is falsified in each interpretation

Note that a formula or a set of formulas can be both satisfiable and falsifiable,
for instance, any propositional atom p is. The formulas (p∨¬p) and � are valid.
The formulas (p ∧ ¬p) and ⊥ are unsatisfiable.

Definition 34 (Entailment and logical equivalence). Let ϕ and ψ be for-
mulas or sets of formulas.

ϕ |= ψ, pronounced: “ϕ entails ψ” or “ψ is a (logical) consequence of ϕ”,
iff for each interpretation I: if I |= ϕ then I |= ψ.

ϕ |=| ψ, pronounced: “ϕ is (logically) equivalent to ψ”,
iff ϕ |= ψ and ψ |= ϕ.

The following result is immediate. It shows that the semantic properties and
entailment can be translated into each other. Being able to determine one of
validity, unsatisfiability, or entailment, is sufficient to determine all of them.

Theorem 35 (Translatability between semantic properties and entail-
ment). Let ϕ and ψ be formulas.

ϕ is valid iff ¬ϕ is unsatisfiable iff � |= ϕ.
ϕ is unsatisfiable iff ¬ϕ is valid iff ϕ |= ⊥.
ϕ |= ψ iff (ϕ ⇒ ψ) is valid iff (ϕ ∧ ¬ψ) is unsatisfiable.

Being able to determine validity or unsatisfiability is also sufficient to determine
logical equivalence, which is just mutual entailment. The definition of ϕ |=| ψ
means that ϕ and ψ have the same models. Either of them may be replaced by
the other without affecting any truth values. This is often exploited for trans-
formations in proofs or in optimising queries or rule sets.
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Proposition 36 (Model-preserving transformations). Let ϕ, ϕ′, ψ, ψ′, χ
be formulas. The following equivalences hold:
– ϕ |=| ϕ′ if ϕ′ is a rectified form of ϕ
– ϕ |=| ϕ′ if ψ |=| ψ′ and ϕ′ is obtained from ϕ by replacing an occurrence

of the subformula ψ by ψ′

– (ϕ ∨ ψ) |=| (ψ ∨ ϕ) (ϕ ∧ ψ) |=| (ψ ∧ ϕ)
– ((ϕ ∨ ψ) ∨ χ) |=| (ϕ ∨ (ψ ∨ χ)) ((ϕ ∧ ψ) ∧ χ) |=| ((ϕ ∧ (ψ ∧ χ))
– ((ϕ ∨ ψ) ∧ χ) |=| ((ϕ∧χ) ∨ (ψ∧χ)) ((ϕ ∧ ψ) ∨ χ) |=| ((ϕ∨χ) ∧ (ψ∨χ))
– (⊥ ∨ ϕ) |=| ϕ (� ∧ ϕ) |=| ϕ
– (ϕ ∨ ¬ϕ) |=| � (ϕ ∧ ¬ϕ) |=| ⊥
– (ϕ ∨ ϕ) |=| ϕ (ϕ ∧ ϕ) |=| ϕ
– (ϕ ∨ (ϕ ∧ ψ)) |=| ϕ (ϕ ∧ (ϕ ∨ ψ)) |=| ϕ

– ¬¬ϕ |=| ϕ
– ¬(ϕ ∨ ψ) |=| (¬ϕ ∧ ¬ψ) ¬(ϕ ∧ ψ) |=| (¬ϕ ∨ ¬ψ)
– (ϕ ⇒ ψ) |=| (¬ϕ ∨ ψ) ¬(ϕ ⇒ ψ) |=| (ϕ ∧ ¬ψ)
– ((ϕ∨ϕ′)⇒ψ) |=| ((ϕ⇒ψ)∧(ϕ′ ⇒ψ)) (ϕ⇒(ψ∧ψ′)) |=| ((ϕ⇒ψ)∧(ϕ⇒ψ′))
– (ϕ ⇒ ⊥) |=| ¬ϕ (� ⇒ ϕ) |=| ϕ

– in general ∀x∃yϕ �|=| ∃y∀xϕ
∀x∀yϕ |=| ∀y∀xϕ ∃x∃yϕ |=| ∃y∃xϕ

– ¬∀xϕ |=| ∃x¬ϕ ¬∃xϕ |=| ∀x¬ϕ
– ∀x(ϕ ∧ ψ) |=| (∀xϕ ∧ ∀xψ) ∃x(ϕ ∨ ψ) |=| (∃xϕ ∨ ∃xψ)

∃x(ϕ ∧ ψ) �|=| (∃xϕ ∧ ∃xψ) in general ∀x(ϕ ∨ ψ) �|=| (∀xϕ ∨ ∀xψ)
∃x(ϕ ∧ ψ) |=| (ϕ ∧ ∃xψ) if x is not free in ϕ ∀x(ϕ ∨ ψ) |=| (ϕ ∨ ∀xψ)

– ∀xϕ |=| ϕ if x is not free in ϕ ∃xϕ |=| ϕ

By exploiting these equivalences, one can take any formula and, without affecting
truth values, rectify it, translate ⇒ into the other connectives, move quantifiers
to the front and ¬ into subformulas.

Theorem 37. Every formula is equivalent to a formula in prenex form. More-
over, every formula is equivalent to a formula in prenex form whose matrix is a
conjunction of disjunctions of literals.

Every universal formula is equivalent to a conjunction of clauses and equiva-
lent to a finite set of clauses (each clause representing its universal closure).

The entailment relationship ϕ |= ψ formalises the concept of logical consequence.
From premises ϕ follows a conclusion ψ iff every model of the premises is a model
of the conclusion.

A major concern in logic used to be the development of calculi, also called proof
systems, which formalise the notion of deductive inference. A calculus defines
derivation rules, with which formulas can be derived from formulas by purely
syntactic operations. For example, a typical derivation rule might say “from ¬¬ϕ
derive ϕ”. The derivability relationship ϕ � ψ for a calculus holds iff there is a
finite sequence of applications of derivation rules of the calculus, which applied
to ϕ result in ψ.

Ideally, derivability should mirror entailment: a calculus is called sound iff
whenever ϕ � ψ then ϕ |= ψ and complete iff whenever ϕ |= ψ then ϕ � ψ.
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Theorem 38 (Gödel, completeness theorem). There exist calculi for first-
order predicate logic such that S � ϕ iff S |= ϕ for any set S of closed formulas
and any closed formula ϕ.

Thus, the semantic notion of entailment coincides with the syntactic notion
of derivability. This correspondence opens up the prospects to obtain logical
consequences by computation, but there are limits to these prospects.

Theorem 39 (Church-Turing, undecidability theorem). Derivability in
a correct and complete calculus is not decidable for signatures with at least one
non-propositional relation symbol and a relation or function symbol of arity ≥ 2.

A corollary of Gödel’s completeness theorem is the following famous result.

Theorem 40 (Gödel-Malcev, finiteness or compactness theorem). Let
S be an infinite set of closed formulas. If every finite subset of S is satisfiable,
then S is satisfiable.

The contrapositive of the finiteness/compactness theorem, combined with its
trivial converse, is often useful: a set S of closed formulas is unsatisfiable iff
some finite subset of S is unsatisfiable.

Corollary 41. For signatures with at least one non-propositional relation sym-
bol and a relation or function symbol of arity ≥ 2, entailment, unsatisfiability,
and validity are semi-decidable but not decidable, and non-entailment, satisfia-
bility, and falsifiability are not semi-decidable.

4.1.2 Theories

Definition 42 (Model class). Let L be a signature and S a set of L-formulas.
ModL(S) is the class of all L-interpretations I with I |= S, i.e., the class of all
L-models of S.

We simply write Mod(S) without “L” when we leave the signature L implicit.
Note that in general the class Mod(S) is not a set. For satisfiable S it is nonempty.
If it were a set, Mod(S) could be the domain of another model of S, which would
be a member of Mod(S) – a similarly ill-defined notion as “the set of all sets”.

Definition 43 (Theory). A theory is a set T of L-formulas that is closed
under entailment, i.e., for each L-formula ϕ, if T |= ϕ then ϕ ∈ T .

The theory of a class K of L-interpretations, denoted by Th(K), is the set of
all L-formulas ϕ with I |= ϕ for each I ∈ K, i.e., the set of formulas satisfied
by all interpretations in K.

The theory of a set S of L-formulas, denoted by Th(S), is Th(ModL(S)).

Proposition 44. Th(K) and Th(S) as defined above are indeed theories, i.e.,
closed under entailment. In particular, Th(S) = {ϕ | S |= ϕ}.

Thus, Th can also be regarded as a closure operator for the closure under en-
tailment of a set of formulas.



24 F. Bry et al.

Proposition 45. Th is a closure operator, i.e., for all sets S, S′ of formulas:
– S ⊆ Th(S) (Th is extensive)
– if S ⊆ S′ then Th(S) ⊆ Th(S′) (Th is monotonic)
– Th(Th(S)) = Th(S) (Th is idempotent)

Definition 46 (Axiomatisation). An axiomatisation of a theory T is a set S
of formulas with Th(S) |=| T .

A theory is finitely axiomatisable if it has an axiomatisation that is finite.

Finite axiomatisability is important in practice because proofs have finite length
and are built up from axioms. If there are finitely many axioms, then the set of
all possible proofs is computably enumerable.

Theorem 47. There are theories that are finitely axiomatisable and theories
that are not.

The theory of equivalence relations is finitely axiomatisable by the three formulas
for reflexivity, symmetry, and transitivity. The theory of the natural numbers
with addition, multiplication, and the less-than relation is, by Gödel’s famous
incompleteness theorem, not finitely axiomatisable.

Two trivial theories are finitely axiomatisable. Th(∅) is the set of all valid
L-formulas because ModL(∅) consists of all L-interpretations. If S = {⊥} or any
other unsatisfiable set of L-formulas, Th(S) is the set of all L-formulas because
ModL(S) is empty. In the literature this case is sometimes excluded by adding
the requirement of satisfiability to the definition of a theory.

4.1.3 Substitutions and Unification

Definition 48 (Substitution). A substitution is a function σ, written in post-
fix notation, that maps terms to terms and is
– homomorphous, i.e., f(t1, . . . , tn)σ = f(t1σ, . . . , tnσ) for compound terms

and cσ = c for constants.
– identical almost everywhere, i.e., {x | x is a variable and xσ �= x} is finite.

The domain of a substitution σ is the finite set of variables on which it is not
identical. Its codomain is the set of terms to which it maps its domain.

A substitution σ is represented by the finite set {x1 �→x1σ, . . . , xk �→xkσ}
where {x1, . . . , xk} is its domain and {x1σ, . . . , xkσ} is its codomain.

Mind the difference between Notation 31 and Definition 48: With variable assign-
ments, the notation {x1 �→d1, . . . , xk �→dk} represents a partial function, which
for variables other than x1, . . . , xk is undefined. With substitutions, the notation
{x1 �→ t1, . . . , xk �→ tk} represents a total function, which for variables other than
x1, . . . , xk is the identity.

For example, the substitution mapping x to a and y to f(y) and any other
variable to itself is represented by {x �→a, y �→ f(y)}. The shortened notation
{x/a, y/f(y)} will also be used in later sections of this survey.8

8 In the literature several notational conventions coexist, including the ones used here
and the reverse form {a/x, f(y)/y}. This can be confusing in cases like {u/v}.
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Substitutions can be combined by functional composition, t(στ) = (tσ)τ . The
identity substitution ε, which maps every term to itself, is the neutral element
for functional composition.

Definition 49 (Subsumption ordering). A term s subsumes a term t, de-
noted s ≤ t, iff there exists a substitution ϑ with sϑ = t. One also says that t is
an instance of s, or t is more specific than s, or s is more general than t.

A substitution σ subsumes a substitution τ , denoted σ ≤ τ , iff there exists a
substitution ϑ with σϑ = τ . One also says that τ is an instance of σ, or τ is
more specific than σ, or σ is more general than τ .

Two terms mutually subsume each other iff they are equal up to variable re-
naming. Mutual subsumption is an equivalence relation, on whose equivalence
classes ≤ is a well-founded partial ordering. Its minimum is the equivalence class
of all variables. Its maximal elements are the singleton classes of ground terms.
If there are function symbols with arity > 0, there are infinite strictly increasing
chains: x ≤ f(x) ≤ f(f(x)) ≤ f(f(f(x))) ≤ . . .

In the case of substitutions, the ordering is also well-founded. The equivalence
class of variable permutations, which includes the identity substitution ε, is the
minimum. There are no maximal elements: σ ≤ σ{x �→y} for any x, y not in the
domain of σ.

Definition 50 (Unification). Two terms s and t are unifiable, if there exists
a substitution σ with sσ = tσ. In this case σ is called a unifier of s and t.

A most general unifier or mgu is a minimal element w.r.t. the subsumption
ordering among the set of all unifiers of s and t. If σ is a most general unifier
of s and t, the term sσ is called a most general common instance of s and t.

Theorem 51 (Robinson [138], unification theorem). Any most general
unifier of two terms subsumes all their unifiers.

Thus, any two most general unifiers of two terms mutually subsume each other.
This implies that any two most general common instances of two terms are equal
up to variable renaming. Furthermore, among the unifiers of two terms there is
always an idempotent most general unifier σ, that is, σσ = σ. This is the case
iff none of the variables from its domain occurs in its codomain.

Definition 52 (Ground substitution, ground instance). A ground substi-
tution is a substitution whose codomain consists of ground terms only. A ground-
ing substitution for a term t is a ground substitution σ whose domain includes
all variables in t, such that tσ is ground. A ground instance of t is an instance
of t that is ground.

The application of a substitution σ to a set or tuple of terms, to a quantifier-
free formula or set of quantifier-free formulas, or to other mathematical objects
having terms as constituents, is defined by canonical extension. Thus, the notion
of an instance or a ground instance or a grounding substitution for such an object
is also defined canonically. For example, let ϕ be p(x) ∧ q(y, z) ⇒ r(x, f(y), z)
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and σ = {x �→f(v), y �→a}. Then ϕσ is p(f(v)) ∧ q(a, z) ⇒ r(f(v), f(a), z). One
grounding substitution for ϕ is {x �→a, y �→f(a), z �→a, v �→a}.

For formulas containing quantifiers, however, it is technically more intricate to
define the corresponding notions. We define only special cases involving ground
substitutions.

Definition 53 (Instance of a formula). Let ϕ be a formula and σ a ground
substitution. Then ϕσ is the formula obtained from ϕ by replacing each free
variable occurrence x in ϕ by xσ.

For example, let ϕ be the formula (∀x[∃xp(x) ∧ q(x)] ⇒ [r(x, y) ∨ ∀xs(x)]) and
σ = {x �→a}. Then ϕσ is (∀x[∃xp(x) ∧ q(x)] ⇒ [r(a, y) ∨ ∀xs(x)]). Note that
there may be three kinds of variable occurrences in ϕ. Those that are free and
in the domain of σ, such as x in r(x, y), become ground terms in ϕσ. Those
that are free and not in the domain of σ, such as y in r(x, y), remain free in ϕσ.
Those that are bound in ϕ, such as x in p(x), remain bound in ϕσ. Because
of the latter case it does not make sense to define grounding substitutions for
formulas with quantifiers.

Definition 54 (Ground instance of a formula). Let ϕ be a formula. Let ϕ′

be a rectified form of ϕ. Let ϕ′′ be obtained from ϕ′ by removing each occurrence
of a quantifier for a variable. A ground instance of ϕ is a ground instance of ϕ′′.

For example, let ϕ be (∀x[∃xp(x) ∧ q(x)] ⇒ [r(x, y) ∨ ∀xs(x)]). A rectified form
with quantifiers removed is ([p(v)∧q(u)] ⇒ [r(x, y)∨s(w)]). Assuming a signature
with constants a, b, c, d and unary function symbol f , two ground instances of ϕ
are ([p(a)∧q(a)] ⇒ [r(a, a)∨s(a)]) and ([p(a)∧q(f(b))] ⇒ [r(f(f(c)), c)∨s(d)]).

In general the set of ground instances of a non-ground term or formula is
infinite, but it is always computably enumerable.

Typically, one is only interested in ground instances of formulas in which
all variables are of the same kind: free or universally quantified or existentially
quantified.

4.1.4 Herbrand Interpretations
An interpretation according to Tarski’s model theory may use any nonempty
set as its domain. Herbrand interpretations are interpretations whose domain is
the so-called Herbrand universe, the set of all ground terms constructible with
the signature considered. This is a syntactic domain, and under the common
assumption that all symbol sets of the signature are computably enumerable, so
is the Herbrand universe. In an Herbrand interpretation quantification reduces
to ground instantiation.

A fundamental result is that Herbrand interpretations can imitate interpre-
tations with arbitrary domains provided that the formulas under consideration
are universal. A set of universal formulas has an arbitrary model iff it has an
Herbrand model. As a consequence, it is satisfiable iff the set of its ground in-
stances is, which is essentially a propositional problem. These results are the
key to algorithmic treatment of the semi-decidable semantic notions: validity,
unsatisfiability, entailment.
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Definition 55 (Herbrand universe and base). Let L be a signature for
first-order predicate logic. The Herbrand universe HUL is the set of all ground
L-terms. The Herbrand base HBL is the set of all ground L-atoms.

If L does not specify any constant, HUL is empty. From now on we assume that
L specifies at least one constant. As usual, we leave the signature L implicit
when it is clear from context, and write simply HU and HB without “L”.

Definition 56 (Herbrand interpretation). An interpretation I is an Her-
brand interpretation if dom(I) = HU and fI(t1, . . . , tn) = f(t1, . . . , tn) for each
n-ary function symbol f and all t1, . . . , tn ∈ HU .

Thus, the value of a ground term t in an Herbrand interpretation is the term t
itself. Furthermore, it turns out that the truth values of quantified formulas
depend on the truth values of their ground instances.

Theorem 57. Let I be an Herbrand interpretation and ϕ a formula that may
or may not contain a free occurrence of the variable x.

– I |= ∀xϕ iff I |= ϕ{x �→ t} for each t ∈ HU .
– I |= ∃xϕ iff I |= ϕ{x �→ t} for at least one t ∈ HU .

According to Definition 32, the right hand sides should be I[x �→ t] |= ϕ. The the-
orem states that the effect of modifying the interpretation’s variable assignment
can be achieved by applying the ground substitution {x �→ t} to ϕ. This result
crucially depends on the interpretation’s being an Herbrand interpretation. Here
are two counter-examples for non-Herbrand interpretations:

Example 58. Consider a signature containing a unary relation symbol p and a
constant a and no other symbols. Then the only member of HU is a. Let I be the
non-Herbrand interpretation with dom(I) = {1, 2} and aI = 1 and pI = {1}.
Then I |= p(a) and I[x �→1] |= p(x) and I[x �→2] �|= p(x).

– I �|= ∀x p(x), but I |= p(x){x �→ t} for each t ∈ HU = {a}.
– I |= ∃x¬p(x), but I �|= ¬p(x){x �→ t} for each t ∈ HU = {a}.

Example 59. Consider a signature containing a unary relation symbol p and
for each arity an infinite and enumerable set of function symbols of that arity.
Then the set HU is enumerable. Let I be a non-Herbrand interpretation with
dom(I) = �, the set of real numbers, with arbitrary definitions for the constants
and function symbols, and pI = {tI | t ∈ HU } ⊆ �.

Since HU is enumerable, there are r ∈ � with r /∈ pI , thus I[x �→ r] �|= p(x).

– I �|= ∀x p(x), but I |= p(x){x �→ t} for each t ∈ HU .
– I |= ∃x¬p(x), but I �|= ¬p(x){x �→ t} for each t ∈ HU .

In both examples the reason why the theorem does not hold is that the inter-
pretation uses a domain with more elements than there are ground terms. The
latter example shows that this is not only a phenomenon of finite signatures.
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Corollary 60. Let S be a set of universal closed formulas and Sground the set of
all ground instances of members of S. For each Herbrand interpretation I holds
I |= S iff I |= Sground .

Terms have a fixed value in all Herbrand interpretations. Only the interpreta-
tion of relation symbols is up to each particular Herbrand interpretation. This
information can conveniently be represented by a set of ground atoms.

Definition 61 (Herbrand interpretation represented by ground atoms).
Let V be some fixed variable assignment in HU . Let B ⊆ HB be a set of ground
atoms. Then HI (B) is the Herbrand interpretation with variable assignment V
and pHI (B) = {(t1, . . . , tn) | p(t1, . . . , tn) ∈ B} for each n-ary relation symbol p.

Thus, a set B of ground atoms represents the Herbrand interpretation HI (B)
that satisfies all ground atoms in B and falsifies all ground atoms not in B.
Except for the variable assignment, HI (B) is uniquely determined by B. The
notation introduced earlier, HI (B)[V ], can be used to specify a particular vari-
able assignment.

Definition 62 (Herbrand interpretation induced by an interpretation).
Let I be an arbitrary interpretation. The Herbrand interpretation induced by I,
denoted HI (I), is HI ({A ∈ HB | I |= A}).

Proposition 63. For each signature and up to the fixed variable assignment:
HI (I) = I iff I is an Herbrand interpretation.
There is a bijection between the set of all Herbrand interpretations and the

set of all subsets of HB.

Theorem 64 (Herbrand model induced by a model). Let ϕ be a universal
closed formula. Each model of ϕ induces an Herbrand model of ϕ, that is, for
each interpretation I, if I |= ϕ then HI (I) |= ϕ.

The converse holds for ground formulas, but not in general. Reconsider Exam-
ples 58 and 59 above. In both of them HI (I) |= ∀x p(x), but I �|= ∀x p(x). The
examples also show that the correct direction does not hold for non-universal
formulas. In both of them I |= ∃x¬p(x), but HI (I) �|= ∃x¬p(x).

At first glance the result may seem weak, but it establishes that if there is a
model, there is an Herbrand model. The converse is trivial. Taking into account
the finiteness/compactness theorem, we get:

Corollary 65 (“Herbrand Theorem”). Let S be a set of universal closed
formulas and let Sground be the set of all ground instances of members of S.
S is unsatisfiable iff S has no Herbrand model iff Sground has no Herbrand model
iff there is a finite subset of Sground that has no Herbrand model.

The latter is essentially a propositional problem, see the discussion on propo-
sitional vs. ground on page 8. In the literature, the name Herbrand theorem
usually refers to this reduction of semantic notions from the first-order level to
the propositional level.
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4.1.5 Skolemization
The results on Herbrand interpretations cover only universal formulas. Skolem-
ization is a technique to transform a non-universal formula ϕ into a universal
formula ϕsko . The transformation is not model-preserving, in general ϕ �|=| ϕsko .
But it preserves the existence of models, ϕ is satisfiable iff ϕsko is satisfiable.

Here is an example of the transformation:
ϕ is the L-formula ∀y∀z(married(y, z) ⇒ ∃x parent(y, x))
ϕsko is the Lsko-formula ∀y∀z(married(y, z) ⇒ parent(y, f(y)))

where L is a signature with 2-ary relation symbols married and parent , in which
the 1-ary function symbol f does not occur, and Lsko is L extended with f . Both
formulas are satisfiable and falsifiable.

Let I be an Lsko-interpretation with I |= ϕsko . Intuitively, for each y for which
parent(y, f(y)) is true in I, there exists at least one x for which parent(y, x) is
true in I, namely f(y). This intuition can be used to show formally that I |= ϕ.
Thus, ϕsko |= ϕ.

The converse does not hold. Let I be the Lsko-interpretation with a domain of
people for whom it is indeed the case that every married person has a child, and
with the “natural” interpretation of the relation symbols and fI the identity
function on the domain. Now I |= ϕ, but I �|= ϕsko because no-one from the
domain is their own parent. Thus, ϕ �|= ϕsko .

However, the fact that I |= ϕ, does not depend on the interpretation of f . We
construct another interpretation I ′ that differs from I just in that fI′

maps only
childless people to themselves but maps people with children to their firstborn.
Still I ′ |= ϕ, but also I ′ |= ϕsko . From a model of ϕ we have constructed another
model of ϕ, which is also a model of ϕsko .

The principles illustrated with this example apply in general.

Definition 66 (Skolemization step). Let ϕ be a rectified closed formula con-
taining an occurrence of a subformula Qxψ where Q is an existential quantifier
with positive or a universal quantifier with negative polarity in ϕ. Let the vari-
ables with free occurrences in ψ be {x, y1, . . . , yk}, k ≥ 0. Let f be a k-ary
function symbol that does not occur in ϕ.

Let ϕs be ϕ with the occurrence of Qxψ replaced by ψ{x �→ f(y1, . . . , yk)}.
Then the transformation from ϕ to ϕs is called a Skolemization step with Skolem
function symbol f and Skolem term f(y1, . . . , yk).

Proposition 67. If a Skolemization step transforms ϕ to ϕs, then ϕs |= ϕ,
and for each interpretation I with I |= ϕ there exists an interpretation I′ with
I ′ |= ϕ and I ′ |= ϕs. Moreover, I ′ coincides with I except possibly fI′ �= fI.

Corollary 68 (Skolemization). Let L be a signature for first-order predi-
cate logic and S a computably enumerable set of closed L-formulas. There is
an extension Lsko of L by new function symbols and a computably enumerable
set Ssko of universal closed L-formulas, such that S is unsatisfiable iff Ssko is
unsatisfiable.
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4.1.6 Equality
So far we have considered results for the version of first-order predicate logic
without equality. Let us now assume a signature L containing a special 2-ary
relation symbol =̇ for equality.

Definition 69 (Normal interpretation). An interpretation I is normal, iff
it interprets the relation symbol =̇ with the equality relation on its domain, i.e.,
iff =̇I is the relation {(d, d) | d ∈ dom(I)}. For formulas or sets of formulas
ϕ and ψ:

I |== ϕ iff I is normal and I |= ϕ.
ϕ |== ψ iff for each normal interpretation I: if I |== ϕ then I |== ψ.

The version of first-order predicate logic with built-in equality simply makes the
normality requirement part of the definition of an interpretation. Let us now
investigate the relationship between the two versions.

Definition 70 (Equality axioms). Given a signature L with 2-ary relation
symbol =̇, the set EQL of equality axioms for L consists of the formulas:

– ∀x x=̇x (reflexivity of =̇)
– ∀x∀y(x=̇y ⇒ y=̇x) (symmetry of =̇)
– ∀x∀y∀z((x=̇y ∧ y=̇z) ⇒ x=̇z) (transitivity of =̇)
– for each n-ary function symbol f , n > 0 (substitution axiom for f)

∀x1 . . . xn∀x′
1 . . . x′

n((x1=̇x′
1 ∧ . . . ∧ xn=̇x′

n) ⇒ f(x1, . . . , xn)=̇f(x′
1, . . . , x

′
n))

– for each n-ary relation symbol p, n > 0 (substitution axiom for p)
∀x1 . . . xn∀x′

1 . . . x′
n((x1=̇x′

1 ∧ . . . ∧ xn=̇x′
n ∧ p(x1, . . . , xn)) ⇒ p(x′

1, . . . , x
′
n))

Note that EQL may be infinite, depending on L. Actually, symmetry and tran-
sitivity of =̇ follow from reflexivity of =̇ and the substitution axiom for =̇ and
could be omitted.

Theorem 71 (Equality axioms)

– For each interpretation I, if I is normal then I |== EQL.
– For each interpretation I with I |= EQL there is a normal interpretation I=

such that for each formula ϕ: I |= ϕ iff I= |== ϕ.
– For each set S of formulas and formula ϕ: EQL ∪ S |= ϕ iff S |== ϕ.

Corollary 72 (Finiteness or compactness theorem with equality). Let
S be an infinite set of closed formulas with equality. If every finite subset of S
has a normal model, then S has a normal model.

The results of Theorem 71 indicate that the equality axioms seem to define
pretty much of the intended meaning of =̇. However, they do not define it fully,
nor does any other set of formulas.

Theorem 73 (Model extension theorem). For each interpretation I and
each set D′ ⊇ dom(I) there is an interpretation I ′ with dom(I ′) = D′ such that
for each formula ϕ: I |= ϕ iff I ′ |= ϕ.
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Proof. (sketch) Fix an arbitrary element d ∈ dom(I). The idea is to let all
“new” elements behave exactly like d. Define an auxiliary function π mapping
each “new” element to d and each “old” element to itself:

π : D′ → dom(I), π(d′) := d if d′ /∈ dom(I), π(d′) := d′ if d′ ∈ dom(I).
Define fI′

: D′ n → D′, fI′
(d1, . . . , dn) := fI(π(d1), . . . , π(dn) ) and

pI
′ ⊆ D′ n, pI

′
:= { (d1, . . . , dn) ∈ D′ n | (π(d1), . . . , π(dn) ) ∈ pI } for all

signature symbols and arities. ��

By this construction, if (d, d) ∈ =̇I then (d, d′) ∈ =̇I′
for each d′ ∈ D′ and

the fixed element d ∈ dom(I). Hence, any proper extension I′ of a normal
interpretation I does not interpret =̇ with the equality relation on D′.

Corollary 74. Every satisfiable set of formulas has non-normal models.

Every model of EQL interprets =̇ with a congruence relation on the domain. The
equality relation is the special case with singleton congruence classes. Because of
the model extension theorem, there is no way to prevent models with larger con-
gruence classes, unless equality is treated as built-in by making interpretations
normal by definition.

4.1.7 Model Cardinalities

Theorem 75. Lower bounds of model cardinalities can be expressed in first-
order predicate logic without equality.

Example: all models of the following satisfiable set of formulas have domains
with cardinality ≥ 3:

{ ∃x1( p1(x1) ∧ ¬p2(x1) ∧ ¬p3(x1)),
∃x2(¬p1(x2) ∧ p2(x2) ∧ ¬p3(x2)),
∃x3(¬p1(x3) ∧ ¬p2(x3) ∧ p3(x3)) }

Example: all models of the following satisfiable set of formulas have infinite
domains: { ∀x¬(x < x), ∀x∀y∀z(x < y ∧ y < z ⇒ x < z), ∀x∃y x < y }.

Theorem 76. Upper bounds of model cardinalities cannot be expressed in first-
order predicate logic without equality.

Theorem 77. Each satisfiable set of formulas without equality has models with
infinite domain.

Corollary 78. Finiteness cannot be expressed in first-order predicate logic with-
out equality.

The above are immediate consequences of the model extension theorem 73. The
remaining results are about the version of first-order predicate logic with built-in
equality.

Theorem 79. Bounded finiteness can be expressed in first-order predicate logic
with equality. That is, for any given natural number k ≥ 1, the upper bound k of
model cardinalities can be expressed.
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Example: all normal models of the following satisfiable formula have domains
with cardinality ≤ 3: ∃x1∃x2∃x3∀y(y=̇x1 ∨ y=̇x2 ∨ y=̇x3).

Theorem 80. If a set of formulas with equality has arbitrarily large finite nor-
mal models, then it has an infinite normal model.

Proof. Let S be such that for each k ∈ � there is a normal model of S whose
domain has finite cardinality > k. For each n ∈ � let ϕn be the formula
∀x0 . . . xn∃y(¬(y=̇x0) ∧ . . . ∧ ¬(y=̇xn)) expressing “more than n + 1 elements”.
Then every finite subset of S ∪ {ϕn | n ∈ �} has a normal model. By the finite-
ness/compactness theorem with equality, S ∪ {ϕn | n ∈ �} has a normal model,
which obviously cannot be finite, but is also a normal model of S. ��

Corollary 81. A satisfiable set of formulas with equality has either only finite
normal models of a bounded cardinality, or infinite normal models.

Corollary 82. Unbounded finiteness cannot be expressed in first-order predicate
logic with equality.

Theorem 83 (Löwenheim-Skolem). Every satisfiable enumerable set of
closed formulas has a model with a finite or infinite enumerable domain.

Theorem 84 (Löwenheim-Skolem-Tarski). If a set of closed formulas has
a model of some infinite cardinality, it has a model of every infinite cardinality.

4.1.8 Inadequacy of Tarski Model Theory for Query Languages
The domain of an interpretation according to Tarski may be any nonempty set.
On the one hand, this has a tremendous advantage: first-order predicate logic
can be used to model statements about any arbitrary application domain. On
the other hand, it has effects that may be undesirable in the context of query
languages.

For query languages, it is desirable that the following can be expressed:

1. By default, different constants are differently interpreted. The unique name
assumption is such a frequent requirement in applications that a mechanism
making it available by default would come in handy.

Tarski model theory does not provide such a mechanism. Interpretations may
well interpret different constants identically, unless formulas explicitly prevent
that. An explicit formalisation is cumbersome, albeit possible.

2. Function symbols are to be interpreted as term constructors. In many ap-
plications it makes sense to group pieces of data that belong together. For in-
stance, a function symbol person might be used to construct a term such as
person(Mary ,Miller , 1984), which simply serves as a compound data structure.
In such cases it does not make sense to interpret the symbol person with arbi-
trary functions. It should be interpreted as just a term constructor.

This is not expressible in first-order predicate logic with Tarski model theory.
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3. No more should hold than what is explicitly specified. A closed world as-
sumption makes sense in query answering applications such as transportation
timetables, which are based on the tacit understanding that no other than the
explicitly listed connections are actually available.

Such a minimality restriction corresponds to an induction principle, which
does not necessarily hold in Tarski interpretations. In fact, it is well-known that
the induction principle cannot be expressed in first-order predicate logic with
Tarski model theory.

4. Disregard infinite models. Real-world query answering applications are often
finite by their nature and need to consider only interpretations with finite do-
mains. In this case, infinite domains are not only superfluous, but they bring
along phenomena that may be “strange” from the viewpoint of the application
and would not be found in finite domains.

Consider an application about the hierarchy in enterprises, where a boss’s
boss is also a boss, but nobody is their own boss. The obvious conclusion is
that there must be someone at the top of the hierarchy who does not have a
boss. However, this conclusion is not justified for interpretations with infinite
domains. The “strange” phenomenon that such a hierarchy may have no top at
all has to be taken into account because of interpretations with infinitely many
employees, although such interpretations are irrelevant for this application.

For a somewhat more contrived example, consider a group of married cou-
ples, where each husband has exactly one sister among the group and no wife
has more than one brother among the group. The obvious conclusion9 is that
every wife must have a brother, because otherwise there would be more brothers
than sisters in the group, contradicting the assumptions about the numbers of
siblings. However, this conclusion is not justified for interpretations with infinite
domains. If there are as many couples as there are natural numbers, each hus-
band number n can be the brother of wife number n + 1, leaving wife number 0
without a brother, while everyone else has exactly one sibling in the group. The
“strange” phenomenon that there may be a bijection between a set and a proper
subset can only occur in infinite domains, but for the example such domains are
irrelevant.

In order to avoid such “strange” phenomena, it would be necessary to restrict
interpretations to finite ones. However, finiteness is not expressible in first-order
predicate logic with Tarski model theory.

5. Definability of the transitive closure of a binary relation. The transitive closure
of a binary relation is relevant in many query answering applications. Consider
a traffic application, where a binary relation symbol r is used to represent direct
connections between junctions, e.g., direct flights between airports. Another bi-
nary relation symbol t is used to represent direct or indirect connections of any
finite length, i.e., with finitely many stopovers. Connections of infinite length do
not make sense in this application.

9 Excluding polygamy, same-sex marriage, etc.
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The mathematical concept for “all connections of any finite length” is called
the “transitive closure” of a binary relation. Thus, the intention is that t be
interpreted as the relation that is the transitive closure of the relation with
which r is being interpreted. An attempt to express this intention in first-order
predicate logic could be the following closed formula:

∀x∀z
(
t(x, z) ⇔

(
r(x, z) ∨ ∃y

[
t(x, y) ∧ t(y, z)

] ))
(�)

Here ϕ ⇔ ψ abbreviates (ϕ ⇒ ψ) ∧ (ψ ⇒ ϕ). The ⇐ direction makes sure that
in every model I of (�) the relation tI is transitive and includes the relation rI .
The ⇒ direction has the purpose to add an only-if part to the definition of tI .

Each interpretation interpreting t as the transitive closure of the interpretation
of r, is indeed a model of (�). However, the intended converse, that every model
of (�) interprets t as the transitive closure of the interpretation of r, does not
hold:

Proof. Let D = {1−2−n | n ∈ �} = {0, 1
2 , 3

4 , 7
8 , 15

16 , . . .}.
Let dom(I) = D, let rI = {(1−2−n, 1−2−(n+1)) | n ∈ �}, the “immediate

successor” relation on D, and let tI be the arithmetic <-relation on D. Then
tI is the transitive closure of rI and I is a model of (�).

Let dom(I ′) = D ∪ {1}, let rI
′
= rI , and let tI

′
be the arithmetic <-relation

on D∪{1}. Then tI
′
is not the transitive closure of rI

′
, it contains the additional

pairs (d, 1) for all d ∈ D, but there is no connection of finite length via the
“immediate successor” relation on D between any d ∈ D and 1. Yet, I′ is also a
model of (�). ��
This may appear like another instance of point 4. But there are also counter-
examples with finite domain:

Proof. Let D = {0, 1}, let dom(I) = D, let rI = {(0, 0), (1, 1)}, the equality
relation on D, and let tI = {(0, 0), (0, 1), (1, 1)}, the ≤-relation on D. The tran-
sitive closure of rI is rI itself. Thus, tI is not the transitive closure of rI . Yet,
I is a model of (�). ��
If an interpretation interprets t as intended, then it is a model of (�), but the con-
verse does not hold. Would some fine-tuning of (�) guarantee that the converse
holds, too? In fact, no set of formulas can guarantee that.

Proof. Assume there is a satisfiable set S of closed formulas such that for each
interpretation I, I |= S iff tI is the transitive closure of rI . That is, for each
(d0, d) ∈ tI there are finitely many “stopover” elements d1, . . . , dk with k ≥ 0,
and {(d0, d1), . . . , (dk, d)} ⊆ rI .

Let a and b be constants not occurring in S. For each n ∈ � let ϕn be the
closed formula as follows:

ϕ0 is t(a, b) ∧ ¬r(a, b)
ϕ1 is ϕ0 ∧ ¬∃x1(r(a, x1) ∧ r(x1, b))
ϕ2 is ϕ1 ∧ ¬∃x1∃x2(r(a, x1) ∧ r(x1, x2) ∧ r(x2, b))
ϕ3 is ϕ2 ∧ ¬∃x1∃x2∃x3(r(a, x1) ∧ r(x1, x2) ∧ r(x2, x3) ∧ r(x3, b))
...
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In the traffic scenario, each formula ϕn expresses that there is a connection
between (the interpretations of) a and b, but not with n or less stopovers.

For each n ∈ � the set S ∪ {ϕn} is satisfied by interpreting t as the tran-
sitive closure of r, and a and b as the endpoints of an r-chain with n + 1
“stopover” elements in between. Thus, every finite subset of S ∪ {ϕn | n ∈ �}
has a model. By the finiteness/compactness theorem, S ∪ {ϕn | n ∈ �} has
a model I, which is thus also a model of S. In this model, (aI , bI) ∈ tI ,
because I satisfies ϕ0, but there is no finite set of “stopover” elements with
{(aI , d1), (d1, d2), . . . , (dk, bI)} ⊆ rI , because I also satisfies ϕk.

Thus, S has a model I in which tI is not the transitive closure of rI , which
contradicts the assumption. ��

The transitive closure of a base relation is the smallest transitive relation that
includes the base relation. This inductive characterisation shows that the phe-
nomenon is in fact an instance of point 3. In first-order predicate logic with
Tarski model theory one can enforce that t is interpreted with a transitive rela-
tion that includes the transitive closure of the interpretation of r, but one cannot
prevent that t is interpreted with a larger transitive relation.

Another instance of the same phenomenon is that the connectedness of a finite
directed graph, i.e., the existence of a path of any possible finite length between
two nodes, cannot be expressed.

6. Restrictions to specific classes of domains or to specific classes of interpre-
tations. In general, applications are not concerned with all imaginable domains
and interpretations, but with limited classes of domains and interpretations.
Such restrictions have to be expressed by appropriate formulas – if such formu-
las exist.

As discussed earlier, the restriction to domains with a given cardinality cannot
be expressed in first-order predicate logic without equality. Nor can interpreta-
tions be restricted to normal ones. In these cases a way out is to use the version
of first-order predicate logic with built-in equality.

But the same kind of problems may arise with application-specific concepts
that cannot be expressed. For instance, an application about boards of trustees
might require that they consist of an odd number of members in order to avoid
inconclusive votes. In first-order predicate logic with or without built-in equality
one cannot express the restriction to domains with odd cardinality. In this case
there is no way out, a version with suitable built-ins is not available.

Several approaches aim at overcoming some of these problems 1 to 6. For ex-
ample, considering only Herbrand interpretations and Herbrand models instead
of general interpretations [88], addresses points 1 and 2. Considering only mini-
mal Herbrand models addresses point 3. Considering only finite interpretations
and models, the realm of finite model theory [61], addresses point 4. Unfortu-
nately, all such approaches raise new problems themselves. Such approaches and
problems are discussed below.
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4.2 Herbrand Model Theory

Most of the information in this subsection is based on a technical report by
Hinrichs and Genesereth [88]. Herbrand model theory restricts interpretations
to Herbrand interpretations (without equality, except if otherwise stated).

Definition 85. For formulas or sets of formulas ϕ and ψ:
ϕ is Herbrand valid iff it is satisfied in each Herbrand interpretation.
ϕ is Herbrand satisfiable iff it is satisfied in some Herbrand interpretation.
ϕ is Herbrand unsatisfiable iff it is falsified in each Herbrand interpretation.
I |=Hb ϕ iff I is an Herbrand interpretation and I |= ϕ.
ϕ |=Hb ψ iff for each Herbrand interpretation I: if I |=Hb ϕ then I |=Hb ψ.

4.2.1 Herbrand Model Theory vs. Tarski Model Theory
Obviously, each Herbrand satisfiable formula or set of formulas is Tarski sat-
isfiable. The converse does not hold. Assume a signature with a unary relation
symbol p and a constant a and no other symbol, such that the Herbrand universe
is HU = {a}. The set S = {p(a), ∃x¬p(x)} is Tarski satisfiable, but Herbrand
unsatisfiable. However, S is Herbrand satisfiable with respect to a larger signa-
ture containing an additional constant b. Thus, Herbrand satisfiability depends
on the signature, whereas Tarski satisfiability does not.

There are two conventions for establishing the signature of a set of formulas:
(1) explicitly by an a priori specification; (2) implicitly by gathering the sym-
bols from the formulas considered. Convention (1) is common in mathematical
logic and also underlies the definitions in this survey. Convention (2) is wide-
spread in computational logic. With Tarski model theory, either convention is
fine. With Herbrand model theory, convention (2) would not be reasonable: the
Herbrand satisfiable set {p(a), ¬p(b), ∃x¬p(x)} would have an Herbrand unsatis-
fiable subset {p(a), ∃x¬p(x)}. In contrast, convention (1) ensures that Herbrand
(un)satisfiability translates to subsets/supersets like Tarski (un)satisfiability.

With Tarski model theory, there is no strong correspondence between individ-
uals in the semantic domain and names, i.e., terms as syntactic representations
of semantic individuals. Semantic individuals need not have a name (see Exam-
ples 58 and 59), and different names may refer to the same semantic individual.
With Herbrand model theory, every semantic individual has a name. Moreover,
with normal Herbrand interpretations different ground terms represent different
individuals, thus incorporating the unique name assumption.

Some momentous results do not copy from Tarski to Herbrand model theory.

Theorem 86. The following results do not hold for Herbrand model theory:
The model extension theorem 73. The Löwenheim-Skolem-Tarski theorem 84.
The finiteness/compactness theorem 40.

Proof. The first two are rather immediate. For the last one assume a signature
with a unary relation symbol p, a unary function symbol f , a constant a, and no
other symbol. Then the Herbrand base is HB = {p(a), p(f(a)), p(f(f(a))), . . .}.
Although each finite subset of S = {∃x¬p(x)}∪HB is Herbrand satisfiable, S is
Herbrand unsatisfiable. ��
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Note that many of the properties of Tarski model theory that appear to be
undesirable for query and rule languages depend on one of the results that do
not hold for Herbrand model theory. Another property of Tarski model theory
is that some theories are not finitely axiomatisable (see Theorem 47). This is so
for Herbrand model theory as well.

Proposition 87. There are Herbrand interpretations I for which the theory
Th({I}) = {ϕ | I |=Hb ϕ} is not finitely axiomatisable.

Proof. Assume a signature L with at least one constant, one function symbol of
arity > 0, and one relation symbol of arity > 0. Then the Herbrand base HBL
is infinite, thus its powerset is not enumerable. There is a bijection between this
set and the set of all Herbrand interpretations for L (Proposition 63), which
is therefore not enumerable either. On the other hand, the set of L-formulas is
enumerable, hence the set of its finite subsets is enumerable. There are more
Herbrand interpretations than potential finite axiomatisations. ��
The price for the simplicity of Herbrand model theory is a loss of semi-decidability
of semantic properties. Let us start with an immediate consequence of the “Her-
brand Theorem” (Corollary 65).

Proposition 88. Let S be a set of universal closed formulas. Let ϕ be a closed
formula such that ¬ϕ is universal. Then S is Herbrand satisfiable iff S is Tarski
satisfiable and S |=Hb ϕ iff S |= ϕ.

Corollary 89. Herbrand unsatisfiability and Herbrand entailment are not de-
cidable, but they are semi-decidable for formulas meeting the conditions above.

Theorem 90 ([88]). For formulas that do not meet the conditions above, Her-
brand unsatisfiability and Herbrand entailment are not semi-decidable.

Herbrand Model Theory for Finite Herbrand Base. A rather natural
restriction for applications is to consider only signatures with a finite number
of relation symbols and of constants and without function symbols of arity ≥ 1,
as in datalog. This restriction ensures that the Herbrand universe HU and the
Herbrand base HB are finite, hence there are only finitely many Herbrand in-
terpretations.

The following results are immediate [88]. See also Theorem 57 and the dis-
cussion on propositional vs. ground on page 8.

Proposition 91. If the Herbrand base HB is finite

– Quantification can be transformed into conjunction and disjunction.
– The expressive power of the logic is the same as for propositional logic

with finitely many propositional relation symbols.
– Herbrand satisfiability and Herbrand entailment are decidable.
– Every theory is finitely axiomatisable.

Remark 92. Sets that are Tarski satisfiable with infinite domains only, such as
S = { ∀x¬(x < x), ∀x∀y∀z(x < y ∧ y < z ⇒ x < z), ∀x∃y x < y }, are
Herbrand unsatisfiable if the Herbrand universe HU is finite.
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4.3 Finite Model Theory

Model theory investigates how syntactic properties of formulas and structural
properties of their models relate to each other. Finiteness of the domain is cer-
tainly an interesting structural property of interpretations, but it does not have
a syntactic counterpart, because finiteness is not expressible in first-order predi-
cate logic (Corollaries 78 and 82). Because of that, finite models were for a long
time not a major concern in model theory.

Since the late 1970s, this has changed. Finite model theory gained interest in
computer science because of its connections to discrete mathematics, complexity
theory, database theory, and to computation in general. Finite interpretations
can be encoded as words, i.e., finite sequences of symbols, making computa-
tion applicable to model theory. Finite interpretations can describe terminating
computations. Databases can be formalised as finite interpretations, such that
queries correspond to formulas evaluated against finite interpretations. Com-
plexity classes can be represented as queries (in some logic) that are evaluated
against finite interpretations. Because of all these connections, many issues in
finite model theory are motivated by computer science.

The purpose of this subsection is to outline salient elementary aspects of
“entailment in the finite” and to list results in finite model theory that may be
useful for query languages or query evaluation and optimisation methods.

Definition 93. A finite interpretation is an interpretation with finite domain.
For formulas or sets of formulas ϕ and ψ:

ϕ is finitely valid iff it is satisfied in each finite interpretation.
ϕ is finitely satisfiable iff it is satisfied in some finite interpretation.
ϕ is finitely unsatisfiable iff it is falsified in each finite interpretation.
I |=fin ϕ iff I is a finite interpretation and I |= ϕ.
ϕ |=fin ψ iff for each finite interpretation I: if I |=fin ϕ then I |=fin ψ.

Finite interpretations are special Tarski interpretations, hence there are obvious
inclusions between corresponding notions: each valid formula is finitely valid,
each finitely satisfiable formula is satisfiable, etc. These inclusions are proper.

For example, { ∀x¬(x< x), ∀x∀y∀z(x< y ∧ y <z ⇒ x< z), ∀x∃y x< y }
is a satisfiable, but finitely unsatisfiable set of formulas, and the single formula
[∀x¬(x< x) ∧ ∀x∀y∀z(x<y ∧ y <z ⇒ x< z)] ⇒ ∃x∀y ¬(x< y) is finitely valid,
but not valid. Strict orderings in finite domains necessarily have maximal ele-
ments, but in infinite domains may not have maximal elements.

An example with equality is that any injection of a domain in itself is neces-
sarily surjective in finite domains, but may not be surjective in infinite domains.
The formula ∀x∀x′(f(x) =̇ f(x′) ⇒ x =̇x′) ∧ ¬∀y∃x y =̇ f(x) has normal models,
but no finite normal models.

The model relationship (Definition 32) is defined by a recursive algorithm for
evaluating a formula in an interpretation. There are several reasons why this
algorithm may not terminate for infinite interpretations, such as the quantifier
cases or potentially undecidable relations and incomputable functions over the
domain. None of these reasons applies to finite domains. Thus we have
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Theorem 94. The theory Th({I}) = {ϕ | I |=fin ϕ} is decidable for each finite
interpretation I.

Definition 95 (Isomorphic interpretations). Let L be a signature for first-
order predicate logic and let I and J be L-interpretations. An isomorphism of
I into J is a function π : dom(I) → dom(J ) such that

– π : dom(I) → dom(J ) is a bijection.
– π(cI) = cJ for each constant c of L.
– π(fI(d1, . . . , dn)) = fJ (π(d1), . . . , π(dn))

for each n-ary (n ≥ 1) function symbol f of L and all d1, . . . , dn ∈ dom(I).
– pI = pJ for each propositional relation symbol of L
– (d1, . . . , dn) ∈ pI iff (π(d1), . . . , π(dn)) ∈ pJ

for each n-ary (n ≥ 1) relation symbol p of L and all d1, . . . , dn ∈ dom(I).

I ∼= J , pronounced I and J are isomorphic, iff such an isomorphism exists.

Note that the variable assignments of isomorphic interpretations need not be
compatible.

Proposition 96. If I ∼= J , then for each closed formula ϕ: I |= ϕ iff J |= ϕ.
If π is an isomorphism of I into J and V is a variable assignment in dom(I),

then π ◦ V is a variable assignment in dom(J ) and for each formula ϕ:
I[V ] |= ϕ iff J [π ◦ V ] |= ϕ.

Definition 97. For k ∈ � let �k = {0, . . . , k} denote the initial segment of �
with cardinality k + 1. Let V0 be the variable assignment in �k for arbitrary k
with xV0 = 0 for each variable x.

Proposition 98. Each finite interpretation is isomorphic to an interpretation
with domain �k for some k ∈ �.

Proposition 99. For finite signatures there are for each k ∈ � only finitely
many interpretations with domain �k and variable assignment V0.

Proof. For each k ∈ � and each n ∈ � the set �n
k contains (k + 1)n tuples.

Thus there are 2((k+1)n) possible relations and (k + 1)((k+1)n) possible functions
of arity n, to which the finitely many signature symbols can be mapped by an
interpretation. ��

Corollary 100. For finite signatures, the problem whether a finite set of closed
formulas has a model with a given finite cardinality, is decidable.

This makes possible a simple semi-decision procedure for finite satisfiability:
iterating k from 1 upwards, check whether the given formulas have a model with
cardinality k.

Corollary 101. For finite signatures, finite satisfiability, finite falsifiability, and
finite non-entailment of finite sets of closed formulas are semi-decidable.
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Theorem 102 (Trakhtenbrot). For signatures with a non-propositional rela-
tion symbol and a relation or function symbol of arity ≥ 2, finite validity is not
semi-decidable.

Corollary 103. For finite signatures with a non-propositional relation symbol
and a relation or function symbol of arity ≥ 2, finite satisfiability, finite fal-
sifiability, and finite non-entailment of finite sets of closed formulas are semi-
decidable, but not decidable. Finite unsatisfiability, finite validity, and finite en-
tailment are not semi-decidable,

This is a remarkable reversal of results in the two model theories: (classical)
Tarksi unsatisfiability is semi-decidable and Tarski satisfiability is not, whereas
finite satisfiability is semi-decidable and finite unsatisfiability is not.

Corollary 104. There is no complete calculus for finite entailment.

Theorem 105. The finiteness/compactness theorem does not hold for finite
model theory.

Proof. For each n ∈ � let ϕn be a finitely satisfiable formula all of whose models
have domains with cardinality ≥ n+1. Such formulas exist, see the examples to
Theorem 75. Then each finite subset of S = {ϕn | n ∈ �} is finitely satisfiable,
but S is not finitely satisfiable. ��

Another difference to Tarski model theory is that finite interpretations can be
characterised up to isomorphism by formulas.

Theorem 106. For each finite interpretation I there exists a set SI of closed
formulas such that for each interpretation J : J ∼= I iff J |= SI.

If the signature is finite, there is a single closed formula rather than a set of
closed formulas with this property.

This does not extend to infinite interpretations, among other reasons, because
there are “not enough” formulas. An example for an interpretation that cannot
be characterised up to isomorphism is the standard model of arithmetic, whose
domain is the set of natural numbers. If any would-be axiomatisation is satisfied
by the standard model, it also has non-standard models that are not isomor-
phic to the standard model. In order to characterise the standard model up to
isomorphism, an axiomatisation would have to include the induction axiom (or
equivalent), which is not expressible in first-order predicate logic.

4.3.1 Finitely Controllable Formulas

Definition 107. A closed formula is finitely controllable, if it is either unsat-
isfiable or finitely satisfiable. A fragment of first-order predicate logic is finitely
controllable, if each closed formula belonging to that fragment is.

For finitely controllable formulas, satisfiability coincides with finite satisfiability.
Note that a satisfiable finitely controllable formula may well have infinite models,
but it is guaranteed to have also a finite model.
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Theorem 108. For finite signatures, satisfiability of a finitely controllable
closed formula is decidable.

Proof. By intertwining a semi-decision procedure for Tarski unsatisfiability with
a semi-decision procedure for finite satisfiability. ��
Because of this, finite controllability is one of the major techniques for proving
that satisfiability in some fragment of first-order predicate logic is decidable.
If one can show for that fragment that the existence of a model implies the
existence of a finite model, decidability follows from the theorem above.

Theorem 109. The fragments of first-order predicate logic consisting of closed
formulas in prenex form with a quantifier prefix of one of the following forms
are finitely controllable. The notation Q∗ means that there may be zero or more
consecutive occurrences of this quantifier.
– ∃∗∀∗ possibly with equality (Bernays-Schönfinkel prefix class)
– ∃∗∀∃∗ possibly with equality (Ackermann prefix class)
– ∃∗∀∀∃∗ without equality (Gödel prefix class)

As can be seen from their names, these decidable fragments were identified long
before computer science existed. A more recent fragment, which is highly relevant
to query languages, is the following.

Definition 110 (FO2). The fragment of first-order predicate logic with equality
whose formulas contain no variables other than x and y (free or bound) is called
two-variable first-order predicate logic or FO2.

Theorem 111. FO2 is finitely controllable.

As an illustration of the expressive power of this fragment, consider a directed
graph. It is possible to express in FO2 queries such as “does a given node a have
an ingoing edge?” or “is every node with property p reachable from a via at most
two edges?” More generally, FO2 can express queries for properties that can be
checked by a successive analysis of pairs of elements in the domain. It cannot
express queries for global properties that require a simultaneous analysis of larger
parts of the domain, such as “is there a cycle in the graph?” In particular,
transitivity of a binary relation cannot be expressed.

Many logics that are of interest to knowledge representation, for instance
several modal and description logics, can be seen as two-variable logics embedded
in suitable extensions of FO2. See [81] for an overview.

4.3.2 0-1 Laws
The following information is taken from an article by Ronald Fagin entitled
“Finite-Model Theory – a Personal Perspective”[66].

As a motivating example, let us assume a signature with 2-ary function sym-
bols + and × and the set of formulas axiomatising a field.10 Let ϕ be the con-
junction of these (finitely many) axioms. The negation ¬ϕ of this formula would
10 A field is an algebraic structure where both operations have an inverse. The set of

rational numbers � with addition and multiplication and the set of real numbers �
with addition and multiplication are examples of fields.
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seem to be very uninteresting, because, intuitively, if we consider arbitrary the-
ories, it is highly unlikely that the theory happens to be a field, which means
that ¬ϕ is “almost surely true” in such theories.

In order to make this intuition more precise, imagine that a finite interpre-
tation with cardinality n is randomly generated, such that the probability for a
ground atom to be true in this interpretation is 1

2 for each ground atom inde-
pendently of the truth values of other ground atoms. For formulas ϕ let Pn(ϕ)
denote the probability that such a randomly generated interpretation satisfies ϕ.

Definition 112. A formula ϕ is almost surely true iff lim
n→∞Pn(ϕ) = 1, i.e.,

with increasing cardinality of interpretations the asymptotic probability for ϕ to
be true is 1.

Theorem 113 (0-1 law). For each closed formula ϕ, either ϕ or ¬ϕ is almost
surely true.

Quoting Fagin [66], who cites Vardi:

There are three possibilities for a closed formula: it can be surely true
(valid), it can be surely false (unsatisfiable), or it can be neither. The
third possibility (where a closed formula is neither valid nor unsatisfiable)
is the common case. When we consider asymptotic probabilities, there
are a priori three possibilities: it can be almost surely true (asymptotic
probability 1), it can be almost surely false (asymptotic probability 0),
or it can be neither (either because there is no limit, or because the limit
exists and is not 0 or 1). Again, we might expect the third possibility to
be the common case. The 0-1 law says that the third possibility is not
only not the common case, but it is, in fact, impossible!

This result may seem like an amusing oddity, but it is a significant tool for
proving that certain properties of finite interpretations cannot be expressed in
first-order predicate logic.

For instance if there were a closed formula ϕeven that is satisfied by a finite
interpretation iff the domain of this interpretation has even cardinality, then
Pn(ϕeven) would be 1 for even n and 0 for odd n, hence there would be no limit.
By the 0-1 law, this is impossible, therefore such a formula ϕeven does not exist.
Hence, evenness is not expressible in first-order predicate logic.

The same kind of argument based on the 0-1 law can be used to show for
many properties of finite interpretations that they are not expressible in first-
order predicate logic. Often, such properties involve some form of “counting”. It
is part of the folklore knowledge about first-order predicate logic that it “cannot
count”.

There are several theorems similar to the 0-1 law. A research issue in this area
is to determine (fragments of) other logics that admit the 0-1 law. For example,
see [104].
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5 Declarative Semantics: Adapting Classical Model
Theory to Rule Languages

The declarative semantics of definite programs can be defined in model-theoretic
terms using specific properties of syntactical classes of formulas that are more
general than definite clauses.

Definite clauses (Definition 21) are also called definite rules. Some authors
call them positive definite rules when they want to emphasise that they exclude
normal clauses, i.e., clauses with negative literals in their antecedent. In line with
this terminology, a definite program is also called a set of positive definite rules
or simply a positive rule set. This terminology will also be used below.

In this section, a signature L for first-order predicate logic is assumed. Unless
otherwise stated, semantic notions such as (un)satisfiability or logical equivalence
refer to unrestricted interpretations, i.e., interpretations with domains of any
kind, especially of any cardinality.

5.1 Minimal Model Semantics of Definite Rules

This subsection is inspired by [144].
As discussed in Subsection 3.2, a rule is a shorthand notation for its universal

closure. Thus, a positive definite rule is on the one hand a special universal for-
mula (defined in Subsection 3.1). On the other hand, it is also a special inductive
formula (defined below).

Both classes of formulas have interesting model-theoretic properties. If a set
of universal formulas is satisfiable, then it is Herbrand satisfiable, i.e., it has an
Herbrand model. If a set of inductive formulas is satisfiable, then the intersection
of its models is also a model, provided that the models intersected are compatible.
Moreover, each set of definite inductive formulas is satisfiable.

Together this means that each set of positive definite rules has a unique min-
imal Herbrand model, which is the intersection of all Herbrand models of the
set. This minimal model can be taken as “the meaning” of the set of positive
definite rules in a model-theoretic sense.

5.1.1 Compatibility and Intersection of Interpretations

Definition 114 (Compatible set of interpretations). A set {Ii | i ∈ I} of
interpretations with index set I is called compatible, iff

– I �= ∅.
– D =

⋂
{dom(Ii) | i ∈ I} �= ∅.

– all interpretations of a function symbol coincide on the common domain:
fIi(d1, . . . , dn) = fIj(d1, . . . , dn) for each n-ary (n ≥ 0) function symbol f ,
for all i, j ∈ I, and for all d1, . . . , dn ∈ D.

– a variable is identically interpreted in all interpretations:
xIi = xIj for each variable x and all i, j ∈ I.
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Definition 115 (Intersection of a compatible set of interpretations).
Let {Ii | i ∈ I} be a compatible set of interpretations. Then

⋂
{Ii | i ∈ I} is

defined as the interpretation I with

– dom(I) = D =
⋂

{dom(Ii) | i ∈ I}.
– a function symbol is interpreted as the intersection of its interpretations:

fI(d1, . . . , dn) = fIi(d1, . . . , dn) for each n-ary (n ≥ 0) function symbol f ,
for an arbitrary i ∈ I, and for all d1, . . . , dn ∈ D.

– a relation symbol is interpreted as the intersection of its interpretations:
pI =

⋂
i∈I pIi for each relation symbol p.

– a variable is interpreted like in all given interpretations:
xI = xIi for each variable x and an arbitrary i ∈ I.

5.1.2 Universal Formulas and Theories
Let us recall some notions and results from previous sections.

The polarity of a subformula within a formula (Definition 13) is positive, if
the subformula occurs within the scope of an even number of explicit or implicit
negations, and negative, if this number is odd. A formula is universal (Defini-
tion 14), if all its occurrences of ∀ have positive and of ∃ have negative polarity.
This is the case iff the formula is equivalent to a formula in prenex form con-
taining no existential quantifier (Theorem 37). A universal theory is a theory
axiomatised by a set of universal formulas.

The Herbrand universe HU is the set of ground terms, and the Herbrand
base HB is the set of ground atoms of the given signature (Definition 55). An
Herbrand interpretation interprets each ground term with itself (Definition 56).
There is a bijection between the set of all Herbrand interpretations and the set
of all subsets of HB (Proposition 63). Each subset B ⊆ HB of ground atoms
induces the Herbrand interpretation HI (B) that satisfies all ground atoms in B
and falsifies all ground atoms not in B.

If a set S of universal formulas has a model I, then the Herbrand interpreta-
tion HI (I) induced by I is also a model of S (Theorem 64). Thus, S is satisfiable
iff it has an Herbrand model.

Note that this is easily disproved for non-universal formulas. For example, if
the signature consists of a unary relation symbol p and a constant a and no other
symbols, then HB = {p(a)} and there are exactly two Herbrand interpretations:
HI (∅) and HI ({p(a)}). The formula p(a) ∧ ∃x¬p(x) is satisfiable, but neither of
the two Herbrand interpretations is a model of it. See also Examples 58 and 59
in Section 4.1.

For sets of universal formulas in general, and for sets of positive definite
rules in particular, satisfiability coincides with Herbrand satisfiability. This is
interesting for two reasons. First, the domain of Herbrand interpretations is
(computably) enumerable. Second, Herbrand interpretations are syntactically
defined. Being enumerable and syntactically defined, Herbrand interpretations
are amenable to computing.

Returning to the notions introduced above, the following result is obtained
by straightforward application of the definitions:
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Lemma 116. Let {Bi | i ∈ I} be a set of sets of ground atoms, i.e., Bi ⊆ HB
for each i ∈ I. If this set is nonempty, then
– {HI (Bi) | i ∈ I} is a compatible set of interpretations, i.e., its intersection

is defined.
–

⋂
{HI (Bi) | i ∈ I} = HI

( ⋂
{Bi | i ∈ I}

)
i.e., its intersection is the Her-

brand interpretation induced by the intersection of the sets of ground atoms.

Definition 117 (Set of inducers of Herbrand models of a set of for-
mulas). For a set S of formulas, the set of inducers of its Herbrand models is
ModHB (S) = {B ⊆ HB | HI (B) |= S}.

Note that although the class Mod(S) of all models of S is not in general a set
(Definition 42), the class ModHB (S) of all inducers of Herbrand models of S is
a set: a subset of the powerset of the Herbrand base HB .

Obviously, ModHB (S) = ∅ for unsatisfiable S. If S is satisfiable and non-
universal, ModHB (S) may or may not be empty. If S is satisfiable and universal,
ModHB (S) �= ∅ and the intersection of the set of its Herbrand models is defined.
We introduce a notation for the intersection that is always defined:

Notation 118. For a set S of formulas:

Mod∩(S) =
{⋂

ModHB (S) if ModHB (S) �= ∅
HB if ModHB (S) = ∅

Theorem 119. If S is universal, then Mod∩(S) = {A ∈ HB | S |= A}.

Proof. If S is unsatisfiable, both sides are equal to HB . If S is satisfiable:
“⊆”: Let A ∈ Mod∩(S), thus A ∈ B for each B ⊆ HB with HI (B) |= S. To be

shown: S |= A. Let I be an arbitrary model of S. By Theorem 64, HI (B′) |= S
where B′ = {A′ ∈ HB | I |= A′}. Hence by the first sentence, A ∈ B′, therefore
I |= A. Since I was arbitrary, we have shown S |= A.

“⊇”: Let A ∈ HB with S |= A, i.e., each model of S satisfies A. Then for
each B ⊆ HB with HI (B) |= S holds HI (B) |= A and therefore A ∈ B. Hence
A ∈ Mod∩(S). ��

The definition guarantees that HI (Mod∩(S)) is always an Herbrand interpreta-
tion. If S is universal and unsatisfiable, then HI (Mod∩(S)) satisfies all ground
atoms, but is obviously not a model of S. If S is universal and satisfiable, then
HI (Mod∩(S)) is the intersection of all Herbrand models of S. It is worth noting
that in this case HI (Mod∩(S)) is not necessarily a model of S. The reason is
that some formulas in S may be “indefinite”:

Example 120. Assume a signature consisting of a unary relation symbol p and
constants a and b and no other symbols. Let S = {p(a)∨p(b)}. Then ModHB (S) =
{ {p(a)}, {p(b)}, {p(a), p(b)} }. But HI (Mod∩(S)) = HI (∅) is not a model of S.

Non-closedness of Herbrand models under intersection is possible for sets of
general universal formulas, but, as we shall see, not for sets of positive definite
rules. Before coming to that, let us take a look at another property of sets of
universal formulas, which is one if their most significant characteristics.
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Definition 121 (Subinterpretation). An interpretation I1 is a subinterpre-
tation of an interpretation I2, denoted I1 ⊆ I2, if
– dom(I1) ⊆ dom(I2).
– the interpretations of a function symbol coincide on the common domain:

fI1(d1, . . . , dn) = fI2(d1, . . . , dn) for each n-ary (n ≥ 0) function symbol f
and all d1, . . . , dn ∈ dom(I1).

– the interpretations of a relation symbol coincide on the common domain:
pI1 = pI2 ∩ dom(I1)n for each n-ary (n ≥ 0) relation symbol p.

– a variable is identically interpreted in the interpretations:
xI1 = xI2 for each variable x.

If in addition dom(I1) �= dom(I2), then I1 is a proper subinterpretation of I2.

The subinterpretation relationship is a partial ordering on interpretations. Given
a set of compatible interpretations where all interpretations of a relation symbol
coincide on the common domain, its intersection is a subinterpretation of each
interpretation in the set.

Lemma 122. Let I1 and I2 be interpretations with I1 ⊆ I2. Let V be an arbi-
trary variable assignment in dom(I1). Let ϕ be a quantifier-free formula. Then
I1[V ] |= ϕ iff I2[V ] |= ϕ.

Proof. By structural induction on ϕ. ��

Theorem 123 (Subinterpretation property of universal formulas). Let
I1 and I2 be interpretations with I1 ⊆ I2. For each universal closed formula ϕ,
if I2 |= ϕ then I1 |= ϕ.

Proof. By considering a prenex form of ϕ and applying the previous lemma. ��

As an illustration, consider a signature with 2-ary function symbols + and × and
the equality relation symbol =̇. Let dom(I1) = �, the set of rational numbers,
and dom(I2) = �, the set of real numbers, and let + and × be interpreted
as addition and multiplication on the respective domain. Then I1 ⊆ I2. The
formula ∀x∀y (x+x)×y

.= x×(y+y) is true in I2 (the reals) and, being universal,
it is also true in I1 (the rationals). The non-universal formula ∀y∃x y

.= x×x×x
is true in I2 (the reals), but not true in I1 (the rationals).

An immediate consequence of the theorem is that if a set of closed formu-
las is universal, then all subinterpretations of its models are models. A famous
result by �Los and Tarski establishes the converse: If a set of closed formulas is
satisfied by all subinterpretations of its models, then it is equivalent to a set
of universal closed formulas. Thus, the subinterpretation property is a semantic
characterisation of the syntactic class of universal formulas.

5.1.3 Inductive Formulas and Theories

Definition 124 (Positive and negative formulas). A formula ϕ is called
positive (or negative, respectively) iff every atom occurring in ϕ has positive (or
negative, respectively) polarity in ϕ.
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Definition 125 (Inductive formula). A generalised definite rule is a formula
of the form ∀∗((A1 ∧ . . . ∧ An) ← ϕ) where ϕ is positive and the Ai are atoms
for 1 ≤ i ≤ n. It is also called a definite inductive formula.

A generalised definite goal is a formula of the form ∀∗ϕ where ϕ is negative.
It is also called an integrity constraint.

An inductive formula is either a generalised definite rule or a generalised
definite goal. A (definite) inductive theory is a theory axiomatised by a set of
(definite) inductive formulas.

Recall that ∀∗ denotes the universal closure. The point of a generalised definite
rule is that its only positive atoms are conjunctively connected and that all
variables occurring in this conjunction are universally quantified. A generalised
definite goal is logically equivalent to a formula ∀∗¬ϕ and thus to ∀∗(⊥ ← ϕ)
with positive ϕ, which shows the similarity to a generalised definite rule.

Each inductive formula is equivalent to a formula in prenex form whose matrix
is a conjunction of Horn clauses (Definition 21) and whose quantifier prefix
starts with universal quantifiers for all variables in the consequents followed by
arbitrary quantifiers for the remaining variables. For a generalised definite rule,
all Horn clauses in the matrix are definite clauses. For a generalised definite
goal, all Horn clauses in the matrix are definite goals. It would make sense to
call inductive formulas “generalised Horn clauses” (compare Definition 21).

Let us now introduce a partial ordering on interpretations that differs slightly
from the subinterpretation relationship:

Definition 126. I1 ≤ I2 for interpretations I1 and I2 if
– dom(I1) = dom(I2).
– the interpretations of a function symbol coincide on the common domain:

fI1(d1, . . . , dn) = fI2(d1, . . . , dn) for each n-ary (n ≥ 0) function symbol f
and all d1, . . . , dn ∈ dom(I1).

– the “smaller” interpretation of a relation symbol is a restriction of the other:
pI1 ⊆ pI2 for each n-ary (n ≥ 0) relation symbol p.

– a variable is identically interpreted in the interpretations:
xI1 = xI2 for each variable x

If in addition pI1 �= pI2 for at least one p, then I1 < I2.

In contrast to the subinterpretation relationship, here the domains of the in-
terpretations are the same. For subinterpretations this would imply that the
interpretations of a relation symbol coincide, here the “smaller” one may be a
restriction of the other. Given a set of compatible interpretations with the same
domain, its intersection is ≤ each interpretation in the set.

Lemma 127. Let I1 and I2 be interpretations with I1 ≤ I2. Let V be an arbi-
trary variable assignment in dom(I1).

If ϕ is a positive formula: if I1[V ] |= ϕ then I2[V ] |= ϕ
If ϕ is a negative formula: if I2[V ] |= ϕ then I1[V ] |= ϕ

Proof. By structural induction on the matrix of a prenex form of ϕ. ��



48 F. Bry et al.

An interesting property of sets of generalised definite rules is that they are
satisfiable. In particular, the ≤-largest Herbrand interpretation, which satisfies
all ground atoms, is always a model.

Theorem 128. For each set S of generalised definite rules, HI (HB) |= S.

Proof. Let S be a set of generalised definite rules, thus its members have the
form ∀∗[(A1 ∧ . . . ∧ An) ← ϕ] where ϕ is positive and the Ai are atoms.

Each member of S is logically equivalent to ∀x[(A1 ∧ . . .∧An) ← ∃yϕ] where
x are the variables occurring in A1 . . . An and y are the other free variables of ϕ.
It suffices to show that HI (HB) satisfies each instance [(A1 ∧ . . .∧An) ← ∃yϕ]σ
where σ is a ground substitution with domain x (Theorem 57). Each of these
instances is [(A1σ ∧ . . . ∧ Anσ) ← (∃yϕ)σ] where the Aiσ are ground atoms.

Since HI (HB) satisfies all ground atoms, it satisfies each of these instances
and thus each member of S. ��
The main result about inductive formulas is that their (compatible) models are
closed under intersection.

Theorem 129. Let S be a set of inductive formulas. If {Ii | i ∈ I} is a set of
compatible models of S with the same domain D, then I =

⋂
{Ii | i ∈ I} is also

a model of S.

Proof. Let V be an arbitrary variable assignment in D. By definition of the
partial ordering ≤ on interpretations, I[V ] ≤ Ii[V ] for each i ∈ I.

Let ∀∗((A1 ∧ . . .∧An) ← ϕ) with positive ϕ be a generalised definite rule in S.
If I[V ] �|= ϕ, then I[V ] |= ((A1 ∧ . . .∧An) ← ϕ). If I[V ] |= ϕ, then Ii[V ] |= ϕ for
each i ∈ I by Lemma 127. Therefore, since each Ii satisfies each member of S,
Ii[V ] |= Aj for each i ∈ I and 1 ≤ j ≤ n. By Definition 115, I[V ] |= Aj for each j
with 1 ≤ j ≤ n. Thus I[V ] |= (A1 ∧ . . .∧An) and I[V ] |= ((A1 ∧ . . .∧An) ← ϕ).
In both cases, since V is arbitrary, I satisfies the considered member of S.

Let ∀∗ϕ with negative ϕ be a generalised definite goal in S. Then Ii[V ] |= ϕ
for each i ∈ I, because each Ii satisfies each member of S. By Lemma 127,
I[V ] |= ϕ. Since V is arbitrary, I satisfies the considered member of S. ��
Corollary 130. If S is a set of inductive formulas and {Bi ⊆ HB | i ∈ I} is a
nonempty set with HI (Bi) |= S for each i ∈ I, then HI

( ⋂
{Bi | i ∈ I}

)
|= S.

5.1.4 Minimal Models

Definition 131 (Minimal model). A minimal model of a set of formulas is
a ≤-minimal member I of the set of all its models with domain dom(I).

The partial ordering ≤ on interpretations corresponds to the subset relation-
ship ⊆ on sets of n-tuples of the domain with which relation symbols are inter-
preted. A model is minimal, if there is no other model with the same domain
that interprets some relation symbol with a proper subset of n-tuples of the
domain. Note that the subset relationship refers to sets that are not syntactic.

For Herbrand interpretations the partial ordering ≤ on interpretations corre-
sponds to the subset relationship on their inducers, which are syntactic sets.
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Lemma 132. Let S be a set of formulas.

– An Herbrand model of S is minimal iff it is induced by a ⊆-minimal member
of ModHB (S).

– If HI (Mod∩(S)) is a model of S, it is a minimal Herbrand model of S and
it is the only minimal Herbrand model of S.

An Herbrand model HI (B) of S is minimal iff there is no proper subset B′ ⊂ B
such that HI (B′) is also a model of S. Reconsidering S = {p(a) ∨ p(b)} from
Example 120 above: both HI ({p(a)}) and HI ({p(b)}) are minimal Herbrand
models of S, and HI ( {p(a), p(b)} ) is a non-minimal Herbrand model of S.

Theorem 133. Let S be a set of inductive formulas. If either each member
of S is definite, or S is satisfiable and each member of S is universal, then
HI (Mod∩(S)) is the unique minimal Herbrand model of S.

Proof. ModHB (S) �= ∅ in the first case by Theorem 128, in the second case
by Theorem 64. By Corollary 130, HI (Mod∩(S)) is a model of S, and by the
previous lemma it is the unique minimal Herbrand model of S. ��

Noting that positive definite rules (i.e., definite clauses) are both universal and
definite inductive formulas, and taking into account Theorem 119, we obtain:

Corollary 134 (Minimal Herbrand Model of a Definite Program). Each
set S of positive definite rules (i.e., each definite program) has a unique minimal
Herbrand model. This model is the intersection of all Herbrand models of S. It
satisfies precisely those ground atoms that are logical consequences of S.

This unique minimal model of a set of positive definite rules can be regarded as
its natural “meaning”.

The notion of minimal model is also defined for non-Herbrand interpretations
and therefore also applies to more general classes of formulas than inductive
formulas. Typically, for such more general classes of formulas both the uniqueness
and the closedness under intersection of minimal models are lost.

Let us now consider a generalisation of inductive formulas for which the notion
of minimal models nevertheless retains a useful characterisation.

Definition 135 (Generalised rule). A generalised rule is a formula of the
form ∀∗(ψ ← ϕ) where ϕ is positive and ψ is positive and quantifier-free.

Among others, disjunctive clauses (Definition 21) are generalised rules. The gen-
eralised rule (p(a) ∨ p(b) ← �) is equivalent to the formula from Example 120,
which has two minimal Herbrand models.

Note that generalised rules, like generalised definite rules, are not necessarily
universal, because their antecedent may contain quantifiers of both kinds.

Definition 136 (Implicant of a positive quantifier-free formula). Let ψ
be a positive quantifier-free formula. The set primps(ψ) of pre-implicants of ψ
is defined as follows depending on the form of ψ:
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– primps(ψ) = { {ψ} } if ψ is an atom or � or ⊥.
– primps(¬ψ1) = primps(ψ1).
– primps(ψ1 ∧ ψ2) = { C1 ∪ C2 | C1 ∈ primps(ψ1), C2 ∈ primps(ψ2) }.
– primps(ψ1 ∨ ψ2) = primps(ψ1 ⇒ψ2) = primps(ψ1) ∪ primps(ψ2).

The set of implicants of ψ is obtained from primps(ψ) by removing all sets
containing ⊥ and by removing � from the remaining sets.

Note that each implicant of a positive quantifier-free formula is a finite set of
atoms and that the set of implicants is finite. Forming a conjunction of the
atoms in an implicant and a disjunction of all of these conjunctions, results in
a disjunctive normal form, which is equivalent to the original formula. If ψ is
a conjunction of atoms (like the consequent of a generalised definite rule), then
it has exactly one implicant, which consists of all of these atoms. If ψ is a dis-
junction of atoms, then each of its implicants is a singleton set consisting of one
of these atoms. Taking into account that the definition of implicants applies to
positive and quantifier-free formulas only, the following result is straightforward.

Lemma 137

1. If C is an implicant of ψ, then C |= ψ.
2. For any interpretation I, if I |= ψ then there exists an implicant C of ψ

with I |= C.

Definition 138 (Supported atom). Let I be an interpretation, V a variable
assignment in dom(I) and A = p(t1, . . . , tn) an atom, n ≥ 0.

– an atom B supports A in I[V ] iff
I[V ] |= B and B = p(s1, . . . , sn) and s

I[V ]
i = t

I[V ]
i for 1 ≤ i ≤ n.

– a set C of atoms supports A in I[V ] iff
I[V ] |= C and there is an atom in C that supports A in I[V ].

– a generalised rule ∀∗(ψ ← ϕ) supports A in I iff for each variable assign-
ment V with I[V ] |= ϕ there is an implicant C of ψ that supports A in I[V ].

The idea of an atom being supported is that some atom with the same relation
symbol and identically interpreted term list occurs in one of the parts of the
consequent of the generalised rule that have to be true when the antecedent is
true. It turns out that in minimal models only those atoms are true that have
to be true in this sense.

Theorem 139 (Minimal models satisfy only supported ground atoms).
Let S be a set of generalised rules. Let I be an interpretation with domain D.
If I is a minimal model of S, then: For each ground atom A with I |= A there
is a generalised rule in S that supports A in I.

Proof. Assume that I is a minimal model of S and there is a ground atom A
with I |= A, such that A is not supported in I by any generalised rule in S.

Let I ′ be identical to I except that I ′ �|= A (by removing just one tuple from
the relation pI for the relation symbol p of A). Then I ′ < I.
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Consider an arbitrary member ∀∗(ψ ← ϕ) of S. By assumption it does not
support A. Let V be an arbitrary variable assignment in D. We show that
I ′[V ] |= (ψ ← ϕ).

If I[V ] �|= ϕ, by Lemma 127 also I ′[V ] �|= ϕ, hence I ′[V ] |= (ψ ← ϕ).
If I[V ] |= ϕ, then I[V ] |= ψ because I is a model of S. Furthermore, by

assumption for each implicant C of ψ either I[V ] �|= C or A is not supported
in I[V ] by any atom in C.
– If for each implicant C of ψ holds I[V ] �|= C, then I[V ] �|= ψ by part (2) of

Lemma 137, making this case impossible by contradiction.
– If there exists an implicant C of ψ with I[V ] |= C, then by assumption

A is not supported in I[V ] by any atom in C. By construction I ′[V ] agrees
with I[V ] on all atoms except those supporting A in I[V ], thus I′[V ] |= C.
By Lemma 137 (1), I ′[V ] |= ψ. Hence I ′[V ] |= (ψ ← ϕ).

In all possible cases I ′ satisfies the generalised rule under consideration, thus
I ′ is a model of S, contradicting the minimality of I. ��

This result means that minimal models satisfy only such ground atoms as are
supported by appropriate atoms in the consequents of the generalised rules. But
the relationship between the supporting atom and the supported ground atom
is of a semantic nature. The only guaranteed syntactic relationship between the
two is that they share the same relation symbol.

Example 140. Consider a signature containing a unary relation symbol p and
constants a and b. Let S = { (p(b) ← �) }.

The interpretation I with dom(I) = {1} and aI = bI = 1 and pI = {(1)}
is a minimal model of S. (Note that the only smaller interpretation interprets p
with the empty relation and does not satisfy the rule.)

Moreover, I |= p(a). By the theorem, p(a) is supported in I by p(b), which
can be confirmed by applying the definition.

Definition 141. An interpretation I has the unique name property, if for each
term s, ground term t, and variable assignment V in dom(I) with sI[V ] = tI[V ]

there exists a substitution σ with sσ = t.

Obviously, Herbrand interpretations have the unique name property. For min-
imal interpretations with the unique name property the relationship between
the supporting atom and the supported ground atom specialises to the ground
instance relationship, which is syntactic and decidable.

The converse of Theorem 139 does not hold for sets with indefinite rules such
as { (p(a) ∨ p(b) ← �) }, because the definition of supported cannot distinguish
between implicants of rule consequent. Both atoms are supported in the Her-
brand model HI ({p(a), p(b)}) of this set, although the model is not minimal.

Regarding definite rules, there was for some time a tacit conviction that satis-
fying only supported ground atoms was a sufficient criterion for the minimality
of models. In the case of Herbrand interpretations the criterion would even be
syntactic. But in fact, the converse of Theorem 139 is refuted by rather trivial
counter-examples with definite rules.
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Example 142. Consider S = { (p ← p) } and its Herbrand model HI ({p}). The
only ground atom satisfied by HI ({p}) is p, which is supported in HI ({p}) by
the rule. But HI ({p}) is not minimal because HI (∅) is also a model of S.

5.2 Fixpoint Semantics of Positive Definite Rules

This subsection first summarises some general results on operators on an arbi-
trary set and fixpoints of such operators. The arbitrary set will afterwards be
specialised to the Herbrand base.

5.2.1 Operators

Definition 143 (Operator). Let X be a set. Let P(X) denote its powerset,
the set of subsets of X. An operator on X is a mapping Γ : P(X) → P(X).

Definition 144 (Monotonic operator). Let X be a set. An operator Γ on X
is monotonic, iff for all subset M ⊆ M ′ ⊆ X holds: Γ (M) ⊆ Γ (M ′).

Definition 145 (Continuous operator). Let X be a nonempty set.
A set Y ⊆ P(X) of subsets of X is directed, if every finite subset of Y has

an upper bound in Y , i.e., for each finite Yfin ⊆ Y , there is a set M ∈ Y such
that

⋃
Yfin ⊆ M .

An operator Γ on X is continuous, iff for each directed set Y ⊆ P(X) of
subsets of X holds: Γ (

⋃
Y ) =

⋃
{Γ (M) | M ∈ Y }.

Lemma 146. Each continuous operator on a nonempty set is monotonic.

Proof. Let Γ be a continuous operator on X �= ∅. Let M ⊆ M ′ ⊆ X . Since Γ is
continuous, Γ (M ′) = Γ (M ∪ M ′) = Γ (M) ∪ Γ (M ′), thus Γ (M) ⊆ Γ (M ′). ��

The converse of this lemma does not hold. Being continuous is a stronger prop-
erty of operators than being monotonic.

Note that the main purpose of the definition of continuous is to ensure that
the operator commutes with set union. But there is no need to require this for
all unions of sets, it suffices for unions of directed sets.

5.2.2 Fixpoints of Monotonic and Continuous Operators

Definition 147 (Fixpoint). Let Γ be an operator on a set X. A subset M ⊆ X
is a fixpoint of Γ iff Γ (M) = M .

Theorem 148 (Knaster-Tarski, existence of least and greatest fixpoint).
Let Γ be a monotonic operator on a nonempty set X. Then Γ has a least fix-
point lfp(Γ ) and a greatest fixpoint gfp(Γ ) with

lfp(Γ ) =
⋂

{M ⊆ X | Γ (M) = M} =
⋂

{M ⊆ X | Γ (M) ⊆ M}.
gfp(Γ ) =

⋃
{M ⊆ X | Γ (M) = M} =

⋃
{M ⊆ X | Γ (M) ⊆ M}.

Proof. For the least fixpoint let L =
⋂

{M ⊆ X | Γ (M) ⊆ M}.
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Consider an arbitrary M ⊆ X with Γ (M) ⊆ M . By definition of L we have
L ⊆ M . Since Γ is monotonic, Γ (L) ⊆ Γ (M). With the assumption Γ (M) ⊆ M
follows Γ (L) ⊆ M . Therefore (1) Γ (L) ⊆

⋂
{M ⊆ X | Γ (M) ⊆ M} = L.

For the opposite inclusion, from (1) and since Γ is monotonic it follows that
Γ (Γ (L)) ⊆ Γ (L). By definition of L therefore (2) L ⊆ Γ (L). From (1) and (2)
follows that L is a fixpoint of Γ .

Now let L′ =
⋂

{M ⊆ X | Γ (M) = M}. Then L′ ⊆ L. because L is a
fixpoint of Γ . The opposite inclusion L ⊆ L′ holds, since all sets involved in the
intersection defining L′, are also involved in the intersection defining L.

The proof for the greatest fixpoint is similar. ��
Definition 149 (Ordinal powers of a monotonic operator). Let Γ be a
monotonic operator on a nonempty set X. For each finite or transfinite ordinal
the upward and downward power of Γ is defined as
Γ ↑ 0 = ∅ (base case) Γ ↓ 0 = X
Γ ↑ α + 1 = Γ (Γ ↑ α) (successor case) Γ ↓ α + 1 = Γ (Γ ↓ α)
Γ ↑ λ =

⋃
{Γ ↑ β | β < λ} (limit case) Γ ↓ λ =

⋂
{Γ ↓ β | β < λ}

Lemma 150. Let Γ be a monotonic operator on a nonempty set X. For each
ordinal α holds:
1. Γ ↑ α ⊆ Γ ↑ α + 1
2. Γ ↑ α ⊆ lfp(Γ ).
3. If Γ ↑ α = Γ ↑ α + 1, then lfp(Γ ) = Γ ↑ α.

Proof. 1. and 2. are shown by transfinite induction on α and 3. as follows:
If Γ ↑ α = Γ ↑ α + 1, then Γ ↑ α = Γ (Γ ↑ α), i.e., Γ ↑ α is a fixpoint of Γ ,

therefore Γ ↑ α ⊆ lfp(Γ ) by 2., and lfp(Γ ) ⊆ Γ ↑ α by definition. ��
Theorem 151. Let Γ be a monotonic operator on a nonempty set X. There
exists an ordinal α such that Γ ↑ α = lfp(Γ ).

Proof. Otherwise, for all ordinals α by the previous lemma Γ ↑ α ⊆ Γ ↑ α + 1
and Γ ↑ α �= Γ ↑ α + 1. Thus Γ ↑ injectively maps the ordinals onto P(X), a
contradiction as there are “more” ordinals than any set can have elements. ��
Theorem 152 (Kleene). Let Γ be a continuous operator on a nonempty set X.
Then lfp(Γ ) = Γ ↑ ω. (ω is the first limit ordinal, the one corresponding to �)

Proof. By 1. from the previous lemma, it suffices to show that Γ ↑ ω+1 = Γ ↑ ω.
Γ ↑ ω + 1 = Γ (Γ ↑ ω) by definition, successor case

= Γ
( ⋃

{Γ ↑ n | n ∈ �}
)

by definition, limit case
=

⋃ {
Γ (Γ ↑ n) | n ∈ �

}
because Γ is continuous

=
⋃ {

Γ ↑ n + 1 | n ∈ �
}

by definition, successor case
= Γ ↑ ω by definition, base case ��

An analogous result for the greatest fixpoint does not hold: it may well be that
gfp(Γ ) �= Γ ↓ ω. Note that the decisive step in the proof depends on the oper-
ator being continuous. Being monotonic would not be sufficient. The theory of
well-founded semantics uses operators that are monotonic, but not necessarily
continuous, and therefore not covered by this theorem.
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5.2.3 Immediate Consequence Operator for a Set of Positive Definite
Rules

Generalised definite rules according to Definition 125 need not be universal,
because so far the results on this class of formulas did not depend on universality.
In this subsection, however, we consider only universal formulas.

Recall that an Herbrand interpretation satisfies a set of universal closed for-
mulas iff it satisfies the set of its ground instances (Corollary 60). Assuming a
signature with at least one constant, the Herbrand base HB is nonempty.

Let us now apply the results on operators to the case where X = HB and
a subset M is a set B ⊆ HB of ground atoms, which induces an Herbrand
interpretation. The following generalises a definition first given in [153].

Definition 153 (Immediate consequence operator). Let S be a set of uni-
versal generalised definite rules. Let B ⊆ HB be a set of ground atoms. The
immediate consequence operator TS for S is:
TS : P(HB) → P(HB)

B �→ {A ∈ HB | there is a ground instance ((A1 ∧ . . . ∧ An) ← ϕ)
of a member of S with HI (B) |= ϕ and A = Ai

for some i with 1 ≤ i ≤ n }

Lemma 154 (TS is continuous). Let S be a set of universal generalised defi-
nite rules. The immediate consequence operator TS is continuous.

Lemma 155 (TS is monotonic). Let S be a set of universal generalised def-
inite rules. The immediate consequence operator TS is monotonic, that is, if
B ⊆ B′ ⊆ HB then TS(B) ⊆ TS(B′).

Recall that for Herbrand interpretations HI (B) ≤ HI (B′) iff B ⊆ B′. Thus,
the immediate consequence operator TS is also monotonic with respect to ≤ on
Herbrand interpretations.

Theorem 156. Let S be a set of universal generalised definite rules. Let B ⊆ HB
be a set of ground atoms. Then HI (B) |= S iff TS(B) ⊆ B.

Proof. “only if:” Assume HI (B) |= S. Let A ∈ TS(B), i.e., A = Ai for some
ground instance ((A1 ∧ . . . ∧ An) ← ϕ) of a member of S with HI (B) |= ϕ. By
assumption HI (B) |= (A1 ∧ . . . ∧ An), hence HI (B) |= A, hence A ∈ B because
A is a ground atom.

“if:” Assume TS(B) ⊆ B. Let ((A1 ∧ . . . ∧ An) ← ϕ) be a ground instance
of a member of S. It suffices to show that HI (B) satisfies this ground instance.
If HI (B) �|= ϕ, it does. If HI (B) |= ϕ, then A1 ∈ TS(B), . . . , An ∈ TS(B) by
definition of TS . By assumption A1 ∈ B, . . . , An ∈ B. As these are ground atoms,
HI (B) |= A1, . . . ,HI (B) |= An. Thus HI (B) satisfies the ground instance. ��

5.2.4 Least Fixpoint of a Set of Positive Definite Rules

Corollary 157. Let S be a set of universal generalised definite rules. Then
lfp(TS) = TS ↑ ω = Mod∩(S) = {A ∈ HB | S |= A} and HI (lfp(TS)) is
the unique minimal Herbrand model of S.
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Proof. By Lemma 155, TS is a monotonic operator on HB , and by Theorem 152,
lfp(TS) = TS ↑ ω.

Note that ModHB (S) �= ∅ by Theorem 128. Now,
lfp(TS) =

⋂
{B ⊆ HB | TS(B) ⊆ B} by the Knaster-Tarski Theorem 148

=
⋂

{B ⊆ HB | HI (B) |= S} by Theorem 156
=

⋂
ModHB (S) by Definition 117

= Mod∩(S) by Definition 118
= {A ∈ HB | S |= A} by Theorem 119

By Theorem 133, HI (lfp(TS)) is the unique minimal Herbrand model of S. ��

The immediate consequence operator for a set of universal generalised definite
rules also has a greatest fixpoint (Knaster-Tarski Theorem 148). Using simi-
lar proof techniques as above one can show [111] that this greatest fixpoint
is gfp(TS) = TS ↓ ω + 1, but in general gfp(TS) �= TS ↓ ω. As an exam-
ple, let S = { ∀x

(
q ← p(x)

)
, ∀x

(
p(f(x)) ← p(x)

)
}. Then TS ↓ ω = {q} and

TS ↓ ω + 1 = ∅ = gfp(TS), which in this example is the only fixpoint.
A fixpoint requiring more than ω steps is not in general computably enu-

merable. The result on the least fixpoint means that lfp(TS) is computably
enumerable.

The “natural meaning” of a set S of universal generalised definite rules, the
unique minimal Herbrand model of S, has several equivalent characterisations. It
is the intersection of all Herbrand models of S and satisfies precisely the ground
atoms entailed by S. These characterisations allow a declarative understanding
of S: each of its rules represents a statement about the application at hand, and
a query asks whether something is a logical consequence of these statements, or,
equivalently, whether it is true in all their Herbrand models.

The corollary above allows in addition an operational understanding of S
based on forward chaining, even though forward chaining is not necessarily the
intended operational semantics (backward chaining is in many cases preferable,
see Section 6). The unique minimal Herbrand model of S is induced by the
smallest fixpoint of TS . This operator models one step in a forward chaining
process: applied to a set of ground atoms, it adds the atoms from the consequents
of those ground instances of rules whose antecedent is satisfied in the current set.
Being satisfied here means satisfied by the induced Herbrand interpretation, but
this can by checked algorithmically using unification. The iteration starts from
the empty set. Reaching a fixpoint means that the operator does not generate
any new atom. The result guarantees that this happens after finitely many steps
or at most as many steps as there are natural numbers.

By the corollary the declarative and this operational semantics coincide: a
ground atom is a logical consequence of S if and only if it can be derived by this
forward chaining process.

Another procedural semantics based on a backward chaining process called
SLD resolution (Subsection 6.4) is also equivalent to the ones above. Backward
chaining with SLD resolution succeeds on S with some ground atom as a query
if and only if the ground atom is a logical consequence of S.
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Authors of rules may thus freely switch between different understandings of
their rules, because all of these understandings amount to the same.

Notation 158 (Least fixpoint of a definite program). For a set S of uni-
versal generalised definite rules, the least fixpoint of S is lfp(S) = lfp(TS).

5.3 Declarative Semantics of Rules with Negation

The nice results above heavily depend on the rules being positive: their an-
tecedents have to be positive formulas. If the antecedents may contain atoms
with negative polarity, as in normal clauses and normal goals (Definition 21),
things turn out to be much more difficult. The starting point is to clarify what
negative antecedents of rules are supposed to mean.

When working with a set of positive definite rules, more generally, a set of
universal generalised definite rules, it is often intuitive to consider everything to
be false that does not follow from the set.

This is the common understanding of inductive definitions in mathematics
(the inductive definitions of terms and formulas in Section 3 are examples of
that). This understanding of inductive definitions is sometimes stressed by con-
cluding the definition, say, of a formula, with “nothing else is a formula”.

This is also the common understanding of many specifications one encounters
in real life. The time table of a railway company can be seen as a set of ground
atoms, each specifying a direct railway connection. The common understanding
of such a time table is that any direct connection not explicitly mentioned does
not exist. This understanding is naturally extended to connections with changes
as follows: if no connections with changes between two places and under certain
time constraints can be derived from a time table, then it may be concluded
that there are no such connections.

In databases, the common understanding is similar. If a database of students
does not list “Mary”, then it may be concluded that “Mary” is not a student.

The principle underlying this common understanding has been formalised
under the name of “closed world assumption” [137].

It might seem obvious to formalise the closed world assumption by adding
additional axioms to the set of formulas so as, so to speak, to complete – or
“close” – it. But this is undesirable for two reasons. First, it would blow up the
axiomatisation and as a consequence make deduction more time and space con-
suming. Second, it is in many, if not most, practical cases infeasible – how could
one list, or otherwise specify, non-existing train connections or non-students?
Note that, in contrast to such applications, mathematics, except in a few cases
like inductive definitions, does not rely on closed world assumptions of any kind.

One approach to handling negation was to find deduction methods that em-
ploy the closed world assumption without relying on additional, application-
dependent, axioms. This approach has two sides: one is to find convenient declar-
ative semantics, i.e., declarative semantics that are both easy to understand and
convenient to use in establishing properties; the other is to find efficient auto-
mated deduction methods that take the closed world assumption into account.
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Another, related approach was to find application independent rewritings of
a rule set, which, possibly together with additional application independent ax-
ioms, would correspond to the common understanding under the closed world
assumption of the original set. This led to the so-called “completion semantics”.

Both approaches have yielded unsatisfactory results and are therefore not
addressed in the following. Indeed, the intended semantics could not be expressed
with Tarski model theory, but required drastic changes to the notion of a model.

The “common understanding” or “intuitive meaning” of a set of rules with
negation is what people reading or writing the rules are likely to think they
mean. Good candidates for making this common sense notion more precise are
the minimal Herbrand models defined earlier. However, not all of them convey
the intuitive meaning under the closed world assumption.

Example 159. S1 = { (q ← r ∧ ¬p), (r ← s ∧ ¬t), (s ← �) } has the following
three minimal Herbrand models: HI ({s, r, q}), HI ({s, r, p}), and HI ({s, t}).
Intuitively, neither p nor t are “justified” by the rules in S1. Under the closed
world assumption only the first of the minimal models above should be seen as
conveying the intuitive meaning of S1.

The example illustrates that some minimal Herbrand models do not convey
the intuitive meaning of rules with negation, because classical model theory
treats negated atoms in rule antecedents like (positive) atoms in rule conse-
quents. Indeed, for minimal or non-minimal Herbrand or other models, the rule
(r ← s ∧ ¬t) is equivalent to (r ∨ t ← s) and to (t ← s ∧ ¬r), hence no interpre-
tation can distinguish these formulas.

Example 160. S2 = { (p ← ¬q), (q ← ¬p) } has the following two minimal
Herbrand models: HI ({p}), HI ({q}).

In this example both minimal Herbrand models of S2 well convey the intuitive
meaning of S2 under the closed world assumption. Intuitively, the example spec-
ifies that exactly one of p and q is true, but it does not specify which.

Example 161. S3 = { (p ← ¬p) } has only one minimal Herbrand model: HI ({p}).
In examples like these, intuition turns out to be somewhat indeterminate and
subject to personal preference.

People tending towards a “justification postulate” request dependable justifi-
cations for derived truths. The only rule of S3 does not in this sense “justify” p,
because it requires ¬p to hold as a condition for p to hold, thus its outcome
violates its own precondition. The “justification postulate” arrives at the con-
clusion that no model at all conveys the intuitive meaning of S3, that S3 should
be regarded as inconsistent.

Adherents of a “consistency postulate”, on the other hand, insist that every
syntactically correct set of normal clauses is consistent and must therefore have
a model. As there is only one candidate model of S3, this has to be it, like it
or not. Note that the “consistency postulate” is closer to classical model theory,
which, for minimal or non-minimal Herbrand or other models, treats the rule
in S3 like the formula p, to which it is logically equivalent.
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Example 162. S4 = { (p ← ¬p), (p ← �) } has only one minimal Herbrand
model: HI ({p}).

S4 extends S3 with a rule enforcing p. Its only minimal Herbrand model, in
which p is true, is perfectly intuitive under the closed world assumption – even
with the “justification postulate” that considers S3 to be inconsistent. The new
rule in S4 clearly “justifies” p. Since intuitively p follows from S4, the antecedent
of the rule (p ← ¬p) is not satisfied, i.e., the rule is satisfied.

As these examples suggest, only some of the minimal Herbrand models of a
set of rules with negation should be retained in order to specify the declarative
semantics of the set under the closed world assumption. In the literature the
retained minimal Herbrand models are often called canonical models or preferred
models. With the “justification postulate” the set of retained minimal Herbrand
models may be empty, with the “consistency postulate” it always contains at
least one model. Some of the formal approaches to the declarative semantics
support the “justification postulate” some the “consistency postulate”.

Once the notion of canonical models has been formalised, the notion of entail-
ment (Definition 34) and of a theory (Definition 43) can be adapted such that
they consider only canonical models. In contrast to the operator Th for closure
under classical entailment, which is monotonic (Proposition 45), the appropri-
ately adapted operator Thcanonical is not.

Example 163 (Non-monotonicity). S5 = { (q ← ¬p) } has two minimal Her-
brand models: HI ({p}) and HI ({q}). Only the latter conveys the intuitive mean-
ing under the closed world assumption and should be retained as (the only)
canonical model. Therefore, q ∈ Thcanonical (S5).

S′
5 = S5∪{ (p ← �) } has only one minimal Herbrand model: HI ({p}), which

also conveys the intuitive meaning under the closed world assumption and should
be retained as a canonical model. Therefore, q /∈ Thcanonical (S′

5).
Thus, S5 ⊆ S′

5, but Thcanonical(S5) �⊆ Thcanonical(S′
5).

Note that non-monotonicity is independent of the choice between the two “pos-
tulates”. However, any semantics not complying with the “consistency postu-
late” (i.e., all or most semantics complying with the “justification postulate”), is
non-monotonic in an even stronger sense. With such a semantics, consistency –
defined as usual as the existence of models – is not inherited by subsets: S4 above
is consistent, but S3 is not, although S3 ⊆ S4.

As the non-monotonicity of the operator is caused by the non-classical treat-
ment of negation, this kind of negation is also called non-monotonic negation.

5.3.1 Stratifiable Rule Sets
Some approaches to formalise the semantics of rules with negation make use of
a weak syntactic property of sets of rules that ensures stronger results. The idea
is to avoid cases like (p ← ¬p) and more generally recursion through negative
literals. For that purpose the set of rules is partitioned into “strata”, and negative
literals in the antecedents are required to belong to a lower “stratum”.
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Definition 164 (Stratification). Let S be a set of normal clauses (Defini-
tion 21). A stratification of S is a partition S0, . . . , Sk of S such that
– For each relation symbol p there is a stratum Si, such that all clauses of S

containing p in their consequent are members of Si.
In this case one says that the relation symbol p is defined in stratum Si.

– For each stratum Sj and for each positive literal A in the antecedents of
members of Sj, the relation symbol of A is defined in a stratum Si with i ≤ j.

– For each stratum Sj and for each negative literal ¬A in the antecedents of
members of Sj, the relation symbol of A is defined in a stratum Si with i < j.

A set of normal clauses is called stratifiable, if there exists a stratification of it.

Obviously, each definite program is stratifiable by making it its only stratum.
The set of normal clauses S = { (r ← �), (q ← r), (p ← q ∧ ¬r) } is stratifiable
in different ways: the stratum S0 contains the first clause and the stratum S1 the
last one, while the middle clause may belong to either of the strata. If the middle
clause is replaced by (q ← p∧r), the set remains stratifiable, but now there is only
one stratification, the middle clause belonging to S1. The set S = { (p ← ¬p) }
is not stratifiable. More generally, any set of normal clauses with a “cycle of
recursion through negation” [9] is not stratifiable.

By definition the stratum S0 always consists of definite clauses (positive defi-
nite rules). Hence the truth values of all atoms of stratum S0 can be determined
without negation being involved. After that the clauses of stratum S1 refer only
to such negative literals whose truth values have already been determined. And
so on. The principle simply is to work stratum by stratum, see Subsection 7.1.

All results about stratifiable rule sets depend only on the existence of some
stratification and are independent of the concrete specification of the strata.

Note that stratifiability evades any commitment as to the “justification” or
“consistency postulate”, because rule sets where the postulates make a differ-
ence are not stratifiable. Even though stratifiable sets of normal clauses seem to
be sufficient for many, if not all, practical programming examples, a semantics
is desirable that covers all syntactically correct programs. Indeed, one of the
purposes of a semantics of programs is to uncover the “meaning” of unintended,
syntactically correct programs. The next three subsections describe attempts to
define such semantics, which, alas, do not perfectly meet the objective.

5.3.2 Stable Model Semantics
The stable model semantics [77] is defined in terms of a criterion for retaining a
minimal Herbrand model of a set of normal clauses. This criterion is expressed
in terms of the following transformation named after the authors of [77].

Definition 165 (Gelfond-Lifschitz transformation). Let S be a (possibly
infinite) set of ground normal clauses, i.e., of formulas of the form

A ← L1 ∧ . . . ∧ Ln

where n ≥ 0 and A is a ground atom and the Li for 1 ≤ i ≤ n are ground literals.
Let B ⊆ HB. The Gelfond-Lifschitz transform GLB(S) of S with respect to B
is obtained from S as follows:
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1. remove each clause whose antecedent contains a literal ¬A with A ∈ B.
2. remove from the antecedents of the remaining clauses all negative literals.

The transformation corresponds to a partial evaluation of S in the interpreta-
tion HI (B). The clauses removed in the first step are true in HI (B) because
their antecedent is false in HI (B). The literals removed from the antecedents of
the remaining clauses in the second step, are also true in HI (B).

Note that the Gelfond-Lifschitz transform GLB(S) of a set S of ground nor-
mal clauses is a (possibly infinite) set of definite clauses, i.e., a set of universal
generalised definite rules. Therefore GLB(S) has a unique minimal Herbrand
model with all characterisations according to Corollary 157.

Definition 166 (Stable Model). Let S be a (possibly infinite) set of ground
normal clauses. An Herbrand interpretation HI (B) is a stable model of S, iff it
is the unique minimal Herbrand model of GLB(S).

A stable model of a set S of normal clauses is a stable model of the (possibly
infinite) set of ground instances of S.

For this notion to be well-defined, we have to ensure that the unique minimal
Herbrand model of GLB(S) is indeed also a model of S.

Lemma 167. Let S be a set of ground normal clauses and HI (B) an Herbrand
interpretation. HI (B) |= S iff HI (B) |= GLB(S).

Proof. Let S1 be the set of clauses obtained from S by applying the first step
of the transformation. Each clause in S \ S1 is satisfied by HI (B), because its
antecedent is falsified by HI (B). Thus, HI (B) |= S iff HI (B) |= S1.

Let S2 be the set of clauses obtained from S1 by applying the second step of
the transformation. For each clause C2 ∈ S2 there is a clause C1 ∈ S1 such that
C2 is obtained from C1 by removing the negative literals from its antecedent.
Since C1 ∈ S1, for any such negative literal ¬A in its antecedent, A /∈ B, i.e.,
HI (B) |= ¬A. Therefore, HI (B) |= C1 iff HI (B) |= C2. ��

Theorem 168. Let S be a set of normal clauses. Each stable model of S is a
minimal Herbrand model of S.

Proof. By definition of a stable model, it suffices to show the result for a set S
of ground normal clauses.

Let B′ ⊆ B ⊆ HB such that HI (B) is a stable model of S and HI (B′) is also
a model of S, i.e., HI (B′) |= S. If we establish that HI (B′) |= GLB(S), then
B′ = B because, by definition of a stable model, HI (B) is the unique minimal
Herbrand model of GLB(S).

Let C ∈ GLB(S). By definition of GLB(S) there exists a clause D ∈ S, such
that C is obtained from D by removing the negative literals from its antecedent.
If ¬A is such a literal, then A /∈ B, and, since B′ ⊆ B, also A /∈ B′. Therefore,
C ∈ GLB′(S), and by the previous lemma HI (B′) |= C. ��

It is easy to verify that the stable models of the examples above are as follows:
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Example 169
S1 = { (q ← r∧¬p), (r ← s∧¬t), (s ← �) } has one stable model: HI ({s, r, q}).
S2 = { (p ← ¬q), (q ← ¬p) } has two stable models: HI ({p}) and HI ({q}).
S3 = { (p ← ¬p) } has no stable model.
S4 = { (p ← ¬p), (p ← �) } has one stable model: HI ({p}).

Thus, the stable model semantics coincides with the intuitive understanding
based on the “justification postulate”. The unintuitive minimal models of the
examples turn out not to be stable, and the stability criterion retains only those
minimal models that are intuitive. A set may have several stable models or
exactly one or none. Each stratifiable set has exactly one stable model.

The remarks about non-monotonicity on page 58 apply also to stable models,
including non-inheritance of consistency by subsets. To give up such a fundamen-
tal principle can be seen as a serious drawback of the stable model semantics.

5.3.3 Well-Founded Semantics
The well-founded semantics [155] of a set of normal clauses is defined as the
least fixpoint of a monotonic operator that explicitly specifies derivations both
of positive and of negative ground literals. Recall that the immediate conse-
quence operator (Definition 153) for a set of definite clauses explicitly specifies
derivations only of positive ground literals.

In contrast to the stable model semantics, the well-founded semantics specifies
for each set of normal clauses a single model, a so-called well-founded model.

A well-founded model can be either total, in which case it makes each ground
atom true or false like a standard model, or partial, in which case it makes some
ground atoms neither true nor false, but undefined.

Recall that L denotes the complement of a literal L with A = ¬A and ¬A = A
for an atom A (Definition 19). HB denotes the Herbrand base, the set of all
ground atoms for the given signature.

Notation 170. For a set I of ground literals:
I = {L | L ∈ I } and pos(I) = I ∩ HB and neg(I) = I ∩ HB.
Thus, I = pos(I) ∪ neg(I).

Definition 171. A set I of ground literals is consistent, iff pos(I)∩neg(I) = ∅.
Otherwise, I is inconsistent.

Two sets I1 and I2 of ground literals are (in)consistent iff I1 ∪ I2 is.
A literal L and a set I of ground literals are (in)consistent iff {L} ∪ I is.

Definition 172 (Partial interpretation). A partial interpretation is a con-
sistent set of ground literals.

A partial interpretation I is called total, iff pos(I) ∪ neg(I) = HB, that is,
for each ground atom A either A ∈ I or ¬A ∈ I.

For a total interpretation I, the Herbrand interpretation induced by I is de-
fined as HI (I) = HI (pos(I)).

Definition 173 (Model relationship for partial interpretations). Let I
be a partial interpretation. Then � is satisfied in I and ⊥ is falsified in I.
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A ground literal L is
satisfied or true in I iff L ∈ I.
falsified or false in I iff L ∈ I.
undefined in I iff L /∈ I and L /∈ I.

A conjunction L1 ∧ . . . ∧ Ln of ground literals, n ≥ 0, is
satisfied or true in I iff each Li for 1 ≤ i ≤ n is satisfied in I.
falsified or false in I iff at least one Li for 1 ≤ i ≤ n is falsified in I.
undefined in I iff each Li for 1 ≤ i ≤ n is satisfied or undefined in I

and at least one of them is undefined in I.
A ground normal clause A ← ϕ is

satisfied or true in I iff A is satisfied in I or ϕ is falsified in I.
falsified or false in I iff A is falsified in I and ϕ is satisfied in I.
weakly falsified in I iff A is falsified in I and ϕ is satisfied or undefined in I.

A normal clause is
satisfied or true in I iff each of its ground instances is.
falsified or false in I iff at least one of its ground instances is.
weakly falsified in I iff at least one of its ground instances is.

A set of normal clauses is
satisfied or true in I iff each of its members is.
falsified or false in I iff at least one of its members is.
weakly falsified in I iff at least one of its members is.

For a total interpretation I the cases “undefined” and “weakly falsified” are
impossible, and obviously the notion of satisfied (or falsified, respectively) in I
in the sense above coincides with the notion of satisfied (or falsified, respectively)
in HI (I) in the classical sense.

Definition 174 (Total and partial model). Let S be a set of normal clauses.
A total interpretation I is a total model of S, iff S is satisfied in I.
A partial interpretation I is a partial model of S, iff there exists a total

model I ′ of S with I ⊆ I ′.

Note that if a ground normal clause is weakly falsified, but not falsified in a
partial interpretation I, then its consequent is falsified in I and some literals in
its antecedent are undefined in I. No extension of I with additional literals can
satisfy the consequent. The only way to satisfy the normal clause is to extend I
by the complement of one of the undefined antecedent literals, thus falsifying
the clause’s antecedent. Any extension of I that satisfies all of those antecedent
literals, falsifies the normal clause.

Lemma 175. Let S be a set of normal clauses and I a partial interpretation.
If no clause in S is weakly falsified in I, then I is a partial model of S.

Proof. Let no clause in S be weakly falsified in I. Let I ′ = I ∪ (HB \ neg(I)),
that is, I extended by all ground atoms consistent with I. Then I ′ is total.

Consider an arbitrary ground instance A ← ϕ of a member of S. Since it is
not weakly falsified in I, it is by definition not falsified in I either and therefore
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satisfied in I, i.e., A ∈ I or L ∈ I for some literal L in the antecedent ϕ.
This membership cannot be affected by adding literals to I that preserve its
consistency. Thus, A ∈ I ′ or L ∈ I ′, and A ← ϕ is satisfied also in I ′.

Hence I ′ is a total model of S and I is a partial model of S. ��

The basis for drawing negative conclusions and the notion most central to the
well-founded semantics is that of an unfounded set of ground atoms. Given a
partial interpretation I, i.e., a set of ground literals that are already known (or
assumed) to be true, a set U of ground atoms is unfounded, if the normal clauses
at hand give no reason to consider any member of U to be true. More precisely,
each atom A ∈ U occurs in the consequent only of such ground instances of
clauses that do not justify A. This can happen for two reasons: because the
antecedent of the ground instance is falsified in I or because the antecedent of
the ground instance contains an unfounded atom, i.e., a member of U .

Definition 176 (Unfounded set of ground atoms). Let S be a set of normal
clauses, I a partial interpretation, and U ⊆ HB a set of ground atoms.

U is an unfounded set with respect to S and I, if for each A ∈ U and for
each ground instance A ← L1 ∧ . . . ∧ Ln, n ≥ 1, of a member of S having A as
its consequent, at least one of the following holds:
1. Li ∈ I for some positive or negative Li with 1 ≤ i ≤ n. (Li is falsified in I)
2. Li ∈ U for some positive Li with 1 ≤ i ≤ n. (Li is unfounded)

A literal fulfilling one of these conditions is called a witness of unusability for
the ground instance of a clause.

U is a maximal unfounded set with respect to S and I, iff U is an unfounded
set with respect to S and I and no proper superset of U is.

Example 177. Let S = { (q ← p), (r ← s), (s ← r) } and I = {¬p,¬q}. The set
U = {q, r, s} is unfounded with respect to S and I. The atom q is unfounded by
condition 1, the atoms r and s by condition 2.

U is not maximal, because U ′ = {p, q, r, s} is also unfounded w.r.t. S and I.
Note that p is unfounded because there is no rule with consequent p. Further-
more, p would even be unfounded if it were satisfied in I.

Note that the empty set is unfounded with respect to every set of normal clauses
and every partial interpretation. Note also that the union of sets that are un-
founded with respect to the same S and I is also unfounded with respect to the
same S and I. As a consequence, the following lemma holds:

Lemma 178. Let S be a set of normal clauses and I a partial interpretation.
There exists a unique maximal unfounded set with respect to S and I, which is
the union of all unfounded sets with respect to S and I.

Starting from “knowing” I in the example above, the atoms r and s depend
on each other, but none of them has to be true for other reasons. Thus, if we
choose to consider them or one of them to be false, we will not be forced to undo
this decision. Making one of them false preserves the other’s being unfounded.
Generalising this observation, we get:
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Lemma 179. Let S be a set of normal clauses, I a partial interpretation, and
U ′ an unfounded set with respect to S and I, such that pos(I) ∩ U ′ = ∅.

For each U ⊆ U ′, its remainder U ′ \ U is unfounded w.r.t. S and I ∪ U .

Proof. The condition pos(I) ∩ U ′ = ∅ ensures that I ∪ U is consistent.
Any atom falsified in I remains falsified in I∪U , thus any witness of unusabil-

ity w.r.t. S and I by condition 1, is also a witness of unusability w.r.t. S and I∪U
by condition 1.

Any A ∈ U that is a witness in U ′ of unusability w.r.t. S and I by condition 2,
is not in U ′\U and can no longer satisfy condition 2. But A ∈ U ⊆ I ∪U . Hence,
A is a witness of unusability w.r.t. S and I ∪ U by condition 1. ��

In a sense the lemma allows to make unfounded atoms false without affecting
the unfoundedness of others. The next lemma is a kind of opposite direction, in a
sense it allows to make falsified atoms unfounded. Recall that I = pos(I)∪neg(I).

Lemma 180. Let S be a set of normal clauses and I a partial interpretation.
If no clause in S is weakly falsified in I, then neg(I) is unfounded with respect
to S and pos(I).

Proof. Let A ∈ neg(I) and A ← ϕ an arbitrary ground instance of a member
of S. Since A is falsified in I and A ← ϕ is not weakly falsified in I, some
literal L in ϕ is falsified in I. If L is positive, then L ∈ neg(I) and L is a witness
of unusability for A ← ϕ by condition 2. If L is negative, then L ∈ pos(I) and
L is a witness of unusability for A ← ϕ by condition 1. ��

Definition 181. Let PI = { I ⊆ HB ∪ HB | I is consistent }, and note that
P(HB) ⊆ PI. Let S be a set of normal clauses. We define three operators:
TS : PI → P(HB)

I �→ { A ∈ HB | there is a ground instance (A ← ϕ)
of a member of S such that ϕ is satisfied in I }

US : PI → P(HB)
I �→ the maximal subset of HB that is unfounded with respect to S and I

WS : PI → PI
I �→ TS(I) ∪ US(I)

If S is a set of definite clauses, that is, if all antecedents are positive, the op-
erator TS coincides with the immediate consequence operator TS from Defin-
ition 153. Whether or not S is definite, TS(I) is a set of ground atoms. The
operator US is well-defined by Lemma 178 and also produces a set of ground
atoms. Starting from “knowing” I, the ground atoms in TS(I) are those that
have to be true, whereas those in US(I) are unfounded. Note that the definition
of unfounded implies TS(I)∩US(I) = ∅. This ensures the consistency of WS(I),
which satisfies what has to be true and falsifies all unfounded ground atoms.

Example 182. Assume a signature with HB = {p, q, r, s, t}, and let I0 = ∅ and
S = { (q ← r ∧ ¬p), (r ← s ∧ ¬t), (s ← �) }.
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TS(I0) = {s} TS(I1) = {s, r} TS(I2) = {s, r, q}
US(I0) = {p, t} US(I1) = {p, t} US(I2) = {p, t}
WS(I0) = {s,¬p,¬t} = I1 WS(I1) = {s, r,¬p,¬t} = I2 WS(I2) = {s, r, q,¬p,¬t}

TS(∅) is nonempty only if S contains a clause with antecedent � or empty.
Atoms such as p and t, which do not appear in any consequents, are always

unfounded. US(I) can never contain the consequent of a satisfied clause instance
whose antecedent is satisfied, too. This explains why US(I2) is maximal. For the
maximality of US(I1) note that for q to be unfounded either r would have to be
unfounded, which is impossible by r ∈ TS(I1), or one of the antecedent literals
r and ¬p would have to be falsified in I1, but r is undefined and ¬p is satisfied
in I1. The maximality of US(I0) can be confirmed by similar arguments.

Lemma 183. TS, US, and WS are monotonic.11

Proof. Immediate from the definition of the operators. ��

Theorem 184 (Existence of least fixpoint). Let S be a set of normal clauses.
The operator WS has a least fixpoint lfp(WS) with

lfp(WS) =
⋂

{I ∈ PI | WS(I) = I} =
⋂

{I ∈ PI | WS(I) ⊆ I}.
Moreover, lfp(WS) is a partial interpretation and a partial model of S.

Proof. The first part follows from the Knaster-Tarski Theorem 148. For the
second part, both consistency and that no clause in S is weakly falsified, are
shown by transfinite induction. Lemma 175 ensures the model property. ��

Definition 185 (Well-founded model). Let S be a set of normal clauses.
The well-founded model of S is its partial model lfp(WS).

The well-founded model may be total, in which case it specifies a truth value for
each ground atom, or partial, in which case it leaves some atoms undefined.

The examples considered earlier for the stable model semantics have the fol-
lowing well-founded models. Note that S1 is the set used for illustrating the
operators in the previous example. One more step will reproduce the fixpoint.

Example 186
S1 = { (q ← r ∧ ¬p), (r ← s ∧ ¬t), (s ← �) } has the well-founded model

{s, r, q,¬p,¬t}. It is total.
S2 = { (p ← ¬q), (q ← ¬p) } has the well-founded model ∅. It is partial and

leaves the truth values of p and of q undefined.
S3 = { (p ← ¬p) } has the well-founded model ∅. It is partial and leaves the

truth value of p undefined.
S4 = { (p ← ¬p), (p ← �) } has the well-founded model {p}. It is total.

Thus, the well-founded semantics coincides with the intuitive understanding
based on the “consistency postulate”. Each set of normal clauses has a unique

11 But not in general continuous!
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model, but this model does not necessarily commit to truth values for all atoms.
Each stratifiable set of normal clauses has a total well-founded model.

Note that the operators are monotonic, but not necessarily continuous, thus
the Kleene Theorem 152 ensuring that a fixpoint is reached with at most ω steps,
is not applicable. Indeed there are examples for which lfp(WS) �= WS ↑ ω.

Example 187. By definition WS ↑ 0 = ∅. Assume a signature containing no other
symbols than those occurring in the following set of normal clauses. Let S =
{ p(a) ←�, p(f(x)) ← p(x), q(y) ← p(y), s ← p(z) ∧ ¬q(z), r ← ¬s }

TS ↑ 1 = { p(a) }
US ↑ 1 = ∅
WS↑ 1 = { p(a) }
TS ↑ 2 = { p(a), p(f(a)) } ∪ { q(a) }
US ↑ 2 = ∅
WS↑ 2 = { p(a), p(f(a)) } ∪ { q(a) }
TS ↑ n +1 = { p(a), . . . , p(fn(a)) } ∪ { q(a), . . . , q(fn−1(a)) }
US ↑ n +1 = ∅
WS↑ n +1 = { p(a), . . . , p(fn(a)) } ∪ { q(a), . . . , q(fn−1(a)) }
TS ↑ ω = { p(a), . . . , p(fn(a)), . . . } ∪ { q(a), . . . , q(fn(a)), . . . }
US ↑ ω = ∅
WS↑ ω = { p(a), . . . , p(fn(a)), . . . } ∪ { q(a), . . . , q(fn(a)), . . . }
TS ↑ ω +1 = { p(a), . . . , p(fn(a)), . . . } ∪ { q(a), . . . , q(fn(a)), . . . }
US ↑ ω +1 = { s }
WS↑ ω +1 = { p(a), . . . , p(fn(a)), . . . } ∪ { q(a), . . . , q(fn(a)), . . . } ∪ {¬s }
TS ↑ ω +2 = { p(a), . . . , p(fn(a)), . . . } ∪ { q(a), . . . , q(fn(a)), . . . } ∪ { r }
US ↑ ω +2 = { s }
WS↑ ω +2 = { p(a), . . . , p(fn(a)), . . . } ∪ { q(a), . . . , q(fn(a)), . . . } ∪ {¬s, r }

It is debatable whether sets of normal clauses like that are likely to be needed
in practice. In [155] doubts are expressed that such cases are common. But this
position is questionable in view of the fact that the set S above is the (standard)
translation into normal clauses of the following set of generalised rules:

{ p(a) ←�, p(f(x)) ← p(x), q(y) ← p(y), r ← ∀z
(
p(z) ⇒ q(z)

)
}

Admittedly, range restricted universal quantification with ranges returning
infinitely many bindings for the quantified variables will, in general, hardly be
evaluable in finite time.

However, more advanced evaluation methods might well be devised that could
recognise, like in the example above, the necessary truth of a universally quanti-
fied formula. Furthermore, computable semantics are needed not only for those
programs considered acceptable, but also for those considered buggy – as long
as they are syntactically correct. From this point of view it is a serious drawback
of the well-founded semantics that it is not always computable.
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5.3.4 Stable and Well-Founded Semantics Compared
The well-founded semantics and the stable model semantics relate to each other
as follows. For space reasons, the proofs are not included in this survey (they
can be found in [155], for instance).

If a rule set is stratifiable (which holds in particular if it is definite), then
it has a unique minimal model, which is its only stable model and is also its
well-founded model and total.

If a rule set S has a total well-founded model, then this model is also the
single stable model of S. Conversely, if a rule set S has a single stable model,
then this model is also the well-founded model of S and it is total.

If a rule set S has a partial well-founded model I that is not total, i.e., in
which some ground atoms have the truth value undefined, then S has either no
stable model or more than one stable model.

In the latter case, a ground atom is true (or false, respectively) in all stable
models of S if and only if it is true (or false, respectively) in I.

In other words, if a rule set S has a partial (non-total) well-founded model I
and at least one stable model, then a ground atom A is undefined in I if and
only if it has different truth values in different stable models of S.

Furthermore, if a rule set has no stable model, then some ground atoms are
undefined in its well-founded model.

Roughly speaking, the stable model semantics and the well-founded semantics
tend to agree with each other and with the intuition, when there is a unique
minimal Herbrand model that conveys the intuitive meaning.

When there are several minimal Herbrand models that convey the intuitive
meaning, such as for S2 = { (p ← ¬q), (q ← ¬p) } with minimal models HI ({p})
and HI ({q}), then these tend to be exactly the stable models, and the well-
founded model tends to be partial, because it represents their “merge” (being
defined where they agree and undefined where they disagree).

When no minimal Herbrand model clearly conveys the intuitive meaning, such
as for S3 = { (p ← ¬p) } with minimal model HI ({p}), then there tends to exist
no stable model (corresponding to the “justification postulate”) whereas the
well-founded model exists (corresponding to the “consistency postulate”), but
tends to leave the truth values of all atoms undefined.

Thus, the well-founded semantics cannot differentiate between the two critical
cases, although they are quite different.

5.3.5 Inflationary Semantics
In this subsection, we restrict our attention to datalog¬ programs. Thus, in this
case, the Herbrand universe is always a finite universe denoted as dom and the
Herbrand base HB is finite, too. A datalog¬ program P is a finite set of normal
clauses. Recall from Definition 21 that a normal clause is a rule r of the form

A ← L1, . . . , Lm

where m ≥ 0 and A is an atom R0(x0). Each Li is an atom Ri(xi) or a negated
atom ¬Ri(xi). The arguments x0, . . . , xm are vectors of variables or constants
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(from dom). Every variable in x0, . . . , xm must occur in some unnegated atom
Li = Ri(xi), i.e., the clause must be range restricted (Definition 23).

We denote the head (consequent) of a rule r as H(r), and the body (an-
tecedent) of r as B(r). We further distinguish the positive and negative literals
in the body as follows:

B+(r) = {R(x) | ∃i Li = R(x)}, B−(r) = {R(x) | ∃i Li = ¬R(x)}

Let us now extend the definition of the immediate consequence operator

TP (I) : P(HB) → P(HB)

(cf. Definition 153) to rules containing negated atoms. Note that since HB is
finite, so is P(HB).

Definition 188 (Immediate consequence operator TP (I) for datalog¬).
Given a datalog¬ program P and an instance I over its schema sch(P ), a fact
R(t) is an immediate consequence for I and P (denoted as TP (I)), if either R is
an extensional predicate symbol of P and R(t) ∈ I, or there exists some ground
instance r of a rule in P such that

– H(r) = R(t),
– B+(r) ⊆ I, and
– B−(r) ∩ I = ∅.

The inflationary semantics [5,2] is inspired by inflationary fixpoint logic [86].
In place of the immediate consequence operator TP , it uses the inflationary
operator T̃P , which (for any datalog¬ program P ) is defined as follows:

T̃P (I) = I ∪ TP (I)

Definition 189 (Inflationary semantics of datalog¬). Given a datalog¬

program P and an instance I over the extensional predicate symbols of P , the
inflationary semantics of P w.r.t. I, denoted as Pinf (I), is the limit of the se-
quence {T̃i

P (I)}i≥0, where T̃0
P (I) = I and T̃i+1

P (I) = T̃P (T̃i
P (I)).

By the definition of T̃P , the following sequence of inclusions holds:

T̃0
P (I) ⊆ T̃1

P (I) ⊆ T̃2
P (I) ⊆ . . .

Furthermore, each set in this sequence is a subset of the finite set HB , such
that the sequence clearly reaches a fixpoint Pinf (I) after a finite number of steps.
However, HI (Pinf (I)) is a model of P containing I, but not necessarily a minimal
model containing I.

Example 190. Let P be the program: { (p ← s∧¬q), (q ← s∧¬p) }. Let I = {s}.
Then Pinf (I) = {s, p, q}. Although HI (Pinf (I)) is a model of P , it is not minimal.
The minimal models containing I are HI ({s, p}) and HI ({s, q}).
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The above example shows that given an instance I, the inflationary semantics
Pinf (I) of P w.r.t. I may not yield any of the minimal models that convey the
intuitive meaning of P . Moreover, Pinf (I) is not necessarily the least fixpoint
of T̃P containing I, either. In fact, the inflationary operator T̃P is not monotonic.
With the above example, let I1 be {s}, and I2 be {s, p}. Then T̃P (I1) = {s, p, q},
and T̃P (I2) = {s, p}.

Thus the existence of a least fixpoint cannot be guaranteed by the Knaster-
Tarski Theorem 148, but then it might be guaranteed by the finiteness of P(HB).
However, the problem is12 that there may be different minimal fixpoints. In the
example above, both {s, p} and {s, q} are fixpoints of T̃P containing {s}, but
none of their proper subsets is.

Let us now see how the inflationary semantics behaves with the examples used
earlier to illustrate and compare the other approaches.

Example 191. S1 = { (q ← r ∧ ¬p), (r ← s ∧ ¬t), (s ← �) }
T̃1

S1
(∅) = {s},

T̃2
S1

(∅) = {s, r},
T̃3

S1
(∅) = {s, r, q} = T̃4

S1
(∅).

Thus the inflationary fixpoint of S1 is {s, r, q}, which agrees with the stable
and the well-founded semantics and with the intuitive meaning.

Example 192. S2 = { (p ← ¬q), (q ← ¬p) }
T̃1

S2
(∅) = {p, q} = T̃2

S2
(∅).

Thus the inflationary fixpoint of S2 is {p, q}, which is not minimal and dis-
agrees with the stable and the well-founded semantics and with the intuitive
meaning. It represents the union of all minimal models.

Example 193. S3 = { (p ← ¬p) }
T̃1

S3
(∅) = {p} = T̃2

S3
(∅).

The inflationary fixpoint of S3 is {p}, which corresponds to the intuitive under-
standing based on the “consistency postulate”, but differs from both the stable
model semantics (there is no stable model) and the well-founded semantics (the
well-founded model leaves the truth value of p undefined).

Example 194. S4 = { (p ← ¬p), (p ← �) }
T̃1

S4
(∅) = {p} = T̃2

S4
(∅).

The inflationary fixpoint of S4 is {p}, which agrees with the stable and the
well-founded semantics and with the intuitive meaning.

These examples may give the impression that the inflationary semantics just
handles the critical cases differently from the other approaches, but agrees with
them in uncritical cases. However, this is not so.

Example 195. S5 = { (r ← ¬q), (q ← ¬p) } has two minimal models HI ({q})
and HI ({p, r}), of which only the first conveys the intuitive meaning under the
12 Another problem is that even if a least fixpoint exists, Lemma 150 is not applicable.

If �Tn
P (I) = �Tn+1

P (I), this might not be the least fixpoint.
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closed world assumption. This model coincides with the only stable model and
with the well-founded model, which is total. Note that the set is stratifiable.

The inflationary fixpoint of S5 is T̃1
S5

(∅) = {q, r}, which is neither intuitive
nor related to the minimal models in any systematic way.

The inflationary semantics gives up a fundamental principle, which the other
approaches do keep: that models are preserved when adding logical consequences,
that is, if a formula ϕ is true in all “canonical” models of S, then each “canonical”
model of S is also a model of S ∪ {ϕ}. In the previous example, q is true in the
only inflationary model HI ({q, r}) of S5, but HI ({q, r}) is not an inflationary
model of S5 ∪ {q}.

This may be the deeper reason why in spite of its attractive complexity prop-
erties (Section 8) the inflationary semantics is not very much being used in
practice.13

5.4 RDF Model Theory

5.4.1 Introduction to RDF
“The Resource Description Framework (RDF ) is a language for representing
information about ‘resources’ on the world wide web” [114].

Resources. How is the concept of “resource” to be understood? While RDF data
representing information about resources is supposed to be accessible on the
Web, the resources themselves do not necessarily have to be accessible. Thus, a
“resource” is not necessarily a Web site or service. A resource is any (tangible
or intangible) entity one represents information about.

Each resource is assumed to be uniquely identified by a uniform resource
identifier (URI), and everything identified by a URI is a resource.14 A URI only
plays the role of a unique identifier comparable to a bar code. In contrast to a
uniform resource locator (URL), a URI identifying a resource is not assumed to
point to a Web page representing this resource – even though in practice this is
often the case.

Triples and graphs. RDF data is represented in the form of triples consisting
of a subject, a predicate and an object with the predicate representing a binary
relation between the subject and the object. Instead of triples, one might just
as well express RDF data in the form of atoms where the predicate is written as
a binary relation symbol with the subject and the object as arguments.

Definition 196 (RDF syntax)

– There are two classes of RDF symbols:

13 But it does integrate imperative constructs into logic, and there are indications that
it may be useful for querying relational databases, see Section 14.5 in [2].

14 Note the circularity of this definition.
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• An RDF Vocabulary V = U ∪ L consists of two disjoint subsets:
a set U of so-called URI references and a set L of so-called literals.
Both URI references and literals are also called names.

• B is a set disjoint from V containing so-called blank nodes or b-nodes.
– From these symbols the following complex structures may be formed:

• An RDF triple or RDF statement in V and with blank nodes in B is an
expression of the form (s, p, o) where
s ∈ U ∪ B is called the subject of the triple,
p ∈ U is called the predicate or property of the triple,
o ∈ U ∪ B ∪ L is called the object of the triple.
An RDF triple is ground if it contains no blank node.

• An RDF graph in V and with blank nodes in B is a finite or infinite or
empty subset of (U ∪ B) × U × (U ∪ B ∪ L), i.e., a set of RDF triples.
An RDF graph is ground if the triples it contains are all ground.

In the context of RDF (and throughout this subsection) the word literal is not
used as in logic (see Definition 19), but as in programming languages, where
literal means a textual representation of a value.

In order to make the intention of the RDF notions easier to grasp, let us draw
some rough analogies to first-order predicate logic.

An RDF vocabulary V = U ∪ L is analogous to a signature (Definition 3)
and the blank nodes in B are analogous to variables, which belong to the logical
symbols (Definition 2). The literals in L are analogous to constants, but with
the intention that they should not be arbitrarily interpreted, but as strings or
numbers or similar values. The URI references in U are also analogous to con-
stants, but, being permitted in predicate position, also to relation symbols. In
the terminology of Section 3, the signature is overloaded.

A triple is analogous to an atomic formula, but there are restrictions how
it may be constructed: URI references from U may occur in all three positions,
literals from L may only occur in object position, blank nodes from B may occur
in subject or object position, but not in predicate position.

An RDF graph is analogous to a formula or set of formulas. A finite RDF
graph corresponds to the existential closure of the conjunction of its triples. An
infinite RDF graph corresponds to the appropriate generalisation, which does
not have a direct counterpart in first-order predicate logic.

A slightly different analogy explains the terminology “RDF graph”. Given a
set of triples, the set of members of U ∪ L ∪ B occurring in subject or object
position can be regarded as “nodes”, and each triple (s, p, o) can be regarded
as a directed edge from s to o that is labelled with p. Thus an RDF graph
corresponds to a graph in the mathematical sense.

Moreover, the URI references occurring in subject or object position of triples
can also be regarded as pointers to the actual data representing the resource,
which can be used in efficient implementations for a fast data access. This view
illustrates the advantage of distinguishing between identifiers and resources in
RDF (compare also Section 9.2.4) in spite of the slightly more involved formal-
ism. The same distinction is made in object-oriented databases, and as pointed
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out in [23], storing RDF data as graphs in object-oriented databases may be
preferable over storing them as relational tuples, as far as data retrieval and
query answering are concerned.

5.4.2 Formal Semantics of RDF
The formal semantics of RDF [87] is specified similarly to that of first-order
predicate logic by a Tarski style model theory. The concepts of interpretation
and model serve to define a notion of logical consequence, or entailment, of an
RDF graph.

However, there is not a single notion of an RDF interpretation, but several
ones, each imposing additional constraints to the previous one:

– Simple RDF Interpretations
– RDF Interpretations
– RDFS Interpretations

Simple RDF interpretation is the basic notion: RDF interpretations and RDFS
interpretations are simple RDF interpretations satisfying further conditions.

RDF interpretations give special meaning to predefined URI references such as
rdf:type, rdf:Property and rdf:XMLLiteral: the URI reference rdf:type expresses
a notion of instance relationship between the instance of a type and the type class
itself (named in analogy to object-oriented type systems), rdf:Property expresses
the type class of all predicates and rdf:XMLLiteral expresses the type class of all
XML literals.15

RDFS interpretations are RDF interpretations that give special meaning to
some additional URI references related to domain and range of properties or to
subclass relationship (which, remarkably, may be cyclic).

Simple RDF Interpretations. It is convenient to distinguish between “untyped”
(or “plain”) and “typed literals”. The former are syntactic representations of val-
ues that cannot be represented by other literals, such as the boolean value true;
such literals are to be interpreted as “themselves”, i.e., they are element of the
domain. The latter are syntactic representations of values that may also be repre-
sented by other literals, such as the floating point number 0.11, which according
to XML Schema, the reference for RDF scalar datatypes, can be represented by
the literals ".11"^^xsd:float and "0.110"^^xsd:float, among others.16

Definition 197 (Simple RDF interpretation of an RDF vocabulary). A
simple RDF interpretation I = (IR, IP , IEXT , IS , IL,LV ) of an RDF Vocabu-
lary V = U ∪ LT ∪ LU where U is a set of URIs, LT a set of typed literals, and
LU a set of untyped literals (with LT ∩ LU = ∅), is defined as follows:

– IR is a set of resources, called the domain of I

15 Following a widespread practice, rdf is the namespace prefix for the XML namespace
of RDF and used here for conciseness instead of the actual namespace URI.

16 Following a widespread practice, xsd stands for the namespace of XML Schema.
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– IP is a set, called the set of properties17 of I
– IEXT : IP → P(IR × IR) is a total function
– IS : U → IR ∪ IP is a total function
– IL : LT → IR is a total function
– LV ⊆ IR, called the set of literal values of I. Recall, that the untyped literals

are interpreted as “themselves”, i.e., LU ⊆ LV .

The main difference between the above definition and the corresponding part of
the definition of an interpretation for first-order predicate logic are as follows:

– In simple RDF interpretations, a predicate symbol in U is not directly as-
sociated with a binary relation, but with an arbitrary domain element that
refers, by means of IEXT to the actual binary relation. Note that no condi-
tions are put on how such a “relation representative” may occur in relations.
Thus, in a simple RDF interpretation, a domain element d may well occur in
the relation it “represents”. As a consequence, this additional level of “rela-
tion representatives” is no stringent deviation from Tarski model theory for
first-order predicate logic.
Furthermore, this tie between the “relation representative” and the actual
relation in a simple RDF interpretation is used in none of the other concepts
of RDF semantics – RDF semantics keeps an account of all overloaded sym-
bols, but does not make use of this book-keeping. Indeed, following [50], the
classical model theory for RDF introduced below does not maintain this tie
between “relation representative” and actual relation.

– Simple RDF interpretations of RDF vocabularies do not interpret blank
nodes, since they are not part of an RDF vocabulary. Only the extension of
simple RDF interpretations to RDF graphs (Definition 199) needs to consider
blank nodes, and does so in the spirit of Tarski model theory for first-order
predicate logic in the case of existentially quantified variables.

Thus, simple RDF interpretations of RDF vocabularies are, in spite of “styl-
istic” peculiarities, very much in line with Tarski model theory for first-order
predicate logic.18

Simple RDF Interpretations of Ground RDF Graphs. The notion of simple RDF
interpretation of RDF vocabularies introduced above is extended to RDF graphs
such that a ground RDF graph is interpreted as the conjunction of its (ground)
RDF triples, which are interpreted like ground atoms. Note, however, that this
intuitive view may lead to infinite formulas (not considered in first-order predi-
cate logic) as an RDF graph may contain infinitely many triples.
17 The denomination “set of property representatives” would be more accurate.
18 In the document introducing RDF Model theory, the notions “interpretation” and

“denotation” do not seem to be clearly distinguished. Whereas the table of contents
and the definitions suggest that denotations are defined on graphs and interpreta-
tions on vocabularies only, in later sections the parlance changes to “denotations of
names” and to interpretations that assign truth values to graphs. In this tutorial,
only the name “interpretation” is used both for vocabularies and for RDF graphs.
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As a minor detail, RDF makes it possible to specify the language of an untyped
literal lit using the widespread ISO 639 and IETF 1766 standardised language
codes: lit@en means that lit is in English, lit@de means that lit is in German,
etc.

Definition 198 (Simple RDF interpretations of ground RDF graphs).
Let I = (IR, IP , IEXT , IS , IL,LV ) be a simple RDF interpretation of an RDF
vocabulary V = U ∪LT ∪LU with set of URIs U , set of typed literals LT and set
of untyped literals LU , where LT ∩ LU = ∅.

I is extended to ground RDF graphs as follows:

– I(lit) = lit (untyped literal in V )
– I(lit@lang) = (lit, lang) (untyped literal with language in V )
– I(lit^^type) = IL(lit) ( typed literal in V )
– I(uri) = IS (uri) (URI in V )
– I((s, p, o)) = true ( ground RDF triple)

iff s, p, o ∈ V , I(p) ∈ IP, (I(s), I(o)) ∈ IEXT (I(p))
– I(G) = true ( ground RDF graph)

iff I((s, p, o)) = true for all triples (s, p, o) in G.

Note that the empty graph is true in all simple RDF interpretations.
Note furthermore that a ground RDF graph G is false in a simple RDF in-

terpretation of a vocabulary V as soon as the subject, predicate or object of a
triple in G does not belong to the vocabulary V . This is a slight (though entirely
benign) deviation from the model theory of first-order predicate logic, which
does not assign truth values to formulas composed of symbols from another
vocabulary, or signature, than that of the interpretation considered.

Extended Simple RDF Interpretations of RDF Graphs. Simple RDF interpreta-
tion only apply to ground RDF graphs. This notion is extended to RDF graphs
containing blank nodes such that an RDF graph is interpreted as the existen-
tial closure (the blank nodes representing variables) of the conjunction of its
triples. As pointed out above, this intuition may lead to infinite formulas with,
in presence of blank nodes, possibly even infinitely many variables, a case not
considered in first-order predicate logic. The technique of the extension is to add
to an interpretation I a mapping A that corresponds to a variable assignment.

Definition 199 (Extended simple RDF interpretation). Let V be an RDF
vocabulary and B a set of blank nodes with V ∩ B = ∅. Furthermore, let I =
(IR, IP , IEXT , IS , IL,LV ) be a simple RDF interpretation of V .

A blank node assignment for B in I is a total function A : B → IR mapping
each blank node to a member of the domain of I.

For any blank node assignment A the extended simple RDF interpretation
[I + A] is defined as follows:

– [I + A](bnode) = A(bnode) (bnode)
– [I + A](lit) = I(lit) (untyped literal in V )
– [I + A](lit@lang) = I(lit@lang) (untyped literal with language in V )
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– [I + A](lit^^type) = I(lit^^type) ( typed literal in V )
– [I + A](uri) = I(uri) (URI in V )
– [I + A]((s, p, o)) = true ( ground or non-ground RDF triple)

iff s, o ∈ V ∪ B, p ∈ V , I(p) ∈ IP and ([I + A](s), [I + A](o)) ∈ IEXT (I(p))
– [I + A](G) = true ( ground or non-ground RDF graph)

iff [I + A]((s, p, o)) = true for all triples (s, p, o) in G

The simple RDF interpretation I satisfies a ground or non-groundRDFgraph G,
iff there exists a blank node assignment A with [I + A](G) = true.

Definition 200 (Simple RDF entailment). Let G1 and G2 be two arbitrary
RDF graphs. The simple RDF entailment relation |=simply is defined as follows:
G1 |=simply G2, read G1 simply entails G2, if and only if all simple RDF inter-
pretations satisfying G1 also satisfy G2.

A Classical Model Theory for Simple RDF Entailment. The RDF model theory
has been criticised for its non-standardness and several problems have been
identified in the context of layering more expressive ontology or rule languages on
top of RDF. In this section, we propose a model theory which is closer to classical
logics to characterise simple RDF entailment.19 This characterisation shows that
simple RDF entailment on finite RDF graphs is the same as entailment for first-
order predicate logical formulas that
– are existential20,
– are conjunctive21,
– contain only binary relation symbols, and
– contain no function symbols of arity ≥ 1

For infinite RDF graphs it is an obvious generalisation of entailment for first-
order predicate logic.

First, classical RDF interpretations and models are introduced, and the en-
tailment relation |=classical is defined based on the notion of classical RDF mod-
els. Furthermore a one-to-one mapping between classical RDF interpretations
and extended simple RDF interpretations is established. Finally we show that
for two arbitrary RDF graphs G1 and G2 holds G1 |=simply G2 if and only if
G1 |=classical G2.

Definition 201 (Classical RDF interpretation). Let V = U ∪ B ∪ L be
an RDF Vocabulary where U is a set of URI references, B a set of blank node
identifiers and Li a set of literals. We call elements in U also in analogy to first-
order predicate logic constant symbols and distinguish the set of predicate symbols
UP ⊂ U . Note, that here a predicate symbol is necessarily also a constant symbol
(in contrast to standard first-order predicate logic, cf. Section 3.1, where predicate
and constant symbols are allowed but not required to overlap). A classical RDF
interpretation I = (D, M c, Mp, M l, A) consists of
19 Note that this theory does not characterise the other forms of RDF entailment such

as non-simple RDF entailment or RDFS entailment.
20 I.e. a formula the negation of which is universal.
21 I.e. the matrix of their prenex normal form is a conjunction of atoms.
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– a domain of discourse D ⊂ LU where LU ⊂ L is the set of untyped literals
in L,

– a total function M c from URI references (constant symbols) in U to elements
of the domain D,

– a total function Mp from predicate symbols in UP to elements in P(D × D)
– a total function M l from literals in L to elements of the domain D, plain

literals are mapped to themselves,
– and a blank node assignment function A from B to U ∪ L.

The main deviation from standard first-order predicate logic interpretations are
the specific treatment of literals and that predicate symbols are required to be
a subset of the constant symbols. The latter is required for equivalence with
the notion of extended simple RDF interpretation from [87] as explained in the
previous section and could otherwise be dropped.

Definition 202 (Classical RDF model). Let G be an RDF graph and I =
(D, M c, Mp, M l, A) a classical RDF interpretation of the vocabulary V = U ∪
B ∪ L where U is a set of URIs, B is a set of blank node identifiers, and L is a
set of literals. I is a model of G, if for every triple (s, p, o) ∈ G, s is in U ∪B, p
is in U , o is in U ∪B ∪L, and the tuple (M c(s), M c(o)) is in the relation Mp(p)
interpreting the predicate symbol p.

We define the classical RDF entailment relation |=classical in the expected way:
A graph G1 entails a graph G2 if and only if every classical model of G1 is also
a classical model of G2.

Definition 203 (Classical interpretation corresponding to an extended
simple RDF interpretation). Let V = U ∪B∪LT ∪LU be an RDF vocabulary
where U is a set of URI references, B a set of blank node identifiers, LT a set of
typed, and LU a set of untyped literals. Let I = [(IR, IP , IEXT , IS , IL,LV ) + A]
be an extended simple RDF interpretation of V . The corresponding classical in-
terpretation class(I) = (D, M c, Mp, M l, A′) of the same vocabulary V is defined
as follows:

– D := IR
– M c(c) := IS(c) for all c ∈ U
– Mp(p) := IEXT (IS(p)) for all p ∈ P such that IEXT (IS (p)) is defined.
– M l(l) := IL(l) for all typed literals in LT

– A′ := A

Lemma 204. Let G be an RDF graph, and I an extended simple RDF inter-
pretation of the vocabulary V . Let class(I) be the corresponding classical inter-
pretation of the vocabulary V . If I |=simply G then class(I) |=classical G.

Proof. Let I = [(IR, IP , IEXT , IS , IL,LV ) + A] and class(I) = (D, M c, Mp,
M l, A). Let V = U ∪B ∪LT ∪LU where U is the set of URIs, B the set of blank
node identifiers, LT the set of typed literals, and LU the set of untyped literals
of V . It suffices to show that for any triple (s, p, o) in G the following conditions
hold:
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– s ∈ U ∪B: (s, p, o) is in G, I is a model of G, hence s ∈ U ∪B: by definition
– p ∈ U : by definition
– o ∈ U ∪ B ∪ L: by definition
– (M c(s), M c(o)) ∈ Mp(p): (s, p, o) is in G, I is a model of G, therefore the

tuple (IS (s), IS (o)) is in IEXT (IS(p)), hence (M(s), M(o)) ∈ Mp(p). ��

In the following definition dom(f) denotes the domain of a function f .

Definition 205 (Extended simple RDF interpretation corresponding
to a classical RDF interpretation). Let V = U ∪ B ∪ LT ∪ LU be an
RDF vocabulary where U is a set of URI references, B a set of blank node
identifiers, LT a set of typed literals, and LU a set of untyped literals. Let
Ic = (D, M c, Mp, M l, A) be a classical RDF interpretation over V . The ex-
tended simple RDF interpretation RDF (Ic) = [(IR, IP , IEXT , IS , IL,LV )+A′]
corresponding to Ic is defined as follows:

– IR := D
– IP := {M c(p) | p ∈ dom(Mp) and p ∈ dom(M c) }
– IEXT : IP → (IR × IR), IEXT (M c(p)) := Mp(p) for all p in U such that

both M c and Mp are defined on p.
– IS : U → IR ∪ IP, IS(u) := M c(u) for all c in U .
– IL := M l

– LV is the set of untyped literals LU

– A′(x) := A(x) for all x ∈ B

Lemma 206. Let G be an RDF graph, Ic a classical interpretation of the vocab-
ulary V , and RDF (Ic) its corresponding RDF interpretation. If Ic |=classical G
then RDF (Ic) is a simple RDF model of G.

Proof. We have to show that RDF (Ic) |=simply G. Hence RDF (Ic) |=simply t
must be true for every triple t in G. Let t := (s, p, o) be a triple in G. Then
Ic |=classical t is true by assumption. Therefore s is in C ∪ B, p is in U and
o is in U ∪ B ∪ L. Moreover (M c(s), M c(o)) ∈ Mp(p). Hence (IS (s), IS (o)) ∈
IEXT (IS (p)), and thus RDF (Ic) |=simply G. ��

Lemma 207. Let Is be an extended simple RDF interpretation and Ic a classical
RDF interpretation of the same vocabulary. Then RDF (class(Is)) = Is and
class(RDF (Ic)) = Ic.

Proof. This lemma is a direct consequence of the Definitions 203 and 205. ��

From Lemmata 204, 206 and 207 we can immediately conclude the following
corollary:

Corollary 208 (Equivalence of classical RDF entailment and simple
RDF entailment). Let G1 and G2 be two RDF graphs. G1 |=simply G2 if and
only if G1 |=classical G2.

In [50], a more involved reformulation of RDF interpretation and entailment is
presented that also extends to RDFS interpretations and entailment. However, for
consistency with the rest of this article, we have chosen the above presentation.
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6 Operational Semantics: Positive Rule Sets

6.1 Semi-naive Evaluation of Datalog Programs

The fixpoint semantics of a positive logic program P directly yields an oper-
ational semantics based on canonical forward chaining of the immediate con-
sequence operator TP introduced in Section 5 (Definition 153) until the least
fixpoint is reached.

Let us quickly recapitulate the definition of the fixpoint of a datalog pro-
gram P given the example program in Listing 6 1.

Listing 6 1. An example program for fixpoint calculation

feeds_milk (betty).
lays_eggs (betty).
has_spines (betty).

monotreme (X) ← lays_eggs (X), feeds_milk (X).
echidna(X) ← monotreme (X), has_spines (X).

The intensional predicate symbols of a datalog program P are all those predi-
cate symbols that appear within the head of a rule, as opposed to the extensional
predicate symbols which appear only in the bodies of rules of a program. With
this definition feeds_milk, lays_eggs and has_spines are extensional predicate
symbols, whereas monotreme and echidna are intensional predicate symbols. The
set of all extensional and intensional predicate symbols of a datalog program
P (denoted ext(P ) and int(P ) respectively) is called the schema of P . An in-
stance over a schema of a logic program is a set of sets of tuples s1, . . . , sk, where
each set of tuples si, 1 ≤ i ≤ k is associated with a predicate symbol p in the
schema and si is the extension of p. The set of base facts of the program 6 1
corresponds to an instance over the extensional predicate symbols, where the set
{betty} is the set associated with each of the symbols feeds_milk, lays_eggs and
has_spines.

Based on these definitions the semantics of a logic program P is defined as a
mapping from extensions over ext(P ) to extensions over int(P ). There are several
possibilities to define this function. The fixpoint semantics uses the immediate
consequence operator TP for this aim.

Given a datalog program P and an instance I over its schema sch(P ), an
atom A is an immediate consequence of P and I if it is either already contained
in I or if there is a rule A ← cond1, . . . , condn in P where condi ∈ I ∀1 ≤ i ≤ n.
The immediate consequence operator TP (I) maps an instance over the schema
sch(P ) to the set of immediate consequences of P and I.

A fixpoint over the operator TP is defined as an instance I such that TP (I) =
I. It turns out that any fixpoint for a datalog program is a model of the (conjunc-
tion of clauses of the) program. Furthermore, the model-theoretic semantics P (I)
of a logic program P on an input instance I, which is defined as the minimum
model of P that also contains I, is the minimum fixpoint of TP .
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As mentioned above, this fixpoint semantics for datalog programs, which may
be extended to non-datalog rules[69], gives directly rise to a constructive algo-
rithm to compute the minimum model of a program.

Consider again Listing 6 1. The set of immediate consequences of this pro-
gram with the initial instance22 I0 = {{}f m, {}l e, {}h s, {}mon, {}ech} is I1 :=
TP (I0) = {{betty}f m, {betty}l e, {betty}h s, {}mon, {}ech}. The second appli-
cation of the fixpoint operator yields I2 := T2

P (I0) = {{betty}f m, {betty}l e,
{betty}h s, {betty}mon, {}ech}.

I3 is defined analogously and the extension of echidna is set to {betty}. Finally
the application of TP to I3 does not yield any additional facts such that the
condition I3 = I4 is fulfilled, and the fixpoint is reached.

The above procedure can be implemented with the pseudo-algorithm in List-
ing 6 2, which is called naive evaluation of datalog programs, because for the
computation of Ii all elements of Ii−1 are recomputed. As suggested by its name,
the function ground_facts returns all the ground facts of the program which is
to be evaluated. The function instantiations takes as a first argument a rule
R, which may contain variables, and as a second argument the set of facts Ii−1
which have been derived in the previous iteration. It finds all instantiations of
the rule R which can be satisfied with the elements of Ii−1.

Listing 6 2. Naive evaluation of a datalog program P

I0 := ∅
I1 := ground_facts (P )
i := 1
while Ii �= Ii−1 do

i := i + 1
Ii := Ii−1

while (R = Rules.next ())
Insts := instantiations (R, Ii−1)
while (inst = Insts.next ())

Ii := Ii ∪ head(inst)
return Ii

The central idea underlying the so-called semi-naive evaluation of datalog
programs is that all facts that can be newly derived in iteration i must use one
of the facts that were newly derived in iteration i − 1 – otherwise they have
already been derived earlier. To be more precise, the rule instantiations that
justify the derivation of a new fact in iteration i must have a literal in their rule
body which was derived in iteration i − 1. In order to realize this idea one must
keep track of the set of newly derived facts in each iteration. This method is
also called incremental forward chaining and is specified by Listing 6 3. In line
2 the increment Ink is initialized with all facts of the datalog program. In line

22 the predicate symbols in subscript position indicate that the first set is the extension
of feeds_milk, the second one the one of lays_eggs, and so on.
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4 the set Insts of instantiations of rules that make use of at least one atom of
the increment Ink is computed at the aid of the function instantiations. The
function instantiations does not yield ground rules that are justified by the set
KnownFacts only, such that the call instantiations({ p(a), q(a) }, { }) for a
program consisting of the rule r(x) ←p(X), q(X) would not yield the instan-
tiation i1 := r(a) ←p(a), q(a). In contrast, i1 would be returned by the call
instantiations({ p(a) }, { q(a) }) with respect to the same program.

Once these fresh rule instantiations have been determined, the distinction
between facts in the increment and older facts is no longer necessary, and the
two sets are unified (line 5). The new increment of each iteration is given by the
heads of the rule instantiations in Insts.

Listing 6 3. Semi-naive evaluation of a datalog program P

1 KnownFacts := ∅
2 Ink := { Fact | (Fact ← true) ∈ P }
3 while (Ink �= ∅)
4 Insts := instantiations (KnownFacts , Ink)
5 KnownFacts := KnownFacts ∪ Ink
6 Ink := heads(Insts)
7 return KnownFacts

Although the semi-naive evaluation of datalog programs avoids a lot of re-
dundant computations that the naive evaluation performs, there are still several
ways of optimizing it.

– In the case that besides a program P also a query q is given, it becomes
apparent that a lot of computations, which are completely unrelated to q,
are carried out. This is a general problem of forward chaining algorithms
when compared to backward chaining. However, it is possible to write logic
programs that, also when executed in a forward-chaining manner, are in a
certain sense goal-directed. In fact it is possible to transform any datalog pro-
gram P and query q into a logic program P ′ such that the forward chaining
evaluation of P ′ only performs computations that are necessary for the eval-
uation of q. In Section 6.2 these so-called magic templates transformations
are presented.

– A second source of inefficiency is that in each iteration i, it is tested from
scratch whether the body of a rule is satisfied. It is often the case that a
rule body completely satisfied in iteration i was almost completely satisfied
in iteration i − 1, but the information about which facts contributed to the
satisfaction of rule premises in iteration i−1 must be recomputed in iteration
i. It is therefore helpful to store complete and partial instantiations of rules
during the entire evaluation of the program.

– Storing partial instantiations of rule bodies gives rise to another optimization
if the rules of the program share some of their premises. In this case, the
partial rule instantiations are shared among the rules. Both this and the
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previous optimization are realized by the Rete algorithm, which is introduced
in Section 6.3.

6.2 The Magic Templates Transformation Algorithm

The magic templates algorithm [51] is a method of introducing a goal directed
search into a forward chaining program, thereby benefiting both from the ter-
mination of forward chaining programs and from the efficiency of goal directed
search. It is important to emphasize that the evaluation of the transformed pro-
gram is performed in the ordinary forward chaining way or can be combined
with the semi-naive algorithm as described above.

The magic templates rewriting transforms a program P and a query q in two
steps: a transformation of the program into an adorned version, and a rewriting
of the adorned program into a set of rules that can be efficiently evaluated with
a bottom up strategy.

6.2.1 Adornment of Datalog Programs
In the first step, the program is rewritten into an adorned version according to
a sideways information passing strategy, often abbreviated sip.

A sideways information passing strategy determines how variable bindings
gained from the unification of a rule head with a goal or sub-goal are passed
to the body of the rule, and how they are passed from a set of literals in the
body to another literal. The ordinary evaluation of a Prolog program implements
a special sideways information passing strategy, in which variable bindings are
passed from the rule head and all previously occurring literals in the body to
the body literal in question. There are, however, many other sips which may
be more convenient in the evaluation of a datalog or Prolog program. In this
survey, only the standard Prolog sip is considered, and the interested reader is
referred to [18] for a more elaborate discussion of sideways information passing
strategies.

The construction of an adorned program is exemplified by the transforma-
tion of the transitive closure program in Listing 6 4 together with the query
t(a,Answer) into its adorned version in Listing 6 5. In order to better distin-
guish the different occurrences of the predicate t in the second rule, they are
labeled t-1, t-2 and t-3, but they still denote the same predicate.

Listing 6 4. Transitive closure computation

t(X,Y) ← r(X, Y).
t-3(X,Z) ← t-1(X, Y), t-2(Y, Z).

r(a, b).
r(b, c).
r(c, d).

When evaluated in a backward chaining manner, the query Q :=t(a,Answer)

is first unified with the head of the first rule, generating the binding X=a which
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is passed to the rule body. This sideways information passing can be briefly
expressed by t ↪→X r. The queryQ is also unified with the head of the second
rule, generating once more the binding X=a, which would be used to evaluate
the literal t-1(X,Y) by a Prolog interpreter. In the remaining evaluation of the
second rule, the binding for Y computed by the evaluation of t-1(X,Y) is passed
over to the predicate t-2. This can be briefly expressed by the sips t-3 ↪→X

t-1 and t-1 ↪→Y t-2.
From this information passing strategy an adorned version of Listing 6 4 can be

derived. Note that all occurrences of the predicate t (and its numbered versions)
are evaluated with the first argument bound and the second argument free when Q
is to be answered. In the magic templates transformation it is important to differ-
entiate between different call-patterns for a predicate. This is where adornments
for predicates come into play. An adornment a for a predicate p of arity n is a
word consisting of n characters which are either ‘b’ (for bound) or ‘f’ (for free).
Since the first argument of t is always bound in the program and the second argu-
ment is always free, the only adornment for t is bf . Since the evaluation of literals
of extensional predicates amounts to simply looking up the appropriate values,
adornments are only introduced for intensional predicate symbols.

It is interesting to note that the choice of the information passing strategy
strongly influences the resulting adorned program. In the case that one chooses
to evaluate the literal t-2 before t-1, both arguments of t-2 would be unbound
yielding the sub-query t-2ff , and thus an additional adorned version of the
second rule would have to be introduced for this sub-query. This additional
adorned rule would read t-3ff(X,Z) ← t-1fb(X, Y), t-2ff(Y, Z).. For the
sake of simplicity, the following discussion refers to the shorter version depicted
in Listing 6 5 only.

Listing 6 5. The adorned version of the program in Listing 6 4

tbf (X,Y) ← r(X, Y).
t-3bf (X,Z) ← t-1bf (X, Y), t-2bf (Y, Z).

r(a, b).
r(b, c).
r(c, d).

6.2.2 Goal-Directed Rewriting of the Adorned Program
Given an adorned datalog program P ad and a query q, the general idea of the
magic templates rewriting is to transform P ad into a program P ad

m in a way such
that all sub-goals relevant for answering q can be computed from additional rules
in P ad

m . Slightly alternated versions of the original rules in P ad are included in
P ad

m , the bodies of which ensure that the rule is only fulfilled if the head of the
rule belongs to the set of relevant sub-goals.

Hence the magic template transformation generates two kinds of rules: The
first set of rules controls the evaluation of the program by computing all relevant
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sub-goals from the query, and the second set of rules is an adapted version of
the original program with additional premises in the bodies of the rules, which
ensure that the rules are only evaluated if the result of the evaluation contributes
to the answer of q.

The functioning of the magic templates transformation and the evaluation of
the transformed program is again exemplified by the transitive closure compu-
tation in Listings 6 4 and 6 5.

1. In a first step, a predicate magic pa of arity nb(pa) is created for each adorned
predicate pa that occurs in the adorned program, where nb(pa) denotes the
number of bound arguments in pa – in other words the number of ‘b’s in the
adornment a. Thus for the running example, the predicate magic tbf with
arity one is introduced. The intuition behind magic predicates is that their
extensions during bottom-up evaluation of the program, often referred to
as magic sets, contain all those sub-goals that need to be computed for pa.
In the transitive closure example, the only initial instance of magic tbf is
magic tbf(a), which is directly derived from the query t(a,Answer). This
initial magic term is added as a seed23 to the transformed program in Listing
6 6.

2. In a second step, rules for computing sub-goals are introduced reflecting the
sideways information passing within the rules. Let r be a rule of the adorned
program P ad, let ha be the head of r, and l1 . . . lk the literals in the body
of r. If there is a query that unifies with the head of the rule, if queries for
l1 . . . li (i < k) have been issued and if they have been successful, the next
step in a backward chaining evaluation of P ad would be to pursue the sub-
goal li+1. Thus a control rule li+1 ← magic ha, l1 . . . li is included in P ad

m .
For the running example the rule magic tbf(Y) ← magic tbf(X), t(X,Y)
is added.

3. In a third step, the original rules of P ad are adapted by adding some extra
conditions to their bodies in order to evaluate them only if appropriate sub-
goals have already been generated by the set of control rules. Let r be a rule
in P ad with head ha and with literals l1, . . . , ln. r shall only be evaluated
if there is a sub-goal magic ha for the head, and if there are sub-goals for
each of the derived predicates of the body. For the adorned version of the
transitive closure program (Listing 6 5) both the first and the second rule
must be rewritten. Since there is no derived predicate in the first rule, the
only literal which must be added to the rule body is magic tbf (X), yielding
the transformed rule tbf(X,Y) ← magic tbf (X), r(X,Y). With the second
rule having two derived predicates in the rule body, one might expect that
three additional magic literals would have to be introduced in the rule body.
But since t-1 and t-3 have the same adornment and the same variables for
their bound arguments, they share the same magic predicate.

23 It is called the seed, because all other magic terms are directly or indirectly derived
from it.
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The evaluation of the magic transitive closure program is presented in Listing
6 7 for the goal t(a,Answer). Note that in contrast to the naive and semi-naive
bottom-up algorithms, only those facts are derived, which are potentially useful
for answering the query. In particular, the facts r(1, 2), r(2, 3), and r(3, 1) are
never used. Moreover the sub-goal r(d,X) corresponding to the magic predicate
magic tbf(d) is never considered.

Listing 6 6. The magic templates transformation of the program in Listing 6 5 for
the query t(a,X)

1 magic_tbf (Y) ← magic_tbf (X), t(X,Y).
2 tbf (X,Y) ← magic_tbf (X), r(X,Y).
3 t-3bf (X,Z) ← magic_tbf (X),t-1bf (X,Y),magic_tbf (Y ), t-2bf (Y,Z).
4 magic_tbf (a). // the seed
5
6 r(a, b). r(b, c). r(c, d).
7 r(1, 2). r(2, 3). r(3, 1).

Listing 6 7. Evaluation of program 6 6

t(a,b) // derived by the seed and rule 2
magic_tbf (b) // derived by the seed , t(a,b) and rule 1
t(b,c) // derived by magic_tbf (b), and rule 2
magic_tbf (c) // derived by magic_tbf (b), t(b,c) and rule 1
t(c,d) // derived by magic_tbf (c) and rule 2
t(a,c) // derived by rule 3
t(a,d) // derived by rule 3
t(b,d) // derived by rule 3

6.3 The Rete Algorithm

The Rete algorithm [72,56] was originally conceived by Charles L. Forgy in 1974
as an optimized algorithm for inference engines of rule based expert systems.
Since then several optimizations of Rete have been proposed, and it has been
implemented in various popular expert systems such as Drools, Soar, Clips,
JRules and OPS5.

The Rete algorithm is used to process rules with a conjunction of conditions
in the body and one or more actions in the head, that are to be carried out
when the rule fires. These rules are stored in a so-called production memory.
The other type of memory that is used by the Rete algorithm is the working
memory, which holds all the facts that make up the current configuration the
rule system is in. A possible action induced by a rule may be the addition of a
new fact to the working memory, which may itself be an instance of a condition
of a rule, therefore triggering further actions to be carried out in the system.
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Fig. 1. A Rete Network for Animal Classification

Avoiding redundant derivations of facts and instances of rule precedents, the
Rete algorithm processes production rules in a so-called Rete network consisting
of alpha-nodes, beta-nodes, join-nodes and production-nodes.

Figure 1 illustrates the way a Rete network is built and operates. It serves
as an animal classification system relying on characteristics such as has wings,
has spikes, is poisonous, etc. The example rules exhibit overlapping rule bodies
(several atomic conditions such as X lays eggs are shared among the rules).

For each atomic condition in the body of a rule, the Rete network features
one alpha-node containing all the elements of the working memory that make
this atomic condition true. Alpha-nodes are distinguished by shaded rectangles
with round corners in Figure 1. Although the same atomic condition may occur
multiple times distributed over different production rules, only one single alpha
node is created in the Rete network to represent it. Therefore the condition
X lays eggs, which is present in the conditions of all rules except for p2, is
represented by a single alpha-node in Figure 1.
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While alpha-nodes represent single atomic conditions of rule bodies, beta-
nodes stand for conjunctions of such conditions, and hold sets of tuples of working
memory elements that satisfy them. Beta-nodes are depicted as ovals with white
background in Figure 1.

In contrast to alpha and beta nodes, join nodes do not hold tuples of or single
working memory elements, but serve computation purposes only. For each rule
in the rule system, there is one production node (depicted as rectangles with
grey background in Figure 1) holding all the tuples of working memory elements
that satisfy all the atomic conditions in its body.

Alpha- and beta-nodes are a distinguishing feature of Rete in that they re-
member the state of the rule system in a fine grained manner. With beta-nodes
storing instantiations of (partial) rule bodies, there is no need of reevaluating
the bodies of all rules within the network in the case that the working memory
is changed.

Besides storing derived facts and instantiations of (partial) rule premises,
the Rete network also allows information sharing to a large extent. There are
two ways that information is shared among rules in the network. The first way
concerns the alpha-nodes and has already been mentioned above. If an atomic
condition (such as X feeds milk) appears within more than one rule, this alpha
node is shared among both rules. Needless to say, this is also the case if both
conditions are variants (equivalent modulo variable renaming) of each other. The
second way that information is shared within the Rete network is by sharing
partial rule instantiations between different rules. In Figure 1, the conjunction
of atomic conditions (X lays eggs), (X feeds milk) is common to the rules p3,
p4 and p5. In a Rete network, instantiations of these partial rule bodies are
computed only once and saved within a beta node which is connected (possibly
via other beta nodes) to the production nodes of the affected rules.

6.4 Basic Backward Chaining: SLD-Resolution

Resolution proofs are refutation proofs, i.e. they show the unsatisfiability of a
set of formulas. As it holds that the set of formulas P ∪ {¬ϕ} is unsatisfiable
iff P |= ϕ, resolution may be used to determine entailment (compare Theo-
rem 35). Observe that a goal ← a1, . . . , an is a syntactical variant of the first
order sentence ∀x1 . . . xm(⊥ ← a1 ∧ . . . ∧ an) where x1, . . . , xm are all variables
occurring in a1, . . . an. This is equivalent to ¬∃x1 . . . xm(a1 ∧ . . .∧ an). If we use
SLD-resolution24 to show that a logic program P and a goal ← a1, . . . , an are
unsatisfiable we can conclude that P |= ∃x1 . . . xm(a1 ∧ . . . ∧ an).

Definition 209 (SLD Resolvent). Let C be the clause b ← b1, . . . , bk, G a
goal of the form ← a1, . . . , am, . . . , an, and let θ be the mgu of am and b. We
assume that G and C have no variables in common (otherwise we rename the
variables of C). Then G′ is an SLD resolvent of G and C using θ if G′ is the
goal ← (a1, . . . am−1, b1, . . . bk, am+1, . . . an)θ.

24 SLD is an acronym for Selected Literal Definite Clause.
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Definition 210 (SLD Derivation). A SLD derivation of P ∪ {G} consists of
a sequence G0, G1, . . . of goals where G = G0, a sequence C1, C2, . . . of variants
of program clauses of P and a sequence θ1, θ2, . . . of mgu’s such that Gi+1 is
a resolvent from Gi and Ci+1 using θi+1. An SLD-refutation is a finite SLD-
derivation which has the empty goal as its last goal.

Definition 211 (SLD Tree). An SLD tree T w.r.t. a program P and a goal
G is a labeled tree where every node of T is a goal and the root of T is G and if
G is a node in T then G has a child G′ connected to G by an edge labeled (C, θ)
iff G′ is an SLD-resolvent of G and C using θ.

Let P be a definite program and G a definite goal. A computed answer θ for
P ∪ {G} is the substitution obtained by restricting the composition of θ1, . . . θn

to the variables occurring in G, where θ1, . . . θn is the sequence of mgu’s used in
an SLD-refutation of P ∪ {G}.

Observe that in each resolution step the selected literal am and the clause
C are chosen non-deterministically. We call a function that maps to each goal
one of its atoms a computation rule. The following proposition shows that the
result of the refutation is independent of the literal selected in each step of the
refutation.

Proposition 212 (Independence of the Computation Rule). [111] Let P
be a definite Program and G be a definite goal. Suppose there is an SLD-refutation
of P∪{G} with computed answer θ. Then, for any computation rule R, there exists
an SLD-refutation of P ∪ {G} using the atom selected by R as selected atom in
each step with computed answer θ′ such that Gθ is a variant of Gθ′.

The independence of the computation rule allows us to restrict the search space:
As a refutation corresponds to a branch of in an SLD-tree, to find all computed
answers we need to search all branches of the SLD-tree. The independence of the
computation rule allows us to restrict our search to branches constructed using
some (arbitrary) computation rule.

Example 213. Consider the logic program 6 8 with query q = ← t(1,2):

Listing 6 8. Transitive Closure

t(x,y) ← e(x,y).
t(x,y) ← t(x,z), e(z,y).
e(1,2) ← .
e(2,1) ← .
e(2,3) ← .
← t(1,2) .

An SLD-tree for program 6 8 and q is shown in the following figure. We label
the edges of an SLD tree with the number of a rule instead of a rule. We denote by
(n’) the rule number n where each variable x occurring in rule n is replaced by x′.
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Fig. 2. An SLD tree for program 6 8

If we want to compare the operational semantics of a program P to its declara-
tive semantics we need a declarative notion of an answer of program P . A correct
answer for a program P and goal G is a substitution θ such that P |= Gθ. Using
this notion we can define the soundness and completeness of logic programming.

Proposition 214 (Soundness andCompletenessofLogicProgramming).
[111] Let P be a program and let Q be a query. Then it holds that

– every computed answer of P and G is a correct answer and
– for every correct answer σ of P and G there exists a computed answer θ such

that θ is more general that σ.

Observe that to find a computed answers of a program P and goal G opera-
tionally one has to visit the leaf of a finite branch in the SLD-tree w.r.t. P and
G. The order in which we visit these nodes is not determined by the definition
of an SLD-refutation. We call such an order a search strategy. An SLD-procedure
is a deterministic algorithm which is an SLD-resolution constrained by a com-
putation rule and a search strategy.

As SLD-trees are infinite in general, the completeness of an SLD-procedure
depends on the search strategy. To be complete, an SLD-procedure must visit
every leaf of a finite branch of an SLD-tree within a finite number of steps.
A search strategy with this property is called fair. Obviously not every search
strategy is fair. For example the depth first search strategy used by Prolog is
not fair. An example of a fair search strategy is breath first search.

6.5 Backward Chaining with Memorization: OLDT-Resolution

As stated in the previous section not every search strategy is complete. This is
due to the fact that an SLD-tree is infinite in general. As we only consider finite
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programs, an SLD-tree may only be infinite if it has an infinite branch. As a
branch in an SLD-tree corresponds to an SLD-derivation we denote a branch as
[G1, G2, . . .] where G1, G2 . . . are the goals of the corresponding derivation.

A branch B = [G1, G2, . . .] in an SLD-tree may be infinite if there is a sub-
sequence [Gi1 , Gi2 , . . .] (ij < ik if j < k) of B such that

– for all j, k ∈ � Gij and Gik
contain an equal (up to renaming of variables)

atom or
– for all j ∈ � Gij contains an atom which is a real instance of an atom in

Gij+1 .

Non-termination due to the first condition is addressed by a evaluation tech-
nique called tabling or memorization. The idea of tabling is the idea of dy-
namic programming: store intermediate results to be able to look these results
up instead of having to recompute them. In addition to the better termination
properties, performance is improved with this approach.

The OLDT algorithm [150] is an extension of the SLD-resolution with a left to
right computation rule. Like SLD-resolution, it is defined as a non-deterministic
algorithm.

A subset of the predicate symbols occurring in a program are classified as
table predicates. A goal is called a table goal if its leftmost atom has a table
predicate. Solutions to table goals are the intermediate results that are stored.
Table goals are classified as either solution goals or look-up goals. The intuition
is that a solution goal ‘produces’ solutions while a look-up goal looks up the
solutions produced by an appropriate solution goal.

An OLDT-structure (T, TS , TL) consists of an SLD-tree T and two tables, the
solution table TS and the look-up table TL. The solution table TS is a set of
pairs (a, TS(a)) where a is an atom and TS(a) is a list of instances of a called
the solutions of a. The look-up table TL is a set of pairs (a, TL(a)) where a is an
atom and p is a pointer pointing to an element of TS(a′) where a is an instance
of a′. TL contains one pair (a, TL(a)) for an atom a occurring as a leftmost atom
of a goal in T .

The extension of an OLDT structure (T, TS , TL) consists of three steps:

1. a resolution step,
2. a classification step, and
3. a table update step.

In the resolution step a new goal is added to the OLDT-tree, in the classification
step this new goal is classified as either non-tabled goal or solution goal or look-
up goal and in the table update step the solution table and the update table are
updated. While step one is equal for non-tabled and solution goals, step two and
three are equal for tabled nodes while there is nothing to do in these steps for
non-tabled nodes.

Let (T, TS, TL) be an OLDT structure and G =← a1, . . . , an a goal in T . If
G is a non-tabled goal or a solution goal then in the resolution step a new goal
G′ is added to T which is connected to G with an edge labeled (C, θ) where G′
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is the SLD-resolvent of G and C using θ. If G is a look-up node then in the
resolution step the new node G′ is added to T with an edge labeled (a ←, θ)
where a is the atom in the solution table that the pointer TL(a1) points to and
the substitution θ is the mgu of a and a1. Finally the pointer TL(a1) is set to
point to the next element of the list it points to.

In the classification step the new goal G′ is classified as a non-table goal if
its leftmost atom is not a table predicate and a table goal otherwise. If G′ is a
table goal then G′ is classified as a look-up node if there is a pair (a, TS(a)) in
the solution table and a is more general than the leftmost atom a′ of G′. In this
case a new pair (a′, p) is added to the look-up table and p points to the first
element of TS(a). If G′ is not classified as a look-up node then it is classified as
a solution node and a new pair (a′, []) is added to the solution table.

In the table update step new solutions are added to the solution table. Recall
that the problem we want to tackle here is the recurrent evaluation of equal (up
to renaming of variables) atoms in goals. Therefore the ‘solutions’ we want to
store in the solution table are answers to an atom in a goal.

In SLD-resolution the term answer is defined only for goals. This notion can
be extended to atoms in goals in the following way. OLDT-resolution uses a left
to right computation rule. If the derivation of a goal G =← a1, . . . , an is finite,
then there is a finite number n of resolution steps such that the nth resolvent
Gn on G is ← a2, . . . , an. We call the sequence [G1, . . . , Gn] a unit sub-refutation
of a1 and the restriction of θ1 . . . θn to the variables occurring in a1 is called an
answer for a1.

Now if the goal G produced in the resolution step is the last goal of a unit
sub-refutation of a with answer θ then the update step consists in adding θ to
the list TS(a).

Example 215. Reconsider the program from Example 213

Listing 6 9. Transitive Closure

t(x,y) ← e(x,y) .
t(x,y) ← t(x,z), e(z,y) .
e(1,2) ← .
e(2,1) ← .
e(2,3) ← .
← t(1,2) .

After a sequence of OLDT-resolutions of solution goals or non-tabled goals
the OLDT-tree in Figure 3 is constructed. To indicate which nodes are solution
nodes and which are look-up nodes we prefix solution nodes with ‘S:’ and look-up
nodes with ‘L:’.

As the left branch is a unit sub-refutation of t(1, a) with solution {a/2} the entry
t(1, 2) is added to the solution table. As t(1, a) is more general than the leftmost
atom of the goal t(1, z′), e(z′, a) this goal is classified as a look-up node. Instead
of using resolution to compute answers for the first atom of this goal we use the
solutions stored in the solution table. The final OLDT-tree is depicted in 4:
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Fig. 3. An intermediary OLDT tree for program 6 9

Fig. 4. The final OLDT tree for program 6 9

Observe that the program of example 215 does not terminate with SLD-resolution
while it does terminate with OLDT-resolution. The following example shows that
OLDT-resolution is not complete in general.

Example 216. Consider the program 6 10 and query q = ← p(x)

Listing 6 10. Program for which OLDT resolution is incomplete

p(x) ← q(x), r .
q(s(x)) ← q(x) .
q(a) ← .
r ← .
← p(x) .
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Fig. 5. An intermediary OLDT tree for program 6 10

After a sequence of OLDT-resolution steps the OLDT-tree in Figure 5 is con-
structed

In the next step the solution q(a) can be used to generate the solution q(s(a))
(see Figure 6).

It is easy to see that if reduction steps are only applied to the node L:← q(x′), r
then no solutions for p(x) will be produced in finite time. Therefore OLDT is
not complete in general.

This problem was addressed by the authors of OLDT. They specified a search
strategy called multistage depth-first strategy for which they showed that OLDT
becomes complete if this search strategy is used. The idea of this search strategy
is to order the nodes in the OLDT-tree and to apply OLDT-resolution-steps to
the nodes in this order. If the node that is the biggest node with respect to
that ordering is reduced then a stage is complete and a new stage starts where
reduction is applied to the smallest node again. Therefore it is not possible to
apply OLDT-steps twice in a row if there are other nodes in the tree which are
resolvable.

In the above example it would therefore not be possible to repeatedly apply
reductions to the node L:← q(x′), r without reducing the node ← r which yields
a solution for p(x).

6.6 The Backward Fixpoint Procedure

The last sections have shown bottom up and top down methods for answer-
ing queries on Horn logic programs. While the naive and semi-naive bottom
up methods suffer from an undirected search for answering queries, the top
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Fig. 6. An intermediary OLDT tree for program 6 10

down methods such as SLD resolution (Section 6.4) may often not terminate
although the answer can be computed in finite time by a bottom up procedure.
Non-termination of top down procedures is addressed by tabling (storing the en-
countered sub-queries and their solutions) in OLDT resolution (Section 6.5) and
other advanced top down methods such as QSQ or SLDAL-Resolution[158], the
ET ∗ and ETinterp[54,67] algorithms and the RQA/FQI[122] strategy. The prob-
lem of undirected search in forward chaining methods is solved by rewriting the
rules such that special atoms representing encountered sub-goals are represented
by custom-built atoms and by requiring an appropriate sub-goal to be generated
before a rule of the original program is fired. Two representatives of this second
approach are the Alexander[97] and the Magic Set methods (Section 6.2).

In [27] a sound and complete query answering method for recursive databases
based on meta-interpretation called Backward Fixpoint Procedure, is presented,
and it is shown that the Alexander and Magic Set methods can be interpreted
as specializations of the Backward Fixpoint Procedure (BFP) and that also
the efficient top down methods based on SLD resolution implement the BFP.
Studying the BFP reveals the commonalities and differences between top down
and bottom up processing of recursive Horn logic programs and is thus used to
top of this chapter.

The backward fixpoint procedure is specified by the meta interpreter in List-
ing 6 11, which is intended to be evaluated by a bottom up rule engine. Facts are
only generated in a bottom up evaluation of the interpreter if a query has been is-
sued for that fact or if an appropriate sub-query has been generated by the meta-
interpreter itself (Line 1). Sub-queries for rule bodies are generated if a sub-query
for the corresponding rule head already exists (Line 2). Sub-queries for conjuncts
are generated from sub-queries of conjunctions they appear in (Line 3 and 4). The
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predicate evaluate consults the already generated facts, and may take a single
atom or a conjunction as its argument, returning true if all of the conjuncts have
already been generated. It must be emphasized that using a bottom up rule engine
for evaluating the BFP meta-interpreter for an object rule program is equivalent to
evaluating this object program top down, thereby not generating any facts which
are irrelevant for answering the query. For the correctness of the meta-interpreter
approach for fixpoint computation and for an example for the evaluation of an
object program with the BFP meta-interpreter see [27].

Listing 6 11. The backward fixpoint procedure meta interpreter

1 fact(Q) ← queryb(Q) ∧ rule(Q ← B) ∧ evaluate (B)
2 queryb(B) ← queryb(Q) ∧ rule(Q ← B)
3 queryb(Q1) ← queryb(Q1 ∧ Q2)
4 queryb(Q2) ← queryb(Q1 ∧ Q2) ∧ evaluate (Q1)

A direct implementation of the meta-interpreter may lead to redundant com-
putations of facts. To see this consider the application of the meta-interpreter to
the object program p ←q, r and the query p. The relevant instantiated rules of
the meta-interpreter contain the ground queries evaluate(q,r) and evaluate(q),
thereby accessing the fact q twice. Getting rid of these redundant computations is
elegantly achieved by specifying a bottom up evaluation of a binary version of the
predicate evaluate as shown in Listing 6 12. The first argument of evaluate con-
tains the conjuncts which have already been proved, while the second argument
contains the rest of the conjunction. Therefore a fact evaluate(∅, Q) represents
a conjunction which has not yet been evaluated at all, while evaluate(Q, ∅) rep-
resents a completely evaluated conjunction. With this new definition of evaluate
the atoms evaluate(B) and evaluate(Q1) in Listing 6 11 must be replaced by
evaluate(B, ∅) and evaluate(Q1, ∅), respectively. With this extension, the BFP
meta-interpreter of Listing 6 11 becomes redundant. A non-redundant version is
obtained by only considering rules (1, 5 to 11) of Listings 6 11, 6 12 and 6 13.
For the proofs for the redundancy of the rules (1 to 9) on the one hand and for
the equivalence of the interpreters made up of rules (1 to 4) and (1, 5 to 11) on
the other hand see [27].

Listing 6 12. Implementation of the predicate evaluate

5 evaluate (∅, B) ← queryb(Q) ∧ rule(Q ← B)
6 evaluate (B1, B2) ← evaluate (∅, B1 ∧ B2) ∧ fact(B1)
7 evaluate (B1 ∧ B2, B3) ← evaluate (B1, B2 ∧ B3) ∧ B1 �= ∅ ∧ fact(B2)
8 evaluate (B, ∅) ← fact(B)
9 evaluate (B1 ∧ B2, ∅) ← evaluate (B1, B2) ∧ B1 �= ∅, fact(B2)

Listing 6 13. Replacement rules for the rules 2 to 4 in Listing 6 11

10 queryb(B2) ← evaluate (B1, B2) ∧ B2 �= (C1 ∧ C2)
11 queryb(B2) ← evaluate (B1, B2 ∧ B3)
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The implementation of the backward fixpoint procedure gives rise to two chal-
lenges exemplified by the sub-goal queryb(r(x,a)), which may be generated
during the evaluation of a program by the BFP meta-interpreter. The sub-goal
is both nested and non-ground. The main problem with non-ground terms gen-
erated by the application of the BFP meta-interpreter to an object program is
that for deciding whether a newly derived fact is a logical duplicate of an already
derived fact it is not sufficient to perform string matching, but full unification
is needed. With specialization[74], a common partial evaluation technique used
in logic programming, one can get rid of these problems.

Specialization is applied to the BFP meta-interpreter with respect to the
rules of the object program. For each rule of the meta-interpreter that includes
a premise referring to a rule of the object program, one specialized version is
created for each rule of the object program. The first rule of the BFP meta-
interpreter (Listing 6 11) specialized with respect to the rule p(x) ← q(x) ∧r(x)
results in the following partially evaluated rule:

fact (p(x)) ← queryb(p(x)) ∧ evaluate (q(x) ∧ r(x))

Similarly, the specialization of the second rule of the meta-interpreter with
respect to the same object rule yields the partially evaluated rule queryb(q(x)

∧r(x)) ←queryb(p(x)).
Another specialization which can be applied to the BFP meta-interpreter is

the specialization of the queryb predicate with respect to the predicates of the
object program, transforming a fact queryb(p(a)) into the fact queryb-p(a) and
eliminating some of the nested terms generated during the evaluation. With this
transformation the first rule of the BFP is further simplified to:

fact (p(x)) ← queryb-p(x) ∧ evaluate (q(x) ∧ r(x))

Getting rid of non-ground terms can also be achieved by specialization re-
sulting in an adorned version of the program. Adornment of logic programs is
described in the context of the magic set transformation in Section 6.2. [27] also
discusses the faithfulness of representations of sub-queries as facts. Adornments
of sub-queries are not completely faithful in the sense that the adornment of the
distinct queries p(X,Y) and p(X,X) results in the same adorned predicate pff . As
described in Section 6.2, multiple adorned versions for one rule of the original
program may be generated.

In [27] it is shown that the above specializations of the meta-interpreter made
up of the rules (1, 5 to 11) with respect to an object program P and the omittance
of the meta-predicates evaluate and fact yields exactly the supplementary magic
set transformation and the Alexander method applied to P . Therefore both of
these methods implement the BFP.

Not only can bottom up processing methods be specialized from the BFP, but
it can also be used to specify top down procedures such as ET ∗, ETinterp, QSQ,
etc. The difference between SLD resolution and the BFP is explained in [27] in
terms of the employed data structures. SLD resolution uses a hierarchical data
structure which relates sub-queries and proved facts to the queries they belong
to. On the other hand, the BFP employs relations – i.e. a flat data structure – for
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memorizing answers to queries, and therefore allows to share computed answers
between queries that are logically equivalent. SLD resolution and the hierarchical
resolution tree can be simulated by the BFP by introducing identifiers for queries,
thus allowing to relate facts and sub-queries with queries to the answers of which
they contribute. See [27] for details. This simulation prevents sharing of answers
between queries and thus makes the evaluation less efficient. One conclusion that
can be drawn from the BFP is that it does not make sense to hierarchically struc-
ture queries according to their generation. In contrast it makes sense to rely on
a static rewriting such as the Alexander or Magic Set rewriting and process the
resulting rules with a semi-naive bottom-up rule engine.

7 Operational Semantics: Rule Sets with Non-monotonic
Negation

In the previous chapter evaluation methods for logic programs without negation
are examined. This chapter considers a more general form of logic programs,
namely ones that use negation. The rules considered in this chapter are all of
the form

A ← L1, . . . , Ln

where the Li, 1 ≤, i ≤ n are literals, and A is an atom. Thus negative literals
are allowed in the bodies of rules, but not in their heads. It is important to note
that augmenting logic programming with negation increases expressivity and is
necessary for deriving certain information from a database.

In Section 5 two important semantics for logic programming with negation
have been described: The stable model semantics (See Section 5.3.2) and the well-
founded model semantics (Section 5.3.3). However, this declarative semantics
does not provide an easy to implement algorithm neither for computing the
entailments of a logic program with negation nor for answering queries with
respect to such programs. In fact the greatest unfounded sets in the definition
of the well-founded semantics and the stable models in the stable models theory
must be guessed.

In this section constructive algorithms for computing the so-called iterative
fixpoint semantics, the stable model semantics and the well-founded model se-
mantics are described and applied to example programs to better illustrate their
functioning.

The kind of negation which is generally used in logic programming is called
negation as failure and can be described as follows: A negated literal ¬A is true,
if its positive counterpart A cannot be derived from the program. A possible
application of negation as failure is given in Listing 7 14. Since male(eduard) is
given and married(eduard) cannot be derived, bachelor(eduard) is logical con-
sequence of the program, while bachelor(john) is not. Negation as failure is
also known under the term non-monotonic negation, because the addition of
new facts to a program may cause some of its entailments to be no longer true:
The addition of married(eduard) to the program in Listing 7 14 invalidates the
conclusion bachelor(eduard).
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Listing 7 14. An Illustration for the Use of Negation as Failure

married(john ).
male(john ).
male(eduard).
bachelor(X) ← male (X), not married(X)

The adoption of negation as failure brings about several interesting, not to
say intricate questions. Consider the program in Listing 7 15. If the literal q is
assumed to be false, then the literal p must be true according to the second rule.
This, however, causes the literal q to be true. On the other hand there is no
possibility of deriving the literal q. Hence the semantics of Program 7 15 is not
clear. Therefore syntactical restrictions on logic programs have been proposed, to
ensure that all programs satisfying these restrictions have an intuitive declarative
semantics.

Listing 7 15. A program with Recursion through negation

q ← p.
p ← not q.

7.1 Computation of the Iterative Fixpoint Semantics for Stratified
Logic Programs with Negation as Failure

One possibility of limiting the use of negation is by stratification (see Defini-
tion 164 in Subsection 5.3.1).

It is easy to see that for some programs no stratification can be found. Since
in Program 7 15 q depends on p by the first rule and p depends on q by the
second rule, they would have to be defined in the same stratum. Since q depends
negatively on p, this case is precluded by the third premise above. A program for
which no stratification can be found is called non-stratifiable, programs for which
a stratification exists are called stratifiable. The iterative fixpoint semantics does
not provide a semantics for non-stratifiable programs.

[9] defines the semantics for stratified logic programs as an iterated fixpoint
semantics based on the immediate consequence operator TP (Definition 153) as
follows. Let S1, . . . , Sn be a stratification for the program P . Recall that Ti

P (I)
denotes the i-fold application of the immediate consequence operator to the
database instance I. Then the semantics of the program P is the set Mn where
M0 is defined as the initial instance over the extensional predicate symbols of
P , and the Mi are defined as follows:

M1 := Tω
S1

(M0), M2 := Tω
S2

(M1), . . . , Mn := Tω
Sn

(Mn−1)

This procedure shall be illustrated at the example program in Listing 7 16. The
intensional predicate symbols has_hobbies, has_child, married, and bachelor can
be separated into the strata S1 := {has_hobbies}, S2 := {has_child, married},
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S3 := {bachelor}. The initial instance M0 ={{john}human, {john}plays the piano,
{john}male} is directly derived from the facts of the program. Since has_hobbies

is the only element of S1, only the first rule is relevant for the computation of
M1 := M0 ∪ {{john}has hobbies}. The second and the third rule are relevant for
the computation of M2, which is the same instance as M1. Finally, the fourth rule
allows to add the fact bachelor(john) yielding the final instance M3 := M2 ∪
{{john}bachelor}.

Listing 7 16. A stratifiable program with negation as failure

human(john ).
male(john ).
plays_the_piano (john ).

has_hobbies (X) ← plays_the_piano (X).
has_child (X) ← human(X), not has_hobbies (X).
married(X) ← human(X), has_child (X).
bachelor(X) ← male (X), not married(X).

7.2 Magic Set Transformation for Stratified Logic Programs

While the computation of the iterative fixpoint of a stratified logic program
allows to answer an arbitrary query on the program, it is inefficient in the
sense that no goal-directed search is performed. One method for introducing
goal-directedness into logical query answering, that is also relatively easy to im-
plement, is the magic set rewriting as introduced in Section 6.2. The task of
transferring the magic set approach to logic programs with negation has there-
fore received considerable attention [41], [98], [16], [139], [15].

The main problem emerging when applying the magic set method to pro-
grams with negative literals in rule bodies is that the resulting program may not
be stratified. There are two approaches to dealing with this situation. The first
one is to use a preprocessing stage for the original program in order to obtain
a stratified program under the magic set transformation and is pursued by [41].
The second one is to accept the unstratified outcome of the magic set trans-
formation and to compute some other semantics which deals with unstratified
programs. This second approach is employed by [19], which proposes to compute
the well-founded model by Kerisit’s weak consequence operator at the aid of a
new concept called soft stratification.

Because of its simplicity and straightforwardness, only the first approach is
presented in this article.

In [41] three causes for the unstratification of a magic-set transformed program
are identified:

– both an atom a and its negation not a occur within the body of the same
rule of the program to be transformed.
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– a negative literal occurs multiple times within the body of a rule of the
original program

– a negative literal occurs within a recursive rule

With b occurring both positively and negatively in the body of the first rule,
Listing 7 17 is an example for the first cause of unstratification. The predicate
symbol c is an extensional one, and therefore no magic rules are created for it,
a and b are intensional ones. When the magic set transformation from the last
chapter is naively applied to the program and the query a(1), which means that
negated literals are transformed in the very same way as positive ones, the magic
set transformed program in Listing 7 18 is not stratified, because it contains a
negative dependency cycle among its predicates: magic_bb negatively depends on
bb, which again depends on magic_bb.

Listing 7 17. A program leading to unstratification under the naive magic set trans-
formation

a(x) ← not b(x), c(x,y), b(y).
b(x) ← c(x,y), b(y).

Listing 7 18. The unstratified outcome of the magic set transformation applied to
Program 7 17

magic_ab(1).
magic_bb(x) ← magic_ab(x).
magic_bb(y) ← magic_ab(x), not bb(x), c(x,y).
a(x) ← magic_ab(x), not bb(x), c(x,y), bb(y).
magic_bb(y) ← magic_bb(x), c(x,y).
b(x) ← magic_bb(x), c(x,y), b(y).

[41] proposes to differentiate the contexts in which a negative literal is evalu-
ated by numbering the occurrences of the literal in the rule body before the magic
set transformation is applied. The numbered version of Listing 7 17 is displayed
in Listing 7 19 where the two occurrences of b have been numbered. Additionally,
for each newly introduced numbered predicate symbol pi its defining rules are
copies from the definition of the unnumbered symbol p, with all occurrences of
p replaced by pi. In this way, the semantics of the program remains unchanged,
but the program becomes stratified under the magic set transformation, as can
be verified in Listing 7 20.

Listing 7 19. Program 7 17 with differentiated contexts for the literal b

a(x) ← not b_1(x), c(x,y), b_2(y).
b_1(x) ← c(x,y), b_1(y).
b_2(x) ← c(x,y), b_2(y).
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Listing 7 20. The stratified outcome of the magic set transformation applied to pro-
gram 7 19

magic_ab(1).
magic_b_1 b(x) ← magic_ab(x).
magic_b_2 b(y) ← magic_ab(x), not b_1b(x), c(x,y).
ab(x) ← magic_ab(x), not b_1b(x), c(x,y), b_2b(y).
magic_b_1 b(y) ← magic_b_1 b(x), c(x,y).
b_1(x) ← magic_b_1 b(x), c(x,y), b_1(y).
magic_b_2 b(y) ← magic_b_2 b(x), c(x,y).
b_2(x) ← magic_b_2 b(x), c(x,y), b_2(y).

Also for the second and third source of unstratification, elimination procedures
can be specified that operate on the adorned rule set, but are carried out prior
to the magic set transformation. For more details and a proof, that the resulting
programs are indeed stratified see [41].

7.3 Computation of the Stable Model Semantics

While the iterative fixpoint semantics provides an intuitive and canonical se-
mantics for a subset of logic programs with negation as failure, several attempts
have been made to assign a semantics to programs which are not stratifiable.
One of these attempts is the stable model semantics (see Section 5.3.2).

An example for a program which is not stratifiable but is valid under the
stable model semantics is given in Listing 7 21.

Listing 7 21. A non-stratifiable program with a stable model semantics

married(john , mary ).
male(X) ← married(X,Y), not male(Y).

The stable model semantics for a program P is computed as follows: In a first
step all rules containing variables are replaced by their ground instances. In a
second step the program is transformed with respect to a given model M into
a program GLM (P ) by deleting all those rules which contain a negative literal
not(L) in their body where L is contained in M , and by deleting all those negative
literals not(L) from the rules for which L is not contained in M . Clearly, the
semantics of the program P remains unchanged by both of these transformations
with respect to the particular model M . Since this transformation has first been
proposed by Gelfond and Lifschitz in [77], it is also known under the name
Gelfond-Lifschitz-Transformation (See also Definition 165).

An Herbrand interpretation M is a stable set of P if and only if it is the unique
minimal Herbrand model of the resulting negation-free program GLM (P ). See
Definition 166 and Lemma 167. The stable model semantics for a program P
(written SΠ(P )) is defined as the stable set of P , and remains undefined if there
is none or more than one of them.
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The Gelfond-Lifschitz-Transformation of Listing 7 21 with respect to the set
M := {married(john, mary), male(John)} results in the Program in Listing 7 22.
Rule instances and negative literals of rule instances have been crossed out ac-
cording to the rules mentioned above. Since the unique minimal Herbrand model
of the resulting Program is also M = {married(john, mary), male(John)}, M is
a stable set of the original program in 7 21. Since there are no other stable sets
of the program, M is its stable model.

Listing 7 22. Listing 7 21 transformed with respect to the set {married(john, mary),
male(John)}

married(john , mary ).
male(john) ← married(john , mary), not male(mary).
male(mary) ← married(mary, john), not male(john).
male(mary) ← married(mary , mary), not male(mary).
male(john) ← married(john, john), not male(john).

An efficient implementation of the stable model semantics (and also the well-
founded model semantics) for range-restricted and function-free normal logic
programs is investigated in [123] and its performance is compared to that of
SLG resolution in [40].

7.4 A More Efficient Implementation of the Stable Model Semantics

The approach of [123] recursively constructs all possible stable models by adding
one after another positive and negative literals from the set of negative an-
tecedents (Definition 217) to an intermediate candidate full set B (see Definition
219). The algorithm (see Listing 7 23) makes use of backtracking to retract el-
ements from B and to find all stable models of a program. In addition to the
program P itself and the intermediate candidate set B, the algorithm takes a
third argument which is a formula φ that is tested for validity whenever a stable
model is found. The algorithm returns true if there is a stable model of φ and
false otherwise. Moreover it can be adapted to find all stable models of a program
or to determine whether a given formula is satisfied in all stable models.

Definition 217 (Negative Antecedents). Given a logic program P , the set
of its negative antecedents NAnt(P ) is defined as all those atoms a such that
not(a) appears within the body of a rule of P .

Definition 218 (Deductive closure). The deductive closure Dcl(P, L) of a
program P with respect to a set of literals L is the smallest set of atoms containing
the negative literals L− of L, which is closed under the following set of rules:

R(P, L) := { c ← a1, . . . , an | c ← a1, . . . , an, not(b1), . . . , not(bm) ∈ P, (1)
{not(b1), . . . , not(bm) ⊆ L−}}

Definition 219 (Full Sets (from [123])). A set Λ of not-atoms (negated
atoms) is called P -full iff for all φ ∈ NAnt(P ), not(φ) ∈ Λ iff φ /∈ Dcl(P, Λ).
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Example 220. Consider the logic program P := {q ← not(r).q ← not(p).r ←
q.} The negative antecedents of the program are NAnt(P ) = {r, p}. Λ1 :=
{not(r), not(p)} is not a full set with respect to P because not(r) is in Λ1,
but r is in the deductive closure Dcl(P, Λ1). The only full set with respect to P
is Λ2 := {not(p)}: not(p) ∈ Λ2 and p /∈ Dcl(P, Λ2) holds for p and not(r) /∈ Λ2
and r ∈ Dcl(P, Λ2) holds for the other element r of NAnt(P ).

Theorem 221 (Relationship between full sets and stable models
([123])). Let P be a ground program and Λ a set of not-atoms (negated atoms).
(i) If Λ is a full set with respect to P then Dcl(P, Λ) is a stable model of P .
(ii) If Δ is a stable model of P then Λ = not(NAnt(P ) − Δ) is a full set with
respect to P such that Dcl(P, Λ) = Δ.

According to theorem 221 it is sufficient to search for full sets instead of for
stable models, because stable models can be constructed from these full sets.
This approach is pursued by the algorithm in Listing 7 23.

Definition 222 (L covers A). Given a set of ground literals L and a set of
ground atoms A, L is said to cover A, iff for every atom a in A either a ∈ L or
not(a) ∈ L holds.

Listing 7 23. Efficient computation of the stable model semantics for a logic program

function stable_model (P,B,φ)
let B’ = expand(P,B) in

if conflict (P,B′) then false
else

if (B′ covers NAnt(P )) then test(Dcl(P,B′),φ)
else

take some χ ∈ NAnt(P ) not covered by B′

if stable_model (P, B′ ∪ {not(χ)}, φ) then true
else stable_model (P, B′ ∪ {χ}, φ)

The algorithm is not fully specified, but relies on the two functions expand

and conflict, which undergo further optimization. The idea behind the function
expand is to derive as much further information as possible about the common
part B of the stable models that are to be constructed without losing any model.
One could also employ the identity function as an implementation for expand,
but by burdening the entire construction of the full sets on the backtracking
search of the function stable_model, this approach would be rather inefficient. A
good choice for the expand function is to return the least fixpoint of the Fitting
operator FP (B):

Definition 223 (Fitting operator FP ). Let B be a set of ground literals, and
P a ground logic program. The set FP (B) is defined as the smallest set including
B that fulfills the following two conditions:
(i) for a rule h ← a1, . . . , an, not(b1), . . . , not(bm) with ai ∈ B, 1 ≤ i ≤ n and
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not(bj),∈ B, 1 ≤ j ≤ m, h is in FP (B).
(ii) if for an atom a such that for all of its defining rules, a positive premise p
is in its body and not(p) is in B, or a negative literal not(p) is in its body with
p in B, then a is in FP (B).

The function conflict returns true whenever (i) B covers NAnt(P ), and (ii) if
there is an atom a in the set B such that a /∈ Dcl(P, B) or a literal not(a) ∈ B
such that a ∈ Dcl(P, B). In this way, conflict prunes the search for full sets
(and therefore the search for stable models) by detecting states in which no
stable model can be constructed as early as possible. For further optimiza-
tions regarding the computation of the stable model semantics with the function
stable_model the reader is referred to [123].

7.5 Computation of the Well-Founded Model Semantics

Another approach to defining a semantics for logic programs that are neither
stratifiable nor locally stratifiable is the well-founded model approach [152] (see
Section 5.3.3).

Recall that in this context the term interpretation refers to a set of positive or
negative literals {p1, . . . , pk, not(n1), . . . , not(ni)} and that the notation S, with
S = {s1, . . . , sn} being a set of atoms, refers to the set {¬s1, . . . ,¬sn} in which
each of the atoms is negated.

An unfounded set (see Section 5.3.3) of a logic program P with respect to an
interpretation I is a set of (positive) atoms U , such that for each instantiated
rule in P which has head h ∈ U , at least one of the following two conditions
applies.

– the body of the rule is not fulfilled, because it contains either a negative
literal not(a) with a∈ I or a positive literal a with not(a)∈ I.

– the body of the rule contains another (positive) atom a ∈ U of the unfounded
set.

The greatest unfounded set turns out to be the union of all unfounded sets
of a program. Note that the definition above does not immediately provide an
algorithm for finding the greatest unfounded set. In this subsection, however,
a straight-forward algorithm is derived from the definition and in the following
subsection, a more involved algorithm for computing the well-founded semantics
is introduced.

The computation of the well founded semantics is an iterative process mapping
interpretations to interpretations and involving the computation of immediate
consequences and greatest unfounded sets. The initial interpretation is the empty
set, which reflects the intuition that at the beginning of the program examina-
tion, nothing is known about the entailments of the program. The iteration uses
the following three kinds of mappings:

– the immediate consequence mapping TP (I) of the program with respect to
an interpretation I
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– the greatest unfounded set mapping UP (I), which finds the greatest un-
founded set of a program with respect to an interpretation I

– WP (I) := TP (I) ∪ UP (I) which maps an interpretation to the union of all
of its immediate consequences and the set of negated atoms of the greatest
unfounded set.

The well-founded semantics (see Section 5.3.3) of a logic program is then
defined as the least fixpoint of the operator WP (I). The computation of well
founded sets and of the well founded semantics is best illustrated by an exam-
ple (see Listing 7 24). The set of immediate consequences TP (∅) of the empty
interpretation of the program 7 24 is obviously the set {c(2)}. The greatest un-
founded set UP (∅) of the program with respect to the empty interpretation is
the set {d(1), f(2), e(2), f(1)}. f(1) is in UP (∅), because there are no rules with
head f(1), and therefore the conditions above are trivially fulfilled.

Note that the fact a(1) is not an unfounded fact with respect to the inter-
pretation ∅, although one is tempted to think so when reading the program as
a logic program with negation as failure semantics.

The three atoms {d(1), f(2), e(2)} form an unfounded set, because the deriva-
tion of any of them would require one of the others to be already derived. There
is no possibility to derive any of them first. Hence, according to the well-founded
semantics, they are considered false, leading to I1 := WP (∅) = TP (∅)∪UP (∅) =
{c(2)} ∪ {d(1), f(2), e(2), f(1)} = {c(2),¬d(1),¬f(2),¬e(2),¬f(1)}.

In the second iteration a(1) is an immediate consequence of the program, but
still neither one of the atoms a(2) and b(2) can be added to the interpretation
(also their negated literals cannot be added). After this second iteration the fix-
point {c(2),¬d(1),¬f(2),¬e(2),¬f(1), a(1)} is reached without having assigned
a truth value to the atoms a(2) and b(2).

Listing 7 24. Example program for the well-founded semantics

b(2) ← ¬ a(2).
a(2) ← ¬ b(2).

d(1) ← f(2), ¬ f(1).
e(2) ← d(1).
f(2) ← e(2).

a(1) ← c(2), ¬ d(1).
c(2).

The computation of this partial well-founded model involves guessing the
unfounded sets of a program P . If P is finite, all subsets of the atoms occurring
in P can be tried as candidates for the unfounded sets. In practice those atoms
that have already been shown to be true or false do not need to be reconsidered,
and due to the fact that the union of two unfounded sets is an unfounded set
itself, the greatest unfounded set can be computed in a bottom up manner,
which decreases the average case complexity of the problem. Still, in the worst
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case O(2a) sets have to be tried for each application of the operator UP , with
a being the number of atoms in the program. In [154] a deterministic algorithm
for computing the well-founded semantics of a program is described.

7.6 Computing the Well-Founded Semantics by the Alternating
Fixpoint Procedure

The central idea of the alternating fixpoint procedure[154] is to iteratively build
up a set of negative conclusions Ã of a logic program, from which the posi-
tive conclusions can be derived at the end of the process in a straightforward
way. Each iteration is a two-phase process transforming an underestimate of the
negative conclusions Ĩ into a temporary overestimate S̃P (Ĩ) and back to an un-
derestimate AP (Ĩ) := S̃P (S̃P (Ĩ)). Once this two-phase process does not yield
further negative conclusions, a fixpoint is reached. The set of negative conclu-
sions of the program is then defined as the least fixpoint Ã := Aω

P (∅) of the
monotonic transformation AP .

In each of the two phases of each iteration the fixpoint SP (Ĩ) := Tω
P ′(∅) of

an adapted version of the immediate consequence operator corresponding to the
ground instantiation of the program PH plus the set Ĩ of facts that are already
known to be false, is computed.

In the first phase the complement S̃P (Ĩ) := (H − SP (Ĩ)) of this set of deriv-
able facts constitutes an overestimate of the set of negative derivable facts, and
in the second phase the complement S̃P (S̃P (Ĩ)) is an underestimate.

Let’s now turn to the adapted immediate consequence operator. As in the
previous sections, the algorithm does not operate on the program P itself, but
on its Herbrand instantiation PH . Based on the Herbrand instantiation PH and
a set of negative literals Ĩ a derived program P ′ := PH ∪ Ĩ and a slightly altered
version of the immediate consequence operator TP ′ of P ′ are defined.

A fact f is in the set TP ′(I) of immediate consequences of the program P ′

if all literals li in the body of a rule with head f are fulfilled. The difference
to the previous definition of the immediate consequence operator is that the
bodies of the rules are not required to be positive formulas, but may contain
negative literals as well. A negative literal in the rule body is only fulfilled, if it
is explicitly contained in the program P ′ (stemming from the set Ĩ which is one
component of P ′). A positive literal in the body of P ′ is fulfilled if it is in the
interpretation I.

For the proof of the equivalence of the partial models computed by the well-
founded model semantics and the alternating fixpoint algorithm the reader is
referred to [154].

The computation of the well-founded semantics of the program in Listing 7 24
with the alternating fixpoint procedure is achieved without guessing well-founded
sets by the following steps.

– SP (∅) = {c(2)}. The fact a(1) cannot be derived because negation is not
treated as negation as failure, but only if the negated literal is in Ĩ. Similarly,
neither one of the facts b(2) and a(2) are in SP (∅).
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– S̃P (∅) = (H − SP (∅)) = {a(2), b(2), f(2), f(1), d(1), e(2), f(2), c(2), a(1)}-
{c(2)} = {¬a(2),¬b(2),¬f(2),¬f(1),¬d(1),¬e(2),¬f(2),¬a(1)} is the first
overestimate of the derivable negative facts.

– SP (S̃P (∅)) = {c(2), a(1), b(2), a(2)} and thus AP (∅) = S̃P (S̃P (∅)) = {¬f(2),
¬f(1), ¬d(1),¬e(2)} is the second underestimate of the derivable negative
literals (the first one was the emptyset).

– S̃P (ÃP (∅)) = {¬a(2),¬b(2),¬f(2),¬f(1),¬d(1),¬e(2)}
– AP (AP (∅)) = {¬f(2),¬f(1),¬d(1),¬e(2)} = AP (∅) means that the fix-

point has been reached and Ã = AP (∅) is the set of of negative literals
derivable from the program.

– The well founded partial model of the program is given by Ã ∪ SP (Ã) =
{¬f(2),¬f(1),¬d(1),¬e(2), c(2), a(1)}, which is the same result as in the
previous section.

For finite Herbrand universes the partial well-founded model is computable
in O(h) with h being the size of the Herbrand Universe [154].

7.7 Other Methods for Query Answering for Logic Programs with
Negation

While this chapter gives a first idea on methods for answering queries on strati-
fied and general logic programs with negation, many approaches have not been
mentioned. The previous sections have shown different ways of implementing the
stable model semantics and the well-founded model semantics for general logic
programs mainly in a forward chaining manner (except for the magic set trans-
formation, which is a method of introducing goal-directed search into forward
chaining).

The best known backward chaining method for evaluating logic programs
with negation is an extension of SLD resolution with negation as failure, and is
called SLDNF [33][10][145][58]. SLDNF is sound with respect to the completion
semantics [42] of a logic program and complete for Horn logic programs [93].

Przymusinski introduced SLS resolution[135] as a backward chaining opera-
tional semantics for general logic programs under the perfect model semantics
[132]. SLS resolution was extended by Ross to global SLS-resolution[140], which
is a procedural implementation of the well-founded model semantics.

8 Complexity and Expressive Power of Logic
Programming Formalisms

8.1 Complexity Classes and Reductions

In this section we recall what is meant by the complexity of logic programming.
Moreover, we provide definitions of the standard complexity classes encountered
in this survey and provide other related definitions. For a detailed exposition of
the complexity notions, the reader is referred to e.g., [94,126].
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8.1.1 Decision Problems
In this section, we only deal with decision problems , i.e., problems where the
answer is “yes” or “no”. Formally, a decision problem is a language L over some
alphabet Σ. An instance of such a decision problem is given as a word x ∈ Σ∗.
The question to be answered is whether x ∈ L holds. Accordingly, the answer is
“yes” or “no”, respectively. The resources (i.e., either time or space) required in
the worst case to find the correct answer for any instance x of a problem L is
referred to as the complexity of the problem L.

8.1.2 Complexity of Logic Programming
There are three main kinds of decision problems (and, thus, three main kinds of
complexity) connected to plain datalog and its various extensions [156]:

– The data complexity is the complexity of the following decision problem:
Let P be some fixed datalog program.

Instance. An input database Din and a ground atom A.
Question. Does Din ∪ P |= A hold?

– The program complexity (also called expression complexity) is the com-
plexity of the following decision problem: Let Din be some fixed input data-
base.

Instance. A datalog program P and a ground atom A.
Question. Does Din ∪ P |= A hold?

– The combined complexity is the complexity of the following decision prob-
lem:

Instance. A datalog program P , an input database Din , and a ground atom
A.
Question. Does Din ∪ P |= A hold?

Note that for all versions of datalog considered in this paper, the combined
complexity is equivalent to the program complexity with respect to polynomial-
time reductions. This is due to the fact that with respect to the derivation of
ground atoms, each pair 〈Din , P 〉 can be easily reduced to the pair 〈D∅, P ∗〉,
where D∅ is the empty database instance associated with a universe of two
constants c1 and c2, and P ∗ is obtained from P∪Din by straightforward encoding
of the universe UDin using n-tuples over {c1, c2}, where n = !|UDin |". For this
reason, we mostly disregard the combined complexity in the material concerning
datalog.

As for logic programming in general, a generalization of the combined com-
plexity may be regarded as the main complexity measure. Below, when we speak
about the complexity of a fragment of logic programming, we mean the com-
plexity of the following decision problem:
Instance. A datalog program P and a ground atom A.
Question. Does P |= A hold?
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8.1.3 Complexity Classes
Normally, the time complexity of a problem is expressed in terms of the steps
needed by a Turing machine which decides this problem. Likewise, the space
complexity corresponds to the number of cells visited by a Turing machine.
However, the complexity classes we are interested in here can be defined by
any “reasonable” machine model, e.g. random access machines, which are more
closely related to real-world computers.

We shall encounter the following complexity classes in this survey.

L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE ⊆ EXPTIME ⊆ NEXPTIME

These are the classes of problems which can be solved in logarithmic space (L),
non-deterministic logarithmic space (NL), polynomial time (P), non-deterministic
polynomial time (NP), polynomial space (PSPACE), exponential time (EXPTIME),
and non-deterministic exponential time (NEXPTIME).

Any complexity class C has its complementary class denoted by co-C, which
is defined as follows. For every language L ⊆ Σ∗, let L denote its complement ,
i.e. the set Σ∗ \ L. Then co-C is {L | L ∈ C}.

Another interesting kind of complexity classes are the classes of the polyno-
mial hierarchy. Formally, they are defined in terms of oracle Turing machines.
Intuitively, an oracle is a subroutine for solving some sub-problem where we do
not count the cost of the computation. Let C be a set of languages. For a lan-
guage L, we say that L ∈ PC (or L ∈ NPC) if and only if there is some language
A ∈ C such that L can be decided in polynomial-time (resp. in non-deterministic
polynomial-time) by an algorithm using an oracle for A. The polynomial hierar-
chy consists of classes Δp

i , Σp
i , and Πp

i defined as follows:

Δp
0 = Σp

0 = Πp
0 = P

Δp
i+1 = PΣp

i

Σp
i+1 = NPΣp

i

Πp
i+1 = co-Σp

i+1

for all i ≥ 0. The class PH is defined as

PH =
⋃

i≥0

Σp
i .

8.1.4 Reductions
Let L1 and L2 be decision problems (i.e., languages over some alphabet Σ).
Moreover, let R : Σ∗ → Σ∗ be a function which can be computed in logarithmic
space and which has the following property: for every x ∈ Σ∗, x ∈ L1 if and
only if R(x) ∈ L2. Then R is called a logarithmic-space reduction from L1 to L2
and we say that L1 is reducible to L2.

Let C be a set of languages. A language L is called C-hard if any language L′

in C is reducible to L. If L is C-hard and L ∈ C then L is called complete for C
or simply C-complete.



Foundations of Rule-Based Query Answering 109

Besides the above notion of a reduction, complexity theory also considers
other kinds of reductions, like polynomial-time reductions or Turing reductions
(which are more liberal kinds of reductions). In this paper, unless otherwise
stated, a reduction means a logarithmic-space reduction. However, we note that
in several cases, results that we shall review have been stated for polynomial-
time reductions, but the proofs establish that they hold under logarithmic-space
reductions as well.

8.1.5 Turing Machines
As was already mentioned above, the complexity classes considered here are usu-
ally defined in terms of Turing machines. On the other hand, as soon as one has
several complete problems for some complexity class C, further C-hardness re-
sults are usually obtained by reducing one of the already known C-hard problems
to the new problem under investigation. In other words, Turing machines are no
longer needed explicitly. However, in the context of logic programming, a great
portion of the hardness results recalled below have very intuitive proofs “from
first principles” (i.e., via reductions from the computations of Turing machines
rather than via reductions from other problems). We therefore briefly recall the
definition of deterministic and non-deterministic Turing machines.

A deterministic Turing machine (DTM) is defined as a quadruple (S, Σ, δ, s0)
with the following meaning: S is a finite set of states , Σ is a finite alphabet of
symbols, δ is a transition function, and s0 ∈ S is the initial state. The alphabet
Σ contains a special symbol � called the blank . The transition function δ is a
map

δ : S × Σ → (S ∪ {yes, no}) × Σ × {-1, 0, +1},

where yes, and no denote two additional states not occurring in S, and -1, 0,
+1 denote motion directions. It is assumed here, without loss of generality, that
the machine is well-behaved and never moves off the tape, i.e., d �= -1 whenever
the cursor is on the leftmost cell; this can be easily ensured by proper design of
δ (or by a special symbol which marks the left end of the tape).

Let T be a DTM (Σ, S, δ, s0). The tape of T is divided into cells containing
symbols of Σ. There is a cursor that may move along the tape. At the start, T
is in the initial state s0, and the cursor points to the leftmost cell of the tape.
An input string I is written on the tape as follows: the first |I| cells c0, . . . , c|I|−1
of the tape, where |I| denotes the length of I, contains the symbols of I, and all
other cells contain �.

The machine takes successive steps of computation according to δ. Namely,
assume that T is in a state s ∈ S and the cursor points to the symbol σ ∈ Σ on
the tape. Let

δ(s, σ) = (s′, σ′, d).

Then T changes its current state to s′, overwrites σ′ on σ, and moves the cursor
according to d. Namely, if d = -1 or d = +1, then the cursor moves to the
previous cell or the next one, respectively; if d = 0, then the cursor remains in
the same position.
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When any of the states yes or no is reached, T halts. We say that T accepts
the input I if T halts in yes. Similarly, we say that T rejects the input in the
case of halting in no.

A non-deterministic Turing machine (NDTM) is defined as a quadruple (S, Σ,
Δ, s0), where S, Σ, s0 are the same as before. Possible operations of the machine
are described by Δ, which is no longer a function. Instead, Δ is a relation:

Δ ⊆ (S × Σ) × (S ∪ {yes, no}) × Σ × {-1, 0, +1}.

A tuple whose first two members are s and σ respectively, specifies the action
of the NDTM when its current state is s and the symbol pointed at by its
cursor is σ. If the number of such tuples is greater than one, the NDTM non-
deterministically chooses any of them and operates accordingly.

Unlike the case of a DTM, the definition of acceptance and rejection by a
NDTM is asymmetric. We say that an NDTM accepts an input if there is at
least one sequence of choices leading to the state yes. An NDTM rejects an
input if no sequence of choices can lead to yes.

8.2 Propositional Logic Programming

We start our complexity analysis of logic programming with the simplest case,
i.e., propositional logic programming.

Theorem 224. (implicit in [95,156,89]) Propositional logic programming is
P-complete.

Proof. Membership. Let a program P be given. Recall from Section 6.1 that the
semantics of P can be defined as the least fixpoint of the immediate consequence
operator TP ) and that this least fixpoint lfp(TP ) can be computed in polynomial
time even if the “naive” evaluation algorithm from Listing 6 2 is applied. Indeed,
the number of iterations (i.e. applications of TP ) is bounded by the number of
rules plus one. Moreover, each iteration step is clearly feasible in polynomial
time.
Hardness. Let A be an arbitrary language in P. Thus A is decidable by a deter-
ministic Turing machine (DTM) T in at most q(|I|) steps for some polynomial
q, for any input I. We show that the computation of the Turing machine T on
any input I can be simulated by a propositional logic program as follows: Let
N = q(|I|). W.l.o.g., we assume that the computation of T on input I takes
exactly N steps.

The transition function δ of a DTM with a single tape can be represented by
a table whose rows are tuples t = 〈s, σ, s′, σ′, d〉. Such a tuple t expresses the
following if-then-rule:

if at some time instant τ the DTM is in state s, the cursor points to cell
number π, and this cell contains symbol σ
then at instant τ +1 the DTM is in state s′, cell number π contains symbol
σ′, and the cursor points to cell number π + d.
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It is possible to describe the complete evolution of a DTM T on input string
I from its initial configuration at time instant 0 to the configuration at instant
N by a propositional logic program L(T, I, N). To achieve this, we define the
following classes of propositional atoms:

symbolα[τ, π] for 0 ≤ τ ≤ N , 0 ≤ π ≤ N and α ∈ Σ. Intuitive meaning: at
instant τ of the computation, cell number π contains symbol α.

cursor[τ, π] for 0 ≤ τ ≤ N and 0 ≤ π ≤ N . Intuitive meaning: at instant τ , the
cursor points to cell number π.

states[τ ] for 0 ≤ τ ≤ N and s ∈ S. Intuitive meaning: at instant τ , the DTM
T is in state s.

accept Intuitive meaning: T has reached state yes.

Let us denote by Ik the k-th symbol of the string I = I0 · · · I|I|−1. The initial
configuration of T on input I is reflected by the following initialization facts in
L(T, I, N):

symbolσ[0, π] ← for 0 ≤ π < |I|, where Iπ = σ
symbol�[0, π] ← for |I| ≤ π ≤ N
cursor[0, 0] ←

states0 [0] ←

Each entry 〈s, σ, s′, σ′, d〉 of the transition table δ is translated into the follow-
ing propositional Horn clauses, which we call the transition rules . We thus need
the following clauses for each value of τ and π such that 0 ≤ τ < N , 0 ≤ π < N ,
and 0 ≤ π + d.

symbolσ′ [τ + 1, π] ← states[τ ], symbolσ[τ, π], cursor[τ, π]
cursor[τ + 1, π + d] ← states[τ ], symbolσ[τ, π], cursor[τ, π]

states′ [τ + 1] ← states[τ ], symbolσ[τ, π], cursor[τ, π]

These clauses almost perfectly describe what is happening during a state
transition from an instant τ to an instant τ + 1. However, it should not be
forgotten that those tape cells which are not changed during the transition keep
their old values at instant τ +1. This must be reflected by what we term inertia
rules. These rules are asserted for each time instant τ and tape cell numbers
π, π′, where 0 ≤ τ < N , 0 ≤ π < π′ ≤ N , and have the following form:

symbolσ[τ + 1, π] ← symbolσ[τ, π], cursor[τ, π′]
symbolσ[τ + 1, π′] ← symbolσ[τ, π′], cursor[τ, π]

Finally, a group of clauses termed accept rules derives the propositional atom
accept, whenever an accepting configuration is reached.

accept ← stateyes[τ ] for 0 ≤ τ ≤ N .
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Denote by L the logic program L(T, I, N). Note that T0
L = ∅ and that T1

L

contains the initial configuration of T at time instant 0. By construction, the
least fixpoint lfp(TL) of L is reached at TN+2

L , and the ground atoms added to
Tτ

L , 2 ≤ τ ≤ N + 1, i.e., those in Tτ
L \ Tτ−1

L , describe the configuration of T on
the input I at the time instant τ − 1. The least fixpoint lfp(TL) contains accept
if and only if an accepting configuration has been reached by T in at most N
computation steps. Hence, L(T, I, N)) |= accept if and only if T has reached an
accepting state within q(N) steps with N = |I|.

The translation from I to L(T, I, N) with N = q(|I|) is very simple and is
clearly feasible in logarithmic space, since all rules of L(T, I, N)) can be gener-
ated independently of each other and each has size logarithmic in |I|; note that
the numbers τ and π have O(log |I|) bits, while all other syntactic constituents
of a rule have constant size. We have thus shown that every language A in P
is logspace reducible to propositional logic programming. Hence, propositional
logic programming is P-hard. �

Note that the the polynomial-time upper bound can be even sharpened to a
linear time upper bound, as was shown in [57,120]. As far as the lower bound is
concerned, the above proof could be greatly simplified by using reductions from
other P-complete problems like, e.g., from the monotone circuit value problem
(see [126]). However, the proof from first principles provides a basic framework
from which further results will be derived by slight adaptations in the sequel.

An interesting kind of syntactical restrictions on programs is obtained by re-
stricting the number of atoms in the body. Let LP(k) denote logic programming
where each clause has at most k atoms in the body. Then, by results in [156,90],
one easily obtains that LP(1) is NL-complete. Indeed, the correspondence be-
tween the well-known NL-complete reachability problem of directed graphs and
LP(1) is immediate. On the other hand, observe that the DTM encoding in the
proof of Theorem 224 can be easily modified to programs in LP(2). Hence, LP(k)
for any k ≥ 2 is P-complete.

8.3 Conjunctive Queries

For the complexity analysis of conjunctive queries (CQs), we restrict ourselves
to boolean conjunctive queries (cf. Definition 25), i.e. the queries under consid-
eration are of the form

Q : ans() ← r1(u1) ∧ . . . ∧ rn(un)

where n ≥ 0; r1, . . . , rn are (not necessarily distinct) extensional relation symbols
and ans() is a 0-ary intensional relation symbol; moreover, u1, . . . ,un are lists
of terms of appropriate length.25

Query Q evaluates to true if there exists a substitution θ such that ri(ui)θ ∈
Din for all i ∈ {1, . . . , n}; otherwise, the query evaluates to false .
25 Note that without this restriction to boolean CQs, the head literal of a conjunctive

query would have the form ans(u), where u is a list of terms. However, as far as
the complexity of query evaluation is concerned, this difference is inessential.
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Theorem 225. The program complexity of conjunctive queries is NP-complete
[37].

This problem appears as Problem SR31 in Garey and Johnson’s book [76].

Proof. Membership. We guess an assignment for each variable of the query and
check whether all the resulting ground atoms in the query body exist in Din .
This check is obviously feasible in polynomial time.
Hardness. We reduce the NP-complete 3-SAT problem to our problem. For this
purpose, we consider the following input database (over a ternary relation symbol
c and a binary relation symbol v) as fixed:

Din = { c(1, 1, 1), c(1, 1, 0), c(1, 0, 1), c(1, 0, 0),
c(0, 1, 1), c(0, 1, 0), c(0, 0, 1), v(1, 0), v(0, 1) }

Now let an instance of the 3-SAT problem be given through the 3-CNF formula

Φ =
n∧

i=1

li,1 ∨ li,2 ∨ li,3

over propositional atoms x1, . . . , xk. Then we define a conjunctive query Q as
follows:

ans() ← c(l∗1,1, l
∗
1,2, l

∗
1,3), . . . , c(l

∗
1,1, l

∗
1,2, l

∗
1,3), v(x1, x̄i), . . . , v(xk, x̄k)

where l∗ = x if l = x, and l∗ = x̄ if l = ¬x. By slight abuse of notation, we thus
use xi to denote either a propositional atom (in Φ) or a first-order variable (in
Q).

It is straightforward to verify that the 3-CNF formula Φ is satisfiable if and
only if Din ∪ Q |= ans() holds. �

8.4 First-Order Queries

Recall from Definition 6 that we are mainly considering first-order queries with-
out equality here. Hence, atoms are of the form r(u) for some relational symbol
r from the signature L and a list of terms u whose length corresponds to the
arity of r. Compound formulae are constructed from simpler ones by means of
quantification (with ∀ and ∃) and the conjuncts ∧,∨,¬. Note however that the
following complexity result also holds if we consider first-order predicate logic
with equality.

Theorem 226. (implicit in [90,156]) First-order queries are program-complete
for PSPACE. Their data complexity is in the class AC0, which contains the lan-
guages recognized by unbounded fan-in circuits of polynomial size and constant
depth [94].

Proof. We only prove the PSPACE-completeness. Actually, we show that the
combined complexity is PSPACE-complete. However, by the considerations in
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Section 8.1, the PSPACE-completeness of the program-complexity follows imme-
diately.
Membership. Let ϕ be a first-order sentence and Din be an input database with
domain elements dom. Let n = |Din | + |dom| and m = |ϕ|. There are maximal
m alternations of ∀ and ∃ (because the number of variables in ϕ is less than m),
thus the evaluation has maximal m nested loops. In each loop we need to store

1. the position of the currently processed variable, and
2. for each variable with the assigned value in dom, its position in dom.

The space for these operations is then O(m), hence in PSPACE.
Hardness. The PSPACE-hardness can be shown by a reduction from the QBF
problem. Assume that φ is the quantified Boolean formula

Qx1 . . . Qxnα(x1, . . . , xn)

where Q is either ∀ or ∃ and α is a quantifier-free Boolean formula.
We first define the signature L = {istrue, isequal, or, and, not} The predicates

and, or, not are used to define the operators of Boolean algebra. The predicate
istrue is unary and defines the truth value true, whereas the predicate isequal is
binary and defines the equality of two values.

For each sub-formula β of α, we define a quantifier-free, first-order formula
Tβ(z1, . . . , zn, x) with the following intended meaning: if the variables xi have
the truth value zi, then the formula β(x1, . . . , xn) evaluates to the truth value
x. Note that Tβ(z1, . . . , zn, x) can be defined inductively w.r.t. the structure of
α as follows:

Case β =

xi (with 1 ≤ i ≤ n) : Tβ(z̄, x) ≡ isequal(x, zi)
¬β′ : Tβ(z̄, x) ≡ ∃t1Tβ′(z̄, t1) ∧ not(x, t1)

β1 ∧ β2 : Tβ(z̄, x) ≡ ∃t1, t2 Tβ1(z̄, t1) ∧ Tβ2(z̄, t2) ∧ and(t1, t2, x)
β1 ∨ β2 : Tβ(z̄, x) ≡ ∃t1, t2 Tβ1(z̄, t1) ∧ Tβ2(z̄, t2) ∧ or(t1, t2, x)

Finally, we define the input database as Din = {istrue(1), isequal(0, 0), isequal(1,
1), or(1, 1, 1), or(1, 0, 1), or(0, 1, 1), or(0, 0, 0), and(1, 1, 1), and(1, 0, 0), and(0, 1, 0),
and(0, 0, 0), not(1, 0), not(0, 1)}, and the first-order query ϕ is defined as follows:

ϕ ≡ ∃x Qz1 . . . Qzn istrue(x) ∧ Tα(z̄, x)

It is then straightforward to show that the formula φ is satisfiable if and only if
the evaluation of ϕ returns true. �

8.5 Unification

Unification is used extensively in several areas of computer science, including
theorem proving, database systems, natural language processing, logic program-
ming, computer algebra, and program verification. We briefly introduce the basic
notions here. Additional material can be found in [13] or [52].
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Recall from Definition 50 that two atoms or terms s and t are called unifiable
if there exists a substitution σ with sσ = tσ. Such a substitution σ is called a
unifier of s and t. A unifier σ of s and t is called most general if any other unifier
σ′ of s and t is an instance of σ, i.e., there exists a substitution η with σ′ = ση.

The unification problem is the following decision problem: given terms s
and t, are they unifiable?

Robinson described an algorithm that solves this problem and, if the answer
is positive, computes a most general unifier of given two terms (see [138]). His
algorithm had exponential time and space complexity mainly because of the rep-
resentation of terms by strings of symbols. However, by using more sophisticated
data structures (like directed acyclic graphs), unification was later shown to be
feasible in polynomial time. In fact, even linear time suffices (see [116,130]).

Theorem 227. ([59,162,60]) The unification problem is P-complete.

Note that in the above definition of unification, a unifier σ of s and t makes
the terms sσ and tσ syntactically equal. More generally, one may look for so-
called E-unifiers which make the terms sσ and tσ equal modulo some equational
theory.

Equational theories are usually presented by finite sets E of identities of the
form l = r, which are referred to as equational axioms. The equational theory
Th(E) presented by E is the smallest congruence relation over terms (for a
given signature L) containing E and closed under substitutions, i.e., Th(E) is
the smallest congruence containing all pairs lρ = rρ, where l = r is in E and
ρ is a substitution. We write s =E t to denote that the pair (s, t) of terms is
a member of Th(E). In this survey, we only consider the equationl axioms (for
some function symbol f) depicted in Figure 7.

Associativity A(f) f(f(x, y), z) = f(x, f(y, z))

Commutativity C(f) f(x, y) = f(y, x)

Idempotence I(f) f(x, x) = x

Existence of Unit U(f) f(x, 1) = x, f(1, x) = x

Fig. 7. Equational Axioms

An E-unifier of s and t is a substitution ρ such that sρ =E tρ holds. Whenever
such an E-unifier exists, we say that the terms s and t are E-unifiable. For
every equational theory E, the E-unification problem is the following decision
problem: given terms s and t, are they E-unifiable, i.e., is there a substitution ρ,
such that sρ =E tρ?

By examining the signature L over which the terms of unification problems in
the theory Th(E) have been built, we distinguish between three different kinds
of E-unification. Let sig(E) be the set of all function and constant symbols oc-
curring in the equational axioms of E. If L = sig(E) holds, then we speak about
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elementary E-unification. If the signature L contains in addition free constant
symbols, but no free function symbols, then we speak about E-unification with
constants. Finally, if the signature L contains free function symbols of arbitrary
arities, then we speak about general E-unification. Figure 8 summarizes the com-
plexity results for some equational unification decision problems. The entry ←−
means that upper bounds carry over to the simpler case.

theory complexity

elementary with constants general

∅ ←− ←− linear [116,130]

A ←− NP-hard [20] and
in NEXPTIME [131]

NP-hard

C
NP-complete
(folkore, see e.g. [76,13])

NP-complete

AC NP-complete NP-complete NP-complete [96]

ACI ←− in P NP-complete [96]

ACIU ←− in P NP-complete [121]

Fig. 8. Complexity Results for Equational Unification Decision Problems

8.6 Positive Definite Rule Sets

Let us now turn to datalog. We first consider the data complexity.

Theorem 228. (implicit in [156,89]) Datalog is data complete for P.

Proof. (Sketch) Grounding P on an input database D yields polynomially many
clauses in the size of D; hence, the complexity of propositional logic programming
is an upper bound for the data complexity.

The P-hardness can be shown by writing a simple datalog meta-interpreter
for propositional LP(k), where k is a constant.

Represent rules A0 ← A1, . . . , Ai, where 0 ≤ i ≤ k, by tuples 〈A0, . . . , Ai〉
in an (i + 1)-ary relation Ri on the propositional atoms. Then, a program P in
LP(k) which is stored this way in a database D(P ) can be evaluated by a fixed
datalog program PMI(k) which contains for each relation Ri, 0 ≤ i ≤ k, a rule

T (X0) ← T (X1), . . . , T (Xi), Ri(X0, . . . , Xi).

T (x) intuitively means that atom x is true. Then, P |= A just if PMI ∪P (D) |=
T (A). P-hardness of the data complexity of datalog is then immediate from
Theorem 224. �

The program complexity is exponentially higher.



Foundations of Rule-Based Query Answering 117

Theorem 229. (implicit in [156,89]) Datalog is program complete for
EXPTIME.

Proof. Membership. Grounding P on D leads to a propositional program P ′

whose size is exponential in the size of the fixed input database D. Hence, by
Theorem 224, the program complexity is in EXPTIME.

Hardness. In order to prove EXPTIME-hardness, we show that if a DTM T halts
in less than N = 2nk

steps on a given input I where |I| = n, then T can be
simulated by a datalog program over a fixed input database D. In fact, we use
D∅, i.e., the empty database with the universe U = {0, 1}.

We employ the scheme of the DTM encoding into logic programming from
Theorem 224, but use the predicates symbolσ(X, Y ), cursor(X, Y ) and states(X)
instead of the propositional letters symbolσ[X, Y ], cursor[X, Y ] and states[X ]
respectively. The time points τ and tape positions π from 0 to 2m − 1, m = nk,
are represented by m-ary tuples over U , on which the functions τ + 1 and π + d
are realized by means of the successor Succm from a linear order ≤m on Um.

For an inductive definition, suppose Succi(X,Y), Firsti(X), and Lasti(X) tell
the successor, the first, and the last element from a linear order ≤i on U i, where
X and Y have arity i. Then, use rules

Succi+1(Z,X, Z,Y) ← Succi(X,Y)
Succi+1(Z,X, Z ′,Y) ← Succ1(Z, Z ′),Lasti(X),Firsti(Y)

Firsti+1(Z,X) ← First1(Z),Firsti(X)
Lasti+1(Z,X) ← Last1(z),Lasti(X)

Here Succ1(X, Y ), First1(X), and Last1(X) on U1 = U must be provided. For
our reduction, we use the usual ordering 0 ≤1 1 and provide those relations by
the ground facts Succ1(0, 1), First1(0), and Last1(1).

The initialization facts symbolσ[0, π] are readily translated into the datalog
rules

symbolσ(X, t) ← Firstm(X),

where t represents the position π, and similarly the facts cursor[0, 0] and states0 [0].
The remaining initialization facts symbol�[0, π], where |I| ≤ π ≤ N , are translated
to the rule

symbol�(X,Y) ← Firstm(X), ≤m(t,Y)

where t represents the number |I|; the order ≤m is easily defined from Succm

by two clauses
≤m(X,X) ←
≤m(X,Y) ← Succm(X,Z), ≤m (Z,Y)

The transition and inertia rules are easily translated into datalog rules. For
realizing τ +1 and π +d, use in the body atoms Succm(X,X′). For example, the
clause

symbolσ′ [τ + 1, π] ← states[τ ], symbolσ[τ, π], cursor[τ, π]
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is translated into

symbolσ′(X′,Y) ← states(X), symbolσ(X,Y), cursor(X,Y),Succm(X,X′).

The translation of the accept rules is straightforward.
For the resulting datalog program P ′, it holds that P ′ ∪ D∅ |= accept if and

only if T accepts input I in at most N steps. It is easy to see that P ′ can be
constructed from T and I in logarithmic space. Hence, datalog has EXPTIME-
hard program complexity. �

Note that, instead of using a generic reduction, the hardness part of this theorem
can also be obtained by applying complexity upgrading techniques [127,17].

8.7 Stratified Definite Rule Sets (stratified Datalog)

Recall from Definition 21 that a normal clause is a rule of the form

A ← L1, . . . , Lm (m ≥ 0)

where A is an atom and each Li is a literal. A normal logic program is a finite set
of normal clauses. As was explained in Section 7, if a normal logic program P is
stratified , then the clauses of P can be partitioned into disjoint sets S1, . . . , Sn

s.t. the semantics of P is computed by successively computing fixpoints of the
immediate consequence operators TS1 , . . . , TSn . More precisely, let I0 be the
initial instance over the extensional predicate symbols of P and let Ii (with
1 ≤ i ≤ n) be defined as follows:

I1 := Tω
S1

(I0), I2 := Tω
S2

(I1), . . . , In := Tω
Sn

(In−1)

Then the semantics of program P is given through the set In.
Note that in the propositional case, In is clearly polynomially computable.

Hence, stratified negation does not increase the complexity. Analogously to The-
orems 224, 228, and 229, we thus have:

Theorem 230. (implicit in [9]) Stratified propositional logic programming with
negation is P-complete. Stratified datalog with negation is data complete for P
and program complete for EXPTIME.

Note that nonrecursive logic programs with negation are trivially stratified since,
in this case, the dependency graph is acyclic and the clauses can be simply parti-
tioned into strata according to a topological sort of the head predicates. Actually,
any nonrecursive datalog program with negation can be easily rewritten to an
equivalent first-order query and vice versa (cf. Theorem 243). Hence, analogously
to Theorem 226, we have the following complexity results.

Theorem 231. (implicit in [90,156]) Nonrecursive propositional logic program-
ming with negation is P-complete. Nonrecursive datalog with negation is program
complete for PSPACE. Its data complexity is in the class AC0, which contains the
languages recognized by unbounded fan-in circuits of polynomial size and constant
depth [94].
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8.8 Well-Founded and Inflationary Semantics

In Section 7.6, an alternating fixpoint procedure for computing the well-founded
semantics was presented. This computation aims at iteratively building up a set
of negative conclusions Ã of a logic program. It starts with an underestimate of
the negative conclusions Ĩ = ∅ from which an overestimate S̃P (Ĩ) is computed
which is in turn used to move back to an underestimate AP (Ĩ) := S̃P (S̃P (Ĩ)),
etc. The iteration of this monotonic transformation AP leads to a least fixpoint
Ã := lfp(AP ). The well-founded semantics of the program P is given through
the set Ã∪ S̃P (Ã). Clearly, for a propositional logic program, this fixpoint com-
putation can be done in polynomial time. Together with Theorem 224, we thus
get.

Theorem 232. (implicit in [154,155]) Propositional logic programming with
negation under well-founded semantics is P-complete. Datalog with negation un-
der well-founded semantics is data complete for P and program complete for
EXPTIME.

As was mentioned in Section 5.3.5, the inflationary semantics is defined via
the inflationary operator T̃P , which is defined as T̃P (I) = I ∪ TP I (I) (cf. De-
finition 189). Clearly, the limit T̃ω

P (I) is computable in polynomial time for a
propositional program P . Therefore, by the above results, we have

Theorem 233. ([5]; implicit in [86]) Propositional logic programming with
negation under inflationary semantics is P-complete. Datalog with negation un-
der inflationary semantics is data complete for P and program complete for
EXPTIME.

8.9 Stable Model Semantics

An interpretation I of a normal logic program P is a stable model of P [77] if I is
the (unique) minimal Herbrand model of P I . As was mentioned in Section 5.3.2,
a program P may have zero, one, or multiple stable models.

Note that every stratified program P has a unique stable model, and its strat-
ified and stable semantics coincide. Unstratified rules increase the complexity as
the following theorem illustrates.

Theorem 234. ([115], [22]) Given a propositional normal logic program P , de-
ciding whether P has a stable model is NP-complete.

Proof. Membership. Clearly, P I is polynomial time computable from P and I.
Hence, a stable model M of P can be guessed and checked in polynomial time.
Hardness. Modify the DTM encoding in the proof of Theorem 224 for a non-
deterministic Turing machine T as follows.

1. For each state s and symbol σ, introduce atoms Bs,σ,1[τ ],. . . , Bs,σ,k[τ ] for
all 1 ≤ τ < N and for all transitions 〈s, σ, si, σ

′
i, di〉, where 1 ≤ i ≤ k.
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2. Add Bs,σ,i[τ ] in the bodies of the transition rules for 〈s, σ, si, σ
′
i, di〉.

3. Add the rule

Bs,σ,i[τ ] ← ¬Bs,σ,1[τ ], . . . ,¬Bs,σ,i−1[τ ],¬Bs,σ,i+1[τ ], . . . ,¬Bs,σ,k[τ ].

Intuitively, these rules non-deterministically select precisely one of the pos-
sible transitions for s and σ at time instant τ , whose transition rules are
enabled via Bs,σ,i[τ ].

4. Finally, add a rule
accept ← ¬accept.

It ensures that accept is true in every stable model.

It is immediate from the construction that the stable models M of the resulting
program correspond to the accepting runs of T . �

Notice that, as shown in [115], the hardness part of this result holds even if
all rules in P have exactly one literal in the body and, moreover, this literal is
negative. As an easy consequence of Theorem 234, we obtain

Theorem 235. ([115]; [142] and [102]) Propositional logic programming with
negation under stable model semantics is co-NP-complete. Datalog with negation
under stable model semantics is data complete for co-NP and program complete
for co-NEXPTIME.

The co-NEXPTIME result for program complexity, which is not stated in [142],
follows from an analogous result for datalog under fixpoint models in [102] and
a simple, elegant transformation of this semantics to the stable model semantics
[142].

8.10 Disjunctive Rule Sets

A disjunctive logic program is a set of clauses

A1 ∨ · · · ∨ Ak ← L1, . . . , Lm with (k ≥ 1, m ≥ 0),

where each Ai is an atom and each Lj is a literal, see [112,119]. The semantics of
negation-free disjunctive logic programs is based on minimal Herbrand models.
As was pointed out in Section 5.1.4, in general, disjunctive logic programs do
not have a unique minimal Herbrand model.

Denote by MM(P ) the set of all minimal Herbrand models of P . The Gener-
alized Closed World Assumption (GCWA) [118] for negation-free P amounts to
the meaning MGCWA(P ) = {L | MM(P ) |= L}.

Theorem 236. ([62,64]) Let P be a propositional negation-free disjunctive
logic program and A be a propositional atom. Deciding whether P |=GCWA A
is co-NP-complete.
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Proof. (Sketch) It is not hard to argue that for an atom A, we have P |=GCWA A
if and only if P |=PC A, where |=PC is the classical logical consequence relation.
In addition, any set of clauses can be clearly represented by a suitable dis-
junctive logic program. Hence, the co-NP-hardness follows from the well-known
NP-completeness of SAT. �

Stable negation naturally extends to disjunctive logic programs, by adopting
that I is a (disjunctive) stable model of a disjunctive logic program P if and
only if I ∈ MM(P I) [133,78]. The disjunctive stable model semantics subsumes
the disjunctive stratified semantics [132]. For well-founded semantics, no such
natural extension is known; the semantics in [24,134] are the most appealing
attempts in this direction.

Clearly, P I is easily computed, and P I = P if P is negation-free. Thus,

Theorem 237. ([63,64,65]) Propositional disjunctive logic programming under
stable model semantics is Πp

2 complete. Disjunctive datalog under stable model
semantics is data complete for Πp

2 and program complete for co-NEXPTIMENP.

8.11 Rule Sets with Function Symbols

If we allow function symbols, then logic programs become undecidable.

Theorem 238. ([8,151]) Logic programming is r.e.-complete.26

Proof. (Sketch) On the one hand, the undecidability can be proved by a simple
encoding of (the halting problem of) Turing machines similar to the encoding in
the proof of Theorem 229 (use terms fn(c), n ≥ 0, for representing cell positions
and time instants). This reduction from the halting problem also establishes the
r.e.-hardness. On the other hand, the least fixpoint lfp(TP ) of any logic program
P is clearly a recursively enumerable set. This shows the r.e.-membership and,
thus, in total, the r.e.-completeness of logic programming. �

A natural decidable fragment of logic programming with functions are nonre-
cursive programs. Their complexity is characterized by the following theorem.

Theorem 239. ([47]) Nonrecursive logic programming is NEXPTIME-complete.

Proof. (Sketch) The NEXPTIME-membership is established by applying SLD-
resolution with constraints. The size of the derivation turns out to be exponen-
tial. The NEXPTIME-hardness is proved by reduction from the tiling problem
for the square 2n × 2n. �

26 In the context of recursion theory, reducibility of a language (or problem) L1 to L2

is understood in terms of a Turing reduction, i.e., L1 can be decided by a DTM
with oracle L2, rather than logarithmic-space reduction.
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8.12 Expressive Power

The expressive power of query languages such as datalog is a topic common
to database theory [2] and finite model theory [61] that has attracted much
attention by both communities. By the expressive power of a (formal) query
language, we understand the set of all queries expressible in that language.

In general, a query q defines a mapping Mq that assigns to each suitable input
database Din (over a fixed input schema) a result database Dout = Mq(Din)
(over a fixed output schema); more logically speaking, a query defines global
relations [85]. For reasons of representation independence, a query should, in
addition, be generic, i.e., invariant under isomorphisms. This means that if τ is
a permutation of the domain Dom(D), then M(τ(Din )) = τ(Dout ). Thus, when
we speak about queries, we always mean generic queries.

Formally, the expressive power of a query language Q is the set of mappings
Mq for all queries q expressible in the language Q by some query expression
(program) E; this syntactic expression is commonly identified with the semantic
query it defines, and simply (in abuse of definition) called a query.

There are two important research tasks in this context. The first is comparing
two query languages Q1 and Q2 in their expressive power. One may prove, for
instance, that Q1 � Q2, which means that the set of all queries expressible in
Q1 is a proper subset of the queries expressible in Q2, and hence, Q2 is strictly
more expressive than Q1. Or one may show that two query languages Q1 and
Q2 have the same expressive power, denoted by Q1 = Q2, and so on.

The second research task, more related to complexity theory, is determining
the absolute expressive power of a query language. This is mostly achieved by
proving that a given query language Q is able to express exactly all queries
whose evaluation complexity is in a complexity class C. In this case, we say that
Q captures C and write simply Q = C. The evaluation complexity of a query is
the complexity of checking whether a given atom belongs to the query result,
or, in the case of Boolean queries, whether the query evaluates to true [156,85].

Note that there is a substantial difference between showing that the query
evaluation problem for a certain query language Q is C-complete and showing
that Q captures C. If the evaluation problem for Q is C-complete, then at least
one C-hard query is expressible in Q. If Q captures C, then Q expresses all
queries evaluable in C (including, of course, all C-hard queries).

To prove that a query language Q captures a machine-based complexity class
C, one usually shows that each C-machine with (encodings of) finite structures
as inputs that computes a generic query can be represented by an expression
in language Q. There is, however, a slight mismatch between ordinary machines
and logical queries. A Turing machine works on a string encoding of the input
database D. Such an encoding provides an implicit linear order on D, in partic-
ular, on all elements of the universe UD. The Turing machine can take profit of
this order and use this order in its computations (as long as genericity is obeyed).
On the other hand, in logic or database theory, the universe UD is a pure set and
thus unordered. For “powerful” query languages of inherent non-deterministic
nature at the level of NP this is not a problem, since an ordering on UD can be
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non-deterministically guessed. However, for many query languages, in particu-
lar, for those corresponding to complexity classes below NP, generating a linear
order is not feasible. Therefore, one often assumes that a linear ordering of the
universe elements is predefined, i.e., given explicitly in the input database. More
specifically, by ordered databases or ordered finite structures , we mean databases
whose schemas contain special relation symbols Succ, First, and Last, that are
always interpreted such that Succ(x, y) is a successor relation of some linear or-
der and First(x) determines the first element and Last(x) the last element in
this order. The importance of predefined linear orderings becomes evident in the
next two theorems.

Before coming to the theorems, we must highlight another small mismatch
between the Turing machine and the datalog setting. A Turing machine can
consider each input bit independently of its value. On the other hand, a plain
datalog program is not able to detect that some atom is not a part of the in-
put database. This is due to the representational peculiarity that only positive
information is present in a database, and that the negative information is under-
stood via the closed world assumption. To compensate this deficiency, we will
slightly augment the syntax of datalog. Throughout this section, we will assume
that input predicates may appear negated in datalog rule bodies; the resulting lan-
guage is datalog+. This extremely limited form of negation is much weaker than
stratified negation, and could be easily circumvented by adopting a different
representation for databases.

The difference between unordered and ordered databases becomes apparent
in the next two theorems:

Theorem 240. (cf. [36]) datalog+
� P.

Proof. (Hint.) Show that there exists no datalog+ program P that can tell
whether the universe U of the input database has an even number of
elements. �

Theorem 241. ([125,80]; implicit in [156,89,106]) On ordered databases,
datalog+ captures P.

Proof. (Sketch) By Theorem 230, query answering for a fixed datalog+ program
is in P. It thus remains to show that each polynomial-time DTM T on finite
input databases D can be simulated by a datalog+ program. This is shown by a
simulation similar to the ones in the proofs of Theorems 224 and 229. �

Next, we compare the expressive power of nonrecursive datalog and, in par-
ticular, nonrecursive range-restricted datalog with well-known database query
languages. Recall that in datalog with negation, the rules are of the form:

q : S(x0) ← L1, . . . , Lm.

where m ≥ 0 and S is an intensional predicate symbol. Each Li is an atom Ri(xi)
or a negated atom ¬Ri(xi). x0, . . . , xm are vectors of variables or constants (from



124 F. Bry et al.

dom). Moreover, this rule is range-restricted if every variable in x0, . . . , xm

occurs in some unnegated atom Li = Ri(xi) in the body.
A datalog program is called range-restricted if all its rules are range-restricted.

Nonrecursive range-restricted datalog is referred to as nr-datalog¬. An
nr-datalog¬ query is a query defined by some nr-datalog¬ program with a spec-
ified target relation.

Note that equality may be incorporated into nr-datalog¬ by permitting literals
of the form s = t and s �= t for terms s and t. However, as the following
proposition shows, any nr-datalog¬ program with equality can be simulated by
an nr-datalog¬ program not using equality.

Proposition 242. Any nr-datalog¬ program with equality can be simulated by
an nr-datalog¬ program not using equality.

Proof. Assume that an nr-datalog¬ contains literals of the form s = t and s �= t.
It suffices to describe the construction for a single nr-datalog¬ rule.

We consider the unnegated equalities s = t first. We can easily get rid of
equalities where one of the terms (say s) is a variable and the other one is a
constant. In this case, we simply replace all occurrences of the variable s by
the constant t. It remains to consider the case of equalities s = t where both s
and t are variables. In this case, we can partition all the variables occurring in
equations into l disjoint sets C1, . . . , Cl, such that for each Ci = {xi1, xi2 . . . , xik}
where (1 ≤ i ≤ l), the equalities xi1 = xi2 = . . . = xik can be derived from the
body of the rule. Without loss of generality, we choose xi1 from each partition
Ci and whenever a variable x ∈ Ci occurs in the rule, we replace it with xi1.
We apply this transformation also to all literals of the form s �= t: if s ∈ Ci or
t ∈ Ci, we replace it with xi1 too.

After this transformation, we obtain a rule with equality literals only in
negated form s �= t as follows:

S(u) ← L1, . . . , Ln, D1, . . . , Dm.

where every Di, (1 ≤ i ≤ m) is an inequality si �= ti. Now let G1, . . . , Gm be m
new relation symbols. Then we add the following rules:

G1(u1) ← L1, . . . , Ln, s1 = t1
G2(u2) ← L1, . . . , Ln, s2 = t2
. . .
Gm(um) ← L1, . . . , Ln, sm = tm

Where ui(1≤i≤m) = var(L1) ∪ . . . ∪ var(Ln). With the above method of elim-
inating the equality literals, we can easily obtain m new rules with rule heads
G′

1, . . . , G
′
m in which no equality literal occurs. Finally we rewrite the original

rule as follows:
S(u) ← L1, . . . , Ln,¬G′

1, . . . ,¬G′
m.

Now all equality literals (either unnegated or negated) have indeed been removed
from our nr-datalog¬ program. �
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Theorem 243. (cf. [2]) Nonrecursive range-restricted datalog with negation =
relational algebra = domain-independent relational calculus. Nonrecursive data-
log with negation = first-order logic (without function symbols).

Proof. We prove here only the first equivalence: Nonrecursive range-restricted
datalog (nr-datalog¬) and relational algebra have the equivalent expressive power.
Proofs of the other equivalence results can be found in Chapter 5 of [2].
“⇒”: We have to show that, given any range-restricted nr-datalog¬ program,
there is an equivalent relational algebra expression. By Proposition 242, we may
restrict ourselves w.l.o.g. to nr-datalog¬ programs not using equality. It suffices
to show how the construction of an equivalent relational algebra expression works
for a single nr-datalog¬ rule. Since relational algebra is closed under composi-
tion, the simulation of the program with a relational algebra expression is then
straightforward.

Consider an nr-datalog¬ rule of the following form:

S(u) ← P1(u1), . . . , Pn(un),¬N1(v1), . . . ,¬Nm(vm).

where the Pi’s are unnegated atoms and the ¬Nj ’s are negated ones. We need
first to construct a new relation A as A = P1 �� . . . �� Pn. Now the relational
algebra expression for S is as follows:

S = πu(P1 �� . . . �� Pn �� (πv1A − N1) �� . . . �� (πvmA − Nm))
Note that if the same relation symbol (for example S) occurs in more than one

rule head (for example r1, . . . , rl), then we have to rename the algebra expressions
for r1, . . . , rl as S1, . . . , Sl and thus S can be written as S = S1 ∪ . . . ∪ Sl.

Due to the ordering of the rules in the program, we can start with the rules
with the smallest ordering number and simulate the rules one by one until all
the rules containing the target relation are processed.
“⇐”: It remains to show that, given a relational algebra expression, we can con-
struct an equivalent range-restricted nr-datalog¬ program. We consider here only
the six primitive operators: selection, projection, Cartesian product, rename, set
union, and set difference. One algebra fragment, the so-called SPJR algebra,
consists of the first 4 operators, namely selection, projection, Cartesian product,
and rename.

In [2] (page 61) the simulation of SPJR algebra by conjunctive queries is
given. Since conjunctive queries are a fragment of nr-datalog¬, we only need to
consider the remaining 2 operators: set union and set difference. The simulation
is trivial: for set union we construct two rules with the same rule head. The set
difference operation R − S corresponds to ans(x) ← R(x),¬S(x). �
The expressive power of relational algebra is equivalent to that of a fragment
of the database query language SQL (essentially, SQL without grouping and
aggregate functions). The expressive power of SQL is discussed in [108,55,107].

On ordered databases, Theorem 241 together with the Theorems 230, 232,
and 233 implies

Theorem 244. On ordered databases, the following query languages capture P:
stratified datalog, datalog under well-founded semantics, and datalog under in-
flationary semantics.
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Syntactical restrictions allow us to capture classes within P. Let datalog+(1) be
the fragment of datalog+ where each rule has at most one non-database predicate
in the body, and let datalog+(1, d) be the fragment of datalog+(1) where each
predicate occurs in at most one rule head.

Theorem 245. ([80,157]) On ordered databases, datalog+(1) captures NL and
the fragment datalog+(1, d) captures L.

Due to the inherent non-determinism, the stable model semantics is much more
expressive.

Theorem 246. ([142]) Datalog under stable model semantics captures co-NP.

Note that for this result an order on the input database is not needed. Infor-
mally, in each stable model such an ordering can be guessed and checked by the
program.

Finally, we briefly address the expressive power of disjunctive logic programs.

Theorem 247. ([64,65]) Disjunctive datalog under stable model semantics cap-
tures Πp

2 .

9 Optimization

This section concludes the thread on evaluation and operational semantics be-
ginning with Section 6. Where Sections 6 and 7 focus on the evaluation of entire
query programs containing many rules and the interaction or chaining of such
rules, this section’s focus is on the evaluation of individual queries (cf. Section 3
for the definition of conjunctive and first-order queries). Where appropriate,
though, we also remind of related results on query programs.

We focus on two aspects of query evaluation only, viz., query rewriting and
containment and (logical) query algebras. A more complete picture of challenges
and techniques for efficient query evaluation can be found, e.g., in [75], Chapters
15–16, or in [82].

Conjunctive or first-order queries are useful tools for the declarative specifi-
cation of one’s query intent. Figuring out the details of how such queries are
evaluated is left to the query engine. For actual evaluation, however, a query
engine needs to determine a detailed specification on how to evaluate a given
query. Such a specification is commonly called a query plan. Query plans are
typically expressed in an algebra, i.e., a set of operators on the domain of dis-
course. Query algebras thus serve to demonstrate how to specify and optimize
evaluation plans for queries and are the focus of the first part of this section
(Section 9.1).

Both on the level of the declarative query and on the level of a query plan for
that query, we might want to find semantically equivalent queries that are better
suited for execution. Furthermore, given a set of queries (e.g., resulting from the
bodies of several rules) we might want to avoid doing the same or similar work
for different queries several times. Rather we would like to compare these queries
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to find common sub-queries that can be evaluated once and then shared for the
execution of multiple other queries. Such problems are considered in the second
part (Section 9.3) of this section on query rewriting and containment.

9.1 An Algebraic Perspective on Queries

The relational algebra, introduced in [43,44] and refined in [37], has long been
the formal foundation for relational database systems. Though practical systems
often deviate notably (see Section 9.2.2), it has proved to be an invaluable tool
for understanding formal properties of query languages (primarily, complete-
ness, complexity, and semantics), for query planning and optimization, and for
implementing query engines.

In the following, we give a brief definition of (a variant of) the relation algebra
and its relation to rule-based query languages. For a more detailed discussion of
the relational algebra see, e.g., [75]. An outlook on extensions of the relational
algebra covering two aspects (duplicates and order) of query languages mostly
ignored in the rest of this article follows. We conclude this section with some
remarks on algebras for complex values, where the limitation to constants as
attribute values is relaxed.

Let L be a signature (cf. Section 3, Definition 3), D a database schema over
L (cf. Section 3, and I a database instance for D. In the following, we use
the relational view of logic as described in Section 3.3. In particular, we use
the unnamed or ordered perspective of relations: Attributes in a relation are
identified by position (or index) not by name. For a tuple t = (x1, . . . , xn) we
use t[i] to denote the value of the i-th attribute in t, i.e., xi. We assume a finite
domain and, where convenient, the presence of a domain relation enumerating
the elements of the domain.

Definition 248 (Selection). Let P be an n-ary relation from I and C be a
conditional expression i = c with i ≤ n and c a constant from L or i = j with
i, j ≤ n.

The relational selection σC(P ) returns the set of tuples from P that fulfill C,
viz. σi=c(P ) = {t ∈ P : t[i] = c} and σi=j(P ) = {t ∈ P : t[i] = t[j]}.

As discussed in Section 3.3, relations can be seen as tables with each tuple
forming a row and each attribute forming a column. Selection can than be seen
as a “vertical” restriction of such a table, where some rows (i.e., tuples) are
omitted. From a perspective of first-order queries, selection corresponds to body
atoms containing some constants c if C is i = c and to multiple occurrences of
the same variable if C is i = j.

In practice, C is often extended to allow further conditional expression over
elements of the domain, e.g., on ordered sorts comparisons such as i ≤ c are
possible.

Definition 249 (Projection). Let P be an n-ary relation from I and i1, . . . , im
≤ n with k < l =⇒ ik < il.
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The relational projection πi1,...,im(P ) = {(t1, . . . , tm) : ∃ti ∈ D : t[i1] = t1 ∧
. . . ∧ t[im] = tm} returns the m-ary relation made up of tuples from P dropping
all but the i1, . . . , im-th attributes.

Projection can be seen as “horizontal” restriction of a relation (imagined as a
table). In contrast to the selection, relational projection however may incur ad-
ditional cost beyond the linear “slicing” off of a few columns: Dropping columns
may lead to duplicates that are not allowed in a (pure) relation.

The first-order correspondent of relational projection is the body-only occur-
rence of variables.

Definition 250 (Cartesian product). Let P be an n-ary, Q an m-ary rela-
tion from I.

The Cartesian (or cross) product P × Q = {(t1, . . . , tn, tn+1, . . . , tn+m) :
(t1, . . . , tn) ∈ P ∧ (tn+1, . . . , tn+m) ∈ Q} returns the (n + m)-ary relation of
all tuples consisting of concatenations of first tuples from P and second tuples
from Q.

Cartesian product can be seen as table multiplication as the name indicates and
corresponds to the conjunction of atoms (with no shared variables) in first-order
queries.

The relational algebra is completed by standard set operations on relations:

Definition 251 (Relational union, intersection, and difference). Let P
and Q be n-ary relations.

The relational union P ∪ Q = {t ∈ Dn : t ∈ P ∨ t ∈ Q}, intersection P ∩ Q =
{t ∈ Dn : t ∈ P ∧ t ∈ Q}, and difference P − Q = {t ∈ Dn : t ∈ P ∧ t �∈ Q are
specialisations of standard set operations to sets of relations.

Notice that all three operations require that P and Q have the same arity. As
usual either union or intersection can be defined in terms of the other two (at
least under the assumption of a domain relation enumerating all elements of the
domain).

Two more operators are commonly used in relational algebra expressions
though they can be defined by means of the previous ones: relational join and
division.

Definition 252 (Join). Let P be an n-ary, Q be an m-ary relation from I, f :
{1, . . . , n} → {1, . . . , m} a partial, injective function, and k = |f−1({1, . . . , m}|
the number of pairs in f .

The relational join P ��f Q = {(t1, . . . , tn+m−k) : (t1, . . . , tn) ∈ P ∧ ∃t ∈
Q : ∀n < i ≤ n + m − k : t[i − n] = ti ∧ ∀(i, j) ∈ f : ti = t[j]} returns the
(n + m − k)-ary relation of all tuples from P combined with those tuples from
Q where the i-th attribute value in P is equal to the f(i)-th in Q (omitting the
f(i)-th attribute from the result).

Often f is small and we write directly P ��i→j,... Q instead of giving f separately.
Relational join corresponds to multiple occurrences of a variable in a conjunctive
query.
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A join over k attributes can be rewritten to k selections on a Cartesian prod-
uct: Let f : {(i1, j1), . . . , (ik, jk)} and P be an n-ary relation.

P ��f Q = σik=jk+n(σik−1=jk−1+n(. . . σi1=j1+n(P × Q) . . .)

Definition 253 (Division). Let P be an n-ary, Q be an m-ary relation from
I with m < n.

The relational division (or quotient)

P ÷ Q = {(t1, . . . , tn−m) : ∀(tn−m+1, . . . , tn) ∈ Q : (t1, . . . , tn) ∈ P}

returns the n−m-ary relation of all tuples t such that any combination of t with
a tuples from Q forms a tuple from P

The division is the relational algebra’s counterpart to universal quantification in
bodies of first-order queries.

Division can be rewritten to an expression using only projection, difference,
and Cartesian product:

P ÷ Q = πA1,...,An(P ) − πA1,...,An((πA1,...,An(P ) × Q) − P )

In early formulations of the relational algebra including Codd’s original pro-
posal, additional operators such as the permutation are provided:

Definition 254 ([44,37] Permutation). Let P be an n-ary relation from I
and f : {1, . . . , n} → {1, . . . , n} a bijection.

The permutation

Permf (P ) = {(t1, . . . , tn) : ∃t ∈ P : t[f(1)] = t1, . . . , t[f(n)] = tn}

returns an n-ary relation containing all permutations of tuples of P .

However, permutation is usually not considered as part of the relational algebra
due to its undesirable complexity (the size of Permf (P ) may be exponentially
higher than the size of P , viz. in O(|P | × nn)) and as it can be expressed as
π2,...,n+1(σn=n+1(. . . π2,...,n+1(σ2=n+1(π2,...,n+1(σ1=n+1(P ×π1(P )))×π2(P )))×
. . . πn(P ))). Notice, however, that the equivalence is of another quality than the
equivalences for join and division: It depends on the schema of P and its size is
linear in the arity of P (compensating for the lower complexity of π, σ, and ×
compared to Perm).

Another common extension of the relational algebra is the semi-join operator.

Definition 255 (Semi-join). Let P be an n-ary, Q an m-ary relation from I,
f : {1, . . . , n}→{1, . . . , m} a partial, injective function, and k= |f−1({1, . . . , m}|
the number of pairs in f .

The relational semi-join P �f Q = {(t1, . . . , tn) : (t1, . . . , tn) ∈ P ∧ ∃t ∈ Q :
∀(i, j) ∈ f : ti = t[j]} returns the n-ary relation of all tuples from P for which a
tuple from Q exists such that the i-th attribute value in P is equal to the f(i)-th
in Q.
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Intuitively, the semi-join corresponds to a filter on P that only retains tuples
from P with join partners from Q. In contrast to the Cartesian product and the
normal join its result is thus always linear in P and no trace of Q occurs in the
result.

Let P be an n-ary relation, i1, . . . , ik be the attributes from Q occurring in
f , then P �f Q = π1,...,n(P ��f Q) = P ��f πi1,...,ik

(Q). Thus the semi-join
can be expressed using only projection and join or only projection, selection,
and Cartesian product (as join can be expressed using selection and Cartesian
product only).

However, a rewriting of semi-joins is often not desirable. To the contrary [21]
proposes to use semi-joins to reduce query processing in some cases (tree queries)
even to polynomial time complexity. Recent work [105] shows that the semi-join
algebra, i.e., relational algebra with the join and Cartesian product replaced by
the semi-join is equivalent to the guarded fragment of first-order logic.

The semi-join operator is an example for an operator that though actually
weaker than the existing operators in the relational algebra might actually be
exploited to obtain equivalent, but faster formulations for a restricted class of
queries.

A similar observation can be made for the usual handling of universal quan-
tification as division (with or without subsequent rewriting) as well as existential
quantification as projection may result in poor performance as intermediary re-
sults are unnecessary large. This has lead to the development of several (more
efficient, but also more involved) direct implementations of division as well as of
alternatives such as the semi- and complement-join:

Definition 256 (Complement-Join). (cf. [26]) Let P be an n-ary, Q be an
m-ary relation from I, f : {1, . . . , n} → {1, . . . , m} a partial, injective function,
and k = |f−1({1, . . . , m}| the number of pairs in f .

The relational semi-join P�fQ = {(t1, . . . , tn) : (t1, . . . , tn) ∈ P ∧ �t ∈ Q :
∀(i, j) ∈ f : ti = t[j]} returns the n-ary relation of all tuples from P for which
no tuple from Q exists such that the i-th attribute value in P is equal to the
f(i)-th in Q.

Obviously, P�fQ = P − π1,...,n(P ��f Q) and thus P�fQ = P − P �f Q.
For details on the use of the complement- and semi-join for realizing quantifi-

cation, see [26].

9.1.1 Translating First-Order Queries
Chandra and Merlin [37] show that

Theorem 257. ([37]) For each relational expression there is an equivalent first
order query, and vice versa.

There is one caveat: This result only holds if, as Chandra and Merlin assume,
the domain is finite or the queries are domain independent. In the following,
the former is assumed (an exhaustive discussion of domain independence can be
found, e.g., in [2]). Assuming a finite domain allows “domain closure” for queries
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such as ans(x) ← ¬q(x, y). Such a query is transformed into the expression
π1(D2 −Q) with D domain of the query and Q the relation corresponding to the
predicate symbol q.

Proof (Sketch). The equivalence proof from [37] is a fairly straightforward struc-
tural induction over relational expressions and first-order queries respectively.
Instead of a full proof, we give a number of illustrative translation:

1. ans(x) ← q(x, y) ∧ r(y, z) is equivalent to π1(Q ��2→1 R) as well as to
π1(σ2=3(Q × R)) as well as to π1(Q ��2→1 π1(R)).

2. ans(x) ← ¬q(x, y) is equivalent to π1(D2 − Q) as well as to D − π1(Q).
3. ans(x, y) ← (p(x, y) ∧ ¬q(y)) ∨ (p(x, y) ∧ ∀z : s(x, y, z) is equivalent to

π1,2((P − (D × Q)) ∪ (P ��1→1,2→2 π1,2(S ÷ D))).

Theorem 258. (cf. [37]) Conjunctive queries and relational expressions formed
only from selection, projection, Cartesian product, intersection, and join have the
same expressiveness. This extends trivially to expressions formed only from se-
lection, projection, and Cartesian product, as join can be rewritten as above and,
for n-ary relations P and Q, P ∩ Q = π1,...,n(σ1=n+1(σ2=n+2(. . . σn=n+n(P ×
Q) . . .))).

For illustration, see equivalence (1) in the proof of Theorem 257.

9.1.2 Query Rewriting
It is important to notice in the above examples of equivalent relational algebra
expressions for a given first-order query, that there are always several reasonable
expressions for the same query. Consider, e.g., again the query ans(x, y) ←
p(x, y) ∧ (¬q(y, z) ∨ ¬r(y, w)). This query is equivalent to, e.g.,

– π1,2(P ��2→1 ((D2 − Q) ∪ (D2 − R)))
– π1,2(P ��2→1 (π1(D2 − (Q ∩ R))))
– π1,2(P ��2→1 (D − π1(Q ∩ R)))

Of these three equivalent queries only the application of de Morgan’s law carries
over to the first-order queries. Many other equivalences have no correspondence
in first-order queries. In this respect, first-order queries are more declarative and
more succinct representations of the query intent than relational expressions.
However, that relational expressions allow such fine differences has shown to be
of great value for query optimization, i.e., determining which of the equivalent
formulations of a query should be used for evaluation: The relational algebra
allows the separation of this planning phase from the actual evaluation. A query
planner or optimizer can decide, based, e.g., on general equivalences as discussed
here and on estimated costs of different relational expressions which variant to
use.

Equivalence Laws. Equivalence laws between relational algebra expressions com-
prise common laws for set operators ∪,∩, and −. In particular, ∪ and ∩ are as-
sociative and commutative, de Morgan’s law and distribute laws for intersection
and union apply.
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More interesting are equivalence laws for the additional operators such as ��,
×, σ, and π:

Cartesian Product and Join. The Cartesian product × is commutative and as-
sociative just as ∪ and ∩. For the relational �� a proper adjustment of the
join condition is required27. If the join expression is flipped, �� is commutative,
i.e., P ��1=2 Q ≡ Q ��2=1 P . For associativity, the join condition needs to be
adapted, e.g., P ��1=3 (R ��1=2 S) ≡ (P ×R) ��1=1,3=2 S (assuming all relations
are binary) since both join conditions involve attributes from S.

Selection. Selection is generally a good candidate for optimization, pushing se-
lections (a fast but possibly fairly selective operation) inside of an expression
thus limiting the size of intermediary results. Also selection can generally be
propagated “down” into an expression: Selection distributes over ×, �� and the
set operators. For − and ∩ it suffices to propagate the selection to the first
relation, e.g., σC(P − Q) = σC(P ) − σC(Q) = σC(P ) − σC(Q). For Cartesian
product and Join it suffices to propagate the selection to those sub-expressions
that contain the attributes referenced in C. Let P be an n-ary relation. Then

σi=c(P × Q) =

{
σi=c(P ) × Q if i ≤ n

P × σi=c(Q) if i > n

Projection. In contrast to selection, we can only propagate selection “down”
in an expression to the point where the attributes dropped by the projection
are last referenced in the expression. Conversely, an expression might benefit
from introducing additional projections to get rid of attributes not used in the
remainder of an expression as early as possible, viz. immediately after the in-
nermost expression referencing them. Moreover, since as a result of a projection
some tuples may become duplicates and thus be dropped in the set semantics
considered so far, projection can in general not be distributed over any of the
set operators. It can be propagated over join and Cartesian product: Let P be
an n-ary, Q an m-ary relation and i1, . . . , ik ≤ n, ik+1, . . . , ik+l > n then

πi1,...,ik+l
(P × Q) = πi1,...,ik

(P ) × πik+1,...,ik+l
(Q).

9.2 “Real” Queries

“Real” relational databases and queries deviate in a few, but important points
from both the relational algebra, first-order queries, and datalog. Some of these
are highlighted in the remainder of this section.

We start by moving from relations as sets to relations as bags (then called
multi-relations). Bag semantics is in practice often faster as it allows to ignore

27 Note, that this when using the named perspective of the relational algebra (where
attributes are identified by name rather than position) no adjustment is necessary
and �� is trivially associative.
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duplicates except when specifically noted rather than an implicit and costly
elimination of duplicates at each relational operator (though, of course, only
projection and union can actually create new duplicates).

9.2.1 From Sets to Bags
The need for multi-relations is evident when considering aggregation queries like
“what is the sum of the values of some column”. In a set relational algebra the
projection to the aggregation column collapses all same value tuples and thus
makes this query impossible to express. The same argument can be made for any
query that returns just a projection of the columns of queried relations, as the
number of duplicates may be significant to the user (e.g., in “what are the titles
of all first and second level sections”). Also, many practical systems support
multi-relations to save the cost of duplicate handling. Indeed, neither QUEL
[148] nor SQL [11], the now dominating “relational” query language, are (set)
relational query languages, but rather possess features that are not expressible
in (set) relational algebra, viz. aggregation, grouping, and duplicate elimination.
The semantic of these expressions assumes that the underlying data structure is
a bag (or even a sequence) rather than a set.

Therefore, in practical query languages duplicate handling must be addressed.
Based on the control over duplicate creation and elimination, one can distinguish
relational query languages into weak and strong duplicate controlling languages.
QUEL [148] and SQL [11] provide little control over duplicates (essentially just
the DISTINCT operator and GROUP-BY clauses) and thus fall into the first class.
The only means is an explicit duplicate elimination. Similarly, Prolog’s oper-
ational semantics [160] also contains operations for explicit duplicate handling
(e.g., bagof vs. setof).

In contrast, DAPLEX [146] is based on “iteration semantics” and gives pre-
cise control over the creation and elimination of duplicates. An example of a
DAPLEX query is shown in the following listing:

FOR EACH Student
SUCH THAT FOR SOME Course(Student)

Name(Dept(Course)) = "EE" AND
Rank(Instructor (Course)) = "ASSISTANT PROFESSOR "

PRINT Name(Student)

A first formal treatment of this “iteration semantics” for relational databases
is found in [49], where a generalization of the relational algebra to multi-relations
is proposed. This extension is not trivial and raises a number of challenges for
optimizations: joins are no longer idempotent, the position of projections and
selections is less flexible, as πR(R × S) �= R and σP (R) $ σQ(R) �= σP∨Q(R)
due to duplicates in the first expression28. Though this algebra provides a useful

28 Assuming π and σ to be the multi-set generalizations of their relational counterparts.
� is understood here as additive union, i.e., t occurs n times in R ∪ S, if t occurs
i times in R and j times in S and n = i + j. [84] considers additionally maximal
union (i.e., where n = max(i, j)), which does not exhibit this particular anomaly.
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theoretical foundation, it does little to address the concerns regarding efficient
processing of “iteration semantics” expressions.

[84] shows that (nested) relational algebra on multi-relations (i.e., relations as
bags) is strictly more expressive than on relations as sets. Unsurprisingly, the core
difference lies in the “counting power” of the bag algebra. More precisely, the bag
algebra no longer exhibits a 0−1 law (i.e., the property that queries are either on
almost all input instances true or on almost all input instances false). E.g., the
query that tests whether, given two relations, the cardinality of R is bigger than
the cardinality of S can be expressed as (π1(R × R) − π1(R × S)) �= 0 where π
is a bag algebra projection without duplicate elimination and − is difference on
multi-sets, where the multiplicity of a tuple t in the result is the multiplicity of
t in the first argument minus the multiplicity in the second argument. Observe,
that π1(R ×R) and π1(R ×S) contain the same tuples but if R > S, π1(R × R)
contains those tuples with greater multiplicity than π1(R × S) and vice verse if
R < S. This query observes no 0 − 1 law: For each instance on which it is true
we can construct an instance on which it is true. Unsurprisingly, it can not be
expressed in set relational algebra.

Similarly, [109] proposes a query language called BQL over bags whose expres-
siveness amounts to that of a relational language with aggregates. This approach
provides a formal treatment of aggregations and grouping as found, e.g., in SQL
(GROUP-BY clause and aggregation operators such as AVG, COUNT, and SUM). BQL
is “seen as a rational reconstruction of SQL” that is fully amenable to formal
treatment. [109] also considers extensions of BQL with power operators, struc-
tural recursion, or loops and shows that the latter two extensions are equivalent.

[100] proposes a different view of multi-relations as incomplete information:
though conceptually “a relation represents a set of entities”, one tuple per entity,
and thus does not contain duplicates, the concept of a multi-relation allows a
formal treatment of partial information about entities. A multi-relation is a
projection of a complete relation, i.e., it consists of a subset of columns within
some relation (without duplicates). Thus it may contain duplicates in contrast to
the relation. [100] considers multi-relations only as output of queries not as first
class data items in the database. Semantically, they can not exist independently
of the base relation. No (base or derived) relation should contain duplicates.

Moving from sets to bags (or multi-sets) in the relational algebra, obviously
affects query containment and optimization. Most notably many of the algebraic
laws mentioned in the previous section do no longer apply. For more details, see
[38] and, more recently, [91].

9.2.2 From Bags to Sequences
Basic relational algebra (and first order logic) are fundamentally order agnostic.
This is a desirable property as it allows understanding and implementation of
operators without considering a specific order of the result. However, it limits the
expressiveness of the algebra: We can not (conveniently) express a query asking
for the “five students with the highest marks” nor a query asking for every second
student nor a query testing if a certain set is even (e.g., the participants in a
chess competition).
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Moreover, queries involving order occur in many practical applications, in
particular where reporting (presentation) and analysis is concerned. Reporting
is certainly the most common use for order (return the results in some order,
return only top k results, etc.). This has lead to the addition of order as an “add
on” to the usual query evaluation frameworks, e.g., in SQL where the ORDER BY
clause may not be used as part of a view definition but only at the outer-most
(or reporting) level of a query.

Finally, the physical algebra (i.e., the actual algorithms used for evaluating
a query) of most relational database systems (including all major commercial
systems) is based on the concept of iterators (or streams or pipelines): A phys-
ical query plan is a hierarchy of operators, each iterating over the output of its
dependent operators and creating its own result on demand. Conceptually, such
operators support (aside of open and close for initialization and destruction)
only one operation, viz. next, which returns the next element in the operator’s
result. Note, that such a design intrinsically supports order. However, if used
for the evaluation of pure relational expressions, the order in which an operator
produces its results is up to the implementation of that operator and we can
choose to implement the same logical operator with physical operators that pro-
duce results in different orders. This flexibility (in choosing an efficient operator
implementation regardless of the result order) is lost, if the logical operators
already require a specific order. Nevertheless, exploiting the ability of physical
operators to manage order to provide that concept also to the query author
is tempting. For more details on physical operators and order see the seminal
survey [82].

These considerations have, more recently, revived interest in a proper treat-
ment of order in an algebra driven by two main areas: analytical queries (OLAP-
style) and queries against (intrinsically ordered) XML data and their realization
in relational databases.

List-based Relational Algebra. Focused on the first aspect, [147] proposes a list-
based recasting of the relational algebra.

First, we redefine a relation to be a finite sequence of tuples over a given
relation schema (consisting as usual in a finite set of attributes and associated
domains). A relation may, in particular, contain duplicates (if key attributes are
present, the values of the key attributes of every two tuples must be distinct as
usual).

Under this definition, selection and projection remain essentially unchanged
except that they are now order and duplicate preserving. Only projection may
introduce new duplicates, if the same tuple results from more than one input
tuple.

Union is, obviously, affected considerably by ordered relations. [147] proposes
standard list append as union, appending the tuples of the second relation in
order after the tuples of the first relation.

Similar, Cartesian product A × B is defined as the result of appending for
each tuple of A (in order) the product with each tuple of B (again in order).
Thus the result contains first the combination of the first tuple of A with each
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tuple of B (preserving B’s order), followed by the combination of the second
tuple of A with each tuple of B, etc. Join is defined as usual as combination of
selection and product. Note that this definition is immediately consistent with
a nested loop implementation. However, other join and product operators (such
as sort-merge or hash join) produce tuples in different orders and are no longer
correct physical realisations of the logical join or product.

Difference A \ B becomes order-preserving, multi-set difference, i.e., for each
distinct tuple t ∈ A with m occurrences in A and n occurrences in B, the last m−
n occurrences of t in A are preserved. We could also choose to preserve the first
m − n occurrences, however, preserving the last occurrences leads immediately
to an implementation where the tuples of A must be visited only once.

As in the case of bags or multi-sets, we introduce two additional operations
duplicate elimination and grouping. Duplicate elimination retains, as difference,
the last occurrence. Aggregation is treated analogously to projection. For de-
tails on duplicate elimination and grouping see [75] on multi-sets and [147] on
sequences.

In additional to these adapted standard or multi-set operators, we need two
additional operators to properly support order: sorting and top k.

Definition 259 (Sort). Let P be an ordered n-ary relation and <S some order
relation on Dn. Let <P denote the (total) order of tuples in P .

The <s-sorted relation sortS(P ) = [t1, . . . , tn] such that for all ti : ∀tj : i <
j =⇒ ti <s tj ∨ ¬(ti <s tj) ∧ ti <p tj returns the tuples in P ordered by <s. If
<s is not a total order, the order of P is preserved on any “gaps” in <s.

In practical cases, S might, e.g., consist of a list of attributes and order specifi-
cations of the form “ASCENDING” or “DESCENDING” as in the case of SQL’s ORDER
BY.

Definition 260 (Top k). Let P = [t1, . . . tn] be an ordered n-ary relation and
k ∈ � some positive integer.

The top-k relation topk(P ) = [s1, . . . , sl] with l = min(k, n) such that si ∈
topk(P ) =⇒ P = [t1, . . . , ti−1, si, ti+1, . . . tn] returns the k first entries of P (or
all entries of P if P has less than k entries).

The top k operation is available, e.g., in Microsoft’s SQL Server (TOP N clause),
in IBM’s DB2 (FETCH FIRST N ROWS ONLY), and in Oracle DBMS (using a
selection on the pseudo-column ROWNUM).

With this sequence algebra, we can now express all SQL constructs including
ORDER BY, GROUP BY, and DISTINCT which were not expressible in the standard
relational set algebra. To also cover null values some additional modifications
(mostly to selection) are needed, see, e.g., [159]. For more details on translating
SQL into relational algebra (and/or relational calculus) see [34].

However, this comes at the price of considerably more involved equivalences
(cf. [147]). Many of the associativity and commutativity laws for the relational
(set) algebra no longer hold in the bag or set case. Therefore, practical opti-
mizers often go to considerable length to find order-agnostic parts of queries
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even if some ordering is required, e.g., at the end result. For those parts, we
can then use standard relational algebra optimization. This desire is reflected in
the limitations of the ORDER BY clause in SQL and, to give just one more recent
example, the introduction of unordered contexts in XQuery, where the usual
strictly ordered semantics of XQuery is (temporarily) “disabled”. Handling or-
der only where necessary, is an important aim of XML and XQuery optimization
and algebras, see, e.g., [128] for details.

9.2.3 From Constants to Complex Values
So far, we have considered the values contained in an attribute of a relation as
atomic or simple, i.e., without further structure. Examples of such values are, of
course, numbers, strings, truth values, and enumerated values.

In many applications, we are, however, concerned also with values of another
nature: structured or hierarchical values such as sets, lists, or trees. Though such
data may be decomposed and stored in first-normal form, such an approach may
not be desirable if the values are very irregular, often considered as a single
“value”, or their shape is dictated by application or other external requirements
[113].

Research on complex values has been a focus of the database community in
the first half of the 1990s, see, e.g., [84,25,103,32,1]. They have seen renewed
interest in the context of XML and other semi-structured data and its querying
and storing (both natively and in relational databases). They serve, e.g., as an
expressive foundation for a large fragment of XQuery [101].

Complex values: Tuples and Sets. There are several variant definitions in the lit-
erature for complex values. In this section, we follow mostly [1] as its notions are
conveniently simple and yet expressive enough to discuss important variations.

First, we need to define a complex value:

Definition 261 (Complex value). Let D1, . . . ,Dn be domains for atomic val-
ues. Then

– each a ∈ Di for i ≤ n is a (atomic) value of type Di.
– each [v1, . . . , vn] is a (tuple) value of type [T1, . . . , Tn] if v1, . . . , vn are values

of types T1, . . . , Tn, respectively, and n ∈ �.
– each finite S ∈ P(values(T )) is a (set) value of type {T } if T is a type and

values(T ) is the set of all values of T .

A complex value is either an atomic, a tuple, or a set value.

Note that the definition allows only finite values (both tuples and sets are re-
quired to be finite and there are no cycles. Furthermore, values do not carry
identity (as in the case of object- or object-relational databases), i.e., there are
no two distinct values with the same structure.

Example 262. Examples of complex values (for simplicity using strings and in-
tegers as only domains):
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– “Caesar”, 17, “Flamen Dialis”, 44 are all atomic values of type string or
integer, respectively.

– [“Caesar”, 44], [44], [], [“Caesar”, [17, “Flamen Dialis”]] are all tuple types.
– {[ “Caesar”, 44], [44], {[]}, {}} is a set type.

Obviously there are infinitely more complex values (actually, even if the domains
for atomic values are empty that is the case).

Often, for complex values a named perspective on tuples is often preferred. It has
the additional advantage of highlighting the close relationship to XML and other
semi-structured data models. In a named perspective, we would, e.g., obtain
[ Name: “Caesar”, Office: [ AtAge: 17, Title: “Flamen Dialis”]]. However, for
consistency with the rest of this article we use the unnamed perspective in the
following.

A well-known variant of this definition of complex values is the nested re-
lations model, see, e.g., [92]. The idea is to allow entire relations to occur as
values of attributes of other relations. In the terms of our above definition this
means that sets and tuples constructors must alternate in any complex value:
A set may contain only tuples (but not sets) and a tuple may contain only sets
or atomic values (but not tuples). However, this limitation does not affect the
expressiveness of the data model and is not considered further.

An algebra for complex values. For an algebra, the main difference if we consider
not only atomic but also complex values are operators that allow the construction
and destruction of set and tuple values as well as there restructuring.

The first addition to the algebra may be surprising: It is essentially a higher-
order function to apply some restructuring operation to all elements of a set:

Definition 263 (Map (Replace)). Let R be a set type and f a restructuring
function. Then map〈f〉(R) = {f(r) : r ∈ R} is the set of elements of R restruc-
tured according to f , i.e., the application of f to all elements of R. This can be
considered a higher-order function familiar from functional programming.

Restructuring functions are, e.g., projections, set and tuples construction, and
their compositions. For details see [1] and Example 264.

Note that, in particular, map〈f〉 itself is a restructuring function allowing,
which allows for restructuring of nested elements. However, restructuring is lim-
ited to a depth fixed in the query (no recursive tree transformations).

In some ways, map〈〉 can be considered a generalization of relational project,
which restructures each tuple in a relation by retaining only some of its at-
tributes.

In a similar generalization of the relational select, select on complex values
allows arbitrary boolean functions as predicates including comparators =, ∈,
and ⊂.

The basic set operations (∪, ∩, and, \) are defined as usual. Both arguments
must be sets of the same type. The cross product is changed to an n-ary operation
on set types ×(R1, . . . , Rn) = {[t1, . . . , tn] : t1 ∈ R1, . . . , tn ∈ Rn} such that the
result tuples obtain each component from one of the parameter sets.
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Note, that in particular binary cross product no longer combines the compo-
nents of the tuples of the two parameter sets (relations) but rather creates simply
a set of binary tuples containing as components the unchanged elements of the
original sets. To obtain classical product, a compound expression is needed: Let
R, S be two binary relations, then map〈[1.1, 1.2, 2.1, 2.2]〉(×(R, S)) computes the
classical product of R and S: First the compute a set of binary tuples with the
first component a tuple from R and the second a tuple from S (×(R, S), then we
transform that result using the restructuring function [1.1, 1.2, 2.1, 2.2], a short-
hand for the function that creates from each binary tuple in the parameter set
a new tuple with the first components first attribute (1.1) followed by the first
components second attribute (1.2) etc.

Finally, we add a “flattening” or “set collapse” operation collapse that takes
a set of sets as argument and returns the union of all members in that set.

Example 264. Let S of type {[Int, {Int}]}, i.e., S is a nested relation with the
second attribute containing sets of integers as values.

– Select from S tuples where the first component is a member of the second
component: σ〈1 ∈ 2〉(S).

– Select pairs sets of (set) values in S where the first is a subset of the second:
map〈[1.2, 2.2]〉(σ〈1.2 ⊆ 2.2〉(×(S, S))) which is equivalent to the expression
σ〈1 ⊆ 2〉(×(map〈[1.2]〉(S), map〈[1.2]〉(S))) where the restructuring (in this
case a projection) is pushed to the leaves of the expression.

– The Join of R and S on the first attribute again is expressed as a com-
pound expression σ〈1 = 3〉(map〈[1.1, 1.2, 2.1, 2.2]〉(×(R, S))) in analogy to
the standard equivalence R ��C S = σC(R × S).

– Unnesting (as introduced in [92]) creates from a relation like S a set of
flat tuples containing combinations of the first attribute of the original tu-
ples and one of the elements of the second attribute. It can be expressed
as collapse(map〈×({1}, 2)〉(S)): First the restructuring function ×({1}, 2) is
applied to all elements of S creating sets of tuples with the first attribute
from the values of the first attribute of S and the second attribute from the
members of the set values of the second attribute of S. Then all these sets
are collapsed into a single one.

– To add the value of the first attribute of S to the second, we can use
map〈{1} ∪ 2〉(S).

Note, that all queries are also functions, either boolean or restructuring func-
tions and can thus be used as parameters for map〈〉 or σ〈〉, respectively.

[1] also establishes a calculus that is, for safe queries, equivalent to the above
algebra. In particular, it is shown that queries in this algebra are domain-
independent in the sense of Section 3.2.3).

A possible extension to the above algebra to allow in particular the expression
of recursive queries such as the transitive closure of a relation directly in the
algebra, is the powerset operator: Given a set as parameter, powerset returns the
set of all subsets of R.
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The idea of expressing transitive closure in the above algebra is to first con-
struct the powerset of a relation and then eliminate all sets that do not (1)
contain the original relation and (2) are not transitively closed. For details on
the complex expression for computing transitive closure, see [1].

The price of the powerset operator is further examined in [149]. They show
that any algorithm in the above algebra for expressing transitive closure using
powerset (which is the required for expressing transitive closure, cf. [129]) needs
exponential space. In fact, they even prove that result for deterministic transitive
closure, i.e., transitive closure of a graph with out-degree ≤ 1. This contrasts
with PSPACE algorithms for transitive closure using, e.g., relational algebra and
a fixpoint operator such as WHILE. It is an open problem, whether there are
queries expressible with powerset that are not expressible without

[25] shows that the above algebra (and equivalent or similar proposed query
languages such as the nested relational algebra [92]) without powerset operator
can be elegantly formalized as monad algebra, studied in the context of category
theory and programming languages, and based, unsurprisingly, on structural
recursion on sets.

Combining complex values with bags (as discussed for flat relational algebra
in Section 9.2.1) is discussed in [83]. As expected, the nested bag algebra is more
expressive than the nested set algebra (as introduced above), however, with
increasing nesting depth the expressiveness difference becomes fairly subtle.

Combining complex values with sequences (as discussed for flat relational al-
gebra in Section 9.2.2) leads sequences of complex values very similar to the data
model of the W3C XQuery language. [101] shows that a core of that language can
indeed be formalized in notions similar to monad algebra (which, as mentioned
above, is equivalent to the algebra discussed in this section without powerset op-
erator) and gives complexity of various sublanguages of (non-recursive) XQuery.

The rest of this section considers adding complex values to relational algebra.
How about adding them to, e.g., non-recursive datalog? [48] shows that non-
recursive datalog (or Prolog) with trees and lists is equivalent to first-order logic
over lists and trees and that, in the non-recursive case, this addition is benign
w.r.t. data complexity (it remains in AC0).

9.2.4 From Values to Objects
Managing structured or semi-structured data involves the determination of what
defines the identity of a data item (be it a node in a tree, graph, or network, an
object, a relational tuple, a term, or an XML element). Identity of data items is
relevant for a variety of concepts in data management, most notably for joining,
grouping and aggregation, as well as for the representation of cyclic structures.

“What constitutes the identity of a data item or entity?” is a question that has
been answered, both in philosophy and in mathematics and computer science,
essentially in two ways: based on the extension (or structure and value) of the
entity or separate from it (and then represented through a surrogate).

Extensional Identity. Extensional identity defines identity based on the exten-
sion (or structure and value) of an entity. Variants of extensional identity are
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Leibniz’s law29 of the identity of indiscernibles, i.e., the principle that if two en-
tities have the same properties and thus are indiscernible they must be one and
the same. Another example of this view of identity is the axiom of extensionality
in Zermelo-Fraenkel or von Neumann-Bernays-Gödel set theory stating that a
set is uniquely defined by its members.

Extensional identity has a number of desirable properties, most notably the
compositional nature of identity, i.e., the identity of an entity is defined based on
the identity of its components. However, it is insufficient to reason about identity
of entities in the face of changes, as first pointed out by Heracleitus around 500
BC: You cannot step twice into the same river; for fresh waters are flowing in
upon you. (Fragment 12).

He postulates that the composition or extension of an object defines its iden-
tity and that the composition of any object changes in time. Thus, nothing
retains its identity for any time at all, there are no persistent objects.

This problem has been addressed both in philosophy and in mathematics and
computer science by separating the extension of an object from its identity.

Surrogate Identity. Surrogate identity defines the identity of an entity inde-
pendent from its value as an external surrogate. In computer science surrogate
identity is more often referred to as object identity. The use of identity separate
from value has three implications (cf. [12] and [99])

– In a model with surrogate identity, naturally two notions of object equiva-
lence exist: two entities can be identical (they are the same entity) or they
can be equal (they have the same value).

– If identity is separate from value, identity is no longer necessarily composi-
tional and it is possible that two distinct entities share the same (meaning
identical, not just same value) properties or sub-entities.

– Updates or changes on the value of an entity are possible without changing
its identity, thus allowing the tracking of changes over time.

In [12] value, structure, and location independence are identified as essential
attributes of surrogate identity in data management. An identifier or identity
surrogate is value and structure independent if the identity is not affected by
changes of the value or internal structure of an entity. It is location independent
if the identity is not affected by movement of objects among physical locations
or address spaces.

Object identity in object-oriented data bases following the ODMG data model
fulfill all three requirements. Identity management through primary keys as in
relational databases violates value independence (leading to Codd’s extension
to the relation model [45] with separate surrogates for identity). Since object-
oriented programming languages are usually not concerned with persistent data,
their object identifiers often violate the location independence leading to anom-
alies if objects are moved (e.g., in Java’s RMI approach).

29 So named and extensively studied by Willard V. Quine.
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Surrogate or object identity poses, among others, two challenges for query and
programming languages based on a data model supporting this form of identity:
First, where for extensional identity a single form of equality (viz. the value and
structure of an entity) suffices, object identity induces at least two, often three
flavors of equality (and thus three different joins): Two entities may be equal
w.r.t. identity (i.e., their identity surrogates are equivalent) or value. If entities
are complex, i.e., can be composed from other objects, one can further distin-
guish between “shallow” and “deep” value equality: Two entities are “shallow”
equivalent if their value is equal and their components are the same objects (i.e.,
equal w.r.t. identity) and “deep” equivalent if their value is equal and the values
of their components are equal. Evidently, “shallow” value-based equality can be
defined on top of identity-based and “deep” value-based equality.

The same distinction also occurs when constructing new entities based on
entities selected in a query: A selected entity may be linked as a component of a
constructed entity (object sharing) or a “deep” or “shallow” copy may be used
as component.

Summarizing, surrogate or object identity is the richer notation than exten-
sional identity addressing in particular object sharing and updates, but con-
versely also requires a slightly more complex set of operators in query language
and processor.

The need for surrogate identity in contrast to extensional identity as in early
proposals for relational databases has been argued for [45], as early as 1979 by
Codd himself. He acknowledges the need for unique and permanent identifiers for
database entities and argues that user-defined, user-controlled primary keys as
in the original relational model are not sufficient. Rather permanent surrogates
are suggested to avoid anomalies resulting from user-defined primary keys with
external semantics that is subject to change.

In [99] an extensive review of the implications of object identity in data man-
agement is presented. The need for object identity arises if it is desired to
“distinguish objects from one another regardless of their content, location, or
addressability” [99]. This desire might stem from the need for dynamic objects,
i.e., objects whose properties change over time without loosing their identity, or
versioning as well as from object sharing.

[99] argues that identity should neither be based on address (-ability) as in
imperative programming languages (variables) nor on data values (in the form
of identifier keys) as in relational databases, but rather a separate concept main-
tained and guaranteed by the database management system.

Following [99], programming and query languages can be classified in two
dimensions by their support for object identity: the first dimension represents
to what degree the identity is managed by the system vs. the user, the second
dimension represents to what degree identity is preserved over time and changes.

Problems of user defined identity keys as used in relational databases lie
in the fact that they cannot be allowed to change, although they are user-
defined descriptive data. This is especially a problem if the identifier carries some
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external semantics, such as social security numbers, ISBNs, etc. The second prob-
lem is that identifiers can not provide identity for some subsets of attributes.

The value of object identities (oids) as query language primitives is investi-
gated in [3]. It is shown that oids are useful for

– object sharing and cycles in data,
– set operations,
– expressing any computable database query.

The data model proposed in [3] generalizes the relational data model, most
complex-object data models, and the logical data model [103]. At the core of
this data model stands a mapping from oids to so-called o-values, i.e., either
constants or complex values containing constants or further oids. Repeated ap-
plications of the oid-mapping yield pure values that are regular infinite trees.
Thus trees with oids can be considered finite representations of infinite struc-
tures.

The oid-mapping function is partial, i.e., there may be oids with no mapping
for representing incomplete information.

It is shown that “a primitive for oid invention must be in the language . . . if
unbounded structures are to be constructed” [3]. Unbounded structures include
arbitrary sets, bags, and graph structures.

Lorel [4] represents a semi-structured query language that supports both ex-
tensional and object identity. Objects may be shared, but not all “data items”
(e.g., paths and sets) are objects, and thus not all have identity. In Lorel construc-
tion defaults to object sharing and grouping defaults to duplicate elimination
based on oids.

9.3 Optimal Views: Equivalence and Containment

9.3.1 Beyond Relational Containment
For Web queries against semi-structured data early research on query contain-
ment and optimization has focused on regular path expressions [6], short RPEs.
More recently, XPath has been in the focus of research with its central role in
upcoming Web query standards becoming apparent.

(Regular) path queries (or expressions, short RPEs) are regular expressions
over the label alphabet of some tree or graph. They select all nodes in a tree or
graph that are reachable from the root via a path (with nodes) whose labels form
a word in the language given by the regular (path) expression. Path (inclusion)
constraints (e.g., p1 ⊂ p2 or p1 ≡ p2 indicating that the nodes selected by p1
are a subset, resp. identical to the nodes selected by p2) can be exploited to
rewrite regular path expressions. [6] shows that equivalence of RPEs under path
inclusion constraints is, in fact, decidable in expspace. [71] extends this result
to conjunctive queries with regular expressions (a subset of StruQL) and shows
that it is still decidable and in expspace.

[68] gives a practical algorithm for rewriting RPEs containing wildcards and
a closure axis like XPath’s descendant. They employ, as we do in this work,
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graph schemata and automata for processing such schemata. However, as the
queries they consider are only regular path expressions, they can also use an au-
tomaton for (each of) the regular path expressions to be rewritten. The product
of the query with the schema automaton is computed and the resulting product
automaton is “pruned” to obtain a (query) automaton equivalent to the original
one under the given graph schema. In effect, this allows the rewriting of regular
path expressions such as *.a.*.b.c. If the schema specifies that there is at most
one a and at most one b on the path from the root to a c, this can be specialized
to (not(a))*.a.((not(b))*.b.c, an expression that prunes some search paths in
the data graph earlier than the original one.

[31] shows that a restriction to a deterministic semi-structured data model
where the labels of all children of a node are distinct, for paths without closure
axes (i.e., with only child axis), to decidable containment and minimization, but
remains undecidable for general regular expressions.

XPath containment and minimization differs from containment and minimiza-
tion of RPEs in that basic XPath expressions are simpler than RPEs, (no (a.b)*)
but full XPath contains additional constructs such as node identity join that eas-
ily make containment and minimization undecidable. Other additions of XPath
such as reverse axes have been shown [124] to be reducible to a core XPath
involving only forward axes and can thus be safely ignored in the following.
Therefore, various subsets have been considered, for a more complete survey of
the state-of-the-art in XPath query containment in ab- or presence of schema
constraints see [143].

The essential results are positive results if only tree pattern queries (under-
stood as XPath queries with only child and descendant axis and no wildcard
labels) are considered (e.g., [7] presenting an O(N4), with n the number of
nodes in the query, algorithm for minimizing in the absence of integrity con-
straints; [136] proposed an O(n2) algorithm for the same problem and an O(n4)
algorithm in the presence of required-child, required-descendant, and subtype
integrity constraint). In the latter paper, an O(n2) algorithm is given for the
case that only required-child and required-descendant constraints are allowed.
Miklau and Suciu [117] show that the problem becomes co-np complete if the
tree patterns may also contain wildcards. [35] shows how to obtain wildcard free
XPath expressions but needs to introduce new language constructs (“layer” axes)
for restricted rather than arbitrary-length path traversals in the document tree
(thus not contradicting the results from [117]). [143] refines this result showing
that adding disjunction does not affect this complexity.

If arbitrary regular path expressions are allowed (for vertical navigation),
query minimization becomes PSPACE-hard, as subsumption of regular expres-
sions r1 and r2 is equivalent to testing whether L(r1) ⊆ L(r2) which is known
to be PSPACE-hard.

Whereas early work on minimization under DTDs, e.g., [161] focused on simple
structural constraints (basically only child and parent constraints) and weak sub-
sets of XPath for optimizing XML queries, Deutsch and Tannen [53] show that
the problem of XPath containment in the presence of DTDs and simple integrity
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constraints (such as key or foreign key constraints from XML Schema) is undecid-
able in general and that this result holds for a large class of integrity constraints.
If only DTDs are considered [143] shows that containment of XPath with only
horizontal axes but including wildcards, union, filters, and descendant axes is
exptime-complete. [143] further shows that even for XPath with only child axis
and filters containment in presence of DTDs is already conp-complete. Adding
node-set inequality to the mix makes the containment problem immediately un-
decidable, using XPath expressions with variables even PSPACE-complete (in
the absence of DTDs)

[70] discusses also the minimization of XPath queries with only child and de-
scendant axes (as well as filters and wildcards), focusing in particular on the
effect of the wildcard operator. It proposes a polynomial algorithm for comput-
ing minimal XPath queries of limited branched XPath expressions, i.e., XPath
expressions where filters (XPath predicates []) occur only in one of the branches
under each XPath step.

Recently, attention has turned to optimization of full XQuery as well: In [39],
where a heuristic optimization technique for XQuery is proposed: Based on the
PAT algebra, a number of normalizations, simplification, reordering, and access
path equivalences are specified and a deterministic algorithm developed. Though
the algorithm does not necessarily return an optimal query plan it is expected
and experimentally verified to return a reasonably good one.

References

1. Abiteboul, S., Beeri, C.: The Power of Languages for the Manipulation of Complex
Values. VLDB Journal 4(4), 727–794 (1995)

2. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley
Publishing Co. Reading (1995)

3. Abiteboul, S., Kanellakis, P.C.: Object Identity as a Query Language Primitive.
Journal of the Association for Computing Machinery 45(5), 798–842 (1998)

4. Abiteboul, S., Quass, D., McHugh, J., Widom, J., Wienerm, J.L.: The Lorel
Query Language for Semistructured Data. International Journal on Digital Li-
braries 1(1), 68–88 (1997)

5. Abiteboul, S., Vianu, V.: Datalog Extensions for Database Queries and Updates.
Journal of Computer and System Sciences 43, 62–124 (1991)

6. Abiteboul, S., Vianu, V.: Regular Path Queries with Constraints. In: Proc.
ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Sys-
tems (PODS), pp. 122–133. ACM Press, New York (1997)

7. Amer-Yahia, S., Cho, S., Lakshmanan, L.V.S., Srivastava, D.: Minimization of
Tree Pattern Queries. In: Proc. ACM SIGMOD Symposium on the Management
of Data (SIGMOD), pp. 497–508. ACM Press, New York (2001)
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