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Abstract— Search and rescue operations can greatly benefit
from the use of autonomous UAVs to survey the environment
and collect evidence about the position of a missing person.
To minimize the time to find the victim, some fundamental
parameters need to be accounted for in the design of the search
algorithms: 1) quality of sensory data collected by the UAVs; 2)
UAVs energy limitations; 3) environmental hazards (e.g. winds,
trees); 4) level of information exchange/coordination between
UAVs.

In this paper, we discuss how these parameters can affect
the search task and present some of the research avenues we
have been exploring. We then study the performance of different
search algorithms when the time to find the victim is the
optimization criterion.

I. INTRODUCTION

Search and rescue operations are often characterized by a
similar set of constraints: time is critical and any delay can
result in dramatic consequences – potentially human losses;
operational environments are unfriendly, e.g. disaster scenes,
forests, etc. Using Unmanned Aerial Vehicles (UAVs) can
provide a critical support to search and rescue operations.
UAVs are agile, fast, can exhibit autonomous behaviours and
hence perform operations hard to execute by human operators,
at low operating costs. In a typical scenario, UAVs will be
deployed in an area of interest, perform sensory operations to
collect evidence of the presence of a victim, and report their
collected information to a remote ground station or rescue
team (Fig. 1). UAVs have already demonstrated their benefit

Fig. 1. Rescue scenario with UAVs: the UAVs fly over an area the victim
is believed to be located, gather information on its potential location, and
transmit it back to a remotely located rescue team.

in search and rescue operations by helping responders to focus
their search efforts while avoiding hazards. In 2006, in the

aftermath of Hurricane Katrina, two UAVs were used to survey
the damaged area in the search for trapped survivors [1]. The
growing recognition of the potential of using UAVs for search
and rescue applications is supported by an increasing number
of works in the areas of image recognition for victim detection,
path planning and task allocation [2]–[4].

In this paper, our focus is the analysis of the performance of
different search techniques when the time to find the victim
(also referred to as target) is the optimization criterion. In
particular, we compare the benefit of sharing data between
UAVs with different search techniques based on greedy heuris-
tics, potential fields, and partially observable Markov decision
process.

The remainder of the paper is organized as follows. We first
describe our hardware platforms in Sec. II. We emphasize
some research challenges of search and rescue applications
with UAVs in Sec. III. We then present the performance
evaluation of different search strategies in Sec. IV and Sec. V.
We conclude this paper in Sec. VI.

II. UAV QUADROTOR

The hardware platforms we are using are off-the-shelf,
electrically-powered quadrotors. We are currently using several
models from Ascending Technologies (Fig. 2). These vehicles
have the advantage of being easy to prepare, control and fly.
The payload they can carry is in the order of a few hundred
grammes. With the current battery capacity available, the flight
time of the UAVs is restricted to a few tens of minutes. Each
of these platforms has been redesigned to accommodate a 1.6
GHz Intel Atom board with 1GB of RAM and 16GB SSD
that can provide the computation abilities.

III. RESEARCH CHALLENGES

To optimize the tasks of the UAVs during the search
operation, several factors need to be accounted for in the
design of the search strategy:

• Quality of sensory data: In search and rescue operations,
to properly assess the quality/trustworthiness of the
information reported to the rescue team is of paramount
importance. If a UAV is surveying an area, a victim
should not be missed, i.e. the probability of false negative
should remain low; at the same time, the probability
of false positive, i.e. the probability that a victim is
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Fig. 2. UAVs in use in the SUAAVE (Sensing Unmanned Autonomous Aerial VEhicles) project.

considered as detected when it is actually not there,
should remain low to avoid sending a ground rescue
team to a place of no interest. The challenge is then to
establish accurate models of the quality of the sensory
data obtained from the UAVs.

• Energy limitations: One of the critical aspects of the
UAV platforms we are using is their limited flight time.
In preliminary experiments, we have established that the
current consumption when the UAV is flying and when
it is hovering is similar. One way to save energy is then
to have the UAV remain idle (rotors off). Depending on
the tasks to accomplish and on the capabilities of the
UAVs, several search strategies can be envisionned such
as alternating periods of flights and periods of rest, or
sending only a subset of the UAVs to accomplish certain
tasks whilst the rest remains idle (recharging batteries
for instance).

• Environmental hazards. During its flight, a UAV should
be capable of avoiding environmental hazards (trees,
building, etc.) as well as avoiding collisions with other
UAVs. It is also necessary to account for the fact that
depending on the position of the UAV, some areas on
the ground might be occluded.

• Information sharing: Two aspects of the information
sharing process need to be considered: data fusion and
network connectivity.

– Data fusion: When multiple UAVs are deployed, the
sensory data they collect can be shared and fused
to generate a complete picture of the environment –
which can in turn guide the search process. This task
is all the more challenging as any solution that will
be proposed needs to account for limitations in terms
of processing, memory storage, energy consumption,
network availability and so on.

– Network Connectivity: During deployment, commu-
nications can occur between UAVs and between
UAV-Ground Station. The connections can happen
opportunistically or can be scheduled. A trade-off
needs to be made between reward of establishing a
connection (resulting in exchanges of information)

and cost of connection (necessity to travel to a given
rendezvous point). Since it is also critical to regularly
inform the ground station of the evolution of the
mission, it is important to evaluate the benefit to
maintain the network fully or partially connected.
Other questions that require further investigation are:
How frequently should the connections be estab-
lished between the UAVs? How frequently should
the UAVs report to the ground station?

IV. SEARCH ALGORITHMS

In this work, we consider that UAVs are equipped with
downward-pointing cameras to detect victims on the ground.
By changing altitudes, UAVs can change the size of their
observation areas. The higher they fly, the bigger their obser-
vation area. But as the UAV flies higher up, the level of detail
decreases. Using these observations, we have shown that with
a single UAV, changing altitudes is a valid control strategy that
can speed up the search process [5], [6]. A question we are
investigating in this work is the impact of altitude on the search
strategy. When several UAVs are deployed, the complexity of
the problem increases. In an initial work [7], we investigated a
simple fusion algorithm in which all observations made by all
UAVs are exchanged when the UAVs come into communica-
tion range and are locally maintained. We use this mechanism
in this work when communication between UAVs occur. We
also consider differences in quality of sensory data, as well
as we account for the presence of obstacles during the search
operations. We implicitly account for energy constraints by
looking at search strategies that minimize the time to find the
victim.

Search algorithms for search and rescue operations should
be able to cope with the uncertainties of real-world deploy-
ment. Hence real-time approaches are more appropriate and
can be divided into three main categories:

1) Greedy heuristics
2) Potential-based heuristics
3) Partially Observable Markov Decision Process

(POMDP) based heuristics
To maintain the information on the probability of the victim

location, each UAV maintains a grid-based probabilistic map
(belief map) composed of cells that represent the discretization
of the search space. Each cell contains the probability that the



target is present in it. These maps are commonly used for ap-
plications such as surface mapping, exploration or navigation
(e.g. [8]).

We adopt a Bayesian approach to keep track of the target
state probability density function. This approach is sensible
in our context, where non-Gaussian sensor measurements are
considered. The search problem starts with the assumption of a
prior probability distribution function that describes the initial
belief of the target location. This can be a Gaussian distribution
or a coarse estimate of the target location depending on
environmental features such as rivers or roads (Fig. 3). If no
prior information is known, we assume a uniform distribution.
After each observation, the probability distribution function of
the target state is recomputed. We assume that observations are
independent and we consider cells inter-dependence in a single
stationary target scenario.

(a) Search area (b) Belief map

Fig. 3. Example of scenario in which the victim is believed to be along a
road (in red) and not in the river (in blue). The search area is mapped into a
grid in which the cells in which the victim is located with high probability
are shaded in red and the ones with low probability are shaded in blue.

A. Greedy heuristics

The first search strategies we implemented are based on a
greedy choice of the cell towards which a UAV should fly
based on a predefined criterion. The general structure of the
heuristics we implemented is described in Alg. 1. The UAV
moves to the neighboring cell s� that has the highest belief (to
increase our confidence of the presence of a victim after the
sensing operation).

Start=s’
Initialize BeliefMap
while true do

s=s’
GetObservation(s)
if target detected then

Report Base Station
end
UpdateBeliefMap(s)
s’=NextMove(s)

end
Algorithm 1: General structure of greedy heuristics

Different tie-breaking strategies can be considered:

• Rand: Pick s� at random (the version of Rand where
UAVs can communicate is referred to as MS Rand).

• Cov: Pick s� that provides the highest coverage.
• MaxSum: Pick s� for which the sum of the belief of the

cells that the UAV would cover by moving at this location
is maximum. The goal is to maximize the information
gain.

• MaxMin: Pick s� that covers a cell for which the minimum
belief is the highest.

• MaxMax: Pick s� that covers a cell that has the highest
belief.

• MinNeigh: Pick s� for which the difference between the
maximum and minimum belief is minimum in order to
increase our information on the target presence for a
greater number of cells at once.

We also study variants of the greedy heuristics (referred to
as 1-look ahead) in which the UAV bases its control decision
not on the value of the belief of the victim presence on the
neighboring cell but on the overall gain of moving into that
cell. The optimization criteria are defined as before and the
heuristics we consider are:

• LA MaxSum: Pick s� for which the sum of the belief
of the cells that the UAV would cover by moving at
this location is maximum. The goal is to maximize the
information gain.

• LA MaxMin: Pick s� that covers a cell for which the
minimum belief is the highest.

• LA MaxMax: Pick s� that covers a cell that has the
highest belief.

• LA MinNeigh: Pick s� for which the difference between
the maximum and minimum belief is minimum.

B. Potential-based Algorithm
Potential field methods are based on the following simple

concept: goals are associated with attractive potentials and
obstacles are associated with repulsive potentials. At each
point in the free configuration space (set of configurations that
avoid collisions with obstacles), the potential represents the
sum of the attractive potentials and repulsive potentials. More
formally, let us consider a UAV at position q. Let Uobs(q)
be the potential created by an obstacle at the UAV location q,
and Ugoal(q) be the potential created by the goal. The potential
function U at q represents the sum of the potentials as shown
in (1).

U(q) = Uobs(q) + Ugoal(q) (1)

The force exerted at q is obtained by computing the negative
of the gradient of the potential U at q. For example, if
we consider a UAV navigating in a 2-D world with fixed
orientation, (q = (x, y) in �2), we obtain (2):

−−→
F (q) = −∇U(q) =




∂U
∂x

∂U
∂y



 (2)

In the design of the attractive and repulsive potential fields,
one should consider the following factors:



• Attractive potentials should increase as the UAV moves
away from the goal. When the UAV reaches the goal, no
forces from the goal should act upon it.

• Repulsive potentials should increase as the UAV comes
closer to an obstacle. But repulsive potentials should not
affect the UAV motion when it is far from the obstacle.

Practically, in our search and rescue scenario, we assigned
to each cell a weight that depends on its nature: obstacles
and already-visited locations. The weight of each cell
that is visited is increased by Kv after each visit. A
potential is computed for each grid cell according to Alg. 2.

Initialization
For each cell that is an obstacle, assign maxWeight
s = start location

while true do
assign weight w(s) = min(w(s) + Kv, maxWeight)
for each cell do

compute distance dv to visited cells
U(cell) = w(cell)/d2

v
end
s’=neighboring cell with minimum potential
move UAV to location s’
if target in s’ then

Report Base Station
end
s = s’

end
Algorithm 2: Potential-based search algorithm

C. Partially Observable Markov Decision Process

Partially Observable Markov Decision Processes (POMDPs)
are a generalisation of a Markov Decision Process (MDP) to
situations where the system can be modelled by a MDP, but
the underlying states are unobservable. Instead, the state dis-
tribution must be inferred based on a model of the world and
local observations where, typically, sensors provide partial and
noisy information about the world. The POMDP framework
is general enough to model a variety of real-world sequential
decision processes. An exact solution to a POMDP yields the
optimal action for each possible belief over the world states.
The optimal action maximizes (or minimizes) the expected
reward (or cost) of the agent over a time horizon. The sequence
of optimal actions is known as the optimal policy and is chosen
so as to optimise the expected reward (or cost).

Formally, a POMDP is represented by the following n-tuple:
{S, A,O, b0, T.Ω, R, γ}, with:

• S: finite set of discrete states,
• A: set of actions,
• O: set of observations,
• b0: initial belief states distribution,
• T (s, a, s�): probability of transition from s to s� when

taking action a,
• Ω(o, s�, a): probability of observing o from state s� after

taking action a,
• R(s, a): reward when executing action a in state s,
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Fig. 4. Scenario for the implementation of Hierarchical POMDP with 2
UAVs flying at 2 different altitudes.

• γ: discount factor.
The goal is to find a set of actions that maximizes the expected
sum of rewards over an infinite horizon E[

�
t γtR(st, at)].

In our implementation, we considered that each UAV is able
to compute its policy based on information locally maintained.
Time constraints have been enforced due to the size of the
problem and the number of states that could potentially lead to
hours of computation Since UAVs can fly at different altitudes,
we can differentiate the tasks of the UAVs as a function of their
altitude (Fig. 4). This can be modelled using a POMDP with
different observations models and set of actions for each set
of UAVs (referred to as Hierarchical POMDP).
For simplicity, we consider that the UAVs can fly at only two
distinct altitudes.

We evaluate three strategies:
1) POMDP: UAVs fly at the same altitude but do not

exchange any information.
2) MS POMDP: UAVs fly at the same altitude and ex-

change information when in communication range.
3) Hierarchical POMDP (HPOMDP): UAVs fly at different

altitudes and exchange information when in communi-
cation range.

V. SIMULATIONS

We consider 3D terrains discretized into cells of unit length.
In our first evaluations, we only consider trees as obstacles that
we model in 3D space by cylinders (Fig. 5). Each cylinder is
further discretized into an integer number of grid cells. In our
model, we account for the fact that, depending on its position
relative to the obstacles, a UAV may not be able to observe a
certain number of cells on the ground (shadowing effect).

We consider a sensing model accounting for false positive
and false negative:

• Probability(sensing target at height h—target)=1− βh



Fig. 5. Example of the effect of the presence of obstacles on the sensing
range: a tree (cylinder) blocks a UAV field of view, and makes some areas
on the ground not observable.

TABLE I
OBSERVATION MODEL

Altitude (h) αh βh

5m 0.243599 0.000000
10m 0.028369 0.000000
15m 0.026099 0.046211
20m 0.001110 0.046745

• Probability(not sensing target at height h—target)=βh

• Probability(not sensing target at height h—no target)=1−
αh

• Probability(sensing target at height h—no target)=αh

αh (0 ≤ αh ≤ 1) and βh (0 ≤ βh ≤ 1) represent the
false alarm and missed detection probabilities and vary as
a function of the height h of the helicopter. From our field
experiments [5], we obtained the values of the observation
model summarized in Table I.

The sensing areas on the ground cover a set of M(h)
cells, where h is the altitude of the UAV considered. The
dimension of the sensing area increases with the height of the
UAVs. UAVs at high altitude have a greater sensing coverage
than UAVs at low altitude but they also have lower sensing
resolution (smaller detection probability).

To first assess the performance of search algorithms before
trials with real hardware, we used a Matlab/Simulink-based
simulator for real-time control systems. This allows to accu-
rately simulate distributed systems with realistic radio trans-
mission models. The characteristics of the wireless channel
are:

• Transmit power = -30 dBm
• Receiver threshold = -48 dBm
• Path loss coefficient = 3.5
Please note that the wireless settings have been adjusted to

scale with the test areas. The grid cells are 1x1x1 cube meters
and the maximum wireless transmission range is 2.27m. We
considered squared coverage areas that correspond to a 3x3
grid for the UAVs evolving at level 2, and 4x4 grid for the
UAVs evolving at level 1. The maximum simulation time is
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Fig. 6. Test configuration: top view of the test area with 2 UAVs at the
bottom left corner, 5 trees and 1 goal (victim) centrally located.

200sec. A UAV periodically broadcasts its position and other
relevant information (such as belief maps). Decision on the
next step to go towards to is taken when the UAV arrives
close to the center of a cell. All UAVs fly at the same speed
regardless of their altitude.

To solve POMDPs, we used the ZMDP software [9].
The topology we simulated is a 10x10 grid, with 5 trees

randomly positioned. 2 UAVs start their search at nearby
position. One target is located in the middle of the test area
(Fig. 6).

We assume that the mission is successfully completed when
the target has been positively identified. The result of the
simulations is depicted in Fig. 7.

We can see that the approach based on POMDP and look-
ahead strategies performs the best compared to the greedy
heuristics and the potential-based approaches. Greedy heuris-
tics perform in general poorly as the control decision of the
UAVs is based only on local information which can lead
them to stay longer in areas that have already been explored
instead of going to remote areas that have not been explored
yet. Potential-based approaches also generally perform poorly
due to the known problem of local minima that these search
techniques suffer from. Additional heuristics are required to
help the UAVs escape from these local minima but this
unavoidably impacts the time to locate the target.

This simple simulation scenario demonstrates that trying to
estimate the best search paths by sharing information from
sensory operations and by exploiting the acquired or prior
knowledge of the possible victim location can help speed up
the search task. But this result has a computational cost that
can not be neglected. With greedy heuristics, the computa-
tional cost is minimal as the control decision is based on the
value of the belief of the victim position in direct neighboring
locations. With potential-based searches, the computational
cost is linear with the number of cells. Solving a POMDP in an
exact fashion is an intractable problem [10]. To find a solution
for a POMDP requires to consider each possible action and
each possible observation, which implies that the cost of
a solution grows exponentially with the desired planning
horizon. Rather than advocating for the use of POMDP or
look-ahead strategies for search tasks, this simple case scenario
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Fig. 7. Simulation results showing the time to find the victim (completion time) with different search techniques.

illustrates the potential of POMDP when the number of states
remains limited, and the importance of exploiting as much as
possible the information acquired by one or multiple UAVs to
predict more accurately a victim location.

VI. CONCLUSION

Unmanned aerial vehicles can provide a critical support for
search and rescue operations. However in order to achieve
their full potential, it is necessary to properly account for all
the parameters that can affect the flight of the UAVs such as
quality of sensory operations (that can depend on the position
of the UAVs for instance), energy constraints, environmental
hazards or data sharing constraints between UAVs and rescue
teams.

In this paper, we studied different search strategies based
on greedy heuristics, potential-based algorithms and partially
observable Markov decision process to design the control
strategy of several UAVs. The evaluation criterion was the time
taken by the UAVs to find the victim. Our preliminary results
show the importance of exploiting as much as possible the in-
formation obtained during the search operations and illustrate
the potential of POMDP in a simple scenario. However this
comes at a high computational cost that needs to be accounted
for.

In future work, we intend to investigate more complex sce-
narios and to account for energy and connectivity constraints.
We also intend to study how search algorithms based on
POMDP scale when the number of states increases.
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