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Abstract

This report extends previous work [3] in which quantum mechanics and a quantum-like
theory (Spekkens’s toy bit theory [5]) were compared within the framework of symmetric
monoidal categories. In this context, each quantum-like theory is naturally associated
with an Abelian group, termed its phase group. Quantum mechanics and the toy bit
theory exhibit different phase groups, Z4 and Z2 × Z2 respectively, and it was shown
that this difference exactly underlies the fact that while the predictions of the toy theory
can be modelled by local hidden variables, those of the stabiliser theory cannot. In this
report we extend this work to more general groups: given a quantum-like theory with
some phase group we derive a group theoretic criterion which determines whether a local
hidden variable interpretation is impossible for the theory. This result is essentially a
generalisation of Mermin’s famous no-go theorem [4] employing the GHZ state.

1 Introduction

Basis structures (commutative isometric dagger Frobenius comonoids) arise in the categories
associated with several quantum-like theories, where they provide the abstract counterparts
of orthonormal bases, and are thus associated with the measurement of observables. Every
basis structure has a corresponding Abelian group, termed its phase group. Previous work [3]
investigated the categories Stab and Spek which correspond respectively to qubit stabiliser
quantum mechanics, and the toy bit theory proposed by Rob Spekkens [5]. The two categories
exhibit different phase groups, Z4 and Z2 ×Z2 respectively. It was shown that this difference
exactly underlies the fact that while the predictions of the toy theory can be modelled by
local hidden variables, those of the stabiliser theory cannot.

This work attempts to extend this result to more general phase groups. Whilst it does not
succeed in encompassing all possible phase groups, it does extend the result to a large class,
many of which might be expected to occur in the categories corresponding to theories of
interest. We begin in section 1 by reviewing the key categorical structures which will be used
in the paper, and then move on to explicitly characterise which phase groups are covered by
the new result, in section 2. Section 3 shows how the issue of local hidden variable theories is
treated in the abstract categorical setting. Sections 4 and 5 lay the groundwork for the main
result which is described in section 6. This result is essentially a generalisation of Mermin’s
famous no-go theorem [4] employing the GHZ state. Section 7 makes a link between the main
result of the paper and the subject of group extensions. Appendix A illustrates the results of
the paper using a concrete example. Consideration of this example may aid comprehension
of the proof of the general result.

2 Review of basis structures and phase groups

Here we briefly review the key categorical structures used in the paper. For full details the
reader is directed to [2].

Definition 2.1 In a †-SMC a basis structure ∆ on an object A is a commutative isometric
dagger Frobenius comonoid (A, δ : A→ A⊗A, ǫ : A→ I). For more details on this definition
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see section 4 of [2] where basis structures are referred to as ‘observable structures’. We
represent the morphisms δ and ǫ graphically as:

δ ǫ
(1)

We will frequently use the notation BA to denote the set of basis structures on the object A.

Definition 2.2 A morphism x : I → A is an eigenstate of a basis structure ∆ = (A, δ, ǫ) iff
it satisfies the following conditions:

δ ◦ x = x⊗ x x = x∗ ǫ ◦ x = 1I (2)

Essentially eigenstates are ‘copied’ by the δ morphism. We will frequently use the notation
C∆ to denote the set of eigenstates of the basis structure ∆.

Definition 2.3 Given a basis structure ∆ = (A, δ, ǫ) in a †-SMC C, the basis structure
multiplication is a map:

−.− : C(I,A) × C(I,A) → C(I,A) where ψ.φ = δ† ◦ (ψ ⊗ φ) (3)

or diagrammatically:

=

ψ

φ

ψ.φ

(4)

It can be shown [2] from the defining properties of a basis structure that (C(I,A),−.−, ǫ†) is
a commutative monoid. We refer to this as the basis structure monoid corresponding to ∆.

Definition 2.4 Given a basis structure ∆ = (A, δ, ǫ) a state ψ : I → A is unbiased with
respect to ∆ iff. ψ.ψ∗ = ǫ†. We will frequently use the notation U∆ to denote the set of
unbiased states of the basis structure ∆.

Definition 2.5 It can be shown [2] that (U∆,−.−, ǫ
†, (−)∗) is an Abelian sub-group of the

basis structure monoid. We refer to this group as the phase group of ∆.

Definition 2.6 In a †-SMC, the GHZ state Ψ∆ : I → A⊗A⊗A corresponding to the basis
structure ∆ = (A, δ, ǫ) is the composition:

Ψ∆ := (δ ⊗ 1A) ◦ δ ◦ ǫ
† (5)

or graphically:

:=

(6)
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3 Domain of applicability

By the process category of a theory we mean the category whose objects correspond to the
systems of the theory, and whose morphisms correspond to the processes which can be un-
dergone by these systems. Such a category is naturally symmetric monoidal. In this paper
we will require additional structure on our process category.

1. The process category must have a dagger functor and basis structures on all of its
objects. It should also have zero morphisms.

2. These formal mathematical features of the process category must relate to the theory in
specific ways. Basis structures correspond to observables in the theory. The eigenstates
ei of a basis structure ∆ are in bijection with the outcomes of a measurement of this
observable. Given a system prepared in a state ψ : I → A, if e†i ◦ ψ = 0I,I , then the
corresponding measurement outcome has zero probability. ei is described as a forbidden
outcome with respect to ψ.

3. Given ei and ej , distinct eigenstates of the same basis structure, we require that e†i ◦ej =
0I,I . One can show that this follows from requiring that there are only two idempotent
scalars in the category, 1I,I and 0I,I .

One can motivate these features to some extent by physical considerations, but we will not
discuss that here. It should be noted that not all theories of interest (perhaps not even most)
will have process categories with these features. An example is boxworld, a theory proposed
in [1], which exhibits a greater degree of non-locality than quantum mechanics; its process
category has no dagger functor or basis structures. That said, there are theories of interest
which do satisfy these conditions, for example quantum mechanics, and the toy bit theory
due to Spekkens [5].

Furthermore, our analysis applies only to phase groups satisfying two conditions (1) the
observable-coset condition and (2) the quotient-sub-periood (QSP) condition.

Definition 3.1 A phase group U∆ satisfies the observable-coset condition if:

1. It has a sub-group consisting of all the eigenstates of some other basis structure ∆′.
This is termed the observable sub-group, and will be denoted by C0.

2. The cosets of the observable sub-group each themselves consist of all of the eigenstates
of some basis structure. These are termed observable cosets, and will be denoted by Ci.

Definition 3.2 The observable quotient group is the group U∆/C0. Its elements are the
observable cosets.

The observable-coset condition is clearly a categorical property of the process category, rather
than a group theoretic property. For example it is impossible to say whether the group Z4

has the observable coset property. However, we can say that the Z4 phase group appearing
in the elementary object basis structure in Stab does have the observable coset property.
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Definition 3.3 A phase group U∆ which satisfies the observable-coset condition will addi-
tionally satisfy the quotient-sub-period condition, or QSP condition, if for any a ∈ C0,
a|CQ| = e.

The observable-coset condition is key, in that many of the definitions that follow are only
well-defined when it holds (indeed the QSP condition just stated only makes sense when the
observable-coset condition holds). Most of the definitions which follow in the next few sections
still make sense for a phase group which does not satisfy the QSP condition. However, our
main result will only apply to those which do satisfy it. Throughout the following sections we
will assume that we are dealing with a phase group U∆, which satisfies the observable-coset
property, and corresponds to a basis structure ∆ = (A, δ, ǫ). We will explicitly note when we
require a phase group to satisfy the QSP condition.

4 Abstract local hidden variables

We aim to address the issue of local hidden variables in the abstract categorical arena. To
pursue this we will need to develop an abstract notion of hidden variable, and equally we will
need some idea of what it means for hidden variables to be local. Before going any further
we first need to introduce the concept of observable structures. Whilst in the theories we are
considering every basis structure corresponds to a unique observable, the converse is not true
in general: usually there will be multiple basis structures corresponding to the same observ-
able. This is because it is possible for different basis structures to have the same eigenstates,
and it is really these which identify a basis structure with a given observable. For this reason,
we partition BA (the set of basis structures on A) into classes whose members all have the
same eigenstates. Such classes are termed observable structures. They are conventionally
represented by a capital omega Ω, differentiated by subscripts if necessary, and we denote the
set of observable structures on an object A by OA.

We can now proceed to give an abstract account of hidden variables.

Definition 4.1 The hidden state space of an object A is the set ΞA =
∏

Ωi∈OA
CΩi.

Each element h ∈ ΞA is termed a hidden state. Essentially a hidden state is a list of one
outcome for all measurements which can be made on the system - it should be interpreted
as representing a definite set of values for each of the system’s observables. Note that every
object in a process category with basis structures has a hidden state space, regardless of
whether or not the accompanying theory has a hidden variable interpretation.

We take a rather abstract view of locality, and simply say that in a local theory we should
be able to distinguish distinct systems, and that the choice of what observable to measure on
one system should make no difference to the outcome of measurements on another system.
We include no reference to spatio-temporal concepts. The monoidal product will naturally
represent a compound system. However, we need to make the assumption that any object A
in the process category has a unique monoidal decomposition A = A1 ⊗ · · · ⊗An into objects
A1, . . . , An which represent elementary systems; this will not necessarily be reflected in the
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categorical structure. Those objects for which n > 1 will be described as composite, those for
which n = 1 as elementary.

Definition 4.2 The local hidden state space (LHSS) of a composite object A = A1⊗· · ·⊗An

is the set ΛA =
∏

i ΞAi. The elements of ΛA are termed hidden states.

The hidden states of an LHSS are tuples of values. However it will be convenient to index
the components of the tuple with two labels: hij . This represents the value of observable Ωj

on the constituent system Ai.

Definition 4.3 Each h ∈ ΛA induces a value function on each constituent object Ai:

vih : OAi → RAi :: Ωj 7→ hij (7)

Definition 4.4 An observable n-tuple on a composite object A = A1 ⊗ · · · ⊗ An is a tuple
of observable structures (Ω1, . . . ,Ωn) where Ωi ∈ OAi. An outcome n-tuple corresponding to
this observable n-tuple is a tuple of eigenstates (x1, x2, . . . , xn) where x1 ∈ CΩi .

Evidently the hidden states of a local hidden state space map observable n-tuples into outcome
n-tuples, via the value functions.

Definition 4.5 A local hidden state distribution (LHSD) over a local hidden state space Λ
is a σ-additive measure µ : B(Λ) → R, such that µ(Λ) = 1.

A LHSD µ allows us to calculate the probabilities of the different outcomes for measurement
of any tuple of observables, via the following prescription.

probµ(x1, . . . , xn) = µ({h ∈ Λ|v1h(Ω1) = x1, . . . v
n
h(Ωn) = xn}) (8)

Now, any theory will have some algorithm for calculating the probability of the measurement
outcome corresponding to the outcome tuple (x1, . . . , xn), given that the system is prepared
in state ψ (in all theories examined so far, the probability is some function of the scalar
(x1 ⊗ · · · ⊗ xn)

† ◦ ψ). We term this the theory’s probability rule.

Definition 4.6 Consider a state ψ : I → A. The object A will have a local hidden state
space ΛA. Now consider a LHSD µ on ΛA: if the probability predictions due to µ match those
derived for ψ from the theory’s probability rule, then we say that µ provides a local hidden
variable interpretation (LHVI) for ψ.

Definition 4.7 Consider a state Ψ : I → A1 ⊗ · · · ⊗An in a process category C. An n-tuple
of values (x1, x2, . . . , xn), where xi ∈ CΩ, Ω ∈ OAi , is termed a forbidden outcome n-tuple
with respect to Ψ if:

(x1 ⊗ x2 ⊗ · · · ⊗ xn)
† ◦Ψ = 0I,I (9)

n-tuples which are not forbidden with respect to Ψ are allowed with respect to it.
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The following result will be important later on when we develop a no-go proof to rule out
hidden variable interpretations for certain theories.

Lemma 4.8 If the value functions of a hidden state h map an observable n-tuple into an
outcome n-tuple which is forbidden with respect to a state Ψ, then for an LHSD µ to constitute
a LHVI for Ψ, it must assign a probability of zero to h.

Proof: Suppose (x1, . . . , xn) is a forbidden tuple with respect to a state Ψ : I → A. The
corresponding observable n-tuple is (Ω1, . . . ,Ωn). An LHSD µ on the local hidden state space
of A can only constitute a LHVI for Ψ if:

µ({h ∈ Λ|v1h(Ω1) = x1, . . . v
n
h(Ωn) = xn}) = 0 (10)

Clearly we can conclude that all hidden states h ∈ Λ for which vjh(Ωj) = xj must be assigned
a generalised probability of zero. 2

Throughout the remainder of this chapter we will only be interested in GHZ states, and if we
refer to an outcome n-tuple as forbidden, we will mean that it is forbidden with respect to
whichever GHZ state is under consideration. Since the GHZ states are states on a 3-composite
object, we will be referring throughout to forbidden outcome triples, or, for short, forbidden
triples.

5 Phase group and forbidden triples

Given a basis structure ∆ = {A, δ, ǫ}, the corresponding monoidal product on two points
a, b : I → A is defined by a.b = δ† ◦ (a ⊗ b). We will now show that this monoid catalogues
the forbidden triples of the GHZ state corresponding to ∆.

Lemma 5.1 Given a, b : I → A, and a basis structure ∆ on A with corresponding monoidal
product −.−, suppose ∃∆′ ∈ BA (not necessarily equal to the original ∆) such that (a.b)∗ ∈
C∆′. Then (a, b, (a.b)∗) is an allowed triple with respect to the GHZ state corresponding to ∆.
Furthermore ∀x ∈ C∆′ , x 6= (a.b)∗, we have that (a, b, x) is a forbidden triple with respect to
this GHZ state.

Proof: First note that:

=b

x

a∗

b∗

x = x

a

(a.b)∗

(11)

Then if x = (a.b)∗ then the rightmost diagram equals 1I , and (a, b, (a.b)∗) is an allowed triple.
And if x 6= (a.b)∗ the rightmost diagram equals 0I,I , and (a, b, x) is a forbidden triple. 2

Hence, every pair of points a and b of A for which a.b is an eigenstate of some basis structure
has a set of associated forbidden triples. Obviously there is no overlap between these forbidden
triples, since a and b are different in each case.
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The phase group of a basis structure is a sub-group of the monoid, so we naturally expect
the phase group to have some bearing on the allowed triples of GHZ states. If a phase group
satisfies the observable-coset condition then it pins down the allowed and forbidden triples
very precisely for certain observable triples, as we now see.

Definition 5.2 In an phase group U∆ with the observable-coset property, a triple of ob-
servable structures (Ω1,Ω2,Ω3) is said to be a forbidden-outcome observable triple or FO-
observable triple if CΩ1 , CΩ2 and CΩ3 are observable cosets and CΩ3 = (CΩ1 .CΩ2)

−1 where
−.− and (−)−1 denote group multiplication and inverse with respect to the observable quotient
group.

Proposition 5.3 Given an FO-observable triple (Ω1,Ω2,Ω3), any element of CΩ1×CΩ2×CΩ3

which is not of the form (a, b, (a.b)∗) is a forbidden triple.

Proof: Any element of CΩ1×CΩ2×CΩ3 which is not of the form above takes the form (a, b, x)
where: (i) x, a.b ∈ C3; and (ii) x 6= a.b . From lemma 5.1 this implies (a, b, x) is forbidden. 2

In such a situation then, the phase group gives complete information on the forbidden and
allowed outcome triples for the FO-observable triples.

6 Generalised Mermin table and generalised parities

Our analysis of locality is essentially a generalisation of the famous no-go proof employing
GHZ states proposed by Mermin [4]. In this section we show how to generalise the key
ingredients of that proof, ready for our generalised version of the proof in the next section.

Throughout this section we will denote the observable sub-group by C0, and the observable-
cosets by C1, C2, . . . etc. The corresponding observable structures will be denoted by Ω0,Ω1, . . .
etc. C0, C1, . . . are the elements of CQ. We will denote the group multiplication by −.− and
the inverse operation by (−)−1. For the remainder of these sections we will use n to denote
the order of the observable quotient group i.e. n = |CQ|.

Definition 6.1 The generalised Mermin table of a phase group U∆ satisfying the observable-
coset condition is an array of observable structures of n2 rows and three columns, with each
row being of the form:

Ωi Ωj Ωk

where i, j = 0, . . . , n − 1 and the corresponding observable-cosets satisfy Ck = (Ci.Cj)
−1, i.e.

each row contains the elements of a FO-observable triple. Clearly the rows are indexed by i
and j so we will refer, for example to the (i, j)th-row.

We will denote the elements of the observable sub-group by C0 = {a0, . . . , am−1} where a0
denotes the group identity element. Throughout the remainder of these sections we will use
m to denote the order of the observable sub-group.
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Definition 6.2 A labelling of observable coset elements is a function:

L : CQ\{C0} → U∆ :: Ci 7→ ci (12)

such that ci ∈ Ci, i.e. it consists of selecting a representative element from each observable
coset. Each different set of choices yields a different labelling - thus there are mn−1 labellings.

Clearly, having chosen a labelling of observable coset elements we can write the observable
coset Ci as {c

i.a0, . . . , c
i.am−1}.

Definition 6.3 Relative to a given labelling of observable coset elements, the label of an
element ci.aj is the observable sub-group element aj. The label of an element of the observable
sub-group is simply the element itself.

Definition 6.4 Given a hidden state h ∈ ΛA⊗A⊗A, the h-realisation of the generalised Mer-
min table of U∆ is obtained via the following procedure. Beginning with the generalised Mermin
table, with three columns, and rows of the form:

Ωi Ωj Ωk

take the value function of each observable structure:

v1h(Ωi) v2h(Ωj) v3h(Ωk)

Choosing a specific labelling L, we can write this row as:

ci.ap cj.aq ck.ar

Remark 6.5 An h-realisation of a generalised Mermin table can more succinctly be described
as a re-writing of the original table where every appearance of Ωi in a given column is replaced
by the same element of Ci, which we write as ci.ai′ . The label ai′ will be different in each
column, and will depend on h.

Definition 6.6 The generalised parity, with respect to a labelling L, of a row or column in
an h-realisation of a generalised Mermin table is the product of all the labels of the elements
appearing in that row or column. Thus, the generalised parity is an element of the observable
sub-group.

For example, the generalised parity of the final example row in definition 6.4 is ap.aq.ar.

7 A no-go proof

Lemma 7.1 Consider a phase group U∆ which satisfies both the observable-coset and QSP
conditions. Given any labelling L, all h-realisations of the generalised Mermin table of U∆

will have, for all three columns, a generalised parity equal to the identity.
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Proof: From the definition of a generalised Mermin table (definition 6.1), each of the n
observable structures {Ωi}i=0,...,n−1 (corresponding to the observable sub-group C0 and ob-
servable cosets {Ci}i=1,...,n−1) appear in the first and second columns of the table n times.
Simple group theory tells us that ∀ Ci, Ck ∈ CQ there exists a unique Cj ∈ CQ such that

(Ci.Cj)
−1 = Ck (13)

So, in the third column, Ωk appears in the same row as Ωi, for each i = 0, . . . , n− 1, exactly
once. Thus we conclude that each of the n observable structures {Ωi}i=0,...,n−1 appear n times
in the third column of the table as well.

Now focus on a particular column, for definiteness the first. The argument will apply equally
to the second and third columns. From the argument above, and noting remark 6.5, we see, in
the first column of any h-realisation of the table, there are n occurrences of some element ci.ai′

for each i = 0, . . . n − 1 (there is no need for the different i′ to be distinct). The generalised
parity of the first column of this h-realisation will be (

∏n
i=0 ai′)

n. Now,
∏n

i′=0 ai′ is some
element of C0. From the QSP condition (

∏n
i=0 ai′)

n = a0. 2

Lemma 7.2 Consider a phase group U∆ which satisfies the observable-coset property. Given
any labelling L, all h-realisations which map the observable triple in the top row of the gen-
eralised Mermin table into an allowed outcome triple have a generalised parity for this row
equal to the identity.

Proof: The top row of a generalised Mermin table is:

Ω0 Ω0 Ω0

From proposition 5.3 we know that all allowed outcome triples for this triple of observables
are of the form (ai, aj , (ai.aj)∗). Recall that the lower star operation gives the phase group
inverse, by definition. In any h-realisation with such an outcome triple as its top row:

ai aj (ai.aj)∗

the generalised parity of the first row is clearly a0, the identity element. 2

Lemma 7.3 Consider a phase group U∆ which satisfies the observable-coset property. Given
any labelling L, all h-realisations which map the observable triple in a given row of the gener-
alised Mermin table into an allowed outcome triple have the same generalised parity for this
row. This value of this parity will, in general, depend on L.

Proof: Consider a general row of the generalised Mermin table:

Ωi Ωj Ωk

Recall that the value of k is determined by the observable quotient group via Ck = (Ci.Cj)
−1.

Again, from proposition 5.3, we know that all allowed outcome triples for this triple of observ-
ables are of the form (ci.ap, c

j .aq, ((c
i.ap).(c

j .aq))∗) where we have chosen a specific labelling.
Note that the final outcome in the triple can be re-written:

((ci.ap).(c
j .aq))∗ = (ci.cj)∗.(ap.aq)∗ = dk.(ap.aq)∗ (14)
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where dk = (ci.cj)∗ ∈ Ck but in general dk 6= ck, i.e. dk is not the representative element of
Ck picked out by the labelling function. This last point is important because it implies that
if this outcome triple is a row in an h-realisation:

ci.ap cj .aq dk.(ap.aq)∗

the (ap.aq)∗ appearing in the third column is not the label of that element, and hence is not
what we need to use to calculate the generalised parity of this row. However, since dk ∈ Ck

we know that there exists a(i, j) ∈ C0 such that dk = ck.a(i, j). We can then re-write the row
above as:

ci.ap cj .aq ck.(a(i, j).(ap .aq)∗)

Clearly now a(i, j).(ap.aq)∗ is the label for the element in the third column. We can use it to
calculate the generalised parity for this row, which clearly equals a(i, j). 2

Definition 7.4 With respect to a labelling L, the allowed parity for the (i, j)th row of a
generalised Mermin table is a(i, j) ∈ C0, defined by:

a(i, j) = (ci.cj .ck)∗ (15)

where Ck = (Ci.Cj)
−1 and ci = L(Ci) . . . etc. Taking into account lemma 7.2 we define

a(0, 0) = a0.

Corollary 7.5 Any h ∈ ΛA⊗A⊗A whose h-realisation has a generalised parity for the (i, j)th

row which is not equal to the allowed parity a(i, j), maps the observable triple in the (i, j)th row
of the generalised Mermin table into a forbidden outcome triple. Consequently, for a LHVI
to exist for the GHZ state, the corresponding LHSD must assign h a generalised probability
of zero.

Proposition 7.6 For a phase group satisfying the observable-coset and QSP conditions the
product of the allowed parities of all rows

∏n
i,j=0 a(i, j) is independent of the labelling. We

term this product the Mermin parameter of the phase group.

Proof: Consider a re-labelling which changes the representative element of just one of the
cosets. For the coset Cm, instead of cm we choose dm. Note that ∃ a∗ ∈ C0 such that
dm = cm.a∗. Note that in all labellings c0 = a0, so we can assume that m 6= 0. With respect
to this new labelling we get a new set of allowed parities for the rows of the Mermin table,
a′(i, j). We need to determine how they relate to the previous allowed parities a(i, j), which
were defined by the relation ci.cj = ck.a(i, j). There are several distinct situations to consider.

• i, j, k 6= m: We simply have a′(i, j) = a(i, j).

• i = m, j = 0 or i = 0, j = m: a(i, 0) and a(0, j) both equal a0 in all labellings, so again
we have a′(i, j) = a(i, j). There are two such cases.

• i = m, j 6= 0,m or i 6= 0,m, j = m: In the first instance we have dm.cj = ck.a′(m, j), in
the second we have ci.dm = ck.a′(i,m), from which we conclude that in either instance
a′(i, j) = a∗.a(i, j). There are 2n− 4 such cases.
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• i = j = m: Here we have a′(i, j) = (a∗)2.a(i, j). There is one such case.

• k = m: Here we have ci.cj = dm.a′(i, j), and can thus conclude that a′(i, j) =
(a∗)−1.a(i, j). There are n such cases, however two of them coincide with the second
situation in this list. There is no overlap with the other situations in the list.

Overall then, we conclude that:

n∏

i,j=0

a′(i, j) = (a∗)2n−2.(a∗)−(n−2).[

n∏

i,j=0

a(i, j)] = (a∗)n.[

n∏

i,j=0

a(i, j)] (16)

If the QSP condition holds then (a∗)n = a0 and we have
∏n

i,j=0 a
′(i, j) =

∏n
i,j=0 a(i, j).

Since we can move between any two labellings via a sequence where we only change the
representative element of one coset, we have shown that the Mermin parameter is independent
of labelling. 2

Theorem 7.7 Given a phase group U∆ which satisfies the observable-coset and QSP condi-
tions, for which the Mermin parameter does not equal a0, the corresponding GHZ state Ψ∆

does not have a LHVI.

Proof: We will define the table parity of an h-realisation of a generalised Mermin table as the
product of the labels of all elements appearing in the h-realisation. Clearly the table parity
can be calculated either by taking the product of the generalised parities of all three columns,
or by taking the product of the generalised parities of all n2 rows. Using the column method,
from lemma 7.1, any h-realisation must have a table parity of a0. Using the row method,
from corollary 7.5, any h-realisation in which every row is an allowed triple must have a table
parity equal to the Mermin parameter. If the Mermin parameter is not equal to a0, then there
does not exist an h-realisation in which every row is an allowed triple i.e. every h-realisation
has at least one row which is a forbidden triple for the corresponding observable triple in the
generalised Mermin table. From lemma 4.8 we then conclude that any LHSD which was an
LHVI for the GHZ state would have to assign a probability of zero to all hidden states h. But
by its definition a LHSD must assign a non-zero probability to some states. Thus we have a
contradiction, and conclude that no LHVI exists. 2

8 Connection to group extensions

In group theory the group extension problem is the following: given an Abelian group G1 and
some other group G2, find all groups G with a normal sub-group isomorphic to G1, such that
G/G1

∼= G2. We will concentrate on the special case where all three groups are Abelian.

Let us suggestively denote the elements of G1 by {a0, . . . , am−1} with a0 the identity, and
those of G/G1(∼= G2) by {C0, . . . , Cn−1} with C0 the identity. Now choose a representative
element ci from each Ci. Clearly now the elements of G are {ci.aj}i=0,...,n−1;j=0,...,m−1. To
fully specify G, it remains to determine the product of two arbitrary elements (ci.ap).(c

j .aq).
Note first that:

(ci.ap).(c
j .aq) = (ci.cj).(ap.aq) (17)
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Now (ap.aq) is fully specified by G1. It remains to determine (ci.cj). We know that (ci.cj) ∈
Ck = Ci.Cj where k is determined by G2. Whilst, in general, (ci.cj) 6= ck, we do know that
∃ ã(i, j) ∈ C0 such that (ci.cj) = ck.ã(i, j), so that we can write the product of two arbitrary
elements in G as:

(ci.ap).(c
j .aq) = ck.ã(i, j).(ap.aq) (18)

Clearly the choices for ã(i, j) constitute the only degrees of freedom not pre-determined by
G1 or G2, and thus different choices for these parameters will give us the different possible
group extensions G.

The two sets of parameters ã(i, j) (which determine which group extension is realised) and
a(i, j) (which determine locality properties) are not identical, but are closely related.

Lemma 8.1 In a phase group satisfying the observable-coset and QSP conditions, the product
of the group extension parameters ã(i, j) is equal to the inverse of the Mermin parameter.

Proof: Let us assume that we have Ci.Cj = Ck and (Ck)
−1 = Cl. Then the defining property

of the a(i, j) is (ci.cj)∗ = cl.a(i, j) whilst that of the ã(i, j) is ci.cj = ck.ã(i, j).

First note that (ck)∗ = dl, with el ∈ Cl. Now define a new parameter a(k) ∈ C0, such that
dl = cl.a(k), so that we have (ck)∗ = cl.a(k). From (ci.cj)∗ = ck.a(i, j) we deduce ci.cj =
(ck.a(i, j))∗ = ck∗ .(a(i, j))∗ = cl.a(k).(a(i, j))∗ . We thus conclude that ã(i, j) = a(k).(a(i, j))∗ .

The product of the group extension parameters is
∏n

i,j=0 ã(i, j) =
∏n

i,j=0(a(k).(a(i, j))∗) =
(
∏n

i,j=0 a(k)).M∗, where M denotes the Mermin parameter. Now note that there will be
precisely n combinations of i, j for which Ci.Cj = Ck. Thus for each value of k, a(k) will
appear in the product n times. From the QSP condition we know that a(k)n = a0, thus we
can conclude that

∏n
i,j=0 a(k) = a0 and

∏n
i,j=0 ã(i, j) =M∗. 2

The most straightforward example of a group extension for G1 and G2 is the direct product
G1 × G2. In fact we can immediately show that a direct product phase group won’t exhibit
Mermin-style non-locality:

Lemma 8.2 Given a phase group satisfying the observable-coset and QSP conditions, which
can be written as G1×G2 where G1 is the observable subgroup, the Mermin parameter is equal
to the identity element.

Proof: The elements of G1×G2 can be written as (ai, Cj). The elements of the form (ai, C0)
form the subgroup isomorphic to G1. Elements of the form (ai, Cj), for constant j form a
coset to this subgroup. Now recall our earlier discussion of labellings of the elements of cosets.
Suppose we pick a particular labelling for G1×G2 such that ci = (a0, Ci) for all cosets Ci. In
this case we get ci.cj = (a0, Ci).(a0, Cj) = (a0, Ck) = ck, for all i, j. Recall that the allowed
parities a(i, j) are defined by ci.cj = ck.a(i, j). From this we conclude that in this labelling,
a(i, j) = a0 for all i, j, and thus that the Mermin parameter M =

⊙n
i,j=1 a(i, j) is also equal

to a0, for all labellings. 2

The converse however, is not true: a Z9 phase group with Z3 observable subgroup provides a
counter-example, as shown in the appendix.
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9 Conclusions

We have extended the result of [3] to a much wider class of phase groups. Certainly not all
phase groups are included, but many of those which arise in theories of interest do seem to
be. For example, stabiliser theory can be extended to systems of higher dimension than two.
For dimensions of prime power at least, we expect the corresponding phase groups to satisfy
the observable coset and QSP conditions.

So far only a small number of cases have been examined: Z4 and Z2 × Z2, both with a Z2

observable sub-group, and Z9 and Z3 × Z3, both with a Z3 observable sub-group. Of these
only the Z4 case has a non-identity Mermin parameter. Clearly it would be beneficial to work
through other examples. Given the discussion of the relation to the group extension problem
in section 7, one might imagine that examples with a non-identity Mermin parameter could
be constructed via a judicious choice of the parameters ã(i, j). This is not a straightforward
task however: we do not have total freedom to choose any set of ã(i, j) - only some will result
in a valid group extension. A better understanding of the restrictions on the ã(i, j), and
indeed of group extensions in general is clearly desirable. Relating some kind of classification
of group extensions to the existence of local hidden variable interpretations would obviously
be a very nice result.

A Example: Z9 phase group with Z3 observable sub-group

To illustrate the main result of this paper we now consider a concrete example.

• We have an object in a process category with (at least) four basis structures, ∆Z , ∆A,
∆B and ∆C . Each of these basis structures has three eigenstates, all of which are
distinct from each other.

• The eigenstates of ∆A, ∆B and ∆C together constitute the unbiased states of ∆Z . The
phase group of ∆Z thus has nine elements, and in this case we choose it to be the cyclic
group Z9.

• The eigenstates of ∆A constitute the Z3 sub-group of the phase group, while the eigen-
states of ∆B and ∆C respectively constitute the two cosets of this sub-group. Thus this
phase group satisfies the observable-coset condition (definition 3.1) by design.

So in our previous terminology we have U∆Z = Z9 and C0 = Z3. From this we conclude that
the observable quotient group CQ is equal to Z9/Z3

∼= Z3. It is now straightforward to see
that this phase group also satisfies the QSP condition (definition 3.3): ∀ a ∈ C0

∼= Z3 we have
a|CQ| = a3 = a0 (where a0 is the identity element of C0).

We now turn to deriving the generalised Mermin table for this phase group. From here on
we will switch to a slightly different notation for the cosets. The observable sub-group C0

consists of the eigenstates of ∆A, while the cosets C1 and C2 consist of the eigenstates of ∆B

and ∆C respectively. For simplicity we will simply replace C0, C1 and C2 with CA, CB and
CC . The rows of the generalised Mermin table consist of triples of observables Ωi,Ωj ,Ωk such
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that the corresponding cosets satisfy Ci.Cj = C−1
k (quotient group product and inverse). In

the case of our Z3 quotient group this leads to the following nine-row table:

A A A
A B C
A C B
B A C
B B B
B C A
C A B
C B A
C C C

(19)

The elements of a Z9 group would be conventionally written as e, g, g2, . . . , g8 with e denoting
the identity element. In this notation the Z3 sub-group is CA = {e, g3, g6} and its two
cosets are CB = {g, g4, g7} and CC = {g2, g5, g8}. In our approach however, we write each
group element as the product of a representative element from its coset and an element of
the observable sub-group. Choosing a representative element from each coset amounts to
choosing a labelling (definition 6.2). Again we adopt slightly different notation - in the full
proof we used ci to denote the representative element from the coset Ci. Here we will use b to
denote the representative element from CB and c to denote that from CC . In all labellings the
representative element from the observable sub-group (here CA) is chosen to be the identity.
Thus, in this case choosing a labelling means assigning one of {g, g4, g7} as b and one of
{g2, g5, g8} as c. It is clear that we have nine possible labellings. We will choose two (more or
less at random) to serve as examples. Labelling 1 (L1) is the assignment b = g, c = g2; and
labelling 2 (L2) is the assignment b = g, c = g5. In L1 for example, the element g4 is written
as b.a1, and thus the label (definition 6.3) of this element is the subgroup element a1.

With the labellings chosen it is now straightforward to calculate the allowed parities a(i, j)
(definition 7.4). For example, consider calculating a(B,B) in L2. Using equation 15, we
find a(B,B) = (b.c.a)∗ = (g.g5.e)−1 = (g6)−1 = g3 = a1. We can do such a calculation for
all of the a(i, j), and they are listed below in table 21. However, it is perhaps enlightening
to look at this in a slightly different way. The phase group tables for our two labellings
are shown in figure 1. These tables describe the multiplication of exactly the same group,
Z9. The rows and columns are labelled identically, but because these labels correspond to
different group elements in each case (e.g. in L1 c.a0 = g2, whilst in L2 c.a0 = g5), the two
tables look different. Recalling that the allowed triples for FO-observable triples take the
form (x, y, (x.y)∗) (proposition 5.3) we can now present the allowed triple tables for L1 and
L2: these are obtained from the group tables by taking the inverse of every entry in the table.
The tables are displayed in figure 2.

The allowed triples are given by the elements labelling a row, a column, and the entry in the
table where the row and column intersect (for example (c.a0, b.a1, a0) is an allowed triple in
L2). Each of the nine blocks within the table contains the allowed triples for one of the nine
FO-observable triples i.e. for one of the nine rows of the Mermin table. Consider a particular
assignment of outcomes to the observable triples in the generalised Mermin table (an h-
realisation of the Mermin table - definition 6.4). Each row of the table is assigned a triple of
outcomes and multiplying together the labels of these outcomes gives us the generalised parity
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a0 a1 a2 b.a0 b.a1 b.a2 c.a1 c.a2c.a0

a0

a1

a2

b.a0

b.a1

b.a2

c.a0

c.a1

c.a2

a0 a1 a2 b.a0 b.a1 b.a2 c.a1 c.a2c.a0

a0

a1

a2

b.a0

b.a1

b.a2

c.a0

c.a1

c.a2

L1 L2

a0 a1 a2 b.a0 b.a1 b.a2 c.a0 c.a1 c.a2 a0 a1 a2 b.a0 b.a1 b.a2 c.a0 c.a1 c.a2

a0a1 a2 b.a0b.a1 b.a2 c.a0c.a1 c.a2 a0a1 a2 b.a0b.a1 b.a2 c.a0c.a1 c.a2

a0 a1a2 b.a0 b.a1b.a2 c.a0 c.a1c.a2 a0 a1a2 b.a0 b.a1b.a2 c.a0 c.a1c.a2

c.a0 c.a1 c.a2

c.a0c.a1 c.a2

c.a0 c.a1c.a2

b.a0 b.a1 b.a2

b.a0b.a1 b.a2

b.a0 b.a1b.a2

c.a0 c.a1 c.a2

c.a0c.a1 c.a2

c.a0 c.a1c.a2

b.a0 b.a1 b.a2

b.a0b.a1 b.a2

b.a0 b.a1b.a2

c.a0 c.a1 c.a2

c.a0c.a1 c.a2

c.a0 c.a1c.a2

c.a0 c.a1 c.a2

c.a0c.a1 c.a2

c.a0 c.a1c.a2
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a0a1 a2

a0 a1a2

a0 a1 a2

a0a1 a2

a0 a1a2 b.a0 b.a1 b.a2

b.a0b.a1 b.a2

b.a0 b.a1b.a2

a0 a1 a2

a0a1 a2

a0 a1a2

a0 a1 a2

a0a1 a2

a0 a1a2 b.a0 b.a1 b.a2

b.a0b.a1 b.a2

b.a0 b.a1b.a2

Figure 1: Z9 group tables for two labellings

AAA

ACB

ABC

BCA

BBB

CAB

CBA

CCC

BAC AAA

ACB

ABC

BCA

BBB

CAB

CBA

CCC

BAC

a0 a1 a2 b.a0 b.a1 b.a2 c.a1 c.a2c.a0

a0

a1

a2

b.a0

b.a1

b.a2

c.a0

c.a1

c.a2

a0 a1a2

a0a1a2

a0a1 a2 b.a0 b.a1b.a2

b.a0b.a1b.a2

b.a0b.a1 b.a2

b.a0 b.a1b.a2

b.a0b.a1b.a2

b.a0b.a1 b.a2

b.a0 b.a1b.a2

b.a0b.a1b.a2

b.a0b.a1 b.a2

a0 a1a2

a0a1a2

a0a1 a2

a0 a1a2

a0a1a2

a0a1 a2 c.a0 c.a1c.a2

c.a0c.a1c.a2

c.a0c.a1 c.a2

c.a0 c.a1c.a2

c.a0c.a1c.a2

c.a0c.a1 c.a2

c.a0 c.a1c.a2

c.a0c.a1c.a2

c.a0c.a1 c.a2

L1 a0 a1 a2 b.a0 b.a1 b.a2 c.a1 c.a2c.a0

a0

a1

a2

b.a0

b.a1

b.a2

c.a0

c.a1

c.a2

a0 a1a2

a0a1a2

a0a1 a2

b.a0 b.a1b.a2

b.a0b.a1b.a2

b.a0b.a1 b.a2

b.a0 b.a1b.a2

b.a0b.a1b.a2

b.a0b.a1 b.a2

b.a0 b.a1b.a2

b.a0b.a1b.a2

b.a0b.a1 b.a2 a0 a1a2

a0a1a2

a0a1 a2

a0 a1a2

a0a1a2

a0a1 a2

c.a0 c.a1c.a2

c.a0c.a1c.a2

c.a0c.a1 c.a2

c.a0 c.a1c.a2

c.a0c.a1c.a2

c.a0c.a1 c.a2

c.a0 c.a1c.a2

c.a0c.a1c.a2

c.a0c.a1 c.a2

L2

Figure 2: Allowed triple tables for two labellings
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of that row. One of the key results of the paper was that for all the allowed triples for a given
row, the generalised parity is the same. In terms of the allowed triple tables this translates
as saying that in any block, multiplying together the labels of the elements corresponding to
any row, any column, and the entry where they intersect must always give the same answer.
Clearly this is the case for the top left block, since the labels here are exactly the entries, and
thus have the form x, y and (x.y)∗, multiplying together to give the identity.

Next consider, for example, the bottom right block, corresponding to the observable triple
CCC. For calculating parities we are only interested in the labels of the elements, so let’s
strip away the pre-factors of c:

CCCc.a0 c.a1c.a2

c.a0c.a1c.a2

c.a0c.a1 c.a2 a1 a0 a2

a0 a2 a1

a2 a1 a0

a1.= AAA

a0 a2 a1

a2 a1 a0

a1 a0 a2
(20)

It’s straightforward then to see that the table with the pre-factors removed is simply a per-
mutation of the top left (AAA) block, obtained by multiplying all entries of that block by a1.
(This a1 arises from the multiplication of the pre-factors of the elements labelling the rows
and columns, in this case (c.c)∗ = c.a1). Combining this with our earlier analysis of the top
left block, we can see that the generalised parity of any allowed triple for CCC must be a1.

Whatever way we calculate them, we can now fill in the parities for each row in the Mermin
table, and calculate the Mermin parameter:

L1 L2
A A A a0 a0
A B C a2 a1
A C B a2 a1
B A C a2 a1
B B B a2 a2
B C A a2 a1
C A B a2 a1
C B A a2 a1
C C C a1 a1

M = a0 M = a0

(21)

As expected (proposition 7.6) this is the same for both labellings. Interestingly the Mermin
parameter is equal to the identity, and thus we cannot immediately conclude that the GHZ
state corresponding to this phase group would not have a local hidden variable interpretation.
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