
((, ~t1"'c..:,

"1

PRODUCTION SYSlEMS:

A FORMALISM FOR SPECIFYING

THE SYNTAX AND TRANSLATION

OF COMPUTER LANGUAGES

by

Henry F. Ledgard

Oxford University
Computing Laboratory
Programming Research Group-Library
8-11 Kable Road
Oxford OX1 3QD

.. Oxford (0865) 54141

Oxford University Computing Laboratory

Programming Research Group

~16q wr-y 1.

/

PRODUCTION SYSTEMS: A FORMALISM FOR SPECIFYING

THE SYNTAX A..'iD TRA."lSLATION OF COMPUTER LANGUAGES

BY

Henry F. Ledgard

Oxford University
Computing Laboratory
Programming Research Group-Ubrary
8·11 Keble Road
Oxford OX! 3QD
J,I",ci (o8~5l 54141

Technical Monograph PRG-l

March 1970.

Oxford University Computing Laboratory.

Programming Research Group.

45 Banbury Road,

Oxford.

ABSTRACT

This paper investigates the application of a forma 1i5m

called production systems to specify the syntax of a computer

language and its translation into a target language. Several

properties appear well-suited to this task:

(a)	 The formalism can be used to specify exactly
the syntax of a computer language, including
context-sensitive requirements.

(b)	 The same formalism can be used to specify the
translation of a language into another.

(c)	 The specification of the context-free portions
of syntax. the context-sensitive portions of
syntax, and the translation can to a large
extent be isolated.

Cd)	 The formalism can be used to specify the
"abstract·, syntax of a language and its trans
1ation into "abstract" entities of a target
language.

The following example applications of production systems are

given:

(a)	 A specification of the syntax of a limited
subset of ALGOL 60 and its translation into
IBM System 360 assembler language.

(b)	 A specification of the abstract syntax of a
small functional language and its translation
into expressions in Church's A-calculus.

CONTENTS

Page

1. Introduction	 1

2. Production	 systems 9

3.	 Application to specify syntax

and translation 16

4.	 Application to specify

abstract syntax 18

s. Discussion 31

Acknowledgement 33

Appendix 34

Appendix 2 36

References 40

1

1. INTROOUCTION

1.1 Motivation

This paper presents the formalism of production systems

and investigates its application to define the syntax of a

computer language and its translation into a target l~guage.

The need for suitable methods for formal definition of

computer languages is evident. For language designer~. im

plementers, or users, there is a clear need to be able to

define rigorously what strings in a language are legal programs

and what the programs 'mean', possibly in terms of some suit

able (for humans or computers) target language. While not all

attempts at formal definition appeal to notions of syntax OT

translation. the notions of syntax and translation are used
widely enough to warrant investigation into methods for formal

izing them.

The author's interest in production systems stems partly

from happenstance, and partly from a conviction that there are

certain properties of the formalism that appear valuable in

defining syntax and translation. First, production systems

are based on solid mathematical foundations [1,2] and have,

theoretically at least, the power to define the class of com

putable functions. This theoretical power, while desirable,

can be misleading. There exist other formal notions like

Turing machines and Markov algorithms with equivalent theoret

ical power, but it certainly appears hopeless to define the

syntax and translation of computer languages with a Turing

machine or a Markov algorithm.

The elusive but essential notion we must face in choos

ing any formal system is its 'acceptability' [7] in a particUlar

application. The criteria for judging the acceptability of

production systems in their application to define synt~ and

translation are many. Certainly among these are conciseness

of definition, perspicuity of definition, the amount of mater

ial needed to understand the formalism, and its ability to adapt

from one language to another. I shall discuss each of these

criteria in turn, and in the process note what motivated the

author to pursue the approach taken here.

2 ,

Perhaps the most important reason for the widespread use

of context-free grammars to define syntax, notably Backus~Naur

form. is the conciseness and simplicity with which context-free

portions of syntax can be specified. While production systems

have the added power to define context-sensitive requirements on

syntax and to define translation. production systems in their strict

form do not possess the conciseness of Backus-Naur form. Owing

to the mOTe complex nature of context-sensitive requirements on

languages and the specification of translation, some additional

complexity must be expected. On the other hand. when viewed

as a generative grammar, production systems provide some degree

of conciseness that synthetic or generative (as opposed to anal

ytic or algorithmic) methods of definition possess.

Some additional conciseness for production systems in the

specification of syntax-and translation has been obtained by in

troducing abbreviations to the basic notation. Three principal

factors governed the kind of abbreviations introduced: first.

reduction in the length of a specification; second, an attempt

to isolate the context-free portions of syntax, context sensitive

portions of syntax, and translation; and third. an attempt to

develop a conceptual framework facilitating language specification.

Conventionally. when a language is specified. the con

text-free portions of syntax are specified by productions in a

context-free grammar, the context~sensitive requirements are

separately specified using English text. and the semantics are

usually specified by relating constructs in the language to con

cepts assumed understood in English or existing mathematics. A

formalization of this intuitive approach to language definition

is taken here. using only the definitional apparatus of product

ion systems. Most productions in a production system specific

ation of syntax define context-free requirements on strings.

Context-sensitive requirements are specified by inserting certain

restrictive premises, whose definitions are given separately.

The semantics are specified by a separate production system def

ining the translation of a syntactically legal program into a

target language*, whose meaning is presumably understood. The

~No target language for defining semantics is presented here.

resulting specifications are moderately concise, although admitt

edly not optimal.

Perspicuity of definition appears more important than con

ciseness of definition. Three factors seem paramount ln deter

mining perspicuity: segmentation of the parts of a definition,

notation and the conceptual framework within which the definition

is given. The segmentation of a production system specification

discussed above certainly adds to the perspicuity of a production

system's definition. Furthermore, the basic notation for pro

duction systems appears satisfactory. It is tempting for the

author of a work to introduce notation, terminology and conven

tions that become convenient for him to use, but which often

obscure the work and its contribution to others. In the effort

to avoid this temptation, this author has spent many hours in

developing the notation and conventions for production systems

in the hope that they would be well-suited to computer languages.

The conceptual framework of a formalism is vital to its

proposed application in that the conceptual framework either

lends itself naturally or unnaturally to the application. Pro

duction systems are couched in a conceptual framework of gener

ative productions used to enumerate sets of strings. The con

ceptual notions of 'generative productions', 'sets'. and

'strings' underlies all production systems specifications given

here and lends a uniformi ty of approach. Rather than talk about

tables of identifiers, parsing schemes for scanning programs or

algorithms for computing functions, we talk about sets of iden

tifiers, setS of programs and sets of n-tuples that define

functions. While the conceptual framework of sets appears un

natural for certain definitions (e.g. the definition of arithmetic

functions), it appears convenient to view a language as a set of

strings and the translation of one language into another as a set

of ordered pairs of strings.

Superimposed on the basic notation for production sys

tems is a notation for defining functions. Via the function

like notation portions of a production system appear algorithmic

in that, given arguments of a function, the productions may be

used to 'compute' the result. The function-like notation greatly

relieves the difficulty with production systems that strictly

•

4

speaking all sets are defined generatively. Generally. the

basic constituents of a language (for example, the class of

arithmetic expressions or blocks) are defined here with the basic

generative notation. On the other hand, auxiliary constituents

(for example, the list of statement labels occurring in a block)

needed to complete the specification are defined via the function

like notation, Le. as functions that given a basic constituent

(for example, a block) as an argument yields the auxiliary con

stituent (for example. its list of statement labels) as a

result.

One deficiency as regards perspicuity of definition still

remains in the application of production systems presented here.

As mentioned above, in the specification of context~sensitive

-re4uirements, several functions are defined. For ex~ple, to

define the requirement that-all statement labels in a block are

different, a function mapping a block into a l1st of its state

ment labels is defined. Functions like this, while intuitively

simple, become somewhat complicated when defined in production

systems. Whether functions like this ought to be defined by

other methods is a subject I have not investigated.

Considering the complexity involved in the specification

of syntax and translation, the amount of material needed to

understand basic formalism of production systems is small. l'fuile

some complexity to basic formalism is introduced by adding abbre

viations and alternate notations, the basic simplicity of the

formalism remains.

The ability of production systems to adapt from one lan~

guage to another remains to be judged. The syntax of one com

plete language, ALGOL 60, has been defined with a production

system, and a separate paper discussing this production system

is being prepared. Syntactically. few computer languages are

more complex than ALGOL 60, and it seems fair to say that a

judgement (good or bad) on the merits of the production system of

ALGOL 60 is a good test of the acceptability of production systems

to define the syntax of most computing languages. No production

systems specif ying the translation of complete languages have

been attempted. Hence the acceptability of production systems

5

to adapt to various types of translation is largely untested.

Much other research on formal definition of computer

languages has been pursued. A comprehensive review of existing

methods has been written by de Bakker [14]. Several devices

employed by others are used here. notably the work of McCarthy

[12] and the IBM Vienna laboratory [13) on the definition of the

abstract syntax and the use of Church's A-calculus to define

semantics by Landin [11). With the thought that production

systems may find a useful place in meeting the need for formal

methods of language definition, the research presented here is

offered.

1.2 Background of the Formalism

The mathematical underpinnings of production systems are

due to Emil Pos t [1] and Raymond Smullyan (2). A discussion of

the theoretical background for production systems has been given

[4] by this author. With suitable syntactic changes, product

ion systems are equivalent to Smullyan's 'elementary formal

systems' [2]. Production systems can be used to specify any

'recursively enumerable' set [2]. The set of strings comprising

all syntactically legal programs in a computer language and the

set of pairs of strings comprising all syntactically legal pro

grams in a computer language and their translations into a target
language are just two examples of recursively enumerable sets.

Presumably, production systems can specify any translation or

algorithm that a machine can perform. Heuristic evidence that

this statement is true is due to the works of Turing [16,17J
and Kleene [18]. In these works the notion of functions com

putable by a Turing machine were asserted [16] to comprise every

function or algorithm that is intuitively computable by machine,

and the functions computable by a Turing machine were shown

equivalent (17~18] to the set of all 'general recursive' sets.

which are encompassed by production systems.

The application of a logically modified variant of the

formal systems of Post [1] Smullyan[2] and Trenchard More [19]

to specify completely the syntax of a computer language was first

made by John Donovan [3]. Donovan applied his formal system to

specify the set of legal programs in a computer language. in

,

~

6

eluding the specification of allowable character spacing. and

more importantly, the specification of context-sensitive re

quirements on the set of legal programs, like the requirement

that all statement labels in a program be different. Donovan

introduced the term 'canonic systems' to describe his formal

system. The name 'production systems' is used to distinguish

the formal system presented in this paper from the formal systems

of Post, Smullyan and Donovan.

The terminology for production systems presented here is

due to both Post and Smul1yan. The notation for production

systems presented here is due in part to Post, Smullyan and

Donovan. but for the most part is new.

1.3 An Jnform;d Example

Before discussing the formalism ~f production systems in

Section 2.1. this section informally presents an example pro-

duction system. which hopefully will motivate the discussion of

Section 2.1. A small and rather useless subset of ALGOL 60 will

be taken as an example source language. The Backus-Naur form

specification of the ALGOL 60 subset is given in Table 1.·

l. <NUMBER> :: =
11 213

2. <lD> :: '" A B

3.1 <PRIMARY> :: '" <NUMBER> I <lD>
3.2 <ARlTH EXP> : : '" <PRIMARY> I <ARITH EXP>+<PRIMARY>
S.3 <STM> : : '" <ID>:"'<ARITH EXP>

4.1 <TYPE LIST> :: '" AIBIA.B
4 . 2 <DEC> : : '" integer<TYPE LIST>

5. <PROGRAM> :: = begin<DEC>;<STM> end

Table 1. Backus-Naur form specification of ALGOL 60 subset.

This subset allows programs containing only one declaration and one
limited type of arithmetic assignment statement. The syntax of

ALGOL 60 has the requirement that the type of each identifier used

in a program must be declared. This requirement is not handled by

RUn~erlined lower case letters are used here to renresent reserved
words in a computer language.

-- --

the Backus-Naur specification above. For example, the syntac

tically illegal program

begin integer B; A:;l end

can be derived using this specification.

The product.ion system specification of the ALGOL 60 subset is
gi ven in Table 2.

begin	 NUMBER<n>, ID<i>, PRIMARY<p>, ARITH EXP<a>.
STM<s>, TYPE LIST<£>, DEC<d>;

1.	 NUMBER<1>.<2>,<3>.
2.	 ID<A>..

3.1	 PRlMARY<n>.<i>.
3.2	 ARITH EXP<p>.<a+p>.
3.3	 STM<i:;a>.

4.1 I	 TYPE LIST<A>.,<A,B>.
4.2	 DEC<integer £>.

s.	 PROGRAM<begin diS end> IN<IDS<s>: IDS<d».

6.1 I	 IN<A:A>.<B:B>,<A:A,B>.<B:A,B>.
6.2	 IN<xy:l> -+- IN<x:£>,<y:£>.

7. I	 NON ID<+>.<:::=>,<,>,<integer>,<n>.

begin	 ~;IDS, NON ID<r>;

8.1	 ~<i>; <i>.I
8.2	 ¢I<xiy> ; <i,¢I<xy».
8.3	 ¢I<xry> = <¢I<xy».

end

end

Table 2. Production system specification of ALGOL 60 subset.

Productions 1 t.hrough 5 of this production system may be informally

read.

Let n be a number, i be an identifier, p be a primary, a be
an arit.hmetic expression, s be a statement, £ be a type list, and d
be a declaration (all of which are to be defined below):

1. The symbols '1', '2' and '3' are numbers.

2. The symbols 'A' and 'B' are identifiers.

3. If n is a number. then n is a primary.
If i is an ident.lfier. then i is a prlmary.

~

-- --

8

3.2	 If P is a primary, then p is an arithmetic expression.
If	 p is a primary, and a is an arithmetic expression,

then a'+'p is an arithmetic expression.
3.3	 If i is an identifier and a is an arithmetic expression,

then i':~'a is a statement.

4.1	 The strings 'A', 'B' and 'A,B' are type lists.
4.2	 If l is a type list, then 'integer'1. is a declaration.

5.	 If d is a declaration, 5 is a statement, and each member
of the list of identifiers for 5 is contained in the list
of identifiers for d, then 'begin' d :;' 5 'end'
is a program.

The restrictive premise

IN<IDS<s>;IDS<d»

is the essential one needed to insure that all identifiers must be

declared. The function named 'IDS' maps a string in the ALGOL 60

subset into a list of identifiers occ~rring in the string. This

function is defined in productions 8, where '¢' is used in pl~~~_

of the name 'IDS' and r denotes a member of the class of non-iden

tifier symbols, defined in productions 7. For example,

~< integer B> <B' lDS<A:=A+B> <A,A,B>

JDS<A:=I> <A' IDS<A+B:=A+I+B> <A,B,A,B>

Productions 6 define a set of ordered pairs named 'IN', where the

first element is a list of identifiers and the second element is a

list of identifiers containing each identifier given in the first

list. For example the following ordered pairs are members of the

set named 'IN'

<A:A> <B:A.B> <A,B:A,B> <A,B,A.B:A,B>

Jointly, the restrictive premise in production 5 and the

definitions of productions 6 through 8 specify that the list of

identifiers for a statement s be contained in the list of identif

iers for a declaration d. Thus the string

begin integer	 Ai A:=l end

is specified by this production system. whereas the illegal string

begin integer	 Bi A:=l end

is not specified by this production system because the pair <A:B>

where 'A' is the list of identifiers for the statement 'A:=l' and

'B' is the list of identifiers for the declaration 'integ~ B',
is not a member of the set named 'IN'.

9

2. PRODUCTION SYSTEMS

2.1 The Basic Formalism

Formation Rules:

A produ~tion sY8tem consists of a collection of the following

items:

1.	 An alphabet called the object aLphabet.

2.	 An alphabet called the prediaate alphabet.
Each predicate in the predicate alphabet is
assigned a unique positive integer called its
degree.

3.	 An alphabet called the variable alphabet.

4.	 Another alphabet called the punctuation
alphabet, which consists of eight symbols:
the implication sign, conjunction sign,
tuple sign, delimiter sign. left quote sign,
right quote sign, left bracket sign, and
right bracket sign.

S.	 A finite collection of productions, each of
which is well· formed according to the defin
ition given below.

In a well-formed production, it is necessary to be able to

determine the alphabet from which each symbol is drawn. According

ly 1 will use (a) strings of capital letters, possibly interlated

with digits, spaces and tuple signs, for predicate alphabet

symbols (b) lower case letters (possibly subscripted or super

scripted) for variable alphabet symbols (c) the symbols

+	 implication sign

conjunction sign

tup 1 e sign

del imiter sign

"	 / left and right ~uote signs
, , left and right bracket signs

for punctuation symbols, and (d) symbols not in the predicate,

variable and punctuation alphabets for object alphabet symbols.

A weZZ-formed term consists of a concatenated sequence of
variable and object alphabet symbols (e.g. 'i', laIr ,Ia +p ' and

10

'i::a').~ A well-formed term tuple consists of a sequence of n

terms each separated by a tuple sign and enclosed by a left and
right angle bracket sign (e.g. '<:i:=a>' and '<X:2.>'). The

number n of terms is called the degree of the term tuple. A

well-formed atomic formula consists of a predicate alphabet

symbol of degree n followed by a term tuple of degree n (e.g.

'STM<v:=a>t and 'IN<x:2.>'. where 'STM' and 'IN' are predicates

of	 degrees 1 and 2 respectively). A wBll-fol"med pl"odu"tion

consists of

Ca)	 an atomic formula followed by the delimiter
sign (e.g., 'NUMBER<l>.') or

(bJ	 an atomic formula followed by the implication
sign, a sequence of atomic formulas each sep
arated by the conjunction sign, and the de
limiter sign (e.g. 'STM<i:"'a> + IO<i>,
ARITH EXP<a>-. 'J .

An atomic formula preceeding the implication sign or occurring

alone is called a aonalusion. An atomic formula following the

implication sign is called a p~emi8e. A production containing
no premises is called an atomic ppoduction.

In the specification of written expressions in computer

languages, it will often be necessary to include letters. digits,

spaces, and punctuation symbols as members of the object alphabet.

Since capital letters, digits, spaces, the implication sign,

conjunction sign, and delimiter sign cannot occur within the

brackets of a term tuple as predicate, variable, or punc~uation

alphabet symbols, I adopt the convention that these symbols can be

used in a term tuple as object alphabet symbols. Furthermore,

strings containing variable alphabet symbols, tuple signs, and

bracket signs can also be used as members of the object alphabet

provided that the strings are enclosed by the quote signs when
used within a productlon.~~ For example, consider the following

•	 ,:",1 is considered a single objeat alphabet symbol. not the con
catenation of the symbols':' and '''''.

~~	 The use of the quote and bracket signs are not necessary to a
strict definition of a production system. In essence, quote
signs enable the free use of symbols in the object alphabet, and
the bracket signs enable the omission of quote signs around sym
bols that occur frequently. Both these syntactic devices are
reminiscent of Quine's notion of quotations and quasi-quotations.[lS

productions:

LETTER<'a'>

NUMBER<I>

NUMBER<2>

NUMBER<3>

IN<A: A. 8>

IN<B:A.B>

IN<lC)': f,> IN<x:l>, IN<y:l>

Here. the symbols {a I 2 3 A B} enclosed in angle brackets are

object alphabet symbols. The symbols {x y 1} are variable alpha
bet symbols.

Deductive Rules:

The derivable conclusions of a production system are the con
clusions that can be obtained from the productions by a finite number

of applications of the following two rules.

Rule (1)	 A production pI can be obtained from a
production P by substitution of an object
string (possibly null) for each occurrence
of a variable.

Rule (2)	 If each premise in a production is

derivable, then the conclusion is

derivable.

In the case of atomic productions, rule (2) states that its con

clusion can be derived immediately. These rules can be applied to

the previously given productions to derive the conclusions

NUMBER<l>

IN<A:A.B>

IN<B:A.B>

IN<A,B:A,B>

IN<A,B.A:A,B>

Interpretation:

A production system will be interpreted in the following way.

A predicate will denote the name of a set. A term tuple of degree
n following a predicate of a derived conclusion will be taken as an
assertion that the n-tuple is one member of the named set. Pro

ductions will be viewed as rewriting rules for enumerating members

12

of sets. In the previously given productions. the set named

'NUMBER' contains three members,

(l	 2 31

and the set 'INt contains an infinite number of ordered pairs,
some of which are denoted by

{<A:A,B> cB:A,B> <A,B:A.B> ... Y.

2.2 Abbreviations and Modifications to the Basic Notation

Using only the basic notatipn for production systems. a
specification for a computer language often becomes lengthy or

unnatural. It will be extremely useful to introduce several not

ational conventions to alleviate this difficulty. In this section

four notational convent-ioJlS--_are_siven, the second of which is due

to Donovan [3].

Abbreviations:

The two abbreviations are motivated by conciseness of def
inition. The first or 'block structure' abbreviation allows one

to 'factor out' premises that are common to one or more productions.
The second allows one to eliminate repeated occurrences of the same

predicate name.

1. If pl,PZ""'P are predicates. 'vl'vZ'" "Y aren n
variables. and C is a collection of productions such

that any production containing vi' l~i~n,' in the
conclusion also contains the premise Pi<v i >. then

c

can be abbreviated

begin PI<vl >, Pz<v >, Pn<V >;z n

c'
end

where C' is obtained from C by deleting: any Qr all

occurrences of the premises PI <vI>' PZ<v Z>•.•... ,
and Pn<v > and their associated punc~uation signs.·n

•	 If a premise is deleted from· a prp~uction con~aining other.pre·
mises. the conjunction sign preceeding or following the premise
is deleted. If a premise is deleted from a production containing
no other premises, the implication sign is deleted.

13

Thus, for example

ARITH EXP<p> PRlMARY<p> • ~

~ARITH EXP<a+p> PRIMARY<p>, ARITH EXP<a>.
STM< i: =a> ~ ID<i>. ARITH EXP<a>.

may he abbreviated

begin PRIMARY<p>. ARITH EXP<a> , ID<i>;

ARITH EXP<p>.

ARITH EXP< a+p>.

STM< i: =a>.

end

This abbreviation is extended to include nested begin - end
bracketed productions with new 'declarations' of variables. For

example

begin pea>, Q;

C<a+h> •

begin R;

D<a+h>.

end

end

is an abbreviation for

C<a+b> ... P<a>. Q.
D<a+h> pea>, R.

2.a. If <t1>,<t >' ... and <tn> are term tuples and P is aZ

predicate, the atomic productions

P<t1 >·

P<t 2 >·

P<t >.
n

can be	 abbreviated

P<t 1>,ct 2>,· •• <tn>·

2.b. If <t l >, <t >' ... and <tn> are term tuples and P is Ii
Z

predicate, the premises

P<t
l
>.	 P<t

Z
> J ••• P<t n >

can be	 abbreviated

P<tl>,<tZ>····<t >n
For example, the productions

IN<A: A>.

IN<B: B>.

IN<A:A,B> .

IN<B:A,B>.

IN<xy:i> ~ IN<x:t>, IN<y:t>.

can be	 abbreviated

IN <A:A>,<B:B>,<A:A.B>,<B:A.B>.

IN<xy:i> ~ IN<x:i>,<y:i>.

Notation for Functions:

As mentioned in the introduction, the notation for functions
is motivated by the observation that besides thinking in terms of

'inductive' or 'generative' definitions. we often think of
'algorithms' that can be used to 'compute' results. The third and

fourth notational conventions reflect this predisposition.

3.	 If vl'v Z' and v ' n~Z. are variables andn
R<vI :vz: v > is a premise occurring in a n
production P containing exactly one other occur

ence c	 of v ' then the premisen
R<v1:v Z ... v >

n

can be deleted from P if c is replaced by the

string
B.<v l :v : v _ > z n l

4.	 If tl,t Z•...• and tn' n~Z, are terms and
Re:t l :t Z: .. ' t > is an atomic formula occurringn
in a production p. then

R<tl:t Z: ... t >n
may be alternately written

B<tl:t Z: ... tn_I> <t >
n

Thus the productions

J

-- --

PROGRAM<begin d;s end> + DEC<d>, STM<s>. IDS<s:i >' s
IDS<d: i d>, IN<i :i >. s d

IDS<i: i> lD< i>.

IDS<xiy: i,z> + ID<i>, IDS<xy: z;>

IDS<xry: z;> + NON ID<r>, IDS<xy:z>.

can be written

PROGRAM<begin d;s end> + DEC<d>, STM<s>, IN<IDS<s>:ID5<d».
IDS<i> : <i> + ID<i>
lDS<xiy> <i, IDS<xy» ID<i>.
ID5<xry> <IDS<xy» NON ID<r>.

Writing
IN<IDS<s>:IDS<d»

instead of
ID5<s:i >' ID5<d:i d>, IN<is:id> s

not only reduces the length of the production, but suggests a con
ceptual view of '~' as a function mapping an object (here a well
formed ALGOL 60 statement or declataion) into another object (here
a list of identifiers). The use of this function-like notation

stpongty governed the manner in which the production system spec
ifications presented here were written.*

Finally, since the predicate name of a function often
occurs repeatedly in the productions defining the function, I
extend abbreviation 1 in that an underlined predicate name ~ may

be replaced by a Greek letter l provided the 'declaration'

•• p

is given for the productions. For example the above productions

defining the function 'IDS' may be written

begin 4> = ID5,IO<i>, NON ID<r>;

,<i> <i>.
c

,<xiy> = <i,lj><xy».
lj><xry> = <lj><xy».

end

•	 The notation for functions allows one to define functions over
object strings and variables. An extension to allow defmition
of functions over pP9dio4t6s was attempted, but owing to a lack
of suitable generaliz;ation, will not be discussed further.

16

3. APPLICATION TO SPECIFY SYNTAX AND TRANSLATION

3.1 Application to Specify (concrete) Syntax

The syntax of a language may be defined as the set of wel1

formed strings in a language. In this section I will be con

cerned with the specification of 'concrete' syntax. i. e. a spec

ification of strings that are given a concrete or definite repres

entation. Later in Section 4. I shall turn to the specification

of 'abstract' syntax, i.e. a specification of syntax for which no

particulu string representation is given.

A production system specifying the syntax of the ALGOL 60
subset is given in Appendices la and lb, where Appendix la uses

only the basic notation and Appendix Ib employs the modifications

and abbreviatioris t-o-the-rrota-ti-on.- - Ther.e_the_ pr~d_ic:ate 'PROGRAM'

names a set of I-tuples where each member is a syntactically legal

program. An intuitive presentation of the abbreviated production

system has been given in the introduction and will not be discussed

further.

3.2 Application to Specify Translation

The translation of a language may be defined as the function

(or relation) between the well-formed strings in the language and

well-formed strings in another language. This function or rel

ation can be specified by a production system specifying ~ set of

ordered pairs of strings, where the first element in each pair is

a legal string in the source language, and the second element is a

corresponding string in the target language.

As in the previous section, I will illustrate this use of

production systems by example. The specification of the syntax of

the ALGOL 60 subset in Appendix lb has been augmented to specify not

only the legal strings in the subset but also their translation into

IBM System 360 assembler language [21]. The additional productions

are given in Appendix Ie. There a function 'TRANSLATE' mapping

strings in the ALGOL 60 subset into strings in asseJmbler language

is defined. A pair <x:y> is defined as a member 0 £ the set

'PROGR.AM:TRANSLATION' if x is a legal program as specified in the

definition of syntax and y is the mapping of x as specified by the

function 'TRANSLATE'. For example, the following: pair of strings

is a member of the set named 'PROGRAM: TRANSLATION ,

begin integer A; A: =1 end ·ASSEMBLER LANGUAGE PROGRAM
BALR lS~O ·SET BASE REGISTER
USING •• 15 • INFORM ASSEMB LER
L 1 =F'l' ·LOAD 1
ST l;A ·STORE RESULT IN A
SVC o ·RETURN TO SUPERVISOR

·STORAGE FOR VARIABLES
A DS F

END

Note that this production system includes the specification of the
comment entries in the assembler statements to that (hopefully) the

reader will not have to be familiar with the assembler language to

understand the translation.

18

4. APPLICATION TO SPECIFY ABSTRACT SYNTAX

A definition of a class of 'abstract' objects is a def

inition for which no representation of objects is specified.

Following the lines of McCarthy [12J and the IBM Vienna Laboratory

[13]. a definition of a class of abstract objects must provide

definitions of (a) constructor functions for constructing the

variety of objects in the class, (b) predicates for testing whether

an object is of a particular variety. and (c) selector functions

that when applied to an object of a particular variety yield a par
ticular component of the object.

Clearly, to communicate any definition one must use some

symbols. For definitions of abstract objects, one needs some

symbols to denote primitive objects, and some symbols to denote

how composite objects- are-bui-lt -up fz:.o!D -Primitive objects.

Accordingly, arbitrary primitive symbols will be ~sed to denofe

primitive objects, and composite objects containing n components

will be denoted by the conventional notation for n-tuples, i.e.

(al' a Z'· .. , an)

or trees, Le.

M
a 1 a 2 an

where aI' a Z' ... and an denote objects. In genera1, the tree

representation of an n-tuple may be designated by a node with n

branches pointing to the n components of the object, where the

leaves of the tree denote primitive objects. A defnintion will

be considered 'abstract' in that all objects will be presented

using only the primitive symbols and the notation for n-tuples

(or equivalently, trees).

The notion of a definition of a class of abstract objects

will be couched within production systems in the fo1lowing way:

(a)	 Productions specifying the representation of

primitive objects will be omitted in a production

system specification. We shall say only what

properties the primitive objects must possess

and that any productions defining thei~ repres

entation must reflect these properties.

(b) Objects constructed from the primitive objects
will be specified as n-tup1es of the form

(a1 , a Z' ... , an)
where n is the number of components of an object

and the ai' 1 ~ i ~ n, are variables denoting
primitive objects or other constructed objects.
The productions defining these n-tup1es will be
taken as an implicit definition of the constructor
functions for objects in the defined class.

(c)	 Predicate names of a production system will be

interpreted as predicates over the class of
abstract objects in that P, where P is a
production system predicate name and b denotes
an abstract object, will be interpreted as

~rue if b can be derived as a member of the set
named P, and fa1.ee otherwise.

(d)	 The selector functions of an abstract definition

will be specified by production system predicates
of degree 2 as follows. Let (a1 ,a 2 , ••. ,an)

denote an object in a class C and 51' 52' .•• and
Sn' 5 i ~ 5 j for i ~ j, be the names of the
selector functions over objects in C. Then

5i (a1,a2, ... ,a) a i3 n
if and only if the conclusion

5 i «a1 ,a 2,··· ,an) :ai >
or equivalently (using the function-like notation)

5i «a1,a2,··· ,an» : <a i >
is derivable from-the production system.

The notion of the definition of the translation of one

class of abstract objects into another class of abstract objects
may be couched in production systems by specifying a set of
ordered pairs of abstract objects. The constructors, predicates,

and selectors for objects in the target language can be defined
ana1agous1y to the constructors, predicates and selectors of
the source language. To illustrate the techniques for defining

abstract syntax and translation, this section presents a small
source language for defining functions and its translation into
Church's A·calcu1us. Owing to the more transparent notation for

20

concrete representation of expressions in the A-calculus, abstract

objects in the source language will be translated into oono~ete

representations of expressions in the A-calculus. With relatively

straight-forward extensions of the techniques presented in this

section. the production systems may be made completely abstract

in that both source and target language programs may be specified

as abstract objects.

4.1 Mini-Language F

As an example source language for-illustrating abstract

definitions of computer languages, a small language called Mini

language F has been devised. Mini-language F is based on the

ISWIM language of Peter Landin [10]. We first give an informal

des cription -0-£ -M-ini-- 1angu.age_ f,_ us ing conc rete repres entations
of objects to indicate its syntax a~d ;; appeal to-rn~tlitive-cDn

cepts expressed in English to indicate its semantics.

Primitive Objects: The primitive objects in Mini-language F
include (a) the natural numbers, (b) a binary function that when

applied to two natural numbers produces the natural number that is
their numerical sum. and (c) a quarternary function that when
applied to four objects. of which the first two are natural numbers.
produces the third object if the first natural number is greater

than or equal to the second and other wise produces the fourth
object. The natural numbers will be represented by the symbols
{O I 2 ... }. The functions described by (b) and (c) above will

be represented respectively by the symbols '+' and 'IF'.

Identifiers~ The identifiers comprise the symbols {A B ... Z}.

Expression Lists: An expression list is a string of the form
e l .e 2 •...• e where the e i , l.::i.::.n. are expressions (defined below).n
The value of a list expression is the list of objects a l ,a2 ,·· .• an
obtained by successiveJy evaluating each of the component express

ions el ,e 2•...• and en'

Unit Expressions: A unit expression is either one of the primitive
symbols {+ IF 0 I 2 ..• } or an identifier. The va 1 ue of a primitive

symbol is the primitive object represented by the symbol. The
value of an identifier is the object currently linked with the
identifier (for linking of identifiers to objects, see definition

and evaluation of let expressions).

Let Expressions: A let expression is a string of the form

(1) let i '" ine1 e Z
or (2) let i(x l , ... ,X) = e 1 in n e Z

where i is an ident.ifier, xl •... ' and xn are identifiers each of
which must be different, and e l and e are expressions. In aZ
let expression t of the above form. all occurrences of the
identifier i except in e

1
are said to be 'bound in t', and all

occurrences of xl"" ,x except in e2 are said to be 'bound in t'.n
An occurrence of an identifier in an expression e is 'free in e'

if it is not bound in e. The value of a let expression of the
form (1) is computed by evaluating e • linking the free occurr1
ences of i in e with the value found. and then evaluating e ' Z Z
The value of a let expression of the form (Z) is computed by

forming the function mapping xl" ",x into (where t.he freee ln
identifiers in e other than xl ••..• x in are linked withe l
their current values). linking the free occurrences of i in e with

n

Z
the function formed. and then evaluating e '

Z

Combinations: A combination consists of a string of the form
e(te) where e is an expression and t is an expression list. e
The value of a combination is obtained by evaluating e and t ande
then applying the value of e to the value of teo This evaluating

is well~defined (i.e. not in violation) only if the value of e is
a function and the value of t is a list of objects such that thee
number of the components of the I ist is identical to the number of
arguments of the function. Furthermore, in the case where the
value of e is one of the primitive functions denoted by '+' Dr
'IF'. the va1ues of the first two components in the list t must e
be natural numbers. The following alternate notations may be
used for comb inations

[el+e Z] in pI ace of +(el1e Z)
[el~e2 => e 3

in pI ace of IF(elleZ,e3,e4)
else => e]

4

Expressions: An expression is either a unit expression, a let
expression. or a combination.

Programs: A program is an expression such that no identifiers

occur free in the expression.

ZZ

Exampl e 1	 Exampl~

~ F(Y) • [Y+3] let F(Xl •	 [X+X]

in [F(ll +F(Z)] in let G(P,X) = [P(X) +P(ll]

in G(F,Z)

Example 3	 Example 4 (illegal)

let Y ::a 2 let F(X) ~	 [X>3 ~> X
else => [X+F(X+l)]in let F(X)=[X+Y]

in F(Z)in F

Example 5

let F(X) • Z

in let F(X) E [X>3 => X
else·:> [X+F(X+ll]l

in F(Z)

The values of the example programs 1, 2 and 3 above are respective

ly the natural number nine. the natural number six, and the
function mapping x into summation of x and the natural number t,~o.

The program of example 4 is syntactically illegal since the occur
rence of 'F' in the conditional expression is free. The value of
example program S is the natural number four.

A production system specifying the concrete syntax of mini

language F is given in Appendix 2a. Productions 1 through 4,
aside from two premises, specify the class of programs ignoring
context-sensitive requirements. The context-sensitive require

ment that the parameters Xl'" '. and x of a function definition n
each be different is specified in production 3.2 by a premise

requiring that the list t xl •...• x be a member of the set named2 n
'DIFF IDLIST'. The requirement that no identifiers in a program

occur free is specified in production 4 by a premise requiring that

the list of free identifiers of the program be null.

The auxiliary predicates needed to specify the two context

sensitive requirements are defined in productions 5 through 9,
Some example strings defined by these productions are

FREE IDS<[A.B]> <A,B>

FREE IDS<let A '" 1 in [A.B] >

LIST<A :A,B> <A,B>

LIST<A,B:C,D,A> <A,B,C,D,A>

REL COMP<A,B:A>

REL COMP<A,B,C,D:A,B,X. Y> <C,D>

IN<A: A> ,<A:A,B ,C>

NOT IN<A:B>,<A:B,C,D>

DIFF IDLIST<A,B,C,D>

Here the function 'FREE IDS' maps an expression into its list of

free identifiers. The function 'LIST' maps two identifier lists

into a single list containing all occurrences of identifiers in
the first two lists. The function 'REL COMP' maps two identif

ier lists into a single list containing only the identifiers occ
urring in the first list but not in the second (similar to the
relative complement of two sets). The predicate 'IN' defines a

set of ordered pairs where the first elemant is an identifier and
the second element is a list of identifiers containing an occurr

ence of the first identifier. The predicate 'NOT IN' defines a
set of pairs where the first element is an identifier and the second

element is a list of identifiers not oontaining an occurrence of the
first identifier. The predicate 'DIFF IDLIST' define a set where
each element is a list of different identifiers.

4.2	 Definition of Abstract Syntax

In a definition of abstract syntax, we first assume that
there are certain classes of primitive objects with certain prim

itive properties. For mini-language F these comprise the class

of identifiers, the class of natural numbers, and two classes
containing one member each, the addition function and the if

function. These four classes have their conventional properties

and will be denoted by the predicate names

ID NAT NUM ADD FCN IF FCN

A list of identifiers in mini-language F may now be defined as a

24

pair

(i.")

where i is an identifier and ',,' is a symbol denoting the null object,

or as a pair

(i ,1,)

where i is an identifier and L is itself a list of identifiers.

Similarly, a let expression may be defined as a triple of the form

(i,el,e Z)

Dr

(i'£'"2)

where i is an identifier, e and e are expressions, and f is a1 Z
function, In either case, the first element of a triple denotes

the bound identifier of-the let ~xpre5sip~! the second element

denotes the definiens (i.e. the object to which the identifier is

bound), and the third element denotes the expression within which

the identifier is bound to the definiens.

The class of identifier lists and class of let expressions

may be given the predicate named 'IDLIST' and 'LET EXP' and may

be defined by the productions

(1) IDL1ST«i,"» + 1D<i>.
(2) IDL1ST«i,t» + ID< i>, IDL1ST<t>.
(3) LET EXP«i,el,e Z» + ID<i>. EXP<e 1 >, EXP<e Z>'
(4) LET EXP«i.f,e Z» + ID<i>, FCN<f>, EXP<e >'Z

The n~tuples defined by these productions may be represented via

the notation of trees. For example, the identifier list

(13·°2·(11")))

where II' 1 and 1 are unspecified identifiers, may also be2 3
represented

1
3

12

11

2S

Furthermore, each non-terminal node may b~ labelled with the

predicate name of the class within which the n-tuple is a member.

For the identi£ier list above. we have the tree'with label13d
nodes.

IDLIST

1 ~~DIST
3

IDLIST

I2~

II A

For each composite object we must define the selector

functions for extracting the components of the object. In par't

icular, fOT an identifier list we wish to select its head and

tail, and for a.let expression we wish to select its bound iden

tifier, its definiens, and the expression within which the iden

tifier is bound to the de£iniens. These five functions may be

given the named 'HD', 'TL', 'BID'. 'DEFt, and '~'. defined

as follows:

(la) HD«i,A» = <i> • ID~i>.

(lb) TL«i,II» == <A> · ID<i>.

(2a) HD«i,t» = d> TD<i>, IDL1ST<.t>.·
(2b) ~«i • .t» '" <.t> + ID<i>, IDLIST<.t>.

(3a) BID«i,el,e Z» = <i> ID<i>. EXP<e l >, EXP<e Z>'·
(3b) D~F«i,el,eZ» == eel> + ID<i>, EXP<e >, EXP<e Z>'1
(3c) BEXP< (i,e e) >== <e >' + ~D<~>", EXP<'el.'>, EXP<e Z>'p 2 Z
(4a) BID«i,f,eZr> "" <i> ID<i>. FCN'::"f>, "EXP<e >'Z
(4 b) ~«i,f,e2» = <f> + ID<i>, FCN<f>, EXP<e Z>'
(4c) BEXP«i,f,e Z» = <eZ> + TD<i>, FCN<f>, EXP<e Z>'

·

The definition of the production sy?te~ p~edicates and
selector functions may be considerably shortened""by the following
abbreviation

Let P be a sequence of premises, C be the predicate
name of a class of objects containing n components,

5 l ,5 Z••.. , and Sn be the function names of the n
selector functions OVfrr the class of objects, and

t l ,t 2 , ... ,t be terms. Productions of the form n

+ P • C«tl"tZ·····tn»
+Sl«tptZ.···.t » '" <t l > P.

n

SZ«tl.tZI ...• t n» '" <t Z> + p.

Sn«tl,t Z" ",tn» ~ <tn> + p.

may be combined into the single production

C«5 l tl"S Z t z , "'1 5 tn);:' + p.
n

Thus productions lila. lb Z,Za.Zb 3,3a , 3b and 4,4a.4b can be
combined

(1 ') IDLI5T«HD i. TL h);:' + ID<i> •
(2') IDLIST< (AD i. I!- £);:. + ID<i> , IDLI5T<£> .

(3') LET EXP«BID i,DEF el.BEXP e Z» + ID<i>, BXP<el >, EXP<e Z>'
(4') LET EXP«BID i,DEF f , BEXP e Z» + ID<i>. FCN<f;:., EXP<e > • Z

The abbreviated notation is more than a shorthand notation in that
the abbreviated productions may be viewed as a aimwLtan80WB defin

ition of the constructors. predicates, and selectors in the
abstract definition of the class of objects. This abbreviated not

ation will be used repeatedly in the sequel.

The selector functions defined over a class of objects may be
added to the tree representation of an object by labelling the branches
of a tree with the name of the selector function used to select the

component of the object designated by the branch. For the iden
tifier list above. we may construct the labelled tree

IDLIST

HD An
11~SIDLIST

3 n

HD

- IDLIST
2

1 HDAL_

AII

The context-sensitive requirements on the syntax of a

language must be specified in the definition of abstract syntax

as well as concrete syntax, Consider the requirement on mini

language F that the identifiers given as parameters in a function

definition must each be different, In terms of abstract syntax,

the identifiers 1 ,1 2 , .. ,. and In in the list1

(In" ··(12,(11")) ...)

used in a function definition must each be different.

Next consider the productions

begin ID<i>.<j>J IDLIST<£>;

NOT IN<i:(j,A» + DIFF ID<i:j>.

NOT IN<i: Cj,R.» + DIFF ID<i:j>, NOT IN<i:£>.

DIFF IDLIST«i,A»

DIFF IDLIST«i,£» + NOT IN<i:£>, OIFF IDLIST<£>

end

As mentioned earlier, the predicate '10' specifying the class

of identifiers is left unspecified in the definition of the

abstract syntax of mini-language F. So too. the predicate

'OIFF 10' specifying the set of all ordered pairs for which the

first element is an identifier and the second element is a diffBPent

identifier is left unspecified. The property of identifiers that

we are able to say if two identifiers are different is a primitive

property of identifiers, and accordingly the predicate 'DIFF ID' is

left unspecified in a definition-of abstract syntax. In terms of the

unspecified predicates '10' and 'DIFF ID', the predicate 'DIFF IDLI:ST'

defines a set where each element is a list of identifiers such that

each identifier in the list is different,

The complete definition of the abstract syntax of mini

language F is given in Appendix 2b. There the intuitive role of the

predicates parallel those given for the concrete syntax, except that

no concrete representation of programs is specified and that the

predicates

ID DIFF ID NAT NUM ADD FCN IF FCN

are left unspecified. For example, the following abstract program

is defined by Appendix 2b.

28

LET EXP

BEXP
BID DEF

~ N
1

Ii COM8INATION RAND

RATOR~AP
1STADD FeN TL
HD _

-

1
2

EXPLIST

HD AL_
-

N 2
A

where -II and 1 2 are _ide_n_t_if~ers and N and NZ are natural numbers.l
This abstract program corresponds· to· any om~ of the concrete programs.

let A 1 in +(A.Z)

let X 2 in [X+4J

and many others. Note that the program

let A=' 1 in .(B,2)

is not derivable because the identifier B occurs free in the program.

In terms of the abstract tree. the identifiers chosen for II and 12
must be identical in order for 12 not to occur free.

4.3	 Concrete Representations of Abstract Programs

To specify a concrete representation of a class of objects,

given a definition of its abstract syntax. we may simply add to the

definition of abstract syntax

(a)	 a definition of the predicates for the classes of
primitive objects, and

(b)	 a definition of a function mapping abstract objects
into concrete representations.

For mini-language F~ we define

(a)	 the predicates 'ID', 'DIFF rD'. 'NAT NUM' ~ 'ADD FCN',
and 'IF FeN', and

(b)	 a function named 'CONCRETIZE' mapping an abstract
program into its concrete representation as specified
in the informal definition of mini-language F.

29

For example, the representation of let expressions whose definiens

are expressions is defined by the production

¢I < t> < !etr:.<BID<t» = ¢<DEF<t»

in ¢<BEXP<t» >	 + EXP<DEF<t».

where ¢ is used in place of the function name 'CONCRETIZE' and t

denotes a let expression.

Finally, a pair <p:q>is specified as a member of the set

'ABSTRACT PROGRAM: CONCRETIZATION , if p is a member of the set

'ABSTRACT PROGRAM' and q is the mapping of p into concrete form as

specified by the function 'CONCRETIZE'.

4.4	 Translation of Mini-Language F into A-Calculus

The semantics of mini-language F may be defined in terms of

Church's A-calculus [6,7],io particular the),-Ko-calculus. Albeit

mini-language F can be viewed merely as a variant notation for a

class of A-calculus expressions. Nevertheless, to illustrate the

specific;:ation of the translation of abstract programs with production

systems, the translation of mini-language F into the >'-calculus is

given. In particular, mini-language F is defined in terms of the

A-calculus where the only constants are

(a)	 The natural numbers, represented by {O I 2 ... }

(b)	 A 'Curried' function '+' that when applied to two
natural numbers Nl and N in an e~pression of the

2form

+ Ni N2
yields the natural number that is the sum of N and N2 .l

(c)	 A function I>' that when applied to two natural
numbers Nl and N2 in an expression of the form

~ Nl N2

yields one of the expressions

>.a..A13.a. or Aa..A13.13

accordingly as the number Nl is or ~s not greater

than	 or equal to the number N2 .

For example, the abstract program for the concrete mini-language F

program

30

~ F(X,Y) [X+Y]

in F(l,2)

is translated into the A-calculus expression

(AF.F 12) (AX.H. + X Y)

which successively reduces to

().. X.).Y. + X Y) 1 Z

+ 1 2

3

The abstract program for the mini-language F concrete program

let X " 3

in [X...::. 1 => 4

else => 5]

is translated into the A-calculus expression

(AX. (Aa.X$.ATr oX1l'2" ~ a a 1r TT) Xl 4 S) 31 1 Z

which successively reduces to

(la. a,ATfI,Aw Z" ..::.« a Tf l TrZl3 1 4 5

> 3 1 4 5

(".'S.,) 4 5

4

The formal specification of the translation of mini-language

F into the l-calculus is given in Appendix 2d. There, the function

'TRANSLATE' defines the mapping of abstract programs into the

l-calculus. A pair <p:q> is specified as a member of the set

'ABSTRACT PROGRAM: TRANSLATION , if p is a member of the set 'ABSTRACT
PROGRAM' and q is the mapping of p into the A-calculus as specified

by the function 'TRANSLATE'.

31

5. DiSCUSSION

Production systems have placed under a single framework the

complete definition of the syntax and translation of a computer lan

guage. Not once was it necessary to introduce concepts outside the

formalism. While the theoretical capability of production systems

to define recursively enumerable sets guarantees us that the formalism

is sufficiently powerful to define syntax and tranSlation, the over

whelming task of this research was to tailor the formalism to com

puter languages. The notation, the abbreviations, and the con

ceptual view of using production systems have undergone several

stages of evolution.

Besides simplicity, such attendant qualities like natural

ness, perspicuity, and communicativeness have been accorded due

allowance. Necessarily, I have used my personal discretion in

weighing these qualities. It is inevitable that further research

will refine the optimal balance of these qualities. Admittedly,

there exists no known metrics for measuring these qualities pre

cisely. They are subject to a latitude of interpretations. This

fact should not be surprising. Indeed, almost every computer lan

guage has at least the theoretical capability of defining any com

putable algorithm. Why so many computer languages? It is more

natural or more concise to define an algorithm in one language than

another.

One theoretical difficulty with production systems remains

to be resolved: the decidability of the-class of strings specified

by a production system. A production system specifying syntax de

fines a class of legal programs, but does not formally define the

class of strings that are illegal. A string is considered illegal

only if the reader of a production sys!em is convinced that the

string cannot be derived as legal program. While in the production

systems given here the classes of illegal strings are quite apparent,

it would certainly be desirable in many cases to find some restrict

ion on production systems to limit their definition to decidable

sets.

As mentioned in the introduction, the syntax of one complete

language. ALGOL 60. has been specified by a production system, and

a paper discussing this production system is being prepared. When

viewed in its most restrictive interpretation, the syntax of ALGOL

32

60 is complicated. The variety of predicates and functions needed

to specify ALGOL 60, as well as the variety of other definitions

attempted with production systems, have had a major effect on the

notation, abbreviations, and conceptual view of production systems

presented here. Although the examples in this paper were con

trived mainly to illustrate the forma~ism of production. at least

some experience exercising production systems to define more gen

eral cases of syntax and translation has been obtained. Nevertheles~.

the critical test of the acceptability of production systems to de

fine the syntax and translation of complete computer languages awaits

further exploration.

Production systems can be used to specify definitions and

string trwsformations much different from those given here. For

example, the ALGOL 60 specification mentioned above contains a

formal definition of the reduction rules for the A-calculus. Out

side of this example and a few others that the author has attempted.

little e~perience other than the definition of syntax and trans

lation with production systems has been obtained. Whether product

ion systems can be fruitfully applied to more general areas of

formal definition is a subject I have not investigated.

33

ACKNOWLEDGEMENT

To Edward Glaser, whose insight and imagination kindled

much of this research.

To Dana SCott and John Wozencraft. whose mature views of

computation significantly influenced the author.

And to Christopher Wadsworth, Calvin Mooers. Robert

Graham and John Donovan, who devoted considerable thought to the

issues herein.

34

Appendix I: PRODUCTION SYSTEM SPECIFYING THE SYNTAX OF A SUSSET OF ALGOL 60 A~D ITS
TRANSLATIO,'i INTO ASSEr~BLER LANGUAGE

Ca) Syntax: Basic Notation only

1. I NUMBER .'lUMBERQ,..
1.2 .~lP.-IBER(Z>.
1.3 ~UMBER<3>.
2.1 ID ID<A>.
2.2 ID<.8>.

3.1 PRIMARY PRIMARY"'-n> NIDlBER<n>.
3.2 PRlMARY<i> ID<i>.
3.3 ARlTH EXP ARITH EXP<p> PRIMARY<p>.
3.' ARITH EXP<a"'p" PRIMARY<p>, ARITH EXP<a>.
3.S STM STM<i:=a> ID<i>,	 ARITH EXP<a>.

<L 1 DEC TYPE LIST<A>.
, • 2 TYPE LIST.
, . 3 TYPE LIST<A ,B>.,. , DEC<integer> TYPE LlST<.i.>.

s.	 PRO GRAN PROGRA"4<begin Q;_s end> DEC<d>, 5T\I<5>, 1D5<5:i >,
IDS<d:i d>, INds:i d >. s

6.1 IN [N<A:A>.
6.2 IN<B:B>.
6.3 [N<A:A,B>.
6. , IN<B:A,B>.
6. 5 IN<xy: ~> IN<x:.i.>, IN<y:.i.>, TYPE LIST<.i.>.

7.1 NON ID ~ON ID<o.
7.2 NON ID<:"'>.
7.3 NON ID<,>.
7., NON ID<integer>.
7.5 NOi'l ID(n> NUMBER<n>.

8.1 IDS IDS<i:i> IDo:i>.
8.2 IDS<xiy:i,z;> ID<i>, IDS<xy:z;>.
8.3 IDS(xry:z;> NON ID<r>, IDS<xy: P.

(b) Syntax: \lith additions to notation

begin	 NUMBER< n>, ID< 1>, PRIMARY< p>, ARITH EXP< a> , STM<s> ,
TYPE LIST<.i.>, DEC< d>;

1. NUMBER NUMBER<1>,<2>,<3>.
2. 10 ID<A>,.

3. I PRIMARY PRlMARY<n>,<i>.
3.2 ARITH EXP ARITH EXP<p>,<a+p>.
3.3 STM STM< i: =a>·

, . I DEC TYPE LIST<A>,,<A,B>.
,. 2 DEC<integer l!.>

S. PROGRAM PROGRAM<begin d; s end> + I~(~(s>:IDS<d».

35

, .1 IN IN <A: A>,<B :B>, <A .A,B:>. <B: A,B>. ,. , IN<xy:.i.> IN<x:].>,<Y:].>·

7. NON ID	 SON ID<+>.<:=>,<, >, <integer>, <n>.

begin ~ IDS, NON ID<r>;
8. I IDS	 <T'>'*''' 1"8. ,	 4><);iy> <i, ¢<xy>.
8.3	 '*' <xry > <1jJ<xy»

end

(e) Translation

bC~ln rj> = TRANSLATE '*'a = TRANS ARITH EXP. ¢p = TRA.~S PRIMARY;

9.1	 (program) ¢<oegin dj 5 end> (·ASSEMBLER LANGUAGE PROGRAM
BALR 15.0 "SET BASE REGISTER
USING ", IS "INFORM ASSEMBLER

IjJ <s)

svc 0 "RETUR..11 TO SUPERVISOR
·STORAGE FOR IDENTIFIERS
<jl<d>

END>,

9.2
9.3
9.4

(dec) 4><integer A>
¢<lnteger B>
¢<lnteger A,B>

<A
<B
<A
B

OS
Os
OS
DS

F> •
F> •
F
F> •

9.S

9.'

9.7

(stm)

(ari th exp)

41< i: .. a"

4I
a

<a+p>

¢'a <p>

,. <ljJa <3>

ST
= <4>a<a>

A

• < L

1. i

I"p<P>

I.,p<P>

·STORE RESUL T

"ADD p>.

·LOAD p>.

IN i:>.

9.8

9.9

(primary) ¢ <n>
p

4l p <i>

end

'"

..

<=F'n' >.

< i ,..

10. PROG:TRANS PROGRAM:T~~SLATION<x:y) PROGRk~<x>. TRANSLATE<x>=<y>,

end

••

36

Appendix 2:	 PROOUCTION SYSTEM SPECIFYING SYNTAX OF MINI-LANGUAGE F AND ITS
TRANSLATION INIO THE A-CALCuLus

(a) Concrete	 Syntax

begin	 OlGIT<d>. NAT NUM<n>, ID<i>.<j>. IDLlST<1>,<11 >,<lZ>'

EIP LlST<l >, EXP<e>.<e1>.<e Z>,<e3>.<e4 >, UNIT EXP<u>. e
LET EXP<t>, COMBINATION<c>;

1.1 NAT NUN	 DIGIT<O>,<l>, .•. ,<9>.
1.2	 NAT NUM<d>,<nd>.

2.1	 ID ID<A>., ••• ,<Z>.
2.2	 IDLIST IDLIST<i>.<i,l>.
2.3 EXPLIST	 EXPLIST<e>.<e,le >·

3.1 UNIT EXP	 UNIT EXP<+>.<IF>,<n>.<i>.
3.2 LET EXP	 LET EXP<let i c e1 in e Z>,<let i(t) ~ e1 in e Z> DIFF IDLIST<1>.

3.' COMB I NAT ION	 COMBINATION<e(le».<[el+e2J>.<[el~e2 -> e3 else E) e 4]>·

3.' EXP	 EXP<u>,<t>,<c> .

PROGRAM PROGRAM<e>	 + NULL LIST<FREE IDS<e».

begin	 ¢ = FREE IDS;
'.1 FREE IDS (jl<+> <II >.
'.2 ¢l<SELECT> <II >.
'.3 ¢l<n> <II> .
••• ¢l<i> <i >.
'.5 l/l<e,l > <LIST<¢!<e>:¢!<1e »>'

e
'.6 ¢<let i=e in e Z> <LIST<¢!<el>:REL COMP<¢!<e 2>:i»>.

1
•. 7 ¢<let i(l)~el in e 2> <LTST< REL COMP<¢!<e >:1>: REL COMP<¢!<e 2>:i»>.l
'.8 ¢<e(1 » <LIST<¢!<e>:¢!<1 »·

¢!<[e l +e 2]> .. <¢!<e 1 ,e2»·•••
e	 e

5.10	 ¢!<[el~e2 ~> e 3 else =>e 4]> = <¢<e l ,e 2,e3 ,e4»·
en;

~egin ¢!"LIST
6.1	 LIST <11:11> = <II>
6.2	 ¢<1I:1> '" <1>
6.3 ¢!<1: II> '" <1>
6.' ¢<1 :12> '" <1 ,12>1 1

end

begin	 ;cREL CaMP
7.1	 REL COMP ¢<II:II> .. <II>.

7.2 ¢!<1I:1> .. <II>.

7.3 ¢!<i:lI> = <1>.

7 .• ¢<i:1> = <II> IN<i:1>.

7 .• ¢<i:t> = <i>. NOT IN<i:1>.

7.6	 ¢<i.1 :1> .. <LIST<¢<i:l>:¢<l l :l»>

1end

37

.1 IN

.2

.3 NOT IN
18.5

9.1 NULL LIST NULL
9.Z OIFF 10LIST OIFF
9.3 DIFF

10.	 DIFF 10 DIFF

.nd

(b) Abstract Syntax

1.1 10LIST
1.2
1.' EXP1IST
1.4

2.1 UNIT UP

2.2 LET EXP
2. ,

2.4

2.5 COMBINATION
2. , EXP

,. PROGRAM

4.1 FREE IDS

4.2

4.'
4.4
4.5

4. ,

4.7

4.8
4.9

5. I LIST
5.2
5. ,
5.4
5.5

'.1 REL COMP

,.'.2,
6.4
6.5
6.6

IN<i.:i>,<i:i,i.>.
IN<i:j,f>	 IN<i:i.>.
NOT IN<i:j> DIFF ID<i:j>.
NOT IN<i:j,f> OIFF ID<i:j>, NOT rN<i:i.>.

begin NAT NUM<n>, ID<i>,<j>,

EXP<e>,<e1>,<e Z>' UNrT
FCNd>, AOO FCll;<f >,

a
10LIST«HO i, TL A».
IOLIST«R'D' i, TL f».
EXPLIS1<lHO e,~L A».
EXPLIST«Rrr e, ~ f ». e
UNIT EXP<£a>'<£i>,<n>,<i>.
FCN«BIOS i.,BOOY e».
LET EXP<[BID 1,DEF e1 ,BEXP
LET EXP«BID i,DEF f,BEXP
COMBINATION«RATOR e,RA~D

EXP<u>, <t>, <i.>.

ABSTRACT PROGRAM<e>

b<jin.a '
¢<f i >

ojl<n>
ojl<i>
¢<i.•>
ojl<i. >•
4><£>
¢><t>
ojl<c>
.nd

begin

LIST<A>.
10LIST<i>
10LIST<i,f> NOT IN<i:i.>, DIFF IDLIS1<i.>.

rO<A:B>,<A:C>, ..•	 ,<Z:Y>.

¢>"'FREE IDS
<A> .
<A> .
<A> •
«i,A».
<¢><HD<i.

e
»>·

<b!5~<¢<HD<fe»;¢<TL<fe»» EXPLI ST<!!.<i. » . e
<REL COMP<ojl<:BODY<f»:BIDS<f»>.
<LIST<¢<DEF<t»:REL COMP<ojl<BEXP<:t»;BID<t»».
<~<4><~OR<c»:,<RAND<c»~ --

4>"'1IST
4><A;A> - <A>.
ojl<A:.I:> .. <£>.
ojl<i.;A> '" <i.>.
ojl<i:i.> '" «i,i.».
ojl<i. 1 :i.2> • <ojl<HO<i.1>:¢<TL<:i. 1>:i. »>· z
'nd

begin ojl=REL COMP
ojl<A;A> "'
ojl<A;i.> '"
4><i:A> =
¢<i:£> =
4><i:£> =
ojl<ll:£>

IF

10LIST<:i.>,<11 >,<f >, EXP LISI<i. >,z e
EXP<u>, LET EXP<:t>, COMBINATION<i>,

FCN<f i >;

DIFF IDLIST<i.>.
e Z»'

eZ»'
i.e».

NULL LrST<FREE IDS<e».

NULL LIS1<.!.!-.<:i. » . e

<A>.
<A>.
<i>.
<A>	 ..
<i> ..
<LIST<¢><HO<i.1>:1>:ojl<TL<£I>:i.»>·

IN<i:i.>

NOT IN<i:l>

38

7.1 IN HId: (i».<i: 0,1».
7.2 IN<i: 0,1»	 IN<i:t>.
7.3 NOT IN NOT INd; (j) >	 DIFF ID<i:j>.
7.4 NOT IN<i:(j,l»	 DIFF ID<i:j>, NOT IN<i:t>.

8.1 NULL LIST NULL LIST<A>.
8.2 DIFF IDLIST DIFF IDLlST«i,A».
8.3 DIFF IDLIST«i,l»	 NOT IN<i:~>. DIFF IDLIST<t>.

eel Function "OJNCRETIZE" mapping abstract programs into a concrete representation

begin = CONCRETIZE
9.1 CONCRETIZE ¢<u> <ll>

9.2 41<1 ,'> <<p<HD<l >>>	 NULL LIST<TL<! » e	 - ,
9.3 ¢ <1,'> <¢<HD<l »·¢<TL<l »> EXP LIST< TL<t » e e	 - ,
9.4	 ¢<t> <let¢<BID<t» ~ ¢<DEF<t»

~n .p<lIE"XP<t>>> -- EXP<DEF<t»

9.5	 -4l<t> <: 1.et¢.:<.lHD<t» H<BIDS<DEF< t» » .. ¢<:BODY <: DEF<t»>

~n 4J<'irnYP<t»> -- --. ... FCN"<5E"'F<t-;-;-:

9.6 ¢<c> <¢<RATOR<c»(¢<RAND<c»»

9.7 <p<c> <[¢<HD<£e»+~<TL<£e»J RATOR<c>"'<f >, RAND<c>"<£e>'a
9.8 <p<c> <[~<HD<£e» ~ ~<HD<TL<£e» '"> ,<HD<TL<TL<1 »»

--- e
else => ~<~<TL<TL<TL<£e»»>]>

RATQR<c>"'<f >,i
RAND<c>-"' <1 >.- ,

'nd

10. 1 ADD FCN<+>'
10.2 IF FeN IF FCN<IF>'
10.3 ~AT :iiji>t DIGIT<O>,<I>, ... ,<9>.
10.4 NAT NUM<d>.<nd>.
10.5 10 ID<A>, •... ,<Z>.
10.6 DIFF ID DIFF ID<A:~>,<A;C> •... ,<Z:Y>.

11. PROG: CONe ABSTRACT	 PROGRAM: CONCRETIZATION<p:q>

ABSTRACT PROGRAM<p>. CONGRETIZE<p>=<q>.

39

(d) Translation of Abstract Programs into ~,Calculus

begin ~	 ~ TRANSLATE;

12.1 TRANSLATE	 4'<n> <n> .
12. Z	 ~~i> < i" ,
12.3	 <jI<f

a
> <fa>'

12.4	 <jI<f.> «Aa.Aa.A~1·~~2· _ i S ~1 ~2)',
11..5 <p <i ," <<P<~<le»>' NULL LIST<IL<R.e».
12.6	 <p (i, > <,<HD<~e> ,<TL<t »> EXP LIST<TL<R. ».e	 - ,
12.7 'fl<f> < (CONS PREFIX<BIDS<f».~<BODY<f»».

1':.8 <jI<t> <U<jl~~<"t».<jI<BEXP<t"» <jl(~(t»>.

12.9	 <p<i> ~ «<jl<RATOR<c»~<RA~D<c»».

"d

begin ~	 ~ CONS PREFIX

13,1 CONS PREFIX	 ~(t> <\HD<R.» NULL LIST<TL<R.».
13.2	 'fl<Q.> <\HD<Q.>.~<TL<R.»>. IDLIST<TL<R.» .

ood

14.	 PROGRAM: ABSTRACT PROGRA~:TRANSLATION<p:q>
TRANS ABSTRACT PROGRAM<p>. TRA~SLATE<p).<q).

\

40

REFERENCES

The following works describe the theoretical foundations of
production systems:

1.	 Emil L. Post

Formal Reductions of the General Combinatorial

Decision Problem

Amepiean	 Jo~rr.al cf Mathematics, Volume 65,

pp. 191·215. 1943.

2. Raymond M. Smullyan
Theory of Formal Systems
Annals of Mathematical Studies, Number 47, Princeton

University Press. Princeton, New Jersey. 1961.

The following references describe work on applications of
related formal systems:

3. John	 J. Donovan
Investigations ~- Simulation and Simulation Languages,
Ph.D. dissertation, Yale University, New Haven,

Connecticut. 1966.
This	 reference adapts Smullyan's formal system to

specify the syntax of computer languages, and
introduces the term 'canonic systems' to
describe the resulting variant.

4. Henry F. Ledgard
A Formal System for Defining the Syntax and Semantiea

of Computer Languages.
MAC-TR-60 (Ph.D. dissertation) Project MftC, M.I.T.,

Cambridge, Massachusetts, 1969.
This	 reference applies producticT< systems (here

called 'canonical' systems) to de£ine both
the syntax of a computer language and its
translation into a target language.

5.	 John J. Donovan and Henry F. Led~ard
A Formal System for the Specification of the Syntax

and Translation of Computer Languages
AFIPS~ Proeeedings of the 1967 Fall Jo£nt Computer

Conferenee~ Volume 31, Thompson Books,
Washington, D.C., 1967.

This	 reference also considers the use of canonic
systems to define the syntax and translation
of a computer language.

The following references describe the theory of the A-calculus.

6. Alonzo Church
The Caleuli of Lambda-Conversion
Annals of Mathematical Studies, Number 6, Princeton

University Press, Princeton, New Jersey 1941.

41

7. Haskell B. Curry and Robert Feys
combinatory Logie
Volume I. North·Holland Publishing Company,

Amsterdam. 1958.

8. John M. Wozencraft
CLaBs Notes fol' 'Pl'o(jramming LinguiBtic8~ I

Subject 6.2.31, M.LT., Spring Term, 1968.

The following references have also been used.

9.	 Peter Naur (Editor)
Revised Report on the Algorithmic Language ALGOL 60
Communications of the ACM~ Volume 6, Number I,

pp. 1-23, 1963.

10.	 Peter J. Landin
The Next 700 Programming Languages
Communications of the ACM. Volume 9. Number 3,

1966 .

11.	 Peter J. Landin
A Correspondence Between ALGOL 60 and Church's

Lambda-Notation.
Communications	 of the ACM, Volume 8, Numbers 2

and 3. February. 1965.

12.	 John M. McCarthy
A Formal Description of a Subset of ALGOL
in Formal Language Description Languages fop

Compute~ Programming (T. B. Steel - editor)
North Holland Publishing Company, Amsterdam
1966.

13. P. Lucas, P. Lauer and H. Stigleitner
Method and Notation for the Formal Definition of

Programming Languages
IBM Technical Report 25.087, IBM Laboratory.

Vienna 1968.

14. J. W. de Bakker
Semantics of	 Programming Languages
Mathematical	 Centre, Amsterdam

15. Willard V. Quine
Mathematical	 Logic
Harper and Row, New York, 1951.

16. A. M. Turing
On	 Computable Numbers with an Application to the

Entscheidungsproblem
Pt'oceedings of the London MathematicaZ Society~

Volume 42, pp. 230-265, 1936.

17.	 A. .1>1. Turing
Computability and Lambda-Definability
Journal of Symbolic Logic~ Volume 4, pp. 153-160,

1937.

4Z

18.	 Stephen C. Kleene
Lambda-Definability and Recursiveness
Duke Mathematical Journal, Volume 2. pp. 340-353,

1936.

19. Trenchard More
Relations Between Simplicational Calculi
Ph.D. dissertation. Mol.T., Cambridge. Massachusetts.

196 Z.

zo. Henry F. Ledgard
10 Mini-Languages in Need of Formal Definition
Informal Paper, Programming Research Group,

Oxford University. 1969.

Z1.
A Programmer's Introduction to the IBM System 1380

Architecture, Instructiona, and Assembler
Language,

International Business Machines Corporation. White
Plains. New York. 1965.

