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ABSTRACT 

This paper investigates the application of a forma 1i5m 

called production systems to specify the syntax of a computer 

language and its translation into a target language. Several 

properties appear well-suited to this task: 

(a)	 The formalism can be used to specify exactly 
the syntax of a computer language, including 
context-sensitive requirements. 

(b)	 The same formalism can be used to specify the 
translation of a language into another. 

(c)	 The specification of the context-free portions 
of syntax. the context-sensitive portions of 
syntax, and the translation can to a large 
extent be isolated. 

Cd)	 The formalism can be used to specify the 
"abstract·, syntax of a language and its trans
1ation into "abstract" entities of a target 
language. 

The following example applications of production systems are 

given: 

(a)	 A specification of the syntax of a limited 
subset of ALGOL 60 and its translation into 
IBM System 360 assembler language. 

(b)	 A specification of the abstract syntax of a 
small functional language and its translation 
into expressions in Church's A-calculus. 
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1. INTROOUCTION 

1.1 Motivation 

This paper presents the formalism of production systems 

and investigates its application to define the syntax of a 

computer language and its translation into a target l~guage. 

The need for suitable methods for formal definition of 

computer languages is evident. For language designer~. im

plementers, or users, there is a clear need to be able to 

define rigorously what strings in a language are legal programs 

and what the programs 'mean', possibly in terms of some suit

able (for humans or computers) target language. While not all 

attempts at formal definition appeal to notions of syntax OT 

translation. the notions of syntax and translation are used 
widely enough to warrant investigation into methods for formal

izing them. 

The author's interest in production systems stems partly 

from happenstance, and partly from a conviction that there are 

certain properties of the formalism that appear valuable in 

defining syntax and translation. First, production systems 

are based on solid mathematical foundations [1,2] and have, 

theoretically at least, the power to define the class of com

putable functions. This theoretical power, while desirable, 

can be misleading. There exist other formal notions like 

Turing machines and Markov algorithms with equivalent theoret

ical power, but it certainly appears hopeless to define the 

syntax and translation of computer languages with a Turing 

machine or a Markov algorithm. 

The elusive but essential notion we must face in choos

ing any formal system is its 'acceptability' [7] in a particUlar 

application. The criteria for judging the acceptability of 

production systems in their application to define synt~ and 

translation are many. Certainly among these are conciseness 

of definition, perspicuity of definition, the amount of mater

ial needed to understand the formalism, and its ability to adapt 

from one language to another. I shall discuss each of these 

criteria in turn, and in the process note what motivated the 

author to pursue the approach taken here. 
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Perhaps the most important reason for the widespread use 

of context-free grammars to define syntax, notably Backus~Naur 

form. is the conciseness and simplicity with which context-free 

portions of syntax can be specified. While production systems 

have the added power to define context-sensitive requirements on 

syntax and to define translation. production systems in their strict 

form do not possess the conciseness of Backus-Naur form. Owing 

to the mOTe complex nature of context-sensitive requirements on 

languages and the specification of translation, some additional 

complexity must be expected. On the other hand. when viewed 

as a generative grammar, production systems provide some degree 

of conciseness that synthetic or generative (as opposed to anal

ytic or algorithmic) methods of definition possess. 

Some additional conciseness for production systems in the 

specification of syntax-and translation has been obtained by in

troducing abbreviations to the basic notation. Three principal 

factors governed the kind of abbreviations introduced: first. 

reduction in the length of a specification; second, an attempt 

to isolate the context-free portions of syntax, context sensitive 

portions of syntax, and translation; and third. an attempt to 

develop a conceptual framework facilitating language specification. 

Conventionally. when a language is specified. the con

text-free portions of syntax are specified by productions in a 

context-free grammar, the context~sensitive requirements are 

separately specified using English text. and the semantics are 

usually specified by relating constructs in the language to con

cepts assumed understood in English or existing mathematics. A 

formalization of this intuitive approach to language definition 

is taken here. using only the definitional apparatus of product

ion systems. Most productions in a production system specific

ation of syntax define context-free requirements on strings. 

Context-sensitive requirements are specified by inserting certain 

restrictive premises, whose definitions are given separately. 

The semantics are specified by a separate production system def

ining the translation of a syntactically legal program into a 

target language*, whose meaning is presumably understood. The 

~No target language for defining semantics is presented here. 



resulting specifications are moderately concise, although admitt

edly not optimal. 

Perspicuity of definition appears more important than con

ciseness of definition. Three factors seem paramount ln deter

mining perspicuity: segmentation of the parts of a definition, 

notation and the conceptual framework within which the definition 

is given. The segmentation of a production system specification 

discussed above certainly adds to the perspicuity of a production 

system's definition. Furthermore, the basic notation for pro

duction systems appears satisfactory. It is tempting for the 

author of a work to introduce notation, terminology and conven

tions that become convenient for him to use, but which often 

obscure the work and its contribution to others. In the effort 

to avoid this temptation, this author has spent many hours in 

developing the notation and conventions for production systems 

in the hope that they would be well-suited to computer languages. 

The conceptual framework of a formalism is vital to its 

proposed application in that the conceptual framework either 

lends itself naturally or unnaturally to the application. Pro

duction systems are couched in a conceptual framework of gener

ative productions used to enumerate sets of strings. The con

ceptual notions of 'generative productions', 'sets'. and 

'strings' underlies all production systems specifications given 

here and lends a uniformi ty of approach. Rather than talk about 

tables of identifiers, parsing schemes for scanning programs or 

algorithms for computing functions, we talk about sets of iden

tifiers, setS of programs and sets of n-tuples that define 

functions. While the conceptual framework of sets appears un

natural for certain definitions (e.g. the definition of arithmetic 

functions), it appears convenient to view a language as a set of 

strings and the translation of one language into another as a set 

of ordered pairs of strings. 

Superimposed on the basic notation for production sys

tems is a notation for defining functions. Via the function

like notation portions of a production system appear algorithmic 

in that, given arguments of a function, the productions may be 

used to 'compute' the result. The function-like notation greatly 

relieves the difficulty with production systems that strictly 

•
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speaking all sets are defined generatively. Generally. the 

basic constituents of a language (for example, the class of 

arithmetic expressions or blocks) are defined here with the basic 

generative notation. On the other hand, auxiliary constituents 

(for example, the list of statement labels occurring in a block) 

needed to complete the specification are defined via the function

like notation, Le. as functions that given a basic constituent 

(for example, a block) as an argument yields the auxiliary con

stituent (for example. its list of statement labels) as a 

result. 

One deficiency as regards perspicuity of definition still 

remains in the application of production systems presented here. 

As mentioned above, in the specification of context~sensitive 

-re4uirements, several functions are defined. For ex~ple, to 

define the requirement that-all statement labels in a block are 

different, a function mapping a block into a l1st of its state

ment labels is defined. Functions like this, while intuitively 

simple, become somewhat complicated when defined in production 

systems. Whether functions like this ought to be defined by 

other methods is a subject I have not investigated. 

Considering the complexity involved in the specification 

of syntax and translation, the amount of material needed to 

understand basic formalism of production systems is small. l'fuile 

some complexity to basic formalism is introduced by adding abbre

viations and alternate notations, the basic simplicity of the 

formalism remains. 

The ability of production systems to adapt from one lan~ 

guage to another remains to be judged. The syntax of one com

plete language, ALGOL 60, has been defined with a production 

system, and a separate paper discussing this production system 

is being prepared. Syntactically. few computer languages are 

more complex than ALGOL 60, and it seems fair to say that a 

judgement (good or bad) on the merits of the production system of 

ALGOL 60 is a good test of the acceptability of production systems 

to define the syntax of most computing languages. No production 

systems specif ying the translation of complete languages have 

been attempted. Hence the acceptability of production systems 
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to adapt to various types of translation is largely untested. 

Much other research on formal definition of computer 

languages has been pursued. A comprehensive review of existing 

methods has been written by de Bakker [14]. Several devices 

employed by others are used here. notably the work of McCarthy 

[12] and the IBM Vienna laboratory [13) on the definition of the 

abstract syntax and the use of Church's A-calculus to define 

semantics by Landin [11). With the thought that production 

systems may find a useful place in meeting the need for formal 

methods of language definition, the research presented here is 

offered. 

1.2 Background of the Formalism 

The mathematical underpinnings of production systems are 

due to Emil Pos t [1] and Raymond Smullyan (2). A discussion of 

the theoretical background for production systems has been given 

[4] by this author. With suitable syntactic changes, product

ion systems are equivalent to Smullyan's 'elementary formal 

systems' [2]. Production systems can be used to specify any 

'recursively enumerable' set [2]. The set of strings comprising 

all syntactically legal programs in a computer language and the 

set of pairs of strings comprising all syntactically legal pro

grams in a computer language and their translations into a target 
language are just two examples of recursively enumerable sets. 

Presumably, production systems can specify any translation or 

algorithm that a machine can perform. Heuristic evidence that 

this statement is true is due to the works of Turing [16,17J 
and Kleene [18]. In these works the notion of functions com

putable by a Turing machine were asserted [16] to comprise every 

function or algorithm that is intuitively computable by machine, 

and the functions computable by a Turing machine were shown 

equivalent (17~18] to the set of all 'general recursive' sets. 

which are encompassed by production systems. 

The application of a logically modified variant of the 

formal systems of Post [1] Smullyan[2] and Trenchard More [19] 

to specify completely the syntax of a computer language was first 

made by John Donovan [3]. Donovan applied his formal system to 

specify the set of legal programs in a computer language. in

,
 
~ 
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eluding the specification of allowable character spacing. and 

more importantly, the specification of context-sensitive re

quirements on the set of legal programs, like the requirement 

that all statement labels in a program be different. Donovan 

introduced the term 'canonic systems' to describe his formal 

system. The name 'production systems' is used to distinguish 

the formal system presented in this paper from the formal systems 

of Post, Smullyan and Donovan. 

The terminology for production systems presented here is 

due to both Post and Smul1yan. The notation for production 

systems presented here is due in part to Post, Smullyan and 

Donovan. but for the most part is new. 

1.3 An Jnform;d Example 

Before discussing the formalism ~f production systems in 

Section 2.1. this section informally presents an example pro-

duction system. which hopefully will motivate the discussion of 

Section 2.1. A small and rather useless subset of ALGOL 60 will 

be taken as an example source language. The Backus-Naur form 

specification of the ALGOL 60 subset is given in Table 1.· 

l. <NUMBER> :: = 
11 213 

2. <lD> :: '" A B 

3.1 <PRIMARY> :: '" <NUMBER> I <lD> 
3.2 <ARlTH EXP> : : '" <PRIMARY> I <ARITH EXP>+<PRIMARY> 
S.3 <STM> : : '" <ID>:"'<ARITH EXP> 

4.1 <TYPE LIST> :: '" AIBIA.B 
4 . 2 <DEC> : : '" integer<TYPE LIST> 

5. <PROGRAM> :: = begin<DEC>;<STM> end 

Table 1. Backus-Naur form specification of ALGOL 60 subset. 

This subset allows programs containing only one declaration and one 
limited type of arithmetic assignment statement. The syntax of 

ALGOL 60 has the requirement that the type of each identifier used 

in a program must be declared. This requirement is not handled by 

RUn~erlined lower case letters are used here to renresent reserved 
words in a computer language. 



-- --

the Backus-Naur specification above. For example, the syntac

tically illegal program 

begin integer B; A:;l end 

can be derived using this specification. 

The product.ion system specification of the ALGOL 60 subset is 
gi ven in Table 2. 

begin	 NUMBER<n>, ID<i>, PRIMARY<p>, ARITH EXP<a>. 
STM<s>, TYPE LIST<£>, DEC<d>; 

1.	 NUMBER<1>.<2>,<3>. 
2.	 ID<A>.<B>. 

3.1	 PRlMARY<n>.<i>. 
3.2	 ARITH EXP<p>.<a+p>. 
3.3	 STM<i:;a>. 

4.1 I	 TYPE LIST<A>.<B>,<A,B>. 
4.2	 DEC<integer £>. 

s.	 PROGRAM<begin diS end> IN<IDS<s>: IDS<d». 

6.1 I	 IN<A:A>.<B:B>,<A:A,B>.<B:A,B>. 
6.2	 IN<xy:l> -+- IN<x:£>,<y:£>. 

7. I	 NON ID<+>.<:::=>,<,>,<integer>,<n>. 

begin	 ~;IDS, NON ID<r>; 

8.1	 ~<i>; <i>.I 
8.2	 ¢I<xiy> ; <i,¢I<xy». 
8.3	 ¢I<xry> = <¢I<xy». 

end 

end 

Table 2. Production system specification of ALGOL 60 subset. 

Productions 1 t.hrough 5 of this production system may be informally 

read. 

Let n be a number, i be an identifier, p be a primary, a be 
an arit.hmetic expression, s be a statement, £ be a type list, and d 
be a declaration (all of which are to be defined below): 

1. The symbols '1', '2' and '3' are numbers. 

2. The symbols 'A' and 'B' are identifiers. 

3. If n is a number. then n is a primary.
If i is an ident.lfier. then i is a prlmary. 

~
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3.2	 If P is a primary, then p is an arithmetic expression. 
If	 p is a primary, and a is an arithmetic expression, 

then a'+'p is an arithmetic expression. 
3.3	 If i is an identifier and a is an arithmetic expression, 

then i':~'a is a statement. 

4.1	 The strings 'A', 'B' and 'A,B' are type lists. 
4.2	 If l is a type list, then 'integer'1. is a declaration. 

5.	 If d is a declaration, 5 is a statement, and each member 
of the list of identifiers for 5 is contained in the list 
of identifiers for d, then 'begin' d :;' 5 'end' 
is a program. 

The restrictive premise 

IN<IDS<s>;IDS<d»

is the essential one needed to insure that all identifiers must be 

declared. The function named 'IDS' maps a string in the ALGOL 60 

subset into a list of identifiers occ~rring in the string. This 

function is defined in productions 8, where '¢' is used in pl~~~_ 

of the name 'IDS' and r denotes a member of the class of non-iden

tifier symbols, defined in productions 7. For example, 

~< integer B> <B' lDS<A:=A+B> <A,A,B> 

JDS<A:=I> <A' IDS<A+B:=A+I+B> <A,B,A,B> 

Productions 6 define a set of ordered pairs named 'IN', where the 

first element is a list of identifiers and the second element is a 

list of identifiers containing each identifier given in the first 

list. For example the following ordered pairs are members of the 

set named 'IN' 

<A:A> <B:A.B> <A,B:A,B> <A,B,A.B:A,B> 

Jointly, the restrictive premise in production 5 and the 

definitions of productions 6 through 8 specify that the list of 

identifiers for a statement s be contained in the list of identif 

iers for a declaration d. Thus the string 

begin integer	 Ai A:=l end 

is specified by this production system. whereas the illegal string 

begin integer	 Bi A:=l end 

is not specified by this production system because the pair <A:B> 

where 'A' is the list of identifiers for the statement 'A:=l' and 

'B' is the list of identifiers for the declaration 'integ~ B', 
is not a member of the set named 'IN'. 



9 

2. PRODUCTION SYSTEMS 

2.1 The Basic Formalism 

Formation Rules: 

A produ~tion sY8tem consists of a collection of the following 

items: 

1.	 An alphabet called the object aLphabet. 

2.	 An alphabet called the prediaate alphabet. 
Each predicate in the predicate alphabet is 
assigned a unique positive integer called its 
degree. 

3.	 An alphabet called the variable alphabet. 

4.	 Another alphabet called the punctuation 
alphabet, which consists of eight symbols: 
the implication sign, conjunction sign, 
tuple sign, delimiter sign. left quote sign, 
right quote sign, left bracket sign, and 
right bracket sign. 

S.	 A finite collection of productions, each of 
which is well· formed according to the defin
ition given below. 

In a well-formed production, it is necessary to be able to 

determine the alphabet from which each symbol is drawn. According

ly 1 will use (a) strings of capital letters, possibly interlated 

with digits, spaces and tuple signs, for predicate alphabet 

symbols (b) lower case letters (possibly subscripted or super

scripted) for variable alphabet symbols (c) the symbols 

+	 implication sign
 

conjunction sign
 

tup 1 e sign
 

del imiter sign
 

"	 / left and right ~uote signs 
, , left and right bracket signs 

for punctuation symbols, and (d) symbols not in the predicate, 

variable and punctuation alphabets for object alphabet symbols. 

A weZZ-formed term consists of a concatenated sequence of 
variable and object alphabet symbols (e.g. 'i', laIr ,Ia +p ' and 
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'i::a').~ A well-formed term tuple consists of a sequence of n 

terms each separated by a tuple sign and enclosed by a left and 
right angle bracket sign (e.g. '<:i:=a>' and '<X:2.>'). The 

number n of terms is called the degree of the term tuple. A 

well-formed atomic formula consists of a predicate alphabet 

symbol of degree n followed by a term tuple of degree n (e.g. 

'STM<v:=a>t and 'IN<x:2.>'. where 'STM' and 'IN' are predicates 

of	 degrees 1 and 2 respectively). A wBll-fol"med pl"odu"tion 

consists of 

Ca)	 an atomic formula followed by the delimiter 
sign (e.g., 'NUMBER<l>.') or 

(bJ	 an atomic formula followed by the implication 
sign, a sequence of atomic formulas each sep
arated by the conjunction sign, and the de
limiter sign (e.g. 'STM<i:"'a> + IO<i>, 
ARITH EXP<a>-. 'J . 

An atomic formula preceeding the implication sign or occurring 

alone is called a aonalusion. An atomic formula following the 

implication sign is called a p~emi8e. A production containing 
no premises is called an atomic ppoduction. 

In the specification of written expressions in computer 

languages, it will often be necessary to include letters. digits, 

spaces, and punctuation symbols as members of the object alphabet. 

Since capital letters, digits, spaces, the implication sign, 

conjunction sign, and delimiter sign cannot occur within the 

brackets of a term tuple as predicate, variable, or punc~uation 

alphabet symbols, I adopt the convention that these symbols can be 

used in a term tuple as object alphabet symbols. Furthermore, 

strings containing variable alphabet symbols, tuple signs, and 

bracket signs can also be used as members of the object alphabet 

provided that the strings are enclosed by the quote signs when 
used within a productlon.~~ For example, consider the following 

•	 ,:",1 is considered a single objeat alphabet symbol. not the con
catenation of the symbols':' and '''''. 

~~	 The use of the quote and bracket signs are not necessary to a 
strict definition of a production system. In essence, quote 
signs enable the free use of symbols in the object alphabet, and 
the bracket signs enable the omission of quote signs around sym
bols that occur frequently. Both these syntactic devices are 
reminiscent of Quine's notion of quotations and quasi-quotations.[lS 



productions: 

LETTER<'a'>
 

NUMBER<I>
 

NUMBER<2>
 

NUMBER<3>
 

IN<A: A. 8>
 

IN<B:A.B>
 

IN<lC)': f,> IN<x:l>, IN<y:l>
 

Here. the symbols {a I 2 3 A B} enclosed in angle brackets are 

object alphabet symbols. The symbols {x y 1} are variable alpha
bet symbols. 

Deductive Rules: 

The derivable conclusions of a production system are the con
clusions that can be obtained from the productions by a finite number 

of applications of the following two rules. 

Rule (1)	 A production pI can be obtained from a 
production P by substitution of an object 
string (possibly null) for each occurrence 
of a variable. 

Rule (2)	 If each premise in a production is
 
derivable, then the conclusion is
 
derivable.
 

In the case of atomic productions, rule (2) states that its con

clusion can be derived immediately. These rules can be applied to 

the previously given productions to derive the conclusions 

NUMBER<l>
 

IN<A:A.B>
 

IN<B:A.B>
 

IN<A,B:A,B>
 

IN<A,B.A:A,B>
 

Interpretation: 

A production system will be interpreted in the following way. 

A predicate will denote the name of a set. A term tuple of degree 
n following a predicate of a derived conclusion will be taken as an 
assertion that the n-tuple is one member of the named set. Pro

ductions will be viewed as rewriting rules for enumerating members 
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of sets. In the previously given productions. the set named 

'NUMBER' contains three members, 

(l	 2 31 

and the set 'INt contains an infinite number of ordered pairs, 
some of which are denoted by 

{<A:A,B> cB:A,B> <A,B:A.B> ... Y.

2.2 Abbreviations and Modifications to the Basic Notation 

Using only the basic notatipn for production systems. a 
specification for a computer language often becomes lengthy or 

unnatural. It will be extremely useful to introduce several not

ational conventions to alleviate this difficulty. In this section 

four notational convent-ioJlS--_are_siven, the second of which is due 

to Donovan [3]. 

Abbreviations: 

The two abbreviations are motivated by conciseness of def
inition. The first or 'block structure' abbreviation allows one 

to 'factor out' premises that are common to one or more productions. 
The second allows one to eliminate repeated occurrences of the same 

predicate name. 

1. If pl,PZ""'P are predicates. 'vl'vZ'" "Y aren n 
variables. and C is a collection of productions such 

that any production containing vi' l~i~n,' in the 
conclusion also contains the premise Pi<v i >. then 

c 

can be abbreviated 

begin PI<vl >, Pz<v >, Pn<V >;z n

c' 
end 

where C' is obtained from C by deleting: any Qr all 

occurrences of the premises PI <vI>' PZ<v Z>•.•... , 
and Pn<v > and their associated punc~uation signs.·n 

•	 If a premise is deleted from· a prp~uction con~aining other.pre· 
mises. the conjunction sign preceeding or following the premise 
is deleted. If a premise is deleted from a production containing 
no other premises, the implication sign is deleted. 
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Thus, for example 

ARITH EXP<p> PRlMARY<p> • ~ 

~ARITH EXP<a+p> PRIMARY<p>, ARITH EXP<a>. 
STM< i: =a> ~ ID<i>. ARITH EXP<a>. 

may he abbreviated 

begin PRIMARY<p>. ARITH EXP<a> , ID<i>; 

ARITH EXP<p>. 

ARITH EXP< a+p>. 

STM< i: =a>. 

end 

This abbreviation is extended to include nested begin - end 
bracketed productions with new 'declarations' of variables. For 

example 

begin pea>, Q<b>; 

C<a+h> • 

begin R<b>; 

D<a+h>. 

end
 

end
 

is an abbreviation for 

C<a+b> ... P<a>. Q<b>. 
D<a+h> .... pea>, R<b>. 

2.a. If <t1>,<t >' ... and <tn> are term tuples and P is aZ

predicate, the atomic productions
 

P<t1 >·
 

P<t 2 >·
 

P<t >. 
n 

can be	 abbreviated
 

P<t 1>,ct 2>,· •• <tn>·
 

2.b. If <t l >, <t >' ... and <tn> are term tuples and P is Ii
Z


predicate, the premises
 

P<t 
l 
>.	 P<t

Z
> J ••• P<t n > 



can be	 abbreviated 

P<tl>,<tZ>····<t >n
For example, the productions 

IN<A: A>.
 

IN<B: B>.
 
IN<A:A,B> .
 

IN<B:A,B>.
 

IN<xy:i> ~ IN<x:t>, IN<y:t>.
 

can be	 abbreviated 

IN <A:A>,<B:B>,<A:A.B>,<B:A.B>.
 
IN<xy:i> ~ IN<x:i>,<y:i>.
 

Notation for Functions:

As mentioned in the introduction, the notation for functions 
is motivated by the observation that besides thinking in terms of 

'inductive' or 'generative' definitions. we often think of 
'algorithms' that can be used to 'compute' results. The third and 

fourth notational conventions reflect this predisposition. 

3.	 If vl'v Z' and v ' n~Z. are variables andn 
R<vI :vz: v > is a premise occurring in a n 
production P containing exactly one other occur

ence c	 of v ' then the premisen 
R<v1:v Z ... v > 

n 

can be deleted from P if c is replaced by the 

string 
B.<v l :v : v _ > z n l 

4.	 If tl,t Z•...• and tn' n~Z, are terms and 
Re:t l :t Z: .. ' t > is an atomic formula occurringn
in a production p. then 

R<tl:t Z: ... t >n
may be alternately written 

B<tl:t Z: ... tn_I> <t > 
n 

Thus the productions 

J
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PROGRAM<begin d;s end> + DEC<d>, STM<s>. IDS<s:i >' s 
IDS<d: i d>, IN<i :i >. s d

IDS<i: i> lD< i>.
 

IDS<xiy: i,z> + ID<i>, IDS<xy: z;>
 

IDS<xry: z;> + NON ID<r>, IDS<xy:z>.
 

can be written 

PROGRAM<begin d;s end> + DEC<d>, STM<s>, IN<IDS<s>:ID5<d». 
IDS<i> : <i> + ID<i> 
lDS<xiy> <i, IDS<xy» ID<i>. 
ID5<xry> <IDS<xy» NON ID<r>. 

Writing 
IN<IDS<s>:IDS<d» 

instead of 
ID5<s:i >' ID5<d:i d>, IN<is:id> s 

not only reduces the length of the production, but suggests a con
ceptual view of '~' as a function mapping an object (here a well 
formed ALGOL 60 statement or declataion) into another object (here 
a list of identifiers). The use of this function-like notation 

stpongty governed the manner in which the production system spec
ifications presented here were written.* 

Finally, since the predicate name of a function often 
occurs repeatedly in the productions defining the function, I 
extend abbreviation 1 in that an underlined predicate name ~ may 

be replaced by a Greek letter l provided the 'declaration' 

•• p 

is given for the productions. For example the above productions 

defining the function 'IDS' may be written 

begin 4> = ID5,IO<i>, NON ID<r>;
 
,<i> <i>.
c 

,<xiy> = <i,lj><xy». 
lj><xry> = <lj><xy». 

end 

•	 The notation for functions allows one to define functions over 
object strings and variables. An extension to allow defmition 
of functions over pP9dio4t6s was attempted, but owing to a lack 
of suitable generaliz;ation, will not be discussed further. 
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3. APPLICATION TO SPECIFY SYNTAX AND TRANSLATION 

3.1 Application to Specify (concrete) Syntax 

The syntax of a language may be defined as the set of wel1

formed strings in a language. In this section I will be con

cerned with the specification of 'concrete' syntax. i. e. a spec

ification of strings that are given a concrete or definite repres

entation. Later in Section 4. I shall turn to the specification 

of 'abstract' syntax, i.e. a specification of syntax for which no 

particulu string representation is given. 

A production system specifying the syntax of the ALGOL 60 
subset is given in Appendices la and lb, where Appendix la uses 

only the basic notation and Appendix Ib employs the modifications 

and abbreviatioris t-o-the-rrota-ti-on.- - Ther.e_the_ pr~d_ic:ate 'PROGRAM' 

names a set of I-tuples where each member is a syntactically legal 

program. An intuitive presentation of the abbreviated production 

system has been given in the introduction and will not be discussed 

further. 

3.2 Application to Specify Translation 

The translation of a language may be defined as the function 

(or relation) between the well-formed strings in the language and 

well-formed strings in another language. This function or rel

ation can be specified by a production system specifying ~ set of 

ordered pairs of strings, where the first element in each pair is 

a legal string in the source language, and the second element is a 

corresponding string in the target language. 

As in the previous section, I will illustrate this use of 

production systems by example. The specification of the syntax of 

the ALGOL 60 subset in Appendix lb has been augmented to specify not 

only the legal strings in the subset but also their translation into 

IBM System 360 assembler language [21]. The additional productions 

are given in Appendix Ie. There a function 'TRANSLATE' mapping 

strings in the ALGOL 60 subset into strings in asseJmbler language 

is defined. A pair <x:y> is defined as a member 0 £ the set 

'PROGR.AM:TRANSLATION' if x is a legal program as specified in the 

definition of syntax and y is the mapping of x as specified by the 

function 'TRANSLATE'. For example, the following: pair of strings 



is a member of the set named 'PROGRAM: TRANSLATION , 

begin integer A; A: =1 end ·ASSEMBLER LANGUAGE PROGRAM 
BALR lS~O ·SET BASE REGISTER 
USING •• 15 • INFORM ASSEMB LER 
L 1 =F'l' ·LOAD 1 
ST l;A ·STORE RESULT IN A 
SVC o ·RETURN TO SUPERVISOR 

·STORAGE FOR VARIABLES 
A DS F 

END 

Note that this production system includes the specification of the 
comment entries in the assembler statements to that (hopefully) the 

reader will not have to be familiar with the assembler language to 

understand the translation. 
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4. APPLICATION TO SPECIFY ABSTRACT SYNTAX 

A definition of a class of 'abstract' objects is a def

inition for which no representation of objects is specified. 

Following the lines of McCarthy [12J and the IBM Vienna Laboratory 

[13]. a definition of a class of abstract objects must provide 

definitions of (a) constructor functions for constructing the 

variety of objects in the class, (b) predicates for testing whether 

an object is of a particular variety. and (c) selector functions 

that when applied to an object of a particular variety yield a par
ticular component of the object. 

Clearly, to communicate any definition one must use some 

symbols. For definitions of abstract objects, one needs some 

symbols to denote primitive objects, and some symbols to denote 

how composite objects- are-bui-lt -up fz:.o!D -Primitive objects. 

Accordingly, arbitrary primitive symbols will be ~sed to denofe

primitive objects, and composite objects containing n components 

will be denoted by the conventional notation for n-tuples, i.e. 

(al' a Z'· .. , an) 

or trees, Le. 

M
a 1 a 2 an 

where aI' a Z' ... and an denote objects. In genera1, the tree 

representation of an n-tuple may be designated by a node with n 

branches pointing to the n components of the object, where the 

leaves of the tree denote primitive objects. A defnintion will 

be considered 'abstract' in that all objects will be presented 

using only the primitive symbols and the notation for n-tuples 

(or equivalently, trees). 

The notion of a definition of a class of abstract objects 

will be couched within production systems in the fo1lowing way: 

(a)	 Productions specifying the representation of 

primitive objects will be omitted in a production 

system specification. We shall say only what 

properties the primitive objects must possess 

and that any productions defining thei~ repres

entation must reflect these properties. 



(b) Objects constructed from the primitive objects 
will be specified as n-tup1es of the form 

(a1 , a Z' ... , an) 
where n is the number of components of an object 

and the ai' 1 ~ i ~ n, are variables denoting 
primitive objects or other constructed objects. 
The productions defining these n-tup1es will be 
taken as an implicit definition of the constructor 
functions for objects in the defined class. 

(c)	 Predicate names of a production system will be 

interpreted as predicates over the class of 
abstract objects in that P<b>, where P is a 
production system predicate name and b denotes 
an abstract object, will be interpreted as 

~rue if b can be derived as a member of the set 
named P, and fa1.ee otherwise. 

(d)	 The selector functions of an abstract definition 

will be specified by production system predicates 
of degree 2 as follows. Let (a1 ,a 2 , ••. ,an) 

denote an object in a class C and 51' 52' .•• and 
Sn' 5 i ~ 5 j for i ~ j, be the names of the 
selector functions over objects in C. Then 

5i (a1,a2, ... ,a ) a i3 n
if and only if the conclusion 

5 i «a1 ,a 2,··· ,an) :ai > 
or equivalently (using the function-like notation) 

5i «a1,a2,··· ,an» : <a i > 
is derivable from-the production system. 

The notion of the definition of the translation of one 

class of abstract objects into another class of abstract objects 
may be couched in production systems by specifying a set of 
ordered pairs of abstract objects. The constructors, predicates, 

and selectors for objects in the target language can be defined 
ana1agous1y to the constructors, predicates and selectors of 
the source language. To illustrate the techniques for defining 

abstract syntax and translation, this section presents a small 
source language for defining functions and its translation into 
Church's A·calcu1us. Owing to the more transparent notation for 
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concrete representation of expressions in the A-calculus, abstract 

objects in the source language will be translated into oono~ete 

representations of expressions in the A-calculus. With relatively 

straight-forward extensions of the techniques presented in this 

section. the production systems may be made completely abstract 

in that both source and target language programs may be specified 

as abstract objects. 

4.1 Mini-Language F 

As an example source language for-illustrating abstract 

definitions of computer languages, a small language called Mini

language F has been devised. Mini-language F is based on the 

ISWIM language of Peter Landin [10]. We first give an informal 

des cription -0-£ -M-ini-- 1angu.age_ f,_ us ing conc rete repres entations 
of objects to indicate its syntax a~d ;; appeal to-rn~tlitive-cDn

cepts expressed in English to indicate its semantics. 

Primitive Objects: The primitive objects in Mini-language F 
include (a) the natural numbers, (b) a binary function that when 

applied to two natural numbers produces the natural number that is 
their numerical sum. and (c) a quarternary function that when 
applied to four objects. of which the first two are natural numbers. 
produces the third object if the first natural number is greater 

than or equal to the second and other wise produces the fourth 
object. The natural numbers will be represented by the symbols 
{O I 2 ... }. The functions described by (b) and (c) above will 

be represented respectively by the symbols '+' and 'IF'. 

Identifiers~ The identifiers comprise the symbols {A B ... Z}. 

Expression Lists: An expression list is a string of the form 
e l .e 2 •...• e where the e i , l.::i.::.n. are expressions (defined below).n 
The value of a list expression is the list of objects a l ,a2 ,·· .• an 
obtained by successiveJy evaluating each of the component express

ions el ,e 2•...• and en' 

Unit Expressions: A unit expression is either one of the primitive 
symbols {+ IF 0 I 2 ..• } or an identifier. The va 1 ue of a primitive 

symbol is the primitive object represented by the symbol. The 
value of an identifier is the object currently linked with the 
identifier (for linking of identifiers to objects, see definition 

and evaluation of let expressions). 



Let Expressions: A let expression is a string of the form 

(1 ) let i '" ine1 e Z 
or ( 2) let i(x l , ... ,X ) = e 1 in n e Z 

where i is an ident.ifier, xl •... ' and xn are identifiers each of 
which must be different, and e l and e are expressions. In aZ 
let expression t of the above form. all occurrences of the 
identifier i except in e

1 
are said to be 'bound in t', and all 

occurrences of xl"" ,x except in e2 are said to be 'bound in t'.n 
An occurrence of an identifier in an expression e is 'free in e' 

if it is not bound in e. The value of a let expression of the 
form (1) is computed by evaluating e • linking the free occurr1 
ences of i in e with the value found. and then evaluating e ' Z Z 
The value of a let expression of the form (Z) is computed by 

forming the function mapping xl" ",x into (where t.he freee ln 
identifiers in e other than xl ••..• x in are linked withe l 
their current values). linking the free occurrences of i in e with 

n 

Z 
the function formed. and then evaluating e ' 

Z 

Combinations: A combination consists of a string of the form 
e(te) where e is an expression and t is an expression list. e 
The value of a combination is obtained by evaluating e and t ande 
then applying the value of e to the value of teo This evaluating 

is well~defined (i.e. not in violation) only if the value of e is 
a function and the value of t is a list of objects such that thee 
number of the components of the I ist is identical to the number of 
arguments of the function. Furthermore, in the case where the 
value of e is one of the primitive functions denoted by '+' Dr 
'IF'. the va1ues of the first two components in the list t must e 
be natural numbers. The following alternate notations may be 
used for comb inations 

[el+e Z] in pI ace of +(el1e Z) 
[el~e2 => e 3 

in pI ace of IF(elleZ,e3,e4) 
else => e ]

4 

Expressions: An expression is either a unit expression, a let 
expression. or a combination. 

Programs: A program is an expression such that no identifiers 

occur free in the expression. 
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Exampl e 1	 Exampl~ 

~ F(Y) • [Y+3] let F(Xl •	 [X+X] 

in [F(ll +F(Z)] in let G(P,X) = [P(X) +P(ll] 

in G(F,Z) 

Example 3	 Example 4 (illegal) 

let Y ::a 2 let F(X) ~	 [X>3 ~> X 
else => [X+F(X+l)]in let F(X)=[X+Y] 

in F(Z)in F 

Example 5 

let F(X) • Z 

in let F(X) E [X>3 => X 
else·:> [X+F(X+ll]l 

in F(Z) 

The values of the example programs 1, 2 and 3 above are respective

ly the natural number nine. the natural number six, and the 
function mapping x into summation of x and the natural number t,~o. 

The program of example 4 is syntactically illegal since the occur
rence of 'F' in the conditional expression is free. The value of 
example program S is the natural number four. 

A production system specifying the concrete syntax of mini

language F is given in Appendix 2a. Productions 1 through 4, 
aside from two premises, specify the class of programs ignoring 
context-sensitive requirements. The context-sensitive require

ment that the parameters Xl'" '. and x of a function definition n 
each be different is specified in production 3.2 by a premise 

requiring that the list t xl •...• x be a member of the set named2 n 
'DIFF IDLIST'. The requirement that no identifiers in a program 

occur free is specified in production 4 by a premise requiring that 

the list of free identifiers of the program be null. 

The auxiliary predicates needed to specify the two context

sensitive requirements are defined in productions 5 through 9, 
Some example strings defined by these productions are 



FREE IDS<[A.B]> <A,B>
 

FREE IDS<let A '" 1 in [A.B] > <B>
 

LIST<A :A,B> <A,B> 

LIST<A,B:C,D,A> <A,B,C,D,A> 

REL COMP<A,B:A> <B>
 

REL COMP<A,B,C,D:A,B,X. Y> <C,D>
 

IN<A: A> ,<A:A,B ,C>
 

NOT IN<A:B>,<A:B,C,D>
 

DIFF IDLIST<A,B,C,D>
 

Here the function 'FREE IDS' maps an expression into its list of 

free identifiers. The function 'LIST' maps two identifier lists 

into a single list containing all occurrences of identifiers in 
the first two lists. The function 'REL COMP' maps two identif 

ier lists into a single list containing only the identifiers occ
urring in the first list but not in the second (similar to the 
relative complement of two sets). The predicate 'IN' defines a 

set of ordered pairs where the first elemant is an identifier and 
the second element is a list of identifiers containing an occurr

ence of the first identifier. The predicate 'NOT IN' defines a 
set of pairs where the first element is an identifier and the second 

element is a list of identifiers not oontaining an occurrence of the 
first identifier. The predicate 'DIFF IDLIST' define a set where 
each element is a list of different identifiers. 

4.2	 Definition of Abstract Syntax 

In a definition of abstract syntax, we first assume that 
there are certain classes of primitive objects with certain prim

itive properties. For mini-language F these comprise the class 

of identifiers, the class of natural numbers, and two classes 
containing one member each, the addition function and the if 

function. These four classes have their conventional properties 

and will be denoted by the predicate names 

ID NAT NUM ADD FCN IF FCN 

A list of identifiers in mini-language F may now be defined as a 
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pair 

(i.") 

where i is an identifier and ',,' is a symbol denoting the null object, 

or as a pair 

(i ,1,) 

where i is an identifier and L is itself a list of identifiers. 

Similarly, a let expression may be defined as a triple of the form 

(i,el,e Z) 

Dr 

(i'£'"2) 

where i is an identifier, e and e are expressions, and f is a1 Z 
function, In either case, the first element of a triple denotes 

the bound identifier of-the let ~xpre5sip~! the second element 

denotes the definiens (i.e. the object to which the identifier is 

bound), and the third element denotes the expression within which 

the identifier is bound to the definiens. 

The class of identifier lists and class of let expressions 

may be given the predicate named 'IDLIST' and 'LET EXP' and may 

be defined by the productions 

( 1) IDL1ST«i,"» + 1D<i>. 
( 2) IDL1ST«i,t» + ID< i>, IDL1ST<t>. 
( 3) LET EXP«i,el,e Z» + ID<i>. EXP<e 1 >, EXP<e Z>' 
(4 ) LET EXP«i.f,e Z» + ID<i>, FCN<f>, EXP<e >'Z

The n~tuples defined by these productions may be represented via 

the notation of trees. For example, the identifier list 

(13·°2·(11"))) 

where II' 1 and 1 are unspecified identifiers, may also be2 3 
represented 

1
3 

12 

11 
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Furthermore, each non-terminal node may b~ labelled with the 

predicate name of the class within which the n-tuple is a member. 

For the identi£ier list above. we have the tree'with label13d 
nodes. 

IDLIST
 

1 ~~DIST
3
 

IDLIST

I2~ 

II A 

For each composite object we must define the selector 

functions for extracting the components of the object. In par't 

icular, fOT an identifier list we wish to select its head and 

tail, and for a.let expression we wish to select its bound iden

tifier, its definiens, and the expression within which the iden

tifier is bound to the de£iniens. These five functions may be 

given the named 'HD', 'TL', 'BID'. 'DEFt, and '~'. defined 

as follows: 

(la) HD«i,A» = <i> • ID~i>. 

(lb) TL«i,II» == <A> · ID<i>. 

(2a) HD«i,t» = d> TD<i>, IDL1ST<.t>.· 
(2b) ~«i • .t» '" <.t> + ID<i>, IDLIST<.t>. 

(3a) BID«i,el,e Z» = <i> ID<i>. EXP<e l >, EXP<e Z>'· 
(3b) D~F«i,el,eZ» == eel> + ID<i>, EXP<e >, EXP<e Z>'1
(3c) BEXP< (i,e e ) >== <e >' + ~D<~>", EXP<'el.'>, EXP<e Z>'p 2 Z
( 4a) BID«i,f,eZr> "" <i> ID<i>. FCN'::"f>, "EXP<e >'Z
(4 b) ~«i,f,e2» = <f> + ID<i>, FCN<f>, EXP<e Z>' 
( 4c) BEXP«i,f,e Z» = <eZ> + TD<i>, FCN<f>, EXP<e Z>' 

· 

The definition of the production sy?te~ p~edicates and 
selector functions may be considerably shortened""by the following 
abbreviation 

Let P be a sequence of premises, C be the predicate 
name of a class of objects containing n components, 

5 l ,5 Z••.. , and Sn be the function names of the n 
selector functions OVfrr the class of objects, and 

t l ,t 2 , ... ,t be terms. Productions of the form n 



+ P • C«tl"tZ·····tn» 
+Sl«tptZ.···.t » '" <t l > P. 

n

SZ«tl.tZI ...• t n» '" <t Z> + p.
 

Sn«tl,t Z" ",tn» ~ <tn> + p. 

may be combined into the single production 

C«5 l tl"S Z t z , "'1 5 tn);:' + p.
n 

Thus productions lila. lb Z,Za.Zb 3,3a , 3b and 4,4a.4b can be 
combined 

(1 ' ) IDLI5T«HD i. TL h);:' + ID<i> • 
(2' ) IDLIST< (AD i. I!- £);:. + ID<i> , IDLI5T<£> . 

(3') LET EXP«BID i,DEF el.BEXP e Z» + ID<i>, BXP<el >, EXP<e Z>' 
(4' ) LET EXP«BID i,DEF f , BEXP e Z» + ID<i>. FCN<f;:., EXP<e > • Z

The abbreviated notation is more than a shorthand notation in that 
the abbreviated productions may be viewed as a aimwLtan80WB defin

ition of the constructors. predicates, and selectors in the 
abstract definition of the class of objects. This abbreviated not

ation will be used repeatedly in the sequel. 

The selector functions defined over a class of objects may be 
added to the tree representation of an object by labelling the branches 
of a tree with the name of the selector function used to select the 

component of the object designated by the branch. For the iden
tifier list above. we may construct the labelled tree 

IDLIST 

HD An 
11~SIDLIST
 

3 n
 
HD 

- IDLIST 
2 

1 HDAL_ 

AII 



The context-sensitive requirements on the syntax of a 

language must be specified in the definition of abstract syntax 

as well as concrete syntax, Consider the requirement on mini

language F that the identifiers given as parameters in a function 

definition must each be different, In terms of abstract syntax, 

the identifiers 1 ,1 2 , .. ,. and In in the list1 

(In" ··(12,(11")) ... ) 

used in a function definition must each be different. 

Next consider the productions 

begin ID<i>.<j>J IDLIST<£>; 

NOT IN<i:(j,A» + DIFF ID<i:j>.
 

NOT IN<i: Cj,R.» + DIFF ID<i:j>, NOT IN<i:£>.
 

DIFF IDLIST«i,A»
 

DIFF IDLIST«i,£» + NOT IN<i:£>, OIFF IDLIST<£>
 

end 

As mentioned earlier, the predicate '10' specifying the class 

of identifiers is left unspecified in the definition of the 

abstract syntax of mini-language F. So too. the predicate 

'OIFF 10' specifying the set of all ordered pairs for which the 

first element is an identifier and the second element is a diffBPent 

identifier is left unspecified. The property of identifiers that 

we are able to say if two identifiers are different is a primitive 

property of identifiers, and accordingly the predicate 'DIFF ID' is 

left unspecified in a definition-of abstract syntax. In terms of the 

unspecified predicates '10' and 'DIFF ID', the predicate 'DIFF IDLI:ST' 

defines a set where each element is a list of identifiers such that 

each identifier in the list is different, 

The complete definition of the abstract syntax of mini

language F is given in Appendix 2b. There the intuitive role of the 

predicates parallel those given for the concrete syntax, except that 

no concrete representation of programs is specified and that the 

predicates 

ID DIFF ID NAT NUM ADD FCN IF FCN 

are left unspecified. For example, the following abstract program 

is defined by Appendix 2b. 
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LET EXP 

BEXP
BID DEF

~ N 
1 

Ii COM8INATION RAND 

RATOR~AP
1STADD FeN TL 
HD _ 

-

1 
2 

EXPLIST 

HD AL_ 
-

N 2 
A 

where -II and 1 2 are _ide_n_t_if~ers and N and NZ are natural numbers.l 
This abstract program corresponds· to· any om~ of the concrete programs. 

let A 1 in +(A.Z) 

let X 2 in [X+4J 

and many others. Note that the program 

let A=' 1 in .(B,2) 

is not derivable because the identifier B occurs free in the program. 

In terms of the abstract tree. the identifiers chosen for II and 12 
must be identical in order for 12 not to occur free. 

4.3	 Concrete Representations of Abstract Programs 

To specify a concrete representation of a class of objects, 

given a definition of its abstract syntax. we may simply add to the 

definition of abstract syntax 

(a)	 a definition of the predicates for the classes of 
primitive objects, and 

(b)	 a definition of a function mapping abstract objects 
into concrete representations. 

For mini-language F~ we define 

(a)	 the predicates 'ID', 'DIFF rD'. 'NAT NUM' ~ 'ADD FCN', 
and 'IF FeN', and 

(b)	 a function named 'CONCRETIZE' mapping an abstract 
program into its concrete representation as specified 
in the informal definition of mini-language F. 
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For example, the representation of let expressions whose definiens 

are expressions is defined by the production 

¢I < t> < !etr:.<BID<t» = ¢<DEF<t» 

in ¢<BEXP<t» >	 + EXP<DEF<t». 

where ¢ is used in place of the function name 'CONCRETIZE' and t 

denotes a let expression. 

Finally, a pair <p:q>is specified as a member of the set 

'ABSTRACT PROGRAM: CONCRETIZATION , if p is a member of the set 

'ABSTRACT PROGRAM' and q is the mapping of p into concrete form as 

specified by the function 'CONCRETIZE'. 

4.4	 Translation of Mini-Language F into A-Calculus 

The semantics of mini-language F may be defined in terms of 

Church's A-calculus [6,7],io particular the ),-Ko-calculus. Albeit 

mini-language F can be viewed merely as a variant notation for a 

class of A-calculus expressions. Nevertheless, to illustrate the 

specific;:ation of the translation of abstract programs with production 

systems, the translation of mini-language F into the >'-calculus is 

given. In particular, mini-language F is defined in terms of the 

A-calculus where the only constants are 

(a)	 The natural numbers, represented by {O I 2 ... } 

(b)	 A 'Curried' function '+' that when applied to two 
natural numbers Nl and N in an e~pression of the

2form 

+ Ni N2 
yields the natural number that is the sum of N and N2 .l 

(c)	 A function I>' that when applied to two natural 
numbers Nl and N2 in an expression of the form 

~ Nl N2
 
yields one of the expressions
 

>.a..A13.a. or Aa..A13.13 

accordingly as the number Nl is or ~s not greater 

than	 or equal to the number N2 . 

For example, the abstract program for the concrete mini-language F 

program 
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~ F(X,Y) [X+Y] 

in F(l,2) 

is translated into the A-calculus expression 

(AF.F 12) (AX.H. + X Y) 

which successively reduces to 

().. X.).Y. + X Y) 1 Z 

+ 1 2
 

3
 

The abstract program for the mini-language F concrete program 

let X " 3 

in [X...::. 1 => 4 

else => 5] 

is translated into the A-calculus expression 

(AX. (Aa.X$.ATr oX1l'2" ~ a a 1r TT ) Xl 4 S) 31 1 Z

which successively reduces to 

(la. a,ATfI,Aw Z" ..::.« a Tf l TrZl3 1 4 5
 

> 3 1 4 5
 

(".'S.,) 4 5 

4 

The formal specification of the translation of mini-language 

F into the l-calculus is given in Appendix 2d. There, the function 

'TRANSLATE' defines the mapping of abstract programs into the 

l-calculus. A pair <p:q> is specified as a member of the set 

'ABSTRACT PROGRAM: TRANSLATION , if p is a member of the set 'ABSTRACT 
PROGRAM' and q is the mapping of p into the A-calculus as specified 

by the function 'TRANSLATE'. 
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5. DiSCUSSION 

Production systems have placed under a single framework the 

complete definition of the syntax and translation of a computer lan

guage. Not once was it necessary to introduce concepts outside the 

formalism. While the theoretical capability of production systems 

to define recursively enumerable sets guarantees us that the formalism 

is sufficiently powerful to define syntax and tranSlation, the over

whelming task of this research was to tailor the formalism to com

puter languages. The notation, the abbreviations, and the con

ceptual view of using production systems have undergone several 

stages of evolution. 

Besides simplicity, such attendant qualities like natural

ness, perspicuity, and communicativeness have been accorded due 

allowance. Necessarily, I have used my personal discretion in 

weighing these qualities. It is inevitable that further research 

will refine the optimal balance of these qualities. Admittedly, 

there exists no known metrics for measuring these qualities pre

cisely. They are subject to a latitude of interpretations. This 

fact should not be surprising. Indeed, almost every computer lan

guage has at least the theoretical capability of defining any com

putable algorithm. Why so many computer languages? It is more 

natural or more concise to define an algorithm in one language than 

another. 

One theoretical difficulty with production systems remains 

to be resolved: the decidability of the-class of strings specified 

by a production system. A production system specifying syntax de

fines a class of legal programs, but does not formally define the 

class of strings that are illegal. A string is considered illegal 

only if the reader of a production sys!em is convinced that the 

string cannot be derived as legal program. While in the production 

systems given here the classes of illegal strings are quite apparent, 

it would certainly be desirable in many cases to find some restrict

ion on production systems to limit their definition to decidable 

sets. 

As mentioned in the introduction, the syntax of one complete 

language. ALGOL 60. has been specified by a production system, and 

a paper discussing this production system is being prepared. When 

viewed in its most restrictive interpretation, the syntax of ALGOL 



32 

60 is complicated. The variety of predicates and functions needed 

to specify ALGOL 60, as well as the variety of other definitions 

attempted with production systems, have had a major effect on the 

notation, abbreviations, and conceptual view of production systems 

presented here. Although the examples in this paper were con

trived mainly to illustrate the forma~ism of production. at least 

some experience exercising production systems to define more gen

eral cases of syntax and translation has been obtained. Nevertheles~. 

the critical test of the acceptability of production systems to de

fine the syntax and translation of complete computer languages awaits 

further exploration. 

Production systems can be used to specify definitions and 

string trwsformations much different from those given here. For 

example, the ALGOL 60 specification mentioned above contains a 

formal definition of the reduction rules for the A-calculus. Out

side of this example and a few others that the author has attempted. 

little e~perience other than the definition of syntax and trans

lation with production systems has been obtained. Whether product

ion systems can be fruitfully applied to more general areas of 

formal definition is a subject I have not investigated. 
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Appendix I: PRODUCTION SYSTEM SPECIFYING THE SYNTAX OF A SUSSET OF ALGOL 60 A~D ITS 
TRANSLATIO,'i INTO ASSEr~BLER LANGUAGE 

Ca) Syntax: Basic Notation only 

1. I NUMBER .'lUMBERQ,.. 
1.2 .~lP.-IBER(Z>. 
1.3 ~UMBER<3>. 
2.1 ID ID<A>. 
2.2 ID<.8>. 

3.1 PRIMARY PRIMARY"'-n> NIDlBER<n>. 
3.2 PRlMARY<i> ID<i>. 
3.3 ARlTH EXP ARITH EXP<p> PRIMARY<p>. 
3.' ARITH EXP<a"'p" PRIMARY<p>, ARITH EXP<a>. 
3.S STM STM<i:=a> ID<i>,	 ARITH EXP<a>. 

<L 1 DEC TYPE LIST<A>. 
, • 2 TYPE LIST<B>. 
, . 3 TYPE LIST<A ,B>.,. , DEC<integer> TYPE LlST<.i.>. 

s.	 PRO GRAN PROGRA"4<begin Q;_s end> DEC<d>, 5T\I<5>, 1D5<5:i >, 
IDS<d:i d>, INds:i d >. s 

6.1 IN [N<A:A>. 
6.2 IN<B:B>. 
6.3 [N<A:A,B>.
6. , IN<B:A,B>. 
6. 5 IN<xy: ~> IN<x:.i.>, IN<y:.i.>, TYPE LIST<.i.>. 

7.1 NON ID ~ON ID<o. 
7.2 NON ID<:"'>. 
7.3 NON ID<,>.
7., NON ID<integer>. 
7.5 NOi'l ID(n> NUMBER<n>. 

8.1 IDS IDS<i:i> IDo:i>. 
8.2 IDS<xiy:i,z;> ID<i>, IDS<xy:z;>. 
8.3 IDS(xry:z;> NON ID<r>, IDS<xy: P. 

(b) Syntax: \lith additions to notation 

begin	 NUMBER< n>, ID< 1>, PRIMARY< p>, ARITH EXP< a> , STM<s> , 
TYPE LIST<.i.>, DEC< d>; 

1. NUMBER NUMBER<1>,<2>,<3>. 
2. 10 ID<A>,<B>. 

3. I PRIMARY PRlMARY<n>,<i>. 
3.2 ARITH EXP ARITH EXP<p>,<a+p>. 
3.3 STM STM< i: =a>· 

, . I DEC TYPE LIST<A>,<B>,<A,B>. 
,. 2 DEC<integer l!.>

S. PROGRAM PROGRAM<begin d; s end> + I~(~(s>:IDS<d». 
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, .1 IN IN <A: A>,<B :B>, <A .A,B:>. <B: A,B>. ,. , IN<xy:.i.> IN<x:].>,<Y:].>· 

7. NON ID	 SON ID<+>.<:=>,<, >, <integer>, <n>. 

begin ~ IDS, NON ID<r>; 
8. I IDS	 <T'>'*''' 1"8. ,	 4><);iy> <i, ¢<xy>. 
8.3	 '*' <xry > <1jJ<xy» 

end 

(e) Translation 

bC~ln rj> = TRANSLATE '*'a = TRANS ARITH EXP. ¢p = TRA.~S PRIMARY; 

9.1	 (program) ¢<oegin dj 5 end> (·ASSEMBLER LANGUAGE PROGRAM 
BALR 15.0 "SET BASE REGISTER 
USING ", IS "INFORM ASSEMBLER 

IjJ <s) 

svc 0 "RETUR..11 TO SUPERVISOR 
·STORAGE FOR IDENTIFIERS 
<jl<d> 

END>, 

9.2 
9.3 
9.4 

(dec) 4><integer A> 
¢<lnteger B> 
¢<lnteger A,B> 

<A 
<B 
<A 
B 

OS 
Os 
OS 
DS 

F> • 
F> • 
F 
F> • 

9.S 

9.' 

9.7 

(stm) 

(ari th exp) 

41< i: .. a" 

4I 
a 

<a+p> 

¢'a <p> 

,. <ljJa <3> 

ST 
= <4>a<a> 

A 

• < L 

1. i 

I"p<P> 

I.,p<P> 

·STORE RESUL T 

"ADD p>. 

·LOAD p>. 

IN i:>. 

9.8 

9.9 

(primary) ¢ <n> 
p

4l p <i> 

end 

'" 

.. 

<=F'n' >. 

< i ,.. 

10. PROG:TRANS PROGRAM:T~~SLATION<x:y) PROGRk~<x>. TRANSLATE<x>=<y>, 

end 
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Appendix 2:	 PROOUCTION SYSTEM SPECIFYING SYNTAX OF MINI-LANGUAGE F AND ITS 
TRANSLATION INIO THE A-CALCuLus 

(a) Concrete	 Syntax 

begin	 OlGIT<d>. NAT NUM<n>, ID<i>.<j>. IDLlST<1>,<11 >,<lZ>' 

EIP LlST<l >, EXP<e>.<e1>.<e Z>,<e3>.<e4 >, UNIT EXP<u>. e 
LET EXP<t>, COMBINATION<c>; 

1.1 NAT NUN	 DIGIT<O>,<l>, .•. ,<9>. 
1.2	 NAT NUM<d>,<nd>. 

2.1	 ID ID<A>.<B>, ••• ,<Z>. 
2.2	 IDLIST IDLIST<i>.<i,l>. 
2.3 EXPLIST	 EXPLIST<e>.<e,le >· 

3.1 UNIT EXP	 UNIT EXP<+>.<IF>,<n>.<i>. 
3.2 LET EXP	 LET EXP<let i c e1 in e Z>,<let i(t) ~ e1 in e Z> DIFF IDLIST<1>. 

3.' COMB I NAT ION	 COMBINATION<e(le».<[el+e2J>.<[el~e2 -> e3 else E) e 4 ]>· 

3.' EXP	 EXP<u>,<t>,<c> . 

PROGRAM PROGRAM<e>	 + NULL LIST<FREE IDS<e». 

begin	 ¢ = FREE IDS; 
'.1 FREE IDS (jl<+> <II >. 
'.2 ¢l<SELECT> <II >. 
'.3 ¢l<n> <II> .
••• ¢l<i> <i >. 
'.5 l/l<e,l > <LIST<¢!<e>:¢!<1e »>' 

e 
'.6 ¢<let i=e in e Z> <LIST<¢!<el>:REL COMP<¢!<e 2>:i»>.

1 
•. 7 ¢<let i(l)~el in e 2> <LTST< REL COMP<¢!<e >:1>: REL COMP<¢!<e 2>:i»>.l 
'.8 ¢<e(1 » <LIST<¢!<e>:¢!<1 »· 

¢!<[e l +e 2]> .. <¢!<e 1 ,e2»·•••
e	 e 

5.10	 ¢!<[el~e2 ~> e 3 else =>e 4]> = <¢<e l ,e 2,e3 ,e4»· 
en; 

~egin ¢!"LIST 
6.1	 LIST <11:11> = <II> 
6.2	 ¢<1I:1> '" <1> 
6.3 ¢!<1: II> '" <1> 
6.' ¢<1 :12> '" <1 ,12>1 1
 

end
 

begin	 ;cREL CaMP 
7.1	 REL COMP ¢<II:II> .. <II>.
 
7.2 ¢!<1I:1> .. <II>.
 
7.3 ¢!<i:lI> = <1>.
 
7 .• ¢<i:1> = <II> IN<i:1>.
 
7 .• ¢<i:t> = <i>. NOT IN<i:1>.
 
7.6	 ¢<i.1 :1> .. <LIST<¢<i:l>:¢<l l :l»>

1end 
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.1 IN 

.2 

.3 NOT IN 
18.5 

9.1 NULL LIST NULL 
9.Z OIFF 10LIST OIFF 
9.3 DIFF 

10.	 DIFF 10 DIFF 

.nd 

(b) Abstract Syntax 

1.1 10LIST 
1.2 
1.' EXP1IST 
1.4 

2.1 UNIT UP 

2.2 LET EXP 
2. , 

2.4 

2.5 COMBINATION 
2. , EXP 

,. PROGRAM 

4.1 FREE IDS 

4.2 

4.' 
4.4 
4.5 

4. , 

4.7 

4.8 
4.9 

5. I LIST 
5.2 
5. , 
5.4 
5.5 

'.1 REL COMP 

,.'.2, 
6.4 
6.5 
6.6 

IN<i.:i>,<i:i,i.>. 
IN<i:j,f>	 IN<i:i.>. 
NOT IN<i:j> DIFF ID<i:j>.
NOT IN<i:j,f> OIFF ID<i:j>, NOT rN<i:i.>. 

begin NAT NUM<n>, ID<i>,<j>, 

EXP<e>,<e1>,<e Z>' UNrT 
FCNd>, AOO FCll;<f >, 

a 
10LIST«HO i, TL A». 
IOLIST«R'D' i, TL f». 
EXPLIS1<lHO e,~L A». 
EXPLIST«Rrr e, ~ f ». e 
UNIT EXP<£a>'<£i>,<n>,<i>. 
FCN«BIOS i.,BOOY e». 
LET EXP<[BID 1,DEF e1 ,BEXP 
LET EXP«BID i,DEF f,BEXP 
COMBINATION«RATOR e,RA~D 

EXP<u>, <t>, <i.>. 

ABSTRACT PROGRAM<e> 

b<jin.a ' 
¢<f i > 

ojl<n>
ojl<i> 
¢<i.•> 
ojl<i. >•
4><£> 
¢><t> 
ojl<c> 
.nd 

begin 

LIST<A>. 
10LIST<i> 
10LIST<i,f> NOT IN<i:i.>, DIFF IDLIS1<i.>. 

rO<A:B>,<A:C>, ..•	 ,<Z:Y>. 

¢>"'FREE IDS 
<A> . 
<A> . 
<A> • 
«i,A». 
<¢><HD<i. 

e 
»>· 

<b!5~<¢<HD<fe»;¢<TL<fe»» EXPLI ST<!!.<i. » . e 
<REL COMP<ojl<:BODY<f»:BIDS<f»>. 
<LIST<¢<DEF<t»:REL COMP<ojl<BEXP<:t»;BID<t»». 
<~<4><~OR<c»:,<RAND<c»~ -- 

4>"'1IST 
4><A;A> - <A>. 
ojl<A:.I:> .. <£>. 
ojl<i.;A> '" <i.>. 
ojl<i:i.> '" «i,i.». 
ojl<i. 1 :i.2> • <ojl<HO<i.1>:¢<TL<:i. 1>:i. »>· z 
'nd 

begin ojl=REL COMP 
ojl<A;A> "' 
ojl<A;i.> '" 
4><i:A> = 
¢<i:£> = 
4><i:£> = 
ojl<ll:£>

IF 

10LIST<:i.>,<11 >,<f >, EXP LISI<i. >,z e 
EXP<u>, LET EXP<:t>, COMBINATION<i>, 

FCN<f i >; 

DIFF IDLIST<i.>. 
e Z»' 

eZ»' 
i.e». 

NULL LrST<FREE IDS<e». 

NULL LIS1<.!.!-.<:i. » . e 

<A>. 
<A>. 
<i>. 
<A>	 ..
<i> ..
<LIST<¢><HO<i.1>:1>:ojl<TL<£I>:i.»>· 

IN<i:i.>
 
NOT IN<i:l>
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7.1 IN HId: (i ....».<i: 0,1». 
7.2 IN<i: 0,1»	 IN<i:t>. 
7.3 NOT IN NOT INd; (j .... ) >	 DIFF ID<i:j>. 
7.4 NOT IN<i:(j,l»	 DIFF ID<i:j>, NOT IN<i:t>. 

8.1 NULL LIST NULL LIST<A>. 
8.2 DIFF IDLIST DIFF IDLlST«i,A». 
8.3 DIFF IDLIST«i,l»	 NOT IN<i:~>. DIFF IDLIST<t>. 

eel Function "OJNCRETIZE" mapping abstract programs into a concrete representation 

begin = CONCRETIZE 
9.1 CONCRETIZE ¢<u> <ll> 

9.2 41<1 ,'> <<p<HD<l >>>	 NULL LIST<TL<! » e	 - , 
9.3 ¢ <1,'> <¢<HD<l »·¢<TL<l »> EXP LIST< TL<t » e e	 - , 
9.4	 ¢<t> <let¢<BID<t» ~ ¢<DEF<t»
 

~n .p<lIE"XP<t>>> -- EXP<DEF<t»
 

9.5	 -4l<t> <: 1.et¢.:<.lHD<t» H<BIDS<DEF< t» » .. ¢<:BODY <: DEF<t»>
 
~n 4J<'irnYP<t»> -- --. ... FCN"<5E"'F<t-;-;-:

9.6 ¢<c> <¢<RATOR<c»(¢<RAND<c»» 

9.7 <p<c> <[¢<HD<£e»+~<TL<£e»J RATOR<c>"'<f >, RAND<c>"<£e>'a 
9.8 <p<c> <[~<HD<£e» ~ ~<HD<TL<£e» '"> ,<HD<TL<TL<1 »» 

--- e 
else => ~<~<TL<TL<TL<£e»»>]> 

RATQR<c>"'<f >,i 
RAND<c>-"' <1 >.- ,

'nd 

10. 1 ADD FCN<+>' 
10.2 IF FeN IF FCN<IF>' 
10.3 ~AT :iiji>t DIGIT<O>,<I>, ... ,<9>. 
10.4 NAT NUM<d>.<nd>. 
10.5 10 ID<A>,<B> •... ,<Z>. 
10.6 DIFF ID DIFF ID<A:~>,<A;C> •... ,<Z:Y>. 

11. PROG: CONe ABSTRACT	 PROGRAM: CONCRETIZATION<p:q> 

ABSTRACT PROGRAM<p>. CONGRETIZE<p>=<q>. 
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(d) Translation of Abstract Programs into ~,Calculus 

begin ~	 ~ TRANSLATE; 

12.1 TRANSLATE	 4'<n> <n> . 
12. Z	 ~~i> < i" , 
12.3	 <jI<f

a
> <fa>' 

12.4	 <jI<f.> «Aa.Aa.A~1·~~2· _ i S ~1 ~2)', 
11..5 <p <i ," <<P<~<le»>' NULL LIST<IL<R.e». 
12.6	 <p (i, > <,<HD<~e> ,<TL<t »> EXP LIST<TL<R. ».e	 - ,
12.7 'fl<f> < (CONS PREFIX<BIDS<f».~<BODY<f»». 

1':.8 <jI<t> <U<jl~~<"t».<jI<BEXP<t"» <jl(~(t»>. 

12.9	 <p<i> ~ «<jl<RATOR<c»~<RA~D<c»». 

"d 

begin ~	 ~ CONS PREFIX 

13,1 CONS PREFIX	 ~(t> <\HD<R.» NULL LIST<TL<R.». 
13.2	 'fl<Q.> <\HD<Q.>.~<TL<R.»>. IDLIST<TL<R.» . 

ood 

14.	 PROGRAM: ABSTRACT PROGRA~:TRANSLATION<p:q> 
TRANS ABSTRACT PROGRAM<p>. TRA~SLATE<p).<q). 

\
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