OUTLINE OF A
MATHEMATICAL THEORY

OF
COMPUTATION
by
Dana Scoft

CESEmes o -
SIS o e L

—— = T = -

o=

Oxford University Computing Laboratory
Programming Research Gronp

ACCESSION No. DATE
95 MAY 2002

e

~ SHELFMARK

| I =y

IMMMMMN

3033872172

Ot Uiaivrmreihy Camne binag {20000 0y
. . o

anad WXT il

OUTLINE
OF A
MATHEMATICAL THEORY
OF

COMPUTATION

by

Dana Scott
Princeton University

Technical Monograph PRG-2
November 19570

Oxford University Computing Laboratory,
Programming Research Group,

45 Banbury Road,

Oxford.

® 1970 by Dana Scott

Department of Philesophy,
1879 Hall,

Princeton University,
Princeton, New Jersey, D8540.

This paper 15 a revised and slightly expanded version
of a paper under the same title in the Proceedings of the Fourth
Annual Princeton Conference on Information Sciences and Systems
(1970},

ABSTRACT

This paper introduces a theory of computation which
is mathematical rather than ecperational in its approach.
The theory is based on the idea that data types can be partial-
ly ordered by a relation similar to that of approximation,
and as a result can be considered as complete lattices. The
properties of these lattices and the functions on them are
discussed in an informal manner and shown to be very suit-
able for developing a mathematical theory of the semantics
of programming languages. A preliminary result of this
approach is the construction of the first "mathematical™
model for the A-caloulus.

CONTENTS

Introduction

The Problem of Self-Application
Data Types and Mappings
Completeness and Continuity
Computability

Construction of Data Types
Conclusion

Background and References

lage

12
15

.
o

OUTLINE
0F A
MATHEMATICAL THEORY
oF
COMPUTATION

D. INTRODUCTION

The motivation for trying to formulate a mathematical
theory of computation is to give mathematical semantics for
high-level computer languages. The word "mathematical™ is to
be contrasted in this context with some such term as "operational'f.
Thus the mathematical meaning of a procedure ought to he the
furnetion from elements of the data type of the input variables to
elements of the data type of the output. On the other hand, the
operational meaning will generally provide a trace of the whole
kistory of the computation following the sequencing stipulated
in the stated procedure definition and will involve an explicit
finitary cheoice of representations of data eventually in some-
thing c¢lose to bit patterns. The point is that, mathematically
speaking, functions are independent of their means of computation
and hence are “simpleTr" than the explicitly generated, step-by-step
evolved sequences of operations on Tepresentatians. In giving
precise definitions of operational semantics there are always to be
made more or less arbitrary choices of schemes for cataloging
partial results and the links between phases of the calculation
(cf. the formal definitions of such languages as PL/L and ALGOL 68)
and to a great extent these choices are irrelevant for a true
"understanding' of a program. Mathematical semantics tries to
avoid these irrelevancies and should be more suitable to a study
of such problems as the equivalence of programs.

It is all very well to aim for a more "abstract” and a
""cleaner" approach to semantics, but if the plan is to be any
good, the operational aspects cannot be completely ignored. The
reason is obvious: in the end the program still must be Tun on a
machine — a machine which does not possess the benefit of
"abstract'" human understanding, a machine that must operate with
finite configurations, Therefore, a mathematical semantics,
which will represent the first major segment of the complete,
rigorous definition of 2 programming language, must lead naturally
to an operational simulation of the abstract entities, which (if
done properly) will establish the practicality of the language, and
which is necessary for a full presentation,

Thinking only of functions for the moment, it is clear
that a mathematically defined function can be known to be computable
without its being quite obvious kow ta compute the function in a
practical sense — just as it is possible to know that an infinite
series is convergent without having a clear idea of its sum.

Even though the abstract definition of the functior is sufficient
to determine it, we cannot really say that the function is krown
until the algorithm is revealed. (Even then our knowledge is
somewhat "indirect" or "potential’, but never mind.) The con-
clusion is, then, that an adegquate theory of computation must not
only provide the abstractions (what is computable) but also their
""physical"” realizations (how to compute them).

What is new in the present theory is exactly these
abstractions; whereas the means of realization, the techniques
of implementation, have been known for some time, as the many,

highly complex compilers that are presently in operation demon-

strate, 0f course, new concepts may require (or suggest) new
methods of implementation, but that remains to be seen. However,
naotice this essential point: unless there is a prior, generally

accepted mathematical definition of a language at hand, who is to
say whether a proposed implementation is correct? What is the
"standard” against which a realization is to be measured? Now
it is often suggested that the meaning of the language resides

in one particular compiler for it. But that idea is wrong: the
"same' language can have many "different' compilers. The person

who wrote one of these compilers obviously had a (hopefully} clear
understanding of the language to guide him, and it is the purpose

of mathematical semantics to make this understanding "visible™.

This visibility is to be achieved by abstracting the central ideas
into mathematical entities, which c¢an then be "manipulated” in the
familiar mathematical manner. Even if the compiler-oriented approach
(even compiled to run on an "abstract"™ machine) were transparent —
which it is not — there would still be interest in bringing out the
abstractions to connect the theory with standard mathematical practice.

1. THE PROBLEM OF SELF-APPLICATION

Having this obviously desirable mathematical theory seems
to require some new structural notions, some new insights into the
nature of datae types and the functions (mappings) that are to be
allowed from one to another. Moreover, it soon becomes clear in
thinking about "higher-type" programming concepts (e.g. procedures)
that spaces of functions must also be considered as forming data
types. Since a function (say, mapping integers to integers) is
generally in itself an infinite object, it also becomes necessary
to introduce some idea of finite approzimation — just as we do in
a sense for real numbers. On top of this there are already
gperaticnally 'defined" concepts of function which seem to have no
mathematical counterparts. In particular it is not unknown in
programming languages to allow unreatricted procedures which can
very well produce unrestricted procedures as values, Speaking
mathematically this is tantamount to allowing a functien that is to
be well defined on all allowable functions as arguments — a kind of
super-functional — and which is even applicable to Ztself as an
argument, To date no mathematical theory of functions has ever
been able to supply conveniently such a free-wheeling notion of
function except at the cost of being inconsistent. The main
mathematical novelty of the present study is the creation of the
proper mathematical theory of functions which accomplishes these
aims (consistently!) and which can be used as the basis for the meta-
mathematical project of providing the "correct” approach to semantics.

it should be stressed at once that the problem of self-
applicetion arises in ways more crucial to the interpretation of
programming languages than in the contemplation of the (to some,
impractical) unrestricted procedures. The problem concerns the
related questions of keeping track of side effects and of the
sterage of commands. In the first place, what is a store?
Physically, we have several remarkable answers, but mathematically
it comes down to being simply a mapping (a function) which connects

contents 10 locations. Speaking more precisely, the (current)

state of the store, call it 0, is mathematically a function:
g L~V

which assigns to each location 2 € L (the set of all locations)

its (current) contents o(£) € V (the set of all allowable values).
Let S be the set of all states. What is a aside effect? Obviously
a change of state. What is a command? A request for a side

effect. More mathematically, a command is a function
vy : §$~3%§
which transforms (cld) states into (new) states.

Question: can a command be stored? Answer: well, we do
it operationally all the time. Question: is that mathematically
justified? Let's see. Suppose g is the current state of the
store, and suppose £ € L is a location at which a command is stored.
Then o(%) is a ¢ommand; that is

gig) 5§ > S,

Hence, o(%2)(0) is well defined, Or is it? This is just an in-
significant step away from the self-applicaticn problem p(g?} for
"unrestricted” procedures p, and it is just as hard to justify
mathematically. 0f course, in the operational approach we do not
store the command itself as a function but rather a "code word" or
"piece of text'" that stands for the command in an unambiguous way.

But to carry out the formal description of how this works — especially
for compound commands depending on parameters — involves us in most

of the nasty questions of programming language semantics and is not
really a satisfactory conceptual way out.

2. DATA TYPES AND MAPPINGS

Getting down to particulars, we must ask: what exactly
is a deta type? To simplify matters, we can identify a data
type with the set D of all objects of that type. But this is in
itself too simple: the objects are structured and bear certain
relations to one another, so the type is something more than a
set. Now this structuring must not be confused with the idea
of data structures (lists, trees, graphs, etc.); these will come
in later. The kind of structure being discussed here is much
more primitive and more general and has to do with the btasic sense
of approximation, Suppose =, ¥y € D are two elements of the data
type, then the idea is not immediately to think of them as being
completely separate entities just because they may be different.
Instead y, say, may be a better version of what xr is trying to
approximate. In fact, let us write the relationship

=Ly

to mean intuitively that y is comsistent with z and is (possibly)
more accurate than x. For short we can say that =z approzimates y.
This intuitively understood relationship exists on most data types
naturally, and it is part of the thesis of this paper that a data
type should always be provided with such a relationship. This may
require some adjustment of thought to accommodate certain standard
ideas, but it seems worth the effort to unify the treatment of

various types.

So let us agree for the sake of argument that types D are
structured by relations C (at least). What can we say abstractly
about such a relationship? With reference to the intuitive
understanding, it is clear that we want to assume that C is

reflezive, transitive, and anitisymmetric.

AXIOM 1. A data type is a partially ordered set.

That may not seem like much (partially ordered sets are so very
general) but it is slight progress. The next bit of progress

should concern mappings.

Suppose 0 and D' are two data types (with appropriate
partial orderings C and LCL'), Suppose f: D + D' is a reasonable
mapping of the elements of the cone into the other. Should there
be anything to say in general about properties of mappings? Well,
suppose x, ¥y € D and =z C 5. 1f F were a function defined by a
program in any of the usual ways, it would be sensitive to the
accuracy of its arguments (inputs) in a special way: the more

accurate the input, the more accurate the output. 1ln symbols
= C y implies F(z) L' fly).

1n other words, with respect to the partial orderings f is monctonic.
We make this an axiom also:

AXIOM 2 Mappings between data types are monotonic.

Note that such a condition easily generalizes to functions of

several variables, even variables of mixed types.

1n numerical computation Axiom 2 is sometimes denied, but
this is a confusion about the use of the werd accuracy. It is
true that we know some clever asymptotic algorithms which give
better answers when the accuracy is eruder, but they should be
considered as functions of two variables: the usual input data
together with a parameter indicating the degree of accuracy - or
maybe better the number of ''terms’ to be selected from the
"expansion". 1t can certainly happen that taking more terms
just ruins the already good approximation, but note that the
input and the number of terms are already supposed known perfectiy.
The notion of accuracy we are trying to capture with the C
relation is something else and does not depend on this presup-
position. Maybe it would be better to talk about information;
thus, x C y means that x and y want to approximate the same
entity, but y gives more information about it. This means we
have to allow "incomplete' entities, like z, containing only
"partial" information. (The way to do this in numerical cal-
culation is called interval anralysis, but we do not have the

space here to be more specific.) Allowing for partiality of

arguments and values has the good c¢ffect that our functions become
rariia; tco; for even if thc arguments are perfect the values may
only be partial. This is necessary in considering algorithmically
defined functions, since for some combinations of arguments it may
happen that the algorithm decs not "converge'. As @ consequence

cf this point of view, then, therc can he no numerical function of
the kind allowed by Axiom 2 which maps a 'partial™ real number to an
integer exponent representing the degree of accuracy. But this 1is
not a drawback, as can be scem when one examines the details of the

method: there are sufficiently many monotenic functions.

3. COMPLETENESS AND CONTINUITY

The theory based on Axioms 1 and 2 would be too abstract,
though it is mot wvacuous. We neced to be more specific about the
behaviour of approximations for the applications we have in mind.

Thus supposc an infinite sequence of approximations is such that

z, [<y L ... E ®, [Ty C ...,

then it seems reasonable to suppose that the z, are tending to

a Iimit. Call the 1limit », and we write

¥ = T,
n=2

because in the sense of the partial ¢ordering C the limit is
naturally taken to be the least upper hound (l.u.b.). If we
imagine the successive terms of the sequence as giving us more

and more information, than the limit represents a kind of "union"
or jain of the separate contributions. In fact, for mathematical
simplicity, we assume that every subset of the data type has a

least upper bound, which amounts to:

AXIOM 3. A data type is a complete lattice
under its partial ordering.

In particular, as is well known, the existence of arbitrary least
upper bounds implizs the existence of greatest lower hounds (g.1.b.),

which is why we say we have a complete lattice.

This last assumption requires some explanation. In case
z, y € 0, it may be that they are either approximations to the
same "perfect" entity or not, in which case they are somehow "incon-

sistent™ with one another. In anv case we are assuming they have
a l.u.b. or joim =x U y € D. Even worse, we assume that the whole
of D has a 1.u.h., which we call 1 € J. This T is the "top" of

the lattice, the very "largest" element in the partial orcering C.
It is not to be regarded as a "perfect'" element, but rather as an

"over-determined" element. llence, we can regard the equation

10

rldy =7

as Meaning intuitively that x and y are inconsistent. This is to
be distinguished from the much weaker relationship of being incompar-
able, which is simply: =z U y and y 4 =x.

The l.u.b. of the empty suhset of our data type D is an
element L € D. This is the "bottom" of the lattice, the very
"smallest" element in the partial ordering. It may be regarded
as the most “under-determined' element. The l.u.b. ef the set
of all lower bounds of a subset ¥ C D, is the g.1.b. |—|x € D,

For =,y € D, we have the meetr =z M y = [—I{n‘_‘_,y} € D. We can in-
tuitively read the equation

rMNy=1
as meaning that x and y are unconnected, in the sense that there

is no "overlap" of information between them.

Having supposed that the data type permits "limits', we
have to re-examine our view of functions. If a function is
computable in some intuitive sense, then getting cut a "finite"”
amount of information about one of its values gught to Tequire
putting in only a “finite" amcount of information about the
argument . Now our notion of "information"™ is qualitatfve Ttather
than guantitative, but it is still possible tc express this

fundamental idea in terms of the notions we have available.

First of all, the proper notion of Iimi¢ is expressed
best in terms of directed sets. A subset X € D is directed if

every finite subset {z = "'"n—l} C ¥ has an upper bound

gre
y € X so that we have:

zg U, U=, Cy.
Note that a directed set i1s always non-empty. f{Hint: take n = D.)
The Iim{t of the directed set is the 1l.u.b. Llx. Suppose we
want a "finite" amount of infermation about I_J).’. Each "bit" we

need (arguing very intuitively) is contained in some element of X;
hence by the directedness, al}l of it is contained in at least one

single element of X.

11

Mow consider a monotonic function f£:D + D', Given a
limit LJX of a directed subset ¥ € D, we ask for a "finite" amount
of information about ftL_]r}. We agree that to do this Tequires
only a "finite”™ amount of information ahout LJX; thus only a single
element =z € ¥ is needed, and it is such that F(z) gives what we want.
Note that f(z) € fFel]x) and that {fiz):x € X) is a directed sub-
set of D*. AIl the information about f(L_lX) ought to be the "limit'
of its "finite" parts. Instead of speaking intuitively and meta-

phoricaliy, we can express the idea by the mathematiical equation:

filin = Uirzrir & 1.

In words we can say: the mapping preserves the limit. A mapping
that preserves aqll limits is called continuous. What we have just

motivated is:
AXIGM 4. Mappings between data types are continuous.

A function of twe variables is continuous just when it 1is
continuous in each of its variables separately. Suppose g{x,¥)
is such a function. [t is easy to see that the function f defined
by the equation

Fiz)y = g{z,%)

is also centinuous. (Indeed =11 the usual methods of composition
and identification of variablea produce continuous functions given
continuous functions.) The example of f ahove is the easiest way
to obtain a continucus function which does not preserve arbitrary
l.u.b's, (with a suitable choice of g). There is absolutely
mo Teason to suppose that the functions ocught to preserve g.l.bh.'s:
one cannpt expect any 'smoothness” while decreasing information,
Hence the continuity Testriction is about as far as one should go
in giving generael conditions on functions that have a chance of

being computable.

12

4. COMPUTABILITY

So much for the broad outlines of the theory. It still
is toc abstract, however, because even though certain essential
propertics of computable functions have been isolated, the poss-
ibility of "physical" realization has not yet been assumed in any
form. This we must do. The preblem is to restrict attention to
exactly those data types where the elements can be approximated
by "finite cenfigurations' representable in machines, thereby also

making more precise the concept of a '"finite amount of information".

The solution to this problem is tc take a topoalogical
approach: in any case our previous menticn of IZimizs and con-
tinuity ought to have suggested that there are some topological
idcas in the background. Indced, any data type D satisfying
Axioms 1 and 3 can be rcgarded as a topological space. To
define a topology on a sct one needs ta say which subsets are
opern, In the casc of the data type D, there are two conditions

to be satisfied for a subset ¥ C D to be open:
W) whenever » € 4 and = C y, then y € u; and
(U,) whenever ¥ € 0 is directed and I_iX = I, then ¥ N U # &,

It is ecasy to check that D becomes a topological space in this way,
and that f:0 + D' is continuous in the Iimit preserving scnse if
and only if it is continuous in the topological sense.
If z,7 € D, we write
zr <y
to mean that y belengs to the topolegical interior of the upper
section determined by =; that is, the interior of the set
{z? €D: zC z'}.

The rtelationship is not as irreflexive as it looks, for there are
tgslarci elements z of certain data types such that = < =x. For
ample L <. always holds; it is probably reasonable to assume

T is 1solated also. We write

13

to mean that the g.l.b. of the topological interior of the upper
section determined by » is C &. Thus the three relationships

r <y, ¥ <y, and r C 4

Ys
are successively weaker.

Taking the hint from topological spaces like the real
numbers (which topologically are a bit different from our data-
type spaces), we consider the possibility of having a Jense
subset of the space in terms of which all the other elements can
be found as limi ts. We call such a subset a lbasia. The proper
definition seems to be the following: a subset F C D is a basis

if it satisfies these two conditions:
(El) whenever ¢, ¢’ € F, then 2 Ul ¢' € F; and
[Ez) for all x € D we have z = L e € #: ¢ < x}.

The existence of a basis has several consequences; for example,
the meet operation = N y is continuous if a basis exists, and

not necessarily continuous otherwise.

Conditians [El) and (Ez] are still not strong enough.

make data types ''physical™. We need the stronger assumption:

AX10M 5. A data type has an effectively given basis

That is to say the set F must be "known'. Given &, ' € F,
we have to know how to fimd the element ¢ U e' € =, Given
¢, ¢/ € ¥, we have to know how to decide which of the relation-
ships:

e <¢e¢', 2 ge', eC ef
are true and which are frisze. This certainly is going to require
that the set £ is at mast countahly infinite, and probably that we

have an effective enumeration

in terms of which the ahove coperations and relationships are
reourrive (In the technical sense of recursion theory). To make
the data type »eoallpy physical we would need to gssume all relation-

ships to be very recursive indeed, but we do not have to go intoe

14

that here: the intuitive idea of an effectively given basis can
be left a bit vague because in particular examples it will be clear
what is going on.

Note that as a consequence of Axiom 5 the topologies of data
types are separable because not only 15 there a countable dense
subset {the basis}, but the sets

{x E D! ¢ = r}
for e £ form a countable basis for the topology of [.

The most important consequence of the assumption of an
effectively given basis is the possibility of being able to define
what it means for an element to be computable. Suppose = € D
and E is the basis. Then (relative to this basis) = is computable
if and only if there is an effectively given sub-sequence. -

[eé_, e]'__, ez'_, ey e;, ... Y CE

such that e¢'C ' . for each », and

n n+l -

z = |_’ e,;.
n=0

This means that we must be able to give effectively better and better
approximations to r which converge to z in the limit. This is an
essential notion; because, for one thing, it may very well be the
case that the data type D has uncountably many elements, while there
can be only countably many computable elements. Note that there
will be in general many sequences converging to an element x, so
that just knowing that = is computable does not mean that the '"best"

way to compute it is also known.

This completes the discussion of the foundations of the
subject. Somgone may want to point out that Axiom 3 implies Axiom
1 and Axiom 4 implies Axiom 2 — but the axioms are given in the order
in which the ideas naturally occur. It can all be said very quickly
in summary: data types are complete lattices with effectively given

bases and all allowable mappings are to be continuous.

15

5. CONSTRUCTION OF DATA TYPES

We must now look into the construction of useful data types
satisfying the axioms, remembering that the lattice structure is only
the most primitive structure on a data type, and the "interesting”
structure is supplied by various kinds of c¢ontinuouws functions
special to the type. {In the examples and constructs to be men-
tioned, the element 1 will always be assumed isolated.)

In the first place all firnite lattices satisfy the axionms,
and for them continuity plays no role. Of course finite structures
are sufficient for "practical’ applications, but many ccncepts more
easily find their expression with reference to infinite structures.
In the case of our lattices there are the two numerical data types
N and R for the integers and the reals. As a lattice N has for
elements 0, 1, 2, ..., n, ... {(these elements are pairwise incompar-
able under L} plus the two elements 1 and 1, Tespectively ahove
and below all the others (cf. Fig.1). In this case the whole

lattice is its own basis.

Figure 1,
The Lattice M.

16

For R the elements are cleosed intervals [g,:?] of ordinary
real numbers (z % z) plus two elements T and .. The partial
crdering between the intervals is defined thus:

[2,2] C [y,y) iff 2 € y €« y <«
{We use the abbreviation iff in place of the phrase if and only if.}

The “perfect™ reals are the one-point intervals [x,z] with z = =z.
The "approximate" reals have z < x. (cf. Fig.2).

T too much
o information

-3 =2 =1 1] +1 +2 +3

{ elements

with perfect
informaticn

3z Uy

= z
elements E 3 y
with imperfect ¥ ¥
information —a—)
z Ny E 3
(na information
L
Figure 2

The Lattice R

17

The basis consists of the intervals with rgtionel end points plus
the element 1, There is a very close connection between the
continuous functions on the lattice R and the ordinary theory of
continucus peoint functions. In both lattices the usual arith-
metic operations are represented by continuous functions, and it
is especially interesting te consider division in R, as well as
other functicns with singularities, or functions that are normally

left undefined over part of their domain.

Suppose D and D' are two given data types. There are
three particularly important constructs:

(D= D'y, (D + Dy, (D ~+1D")

for obtaining new, "structured" data types from the given ones.
The (cartesian) product D x D' has as elements pairs <x,x'>
where z € 0 and £’ € D', and for which we define

<z,z’> E <y,y’> iff x C y and =' C* y-

The sum is defined as a "disjoint" union of D and D', except that

we identify 1 = 1 and T = 7', {cf. Fig.3.}
T
O
n
Figure 3.

The Lattice D + D’

18

The fumetion space (D + D') has as elements all the continucus
mappings from D into D', for which we define

fFC g iff F(z) C* glx) for all = € D,

What one must check is how the effectively given bases for D and
D' determine the basis for the construct. This is easy for
products and sums but somewhat more trouble for function spaces.

Sums and products can be obviously generalized to more
terms and factors, even infinitely many, Fer example, D" can
be taken as the set of all n-tuples of elements of partially
ordered in the obvious coardinate-wise fashion. We can then set

6* =0%+0t e 0? LD L,
which represents the data type of all finite 7i{sts of elements
of the given D. Similarly one can geo on to lists of lists of
lists of If this were done in the right way, it would

seem reasonable that a lattice D would be ghtained such that
D" = g + (0™},

that is to say, each element of 0¥ is either an element of the

given D or is a list of other elements of D”. This sounds very

much like the usual kind of recursive definitiom of lists; but

one must take care as the following argument shaws.

It is a well-known theorem that every centinuous (even
monotenic) function mapping a complete lattice into i#4gelf has
a fized point, Applying this remark to the supposed 0¥ above,
we note that for fixed g € b, the expression <a,z> defines a
contimuous function of D” into itself. Consider a fixed point:

z = <a,xz>.

Thus r is a list whose first term is a and whgse second term
is ., , .7 The second term is the list z itself! Thus z is a
kind of infinite list:

T = <@, €d, <@, <@y ... FFFF

which is illustrated in twa different ways in Fig.4.

19

Figure 4

The list z = <ag,x>

That does not square with our uswval ideas about data types of

lists, but is it bad? The answer is no. For it can be shown that
the data type D" does in fact exist; it contains all the ordinary
finite lists as well as many gquite interesting and useful Iimits

of sequences of finite lists. Cne might say that o gives us

the topolegical completion of the space of finite lists, and the
various limit peirnts need not be used if one does not care to

take advantage of them,

The proacess of "completing" spaces is a very general one,
and the full implications of the method require further expler-
ation, A second example of the completion idea concerns function

spaces. Let D be given, and set D0 = D and

U711'1 = (Dn - Dn)'

The spaces 0’_l are a selection of the "higher-type'" spaces of
functions of functions of functions of 1t turns out that
there is a natural way of isomorphically embedding each D success-

ively into the next space 0 These embeddings make it possible

n+l”
to pass to a limit space D, which contains the originally given

D and is such that

20

D = «b_ + D3,

o « ©
(Strictly speaking this surprising equation must be taken with a
grain of salt: it is only true "up to isomorphism' which is good
enough for our purposes.) This space provides the solution to
the self-application problem of Section 1, because each element
of D_can be regarded as a (continuous!) function on D_ into D_.
And conversely, every continuous function can be represented
faithfully by an element. Technically speaking what we have
here is the first known, '"mathematically' defined model of the
so-called i-ealeulus of Church and Curry.

The reader should take notice of the fact that our
abstractly presented theory of computable elements of lattices
with effectively given bases applies to the function spaces.

S0 we know what computable functions are, Even better we
""know" what are the computable elements of the space D, of
functions of "infinite" type. Clearly the calculus of operators

which can he used to generate computable functions is going to he
interesting, and this brings us back to semantics for programming
languages. Indeed the natural way to define computable functions
is within the context of a suitable programming language. The
A-caleculus itself is a programming language: it is the pure
language of "unrestricted" procedures. It is only one of the

many possible languages.

6. CONCLUSION

We may now sketch the solution to the "storage-of-commands*
problem mentioned in Section 1. Let L be the location space
(finite or, if you 1like, take L = N, so that the locations are
indexed by the integers). The space ¥ of values is to be con-
structed by the 1limiting methods alluded to above. Supposing it
is already constructed, the space § of states of the stare is
defined by:

S = (L + ¥}
The space C of commands is defined by:
C=15+5)

The space P of procedures — with one parameter and with side
effectse — is defined by:

P =(¥ + (S +V¥ % 5)),

that is, a2 procedure is a function, which given first a value of
its argument and next given a state of the store, then produces

a "computed" wvalue together with the necessary change of the state
of the store. Now what can those values be? Well, they might

be numberg (in N or in R}, or they might be leccatione, or they
might be 1<{ets, or they might be commande, or they might be
procedurae. (Even to formalize a mode of expression for such

an array of possible types of values would already require a fairly
involved programming language.) We are thus led to write:

Y =K +R + L +V¥*+ [+P

1f one substitutes the definitions of 5, €, and P into this equation,
ane obtains only a slightly more complicated "definition'" than those
that we had for D= and D7. Suck a space ¥ does exist mathematically,
and it provides the values for expressions of a programming language
of the kind we have understood previocusly in the "operational™ way.
We should at once begin trying to understand these languages math-
ematically, because we now have all the toeols to do so.

22

7. BACKGROUND AND REFERENCES

The idea of using monotonic and continuous functions in
connection with recursion theory has been current for some time.
The author believes, however, that his use of the idea along
with more abstract lattices (in particular: with limits of
lattices) is new and adds greater flexibility te the program,

The first published references that the author knows are
a sequence of four nates by Lacombe in the mid-fifties in which
he investigates the notions of recursive real number and recursive
function of @ real variable. The methed is essentially the same
as our use of the lattice R sketched above. The exact references
aTe:

Daniel Lacombe, Eztension de la notion de fonetion
récursive aux funetions d’'une ou plusieurs variables
réeles I, IL, T1I, Comptes rendus, vel. 240 (1955},
pp. 2478-80; wvol, 241 (1955), pp. 13-14; vol. 241
(1955), pp. 151-153.

, flemarques sur les opérateurs vécurcifs
et sur leg function récursives d'une variable réele.
1bid, vol. 241 (1955), pp. 1250-52.

The avthor is indebted to G, Xreisel for pointing out these
interesting notes to him. The idea that the method could be
extended to the real numbers first became apparent to the author

in reading the much later book on numerical analysis:

Ramon E. Moore, Interval Amalysis, Prentice-Hall (1966),
145 pp.

From a different direction we have the work:

Martin Davis, Computable functionals of arbitrary finite
type, in Constructivity in Mathematics (A. Heyting, ed.),
Nerth Helland (1959), pp. 281-284.

Here the important step is taken of using partial functionals
satisfying a consistency condition. Davis rtelates his ideas
to the continuous and the eountgble functions of Kreisel and

Kleene (cf. their papers in the same volume.) Note, however,

23

that Kleene and Kreisel work generally with total functiconals,
a restriction that is not convenient for the type of applications

the authar has in mind here.
Further work on partial functionals is contained in:

A, Nerode, Some Stone spaces and recursion theory, Duke
Mathematical Journal, vol. 26 (1959}, pp. 397-406.

Both Nerode and Davis had reported on their ideas at the Cornell
Logic Summer School in 1957. A really systematic approach did
not appear until:

Richard Platek, Foundations of Recursion Theory,
Stanford Ph.D. Thesis (1965), unpublished.

It was from Platek in 1963 that the author learned the usefulness
of a more abstract approach via monotonic functions. Platek
discusses the continuous theory, but not in as much detail as
the transfinite recursions. Very recent work on abstract forms
of recursion theory has been dene by Wagner, Strang, Friedman,
and Moschovakis. The explicit connections will have to be
discussed elsecwhere,

During the spring and summer of 1969 the author worked
jointly with J. W, deBakker of Amsterdam on an "algebraic"
theory of program schemata and at that time realized that the
calculus of monotonic and continuous functions was exactly
appropriate to this study. It was a question of David Park
about justifying a rule of double induction in this calculus
together with a conversation with Robin Gandy at Oxford on
formulae as operators that brought forward the idea that the
calculus should be extended to higher-type function spaces.

In the meantime, during the fall of 1969 at Oxford, the
author was working with Christopher Strachey on his theory of
semantics of programming languages via L- and R-values and an
abstract model of storage. We attempted to apply the formalism
of the calculus of recursive functionals of higher types, but
were very much hampered by the necessity of having to store
repregsentations of functions rather than the functions themselves,.
Having been brought to the right abstract level by the previous

24

work, the author was able to then cenjecture that there might
very well exist structures with the proper self-referential
"storage' properties, And he subsequently was able to offer a
rigorous mathematical construction which was finally cast into
the realm of lattice theory on account of the simplicity and
familiarity of that study. The result was to provide a
mathematical basis for the previously employed, entirely formal
use of the i-calculus by Strachey, lLandin and athers. 1t was
this swccess that showed that the lattices provided a simple
and general enough context to develop a recursion theory in-
volving not only the previously studied structures connected
with the intepers and the reals, but also some quite new
structures. And these new structures seem to be naturally
required by programming language semantics besides having
mathematical interest. How this connects with McCarthy's
progran for a mathematical theory of computation will require
further discussion in a future publicatien.

