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ABSTRACT 

This paper introduces a theory of computation which 

is mathematical rather than operational in its approach. 

The theory is based on the idea that data types can be partial

ly ordered by a relation similar to that of approximation, 

and as a resul t can be considered as complete lattices. The 

properties of these lattices and the functions on them are 
discussed in an informal manner and shown to be very suit

able for developing a mathematical theory of the semantics 

of programming languages. A preliminary result of this 

approach is the construction of the first "mathematical" 

model for the A-calculus. 
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OUTLINE 
o F A 

MAT HEM ATIC AL THE 0 RY 
o F 

COM PUT AT ION 

D. INTRODUCTION 

The motivation for trying to formulate a mathematical 

theory of computation is to give mathematicaZ semantics for 

high-level computer languages. The word "mathematical" is to 

be contrasted in this context with some such term as "operational". 

Thus the mathematical meaning of a procedure ought to be the 

function from elements of the data type of the input variables to 

elements of the data type of the output. On the other hand, the 

operational meaning will generally provide a trace of the whole 

history of the computation following the seqtlencing stipulated 

in the stated procedure definition and will involve an explicit 

finitary choice of representations of data eventually in some

thing close to bit patterns. The point is that, mathematically 

speaking, functions are independent of their mea~s of computation 

and hence are "simpler" than the explicitly generated, step-by-step 

evolved sequences of operations on representations. In giving 

precise definitions of operational semantics there are always to be 

made more or less arbitrary choices of schemes for cataloging 

partial results and the links between phases of the calculation 

(cf. the formal definitions of such languages as PL/I and A.LGOL 68) 

and to a great extent these choices are irrelevant for a true 

"understanding" of a program. ~fathematical semantics tries to 

avoid these irrelevancies and should be more suitable to a study 

of such problems as the ~quival~nc~ of programs. 
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It is all very well to aim for a more "abstract" and a 

"cleaner" approach to semantics. but if the plan is to be any 

good, the operational aspects cannot be completely ignored. The 

reason is obvious: in the end the program still must be run on a 

machine - a machine which does not possess the benefit of 

"abstract" human understanding, a machine that must operate with 

finite configurations. Therefore, a mathematical semantics, 

which \l"i11 represent the first major segment of the complete, 

rigorous definition of a programming language, must lead naturally 

to an operational simulation of the abstract enti ties. which (if 

done properly) will establish the practicality of the language, and 

which is necessary for a full presentation. 

Thinking only of functions for the moment, it is clear 

that a mathematically defined function can be known to be computab~e 

without its being quite obvious }ww to compute the function in a 

practical sense - just as it is possible to know that an infinite 

series is convergent wi thout having a clear idea of its sum. 

Even though the abstract definition of the function is sufficient 

to determine it, we cannot really say that the fum:tion is kno1Jn 

until the algorithm is revealed. (Even then our knowledge is 

somewhat "indirect" or "potential", but never mind.) The con

clusion is, then, that an adequate theory of computation must not 

only provide the abstractions (what is computable) but also their 

"physical" realizations (how to compute them). 

What is new in the present theory is exactly these 

abstr'adions; whereas the means of realization, the techniques 

of implementation, have been known for some time, as the many, 

highly complex compilers that are presently in operation demon

strate. Of course, new concepts may require (or suggest) new 

methods of implementation, but that remains to be seen. However, 

notice this essential point: unless there is a prior, generally 

accepted mathematical definition of a language at hand, who is to 

say whether a proposed implementation is correct? What is the 

"standard" against which a realization is to be measured? Now 

it is often suggested that the meaning of the language resides 
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in one particular compiler for it. But that idea is wrong: the 

"same" language can have many "different" compilers. The person 

who wrote one of these compilers obviously had a (hopefully) clear 

understanding of the language to guide him, and it is the purpose 

of mathematical semantics to make this underst3nding "visible". 

This visibility is to be achieved by abstracting the central ideas 

into mathematical entities. which can then be "manipulated" in the 

familiar mathematical manner. Even if the compiler-oriented approach 

(even compiled to run on an "abstract" machine) were transparent 

which it is not - there would still be interest in bringing out the 

abstractions to connect the theory with standard mathematical practice. 
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1. THE PROBLEM OF SElF-APPUCATION 

Having this obviously desirable mathematical theory seems 

to require some new structural notions, some new insights into the 

nature of data types and the fu.nctions (mappings) that are to be 

allowed from one to another. ~Ioreover. it soon be.comes clear in 

thinking about "higher-type" programming concepts (e. g. procedures) 

that spaces of functions must also be considered as forming data 

types. Since a function (say, mapping integers to integers) is 

generally in itself an infinite object. it also becomes necessary 

to introduce some idea of finite approximation - just as we do in 

a sense for real numbers. On top of this there are already 

operationally "defined" concepts of function which seem to have no 

mathematical counterparts. In particular it is not unknown in 

programming languages to allow unrestricted procedures which can 

very well produce unrestricted procedures as values. Speaking 

mathematically this is tantamount to allowing a function that is to 

be well defined on all allowable functions as arguments - a kind of 

super-functional - and which is even applicable to it;self as an 

argument. To date no mathematical theory of functions has ever 

been able to supply conveniently such a free-wheeling notion of 

function except at the cost of being inconsistent. The main 

mathematical novelty of the present study is the creation of the 

proper mathematical theory of functions which accomplishes these 

aims (consistently!) and which can be used as the basis for the meta

mathematical project of providing the "correct" approach to semantics. 

It should be stressed at once that the problem of Belf

application arises in ways more crucial to the interpretation of 

programming languages than in the contemplation of the (to some, 

impractical) unrestricted procedures. The problem concerns the 

related questions of keeping track of Bide effects and of the 

storage of commands. In the first place, what is a store? 

Physically, we have several remarkable answers, but mathematically 

it com~s down to being simply a mapping (a function) which connects 

contenB to locations. Speaking more precisely, the (current) 



state of the store, call it 0, is mathematically a function: 

o : l ... V 

which assigns to each location 1 E l (the set of all locations) 

its (current) contents o(£) E V (the set of all allowable values). 

Let S be the set of all states. What is a side effeC!t? Obviously 

a change of state. What is a C!ommand? A request for a side 

effect. More mathematically, a command is a function 

y S'" S 

which transforms (old) states into (new) states. 

Question: can a command be stored? Answer: well, we do 

it operationally all the time. Question: is that mathematically 

justified? Let's see. Suppose 0 is the current state of the 

store, and suppose 1 E l is a location at which a command is stored. 

Then 0(1) is a comma!J.d; that is 

0" (1) S -+ S. 

Hence, 0(1)(0) is well defined. Or is it? This is just an in

significant step away from the self-application problem pCp) for 

"unrestricted" procedures p, and it is just as hard to justify 

mathematically. Of course. in the operational approach we do not 

store the command itself as a function but rather a "code word" or 

"piece of text" that stands for the command in an unambiguolJs way. 

But to carry out the formal description of how this works - especially 

for compound commands depending on parameters - involves us in most 

of the nasty questions of programming language semantics and is not 

really a satisfactory conceptual way out. 
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2. DATA TYPES AND MAPPINGS 

Getting down to particulars, we must ask: what exactly 

is a dc;;ta type? To simplify matters, we can identify a data 

type with the set D of all objects of that type. But this is in 

itself too simple: the objects are structured and bear certain 

relations to one another, so the type is something more than a 

set. Now this structuring must not be confused with the idea 

of data 6tl'I.H~tu.l'eS (lists, trees, graphs, etc.); these will come 

in later. The kind of structure being discussed he re is much 

more primitive and more general and has to do with the basic sense 

of approximation. Suppose or, lj E 0 are two elements of the data 

type, then the idea is not immediately to think of them as being 

completely separate entities just because they may be different. 

Instead y, say, may be a better version of what ;r is trying to 

approximate. In fact, let us write the relationship 

x ~ y 

to meaTI intlLitively that y is consistent with x and is (possibly) 

more qccurate than x. For short we can say that x appI'oximate6 y. 

This iTItuitively understood relationship exists on most data types 

naturally, and it is part of the thesis of this paper that <i data 

type should alwaylJ be provided with such a relationship. This may 

require some adjustment of thought to accommodate certain standard 

ideas, but it seems worth the effort to unify the treatment of 

various types. 

So let us agree for the sake of argument that types 0 are 

structured by relations C; (at least). What can we say abstractly 

about such a relationship? With reference to the intuitive 

understanding, it is clear that we want to assume that ~ is 

reflexive. tl'anlJitive. and antisymmetl'ic. 

AXIOM~. A data type is a partially ordered set. 

That may not seem like much (partially ordered sets are so very 

general) but it is slight progress. The next bit of progress 



should concern mappings. 

Suppose 0 and 0' are two data types (with appropriate 

partial orderings ~ and r;;:: '). Suppose f: 0 ->- 0' is a reasonablE' 

mapping of the elements of the one into the other. Should thE're 

be anything to say in general about properties of mappings? Well. 

suppose :1:, y E D and x ~ y. If [ were a function defined by a 

program in any of the usual ways, it would be sensitive to thE' 

accuracy of its arguments (inputs] in a special way: the more 

accurate the input, the more ac~urate the output. In symbols: 

x r;;:: y implies [(x) 1;.' fry), 

In other words, with respect to the partial orderings f is monotonic. 

We make this an axiom also: 

AXIOM 2 Mappings between dat~ types are monotonic. 

Note that such a condition easily generalizes to functions of 

several variables, even variables of mixed types. 

In numerical computation Axiom 2 is sometimES denied, but 

this is a confusion about the use of the word aC'curacy. It is 

true that we know some clever asymptotic algorithms which give 

better answers when the accuracy is cruder, but they should be 

considered as functions of two variables: the usual input data 

together with a parameter indicating the degree of accuracy - or 

maybe better the number of "terms" to be selected from the 

"expansion". It can certainly happen that taking more terms 

just ruins the already good approximation, but note that the 

input and the number of terms are already supposed known perfectly. 

The notion of accuracy we are trying to capture with the r;;:: 

relation is something else and does not depend on this presup

position. Maybe it would be better to talk about infol'matl:on; 

thus, x r;;. y means that x and y want to approximate the same 

entity, but y gives more information about it. This means we 

have to allow "incomplete" entities, like x, containing only 

"partial" information. (The way to do this in numerical cal

culation is called interval analysis. but we do not have the 

space here to be more specific.) Allowing for partiality of 
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arguments and values has the good effect that our functions become 

F'aT·t.iai too; for even if the arguments aTe perfect the values may 

only be partial. This i~ necessary in considering algorithmically 

defined functions, since for some combinations of arguments it may 

happen that the algori thm docs not "converge". As a consequence 

of this point of view, then, there can he no numcrical function of 

the kind allo..·ed by Axiom 2 ...hich maps a "partial" real number to an_ 

integer exponent representing the degree of accuracy. But this is 

not a dra..back. as can be seen ;,'hen one examines the details of the 

method: there are sufficiently many monotonic functions. 
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3. COMPLETENESS AND CONTINUITY 

The theory based on Axioms 1 and 2 would be too abstract, 

though it is not vacuous. We need to he more specific about the 

behaviour of approximations for the applications we have in mind. 

Thus suppos~ an infinite sequence of approximations is such that 

X ~ ~1 ~ ~ .Tn ~ ~ ...•o	 x nT1 

then it seems reasonable to suppose that the , aTE' tencling to 
Ii 

a l-:mi t. Call thc limit :'. and \o.'e I,r i t E' 

:< U In' 
n=J 

hecause in the sense of the partial ordering ~ the limit is 

naturally taken to be the Zea~t uppe~ hound (l.u.b.), If we 

imagine the successive terms of the sequence as giving us more 

and more information, than the limit represents a kind of "union" 

or jo ~ of the separate contributions. In fact, for mathematical 

simplicity, \~'e assume that euer!1 subset of the data type has a 

least upper bound, which anlounts to: 

AX IOM-2'	 A data type is a complete lattice 
under its partial ordering. 

In particular, 3S is ....·ell known, the existence of arbitrary least 

upper bounds implies the exi~tcncc of greatest lower hounds (g.l.b.) 

\"hich is why we say we have a compI"te lattice. 

This last assumption require,; some explanation. In case 

:r, yEO, it may be that they are either approximations to the 

same "perfect" entity or not, in ,",'hieh case they are somehow "incon

sistent" with one another. In an~' case we are assuming t.1.cy have 

a l.u.b. or .join xU yEO. Even worse, we assume that the whole 

of 0 has a l.u.h., which ,",'e call TEO. This T is the "top" of 

the lattice, the very "largest" clement in the partial oreering ~. 

It is not to be regarded as a "perfect" E'IemE'nt, but rathcr as an 

"over-determined" clement. Ilence, we can regard the equation 
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x U Y T 

as me<lning intuitively that x and yare i1'!consistent;. This is to 

be distinguished from the much weaker relationship of being incompar

able, ~hich is simply: x q y and y q x. 

The l.u.b. of the empty suhset of our data type 0 is an 

element .1 E D. This is the "bottom" of the latt ice, the very 

"smallest" element in the partial ordering. I t may be regarded 

as the most "under determined" element. The lou.b. of the set 

of all lower bounds of a subset X ~ D, is the g. 1. b. nx ED. 

For x,y E DI we have the meet x n y '" n{x~y} E D. We can io

tuitively read the equation 

oX n y == .1 

as meaning that x and y aTe unconnec-ted, in the sense that there 

is no "overlap" of information between them. 

f1aving supposed that the data type permits "limits", we 

have to re-examine our view of functions. If a function is 

computable in some intuitive sense, then getting out a "finite" 

amount of information about one of its values ought to reqUire 

putting in only a "finite" amount of information about the 

argument. Now our notion of "information" is quali-tative rather 

than qiwntitative, but it is still possible to express this 

fundamental idea in terms of the notions we have avai lab Ie . 

First of all, the proper notion of limit is expressed 

best in terms of directed sets. A subset X .s. D is dirf](Jted if 

every Hni te subset {,x ,x ' ••• ,x _ } ~ X has an upper bound
O l n l 

y E X so that I.ie have: 

X U Xl '" U x _1 ~ y.o n 

Note that a directed set is always non-empty. (Hint: take n = 0.) 

The li~it of the directed set is the l.u.h. UX. Suppose we 

want a "fini te" amount of information about Ux. Each lObi tit we 

need (arguing very intuitively) is contained in some element of X; 

hence by the directedness, all. of it is contained in at least one 

single element of x. 
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Now consider a monotonic function f: D -+ 0'. Given a 

limit Ux of a directed subset X ~ D, \ole ask for a "finite" amount 

of information about f( U X}. We agree that to do this requires 

only a "finite" amount of information about UX; thus only a single 

element x E X is needed, and it is such that f(;r) gives what we Want. 

Note that !(x) '; flUX) and that {fLrJ:x E xl is a directed sub

set of D'. Al.l. the information about f(UX) ought to be the "limit" 

of its "finite" parts. Instead of speaking intuitively and meta

phorically, we can expres5 the idea by the mathematical. equation: 

flU Xl ~ U (f(x),x E xl. 

In words we can say: the mapping presel"ves the limit. A mapping 

that preserves alZ limits is called continuous. What \ole have just 

motivated is: 

AXIOM 4. Mappings between data types are continuous. 

A function of two variables is continuous just \oIhen it is 

continuous in each of its variables separately. Suppose g{:J:,y) 

is such a function. It is easy to see that the function! defined 

by the equation 

flX) "" g(x,x) 

is also continuous. (Indeed all the usual methods of composition 

and identification of variabl.er; produce continuous functions given 

continuous functions.) The example of f ahove is the easiest \oIay 

to obtain a continuous function which does not preserve arbitrary 

l.u.b's. (with a suitable choice of g). There is absolutely 

no reason to suppose that the functions ought to preserve g.l.h.'s: 

one cannot expect any "smoothness" while decreasing information. 

Hence the continuity restriction is about as far as one should go 

in giving general conditions on functions that have a chance of 

being computable. 
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4. COMPUTABILITY 

So much for the broad outlines of the theory. I t still 

is to~ abstract, however, because even though certain essential 

pI'opeTtie~ of computable functions have been isolated, the poss

ibility of "physical" realization. has not yet been assumed in any 

form. This we must do. The problem is to restrict attention to 

exactly those data types where the elements can be approximated 

by "finite configurations" representable in machines, thereby also 

making more precise the concept of a "finite amount of information". 

The solution to this problem is to take a topological 

approach: in any case our previous mention of Z-imi"t3 and ~on

tinuity ought to have suggested that there are some topological 

ideas in the background. Indeed, any data type D satisfying 

Axioms 1 and 3 can be regarded as a topological space. To 

defin€ a topology on a set one needs to say which subsets are 

ope71, In the case of the data type 0, there are two conditions 

to be satisfied for a subset U ~ D to be open: 

(U ) whenever :t' E If and :t' ~ y, then y E U; and
l 

(U ) whenever I: C 0 is directed and Ux E u, then X n U'" 6.
2

It is ~asy to check that D becomes a topological space in this way. 

and that f:D ~ D' is continuous in the limit preserving sense if 

and only if it is continuous in the topologicaL sense. 

If x.] E D, we write 

x -< Y 

to mean that y belongs to the topological interior of the upper 

section determined by~; that is, the interior of the set 

{x' E D: x ~ x'}. 

The relationship is not as irreflexive as it looks. for there are 

iBoZar~l elements x of certain data types such that =~ x. For 

example.i .(.1. always holds; it is probably reasonable to assmne 

T is lSolated also. We write 
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to mean that the g.l.b. of the topological interior of the UppPT 

section u0tcrmined by x is ~~. Thus the three relationships 

x -< y, ~: '" Y J and ~ ~ .'1 

aTe successively 'WeaKer. 

Taking the hint from topological spaces like the real 

numbers (which topologicallY are a bit diffcrent from our data

type sp.:u;:cs), we consider the possibility of having a ,iense 

subset of the space in terms of which all the other elements can 

be found as ] 1m! ts. We call such a subset a h.lsi.~. The proper 

definition seems to be the following: a subset F ~ 0 is a b'.1sis 

if it satisfies these two conditions: 

(E ) whenever c, e' E E. then fJ LJ e' E E; and
1

(£2) for all xED we have x '" U{e E F.": e "'< xL 

The existence of a basis has several consequences; for example, 

the meet operation =n y is continuous if a basis exi~ts, and 

not necessarily continuous otherwise. 

Conditions (EI ) and (£2) are still not strong enough. 

make data types "physical". We need the stronger assumption: 

AXIOU· A data type has an effectively given basis. 

That is to s~y the set F must be "known". Given e, e' E F, 

we have to know how to finl! the element ~ U e' E E. Given 

e, ro' E j<;. we have to know hOI'. to decide hlhich of the rel~tion

ships: 

c -< e' '" e " e r; [" 

are true and which are /r..Zsc. Th:is cert.1.inl} is going to require 

that the set E is at most countahly infinite, .1.nJ probably that we 

bave an effective enumeration 

. }f '" {e 'J' ,'.. l ' t'::,' ,C: r:' 

in terms of ".,hich the ahoyc oper;,tions and relationships are 

:'·"'c·urn·':e (in the technical sense of recursion theory). To make 

the data type !',:a1I"i! physical we ..'auld need to as<;IlJne all 1"('l:1tion

Sllips to be very recursive indeed, but we do not have to go into 
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that here: the intuitive idea of an effectively given basis can 

be left a bit vague because in particular examples it will be clear 

what is going on. 

Note that as a consequence of Axiom 5 the topologies of data 

types are separable because not only is there a countable dense 

subset (the basis), but the sets 

{xED:e<x} 

for e E E form a countable basis for the topology of D. 

The most important consequence of the assumption of an 

effectively given basis is the possibility of being able to define 

what it means for an element to be computable. Suppose xED 

and E is the basis. Then (relative to this basis) :r is ~omputable 

if and only if there is an effectively given sub-sequence. 

{e~J e {J e ~. • e' ... } s: E•• J n' 

such that e' [ e' for each n, and"  "" 
e'

n=O 
x" U n· 

This m.eans that we must be able to give effectively better and better 

approximations to x which converge to x in the limit. This is an 
essential notion; because, for one thing, it may very well be the 

case th.at the data type D has unaountably many elements, while there 

can be only aountably many computable elements. Note that there 

will be in general many sequences converging to an element x, so 

that jllst knowing that :r is computable does not mean that the "best" 

...·ar to compute it is also known. 

This completes the discussion of the foundations of the 

subject. Someone may want to point out that Axiom 3 implies Axiom 

1 and ,uiOID 4 implies Axiom 2 - but the axioms are given in the order 

in which the ideas naturally occur. It can all be said very quickly 

in summary: data types are complete lattices with effectivelY given 

bases and all allowable mappings are to be continuous. 
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5. CONSTRUCTION OF DATA TYPES 

We must now look into the construction of useful data types 

satisfying the axioms, remembering that the lattice structure is only 

the most primitive structure on a data type, and the "interesting" 

structure is supplied by various kinds of continuous functions 

special to the type. (In the examples and constructs to be men

tioned, the element T will always be assumed isolated.) 

In the first place all finite lattices satisfy the axioms, 

and fOT them continui ty plays no role. Of course finite structures 

aTe sufficient for "practical" appl ications, but many concepts mOre 

easily find their expression with reference to infinite structures. 

In the case of OUT lattices there are the two numerical data types 
Nand R for the integer6 and the real6. As a lattice N has for 

elements O. 1, 2•...• n • ... (these elements are pairwise incompar

able under ~) plus the two elements T and ~. respectively ahove 

and below all the others (cf. Fig.l). In this case the whole 

lattice is its own basis. 

, 

~ 

~ 

" 

Figure 1.
 

The Lattice N.
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For R the elements are ~loBed intervals [::£... xJ of ordinary 

real numbers (~~ x) plus two elements T and ~. The partial 

ordering between the intervals is defined thus: 

[:£~xJ !; [:&yJ iff E£" !i. '" Y '" x 

(We use the abbreviation; ff in place of the phrase if and only if.) 

The "perfect" reals "e the one-point intervals [£, x] wi th :=. '" x. 
The "apprOXimate" reals have E?- < :r. (ef . Fig.2) . 

T ./""':"too much 
o ~ information 

-3 -2 -1 o +1 +2 +3 

c... el ements 
with perfect 

information 

xU y 

x l --------i 
x x 

elements E: ) y 
with imperfect!i.. Y 
information ~ 

x n y ~[L------------'l3 

(no information 

L 

Figure 2
 

The Lattice R
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The basis consists of the intervals with :rational end points plus 

the element~. There is a very close cOnnection between the 

continuous funct ions on the 1at tice R and the ordinary theory of 

continuous point functions. In both lattices the usual arith

metic operations are represented by continuous functions, and it 

is especially interesting to consider division in R. as well as 

other functions with singularities. or functions that are normally 

left undefined over part of their domain. 

Suppose 0 and 0' are two given data types. There are 

three particularly important constructs: 

(D X 0'), (0 to'), (0'" 0') 

for obtaining new. "structured" data types from the given ones. 

The (cartesian) product 0 x 0' has as elements pairs ~x,x') 

where :c E 0 and x' EO'. and for which we define 

<:1:,:1:'> ~ <y,y') iff:l:!; y and x'~' yf 

The sum is defined as a "disjoint" union of 0 and 0', except that 

we identify .1 =; J- and T = T·. (eL Fig.3.) 

0' 

,
 

Figure 3.
 

The Lattice 0 + 0'
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The f1J.natio71 spaoe (0 + 0') has as elements all the continuous 

mappings from 0 into 0', for which we define 

f ~ g iff f(z) 1;' g(x) fOT all :r. E D. 

What one must check is how the effectively given bases for 0 and 

OJ determine the basis for the construct. This is easy fOT 

products and sums but somewhat more trouble for function spaces. 

Sums and products can be obviously generalized to more 
terms and factors. even infinitely many. For example. On can 

be taken as the set of all n~tuples of elements of partially 

ordered in the ohvious coordinate-wise fashion. We can then set 

o· = D° + 01 + 0 2 + ••• ~ On + 

which represents the data type of all finite lists of elements 

of the given O. Similarly one can go on to lists of lists of 

lists of .•.. If this were done in the right way, it would 

seem reasonah Ie that a lattice 0'" would be obtained such that 

0'" = D + (0"')*, 

that is to say, each element of 0'" is either an element of the 

given 0 or is a list of other elements of 0"'. This sounds very 

much like the usual kind of recursive definition of lists; but 

one must take care as the following argument shows. 

It is a well-known theorem that every continuous (even 

monotonic) function mapping a complete lattice into itself has 

a fi;r;ed point. Applying this remark to the supposed 0'" above, 

we note that for fixed a E 0, the expression <a.x> defines a 

continuous function of oCO::> into itself. Consider a fixed point: 

x = <a,x>. 

Thus :r is a list whose first term is a and whose second term 

is. ? The second term is the list x itself! Thus x is a 

kind of infinite list: 

x = <a. <a, <a, <a, ••• »» 

which is illustrated in two different ways in Fig.4. 
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Figure 4 

The list x ~ <a,x> 

That does not square with OUT usual ideas about data types of 

lists, but is it bad? The answer is rIO. FOT it can be shown that 

the data type Om does in fact exist; it contains all the ordinary 

finite lists as well as many quite interesting and useful limits 

of sequences of finite lists. One might say that 0'" gives us 

the topological completion of the space of finite lists. and the 

various limit points need not be used if one does not care to 

take advantage of them. 

The process of "completing" spaces is a very general one. 

and the full implications of the method require further explor

ation. A second example of the completion idea concerns function 

spaces. Let 0 be given. and set DO = 0 and 

0n+1 = (On + On)' 

The spaces °n are a selection of the "higher-type" spaces of 

functions of functions of functions of 000 It turns out that 

there is a natural way of isomorphically embedding each On success

ively into the next space 0n+10 These emheddings make it possible 

to pass to a limit space 0"", which contains the originally given

° and is such that 
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°
00 : (0"" -+ Om)' 

(Strictly speaking this surprising equation must be taken with a 

grain of salt: it is only true "up to isomorphism" which is good 

enough for our purposes.) This space provides the solution to 

the self-application problem of Section 1. because each element 

of Da> can be regarded as a (continuous!) function on 0", into D"". 

And conversely, every continuous function can be represented 

fai thfully by an element. Technically speaking what we have 

here is the first known. "mathematically" defined model of the 

so-called A-~atcuZu8 of Church and Curry. 

The reader should take notice of the fact that OUT 

abstractly presented theory of computable elements of lattices 

with effectively given bases applies to the function spaces. 

So we know what computable functions are. Even better we 

"know" what are the computable elements of the space Om of 

functions of "infinite" type. Clearly the calculus of operators 

which can be used to generate computable functions is going to be 

interesting, and this brings us back to semantics £or programming 

languages. Indeed the natural way to define computable functions 

is within the context of a suitable programming language. The 

),,-calculus itself is a prograrrtming language: it is the pure 

language of "unrestricted" procedures. It is only one of the 

many possible languages. 
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6. CONCLUSION 

We may now sketch the solution to the "storage~of-commands" 

problem mentioned in Section 1. Let L be the location space 

(finite or, if you like, take L '" N, so that the locations aTe 

indexed by the integers). The spaCe V of values is to be con

structed by the limiting methods alluded to above. Supposing it 

is already constructed. the space S of states of tIle stare is 

defined by: 

S=(L+V) 

The space C of command 8 is de fined by: 

C '" f S --. S) 

The space P of p~ocedure8 - with one parameter and with side 

effects - is defined by: 

p = (V -+ (5 -+ V >< S)), 

that is, a procedure is a function, which given first a value of 

its argument and next given a state of the store, then produces 

a "computed" value together with the necessary change of the state 

of the store. Now what can those values be? Well, they might 

be numbers (in N or in R), or they might be Zocations, or they 

might be lists, or they might be commands, or they might be 

prOCedUN!E. (Even to formalize a mode of expression for such 

an array of possible types of values would already require a fairly 

involved programming language.) We are thus led to write: 

v =' N + R + l + V* + C + P 

If one substitutes the definitions of S, C, and P into this equation, 

one obtains only a slightly more complicated "definition" than those 
m

that we had for Dm and D . Sue!; a space V does exist mathematicQZly~ 

and it provides the values for expressions of a programming language 

of the kind we have understood previously in the "operational" way. 

We should at once begin trying to understand these lanRuages math

ematically. because we now have all the tools to do so. 
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7. BACKGROUND AND R£FERENCES 

The idea of using monotonic and continuous functions in 

connection wi th recursion theory has been current for some time. 

The author believes, however, that his use of the idea along 
with more abstract lattices (in particular: with limits of 

lattices) is new and adds greater flexibility to the program, 

The first published references that the author knows are 

a sequence of four notes by Lacombe in the mid-fifties in which 

he im'estigates the notions of recursive real number and recursive 

function of a real variable, The method is essentially the same 

as OUT use of the lattice R sketched above. The exact references 

are: 

Daniel Lacombe, Extension de la n~tion de fonction 

recursive au.x functions d'unl? 014 plusieul'B variables 

pedes I, II, Ill. Comptes rendus, vol. 240 (l955), 

pp. 2478-80; vol. 241 (1955), pp. 13-14; vol. 20 

(l955). pp. 151-153. 

________, Remarques surles opeI'ateUI'B I'ecul'sifs 

et surles function I'eCUI'sives d'une variable I'eele. 

Ibid. vol. 241 C1955), pp. 1250-52. 

The author is indebted to G. Kreisel for pointing out these 

intensting notes to him. The idea that the method could be 

extended to the real numbers first became apparent to the author 

in reading the much later book on numerical analysis: 

Ramon E. Moore, Intwl'val Analysis, Prentice-Hall (1966), 

14 5 pp. 

From a different direction we have the work: 

Martin Davis. Computable functionals of arbitrary finite 

type~ in Constructivity in Mathematics (A. Heyting, ed.). 

North Holland (1959), pp. 281-284. 

Here the important step is taken of using partial functionals 

satisfying a consistency condition. Davis relates his ideas 

to the continuous and the cOl.lntable functions of Kreisel and 

Kleene (cf. their papers in the same volume.) Note. however, 
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that kleene and Kreisel work generally with total £unctionals. 

a restriction that is not convenient for the type of applications 

the author has in mind here. 

Further work on partial functionals is contained in: 

A. Nerode, Some Stone spaces and recursion theory, Duke 

Mathematical Journal, vol. 26 (1959), pp. 397-406. 

Both Nerode and Davis had reported on their ideas at the Cornell 

Logic Summer School in 1957. A really systematic approach did 

not appear unti 1: 

Richard Platek. Foundations of Recursion Theory, 

Stanford Ph.D. Thesis (1965). unpublished. 

It was from Platek in 1963 that the author learned the usefulness 

of a more abstract approach via monotonic functions. Platek 

discusses the continuous theory, but not in as much detail as 

the transfinite recursions. Very recent work on abstract forms 

of recursion theory has been done by Wagner, Strong, Friedman, 

and Moschovakis. The explicit connections will have to be 

discussed elsewhere. 

During the spring and summer of 1969 the author worked 

jointly with J. W. deBakker of Amsterdam on an "algebraic" 

theory of program schemata and at that time realized that the 

calculus of monotonic and continuous functions was exactly 

appropriate to t.his study. It was a question of David Park 

about. justifying a rule of double induction in this calculus 

together with a conversation with Robin Gandy at Oxford on 

formulae as operators that brought forward the idea that the 

calculus should be extended to higher-type function spaces. 

In t.he meantime, during the fall of 1969 at Oxford, the 

author was working with Christopher Strachey on his theory of 

semantics of programming languages via L- and R-values and an 

abstract model of storage. Woe attempted to apply the formalism 

of the calculus of recursive functionals of higher types, but 

were very much hampered by the necessity of having to store 

representations of functions rather than the functions themselves. 

Having been brought to the right abstract level by the previous 



24 

work, the author was able to then conjecture that there might 

very well exist structures with the proper self-referential 

"storage" properties. And he subsequently was able to offer a 

rigorous mathematical construction which was finally cast into 

the realm of lattice theory on account of the simplicity and 

familiarity of that study, The result was to provide a 

mathematical basis for the previously employed, entirely formal 

use of the A-calculus by Strachey. Landin and others. It was 

this success that showed that the lattices provided a simple 

and general enough context to develop a recursion theory in

volving not only the previously studied structures connected 

with the integers and the Teals, but also some quite new 

structures. And these new structures seem to be naturally 

requiTed by programming language semantics besides having 

mathematical interest. How this connects with McCarthyt s 

program for a mathematical theory of computation will require 

further discussion in a future publication. 


