
:'
J

" ,I ,

" ":1 i I I , :I !I , ;1 "

:1 ! 'I

:1 "
'1

 I II ;; ,, :1 I''I

"
"

, ,

", I
,

.,
,

,
I'

!

!I

O"L~ .. _J I I i"...,,..~;""! rf'lm!""l' r.;:-1 L~t;C'i·~I.,~ry

j

lIAIVI U \)/.1 jdd

OUTL1NE

OF A

MATHEMAT1CAL THEORY

OF

COMPUTATION

by

Dana Scott

Princeton Univers i ty

Technical Monograph PRG-2

November 1970

Oxford University Computing Laboratory.

Programming Research Group.

4S Banbury Road.

Oxford.

© 1970 by Dana Scott

Department of Philosophy,

1879 Hall,

Princeton University,

Princeton, New Jersey, 08540.

This paper is a revised and slightly expanded version

of a paper under the same title in the Proceedings of the Fourth

Annual Princeton Conference on Information Sciences and Systems

(1970) .

ABSTRACT

This paper introduces a theory of computation which

is mathematical rather than operational in its approach.

The theory is based on the idea that data types can be partial

ly ordered by a relation similar to that of approximation,

and as a resul t can be considered as complete lattices. The

properties of these lattices and the functions on them are
discussed in an informal manner and shown to be very suit

able for developing a mathematical theory of the semantics

of programming languages. A preliminary result of this

approach is the construction of the first "mathematical"

model for the A-calculus.

CONTENTS

~

O.	 Introduction

1.	 The Problem of Self-Application 4

2.	 Data Types and Mappings 6

3.	 Completeness and Continuity 9

4.	 Computability 12

5.	 Construction of Data Typ~s 15

6.	 Conclusion 21

Background and References 00

OUTLINE
o F A

MAT HEM ATIC AL THE 0 RY
o F

COM PUT AT ION

D. INTRODUCTION

The motivation for trying to formulate a mathematical

theory of computation is to give mathematicaZ semantics for

high-level computer languages. The word "mathematical" is to

be contrasted in this context with some such term as "operational".

Thus the mathematical meaning of a procedure ought to be the

function from elements of the data type of the input variables to

elements of the data type of the output. On the other hand, the

operational meaning will generally provide a trace of the whole

history of the computation following the seqtlencing stipulated

in the stated procedure definition and will involve an explicit

finitary choice of representations of data eventually in some

thing close to bit patterns. The point is that, mathematically

speaking, functions are independent of their mea~s of computation

and hence are "simpler" than the explicitly generated, step-by-step

evolved sequences of operations on representations. In giving

precise definitions of operational semantics there are always to be

made more or less arbitrary choices of schemes for cataloging

partial results and the links between phases of the calculation

(cf. the formal definitions of such languages as PL/I and A.LGOL 68)

and to a great extent these choices are irrelevant for a true

"understanding" of a program. ~fathematical semantics tries to

avoid these irrelevancies and should be more suitable to a study

of such problems as the ~quival~nc~ of programs.

2

It is all very well to aim for a more "abstract" and a

"cleaner" approach to semantics. but if the plan is to be any

good, the operational aspects cannot be completely ignored. The

reason is obvious: in the end the program still must be run on a

machine - a machine which does not possess the benefit of

"abstract" human understanding, a machine that must operate with

finite configurations. Therefore, a mathematical semantics,

which \l"i11 represent the first major segment of the complete,

rigorous definition of a programming language, must lead naturally

to an operational simulation of the abstract enti ties. which (if

done properly) will establish the practicality of the language, and

which is necessary for a full presentation.

Thinking only of functions for the moment, it is clear

that a mathematically defined function can be known to be computab~e

without its being quite obvious }ww to compute the function in a

practical sense - just as it is possible to know that an infinite

series is convergent wi thout having a clear idea of its sum.

Even though the abstract definition of the function is sufficient

to determine it, we cannot really say that the fum:tion is kno1Jn

until the algorithm is revealed. (Even then our knowledge is

somewhat "indirect" or "potential", but never mind.) The con

clusion is, then, that an adequate theory of computation must not

only provide the abstractions (what is computable) but also their

"physical" realizations (how to compute them).

What is new in the present theory is exactly these

abstr'adions; whereas the means of realization, the techniques

of implementation, have been known for some time, as the many,

highly complex compilers that are presently in operation demon

strate. Of course, new concepts may require (or suggest) new

methods of implementation, but that remains to be seen. However,

notice this essential point: unless there is a prior, generally

accepted mathematical definition of a language at hand, who is to

say whether a proposed implementation is correct? What is the

"standard" against which a realization is to be measured? Now

it is often suggested that the meaning of the language resides

3

in one particular compiler for it. But that idea is wrong: the

"same" language can have many "different" compilers. The person

who wrote one of these compilers obviously had a (hopefully) clear

understanding of the language to guide him, and it is the purpose

of mathematical semantics to make this underst3nding "visible".

This visibility is to be achieved by abstracting the central ideas

into mathematical entities. which can then be "manipulated" in the

familiar mathematical manner. Even if the compiler-oriented approach

(even compiled to run on an "abstract" machine) were transparent

which it is not - there would still be interest in bringing out the

abstractions to connect the theory with standard mathematical practice.

4

1. THE PROBLEM OF SElF-APPUCATION

Having this obviously desirable mathematical theory seems

to require some new structural notions, some new insights into the

nature of data types and the fu.nctions (mappings) that are to be

allowed from one to another. ~Ioreover. it soon be.comes clear in

thinking about "higher-type" programming concepts (e. g. procedures)

that spaces of functions must also be considered as forming data

types. Since a function (say, mapping integers to integers) is

generally in itself an infinite object. it also becomes necessary

to introduce some idea of finite approximation - just as we do in

a sense for real numbers. On top of this there are already

operationally "defined" concepts of function which seem to have no

mathematical counterparts. In particular it is not unknown in

programming languages to allow unrestricted procedures which can

very well produce unrestricted procedures as values. Speaking

mathematically this is tantamount to allowing a function that is to

be well defined on all allowable functions as arguments - a kind of

super-functional - and which is even applicable to it;self as an

argument. To date no mathematical theory of functions has ever

been able to supply conveniently such a free-wheeling notion of

function except at the cost of being inconsistent. The main

mathematical novelty of the present study is the creation of the

proper mathematical theory of functions which accomplishes these

aims (consistently!) and which can be used as the basis for the meta

mathematical project of providing the "correct" approach to semantics.

It should be stressed at once that the problem of Belf

application arises in ways more crucial to the interpretation of

programming languages than in the contemplation of the (to some,

impractical) unrestricted procedures. The problem concerns the

related questions of keeping track of Bide effects and of the

storage of commands. In the first place, what is a store?

Physically, we have several remarkable answers, but mathematically

it com~s down to being simply a mapping (a function) which connects

contenB to locations. Speaking more precisely, the (current)

state of the store, call it 0, is mathematically a function:

o : l ... V

which assigns to each location 1 E l (the set of all locations)

its (current) contents o(£) E V (the set of all allowable values).

Let S be the set of all states. What is a side effeC!t? Obviously

a change of state. What is a C!ommand? A request for a side

effect. More mathematically, a command is a function

y S'" S

which transforms (old) states into (new) states.

Question: can a command be stored? Answer: well, we do

it operationally all the time. Question: is that mathematically

justified? Let's see. Suppose 0 is the current state of the

store, and suppose 1 E l is a location at which a command is stored.

Then 0(1) is a comma!J.d; that is

0" (1) S -+ S.

Hence, 0(1)(0) is well defined. Or is it? This is just an in

significant step away from the self-application problem pCp) for

"unrestricted" procedures p, and it is just as hard to justify

mathematically. Of course. in the operational approach we do not

store the command itself as a function but rather a "code word" or

"piece of text" that stands for the command in an unambiguolJs way.

But to carry out the formal description of how this works - especially

for compound commands depending on parameters - involves us in most

of the nasty questions of programming language semantics and is not

really a satisfactory conceptual way out.

6

2. DATA TYPES AND MAPPINGS

Getting down to particulars, we must ask: what exactly

is a dc;;ta type? To simplify matters, we can identify a data

type with the set D of all objects of that type. But this is in

itself too simple: the objects are structured and bear certain

relations to one another, so the type is something more than a

set. Now this structuring must not be confused with the idea

of data 6tl'I.H~tu.l'eS (lists, trees, graphs, etc.); these will come

in later. The kind of structure being discussed he re is much

more primitive and more general and has to do with the basic sense

of approximation. Suppose or, lj E 0 are two elements of the data

type, then the idea is not immediately to think of them as being

completely separate entities just because they may be different.

Instead y, say, may be a better version of what ;r is trying to

approximate. In fact, let us write the relationship

x ~ y

to meaTI intlLitively that y is consistent with x and is (possibly)

more qccurate than x. For short we can say that x appI'oximate6 y.

This iTItuitively understood relationship exists on most data types

naturally, and it is part of the thesis of this paper that <i data

type should alwaylJ be provided with such a relationship. This may

require some adjustment of thought to accommodate certain standard

ideas, but it seems worth the effort to unify the treatment of

various types.

So let us agree for the sake of argument that types 0 are

structured by relations C; (at least). What can we say abstractly

about such a relationship? With reference to the intuitive

understanding, it is clear that we want to assume that ~ is

reflexive. tl'anlJitive. and antisymmetl'ic.

AXIOM~. A data type is a partially ordered set.

That may not seem like much (partially ordered sets are so very

general) but it is slight progress. The next bit of progress

should concern mappings.

Suppose 0 and 0' are two data types (with appropriate

partial orderings ~ and r;;:: '). Suppose f: 0 ->- 0' is a reasonablE'

mapping of the elements of the one into the other. Should thE're

be anything to say in general about properties of mappings? Well.

suppose :1:, y E D and x ~ y. If [were a function defined by a

program in any of the usual ways, it would be sensitive to thE'

accuracy of its arguments (inputs] in a special way: the more

accurate the input, the more ac~urate the output. In symbols:

x r;;:: y implies [(x) 1;.' fry),

In other words, with respect to the partial orderings f is monotonic.

We make this an axiom also:

AXIOM 2 Mappings between dat~ types are monotonic.

Note that such a condition easily generalizes to functions of

several variables, even variables of mixed types.

In numerical computation Axiom 2 is sometimES denied, but

this is a confusion about the use of the word aC'curacy. It is

true that we know some clever asymptotic algorithms which give

better answers when the accuracy is cruder, but they should be

considered as functions of two variables: the usual input data

together with a parameter indicating the degree of accuracy - or

maybe better the number of "terms" to be selected from the

"expansion". It can certainly happen that taking more terms

just ruins the already good approximation, but note that the

input and the number of terms are already supposed known perfectly.

The notion of accuracy we are trying to capture with the r;;::

relation is something else and does not depend on this presup

position. Maybe it would be better to talk about infol'matl:on;

thus, x r;;. y means that x and y want to approximate the same

entity, but y gives more information about it. This means we

have to allow "incomplete" entities, like x, containing only

"partial" information. (The way to do this in numerical cal

culation is called interval analysis. but we do not have the

space here to be more specific.) Allowing for partiality of

8

arguments and values has the good effect that our functions become

F'aT·t.iai too; for even if the arguments aTe perfect the values may

only be partial. This i~ necessary in considering algorithmically

defined functions, since for some combinations of arguments it may

happen that the algori thm docs not "converge". As a consequence

of this point of view, then, there can he no numcrical function of

the kind allo..·ed by Axiom 2 ...hich maps a "partial" real number to an_

integer exponent representing the degree of accuracy. But this is

not a dra..back. as can be seen ;,'hen one examines the details of the

method: there are sufficiently many monotonic functions.

9

3. COMPLETENESS AND CONTINUITY

The theory based on Axioms 1 and 2 would be too abstract,

though it is not vacuous. We need to he more specific about the

behaviour of approximations for the applications we have in mind.

Thus suppos~ an infinite sequence of approximations is such that

X ~ ~1 ~ ~ .Tn ~ ~ ...•o	 x nT1

then it seems reasonable to suppose that the , aTE' tencling to
Ii

a l-:mi t. Call thc limit :'. and \o.'e I,r i t E'

:< U In'
n=J

hecause in the sense of the partial ordering ~ the limit is

naturally taken to be the Zea~t uppe~ hound (l.u.b.), If we

imagine the successive terms of the sequence as giving us more

and more information, than the limit represents a kind of "union"

or jo ~ of the separate contributions. In fact, for mathematical

simplicity, \~'e assume that euer!1 subset of the data type has a

least upper bound, which anlounts to:

AX IOM-2'	 A data type is a complete lattice
under its partial ordering.

In particular, 3S is·ell known, the existence of arbitrary least

upper bounds implies the exi~tcncc of greatest lower hounds (g.l.b.)

\"hich is why we say we have a compI"te lattice.

This last assumption require,; some explanation. In case

:r, yEO, it may be that they are either approximations to the

same "perfect" entity or not, in ,",'hieh case they are somehow "incon

sistent" with one another. In an~' case we are assuming t.1.cy have

a l.u.b. or .join xU yEO. Even worse, we assume that the whole

of 0 has a l.u.h., which ,",'e call TEO. This T is the "top" of

the lattice, the very "largest" clement in the partial oreering ~.

It is not to be regarded as a "perfect" E'IemE'nt, but rathcr as an

"over-determined" clement. Ilence, we can regard the equation

10

x U Y T

as me<lning intuitively that x and yare i1'!consistent;. This is to

be distinguished from the much weaker relationship of being incompar

able, ~hich is simply: x q y and y q x.

The l.u.b. of the empty suhset of our data type 0 is an

element .1 E D. This is the "bottom" of the latt ice, the very

"smallest" element in the partial ordering. I t may be regarded

as the most "under determined" element. The lou.b. of the set

of all lower bounds of a subset X ~ D, is the g. 1. b. nx ED.

For x,y E DI we have the meet x n y '" n{x~y} E D. We can io

tuitively read the equation

oX n y == .1

as meaning that x and y aTe unconnec-ted, in the sense that there

is no "overlap" of information between them.

f1aving supposed that the data type permits "limits", we

have to re-examine our view of functions. If a function is

computable in some intuitive sense, then getting out a "finite"

amount of information about one of its values ought to reqUire

putting in only a "finite" amount of information about the

argument. Now our notion of "information" is quali-tative rather

than qiwntitative, but it is still possible to express this

fundamental idea in terms of the notions we have avai lab Ie .

First of all, the proper notion of limit is expressed

best in terms of directed sets. A subset X .s. D is dirf](Jted if

every Hni te subset {,x ,x ' ••• ,x _ } ~ X has an upper bound
O l n l

y E X so that I.ie have:

X U Xl '" U x _1 ~ y.o n

Note that a directed set is always non-empty. (Hint: take n = 0.)

The li~it of the directed set is the l.u.h. UX. Suppose we

want a "fini te" amount of information about Ux. Each lObi tit we

need (arguing very intuitively) is contained in some element of X;

hence by the directedness, all. of it is contained in at least one

single element of x.

II

Now consider a monotonic function f: D -+ 0'. Given a

limit Ux of a directed subset X ~ D, \ole ask for a "finite" amount

of information about f(U X}. We agree that to do this requires

only a "finite" amount of information about UX; thus only a single

element x E X is needed, and it is such that f(;r) gives what we Want.

Note that !(x) '; flUX) and that {fLrJ:x E xl is a directed sub

set of D'. Al.l. the information about f(UX) ought to be the "limit"

of its "finite" parts. Instead of speaking intuitively and meta

phorically, we can expres5 the idea by the mathematical. equation:

flU Xl ~ U (f(x),x E xl.

In words we can say: the mapping presel"ves the limit. A mapping

that preserves alZ limits is called continuous. What \ole have just

motivated is:

AXIOM 4. Mappings between data types are continuous.

A function of two variables is continuous just \oIhen it is

continuous in each of its variables separately. Suppose g{:J:,y)

is such a function. It is easy to see that the function! defined

by the equation

flX) "" g(x,x)

is also continuous. (Indeed all the usual methods of composition

and identification of variabl.er; produce continuous functions given

continuous functions.) The example of f ahove is the easiest \oIay

to obtain a continuous function which does not preserve arbitrary

l.u.b's. (with a suitable choice of g). There is absolutely

no reason to suppose that the functions ought to preserve g.l.h.'s:

one cannot expect any "smoothness" while decreasing information.

Hence the continuity restriction is about as far as one should go

in giving general conditions on functions that have a chance of

being computable.

12

4. COMPUTABILITY

So much for the broad outlines of the theory. I t still

is to~ abstract, however, because even though certain essential

pI'opeTtie~ of computable functions have been isolated, the poss

ibility of "physical" realization. has not yet been assumed in any

form. This we must do. The problem is to restrict attention to

exactly those data types where the elements can be approximated

by "finite configurations" representable in machines, thereby also

making more precise the concept of a "finite amount of information".

The solution to this problem is to take a topological

approach: in any case our previous mention of Z-imi"t3 and ~on

tinuity ought to have suggested that there are some topological

ideas in the background. Indeed, any data type D satisfying

Axioms 1 and 3 can be regarded as a topological space. To

defin€ a topology on a set one needs to say which subsets are

ope71, In the case of the data type 0, there are two conditions

to be satisfied for a subset U ~ D to be open:

(U) whenever :t' E If and :t' ~ y, then y E U; and
l

(U) whenever I: C 0 is directed and Ux E u, then X n U'" 6.
2

It is ~asy to check that D becomes a topological space in this way.

and that f:D ~ D' is continuous in the limit preserving sense if

and only if it is continuous in the topologicaL sense.

If x.] E D, we write

x -< Y

to mean that y belongs to the topological interior of the upper

section determined by~; that is, the interior of the set

{x' E D: x ~ x'}.

The relationship is not as irreflexive as it looks. for there are

iBoZar~l elements x of certain data types such that =~ x. For

example.i .(.1. always holds; it is probably reasonable to assmne

T is lSolated also. We write

13

to mean that the g.l.b. of the topological interior of the UppPT

section u0tcrmined by x is ~~. Thus the three relationships

x -< y, ~: '" Y J and ~ ~ .'1

aTe successively 'WeaKer.

Taking the hint from topological spaces like the real

numbers (which topologicallY are a bit diffcrent from our data

type sp.:u;:cs), we consider the possibility of having a ,iense

subset of the space in terms of which all the other elements can

be found as] 1m! ts. We call such a subset a h.lsi.~. The proper

definition seems to be the following: a subset F ~ 0 is a b'.1sis

if it satisfies these two conditions:

(E) whenever c, e' E E. then fJ LJ e' E E; and
1

(£2) for all xED we have x '" U{e E F.": e "'< xL

The existence of a basis has several consequences; for example,

the meet operation =n y is continuous if a basis exi~ts, and

not necessarily continuous otherwise.

Conditions (EI) and (£2) are still not strong enough.

make data types "physical". We need the stronger assumption:

AXIOU· A data type has an effectively given basis.

That is to s~y the set F must be "known". Given e, e' E F,

we have to know how to finl! the element ~ U e' E E. Given

e, ro' E j<;. we have to know hOI'. to decide hlhich of the rel~tion

ships:

c -< e' '" e " e r; ["

are true and which are /r..Zsc. Th:is cert.1.inl} is going to require

that the set E is at most countahly infinite, .1.nJ probably that we

bave an effective enumeration

. }f '" {e 'J' ,'.. l ' t'::,' ,C: r:'

in terms of ".,hich the ahoyc oper;,tions and relationships are

:'·"'c·urn·':e (in the technical sense of recursion theory). To make

the data type !',:a1I"i! physical we ..'auld need to as<;IlJne all 1"('l:1tion

Sllips to be very recursive indeed, but we do not have to go into

14

that here: the intuitive idea of an effectively given basis can

be left a bit vague because in particular examples it will be clear

what is going on.

Note that as a consequence of Axiom 5 the topologies of data

types are separable because not only is there a countable dense

subset (the basis), but the sets

{xED:e<x}

for e E E form a countable basis for the topology of D.

The most important consequence of the assumption of an

effectively given basis is the possibility of being able to define

what it means for an element to be computable. Suppose xED

and E is the basis. Then (relative to this basis) :r is ~omputable

if and only if there is an effectively given sub-sequence.

{e~J e {J e ~. • e' ... } s: E•• J n'

such that e' [e' for each n, and" ""
e'

n=O
x" U n·

This m.eans that we must be able to give effectively better and better

approximations to x which converge to x in the limit. This is an
essential notion; because, for one thing, it may very well be the

case th.at the data type D has unaountably many elements, while there

can be only aountably many computable elements. Note that there

will be in general many sequences converging to an element x, so

that jllst knowing that :r is computable does not mean that the "best"

...·ar to compute it is also known.

This completes the discussion of the foundations of the

subject. Someone may want to point out that Axiom 3 implies Axiom

1 and ,uiOID 4 implies Axiom 2 - but the axioms are given in the order

in which the ideas naturally occur. It can all be said very quickly

in summary: data types are complete lattices with effectivelY given

bases and all allowable mappings are to be continuous.

15

5. CONSTRUCTION OF DATA TYPES

We must now look into the construction of useful data types

satisfying the axioms, remembering that the lattice structure is only

the most primitive structure on a data type, and the "interesting"

structure is supplied by various kinds of continuous functions

special to the type. (In the examples and constructs to be men

tioned, the element T will always be assumed isolated.)

In the first place all finite lattices satisfy the axioms,

and fOT them continui ty plays no role. Of course finite structures

aTe sufficient for "practical" appl ications, but many concepts mOre

easily find their expression with reference to infinite structures.

In the case of OUT lattices there are the two numerical data types
Nand R for the integer6 and the real6. As a lattice N has for

elements O. 1, 2•...• n • ... (these elements are pairwise incompar

able under ~) plus the two elements T and ~. respectively ahove

and below all the others (cf. Fig.l). In this case the whole

lattice is its own basis.

,

~

~

"

Figure 1.

The Lattice N.

16

For R the elements are ~loBed intervals [::£... xJ of ordinary

real numbers (~~ x) plus two elements T and ~. The partial

ordering between the intervals is defined thus:

[:£~xJ !; [:&yJ iff E£" !i. '" Y '" x

(We use the abbreviation; ff in place of the phrase if and only if.)

The "perfect" reals "e the one-point intervals [£, x] wi th :=. '" x.
The "apprOXimate" reals have E?- < :r. (ef . Fig.2) .

T ./""':"too much
o ~ information

-3 -2 -1 o +1 +2 +3

c... el ements
with perfect

information

xU y

x l --------i
x x

elements E:) y
with imperfect!i.. Y
information ~

x n y ~[L------------'l3

(no information

L

Figure 2

The Lattice R

17

The basis consists of the intervals with :rational end points plus

the element~. There is a very close cOnnection between the

continuous funct ions on the 1at tice R and the ordinary theory of

continuous point functions. In both lattices the usual arith

metic operations are represented by continuous functions, and it

is especially interesting to consider division in R. as well as

other functions with singularities. or functions that are normally

left undefined over part of their domain.

Suppose 0 and 0' are two given data types. There are

three particularly important constructs:

(D X 0'), (0 to'), (0'" 0')

for obtaining new. "structured" data types from the given ones.

The (cartesian) product 0 x 0' has as elements pairs ~x,x')

where :c E 0 and x' EO'. and for which we define

<:1:,:1:'> ~ <y,y') iff:l:!; y and x'~' yf

The sum is defined as a "disjoint" union of 0 and 0', except that

we identify .1 =; J- and T = T·. (eL Fig.3.)

0'

,

Figure 3.

The Lattice 0 + 0'

18

The f1J.natio71 spaoe (0 + 0') has as elements all the continuous

mappings from 0 into 0', for which we define

f ~ g iff f(z) 1;' g(x) fOT all :r. E D.

What one must check is how the effectively given bases for 0 and

OJ determine the basis for the construct. This is easy fOT

products and sums but somewhat more trouble for function spaces.

Sums and products can be obviously generalized to more
terms and factors. even infinitely many. For example. On can

be taken as the set of all n~tuples of elements of partially

ordered in the ohvious coordinate-wise fashion. We can then set

o· = D° + 01 + 0 2 + ••• ~ On +

which represents the data type of all finite lists of elements

of the given O. Similarly one can go on to lists of lists of

lists of .•.. If this were done in the right way, it would

seem reasonah Ie that a lattice 0'" would be obtained such that

0'" = D + (0"')*,

that is to say, each element of 0'" is either an element of the

given 0 or is a list of other elements of 0"'. This sounds very

much like the usual kind of recursive definition of lists; but

one must take care as the following argument shows.

It is a well-known theorem that every continuous (even

monotonic) function mapping a complete lattice into itself has

a fi;r;ed point. Applying this remark to the supposed 0'" above,

we note that for fixed a E 0, the expression <a.x> defines a

continuous function of oCO::> into itself. Consider a fixed point:

x = <a,x>.

Thus :r is a list whose first term is a and whose second term

is. ? The second term is the list x itself! Thus x is a

kind of infinite list:

x = <a. <a, <a, <a, ••• »»

which is illustrated in two different ways in Fig.4.

19

I

a

a @
a

a
\

Figure 4

The list x ~ <a,x>

That does not square with OUT usual ideas about data types of

lists, but is it bad? The answer is rIO. FOT it can be shown that

the data type Om does in fact exist; it contains all the ordinary

finite lists as well as many quite interesting and useful limits

of sequences of finite lists. One might say that 0'" gives us

the topological completion of the space of finite lists. and the

various limit points need not be used if one does not care to

take advantage of them.

The process of "completing" spaces is a very general one.

and the full implications of the method require further explor

ation. A second example of the completion idea concerns function

spaces. Let 0 be given. and set DO = 0 and

0n+1 = (On + On)'

The spaces °n are a selection of the "higher-type" spaces of

functions of functions of functions of 000 It turns out that

there is a natural way of isomorphically embedding each On success

ively into the next space 0n+10 These emheddings make it possible

to pass to a limit space 0"", which contains the originally given

° and is such that

20

°
00 : (0"" -+ Om)'

(Strictly speaking this surprising equation must be taken with a

grain of salt: it is only true "up to isomorphism" which is good

enough for our purposes.) This space provides the solution to

the self-application problem of Section 1. because each element

of Da> can be regarded as a (continuous!) function on 0", into D"".

And conversely, every continuous function can be represented

fai thfully by an element. Technically speaking what we have

here is the first known. "mathematically" defined model of the

so-called A-~atcuZu8 of Church and Curry.

The reader should take notice of the fact that OUT

abstractly presented theory of computable elements of lattices

with effectively given bases applies to the function spaces.

So we know what computable functions are. Even better we

"know" what are the computable elements of the space Om of

functions of "infinite" type. Clearly the calculus of operators

which can be used to generate computable functions is going to be

interesting, and this brings us back to semantics £or programming

languages. Indeed the natural way to define computable functions

is within the context of a suitable programming language. The

),,-calculus itself is a prograrrtming language: it is the pure

language of "unrestricted" procedures. It is only one of the

many possible languages.

21

6. CONCLUSION

We may now sketch the solution to the "storage~of-commands"

problem mentioned in Section 1. Let L be the location space

(finite or, if you like, take L '" N, so that the locations aTe

indexed by the integers). The spaCe V of values is to be con

structed by the limiting methods alluded to above. Supposing it

is already constructed. the space S of states of tIle stare is

defined by:

S=(L+V)

The space C of command 8 is de fined by:

C '" f S --. S)

The space P of p~ocedure8 - with one parameter and with side

effects - is defined by:

p = (V -+ (5 -+ V >< S)),

that is, a procedure is a function, which given first a value of

its argument and next given a state of the store, then produces

a "computed" value together with the necessary change of the state

of the store. Now what can those values be? Well, they might

be numbers (in N or in R), or they might be Zocations, or they

might be lists, or they might be commands, or they might be

prOCedUN!E. (Even to formalize a mode of expression for such

an array of possible types of values would already require a fairly

involved programming language.) We are thus led to write:

v =' N + R + l + V* + C + P

If one substitutes the definitions of S, C, and P into this equation,

one obtains only a slightly more complicated "definition" than those
m

that we had for Dm and D . Sue!; a space V does exist mathematicQZly~

and it provides the values for expressions of a programming language

of the kind we have understood previously in the "operational" way.

We should at once begin trying to understand these lanRuages math

ematically. because we now have all the tools to do so.

22

7. BACKGROUND AND R£FERENCES

The idea of using monotonic and continuous functions in

connection wi th recursion theory has been current for some time.

The author believes, however, that his use of the idea along
with more abstract lattices (in particular: with limits of

lattices) is new and adds greater flexibility to the program,

The first published references that the author knows are

a sequence of four notes by Lacombe in the mid-fifties in which

he im'estigates the notions of recursive real number and recursive

function of a real variable, The method is essentially the same

as OUT use of the lattice R sketched above. The exact references

are:

Daniel Lacombe, Extension de la n~tion de fonction

recursive au.x functions d'unl? 014 plusieul'B variables

pedes I, II, Ill. Comptes rendus, vol. 240 (l955),

pp. 2478-80; vol. 241 (1955), pp. 13-14; vol. 20

(l955). pp. 151-153.

________, Remarques surles opeI'ateUI'B I'ecul'sifs

et surles function I'eCUI'sives d'une variable I'eele.

Ibid. vol. 241 C1955), pp. 1250-52.

The author is indebted to G. Kreisel for pointing out these

intensting notes to him. The idea that the method could be

extended to the real numbers first became apparent to the author

in reading the much later book on numerical analysis:

Ramon E. Moore, Intwl'val Analysis, Prentice-Hall (1966),

14 5 pp.

From a different direction we have the work:

Martin Davis. Computable functionals of arbitrary finite

type~ in Constructivity in Mathematics (A. Heyting, ed.).

North Holland (1959), pp. 281-284.

Here the important step is taken of using partial functionals

satisfying a consistency condition. Davis relates his ideas

to the continuous and the cOl.lntable functions of Kreisel and

Kleene (cf. their papers in the same volume.) Note. however,

23

that kleene and Kreisel work generally with total £unctionals.

a restriction that is not convenient for the type of applications

the author has in mind here.

Further work on partial functionals is contained in:

A. Nerode, Some Stone spaces and recursion theory, Duke

Mathematical Journal, vol. 26 (1959), pp. 397-406.

Both Nerode and Davis had reported on their ideas at the Cornell

Logic Summer School in 1957. A really systematic approach did

not appear unti 1:

Richard Platek. Foundations of Recursion Theory,

Stanford Ph.D. Thesis (1965). unpublished.

It was from Platek in 1963 that the author learned the usefulness

of a more abstract approach via monotonic functions. Platek

discusses the continuous theory, but not in as much detail as

the transfinite recursions. Very recent work on abstract forms

of recursion theory has been done by Wagner, Strong, Friedman,

and Moschovakis. The explicit connections will have to be

discussed elsewhere.

During the spring and summer of 1969 the author worked

jointly with J. W. deBakker of Amsterdam on an "algebraic"

theory of program schemata and at that time realized that the

calculus of monotonic and continuous functions was exactly

appropriate to t.his study. It was a question of David Park

about. justifying a rule of double induction in this calculus

together with a conversation with Robin Gandy at Oxford on

formulae as operators that brought forward the idea that the

calculus should be extended to higher-type function spaces.

In t.he meantime, during the fall of 1969 at Oxford, the

author was working with Christopher Strachey on his theory of

semantics of programming languages via L- and R-values and an

abstract model of storage. Woe attempted to apply the formalism

of the calculus of recursive functionals of higher types, but

were very much hampered by the necessity of having to store

representations of functions rather than the functions themselves.

Having been brought to the right abstract level by the previous

24

work, the author was able to then conjecture that there might

very well exist structures with the proper self-referential

"storage" properties. And he subsequently was able to offer a

rigorous mathematical construction which was finally cast into

the realm of lattice theory on account of the simplicity and

familiarity of that study, The result was to provide a

mathematical basis for the previously employed, entirely formal

use of the A-calculus by Strachey. Landin and others. It was

this success that showed that the lattices provided a simple

and general enough context to develop a recursion theory in

volving not only the previously studied structures connected

with the integers and the Teals, but also some quite new

structures. And these new structures seem to be naturally

requiTed by programming language semantics besides having

mathematical interest. How this connects with McCarthyt s

program for a mathematical theory of computation will require

further discussion in a future publication.

