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ABSTRACT

This paper represents a continuaticn of the program sketched
in Outline of a Mathematical Theory of Computation (PRG 2J,
The language under consideration is the elementary language of
flow diagrams where the level of analysis concerns the flow
of control but not any questions of storage, assignment, block
structure or the use of parameters. A new feature of the
appreoach of this paper is the treatment of both syntax and
semantics with the aid of complete lattices. This provides
considerable unification of methods (especially in the use of
recursive definitions) which can be applied to other languages.
The main emphasis of the paper is on the method of semantical
definition, and though the notion of equivalence of diagrams

ic touched upon a full algebraic formulation remains tc be done.
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THE LATTICE

OF

FLOW D1AGRAMS

0. INTRODUCTION This paper represents an initial chapter

in a development of a mathematical theory of computation based »n
lattice thecry and especially cn the use of continuous functions
defined on complete lattices. TFor a general orientaticrn, the r:ader
may consult Scott (1970).

Let D be a complete lattice., We use the symtols:

C, 1, 7,4, H,I_I,I_l

to denote respectiwvely the partial ordering, the least elewent, the
greatest element, the jeoin of twc elements, the meet of two elements,
the join of a set of elements, and the meet of the set of elements,
The definitiens and mathematical properties of these notions ca. be
found in many places, for example Birkheoff (1367). Our notation is
a bit altered from the standard notaticn to avold confusion wit: the

differently employed notations of set theory and logic.



The main reason for attempting to use lattices systematically
throughout the discussion relates to the following well-known result
of Tarski:

THE FIXED-POINT THEOREM. rLet f:D - D be a monotonie function

defined on the complete lattice D and taking valuees also in 0. Then
f hae a minimal fired point p = f{p) and in fact

p = rW{x € D:f(z) C z!
For references and a proof see Birkhoff (1970), p. 115, and Bekié
(1970). A function is called monotonic if whenever z, y € D and
r C y, then f(z} C f(y). Clearly, from the definition of p the
element is C all the fixed points of f (if any). The only trick is
to use the monotonic property of f toc prove that p is indeed a Fixed
peint. In the case of continuous functions we can be rather more
specific.

Continucus functions preserve limits. It turns out that in
complete lattices the most useful notion of limit is that of forming
the join of a directed subset. A subset ¥ € D is called dipected if
every finite subset of ¥ has an upper bound (in the sense of C)
belonging tc X¥. This applies to the empty subset, sc X must be non-
empty. This also applies to any pair z, y € X, so there must exist
an element 2z € ¥ with z U y C 2. An obvious example of a directed
set is a chatin:

R S |

X = {zu,zl,.. n

where

The limit of the directed set is the element LJX. In the case of a

chain (or any sequence for that matter) we write the limit (jein) as:

L
n=DIn



A function f:D - 0 is called centinucus if whenever x C D is directed,
then

sldn = Uiriodrie € 13
It is easy to show that continuous functions are monotonic. Note,
too, that the definition also applies te functiens f:D ~ D' between
two different lattices; in which case we read the right-hand side of
the above equation as the join-operation in the seccnd lattice D'.

In the case of continuous f:0 - D, the fixed point turns out to be:
p = Lo
n=0
where fu(:) = r and fﬂ+1(:) = f(f"(x)).

This all seems very abstract, but there is a large variety of
quite useful complete lattices, and the fixed-point thecorem is exactly
the right way in which, t¢ introduce functions defined by recursten.
This has been known for a leng time, but the novelty of the present
study centers around the choice of the lattices to which this idea may
be applied. In particular, we are going to show that the familiar
flow diagrams can be embedded in a useful way in an interesting com-
plete lattice, and then that the semantics of flow diagrams can be
obtained from a continuous functicn defined with the aid of fixed
points. 0Of course, this is only one small applicaticn of the methed,
but it should be instructive.

1,FLOW DIAGRAMS. Intuitively, a flow diagram looks very roughly
like Figure 1. There is a distinguished entry point intc which the
input information "flows" and an ezit peint cut of which the result
or ocutput will (hopefully)} come. The main question, then, is what
goes on inside the "black box”. Now, the box may represent a primi-
tive cperation which we do net analyze further, or the box may be

compounded from other diagrams.

A trivial example of compounding may be the combination of ne

diagrams whatsoever. The result is the "straight arrow" of Figure 7.

w
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The intormation flowing along such a chanrel exits untransformed;
and so that diagram represents the identity function, A non-
trivial compound is shown in PFigure 3., In this combination, called
a product, the ocutput of the first box is fed directly into the i:n-

put of the second with the cbvious result.

With products alcne not much useful could be done. As infeor-
maticn flows, it must be tested and switched into proper channels
according to the cutcomes of the tests. For these switches we shall
assume for simplicity in this paper that a fired stock of primitive
ones are given, This 1s not a serious restriction, and the method
can just as well be applied when various forms of compounding of
switches are allowed. We shall assume, by the way, that information
flowing through a switch, though tested, exits untransformed. In
diagrams a switch 1s represented as in Figure 4. In case the re-
sult of the test 1s pesitive, the information flows out of the top;
if negative, from the bottom. A switch by i1tself is not a flow dia-
gram because it has two exits. If these "wires" are attached to the
inputs of the two boxes, and then if the outputs of the two bowes
are brought together, we have a proper flow diagram. It is shown
in Figure 5. We call this construction a aum (of the two boxes) lcr
short, but it is alsc called a ceonditicnal because the outcome is

conditional on the test.

Sums and products are the basic compounding operations for
flow diagrams; iterating them leads to large diagrams such as the cne
shown in Figure 6. Here, the primitive boxes and switches have been
labeled for reference and to disrtinguish them. The attentive reader
will notice that we have cheated in the diagram in that the (-) and

(+) leads from b, and b2 have been brought together. The reason

1
for doing this was to avoid duplicating box f,. Strictly speaking,
such shortcuts are not allowed: all repetitions must be written out.

The diagrams will thus have a "tree" structure with switches at the
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branch points and with strings of boxes {any nurber including zero)
along tr'e branches. (se draw these trees zideways.) At the "top"

ol the iree all the lea:ds are brought tcocgether for the output.

What is wrong in figure &7 That is to =zay, what Is lacking?
Obviously, the answer iz that there are no lsope, all good Zlow dia-
grams parmit feedback around loops. The propsr way to allew locping
iz digcussed in the next section; first, we must connect Flow dia-

grams in the intuitive sense with the mathematical tneory of lattices.

Some notaticn will help. We have already used the notation
Bpsbya.b
R L)

o

) 'D—’fl’:ﬂQ""

10r the switches and boxes, respectively. (The "I" recalls Bsolean
or bingry; while the '7" is used because the boxes represent func-
tions on information.} For the identity (or "dummy™) diagram we may
use tne notation 7. Suppcse J and 4' are two diagrams, then the

product is denoted by:

(4:d")
where the corder is the same left-right order as in Figure 3, The
sum 1s written:
(B, 4.d4"3

J
which is the familiar "econditional expression” used here in an adapted
form for diagrams. The diagram of Figure 6 may now be written as:

b o ;
( (£53¢

G Fl;(b -~ f3‘fh)})’(f2;(ﬁ2 - qufs)))

This expression has mary *too many parentheses, but we shall have to
discuss problems of eguivalence before we can eliminate any. In any
case, it 1s clear that instead of diagrams we mav talk of expressicns
generated from the fi and 7 bv repeated applications of the various

sum and product operations. The expressions may get long, but it is

a bit more obvious what we are talking about.



The totality of all expressions cbtained iIn the way described
above is a natural and well-determined whole, but just the same, we
are going to embed it in a much larger complete lattice by a methcd
similar to the expansion of the rationals to the reals. The first
step 1s to introduce a sense of gpprorimation, and the second step
is to intrecduce Iimita. In our particular case, a very convenient
way to achieve the desired goal is to introduce approzimate (or:
partial) expressions which interact with the "perfect" expressions
we already know in useful ways not directly analogous to the common
notion of approximaticon in the reals. (There is an exactly parellel
way to treat reals, however.) EIxisting between approximate expres-
sions is a partial ordering relation C which provides the requirec
sense of approximation of one expression by another. We now turn to

the details of setting up this relation.

If the relationship

dr d'
between partial diagrams is to mean that d appromiﬁatea d', then
it seems very likely that in a large number of cases 4 can approx-
imate many different d'. In particular, we may as well also assume
the existence of the woret (or most incomplete) diagram 4 which
approximates everything; that is,

L Cd°
will hold for all 4'. In pictures we may draw 1 as a "vague" box
whose contents are undetermined. Now, these incomplete boxes may
occur as parts of other diagrams, as has been indicated in Figure 7.
The expression for Figure 7 of course would be written as:

(bo - (fo;l),(fl;(bl hd fQ,I))) .

If we are going to allow incomplete parts of diagrams, then we

must alsc allow ourselves the option of filling in the missing parts.
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Thus, if 4 is incomplete, then a more precise reading of the rela-
tionship
dC d’

is that d4' is like 4 except that some of the parts left vague ind
have been filled in. That reading is quite correct for the relation-
ship 1 € 4' that must always hold. In compound cases we can assure
the desired results by assuming that sum and product formations are
moneotonic in the following precise sense:

if do C dl and Jé

(do;dé) [ (dl;diJ and

c di, then
-~ g ’ b. =+ . .d!
(bJ. ﬁ‘,:i[]) C (DJ 1,al)

Besides this, the relation E must be assumed to be reflexdive, trans-

itive, and antisymmetric (C is a partial ordering).

As an illustration we could fill in the box of Figure 7 ani

prave by the above assumptions that:
(bo - fpsLds sy » fp, 100 C (by ~ (Fuslf3Fg2) {5ty = £o0D0))
In working out these relationships it seems reasonable to assume in
additicn that:

(L3L) = L
but noz to assume that:

(bU » L,L} & 1,

as may be appreciated from the pictures in Figures 8 and 9.

For the sake of mathematical symmetry {and to avold making ex-
ceptions in certain definitions) we also introduce an exceptionel
diagram dencted by T about which we assume:

dC T
for all d. We can think of 1 as being the underdeterminad dlagram,
and T as being overdetermined. The diagram 7 is something like a
short circuit -- we will make its "meaning" quite precise in the

section on semantics. We assume that

@
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(157) = 71,
biut not rhat
(bJ. * T,T) =T ,
again for reasons that will be semantically motivated. Other equa-
tions tnat might seem reascnable (say, {(d3;7) = 7) are postponed to

the discussion of equivalence.

Taking stock of where we are now, we can say that we begin with
cartain "atomic" symbels {representing elementary diagrams); namely:

J.,fo,fl,...,fn,...,l,T .
Then, we form all combinations generated from these using:
(d3d"'y and (bj + d,d').
These exdressions are partially ordered by a relation C about which
we demand first that
LEdC T

for all d; and then which we subject to the reflexive, transitive,
and monotonic laws (the sc—-generated relation will autcomatically be
antisymmetric).

This is the "symbolic" method which iIs quite reasonable and is
well motivated by the pictures. We could even pursue i1t further and
make the totality of expressions Intc a lattice in the focllowing way.

The join and meet operations must satisfy these laws:

dU 4" = 4" 4 d dNdr =4 n 4
db d=d dNd=d
duU r=d dN 1 =1
dUrT =1 dnNrt=4d.

In addition for the atomic expressions other than 1 and T we
stipulate:
fiufJ':T finfj=i-

f£UI='r _f‘if‘II=¢,



where ¢ # j. TFor the case of products we have:
(1,1) = 1 (r31) = 1,
and in the following assume that the pair J4,d' is not either of the

exceptional pairs 1,1 or 1,T:

f'ﬂ U (d3d') = 1 f. M (dyd") = 4
- ir j-gr = — ' vt =
(b_;' dO’aO) U (d;d") T (bj dO’dO) n(d;d") 1
- M = d - ' =
f?: u (bj dD’dO) =T ‘F'i [l (b,j dO,dU) L
Tu (d;d'y = 1 I d;d') = 4
- ! = ;= r =
iu (bj do,dOJ T In (LJ_ dG,dO} 1

'
where dD ,do

dl ,di Wwe assume:

is arbitrary. Moreover, for any two pairs du,dé and

(dysd)) U (dy3d]) = (dyu dysd) udld

139 0
(dogdb) n (cfl',a’]'_} = (ciO n dl;d['J n di)
by = dgadl) U (b= dyodi) = (b= dy Udy,d)Udp)
(b = dgedp) T (b, =+ dyud) = (b > dy Nd),d)Nd))

Finally, it might seem reasonable to assume:

1]
-

— 1 E - t
(bJ. do’dD) u (Jk dl,dl)
N it N r -
(bj aD,'JGJ Il (“1: al,dl) 1
when j # k; but we postpone this decision,

This large number of rules allows us tc compute joins and meets
for any two expressions (in a recursive way running from the lorger
to the shorter expression}, and it could be shown that in this ranner
the expressions do indeed fcrm a lattice with the C relation as the
partial ordering. The proof would be long and boring, however, as is
always the case with symbolic methods. The reasons one must exercise
care in this approach are in the main these two: o©one must be sure
that all cases are covered, and one must be certain that different

orders in opcarrying out symbolic operations do not lead to inconsistentr

11
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results. Now, it would be quite possible to do all this for our con-
struction of the lattice of diagrams, but it Is quite unnecessary

because z better method is available.

The idea of the bertter apprecach 1s to work with structures that
are known to be lattices from the very start, hence we shall never
have tc check the lattice laws except in some trivial cases. HNext,
some operations on structures are carried out which are known te
transforn lattices inte lattices {(in our case this will correspond
to the fermation of compound expressions). Finally, (and thisz is the
main wviriue of the approach) the extension tc a ecomplete lattice
may be uescribed 1n & neat ;Jay. The lattice of expr‘éssicrns ta the
extent o which It hasg been apprahended up To this point is not com=
plete; ard the adjuncticr of limits requires a certain armount of
care: e struectural appreoach will make the exercise of this care
more or less autcmatic, It must be stressed, however , that after
the desired structures are created as lattices a certain amount of
argument is required to see that the strucTures coniornr to our intui-
tive ideas about expressicns. Though necessary, this will not be

difficult, as we demonstrate in the next sectiocn,

2.CONSTRUCTING LATTICES. The initial part cof the lattice we

are tryiag to construct corresponds to the atomic syvmbols "D":l""

and I. 3ince these symbols play slightly different roles, we separ-
ate T from the others. Yow, all we really know aboit the f‘f iz that
they are pairwise distinct: hence 1t will be sufficient to represent
them by elements cf a jattice illustrated in Figure 11. In such pic-
tures of lattices the partial ordering is represented by the ascend-
ing lines; the weaker (smaller)} elements are below and the stronger

(larger) elements are above, (By the way, a lattice 1is not a flow

diagram; the two kinds of pictures should not be confused., We are

trying to make flow diagrams elementes of a lattice.) What the
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picture :f the lattize F in Tigure 11 shows is that the only parrial
ordering relaticns allowad are:

L CFf.CT
for all :.

In Figure 12 we have a representalion of the lattice (Il which
heeide =1e 1 and T e2lements has only cne main elemert J. 1I% should
be menticned in setting up these partial orderings that to check that
they far completre lattices means that every subset of the partially
ordered s2t must have a least upper bound (its join) in the sense
of the partial ordering. In the twc cases we have so far the result
is obvicus.

Suppose now that D and D' are two given complete lattices with
partial orderings C and C', respectively. Inasmuch as it is only
structurz that Is important, we may assume as sets of elements that
D and D' are disjoint. We wish to combine D and D' together in one
uniified lattice: it will be called the sum of the wo lattices and
will be denoted by

D+D!
Tssentizily, it is iust the uwmion of the two sets sTructured by the
"union" of the two parvial ordering relations. This partial ordering
is not a lattice, however, hecause there is no largest and no small-

ezt elejent. These could he adjeined from the osutside, but a more

convenient and more "econamical' procedure 1s as follows. Let 1,7
and L1,1' be the largest and smallest elements of D and D', respec-
tively. We have been regarding them as distinct (ai? the elements of
0 were to be distinct [rom the elements of '), but now just these

two pairs will be made egual. That is, we shall decree for D+D' that
T=7' an: 1=1", thouph all the other elements are wept separate. The

resultirg partial orcering is easily seen to te a complete lattice.

The preeess of forming this sum of lattices is iilustrarved in Figure

12.



The initial lattice of atomic expressions (diagrams) we wish
to consider, then, is the lattice:
F+{1} .
It will be noted that the notion of sum just introduced could easily
be extended te infinitely many factors. Thus, if we considered lat-
tices [fi} that structurally were isomorphic to {5} (but with dif-
ferent elements), then the lattice F could be defined by:
Foz {fgdelp)e . +lg, o o
Though they are not by themselves atcomic expressions, the symbols
b, will also be thought of as elements of a lattice B defined by:
B = {b0}+{b1}+"'+{bn}+"'
The lattices F, B, and F+{r] are all isomorphic as lattices but are
different because they have different elements. These, however, are

very trivial lattices, and we need much more complicated structures.

Suppose D and D' are lattices whose elements represent "dia-
grams" we wish to consider. If we want to form products of diagrams,
then according to the intuitive discussicn in the last section, the

partial ordering on products should be defined so that

(dD;dB) cC (dl;di) if and only if dO C 4 vand 4" C' d]'_

1 0
for all dl]’ dl € D and all 4!, d]'_ € D', Abstractly, we usually write
< do,d('] > as an ordered pair in place of (dugdé), and then write:

DxD*
fer the set of all ordered pairs < d,d' > with d € 0 and d4' € D'.
The above biconditional defines a partial ordering on DxD' called
the (cartesian) product ordering, and, as i1s well known, the result
ig again a complete latrice. The largest and smallest elements of

DxD* are the pairs < r1,1' > and < 1,1' >, respectively.

Let the lattice

D, = F+[T1}

15
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be the lattice of atomic expressions, Then the lattice

DO+(DOXDD)
could be regarded 2z the lattice which in addition to the atemic
exprescizns has ceompound expressions which can be thought of as pro-
ducts of two atomic expressicns. In fact, there 1s no compelling
reason tc use the absrtract notation < ¢,4' »: we can use the more
suggestive (d:;d') remembering that lattice-theoretically this is
just an orderad pair. MNotice in this regard thar by cur <Zefinitionz
of sums ind products cof latrtices we have the egquations

(138} = 1L (r37) = 1

auteormati.aily.

What about diagrams? Well, even though we wrote
(b, ~d,d') ,

abstracsly all we have is an crdered triple

< bodydt>

This is just an element of the iattice

BxDxD
(if the reader wants to be especially pedantic he can take BxDx0
to be B:(0xD) and < b .,d,4' > = < b, 44" >, or he carn introduce
an independent nction of ordered triple. Structurally, all approaches
give isemorphic lattices.) Hence, the next lattice we wish to con-

sider would be

Dl = DD+(DO*DD)+(E)‘DOXDO)

Again, there is ne reason to use the abstract notation so that
(&, = 2,2') can just as well stand for an ordered triple. Notice
J
that we have in thig way introduced some elerments not considered as
diagrars before:
(v = d,3") and (1 = d,d")
but we shall find that it is easy toc interpret thexn semanticzlly,

5= that this extra generality c¢osts us no special ef fort. 1 we
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like, we can also use the more suggestive notation far the lartices
themselves and write:
= + ; -
Dl DD (DO,DDH(B DD,DU} ,
but for the time being it may be better to retain the abstract nota-

tion to emphasize the fact that we know all these structures as

lattices.

Clearly, Dl contains as elements only very short diagrams.
To obtain the larger diagrams we must proceed recursively, iterating
our compounding of expressions. Abstractly, this means forming

ever more complex lattices:

Dn+1 = DO+(DnXDn)+(BXDn!Dn) .

The way we are construing the elements of these lattices, DO is 1

subget of each Dn:

and, in fact, DU is a sublattice. This means that partial ordering
on DO is the restriction of the intended partial ordering on Dr1 (res-
tricted to the subset). And vesides, the join of any subset orf DCI
formed within the lattice DD is exactly the same as the join formed

within Dn' (This last is very important to remember.) The same

goes for meets, but this fact is not so important,

Consider that

Do €Dy
and that this implies that
Dyx0g € DDy
both as a subset gnd as a sublattice. Similarly, we have:

BXDOXDD c BXDl’tDl
It then follows that
DU+(DDKDOJ+(BXDDXDD) c DG+{DIXD1)+(BxDlxDl)

both as a subset and as a sublattice. By definition we have:
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B, cD

1 27

and continuing in this way, we prove:
Therefore,

whenever n < m

What we have just done is to take advantage of general proper-
ties of the sum and prcduct constructions on lattices as regards sub-
lattices. These general properties abcut the comparisons of the par-
tial orderings and the joins and meets are very simple to prove ab-
stractly, and the reader is urged to work cut the dJetails for him-
self including the assertions of the last paragraph. As a result of

these considerations it will be seen that the union set

@

e,

n=0
has a coherent partial ordering. 1Is this a lattice? It 1s not a
complete lattice {we shall see why, later). In the other hand, many
joins and meets do exist; in particular, the join of every finite
subset exists in the unicon. (The reason is that any finite subset is
wholly contained in one of the Dn') Sc, the union of the lattices

is a finitely complete lattice (a kind of structure that is ordinarily

called ‘ust a lattice).

What are the elements of this unicn lattice? They are exactly
all the finite combinations we desired generated from the atomic dia-
grams by means of the two modes of composition. TFurthermore, the
abstract lattice structure cobtained in this way provides perfectly
all tne laws of computation we listed in the last section. Thus, the
abstract approach gives us & stpucture which we know is a (finitely
complete) lattice on the basis of simple, general principles. Then,

by reference to the construction, the laws of computaticn are worksed
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out. Having worked them out in this case, we can see by inspecti:
of cases that we have all we need becadse there are only a limitel
number of types of elements formed in an iterative fashion. The next
stez is to complete the lattice and then to figure out what is

obtained.

3.CDMPLETING THE LATTICE. Every lattice can be completed {as

in birkhoff (1967), pl26), but we shall want to complete the latiice oof
flow diagrams in a special way that allows us te apprehend the nature
of the limit elements very c¢learly. In particular, the norion of

approximation will be made quite precise.

Roughly speaking, the:elements of the lattice Dr1 are diagrams
of "length" at most n. More exactly, they can be obtained from ‘he
generators by nesting the two modes of composition to a level of at

most n. This suggests that the elements of Dn might be approximable

+1
by elements of Dn' Consider DD and Dl' If 4 € Dl’ then it may telong
to DG c Dl or 1t may not. If 4 € DO’ then 1t is its own best approx-

imation. If 4 ¢ D then since the elements of DD are not compounds

0 k]
(except in a trivial sense) the best we can do in Da is tg approiimate
d by L. In other words, wc have defined a mapping

ﬂno:Dl-' DU y

where for 4 € D1 we have:

d ifd€ Dy

L if not.
As can easily be established this mapping is continuous (in fact,
a more general thecrem relating to sum formation of lattices is

provable), and this is important as all the mappings we employ ought

to be continuous.

Now, consider D’1 and Dn . We wish to define

+2 +1

¢v!+l:Dn+? - Dr:+1
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Tor 4 € D“z, the element u’rnﬂ.(d) will be the best apsroximation
te 4 by ar element in Dv:+l' Recall that

D"_'_1 = DOHDH'UH)HB*DN!DV;}
and

D,yo = DO+(Dn+lan+1)+(Ban+lan+l)

Inductively, we may assume that we have already defined the mapping

) if d € DD 5
u‘aHl(-J.'] = (#’fﬂﬁd'r):&n(_:i“)) iF 4 = (4'd")

(b= & (3754 (")) if

f
"

(b~ d',d")

Now, these three cases are strictly speaking =gt mutually exclusive,
but on the only possibilities of overlap we find agreement because
wn('r) = 1 and l&nil) = 1. By a proof that need not detain us here, we
show that wn*-l is continuous. HNote alsc that we may prove inductively
for alin that for 4 € Dn+1 we have:

d € Drr if and only if Wn(d) = d

The mapping \&”:Dn+1 -+ Dn is easily illustrated. In Figure 14
two diagrams are given: the first belongs to D5 and the second is
the result of applying VJS to the first. t will be noted that drawn
diagramns are slightly ambiguous; this ambiguity is removed when one
choses an expression for the dizgram. In this example we chose to
assocciate to the right and to Interpret a long arrow without boxes
as a single occurrence of [ and not as a product of several ['s.

he upper diagram is complete; while what we might call its projse-
tiomn from DB into 05 is necessarily incomplete. Clearly, we can
recapture the upper figure by removing the vagueness in one pasition
of the lower figure. This is the way approximation works. Tt Is

a very simple idea.
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Suppese 4' € D and d € D and 4 C 2'. How Wn is not only

i = % (4 C lPr_(d') C4a’

We have therefore shown that wr(d') is the Zargest element of Dn
which approximates d4'. This reinforces our conception of ‘-"n as a

projection of Dr‘ upon Dn-, the idea will now be carried a step

+1
further.

Assume that we already knew how to complete the union

w
L
n¥g ?

to a ccmpiete lattice 0_. 1f we were tc be able to preserve relation-

ships, we ought to be able to project D_ successively onte each Dn,

say by a mapping

But these projections really should fit hand in glove with the pro-
jections we already have. Cne way of expressing the goodness of fit

is by the functional equation
Vo = ¥nVa(nel)

which zeans that the projection from D_ onto Dn followed by the

+1

projection from D onto Dn ought to be exactly the projection from

n+l
D onto D,- Suppose this is so0.

¥ow, let d € 0 be any element of this ultimate lattice.
Define a sequence of elements in the known lattices by the equation:

d = ¢_ (d)

n =
for all n. By what we have conjectured
‘J’n(dn Yy = d

+1 n
holds feor all »n, and so

dgCdyC...C4d cd C.. ..




How does the limit element 4 fit into the picture? Easy. We claim
a=[Ja, .
n=0
Since wmn is a projection, we at least have dn C d for all n; thus,
the limit of the dn must also approximate 4. But why the equality?
Well, since D_ is to be the completicn of the union, each element
of D, is determined as the directed join (limit) of all elements of
the union C it. (All elements of D_ must be approximable as closely
as we please by elements from the union lattice.) If 4' belongs to
the unicn and d' C 4, then since d' € Dn for some n we must have

d' C dn. Hence the wvquality.

We have seen that each element 4 & D_ determines a sequence

o
>
< dn n=0
such that
\lfn(dn+1) = dn
holds for all ». Furthermore, distinct elements of O determine
distinct sequences. (Because each d 1is determined as the limit of

its corresponding sequence.) Suppose conversely that such a sequence

of elements dn € Un is given and we define d € D_ by the eguatien

d:godn

We are going to prove that for all n:

4= 4,

(d) .
n

In the first place, since these projections are continuous we have:
@
Vo, (d) = m|_0\bmn(am)

FTor m &« n, since d’m £ Dn, it fellows that

v (d ) = d .

23
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For m » =, ye are golng to prove thar

v (d_ )= d .
ST

e
This 1s truz for = = =, We argue by inducticn on the guantity (m-n).
Having just checked i* for the wvalue 0, suppose the value Iz positive
and that we know the result for the previous value. Thus, m > n. We
use the equation relating the various projections and compute:

1 ) = 4 !
VMn(_m) vn(w

m(n+1)(dm))

= U {d
vn(ﬁnﬂ)

=4
kN
Then  cince the required equation is proved we see:
i) = 4 I [ 1 ) 3
Vo tdd) = 4.0 d U Ua Ud iU
= 4
¥

That is to zay, in the infinite joln all the terms after n = w are

4 but the previous one:z are C dn anyway .

In other words, we have shown that there 1s a one-one corres-
pondence hetween The elements of I}m and *the sequences < a’ﬂ>):‘:0
which =atisfy the equations

¢i"(dn+l) =d, .
Matnematically, this is very satisfactory because it means that
instead of agssuming that we know §_ we can construct it as actually
being +he set of these sequences. In this way, our intuitive ideas
are shown TO be mathematically consistent. This constructicn is par-
ticularly pleasant because the partial ordering on D_ has this easy
sequential definition:
dC d" if and oniy if dn [ d"l for all x%.

The other lattice operations also have easy definitions based on the
sequences. But for the moment the details need not detain us. All

we really need ta know is that the desired lattice D_ does indeed

exist and that the projecticns behave nicely. In fact, it can be
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praved quite peneraily that each '*”m,. s not only continucus bhut elas

is gdditive in the sense that
Y = Ir iyl 1
wwnfu.}.) -U.\,m”-xh.. (SN
for a2l x ¢ D_. Hence, we can obtain a reasaonably clear picturs
of the lattice struecture of [_. But D_ has "algebraic” structur: as

well, and we now turn to its examination.

4, THE ALGEBRA OF DIAGRAMS. EBecause tle Dn were constructed in

a special way, the complete lattice D_ is much more than Jjust a lattice.
Since we want to interpret the elements of D as diaprams, we replace
the mare abstract notaticn of the previcus sectien by our earlier al=-
gehraic notation. Thus, by construction, if 4, d' € Dn and 1f + € B,
then bozth

(d3d") and (b + d,d")

are eliement:z of D vhat if o, 4" € (s Will these algebraic cor-

n+1’
binations of elements make sense?
In order to answer this interesting guestion, we shall employ for
elements d € D_ this abbreviated notation for projection:
d, = 4, (d)
Femember that we regard each Dn € D_ and so dn is the largest element

of Dn which approximates d. If 4 € Dn then

+17
dn = d}ﬂ(d)

also.

Using these convenient subscripts, we may then define for

4, d' € D_:
cazany = Leasary and & v a,an = Lo~ an
n=0 n=0 :

The idea is that the new elements of D_ will have the following
projections:

(d;d')rﬁl = (dn;d:_i) , and (b + d’dl)n+1 = (b + dn,a’r‘:) .
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{The projections onto DD behave differently in view of the special
nature of \00 as defined in Section 3.) It can be shown that these
operaticns (d;d') and (b - d4,d") defined on D_ are not only contin-
uous but additive. (This answers the question at the end of Sectiocn
2.) Hence, D, is a lattice enriched with algebraic operations
(called products and sums and not to be confused with products and

sums of whole latticee.)

Let (D_3D_) be the totality of all elements (di;d') with

.
d, d' € D_. This is a sublattice of D_. Similarly, (B - D_,D.) is

a sublattice of D_. In view of the construction of Dn from Dn

+1
we can show that in fact:

b_ = UO+(Dw;Dm)+(B - 0_.0_)

Because if 4 € Dm and if 4 & DO’ then we can find elements
d;, d: 3 Dn such that either for all n:
d = (4';d™M)
n’"n
or there is some 5 € B such that for all n:
d = (b~ d!,dM
n r

Setting

we find that either

d = (d"3d") or d = (b = 4%',d")
(One must also check that the T and 1 elements match.) Since there
can obviously not be any partial ordering relationships holding be-
tween the three different types of elements, we thus see why 0

decompases into the sum of three of its sublattices.

Inasmuch as D_ is cur ultimate lattice of ezpressions for dia-
grams, it will lcok neater if we call it E from now on. Having ob-
tained the algebdbra and the decompesition, we shall find very little

need to refer back to the projections. Thus, we can write:
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E = F+(r}+{E3E)+(B ~ E;E) ,
an equation which can he read very smoothly in words:
Every erpression 15 either a Ffunction symbol,
or ts the identity su=bol,
or ta the product of two erpressions,
or ta the gum of two ezrpresdsions.
These words are very suggestive but in a way are a bit vague. he

show next how to specify additional structure on £ thdt will turn

the above sentence into a mathematical equation.

To carry out this last program we need tc use a very important
lattice: the lattice T of truth values. It is illustrated in Tigure
15. Aside from the ubigquitous 1 and T it has two special elemerts
0 (false) and 1 (truye). Defined cn this lattice are the Boolear
operations a (and) > ¥ (er), 7 (not) given by the tables of Figure 16.
For cur present purposes, these operations are not too important
however, and we discuss them ne further. What is much more impar-

tant is the conditional.

Given an arbitrary lattice 0, the conditional is a functicn

2:T=x0x0D - D
such that
d U g’ i o= T
d it =13
20e.d,dt) = 4’ if =405
L ift = 1.

The reason for the choice of this definition is to make 2 an addi-

tive function on T=xDxD. Intuitively, we can read 2(t,d,d') as tell-
ing us to test ¢. If the result is | (true), we take d as the value
of the conditional. If the result is 0 (false} we take d'. [If the
result of the test 1is underdetermined, so 1s the value of the condi-

tional. If the result 1s ocverdetermined, we take the join of the
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values we would have obtained in the self-determined cases. This
last is conventiocnal, but It seems to be the most convenient convern=-
rion. It will be easier fto read if we write

(¢t 2d,d")y = 2(t,4,d") ,
and say in words:

if t then d else 4!

It is common to write -+ in place of 2, but we have chosen the latter

to avoid confusion with the conditional expression in E.

Returning now to our lattice E there are four fundamental

functions:
func:t - T ,
idty:gE - T ,
prod:£ - T ,
sym:E - T
All of “these functions map 7 to T and 1 to 1. For elements

with 4 # 1 and d # L we have

1 ifdeF
func(d) =

0 if d&F

1 if 4 € (I ;
idty(d) =

0 if 4 & {1}

1 if d € (E;EY
prod(d) =

Q if d & (E;E?

1 if d € (B + E,E)
sum(d) =

0 if 4 & (B ~ E,E)

These functions are all coritinuous (even:additive). They are the

functions that correspond to the decomposition of E inte four kinds

of expressions.
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Besides these there are five cther fundamental functions:
first:E - E
secnd:E -~ E
left:E = E
right:t ~ E
bool:E -+ B
In case d € (E3E), we have:
d = (first(d);secnd(d)) ;
otherwise:
first{d) = secnd(4d) = L.
In case 4 € (B ~ E,E), we have:
4 = (bool(d) — left{(d),riqght(d))
otherwise:
left(J) = right(4) = L {(in E} ,
and
beel(d) = 1 (in B)

These funcrions are all continuous.

These nine functions together with the notions of products and
sums of elements of E give a complete analysis of the structure of
E. In fact, we can now rewrite the informal statement mentioned pre-
viously as the following equation which holds for all 4 € E:
1= (func(d) 2 & ,
(idtyld) O 1 ,
{prod(d) > (first(.!};secnd(d)) ,

(sum(d) O (bool(d) ~ left(=x),right(d)), L))}

Arother way to say what the result of cur constructicon is would
be this: the lattice E replaces the usual noticns of syntax. This
lattice is constructed "synthetically", but what we have just veri-
fied is the basic equation of "analytic" syntax. All we really need

to know about E is that 1t is a complete lattice that decomposes inte



a sum of its algebraic parts. These algebraic parts are either gen-
erators or products and sums. The complete analysis of an element
(down one level) 1is provided by the above equation which shows that
the algebraic terms out of which an element is formed are uniquely

determined as continucua functions of the element itself.

Except for stressing the lattice-theoretic completeness and
the continuity of certain functions, this sounds Jjust like ordinary
syntax. The par-allel was intended. But cur syntax is not ordinary;
it is an essential generalization of the ordinary noticns as wve now

show.

5,L00PS AND OTHER INFINITE DIAGRAMS. In Figure 17 we have the

most well-known ccnstruction of a flow diagram which allows the infor-
mation to flow in circles: the so-called while-locp. It represents,
as everyone knows, one of the very basic ideas in programming lan-
guages. Intuitiwvely, the notion is one of the simplest: information
enters and is tested (by bg). If the test is positive, the informa-
tion is transformed {(by fD) and is channeled back tec the test in pre-
paration for recirculation around the loop. While tests turn out
positive, the circulation continues. Eventually, the cumulative
effects of the repeated transformations will produce a negative test
result {f{f the procedure is to allew output), and then the informa-

tion exits.

None of our finite diagrams in E (that is, diagrams in any of
the Dn lattices) has this form, It might then appear that we had
overlooked something. But we did not, and that was the point ¢f mak-
ing E complete, To appreciate this, ask whether the diagram involv-
ing a loop in Figure 17 is not an abbreviation for a mere ordinary
diagram. There are many shortcuts one can take in the drawing of
diagrams te avoid tiresome repetitions; we have noted several pre-

vicusly. Loops may just be an extreme case of abbreviatien. Indeed,

31
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Figure 18
THE INFINITE VERSION OF THE LOOP

Figure 19
A DOUBLE LOOP
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instead of bending the channel back around te the front of the dia-
gram, we could write the test again. And, after the next transfor-
mation, we could write it out again. And again. And again, and
again, and ... . The beginning of the {nfinite diagram that will
thereby be produced is shown in Figure 18, Obviously, the infinite
diagram will produce the same results as the loop. (Actually, this

assertion requires proof.)

Does what we have just said make any sense? Some symbelization
will help to see that it does. We have symbols for the test I;D and
the transformation f,. Let the diagram we seek be called 4. Look
again at Figure 18. After the first test and transformation the
diagram repeats itself. This simple pattern can easily be expressed
in symbels thus:

d = (b, ~* (_f‘O;d),I) .

]
In other words, we have a test with an exit c¢n negative, If rositive,
on the other hand, we compound fo with the same procedure immediately

following. Therefore, the diagram contains itgelf as a part.

That is all very pretty, but does this diagram d really exist
in E? To see that it does, recall that all cur algebraic operations
are gsontinucu? on E. Consider the functicn ¢:E ~ E defined by the
equation:

&(zg} = (bo - (fo',a:),l') .

The function € is evidently a continuous mapping of diagrams. Every

continuous fumetion on a camplete latties into itself has a fized

potnt. In this case, we of course want d to be the least fixed point:
d = $d) ,

Lbecause the diagram should have no other quality aside from the end-

less repetition. The infinite diagram 4 does exist. (It caniot be

finite, as is obwious.) We can how see why we did not introduce

loops in the beginning: their existence follows from completeness
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and continuizy. In any case, they are very special and only one

among many diverse types of infinite diagrams.

Figure 19 shows a slightly more complex example with a double
loop. We shall not attempt to draw the infinite picture, since that
exercise is unnecessary. The figure with loops is explicit encugh
to allow us to pass directly to the correct symbolization. To accom-
plish this, label the two re-entry points 4 and d'. Tollowing the
flow of the diagram we can write these equatiocns:

d = (fO;d'}
and
ro= - E . .
d' = (bD {fl,d },(bl f,z,(f31d)))
Substituting the first equation in the second we fipd:
d' = (bD - (fl;d'),(bl - fQ,(fa;(fO',d‘))))
Now, the "polynomial”

W) = (b = (F30) (B = £, (F53 (752000

0
is a bit more complex than the previous &(x), but just the same it
is continuous and has its least fixed point 4'. Thus, 4', and there-

fore d, does exist in E.

Sometimes, the simple elimination procedure we have just illus-
trated does not work, A case in peint is shown in Figure 20. The
loops {(whose entry points are marked 4 and J') are sc nested in one
another that each fully involves the other. (By now, an attempt at
drawing the infinite diagram is quite hopeless.) The symbolization
is easy, however:

d = (bD - fu,(bl - (fl;d),(fz;i')))
and

d' = ’(b2 - _}“3,(i-3 - (fu;d),(fs;d'))).

In this situatien any substitution of either equation in the other

leaves us with an expression still containing doth letters d and d'.



That is to say, the two diagrams called 4 and 4' have 1o be con—
structed simulianeousiy. Is this possible? It is, Consider the
fact that ExE Is alsc a complete lattice, Introduce the function
9:ExE = ExE

defined as follows:
OC22,¥>) = (S (B (F 50 2 (o su ) s (Byf g, (B = (f 520, (Fgy)) >
Now, this function ® {s continuous and has a least fixed point:

< d,4'> = O(< 4,43,

and this pair is exactly the pair of diagrams we wanted.

This method can now be seen to be flexible and of wide applic-
ability. TFor exanple, if using our algebra on E, we write down any

system of polynomials in several variables:

nO(IU’rl’x'i"")’nl(rﬂ’rl'r?"")’HZ(IU’I"_’I D I

gt
then on a suitable product lattice:
ExExEx...

we can solve for fixed points:

dy =M (dgsdyady,...)
dy =0 (dy,dydy,. )
dy =M, (dyydysdysess)

Diagrams constructed in this way may be called algebraic elerents

of E. The finite diagrams in the union of the D,,1 may be called
rational. This classification does not by far exhaust the elements
of E: there are besides a continuum number of transcendental
elements. (The reader may construct one from Figure 18 by replacing
the sequence of boxes fU’ fD, fO’ ... by the sequence fo, fl' f,z,

or by some other nonrepeating sequence.) Whether these other
elements of E are of any earthly good remains to be seen, They are
there, in any case. If you do not care to look at them, you need

not do so. It will be your loss not theirs.

35



36

_ _
0 Col
+
oV y
——i-4 'r_ -
A f[
-1+
+ 5
—_ d'
f2 + fs
A _
\r
fs
Y
Figurea 20

NESTED LOOPS

Figure 2]
A DIFFICULT DIAGRAM



37

It is not too easy to draw pictures of some of the algebraic
elements of E. Teke, for example, this defining eguation:

d= by~ (Fs

(d;fl)),I)

A first and an unsatisfactory attempt to draw this as a diagram is
shown in Figure 21. The question is what to fill in the middle.

We need another copy of 4 itself; but this involves still another
copy of d, And, so on. There seem to be nc shortecuts available.

Any attempt to introduce loops will not make it clear that in any cne
tour of the channels the game number of fl] boxes as f‘l boxes must be
visited. But this Is a failure of the plcture language. The alge-
braic language is unambiguous (lience, better!), Nevertheless, this

example does suggest that there is a classification of the algebraie

elements of E that needs adiiticnal thought.

Now that we see something of the scope of E, we can organize
the study of its elements with the aid of further notations. Tor
example, the while-lcop is so fundamental that it deserves its own
notation:

(bxd) ,
which stands for the least fixed point of the functicn
(b —+ (dyz),I) .
It can be easily shown that * is a continuous function on BxE into

E. There are many others.

This is the place to clear up a continuing notational confusion,.
Since, in order to comnunicate mathematical facts, we need tc write
formulas involving symbols, we have to be clear about the distincticn
between a symbol and what it denotes. This distinction becomes par-
ticularly critical when we study the theory of syntax, as we have
been doing here. So, let us be very pedantic about the nature of
the constructions we have been discussing. What are the elements

of E actually? FEither they are elements of F or of {I} or they are
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pairs or triples of pairs or triplies of ... of elements of B and E.
21 they are limit points of these, which strictly speaking, are in-
finite ("convergent") sequences of rational elements of E. Alas,

E contains no symbols, only mathematical constructs.

But defined on E is a wheole array of functions and constants:

fﬂ,fl,..-,f,(IEHJ,(b"JC,_»'j} .
func(e), ..., firstiaed,. .. ;v
gte.

Thus, such things as subscripts, capital let<ers, parentheses, Sami-
colens, arrows, commas, bold-face letters, and stars do not actually
occur as parts of any of the elements- of -our "expression'" space E.
Rather, E is to be regarded as a mathemasical model of a theory of
erpreggions. It is only one of many similar models. Or, if you like,
E is a model ror a theory of geometrie diayrame, and a quite satisfac-
tory theory at that. The lattice £ does not care what applications
you care 1o make .f it. E is abstract. E gives you a fixed struc-
ture to pguide your thoughts. It is the same with the theory of the
real numbers and analytic geometry. These structures are "pure”:

it is up o us to supply the plot and to write exciring stories about
them using a careful cheoice of language (that is, functions, rela-
tions, etz.}. In the case of E, however, we can ask not only what

it ¥g, ard what its elements do, but also what do they mean.

6.THE SEMANTICS OF FLOW CGIAGRAMS. e have spoken all along of

the flow of information through a diagram. It is intuitively clear
what is meant, but eventually one must introduce socme precise defini-
tions if he ever hopes toc get any definite results, In other words,
i1t is nos time to present in detail a mathematical model of the con-
cert of flewing. Up to this point, everything is static: the ele-
ments of E do not move; they do not light up, make ncise, or other-

wise show signs of life. We have sketched many pictures of elements
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of E and sn the paper, on these diagrams, we can move cur fingers or
shift our eyes back and forth. The abstract elements of E renain
impassive, however, and must remaln so, frozen in the eternal realm
of ideas. But they neither expect or want our pity. And, we are

free to study them, to talk about them as we do of works of art,

Clearly, the first requirement in the study of the meaning of
the artifacts in E is a theory of i¢nformation. Disappointingly
enough, in this paper we shall not make a very deep study of this
essential notion. We shall take it as axiomatic that the quanta of
information form a lattice called:

s .
If you prefer, you can alsc consider the lattice 5 as being the lat-
tice of states (states ¢f "nature™). Where the lattice comes from,
we doc not say. We shall give some examples, by and by, but shall
not be able to discuss lattices in general here. It should be rea-
sonably evident from the sucoess we have had in constructing lattices
with useful properties, that this assumption is no less of generality.

Indeed, it can be argued that the requirement is a gain of generality.

In order to specify the meanings of the elements E, we must
begin with the f‘_i e F . Here, we have great freedom: their mean-
ings can be determined at will -- within certain limits. The limits
are set by this reascning: as information passes through a box it is
transformed. Tf the box is labeled with the symbol fi’ then the
meaning of fi is this transformation. That is, corresponding to
each fi iz a function

Frs s
which provides the means of transforming S. MNote that the transfor-
mation depends only on the label and not on the context of occurrence
of a box, because we intend like labeled boxes to perform the same

transformatien. Since we have gone to the trouble of saying that
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5 is a complete lattice, we will also require each function S-(fi)

to be continuous.

Think for a moment of the collection of all continuous funa-
tions from S into 5. If u and v are such, there i1s a most natural
way of defining what it means for u to approximate v»:

uC v 21f and oniy if u(g) C ulg) for all o € §

It can easily be established that the set of continucus functions
becomes in this way a complete lattice itself. We denote this
lattice by [§ - §]. (fgqutiorn: do not confuse this neotation with
the earlier (B ~ E,E), which is a certain sublattice of E.)

In a highly useful short-hand- wéy we can say that

FF -~ [5 5]
We even require P , as a mapping, to be eontinucus. Thus,
Fe [F » [S - 5]]

In this manner, we indicate succinctly what is called the logical
type of 3} as a mapping. Attenticon paid to logical types is atten-

tion well spent.

The next project is tc attach meanings to elements of B. If
b € B it designates some test that may be applied teo elements of S.
The outceme of a test is a truth value. Tor us, that means an ele-
ment of the lattice T. Hence, tc have meanings is te have a (con-
tinuous) function
BB~ [5~+T1]
Both [S + 5] and {5 = 7] have largest elements (both are lattices).

In [S +5] it is the constant function T (obviously, a continuous

function). We sheould write

T[5+5] €[5 - 5]
where for all o € §5:

T[S-'S](a) = Tg



41

But we drop the subscripts and write 7(g) = 1. Similarly, for
1{0) = 1. The same slightly ambiguous notation is used for [§ - TJ.
For simplicity, we require both‘ # and B to have the property that
Fr) =7, FLy o= oL,
Bty =1, @BCL) = L,
where it is left 1to the reader to determine to which lattices each

of the 7's and 1 'z belong.

The functions ¥ and B may be chosen freely within their
respective logical types == but that is all the freedom we have,
The meanings of all the other elements of E are uniquely determined

relative to this choice of 3 and@® ,

To show how this works out, we shall determine a functicn "y
(again:continuous) such that
V:E + [5 = 5]
If 4 € E, then A){d) is the "value" of d (given F and @ ). The
intention is that if g € § is the initial state of the information
entering the flow diagram J, then
AVIENED
is the final state upon exiting. We thus de not teach you hcw to
swim through the channels of the flow diagram, but content ourselves
with telling you what you will look like when you come out as & func-
tion of what you looked like when you jumped in. The transformation
is, of course, continuous, And, merely knowing this transformation
(over all 4 and all o) ig sufficilent for a mathematical theory of
filowtng.
The precise definition of 'lj is obtained by simply writing
out an equation that corresponds to what vou vourself would do in

swimming through a diagram. We write it first and then read it:



y?2

Vi) (o) = (functd)> Hdis) ,

{idty(d)> g,

(prad()>Wisecnd (d)) (W(First(d)I(o))

(sum(3)2(® (bool¢d3) (a)dW(Teft(d)ite) Mright(d))io)), )i
(One small point: we may regard ¥ as being of type F:E = [$ = §]
because @F{(d) = L is a good value if 4 € F. Or, we should replace

F(d) by F(|d)) where |d]| = d if dE€F, and |df = L € F if d & F.)

The translation of the above equation runs as follows:
To compute the outcome of the passage cf
g through d, first ask whether d is a fune-
tion symbol. If it is, thHe outcome is
BFidifa). IF it ie not, aek whether d 1is
the identity symbol. If it is, then the
outcome ig a. If it ie not, aek whether
d is a product. If it is, find the first
and gsecond terme of 4. Pase a through the
first term of d obtaining the proper out-
come. Take this ocutcome and pass it thrpough
the second term of d. That gives the desired
final outeome. If d i{s mot a produet, ask
whether it is a sum. If it 12, find the
boolean part of d and test g by 1t. Depend-
ing on the result of the test, puss ¢ through
either the left or the right braneh of d, ob-
taining the desired ocutcone., IY d is not a
sum f(this cose will wot arise), the outcome

is L.

Cne soon learns to appreciate equatlons. And, the eguatiens
are more precise as well as being more perspicuscus =-- though some-
times they become so involved as to be unreadable, Note, for exam-

ple, how our equation for A} tells us exactly what to do in case
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Bibaoltd)d(g) = L or = 7
This would be rather tiresome to put in words. The question we need
to ask now, however, is whether this equation really defines 1} .
Obvicusly, it is not an explieit definition because V' occeurs on
both sides of the =juation. Hence, Wwe cannot claim straight off thar
'U' exists. To prove that 1t does, scme fixed points must be found

in some rather sophisticated lattices.

It was not Zust an idle remark to peint out that
[§ ~ 51
is a complete lattice. Knowing this, we have by the same token that
[E -+ [s~ $]1]
is also complete. And this lattice gives the logical type of -
Ve [F~ (S~ 5]

To find this % , then, as a fixed point, we would need a function

[l

€ [(E~ (s ~+S]}~+[E~ (s~ 5]]]
which is a lattice somewhat removed from eyveryday experience. But

that does not matter: we know all the general definitiens.

Here 1s the specific principle we need. In the following ex-
pression the var-iables ¥ , 4, and o occur of types [E = [$ = §]17,

E, and § respectively. The expression is:

(func(d)2 Fd) (o)

(idty(d)oa

(prod{d)> Xlsecnd(d)) (X (Firstl{d)(a)) ,

(sum(dI2 (B (boa1(d)1)¢a)> X(left(d)d(a), F(right(g))(a)), 131 D)

This 1is a functlon of thrée variables. We can prove, just by looking

at it, that it is ecntfruous in its three variables.

Forget about the exact form of the above expression ané imagine
any such continuous expression:
(... %...d...9)

Holding % and d fixed we have a function of o.# The logical type of
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the value of the expression is also 5. Thus, there iz a function
= '( X ,d) desending on given ¥, d such that

X A ) = (L XL 4 L)
The logical type of ='( X,2) is [$ = $]. In cother words, Z'( ¥.,4)
is an "expression" whose value depends on X and 4. We can show

that Z'(%,7) is continuous in % and d. Geoing around again,

there must b a function {a uniquely determined function) EZ(X)

such that
Z(XE(d) = (X ,d) ,
so that
(%) € [E~ S~ 5]1]
But this correspondence 1s corntinuous in % . 3o, really

= e [[E~(5s~>5))~([E~[5=35]]]
All continious functions have fixed points {(when they map a lattice
into itseif}, and so our ‘l} is given hy
Y-z
with the understanding that we take the least such W ( as an element

of the lattice [E -+ [§ - 511,

Yes, the argument is abstract, but then it is very general.
The easiest thing to do 1s simply to accept the existence of a con-
tinuous {ninimal) 'l)' and tc carry on from there. ©Gne need not
worry about the lattice theory -- as locng as he is sure that all
functions that he defines are continuous. Generally, they seem to
take care of themselves. Intuitively, the definitien of W is
nothing more than a recursive definition which gives The meaning of
one diagram in terms of "smaller" diagrams. Such definitions are
common ard are well understood. In the present context, we might
only begin to worry when we remember that a portion of an infinite
diagram 15 not really "smaller" (it may even be equz! to the orig-

inal). It is this little worry which the method of fixed points lavs



to rest. Let us examine what happens with the while-loop.

7.THE MEANTING OF A WHILE-LQOOP. Let b € B and 4 € E. Recall

the definition of
(bed)
It is the least element of E satisfying the equation:
z = {b =+ (d;23),1)
We see that (b+Z 2> € (B + E,E) and
bool ((ped)) = b
Teft ((badd) = (d;{bxd))
right ((5sd)) = I .
Hence, by the definition of v , for ¢ € 5 we have:
(b INo) = ( Bo¥we) 2 P(d;bed)))(E),8)
But (d;(bxd)} € (E;E) and
Firstl{d;{hed))) = 4
secnd{(d;(bxd))) = (bxd)
So we find that:

W (bed)) (o) = ( BBYw0) 2 F({bed})( W(d)(o)},0)
The equation is too hard to read with comfort. Let w = (bxd)

and

Bpy e [5+ T ;

o
n

and

d A4y E [5 ~+ 5]
We may suppose that £ and 4 are "known™ functions. The diagram
is the while-locop formed from b and 4, and the semantical equation

above now reads:

Awie) = (F@) 2 PHw)(Te)),0)

The equation is still too fussy, because of all these g's.
Let

Te([s~5]
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be such that for all o € 5
T(a) = ¢
For any two functions u, v € [§ =+ §], let
urv €[5 = §]
be such that for all g € 5:
(usp) (o) = wilulg))
(This is functional composition, but note the order.) For any
p €[5 ~5), and », v € [5 » 8], let
(p » u,v) € [§ ~ 81
be such that for all ¢ € §:
(p » u,v){a) = (plg) 2 ulaod,w(od} .
Now, we have enough notation to suppress all the o's and to write:
Pw) = (5 = (T Ww)), T,

at last an almost readable equation.

It is impocrtant to notice that * and » are continwuous func-

tions (of several variables) on the lattices [$ ~ T1 and [S - 5].

Indeed, we have a certain vparallelism:

E {s - s1
5 [s - 711

fi. ’?{

T

b, L.

o J

(ryy) (usu)
(& 2> z,y) (p » u,v)

We could even say that [S + 5] is an algebra with constante 7. and
T, with 2 product {u+r) and with sums (B, - u,v) {and, 1if they are
of interest, alsc (7 > u,v) and {1 * u,v) where v, 1 € [S =~ T1 are
the obvious funections). The functicn AY:E -~ [S - S] then proves
to be a contingous algebraic homomorphisw. It is nst in general
a lattice homomorphism since it is continucus and not jein preserv-

ing.



It does, however , presérve all products and sums - as we have
illustrated in one case.
Let us make use of this observation. If we let $:E + E be
such that
lxr = {6 + {(dyz),I)
tnen our while-loop w = (bxd) is givan by
b o= I:J@"u) .
n=0
The function ¢ is an algebrai¢ operation on Ej we shall let
F:(5 + S]1 + [5 +» 5] be the corresponding cperation such that
Tlu) = (b » (dewd,I) .
From what we have said about the continuity and algebraic properties
of 1’, it follows that
o
Yoo = L)
n=0
This proves that Wiw) is thne least solution u € [5 + $1 of the
equaticn
u = (& » (du),D)
Thus , 1’preserves while; more precisely, there is an operaticn
on [5 + T1x{S = S5) aralogous to the s operation on BxE, and we have
shown that U is also a nomomorphism with respect to this operation.
Actually, the solution to the equation
r = (b + (diz),I}
is unique in E. It is not so in the algebra [§ + §] that the equation
w = (B » {(d*u), D
nas only one solution. But we have shown that v picks out the
least solution., This cbservation could be applied more generally

also.

47



ug

In any case, we can now state definitely that the quantity
LV IOPI )]
is computed by the following iterative scheme: first B(o} is com-

puted. If the result is 1 {true), then F(v) = #' is computed and

the whole procedure 1s started over on

AN Culta)
If B(o) = 0, the result is ¢ at once. (If Fluy) = ., the resuit is
to If B(g) = 1, the result is 1Jw)(s’) U g, which generallv is
not too interesting.) The minimality of the solution to the equa-—
tion in [S = 5] means that we get nothing more than what is strictly

implied by this computation scheme.

This result is hardly surprising; it was not meant to be,
What it shows is that our definition is zorrect. Everyone computes
a2 while in the way indicated and the function Yi(w) gives us just
what was expected: no more, ne less. We can say that W is the
semantic function which maps the diagram v to its "value" or "mean-
ing" W(y). And, we have just shown that the meaning of a while-
loop is exactly a function in [S —~ 5] to be coumputed in the usual
while-manner. The meaning of the diagramatic while is the while-

process. No cne would want it any other way.

It is to be hoped that the reader can extend this style of

argument to other configurations that may interest him.

B.[QUIVALENCE OF DIAGRANS. Strictly speaking, the semantical

interpretation defined and illustrated in the last two sections de-
pends not only on the choice of § but on that of 3 and @ .
Indeed, we should write more fully:

V(I NB® D),
and take the logical -ype of T to be:

Vg e [IF~ {5 ~513~1[B~{5~TI]~(€~[S~51]

0f course, ’1}5(3)(@) is contirucus in "3 and in & .




If we like, we can call the set S the set aratea of a machine.
The functions ‘& and B give the behavior of the "hardware" of a
machine. Thus, the lattice
LF= {5~ 5)I«[B » [§~ TI]
may be called the lattice of machines (relative to the given $).

This is obviously & very superficial analysis of the nature of

machines: we have not discussed the "content™ of the states in §,
nor have we explained how a function ‘#(f) manages to produce its
values. Thus, for example, the functions have no estimates of

"gost" of execution attached te them (e,g. the time required for
computation or the like). The level of detail, however, i1s that
generally common in studies in automata theory (cf. Arbib (1969)
as a recent reference), but it is sufficient tc draw some distinc-
tions. Certainly, lattices are capable of providing the structure

of finite state machimes with partial functions (as in Scott

(1967}), and much mure: the uses of aontinucus functions on certain

infinite lattices § are more subtle than ordinary employmen: of
point-to-point functions. The demcnstration that the present gener-
alization is really fruitful will have to wait for future publica-

tions, though. (Cf. aluo Bekié, and Park (1969))

Whenever cone has some semantical construction that assigns
"meaning" to "syntactical"” objects, it is always possible to intro=-
duce a relationship of "synonymity" of expressions. We shall call
the relation simply: eguivalence, and for =, y € E write:

T =Yy
to mean that for 222 § and all ¥ and B relative to this § we
have:
P I ) = WO FIB Iy
This relationship obviously has all the properties of an equivalence

relation, but it will be the "algebraic” properties that will be of

u9
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more interest, In this connection, there is cne algebraic relation-
ship that suggests itself at once. For z, y € E we write:
zC ¥

to mean that for all § and all 3 and (B relative to this S we
have:

’U’S('; OB I C 'Usc-:; VOB 2y
These relationships are very strong -- but not as strong as equal-
Zty, as we stall see. The = and [ are related; for, as it is easy
to show, C is reflerive and transitive, and further

ey if and only if x L y and y C =
But these are only the simplest properties of = and C.

For additional properties we must refer back to the exact
definition of ¥ in Section 6. In the first place, the definition of
Vwas tied very closely to the algebra of £ invelving products and
sums of diagrams. The meaning of a preduct turned out to be com-
pesition of functions; and that of a sum, a conditional “join" of
functions. The meanings of = and L are equality and approzximation
in the funcrion space [$ ~ 5], respectively. Hence, it follows from
the monotonic character of compositions ard conditionals that:

zC z'and y L y' impiies (z34) C (z';4")
and (b + xz,y) L (b~ z',y')

In view of the connectiocn between = and C noted in the last para-
graph, the corresponding principle with C replaced by = also

follows.

A sompewhat more abstract way to state the fact just neoted
can be obtained by passing to equivalence classes. For r € E, we
write

z/m = {z' € E:z = z'}

for the equivalence clags of z under = . We also write
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to denote the set of all such equivalence classes, the so-called
quotient algebra. And the point is thar E/= is an algebra in the
sense that products and sums are well defined on the eguivalence

classes, as we have just seen. '

We shall be able to make E seem even more like an algebra, if
we write:
2ty = (1T = z,y)
for all r, vy € E. How, in Section 6 we restricted consideration to
those@ € [8 =+ [§ + T1] such that
Bry =1

Thus

V(DB i=ty) (o) = V(3 2Bz U V(3 (BryIa)

that is the meaning of zty is the lattice-theoretic jeinm (or full
sun) of the functions assigned to x and to y. This, of course,
seems very special. As a diagram we would draw zty as in Figure 21.
The intended interpretation is that flow of information is directed
through both z and y and is "joined" at the output. The sense of

"join" being used is that of the join in the lattice §.

Pushing the algebraic analogy a bit further we can write

certain conditionals as scalar producte:

bex = (b + x,1} ,
anc

(1=b)Yry = (b =~ 1,y;
These two compounds are diagramed in Figure 22. The first passes
information through = provided b is true; the second, through y
provided ¢+ is false. Now, our first really "algebraic" result is this
equivalence:

(b =+ z,y) = (b-x)4(1-b)+y

That is, up to equivalence, the conditional sum can be "defined™

by the full sum with the aid of scalar multiples. A faect that can
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Figure 21
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Figure 22
TWO SCALAR PRODUCTS

Figure 23 _.I’ N

AN INFINITE SUM !




be easily appreciated from the diagrams. This would not be very
interesting if we did not have further algebraic equivalences, but
note the following:

be(zty) = brrtbey

belbez)

bex

a

be(eez) = e+lbrx}
bz C =z

(If we had introduced some algebra into B, These results would be
even more regular. But we chose here not to algebraicize B.) Une
must take care to remember that T is not & Boolean algebra; thus,
while it s correct that:

bezt(l-blez = =z ,
it is net correct that:

be(1-b)rz = 1 .
The reascn being that @B(k){g) = T is possible.

Having sufficient illustration of the properties of scalar mul=-
tiples, we turn now to preducts. First, there is one distributive
law:

zilytz) 2 (z3y)4lzy2)
that is corpect; but the opposite

(y4z)3z = (y3z)tlasx)
is not correct. The reader may carry out the semantical analysis
of these twe proposed laws. The correctness of the first turns on
the fact that for f, f' € [5 + 5] and o € 5 we have

(fU £ )Ca) = Flad U F'{a) .

The incorrectness of the second is a consequence of the failure ip
general of the equation

foWoa'y = flo)y U flag")
for f € [S + $] and ¢, o' € 5. Similarly, one must take care to

note that neither of the following are correct:
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(bexdiy e belaxiy),s
zylbey) = brlzyy?
However, the associative law for ; is valid:

(ziy)ie = z:{y32)

Returning to consideration of the cperation 4 , we remark
that it is associative up to equivalence also; and since it is a
join cperation, we can prove

iy L 8 if and only if = § 2z and y € =2

This means that E/= is algebraically a semi-lattice with 4 as the
join. Whether E/= is a lattice, the author does not know at the
moment of writing. However, we can define countably infinite joins
in the partially ordered set E/= as follows: Given a sequence z,

of elements of E, there is a unique element we shall call

which is characterized by the equaticn

Z:n = zﬂt an
n=l

n={
In pictorial form the diagram is illustrated in Figure 23. This
type of combination is clearly only of theoretical interest, but it
does show why E/= is countably complete. It may be possible that

E/= is a complete lattice, but the author doubts it.

As examples cof equivalences invelving infinite sums we have:

(x3 Zyn) e 21”;?")
n=0

n=0

In case ¥, C

C ¥,41 holds for all », we would also have:

(("’ Yiz)w “‘( ;23

as a consequenhce of continuity. There are many other similar laws.



9.CONCLUSION. Starting with very simple-minded ideas about
flow diagrams as actual diagrams, we introduced the idea of approz-
imation which led to a partiailly o~dered set of diagrams. A rigor-
ous, mathematical construction of this set produced what proved to
be a complete Llattice -- the lattice of flow diagrams. Defined on
this lattice were several algebraic operatione and the lattice as
a whole satisfied an equaticon that ccnnected it with the approach of
analytie ayntax. But the limits available in a complete lattice
introduced scmething new into the picture: infinite diagrame. 1In
particular, these infinite diagrams provided sclutions to algebraic
equations (the soluticns were algebraic elementa) which could be
identified with the intuitive concepts of Zocps and other "reour-

give" diagrams (i.e. with feedback). So much for ayntaz.

Semantica of flow dlagrams entered when the mapping of evai-
wation was defined from the algebra of diagrams into the algebra
of functions on a state epace (which was alsc a lattice). A bit of
argument was required to see that evaluation captured the intuitive
idea of flow in a diagram, but it became clearer in the example of
a while-loop. From there, it was safe to intreduce the noticn of
equivalenae of diagrams and to study the resulting algebra. The
reason for working out the equivalence algebra is, of course, to

formalise some general facts about semanties of flow diagrams,

Much remains to¢ be done before we have a perfect understanding
even of this elementary area of the thecry of computation. For one
thing, only a start on the systematligation of the algebra under aqul-
valence was made in Sectien 8, It may be that equivalence is not
at all the most important noticn, for there may be too few equations
between diagrams holding as equivalences. A more useful notion is
the conditional equaticen. That is, we might write

=z py =y
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for =, y, ', ¥' € E to mean that for all 5 and all 3', & , and

all o € §, {f it is the case that

Vo FriBrimrion = 1}5(3'): By
then (a8 a ecnsequence) ve have
'US('&'M@Ny)(c) = %’Sa"})(@ny'){u) )
Note that this is not an implication between two equivalences, but
from each ingtance of one eguation to the corresponding Instance
of the other., Similarlv, ve could write:
e £ " FyEu'
Also it is useful to be able to write:
Ing "_‘('1’:'1 =I‘ll’ e
to mean that in each instance in which all the hypotheses on the
left are true, the conclusion on the right follows., Many important
algebraic lews can be given such a form.

Thus, in order to have a reallv systematic and useful algebra
of flow diagrams, one should studv the consequence relation + and
attempt to axiomatize all of its laws. An effective axiomatization
may only be possible for equations involving a restricted portion

of E, because E contains so many infinite diaprams. But it is

an interesting question to ponder.
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