TOWARD A MATHEMATICAL
SEMANTICS FOR
COMPUTER LANGUAGES

by
Dana Scott
and

Christopher Strachey

Qxford University

Computing Laboratory _
Programming Research Group-Library
8-11 Xebls Road

Oxford OX1 3QD

Oxford {0865} 54141

Oxford University Computing Laboratory

Programming Research Group



'DATE
4.9,

5

ACCESSION No.
263

flll

}

30058139400V

i

oy




OXFORD UNIWERSITY CCMPUTING LAEORATO'RY
PROGRAMMING RESEARCH GROUP
45 BANBURY ROAD
OXFORD

’ﬁfiﬁ‘ (ory 7

| PR

4 0CT 1971

TowArRD & MATHEMATICAL SEMANTICS
FOR
CompuTER LANGUAGES

by

Dana Scott
Princeton University

and

Christapher Strachey
Oxford University

Technical Monograph PRG-6
August 1971

Oxford University Computing Laboratory,
Programming Research Group,

45 Banbury Road,

Oxford.



& 1971 Dana Scott and Christopher Strachey

Department of Philcsophy, Oxford University Computing Laboratory,
1879 llall, Programming Research Group,

Princeton University, 45 Banbury Road,

Princeton, New Jersey 08540. Oxford 0XZ 6PE.

This paper is also to appear in Frooceedings o the
Symposium on Computers and Autcmata, Microwave Researtch Institute
Symposia Series Volume 21, Polytechnic lnstitute of Brooklyn,
and appears as a Technical Monograph by special arrangement with
the peblishers.

References in the literature should be made to thg
as the texts are identical and the Symposia Seriles
/ available in libraries.




ABSTRACT

Compilers for high-level languages are generally constructed
to give the complete translation of the programs into machine
language. As machines merely juggle bit patterns, the concepts
of the original language may be lost or at least obscured during
this passage. The purpose of a mathematical semantics is to give
a correct and meaningful correspondence between programs and
mathematical entities in a way that is entirely independent of an
implementation. This plan is illustrated in a very elementary
way in the introduction. The first section connects the general
method with the usual idea of state transformations. The next
section shows why the mathematics of functions has to be mdified
to accommodate recursive commands, Section 3 explains the modifi-
cation., Section 4 introduces the environments for handling variables
and identifiers and shows how the semantical equations define
equivalence of programs. Section 5 gives an exposition of the new
type of mathematical function spaces that are required for the
semantics of procedures when these are allowed in assignment state-
ments. The conclusion traces some of the background of the project
and points the way to future work.
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TowarD & MATHEMATICAL SEMANTICS
FOR
CoMPUTER LANGUAGES

0. INTRQDUCTION, The idea of a mathematical semantics for a
language is perfectly well illustrated by the contrast between

numerale on the one hand and numbers on the other, The numerals
are expresstons in a certain familiar language; while the numbers
are mathematical objects (abstract objects) which provide the
intended interpretations of the expressions, We need the ex-
pressions to be able to communicate the Tesults of our theorizings
about the numbers, but the symbols themselves should not be con-
fused with the concepts they denote. For one thing, there are
many different languages adequate for conveying the saeme concepts
(e.g. binary, octal, or decimal numerals). For another, even in
the same language many different expressions can denote the same
concepts (e.g. 2+2, 4, 1+{1+(1+1)), etc.), The problem of ex-
plaining these eguivalences of expressions (whether in the same

or different languages} is one of the tasks of semantics and is
much too important to be left to syntax alone,. Besides, the
mathematical concepts are required for the proof that the various
equivalences have been correctly described.



In more detail we may consider the feollowing explicit

syntax for binary numerals:

NUMERALS
v i=0of1|ve]vs

Here we have used the Greek letter v as a metavariable over the
syntactical category of numerals, and the category itself is being
given & recursive definition in the usual way. Thus, a numeral
ts eithcr one of the digits 0or 1 or is the result of suffixing
one of these digits to 2 previously obtaincd numeral. Let the
set of all numerals be called Nml for short.

Semantically speaking each cof the numerals is meant to
denote a unigue number. Let N be thc set of numbers, (The
elements of Nml are expressions; while the elements of N are
mathematical objects conceived in abstraction independently of
notation.} The obvious principle of interpretation provides a
function, the evaluation mapping, which we might call U, and

which has the functional character:
T Nml o+ N,
Thus for each v € Nml, the function value
At
7& the number denoted by v.

How is the evaluation function U determined? Inasmuch as
it is to be defined on a recursively defined set Nml, it is reason-
able that A shouid itself be given a recursive definition. Indeed
by following exactly the four clauses of the recursive definition Nmi,
we are motivated by our understanding of numerals to write:

Yol = 2
il =2
Pivol = 2-VIvi
A vil = 2-Vlvi+:
Here on the left-hand side of the cquations, ¥ is heing applied

to cxpressions; while on the right-hand side the values arc given.

Te borrow the relevant terminology from logic, the numerical ex-



pressions belong to the objeect language; whereas the definition
of Wis given in the metalarnguage. To be able to write down ex-
plicitly the definition of V¥, some metalinguistic symbolization

is of course required. The metalinguistic expressions must at
all cost be distinguished from those in the object language.

{We have put the object language © and 1 in Roman type-face and the
metalanguage 0 ,1,2 1n italics. Logicians often take further pre-
cautions by enclosing the object language expressions in quotes;
the quotation-expressions can then be regarded as part of the
metalanguage, and thus the languages are “insulated" from one
another. ln this paper, however, our object languages are
simple enough making the use of such devices less critical. The
separation needs to be ubserved nevertheless, and in the semantic
equations we have enclosed the object language expressions in the

special brackets [ | merely as an aid to the eye.)

Granted that there is a distinction between symbol and
object, it may still seem that the above equations for WVare
circular or nearly vacuous in content, Such a conclusion is
wrong, however, because there is an easily appreciated point to
the definition:; namely, the explication of the pesiticonal wotation.
In our metalanguage we need never have heard of decimals or binaries.
We do require, though, the concept of number, the concepts of zero
and pne, the concepts of addition and muitiplication,. (By defin-
ition 2=7+7, say, and if we want, the whole theory of numbers
could be conveyed in the metalanguage with the help of Roman
numerals augmented with a few tricks from algebra such as the use
of eperaticn symbols and variables.) These congepts, fundamental
as they are, cannot be strictly said to imply the positional

notation, In fact, the clever use of 0 to help form strings of
digits was a discovery of language. This discovery in no way

changed the abstract nature of number, but it was a tremendous
help in popularizing the use of arithmetic ideas - and there seems
to be a perfectly good parallel here with computer languages many
of which contain in their syntactical structures quite as clever

discoveries of language.



One point that encourages confusion in thinking about
numbers is the possibility of having a complete and canonicql
naming system for them. In the illustrative syntax for binary
numerzls we have been considering,such strings as 001101 were
allowed, As everyone knows the initial run of 0's is unnecessary

for we can show that
joo11e1l =1i1101] = X111,

This type of straight-forward deletion gives us the only possible
equivalences in this very simple language. The redwuced numerals
(i.e,,numerals of the forms 0 and iv, where v € Nml is arbitrary}
are then in a one-one correspondence with the numbers. We can

then work exclusively with these normal forms, and it is so easy

to think of these expressions as being the numbers - especially
if one is familiar with only one notational system. The attitude
is wrong-headed, however. But for many activities there may be

no real harm, since the confused mind will give the same answers
as the clear-headed person. The notationally hound thinker may
often be distinguished by the way he feels that he has to specify
all his operations by algorithmic symbol manipulations (as in
digitwise addition of numerals). Again there may be no real -
harm in this - if the algorithms are correctly given. And in the
case of numbers the two approaches can be brought together {(the
symbolic and the conceptual), for our system of reduced numerals
can, by a slight amount of good will, be regarded as a model for
number theory. Since we know that all such models are isomorphic,
there is not much mathematical advantage in using one model over
another. This is g sense in which numbers can be consistently con-
fused with numerals. But the confusion does not really do us any
good either.

The reasons why the number/numeral confusion should be
avoided are many, For one reason, we may turn the iscomorphism
argument the other way round: If all models of number theory are
isomorphic, you may not want to single out a partticular one at all.
Because the semantical ideas will equally well apply to all of them,
yoi may want to leave open the possibility of shifeing from one to

another, This is somewhat analogous in computer language semantics



to allowing different representations to be used in different
machines to implement the same language (in hopefully isomorphic
ways). In the case of numbers not much advantage is bought by
this freedom, but any attitude of restricting generality is a

bad habit whi¢h can be misleading in analogous but more complicated

situations.

A more important Teason for not getting into this habit
comes to the fore when one realizes that for some systems of
mathematical concepts no fully adequate notational system 1is
possible: the real numbers are the prime example. Of course it
will be objected that this realm of mathematics is much too abstract,
much too infinitary, much too distant from real-life computation,
This objection cannot stand careful conceptual investigation, but
a full answer would take us too far from the topic of this paper.
A quite adequate answer concerns not the mathematically very
pure structures such as the real numbers, but rather our thecries
of clagses of similar but different structures, That is to say,
for the semantic investigation of certain language features it
may not be appropriate to single out one (isomorphism type of)
structure, but for many reasons - generality, lack of knowledge,
for the sake of expeTiment - we may want the same semantical
equations to De employed over the whole eclass of structures. Since
the structures need no longer be isomorphic, different structures
may Iead to quite different normal forms for expressions. (The
mathematical theory of groups, for instance, could provide us
innumerable such examples,) Hence, no one system of "numerals'
would any longer suffice. Even if the separate structures could
somehow each be symbolically constructed, the effort would be
beside the point: what we are trying to get at are the commen
features of the structures, The various «d heec details would

only detract from this higher purpose.

To bring this introductory sermon to a close: the point of
our approach 15 to allow a proper balance between rigorous formul-
ation, generality of application, and conceptual simplicity. One
essential achievement of the method we shall wish to claim is that
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by insisting on a suitable level of abstraction and by emphasizing
the right details we are going to hit squarely what can be called
the mathematical meaning of a language. In the triwvial example

of the binary numerals discussed above everyone will agree that

the evaluation function U is indeed correctly defined, That much
is obvious, Note, howewver, that having accepted this fact, it is
then possible to prove that certain numerical algorithms are correct
(digitwise addition, say), and before we had the definition this
question did not even make sense. (Specifically, digitwise
addition is an operation ve ® v, defined on numerals vo,v,.

What one needs to prove is that

Wlve & w3 =WViwel +V[ui}
with symbolic addition on the left and conceptual addition on the
right. It is not difficult to do this, but one needs an indnctive

argument,) These are simple poimts, but it 1s easy to lose sight
of them when the languages get involved.



1, STATES AND COMMANDS We begin by postulating that the inter-
pretation of the language depends on the states of "the systenm".

That is to say , computeT oriented languages differ from their math-
ematical counterparts by virtue of their dynamie character. An
expression does not generally possess one uniquely determined value
of the expected sort, but rather the value depends upon the state
of the system at the time of initialization of evaluation, What
increases the dynamic character of the evaluation process is the
fact that the act of evaluation may very well alter the initial
state. Thus the working out of a compound expression can require
several changes of state, and the treatment of a subexpression
generally has to wait for the moment at which the state can be
provided appropriate to its evaluation. Therefore the "algebra"
of equivalences of such expressions need not be as "beautiful"

as the well-known mathematical examples. This does net mean that
the semantics of such languages will be less mathematical, only

an order more complex.

Part of our assumption is that the states of the system
form a set S, and the dynamic character of the language wili require
us to consider transformations of this S into itself: the state

transformations. For the moment let us write (in our metalanguage)
(s » 81

for the set of all state transformations (this set may require
restriction later). By a trangformation ff € [S + 5] we understand
the ordinary concept of a mathematical funection defined on § with
values in 5. Functions in the mathematical sense are abstract
objects - they can be defined in various linguistic forms, but
after the definition is interpreted all that is left is the bare
correspondence between arguments ¢ € S5 and values f(o) € S, In
particular two functions which assume the same values for the same
arguments are mathematically identical - even though they might have

been defined in some cobject language in quite different ways,

The simplest way to regard the state transformations from
¢ to flgJ is that they give the Ttesults of executing a comrind.
No explicit values are required; one is merely being asked to

"move alonp”. 0Of course certain "values' may be implicitin g,
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and they may be changed in passing to f{0) (e.g. ones position).
The command, however, is concerned more with the overall change;
other kinds of expressions can be used to extract from a state

g € § any relevant values. But one syntactic category in our
language will be that of commands; let us call the set of these
expressions Cmd. Given v € {md, no matter how complex, the
mathematical meaning of this expression is an associated state
transfermation [yl € [S + S1. That is, the semantics of commands

is to provide us with a mapping:
E: Ctmd + [§ » 8],
just as the semantics of numerals gave us:
1F: Nml + N,

What is vague here is that we have no idea what commands are,
whereas numerals were standard: -That we have at this stage no
idea what states o € § are is far less serious, because that is

the part of the interpretation we are on purpose leaving open.

It is not difficult to be more explicit about the syntax
of commands, however, because there are several quite natural ways
of combining them. An initial syntax might look as follows:

COMMANDS
¥ = ()| ¢|dummy |
£ > Yo,¥iveim
Here the Greek letter y is a metavariable over the category {(md)
which is being given a recursive definition. On the right-hand
side of the definition the y,vs,y: can be regarded as previously
obtained commands, where the subscripts are required in a binary
composition to allow for different commands to be chosen. 1f in
one ciause of the definition the same y appeared twice, we would

intend that the same previously obtained expression be used in

both positions, There is no implied connection between the y's
in the separate clauses. The letters ¢ and & are meant to refer
to other syntactic categories yet to be explained. The expression

dummy i's a conatant command {(an "atomic'" command expression}.

As anyone can see (assuming that the categories of ¢ and ¢



are simple) the set Cmd is going to be a context-free language.
Alsoc obvious is the fact that the language is ambiguoue - thus
vyo3vi3y: can be parsed in two different ways at least. Machines
generally prefer their languages unambigucus; while humans enjoy
a little uncertainty, or at least they find ways to overlook
ambiguities by giving each other the benefit of the doubt. S5ome -
times ambiguities make no difference (as in Ye;Y,;Ya1), but at
other timecs they are quite tirescme {as in e = Yo ,Y,;Yz). We
shall deal with this problem presently, but in the meantime note
the clause (¥) in the definition. This c¢lause allows us to form
(e + Yo,Y1);Ys or € + Yo ,(Y,;Y;) which are similar to the anbiguous
expression but which have cne chance less of being ambiguous.

With a sufficient nesting of parentheses all ambiguity can be
eliminated; or, speaking more precisely, there is a completely
unambiguous sublanguage of Cmd. The only trouble with us humans
is that the majority find writing in this sublanguage a terrific
bore; hence the tendency to the more dangerous syntax,

Before we can be more precise about Cmd and the inter-
pretation €, we have to discuss the e. For the time being e € Exp,
the class of Boclean expreseions [we shall allow other types of

expressions later), As a starter at a syntax we can write:
EXPRESSTONS
e = (g)|7|true|falseleca + £1,62

The same Temarks abeout ambiguity apply. The m are certair atomic
expressions which we shall not stop to detail now. The Boolean
expressions true and false are constants,and e + €,,g; is the
well-known conditional expression (shert for: if g, then g else €2,
which some may prefer).

What of interpretation? In the first place we postulate
the set T of truth vglues which contains the elements true and false
corresponding tc true and false, But the meaning &[e] is not
going to be simply an element of 7, for in general values must
depend on states. Besides this evaluation may cause a change of
state. Thus the correct functional character of & is:
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& : Exp + [S + [T x 511,
This means that given € € Exp and ¢ € 3, then
&fe){(a) = <t,a’>
where £t € T is the value of € given ¢, and ¢' 1s the resultant
state after the evaluation and may differ from ¢ as it may have

been changed by the evaluation. {Here T x S is the usual eartesian
product of sets and <' ,-> is the pairing function.)

Before giving the clauses that define € and &, it is useful
to introduce several mathematical operations on functions. If
f:8~>Candg : A+ B, then as usual we write feg : A > C for

the composition, where
(fegl)la) = flgla})
for all o« € A, We have further
P : A+ [B~+ A xB]1]
Mo : A x B+~ A, and
M, : A xB -+ B,
where
P(a)}{(B) = <a,B>,
Mg (<a,B>) = o, and

My (<a,B>) =B
for all a € A, 8 € B, Finally, if p + A" + [B + CJ] and
g : A+ A" x B, then peg : A »~ C, where
(prgl(a) = p(Ma(gla))) (M (g(a)))

for all o € A. On all of these operations and special functions
we ought to write some kind of ABC subscripts, because strictly
speaking they depend on the choice of the various sets; we have
omitted these subscripts as they can easily be deduced from the

centext., The same goes for the identity function
I: h~A,

where
I{a) = a

for all a € A,
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Turning now to the mapping & we have clause by clause:
[ (e} = &)
because parentheses add neothing to meaning.
£[n] = (some given S + [T x $73},

because each atomic expression T must have a given meaning. {Which
meaning this is, need not concern us here, since at the moment all

we consider is the form of the semantic definition.)

&f true) = Pitrue), and
&l false} = P(false),

because true and false are constants which can be evaluated "instan-

taneously™ without change of state. This means that for all o,

&f true]l () = <true,c> and
& falsel (o) = <false,o>.

&leo + £r 630 = Cond(Bles ], &lex])s&leol,
where the function
cond:[S + T x 8T « [§ + T xS] + [T+ (S +Tx S]]
is such that
Cond(eg, ,e2)(t}) = ¢t + &y ,e1
so that

ey (0) iIf ¢t = true,
Cond(e: ye1) (L) (a) =
ea(0) if ¢t = false,
for all &, ,¢s ,%*,0 1n appropriate sets.
It is now possible to give the clauses of the definition
of &:
Criv)l =CI0yl,
El¢] = (some given 5 + $),
Cldummy) = I,
€le > yo,711 = cond@lvel, 8y 3248 €],
Elvsivil =BIYIH°EEY0].



These functional equations can all be read in words: ZE(y)] 1is

of course the same as Elv]. Next €[ ¢} is a given state trans-
formation, since ¢ is taken for the moment as a primitive (or
atomic) command. (Later we could introduce some syntax for

the category of ¢ if we wished, and this would require further
semantic equations of a similar sort.) The dummy-commend is

next being interpreted as the 'do nothing” transformation, The
conditional-command on the other hand requires a conditional
operater similar to the one used for expressions,except that the
domair of definition is altered to make it appropriate to commands.

Specifically we have:
Cond : [S » 5] x [S + S]1 - [T -~ [5 ~ S]],

Some subscripts ought to be introduced to indicate the difference
between the two kinds of (ond-functions, but we are relying on

the context to make this clear. Finally ys;Y: 1is being interpreted
as the sequencing operation on commands, which in terms of state
transformations is simply the composition of functions. Note,
however, the order of application. The "positional notation"

of the command language conventionally places the first command to
be executed on the left and the following one on the Tight. The
convention with mathematical composition of functions is just the
opposite. (The reason being the common use of F{x) rather than z=f

for the function-value notation,)

In format these equations for & and & are not much different
from those for U as applied to the numerals, Ir all cases there
is a syntactical definition in several clauses. The semantical
definition is "syntax-directed" in that it follows the same order
of clauses and transforms each language construct into the in-
tended cperation on the meanings of the parts. 111 the case of
numerals the meanings were familiar mathematical objects on which
many familiar operations (addition, multiplication, etc.) werte
already defined, In the case of commands and Boolean expressions,
the values were not so well known, nar were the operations (such
as (ond) weTy common, Nevertheless, the domains [S + 5] and

[S +7T %= S1 are quite appropriate to the ideas that are being
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explained, and the various operations (s,*,P,M; ,M: ) aTe natural

ones for these domains,

That it is necessary toc construct meanings out of furciions
([S + S1) may seem bothersome, but it should not be deplored.
After all the idea of function is one of the greatest of our
mathematical discoveries. The Calculus would be impossible with-
cut functions, and the development of the subject would be un-
thinkable without the use of various operators (derivative, in-
tegral, etc,) and consideration of the equations involving them.
Though formal languages are not generally made explicit, still
there is constant translation from intuitive ideas to mathematical
concepts (veloeity means derivative, areac means integral, swer-
position means addition of functions, and so om). In the case of
computer languages we cannot say yet that we have introduced con-
cepts anywhere near as important as those of the Calculus, but
the spirit of mathematizing ideas can and ought to be carried
over, That the project is a useful activity remains to be
demonstrated, but the treatment of recursion in the next section
ought to indicate some of the advantages of the mathematical
approach.

Before turning to more important concepts, the question

of ambiguity must be faced again. We have allowed our grammars
to be ambiguous, and so strictly speaking the semantical mappings
¥ and & are not well defined. (Won Nml was well defined because
that_grammar was not ambiguous.) - Is there a2 mistake here? We
think nat. Qur attitude is that the meaning of an expression
depends on the way it is parsed. From this point of view the

mappings € and & are defined not on expressions simpliciter but
rather on the annotated deduction trees for expressions based on
rules of the grammar. (1f one wishes a linear motation, z fully
bracketed language could be introduced in the usual way, ard then
the expressions we have written above would Tesult by deletion

of the brackets and subscripts.) As emphasized above these

brackets (or trees) are intolerable to write; hence, as long as

we keep our semantic equations "in step" with the syntactical defini-
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tions and warn the reader of the oversimplification, it will be
clear what i5 intended without the burden aof any more notation.

(In the terminology of Knuth [2, 3] we are still using only
aynthesized attributes in assigning meanings to expressions,
Whether the inkerited-attribute approach is convenient is some-
thing we must consider further, and there is no doubt that Knuth's
way of introducing both bottom-up and top-down dependencies between
semantic equations is an interesting notion. Be that as it may,
the point of our paper is the study of wkat it is that semantic
equations assign to expressions, The path by which the assignment

is made is at the moment a secondarty issue.)
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2. RECURSION ., The language of commands and expressions as intro-
duced in the last secticen is at best of illustrative value. It

was useful to see in not too horrible detail the connections

between the syntactical and semantical equations. But the actual
language used was of very limited expressive power. The command
structure was of a very direet sort: the execution of such a4 command
would procede along a '"branch" of a4 tree, the commands being
composed 1in sequence and the choice of path at a branch paint

being decided by evaluation of a conditional expression, In Scott
(6] the expressive power of such a language was expanded by the
introduction of a certain kind of iufinite tree, but the mathematics
of this approach would take us too far afield here. And n any
case, it is rather fully explained in that paper. Jur interest
here lies in more conventional language features; in particular
these that can be written dewn 1n finite space. This dees not

mean that thinking of finite expressions as being "unrclled" into
infinite trees might not be mathematically illuminating, rether we

do not have the time to discuss it in this paper.

The question that leads to infinite trees is of course that
of recurcively defined commands, By way of example suppose that
exit is a primitive command, as is fudge. Moreover, suppese that
test is a primitive Boolean expression. One would wish then to
introduce a command Zoop by the equation:

loop = (test + fudge; Iloop, exit)

ln other words, tc locop means to alternate testing and fudging
until a negative test 1s produced. At that moment a hasty exit
is then required without further fudging. This is one of the
simplest and most familiar examples. More generally it %ill be
desired to introduce a whole sequence of interrelated commands
50,51,...,En_1 by a system of eqnations:

= = r =
50 Yor Ei Yyreerr S5 Y1

where we may think of E, as the prinecipal command to be erecuted
and the remaining §; 85 auziliary commands introduced to aid the

definition. Now the Y; command expressions will involve reference
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to the ¢, commands, just as in the loop example. Sometimes it is
possible to eliminate the auxiliary commands at the expense of
perspicuity by substitution of one equation in another. But at
other times the elimination is not possible or not at all obvious.
In any case it is a language feature of well-known convenience to

allow simultaneous equations. All of this is very familiar ground.

Syntactically, to accommodate this recursive style of
command definition, we must expand the language to allow for {temp-
orary) i{dentifiers which will refer to these auxiliary commands,
the precise reference being controlled by a scheme of deeclaration.
The exact style of identifiers need not concern us here; all we
require is a syntactical category [d of expressicns distinct fram
the other kinds of expressions mentioned so far. Besides this Id
should be infinite to allow for as many auxiliaries as we please.

We use the Greek { to range over 1d.

Having provided identifiers, we then need to combine them

with other command expressions. 0f course an identifier standing
alone will be allowed in the expanded Cmd, In this way identifiers
can be included in the interiors of commands. Further the system

of equations indicated above <can be recorded in the following
declaration scheme:

S Eoabyaeavab g P Y e Y,y H
where we have slightly torn apart the equations, The initial list
of identifiers tells us to "watch out" because some auXiliaries are
being introduced - in the order given. The following sequence of
commands tells us how to use these auxiliaries with ‘Ei = Y, intended
- in the order as written. Recursion is permitted because the
various Ei may occur within the Y Having gone to the trouble
of writing £o first, we may not only regard this expression as a
scheme of declaration but also as an instruction to carry out E,O
first, thereby activating the other §, as necessary under the
control of the Y (The pretty brackets § and § are not strictly
necessary, since we could regard : as the declaration operation and

employ the colourless ( and ) to block ambiguity - but one can carry
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linguistic stinginess too far.)

This expansion of expression now requires a revision of
the syntax for commands whereby the principal syntactical ecuaticn
{for ¥) is accompanied by some auxiliary equations for sequences
fnamely En and Yn):

COMMANDS
¥ i= (y)|¢|dummy ||
€ > Yo,¥i[voiv:]
§ En:Yn ‘
n .. o s
. = 50,51,...,En_1 (n>0, the & distinct)
YT Yy, (R0, the v, arbitrary)
A word of explanation is in order here. Greek £ is a metarariable

over identifiers, while £" by definition is a metavariable over
n-tuples of digtinet identifiers. {We keep n>0, so the n-tuples
are nonempty.) The metavariable yn Tanges over n-tuples of
commands {again, n>0), In the last clause of the definition for
v note that the £7 and v” have the game mn. Our language therefore
is no longer context-free. But, if we may say so, who cares?
Context-free languages have limited usefulness. Note, too, that
we have not tried to torture ocurselves with teoe rigorous a style

of BNF syntactical definition, We deny that our syntax is un-
Tigorous or even unaesthetic. On the other hand if someone has

a really neat language definition system that is as easy ti com-
érehend at this level of discussion, we shall be- glad to cinsider
it, The last thing we want to be is dogmatic about Zangusge: it
is in the mathematization of concepts that we have a certain amount
of dogma to sell.

For the time being we introduce no revision in the definition

of Boglean expressions e, Note that the command construction
A |
is, logically speaking, a variable-binding gperator. The iden-

tifiers £" are the bound variables {and, since a matching with
the v" is intended, they must be kept distinct); whereas other
identifiers which occur may occur as free vartables because the con-

strnction can be iterated. A certain semantical device will have
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to be introduced to handle this problem of scope of identifiers,

There are other problems, however, and the loop-example
will suffice for illustratien. In the official notation there
are no equations for commands as such; rather cur example ahove
becomes

§ loop : (test - fudge; locp, exit) §

which is a command with tbe understanding that loop € 1d. ¥hat

is thec cxact meaning of tbis command? Whatever it is our dogma
Says it must be a state transformation im [$ + §1. Let the command
be called » for shert. We are asking what Z{A] showuld be. In-

tuitively we want

CIAl = €ftest + fudge; X, exit]
= ond(E[ > V& fudge] , Bl exit]) «&[ test]

To simplify ocur thinking here let:

£ o= tTAa],

f = ¥f fudgel,

2z = Efexit), and

t = & testl,
where ¢,7,e €[5 » §] and

£ €[S ~ T = §1,

Of these f,c, and t are known, while £ is thve umknown we seek.

The functional equation for £ rcads:

E = Cond(tef,e)xt.
Some solution or otber to this equation - if amy exists - has
the right to be called €l ], the meaning ef the loag- command as

a state transformation,

Now comes thc rub. So far we have net amalyzed the
nature of the set § at all, because we cpted for extreme generality.
If we stick ta this gencrality and allew the functioms f,e, and
¢t to be arbitrary functions, then it is easy to construct an
example where no solution for & exists in the above equation at all.
The reason is simple: f,e, and t are total functiens so interrelated
thut any attempt to define ¢ as required sets up an infinite loop:
sa that no choice of values can be made te satisfy the equation
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as a functional equation between total functions,

The solution te this problem is easy enough and is well
known: we modify our idea abeout the function space [S + S1, We
no longer demand that functions be total but understand the
functions in [$ + S] to be partial functions. Thus for certain
g €5 and certain g € [ + 5] we allow g(o) to be undefined, With
this convention it can then be shown that the equation for i does
indeed have a solution in the partial function sense, and in fact
it has a leas® solution, (By least we mean that the "graph"
of the function is included in every other solution.) This
approach is that of Park [4] and many others, (See references
in Engeler [1] .) Suitable as it is for many purposes and
simple as it 1s, it is not quite the method we wish to adopt.

Our method is related, but it is made a little more sophisticated
in order to supply a closer analysis of the nature of the elements

of 5 which is required for the explanation of other language features.
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3. LATTICES AND FIXED POQINTS. 1n the last section we found it
necessary to expand [5 + 5] to allow for partial functions. The

set of all partial functions is partially ordered by the relation-
suip of one function's being incliuded in the other, Under this
partial ordering the set [5 » $] takes on a structure which has
quite pleasant properties,. These properties can be formulated

in an gbstract way, so that the proof of the existence of solutions
to fixed-point equations can easily be given, In order to regular-
ize and generalize this argument, it turns out to be natural to
derive the structure on [S + 5] from structure on S. This is
accomplished by ezpanding S until it becomes a partially ordered
set itself - in fact, S will be made into a complete lattice.

Just how this construction of an expanded 5 is to be done requires
a closer examination of the kind of elements 5 should have. We
will have to Teturn to this question in more detail in §5. For
the time being suppose that the expansion has been made.

Speaking a bit more generally for the moment, the structure
cf a complete lattice on a particular domain (set) D requires first

a partial ordering which we write as

=Ly
for =,y € D, This relationship is reflexive, transitive, and
anti-aymmetrie, Next, 1f ¥ © U is a subset of D, we assume the

existence of an element of 0, called the least upper bound (lub)
cf the subset X, which we write as:
Lix.
We have for all y € D
lJrc y iff z C y, for all z € x;
and this cendition uniquely chartacterizes Lix < b. A complete
lattice ¢s a partially ordered set in which lub's always exist.

Among the Iub's in a complete lattice there are two extreme
ones: 'the Iub of notking and the lub of everything. That is te
say, the empty subset @ and the full subset D will both have fub's

to which we give special names:
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t =D and T = LJD.
Note that for all & € D it is the case that
1C =2C T,

We can think of 1 as the weakest element and T as the strongest
element of 0. The ordinary elements are somewhere in between,
and : and 1 should be considered rather extraordinary,. {We can
call them bortom and top.)

An intuitive way of reading the relationship « C y is to
say that z apprezimates y. Thus z is worse and y is better. BRut
take care, the sense of approximation being used here is a guelitative
cne of what we might style direct approximation. The statement
r C y does not mean that r is very near y, but rather that z is a
poorer version of y, that z is only partially specified and that it
can be {mproved to y without changing any of the definite feratures
of «x, For example in the case of partial functions, C means
inelusion of graphs (the graph of a function is just the set of
ardered pairs of arguments and function values); hence, improvement
means adding new ordered pairs. The smaller set of ordered pairs
can indeed be = aid to be an approximation to the larger cne. (1ln
the case of partial functions treated by graphs in the ordinary
way, the structure becomes a lattice only when 1 is added in a
somewhat artificial way as a top element which is not represented
as a set of ordered pairs. We shall discuss partial functiens in
2 slightly different way below.) Additional examples of approx-
imations treated in this way can be found in Scott [5] and [6].

If we take the notiorn of approximation seriously, then we

have to rethink what we mean by funetion. Thus if
f:+D=+0D
and
z Cuy,

then f should not juggle z and y around in too arbitrary a fashion.
Indeed it ought tc follow that

Fl=) T flyds
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because <1 we improve = to y, then in "calculating" f(y} the cal-
culation should be just an improvement over that for f(x).
Mathenatically speaking the reasonable functions ought to be

monotonie {i.e., C preserving).

Besides the intuitive motivation for monotonic functiaons,
we have the well-known mathematical fact that monctonic functions
on cemplete latticee aiways have fized points. They even have
legst fixed points, This makes their use most convenient for
our purposes.* Actually the functions we use - and which are
dppropriate to computation theory - have an even stronger property:
they are corntinuous. (See the discussion in Scott ([5] and [6].)
We shall assume this stronger property but shall not go into the
technical details in this paper. The reader should only be assured

that normal functions are automatically continuous.

What does all this theory have to do with the subject of
semartics? Step by step the relevance is this: Commands (programs)
are naturally thought of as defining state transformations. Re-
cursive commands require partial functions. Solving for these
partial functions is just finding (minimal) fixed points in certain
functional equations, In general the existence of fixed points
is justified by a lattice-theoretic argument. Therefore, if we
can see the connection between lattices and partial functions, the
relevance of the theory will be estahlished.

Returning to 5, we promised to expand it to a lattice., This
can be done in many ways, but for simplicity suppose that the initial
version of S was just an abstract set, S,, say, In S, we assume
no particular connections between the elements for the sake of
argument. The expanded S results merely by the adjunction of the

two, new "ficticious" elements : and T, The partial ordering C

* The argument for fixed points is as follows. Let f : B + D
be monotonic., Let ¥ € D be the subset of all y € D such that
¥LC z whenever f(2) C z € D. Let =z = [dr. To show that = = f(x),

note first that z € ¥; because if fiz) C z, then y C 2 for all
y€ Y, sozLC =z, Next note that f(x} € ¥; because if f(z) C =z,
then « C 2z, and so f(x) C f(z) C =z by monotonicity. Therefere
f##z) € | J¥ = . But then f(f(z)) C f{(r), again by monotonicity,
sp £ C f(x) because z € Y. Thus z = flzx).
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aside from satisfying the usual axioms, provides in addition only
the relationships:

1 CzC 7.

(For pictures of these and other partial orderings consult Scott

[$§] and [6].) This expanded § becomes a complete lattice
in a rather triwvial way, and the construction should not be taken
as being typical.

The function space [$S + S§] is now regarded as being the
set of all monotonice funetione from $§ into S. (Ir more interest-
ing lattices we shall restrict our function spaces to the continuous
functions; in this example the restriction makes no difference.)
For 0 € $ and g € [§ » 5] when we formerly wrote that

g(o) is undefined
we shall now write simply
gla) = 1.

The new element L can be regarded as an "embodiment" of the un-
defined. (The companion equation g{g) = 7 could be read "glu)

is overdefined™, but the utility of this concept is not as obvious.}
Now if f,g € [S + $] are any two functions, we can write

fCg
to mean that
- - . Cflo) € glo)
for all o € 5, This definition at once structures [$S -+ $S)as a
partially ordered set and indeed as a complete lattice. This is

a natural definition for g's being an improvement over f, if one
reads it in words, and it corresponds to our previous ideas about
functions. Thus if f{o} = 1 (is undefined), then g{¢a) is un-
regtricted and can be any element of §. 1f f(o) is better defined
{(say, flg) = o' € S ), then g(c) can only be o’ or T if the relation-
ship f C g is geing te hold. Hence f C g means just about what we
intended when we said that the ordinary graph of f is included in
that of g.
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Note that by the embodiment of 1, what used to be partial
functions are now ¢otal functions in the expanded sense, because
g(o) = 1 is an allowed "value™, This may seem like a silly thing
to do, but the main mathematical point is that the lattice structure
en [S+ 8] is now derived, by means of a simple definition, from
the lattice structure on S, And by the very same regular process
we can provide lattice structure on [S + 53 + [S + 51, and in
general an any [D + D'] - always remembering to use the set of

continuous functions for this construction,

We can now make more precise that we mean by T as a
lattice; namely T = {1,fzlse,true,T}, where + L + C 7 holds for
t €1, but false § true and true @ false. We have used T in the
context T = §, and in general any D x D’ can he construed as a

lattice if D and D' are. One has only to define:

<z,z'> C <y,y’> iff = C 7y and .;-:’-l;iy’,
for all =,y € D and «=’,y" € D', In this way all of the domains
[T-+[S~+Tx $1], etc, can be regarded as lattices, and by the
general method fixed peoints can be obtained when necessary. 1n
particular in the equation
L = Cond(fef,e)+t

f,e,t were certain constants in their intended domains, and Cond,
o ,+ weTe certain functions (operators) on these domains. Under
the present interpretation all these domains are lattices, and
it can be checked that all these functions are indeed continuous,

Therefore, the function

F:[S~>S8)~[5~35],
where
F(2) = Cond(Lef,e)xt

is itself a continucus function; and we know that such functions
have fixed peints. The price of generality is high, but eventually

there are some Teturns on youTr investment.

Another kind of pay-off was discussed in some detail in
Scott  [6]. In that paper the syntactical domains were taken
to be lattices alsa, and it was found that the mapping



: Cmd » [5 + 5]

was not only continuous but its existence could be proved by the
very same lattice-theoretical argument wvia fixed peints. That

is a rather fundamental peint and unifies the theory considerably,

The whole process of forming fixed peints can be given a
functional foxrmulation, Let D be any complete lattice and l'et
[p + pl be the lattice of continuous functions. Then there is a
mapping

Y : [D~ D] 1D

such that for each f € [D + D] the element ¥(f} € D 15 the Ieast
fixed point of f. Hence

SUYOFY) = ¥(F)

will be satisfied. What is remarkable and particularly useful
is that ¥ itself is continuous. Thus if we employ Y in various
equations aleng with other continucus functions we can rest
assured that the compound functions obtained are also continuous.
This makes the theory very smooth, if the reader will forgive the
pun,

In making up thcse lattices it is sometimes useful to
join two lattices together into one. We write D + D' to mean
the result of taking a copy of D and a disjoeint copy of D’ and
forming the wunzon. Te make this union a lattice we identify
the 1 € D with the 1’ € B* and similarly for v € D and ' € )’

(L =o' and v = 1'.) Thus, for "ordinary"™ elements of D + D' we
can say, roughly, that either they are elements of D or of ' but
not both. The C relations are carried over directly with »ne
connecticns imposed between the elements of the disjoint parts.

We shall in §5 discuss considerably more complex constructions of
lattices of a "recursive'" nature, but first it is necessary to

explain the semantical treatment of identifiers,
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4, IDENTIFIERS AND ENVIRONMENTS. In §2 we introduced into our

syntax for commands the identifiers (§ € ld}. An identifier

standing alone is an "unknown' having no predetermined meaning
of its own - in contrast to the constants. The way one wishes
to use identifiers, however, is to give them termporary meanings
which can be altered within the differing scopes of different
operators. The way to indicate a temporary assignment of meanings
is by a function

p : Jd~ (5 + S]

which we call {the currtent) environment of the identifiers. We
use [S + S]1 here becausc in the elementary command language the
values of the variables are to be command values. In other
languages with other types of variables other types of values
would have to be used.

Let us write for short:
Env = [1d -~ [S + 517,
Now 1t will no longer be true that a command has a "'{ixed" value,

because our syntax allews vy € Cmd te contain variables. What we
have to do is to redefine € so that

£: Cmd + [Env = [§5 +~ §1].

That is to say, given y € Cmd, we do not evaluate at once &[¥]
but rather have to provide the current p € Env to find &[v¥1(p) as

a state transformation.

The details of this redefinition of &€ will require alt-
erations of the environments. Our notation for this is the
following. Suppese £ € 1d, ¢ € [§ + S], and p € Env. Then

pl8/E) € Env

is that environment p! which is just like p except for the one

identifier £ where we define
p'lel = @
{Thus p’ = pIB/5] is the modification of the function p just at

the argument { to have the prescribed value 8.) Generalizing

this idea we can also write

pre” /8"
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where 8" € [§ - 517, the set of n-tuples of state transformations.
liere §" is a group of » distinct identifiers and the alteration
changes all the » values of the original ». (These definitions
require just a bit more rigor when 1ld is taken as a lattice in the
more abstract wversion of syntax of Scott [6]1.)

We can now state the revised clauses of the semantical
definition for €. (The function & retains its former definition,

because in this simple language Boolean expressions contain no
identifiers,)

Elirtia =€yl

Efelcp) = (some given § +~ SJ,

Cldummyl(p) = I,

Elglip) = pfEl,

Eie » yo,v1dip) = CondElyol (o), &y 1¢p))~&LET,
Clya;v:1(p) =Elvilip)etlvalip),

ZUSET M1 ipy = mcroeT BIY el g .

These clauses are quite similar to the previous ones, except that
the environment is dragged along into the interpretation of each
compound command. It is invoked whenever an identifier stands

in the place of a command (giving pf£]l in the fourth clause), Tt
is aitered whenever identifiers are bound as formal parameters.
This last clause requires a pgloss.

First off if p* € Eny, then
- Clv e’ = <8yol(p' ). By, _1(p")>

n
where v~ = 70.71..--.‘r
the metaexpression

n-q 18 an n-tuple of commands. Therefore

TivMpre®e"n

can be regarded as a funection of the n-tuple 6" € [$ » 517 whose
values are also in [S5 » §1". The A-expression

207 By (pEe™/ ™)
i5 just the mame of that function in the domain
[s + s1" + 1S » 517,

The r-operator used in the equation above is then to have the



28

logical type
(LS -~ 517 >[5+ 53171 - S » 517,

(Cf. the end of the last section taking D = [S = $17.) The value
of this Y-operator is an n-tuple, and Mz is the selecator function
such that

b} —
A I N R

What we are doing here, then, is finding the least solution to the
equation (really: a system of n equations)

<BgsByaeens8, > = ElY"Htole"/E" 1)
and setting

Crse™:v"fl ey = e,
Our mathematical equations describe this process rather succinctly
with the aid of the varicus functional operators. At first sight
these operators seem horrendous, but actually they are not hard

to Tead. Furthermore they hide just the right things leaving the
structure and sequencing of the cperations quite apparent. It
would also seem to be an advantage to condense the wvarious clauses
to one or two lines: if one can actually write equations in detail,
he may have a chance of proving a theorem. And his chances are
improved if the equations are not too long. It remains to be

seen, admittedly, whether the method is geing tc be really practical

for more complex languages.

In the introduction we spoke of medels for a theory, and it
will be useful now tc return to this discussion in the present
context, The concepts of our language are separated inte two
kinds: the primitive notions and the logical constructs which are
built on these. In the simple command language the primitive
notions are the set of states 3 and the objects denoted by the 7's
and p's. Let us introduce explicitly syntactical categories for
these:

w € Pred and ¢ € Qp

for the atomic predicates and operations, All the other concepts
like the Boolean values, the conditional expressions, the sequencing

and looping of commands are treated as logical notions with fixed
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meanings. The only chance for variation then lies in the primitive
concepts. The interpretation of them would be cstablished by
giving mappings

¥ : Pred » [S + T x 5]
and
@ : 0p ~ [S ~+ 5]

once S has been determined. We could then say that in broad out-

line models aTe given as:
M= <$,%,0>

because once these features are specified the meanings of 211 ex-
pressions in the language are fixed. 0f course all we have explained
here is the logival types of P and @, but that is all one needs to
give the semantical definitions for

'Cn: Cmd +~ [5 + 5]

and
Ep: Exp +» [S + T = 57,

{(That is, in the semantical definitions we should replace £ by CH
and & by &,, and modify the atomic clauses to read:

glelie) =@0ol and & Il =Py,

By the way,in Scott [6] the & and the ¥ were treated as para-
meters and it was noted that with S fixed both E;and &, are

continudus in these parameters.)

With this point of view we can specialize and varyH in
restricted classes that actually are models for some reascnable
concept of computational structure - as we contemplated for various
models of the theory of integers. Besides this we can campare
two models, Thus if yo and ¥y, are twe commands, we say that they

are egquivalent inM iff
= -
f[Yo] E“[Yl]

1t may very well be that y, and ¥, are equivalent in B4 but not in
M. That may be an interesting fact. Whether it is or not, we
can at least say what we mean with the aid of our semantical
definitions.
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5. PROCEDURES, The language features discussed up to this point
have been of the most elementary sort and were kept simple just for
the szke of illustration. Even so the mathematical entities
associated with the commands and expressions werc involved encugh.
Fortunately the level of complication that we have reached is a
plateau on which a variety of other features can be accommodated
without too much additional effort. Among the features pressing
for recognition is of course the assignment statement. No pro-
gramming language can be called practical if it does not include
the assignment statement in some form. The issues surrounding
the proper interpretation of the assignment statement, however,
require a rather full treatment of their own, and this will have
to be reserved for another publication (Strachey [11]). In

this section we select only one concept - that of a procedure -

to discuss in any detail; mainly because it fits in well with our
previous discussion of identifiers and function spaces. Even with
this addition the language remains fragmentary, (In the syntax we
shall make provision for an assignment statement, but the semantics
of it and some other related ideas will only be briefly sketched.
These inclusions are made so that the reader can grasp something
of the style of the languages we are considering.)}

ln order to be able to include other concepts in our
language a Substantial extension of the repertoire of expressions
beyoid the Boclean level will be necessary. In some languages
this is done through the introduction of a host of syntactical
categories. This may be a practical idea to aid automatic syntax
checking and error detection, but for understanding the language as
a whole it is sometimes a formidable hurdle. For the sake of ex-
position we pretend that all the type checking is geing to be done
at run time. Thus all the expressions that have wvalues will be
massed together into cne category. Before we start to define the
category we should stop to censider what the values are going tc be.

We always need Beolean values (T), and we may as well throw
in at this point (integer) arithmetic values (N). If we will
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be getting into assignments, then some expressions will have
lacations (addresses) for values (L). In this paper we will not
say too much about them, but we want to leave room for them.

Next we bring up the suggestion that at some point one may want

to store - or maybe pass as a parameter - a eommand. Hence we
are going to allow elements of C = [S + 51 as values of express-
ions also,. Finally we come to procedures (P).

A procedure 1s very much like a mathematical function.
Now some functions have restricted domains, while others are more
widely defined. We do not wish to consider here typed Functions,
5o we shall attempt to permit our functions s free range of
arguments and values. The different sorts of values were just
described in the last paragraph. Let us put them together into
one space, the value space:

Yy=T+N+L +LC+ P,

Again for simplicity we restrict attention to one-parameter pro-
cedures; that is, the domain of a function will be V itselt. The
values will also turn up in V but the path cannot be so direct.
Remember that every evaluation has to depend on the state of the
system, and that any action generally has to effect a change of
state. It will be just the same for procedures: evaluating a
procedure at an argument may produce along with a value a change
of state. This argument suggests that

P=1({¥ -+ [S+ ¥ x5]].
Thus if p € P and z € V, then we cannot find a value from p(x) until
we lock at o € 5, Then we get
ple){u) = <y,0'>
where y is the value and o' is the (possibly) altered state. That

seems just fine.

Or does it? Suppose the state space were a one-eglement
space which could be dropped from consideration. Suppose that we
are in a dropping mood and that we forget about N,L, and ( as well,

Then the equation for ¥ comes down to:
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V=T+P,
which after substitution reads:
V=T+ [V =+ V]

In words we can say that under the reduction every element of ¥ is
e¢ither a Boolean value or a function. It still sounds good, but
there is trouble: 1in ordinary set theory there are ne such spaces!
Why? Because there is a cardinality question. V must have at
least two elements; but if so, then by Cantor's Theorem thc space
of @il functions [V + ¥] always has more elements than V. Hence,
the equation is impossible.

Here is the place where the lattice-theoretic pay-off is
especially generous. By restricting [V + V] to eontinusus functions
the cardinality of the function space is considerably reduced, That
is a help, but it is not enough™just to have V and T + [V + V1 in
any ocne-one correspondence, The correspondence must be continucus;
then everything is fine, because we can rest assured that all our
functional equations involve only continuous functicns, (Remember,
to be able to use a function as an argument of other operators, we
must keep it imnside the proper spaces.) The way to achieve a con-

tinwous isomorphism is not quite obviocus and demands an inductive con-

struction. Some remarks are given in Scott [5] and further hints
are found in Scott [6]. The full details will be presented in
papers under preparation (see references in the bibliography). In

any case the outcome is that the construction of such self-referential
spaces is not only possible, but they can be made tc suit a variety
of purposes - as long as one can be happy with continuous functions,
Since we can argue that computability theory <8 happy with continuous
functions, all is well, and the existence of the big value space V

can be taken for granted.

A1l right, what then is the (a) language that might go aleng
with V? {The authors have the peculiar idea that the domains of our
concepts can be quite rigorously laid out before we make final the
cheice of the language in which we are going to describe these concepts,
And it may turn out that the same domain is suitable for several
languages. This is not to demy that there may be some vague ideas
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of language which influence our chaoice of domains. What we suggest
is that, in order te sort out your ideas, you put your domains out

on the table first, Then we can all start talking about them.) A
possible format of the language would retain the distinction in
category between (md and Exp. (This is a point one might wish teo
debate - but we do not have the space to do it here.) It is Exp that
wiil undergo the major expansion over the earlier language, 5o we give
cmd first:

COMMANDS
vy = vy | ¢ dummy £ |
£ > Yo,YalTo3vr ]
5 27y

\
El|Ep I=Ey

This looks almost the same as before except for the last twe clauses.
Since we will convert commands into expressions, the e€! is needed for
the Teverse process, The €,:=g; 1s the assignment statement

taken as a command to make the required assignment,

Turning now to expressions we must take note of the five
parts of V:

EXPRESSIONS

e = (o) lnfe]
e:T|true|false|eo~e: €5 l€0=6,
£:N|v|eowe, |
e:L]|+e| el
e:C]:y]
e:P|rE.eleoe, |
Yy resultis

Note that identifiers occur in both Cmd and Exp, Some may wish to
avoid the overlap, but it actually does not cause any difficulty,

hecause we will separate wvalues in a moment.

Before trying to understand the features of this language,
it will be well to state the exact logical types of the semantical
functions. An identifier will be assigned an element edither from C
or from V depending on how it is to be used. This means that now
we shall have to set:
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Env = [Id + C + V1.

Strictly speaking C, V and € + ¥V are all different domains even
though the first two are matched with parts of L + V. We shall
require a MmoTe precise notation to indicate this matching. A

completely precise symbolism would be cumbersome, so we write
(6 in {C + V1) and (B in [C + ¥I)

where $ € [ and B € V te indicate the corresponding elements of
C +V. TFor éeC + V¥ we write

§|C and &|V
to indicate the "projection'" from C + ¥V onto its twa parts, (In
case 4 corresponds to an element of C, then §[V = :; and if & comes

from ¥, then §|C = 1. The lack of precision becomes clear for
spaces such as C + C where one would have to distinguish between

left-and right-hand parts.)” -
The legicul types of the functions & and & now will be these:
£: Cmd + [Env = [S + S]]
and
& : Exp + [Env =~ [S + ¥V x §]]

We shall not state all the semantical eguetions, since either they
have already been discussed enough for the simpler language, or they

require too much additional development. But a few can be shown,
For the case of identifiers, we use:
Clal(oy = slEl]C

and
elel(p) = ra.<pl&)|V,u> ,

whici keep the types straight. Note that in the Jlatter equation
we had to make the right hand side a function of o € § with values
in Vx5, The point is that if we ask for the value of £ as an

expression relative ta the environment and the state of the system,

then the answer is to be just p(£)|V without any change of state.

With the two new kinds of commands, we have in the first

instance:
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Eleljip) = Dossled(p),
where Zo¢ is a special cperator defined as follows.
Do @ ¥ >[5 + 5],
and
DetiBi{o')y = (B|C){(v").

By this we mean to indicate that C = [5 + 5] is itself a part of
. Thus if

Elel(prio) = <B,0'>,
then we project B into B|C and apply that to o' obtaining
c” = (B|Cy(o'}.
That is the resultant change of state in executing e! so that
Ere!lartoy = an,

In the second instance, the assignment command, the sequence of

events is more complicated.
In this paper we shall not try to write the equation for
Eleo:=e1(p){0o),

but we can say in words more or less what happens. We first

evaluate
&leal(p)(o) = <B,0'>,

and project B tec a = BIL, a location. Next we evaluate:
Ehe [ (p)(o*) = <B',um>,

Now comes the scuffle, If g* is not in the part of ¥ which comes
from L, we set g” = p'. However, if g’ does correspond to a
location, then we consider o’ = g'|L. At this point we rteveal that
these mysterious ''states of the system'" are the internal states of
cur hypothetical machine. That is to say, o" Tepresents (among
other things) the current state of the memory of the machine - a
memotry which provides contents for loeations. Thus there is a
function to be applied to extract the desired contents, and we can
Write:
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B" = Contents(a’){o").

In any case we have B" € V. Finally there is one last transformation
to be mide: we have a location o and a value B” and the current state

ar. All that Temains is to assign B to a in o” obtaining:
o =Adsgign(a,8”)(c"),
We then assert that the equation:

EBlesi=e, lipita) = ar
makes the interpretation of ‘the command what is usually intended.
Well, that is reasonably precise, but it only becomes cempletely
rigorous when we give an explicit construetion of 5 as a domain of
internal states along with the concomitant functions Contents and

Assign. The exposition of these ideas is the task of Strachey
-[117.

Shifting now to the semantics of expressions, the compounds
of the sort e:D are meant as Boolean valued predicates which dis-
tinguish between the various parts of ¥; namely, D = T,N,L,C or P,
Take note of the fact that T has been made a part of V so that
after a Boolean value t € T has been found, it will have to be
injected into V. For example, to {ind the value of

leo=ev] (pd (o)
we have to evaluate e, then e,, then see if they belong tc the same
part of V., If they do and the part is T,N, or L, then a test for
equality is meaningful. We carry the test out, get a truth value,
and then wrap it up into V., Remember tco that the state of the

systen will have been changing.

We need not discuss here the evaluation of numerals (v) or
arithmetic operations (w). The mysterious operators + and + are
for mferencing and dereferencing - operations involving locations.

Thus to evaluate!
&l+el(p) (o),
we have to find first:

&lel(p)(o) = <B8,a'>,



Then we have to find a new (unused) location a in 0 and take
g" = Assign(a,B)(u’),
making
Eftel (p)(0) = <a,0">,
In other words +& gives a reference to the value of ¢, Obviously
we want +e to be the opposite: e is evaluated as having a value

in L and then the conternts of the current state of the system pro-

vide the value for ‘e,
In the case of commands as expressions we take
&l:yFitpi(o) = <Clyl(p) in V,0>.

Note especially that no change of state has taken place and that
€lvl{p} has no# been activated. The command has been "read", so
to speak, but it has not been executed. Why do we do this? Because
one may wish to store a command or to pass 1t as a parameter without
exccuting it. [n that way it can be set up and then set aside for
later use.

Before we finish our survey of the semantics with a look
at procedures, the resyltis-construct can be given a quick

explanation:
&y resultis elcpy = &[ed(pr=Eivyb(py .

That is to say, do ¥y first, them evaluate e, This combination is
very similar to Yo;Ys but is of a different syntactical categoTy.

Finally, we come to procedures where the notation used in
the language is just that of the functional abstraction/functicnal

application sort. Abstraction is easy:
ElxE.el(p) @) = <f in V,o>,
where f € P is defined hy
F = xe.&lelplB in C+V/ED).
Here 8 € ¥ and

F ¥+ [5+¥ x5]
comes out correctly by reference to the logical type of &. HNote
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that the evaluation of a functional abstraction requires no change
af state. This is reasonable because none of the state trans-
formations that may be lurking in e can come out in the open until
we know the value of o, This cannot be known at the time the
function is defined; we have to wait until it is applied to an

argument.

Application can be interpreted in at least two ways. We
take amore dircct path - which might not be the most flexible.

Thus to evaluate:
Bleserl(pdia),

first find

&feclipito) = <g,0'>,
and set f = §|P.  Then find

Ele 1(p)(o") = <6707,
and set

Bleoe l(p) (o) = FIB (0"},

(The "indirect' route would test 2 to see if it were an L, if so
all it would require is to loock up the contents of that location
and try to use that value. If 8 were not in the L part of V,

then we would proceed as above.)

By the time we got around to the procedures there was not
50 very much to say, The point is of course that

AE.E

is but one clause of a highly recursive definition. The € can

be any compound expression. Thus the value of Af.e is a complicated
function. The censtruction of our value space allows us to treat
this function (a mathematical object) just like any other value.

It can be used as an argument of another function, it can be stored,

it can be thought about in a mathematical way.
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6. CONCLUS1ON There are many featurcs rissing from the lanpuage
ot the last sectien; to name a few: Jlists, structured values,
initialization of parameters, morc flexible parametcr passing,
recursive procedure definitions, This last is very important,
Even though the space

[V~ (S~ ¥ =5]]

contains all the values of procedures, we gave no notation for re-
cursively de fined procedures the way we did for recursively defined
commands, The reason for passing over that topic is the difficulty
in keeping track of the state transformations involved in such

definiticns. This will have to be a topic for another essay,

Despite the shortcomings of the present exposition, we do
feel, however, that we have demonstrated the possibility of a math-
ematical semantics for sophisticated languages. And we hope by
now the reader understands what we mean by "mathematical semantics'.
In this approach the semantical functions give mathematical values
te expressions - values rtelated to some given model. The values
of expressions are determined in such a way that the value of a
whole expression depends functionally on the values of its parts -
the exact connection being found through the clauses 0f the syn-
tactical definition of the language. In this way the syntax is
kept to a mininum sc one can cencentrate on the semantical inter-

pretation.

The advantages of the methed are many. In the first place
we feel that it gets at the essence of meaning without having to
formalize any bookkeeping, symbol tahles, identifier lists, road
maps or what have vou - as is necessary in some lanpuage definitions.
Furthermore, the method is conceptual and is not just a formal trans-
latieon from one language into another. Sometimes the trarslation
scheme is useful, but usually a full translation, Say into the
language of an "abstract™ machine, makes it hard to discuss the
features of the criginal language in isolation. As we have shown
above we can move through the language one clause at a time, stopping

to get a clear understanding of each construct by itself.
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The present paper is onc of a series that is the outcome of
a collaboration which the authors started in the fall of 1969;
further papers are mentioned in the references. As it now stands
this theory falls into two rather distinct parts: the development
of the appropriate mathematical apparatus, and its application to
the application of programming languages, From a logical point
of view the development of the mathematical foundations should
obviously precede their application, but as often happens it is
difficult to know exactly what mathematical apparatus is needed
until some agpplications have been attempted.

The genesis of this approach is a paper given at a Working
Conference on Formal Language Description Languages sponsored by
JF1P in September 1964 {Strachey [10]). Although that paper
contained the beginnings of the semantical ideas described here, it
was quite unsatisfactory Irom a mathematical point of view. Not
only vas there no attempt at mathematical rigor, but the very
existence of some of the objects used was not certain, For example,
teferring again to the demain mentioned in &5 which is quite naturally
associated with interpretations of reasonable languages:

V=T +N+L+[S5+5]+([V~+][5~Vx S]],

it is particularly important teo note that such a domain cannct be
constructed by ordinary set-theoretical means. tHience, the need

for some such mathematical apparatus as we have presented here was
forced on us. The present paper covers much the same ground as
Strachey [l0],but this time the mathematical foundations are secure.
It is also intended to act as a bridge between the formal mathematical
fourdations and their applications to programming languages by
explzining in some detail the notation and techniques we have found

to be most useful.

Very much work remzins to be done. An essential topic will
be the discussion of the relation between the mathematical semantics
for a language and the implementation of the language. What we
claim the mathematics will have provided is the standard against
which to judge an implementation. Thus if x£.e is a function
definition, then our semantics tells us which function - as a math-
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ematical object - was internled. Any implementation must provide
us with answers that are in complete harmony with this function in
the same way we expect even the simplest desk calculator to be able
to add. An interesting question here is whether the function
defined by X§.e is calculable at all - in any sense, All of these
questions are basic and do not even make sense without the proper
mathematical foundation, which is just what we think our theory

provides,
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