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ABSTRACT

Starting from the topological point of view a certain
wide class of To-spaces is introduced having a very strong
extension property for continucus functions with values in
these spaces. It is then shown that all such spaces are
complete lattices whose lattice structure determines the
topology - these are the continuous lattices - and every
such lattice has the extension property. With this foundation
the lattices are studied in detail with respect to projections,
subspaces, embeddings, and constructions such as products,
sums, function spaces, and inverse limits. The maln result
of the paper 1is a proof that every topological space can be
embedded in a continuous lattice which is homeomerphic (and
isomorphic) to its own function space, The function algebra
of such spaces provides mathematical models for the Church-
Curry X-calculus.
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ConTINUOUS LATTICES

0. INTRODUCTION
Through a roundabout chain of mathematical events I have becaome

interested in To-spaces, those topelogical spaces satisfying the
weakest separation axiom to the effect that two distinct points cannot
share the same system of open neighborhoods. These spaces seem to
have been originally suggested by Kolmogoroff and were introduced
first in Alexandroff and Hepf (1935). Subsequent topology textbooks
have dutifully recorded the definition but without much enthusiasm:
mainly the idea 1is introduced to provide exercises. In the book
Eech (l1966) for example, T,-spaces are called feebly semi-separated
spaces, which surely is a term expressing mild contempt. Some
interest has been shown in finite T, -spaces (finite T,-spaces are
necessarily discrete), but generally topeclogy seems to po better
under at least the Hausdorff separation axiom. The reason fer this
is no doubt the strong motivation we pget from geometry, where points

are points and where distinct points can be separated.

What 1 hope to show in this paper is that from a less geometric
point of view To—spaces can be not only interesting but alse natural.
The interest for me lies in the construction of function speces, and
the main result is the production of a large number of To-spaces D
such that D and [D ~ 3] are homeomorphic. Here [D + D] is the space
of all continuous functicns from D into D with the topology of point-
wise convergence (the product topology). 1t will be shawn that every
space can be embedded in such a space D, and that D can be chosen to
have quite sltrong extension properties for D-valued continuous
functions. These properties make D most convenient for applications
to logic and recursive function theory, which was the author's
original motivaticn. Some of the facts about these spaces seem to be
most easily proved with the aid of some lattice theary, a circum-
stance that throws new light on the cecnnections between topelogy and
lattices. 1n fact, the required spaces are at the same time complete
lattices whose topology is determined by the lattice structure in a
special way, whence my title.



1. INJECTIVE SPACES. All spaces are To-spaces, and we begin by
defining a class of spaces to be called injective.

1.1 pefinition. A To-space D is Znjective iff for arbitrary
spaces Xand Y if X € Y as a subspace, then every continuous function
F:X = D can be extended to a continuous function F:¥ + D. As a
diagram we have:

Some people will object to this terminology because 1 use the
subspace relationship rather than a monomorphism in the category of
To-spaces and continuous maps. However, only the trivial 1-point
space 1s injectlive in the sense of monomorphisms in that category,
and so the notion is uninteresting. If the reader prefers another
terminology, [ do not mind. As we shall see these spaces have very
strong retraction properties.

A slightly less trivial example of an injective space is the
Z-point space O with "points™ i and v where {1} is open but (1} is

not, (This space 1s sometimes called the Sierpinski Space.)

1.2 Proposition., The space 0 is injective.

Proof: As 15 obvious, the continuous maps f:X - 0 are in a one-
one correspondence with the open subsets of X (consider f-l({T])).
If XC Y as a subspace, then an open subset of X is the restriction
of some open subset of ¥. Thus any f:X + 0 can be extended to
F:Y+0. D

1.3 Proposition. The Cartesian product of any number af

Iinjective spoces ig injective under the product topology -

Proof: The argument is standard. A map into the product can be
projected onto each of the factors. Each of these projections can be
extended. Then the separate maps can be put together again to make
the required extended map into the product. 0O

We now have a large number of injective spaces, and further
examples could be found using the next fact.

1.4 Proposition. 4 retract of an injective space is injective.

Proof: Let D be injective. By a retract of D we understand a
subspace D'C D for which there exists a retraction map j:D + D’
such that




D= {z €D : j(z) = z}.
Then if F:X + D/ and X € Y, we have f:X - D as a continuous map also.

Taking F:Y ~ D, we have only to form
Jef + ¥ -~ D!
to show that D’ is injective. O

The relationship between arbitrary To-spaces and the injective

spaces is given by the embedding theorem.

1.5 Proposition. Every To-space can be embedded in am injective

space; in fact, in a Cartesian power of the 2-element space [,

Prooy: The proof is well known (cf. fech (1966), Theorem 26B.9,
p. 484.) But we give the argument for completeness sake. Let X be
the given space, and let® be the class of open subsets of X. Let

D=09

be the Cartesian power of 0. Then D is injective by 1.3. Dlefine the
map e:X » D by:
T if r €y,

e(z) (V) =
L if z g v,

for £ € £ and ¥ €8, This map e is continucus in view of the
topology given to © and to D. The map ¢ is one-one, because X is To'
Finally, if ¥ € X is open, then

e(v) = {elz) @ z € U}

{elz) @ elz)() = 1}

elX) N {¢t € D : v(uyE {r1}},

which shows that the image e{(V) is open in the subspace e(X) C D,
Therefore e¢:X - D is an embedding of X as a subspace in 0. O

1.6 Corollary. rhe injective spaces are ezactly the retracta

of the Cartegtan powers of 0.

Proof: Such a retract is injective by 1.4. If D is injective,
then it is ([homeomorphic to) a subspace of a power of 0. Bt since
D is injective the identity function on the subspace to itself can be
extended to the whole of the power of 0 providing the required
retraction. O

1.7 Corollary. £ epace 13 tnjeotive Lff it is a retract of

every space of which it 18 a subspace.



Propf: As in the proof of 1.6, this preoperty is obvious for
injective spaces. But in view of 1.5 every such space is a retract
of a power of 0 and hence is injective. O

As a result of these very elementary considerations, the
injective space could be called abeolute retracte, if one remembers
to modify the standard definitions by using arbitrary subspaces
rather than just closed subspaces. Note too that it is easy to show
that the only continuous maps e:X + ¥ for which the extension property

could hold for ali continuous F:X + 0 are embeddings as subspaces.
Thus it would seem that we have a reasonably good initial grasp of the
notion of injective spaces, but further constructions are considerably
facilitated by the introduction of the lattice structure.

2. CONTINUOQUS LATTICES. CEvery To-space becomes a partially
ordered set under the definition:

z C y iff whenever = € ¢ and ¥ is open,
then y € .
Indeed, though this relation is reflexive and transitive, the
condition that it be artisymmetric is exactly equivalent to the
To-axiom.
In the converse direction, every partially ordered set (X, C?

can be so obtained, for we have only to define U € X as being open if
it satisfies the condition:

(i) whenever =z € U and z C y, then y € ¢.

The axioms for partial order make X a T,-space, because for any y € X
the set

{z & X:zq‘y}

is open., This cennecticon is net very interesting, however.

What Zs interesting in topological spaces is convergence and the
properties of {imit points. We shall discuss limits in terms of nets,
in particular in terms of monctone nets. A monotone net 1in a To-space

X is a function



where (1,<) 1is a directed set and where { « j imwplies T, ng for all
i, j€1. Ina Ti-spacc a monotone net is constant (hence, uninteresting)
because the C-relation is the identity. As usual (cf. Keller (1955),p.66)
we say that a net r converges to an element y i1ff whenever ¥ is open and
¥ € U, then for some 7 € I we have % € Iy for all 7 = i{. Note that a
monotone net x converges to ecach of its terrms T . Suppose that a mono-
tone net x converges to an element y which is an wpper bound to all the
terms of . Then y must be the least upper bound, which we write as:
y = I_l{ri r 4 € 1}

To see this, assume that =z is any other upper bound with z. L 2 for all
i €1, If v is open and y € ¥, then z, € ¥ for some i € [, But then
z € U, and so y C 2z follows.

We shall find that most of the facts about the topology of the
spaces we are concerned with here can be expressed in terms of least
upper bounds (lubs). 1t is not always the case, however, that lubs are
limits. Thus, for a partially ordered set X, we impose a further re-
striction on its topology beyond condition (1) for saying when a subset
I is open:

{ii) whenever §

then 5 N v

X is directed, LI& exists, and [ € v,

28

By a directed subset of X we of course mean that it is directed in the
sense of the partial ordering ©. Note that in this paper directed sets

<
%

are always non-empty. The sets satisfying {Z{) and (Z{) form the induced
topology on a partially ordered set X, which is still a T -space because
the sets

{lz€ X : ¢ ¢ ¥}
remain open even in the sense of ({Z)., Obviously a directed set g cX
can be regarded as a net, and now in view of (Z7) it follows that 5 con-
verges to L ]S -- if this lub exists, Ve can summarize this discussion
a5 follows,

2.1 Proposition, In a partially ordered set X with tie induced

topology, a monotone met r : 1 + X with a leaat upper bound converges to

an element y € X iff
yE'_l{zi 1 € [Y, O

OQur main interest will lie with those partially ordered sets in
which every subset has a lub: namely, complete lattieesa. 1f D is such
a space we write . = | J® and v =)D for the smallest and largest
elements (read: botfom and top). As is well known, greatest lower bounds
must exist, for:

!—IS=I_l{;rED:::|;yf0ra11y€S}

gives the definition.

Given a complete lattice D we define



T <y iff y € Int {s € D : L =z},
. where the interior is taken in the sense of the induced topology. The
relation ¢ < y hehaves somewhat like a strict ordering relation; at
least its meaning is clearly that y should be definitely larger than
in the partial ordering. Such a relation has many pleasant properties,
The primary purpose of introducing it is to provide a simple definition
for the kind of spaces that are most useful to us., We first mention the
mest elementary features of this relation.

2,2 Proposjtion. In a complete lattice D we have:

() L < z;
(it} = <2 and y <z imply s Uy < z;
(111} r Sy L =z implice = < zj
(iv) = C y <z implies © =< z;
fv} z <y tmplies =z C y;
fui}) z <z {ff {lz€ D : aC 2} ig open;

fvit) if $ €D ig diracted, then
r «| |5 1iff = <y for some y € 5. 0O
The proofs of these statements can be safely left to the reader,

2,3 Defipition. A continuous Ilgtiice is a complete lattice D in
which for every y € [ we have:

y=|_|{:cED:x<y].

As an alternate definition we find:

2.4 Proposition. 4 complete lattice D is continuous iff for
every y € D we hauve:
y = M2y ewd,

where U ranges over the open subsete of D

Prco.f: Suppose D is continuous. 1f y € D and =z < y, then let
U=1Int {z : = C =z},
an open set. Now y € U by definition,and
vy ci{z : zC s},
Thus,
zC{1vC y.
It easily follows by lattice theory that the equation of 2.3 implies that
of 1.4.
In the c¢onverse direction we have only to note that if ¥ is open
and y € ¢, then [V < y. The implication from 2.4 to 2,3 results

at once. ]



v

What is the idea of this definition? A continuous latticeis
more special than a complete lattice: neot only are lubs to be limts but
every element must be a lirit from belcw. This rather rough remark can
be made more precise. In any complete lattice D define the gprincizal
1Zmit of anet z : T + D by the formula:

timtz, 2 €D o= | i, c 520 081
Then specify that z econverges to y € D iff
y £ tim ez, + i 8 1),

Having a notion ¢f convergence, we can then say that v € D is oper iff
every net converging to an element of 15 eventually in ¥, This gives
nothing more than what we have called the induced topology above, as is
easily checked, But now being in possession of a topology, we can re-
define convergence in the usual way. Question: when do the two netiorns
of convergence agree? Answer: if and only if [ is a continuous lattice.

For obviously by construction the limit definition of comnvergence
implies the topological. Now if 0 is a continuous lattice and x converges
to y topologically, consider an open U € [ with y € /. For some i{ € I
we shall have T € ¢ for all j & £ Therefore

Mu Er-l[:ca. TP ANL Lim (g, s i€ 1D,
From the formula of 2.4 it at once follows that y C lim (::i HEE A =3 U R
Thus, in continucus lattices, we have shown that the two notions of con-

vergence are the same. Finally, suppose that the two notions coincide fer
a complete lattice D. Define a set I = {(v,2) : y,z € U}, where : ranges
over D and ¥ over open subsets of D. This set is directed by the relation:
(v,z) s (v,w) iff 0 D Vv, Let z : I + D be given by: z(U,z) = a. Then =z
is a net converging to y topologically. But limizx, : 2 € 1) =
L]{l—w : y € ¥}, In this way we see that the assur;lption about the two
styles of convergence implies that [ is a continuous lattice in view of 2,4,
In T -spaces continuous functions are always monotonic (i.e. C-
preserving). Tor continuous lattices, by virtue of the remarks we have
just made about limits, we can define the continuity of f : D + D' to mean
that [{Zim tz, i & 1)) E iim' (f(z;y : i € 1) for all nets = : T » D,
This is all very fine, but general limits are messy to work with; we shall
find it easier to state results in terms of lubs as in 2.5-2.7 below.
Before geing any deeper, however, we should clear up another peint
about topologies, Suppose that D is any To-spacc which becomes 2 complete
lattice under its induced partial erdering, Then it is evident from our
definitions that every set cpen in the given topology is also open in the
topelogy induced from the lattice structure. Question: when do the two

topologies agree? Answer: a sufficient condition is that the equation:

¥ = I_J{F1U ty € 0}



hold for all y € D, where & ranges over the given open sets. Because
in that case if ¥ is open in the lattice sense and y € ¥, then

[lv € v for -ome set ¥, open in the given sense, where y € U. But
# ¢ V follows, and so ¥V is a union of given open sets and is itself
open in the given topology. Of course this equation implies that D
is a continuous lattice by virtue of 1.4, Natice that by the same
token the sets of the ferm {y € D:ix < y} will form a basis for the
open sets of a continuous lattice.

2.5 Proposition. JIf D and D' are complete lattices with their

induced topologies, thes a function fiD + D' is continucus iff for
all directed subsets 5 C D:
rildsy = Jire) - w € s).

Proof: If f£:D - D/ is continuous, the equation follows from the
definition of continuous function and the fact that lubs are limits.
Assume then that the equation holds for all directed sets £. Let
¢' € D' be open in [ and let

U={xreD: fley e y}.
We must show that & is open in D. Note first that if 2z C y, then
5§ = {z,y!}
is directed; hence,
Flr U y) = fly) = flx) U flyl,

so f{r} C f(y). Thus f is monotonic and so ¥ satisfies condition (i),
That 7 satisfies condition (ii) follows at once from the above

equation. O

2.6 Proposition. With functions from complete lattices to

complete lattices, a function of several variables 18 continuous in
the variables Jointly <fFf it is continucus in the naricbles
separately.

Preof: It will be sufficient to discuss functions af two
variables. The product DxD’ of twe complete lattices is a complete
lattice, and it is easy to check that the induced topology is the
product topology. Since projection is continuous, joint continuity
implies separate continuity. To check the converse suppose that

f:DxD* - D¥

is a map where the separate continuity holds as follows:

rilds, =) irtey) ¢ =o€ 83



and
flz, s =|_l(f(r,y) iy € 5’}
where 5 C D and 5’ € D'are directed and =« € D and y € D'. Let now
S% c DxD'
be directed in the preduct. The projection of 5% to 5§ € D and 5% to

5' ¢ b’ produces directed subsets of D and D',
Note that

s« = ¢lds, Lls*y.
Thus by assumption
rFold % =|__|{f(:r:,y) iz €5,y €5
But since S* is directed, 2 € 5 and y € §' implies z C u and y C
for (u,v) € g%, Thus by menotonicity of 7 we can show
Flds™ = L ifG,e) o (u,e) € 50}

and that gives the joint continuity. DO
One of tie justificatiens (by euphony at least) of the term
continuous lattice is the fact that such spaces allow for s: many

continuous functions. One indication of this is the result:

2.7 Proposition. Im a continuous lattice D the finituiry lattice

operations U and M are continuous.

Proof: It is trivial to show that U is continuous in every
complete lattice; this is not sc for M. 1In view of 2.6 we need omnly
show

z N I_IS = I_I{.r Ny :y € 8}
for every directed & € D. In fact it is enough to shaw
zm]scC I_J{.r Ny :y€ 81

because the,opposite inequality is valid in all complete lattices.

1a view of the fact that D is eontinuous, it is enough to show that
t -:::I_ILJS implies t El_l{xl'l ¥ ty € 8k,

So assume ¢t < r N|_J5. Then ¢ c ml‘ll__].s'g z. Also t < ||s because
z NJSC | Js. Thus ¢t <y for some y € § since the set

{z€ D : ¢t <z}

is open. But then ¢+ C y, and so t C =z M y, and the result follows. O

it is now time to provide some examples of continuous lattices.
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2.8 Proposition. A finite lattice is a cortinuous lattice. D

2.9 Propoasition. The Cartesian product o any number of con-

tinuous lattised ie a continuous latrice with the induced topology

agreeing with the product topology.

2.10 Proposition. 4 retract of a continucus lattice is a con-

tinuous lattice with the subspace topology agreeing with the induced
topelogy.

It would seem that the continuous lattices are starting to sound
suspiciously like the injective spaces. Indeed, if we can prove the
following, the circle will be complete.

2.11 Proposition. Every continuous lattice is an injective space
under its induced topoicgy.

2.12 Theorem. Tke tnjective spaces are exactliuy the continuons
lattices.

This theorem is an immediate consequence of the preceding
results: an injective space is a retract of a power of 0. But @ is
a finite lattice {1+ C 7), and so the given space is a continuous
lattice under its induced topglogy. On the other hand a continuous
lattice is injective. It remains then to prove 2.5 - 2.11.

Proof of 2.8 Let D-ﬂ for ¢ € | be a system of continuous
lattices. The product

7€l

is a complete lattice in the usual way and has its induced topology.
Suppose y € D% and let <« € I. Then ¥i € D‘L‘ Since Di is a

continuous lattice

¥y, = LJ{:CE Di Lz -<y£}.
For z € Di’ let [x]i € D% be defined by:

(r if <=5,
[2]% =

21 if i#].

Nate that since D, is continuous we have:

[H{]i = LJ{[I]{ Cwo< oy,

T

and ] =U{[Hi]£ ¢ € 1}.




1t follows that
y=l_|{m{z:zierj}:{61,yiey},
where i1 ranges over | and ¢ over the open subsets of Di., because

[a:]i C Nz P € v}, where v = {u € D, : = < uk.

But the sets {z 2, € v} are open in the preduct sense, and so

y= | J{v : y e 03,
where U ranges now over the open subsets of the product topology on

0*. By the remark following 2.4 we conclude that D* is continuous
with the lattice-induced topology being the product topology. 0O

Prosf of 2.1 Let D' be a continuous lattice and let DC D’ be
a subspace which is a retract. We have for a suitable j:D' + D,

D= {ze D : jlz) = z},

where of course j is continuous.

First a note of warning: though D is a subspace it is nor a
sublattice; that is, the partial ordering on D is the restriction of
that of 0', but the lubs of D are not those of D'. We shall have to
distinguish operations by adding a prime (') for those of D'.

Suppose z,y € D. Let 2’ = z U'y € D' and define z = j(z’) € D,
Now z C 2’ and y T 2/ and § is menotonic, so 2z C z and y C s.

Suppose z C w and y C w with w € D. Then in D’ we have r U'y C w; sc
z C w also. MHence we have shown that z = =z U y in D,

To show that D has a least element L (which may be larger than
the 1 € D'}, we need a well-known lemma about monotonic functions:
Every menotenic function on a complete lattice into itself has a
least fixed point. (Cf. Birkhoff (1970),p. 115.) In our case j is
monotonic and

L= |_|'{I €D’ : () C x}
is the desired element in D.

Thus D is at least a semilattice with 1 and U, To show that D
is a lattice we need to show that every directed 5 C D has a 1ub in D.

Now we know: iLl's e ',

and this is a Zimi¢t of a monotone net. So by 2.1, and the continuity
of 41
Jelds) = | Jtita) -z € s}
= I_Ig

in D. In this way we now know that D is a complete lattice. We must
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still shox that D is continuous.

Suppese y € 0. 1n D' we can write:
¥ = U'{IED'::«cy}
and this is the limit of a monotone net. Thus

Uij<z) : 2 <y, z€ D'},

I

Jly) = ¢
where the lub is taken in D. Note that the sets
7 = {2 €Dz «a}

are open in D for each x € D'. Note too that if 2z € ¢, then z C =
and so j(z) C j(z) = 3. This means that

i c o
in D. We can then write in D:
y= [LJt Mo :yen

where ! ranges over the open subsets of D, and so the lattice is
continuous by 2.4. 1lnasmuch as the open sets ¢ just used were open in
the subspace topology, it follows by the remark after 2.4 that the
subspace and the lattice-induced topologies coincide. O

Proof of 2.11: Let D be a continucus lattice with its induced
topelogy, and let X € Y be two To-spaces in the subspace relation.
Suppose

is continuous. Define

by the formula:

Fr = i Mise s zex o) 2y e,
where ¢ ranges over the open subsets of Y. We need to show that §
extends f and that it is continuous.

First, the continuity: Suppose that 4 € D and 4 < F (y): that
is, *(y) belangs to a typical basic open subset of D. Since D is
continuous, we can alsec find

3 < d < Fly)
with @’€ D. From the definition of f it follows that
d' L |_}{f(.|:) rz € X0yl

for some open U € Y with » € ¥. Thus



d' C Fiy's
for all y' € U by virtue of the definition of F. Since d <d', we
have alsc

d < Fly")
for all y' € U; in other words, the inverse image of the open subset
of B determined by d under F is indeed open in Y, and F is thus

continuous,

Next, the extension property: Note that the relationship
Flz') € fiz’)
for all =’ € X comes directly out of the definition of f. For the

converse, suppose d < f(z’') where 4 € D. By assumption f : X~ D is

continuous, 50
d =< flz'

for all =¥ € X N U where ¥ is a suitable open subset of Y with =€ ¢,

In particular we have:
dLC |’"|{f(1~> r e X 0oy,

and se d C F(z’). Since 4 < f{z’') always implies 4 C F(z'), we see
that f{z') C F(z') follows by the continuity of D, and the proof is
complete. 0O

The lattice approach to injective spaces gives a completely
"internal” characterization of them: in the first place the lattices

are complete. Next we can define lattice theoretically:

r o<y iff whenever y C | ¢ and z € D is directed,
then = C =z for some z € ¢

Finally we assume that for all y € D:

v = LUz Dz <yt
That makes D a continuous lattice with the sets {y € D : = <y} as a
basis for tHe topology. Such To-spaces are injective and every
injective space can be obtained in this way with the lattice
structure being uniquely determined by the topology. Furthermere, as
we have seen, the injective property can be exhibited, as in the
proof of 2.11, by an explicit formula for extending functions.

The retract approach to injective spaces should alsc be
considered. The Cartesian powers 0 are very simple spaces; indeed,
as lattices these are just the Boclean algebras of all subsets of I
(that is, isomorphic thereto). The topoelogy has as a basis the



classes of sets containing given finite sets (the weak topology, cf.
Nerode (1059)). A continuous function

i PIL-P1
is one of "finite character” so that
o S\ ey 2o cox

where ¥ ¢ | and F ranges over finfte sets. Such a function j is a

v

retraction iff it is an idempotent:
dod = J,
which means that the range of j ¢g8 the set of fixed points of 7. As
we have seen
D= {x€ Pl : j(x) = x}

is a continuous lattice (under € in this case), and ewvery continuous
latrice is isomorphic to one cobtained in this way. This provides a
representation theocrem of sorts for continucus lattices, but it does

not seem to be ¢f too much help in proving theorems.

The reader should not forget that any space (any given number of

spaces X, Y,...) can he found as 2 subspace of 2 continucus lattice
D. Since D is injective any continuous function f : X = Y can be
extended to a continuous function f : D - D. Thus the continuous

functions from D inte D are a rich totzlity including alf the
structure of continucus functions on al! the subspaces. And this

remark brings us to the study of function spaces.

3. FUNCTION SPACES. We reczall the standard definition and

introduce our notation for function spaces.

3,1 Definition. For To—spaces X and Y we let [X = Y] be the
space of all continuous Functions f: X + Y endowed with the product
topology, sometimes called the tcpolegy of pointwise convergence.
This topology has as a subbase sets of the form:

{fr : flz) € &}
where r € X and ¥ € Y is open.

The pointwise aspect of the tepelogy 1s immediately apparent in
the partial ordering.

3.2 Proposition. The <nduced partial ordering on [X -~ Y] ig
such that:

ier Flx) © glx) for g1l = € ¥,

L)

“u
m
W
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where F» g € [X =~ Y1, O

The first question, of course, is what kind of a partial ordering
this is.

3.3 Theorem. 7If D and D' are continuous Lattices, thex so is
[D ~ D7) under the induced partial ordering with the lattice topology
agreeing with the product topsclogy.

Proof: The argument is "pointwise.” Thus, the constant function
with valuc L € D' is cobviously continuous and is the L of [D~+ D'] by
3.2. Since by 2.7 the lattice gperation U on D' is continuous, then
if f, g € [0 + D'] the composition f U g, defined by

(FU g)(x) = Flz)y U glx)
for all x € D, is also continuous and represents the lub of {f, g} in
D+ D']. (The same arguments apply to T and N, so [D »~ D*]is at
least a lattice.) To show that [D -+ D’'] is complete it is sufficient
now to show that lubs of directed subsets exist. So let FC [D -+ D']
be directed. Define a function from D into D' by the eguation:

(UF) ) = | |ire) : 7 e £,

for all z € D. 1f we can show that Ll# is continuous, then being
in [D > D'] it has to be the lub. Consider ¥ € D', an open subset.
Taking the inverse image and remembering that F is directed, we find;

{z : (LIF ) € U}=U{(ac : flxy e U) : FeEFI

This is an open set, and so L|# is indeed continuous. (Warning:
the infinite {]# are mot in general computed paintwise; however, it
is easy to exXtend the above argument to show that arbitrary || §
are.)
To show that [D - D’] is continuous, we establish first that
for f€ [D~ D'}
f = U{;[e,e’] e’ < fledd,
where e ranges over D and ¢’ over D', and where the function ;[e,e"]
is defined by :
2 if e~ z,
ele,e’ 1(z) =
n if not,

for all x € D. (all the function on the tight f'. <Calculate:



i e) = u{;[e,e’](x) e’ < fle)}
2 LI {e! :Jeexle < fled)]}
=L ]te! et < Fl2d) = flad.
With the equation for 7 proved, note next that for all g € [D » D'],
el < gle) implies 2le,e'1C g
by an easy pointwise argument. If we let
v ={g : e =<gle)l,
we see then that ¥V is open in the product topology and that
ele,e’1C [ V.
We may then conclude that
r=1]emv e,
which proves both that [D - D'] is a continuous lattice and that the
tWwe topologies agree by the temark following 2.4, O
The above theorem might possibly be generalized to [X = D] where
X is merely a To-space, but 1 was unable to see the argument. 1n any

case we are mostly interested in the continucus lattices. Note as a
consequence of our proof:

3.4 Corollary, For continuous lattices D and D, the

evaluation map:
eval : [D~D"] x D —+ D'
is continuous.

Preof: Here eval(f,z) = flz). With f fixed, this is
obviously continuous. With = fixed, we proved the continuity above
with our calculation of |JF in view of 2.5. Hence applying 5.3 and
2.6, we conclude that eval is jointly continuous. O

This result gives only one example of the masses of continuous
functions that are available on continucus lattices. As another

fundamental example we have:

3.5 Proposition., For continucus lattices D, D*, and D%, the

~map of funectional abstraction:
lembda : [[D = D']1 -+ D"1 - (D - [D* —~ D"13

18 contiAuoug.
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Procf: Here lambda is defined by:
lambda(f)(x)(y) = flx,y)

where f € [[D » 071 + D"] and = € D and y € D'. What is particularly
interesting here is that by virtue of 3.3 we are making use of
[D - [D' -~ D"]] as a continuous lattice. The principle being stated
here can be formulated more broadly in this way:
If an expression &(z,y,z,...) is continuous in
all its variables z,y,z,... with values in D’ as x
ranges in D, then the expression

aziD.Elz,y2,...3
with values in [D - D’] is continuous in the remaining

variables y,z,...

The x-notation is a notation for fumetions, where in the above the
variable after the X is the argument and the expression after the
is the value (as a function of the argument}. Thus we could write:

lambda = af:[[D ~ D'] = D] az:D.ay:0' . flx,y),
and, because f(x,y) is continuous in f, z, and y, our conclusion
follews. But often it is more readable not to write equatioms
between functions but rather equations between values for
definitional putrposes,
The proof of the principle is easy. For let the variable y, say
tange over D” and let 5§ € D” be a directed subset. Then

wx:D. .8 (e, |_‘S, Ey...) = )..:.’:D.I_'{E(J:,y,z,...) ry ES)

= U[Xr:D.&(:,y,z,...) : y €5},
because the lubs of functions are computed pointwise. O
We need not enumerate the many corollaries that follow casily naw
from this result., We mention, however, that compoesition fe; of
functions (on continuous lattices) is continuous in the two function

variables, where we write
(fog){x) = flg(z)).

What will be useful will be to Teturn at this point taa
discussion of the injective properties of continuous lattices, If
one continuous lattice iIs a subspace of another it is of course a
retract. This relationship between spiaces can be given by a pair of
continucus maps
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f :+ D~ D' and 0" =>0D,

where
Jei = 1dD = Az:D.x .
The composition i : Df - <(D) is the retraction onto the subspace
corresponding to D under ¢#. XNow if we have a diagram:
D_‘:_‘ D!
i 0.
o ’ -
h \ ’ = reg
¥
DH .

the given continuous f is at once extendablo from D to Df by the
obvious definition of F. This 7 is not¢ the f used in the proof of
2.11, and it will be well to sort out the connections. Un one side
note that if s is any function which extends 7, then we have

f = flei. But this implies

Fo=ofed s Meieg,

which shows that F is a "degraded" version of /. There is one
situation where this type of degrading is especially nice.

3.6 Definition. A continuous lattice D is said to be a
projection of a continuogus lattice D' iff there are a pair of

continuous maps
i :0-+0'and § : D' =D

such that nat only

but also

1§ T oidpy,,

Thus, in case our retraction is a projection, we have fFC f,
which means that 7 is the =winmimal extensiocn of 7 € [D = D”] to a

funcrion in [Df = D”]. We will discuss the nature of 7 in a moment.

But btefore we do we pause to remark that the correspondence 7 v 7

J

is sontinuous, and this fact is easily extended.

3.7 Proposition. Suppose the two pairs of maps

L + D! and g D~ D
1’7’3 Dn ke a Jn n ¥




for n = 0,1 make Dn a retraction (projection) of D;l' Then [DD -+ Dl]
is also a retraction (projecticn) of [D’U b D]'_] by means of the pair
of maps:
1(f) = le‘fﬂjﬂ . and
e I I
where f € [Dp ~ D] and e )~ D]’_]. o
Returning now to 7 we can prove:

3.8 Proposition. 7f D {s a continuous lattice and ¢ : X + Y a

subspace embedding, then for each f : X = D, the funetion f : Y + D
given by the formula
Fly) = u{n{f(z) :ae(z) € U)oy € v},
where U rangee oter open subsets of Y and © cver X, ig the mizimal
extension of F tc a funection im the partially ordared set [Y -+ D],
Proof: We are saying that ¥ is the maximal solution to the
equation
f = foe
We already know it is a solution, so let f' be any other. We have
ey = L[N a0 sy e n
ClJtMfitay @ 2 €etx) nul : ye vl
= u{ﬂ {r'teta)) ¢ ex) € ¥} : y € U}
= u{rl {flz) : e(z) € v} : y € v}
= F(y) »
which establishes that f/ C F. O
By the same argument we could show that F is the maximal
solution of fese C f. An interesting question is whether the
correspondeﬁce f ~w+ Fois gontinucus. 1 very much doubt it, but at

this moment a counterexample escapes me. [t 1s clear that the

correspondence is mencronie, for if £ C g, then the formula of 3.8

shows that 7 C 5. This gives us a neat argument for the previous

remark: 1if gee C f, then

e C T

0y

But goe = gee, sb by 3.8, g C gee, and f is thus maximal.
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In the case that the range spaces are being extended, the
following lemma relating the extensions will be very useful when we

consider inverse limits.

3.9 lemma. GCongider the diagram.

where the uppoer row ié a subspace emhedding and the lower 13 a
projection. If the given functions [ and g are eztended to f and §
ag in 3.8, and 1f F = jeg, then F = jeog also.

froof: F and g are maximal sclutioms of f = Fee and g = Fee.

Therefore since
f = jug = J'ogog’

we see that

Note 2lso that
iofee = fof = fojog C g,
and 50 by the remark following 3.8, we have
i+F C g.
Therefore

f=deieFC d-g,
which proves the equality. O

Whether this lemma is true for retractiens in any form, I do not
know. My proof seems to requitre the stronger projection relationship.
I suspect there may be difficulties. In general projections are
better behaved than retractions. By the way the word projection SEEmM$
to be properly used in 3.6, for the projection j:DxD'+D of the
Cartesian preoduct cof two continuous lattices onto the first factor is

a4 projection with partial inverse 7:D ~ D-D’ defined by
itz) = (x,21)

for » € D.



3.10 Proposition. I the continucus lattice D ie a projection

of the eontinucus lattice D' via the pair of maps 1,7; then for all

5 CDand all =,y € D we have:
(i) +cbdsy = [ |titey : =€ s},
(£1) (=) = 2(y} impliecg T7Y;
(L1} = =<y implies 1(x) < 4(y).
Conmvergzly, 17 a map i:D = D' zatiefiee (1) = ({ii), then there existe
a eontinucus j:D'+D making D a projection of D', and in faet § is
uniguely Jdatermined by:
tiv) 4 = | Jtzen i Coa}
For all £/ € D'.

Proof: Equation (Z) holds for directed § C D because 1 is
continuous., To have it hold for arbitrary £ it is only necessary to
check it for Finite sets, because every lub <5 the directed lub of
finite sublubs. {The last word of that sentence is an unfortunate
accident.) Further, to check the equation for finite sets it is
enough to check it for the empty set and for two element sets, Thus,
£(1) = 1, because j(i(1)) = 1 and since L C Z(1),

LY C J(i1))y = o,
so f(1) = 1. Whence (1) = £(j{a)) L 1. Next 2(z U y} = i{z) U 2(yJ,
because first
ilzx) U 2{y) C Z(z U y)
by monctonicity. Then note that

i(z) E <Cz) U 2(y)

and s0
= Jli(E)) C j(a(z) U i(y)).
Similarly
y € 4¢ilz) U 2(y)),
whence
Uy C G{i(z) U i(y)).
But then

i{x U y) T £(g(<(x) U £(y))) C =) U i(y),

which completes the argument for equation (4}.
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Cendition (Z4) 1is obvious. For ({1t} we argue as follows,
Assume : < y. Since D' is continuous we can write:
ityy = | | ia'e D' 2 2 < iy,
and conclude by the continuity of j that:
y o= sy = | Jisz'y 2’ < iy},
But = <y, 50 z < j{z') for some 2’ < £(y). Now z C j(z') follows;
therefire 7(z) C 1(5(c’)) C z/. Thus i(x) < ily).
Turning now to the converse, assume of the map £ that it s
satisfies (¢} - (£{¢). Compute:
G = | i@ s i@ B At
This is correct because i is continucus and the set {x:{4(x) T z’'} is
direcred in view of condition-(i}. Thus Z-f§ C MD' . Note that by
virtue of ({) and ({1} it is the case that
i(z) C i{y) implies x C y,.
(The reason is that = C y is equivalent to x U y = y.) This remark
allows us to compute:
Jlily)) = |__|{.r v ifx) C 20y}
=|__|{:c::c§y}=y.
Hence, jei = 1d[}' 1t remains to show that j is continuous.
Suppose S§' € D’ is directed., Since j is by definition monotonic,
it iz sufficient to prove that
Ll sH T | |Gty e 57}
Now
scdsy = [z - s@mc sy,

so suppose ¢(z) C LJ 8. Let z < r; whence i{z) < %(z). Thus
ilz) <z’ for some z’€ 5, and therefore {(z) C =/, We obtain then
z C 7{z'), which means that

z|;|__|{j(:’) s r'e g}
holds for all z < «, By the continuity of D we conclude
:Ql_J{j(:r") :z'e 5}
holls for all z with 2{(z) C Ll 5. The desired result follows. O
As a corollary of 3,10 we can easily see which subspaces of a

cantinuous lattice D' are projections of it. Such a subspace D € Df
must first be closed under L1 . That is, if ¢ ¢ D, then W s € D for



all 5, where the lub is taken in the sense of D'. The identity map on
D will then satisfy (¢) and (£<). But this is not enough, since we
would not know that D is a continuous lattice, nor whether (iii{) holds
The following additional condition would be sufficient, if assumed for
all y € D:

yiu[xED:x-(y}.

where < is taken 1in the sense of D'. This implies that

s Lltnwao - yen

where U ranges over the open subsets of D' and where the [] is taken
in the sense of D. This condition makes the subspace topology the
same as the lattice topology on D and besides makes D continuous,
which is just what we need. (Another way to put it is that whenever
z <y, where y € D but z € D', then 2 C x <y, for some z € 0.)

it seems a bit troublesome to characterize in a simple way just
which maps j:D’— D are projections. (COther than saying outright
that the map Z:D - D’ such that for all z € D:

iCey = [ Jla'e ' ¢ 2 C 5}
iz the continuous partial inverse to j.) But we can say very easily

which continuous maps j:D'+ D’ are projections onto gubepaces; namely,
we must have

The subspace in question then is:

D= {xe€ D : jlx) = x}.
This non-empty subspace is the exact range of 7 and is closed
under L] . Let vy € D. Then if =" <y in D', we find j(z') Cx' < y.
Thus since

y o= I_!{I'E 0" x' <y},
we see that’
v it = gy st <yd.
But each j(r) € 0, soy = U{:L- e D :x <y}, as desired,
The foregoing discussion suggests looking more closely it the

space of all projections of a continuous lattice since they are so
easily characterized.
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3.i1 Definjtion. Given a continuous lattice D, we let the space

of projections be denoted by:

J {5 € [D~>D] :4 = jojgC id}.

D =

3.12 Proposition. For a2 ceontinuocus lattice D the space JD of

projectiona forme a complete lattice as a |l-clcsed subspace of
(D - Dj.

Preof: The constant function 1 € n obviously, so Jp contains
Ll @. Suppose 7,k € Jp- We wish to show that j U % € ;. Compute:

(U R U X)) = F(5z2 U &(z)) U k(F(z) U k(x))
But note:
Jla) C Gl C J{j(=) U &{z)) C Jl=z),

because j(z) U k{x} C x. Similarly feor k(z). Therefore, we find
that (f U %)=(j U k) = § U &C id. Suppose finally that 5 C I is
directed. We wish to show that | ls € dp- Clearly L1sC id, so

compute by continuity of =:
l_]SuL]S=|_J{j°J:jES}=I_J[j:jES}=U5~
It fallaws that Iy is Ll -closed and hence is a complete lattice, O
The significance of the above result becomes clearer if we

consider the connection between projections and subspaces. Let us
write:

0¢iy = {z € D : j(lz) = z}.

For ; € Iys each D(7> is a projection of D onto a subspace. We show
first that

JCk  iff  0(j) € D(&)

Because if j C k, then j C jej C kej C idej = j. Therefore if

j€z) = x, then k(z)} = k(j(z)) = i{x) = x, which means that

D(jy < D(k). On the other hand, if D(j) <D (%), then since

F(D) C O(i), we see that k-j = j. and so j C keid = k. Hence Jp is
iscmorphic to the partially ordered set of subspaces of 0 that are
projections. We thus conclude that these subspaces form a lattice.
In fact, it is easy to show that

DCj W &Y = {x Uy : z€ D{7), y € D(k).

Similarly, if § is a directed set of Jp, then D¢ L) s) is the
Ll .closure in D of the subset:

Jwey o < st



These are not very deep facts, but their preoofs were very much
facilitated by the introduction of J, and the utilization of the
lattice structure of [D - D). Along the same line we can define for
Jsk & Jp o function (j ~ k3 & [D ~ D] = [D = D] by the equation

(F = RI(F) = kefeg.
It is very easy to show that (j = k) € J[D L that {(j -+ k) 1is
continuous in J and %, and that {D - DJ{j - k) is isomorphic to
(D(j) =~ D(x)]. There are many other interesting operations on
projections corresponding to other constructs besides these. And,
just as with ¢(jF = k), the operations are continuous. This nmakes it
possible to prove existence theorems about subspaces by using results
like the fixed -point theorem for continuous functions. It would be
even nicer if JD turns out to be a continuous lattice itself, but as
far as 1 can tell this is not likely to be the case.

Before we turn to the iterated functicn-space construction by
inverse limits, there are a couple of other connections betwszen spaces

and function spaces that are useful to know.

3.13 Proposition. Every continucus lattice D is a projeciion of

its function space [D —+ DI.

Proof: Consider the following pair of mappings con :D~ [D - D]
and min : [D -~ D] » D where

con(z)(y) = =
and
min(Ff) = f(1)

for all z,y € D and f € D. They are obviously continuous. The map
con matches every element of D with the corresponding constant
function in [D =+ D]. The map min associates to every function in
[0 + D] its minimum value in the partial ardering. The proof that
this pair forms a projection is trivial. O

The pair con, min are not the anly pair for making 0 a
projection of [0 = D]. The following pair of maps were suggested by
David Park:

l.x.;[t,m] and Af.f(t),

where r ranges aover 0, and 7 over [D - D] and where ¢ is a fixed
isclated element of D (that is, ¢ < t holds). The pair con and min
will result if we set ¢ = L. (Note that the expression elrx] though
continuous in x is not continuous--oT even monotonic--in the variable

t.) A lattice may very well possess a large number of isolated
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elements, whence a large number of projectiens. And furthermore this
is the only way the function j = Af.f(t) can be a preojection. For
assume the existence of an inverse i : 0 =+ [D =+ 0] satisfying the

proper conditions, Then it would be the case that
i{x)(t) = z
and
e yY © Flyd

for all =,y € D and all f € [D - D], We can preve for all v & D, if
t § v, then

L) () = 1

by substituting ¢lv,x] for § in the second equation above, where v is
chosen so that v < t but not v < u. But then note that

im) () = || Gita)wd = ou <t}

If nat £ < ¢, then u =< t implies t O u, which leads to absurdity.
Hence t must be isclated, and, as we noted earlier, the function 7 is
uniquely determined as being the one we already knew. Aside from
these pairs of projecticus one cculd obtain cthers by combinations
with automerphisms. I was unable to determine whether there are
further pairs of an essentially different nature.

The topic of projections in these spaces is rather interesting
since one has in a way more freedom in To-spaces (particularly in
injective spaces) than in ordinary spaces for defining functions. As
another example, consider the Cartesian square DxD, Aside from the
twc obvious projections onto D, there is also the ‘"diagonal™ system
given by the pair:

Ao (z,x) and Mr,y).oz Ny
We shall note in the next section how the choice of an initial
projection effects the construction of an inverse limit,

The projections are not the only useful functions in

[D~D]~D. As a final example of what can be done in functicn

spaces we mention the fixed-point operator.

3.14 Propesition. For g conttnuows fattice D there is a

unisuely determined continuous mapptng

fix : [D - D]~ D
where for all f € [D» D) and 2 €D

FUFIX(FYY = fix(F)



and whenever f{x) = =z, then
fix(7) C =.

Proof: The proof of the existence of minimal fixed points in
complete lattices Ls well known, as was mentioned in the proof of 2.10.
To establish the continuity, it is sufficient to remark that since all

functions f € [D - D] are continuous, we have

fin(f) = Lo
n=o

where f7(z) = FLF(...f(2)...)){n times). Thus fix is the point-wise
lub of continuous functions on [0 =+ D] and is thus itself contin-
uous, O

4. INVERSE LIMITS. By an inverse aystem of spaces we understand

as usual a sequence

¢ xn,'jn> nzo

of To-spaces and continuous maps Jn:Xn_u-' Xn' The space X_, called

the inverse Iimit of the sequence, is constructed in the familiar way
as that subspace of the product space consisting of exactly those
infinite sequences

R
Ty pep 2

where for each »n we have x € Xn,
and

( ) =

In Tl n'
The space X_ is given the product topology, and the maps ij:Xm* )(rl
such that

Jeay (T} = =

,
are of course continous and satisfy the recursion equation:
i o=

vy InJea(n+1),

Besides this we have the expected extension property for any system

of continuous maps

where for each »x
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Because, we can define

f,Y-x

by the equaticn
Folyr = 0f G
for all y € Y; whence

% depfa
holds. Se much for a review of inverse limits. In this paper our
interest will center on rather special inverse systems and their

limits.

_. ke an inverse syatem of

- - n L

4.1 Proposition. Ler (D ,J)

continyous lattices whera each J”:D””_-' D” is q projection. Then the
inverse limit space D is also a continuous lattice,.

roof: We need only show that D_ as a To-space is injeetive.
So suyppose f_:X - D_ is given and X € Y. Define fn:x -+ Dn by

fn = J.mn"fm- Let fn:Y - Dn be the marimal extension of fn according
to 3.8. Now we can see the point of Lemma 3.5: by this construction
we guarantee that .= jn°fn+1' Hence the required f_:Y = D_
exists. O

I do not know at the time of writing whether this theorem on
inverse 1limits of continuous lattices extends to sequences where, say,
the j  are only retractions. Fortunately, sufficiently many

n
projections exist to make this construction useful. Nete that by
reference to the product space construction of D_, its lattice

ordering is given simply by the relation:

z £y iff , €y, for all n.

n =

4.2 Proposition, ILet (Dn,gn) neo and D_ be as in 4.1. Then the

maps ,}'n:Dm* Dn are projections.

Proof: The projections jn:D Dn, as we know, have their

-
n+l

uniguely determined inverses in:Dn—‘ D We can define inm:Dn% D,

n+l°’

by the eguation:
TowlT) = Cy b

vwhere



.j'm(ym+1) if men,

Yy = x if m=n,
lm{ym-l) if m>n.
The preef that Z and Fooy; form a projection is now an easy
d

computation. I
Cne should note also the recursion equation:

i =1
noe (

ntll=" in
These maps also make it possible to state this useful equation:
o
e = ] e te,
n=o
where = € D_. It is easy tc check that this is a monotone lub, and
so we can say each = € D_ ig the 7imit of its projections T, In

fact, from what we know about projections, x is the hest possible

approximation to x in the space Dn'

4.3 Corollary. Let the spaces be as in 4.1 and 4,2. ‘et D'
be any complete lattice and suppose continuous funetions Iy Dn-' Df

i ., Then we can define f_: D+ D' by

are given so that f = f_,i° t -

the egquation:
PRESIEN I R e
=0

for z € D_, and we have f, = Fo.e inm. a

The import of this last result is that within the category of
complete lattices, the space D_ is not only the inverse limit of the
Dn’ but it is alsa the Jdireet limit. (One system of spaces here uses
the jn as connecting maps, the cther the in.J This is the algebraic
result that lies at the heart of ocur main result about inverse limits
of function spaces.

Turning to function spaces, let 0 = DO be a given continuous
lattice. As we have seen in 3.13, there are many ways of making DU
a projection of D1 = [Dg* Dy1. Choose onme such given by a pair

L'D s Define recursively:

0y = 0> D)

and introduce the pairs < making D a projectionof D

n+l’ Jln*l n+l nt2
by the method of 3.7. Specifically we shall have for z € Ur+1 and

/ .
z' € Dn+2'
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Since these spaces are more than continuous lattices being function
spaces, it 1z interesting to note that the maps T:n preserve function

value as an ilgebraic operation as follows:

T, (flx}) = (510, (z)),

i
n+l

where = € D and f € D Thus in passing to the limit space 0
v

ntl”
something of functional applicaticn must also be preserved. The

precise result shows that indeed D_ becomes its own function space.

4.4 Theorem. The inverse limit D_ of the recursively defined

3
sequence (Dn,jn)n_o of Ffunction apaces 19 not only a continuous
lattice, but it is also homeomorphic to its own function space

Lo~ D_J.

Proef: We can write down directly the pair of maps {_.,J,
that provide the homeomorphism:

REI R I ST N
n=0

EIRE o RE I R TV RS S R

n=o

Note that these formulae are simply generalizations at the limit for
the formulae we used to define 'En,jn in the first place. Thus it is
not surprising that they would provide a projection of [D_~ D_] upon
D,. Indeed we can compute out j_(i_(=x)), noting that all the lubs
are monotone and that a decuble monotone limit can always be replaced
by a single one in view of the continuity of the cperations involved,
cbtaining

s

Fuliyn(2)) = 1'(7/:'*‘1)"‘7(';"’“?101"rz""w‘rﬁ"ln'/"""’riuirz**'}

=
n

o]

o

i (n+l)°'°(rn+1)

a2
"
=]

In the converse order the calculation is only a bit more
complicated, The idea is that since all the functions fF are
continuous and since the elements z are the limits of their

approximitions, then each f is actually completely determined by its




sequence of resitrictions jwn"f‘”‘:,;m € Dn+1‘ This simple idea can be

made more precise with the aid of a lemma about D_, which allows us

o ?

in certain cases to recognize projections from limits.

4.5 lemma. Suppoae for each n wa have Yiiet) € Dn+1 and
we lat:
= | fuenyetieneny)
n=0
Then 1}
Jne1Minen)) = Hinen)

for each n, we zan conelude that:

Jua(nr1yCBY 2 Hipenye

Proof: 1If the sequence Uem41) satisfies the recursion, then the
limit defining » is monotonic. Therefore by continuity of projection
it suffices to prove that

(u

Fa(nt 1) Eimi )= (me1377 = 2ia1y

for all m » n. This is obvious for m = n, and it can be readily
proved by induction for larger m using the various recursien
equations. (Properly speaking the induction is done on the quantity
(m - n) using both n and m as variables.) O

Proof of 4.4 eoncluded: The lemma applies at once to our
calculation, for we find:

-

L i Fo 5 Gy

n=o

L) Gpedadore L 6 nein)

n=a n=0

Here we have just applied the continuity of f to be able to confine

S EINE))

3

the lub on the right. But now by the remark following 4.2, we note
the functional equation:

and the proof that {i_ and j_ are inverse to one another is complete.
complete. O )

We can explain the idea of this proof in other terms using a
suggestion made to me by F. W. Lawvere, Consider the category of
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contimuwus lattices and projections. 1ln that category ocur D, is, as
we have remarked, both a direct and an Znverse limit. Note too that
with regard to projections [D = D'] is a funetor, for we can also
define [j * j'] when the maps are projections. In this language our
particular inverse system is defined by the recursion:

Doy = [0, D Tand o =[5, ~; 7,

where DU and jO are given in advance. Now the function space
construction is continuous in its two arguments turming an inverse
limit on the right into an inverse limit and a direc# limit on the
left also into an imverse limit. A repeated limit can be made inte a

simple limit, so we can write:

7Dm = Iim (I:iﬂ ,Jn> nzo

.=
’1‘ ) -
n n n=o

Lim (D

and

(o ~0_l

Zim [Un*Dn], [gn*gn]> heo

o

n+l "?n+1) n=o

Zim (D
P

= D {up to Zsomorphism).

A full checking of the details involved would not make the argument
appreciably simpler over the mecre "element-by-element" argument I
have presented. In fact, the proefs are actually the same. But
thinking of the result in terms cof properties of functors does seem
to isolate very well the essential idea and to show how simple it is.
One must only add here a note of caution: the propetr choice of
category must be done with care., Thus it seems to me that the use of
projections rather than arbitrary continuQus maps is necessary.
Inasmuch as 1 have not checked all details in this form, 1 hope what
I say is correct.

Since we have shown [0_+0_]1 to be homeomorphic to D_, we can
begin to regard them as the same. 1n particular there ought to be
sone function space structure te transfer to D_. This can be done by
defining functional application for any elements =,y € D_ by the
equation:

oo

z(y) = l__l R CINPR T bR

n=g
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Similarly we can define x-abstraction on continuous expressions:

..oz, ] = J (hz:D_.[...z... 1),

and in this way 0_ becomes a medel for the A-calculus of Church and
Curry. The model-theoretic and proof-theoretic aspects of this result
will be explained in another paper (Scott (19572)).

Suppose we Were te start with the least, non-trivial lattice
0 = {1,L} for Dg. Now [J1 = [0 - ©] has exactly three elements and
there are just two ways of defining a projection jo:Dl*Do. They are
illustrated in the figure:

F [t,7] [v,7]

2 7o

T / [1,7] T 4 [1,r]
L Ié [1,1] L I4— [1,1]
Hence our construction gives two limit spaces 0_ and D). Are they
the same? No, they are not. It can be shown, for example that the
T of D_ is isolated (that is, 7 < 1), while the same is not true of
D;. More interestingly, David Park has proved that the fiied-point
operator fix mentioned in 3.14 has algebraic properties in D_ quite
different from those in D). By algebraic here, we of course have
reference to the functional algebra embodied in the application
operation z(y) defined on these limit spaces. Note, by the way,
that in view of our isomorphism result we can regard fix (or any
other similar continuous function for that matter) as an element of
D_. This makes the "algebra" of D_ quite a rich field for study.

The reader will have surely remarked that by virtue of 1.5,
every Tofspace X whatsoever can be embedded as a subspace in a D_
Besides this all the continuous functions on X (oh, into D_, say)
can be extended to D_; whence they can be regarded as elemente of
D,. Thus we have been able to embed not only the topology of X
into D_ but also all of the continuous function theory over X. So
far this is only a "logical" construction. For more interesting
"mathematical" results we shall have to investigate whether any
useful theorems about the usual function spaces [X ~ X] can be
obtained with the aid of D_. This method can easily be employed for
real- or complex-valued continuous functions, though it seems more
oriented toward pointwise convergence than anything else. 3till,
there seems to be a chance it might be useful--especially if one

wished to consider comtinuous operators on function spaces.
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The idea of forming the limit space can also be applied to other
funetors besides [D - D). Thus instead of sclving the "equation'

D =[D~ D]
as we have done with the D_ construction, we could alsoc solve:
Vo= T + [VxV] + [V4V] + [VoV]

for example. Here T = {1,0,1,7} is the four-element lattice with O
and ? as incomparable elements. By [VxV] and [v+V] we understand the
usual Cartesian product and function space coenstruction. The +
operator, on the other hand works only in the category of lattices
with r as an isolated element. It is defined so as to make:

D+ ‘4—— D'

T

D 4—— [

a push-out diagram, where the maps from 0 are meant to match 1 with
L and T with 7. The point of requiring T to be isclated is that both
D and D' become projections of D+D’. This construction, though not
quite a disjoint union, has many properties in commen with that
coperation on spaces. In particular, if we consider the category with

projections as maps, the construction
F'(0) = T + [0xD] + [D+D1 + [D~D]

is & functor. Furthermore, we can project [f(T) onto T in an obvious
way, thereby setting things up for an inverse limit construction:

g n P
Vo= 2im (F (T),gn) nzo

The resulting continuous lattice satisfies the desired equation up to
isomorphism.

The space ¥ constructed in the way just indicated is very rich
in subspaces. To see this, consider the space J{, of proper
projections j where (7> = v. As in 3.12 this is a complete lattice.
Now that [¥xV1 and [¥+¥] and [V+V] are regarded as subspaces of this
“universe' ¥ itself, we can easily define continuous operations

(Fxk) , (J+k) , and (j=k?

on the projections obtaining again elements of J‘,’J . The projections
50 obtained correspond to the indicated constructiaons of subspaces,
of course. {lndeed, if we had the time and space, we could show that

J;, becomes a very interesting category). There will be a particular



projection ¢ corresponding to T, and reason for doing all this is to
show that the existence of subspaces of V can now be established by
solving equations in J('.. For example, by the fixed-point comstruction
we could find a j € 4 such that

o=t o+ {txf) + Ugxgl=g).

The range of F would then be a subspace W € V such that W solves the
equation:

W=T+ [TxW] + [[WxW]l + W1.

And these are only a few examples: simultaneous equations are
pessible, and many other operators are waiting for discovery and
application.

REFERENCES. An announcement of this work and related investigations
was first given in Scott (1970). Rather complete references and
background material can be found in Scott (1971). A discussion of
formal thecries is to appear in Scott (1%972).

The presentation of the material of the paper changed con-
siderably after the January conference. In the first place remarks
by several participants, Ernie Mannes in particular, caused me to
rethink several points., Then the copportunity of lecturing at the
Project MAC Seminar at MIT during the spring provided the opportunity
of trying out some new ideas; these were then codified after lectures
at the University of Southern California with the aid of several
very helpful discussions on topology with James Dugundji.

The outcome of this development was that I found I could
describe the work in purely topological terms in a simple and natural
way leaving the lattices to be introduced as a spécial technique of
analysis, This gives the presentation a much less ad hoe appearance,
and relates the results to standard point-set topology in 2 much more
understandable way. No doubt the whole idea of using completeness,
inverse limits, and continuous functions could be put into a more
general, more abstract categorical context, but I am not the man to
do it. My interests at present lie in the direction of specific
applications, though I can see that there might be some worthwhile
directions to pursue,

For example, in understanding the connections .of my kind of
spaces with other topologies, one should consider the remarks on the
topology of lattices in Birkhoff's paper in Abbott (1870). Some
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Correction (Added March, 1972). Robin Milner has pointed
out to nme that there is an error in the remark in the
paragraph immediately preceding Propesition 2Z.5. ] was
mistaken in saying that if D is a To-spacc which becomes

a complete lattice under its induced partial ordering,

then every set open in the given topology is also open in
the induccd topology. fherce arc many counterexamples to
this statement. Let D be any complete lattice. There are
two extremne TO—tOpologies which will induce the given
partial ordering, The gmallcer such topology has as a

sub-base for its open sels those sets of the form:
fze D oIy

These sets are easily proved to Ge open in any TO-tOPOIGgy
which induces the partial ordering. At the other extrcre

consider set: =7 the form:

€D, L oxl

Such sets will give a base for a Toltopo]ng} that is the
mzximgl topolopy inducinpg the given partial ordering.

Clearly they 1 =ed not be open in the induced lattice torology,
in particular, they may well fail to satisfy conditions (£i}
on open sets. 1o make the remark in question correct, we
must thus su .pose that the given To-tnpology is contained
within the inugiiced lattice topology. The equation given in
the paragraph 3indicated will then be a sufficient condition
for the two t>~«iogies to he identical.

The remark was emploved in the proof of three different
aropositions- 7 5, 2,10, and 3.3, In the case of 2,9 one
must veritfy *hat the product topology is contained within the
lattice topoicy. ., This necd only be done for the has:s for
the product teop ‘ogy, and for such basic open sets the result

nceded is obviis, In the case of proposition 2.[6 the questicn



concerns a relationship between the topologies of a space and
a subspace; the spaces in question are also lattices, Note
in passing that a lub in the subspace is generally largen

in the partial ordering than the corresponding lub relative
to the whole space,. This puts the inequalities in the
wrong direction, and so it is not immediate that a relativized
open set for the subspace is cpen in the lattice topology of
the subspace. However, in this case we can appeal to the
continuous retraction, Recall that the relativized open
sets of the kind that we used in the proof of 2.10 are of

the form:

Suppose then that 5 is a directed set, and that using the lub

in the sense of D we have
Lis e .

Referring back to the proof of 2.10 we know that
itlde = Us,

which means that
z ¢ sl

From this it follows that
i), aome 2 € §,

Now i(z) = 3z, and we have what we need, This argument suffices
only for a special type of open sets; but these open sets {orm

a hase for the topology, and so the argument is quite general.

Turning now to the proof of theorem 2.3 we note that the
topology on the function space is simply the relazivized
product topology. There is no difficulty with lubs in this
case, because, as we showed in the proof of the theorem, all
lubs are calculated pointwise, Thus, it is easy to verify
now that the sets open in the product topology are also
open in the lattice topology.





