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ABSTRACT 

This paper suggests an analysis of the domains used in 
programming languages. It identifies some of the character­

istic domains and shows that programming languages vary 
widely in their definition of these domains. 

This monograph is a revised and slightly expanded version of 
a paper given at the International Computing Symposium at 
Venice 12-14 April, 197Z. (see reference [10]). 



PREFACE 

(With apologies to profes8or William Jame8~ Mias Stella 

Gibbons and the Late He'1'r Baedeker.) 

**In my belief that a large acquaintance with parti­

culars often makes us wiser than the mere possession of 

abstract £ormulas. however deep. I have ended this paper 

with some concrete examples, and I have chosen these among 

the extreme designs of programming languages. To some 

readers I may consequently seem. by the time they reach 

the end of the paper. to offer a caricature of the subject. 

Such convulsions of linguistic purity. they will say, are 

not sane. It is my belief, however, that there is much of 

value to be learnt from the study of extreme examples, not 

least, perhaps, that our view of sanity is rather easily 

influenced by our environment; and this. in the case of 

programming languages. is only too often narrowly confined 

to a single machine. My ambition in this and other related 

papers. mostly so far unwritten. is to develop an under­

standing of the mathematical ideals of programming languages 

and to combine them with other principles of common sense 

which serve as correctives of exaggeration, allowing the 

individual reader to draw as moderate conclusions as he 

will. 
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THE VARIETIES OF 

PROGRAMMING LANGUAGE 

O. INTRODUCTION 

There are so many programming languages in existence that it 

is a hopeless task to attempt to learn them all. Moreover many pro­

gramming languages are very badly described; in some cases the syntax, 

or rather most of the syntax, is clearly and concisely defined. but 

the vitally important question of the semantics is almost always dealt 

with inadequately. 

Part of the reason for this is that there is no generally 

accepted formalism in which to describe the semantics; there is nothing 

for semantics corresponding to BNF for syntax. BNF is far from ade­

quate to describe the whole syntax of any programming language, but with 

a little goodwill and a few informal extensions here and there, it is 

enough to be of considerable help in describing a large part of the 

syntax of many languages. Moreover, and this is one of its chief 

advantages, it is very widely understood and used by programming lan­

guage designers and implementers. 

When we come to the semantics the situation is not nearly so 

satisfactory. Not only is there no generally accepted notation. there 

is very little agreement even about the use of words. The trouble 

seems to be that programming language designers often have a rather 

parochial outlook and appear not to be aware of the range of semantic 

possibilities for programming languages. As a consequence they never 

explain explicitly some of the most important features of a programming 

language and the decisions among these, though rarely mentioned (and 

frequently I suspect made unconsciously), have a very important effect 

on the general flavour of the language. The main purpose of this paper 

is to discuss some features of this range of semantic possibilities in 
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the hope that it may make it easier to classify the varieties of 

programming language. 

One of the greatest advantages of using a high level programming 

language is that it allows us to think about abstract mathematical 

objects, such as integers, instead of their rather arbitrary represen­

tation by bit-patterns inside the machine. When we write programs we 

can now think of variables instead of Zoaatians (or addresses) and 

functions instead of eubt'Qutinee. When we write a statement such as 

:r: .: Sin(y+3) 

in Algol 60, what we have in mind is the mathematical functions sine 

and addition. It is true that our machines can only provide an 

appro:r:imation to these functions but the discrepancies are generally 

small and we usually start by ignoring them. It is only after we 

have devised a program which would be correct if the functions used 

were the exact mathematical ones that we can start investigating the 

errors caused by the finite nature of our computer. 

This is the "mathematical" approach to wri ting programs; we are 

chiefly interested in the values of the expressions and not in the 

steps by which they are obtained. The alternative~ earlier approach, 

which might be called "operational", involves specifying in detail the 

sequence of steps by which the result can be obtained. While the 

ability to do this is also an important facet of computing, it should 

be regarded as a means to an end; the important thing is to compute 

the correct quantity. It is generally much easier to prove that one 

particular program provides an approximation to a mathematically exact 

function than it is to prove the approximate equivalence of two programs 

directly. As there are usually several possible ways of implementing 

any particular function, it is obviously more satisfactory to specify 

the ideal mathematical function as the first step and then, as a second 

to consider the implementation and the approximation it introduces. 

All this is widely appreciated by numerical analysts and programmers 

and it accounts, at least in part, for the popUlarity of high level 

languages. 

When it comes to the description of programming languages them­

selves. however, the situation is quite different. Most of the work 

on syntax and some on semantics has been at the level of symbol mani­

pulation - that is to say it has been concerned with the representatio 
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(generally on paper)"rather than with the mathematical objects represen­

ted. The unsatisfactory nature of our understanding of programming 

languages is shown up by the fact that although the subject is clearly 

a branch of mathematics, we still have virtually no theorems of general 

application and remarkably few specialised results. 

A second purpose of this paper is to advocate a more conven­

tionally mathematical approach to the problem of describing a program­

ming language and defining its semantics, and, indeed, to the problems 
of computation generally. 
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1. MATHEMATICAL BASIS 

In our search for a mathematical approach to semantics we shall 

make great use of functions of various sorts. Many of these will be 

of "higher type" - i.e . ...,ill have other functions as their arguments 

OT results. The word "functional" is sometimes used for functions 

which operate on functions. but we prefer to use the single word "func­

tion" for all types. 

1.1 Function8 

In order to specify a function mathematically we need to give 

it a domain (the set in which its arguments lie) and pangs (the set of 
its function values) as well as its gpaph (the set of ordered pairs of 

arguments and function values). The domain and range specify the 

functionality of the function - i.e. the set of which it is a member. 

The graph, which is often given by an expression or algorithm, identi­

fies the particular member of this set. 

The functionality of a function is often taken for granted or 

glossed over when it is defined. This may be unobjectionable as the 

functionality can sometimes be deduced unambiguously from the expression 

for its graph. There are, however, cases in which a more rigorous in­

vestigation shows up difficulties and confusions of considerable im­

portance. We shall therefore look rather carefully at the domain and 

range of the more important functions which occur in the interpretation 

of a programming language. Before considering specific e~aroples we 
need to discuss the general features of domains and ranges. (As these 

are similar we shall use the word domain for both domains and ranges.) 

1.2 Domains 

There are two main classes of domain: elementary and compound. 

The elementary domains correspond to the familiar simple types in pro­

gramming languages: their properties are in general mathematical in 

nature and independent of the design choices of a programming language. 

Some common elementary domains are: 
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T Truth values (Booleans) 

N. Integers 

R Reals 

Q Character strings (Quotations) 

These can all be considered as "data types" to be manipulated 

by the programming language and their properties are the ~ual mathema­

tical ones. The various expressions in the programming language may 

have values which lie in one or other of these domains. The domain Q 

is generally confined to those character strings which are manipulated 

by the program; the text of the program itself is not one of these 

and so is not regarded as lying in Q. 

Compound domains are constructed from other domains, either 

elementary or compound, by one of three methods. If Do and 0 1 are 

any two domains (not necessarily different) we write 

Do + 0 1 for their au.m 

Do )( D1 for their produ.ct 

An element of Do + D. is eithe:ro an element of Do or an element 
of D. (but not both). 

An element of Do x D is an ordered pair whose first component1 

is an element of Do and whose second component is an element of 01 

Sums and products of domains can be extended to more than two 

components without any serious difficulty and we shall write expressions 

such as 00 + O. + 0, and 00 + O. + [Do 0,] in a rather infDrmal mannerX 

to represent such domains. 

There are two notational abbreviations for sums and products 

which are sometimes convenient. We write 

on for 0 x 0 x 0 x ••• x 0 (n factors) 
and D· for 0' + 01 + 03 + ••• 

E:z:amp Zea 

N + R is the domain of numbers which may be either integers or 

reals. The arithmetic operators in programming languages often use 
this domain. 

R x R is the domain of ordered pairs of reals. A complex 

number, for example, can be represented by an element in this domain. 
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~ is the domain of sixtuples all of whose components are reals. 
A real vector of dim~nsion 5 might be an element of this domain. 

R* is the domain of all real vectors of any dimension. 

The third method of combining the two domains Do and O. is to 

form those functions whose argument is in Do and whose result is in O. 

we shall write Do -.0 1 to represent this domain. It will appear in 

the next section that we are not interested in all the set-theoretic 

flUlctions from Do to 0, ~ only in those which are in some sense "reason­

able". Put nor are we only interested in total. functions - it may 

well be that for some values of its arguments OUT functions "£ail to 

converge" - i.e. are undefined. We shall have more to say about 

functional domains in the next section. The general topic of domains 

for programming languages is discussed further in several papers cited 

in the references [1,3.5]. 

1.:3 Re[l.ezive Domain8 

When we come to examine the domains required by programming 

languages later in the paper we shall often want to define a domain 

self-referentially. For example in a list-processing language we 

might want to discuss the domain of single level lists of atoms. 

Following LISP we could define a list as an ordered pair, the first 

component of which was always an atom. while the second was another 

list. Thus if A is the domain of atoms and 0 is the domain of single 

level lists, we should have an equation 

o 0: A x 0 

If we wanted to allow lists as well as atoms as the first component 

(so tnat our domain was of list-structures. not merely single level 

lists) the defining equation would become only very little more com­

plicated. 

0' = [A + 0'] x 0' 

These equations are reminiscent of the recursive structure definitions 

in some programming languages. 

Another example is the type-free A-calculus of Church and Curry 

If ~e allow atoms as well as A~expressions every object must be either 
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an atom or a function (as every A-expression is considered to be a 

function). This leads to the defining equation. 

o = A + [0 -+ OJ 

This looks much like our previous definitions but it conceals 

a serious difficulty. If we take 0 -+ 0 to be the set of a~l aet­

theoretic func-tions from 0 to it8el.f~ there i8 no solution to "the equa­

tion. In fact there are always more elements of 0 -+ 0 than there are 

of 0 so that the equation (which should be interpreted as "up to an iso­

morphism" only) cannot be satisfied. 

If 0 has k members, the full set 0 -+ 0 has kk members and. as 

Cantor's theorem shows, this is always greater than k provided k is 

greater than one. 

At first sight this looks like a fatal flaw and it certainly 

demonstrates vividly the mathematical danger in failing to prove the 

existence of the objects we wish to discuss. We cannot now feel happy 

with any of our domains defined by a self-referential equation (we shall 

refer to these as reflexi~e domains) until we have proved their exis­

tence. It was the impossibility of doing this for definitions in­

volving D ~ D that prevented the construction of set-theoretic models of 

the A-calculus and forced it to remain a purely formal theory. 

Fortunately. however. in 1969 Dana Scott discovered a solution to 

this problem. As we indicated in the last section the difficulty of 

cardinali ty is avoided by restricting the domain Do ~ D1 to include only 

some of the set-theoretic functions. though the restriction appears quite 

naturally as a consequence of the theory. In outline Scott argues as 

follows; 

It is reasonablem adjoin to every domain a partial ordering 

based intuitively on a degree of approzimation or information content, 

For many elementary domains this partial ordering is of a rather trivial 

kind. but it is sufficient to turn the domains into complete lattices. 

The partial ordering for a compound domain can be derived from those of 

its components. 

If a function is to be well behaved. it should be monotonic, Le. 

preserve the partial ordering - it should not be possible to get a 

better defined (more accurate) result by giving it a worse defined 

argument. If a function is to be computable. it should be possible to 
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obtain any degree of approximation to its result by giving a suffi­
cient, but still finite. amount of information about its arguments. 

This means that the function should preserve limits in some way. 
These two conditions lead to the idea that we should be concerned 
only with ~ontinuOU8 functions (the term is, of course, precisely 

defined) ~d this is the restriction imposed on the construction 

Do + 01 • The exact mathematical nature of continuous functions is 
discussed elsewheTe~ it is sufficient to say here that they include 

all the ordinary and reasonable sorts of function - and, indeed, all 

those which are computable - and exclude only those which have mathe­

matically pathological properties. 

Making use of these ideas Scott was then able to construct, 

by a method which is reminiscent of that of Dedekind's cuts for con­
structing real numbers, a reflexive domain which satisfied the equation 

D = 0 ~ 0, thus producing the first set-theoretic model for the A-cal­
culus. 

In a further extremely elegant piece of work he proved the 
existence of a universal domain U which satisfies the equation 

U = A + [U + U] + [U )( U] + [U -to U] 

where A is any domain. The domain U proves to be extremely rich in 

sub-domains and Scott was able to show that these include all the re­
flexive domains which can be defined by a self-referential equation 

using A (or its components) and the domain constructing operators +, 

)( and +. 

This is not the place to go into the details of this work 

and the interested reader is referred to the papers by Scott[l.2.3]. 
We can procede with our analysis of the characteristic functions of 
programming languages secure in the knowledge that all the reflexive 

domains we require, no matter how complicated, do have a mathematical 
existence. 
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2. CHARACTERISTIC DOMAINS IN PROGRAMMING LANGUAGES 

2.1 Denota tiona 

Programming languages follow the example of mathematics gener­

ally in allowing names chosen by the user to stand for or denote 

certain obj ects. The relationship between the name and the thing 

it denotes is, of course, a function in the mathematical sense; we 

shall call it the environment and reserve the Greek letter p to stand 

for an individual environment. The functional nature of the envir­
onment, which we shall write as Id ~ D, varies widely from one 
programming language to another and is well worth closer study. 

The domain (i.e. the set of arguments of p), which we wrote 

as Id. is the set of names or identifiers in the programming language. 

In the sense of §1.2 above, Id is an elementary domain. and it is also 

the only domain we shall encounter whose members are elements of the 

text of a program, and are therefore parts of the programming 

language itself and not the objects manipulated by it. Id is 

generally defined by the syntax rules of the programming language. 

It is a very simple domain whose only basic property is the relation 

of equality - it is always possible to say if two names are the 

same or not. but names in general have no internal structure. 

The only remarkable thing about Id is the number of different 

words which have been used to describe its members. The fact that 

they have been called Ilnamesll, "identifiers" and "variables" in 

different languages would not matter so much if these same words had 

not been also used with quite different meanings. I have preferred 

to use the word "name" or sometimes "identifier" for a member of ] d 

as I think this accords best with the non-technical use of the word, 

but the reader should be warned that both Algol 60 and Algol 68 use 

the word "name" in quite different senses. Algol 60 uses the term 

"call by name" where "call by substitution" would be more appropriate; 

Algol 68 uses the word "name" in an equally incorrect and even more 

misleading manner to mean approximately what is generally meant by 

the word "address". 

The range of p i.e. those things which can be given names ­

will be written as D. (In the earlier parts of this paper 0 has 

been used as a general symbol for any domain. In what follows it 
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will he reserved for the domain of denotations), In many languages 

o is a large compound domain wi th many component parts. It must 

include anything which can be passed to a procedure as a parameter 

(as inside the procedure this will be denoted by the corresponding 

formal parameter) as well as the objects declared as local or global 

variables. Thus in Algol 60. 0 must include procedures (and typc­

procedures), labels, arrays and strings. 

The do~in D does not. however. include integers, reals or 

booleans. The reason fOT this is that we want to preserve the 

static nature of P. In ordinary mathematics, the thing denoted by 

a name remains constant inside the lexicographical scope of the 

name; it is determined only by conte.xt and not by history. In 

programming languages this is also true of some names - for e.xample 

procedures in Algol 60; once declared they keep the same meaning 

(denotation) throughout their scope. On the other hand, for names 

declared in AlgOl 60 as real, integer or boolean, it is possihle 

to change the value associated with the name by an assignment com­

mand. For names such as these. the associated integer. real or 

boolean value can only be obtained dynamically and depends on the 

current state of the store of the machine. In spite of this, 

however. the address in the store associated with the name remains 

constant - it is only the contents of this address which are altered 

by the assignment command. It is therefore appropriate to say that 

the name denotes a location which remains fixed. and that the ordin­

ary value associated with the name is the content of this location. 

The location is sometimes known as the L-value of the name and its 

content is called the R-value. The concepts of an L-value, which 

is a location, and the corresponding R-value which is its content. 

can be extended to cover e.xpressions (for example array elements) as 

well as names. 

We therefore need an elementary domain of locations; which we 

shall call L, and it must be a component part of 0 for all languages 

which have an assignment command. 
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2,2 Stored Valu.eB 

The state of the machine. and in particular the state of its 

store. determines the contents of the locations. We shall use 

the Greek letter a to stand for a machine state and S to stand for 

the set of all possible machine states. We shall not discuss the 

nature of the domain S exhaustively - it seems probable that it may 

vary from language to language - but it must always contain at least 

enough information to give the contents of all the locations in use. 

it must therefore include a component with functionality L -+ V where 

V is the domain of all etOI'ed values - Le. those quantities which 

can he the value of the right hand side of an assignment command. 

The two functions p and a together with their associated domains 

D and V go a long way to Characterising a programming language. 

There is a fundamental difference between these two functions which 

is the source of many of the confusions and difficulties both about 

programming languages and also about operating systems. This is 

that while the environment p behaves in a typically "mathematical" 

way - several environments can exist at the same point in a program, 

and on leaving one environment it is often possible to go back to a 

previous one - the machine state a which includes the contents 

function for the store, behaves in a typically "operational" way. 

The state transformation produced by obeying a command is essentially 

irreversible and it is, by the nature of the computers we use, im­

possible to have more than one version of a available at anyone 

time. It is this contrast between the static. nesting, permanent 

enviroIUll.ent. p, and the dynamic irreversibly changing machine state, 

o. which makes programming languages so much more complicated than 

conventional mathematics in which the assignment statement, and 

hence the need for a. is absent. 

2.3 The Assignment Command 

We can now give a model for an abstract store and explain the 

meaning of the assignment command in terms of it. The model is de~ 

liberately simplified and the explanation informal. Most existing 

programming languages need a more complicated model and a more form­

alised description of the assignment command is necessary before much 

more detailed work on semantics can be carried out. Many of these 
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developments have been, or are in the process of being. worked out 

[4.6] but for the present paper it seems better to avoid as much 

detail as possible. and to give only the main outlines. 

The simple model of the store contains the following domains 

L Locations G,a'E L 

V Storable Values a E v 

S = [L ~ V] Stores 0,0' E S 

We postulate the following basic functions on these domains. 

In each case we first give the functionality (i.e. range and domain 

of the basic function) and then an expression which defines it. 

(1 ) Contents : L ~ [5 ~ V] 
Contenta(a)(o) = o(a) 

(il)	 Update: [L x V] ~ (5 ~ SJ 

If 0' = Update(a.S)(o) 

Content8(a)(o') z a 
and Content8(a')(o') z Contsnta(a')(o) if a' r a 

Thus the effect of updating a location a in a store 0 with a value 

a is to produce a new store 0' which yields the contents a for the 

location Il but is everywhere else identical with o. This, of course, 

is exactly what we expect a simple update operation to do. A point 

to notice is that the partially applied update function UpdatdCl,B) 

is of type [S ..... SJ- i.e. a function that transforms (alters) the 

store. 

Before we can deal with the assignment command we need to in­

troduce functions which yield the values of expressions. Since ex­

pressions (which include names as a special case) in general have both 

L-values and R-values we need two such functions, which we shall write 

as land R. These functions operate on expressions in the pro­

gramming language and their results clearly depend on the environment, 

P,to prOVide a denotation for the names in the expression; it is also 

fairly obvious that their results may depend on the state of the 

store, 0, as well. When we consider what results they should yield, 
we must remember that there is a possibility that the evaluation of an 

expression may have a side effect - i.e. it may alter the store as 

well as producing a result. This implies that the results of our 
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evaluation functions should be pairs consisting of a value and a 

possibly altered store. 

To express these ideas in symbols we need two new domains 

Exp Expressions in the Programming Language 
ED j£1 E Exp 

Env - [Id ~ DJ Environments P E Env 

Then we have the basic functions 

t Exp" [Env -+ [5 -+- [L )( 5J]) 

and " E.xp -+ [Env .. [5 .... [V )Ii 5]]] 

The detailed definitions of l and Q. form part Df the semantic des­

cription of the programming language, and we shall not consider them 

further here. 

We can now consider the effect of a general assignment command 

of the form 

EO : ... £1 

(Note that the left side of this is an expression. £0. although most 

programming languages limit rather severely the sorts of expression 

that may be used here.) 

The operation takes place in three steps 

1. Find the L-value of Eo 

2. Find the R-value of E1 

3. Do the updating. 

(Note: we have assumed a left-to-right order for the evaluations.) 

If we are obeying this command in an environment p with an 

initial store 00, these three steps can be written symbolically 

as 

1. l(Eo)(p)(oo) <; <a,O\> 

a is the L-val ue of Eo, 0\ is the store which may have been al tered 

while finding a.; if there are no side effects, a, '" 00. 

2. el( Ed(p)(od '" <13,01> 

13 is the R-val ue of (:, . Note the use of 01 in place of 00; it is 

this that expresses the left-to-right order of evaluation. 
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3. Update(C1,B)(o~) '" OJ 

Then the effect of the whole command is to change 00 into 0 •• 

We can now int Toduce another semantic function ~ which gives 
the meaning of commands. The functionality of ~ will be 

'I : Cmd -+ (En\' -+ (5 -+ SJ] 

where Crod is the domain of commands in the programming language. In 

terms of ~ we can write 

'if(to := E:.l )(p) '" a 

where e E 5 -+ S and, for the example above J 

B( 00) '" 0",. 
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3. TWO SPECIMEN LANGUAGES 

In order to make the ideas discussed above more concrete we 

give below a discussion of two programming languages in terms of 

their domains. The first, Algol 60. is probably familiar to most 

readers; the second, PAL, is unlikely to be known by many. For 

both languages we start by listing (and if necessary discussing) 

the elemen tary domains; we then define and discuss various derived 

compound domains which occur naturally in the description of the 

language and finally give the composition of the characteristic 

domains 0 and V. 

3.1	 Algol 60. 

a.	 Elementary Domains 

T Booleans (truth values) 

N In tegers 

R Reals 

Q String (quotations) 

J Labels (jump points) 

L Locations 

S Stores (machines states) 

T. N. and R have their ordinary mathematical properties. Algol 

60 has no basic operations on Q, but strings may be passed as para­

meters. We treat J and 5 as elementary domains because ~e do not 

want to investigate their structure. We note that 5 at least in­

cludes l .... V. 

b. Derived Domains 

Expression values 

E : 0 + V 

E must contain 0 because a name by itself is a simple form of 

expression. 

Prooedures 

p:	 [0*"" [5 .... 5]] 

+[0* .... [5 .... [V)( 5]JJ 

The parameters must lie in 0 as they are denoted by formal 

parameters inside the body of the procedure; their number is un­

specified so that the parameter list is a member of 
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0110- = + 0' + 01 
••• The body of an ordinary (non· type) PTO~ 

ceduTe is a command· Le. it transforms the state of the machine 

and 50 is in [5 + SJ. A type procedure produces a result which, 

perhaps by chance. in Algol 60 lies in V (not in E) but the pro­

cedure itself may also have a side effect and alter the store. 

Thus its functionality must be [5 + [V x SJJ . 

Arrays 

The elements of an array can be assigned to and must there­

fore denote locations 

Al=L+l 3 + L' + ... (vectors) 

= L'" 

A2 '" Ai + Ai' + ... (matrices) 

'" Ai '" '"" L** 

A3 = A2* = l """ '" C3-arrays) 

A L* + L** + L*"'* t .••. (all arrays). 
L' 

Cal- 1-9 by Name 

W"'S+[ExS] 

Formal parameters called by name are rather like type-procedures 

(functions) ~ith no parameters; they produce a value and may have 

a side-effect and so alter the store. The value they pToduce. 

howeveT, is not confined to V but may be anywheTe in E. 

c. Characteri s ti c Domains 

Denotations 

D ~ L (booleans, integers, reals) 

+ P • (pToceduTes, type-procedures) 
+ L • (aTTays) 
+ W (calls by name) 
+ W· (s'Witches) 
+ Q (stTings) 
+ J (labels) 

'Where P "" [0* +- [5 +- 5JJ + [o*+- [5 +- [V )( $J)] 

and W = 5 +- [E )( 5] 
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Stored va lues 

V=T+N+R 

Note	 that V is rather small and 0 very large. 

3.2 PA~ 

PAL is a language developed by Evans and Wozencraft [7] at 

MIT for teaching purposes. It is an unusually "clean" language 

but difficult to implement efficiently. It resembles Gedanken of 

Reynolds [8] and Euler of Wirth [9] in the fact that its type 

checking and coercion, if any, are done dynamically at run-time and 

not at compile time. 

a.	 Elementary Domains 

These are the same as for Algol 60 viz: T.N,R.Q.J,L and S. 
The jumps in PAL are considerably more powerful than those in Algol 

60, so that J in PAL is different from J in Algol 60; PAL also has 
some basic operators on Q. 

b. Derived Domains 

E~prB8Bion valuBs 

E 0	 + V:Ii: 

This domain is hardly needed in PAL. 

ProcedureB 

P = l	 + [S + [l x S]] 

There is only one sort of procedure (or function) in PAL. 

This takes a single location (L-value) as an argument and produces 

a single location as a result, also perhaps altering the state of 

the machine as a side-effect. The effect of several arguments can 

be obtained by handing over a single list of arguments (a tuple 

as defined below); a pure procedure, which yields no useful result 

and is used, like a command, merely to alter the machine state, is 

given a dummy result. 

Tuples 

These are the only structural values in PAL; they take the 

place of arrays in Algol 60. A tuple is a vector of locations and 

is therefore a member of l*. 
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c. Characteristic Domains 

Denotations 

o = L 

All names can be assigned to, and so denote locations. 

Stored value8 

V=T+tl+R (haole ans. in tegers. rea Is) 

+ Q + J (strings, labels) 

+ L' (tuples) 

+ P (procedures) 

+ {dummy} 
All the values in PAL (except a single location) can be stored 

and so are part of V. Note that L is not itself a member of l* ­

in that a i-tuple is distinguishable from a location. In fact a 

i-tuple is an ordinary R-value and can be assigned or stored. 

Note that in contrast to Algol 60, 0 in PAL is very small 
and V very large. 



4. CONCLUSION 

The differences between the domain structure of Algol 60 and 

PAL are very stri~ing. They lie, moreover, at a rather deep level 

and do not depend in any wayan the syntax or even the range of 

basic semantic operations in the language. They are in some sense 

stl'uctul'al. It is clear that there are many important features 

of a programming language which cannot be revealed in ~y analysis 

as general as this; there are also some further structural features 

which are not made evident by a study of the domains. (An eX8IJlple 

of this is the different way in which Algol 60 and PAL deal with 

type checking and coercion.) In spite of this inevitable in­

completeness, 1 think it would be well worth the effort of any 

language designer to start with a consideration of the domain struc­

ture. 

The general idea of investigating the domain structure of a 

programming language grew from a collaboration between the author 

and Dana Scott which started in the autumn of 1969. Our main ob­

jective was to produce a mathematical theory of the semantics of 

programming languages. A general outline of this work is given 

in Scott [1]; Scott and Strachey [4] gives an introduction to the 

theory of the mathematical semantics based on these ideas. Other 

papers in pri.nt [2.3] and in preparation (5.6] give further details. 

Much still remains to be done before we have a reasonably complete 

theory and we hope to continue our work along these lines. 
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