
((]Pi L~~

THE VARIETIES

OF

PROGRAMMING

LANGUAGE

by

Christopher Strachey

Oxford University
CompLltin~ i.aboratory
Programming Research Group-Library
8·11 '(ebl~ 8nad
Oxford OX: 3QD
Oxforo (O~F;5) 54141

Technical Monograph PRG-IO

M.arch, 1973.

Oxford University Computing Laboratory.

Programming Research Group.

45 Banbury Road,

Oxford.

e 1973 Christopher Strachey

Oxford University Computing Laboratory.

Programming Research GroupJ

45 Banbury Road,

Oxford. Ol2 6PE.

ABSTRACT

This paper suggests an analysis of the domains used in
programming languages. It identifies some of the character­

istic domains and shows that programming languages vary
widely in their definition of these domains.

This monograph is a revised and slightly expanded version of
a paper given at the International Computing Symposium at
Venice 12-14 April, 197Z. (see reference [10]).

PREFACE

(With apologies to profes8or William Jame8~ Mias Stella

Gibbons and the Late He'1'r Baedeker.)

**In my belief that a large acquaintance with parti­

culars often makes us wiser than the mere possession of

abstract £ormulas. however deep. I have ended this paper

with some concrete examples, and I have chosen these among

the extreme designs of programming languages. To some

readers I may consequently seem. by the time they reach

the end of the paper. to offer a caricature of the subject.

Such convulsions of linguistic purity. they will say, are

not sane. It is my belief, however, that there is much of

value to be learnt from the study of extreme examples, not

least, perhaps, that our view of sanity is rather easily

influenced by our environment; and this. in the case of

programming languages. is only too often narrowly confined

to a single machine. My ambition in this and other related

papers. mostly so far unwritten. is to develop an under­

standing of the mathematical ideals of programming languages

and to combine them with other principles of common sense

which serve as correctives of exaggeration, allowing the

individual reader to draw as moderate conclusions as he

will.

CONTENTS

Page

O. Introduction 1

1. Mathematical Basis 4

1.1 Functions 4
1.2 Domains 4
1.3 Reflexive Domains 6

2. Characteristic Domains in Programming Languages 9

2.1 Denotations 9
2.2 Stored Values 11
2.3 The Assignment Command 11

3. Two Specimen Languages 15

3.1
3.2

Algol 60
PAL

15
17

4. Conclusion 19

References 20

THE VARIETIES OF

PROGRAMMING LANGUAGE

O. INTRODUCTION

There are so many programming languages in existence that it

is a hopeless task to attempt to learn them all. Moreover many pro­

gramming languages are very badly described; in some cases the syntax,

or rather most of the syntax, is clearly and concisely defined. but

the vitally important question of the semantics is almost always dealt

with inadequately.

Part of the reason for this is that there is no generally

accepted formalism in which to describe the semantics; there is nothing

for semantics corresponding to BNF for syntax. BNF is far from ade­

quate to describe the whole syntax of any programming language, but with

a little goodwill and a few informal extensions here and there, it is

enough to be of considerable help in describing a large part of the

syntax of many languages. Moreover, and this is one of its chief

advantages, it is very widely understood and used by programming lan­

guage designers and implementers.

When we come to the semantics the situation is not nearly so

satisfactory. Not only is there no generally accepted notation. there

is very little agreement even about the use of words. The trouble

seems to be that programming language designers often have a rather

parochial outlook and appear not to be aware of the range of semantic

possibilities for programming languages. As a consequence they never

explain explicitly some of the most important features of a programming

language and the decisions among these, though rarely mentioned (and

frequently I suspect made unconsciously), have a very important effect

on the general flavour of the language. The main purpose of this paper

is to discuss some features of this range of semantic possibilities in

2

the hope that it may make it easier to classify the varieties of

programming language.

One of the greatest advantages of using a high level programming

language is that it allows us to think about abstract mathematical

objects, such as integers, instead of their rather arbitrary represen­

tation by bit-patterns inside the machine. When we write programs we

can now think of variables instead of Zoaatians (or addresses) and

functions instead of eubt'Qutinee. When we write a statement such as

:r: .: Sin(y+3)

in Algol 60, what we have in mind is the mathematical functions sine

and addition. It is true that our machines can only provide an

appro:r:imation to these functions but the discrepancies are generally

small and we usually start by ignoring them. It is only after we

have devised a program which would be correct if the functions used

were the exact mathematical ones that we can start investigating the

errors caused by the finite nature of our computer.

This is the "mathematical" approach to wri ting programs; we are

chiefly interested in the values of the expressions and not in the

steps by which they are obtained. The alternative~ earlier approach,

which might be called "operational", involves specifying in detail the

sequence of steps by which the result can be obtained. While the

ability to do this is also an important facet of computing, it should

be regarded as a means to an end; the important thing is to compute

the correct quantity. It is generally much easier to prove that one

particular program provides an approximation to a mathematically exact

function than it is to prove the approximate equivalence of two programs

directly. As there are usually several possible ways of implementing

any particular function, it is obviously more satisfactory to specify

the ideal mathematical function as the first step and then, as a second

to consider the implementation and the approximation it introduces.

All this is widely appreciated by numerical analysts and programmers

and it accounts, at least in part, for the popUlarity of high level

languages.

When it comes to the description of programming languages them­

selves. however, the situation is quite different. Most of the work

on syntax and some on semantics has been at the level of symbol mani­

pulation - that is to say it has been concerned with the representatio

3

(generally on paper)"rather than with the mathematical objects represen­

ted. The unsatisfactory nature of our understanding of programming

languages is shown up by the fact that although the subject is clearly

a branch of mathematics, we still have virtually no theorems of general

application and remarkably few specialised results.

A second purpose of this paper is to advocate a more conven­

tionally mathematical approach to the problem of describing a program­

ming language and defining its semantics, and, indeed, to the problems
of computation generally.

4

1. MATHEMATICAL BASIS

In our search for a mathematical approach to semantics we shall

make great use of functions of various sorts. Many of these will be

of "higher type" - i.e,ill have other functions as their arguments

OT results. The word "functional" is sometimes used for functions

which operate on functions. but we prefer to use the single word "func­

tion" for all types.

1.1 Function8

In order to specify a function mathematically we need to give

it a domain (the set in which its arguments lie) and pangs (the set of
its function values) as well as its gpaph (the set of ordered pairs of

arguments and function values). The domain and range specify the

functionality of the function - i.e. the set of which it is a member.

The graph, which is often given by an expression or algorithm, identi­

fies the particular member of this set.

The functionality of a function is often taken for granted or

glossed over when it is defined. This may be unobjectionable as the

functionality can sometimes be deduced unambiguously from the expression

for its graph. There are, however, cases in which a more rigorous in­

vestigation shows up difficulties and confusions of considerable im­

portance. We shall therefore look rather carefully at the domain and

range of the more important functions which occur in the interpretation

of a programming language. Before considering specific e~aroples we
need to discuss the general features of domains and ranges. (As these

are similar we shall use the word domain for both domains and ranges.)

1.2 Domains

There are two main classes of domain: elementary and compound.

The elementary domains correspond to the familiar simple types in pro­

gramming languages: their properties are in general mathematical in

nature and independent of the design choices of a programming language.

Some common elementary domains are:

s

T Truth values (Booleans)

N. Integers

R Reals

Q Character strings (Quotations)

These can all be considered as "data types" to be manipulated

by the programming language and their properties are the ~ual mathema­

tical ones. The various expressions in the programming language may

have values which lie in one or other of these domains. The domain Q

is generally confined to those character strings which are manipulated

by the program; the text of the program itself is not one of these

and so is not regarded as lying in Q.

Compound domains are constructed from other domains, either

elementary or compound, by one of three methods. If Do and 0 1 are

any two domains (not necessarily different) we write

Do + 0 1 for their au.m

Do)(D1 for their produ.ct

An element of Do + D. is eithe:ro an element of Do or an element
of D. (but not both).

An element of Do x D is an ordered pair whose first component1

is an element of Do and whose second component is an element of 01

Sums and products of domains can be extended to more than two

components without any serious difficulty and we shall write expressions

such as 00 + O. + 0, and 00 + O. + [Do 0,] in a rather infDrmal mannerX

to represent such domains.

There are two notational abbreviations for sums and products

which are sometimes convenient. We write

on for 0 x 0 x 0 x ••• x 0 (n factors)
and D· for 0' + 01 + 03 + •••

E:z:amp Zea

N + R is the domain of numbers which may be either integers or

reals. The arithmetic operators in programming languages often use
this domain.

R x R is the domain of ordered pairs of reals. A complex

number, for example, can be represented by an element in this domain.

6

~ is the domain of sixtuples all of whose components are reals.
A real vector of dim~nsion 5 might be an element of this domain.

R* is the domain of all real vectors of any dimension.

The third method of combining the two domains Do and O. is to

form those functions whose argument is in Do and whose result is in O.

we shall write Do -.0 1 to represent this domain. It will appear in

the next section that we are not interested in all the set-theoretic

flUlctions from Do to 0, ~ only in those which are in some sense "reason­

able". Put nor are we only interested in total. functions - it may

well be that for some values of its arguments OUT functions "£ail to

converge" - i.e. are undefined. We shall have more to say about

functional domains in the next section. The general topic of domains

for programming languages is discussed further in several papers cited

in the references [1,3.5].

1.:3 Re[l.ezive Domain8

When we come to examine the domains required by programming

languages later in the paper we shall often want to define a domain

self-referentially. For example in a list-processing language we

might want to discuss the domain of single level lists of atoms.

Following LISP we could define a list as an ordered pair, the first

component of which was always an atom. while the second was another

list. Thus if A is the domain of atoms and 0 is the domain of single

level lists, we should have an equation

o 0: A x 0

If we wanted to allow lists as well as atoms as the first component

(so tnat our domain was of list-structures. not merely single level

lists) the defining equation would become only very little more com­

plicated.

0' = [A + 0'] x 0'

These equations are reminiscent of the recursive structure definitions

in some programming languages.

Another example is the type-free A-calculus of Church and Curry

If ~e allow atoms as well as A~expressions every object must be either

7

an atom or a function (as every A-expression is considered to be a

function). This leads to the defining equation.

o = A + [0 -+ OJ

This looks much like our previous definitions but it conceals

a serious difficulty. If we take 0 -+ 0 to be the set of a~l aet­

theoretic func-tions from 0 to it8el.f~ there i8 no solution to "the equa­

tion. In fact there are always more elements of 0 -+ 0 than there are

of 0 so that the equation (which should be interpreted as "up to an iso­

morphism" only) cannot be satisfied.

If 0 has k members, the full set 0 -+ 0 has kk members and. as

Cantor's theorem shows, this is always greater than k provided k is

greater than one.

At first sight this looks like a fatal flaw and it certainly

demonstrates vividly the mathematical danger in failing to prove the

existence of the objects we wish to discuss. We cannot now feel happy

with any of our domains defined by a self-referential equation (we shall

refer to these as reflexi~e domains) until we have proved their exis­

tence. It was the impossibility of doing this for definitions in­

volving D ~ D that prevented the construction of set-theoretic models of

the A-calculus and forced it to remain a purely formal theory.

Fortunately. however. in 1969 Dana Scott discovered a solution to

this problem. As we indicated in the last section the difficulty of

cardinali ty is avoided by restricting the domain Do ~ D1 to include only

some of the set-theoretic functions. though the restriction appears quite

naturally as a consequence of the theory. In outline Scott argues as

follows;

It is reasonablem adjoin to every domain a partial ordering

based intuitively on a degree of approzimation or information content,

For many elementary domains this partial ordering is of a rather trivial

kind. but it is sufficient to turn the domains into complete lattices.

The partial ordering for a compound domain can be derived from those of

its components.

If a function is to be well behaved. it should be monotonic, Le.

preserve the partial ordering - it should not be possible to get a

better defined (more accurate) result by giving it a worse defined

argument. If a function is to be computable. it should be possible to

8

obtain any degree of approximation to its result by giving a suffi­
cient, but still finite. amount of information about its arguments.

This means that the function should preserve limits in some way.
These two conditions lead to the idea that we should be concerned
only with ~ontinuOU8 functions (the term is, of course, precisely

defined) ~d this is the restriction imposed on the construction

Do + 01 • The exact mathematical nature of continuous functions is
discussed elsewheTe~ it is sufficient to say here that they include

all the ordinary and reasonable sorts of function - and, indeed, all

those which are computable - and exclude only those which have mathe­

matically pathological properties.

Making use of these ideas Scott was then able to construct,

by a method which is reminiscent of that of Dedekind's cuts for con­
structing real numbers, a reflexive domain which satisfied the equation

D = 0 ~ 0, thus producing the first set-theoretic model for the A-cal­
culus.

In a further extremely elegant piece of work he proved the
existence of a universal domain U which satisfies the equation

U = A + [U + U] + [U)(U] + [U -to U]

where A is any domain. The domain U proves to be extremely rich in

sub-domains and Scott was able to show that these include all the re­
flexive domains which can be defined by a self-referential equation

using A (or its components) and the domain constructing operators +,

)(and +.

This is not the place to go into the details of this work

and the interested reader is referred to the papers by Scott[l.2.3].
We can procede with our analysis of the characteristic functions of
programming languages secure in the knowledge that all the reflexive

domains we require, no matter how complicated, do have a mathematical
existence.

9

2. CHARACTERISTIC DOMAINS IN PROGRAMMING LANGUAGES

2.1 Denota tiona

Programming languages follow the example of mathematics gener­

ally in allowing names chosen by the user to stand for or denote

certain obj ects. The relationship between the name and the thing

it denotes is, of course, a function in the mathematical sense; we

shall call it the environment and reserve the Greek letter p to stand

for an individual environment. The functional nature of the envir­
onment, which we shall write as Id ~ D, varies widely from one
programming language to another and is well worth closer study.

The domain (i.e. the set of arguments of p), which we wrote

as Id. is the set of names or identifiers in the programming language.

In the sense of §1.2 above, Id is an elementary domain. and it is also

the only domain we shall encounter whose members are elements of the

text of a program, and are therefore parts of the programming

language itself and not the objects manipulated by it. Id is

generally defined by the syntax rules of the programming language.

It is a very simple domain whose only basic property is the relation

of equality - it is always possible to say if two names are the

same or not. but names in general have no internal structure.

The only remarkable thing about Id is the number of different

words which have been used to describe its members. The fact that

they have been called Ilnamesll, "identifiers" and "variables" in

different languages would not matter so much if these same words had

not been also used with quite different meanings. I have preferred

to use the word "name" or sometimes "identifier" for a member of] d

as I think this accords best with the non-technical use of the word,

but the reader should be warned that both Algol 60 and Algol 68 use

the word "name" in quite different senses. Algol 60 uses the term

"call by name" where "call by substitution" would be more appropriate;

Algol 68 uses the word "name" in an equally incorrect and even more

misleading manner to mean approximately what is generally meant by

the word "address".

The range of p i.e. those things which can be given names ­

will be written as D. (In the earlier parts of this paper 0 has

been used as a general symbol for any domain. In what follows it

10

will he reserved for the domain of denotations), In many languages

o is a large compound domain wi th many component parts. It must

include anything which can be passed to a procedure as a parameter

(as inside the procedure this will be denoted by the corresponding

formal parameter) as well as the objects declared as local or global

variables. Thus in Algol 60. 0 must include procedures (and typc­

procedures), labels, arrays and strings.

The do~in D does not. however. include integers, reals or

booleans. The reason fOT this is that we want to preserve the

static nature of P. In ordinary mathematics, the thing denoted by

a name remains constant inside the lexicographical scope of the

name; it is determined only by conte.xt and not by history. In

programming languages this is also true of some names - for e.xample

procedures in Algol 60; once declared they keep the same meaning

(denotation) throughout their scope. On the other hand, for names

declared in AlgOl 60 as real, integer or boolean, it is possihle

to change the value associated with the name by an assignment com­

mand. For names such as these. the associated integer. real or

boolean value can only be obtained dynamically and depends on the

current state of the store of the machine. In spite of this,

however. the address in the store associated with the name remains

constant - it is only the contents of this address which are altered

by the assignment command. It is therefore appropriate to say that

the name denotes a location which remains fixed. and that the ordin­

ary value associated with the name is the content of this location.

The location is sometimes known as the L-value of the name and its

content is called the R-value. The concepts of an L-value, which

is a location, and the corresponding R-value which is its content.

can be extended to cover e.xpressions (for example array elements) as

well as names.

We therefore need an elementary domain of locations; which we

shall call L, and it must be a component part of 0 for all languages

which have an assignment command.

11

2,2 Stored Valu.eB

The state of the machine. and in particular the state of its

store. determines the contents of the locations. We shall use

the Greek letter a to stand for a machine state and S to stand for

the set of all possible machine states. We shall not discuss the

nature of the domain S exhaustively - it seems probable that it may

vary from language to language - but it must always contain at least

enough information to give the contents of all the locations in use.

it must therefore include a component with functionality L -+ V where

V is the domain of all etOI'ed values - Le. those quantities which

can he the value of the right hand side of an assignment command.

The two functions p and a together with their associated domains

D and V go a long way to Characterising a programming language.

There is a fundamental difference between these two functions which

is the source of many of the confusions and difficulties both about

programming languages and also about operating systems. This is

that while the environment p behaves in a typically "mathematical"

way - several environments can exist at the same point in a program,

and on leaving one environment it is often possible to go back to a

previous one - the machine state a which includes the contents

function for the store, behaves in a typically "operational" way.

The state transformation produced by obeying a command is essentially

irreversible and it is, by the nature of the computers we use, im­

possible to have more than one version of a available at anyone

time. It is this contrast between the static. nesting, permanent

enviroIUll.ent. p, and the dynamic irreversibly changing machine state,

o. which makes programming languages so much more complicated than

conventional mathematics in which the assignment statement, and

hence the need for a. is absent.

2.3 The Assignment Command

We can now give a model for an abstract store and explain the

meaning of the assignment command in terms of it. The model is de~

liberately simplified and the explanation informal. Most existing

programming languages need a more complicated model and a more form­

alised description of the assignment command is necessary before much

more detailed work on semantics can be carried out. Many of these

12

developments have been, or are in the process of being. worked out

[4.6] but for the present paper it seems better to avoid as much

detail as possible. and to give only the main outlines.

The simple model of the store contains the following domains

L Locations G,a'E L

V Storable Values a E v

S = [L ~ V] Stores 0,0' E S

We postulate the following basic functions on these domains.

In each case we first give the functionality (i.e. range and domain

of the basic function) and then an expression which defines it.

(1) Contents : L ~ [5 ~ V]
Contenta(a)(o) = o(a)

(il)	 Update: [L x V] ~ (5 ~ SJ

If 0' = Update(a.S)(o)

Content8(a)(o') z a
and Content8(a')(o') z Contsnta(a')(o) if a' r a

Thus the effect of updating a location a in a store 0 with a value

a is to produce a new store 0' which yields the contents a for the

location Il but is everywhere else identical with o. This, of course,

is exactly what we expect a simple update operation to do. A point

to notice is that the partially applied update function UpdatdCl,B)

is of type [S SJ- i.e. a function that transforms (alters) the

store.

Before we can deal with the assignment command we need to in­

troduce functions which yield the values of expressions. Since ex­

pressions (which include names as a special case) in general have both

L-values and R-values we need two such functions, which we shall write

as land R. These functions operate on expressions in the pro­

gramming language and their results clearly depend on the environment,

P,to prOVide a denotation for the names in the expression; it is also

fairly obvious that their results may depend on the state of the

store, 0, as well. When we consider what results they should yield,
we must remember that there is a possibility that the evaluation of an

expression may have a side effect - i.e. it may alter the store as

well as producing a result. This implies that the results of our

13

evaluation functions should be pairs consisting of a value and a

possibly altered store.

To express these ideas in symbols we need two new domains

Exp Expressions in the Programming Language
ED j£1 E Exp

Env - [Id ~ DJ Environments P E Env

Then we have the basic functions

t Exp" [Env -+ [5 -+- [L)(5J])

and " E.xp -+ [Env .. [5 [V)Ii 5]]]

The detailed definitions of l and Q. form part Df the semantic des­

cription of the programming language, and we shall not consider them

further here.

We can now consider the effect of a general assignment command

of the form

EO : ... £1

(Note that the left side of this is an expression. £0. although most

programming languages limit rather severely the sorts of expression

that may be used here.)

The operation takes place in three steps

1. Find the L-value of Eo

2. Find the R-value of E1

3. Do the updating.

(Note: we have assumed a left-to-right order for the evaluations.)

If we are obeying this command in an environment p with an

initial store 00, these three steps can be written symbolically

as

1. l(Eo)(p)(oo) <; <a,O\>

a is the L-val ue of Eo, 0\ is the store which may have been al tered

while finding a.; if there are no side effects, a, '" 00.

2. el(Ed(p)(od '" <13,01>

13 is the R-val ue of (:, . Note the use of 01 in place of 00; it is

this that expresses the left-to-right order of evaluation.

14

3. Update(C1,B)(o~) '" OJ

Then the effect of the whole command is to change 00 into 0 ••

We can now int Toduce another semantic function ~ which gives
the meaning of commands. The functionality of ~ will be

'I : Cmd -+ (En\' -+ (5 -+ SJ]

where Crod is the domain of commands in the programming language. In

terms of ~ we can write

'if(to := E:.l)(p) '" a

where e E 5 -+ S and, for the example above J

B(00) '" 0",.

IS

3. TWO SPECIMEN LANGUAGES

In order to make the ideas discussed above more concrete we

give below a discussion of two programming languages in terms of

their domains. The first, Algol 60. is probably familiar to most

readers; the second, PAL, is unlikely to be known by many. For

both languages we start by listing (and if necessary discussing)

the elemen tary domains; we then define and discuss various derived

compound domains which occur naturally in the description of the

language and finally give the composition of the characteristic

domains 0 and V.

3.1	 Algol 60.

a.	 Elementary Domains

T Booleans (truth values)

N In tegers

R Reals

Q String (quotations)

J Labels (jump points)

L Locations

S Stores (machines states)

T. N. and R have their ordinary mathematical properties. Algol

60 has no basic operations on Q, but strings may be passed as para­

meters. We treat J and 5 as elementary domains because ~e do not

want to investigate their structure. We note that 5 at least in­

cludes l V.

b. Derived Domains

Expression values

E : 0 + V

E must contain 0 because a name by itself is a simple form of

expression.

Prooedures

p:	 [0*"" [5 5]]

+[0* [5 [V)(5]JJ

The parameters must lie in 0 as they are denoted by formal

parameters inside the body of the procedure; their number is un­

specified so that the parameter list is a member of

16

0110- = + 0' + 01
••• The body of an ordinary (non· type) PTO~

ceduTe is a command· Le. it transforms the state of the machine

and 50 is in [5 + SJ. A type procedure produces a result which,

perhaps by chance. in Algol 60 lies in V (not in E) but the pro­

cedure itself may also have a side effect and alter the store.

Thus its functionality must be [5 + [V x SJJ .

Arrays

The elements of an array can be assigned to and must there­

fore denote locations

Al=L+l 3 + L' + ... (vectors)

= L'"

A2 '" Ai + Ai' + ... (matrices)

'" Ai '" '"" L**

A3 = A2* = l """ '" C3-arrays)

A L* + L** + L*"'* t .••. (all arrays).
L'

Cal- 1-9 by Name

W"'S+[ExS]

Formal parameters called by name are rather like type-procedures

(functions) ~ith no parameters; they produce a value and may have

a side-effect and so alter the store. The value they pToduce.

howeveT, is not confined to V but may be anywheTe in E.

c. Characteri s ti c Domains

Denotations

D ~ L (booleans, integers, reals)

+ P • (pToceduTes, type-procedures)
+ L • (aTTays)
+ W (calls by name)
+ W· (s'Witches)
+ Q (stTings)
+ J (labels)

'Where P "" [0* +- [5 +- 5JJ + [o*+- [5 +- [V)($J)]

and W = 5 +- [E)(5]

17

Stored va lues

V=T+N+R

Note	 that V is rather small and 0 very large.

3.2 PA~

PAL is a language developed by Evans and Wozencraft [7] at

MIT for teaching purposes. It is an unusually "clean" language

but difficult to implement efficiently. It resembles Gedanken of

Reynolds [8] and Euler of Wirth [9] in the fact that its type

checking and coercion, if any, are done dynamically at run-time and

not at compile time.

a.	 Elementary Domains

These are the same as for Algol 60 viz: T.N,R.Q.J,L and S.
The jumps in PAL are considerably more powerful than those in Algol

60, so that J in PAL is different from J in Algol 60; PAL also has
some basic operators on Q.

b. Derived Domains

E~prB8Bion valuBs

E 0	 + V:Ii:

This domain is hardly needed in PAL.

ProcedureB

P = l	 + [S + [l x S]]

There is only one sort of procedure (or function) in PAL.

This takes a single location (L-value) as an argument and produces

a single location as a result, also perhaps altering the state of

the machine as a side-effect. The effect of several arguments can

be obtained by handing over a single list of arguments (a tuple

as defined below); a pure procedure, which yields no useful result

and is used, like a command, merely to alter the machine state, is

given a dummy result.

Tuples

These are the only structural values in PAL; they take the

place of arrays in Algol 60. A tuple is a vector of locations and

is therefore a member of l*.

18

c. Characteristic Domains

Denotations

o = L

All names can be assigned to, and so denote locations.

Stored value8

V=T+tl+R (haole ans. in tegers. rea Is)

+ Q + J (strings, labels)

+ L' (tuples)

+ P (procedures)

+ {dummy}
All the values in PAL (except a single location) can be stored

and so are part of V. Note that L is not itself a member of l* ­

in that a i-tuple is distinguishable from a location. In fact a

i-tuple is an ordinary R-value and can be assigned or stored.

Note that in contrast to Algol 60, 0 in PAL is very small
and V very large.

4. CONCLUSION

The differences between the domain structure of Algol 60 and

PAL are very stri~ing. They lie, moreover, at a rather deep level

and do not depend in any wayan the syntax or even the range of

basic semantic operations in the language. They are in some sense

stl'uctul'al. It is clear that there are many important features

of a programming language which cannot be revealed in ~y analysis

as general as this; there are also some further structural features

which are not made evident by a study of the domains. (An eX8IJlple

of this is the different way in which Algol 60 and PAL deal with

type checking and coercion.) In spite of this inevitable in­

completeness, 1 think it would be well worth the effort of any

language designer to start with a consideration of the domain struc­

ture.

The general idea of investigating the domain structure of a

programming language grew from a collaboration between the author

and Dana Scott which started in the autumn of 1969. Our main ob­

jective was to produce a mathematical theory of the semantics of

programming languages. A general outline of this work is given

in Scott [1]; Scott and Strachey [4] gives an introduction to the

theory of the mathematical semantics based on these ideas. Other

papers in pri.nt [2.3] and in preparation (5.6] give further details.

Much still remains to be done before we have a reasonably complete

theory and we hope to continue our work along these lines.

20

REFERENCES

[1]*	 Dana Scott, An Outline of a Mathematical Theory of Com­
putation, Proceedings of the Fourth Annual Princeton Con­
ference on Information Sciences and Systems (1970). pp.169-176.

[2]..	 Dana Scott, The Lattice of plow Diagrams, Springer l.ecture

notes in M.athematics. vol. 188, (1971), pp. 311-366.

[3]"	 Dana Scott, Continuous Lattices. Proc. Dalhousie Conference.

Springer Lecture Notes (in press).

[4J*	 Dana Scott and Christopher Strachey. Toward a Mathematical

Semantics for Computer Languages. Proc. Symposium on Com­

puters and Automata. HicTowave Inst. SYJIlposia Series 21,

Polytechnic Institute of Brooklyn.

[5].. Dana Scott and Christopher Strachey, Data Types as Lattices.

(in preparation).

[6J*	 Christopher Strachey, An Abstpact Model fop Storage (in

preparation) .

[7J	 A. Evans, Jr., PAL - a Language for Teaching Programming

Linguistics. Proc. ACM 23rd National Con., Brandon!

Systems, Princeton, N.J.

[8J	 J. C. Reynolds, Gedanken - A Simple Typeless Language Based

on the ppinciple of Completeness and the Refepence Concept,

Comm. ACM 13. (1970), pp. 308-319.

[9J	 N. Wirth and H. Weber, EULER: A Gsnepalisation of Algol,

and its fopmal definition. Comm. ACM 9. (1966). pp. 13-24

and 89-99.

[10]	 Christopher Strachey, Varietiss of Progpamming Language,
Proc. International Computing Symposium, Cini Foundation
Venice (1972) pp. 222-233.

'	 William James, The Varieties of Religious E:tperience, (Preface).
Longmans & Co .• London; Cambridge. "'ass. (1902)

Stella Gibbons, Cold Comfopt Fapm, (Preface), Longmans & Co.,
London. (1932)

'* Also published as a Programming Pesearch Group Technical Monograph.

