
~y~ fer" ?

CONTI NUATI ONS

AMATHEMATICAL SEMANTICS

FOR HANDLING FULL JUMPS

by

Christopher Strachey

and

Christopher p. ll'adsworth

Technical Monograph PRG-ll

January. 1974.

Oxford University Computing Laboratory,

Programming Research Group.

45 Banbury Road.

Oxford.

© Christopher Strachey and Christopher Wadsworth

Oxford Uni versi ty Computing Laboratory.

Programming Research Group.

4S Banbury Road.

Oxford, OX2 6PE.

ACKNOWLEDGEMENT

This monograph is a revised and slightly expanded version of
a paper given at the Institut de Recherche d'Informatique et
d 'Automatique. Paris, in May 1973. We wish to thank G. T. Ligler
and R. E. Milne who read the manuscript and made several suggestions
for improvement.

ABSTRACT

This paper describes a method

of giving the mathematical

semantics of programming

languages which include the

most general forms of jumps.

CONTENTS

Page

O. Introduction	 1

1. The	 Problem of Jumps 3

2.	 A Small 'Continuation' Language 5

Syntactic Categories 5

Syntax 5

3.	 Semantics 7

Value Domains 7

Continuations 7

Expre s s ions 10

4.	 The Remaining Commands 13

Jumps and Labels 13

while-loop 15

val of and resultis 17

5. Discussion 19

APPENDIX 1: Mathematical Semantics 22

APPENDIX 2: A Small 'Continuation' Language 24

REFERENCES 26

CONTINUATIONS

A MATHEMATICAL SEMANTICS

fOR HANDLING fULL JUMPS

O. INTRODUCTION

The purpose of this paper is to explain a method of giving

the mathematical semantics of a programming language which includes

a very general form of jump (goto statement). The general scheme for

providing the semantic equations is that outlined in [13] although

there are some considerable differences in detail. Furthermore, in

order to avoid as far as possible a confusing proliferation of details.

the actual language described in this paper is a very rudimentary one

almost the only significant feature it has is its ability to jump at

inconvenient moments, and in particular to jump out of the evaluation

of an expression.

The method used, which has corne to be known as the method of

'continuations', has been developed from the 'tail functions' of

Mazurkiewicz [5] and, independently, by F. L. ~!orris [7], extending the

work of Landin [3,4]. I\lthough our use of continuations has become

fairly widely known by word of mouth, it has not 50 far be,en published,

though Fischer [2] uses essentially the same technique (for a somewhat

different purpose) and Reynolds [9] shows how the use of continuations

answers the order-of-application-dependence problem for definitional

in terpreters.

2

The rest of this paper will assume a familiarity with the

general method of approach explained in Ill,13]. For the benefit of

readers who are unfamiliar with this. a very condensed outline is

gi yen in Appendix I.

3

1. THE PROBLEM OF JUMPS

In the semantics given in [13] the value of a command is a

function which transforms the store, so that. in symbolic terms

CIYI (p) ~ 8

where'C is the semantic function mapping commands to thei r meanings.

y is a command. p the environment which gives the denotations associated

with the identifiers in Y and e is a store transformation. i.e.

8EC=[S-+SJ

where S is the domain of machine states (or stores). We use the double

brackets n] as an aid to the eye to separate the program te:xt y from

the value domain expressions which form the rest of the equation.

The normal sequencing of commands is then naturally interpreted

as performing one store transformation after another, so that the

overall effect is that of functional composition. Thus if \lie have

two commands Yo and Yl with store transformations given by

8
0

~ t'hol (p)

8 , ~CIY,Hp)

the effect of the sequence of commands Y ;Y on any initial store aO 1
will be to produce a store

a' = 8 (8 (a»
1 o

so that the semantic equation for sequencing takes the form

1: rYo; Y,1 (p) ~ relY 11 (p)) 0 (ely 0J (p))

This simple scheme breaks down if Yo contains a jump to some external

label. The difficulty is that there is no meaning we can give to

nyc] (p) which will allow us to avoid performing Y after Y. unless we
1

abandon the simple explication of sequencing.

Various attempts to get round this difficulty have been made,

but they only work satisfactorily in simple cases. They all depend,

ultimately, on being able to break up the program explicitly into

segments which do not contain jumps. Only inside such segments can

the sequencing equation be used safely. When combining the segments

it is necessary to end all possible exits by a jump so that the

4

successor can be given explicitly. This sort of scheme works quite

well for flow charts, although the large number of extra labels required

seem rather inelegant, but it fails in more complicated cases.

An important situation which resists this sort of treatment

is an error exit from a function (Algol 60: Type-procedure). The

reason for the difficulty is that a jump is called for in the middle

of evaluating an expression, while there may be several partial results

around. The fact that functions involve abstraction and subsequent

application is an extraneous complication which only conceals the

main problem of the jump and ensures that most investigators do not

consider it. We can sharpen our ideas and avoid this unnecessary

complication by using the va'of~resu'tis construction. In this we

have an expl'ession of the form val of ..., and a command of the form

resultis E:. (Note that we make a distinction between commands and

expressions.) The value of an expression

val of § Yo
Y,

result1s t;'

is found by obeying the commands YO'''''1''' in sequence until a command

resultis E:' is to be obeyed. The expression E:' is then evaluat.ed and

this value is taken as the value of the whole expression. (There are

several language-dependent decisions to be made about what happens if

there is more than one resultis command in the valof body or if none

is encountered dynamically, and various problems of scope and inter

action wi th functional abstraction to be settled. None of these is

relevant to our present enquiry so they will not be discussed further.)

All programming languages which allow functions to be de £ined have Some

construction which is semantically equivalent to the res ult1s command,

but many languages restrict its use so that it gets confused with

func t i on de fini t i on.

The difficult type of jump is one which is inside the body

of a valof block to a label which is outside. In order to illustrate

the semantics of these jumps. we shall use a small programming language

which we introduce in the next section.

5

2. A	 SMALL 'CONTINUATION' LANGUAGE

The definition follows the style of the language definitions

given in [13]. We start by defining the syntactic categories and

metavariables. The syntax itself is given in a very idealised form

which omits all problems of parsing and ambiguity. All that relltain

are the basic syntactic constructions which are semantically distinct.

Syntactic Categories

E E Id Usual Identifiers

"y E Cmd Commands
£ E Exp Expressions
¢ E Fn Some Primi ti ve Commands

We use Greek letters, possibly decorated with subscripts and primes,

as metavariables ranging over the category indicated.

Syntax

Commands:

y ""	 ;[dummy!

yo,yilt ~ YolYllwhile E do yl

goto t!§ YO.1: 1 :Yl; .•• l',:n-l: Yn-l ~I

resultis E

The definition uses a version of BNF. There is no presumption

that variables in the different clauses are in any way related, Inside

a single clause subscripts are used to identify the various components

and these will be used below in the semantic equations,

The intention of most of the clauses should be fairlY plain,

The language is largely uninterpreted (in the mathematician1s sense)

and most of the useful operations will presumably be primitive

commands (¢), (Note that assignment comes into this category.)

The reason for this is that we are only interested in jumps and a

small set of related commands, Leaving the others unspecified does

not mean that we are unable to give semantic equations for them. merely

that we are not at the moment interested,

dummy is the command which has no effect, Yo ;Y1 is the way of

indicating sequencing - it means Yo followed by Y1' r: -+- YOIY1 is

the conditional command, equivalent to Algol 60's 1f r: then Yo else Y '
1

6

The next clause is a while-loop and is only included so that we can

discuss its equivalence with a form involving a jump.

The next clause is the jump. If we are to have jumps, we

clearly need some way of introducing labels and this is the purpose

of the next clause. The symbols § and t are statement brackets

(equivalent to Algol 60's begin and end). The whole clause is to he

thought of as a block with ~l"" '~n-l as labels and Yo 'yi.··· ,'1'11-1

as commands. generallY compound. which may involve any of these

labels. Any of these commands, of course, could themselves contain

inner blocks. The 8~Qpe of the ~·s is the block in which they are

defined and any inner blocks. Normal rules apply about names which

clash. In the language as given here, it might seem that identifiers

can only stand for labels as this is the only identifier binding

clause. Clearly any practical language would need some extension, so

we shall allow identifiers also to denote truth values. but wi thout

specifying any explicit binding mechanism in the language. The last

clause has already been discussed.

Expressions:

£ ::=	 ~Itruelfalse

£0 ~ £1'£2Ivalof y

Expressions in this language form a very meagre set. They

are either truth values (built up from the constants true and false)

or they are label values. Either kind can be compounded by the con

ditional expression £0 ... £1'£2 (where £.0 needs to be a truth value

though £1 and £.2 can be both truth values or both label values).

Similarly a valof expression can yield either a truth value or a

label value.

7

3. SEMANTICS

Value Domains

As usual we start our account of the semantics by discussing

the value domains for the language. The only data domain which is

made explicit is T. the domain of truth values. We also need the

domain S of machine states (or stores); we use C1 (possibly decorated)

as a variable denoting an individual state. and so we have (J E S. State

transformations are the functions from S to S; we shall call this

domain C and use e as its typical element.

We also need to know the denotations of the identifiers in

the language. We shall call the domain of denotations D (with is as

the typical element) and discuss later what its detailed structure is.

For the moment we are only interested in the fact that such a domain

exists. and that there is a function, known as an environment which

gives the mapping from identifiers to their denotations. We shall

use the letter p to stand for an environment. so that

P E Env = [Id ~ OJ

Continuations

The difficulty of dealing with the sequencing of commands

which was mentioned in Section 1 springs ultimately from the way in

which commands are combined to form a program. If, as in [13J, we

regard the meaning of a command"Y as the stOre transformation t[11 (p),

the way in which this contributes to the meaning of a whole program

depends crucially on whether it is J·ump-free - I.e. always goes on

to execute the following command - or whether it is jump-dependent

I.e. may cause an escape exit or jump to an external label, in which

case the following command is irrelevant. This means that we cannot

find a satisfactory semantic equation for 1:[1 ;"Y] (p) because we
0 1

cannot determine if "Yo is jump-free or not.

The solution to this problem is to abandon the idea of giving

the state transformation for each command in isolation. We must

define, instead, a semantic function which yields, for every command

1, in a program, the state transformation which ","auld be produced from

there to the end of the program. We shall use the letter'P for this

8

function to distinguish it from the'e. of [13J. In order to deal with

the effect of the program following YJ we need to supp ly an extra

argument, e, which is the state transformation corresponding to this

part of the program. If y is jump-free, we shall then have for the

program including y

'PlY] (p) (8) " 8 otlY] (p)

which can be interpreted as saying that the state transformation for

the whole program. 5 tarting from the command Y, is that ob taine d by

first performing the state transformation specified by y (i.e.

~ffy] (p)) and then that specified by the rest of the program (Le. 8),

The argument El is called a oontinuation (strictly a command oontinuation)

and is of type C '" [S SJ. The semantic function l' thus has the

functionality.

~ [Cmd [Env ~ [C ~ [5 ~ 5]]]].

The meaning of'P~y] (p)(El) when y is jump-dependent will be

discussed later in detail, but it is worth mentioning at once the

crucial point that it need not depend on the argument e. This means

that it is possible to 'throwaway' the normal continuation for a

command, and this is precisely what is needed for jumps.

The meaning of a continuation may perhaps become clearer if

we consider the machine states explicitly. Suppose we have a state

° 0 j a continuation El would mean that the final state of the machine

at the end of the program would be

a; = a (a o)

If we now want to find the effect of performing the command y wi th a as

its continuation. we should use the state transformation

El' "''P[y] (p)(El) so that the final state would be

0; ""PlYl (p) (8) (00)

This sort of expression may be unfamiliar to some readers as

it involves the use of highe-r o-rde-r funotions - that is. functions

whose arguments and results are also functions. When we use functions

of this kind we often use -repeated appZioation (as in the last

equation) with the convention that application associates to the left.

Thus if we were to insert all brackets we should write

9

0; = I «plY]) (0)) (6)) (0)
0

We nearly always leave out the association brackets and sometimes

also the bracke ts round an argument which are normally used to in

dicate functional application. In this minimally bracketed form

we should wTi te

01 = 'PhD peo o
[note that we shall always retain the text brackets []).

For the purposes of this paper any command can he considered

to be a complete program and we take the meaning of a program to be

the state transformation it produces when its constituent command y

is executed in a standard environment Po' This is then given by

;>[YI0 0 6 0

where 80 is the identi ty function on states.

This approach to the meaning of a whole program is deliberately

rather simple-minded. The reader will notice that both the ini tial

environment Po and the initial continuation 80 are generally provided

by the operating system. As we are only considering single programs

we have used the identity function as the continuation since 'no

more' remains to be done when the program is completed.~

Ne are now in a position to consider the sel'lantic equations

for some clauses of the syntax. Taking sequencing first, \oo'e are

looking for the value of'P[Y ;y1]pe. The intention is that we carryo
out Yo (in the environment p), and follow it with the continuation

ft The reader may ask if it is any more justifiable to take a single
program in isolation than it is to take a single command. The answer,
of course, is that it is not, and that in the same way as cDmmand con
tinuations are needed to explain jumps inside programs, further hier
archical levels of continuations. such as process continuations, job
continuations and operating system continuations, will be needed to
give the semantics of the operating system. The outer-most level (or
possibly levels) are not inside the machine at all and are implemented
by operator intervention.

We do not discuss the use of continuations in the semantics of
operating systems any further in this paper as to do so would require
a fUller understanding of the differences between operating systems and
programs than is yet at our disposal. It would also make the paper
much too long .••••••

10

which arises from carrying out y 1 (in p) with the continuation e. In

symbols this is

"PIYO;y,]peo • P[YO]p{PIY,]pe)o

(Here, and in future J we use braces {) as an aid to the eye to delimi t

continuations.) 'P[Yl)pe is the state transformation obtained by

carrying out y 1 (in p) before e and this expression is therefore the

correct continuation to provide for Yo'

We can now see in outline how to deal with labels and jumps.

The value of a label will be the state transformation from the

label1ed~point to the end of the program. (The reader can notice

clearly here the development of continuations from the 'tail functions'

of Mazurkiewicz [5].) The semantic equation for"P~goto dpe will

simply ignore e and use as continuation the value of £. Before we

can describe this in detail, hnwever J we need to look into the use

of continuations with expressions.

Expres~ ions

In contrast to a command, whose execution yields only a

machine state, an expression when successfully evaluated yields both

a (possibly altered) machine state and a result. Exactly what is to

be done ,.,lith the result, however. is not determined by the expression

itself but by its context. It is appropriate to take account of this

by using a n.ew type of continuation known as an e~pl'e88ion (!ontinuation.

This has as its arguments the expression result and a state and pro

duces in turn a final state. For technical reasons it is convenient

to supply these arguments singly so that the functional nature of

an expression continuation is

K • [E ~ [5 ~ 5]]

where E is the domain of expression results. In the language we are

considering here. E is the same as D (the domain of values which can

be denoted by identifiers) but this is not a necessary feature of all

languages (see ref. [14] for a discussion of the domain structure of

programming languages). We shall use 6 for the typical element of

both E and D and IC E K for an individual expression continuation. The

semantic function for an expression will be denoted by 8. and has

the functionality

11

& [Exp [Env (K [S SJ]J].

The semantic equations for some expression clauses are now

obvi OllS. Thus

<rue]pKO K(tt)a

&[false]pKa K ([flO

where tt and If are the truth values corresponding to the program

text true and fal se (we use different symbols as the two domains are

quite distinct]. The clause for an identifier is almost equally

5 imp Ie

&l~lp.o - '(Dl~l)o

which says that we find the value denoted by f.: in the environment p

and pass this as an argument to the continuation K.

The fact that the same store C1 occurs on both sides of these

equations indicates that it has not been altered by the evaluation

of the expression - in other words that true, false and identifiers

(0 can be evaluated without side effects. This is not true of

expressions in general (and of valof expressions in particular). If

the evaluation of £ in the environment p and with a machine state 0

terminates normally producing a result 0 and an altered state 0', we

should get

8. [e:] PKO '" K (0) (0 ').

The clause for the conditional expression £0'" £1'£2 needs a

little more discussion. We start by evaluating £0 in the environment

P J but what continuation should we give it? I f the value produced

by £0 is tt the continuation should be to evaluate £1 (also in p)

and pass its value to K; if the value produced by £0 is r: then £2

should be chosen in place of £1' This yields the following clause:

&ff£o ... E1'£2~PKa = 8.[£0]p{Cond(&[£1]PK'&[£2]pK)}a

where Cond is a general function of type

[[V x V] ... [T ... V]]

(where V can be any suitable domain) such that if p,q E V

CondCp.q) (tt) = P

Cond(p,q)([fl ~ q.

12

In OUT particular case V is C and, in accordance with our usual con

vention, we have enclosed the expression continuation in braces.

In order to verify that this is correct, let us suppose that

the evaluation of e: in the environment p and with the machine state

0' yields the result 15 (which is tt or ff) and an altered state 0'.

Then. as above.

&[£0 £1'£2] pICa'" {Con.d (&[E:]PIC.&[E:) Pl<:)} (0) (0')
t 2

_ {&!E:t]PICO' if 15 = tt

- &[e: 2]PlCO' if 15 = ff

which gives the desired effect of choosing the correct expression

(from £1 and £2) and compounding the side effect of evaluating EO'

13

4. THE REMAltllNG COMMANDS

Jumps and Labe1s

We can now discuss the semantic equation for a simple jump:

1'Igoto <1080 "	 (pHIIOo.

The expression	 piE;:) is the element of 0 denoted by the identifier ~

(which should be a label). This element is then projected into C

(which impl ies that the domain C is a part of 0) j this projection

merely performs a son of dynamic type checking. The result is then

a state transformation which is applied to a whatever the original

continuation e 6

We can deal with a computed jump (Le. with a general expression

in place of a label identifier) almost equally easily. The equation

is

1Plgoto ~Jpe : &(£]p{Jump)

where Jump E K = E C

and Jump(c}	 .. oiC.

Thus if the value of E in the environment p and with a machine
state a is a continuation e' and if the evaluation alters the state

to (]'. the effe ct of go to t will be

'PI goto d pea	 Jump(8')«(]')

e' (a')

whatever the original continuation e.

This clearly has the right effect and manages to lose the con

tinuation comp1ete1y. Thus the command sequence gata £j"Y with a

continuation 8 will give

"P[goto <;1)p80 "1'(goto dp!1'11Jpe}0

= tldp{Jump}o

= "P[goto t)p8o

for all p,e and 0". This means that the two commands are strictly

equivalent. which we can write, using the programming language itself,

as

'goto C;~I ='gato t
l

14

(The symbols r I are a form of quotation marks separating the pro

gramming language text from the meta-symbol :.)

If our jumps are to be of any use, we must have some way of

in traducing labe 15 into the h.nguage. This is the purpose of the

next clause whose semantic equation is rather more elaborate:

'P[§ YO;~l:Yl;"';~n-l:Yn-l Opec::: 600

where 60 ::: ~[YO]plel

81 ::: 'P[Yl]P'8 2

8 _ ::: 'P[Yn_1D p '8 n 1

and p'::: p[81.82 ••••• en_l/~1.!;2••••• !;n_l]

The meaning of this is that we first set up an environment p'

which is the same as p except that the identifiers !;1.s2""'!;n-l

here denote 8 ,8 •••• ,6 _ (thus masking any formeJ' denotation they1 2 n 1
may have had). We then set up the equations given for 8 ,6

1
, •• ,,6 _

0 n 1
which make use of this new environment P'. (Note that the continuation

used in the last equation is the original 8, since the continuation

appropriate to the last command in a block is just the continuation

of the whole block.) The state trans formati on for the block (wi th

continuation 6) is then 6 0 .

lt should be made clear that the Y may involve any of the t i ,

so that this set of equations is non-trivial: any 6 may involve any
i

i
or all of the 6 (including itself) through the corresponding t,i andi
p' •

The solution of this set of equations may seem a formidable

problem. It is, of course. the most complicated (but also the most

interesting) part of the semantic theory. Fortunately the mathematical

theory which underlies this method [11,12,13] not only guarantees the

existence of a solution to equations of this sort, but also gives

a general method for finding it. This involves using the minimal

fi:r:ed point opeI"atoI" which we write as r; the theory proves the

existence of r and gives a formula for it.

15

while-loop

The only explicit use we shall make of Y is in the equation

for a while-loop.

'Plwhile E: do y)pe = Y(),,8'.&[£:]p{Cond('Prr]p8'.8)})

To see how this works, let us consider the function H C + C such

that

H(8') = &1E:)p{Cond('P[y]p8'.8)}.

For any specific 8'. a(S') is a state transformation; comparison with

the equation fOT a condi tiona! expression shows that the meaning of

8C8')0 is:

Evaluate E: in environTllent p with state 0; let the result be 6

with an altered state a',

] f a = tt perform the command y in the envi Tonmen t p wi th a

continuation 8' and an initial state a'.

1£ 0 '" ff perform only the continuation e on the state (]'.

If we now identify e' with H(8') we can see that the result

will be a satisfactory interpretation of the while~loop. The

argument of Y in the semantic equation is just the function H wri tten

in the A.-notation and Y(H) gives us the minimal fixed point of H

i.e. the JIliniTMl solution of the equation 8' '" H(8'). (In this context

the minimal solution is the solution which is defined over the

smallest possible domain of arguments. This turns out to be exactly

what we need for our semantic equations.)

Let us introduce the command dummy, which has no effect and

hence has the semantic equation

"P[dummYlp8 '" 8

and the conditional command £ -+ YO'Y which by analogy with the con1
ditional expression has the equation

1'[£ -+ Yo,Y1108 = &ldp{Condt1>rYolp8.'P~Yl]pe)}.

We can now write a block in the prograJllming language which should be

equivalent to the loop while £ do y. One form of this is

§ dummy;~:£ -+ (Y;Qoto ~).dummy t.

16

where the label identifier f,: does not occur in I: or 'Y. It is a

relatively simple matter to prove this equivalence. We have:

'PH dummy.!;:£ -+ (y;goto f.;).dummy ~]pe ::: eo

where 80 :: Pldummy]p'8 1
8 ='P[C (y;goto !;).dummy]p'8

1

and p' ~ p[8,10

Calculating, we get

8 8,
0

8, ttld p I {Corld('"P[y;goto 1;] p '8 ,'P[dummy] p '8)}

<iciP'{Cond('l'lr!p'['Plgoto Op'e}.8I}

&1 d p I {CondC'P[y] p '{&[f,:] P I {Jump}}, e)l

&[£] p{Cond(ll[y] pel' 8)}.

where we can write p in place of p' in the last equation because f,:

does not occur in E: or y.

Remembering our de fini tion of H above we get

8 :: 8 :: HCe)0 1 l

Thus 81 is also a fixed point of H. A more formal statement

of the semantic equations for a block would ensure that 8 is the1
minimal fixed point of H and therefore identical to Y(H») the

semantic expression for the while-loop,

Similar methods can be used to prove several general equivalences

between prograPls such as:

IWhile c do '1'-' :: I c -+Cy;whi1e £ do y),dummy-'

1Ico -+ goto £l,goto £2 :: 19otOCEO -+ £1'£2)-'

I -, _ r
c-+ '1'0.'1'1 = § goto £ -+ f.: O.f.: 1

f.:o:yo;goto f.: 2 ;

f.: 1 :Y1;goto 1;2;
-,

f.: 2: dummy t

The last is sul,ject to the irlentifiers 1;0,1;1 and 1;2 not occurring

in c. Yo or '1'1'

17

valor and resultis

In order to deal with a valof expression we need to set aside

teJT1porarily the expression continuation and provide some other, command

type continuation for the body. Since resultis commands are interpreted

as being bound to the smallest textually surrounding val of block (in

the same way that ordinary identifiers are bound to their denotations).

it is appropriate to save tbe expression continuation in the environment

by creating a special element res to denote it. To do this we extend

the environment domain to consist of pairs, a mapping from Id to D as

before. together with an expression continuation associated with res:

P E [nv = [(Id ~ D) x K]

By a convenient abuse of notation, we shall continue to wri te p[s] and

p[810 to refer to the [ld D1 - component of P, and we shall write

p[res] for the second component of D, and p[K/resJ for the environment

p' which is the s arne as P except that the K-component of P' is K *

The semantic equ<l.tion for a valof expression can now be given.

Il.[valof Y~PI< =1'h](p[K/resJ){FaiZ}

We expect Y. the body of the val of expression, to be terminated by a

res u 1ti s command. If. however, the program is wrongly constructed and

the end of the body, Y. is reached by normal sequencing, we need to

signal an error. This is done by providing the special command con

tinuation Fail which will only be used if execution of the body is com

pleted without a resultis-command being obeyed.

When a resultis s command is encountered we wish to reinstate

the original expression continuation (which is now in the em'ironment)

and provide it with the value of s as an argument. So we get:

'P[resultis s]p8 " S.[s]p{p[resn

11 An alternative approach would be to include res in Ic1 as a special
identifier, not accessible to the programmer, and consequently to in
clude its range K in the domain D) so that Env remains [ld DJ. In
the language considered here, however, no mechanism is provided for
binding ordinary identifiers to expression continuations. T0 include
K in D would therefcre not be compatible with [14]. where D is reserved
for the domain of values denotable by program identifiers. Ficher
languages might, of course) include further constructs which provide
a suitable binding me chanisJTI , e.ll. Landin's J-operator [4].

18

In this equation p[res) is the original K which was inserted by

p[K/resJ in the equation for val of.

We note in passing that escapes such as the break-command. which

causes an immediate exit from the smallest enclosing loop, can be

treated in an analogous fashion.

19

5. DISCUSSION

We have now completed the explication of the semantics of OUT

language. The results are collected together on two pages as Appendix

2. One point which was left unsettled has now been resolved - the

nature of the domain D. It must contain C (fOT label valued variables),

and, in order to give some point to the language, T (although the

language makes no provision for creating identifiers denoting truth

values).

Appendix 2 also gives the functionality of the semantic functions.

the syntactic categories (or domains) and the clauses of the idealised

syntax. It thus effectively defines the complete language, apart from

the details of the concrete syntax.

The discussion of the semantic equations in this paper has been

deliberately informal. The whole method of giving the mathematical

semantics is generally unfamiliar and, as it involves rather a large

amount of mathematical notation, it takes some time to get used to.

Again, familiarity is the cure: those of us who have worked with

continuations for some time have soon learned to think of them as

natural and in fact often simpler than the earlier methods.

One very important consequence of the informality of our dis

cussion is that no proper consideration has been given to questions

of termination. If a continuation is the state transformation to the

end of the program, how do we deal with programs which fail to terminate?

The short answer to this is that such a continuation is wholly un

defined and so has the value .1 (bottom). All our domains are constructed

in such a way that there is a partial ordering on them which can be

thought of as being based on the amount of information contained in an

element. The element with no information in each domain is denoted

by the symbol .1, with its domain indicated by a subscript, though

this is often omitted. An unending loop will have a continuation value

of .1 and it will be this value which is given by the minimal fixed
C

point operator Y. (The treatment of non-terminating programs raises

several questions which we do not attempt to deal with here. Reynolds

[9,10] has discussed some of the factors involved.)

The method of continuations introduced here can be extended to

20

the whole of a large programming language with no great difficulty.

In particular it can be used with block structure, abstraction and

application (definition and use of procedures) both recursive and non

recursive. It will also handle a jump out of recursively nested calls

of recursively defined procedures (if the language allows it). Even

more extreme jumps are also possible. In a language such as PAL [1]

which permits assignments to label-type variables it may be possible

to jump out of an expression and then later to jump back into it again

and to resume the process of evaluation. Continuations are sufficiently

powerful to deal with such a situation. (This should not be taken to

imply approval of jumps back into expressions as a language design

feature - but if a language can specify something, however odd, the

method used to give its formal semantics must be powerful enough to

describe it.)

In contrast to [13] our main semantic functions now take three

arguments: an environment, a continuation and a store. (For some

languages further arguments are needed; in Algol 60 and Algol 68, for

instance. the coercion context of expressions is supplied to their

semantic fWlction [6.8].) Together these arguments may be regarded

as the semlZnti~ ~ontext in 'Which each part of a program must be inter

preted before its contribution to the meaning of the whole program

can be determined. The environment and the store provic'le all the

necessary inforJ"ation about the history of the computation preceding

the part under consideration; the continuation indicates how the com

putation will proceed to the end of the program unless the current

control causes a jump. Notice, however, that the semantic context does

not explicitly contain any of the "house-keeping" inforMation intro

duced when carrying out the computation on a machine. In Section 3

of our exposition there is no mention, for example, of how implementations

keep track of the current execution point or catalogue the partial

results of an expression evaluation. Language descriptions hich keep

the details of run- time organization bela.... the surface reveal the

semantics more clearly and allow an implementer to choose strategies

suited to his machine.

This paper is part of the outcome of a collaboration with Dana

Scott started in the autumn of 1969. We have since been joined by

the staff and students of the Programming Research Group. The aim has

21

been to lay a firm £oWldation for a method of specifying the

mathematical semant i cs of programming languages which is sufficien tly

general to deal with many different ones. The need to describe

already existing languages has acted as a useful corrective to the

mathematician's tendency to simplify and generalise. Actual languages

are not only peppered with gritty little problems which greatly

lengthen and complicate their formal description, but they also contain

genuine difficulties, such as error exits from functions. These are

often overlooked because their importance is not appreciated.

One distinction we have striven to maintain throughout our work

is that between semantics - given a program what (function) does it

compute? - and implementation - how is a machine to be organised to

execute the actions specified by programs? This distinction takes

many fOTms; it is found, fOT example. in the need to distinguish

between a data object and its machine representation, or, perhaps

even more fundamentally. between functions and algoTithms. The role

of mathematical semantics is to give a precise, unambiguous definition

of what programs mean, sufficient to deteTmine their outcome, while

remaining uncommitted as to the details of how this outcome is to be

achieved on a (real or abstract) computing machine. In this way we

hope to focus on thE "essential meanings" of language constructs and

thus explain the equivalence of progTams and prove the correctness

of their implementations. Some theorems about implementations have

alTeady been established [6J. The proofs of most involve complex:

structuTal inductions on the clauses of the semantic functions to

verify that certain pToperties of the semantic context are invariant

under all computations; for a large language this can be a tedious

and error-prone activity.

Much work rEmains to be done, but we have now reached lhe stage

where the methods are sufficient fOT conventional programming languages.

Full descriptions of PAL, Algol 68 and Algol 60 have been prepared.

The last of these will be published shoTtly [8]; considerations of time

may Tule out publication of the otheT two. Work continues and from

time to timE we hOpE to publish small papeTs such as this giVing pro

gress reports. ThE time for a unified pTesentation is still some way off.

22

APPENDIX 1

Mathematical Semantics

The method aims to produce a mathematical rather than

opel"atiorJa~ semantics by specifying the equivalence between constructs

in the programming language and certain mathematical entities rather

than discussing in any way how the program is to be implemented. Thus

the imperative and dynamic features of the language are interpreted as

'change of state' functions whose domain and range are both machine

states.

Tne means adopted to display this equivalence is to define a

number of semantic functions whose domains lie in the programming

language text and whose ranges are the machine states and various

higher order functional objects associated with them. (These in-

elude, of course. the data types on which the program is operating.)

In order to specify these semantic functions it is necessary

to exanine the syntax of the progTamming language, but only the

barest minimum of attention is paid to it. Unlike some other

approaches we are not concerned with symbol manipulation starting from

the original text, but with a far more abstract view of the syntax.

The syntax is given in an abbreviated version of BNF, but the number

of clauses is Teduced to a minimum; all questions of parsing and some

of admissibility are left out of consideration. In any actual implemen

tation of a real language, there would need to be a further stage of

specifying a concrete, unambiguous syntax which incorporated the

syntactic restrictions placed on the language.

The semantic functions are then defined by a set of mutually

recursive equations, one for each clause in the idealised syntax.

The semantic functions will occur on both sides of these equations,

but those occurring on the right hand side will have arguments which

are component parts of the clause which is the left hand argument.

This method of definition allows us to concentrate our attention on

the semantic structure of the language - on how the value (= meaning)

of a clause is built up from the values of its components.

One particular semantic function plays an important part

23

throughout. This is toe environment (for which we reserve the letter

p) which gives the values denoted hy the identifiers in the language.

The environrnen t can only he altered hy a variable binding operation

(such as a definition or procedure call). Other commands may alter

the machine state (for which we use the letter 0) but they will leave

the envi ronmen tunal tered. Another irnportan t difference between p an

(j is that changes to a are irreversible - Le. only one 0 at a time

can be kept in the machine. New envi ronments on the other hand are

usually though t of as being modifications of an old one, and it is

normal to keep both. Thus on exit from a block the old environment

(hut not the old 0) is restored.

It is important to keep the notation used under very strict

control. We have found that a careful choice of letters, type faces

and brackets aids the eye and makes the necessarily rather long

formulae easier to read. In particular we use upper case script

letters for semantic functions (with the exception of p), lower case

greek letters for variables whose nature is determined by the letter

(e.g. E: for expressions, e for state transformations etc.) italic

type is used for basic functions in the value domains (e.g. Cond, Y).

Programming language text is enclosed in double brackets (] and its

reserved words printed in bold face (e.g. while. goto).

24

APPENDIX Z

A Small 'Continuation' Language

Syntactic Categories

, E I d Usual Identifiers
y E Cmd Commands

£ E Exp Expressions

4' E Fn Some Primi ti ve Commands

Syntax

Y ::.	 _I dummy I

'Yo;'Y11£ YO'Yl!while Eo do yl

goto £I§ YO;~l:Yl •• ·.t:n-l:Yn-l ~I

result1s £

£ ::~ ,Itruelfalsel

£0 £1°£2]valof y

Value Domains

T	 Truth Values

5 1'-lachine States (Stores)

e E C [5 + 5] Command Continuations

6 E D rr + C] Denotations

<5 E E '" [T + C] Expression Results
K E K [0 -I- C] Expression Continuations

Semantic Functions

I'J [[I d 0J)(K'J = En v Environments
l' [Cmd [Env [C CJJJ

& [Exp [Env [K CJJJ

25

Semantic Eguations

C1. 'PI H p '" (Some given function C -+ C associated with ¢I)

C2. 1'ldummyJpe, e

C3. 1'lY ;Y,]P8 =1'IY Jp{l'[y,]p81o o
C4. 'lie: YOJY1)pe '" &[£]p{co71drPIY)P6,il[Yl]P8)}o

C5. 'Plwh11e £ do y]p8 '" I ("S'.&[e:]p{Cond('P[y]p8'.8)})

C6. "flgoto Ell'S &(e:]p{Jtollllp)::I

where Jump (6) = 61 C

C7. l'[§YO;<"Y';"·<n_,'Yn_,Upe. 80

where 6 ;; 'P[Y)p'8
0 O 1

8 1 '" P[Yl]p'8 2

8 _ = "P!Yn_l]P'6
71 1

and p' = p[81Je2, ••• ,en_l/~lJ~2""Jf;n_1J

C8. 'P(resultis e:JpS = &1e:lp{p[resJ}

El. &1 <) 0' = , (pI <J)

EZ. <rue]pK:>: K (tt)

E3. 'If.l,eJp,' ,(ttl

E4. &(£0 e: ,e:]PK ,. &(£o]p{Cond(&[£1]PK.41£2)PK))1 2

ES. &Ivalof ylpK "'fly) (p(K/res]){Fait}

26

REFERENCES

[1]	 A. Evans Jr. PAL - a language jor teaching ppogramming

HngwiBticB, Proc. ACM 23rd Nat; onal Conference. Brandon/

Systems, Princeton, ~.J.

[2]	 M. J. Fischer, Lambda calculus schemata, Proc. ACH Conference
on Proving Assertions about Programs. Las Cruces, January 1972,
105-109.

[3J	 P. J. Landin, The mecha1'licaZ evaluation of e:z:pl'essions,

Computer Journal, ~I (1964). 308-320.

[4]	 P. J. Landin, The next 700 programming languages, Communications
ACM. 2..:.1. (1966). 157-164.

(5]	 A, Mazurkiewicz. Proving algorithms by tail functions. Working
paper fOT IFlP 1~G.2.2, Fe~JTUaTYJ 1970, since published in
Information & Control. l.§.. (1971),220-226.

[6]	 F. E. Milne, The formal semantics of compute1" 'languages and

t~ei:t' i7'lplementations, Ph.D. Thesis. Cambridge University,

and Technical Monograph PRG-13. Oxford University Computing

Laboratory. Programming Research Group, (1974).

[7]	 F, L. Morris, The next '100 programming language desr::t'iptions,

(unpublished) •

[8]	 p, D. Mosses, The mathematical semantir:s of AZgol 60.

Technical ~lonograph PRG-12. Oxford University Computing

Laboratory, Programming Research Group. (1974).

[9]	 J. C. Reynolds, Definitional interpreters for" higher orde'1"

pl'og:t'amming languages, Proc. ACIi 25th National Conference.

Boston. August, 1972.

llO]	 J. C. Reynolds, On the inte:t'p:t'e tation of Scot t ' s domains,
to appear in Symposia Mathematica.

[11]	 D. Scott, Outline of a mathematical theo:t'y of c07'lputation,
Proc. of the Fourth Annual Princeton Conference on Information
Sciences and Systems, pp. 169-176, and Technical Monograph
PRG-2, Oxford University Computing Laboratory. Programming
Research Group, (1970).

[12]	 D. Scott, Continuous lattices, Proc. of the 1971 Dalhous;e
Conference, Springer Lecture Notes Series. and Technical
Monograph PRG-7, Oxford University Computing Laboratory.
Programming Research Group, (1970).

27

[13]	 D. Scott and C. Strachey, Toward a mathematiaaZ e€mantias
for aomput€l' languages J Proc. of the Symposium on Computers
and Automata, Polytechnic Institute of Brooklyn, and
Te chni cal Monograph PRG-6, Oxford Uni veTsi ty Computing
Laboratory. Programming Research Group. (1971).

[14]	 C. Strachey, Varieties of programming Zanguage, Proc.
of the International Computing Symposium, pp. 222-233.
Cini Foundation, Venice. and Technical Monograph PRG-IO J

Oxford Uni veTS i ty Computing Laboratory, Programming Research
Group. (1972).

