
cor'MF:lTARY

otl

:.YE r1ATHEMATICAL SEt~AtnrCS

0"

~LGnL 60

oy

Peter ~jos5es

{It is intended that this commentary be read in parallel \.ith the

semantic clauses.]

Contents;

l'a,ze_

Syntax-Commentary r:z
Ooma in 5 - Commen t sry r:3

Semantic Functions-Commentary r:6

:\uxiliary Functions-Commentary C18

C2

SYNTAX - Com'[rnIlRY

The grammar is l,;ritten in an a~lbreviated B:\F, with syntactic

categori~s heing denoted hy HOrclS such as Frog, recL. Subscript~

to these \wrds, as in Sta , do not distinguish different catcf'0ries.
l

A denotcs the null '.:atepory, ancl lC'xical categories, such as identifiers

and numerals, \"hich are not t\efined here, are nrefixed by P, e.~. P lflf.

\ star (*) indiciltcs that the precedin~ categ-ory , or group of

categori~s enclosed in hraces ({,J), may 1;)e present :ero or more tiTl'es.

The gramm2r given is (very) amhiguous, hut His doesn't Jl1atter

here, as we shall use it onlY to ,iFIJ"!,J,'b", Ileduction trees, and not to

tell us hOI,' to form them. It was deri\'ed fro!" an.unaJ"lbipuous graJrlmar

by combining categories to TeJllove semantically irrelevant information,

such as \I'hether an expression Exp 15 a summand, mUltiplicand, or what

ever. This caused a reasonahle contraction in the size of the grammar,

and in the numher of syntactic caterories.

Some addition(ll tr3nsformation~ hR"P h~ep l"aJe to the ori~inal

ALGOL 60 grammar. These should perhaps he expressed fo rl!':tl 1;' , hut

their descriptions are rather teclioll<:. anri neeri not Jetain us here.

In formally, the transformations are:

(i) if Exp then 5ta 11ecol":',8s if Exp then Sta else A;

(ii) Empty parameter lists arc addccl to identifiers occurrinr. as

(procedure) statements, and to definjtions of parameter-less nroc('dures;

(iii) Parameter specifications are 'rationalised' to combine the

type (which must he specifiecl) \1ith the formal paralT'eter nama and

the name/value specification;

(iv) neclarations are ~orted into two lists, DecL and DefL. DecL

contains thc non-recIJrsivC' riC'clarations of type and array icentifier."',

whereas IlefL contains sl... itches and procedures. The purpose of this

will become apparent in the definition of'(, in S!YA:\~IC Fl':-.-CTI0:\S.

(v) COJrl~cnts arc ir,norec, ano parameter deli~it~Ls are denotecl hy

co~mas.

\ote that no attempt is Jll3cle to snecifv any tyne ~atching

at the syntactic level - this is done in the semantics * using the

environ~ent parameter P.

C3

[)OIolAINS - CO~HENTARY

(i) Standard Domains

These Jomains aT~ a~sociate~ with the interpretation of the

meta-language (uset.! in ~nlA.'HrC ,mrJ AUXILIARY nINCTTONS). rather th;m

that of the source language .\LCOL 6(1. J!o\,'ever. Nand T arc used here

als.C' ~IS :-;enantic domains for\LGOL intereT nUffi('rals and hoolcans

(true, false). respectively, so as to a\'oid the- continnaJ usc c,f

tT0.nsfer-functions. I is a rrif'1itlvC' domain, and its elements My he

tested for equality only.

(iii Syntactic Domains

~ost of the syntactic Jo~ains correspond to catepories of the

same name in SV:.iTAX, and are specified by th(' grammar. the rJornains

should he reparded as domnins of "annotated deduction trees", in the

Hords of [Ill, rh.I. PerC' KE' :.::.hall take the annotation at a node of

a tree. to be the stnng (in QJ of symhols on th(' ri~ht-hand-sic!e of

that production \o,'hich was llsed in forming th(~ node. The hranches from

the noJe helonr to domains corrE'spondin~ to other syntactic catepories.

To \Hite out these domain definitions fully \,'ould give us, e.r.

DefL node("Def{;Def}*")COef pre lJef*) + nodeC"t.")()

Dl!f = norle ("switchlde:=ExpL")(Ide,ExpU +

node ("Type Ide (ParL) ; 5ta")(Tyre, I de. Pa rL ,St ill

(using some extra notation]. The annotations at the node~ are u~ed

by the infix operator' of', \,hich is descrihcd in SE/,-IANTfC F(J~CT10NS

Cm')l.lf.:-::TARY: }.'C'ta-lanruar:e.

List. and t]le [lonain of list el('ments E1, are introduced to

ahhreviate the description of functionalities.

IDE, INT, REAL and STPrrlf:: are, like the corr('snonding categories

in SY~~'L-\X. unrJefincd here. They are to be evaluated in an implementation

of these semantic'> hy functions Ic''';<''1:1:IDE-+I; !r.tT.'al:UlT-+N; etc.

liii) Semantic Domains

Some notation has heen introduced herC', so that the strllcture

of ;{ dO[l1ain 1"1<1)' be indicated without makinr arhjtrary (anrJ irrelevant)

C4

choices about the orderinn of its component domains. E.p,. consider

ActiveFn '" '1akeActiveFrl (PesLocr:: locn ,F,,: Fn)

This is meant to indicate that "a/:eActi'JeFn is the constructor

function, and FesLocr: ,F>; are the corresponding- selector functions. for

elements of the domain Act;ve~n.

Area

This domain mi~ht contain information ahout ~hich locations

(of locn) are in use, Le. have been supplien hy an application of

New (or of NewAl"J'ay). The function EetAr>ea 'Teclai]!'.:;· locations which

are no long-er accessihle throuf!h pro¥ra", variahles this is not

strictly necessary for ALGOL (In, and .<:etAreQ may be re-df'fincd to have

no effect on the store.

As the ALGOL 60 version of 'own' variahles is not described

in this semantics, further specification of the store 5 could ,give

locn the structure of a stack, and then Area would be just the 'top-of

stack pointer'.

~

Like Area, Map is not further specified, although it is implicitly

restricted hy the' axioms' of AUXILIARY FUNCTIONS. (ii i).

R

~

These domains are not restricted. See 113.3.6 and f2.fl.:;.

~l' etc.
Literal strin,gs are llsed to denote eleJl1ents of these "lnOl"n"

finite domains. This enahles hasic symhols of the source lanpua,ge

to hf' mentioned, ithout disturhing the lexical conventions of the

mf'ta-languape.

(iv) Denotation Domains

These indications of the 'types' of hound variablf'5 are given

only as an aid to the reader, and their J'latherlatical s:ipnif"icance is

not exploited in this paper. The types arE' further indicated in the

bound-variable lists of '\-expressions and dpfinPl~ functions.

With the aid of these denotation domains (of the metalanpuage),

cs

the type of any function may bF found from the I~nEX. e.g. we Ret

~:[Assl~[U~tY-[locn*+[C-'C1J1J~.

Nott:: FOT the purfloscs of this n;1pCT, each coma in is assumed to in

clude an "cTTor found" clement, denotC'd hy '''' ..\ dOl'1ain is in fact

a 13.tt1c8, in acconlancC' w'ith [AJ. etc., nnd the idea is for ,,,, to

be incoMparable h'ith all cleJl'cnts of the [lol"ain (exceJlt Idth Land T,

of course). ,.." should be sur-scripted ..dth an indication of its

domain, hut this is usually clear froTTl the context and so -]5 oJ"1itted

in this spmantics. It is convenient to 1)e ahle to test x=?, ... here,

fOT CXiLmr1e. x might be the 'Iool-jng-up' of an idpntifier in ~n

environment.

(6

SE~ANTlr FUNCTrO~S _ COM~ENTARY

~'eta-l<lnguage :

The functions are defined llsin!! a variation 0f the 's81"'<lntic

clauses' notation of Strachey (e.g. in [8, 12]). The J1'lain diffcrences

<lYe the disappearance of some special operators, anc'. the introduction

of a more structured definitional fOrTI!. The result of the latter has

been to make the meta-langu3!!e look much more like a prO?Tam">ing 1o.n

p.u£lgc itself - the impleJ11entation of thi 5 lan~ua.Qe is to form part of

the author's D.Phil. thesis. However, it should be stressed that

the wl)ole definition is just as mathemilticdly-hased and referenti<ll1y

transparent as hefore.

An informal guide to the JI1f'talanguage is p.iven belol<>. The reader

is warned that the meta-laJl~uagc is still evolvin? and that the

variant used here is experimental.

are bound variahlesa.·a.l·a.'·t •..

n: *.n: ~ •.• are hound variables denoting tuples.

(K.B. Star (*) has no operational 5ipnificance in

this paper.)

J'l'·Jiabc ,!A1··· . are ~emantic functions.

3t* •..t{~hc" .. are semantic functions on a List.

I .ABcliJ are auxiliary functions.

A, Ai ..

are semantic domains

A· .A~ .

is the "error found" element (of the 3nrropriate clol'lain).

(> is the empty tuple

(ai <'lm) denotcs a tuple. a* say. of known dj]'1cnsion.

dimof a· " m

a· ... i =a.,

a·cat<bi.· ... b) '" (a 1 ... • .am. b

1 •· .. ,fJ >
n n
I" pre t = (elcat t

Ax.e. h:A.e. A(X .x }.e are).-exprcs'sions, optionally typcd.
t 2

fi x x.e is the n'inin'al fixed point of e wi th respect to the hound

variahle x. (An earlier notation \,'as r(Ax.e).)

C7

fxvz ((f(x))(y)) (:c:)
nhhrE'vii'ltions to avoid a multitudE' of hrackets;11: bl, C a f'-j { c; j

.'\otc: is less hindin,r than juxtdnosition and +, but does not

terminate a)-exlJre<;sion.

(C),{C} arc llSE'O fOT rarsinp lHlTpO~e5. [Ind to help readahilit!"

e(<1 ,··"a "1 = eC 3 1 , .. ··il.)
1 m m

~ en emus t Jl'TIot c a deducti on tree. See 'Qf'),p}o"'.

If t cknotes ;l deduction tree, then:

labelof: r,n'es the' annotation at t,

dirlof 1 gives the nUJTlber of hranches frolf' t (c. f. dir10f '~'*:"

eft flves the '.:-th bTClTIch of t, ann.

"Af'c"of t where 'ARc' is n 5;,nt<1'< category, rives the 'corTect' tranch

of t - this is lkduceJ [roll' the lilbelof t and takes ;tn-y suhscript on

'.\F\c' into accounL •

.'\.R. Throughout the' drfinitions of the' sel'1IlTItic [unctions,

W"f\Bc"of t ~ is abhrcviated to, simply, WARcJ. The loneer form is

us cd Khen the dcnotation of the para~eter deduction tree is not

(litcr;llly") t.

id"Clhc" CO!l\"erts FrolJl 0 to 1

pr(~/T/ll r', \"herc p'~ l'] '" (<5, T) if \' " I

r~ 1 ' ~ i f I' 1- t

p[6*/l*/1*1 '" I)lGl/Tl/11J[C2/T2h2l. .• [O~/T.,/I>1l

'.hcre :3* '= (,51 ,on)' etc • ., but only if 11 "" ,In are

disti.nct.

e
1

-+c
2

,e
1

(e~
(,
(c 3
(?

if e
1

if ('1

if C
1

true

fa 1s e
,
"r

~wjtetl .'-l if1

casp. b 11 : case b12 : ... case h 1n ! : e
1

case l'ml:" .case h eomn

cef"ault:
~

el'1+1

[8

- the expressions b are tested sequentially for equality Hit]l <I.,
ii

and if :J watch is found the result of the sldtch is the correspondin,?

e i . If no match is fOWld, the result is 1:''''+1" T"'e default case is

in f~ct optional, and its omission i.<:. equivalent to specifyinp default:?

\ote the hrackettin~ use of § and ~.

1 e t x= eli n

let (Y.z) " f':J in e 3
- non"recursive definition of local vari<l.hles, equivalent to

(AX.(~(y.z) .e)(e))(E'1) •
3 2

compiler e

defAlnaBl' C'1

defA,~aBY " en

- the complete mutually-recursive definition of the sewantic and

auxiliary functions, specifying formel1 parameters. The scope of the

functions includes c. the hody of cornniler, which is the m:{in seJllantic

function transforming a prorral"'s deduction tree in'to its mrrthC'matical

value.

co

ALGOL (;0 SefT'an tic Fllnet ions:

compiler •.•

~,; is to contain any input/outrut procedures, Dnd extra

system procedures.

let D1"'OC)r •••

flere. the 'standard' procedures of ALGOL 60 aTC added to ~ •
Q

Ilba, Sign, etc. aTe clefl'ents of Fn. hence also of D. liote that '<;1n'

may be re-dcclaTC'(\ to be sOl'lE'thinp cOr;>plC'tcly diffrrent, in the

source program t.

case"Sta": ...

'\ v:Jlid clement (If Proq has "Stn" ;ts its lahel. !J> deals ,·;ith

any lahels occuTring outside the outermost block of the provram.

def}1 t: Sta~ pp.

1* is to be the list of lahel identifiers declared in t, hut

not inside any inner block. See 'Iab"
r'" is to be the list of their types (all~·cl;'e7'.JIp(lIlabel".?J).

See J'iab'

~ gives a list of the cOTTespClnding entry roint~. incornoratillt'

in them 11 as the PrOpel"}l"f"a.

fix is used, as labels are inherently recursive.

def'e*~t:StaL;o8 =

Continuations are used, to compound the effects of the 5tatl2'

ments of a sequence whilst allowing jumps out of the statements. See

[12J for a clescrir>tion of the ?eneral method of lIsinr continuations.

def'C:[t:Sta]of\ " ...

This Cldds the E'ffect of a sin?lc statefT'ent, to that of ~

ease"begin DeeL ..•

This is, ~hankfully, the ~ost complicated case. It would

be even ,,'orse without the assumed re-orclerin? of the declar3tior.s into

the two lists DecL and DefL.

Note that array hounds in [leer arC' not simply evaluated 1n p

(see £)* .J;). This is to conform with ,-s and 1'5.2.4.2, in that

Cl0

integer n; 0:=10;

begin array A[i:n]

procedure n (x) ; •••

is not to be allowed.

Ar]l·fJ* ...
The area is found so that, on a normal exit from the block,

locations ~hich have become inaccessible through program variables

may be 'garbage-collected' using S"7tA!'ea.

An 2 ·1 et •..
Tile area n is incorporated into the values of labels, to

2
cnable 'garbage-collection' after jumping out of an inner block.

See Ju~.

case"begin StaL end":

I-Iere. begi n :'!.DrJ end arc used only as brackets. and do not

affect meaning OT scopes.

case"if Exp then .••

The !::.xp is evaluated I first'. Note that the effect of

if Exp then Sta else A;
is not necessarily null when the value of Exp is false (in TJ. in

contrast to ~4.S.::;.2. It should not be considered a dis<ldvantagC'

of the semantic clauses, that one cannot easily describe in them

(without explicitly copying a) the semantics given in ~4.S.3.2'hich

reqUires the reversibility of any side-effects occasioned hy the ('val

uation of I:::xp.

case"lde: Sta":

It c<m be seen that when 't: is applied to t:Sta and p, all

the labds declared in t will have been added to p already. lIence

the continuation from the labcl, hich forms part of the value of a

label, may be found from C'(Idel here.

Hop is like Jump, but omits the (ullnccessary) resetting of the

store uea.

ell

cClse"goto EXp":

if evaluates a designational expression.

CClse"Var -: AssL":

The type of Var lS "manifest", Le. ascertainable without

applying the program to a store a - without "running" the program • ..i
insists that all the left-parts of AssL arc of the same type as Var;

andJiTl, \.;hen called from.A, inserts a transfer function, converting

the expression to this type.

case"for Var :'" Fort do 5ta ":

Again the type of Var is manifest, anu must here be arithmetic.

VaT is "called by name" - note that-¥"[Var] P7 has not been applied to

K or a, Main selects part of a (structured) type, as does Q4al later.

case"Icle(ExpL)":

Note tha-c Coerce 3110... 5 Ide to be a function designator - sec

[2]. Correction 4.

case"A" :

A dummy statement adds nothing to the continuation parameter e.

defoS*[t:DecUpK'" •..

~2(t]$ maps clements of t:List with ¢.

1TCW*}K evaluates the Wi in an unspecified order, and applies

K to the (possibly) re-sorted list of results.

defllit:DecDpK= •••
§

case"Type IdeL":

Declaration of type identifiers.

case"Type IdeL[BdsL]":

Declaration of array ldentifiers. Note that BdsL is only

evaluated oncc.

def1e*rt:DefL]p=- ..•

This function produces a tuple of switches, routines and
functions, to he added to an en"lronment. Sec 'e, case"begin DecL. .. ".

C12

def'Jf:I::Deflp: ...

§

case"switch Ide :: ExpL":

Expressions in ExpL are evaluated only after they are ~elected

by a U5e of the s.d tch.

case"Type Ide (ParL); Sta":

§

case"procedure":

Q* sets up call-by-value parameters.

j)sets up labels and calls e.
Ar2~ is found to facilitate re-use of locations which bave

become inaccessible. after a normal return from the procedure body.

case"Type procedure":

The lOcation a will be set when Ide (above) appears as the

left-part of an assignment statement in 5ta. The type of 6 is tagged

with "active" to distinguish the function designator inside and outside

Sta.

1$

def Qt(t:ParLI'1*K= •••

~3 checks that there is the same number of actual parameters

in n*, as formal parameters in t.

IT sets up the parameters in some unspecified order.

def G.it:Par]1fK: .••
§

case"Type Ide name":

When used, the parameter will be coerced to J'~TypeE, seeif'.

Note that the Type has to be specified. This implies that

one cannot wri te. e. g., the f01lo ...·ing (new?) horror:

integer procedure f; f :: next;

integer procedure g; if next:l then g~:ne:xt

procedure h(x); x;

h(if oext:2 then f else g);

...·hich, by 'll4.7.3.2, is equivalent to

if oext:2 then f else g; .

Thus, although an arbitrary expression may not stand alone as a state

ment, a conditional expression has become, through the call by name

C13

mechani"m, a condition31 statement!

Tncident311y, One might perhaps invoke ':5.4.4 to invalidate

the above example. This illustrates what seems to he the cause of

scvcral ALGOL 00 ambiguities: the prescription of several clashing

universal rules, ~ith no Indication of the lntended order of their

application. Note th3t this problem does not occur in the mathematical

semantics.

case"Type Ide value":

'~()r.1Ary'aii inserts transfer functlons between real ancl integer

values, if necessary. This is so that subscripted V<Jriables may

conform to 115.] .3, 3nd to allOl" system routines to accept real or

integer arr<lYs indifferently.

def ~*I t:StaLllpn(J"' •..

This function gives 3 tuple of the lahel values dedared in

t. AlthougJl it t3kes a continuation b, it :is not applied to the store.

def 'gH:Sta!PflO= •.•
§

case"begi n DecL ••.

Label scopes do not extend out of a block.

case"begin StaL end":

~ compound statcment does not restr:ict label scopes.

case"if Exp then •.•

Jumps may be made 1nto the arms of a conditional statement.

case"lde: Sta":

Each label is constructed from the local area 1. and the con

tinuation through the rest of the program. In fact the latter is

usually just the continuation to the next label, followed hy a Hop

- sec'e.

case"goto Exp":

case"Var := AssL"

case"far Var := ForL do Sta";

.rumps lnt 0 a for~statement ;)re prohilllted by H'stricting the

scopes of the labels in Sta. This is slightly ilt v,1riance \.. ith ~4.6.6.

C14

case"Ide(ExpL)IL:

cas e" fl":
~ote that label values are not extracted from procedure

declarations.

def.f4 ~ t"AssL] PXo:*S= ••.

X is the type to which the left-parts mllst conform, and 0.*

accumulates the locations found by evaluating the lcft-p<lrts.

cas e"Var AssL" :

The left-parts are evaluated in 1eft-to-Tlght order.

case"Exp" :

The right-part is evaluated, and the (coerced) value is

assigned to all the previously-found locations in 0:*.

de f'1* ~ t: Forlj PXuy8= .••

Contrary to the Report, the' controlled vari able is not unI

defined after exit due to exhaustion of the for-list. 'fo make it un

defined would need another cvaluatlon of

be of significance if it is a subscripted

def f~ t: Fori PXlJy8= ..•

§

cas e" Exp":

case"bP1 while Exp:;:":

case"t:xP1 step EXP2 until L.:xP3";

'the' variable, which might

variable. See [2], .\mbiguity

The "conservative" interpretation of the Report.

An alternative is to use \J to evaluate Cl in"7*. omitting

\.I" 1v" II).0:. throughout. and replacing u" rv" by Conten l;.s CL. Then

the location 0: may be set to be unJefineJ after a can trolled ex.l t (in "1*:

C1S

de f 1 " .

def ~]ee ". c . .f. J*

def '9"dec'"

def1~ f"'" c.f.'1f*
,.e"
def Seief'"

def1~a>" c . .f.Q.*

def ~paT""

def 'lab'" c.f. ~*

def'1 l {ll,'"

def j ...

def Jdec '" c.r. jde,'
def JJr?c'"

def Jdef'" c. f. 1der
def Jder"
def J;al' , .. c. f. 1;aI'
def J paI" "

defJ~"",aD
c. f. 1'lab

def Jva)t:var!p ..
Used in e. case"Var AssL", case"for VaT ;:c

def Jres[t:Op!

def Jarql r:OpD
'Used fOT type-checking in -¥. case"ExP

1
Op EXP2"' cdse"Op Exp".

def JCOl'lstl t:Const~

Used only in -Y, case"Const".

def-¥[t:Exp~ P'1IH:= •••

§

case"e ... " :
This mode is used ,,"'hen an clement of

Array + Swi tch + Fn + Rt ... String

is required.

case"jv":

Used for designatlonal expressions, giving an element of Label.

cdse"l ... ":
[lsed on left-part expressions, giving a result in Locn.

II

[16

case"rv":

Tram;!er X will only be inserted at the outcrmost level of
1

an expression, see j .
"Pg

case"; f EXPl then EXP2 else EXP3":

The program will not 'fail at run-timet if, say, LXP2 is of the

wrong type, but only EXP3 is used.

case"Exr1 Op EXP2":

The Report leaves unspecified the order of evaluation of

operands - so does the use of IT here.

case" Dp	 Exp":

Op will be - or -. (logical negation).

case"Ide(ExpL)":

Parameter-less function designators are catered for by case"Ide".

below.

ciHe"lde[ExpL]":

Coerce allows a real array to be used when an integer value

is wanted, and vice versa, but docs not insert the transfer function

itself.

case"Ide" :

Here we deal with parameter-less function designators, as

well as with simple variables.

case"Const" :

This gives the value associated with a numeral or logical value.

case" {Exp)":

Note that this case only appears under case" rv".

deftlt:ExP]PXK= •••

def{f.[t:Var] PXK= •••

def~[t:ExpnpXK=•••

These functions just abbreviate standard calls o[~.

def ~*[t:BdsU PIC= •••

lT evaluates a list in left~to-right order, see fl4.2.3. o

C17

def!B .•.
clef j{.~ t:txpL! pIC"' •••

The order of evaluation inj{* is again left-to-right - assuming

that <:;4.2.3.1 applies to variables in arithmetic expressions as well.

de f}(...

defj{l[t~ExpqpK=...

This function is used to evaluate a switch designator,hich

may have only one "SUbscript".

dsfU*[t:ExpLUp" •••

The aClual p<lrCll"eters in t are partially evaluated in the

correct envi Tonment P.

deL, .

de f X .

def-\.!l···
def4.J2 , .,

def~l~t:List~¢-"'.•

'[his is like'X hut <}. when applied to an elemE:nt of t, gives
2

,

only a single value, not a tuple.

def9::2I t :ListlljJ= •••

¢ is applied to each element of t. and thE' TE'5Ul ting tuples

are concatenated.

def0},3~ t:ParL! 1T*¢= •••

This function is used only in Q. ...

def'X,+i t	 :ForU¢6= •••

Used only in '"']*.

C18

AUXILIARY FUNCTIONS - COMMENTARY

(i) Defined Functions

To some extent these functions are defined rather arhitrarily.

I!o\o,'ever, the attempt has heen made to keep them as simple as possihle.

def ApFZyFn •••

clef AP.:lyF:t •••

clef Al'eaKO= •••

This, and SetArea, are the only defined f\Jnctions hich need to

manipulate 0 explicitly. r':ote that S:·:ap(o) is not duplicated. The

copying of SAl'ea(O) could be justified by formUlating :I model for

storage for ALGOL 60, in which Locn=N. Area=N and Map=N-+V, and by

defining ,'1e1), Contents, InArea, etc. to satisfy the restricting

axioms of (iii).

clef BasicTyp •••

clef CMl'Ce (6,1) 1 \.1= •••
1

This function deals with most of the type-checking on identi

fiers, and effects the various coercions specified hy the Report.

The only point of divergence from (one reasonable interpretation of)

the Report is in connection \.,ith "active" functions. i.e. functIon

designators inside the definition of that same function. It is caused

by the fact that the semantics presented here give ~4 .7.3.2 precedence

over ~:l.4.4 (which is incorrect anyway - [2], Correction 4). llriefl"',

a routIne ref) may specify f to be, e.g., an integeT. called hy name,

and th~n proceed to assign to it. '5.4.4 indicates that reg) may be

called from inside the definition of g - for sllbstitutlon of the body

of r ",ill give a legal ALCOL 60 program!

def Fin.ished .••

def Jc:Jd •••

def Hop(o:Label)= ..•

This function is used to erfect a ,'u"F, Hhen it is known that

the area will not need changIng.

C19

def 1>1.(, •••

def Jump(6 :Labe1)~..•

The incorporation of the local store area into label values

facllitates 'garhage collection'. See !1:P8a.

def Se:t.4Y'.>aTl;JJ"' •••

Sec jJOJIlATNS-C01IiMI:;NTAH.Y, (iii), Area.

de f Se t.~:i1nyo.* E.G= .••

The order of setting is irrelevant.

def IransjerxE.= •••

Ihis function is called only from--lf', case"rv". It is needed

because the types of expressions involvlng It' may not be ascertainable

before 'running' the program.

(ii) Informally defined

A looser notation is used here, as we are not concerned "lth

the implementation of these functions. The only point of note is:

defITw*K= •••

This operator was introduced to describe some features of

ALGOL (JO which are intentionally (?) loft unspecified by the Repon,

e.g. the order of evaluation of the operands in an expression.

S'omePermof'1"to(v) gives an unspecified permutation of 1,2, ..•• v;

and successive appli cations of this function should be regarded as

giving (possibly) distinct permutations. Hence a degree of arbitrariness

cannot be eliminated from the semantic value of a source-language

program, when that program 'depends' on an unspecified part of ALGOL 60.

def ~W*K= •••

This version ofn evaluates the elements of w* in left-to-right

order.

C20

(iii)	 Restricting axioms

The functions restricted are as follows.

AcceB88\J"''''Cl

6 is an array, and \1* is a subscript list. The array COlltains

its bounds-list, which acts as its "dope vector".

ContentsClK=B

K is applied to that element of V which is currently associated

with Cl by the store.

C opyAr>."ay 0 TK'" 8

A new array. with the same bounds-list as .~. is produced, and

its locations are set to the contents of the locations of 6, these

values being transferred to Main(Tl.

InAl'eaOK=B

K is applied to the result of testing whether or not a is in

the current area of the store. This function is redundant in ALGOL 60

without own declarations, as extent is the same as scope.

Insideo/"'v*=e

This function checks that subscripts are h'ithin array bounds.

New'u::~e

K is applied to an unused location, suitahle for contents

described by type T.

N ewA :Pray TJlI* K'" e
K is applied to an array, constructed from a suitahle numbeT

of unused locations and the bounds-list JlI*.

Note: The form of the axioms is new, and not entirely satisfactory.

Ilowever, it was thought better to include this section with the

ALGOL 60 description, rather than to omIt it, OT wait until a better

formalism is found.

