COMMEITARY
on
THE PATHEMATICAL SEMANTICS
oF

ELGOL £0

hy

Peter Mosses

{lt is intended that this commentary be rcad in parallel with the
semantic clauses.]

Contents
Page
Syntax-Commentary c2
Domains-Commentary C3
Semantic Functions-Commentary (8]

Auxiliary Functions-Commentary Cl8

ca

SYNTAX - COMMENTARY

The grammar is written in an abbreviated BNF, with svntactic
categories heing denoted hy words such as Prog, Decl, GSubscripts
to these words, as in ﬂtal, do not distinguish different categories.
A denotes the null category, and lexical categorics, such as identifiers

and numerals, which are not definced here, are nrefixed bv P, e.g. P IDf.

‘' star {*) indicates that the preceding category, or groun of

categeTies enclosed in hraces ({,]}), mav he present zero cr more times.

The grammar given is (verv) ambiguous, but tkis doesn’'t matter
here, as we shall use it onlv to Jdesaribe deduction trees, and not to
tell us how tc form them, It was derived from an.unambiguous grammar
by combining categories to remove semantically irrelevant infermation,
such as vhether an expression Exp is a summand, multiplicand, or what-
ever, This caused a reasonablc contraction in the size of the grammar,

and in the number of syntactic catepories,

Some additional transformaticons have heep rale to the original
ALGOL 60 grammar. These should perhaps he expressed formally, bhut
their descriptions are rather tedious, and need not detain us here,

Informally, the transformations are:
(i) if Exp then Sta lhecomes if Exp then Sta else 4A;

(ii) Empty parameter lists arc added to identifiers cccurring as

(procedure) statements, and to definitions of parameter-less nroccdures;

(iii) Farameter specifications are 'rationalised' to combine the
type (which must he specified} with the formal parareter name and

the name/value specification;

{iv) leclarations are scrted into twe lists, Decl and Defl, Decl
contains the non-recursive declarations of tvpe and array identifiers,
wheTeas lefl contains switches and procedures. The purpose of this
will become apparent in the definition of © in SIMANTIC FUNCTIONS.

(v} lomments are ignored, and paramcter deliriters are denoted hy

commas,

tote that no attempt is made to snecifv anv tyme ratching
at the syntactic level - this is done in the semantics, using the

environment parameter o,

POMAINS - COMMENTARY

(i) Standard Domains

These domains are associated with the interpretation of the
meta-language (used in SEMANTIC and AUXILIARY TUNCTTONS), rather than
that of the source language ALGOL 60, Ilowever, N and T are used here
also s semantic domains for ALCOL integer numerals and hooleans
{true, false), respectively, so as to avoid the continnal use of
transfer-functions. 1 is a primitive domain, and its elements mav he

tested for equalitv onlv.

fii) Syntactic Domains

Most of the syntactic demains correspond to categories of the
same namc in SYNTAX, and are specified by the grammar, The domains
should be regarded as domains of "annotated deduction trees', in the
words of [8], Ch.1. Ferc we shall rake the annotation at a node of
a tree, to he the string (in Q) of symbols on the right-hand-side of
that production which was used in forming the node. The branches from
the node belonp to domains corresponding te other syntactic catepories.
To write out thesc domain definiticns fully would give us, e,p,

DefL = node ("Nef{;Def}*")(Nef pre Def*) <« node("A")D
Def = node("switchldec:=Lxpl™)(Ide,Expl) +
nade {""Typclde (ParL);S5ta"){Type,Ide,Parl,S5ta

(using some extra notation)., The annotations at the nodes arc used
by the infix operator 'of', which is describhed in SEMANTIC FUNCTIONS-
COMMEXTARY : Mcta-lanpuaype.,

List, and the domain of list clements E1, are introduced to

abhreviate the description of functionalities,

1DE, INT, REAL and STPIMNF are, like the corresnending categories
in SYNTAX, undefined here. They are to be evaluated in an implementation

of these scmantics hy functions IdeVzZi:INE+1; Tntval:1NT=+N; etc.

(111} Scmantic Domains

Some notation has heen introduced here, so that the strncture

of 4 domain may be indicated witheut making arhitrary (and irrelevart)

c4

choices about the ordering of its component domains. E,p., consider
ActiveFn = MakeActive¥ln(Peslocr:locn,Fn:Fn)

This is meant to indicate that “gledctiveFn is the constructor
function, and Peslocn,Fn are the corresponding selector functions, for

celements of the domain ActiveFn,
Area

This domain might contain infeormation about which locations
(of Locn) are in use, i.e. have been supplied hy an apmplication of
¥ew (or of Newdrray). The function Sfetdrea 'reclaims' locations which
are no longer accessihle through prograr variables - this is not
strictly necessary for ALGOL 6D, and fetdrea may be re-defined to bave

no effect on the store.

As the ALGOL 60 version of 'own' variables is not described
in this semantics, further specification of the store 5 could give
Lacn the structure of a stack, and then Area would be Jjust the 'top-of-

stack pointer',

Map

Like Area, Map is not further specified, although it is implicitly
restricted hy the 'axioms' of AUXILIARY FUNCTIONS, (iii).

R

String

These domains are nat restricted, See 73.3,6 and TZ.6.3,

Xl, etc,

literal strings are used to denote elements of these "known"
finite domains. This enahles hasic symbols of the source langpuage
to he mentioned, without disturbing the lexical conventions of the

meta-language.

(iv) Denotation Domains

These indications of the 'tvpes’' of hound variables are given
only as an aid to the reader, and their mathematical sdignificance is
not exploited in this paper. The types are further indicated in the

bound-variable lists of i-expressions and defined functions,

With the aid of these denotation domains (of the metalanpuage),

the tyvpe of any function may be found from the INDEX, e.g. we get
ALAsSL+LU+[Y~ Loacn*»{C+C71717.

Note: For the purmoses of this paper, each domain is assumed to in-
clude an "error found" e¢lement, denoted by '?'. A domain is in fact
a lattice, in accordance with [f], etc., and the idea is for '?' to
be incomparable with all clerents of the derain (except with i and 71,
of course), '?' should be suhscripted with an indication of its
domain, but this is usually clear from the context and so is omitted
in this semantics. 1t is convenient to he ahle to test x=7, xhere,
for example, x might be the "lpoling-up' of an identifier in an
cnvironment.

ce

SEMANTIC FUNCTIONS - COMMENTARY

Meta- language:

The functions are defined using a variation of the 'semantic
clauses' notation of Strackey (e.g. in [8, 12]). The main differcnces
are the disappearance of some special operators, and the introduction
of a more structured definitional ferm. The result of the latter has
been tn make the meta-language lack much more like a programming lan-
guage itself - the implementation of this language is to form part of
the author's D.Phil, thesis. However, it should be stressed that
the whole definition is just as mathematically-based and referentially

transparent as hetfore.

An informal guide to the metalanguage is given below. The reader
is warned that the meta-language is still evolving, and that the

variant used here is experimental.

asagsat, b are bound variahles

a*,af... are hound variables denoting tuples.
(K.B. Star (*) has nc operational significance in
this paper,)

ﬂ’jabc’ji"" are semantic functions.
’(*"‘:hc’ . atre semantic functions on a List.
A L,ABec1:3 are auxiliary functicens.
B) ‘
Av A) are semantic domains

AT 3

?7 is the "error found” element (of the anpropriate domain).

(> is the emptv tuple

(al,...,am> denotes a tuple, a* sav, of knoewn dimension.

dimof a* = @

* =

a¥+i = a.
8

a*cat(bl,,..,bn) = (al,...,am,bl,...,hn>

e pret = {e)cat t
A.e, ix:A.e, A(xl,x2> .e are l-expressions, optiocnally typed.
fix x.eis the minimal fixed point of e with respect to the hound

variable x. (An earlier notaticn was r(ix.e).)

fxvz = ((E(x))(¥v)) (=) %

aliblic = afhici;]

" 15 less binding than juxtamosition and -+, hut does not

abbreviations to aveid a multitude of hrackets

Note:

terminatce a *-exwression.

(¢),{cl are used for parsinp purposes, and to help readahility,
e(nl,...,am] = e(al,...,am)
lel e must denote a deduction tree. Sce 'of" helow.

1{ t denotes a deduction trec, then:
labelof ! gives the annotation at t,
dimoft gives the number of hranches from t fc.f. dimof .*},
v cftgives the u-th branch of t, and
"ARctof t where 'ABe' is a svntax catepory, rives the 'correcct' kranch
of t - this is deduced from the Tabelof t and takes any subscript on
"ARc' into account.

~.R, Throughout the definitions of the semantic functions,
T"ABc"of t1is abhreviated to, simply, FABc?. The loneer form is
uscd when the denotation of the parameter deducticn tree is not
(liteTally} t.

id"ahe™ converts from 0 to I

pfc/t/11 = p', where p'lr!'l = (5,m if 17 o= 1
platl if 2 #
* fr *1 = = = -
ple*/i*/1*] Ol01/T1/11][v2/T2/121..4[0n/T”/1ﬁ1
where 5% = (5],....6”’, etc,, but only if liseessl, aTe

n
distinct,

B 00,8, < Eez if e, = true
(03 if e, = false
7 if = 7
(7 if e, T
switch u in
5 case b, t...ca5e h : o
se b icase b12 cas 1n ey
case b 1., H
m1 case hmn n
m
default: e
m+ X

Ccs

- the expressions bii are tested sequentially for equality with a,
and if a match is found the result of the switch is the corresponding

e;. If no match is found, the result is e The default case is

m+1”
in fact optiecnal, and its omission is equivalent to specifving default:?

YNote the bracketting use of § and §.

let x= i
exe11n

let (y,20 = e, in e,
- non-recursive definition of local variables, equiwvalent to

{Ax.txy, 2 .ea)(ez))(el) .

compiler ¢

deféltjaly = ey

de fAkeaBy = e,

- the complete mutually-recursive definition of the semantic and
auxiliary functions, specifying formal parameters. The scope of the
functions includes ¢, the bodv of compiler, which is the main semantic
function transforming a propram’s deduction trec inte its mathematical

value,

9
ALGOL 60 Sermantic Functions:

compiler, ..

£, is to contain any input/output procedures, and cxtra
systcm prﬁcodures.
Tet o =n,l...

Here, the 'standard' procedures of A[COL 60 arc added to P
Abs, Sign, etc, are clements of Fn, hence alse of D. Note that 'sin'
may be re-declarcd to be somethinp cempletely diffrrent, in the

source program t.

case''Sta':.,.
A valid clement of Prog has "Sta" as its lahel. D deals with
any labels occurring outside the outermost block of the propram,

defPlr:Stalpe = ...
1* is to he the 1list of label identifiers declarcd in t, but
not inside any imner bleck. Sce 5?_'.':13).
T is to be the 1list of their types (all rareTyp("label™, 7)),
*x
See jﬁab'

¥ gives a list of the corresponding entry points, incormorating
in them n as the Properdfeca,

fix is used, as labels are inherently recursive.

defClt:Stallos = ...
Continuations are used, to compound the effects of the state-
ments of a sequence whilst allowing jumps out of the statcments. See

[12) for a description of the genreral methed of using continuations.

defflt:Stajen = ...
This adds the e{fect of a single statement, to that of 2,

g
case"begin Decl...
This is, thankfully, the most complicated casc. It would
be even worse without the assumed re-ordering cof the declarations into
the two lists Decl and Defl,

Note that array hounds in Decl are not simply evaluated in p
(see H*). This is to conform with T5 and £5.2.4.2, in that

Cclo

integer n; n:=10;
begin array A[1:n]
procedure n{x) ;...
is not to be allowed.
lnl.ﬂ*.“
The area is found so that, on a nermal cxit from the block,

locatiens which have become inaccessible through pregram variables

may be 'parhage-collected' using Setdrea.

Am2.1et...
The area Ny is incorporated into the values of labels, to
cnable 'garbage-collection' after jumping out ef an inner block.

See Jurp.

case"begin Stal end”:
Here, begin and end arc used only as brackets, and do not

affect meaning or scopes.

case"if Exp then...

The Exp 1s evaluated 'first', Note that the effect of

if Exp then Sta else A;
is not necessarily null when the valuc of Exp is false (in T), in
contrast to T4.5.3.2. 1t should not bc considered a disadvantage
of the semantic clauses, that onc cannot easily describe in them
{without explicitly copying o} the semantics given in %4.5.3.2, which
regquires the reversibility of any side-effects occasioned by the eval-
uatien of Exp.
case"Ide: Sta":

1t can be scen that when © is applied to t:5ta and p, all
the labels declarted in t will have been added to p alxcady. llence
the continuation from the labcl, which forms part of the value of a

label, may be found from cf[de] hcre,

Hop is like Jump, but omits the (unnecessary) Tecsetting of the

stoTre area,

case"goto Exp":

;f evaluates a designational cxpression.
case"Var := AssL":

The type of Var 1s "manifest", i.e. ascertainable without
applying the program to a store ¢ - without "running” the program. X
insists that all the left-parts of AssL are of the same type as Var;
and &, when called froms, inscrts a transfer function, converting

the expression to this type.

case"for Var := Forl dc¢ Sta™

Again the type of Var is manifest, and must here be arithmetic.
Var is "called by name" - note that¥[Varlps has not been applied to
K Oor g, Main selects part of a (structured) type, as does gual later.

case"[de(Expl)":
Note that Cceree allows Ide to be a function designator - see

[2], Correction 4.
case"A":
A dummy stutement adds nothing to the continuation parameter 6.

§

defaa*l[t:DECL]]pK=...
f{ZIt]I-:u maps elemcnts of t:List with ¢,
TTlw*)}x evaluates the w; in an unspecified order, and applies

k to the (possibly) re-sorted list of results.

defo’b!t:Dec]Iprc:...
§
case"Type Idel":
Declaration of type identifiers.
case"Type IdeL[BdsL]":
Declaration of array i1dentifiers. Note that BdslL is onlv
evaluated once.
§
def H*[t:Deflio=...
This functien produces a tuplc of switches, routines and

functions, to he added to an environment, Sec ©, case"begin Decl...".

C12

defX[::Deflp=...
5
case"switch Ide := Expl":
Expressions in Expl are evaluated only after they are selected
by a use of the switch,

case"Type lde (Parl); Sta":
§
case"procedure”:
@A* sets up call-by-value parameters,
Psets up labels and calls B,
Arec is found to facilitate re-use of locations which bave
become inaccessible, after a normal return from the procedure hody.

case“lype procedure”:

The lacation @ will be set when lde (above) appears as the
left-part of an assignment statement in Sta. The type of & is tagged
with "active" to distinguish the function designator inside and outside
Sta,

def Qt:Parlln*i=...
%, checks that there is the same number of actual parameters
in 7*, as formal parameters in t.

IT sets up the parameters in some unspecified order.

def @ft:Parlme=.,.
§
case"Type Ide name":
When used, the parameter will be coerced to TJ[Typel, seeV.
Naote that the Type has to be specified. This implies that
one cannot write, e.g., the following (new?} horror:
integer procedure f; f := next;
integer procedure g; if next=1 then g:=next ;
procedure h{x); x;
h(if next=2 then f else g);
which, by 14,7,.3.2, is equivalent to
if next=2 then f else g;
Thus, although an arbitrary expression may not stand alone as a state-
ment, a conditional expression has become, through the call by name

mechanizm, a conditional statement!

Incidentally, one might perhaps invoke ©5.4.4 to invalidate
the above example. This illustrates what seems to he the canse of
several ALGOL ©0 ambiguities: the prescription of several clashing
universal rtules, with no indication of the intended order cof their
application. MNote that this problem does not occur in the mathematical

semantics,

case"Type lde wvalue":

forzdrray inscrts transfer functions between real and integer
values, if necessary. This is so that subscripted variables may
conform to 15.1,3, and to allew system routines to accept real or

integer arrays indifferently.

§

def S*ft:Stallpna=, ..
This function gives a tuple of the label values declared in
t. Although it takes a centinuation &, it is not applicd to the store,
def §lt:Stalpnn=..,
§
case"begin Decl...

Label scopes do not extend out of a block.

case"begin sStal end":

A compound staTtement does not restrict label scopes.

case"if Exp then...

Jumps may be made 1nto the arms of a conditional statement.

case"lde: Sta":

Each label is constructed from the local arca =, and the con-
tinuation through the rest of the program. I[n fact the latter is
usually just the continuation to the nmext label, feollowed hy a sop
- sec ¥,
case"goto Exp”:
case"Var = AssL":
case"far var := Forl do Sta“:

Jumps into a for-statement are prohibited by restricting the
scopes of the labels in Sta. This 1s slightly at variance with %4.6.6.

Cl4

case"Ide(ExplL)":
case"a";

Note that label values are not extracted {rom procedure
declarations.

{

defA It AssLloxa*s=...
¥ is the type to which the left-parts must conform, and o*

accumulates the locations found by evaluating the left-parts,
]

case"Var := AssL":

The left-parts are evaluated in left-to-right order.
case"Exp":

The right-part is evaluated, and the (coerced) value ls

assigned to all the previously-found locations in a*.

def F*|t:Forlipxuyb=...

Contrary to the Report, 'the' controlled wariable is not un-
defined after exit due to cxhaustion of the for-1list. To make it un-
defined would need another cvaluation of 'the' variable, which might

be of significance if it is a subscripted variable. Sec [2], Ambiguity

def Flt:For]lpyuyo=...
§

case"Exp":
case"l:.\'pi while Exp.":
case"l:;(pjl step Exp, until Lxpg":
The "conservative" interprectation of the Report.
An alternative is to use u to evaluate a in7*, omitting

v'l¥" | ka., throughout, and replacing v"rv" by tonterts «. Then

the location a may be set to be undefined after a controlled exit {(in F*:

§

C15

def d...
def 9% .. c.r.d*

“ea
def gd’ec
def 9% c.f.
def Sdéf .

L d *
def gpm‘... c.f. ®
def § .

par

*
def 97 . c.f. g
def 9, ...

Ll
def J...
def T . c.f. I%
def jdpﬂ ..

- -
def jﬂ’ef' c, f. day
def jde;“"

L L J
def jpar c.f jpaﬂ
def ’Jpaz‘

* *
def Fy ... c.f. 97,

def 'juar[[t:\farﬂp...
Used in &, case"Var := Assl", case"for Var := ,..".

def "_]Msﬁt:Opl
def ’_)‘am[l t:0p]
Used for type-checking in ’V', case"Expl Op Exp2", case"Op Exp”.

def J

eonst!t:{:onstﬂ
Used only in‘V, case"Const",

de‘f"\f[t:ExpﬂcrrJ UK ='.
]
case"ev":
This mode 15 used when an clcment of
Array + Switch + Fn + Rt + String
is required.

case"fv":
Used for designational expressions, giving an element of Label,

case"lv":
Used on left-part expressions, giving & result in Locn.

Cle

casa'ry";

Trans fer ¥, will only be inserted at the outermost level of
an expression, see jarg'
§
l:ase"ii’EXp1 then Exp, eise Exps":

The program will not 'fail at run-time' if, say, i_')(p2 is of the
wrong type, but only Exp, is used.
case"E)q::1 Op Expz":

The Report leaves unspecified the order of evaluation cof

operands - so does the use of Jf here.

case'Dp Exp':
Op will be +, - or — (logical negation).
case"Ide(ExpL)":
Parameter-less function designators are catered for by case'"Ide'",

below,

case™lde[ExpL]":

Coerce allows a real array to be used when an integer value
is wanted, and vice versa, but does not insert the transfer function
itseld,

case"Ide":
Here we deal with parameter-less function designators, as
well as with simple variables.

case''Const'":

This gives the value assgciated with a numeral or logical wvalue.

case" {Exp)":
Note that this case only appears under case“rv",

b
dEfgltiflp]p)(K=...
def‘.;f'.l[t:\far]pxuc=...
def.ﬂﬁt:Expﬂvaza..
These functicns just abbreviate standard calls of V.,
def B[t:8dsL])px=...
'ITD evaluates a list in left-to-right order, see %4.2.3.

def ...
def Nt Expllpk=...

The order of evaluation in A% is again left-to-right - assuming
that %4,2,3.1 applies to variables in arithmetic expressions as well.

def N ...
def,N'lﬂt:ExpL]plc=...
This function is used to evaluate a switch designator, which
may have only one "subscript",
def U*(t:Expllp=. ..
Tiie actual parareters in t are partially cvaluated in the
correct environment p.
def 4...
def XK. ..
defd/ ...
def-\»fz...
def‘}f_llt:ListMH. ..
fhis is like 'iz, hut ¢, when applicd to an element eof t, gives
only a single value, not a tuple,
def &Qﬂt:u‘stnqb:.. .
¢ is applied to cach element eof t, and the resulting tuples
are concatenated,
def‘xaﬂt:ParLi]w*c;::...
This function is used only in Q.
def"_{q[t:ForLI:pB:.. .
Used only in #*.

Cc18

AUXILIARY FUNCTIONS - COMMENTARY

(i) Defined Functions

To some extent these functions are defined rather arhbitrarily.

However, the attcmpt has been madc to kecp them as simple as possihle.

def ApplyfFn...
def Ap-iyst...

def Aregro=...

This, and Setdrea, are the only delined functions which need to
manipuiate o explicitly., Note that S¥ap(c) is not duplicated. The
copying of Sdrea(o) could be justified by formulating a model for
storage for ALGOL 60, in which Locn=N, Area=N and Map=N-+V¥, and by
defining New, Contents, Indrea, ctc, to satisfy the restricting

axioms of (iii).
def BasieTyp...

def Coerce(é,rnlua..

This function deals with most of the type-chocking on identi-
fiers, and effects the various cocrcions specified by the Report.
The only point of divergence from (one rcasonable interpretation of)
the Repart is in caonnection with "active" [unctions, i.e, function
designators inside the delinition of that same function, 1t is caused
by the fact that the semantics presented here give 14.7,3.2 precedence
aver .4.4 (which is incorrect anyway - (2], Corrcction 4). Briefllv,
a routine r{f) may specify f to be, e.g., an integer, called hy name,
and then procced to assign to it. 75.4.4 indicates that r(g) may be
called [rom inside the delinition of g - Jor substitution of the body

of r will give a legal ALGOL 60 program!

def Finighed...
def 3scod,,.

def gop(s:label)=...
This function is used to c¢f{lect a Jump, when it is known that

the area will not need changing.

C1l9
def Ini...

def Jump(d:Label)y=...
The incorporation ef the local stere area into label values

facilitates 'garhage collection'. See Area.

def Zetirecanda=...

Sec DOMATNS-COMMENTARY, (iii)}, Area.

def Settanyu*et=,..

The order of setting is irrelevant,

def Fransjerye=...
This function is called only from"v; case”"rv", It is needed
because the types of expressions invelving '+' may not be ascertainable

before 'running' the program,

(11) Informally defined

A looser notation 1s used here, as we are not concerned with

the implementation of these functions. The only peint of notc is:

dEfIT'.u*K=..,
This operator was introduced te describe some features of
ALGOL 00 which are intentionally (7) 1loft unspecitied by the Report,

e.g. the order of evaluation of the operands in an expression,

SomePermoflto(v) gives an unspecified permutation of 1,2,...,v;
and successive applications of this function should be regarded as
giving (possibly) distinct permutations. llence a degree of arbitrariness
cannot be eliminated from the semantic value of a source-language

program, when that program 'depends' on an unspccified part of ALGOL 60.

def T w*e=...
This version of [evaluates the elements of w* in left-to-tight

order,

c2o

(iii) Restricting axioms

The functions restricted are as follows.

Accesaiv®=a
3 is an array, and v* is a subscript list, The array contains

its bounds-list, which acts as its '"dope vector'.

Contentsak=0
k is applied to that element of ¥ which is currently associated

with « by the store.

CopyArraydtk=8
A new array, with the same becunds-1ist as 5, is produced, and
its locations are set to the contents of the lecations of §, these

values being transferred to Main(t].

IndAreaax=0
x is5 applied to the result of testing whether or not a is in
the current area of the store, This function is redundant in ALGOL 60

without own declarations, as extent is the same as scope,

Instdep*va=4
This function checks that subscripts are within array bounds.

NewTk=8
« is applied to an unused location, suitable for contents

described by type T.

NewArrayTP*k=9
k is applied to an array, constructed from a suitahle number

of unused locations and the bounds-1ist y*.

Note: The form of the axioms is new, and not entircly satisfactory.
However, it was thought better to include this section with the
ALGOL 60 description, rather than to cmit it, or wait until a better
formgiism is found.

