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AbSTRACT 

This report is a tutorial intrOduction to a ted,nique 

of ~ro5ramlning which involves ""(he cor:u;,unication betweer two 

or more concurrently executing processes. The notaticns of 

corrununicating sequential processes (CSF), suggesteG' by 

C.A.R. Hoare, ar'e presented in detail. 

This report is chiefly intended for 'educated ;cien

tists I who are encounterin6 the subject of pa 'allel 

processing for the first time. For pedagogical reaSO"LS ~ a 

large number of examples of increasing conceptual complexity 

are given and solved throughout the repor't. 
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Ct-lAFTLP. 1 

:;: 1;'1' K(J L';';C~ :;:Cil; 

~l!e silr,ul1:aneous executior. of t\.,'o or J:1ore sets c: se-

c;.ueIitie:.l comfuter instructior.s ::'5 cal::Ceri ~G",allel 

,.,rocessi ng, concur'rent progrd:r.lming l ('r rnul ti~rocessing. 

for example, many modern computers facilitate ;:;ome degC'ee of 

pardli~.i oper'dtions by ,?roviding two processors. The first 

firocessor is cOfilmonly known as the centr,-tl prQcess inG unit 

(CPU) used to execute 'regular' instructions; and the :;econd 

is an Input/Output(I/G) processcr, sometimes know~ as a 

channel, to process 1/0 commands [ 18J. The CPU aId 1/0 

processor work in parallel. The present-day tY'el1d i~ corn

.vuter desii;:,n is to have as many system cOWlJonen:s as 

possible operating in parallei. The advent of inexptnsive 

microprocessors has helped ~o accelerdte this trend. 

Despite the complexity involved in reliably contrGlling 

parallel processing, two important and interrelated aY'E3.S of 

research seem to stand out. 

One of them is the development of a notational system, 

also known as an abstract language or even a progre-;uning 

language, for expressing the program structure and the data 

structure. One of the goals of a notational system i5 to 

enable workers in the computer field to expY'ess their 

thoughts on programs or algorithms in a simple, precise, and 

transparent manner, so that a colleague will unders:and. 

Since parallel processing is a complex topic, it is of the 

utmust importance to develop a good notational system. The 

cummunicating sequential processes (eSp) notation, using a 

single structuring method, is a significant step in this 

direction [14-J. 
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The other research area ",,,"ems to fo cus on the iden

tification of some fundamental, or 'primitive', operations. 

Suc~ primitive operations are akin to an operator as used in 

md"[.1.ematics (e.6. +'-lXl~)' It i.3 dseful to classify 

prinitives into two groups: executable primitives and 

stl'.lctural primitives. Examples in each group are listed 

in 'fable 1.1. 

Structural 
pr imi t i ves 

Sequential 
composi tion 

Parallel 
composi tion 

Alternative 

Go to(Jump) 

Conci tional Go to 

Executable 
primi t ives 

CSP,fortran,Pascal,etc 

Assignment 

Expressions 

I/O 

Assembler language 

Load 

Jump 

Store 

Table1.1 Examples of Primitives. 

This technical note is a tutorial exposition of the re

cent work in these areas by C.F.. R. Hoare [14J. It is 

chiefly intended for those who are encountering the subject 

for the first time. The reader is expected to have 

experience in programming in at least one high-level 

language. 

In Chapter 2, we commence with some simple examples 

illustrating how the well-known programming constructs--

sequential composition, selection, and repetition--- are 

related to Hoare's CSP notational system. 

In Chapter 3, the parallel command and examples of 



tJarallel OOlt1iiosi "'Cion ar£: st'j·::ied. Co;:~_.r_llni..::>..:.t ion be t'l;een 

two processes usin.g I/O cOlllll,c..nc2 L, intl''::lduced for the first 

time. 

Chapter 4 deals with synchronization and tutfcrir.g. 

It 51-jaWS now a buffer car, be iI~,~lemented as a ;;rocess. The 

classic:a';" con5umer/~r":Jducer problcr;, [6] is reviewed a~d its 

SOlution, expressed in esp, is studi~d in dc~th. 

Chapter 5 introduces the concept of an array of 

processes. It is illustrated b)-' 5everal examples irlclujing 

tIIC we.J.l-knowll factorial and ;:,rime rlu::1ber ~robleJ,s. 

Finally, it is worth noting thQt the CSt' notaticnal 

system, like many other computer lunc;uages, rapidly gives 

ris.:' to a host of exten:::;i0ns and mOdifications. In chis 

report, we study only the topics which are presented in the 

original pa;er[14J. In particular, the topics of recur~ion 

dnd procedures are not treated. A tutorial exposition of 

the recent extensions by C.A.R. Hoare and C.M. Holt will be 

published in a separate report[15J. 
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CHA?TER 2 

ALTERNATIVl: AND REPETITIVE COMMANDS 

This chapter is mainly devoted to the conditional and 

re~etit:ive commands as expressed in esp. These commands 

are Ddsed on :':ij kstY'a I s guarded com.mana CSJ. A large 

number of examples is presented. Whenever prac

ticabl€l Al~ol 60 [l~J statements are listed side by side 

wi th the CSF commands. 

2.1 A Simple Example for CSP 

Let us consider the simple example of the swapping of 

two real numbers a and b. 

bedn 
real a,b; 
a:=3; b:=5; 
begin 

comment swap values 
of <.l and b; 

real t; 
t:=d; 
a: =b; 
b: =1 

end 
ene 

(a)S~lution expressed in Algol. 

a,b:real; 
a:=3j b:=5j 
[ 

commen t swap values 
of a and h; 

t:real; 
t: =a; 
a: =b ; 
b: =1: 

(b) Solution expressed in esp. 

Figure 2.1 Swapping of two numbers. 

From Fig. 2.1 we see that the symbols 1[' and I]' in 

CSP are respectively analogous to begin and end in Algol. 

The block structure and scope rules for variables used in 

CSP are similar to those used in Algol. The semicolons are 

usee to indicate sequential execution. We note that the five 

assignment commands appearing in both languages are iden

tical.. We also note the minor difference in the declara



tion of the three variables a,b and t. There are four 'stan

dard' types available in CSP: real,integer,boolean,and 

character. Also an array is declared in CSP as follows: 

p:(1 .. 100)integerj 

where p is a one dimensional array of type integer having 

100 elements. 

2.2 Alternative Command 

Let us consider the function 

if x< 0y=FX 
lx' if x~o 

To write this function in CSP one can use the following 

alternative command: 

[ x<O -+ y:=2!'lx 

Ox~O -+ y:=x*x 

We summarize in Table 2.1 terminologies for the various com

ponents of an alternative command. 

Terminologies 

Alternative command 

Guarded commands 

Guards 

Commands 

CSP representation 

[ 

0 
] 

x<O 
x~O 

-+ 

-+ 

y:=2*x 
y:=x ll x 

x' a 
x~O 

.... 

.... 
y:=2*X 
y:=x*x 

x' a 
x~O 

y:=2*x 
y: =x*x 

Table 2.1 Swrunary of components of an alternative command. 
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This corrunand consists of two guarded commands separated by a 

symbol '0' (read as I fat bal" I and interpreted as an OR). 

This command may be transla.ted as follows: If the guard x< 0 

is ~rue, then con~ute y:=2 Ax. If this guard is false, then 

the command y:=2"'x is not executed. Similal~Ly, if the guard 

x~O I::; true, then compute y:=x":x. If it is false. then the 

command y:=x*x is not executed. 

It is possible for the evaluation cf the two guards, 

x< 0 and x;::-O. to start at the same time and to continue in 

paf'dllel. As soon as either guard is true, the following two 

eveLts ',.Jill take place: 

1) any further evaluation of the other guard is discon

tinued; and 

~) the command corresponding to the successful guard is 

executed. 

In this particular example, one of the two guards is 

always true. There are situations where 1) no guard is true; 

or 2) more than one guard is true. These will be discussed 

in the next two examples. 



Case 1: lio guard is true. 

Let us consider the function 

2X if x<O 

y~ 

{ 
x' if x >0 

In CSP this function may be expressed as: 

x<O y:=2 1:x 

Dx>O y:=x":x 

If x=O, both the guards x<O and x>O will fail. As a 

result neither of the commands y:=2*x and y:=x*x will be 

executed. The alternative command fails and the proGram 

which contains it will abort. This sequence of actions is 

shown in Fig. 2.2. 
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Enter the Alternative Command. 

yes 

discontinue the 
evaluation 
of the guard 
x ,0 

no no 
AND 

yes 

discontinue the 
evaluation 
of the guard 
x,D 

the commandthe command 

continue 

FigLre 2.2 Diagram showing details of the execution of the
 
Alternative command.
 

[ x<O + y:=2'/:x 
ox,O -+ y: =x,'/x 

] 



Case 2: Hore than one guard is true. 

Let us take the above example again, except that now 

both 1=' signs are included in the function: 

if x,.,;O 
YC{2X 

x' if x~D 

The corresponding CSP representation is as follows: 

[ x"';O .... y:=2l~X 

Ox<:O y: =x*x 

In the case that x=O, both guards are true. It shou:d be 

strongly emphasized that we have no knowledge as to \oih ich 

guard will succeed first. As a consequence, we do not know 

which one of the following commands: 

y:=2~x or y:=x*x 

is executed. This is known as nondeterminism. fortunately, 

in this case, it just does not matter which of the comnands 

is executed. 

So far, in our examples, each guard contains onl~ one 

boolean expression. However a guard may consist of twc or 

more boolean expressions, separated by semicolons. 

Take the example of evaluating the following functlOn: 

y"(x+12)!«x-l)(x+2)). x~l and x~-2 ) 

The CSP representation of this function takes the form: 

( x~l ; x~-2 .... y:=(x+12)/«x-l)~(x+2» 

The guard is evaluated as follows: 



10 

SLe? 1. Check if Lhe guard x*l is true. If so, go to step 2. 

OLherwise the program aborts. 

Step 2. Check if the guard x~-2 is true. If so, evaluate the 

command y:=(xt12)!«x-l),'«xt2». Otherwise the 

program aborts. 

2.2.1 Alternative Command with Range 

We shall now show how several guarded commands with 

subscripted variables may be written in a carnpact form. As a 

specific example, consider the three guarded commands shown 

in ~ig. 2.3(a). This can be written simply as shown in 

Fig. 2.3(b), where the index variable (also known as the 

bound variable) k is used. The expression (k:l .. 3) is known 

as the range. In the compact form, the fat bar symbol is not 

used. 

[ dO) >0 -+ ael) =aCl)-l 
Da.(2»Q -+ aO) =a(2)-2 [(k:1..3)a(k)'0 ~ a(k):~a(k)-kJ 

Da(3) >0 -+ a(3) =a(3)-3 
] 

(a) Expanded form. (b) Compact form. 

Figure 2.3	 An alternative command consisting of 
three guarded commands. 

2.2.2 Swnrnary 

In Table 2.2 we summarize the evaluation of guards in 

an alternative command. It also lists which command, if any, 

is 10 be executed. 
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Result of eva.luaTion 
of the guards 

All guards are false 

Only one of the guards 
is true 

Two or more guards are true. 

~Ihich command l if any) 
is to be executed 

None; the program abt")rts. 

The corresponding cor.~and 

is execu"ted 

Exactly one of the commands 1 

depending on implementation. 

Table 2.2 Guards and guarded corrunands. 

2.3 Repetitive Command 

We turn now to describe how the repetitive construct is 

expressed in CSP. Two examples will follow. The first 

example will deal with the sum of the integers: 

100 

so Ii. 
i::l 

The cornvutation as expressed in Algol and in esp, is listed 

in Fig. 2.4. In Fig. 2.4(b), the last command is called a 

repetitive command. It consists of an alternative command 

preceded by the symbol I:~' • This symbol may be interpreted 

as: repeatedly execute the following alternative cor~and 

until all its guards fail. When all the guards fail the 

repetitive command terminates and control is transferred to 

the next command. 



integer s ,k; 
s : =0; 
for k:=l step 

s:=s+k 
1 until 100 do 

s,k:integer; 
s:=O ; k:=l; 
~[ k~100 ~ s:;s+k k:=k+l ] 

(a) In Algol. (b) In CSP. 

Figure 2.~ Sum of the integers. 

As the second example, consider arrays a and b. We wish 

to interchange a and b if a k ,. bk Cl.-;k.o;;100). The solutionk k 
shmm in Fig. 2.5 needs some explanation. First, there are 

100 guarded commands, one for each k value, in the alterna

tive command. Second, the alternative command is repeatedly 

executed until all 100 guards fail. Third, for each itera

tion, the 100 guards are evaluated concurrently, the cownand 

list Can the right hand side of the arrow) corresponding to 

the first successful guard is then executed. During any 

iteration, however, if all the 100 guards fall, then none of 

the guarded commands is executed. The repetitive command 

terminates, and control is transferred to the next command. 

Finally, the number of iterations may vary from 1 to 100, 

depending on how often a k > bk. cccurs. Fig. 2.6 shows the 

detail of evaluation of this repetitive command. 

a,b:C1 .. 100)real; 

comment Assume that random
 
values have been assigned
 
to the array elements;
 

tI[ Ck:l .. l00)aCk»bCk) ~	 t:real; 
t:=a(k); 
a(k) : =bCk); 
b(k) : ot 

Figure 2.5 Swapping of aCk) and bCk) 
if aCk) >bCk) [1.s:k~100. ] 



13Enter Re~etitive Command 

~ 
I I \ \ 

•••• a(100»b(100) 
-----./ 

j,,TL j, jT T 

At each iteration exactly one of the Competitors is allowed 
to pass through this prohibitive barrier. 

t:real; 
t: ::a(lJ ; 
a(l):=b(l)j 
b(!):=tj 

t:real; 
t:=a(2); 
a(2) ,~b(2); 

b(2):=tj 

.....
 t:realj 
t:=a(10DJ; 
a(100)::::b(iDOJ; 
b(iDO) :=t; 

Lxi t 
from the 
Repeti tive 
Command 

continue 

Figure 2.6	 Diagram showing the detail and execution of 
the Repetitive Command given in Fig. 2.5. 
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CHAPTER 3
 

PARALLEL COMMANDS AND INPUT/OUTPUT COMMANDS.
 

In this chapter we first introduce the parallel com

mdnd. Its purpose is to define two or more processes that 

will run concurrently. We then introduce input and output 

commands and show how they are used to effect communication 

between processes. 

3.1 ?arallel Commands. 

Consider the evaluation of the function 

;=(x+l)sin(x+l) + cos(x)cos(2x)cos(3x) for x= 3. 

A possible CSP description is shown in Fig. 3.1. 

x,y,p,prod:real;
 
i:integer;
 
x: =3; 

[	 c: : p:::x+l; } Process C 
p:=p'!;sin(p) 

II D" "	 prod:=l;i:=l; } Process D 
*[is3 + prod:=prod~cos(i*x); 

- i:=i+1 
]
 

] ;
 

y: =p+prod 

Figure 3.1 CSP evaluation of the function 
y=(x+l)sin(x+l) + cos(x)cos(2x)cos( 3x) 

The shaded command in Fig. 3.1 is known as a parallel 

comm~nd and consists of two processes (or sets of com

mands)[4,5J. The commands used to evaluate the Sine term are 
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collectively known as Process C. The process labe 1 emus t 

be followed by the symbol I:: I • Similarly 1 the conunands 

for the Cosine term are labelled Process D. Processes C 

and D are separated by the symbol I I I I, which indicates that 

they are executed in parallel. 

The parallel command, shaded in Fig. 3.1, is e~ecuted 

in the following manner: 

1) The execution of the two processes labelled C and D, 
start at the same time and continue in parallel 

2 ) The parallel command is sllcessfully completed only when 

the execution of process C and process Dare both com

pleted; and 

3) No assumpt ions, at all, are made about the rela t i ve 

speeds a t which the commands in proces s C and thos e in 

process D are executed. 

In general, a parallel command consists of two or more 

processes~enc~osed between a pair of square brackets '[1 and 

']', and separated by the symbol I Ill. All the precesses 

of this command are executed in parallel. 

There is a non-local variable p which appears On the 

left hand side of two different ass ignment commands in 
process C. Its value changes first to 4 then to 4s in4. 

This variable p must not be used in process D. The 

variable x appears in both process C and D. This is 
acceptable because its value is not changed in either 

process (x occurs on the right hand side of both the assign

ment commands in which it appears). In general, each 

process of a parallel command must be disjoint from every 

other process of the command, in the sense that it does not 

mention any variable to which a value is assigned in any 

other process. 
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3.2 :nput/Output Commands 

In CSP the symbol '?' means input and is used in the 

input command. The symbol I! I means output and is used in 

the output comrnand. 

fig. 3.2 shows how the input and the output commands 

are u3ed to send the value of x from process A to process B. 
I 

Process A Process B 

B! x. I value of x I)' A?y 

(a) Output command 

Output x to process B 

(b) Input command 

Input a value from 
process A and 
assign it to y 

Figure 3.2 Input and Output Conm,ands In esp. 

The input command A?y consists of 3 parts: 

1 ) A, is a process name> specifying the source of the input; 

2) ? , is the symbol that means input j and 

3) 'i, is a variable name, the target, which is 

to receive the input value. 

A?y is interpreted as follows: 

From the process A input a value and assign that value to 

the target variable y. 

The output command B!x also consists of 3 parts: 

1) B, is a process name specifying the destination of the 



output; 

2) !, is the symbol that means output; and 

3) x, is an expression. 

B:x is interpreted as follows: 

To the process named B output the value of x. 

Let us reconsider the evaludtion of the function 

y=(xtl)sin(xtl) t cos(x)cos(2x)cos(3x) for x=3. 

In order to illustrate how the inputloutput commands are 

used, we will take two processes called C and D. They are 

used respectively to compute the first and second term of 

the function y. The final sum of the two terms is cOIJ.puted 

in process C. The details, expressed in esp, are shown in 

Fig. 3.3. 

[C: :x,y,p,q:realj ID: :prod,val:real; 
i:integer; 

x: =3; prod:=l;
 
D! x ; ,,-----  value of x .. C?val;
 
p:=x+l; i:-=l;
 
p: =p"sinCp) i: [is 3 + 

-prod: =prodl'lcos (i l'rval) ; 
i:=i+l 
] ;
 

D? q; "O(f-- value of prod -----<C! prod ]
 
y:=ptq
 

Figure 3.3 Input/Output commands in CSP. 

Process C and D use no non-local variables. In order 

to send the value of I x I from e to D, e uses the output 

command D!x and D uses the input command C?val to re~eive 

this value. Similarly, to send the value of the term 

cos(x)cos(2x)cos(3x) from D to C, D uses the output cOIllInand 

c!prod and C uses the input command D?q. 



The interacLion between the OULput command D!x in 

process C and the input command C?val in process D can be 

explained as follows: 

1) The firsL command encountered will be delayed until Lhe 

other command is ready; 

2) The output command, D!x , names the process to which x is 

to be sent (and in which the input command C?val occurs); 

3)	 The input command, C?val , names the process from which a 

va~ue is required (and in which the output command D!x 

occurs) ; 

4)	 The type of the variable in the input command (val) must 

match the type of express ion in the output command (~) j 

5)	 When conditions 1,2,3 and 4 are met the input and output 

commands are said to correspond. They are executed 

siJilultaneously_ In this example their combined effect 

is to assign the value of x to the target variable val; 

6)	 Should an input and an output command not correspond then 

both commands fail and the processes that contain them 

are both aborted; and 

7)	 Should an output command specify a destination process 

that has terminated, then the output corrunand fails and 

the process that contains it is aborted, and similarly 

for an input command. 

Finally, we emphasise that communication between 

processes is strictly synchronised in CSF (i.e. there is no 

buffering. ) 
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A guard was introduced in Chapter 2. It consists of one 

or more boolean expressions. We now allow a guard also to 

contain an input com~and. 

Consider the example of calculating the sum of the 

ne6ative integers contained in a lO-element array. Two 

processes, called COMPAR.E: and COUNT, are used to sGl'Je this 

problem. Process COMPARE outputs to process COUNT all the 

nebative integers found in the array x, while COUUT suns all 

the values sent to it. A CSP descY'iption is shown in 

Fig. 3.4 and illustrates several points: 

1)	 The process COt1PARE will terminate after ttle 10 

integers of the array x have been processed; 

2 )	 The input command COHPARE?y, shaded in Fig. 2.1+ , is 

used as a guard. This guard becGmes true after 

COMPARE?y has been executed. (COUNT!x(i) is executed 

siJl\ultaneously with COMPARE?y and the value of xCi) is 

assigned to y). After this guard becomes true, the 

assignment command sum:=sum+y is executed; but after 

the process COHPARE has terminated this guard fails jand 

3)	 As soon as the guard fails, the repetiti ve command, 

':'[COMPARE,?y -. sum:=sum+y] will tey'minate(It does not 

abort under these conditions). 

In general, a repetitive command will terminate on 

failure of all the guards contained in it. 
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CONPARE: : i: integer j x: (1 •• 10 )integer; 
Comment We assume that array x has 10 

random integer values; 
i::;l ; 
":'[i~10 + [ x(iL::O -.. skip 

Dx(i)<O COUNTlx(i) 
] ; 
i: =i+1 

I I COUNT: :y,sum:integer; 
sum::;O; 

~[ [C'OMPARE?;] -to sum:=surn+y] 

Figure 3.4 An input command as a guard. 

It is possible for a guard to consist of one or 

more boolean expressions followed by a single input 

command. The boolean expressions must precede the 

input command. Consider the following 

problem: Process A sends the values 1 , 2, •• ,,10 to 

process B. Process B receives these 10 values and 

sums them. A CSP description, which uses a guard com

prising a boolean expression and an input command. is 

shown in Fig. 3.5. 



A::	 i :integer;
 
i:::: 1;
 
2[isl0 + B!i; i:~i+l]
 

liB::	 j ~x,tota: :integer; 
j :::: 1; total: ::: 0 j 

r:;~? ::~:~:;~~~»~~:~~ ~:'~~~:~'~ ~~T ~ ;,i'~ !'J :Iq : 

Figure 3.5 A guard consisting of a boolean expression 
followed by an input command. 

The repetitive command, shaded in Fig. 3.5 ter

minates after 10 iterations because the boolean expres

sion j::;10 is false, which causes the guard to fail. 

(We also observe that, on this 11th evaluation cf the 

guard the input conunand A?x would also fail, because 

process A has already terminated.) 

A ~epetitive command may contain multiple guards. 

The following problem solution illustrates this con

struct: Three processes A~ Band C respectively send 

5,10 and 15 integer values to process SUH. Each 

process uses a simple function to generate its values. 

Process SUM (1) accepts each value sent to it; (2) 

adds each value to the cumulative total and (3J after 

all 30 values have been received, sends the value of 

the total to be printed. A CSP description is shawn 

in Fig. 3.6. 
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A:	 i:integer;
 
i:=l;
 
2[i<6 ~ SUH!i; i:=i~lJ
 

1'18::	 j:integer; 
j :::: 1 ; 
~[j< 11 -+ SUM!j*j; j :=j+1J 

lie::	 k:integer; 
k: =1; 
~[k<16 -+ SUM!k*k*kj k:=k+l] 

ISUM: :x,total:integer;
 
total:=Oj
 

:':[ A?x total::::total+x 
- DB?x total:=total+x 

DC?x -+ total:=total+x 
] ; 

print!total 

Figure 3.6 An example showing a repetitive command 
with mUltiple guards. 

This	 description illustrates the following points: 

1)	 The cepetitive command, shaded in Fig. 3.6. will accept 

all the integers sent to it by processes A.B and C. (In 

this example, 5 values from A, 10 from Band 15 from 

C) ; 

2)	 The order in which integers are accepted from processes 

A, B and C is not determined because it depends on the 

relative speeds of these three processes; 

3)	 After process A has sent 5 values to process SUM it 

terminates. This termination causes the guard A?x to 

fail. Similarly the guards B?x and C?x fail 

after processes Band C terminate. When all the 

guards A?x, B?x and C?x of the repetitive command 

have failed the command itself terminates and the next 

command ,print!total, is executed; and 



4) The outpu t command print! total, that occurs in 

process Sut1, is interpreted as sending the v.:::lue of 

I total' to process 'print' which prints this value. 
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CH!~PTER 4 

SYNCHRONIZATION AND BUrr[RING 

4.1 Communication between two processes revisi"ted 

In chapter 3 we studied the input/outpu t commands. At 

the risk of repetition, we shall briefly review this impor

tant topic by means of a concrete example. 

If process A wishes to pass the value 7 to process 8, 

we may use the pair of I/O commands shown in Table 4.1, 

where the vdlue 7 is 'assigned to' the target variable S. 

BUsed in A 
process 

A ? sB ! 7 
Commar.ds j '1.\. sour-C:. targetI, ./". expresslon 

variablep.estlnatlon "" 
inputtype output 

Iloos e ' translatiori To process B, from process A J 

output 7 input to S. 

Table 4.1 Example of I/O commands. 

Before such communication can be comple ted) the two 

processes A and B must meet the following three conditions: 

1) Process A must contain an output command, which 

specifies the process B as its destination; 

2) Process B must have an input command, specifying the 



process A as i"ts source; 

3 ) The type or target variable in "the input corrunar.d must 

match that of the expression in the output commend. 

If they satisfy "the condi-tions, the output cOIDr.dnd in 

process A and the input command in proces s B are called a 

pair of corresponding commands. In CSP, some waiting is 

usually necess ary for one of the corresponding commanc:. For 

example, if the output command in process A is ready before 

the input command in process B, then the process A mus: wait 

until the input command in process B becomes ready. 

Similarly, if --the input command in process B is ready ~efore 

the output command in process P" then the process (. must 

wCiit until the output command in process _A becomes ~eady. 

This waiting for simultaneous execution of a pair cf cor

responding commands is known as synchronization. 

In the remaining part of this chapter, we shall further 

illustrate the important concept of synchroniza-tion :Jf 1/0 

commands with three more examples. The first two deal with a 

single buffer and double buffer respectively; the "third, a 

solution of the classical PrOducer/Consumer problem using a 

bounded buffer of K-slots. 

4.2 Buffers 

Comrnunica tion between two corresponding processes is 

sYhchronized, i. e. executed simultaneously by both 

processes. There is no third party inVOlved, such as a 

buffer. In a computer system a buffer consists of some per

manent storage used to smooth out temporary variati)ns In 

the rate of flow of data, when transmitted from one process 

to another. 

Consider the case of sending a series of number3, in 
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Lhis e~ample the integers 1 to 10, from a producer process 

to another process called the consumer. 

A CSP solution containing no buffer is shown in 

Fig. 4.1. Once the producer has produced and sent a value to 

the consumer it can work on the next value but can not send 

it until the consumer is ready to accept it. 

PRODUCER::	 i:integer; 
i:=l; 
~[i$10 + CONSUMER!i; i:=i+l ] 

I I CONSUMER:;	 x:integerj 
2[PRODUCER?x + •••• 

Figure 4.1	 Unbuffered communication between 
the PRODUCER and the CONSUMER. 

We now introduce a buffer process as an intermediary 

between the producer and the consumer. The CSP description 

is shown in Fig. 4.2. 

PRODUCER::	 i:integer; 
i: =1;
 
~[i~10 + BUrrER!i; i:=i+1
 

II BUFFER,:	 slot:integerj 
~[PRODUCER?slot + CONSUMER! slot] 

I I	 CONSUMER:: x:in~eger; 

~[BUFFER?x + •••• ] 

Figure 4.2 CSP solution for a single buffer. 

The ac~ion	 of the buffer can be described as follo ...... s: 

a)	 ~ach value produced is transferred to the buffer as 

soon as possible. After the buffer has been 'filled 1 



this value is sent to the consumer as soon as poosible. 

b)	 When the producer process is ready to output, it out

puts to the buffer; it Ooes not have to wait I::JY' the 

consumer ; instead, it can then continue processing 

until it produces the next integer. Then, there are two 

cases: 

1)	 If the buffer has managed, by that time, to output 

the previous value to the consumer, it can then 

input the next integer; or 

2) If the buffer has not yet output the pcevious 

val ue, the producer must wait unt il it does. 

4.3 Double buffers 

We can improve the efficiency of a single buffer 

discussed in the previous section by adding one more buffer. 

We shall describe two possible methods of double buff2ri';;g. 

In the first method we simply put another buffer 

between the first buffer and the consumer. Thus the producer 

will have to wait only when both buffers are full. This 

method is pictured in Fig. 4.3 and the CSP descriptio~ shown 

in Fig. 4.4. This simple and elegant solution has the fea

ture that each value passes through both of the buffers. 

LIPRODUCER H BUFFERl H BUFFER2 KONSUMER [ I 
Figure 4.3 Double Buffer 



P~ODUCLR:: i:integerj 
i: =1 ;
 
2[i~lO ~ BUFFER1!i; i:=i+1 ]
 

I I BUFFER!" slot:integer; 2[PRODUCER?slot ~ BUFFER2!slot 

\ I BUFFER2:: slot:integer; *[aUFFER1?slot ~ CONSUMER! slot 

I I CONSUME~:; x:integer; *[aUFFER2?x ~ 

Figure 4.4 A CSP solution for a double buffer. 

The second method is to send alternate values to 

bufferl and buffer2. A picture of this method is shown in 

Fig. 4.5 and a CSP description in Fig. 4.6. This solution 

obviates the necessity of passing each value through each of 

the buffers. However, it requires a complex alternative 

command to send alternate values to buffer1 and buffer2. 

This command also ensureS the correct termination of the 

producer process irrespective of whether an odd or an even 

number of values is produced. 

~BUFFERl ~ 
I-P-R-OD-U-C-E-R-;k""' ~'C-O-N-S-U-M-ER-I 

..... ~ ...~ 

.... ~ BUFFER2 r.- ... 

Figure 4.5 Double Buffer. 



PRODUCER::	 switch,i:integer; 
i:=l; switch:=l; 
*[iS1D + [ switch=l + BUFFER1!i; switch:=2 
- Dswitch=2 -+ BUFFER2!i; switch:=l 

] ;
 
i:=i+1
 

]
 

I I BUFFER1,:	 slot:integer; *[PRODUCER?slot ~ CONSUMER!slot 

I I BUFFER2::	 slot:integer; 2[PRODUCER?slot + CONSUMER!slot ] 

II CONSUI1ER::	 switch,x:integer; 
switch:=lj 
.,[ switch=l; BUrFER1?x + switch:=2; 
- Dswitch=2; BUrrER2?x ~ switch:=lj 

J 

Figure 4.6 A CSP sOlution for d double buffer. 

4.4 Producer/Consumer Problem 

We shall now describe the well-known Producer/Cons~rner 

problem, leaving its solution (expressed in CSP) until the 

next section. This section may be skipped without loss of 

continui ty, if the reader is already familiar with the 

problem. 

For simplicity, we shall first illustrate the bounded 

buffer solution to this problem with an idealized hamburger 

stand where the cook produces only ~ hamburger at a t:rne. 

Once cooked, he places it sequentially in one of K slots of 

the warmer Ca K-slot buffer) ready for a customer. This is 

shown in Fig. 4.7. A customer can order only one hamburger 

at a time, but he may repeat his order. The problem is how 

to coordinate the cook and his customers to ensure that: 

1)	 The cook does not prepare more than k hamburgers before 

any customer buys one (called overflow); 
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2)	 The customer does not get ahead of the cook (called 

underflow. ) 

The Producer/Consumer problem as it arises in the area 

of computer operating systems may have the following inter

pretation. The producer process may represent an input 

operation; it is placing the data iota a buffer <of k 

records), one record at a time. The consumer process, per

haps representing the evaluation of some mathematical 

eXfressions, fetches one record at a time from the buffer. 

Although we will not discuss the classical solution 

using the p-v semaphores by Dij kstra[ 6 J, it suffices to say 

that, in that solution, only two processes (i.e., a producer 

process and a consumer process) are working in parallel. 

In contrast. in the solution suggested by Hoare and 

presented in Lhe next section, the buffering action is 

described as a third process which uses a buffer of K-slots. 

In other words, three processes are working in parallel; 

they are the producer, the consumer, and the buffer. A 

bu~fer of a finite number of slots is known as a bounded 

bu:fer. 



oJ.: 

~ 

Stove Cook Warmer Customer 
(with K-slots) 

Figure 4.7	 A Hamburger Stand to Illustrate
 
the bounded-buffer problem.
 

4.5 Bounded	 Buffers 

This section presents a solution, written in esP , for 

the consumer/producer problem. Three processes are used; 

They are the consumer, the producer. and the buffer. The 

last process, acting as a K-slot buffer, is sho'ir/n in 

Fig. 4.8. 
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BUFfERACTION: :
 
buffer: array of K slots;
 
nrttade,nrbought,order:integer;
 
temp: slot;
 

nrmade: =0;
 
nrbought::: 0 ;
 

COIIClent At all times we ensure that: 
0 < nrbought < nrmade < nrbought+K; 

" 
..:[ f nrmade < nrbought+K; producer , temp -+ 

buffer(nrmade mod K) temp;~ nrmade : :: nrmade+l 
step....... 2(a) 

o[~rbOUght< nrmade ;consumer ? order -+ ' \ 

..A/" consumer! buffer(nrbought mod K); 
_/ nrbought ::: nrbought+l 

] step 2(b) 

figure 4.8 Process to describe the buffering action 

This process contains only two basic steps: 

Ste~ 1 Initialize the number of hamburgers madeCnrmade} 

to zero and that bought (nrbought) to zero. 

Ste~ 2{a) Check to see if the following 'no-overflow' con

dition: 

nrmade < nrbought+K 

is satisfied. If so we then check to see whether 

the process producer has cooked a hamburger. If 

so, it will be placed in slot number J where J 

nrmade mod K and nrmade is incremented by 1. 

Or 

Step 2Cb) Check to see if the following I no underflow' con

dition: 

nrbought < nrmade 
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is satisfied. If so, we then check to see whether 

the consumeI' has ordeI'ed a hambuI'ger. If he has, 

then the customer gets one from the slot number 

where I ~ nrbought mod K and nrbought is 

incremented by 1. 

If both of the following situations occur: 

1) The process producer terminates (which ca.uses the input 

guard producer? temp to fail); and 

2) The process consumer terminates (which causes the input 

guard consumer? order to fail) 

then the repetitive command in Fig 4.8 will terminate, after 

which the process BUFFERACTION will also terminate. 

Observe that BUFFERACTION will also terminate if the 

producer has terminated and the buffer is empty, or, if the 

consumer has ter>rninated and the buffer is full. 

4.5.1 Hand trace for a 3-s10t buffer 

To be more specific, let us take K 3 and study the 

details shown in Table 4.2 (on page 35). 

At ti![Je to, step 1 yields the following initialization: 

nrmade := 0 and nrbought := O. 

At t1 the buffer is empty thus the only option pos~ible 

is for the producer to make a hamburger and put it in slotO 

(step2(a)) . 

At t2, t3, t4, t5 and 1:7 there are ha.mburgers available 

in the buffer and the buffer is not full. It is thus 

possible either for the cook to put another hamburger in the 

buffer or for the customer to buy one. Which of these 

actions take place depends on: 
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1) Whether the cook only is ready to put one into the
 

buffer (producer ? temp ), in ~hich case he does; or
 

2) Whether only a customer wishes to buy one, in ~hich
 

case he does; or 

3)	 Whether,simultaneously, both the cook is ready to put 

one into the buffer and the customer wishes to buy one. 

In this case it is undetermined who gets in first 

although both will eventually succeed. 

In this hand-trace the cook puts one in at t2, t4, t5 and t7 

while the customer buys one at t3. 

At t6 and t8 the buffer is full and the only action 

possible is for the customer to buy a hamburger. The cook 

is prevented from putting another one in because the condi

tion nrmade ( nrbought + K is not satisfied. 
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CookTime 

to 

tl 

t2 

t3 

t4 

t5 

t6 

t7 

t8 

Make 1 
[O.K. as 
Place in 

Makel 
[0. K. as 
Place in 

Make 1 
[0. K. as 
Place in 

Make 1 
[0. K. as 
Place in 

Make 1 
[0. K. as 
Place in 

Must wait 
[5<2+3] 

Buffer 
orbought I Customer Configura"tionI nrmade 

slot 
0 1 2 

0 0 o:rr 
full 

"0< 3J 
slot 0 01 ~ 

1< 3] 
slot 1 2 0 ~ 

Take one 
from slot 0 

2 1 [0. K. as 0< 2] c::E:::J 
2< 1+ 3 ] 
slot 2 3 1 ~ 

3< 1 +3 J 
slot 0 4 1 ~ 

Take one 
from slot 1 

4 2 [0. K. as 1< 4] ~ 

4< 2 +3 ] 
slot 1 5 2 ~ 
as 

Table 4.2 Parallel trace for the 3-510t buffer. 
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4.5.2 Time-history of some I/O commands. 

We conclude this chapter by presenting a time-history 

of the three communicating processes: producer, buffer, and 

co~sumer, described in Fig. 4.2. It serves to focus on some 

fine points in the model for synchronization and buffering. 

In Fig. 4.9 each t shown on the vertical axis 

indicates the time when either an I/O command begins to try 

to execute or when it succeeds. For example, at time tl the 

va~ue 1 (from the producer) is 'assigned to' the variable 

slot (in the buffer) without any delay. Immediately after 

this. at t2, the value in slot is transmitted to the 

variable x (in the consumer) without delay. 

At t3 the value 2 is sent from the producer to the 

buffer without delay. However, at t4 when the buffer tries 

to pass this value to the consumer it is not able to do so. 

and has to wait until t6 when the consumer is ready to 

accept it. 

At tS the producer is ready to send the value 3 to the 

buffer but has to wait until t7 when the buffer is able to 

accept this value. At t8 the buffer is ready to send this 

value to the consumer but has to wait until t9 when consumer 

is ready to accept this value. Etcetera. 
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Time 

to 

t1 
t2 

t3 
t4 

t5 

t6 
t7 -
t8 

t9 

PRODUCER 

Produce 
the 

1st value 

BUFFER! 1 

Produce 
the 

2nd value 

BUFFER! 2 

Produce 
the 

3rd value 

BUFfER! 3 

WAIT 

: 

Produce 
the 

4th value 

BUFFER ~ONSUMER 

PRoDUCCR?slot 
CONSUMER! slot EUFFER?x 

Consume 
PRODUCER?slot the 
CONSUMER! slot 1st value 

of x:. 
: 

WAIT 

: 

BUffER?x 
PRODUCER?slot 
CONSUMER! slot 

WAIT 

BUFFER?x 

Consume 
the 

2nd value 
of x 

figure 4.9 Time-history of three communicating processes 
with the shaded areas indicating computations. 
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CHAPTER 5 

ARRAY OF PROCESSES 

When a number of similar processes is involved, it is 

convenient to specify them as an array of processes. In this 

chapter this concept is illustrated with several examples. 

One of the examples serves to show how each process in such 

an array is used to represent a set of data items. The fac

torial and prime number problems are also studied in depth. 

5.: Subscripted Process Names 

Thus far a process name is used to identify only one 

prDcess. It is possible to use an identifier (as used for 

arrays) to name a group of processes. Thus 

name(k:l .. n): : command list 

declares a one dimensional array of n processes: with names 

name(l), name(2), •. ,name(n}. In long hand they are: 

name(l); : command list 

I I name(2): : command list 

I I name(3): : command list 

I I nameCn):: command list 

where each command list may involve the index k which ranges 

between 1 and n. We illustrate this concept by an 

example. Given a character string, count the number of 

occurrences of the characters 'u' ,'v' and 'Wi respectively. 



A possible solution in CSP is shown in Fig. 5 .1Ca). 

The parallel command consists of five prOCesses named 

g ,x,y, z and p. The proces s g inputs the characters from 

the typewriter one at a time. Each character is then sent 

to the three processes x,y and z which serve to count the 

number of the characters 'u','v l and 'WI respectively. In 

the parallel command, the termination of the process g 

causes the termination of the processes x,y and z which in 

turn causes the termination of the process p. 

In Fig. 5.1(a) the processes x,y and z have similar 

command lists. To take advantage of this similarity, the 

CSP representation in Fig. S.l(a) can be rewritten in the 

form shown in Fig. S.l(b). Two major changes are made. 

First, the process names x,y,z have been replaced by 

s(1) ,s(2) and sO). Second, the subscrip-ted variables 

char(l) through char(3) are used to hold the characters 

I u I, I V I and I Wi. The scope of this array extends 

throughout the parallel command. 

Fig. S.l(c) shows a shorthand version of that in 

fig. S.l(b). s(k:l •. 3) stands for the three process names 

s(1),s(2) and s(3) and k is known as the bound variable. 

Except for the indices, the same command list is used in all 

three processes. The output commands s(1)!c, s(2)!c and 

s(3)!c have been given the process names m(1), m(2) and m(3) 

respectively. This labelling allows us to rewrite the com

mand [ s(1)!c II s(2)!cll sO)!c ] as [mej:1..3):: sej)!c]. 
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g:: c:character; 
':Jtypewriter?c -+ [ x!c II y!c 

I Ix:: c:character; t:integer; t:=O; 
*[g?c -+ [ c='u' ~ t:=t+1 
- Dc~'u' -+ skip] 

] ; 
p! ( 'u I l t) 

Ily:: c:character; t:integer; t:=O; 
H[g?C -+ [ c='v' -+ t:=t+1 
- Dc~'v' -+ skip] 

] ; 
pH 'v' ,t) 

liz:: c:character; t:integer; t:=O; 
*[g?c -+ [ c='w' -+ t:=t+1 
- Dc~'w' -+ skip] 

] ; 
p!(l W',t) 

lip:: c:character; n:integer; 
~[ x?(c~n) -+ lineprinter! (c,n) 
- Dy?(c.n) -+ lineprinter! (c,n) 

Dz?(c,n) -+ lineprinter! (c,n) 
] 

II z;c ]] 

Figure 5.1(a) Solution without subscripted process names 
and array elements. 



"1 

char:(1 .. 3)ctaracter;
 
char(l):='u'; char(2);:::'v' charC 3)::= 'w'
 

r g:: c: ctaracter; 
..::[typewriter?c ..... [ s(l)!c II s(2)!c II s(3)!c ]J 

Ils(1)::	 c:character; t:integerj t:=O; 
*[g?c ..... [ c=char(l) ..... t:=t+1 
- Dc.:char(l) -+ skip] 

] ; 
p! (charel) ,t) 

115(2)::	 c:character; t:integer; t:=O; 
~[g?c -+ [ c=char(2) -+ t:=t+1 
- Dc~char(2) -+ skip] 

] ; 
p! (char(2),t) 

115(3)::	 c:character; t:integer; t:=O; 
~[g?c -+ [ c=char(3) -+ t:=t+1 
- Dc;o:char(3) -+ skip] 

] ; 
p! (char(3) ,t) 

I Ip::	 c: character; n: integer j 
;':[ s(l)?(c,n) -+ lineprinterJ(c,n) 
- Ds(2)?(c,n) -+ lineprinter! (c,n) 

Ds(3)?(c,n) -+ lineprinter!(c,n)
 
]
 

]
 

Figure 5.1(b) Solution in which 3 similar processes have 
sUbscripted process names and array eleme.r:ts. 
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char:(1 .. 3)character; 
char (1 ) : ::: ' U '; char ( 2 ) : :; I V I; char ( 3) ; = ' IN' ; 

[g:: c:character; 
~[typewriter?c ~ [mej:l .. 3): :sej)!cJ] 

JlsCk:1..3):: c:character; t:integer; t:=O; 
'~[m(k)?c -...	 ( c=char(k) -+ t:=t+1 
- Dc.,tcharCk) -+ skip] 

] ; 
p! (charCk) ,t) 

lip::	 c:character; n: integer; 
.:.[ej:l •. 3)sej)?(c,n) .... lineprinterl(c,n)] 

ee) Short form of solution given in Fig. 5.1(b). 

Figure 5.1 Programs that count the number of characters 'U', 
'v' ,'WI in a character string. 

S.2 Bounded Buffer Using an Array of Processes 

In this section we use an array of processes to imple

ment the bounded buffer which was introduced in chapter 4. 

~'":',::',::'jI{::+/~SC1Dl)I
 
..-

Bounded Buffer 

Figure 5.2	 The process s(O) outputs integers one at a time. 

The processes s(1),s(2), ... ,s(100) have the 

effect of a bounded buffer. 

The process s(101) computes the sum of these 

integers and prints it. 

As shown	 in Fig. 5.2 we input integers one at a time 



from a producer process s(O). Each integer in turn is 

passed through all the processes of the bounded buffer: 

s(l),s(2), ". ,dIDO). For 1::;i::;100 ) the integer in the 

process sCi) will be passed to the process s(i+l) only when 

the latter is ready to receive this integer. The process 

s(101) (consumer) is used to compute and print the sum of 

all the incoming integers. The CSP representation is shown 

in Fig. 5.3. 

[ 5(0) ..	 p:integer;
2[ cardreader ? p ~ s(l) p ] 

Ils(i:l .. 100)::	 q:integer; 
~[ s(i-l) ? q ~ s(i+l) ! q ] 

115(101):;	 r,sum:integerjsum:=O; 
*[ s(100) ? r ~ sum:=sum+r J; 
lineprinter ! sum 

Figure 5.3	 The above CSP representation finds the sum of 
a set of the integers and prints this sum. 

We	 note that: 

1)	 The processes s(l) to s(100) all serve the same pur

pose: to push an integer away from the producer 

towards the consumer. As shown in Fig. 5.3, these 

processes have identical command lists) varying only in 

the value of i. 

2)	 Each of the processes s (1) to s (100) represents a slot 

in the bounded buffer. If the process s (1) cannot 

accept a new integer, the process s (D) mus t wait unt i 1 

the process s(l) is ready. Similarly, the process 

s(101) cannot receive an integer unless the process 

s <l 00) is ready to send it. The SiUTle is true for any 

sCi) and s (i+l). 
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3)	 lor the sake of simplicity, let us take a 'snapshot' of 

:he six buffer slot s(l) through 5(6) as shown in 

:ig. 5.4(a). All values used in this intermediate 

5tate are arbitrarily assumed. The details of these six 

?rocesses, working in parallel, are as follows: 

1.	 s(l) is ready to output the value 3 to 5(2) and 

5(2), being empty~ is ready to input this value 

from s(l). 

2.	 s (2) is empty and, as a result. cannot transmit 

any result value to s (3) and s (3), not being 

empty, cannot accept any input from 5(2). 

3.	 5(3) is ready to output the value 4- to s(4) but 

5(4), still holding the value 6, cannot accept any 

input from 5 (3) • 

4.	 5(4) is ready to output the value 6 to 5(5) and 

5(5), being empty, is ready to input this value 

from 5(4-). 

s.	 s (5) is empty and, as a result, cannot transmit 

any value to s(6) but s(6), being empty, is ready 

to input from s(5). 

rig. 5.4(b) gives a snapShot of the 6-s10t buffer after both 

the possible communications have been completed. 

GradQally, all the integers in any buffer are pushed to the 

right. 

s(l) s(2) s(3) s(4) 5(5) 5(6)

I H empty H H HemptyH empty I
3	 4 6 

Ca) An intermediate state of the 6-slot buffer. 

sill 5(2) 5(3) s(4) s( 0) 5(6) 

F~ H 4 H empty H KmptyI3	 6 

(1) The state of the above 6-s10t buffer after the two 
possible communications have taken place. 

FigQre 5.4" Communications between slots of the bounded buffer. 



5.3 Case Study 1: Factorial Using Recursion 

This section deals with a study of a CSP solution for 

the factorial function: 

1 if n=O 

factorialCn) ; 
{ 
n~factorialCn-1) if n>Q and n~limit. 

rloare's solution [14J is reproduced in Fig. 5.5. 

fac< i:1. .limit)::
,', [ n:integer; facCi-1) ? n ~ 

[ n;D ~ fac(i-1)l1 
On>O ~ fac(i+1)l(n-1); r:integer; 

fac(i+1)?r; facCi-l)~Cn.r) 

] 

I I fac(O): :USER 
] 

Figure 5.5 Solution to the factorial function. 

As the solution shows, each process facCi) of the array 

inputs the value of n from its predecessor (process 

facC i -1) and outputs the va.lue of factorial{ n) back to its 

predecessor (process fac(i-1J). If n is not equal to zero, 

it requires the assistance of its successor (process 

facCi+1» to compute the value of factorial (n-1). facCO) 

is the user program which initiates the calculation and 

obtains the final result. 

For the purpose of illustration, we take n=3. The 

interrelationship of the five processes involved in the cal

culation is depicted in Fig. 5.6. The arrowed lines show 

the communication between two processes; and the trans
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USER 

I fac!])" ... ;fac(1)!~;... ..;fac(1)?~;.. I 
, 

CiJ----~- --- ~ 
,~ , 

V 
fac(l):: ~[fac(O)?n ~ [ n=O ~ fac(O)!l o- On>O fac(2)l(n-l) ;r:integer;--jo-

r- --E ------ ----I ,---. 

• fac(2)?r;fac(O)!(n{'r)] 
Y A 
,	 I ,	 , 

rrr------~---
- - -I 

A,~ ,
Y 

fad2):: *[fac(l)?n [ n=O --jo- fac(l)ll--jo q) 
, 

- [.In>O -+ fac(3)!(n-l);r:integer; 
_J

r---~---------_I ,--. 
I fac(3)?r;fac(1)!(n";r)] 
-} A 
I ', 

J--- - --<- ---- --, 

~ ~	 A, ,, 
fac(3):: ':'[fac(2)?n	• -+ [ noO ~ fac(2)!1 I t1l 

r __ 0<En~o _-+_ ~a~~4~ ~(_n~l) ;r: inte.g~r.:.;... _ J 
I fac(4)?r;fac{2)!(n;':r)] 

-} ,	 A
', 

GJ§ ~ 
~ ~ 

fac(4): : *[fac(3)?n -+ [ n=O -+fac(3)!l 
- On>O -+ fac(S)!(n-1);r:integer; 

fac(S)?r;fac(3)!(n*r)] 

Fig.S.6 The five processes involved in evaluating factorial(3). 
The arrowed lines show the communication pattern. 



mitted integers are shown in circles. The step number, 

enclosed in a box, shows the order in which the communica

tion takes place between any two processes. There are in 

total 8 steps involved. 

5.~ Case Study 2: Generation of Prime Numbers 

In this section we examine in detail a CSP solution to 

the we II-known problem of finding prime numbers by 

Eratosthene's sieve method [9,11]. For the sake of sim

plicity, we shall only consider the sequence of integers 

from 2 to 25 

sl: 2,3,4,. .• ,25. 

For the uninitiated, l4e shall illustrate below in four steps 

how all the prime numbers in sl can be obtained. 

1.	 Take the first integer (i.e. 2, a prime number). 

Eliminate all its multiples from the sequence 51. We 

now obtain a new sequence: 

82: 3,5,7,9,11,13,15,17,19,21,23,25. 

and note that the first number eliminated by 2 is 

2.... 2=4. 

2.	 Similarly, take the first integer (i.e. 3, a prime 

number) in the sequence s2. Eliminate all its multiples 

to produce a new sequence: 

s3: 5,7,11,13,17,19,23,25. 

We note that the first number eliminated by 3 is 3R3=9, 

(because 3-2 has already been eliminated), 
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3.	 Again, take the first integer in the sequence 83 (i.e. 

5, a prime number). Eliminate all its multiples to 

?roduce the sequence: 

54: 7,11,13,17,19,23. 

we note that the first number eliminated by 5 is 

5*5=25. 

4.	 Finally, take the first number in the sequence 54 (i.e. 

7, a prime number). We note that the first number to be 

eliminated would be 7*7=49 (because all the earlier 

mUltiples of 7 must already have been eliminated). As 

a result no elimination will be made. The remaining 

integers: 

11,13,17,19,23 

are all primes. In summary, the primes in the sequence 

are as follows: 

2,3,5,7,11,13,17,19 and 23. 

5.4.1 CSP Solution for Primes Using Eratosthenes Sieve 

The CSP solution to the sieve problem (for integers 

from 2 to 25) is given in Fig. 5.7. There are 8 processes, 

namely SIEVE(O), SIEVE(l) to SIEVE(S), SIEVE(6) and print. 

The purpose of SIEVE(O) is threefold. The first purpose is 

to print the prime number 2 (from our previous knowledge). 

The second is to eliminate all the even numbers. The third 

is to pass all the odd numbers to SIEVE(l). 

The array of 5 processes SIEVECi: 1 •• 5) is rather 

involved. In Fig. 5.8 is listed each CQJnmand used and its 

interpretation. Several important points are not self 
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SIEVE(i: 1..5)::
 
p .mp: integer;
 
SIEVE(i-l) ? Pi
 
print ! p;
 
mp:=p; comment mp is a multiple of Pi
 

:':[ m: integer; SIEVE(i-l) ? m -+ 

~[ ffi>mp -+- mp:=rnp+p J; 

[ m=mp -+ skip 
Om<mp -+ SIEVE(i+l) ! m 

] 

! I SIEVE (0) : : print: 2; n: integer; n::: 3; 
*[ n~25 -+ SIEVE(1) ! 0; 0:=0+2 

II SIEVE(5): :~[ n:integer; SIEVE(S) ? n -+ print! n 

II print: :~[ (i:O .. 6)n:integer; SIEVE(i) ? n ........
 

Fig. 5.7	 A CSP solution to generate and print 
in ascending order all primes less than 25[14]. 
Note there are 8 processes involved. 



50 

explanatory in Fig. 5.8. The first number received by a 

process, and placed in p (command 2)t is a prime number and 

will be retained by that process. All the subsequent 

numbers received by the same process (command 5), will be 

passed on to the next process if they are not a mUltiple of 

the said prime p. For example, STEVE(l) retains the first 

prime number 3 and passes on the remaining numbers 

5,7 t l1,13,17,etc. The numbers 9,lS,etc. are mUltiples of 

3. As such, they are eliminated by SIEVICl) (see 

Fig. 5.9). 

Similarly SIEVE(Z) retains the second prime 5 and 

passes on the remaining numbers 7,11,13,17,etc. Moreover, 

the only input number to be eliminated is 25. This is also 

shown in Fig. 5.9. 

The question arises as to why 6 SIEVE processes, namely 

SIEVECO) to SIEVECS) are used in Fig. 5.7. The reason is 

in this specific example Cwhere n=2S) we only need 

processes i.e., SIEVECO),SIEVEC1), and SIEVE(2) as explained 

at the beginning of this section and in Fig. 5.9. However 

to use more will do no harm. When n is large J it is con

venient and safe to use ~+l SIEVE processes as follows: 

SIEVECO),SIEVE(l), ... ,SIEVEC..,n). This rule of thumb is 

used in Fig. 5.7. 

3 
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Command Conunanci used Explanation for i=3 
number in SIEVI:(i) 

p ,mp: inte ger; 

~
 
2 SILfCi-l) ?p; 

3 print!p; 

~ 
4 

""~, , 

p and mp are declared as 
integers. 

SIEVE(3) will continue if and 
when it gets an integer from 
SIEVE(2). This integer is 
assigned to p. 

Send the prime p to the 
process called print. 

Make a copy of this prime 
number in mp. 

5 ll[m: integer i 
sIEVE(i-l)?m .... 

IJ-'-8+ 
6 i![m;.mp .... mp:=mp+pJ; 

1 
7(a) [m~r + skip 

Wait until SIEVE(3) has 
received a number from 
SIEVE(2). 

Execute the repetitive 
command marked B. In this 
command check to see if m is 
larger than the mUltiple of p. 
If so, update mp until mp~m. 

Check to see if m is a 
multiple of p. If so, ignore 
the number and repeat the 
loop marked A. 

7Cb) Dm<mp"'" SIEVE(i+l)!mJJ	 If m is not a multiple of p, 
send m to the successor 
process SIEVE(4). Repeat the 
loop marked A. 

Fig.5.S Explanation of each command used in the SIEVE(i) 
where 1~i~5. In this example i is taken as 3. 
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( START ) 

SIEVE (1) 

keeps I removes 

3 19,15,21 

SIEVE( 0) 

+-3,5,7,11, .. -,25<E-
keeps 

2 

removes 

all even 
numbers 

7 ,5~L".".H.,;.".",
 
...... 7 ,11,13,17,19,23 

SIEVE(2) 

keeps 

5 

removes 

25 

SIEVE( 3) 

keeps removes 

7 none 

SIEVE(4) 

I keeps Iremoves I 
11 I none 

23,19,17,13,11-----400 

13'17'19'23~~•••• , 

fig.5.9 With each process is associated a prime number. 
Each process eliminates those numbers which are 

a mUltiple of its prime. 
The diagram shows the range of numbers 2sns25. 
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CHAPTER 5
 

CONCLUDING REMARKS
 

The Examples of parallel processes in this report are, 

for the most part) familiar programming problems that ha,ve 

,::Jeen recast in a somewhat different way using parallel com

positioll) input/output primitives and guarded commands. the 

use of the CSP languuge conveniently leads to the rapij and 

clear development of complex parallel processes. 

The CSP language has already been used in operating 

systems design [13] and simulation [17]. Among the areas CSP 

could be use d are Numerical Analys is) Proce 5 s Control and 

On-line system design. 

The implementation aspect of CSP has deliberately not 

been discussed in the main body of this report because 

research is still in progress [10 ]. The overheads inVolved 

in creating processes in CSP is of particular interest and 

importance. 

Many schemes have been proposed to implement 

synchronization. They include the events of PL/I [16]~ the 

queues and man i tors [12 J in CONCURRENT PASCAL [1,2] and 

PASCALPLUS [3]; the interface module and signal in 

MODULA [21]. None of these seems, however) to be as con

ceptually simple as the synchronized I/O commands of esp. 

Various questions remain open when CSP is used. They 

include: 
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Ca)	 Tne method used ""[0 ciescribe a ddta structure. For 

exar,ple, the K-slot 0uffer, used ir: rig. 4.5, 

represents a datd structure. jlow does this representa

tion, usin6 one process for the ent~re buffer, compare 

wi th K processes each representing <'l slot as used in 

Fig. 5.2? 

(b)	 '...Jhat is the o\/erheac ilssociated with each of the 

representations mentioned in Ca) 

(c)	 Should the repetitive co~ma~d have a specific ter

minator i.e. 

~[ i~10 ~ total:=total+iji:=i+l 

Ui>10 ~ exit from the loop 
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Aj?Pr:::iDIX 

i"JRHAL Sy:rTAX OF CSP CCW!ANDS 

In this ap?endix B;IF notation is used to describe the 

Cit' cam.T:lanas. T;'1e curly braces { } have been introduced into 

BlJF to denote none or more repetitions of its contents. 

Types of Commands 

.; cO!TUnand:> :::: < simple COffiJ:1and >1 < structured command>
 

< ~ im~le commanc:> :::: < null command:> 1< dssignment command,.
 
I < input command:> I < output command)

<: structured command:> :::: < al ternative corrunand)
 
I<repetitive command>
 
I<parallel command>
 

< null command:> :::: skip
 

<COJJ)Ji\dnd list> ::={<declaration>;I<cor.unand>;} <command>
 

1 Alternative and Repetitive Commands 

< repeti tive cOr.Jnand:> :::: ~< 31 ternaTi ve command>
 

< a1 ternative command> :::: [< guarded command >{O< guarded command>} ]
 

< 6uarded command> :::: < guard:> -<- < command list>
 
I«range>{)<rant;e:>})<&uard> -<- <colTL.rnand list>
 

<guard> .. :: <guard list>l<guard list>;<input command>
 
l<input command>
 

<buard list> :::: <guard element>{;<guard element>}
 

<guard element> ;;:: <boolean expression>l<declaration>
 

< range> :::: < bound variable >:< lOwer bound >.. < upper bound>
 

<lower bound> :::: < integer constant>
 

< upper bound> :::: < integer corlstant> 
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2 hrallel Corrunands 

<pa;,allel command> ::= [<process>{ll<process>}]
 

<: pIJcess >- :::: <: process label x command list>
 

< pucess label>- :::: <: empty >1 <: identifier> ::
 
I<identifier>«label subscript>{,<label sUbscript>}) 

<laDel subscript> ;;= <inte,;er constant>j<range> 

<inte6er constant> ::::: <numeral>l<bound variable> 

< bcund variable>- ::::: <: identifier) 

3 Assignment Corrunands. 

<: assignment command> ::;: <: target variable> ::: <: expression>
 

<expression> ::= <simple expression>l<structured expression>
 

<s:ructured expression> ::= <constructor>«expression list »
 

<constructor> ::= < identifier> 1< empty >"
 

<expression list> ::= <empty>l<expression>{,<expression>}
 

<target variable> ::= <simple variable>l<structured target>
 

< structured target> :: = < constructor >« target variable list »
 

<target variable list> :: = < empty> I <target variable>
 
{,<target variable>} 

4 Input and Output Command. 

<~nput command> ::= <source>?<target variable>
 

<Dutput corrunand> ::= <destination>!<expression>
 

<source> ::= <process name>
 

<jestination> ::= <process name>
 

<;Jrocess name> :: = < identifier>1 < identifier>« subscripts »
 

<subscripts> :: = < integer expression >{ ,< integer expression >}
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