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ABITRACT

This report is a tutorial introduction to a tectnique
ol programming whiceh invoives the cormunication betweer two
or more concurrently executing processes. The notaticns of
communicating sequential processes (C3F), suggested by

C.A.R. Hoare, are presented in detail.

This report 1s chiefly intended for 'educated :cien-—
tists' who are encountering the subject of rarallel
processing for the first time. For pedagogical reasois, a
large number of examples of increasing conceptual complexity

are given and sclved throughout the report.
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1ne simultanecus execution of two or more sets < se-
guentisl computer instructions is catied perallel
srocessing, concurrent programming, or multiprocessing.

For exanple, many modern computers facllitate some degree of
parallel operaticns by providing two processcrs. The first
processcr 1s commonly known as the central processing unit
(CPU) used to execute 'regular' instructions; and the second
iz an  Input/Output(I/2 prowesscr, sometimes Knouw. as a
¢hannei, to process 1/0 commands[18]. The CPU aid I/0
processor work in  parallel. The present-day trend it com-
puter desipn d1s to have as many system componenis @ as
possible operating in parallel. The advent of inexpwnsive

microprocesscrs has helped to accelerate this trend.

Despite the complexity involved in reliably contrdlling
parallel processing, two important and interrelated areas of

research seem to stand out,

Une of them is the development of a notational system,
atso known as an abstract language or even a prograwming
language, for expressing the program structure and the data
structure. One of the goals of a notational system i3  to
enable workers in the computer field to express their
thoughts on programs ar algorithms in a simple, precise, and
transparent manner, so that a c¢olleague will unders:and.
Since parallel processing is a complex topic, 1t 1s of the
utmost importance to develop a good notational system. The
communicating sequential processes (CSP) notation, wusig a
single structuring method, is a significant step 1in this

direction [(14].



The other research area s3=ems to focus on the iden-
tification of some fundamental, or 'primitiwve', operaticns.

Sucn primitive operations are akin to an operator as used in

mdtnematics (e.g. +am XS ). It 1s waseful to classify
prinitives inte two groups: executable primitives =znd
structural primitives. Examples in each group are listed

in Table 1.1.

Structural Executable
primitives primitives

Cs8F,Tortran,Pascal,etc | Assembler language

Sequential Assignment Load
composition
Expressicns

Parallel Jump
composition I/G
Alternative Ztore

Go to(Jump)

Concitional Go to

Tablel.1 Examples of Primitives.

This technical note is a tuterial exposition of the re-
cent work 1in these areas by C,A.R. Hocare [14]. It is
chiefly intended for those who are encountering the subject
for the first time. The reader is expected to have
experience in programming in at least one high-level

language.

In Chapter 2, we commence with scme simple examples
illustrating how the well-known programming constructs---
sequential composition, selection, and repetiticn=--- are

related to Hoare's CSP notational systenm.

In Chapter 3, the parallel command and examples of




parallei oomposition are studled, Comrunication betwszen

two processes using [/0 commandz 1s Introduced for the first

time.

Chapter 4 deals with synchronization and buffering.
it shows now a buffer can be inplemented as a process. The
¢lassical consumer/zroducer problenm [6] 15 reviewed and its

solution, expressed in CSF, Is studied in depth.

Chapter 5 introduces the concept of an array of
processes. It is illustrated by several examples ineluding

the well-known factorial and zrime number problens.

Finally, it is worth noting that the CS5i' notaticnal
system, like many other compufter luanguages, rapidly gives
rise to a host of extencions and modifications. In this
report, we study only the toples which are presented in  the
original paper{14]. In particular, the topics of recurcion
and procedures are nct treated. A tuterial expeosition of
the recent extensions by C.A.R., Hoare and C.M. Holt will be

published in a separate report[15],



CHAFTER 2

ALTERNATIVE AND REPETITIVE COMMANDS

This chapter is
repetitive ccommands ac
are based on Dijkstra's

number of examples is

ticable, Algel 60 [i%] statements are listed

wilth the CSF commands,
2.1 A Simple Example for CSP

Let us

two real numbers a and b.

expressed in
guarded

presented.

consider the simple

mainly devoted to the conditional and

CSF. These commands
command (8], A large
Whenever prac-

side by side

example of the swapping of

begin
real a,b;
a:=3; Db:=53
begin
comment swap values
of a and b;
real t;
ti=a;
a:=b;
bi=t
end
end

{(a)solution expressed in Algol.

comment swap values
cf a and b;

tireal;

t:zas

a:=bgs

b

(b)Solution expressed in CSF,

Figure 2.1 Swapping of two numbers.

From Fig. 2.1 we

CSF are respectively analogous to begin and

The block
CSP are

structure

see that the symbols 'L

and '1' in

end in Algol.

and scope rules for variables used in

similar to those used in Algol. The semicolons are

usec to indicate sequential execution. We note that the five

assignment commands

tical.

appearing
We also note the minor difference in

in both languages are iden-

the declara-




tion of the three variables a,b and t. There are four 'stan-

dard' types available 1in CSP: real,integer,boolean,and

character. Also an array is declared in CSP as follows:
p:(1..100)integer;

where p 1s a one dimensional array of +type 1integer having

100 elements.

2.2 Alternative Command

Let us consider the function

2x  if x<0
y:
x? 1f x=0
To write this function in CSP one c¢an use the fellowing

alternative command;:

[ x<0 > yi=2¥x
Oxz0 + yi=x*x
]

We summarize in Table 2.1 terminologies for the various com-

ponents of an alternative command.

Terminologies CSP representation

[ x<0 » y:=2%x

Alternative command 0 x=0 + y:=x%x
]

Guarded commands X<Q + y:i=2%x
x20 + y:i=x®x

Guards %<0
x>0

Commands yiz2%ky
yi=x®x

Table 2.1 Summary of components of an alternative command.
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This command consizts of two guarded commands separated by a
symtol 'Q' (read as 'fat bar', and interpreted as an OR).
This command may be translated as follows: If the guard x0
is true, then compute y:=2%x. If this guard is false, then
the command y:=2%x is not executed. Similarly, if the guard
%20 13 true, then compute y:=x%x. If it is false, then the

compand y:=x%x i1s not executed.

It 1is possible for the evaluation ¢f the two guards,
x<0 and x20, to start at the same time and to continue in
parallel. As soon as either guard is true, the following two

everts will take place:

1) any further evaluaticn of the other guard is discon=-
tinued; and
2) the command corresponding to the successful guard 1is

executed,

In +this particular example, one of the two guards is
always true. There are situations where 1) no guard is truej
or 2) more than one guard iIs true. These will be discussed

in the next twc examples.



Case 1: Ho guard is true.
Let us consider the function

2x  1f x<0

y:
x?  if x>0

In CSP this functicon may be expressed as:

[ %<0 + y:=2%x
Ox>0 + y:=x*x
]

If x=0, both the guards =x<0 and x>0 will fail., As a
result neither of the commands y:=2%x and y:=x%*x will be
executed. The alternative command fails and the program
which contains 1t will abort. This sequence of actions is

shown in Fig. 2.2.



Enter the Alternative Command.

yes yes
discontinue the Program discontinue the
evaluation aborts evaluation
of the guard of the guard
x>0 XD
execute the command execute the command
yi=2%x Yi=X%X

continue

Figuwe 2.2 Diagram showing details of the execution of the
Alternative command.
[ %<0 » y:=2%x
Dx >0 + yiax¥x

]



Case 2: More than one guard is true.

Let us take the above example again, except thal now

both '=' gigns are included in the function:
2x  1f x=0

x? if %20

The corresponding CSP representation is as follows:

[ %x<Q + y::?*x
Oxz0 + y:i=x®x

1

In the «c¢ase that x=0, both guards are true. It should be
gtrongly emphasized that we have no knowledge as to which
guard will succeed first. As a consequence, we do not know

which one of the following commands:
y:i=2%x or yizx®x

is executed. This is known as nondeterminism. Fortunately,

in this case, it just does not matter which of the comnands

1s executed,

So far, in our examples, each guard centains only one
boolean expression. However a guard may consist of +twe or

more boolean expressions, separated by semicolons.
Take the example of evaluating the frllowing function:
yai{x+12)/((x-1>(x+2)). ( x=1 and x=-2 )
The CSP representation of this function takes the form:
[ x#1 3 x#-2 + y:i={x+12)/((x-13*(x+2)) 1

The guard is ewvaluated as follows:
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5tep; 1. Check if the guard x#1 is true. If so, go to step 2.
Otherwise the program abecrts.

Step 2. Check if the guard x+-2 is true. If so, evaluate the
command yi={x+12)/ ((x-1)*(x+2)). Otherwise the

program aborts.

2.2.1 Alternative Command with Range

We shall now show how several guarded commands with
subscripted variables may be written in a compact form., As a
specific example, consider the three guarded commands shown
in Tig. 2.3(a). This can be written simply as shown 1in
Fig. 2.3(b), where the index variable {also known as the
bound variable) k is used. The expressicn (k:1..3) is known

as the range. In the compact form, the fat bar symbol is not

used.

[ a(1)>0 ~ a(1):=a(1)-1
Oa(2)>0 + a(2):=a(2)-2 [(k:1..3)a(k)>0 + a(k):=a(k)=kl]
Ja(3)>0 + a(3):=al(3)-3

1

{a) Expanded form. (b) Compact form.

Figure 2.3 An alternative command consisting of
three guarded commands.

2.2.2 Swunmary

In Table 2.2 we summarize the evaluation of guards in
an alternative command. It also lists which command, if any,

is to be executed.
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Result of evaluation Which command, if any,

of the guards is to be executed

All guards are false Necne, the program aborts.

Only one of the guards The corresponding c¢ommand
is true is executed

Two or more guards are true,|{Exactly one of the commands,
depending on implementation,

Table 2.2 Guards and guarded commands.
2.3 Repetitive Command

We turn now to describe how the repetitive construct is
expressed in CSP. Two examples will follow. The first

example will deal with the sum of the integers:

100

5= 1.

i=1

The computation as expressed in Algel and in CSP, is listed
in Fig. 2Z..4. In Fig. 2.4(b), the last command is called a
repetitive command. It consists of an alternative command
preceded by the symbol '#' ., This symbel may be interpreted
as: repeatedly execute the following alternative command
until &ll its guargs fail. When all the guards fail the
repetitive command terminates and control is transferred to

the next command.



integer s,k; s,k:integer;

5120} s:=0 ; ki=1;

for k:=1 step 1 until 100 do #[ k<100 + s:=s+k ; kizk+1 ]
s:=5+k

{a} In Algel. (b) In CSP.

Figure 2.4 3Sum of the integers.

As the second example, consider arrays a and b. We wish
to interchange ay and bk if a, - by (1<k<100). The sclutien
shown in Fig. 2.5 needs some explanaticn. First, there are
100 guarded commands, one for each k value, in the alterna-
tive command. Second, the alternative command is repeatedly
executed until all 100 guards fail. Third, for each itera-
tion, the 100 guards are evaluated concurrently, the command
list (on the right hand side of the arrcw) corresponding to
the first successful guard is then executed. During any
iteration, however, if all the 100 guards fajil, then none of
the guarded commands is executed. The repetitive command
terminates, and contrcl is transferred to the next command.
Finelly, the number of itszrations may vary from 1 to 100,
depending on how often a > b occurs. Fig. 2.6 shows the

detail of evaluation of this repetitive command.

a,b:(1..100)real;

comment Assume that random
values have been assigned
to the array elements;

*[ (k:1..100)a(k)>*b{k) + t:real;

- t:=alk);
alk):=b(kJ);
bi{k):=t

Figure 2.5 Swapping of a(k}) and b(k)
if alk)>b(k) [1£k=100.1




Enter Repetitive Command 13
1

a(2)>b(2) a(100)>b(100)

At each iteration exactly one of the Competitors is allowed !

te pass through this prchibitive barrier. \
b f JL

trreal; t:real; t:real, Ixit

t:=alll; t:=a(2); e s :=a(100); from the

all):=b(1}; al(2):=b(2); a{100) :=b (100} Repetitive

b{1):=t; b(z):=t; b(100):=1; Command

continue

Figure 2.6 Diagram showing the detail and executicn of
the Repetitive Command given in Fig. 2.5.
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CHAPTER 3
PARALLEL COMMANDS AND INPUT/QUTPUT COMMANDS.

In this chapter we first introcduce the parallel com-
mand. Its purpcse is to define two or more processes that
wili run concurrently. We then introduce input and output
commands and show how they are used to effect communication

betwzen processes.
3.1 Parallel Commands.

Consider the evaluation of the function
y={x+1)sin(x+1) + cos(xlcos(Zx)cos(3x) for x=3.

A possible CSP description is shown in Fig. 3.1.

X,¥sD,prodireal;
itinteger;
x:=3;
Y TV 1y ARA] ARRAARRRARAAIA LR LR LRI R T I I N ) A ARARARRALRRREE Y A
L C:: pi=x+l; Process C
b pi=p¥*sin(p}
|| Dt: prod:=1;i:=1; Process D
h : .
*[is3 + prod:=prod*cos(i®*x) ; 3
ir=i+l h
Y
] g
\\\n;. P T WU ST i " a " Ak P M T U TE T S . §
y:=ptprod

FPigure 3.1 CSP evaluation of the function
y=(x+1)sin(x+1) + cos(x)cos(2x)cos( 3x)

The shaded command in Fig. 3.1 is known as a parallel
command and consists of two processes (or sets of com-

mands)[4,5], The commands used to evaluate the Sine term are
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collectively known as Process C. The process label C must
be followed by the symbol '::'. Similarly, the ccmmands
for the Cosine term are labelled Process D. FProcesses C
and D are separated by the symbol '|!|', which indicates that

they are executed in parallel.

The parallel command, shaded in Fig. 3.1, 1s executed

in the following manner:

1) The execution of the twoe processes labelled C and D,
start at the same time and continue in parallel ;

2) The parallel command is sucessfully completed only when
the execution of process C and process D are both com-
pieted; and

3) No assumptions, at all, are made about the relative
speeds 4at which the commands in process C and those in

process D are executed.

In general, a parallel command consists of two or more
processes,enclosed between a pair of square brackets '[' and
']', and separated by the symbol '[|]|'. All the prceesses

of this command are executed in parallel.

There is a necn-local variable p which appears on the

left hand side of two different assignment commands in

process C. Its value changes first t¢ 4 then to \lUsind.
This variable p must not be wused in process D. The
variable x appears in both process C and D. This 1is

acceptable because its wvalue 1is not changed in either
process {x occurs on the right hand side of both the assign-
ment commands 1in which it appears). In general, each
process of a parallel command must be disjoint from every
other process of the command, in the sense that it doss not
mention any wvariable to which a value is assigned in any

other process.
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3.2 Input/Output Commands

In (€SP +the symbol '?' means input and is used in the
input command. The symbel '!' means cutput and is used in

the cutput command.

Fig. 3.2 shows how the input and the cutput commands

are uied to send the value of x from process A to process B.

Process A Process B
Blxp——— wvalue cf x o ATy
(a) Cutput command {b) Input command
Qutput x to process B Input a value from
process A and
assign it to ¥

Figure 3.2 Input and Output Commands in CSP.

The input command APy consists of 3 parts:

1) 4, is a procesc name, specifying the scurce of the input;
2) i, is the symbol that means input; and
3) y, is a variable name, the target, which 1is

to receive the input value.
A7y 1s interpreted as follows:

From the process A input a value and assign that value to
the target variable y.

The output command Bl!x alsc consists cf 3 parts:

1) B, is a process name specifying the destination of the



cutput;
2) 1, is the symbgl that means output; and

3) %, 13 an expression.
E!Xx is interpreted as follows:

To the process namad B ocutput the value of x.

Let us reconsider the evaluation of the function
y=(x+1D)sin(x+1) + cos(xlcos(Zx)cos(3x) for x=3.

In order to illustrate how the input/output commands are
used, we Will take two processes called C and D. They are

used respectively to compute the first and second termm of

the function y. The final sum of the two terms 1s computed
in process C. The details, expressed in €SP, are shown in
Fig. 3.3.
[C:ix,¥,p,q:real; ] 1D::prod,val:preal;
i:integer;
x:=33 prod:=1;
Dixy»r—ou—" value pof x —— @ C?val;
piExtl; 1:=1;
p:=p¥sin(p); Bli<3 -
“prod:=prod*cos(i¥val);
1:=i+1
13
D?7q; #4—— value of prod ——Clprod 1
yi=ptq

Figure 3.3 Inmput/Jutput commands in CSP.

Process C and D use no non-local variables. In order
to send the wvalue of 'x' from C to D, C uses the output
command D!x and D uses the input command C?val tc rezeive
this wvalue, Similarly, to send the value of the term
cos(xrcos(2x)cos{3x) from D to C, D uses the cutput command

Clprod and C uses the input command D?q.




The interaction between the output command D!x in
process C and the input command C?val in process D can be

explained as follows:

1) The first command encountered will be delayed until the
other command is ready;

2} The output command, D!x , names the process to which x is
to be sent (and in which the input command C?val occursl;

3) The input command, C?val , names the process from which a
va_ue is required (and in which the output command D!x
oceurs);

4} The type of the variable in the input command {(val) must
match the type of expression in the output command (x);

5) When conditions 1,2,3 and 4 are met the input and cutput

commands are said to correspond, They are executed
sinultanecusly. In this example their combined effect

is to assign the value of x to the target wvariable valj
65) Should an input and an ocutput command not correspond then
both commands fail and the processes that ccntain them
are both aborted; and
7) Should an output command specify a destination process
that has terminated, then the output command fails and
the process that contains it is aborted, and similarly

for an input command,

Finally, we emphasise that communication between
processes is strictly synchronised in CSP (i.e. there is no
buffering.)
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A guard was introduced in Chapter 2. It consists of one
or more boolean expressicons. We now allow a guard also to

contain an input command.

Consider the example o©f calculating the sumof the
negative integers contained in a 10-element array. Two
processes, called CUMPARE and COUNT, are used to sclve this
problem. Frocess COMPARE outputs to process COQUNT all the
negative Integers found in the array x, while COUNT sumns all
the wvalues sent to it. A C3P description is shown in

Fig. 3.4% and illustrates several points:

1) The process COMPARE will termipnate after the 10
integers of the array x have been processed;

2) The input command COMPARE?y, shaded in Fig. &4, is
used as a guard. This guard becomes true after
COMPARE?y has been executed. (COUNT!x(i) is executed
simultanecusly with COMPARE?y and the value of x(i} is
assigned to y). After this guard becomes true,the
assignment command sum:=sum+ty is executed; but after
the process COMPARE has terminated this guard failsjand

3 As socon as the guard fails, the repetitive command,
#[COMPARE?y + sum:=sum+y] will terminate{It does not
abort under these conditions),

In general, a repetitive ccmmand will terminate on

failure of all the guards contained in it.
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-

L

COMPARE::i:integersx:(1.,10)integer;
Comment We assume that array x has 10
random integer values;

ir=1;

*[iz10 -+ [ x{(i)z0 + skip
O0xCi)<0 + COUNT!x(4i)
15
i:=i+1l

]

|| COUNT::y,sum:integer;
sum: =0,

A[ FCOMPARE?y | + sum:=sum+y]

mere boolean expressions fellowed by a single input
command. The beelean expressicns must precede the
input command. Consider the following
preblem: Process A sends the values 1,24...,10 to
process B. Process B receives these 10 values and
Sums them.

prising a boolean expression and an input

Figure 3.4% An input command as a guard.

It is possible for a guard to consist of

shown in Fig. 3.5.

A CSP description, which uses a guard com-

command ,



[ A:: i:integer;
i:=1;
*[i=10 + B!i; di:=i+1]
1{B:i: Jsx,totaliinteger;
J:i=1; total:=0;

#[3<10;A7x » total:=total+x; J:=j+1]

AL Vi LT T A LT TE T L E T TwLY AN aa il

Figure 3.5 A guard consisting of a boolean expressicn
followed by an input command,

The repetitive command, shaded in Fig. 2.5 , ter-
minates after 10 iterations because the boolean expres-
sion J=10 is false, which causes the guard to fail.
(We also observe that, on this 11th evaluation <¢f the
guard the iInput command A?x would also fail, because

process A has already terminated.)

& repetitive command may contain multiple guards.
The following problem solution illustrates this con-
struct: Three processes A, B and C respectively send
5,10 and 15 integer values to process SUM. Each
process uses a simple function to generate its values.
Process  SUM (1) accepts each value sent to it; (2)
adds each value to the cumulative total and (3] after
all 30 wvalues have been received, sends the value of
the total to be printed. & CSP description is shown
in Fig. 3.6.
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[ A:: i:integer;
i:=1;
=li<g + SUMIL;  di:=i+l]

[1B:: Jj:integer;
ji=1, . o
B03<11 » SUMIJ*];  J:=j+11
{1C:: k:integer;
k=13

#[k<16 ~ SUM!k¥*k¥k; kr=k+1]

| |SUM: :x,total:integer;
total:r=0;

*[ A?x + total:=total+x

OB?x +~ total:=total+x
Oc?x + total:=total+x
i

print!total

This

1}

32

Figure 3.6 An example showing a repetitive command
with multiple guards.

description illustrates the following points:

The repetitive command, shaded in Fig. 3.6, will accept
all the integers sent to it by processes A,B and C.(In
this example, &5 wvalues from A, 10 from B and 15 from
Crs

The order in which integers are accepted from processes
4, B and C is not determined because it depends on the
relative speeds of these three processes;

After process A has sent 5 wvalues to process SUM it
terminates. This termination causes the guard A?x to
fail., Similarly the guards B?x and C?x fail
after processes B and C terminate. When all the
guards A?x, B?x and C?x of the repetitive command
have failed the command itself terminates and the next

command ,print!total, is executed; and



43y The cutput command print!total, that occurs in
process SUM, is interpreted as sending the vaiue of

‘total' to process 'print’ which prints this wvalue.



24

CHAPTER 4

SYNCHRONIZATION AND BUFFERING

4.1 Communication between two processes revisited

In chapter 3 we studied the input/output commands. At
the risk of repetition, we shall briefly review this impor-

tant topic by means ©f a concrete example.

If process A wishes to pass the value 7 to process B,
we may use the palr of I/0 commands shown 4in Table &.1,

where the value 7 1s 'assigned to' the target wvariable S.

Used in A B
process
B ! 7 AT S
Commands / "M /l/ N
expression | source target
destination variable
type cutput input
'loose'! translation To process B, From process A,
output 7 input to S.

Table 4.1 Example of I/0 commands.

Before such communication can be completed, the two

processes A and B must meet the following three conditions:

1) Process A must c¢ontain an output <ommand, which
specifies the process B as its destination;

2) Process B must have an input command, specifying the



process A as 1ts source;
3) The +type of target variable in the input commard must

match that of the expression in the cutput commend.

If they satisfy the conditions, the ocutput command in
process A and the input command in process B are called a

pair of corresponding commands. In C5P, some waiting 1is

usually necessary for one cf the corresponding commancs, For
example, 1f the cutput command in process A is ready before
the input command in process B, then the process A must wait
until the input command in process B  becomes ready.
Similarly, if +the input command in process B is ready before
the output command 1in process A, then the prccess @& must
walt until the output command 1n process A becomes ready.
This waiting for simultanecus executiocn of a pair c<f cor-

responding cammands is known as synchronization.

In the remaining part of this chapter, we ghall further
illustrate the important concept of synchronization of I/Q
commands with three more examples. The first two deal with a
single buffer and double buffer respectively; the third, a
soluticn of the classical Producer/Consumer problem using a
bounded buffer of K-slots.

4.2 Buffers

Communication betwsen two correcponding processes is
synchrenized, i.e, executed simultanecusly by  both
processes. There 1s no third party involved, such as a
tuffer. In a computer system a buffer consists of some per-
manent storage used to smooth out temporary variatisng in
the rate of flaw of data, when transmitted from cne process

to another.

Consider the case of sending a series of numbers, 1in



26

this example the integers 1 to 10, from a producer process

to another process called the consumer,

A CSP solution containing no buffer 1Is shown in
Fig. 4.1. Once the producer has produced and sent a value to
the consumer it can work on the next wvalue but can not send

it until the consumer is ready to accept it.

[ PRODUCER:: i:integer;
i:=1;
*[i<10 + CONSUMER!ij; i:=i+1 }

|| CONSUMER:: x:integer;
HTPRODUCER?X » .... ]
]

Figure 4.1 Unbuffered communication between
the PRODUCER and the CONSUMER.

We now intrecduce a buffer process as an intermediary
between the producer and the consumer. The CB3P description

is shown in Fig. u4.2.

[ PRODUCER:: i:integer;
i:=1;
#[i<10 » BUFFER!Ii; i:=i+1 1

|| BUFFLR:: slot:integer;
j[PRODUCER?Slot + CONSUMER!slot ]

|| CONSUMER:: x:integer;
A[BUFFER?X » .... ]
]

Figure 4.2 C3P solution for a single buffer.

The action of the buffer can be described as follows:

a) Zach value produced is transferred to the buffer as

soon as possible. After the buffer has been 'filled!



this value is sent to the consumer as 5000 as possible.

b) When the producer process 1s ready to outpurt, it gut-
puts to the buffer; it does not have to wait for the
consumer ; instead, it can then continue processing
until it produces the next integer. Then, there are two
cases;

1) If the buffer has managed, by that time, to output
the previous value to the consumer, it can then
input the next integer; or

2) If the buffer has not yet output the previous

value, the producer must wait until it does.

4.3 Double buffers

We can improve the efficiency of a single buffer
discussed in the previocus section by adding cne more puffer.

We shall describe two possible methods of double buffer‘i;g.

In the first method we simply put another buffer
between the first buffer and the consumer. Thus the producer
will have teo wait only when both buffers are full, This
method is pictured in Fig. 4.3 and the CSF description shown
in Fig. 4.4. This simple and elegant soluticn has the fea-

ture that each value passes through both of the buffers.

FPRODUCER BUFFER1 BUFFER?Z CONSUMER

Figure 4.3 Double Buffer



[ PRODUCER:: i:integer;
i:=13
#[3<10 = BUFFER1!i; i:=i+1 ]

|| BUFFER3}:: slot:integer; *[PRUDUCER?slot + BUFFER2!slot ]
Il BUFTERZ:: slot:integer; *[BUFFER1?slet + CONSUMER!slot J
I'l CONSUMER:: x:integer; *[BUFFERZ?x *+ .... |

Figure 4.4 A CSP solution for a double buffer.

The second method 1is to send alternate wvalues to
bufferl and buffer2. A picture of this method is shown in
Fig. 4.5 and a CSP description in Fig. 4.6. This solutien
obviates the necessity of passing each wvalue through each of
the buffers. However, 1t requires a complex alternative
command to send alternate values to bufferl and buffer?.
This command alsc ensures the correct termination of the
producer process irrespective of whether an odd or an even

number of wvalues 1s produced.

~
~ 4

x -
BUFFERZ

Figure 4.5 Double Buffer.

PRODUCER CONSUMER

-




[ PRODUCER:: switch,i:integer;
i:=1; switch:=1;

®*[1s10 + [ switch=1 » BUFFER1li; switch:=2

Oswitch=2 + BUPIER2'i; switch:=1

13
ir=i+1
]
|| BUFFER1:: slot:integer; *[PRODUCER?slot - CONSUMEk!slot ]
|| BUFFER2:: slot:integer; ®[PRODUCERZ?slot + CONSUMER!slot 1]

|| CONSUMER:: switch,x:integer;
switchi=1;
%[ switch=1; BUFFER1?x + switch:=
T Dswitch=2; BUFFERZ?x > switch:=
1

)
£y 46w
1 e

Figure 4.6 A CSP solution for a double buffer.

5.4 Producer/Consumer Problem

We shall now describe the well-known Producer/Consumer
prcblem, leaving its sclution (expressed in CSP)  until the
next section. This section may be skipped without loss of
continuity, if the reader 1is already familiar with the

problem.

For simplicity, we shall first illustrate the bounded
buffer soluticn to this problem with an idealized hamburger
stand where the cook produces only one hamburger at a time.
Once cooked, he places it sequentially in one of K slots of
the warmer (a K=slot buffer) ready for a customer. This is
shown in Fig. 4.7. A custemer can order only one hamburger
at a time, but he may repeat his order. The problem is how

to coordinate the cook and his customers to ensure that:

1) The cock does not prepare more than k hamburgers before

any customer buys one {called overflow);
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2} The customer does nct get ahead of the cook (called

underflow.)

The Producer/Consumer problem as it arises in the area
of computer operating systems may have the following inter-
pretation. The producer process may represent an input
operation; it 1is placing the data into a huffer (of k
records), one record at a time. The consumer process, per-
haps 7representing the evaluation of some mathematical

exrressions, fetches one record at a time from the buffer.

Although we will not discuss the classical scluticn
using the p-v semaphores by Dijkstral&l, it suffices to say
that, in that solution, anly two processes (i.e., a producer
process and a consumer process) are working in parallel.
In contrast, 1in the solution suggested by Hoare and
presented in the next gection, the buffering action is
described as a third process which uses a buffer of K-slots.
In other words, three processes are working in parallel;
they are the producer, the consumer, and the buffer. A
bufer of a finite number of slots is known as a bounded

buifer.



Stove Cook Warmer Customer

{with K-slots)

Figure 4.7 A Hamburger Stand to Illustrate

the bounded-buffer problem.

4.5 Bounded Buffers

the

They
jast
Fig.

This section presents a solution, written in CSP, for
consumer/producer problem. Three processes are used;
are the consumer, the producer, and the buffer. The

process, acting as a K-slot buffer, 1s shown 1in
4,8.
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BUFFERACTION::
buffer:array of K slots;
nrrade ,nrbought ,order:integer;

temp:slot;

nrmade:=0;

nrbought:=0;

comient At

all times we ensure that:

0 £ nrbought =< nrmade < nrbought+K;

=[ | nrmade

S

AR S L I S R T AR AR R T S B B T AR AT R T TR ET TTTIT LN YT TR

- buffer(nrmade mod K) := temp;
nrmade := nrmade+l
tep z(a) AL AN AN AL NN Y g NTECLUER LT

< nrbought+K; producer ? temp =+

ARA BRI T

[}

s

nrbought<nrmade jconsumer ? crder -+

consumer ! buffer{nrbought med K);
Lu&u&uiu“*ﬁ><fi:qiéku_nrbought := nrbought+l
] tep z(b) L W N Y LY 3y IR ANy (EETCLTEY

R B I T T L R R RS R AR R R T L AR T Ry IRT R ATt TR LT AR\

Figure

This p

Step 1

Stepy 2{a)

Or
Step 2(b)

4.8 Process to describe the buffering action

rocess contains only two basic steps:

Initialize the number of hamburgers made(nrmade?
to zero and that bought (nrbought) to zero.

Check to see if the following "no-overflow' con-
dition:

nrmade < nrbought+X

is satisfied. If so we then check to see whether
the process preducer has cooked a hamburger. If
so, it will be placed in slot number J where J =

nrmade mod K and nrmade is incremented by 1.

Check to see if the fellowing 'no underflow' con-
dition:

nrbought < nrmade




is satizfied. If so, we then check to see whather
the consumer has ordered a hamburger. If he has,
then the customer gets one from the slot number I
where I = nrbought med K and nrbought is

incremented by 1.
If both of the following situations cccur:

1) The process producer terminates (which causes the input
guard producer ? temp to fail); and
2) The process consumer terminates {which causes the input

guard consumer ? order te faild

then the repetitive command in Fig 4.8 will terminate, after
which the process BUFFERACTION will also terminate.

Observe that BUFPERACTION will also terminate 1if the
producer has terminated and the buffer is empty, or, if the

consumer has terminated and the buffer is full.

4,5.1 Hand trace for a 3-slot buffer

To be more specific, let ug take X = 3 and study the
details shown in Table 4.2 {on page 35),.

At time t0, step 1 yields the following initialization:
nrmade := 0 and nrbought := 0.

At ti1 the buffer is empty thus the only option possible
is for the producer to make a hamburger and put it in slotO
(step2(al)).

At t2, t3, tu, t5 and t7 there are hamburgers available
in the buffer and the buffer is not full. It 1is thus
possible either for the cook to put another hamburger in the
buffer or for the customer to buy one. Which of these

actions take place depends con:
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1) Whether the cock only is ready teo put one intoe the
buffer (producer ? temp ), in which case he dces; or

?2) Whether only a customer wishes to buy one, in which
case he does; or

3) Whether,simultaneously, becth the cock is ready to put
one into the buffer and the customer wishes to buy one.
In this <c¢ase it 1is undetermined who gets in first

although both will eventually succeed.

In this hand-trace the cook puts one in at t2, t4, t5 and t7
while the customer buys one at t3.

At t6 and 18 the buffer is full and the only action
possible 1is for the customer to buy a hamburger, The ccok
is prevented from putting another one in because the condi-

tion nrmade < nrbought + K is not satisfied.



35

Time Cook nrmade [narbought | Customer Con?';;iigtion
slot
o 1 2

t0 0 1]
t1 Make 1 fu{i

Paee e 1o N
t?2 Makel

e S P N
t3 Take one

o || R N

T4 Make 1

Place inciord |3 |1 NN
t5h Make 1

place i srors w la MR
tb Take one

w 2| To0Ra it NWEW

t7 Make 1

Blice o eiotl s |2 ANAVAN
t8 Must wait as

[54¢2+3]

Table 4.2 Parallel trace for the 3-slot buffer.




4.5.2 Time=history of some I/0 commands.

We conclude this chapter by presenting a time-history
of the three communicating processes: producer, buffer, and
corsumer, described in Fig. 4.2. It serves to focus on some

fine points in the model for synchronization and buffering.

In Fig. 4.9 each ¢t shown on the vertical axis
indicates the time when either an I/0 command begins to try
to execute or when it succeeds, Tor example, at time t1 the
value 1 (from +the producer) is 'assigned to' the variable
siot {in the buffer) without any delay. Immediately after
this, at t2, the wvalue in slot 1is transmitted to the

variable x (in the consumer) without delay.

At t3 the value 2 is sent from the producer to the
buifer without deiay. However, at t4 when the buffer tries
to pass this value to the consumer it i1s not able to do so.
and has to walt wuntil +t6 when the consumer is ready teo

accept it.

At t5 the producer is ready to send the value 3 to the
buffer but has to wait until t7 when the buffer is able to
accept this wvalue. At t8 the buffer is ready toc send this
value to the consumer but has to wait until t9 when consumer

is ready to accept this value. Etcetera.
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tl1

t2 A

t3 A

t5

t9

Figure

PRODUCER
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Produce
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BUFFER

BUFFER! 1
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Produce
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Znd value
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BUFFER! 2

—»PRODUCLR?slot
CONSUMER!slot

AR R R RLARI TR
Produce
the

3rd value
UL EELETE W R

BUFTER! 3

WALT

» PRODUCER?slot
CONSUMER!slot

CONSUMER

» BUFFER7x

Consume
the
1st wvalue

b oof x

Produce
the
uth value

4.9 Time=history of three
with the shaded areas
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®PRODUCER?s 10t
CONSUMER!slot
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®» BUFFER?x
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the
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» BUFFER?x

communicating processes
indicating cemputations,
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CHAPTER 5

ARRAY OF PROCESSES

When a number of similar processes is involved, it 1is
convenient to specify them as an array of processes. In this
chapter this concept 1is illustrated with several examples.
One of the examples serves to show how each process in such
an array is used to represent a set of data items. The fac-

torial and prime number problems are alsc studied in depth.

5.. Subscripted Process Names

Thus far a process name is used to identify only one
process. It is possible to use an identifier (as used for

arrays? to name a group of processes. Thus
name(k:1..n)::command list

declares a one dimensional array of n processes: with names

nane{1}, name(2), .. ,name{n}. In long hand they are:

name (1) ::command list
|| name(2)::command list

|| name{3)::command list

|| name{n)::command list

where each command list may involve the index k which ranges
between 1 and n. We illustrate this «<concept by an
example. Given a character string, count the number of

occurrences of the characters 'u','v' and 'w'! respectively.



A possible solution in CSP is shown in Fig. 5.1(a).
The parallel command c¢onsists of five processes named
g,%X,¥,2 and p. The process g inputs the characters from
the typewriter one at a time. Each character is then sent
to the +three processes X,y and 2z which serve to count the
number of the characters 'u’,'v' and 'w' respectively. In
the parallel command, the termination of the process g
causes the termination of the processes x,y and z which in

turn causes the termination of the process p.

In TFig. 5.1(a) the processes X,y and z have similar
command lists. To take advantage of this similarity, the
CSP representation in Tig. 5.1(a) can be rewritten in the
form shown in Fig. 5,1(b). Two major changes are made,
First, the process names X,y,Z have been replaced by
s(1),s8(2) and ={(3). Second, the subscripted variables
char{1) through char(3) are used to hold the characters
tut, vt and tul, The scope of this array extends

throughout the parallel command.

Fig, 5.1{(c) shows a shorthand wversion of that in
Fig. $.2(b). s(k:1..3) stands for the three process names
s{1),5(2) and s(3) and k 1is known as the bound variable.
Except for the indices, the same command list is used in all
three processes. The output commands s(1)!c, s{2)!c and
5{3)!c have been giver the process names m(1}, m(2) and n(3)
respectively, This labelling allows us to rewrite the com-
mand [ s5¢1)!Ic || s€2)!c || s{3)!c 1 as [m(3:1..3):: s(j)lel.
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[ g::
Il x:
i ly::
[1z:
Fipi:
]

crcharacter;
A[typewriter?c +» [ xlc || ylc

c:character; t:integer; t:=0;
*lg?c + [ e='u' » ti=t+l
Je='ut + gkipl
13
pt{tu',t)
c:chardcter; t:integer; t::0;
%[g?c + [ c='v' + ti=t+1
- Oez'v' » skip]
13
plitw', )

c:character; t:integer; t:=0;
*lg?c + [ e='w' » T:izt+l
Qo='w' + skip]
13

pl{'w',t)

c:character; n:integer;

*[ x?(c,n) » lineprinter!(c,n)
Oy?(e,n) + lineprinter!{c,n)
0z?(c,n) + lineprinter!{c,n)

1

z'lc 11

Figure 5.1¢{a) Solution without subscripted process names

and array elements.
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char:{1..3)clkaracter;

char{l):='u'; char{2):='v'; char(3):='w';
[ g:: c:character;
*[typewriter?e = [ s{1)le || s(2)lc | s(3)!c 12
|Is(1):: c:character; t:integer; t:=0;
*g?c » [ cschar(1) » t:i=t+l
]

Oezchar(l) + skip
1s
p! {char(1),t)

l1s(2):: cicharacter; t:integer; t:=0;
3Lg?e » [ ¢=char{2) + ti=t+l
Oczchar(2} -+ skip]
13
p! (char(2),t)
|1s¢(3):: c:character; t:integer; t:=J;
#g?c » [ e=char(3) » ti=t+il
OQezchar(2) -+ skipl
3
pl{char(3),t)

|lp:: ec:character; n:integer;
=0 g(1)2(c,n) + lineprinter!(c,n)
T Os(2)?(c,n) ~+ lineprinter!{(c,n)
{s(3)?{c,n) + lineprinter!(c,n)
]

Figure 5.1(b) Solution in which 3 similar processes have
subscripted process names and array elemerts.



u2

char:(1..3)character;
char{1):='u'; char(2):='v"'; char(3):="w';
[g:: c:character;
#ltypewriter?c » [m(j:1..3)::s5(3>lecl]

]ls{k:1,.3):: c:character; t:integer; t::0;
Frmlk)?c - [ c=char(k) + t:=t+1l
Oc=char(k) + skip]
13
p!{char(k),t)

|]p:: c:character; n:integer;
A[(3:1..3)s(3)?2(e,yn) + lineprinter!(c,n}]

(¢) Short form of solution given in Fig. 5.1{(b).

Figure 5.1 Programs that count the number of characters 'u’',

'v' ., 'w' in a character string.

5.2 Bounded Buffer Using an Array of Processes

In this section we use an array of processes to imple-

ment the bounded buffer which was introduced in chapter 4.

AR R R R R R AR A S T R R LR AR R R R R )

s(0) s(1) 5(2) L—% .. —3s5(100) Hats(101)

|

LT TETTTTET VL L TR T W T PR T FPCET U ETETRTRR

ad

Bounded Buffer

Figure 5.2 The process s(0) outputs integers one at a time.
The processes 5(1),s{(2}, ... ,8€(100) have the
effect of a bounded buffer.

The process s{101) computes the sum of these

integers and prints it.

As shown 1n Fig. 5.2 we input integers one at a time




from a producer process s5{0). Each integer in turn is
passed through all the processes of the bounded buffer:
§(17,5(2), «.. ,s{100). For 1<i<100 , the integer in the
process s(i) will be passed to the process s(i+1) only when
the latter is ready to receive this integer. The process
5(101) (consumer) is used to compute and print the sum of
all the Incoming integers. The CSP representaticn 1s shown

in Fig. 5.3.

[ s(0):: printeger;
*[ cardreader ? p » s(1) ! p ]

Jls{di:1,.100):: g:integer;
i[ s(i-1) 2 g + s(i+1) ! q 1

|]sC101}:: rysum:integer;sum:=0j
F[ s(100) ? r + sum:=sum+r 1;
lineprinter ! sum
]

Figure 5.3 The abaove CSP representation finds the sum of
a set of the integers and prints this sum,

We note that:

1) The processes s(1) to s(100) all serve the same pur-
pose: to push an integer away from the producer
towards the consumer. As shown in Fig. 5.2, these
processes have identical command lists, varying only in
the value of i,

2) Each of the processes s(1) to s{100) represents a slot
in the bowunded buffer. If the process s(1) cannot
accept a new integer, the process s(0) must wait until
the process s(1) is ready. Similarly, the process
5(101) cannot recelve an integer unless the process
s(100) is ready to send it. The same is true for any

s(i) and s{i+1).
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3) ror the sake of simplicity, let us take a 'snapshot' of
the six buffer slot s(1) through s(6) as shown in
Tig. 5.4(ar. All  values wused 1in this intermediate
state are arbitrarily assumed. The details of these six

processes, working in parallel, are as follows:

1. s(1) 1s ready to output the value 3 to s(?) and
s{(2), being empty, is ready to input this value
from s(1).

2, 5(2) 1is empty and, as a result, cannot transmit
any result value to s{3) and s(3), not being
empty, cannct accept any input from s(2).

3, 5(3) is ready to output the value % to s{4) but
s{4), still holding the value 6, cannot accept any
input from s{3),

4, s(4) is ready to output the value & to s(5) and
s(5), being empty, is ready tc input this value
from s(u).

5. s(5) 1is empty and, as a result, cannot transmit
any value to s(8) but s{6), being empty, is ready
to input from s(5),

Fig. 5.4(b) gives a snapshot of the 6-slot buffer after both
the possible communications have been completed.

Gradually, all the integers in any buffer are pushed to the

right.
s(1) s(2) s(3) s(4) 5(5) s(8)
3 empty L 6 empty empty

(a) An intermediate state of the 6-slot buffer.

s(1) s(2) s{3) s(4) sC5) 5(6)

enpty 3 —4 4y empty 6 mpty

(3} The state of the abgve 6-slot buffer after the two
possible communications have taken place.

Figure 5.4 Communications between slots of the bounded buffer.




5.3 Case Study 1: Factorial Using Recursicn

This section deals with a study of a CSP solution for
the factorial funection:
1 1if n=0
factorial(n)l=

n*factorial(n-1) if n>0 and nslimit.

doare's solution [14] is reproduced in Fig. 5.5.

[ fac(i:l..limit)::
*[ n:integer; fac{i-1) ? n ~»
- [ n=0 » fae(i-1)11
On>0 + fac(i+1}!{n-1); r:integer;
fac{i+1)?r; fac(i-1}!{n*r)

1

|1 fac(0)::USER
1

Figure 5.5 Solution to the factorial function.

As the solution shows, each process fac(i) of the array
inputs the wvalue of n from 1its predecessor (process
fac{i-1)) and ocutputs the value of factorial{n) back toc its
predecessor (process fac(i-1))}. If n is not equal to zero,
it requires the assistance of its successor (process
fac(i+1)) to compute the value of factorial (n-1). fac(0)}
is the wuser ©program which initlates the calculation and

obtains the final result.

For the purpase of 1llustration, we take n=3. The
interrelationship of the five processes involved in the cal-
culation 1s depicted in Pig. 5.6. The arrowed lines show

the communication between twe processes; and the trans-
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USER
fac(l):: ...;fac(1)!3;5... Lo3fac(1)?m;..
; A
T :
1
R
]
v !
fac(l):: #[fac(0)?n + [ n=0 + facl0)!1 @
On>0 +» fac(2)!(n-1);r:integer; T
— - — ® —— - —.— - == 1 Pt = ]
g fac(2)?r;fac{(0) ! (n*r)]
] ) A
t [
|
o o
A
¥ !
faci2):: *[fac{1)?n + [ n=0 + fac(1)!1 @
Un>0 + fac(3}!(n-1);r:integer;
r———-f——————————l -— L = H
' fac(3)?r;fac(1)! {n*r)]
] ¥ A
' i
3
. ]
]
o - B
o )
M ]
* i
facl(3):: #fac{2)?n » [ n=0 + fac(2)!1 @
gn>C¢ + fac(4)!{n-1);r:integer; T
F——€— —-—=~=—=--=-- J e
I fac(4)?r;fac(2)!(n%r}]
1 v A
) i
' ®
BN
¥ ]
¥ )
fac(u):: #[fac(3)?n + [ n=0 + fac(3)!1
On>0 + fac(5)!(n=-1);3r:integer;
fac(5)?r;fac(3)!(n*r)]
]

Fig.5.6 The five processes involved in evaluating factorial{3}.
The arrowed lines show the communication pattern.



mitted integers are shown in circles. The step number,
enclosed in a box, shows the order in which the communica-
tion takes place between any two processes. There are in

total 8 steps invelved.

5.4 Case Study ?: Generation of Prime MNumbers

In this section we examine in detail a CSP solution to
the well-known problem of finding prime numbe r's by
Eratosthene's sieve method [9,111]. For the sake of sim-
plicity, we shall only consider the sequence of integers

from 2 to 25 :
51: 2,3,4,...425.

For the uninitiated, we shall illustrate below in four steps

how all the prime numbers in sl can be obtained.

1. Take the first integer (i.e. 2, a prime number).
Eliminate all its multiples from the sequence sl1. We

now obtain a new sequence:
s2: §,5,7,9,11,13,15,17,18,21,23,25.

and note that the first number eliminated by 2 1is
2x2=4,

Similarly , take the first integer (i.e. 3, a prime

(=]

number) in the sequence s5?. Eliminate all its multiples

to produce a new sequence;
s3: §,7,11,13,17,19,23,25.

We note that the first number eliminated by 3 is 3*3=9,

{because 3*2 has already been eliminated).
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3. Again, take the first integer in the sequence s3 {(i.e.
5, a prime number). Eliminate all its multiples to

produce the sequence:
sh: 7,11,13,17,19,23.

We note that the first number eliminated by 5 1is
5%5=25,

4. Finally, take the first number in the sequence s4% (i.e.
7, a prime number}. We note that the first number to he
eliminated would be 7%7=49 (because all the earlier
multiples of 7 must already have been eliminated). As
a result no elimination will be made. The remaining

integers:
11,13,17,19,23

are all primes. In summary, the primes in the sequence

are as follows:

2,3,5,7,11,13,17,19 and 23.

5.4.1 CSP Solution for Primes Using Eratosthenes Sieve

The CSF solution to the sieve problem (for integers
from 2 to 25) is given in Fig. 5.7. There are B processes,
namely SIEVE{Q), SIEVE{1) tc SIEVE(5), SIEVE(6) and print.
The purpose of SIEVE(D) is threefold. The first purpose is
to print the prime number 2 {from our previous knowledge).
The second 1s to eliminate all the even numbers. The third
is to pass all the odd numbers to SIEVE(1).

The array of 5 processes SIEVE(1:1..5} 1is v©rather
invelved. In Fig. 5.8 is listed each command used and its

interpretation. Several important points are not self-
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[ SIEVE(i:1..5)::
p,mp: integer;
SIZVE (i-1) 7 p;
print | p;
mp:=p; comment mp is a multiple of p;
*[ m: integer; SIEVE(i-1) ? m ~
z[ mPmp > mp:zmp+p ];

[ m=mp + skip
Om<mp + SIEVE(i+1) I m

1

]| SIEVE(Q): :print!2; n:integer; n:=3;
#[ n=25 + SIEVE(1) ! nj n:=n+2 1

'l STEVE(6}::*[ n:integer; SIEVE(5) ? n + print ! n ]
[l print::*[ {(i:0..6)n:integer; SIEVE(i) ? n > ... ]
]

Fig. 5.7 A CSP solution to generate and print
in ascending order all primes less than 25[1u],
Note there are B8 processes involved,
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explanatory in Fig. 5.8. The first number received by a
process, and placed in p (command 2}, is a prime number and
will be retained by that process. All the subsequent
numbers received by the same process {(command 5}, will be
passed on to the next process if they are not a multiple of
the said prime p. For example, SIEVE(1) retains the first

prime number 3 and passes on the remaining numbers
5,7,11,13,17 ,etec. The numbers 9,15,etc. are multiples of
3. As such, they are eliminated by SIEVE(1l) (see
Fig. 5.8).

Similarly SIEVE(Z2}) retains the second prime 5 and
passes on the remaining numbers 7,11,13,17,etc. Moreover,
the only input number to be eliminated is 25. This is also

shown in Fig. 5.9,

The question arises as to why 6 SIEVE processes, namely
SIEVE{(D) +to SIEVE(5) are used in Fig. 5.7. The reason is
in this specific example (where n=25%) we only need 3
processes i1.e., SIEVE(D),SIEVE(1), and SIEVE(2) as explained
at the beginning of this section and in Fig. 5.9, However
to use more will do no harm. When n is large, it 1is con-
venient and safe to use vo+l SIEVE processes as follows:
SIEVE(D),SIEVE(1),...,SIEVE(VA). This rule of thumb is

used in Fig. 5.7.



Command Conmand used

Explanaticn for i=3

number in STEVE(i)

1 p,np:integer; p and mp are declared as
integers.

2 SIEVE(i~-1)7p; SIEVE(3) will continue if and
when it gets an integer from
SIEVE{?2). This integer is
assigned to p.

3 printip; Send the prime p to the

A— e

SIEVE(i-1)}7m =+

[ ¥[m>mp + mMp:=mp+pl;

5 i[m:integer; J

B

7(a) [m=mp + skip

7(b) Om<mp + SIEVE(i+1)!m]]

process cdalled print.

Make a copy of this prime
number in mp.

Wait until SIEVE(3) has
received a number from
SIEVE(2).

Execute the repetitive
command marked B, In this
command check to see if m is
larger than the multiple of p.
1f so, update mp until mpzam.

Check to see if m is a
multiple of p. If so, ignore
the number and repeat the
loop marked A,

If m is not a multiple of p,
send m to the successor
process SIEVE(4), Repeat the
loop marked A.

Fig.5.8 Explanation ¢of each command used 1n the SIEVE(i)

where 1=i=<5,

In this example 1 is taken as 3.
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Fig.5.9

SIEVE(1) SIEVE(D)
keeps | removes keeps |removes
<« 3,5,7,11,.. 525 €—

3 9,15,21 2 all even
numbers
) SIEVE(2)
keeps |removes
5 75,23,19,17,13,11,7,5>
5 25

SIEVE(3) 1
keeps | removes
«— 7,11,13,17,19,23«— —— |
7 none

L s93,19,17,13,11

eeee o 13,17,19,23«

SIEVE(W)
keeps |[removes
11 nonea

With each process 1s associlated a prime number.
Each process eliminates those numbers which are

a multiple of its prime.
The diagram shows the range of numbers 2<ns25.
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CHAPTER &

CONCLUDING REMARKS

The examples of parallel processes in this report are,
Ior the most part, familiar programming problems that have
peen rprecast in a somewhat different way using parallel com-
position, input/output primitives and guarded commands. the
use of the CSP language conveniently leads to the rapii and

clear development of complex parallel processes.

The CSP languzge has already been wused in operating
systems design [13] and simulation [17]. Among the areas CSP
could be used are Numerical Analysis, Process Control and

On-line system design,

The implementation aspect of CS5P has deliberately not
been discussed in the main body of this report because
research 1s still In progress [10]. The overheads inveolved
in creating processes in CSP is of particular interest and

importance.

Many schemes have been proposed to implement
synchronization. They include the events of PL/I [16]; the
gueues and monitors [12] in CONCURRENT PASCAL [1,2] and
PASCALPLUS [3]; the interface module and signal in
MODULA [213. None of these seems, however, to be as con-

ceptually simple as the synchronized I/0 commands of CSP.

Various questions remalin open when CSP is used. They

include:



(a)

The method used <to gescribe a data structure, For
exanple, the K-slot puffer, wused ir Fig. 4.8,
represents a data structure. ilow deces this representa-

tion, using cne process for the entire bulfer, compare
with K rprocesses each representing a slot as used in
Fig. 5.27

Wwhat 1s the overheac associated with each of the
representations menticned in (a)

Should the repetitive command have a gpecific ter-

minator 1,e.

#[ 1210 » total:=total+iji:=i+l

(Ji»10 -+ exit from the loop
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APPLNDIX

TORMAL SYNTAX OF CSP CCOMMANDS

In this appendix BNF notation 1s used tc describe the
C5P commands. Tne curly braces { ! have been introduced into

BHMF to denote none or more repetitions of 1ts contents.

Types of Commands

<command » ::= <simple command>|<structured command>

<simple commanc»> ::= «<null command>|<assignment <¢ommand >
|<input command»>|<output commands

<structured command> ;:= <alternative command >
|<repetitive command-»
j<parallel command=>

<null command:>r ::= skip

<commnand list » ::={«<declaration»;|<command»;} <command>

1 Alternative and Repetitive Commands

<repetitive command:> ::= *calternative command»
<alternative command> ::= [<guarded command>{(<guarded command>}]

<guarded command> ::= <guard> - <comnand list>
| (<range »{,« range >}« guard > » <command list-=

<guards> ;:= <guard list»|<guard list>;<input command>
] < input command>

<guard list> ::= <guard element-{;<guard element>}

<guard element> ::= <boolean expression»|<declaration>
<range > ::= <bound variable »;<lower bound-:>..<upper bound >
<lower bound » ::s <integer constant»

<upper bound > ::= <integer constant:>
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72 Firaliel Commands

<parallel command> ;:= [<process>{||<process>}]

<pricess> ::= <process label =command list >

< process label >
|<identifier »{<label subscript>»>{,<label subscripts:})

= <empty »|<ldentitfier> ::

<label subscripts ::= <integer constant»|<range>»

<integer constant:>

<berund variable»

;:= <numeral>|<bound variable>

::= <identifier->

3 issignment Commands,

<assignment command > ::= <target variable > := <expressions
<expression> ::= <simple expression=>|<structured expression-
<siructured expression> ::= <constructor>(<expression list »)

<gonstructor> @

<expression list>

<target variable>

<identifiers|<empty >
t:= <empty>|<expression>{,<expression>}

1= <sgimple variablerl<structured target:

<structured target> ::= <constructor>(<target variable list>)

<target variable list> ::= <empty>|<target wvariable>»

{,<target variable>}

4 Input and Cutput Command.

<input command> :

<putput command >

= <gource>?<target variable>

1= <degtination»!<expressions»

<gource> (.= <pProcess name:>

<destination> :
<2rocess name >

<subscripts> ::

<

<process name:»
<identifier>|<identifiers>{(<subscripts»)

integer expression>{,<integer expression >}
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