
AGUIDE

TO

COMMUNICATING SEQUENTIAL PROCESSES

by

Shan S. Kuo*,

Michael H. Linck.:!'::li:

and

Sohrab Saadat***

Technical Monograph PRG-14

August 1978

Oxford University Computing Laboratory,

Programming Research Group,

45, Banbury Road,

Oxford.

:I': On leave from the University of New Hampshire.

** On leave from the University of Natal.

Md, On leave from Pahlavi University, Shiraz.

© 1978 S.S.:Kuo, M.H.Linck and S.Saadat.

c/o Oxford University Computing
Programming Research Group~
4S Banbury Road.
Oxford.
OX2 6PE.

Laboratory~

AbSTRACT

This report is a tutorial intrOduction to a ted,nique

of ~ro5ramlning which involves ""(he cor:u;,unication betweer two

or more concurrently executing processes. The notaticns of

corrununicating sequential processes (CSF), suggesteG' by

C.A.R. Hoare, ar'e presented in detail.

This report is chiefly intended for 'educated ;cien

tists I who are encounterin6 the subject of pa 'allel

processing for the first time. For pedagogical reaSO"LS ~ a

large number of examples of increasing conceptual complexity

are given and solved throughout the repor't.

C[lAFTLi-{ 1 Il.TR2:JUCTIDl~. 1

CHAI-'TLk 2 ALTERl~ATIVL AHD REPETITIVE COI1HAIWS. 4

2.1 A simple example of CSP. 4

2..2 Al ternati ve Command. 5

2.2.1	 Alternative Command with range. 1Q
2.2.2	 Summary. 1f1

2.3 Repetitive Command. 11

Ch/~l-'TLJ~ 3 PARALLEL COMMANDS Arm INPUTIOUTPUT COMI1AlJDS. 14

3.1 r'arallel Com.m.ands. 14

3.2 Input/Output Commands. 16

3.3 The Input Command in a guard. 19

CrtAPTER 4 SYNCHRONIZATION AND BUffERING. 24

4.1 Communication between two Processes Rev:si ted. 24

4.2 Buffers. 2S
4.3 Double Buffers. 27

4.4 Consumer/Producer Problem. 29

4.5 Bounded Buffers. 31

4.5.1	 Hand trace for a 3-s10t Buffer. 33

4.5.2	 Time-history of some 1/0 Commands. 36

CHAPTER 5 ARRAY Of PROCESSES. 38

5.1 Subscripted Process Names. 38

5.2 Bounded Buffer using an Array of Processes. 42

5.3 Case Study 1: Factorial using Recursion. 45

5.4 Case Study 2: Generation of Prime Numbers. 47

5.4.1	 CSP Solution for Prime Numbers

using Eratosthenes Sieve. 48

CHAPTER 6 CONCLUDING REr~RKS. 53

AC)(N0wLEDGEMENTS. 55

BIBLIOGRAPHY. 56

APPENDIX. 59

Ct-lAFTLP. 1

:;: 1;'1' K(J L';';C~ :;:Cil;

~l!e silr,ul1:aneous executior. of t\.,'o or J:1ore sets c: se-

c;.ueIitie:.l comfuter instructior.s ::'5 cal::Ceri ~G",allel

,.,rocessi ng, concur'rent progrd:r.lming l ('r rnul ti~rocessing.

for example, many modern computers facilitate ;:;ome degC'ee of

pardli~.i oper'dtions by ,?roviding two processors. The first

firocessor is cOfilmonly known as the centr,-tl prQcess inG unit

(CPU) used to execute 'regular' instructions; and the :;econd

is an Input/Output(I/G) processcr, sometimes know~ as a

channel, to process 1/0 commands [18J. The CPU aId 1/0

processor work in parallel. The present-day tY'el1d i~ corn

.vuter desii;:,n is to have as many system cOWlJonen:s as

possible operating in parallei. The advent of inexptnsive

microprocessors has helped ~o accelerdte this trend.

Despite the complexity involved in reliably contrGlling

parallel processing, two important and interrelated aY'E3.S of

research seem to stand out.

One of them is the development of a notational system,

also known as an abstract language or even a progre-;uning

language, for expressing the program structure and the data

structure. One of the goals of a notational system i5 to

enable workers in the computer field to expY'ess their

thoughts on programs or algorithms in a simple, precise, and

transparent manner, so that a colleague will unders:and.

Since parallel processing is a complex topic, it is of the

utmust importance to develop a good notational system. The

cummunicating sequential processes (eSp) notation, using a

single structuring method, is a significant step in this

direction [14-J.

2

The other research area ",,,"ems to fo cus on the iden

tification of some fundamental, or 'primitive', operations.

Suc~ primitive operations are akin to an operator as used in

md"[.1.ematics (e.6. +'-lXl~)' It i.3 dseful to classify

prinitives into two groups: executable primitives and

stl'.lctural primitives. Examples in each group are listed

in 'fable 1.1.

Structural
pr imi t i ves

Sequential
composi tion

Parallel
composi tion

Alternative

Go to(Jump)

Conci tional Go to

Executable
primi t ives

CSP,fortran,Pascal,etc

Assignment

Expressions

I/O

Assembler language

Load

Jump

Store

Table1.1 Examples of Primitives.

This technical note is a tutorial exposition of the re

cent work in these areas by C.F.. R. Hoare [14J. It is

chiefly intended for those who are encountering the subject

for the first time. The reader is expected to have

experience in programming in at least one high-level

language.

In Chapter 2, we commence with some simple examples

illustrating how the well-known programming constructs--

sequential composition, selection, and repetition--- are

related to Hoare's CSP notational system.

In Chapter 3, the parallel command and examples of

tJarallel OOlt1iiosi "'Cion ar£: st'j·::ied. Co;:~_.r_llni..::>..:.t ion be t'l;een

two processes usin.g I/O cOlllll,c..nc2 L, intl''::lduced for the first

time.

Chapter 4 deals with synchronization and tutfcrir.g.

It 51-jaWS now a buffer car, be iI~,~lemented as a ;;rocess. The

classic:a';" con5umer/~r":Jducer problcr;, [6] is reviewed a~d its

SOlution, expressed in esp, is studi~d in dc~th.

Chapter 5 introduces the concept of an array of

processes. It is illustrated b)-' 5everal examples irlclujing

tIIC we.J.l-knowll factorial and ;:,rime rlu::1ber ~robleJ,s.

Finally, it is worth noting thQt the CSt' notaticnal

system, like many other computer lunc;uages, rapidly gives

ris.:' to a host of exten:::;i0ns and mOdifications. In chis

report, we study only the topics which are presented in the

original pa;er[14J. In particular, the topics of recur~ion

dnd procedures are not treated. A tutorial exposition of

the recent extensions by C.A.R. Hoare and C.M. Holt will be

published in a separate report[15J.

4

CHA?TER 2

ALTERNATIVl: AND REPETITIVE COMMANDS

This chapter is mainly devoted to the conditional and

re~etit:ive commands as expressed in esp. These commands

are Ddsed on :':ij kstY'a I s guarded com.mana CSJ. A large

number of examples is presented. Whenever prac

ticabl€l Al~ol 60 [l~J statements are listed side by side

wi th the CSF commands.

2.1 A Simple Example for CSP

Let us consider the simple example of the swapping of

two real numbers a and b.

bedn
real a,b;
a:=3; b:=5;
begin

comment swap values
of <.l and b;

real t;
t:=d;
a: =b;
b: =1

end
ene

(a)S~lution expressed in Algol.

a,b:real;
a:=3j b:=5j
[

commen t swap values
of a and h;

t:real;
t: =a;
a: =b ;
b: =1:

(b) Solution expressed in esp.

Figure 2.1 Swapping of two numbers.

From Fig. 2.1 we see that the symbols 1[' and I]' in

CSP are respectively analogous to begin and end in Algol.

The block structure and scope rules for variables used in

CSP are similar to those used in Algol. The semicolons are

usee to indicate sequential execution. We note that the five

assignment commands appearing in both languages are iden

tical.. We also note the minor difference in the declara

tion of the three variables a,b and t. There are four 'stan

dard' types available in CSP: real,integer,boolean,and

character. Also an array is declared in CSP as follows:

p:(1 .. 100)integerj

where p is a one dimensional array of type integer having

100 elements.

2.2 Alternative Command

Let us consider the function

if x< 0y=FX
lx' if x~o

To write this function in CSP one can use the following

alternative command:

[x<O -+ y:=2!'lx

Ox~O -+ y:=x*x

We summarize in Table 2.1 terminologies for the various com

ponents of an alternative command.

Terminologies

Alternative command

Guarded commands

Guards

Commands

CSP representation

[

0
]

x<O
x~O

-+

-+

y:=2*x
y:=x ll x

x' a
x~O

....

....
y:=2*X
y:=x*x

x' a
x~O

y:=2*x
y: =x*x

Table 2.1 Swrunary of components of an alternative command.

6

This corrunand consists of two guarded commands separated by a

symbol '0' (read as I fat bal" I and interpreted as an OR).

This command may be transla.ted as follows: If the guard x< 0

is ~rue, then con~ute y:=2 Ax. If this guard is false, then

the command y:=2"'x is not executed. Similal~Ly, if the guard

x~O I::; true, then compute y:=x":x. If it is false. then the

command y:=x*x is not executed.

It is possible for the evaluation cf the two guards,

x< 0 and x;::-O. to start at the same time and to continue in

paf'dllel. As soon as either guard is true, the following two

eveLts ',.Jill take place:

1) any further evaluation of the other guard is discon

tinued; and

~) the command corresponding to the successful guard is

executed.

In this particular example, one of the two guards is

always true. There are situations where 1) no guard is true;

or 2) more than one guard is true. These will be discussed

in the next two examples.

Case 1: lio guard is true.

Let us consider the function

2X if x<O

y~

{
x' if x >0

In CSP this function may be expressed as:

x<O y:=2 1:x

Dx>O y:=x":x

If x=O, both the guards x<O and x>O will fail. As a

result neither of the commands y:=2*x and y:=x*x will be

executed. The alternative command fails and the proGram

which contains it will abort. This sequence of actions is

shown in Fig. 2.2.

8

Enter the Alternative Command.

yes

discontinue the
evaluation
of the guard
x ,0

no no
AND

yes

discontinue the
evaluation
of the guard
x,D

the commandthe command

continue

FigLre 2.2 Diagram showing details of the execution of the

Alternative command.

[x<O + y:=2'/:x
ox,O -+ y: =x,'/x

]

Case 2: Hore than one guard is true.

Let us take the above example again, except that now

both 1=' signs are included in the function:

if x,.,;O
YC{2X

x' if x~D

The corresponding CSP representation is as follows:

[x"';O y:=2l~X

Ox<:O y: =x*x

In the case that x=O, both guards are true. It shou:d be

strongly emphasized that we have no knowledge as to \oih ich

guard will succeed first. As a consequence, we do not know

which one of the following commands:

y:=2~x or y:=x*x

is executed. This is known as nondeterminism. fortunately,

in this case, it just does not matter which of the comnands

is executed.

So far, in our examples, each guard contains onl~ one

boolean expression. However a guard may consist of twc or

more boolean expressions, separated by semicolons.

Take the example of evaluating the following functlOn:

y"(x+12)!«x-l)(x+2)). x~l and x~-2)

The CSP representation of this function takes the form:

(x~l ; x~-2 y:=(x+12)/«x-l)~(x+2»

The guard is evaluated as follows:

10

SLe? 1. Check if Lhe guard x*l is true. If so, go to step 2.

OLherwise the program aborts.

Step 2. Check if the guard x~-2 is true. If so, evaluate the

command y:=(xt12)!«x-l),'«xt2». Otherwise the

program aborts.

2.2.1 Alternative Command with Range

We shall now show how several guarded commands with

subscripted variables may be written in a carnpact form. As a

specific example, consider the three guarded commands shown

in ~ig. 2.3(a). This can be written simply as shown in

Fig. 2.3(b), where the index variable (also known as the

bound variable) k is used. The expression (k:l .. 3) is known

as the range. In the compact form, the fat bar symbol is not

used.

[dO) >0 -+ ael) =aCl)-l
Da.(2»Q -+ aO) =a(2)-2 [(k:1..3)a(k)'0 ~ a(k):~a(k)-kJ

Da(3) >0 -+ a(3) =a(3)-3
]

(a) Expanded form. (b) Compact form.

Figure 2.3	 An alternative command consisting of
three guarded commands.

2.2.2 Swnrnary

In Table 2.2 we summarize the evaluation of guards in

an alternative command. It also lists which command, if any,

is 10 be executed.

11

Result of eva.luaTion
of the guards

All guards are false

Only one of the guards
is true

Two or more guards are true.

~Ihich command l if any)
is to be executed

None; the program abt")rts.

The corresponding cor.~and

is execu"ted

Exactly one of the commands 1

depending on implementation.

Table 2.2 Guards and guarded corrunands.

2.3 Repetitive Command

We turn now to describe how the repetitive construct is

expressed in CSP. Two examples will follow. The first

example will deal with the sum of the integers:

100

so Ii.
i::l

The cornvutation as expressed in Algol and in esp, is listed

in Fig. 2.4. In Fig. 2.4(b), the last command is called a

repetitive command. It consists of an alternative command

preceded by the symbol I:~' • This symbol may be interpreted

as: repeatedly execute the following alternative cor~and

until all its guards fail. When all the guards fail the

repetitive command terminates and control is transferred to

the next command.

integer s ,k;
s : =0;
for k:=l step

s:=s+k
1 until 100 do

s,k:integer;
s:=O ; k:=l;
~[k~100 ~ s:;s+k k:=k+l]

(a) In Algol. (b) In CSP.

Figure 2.~ Sum of the integers.

As the second example, consider arrays a and b. We wish

to interchange a and b if a k ,. bk Cl.-;k.o;;100). The solutionk k
shmm in Fig. 2.5 needs some explanation. First, there are

100 guarded commands, one for each k value, in the alterna

tive command. Second, the alternative command is repeatedly

executed until all 100 guards fail. Third, for each itera

tion, the 100 guards are evaluated concurrently, the cownand

list Can the right hand side of the arrow) corresponding to

the first successful guard is then executed. During any

iteration, however, if all the 100 guards fall, then none of

the guarded commands is executed. The repetitive command

terminates, and control is transferred to the next command.

Finally, the number of iterations may vary from 1 to 100,

depending on how often a k > bk. cccurs. Fig. 2.6 shows the

detail of evaluation of this repetitive command.

a,b:C1 .. 100)real;

comment Assume that random

values have been assigned

to the array elements;

tI[Ck:l .. l00)aCk»bCk) ~	 t:real;
t:=a(k);
a(k) : =bCk);
b(k) : ot

Figure 2.5 Swapping of aCk) and bCk)
if aCk) >bCk) [1.s:k~100.]

13Enter Re~etitive Command

~
I I \ \

•••• a(100»b(100)
-----./

j,,TL j, jT T

At each iteration exactly one of the Competitors is allowed
to pass through this prohibitive barrier.

t:real;
t: ::a(lJ ;
a(l):=b(l)j
b(!):=tj

t:real;
t:=a(2);
a(2) ,~b(2);

b(2):=tj

.....
 t:realj
t:=a(10DJ;
a(100)::::b(iDOJ;
b(iDO) :=t;

Lxi t
from the
Repeti tive
Command

continue

Figure 2.6	 Diagram showing the detail and execution of
the Repetitive Command given in Fig. 2.5.

14

CHAPTER 3

PARALLEL COMMANDS AND INPUT/OUTPUT COMMANDS.

In this chapter we first introduce the parallel com

mdnd. Its purpose is to define two or more processes that

will run concurrently. We then introduce input and output

commands and show how they are used to effect communication

between processes.

3.1 ?arallel Commands.

Consider the evaluation of the function

;=(x+l)sin(x+l) + cos(x)cos(2x)cos(3x) for x= 3.

A possible CSP description is shown in Fig. 3.1.

x,y,p,prod:real;

i:integer;

x: =3;

[c: : p:::x+l; } Process C
p:=p'!;sin(p)

II D" "	 prod:=l;i:=l; } Process D
*[is3 + prod:=prod~cos(i*x);

- i:=i+1
]

] ;

y: =p+prod

Figure 3.1 CSP evaluation of the function
y=(x+l)sin(x+l) + cos(x)cos(2x)cos(3x)

The shaded command in Fig. 3.1 is known as a parallel

comm~nd and consists of two processes (or sets of com

mands)[4,5J. The commands used to evaluate the Sine term are

15

collectively known as Process C. The process labe 1 emus t

be followed by the symbol I:: I • Similarly 1 the conunands

for the Cosine term are labelled Process D. Processes C

and D are separated by the symbol I I I I, which indicates that

they are executed in parallel.

The parallel command, shaded in Fig. 3.1, is e~ecuted

in the following manner:

1) The execution of the two processes labelled C and D,
start at the same time and continue in parallel

2) The parallel command is sllcessfully completed only when

the execution of process C and process Dare both com

pleted; and

3) No assumpt ions, at all, are made about the rela t i ve

speeds a t which the commands in proces s C and thos e in

process D are executed.

In general, a parallel command consists of two or more

processes~enc~osed between a pair of square brackets '[1 and

']', and separated by the symbol I Ill. All the precesses

of this command are executed in parallel.

There is a non-local variable p which appears On the

left hand side of two different ass ignment commands in
process C. Its value changes first to 4 then to 4s in4.

This variable p must not be used in process D. The

variable x appears in both process C and D. This is
acceptable because its value is not changed in either

process (x occurs on the right hand side of both the assign

ment commands in which it appears). In general, each

process of a parallel command must be disjoint from every

other process of the command, in the sense that it does not

mention any variable to which a value is assigned in any

other process.

16

3.2 :nput/Output Commands

In CSP the symbol '?' means input and is used in the

input command. The symbol I! I means output and is used in

the output comrnand.

fig. 3.2 shows how the input and the output commands

are u3ed to send the value of x from process A to process B.
I

Process A Process B

B! x. I value of x I)' A?y

(a) Output command

Output x to process B

(b) Input command

Input a value from
process A and
assign it to y

Figure 3.2 Input and Output Conm,ands In esp.

The input command A?y consists of 3 parts:

1) A, is a process name> specifying the source of the input;

2) ? , is the symbol that means input j and

3) 'i, is a variable name, the target, which is

to receive the input value.

A?y is interpreted as follows:

From the process A input a value and assign that value to

the target variable y.

The output command B!x also consists of 3 parts:

1) B, is a process name specifying the destination of the

output;

2) !, is the symbol that means output; and

3) x, is an expression.

B:x is interpreted as follows:

To the process named B output the value of x.

Let us reconsider the evaludtion of the function

y=(xtl)sin(xtl) t cos(x)cos(2x)cos(3x) for x=3.

In order to illustrate how the inputloutput commands are

used, we will take two processes called C and D. They are

used respectively to compute the first and second term of

the function y. The final sum of the two terms is cOIJ.puted

in process C. The details, expressed in esp, are shown in

Fig. 3.3.

[C: :x,y,p,q:realj ID: :prod,val:real;
i:integer;

x: =3; prod:=l;

D! x ; ,,----- value of x .. C?val;

p:=x+l; i:-=l;

p: =p"sinCp) i: [is 3 +

-prod: =prodl'lcos (i l'rval) ;
i:=i+l
] ;

D? q; "O(f-- value of prod -----<C! prod]

y:=ptq

Figure 3.3 Input/Output commands in CSP.

Process C and D use no non-local variables. In order

to send the value of I x I from e to D, e uses the output

command D!x and D uses the input command C?val to re~eive

this value. Similarly, to send the value of the term

cos(x)cos(2x)cos(3x) from D to C, D uses the output cOIllInand

c!prod and C uses the input command D?q.

The interacLion between the OULput command D!x in

process C and the input command C?val in process D can be

explained as follows:

1) The firsL command encountered will be delayed until Lhe

other command is ready;

2) The output command, D!x , names the process to which x is

to be sent (and in which the input command C?val occurs);

3)	 The input command, C?val , names the process from which a

va~ue is required (and in which the output command D!x

occurs) ;

4)	 The type of the variable in the input command (val) must

match the type of express ion in the output command (~) j

5)	 When conditions 1,2,3 and 4 are met the input and output

commands are said to correspond. They are executed

siJilultaneously_ In this example their combined effect

is to assign the value of x to the target variable val;

6)	 Should an input and an output command not correspond then

both commands fail and the processes that contain them

are both aborted; and

7)	 Should an output command specify a destination process

that has terminated, then the output corrunand fails and

the process that contains it is aborted, and similarly

for an input command.

Finally, we emphasise that communication between

processes is strictly synchronised in CSF (i.e. there is no

buffering.)

3.3 An input command in a guard	 19

A guard was introduced in Chapter 2. It consists of one

or more boolean expressions. We now allow a guard also to

contain an input com~and.

Consider the example of calculating the sum of the

ne6ative integers contained in a lO-element array. Two

processes, called COMPAR.E: and COUNT, are used to sGl'Je this

problem. Process COMPARE outputs to process COUNT all the

nebative integers found in the array x, while COUUT suns all

the values sent to it. A CSP descY'iption is shown in

Fig. 3.4 and illustrates several points:

1)	 The process COt1PARE will terminate after ttle 10

integers of the array x have been processed;

2)	 The input command COHPARE?y, shaded in Fig. 2.1+ , is

used as a guard. This guard becGmes true after

COMPARE?y has been executed. (COUNT!x(i) is executed

siJl\ultaneously with COMPARE?y and the value of xCi) is

assigned to y). After this guard becomes true, the

assignment command sum:=sum+y is executed; but after

the process COHPARE has terminated this guard fails jand

3)	 As soon as the guard fails, the repetiti ve command,

':'[COMPARE,?y -. sum:=sum+y] will tey'minate(It does not

abort under these conditions).

In general, a repetitive command will terminate on

failure of all the guards contained in it.

20

CONPARE: : i: integer j x: (1 •• 10)integer;
Comment We assume that array x has 10

random integer values;
i::;l ;
":'[i~10 + [x(iL::O -.. skip

Dx(i)<O COUNTlx(i)
] ;
i: =i+1

I I COUNT: :y,sum:integer;
sum::;O;

~[[C'OMPARE?;] -to sum:=surn+y]

Figure 3.4 An input command as a guard.

It is possible for a guard to consist of one or

more boolean expressions followed by a single input

command. The boolean expressions must precede the

input command. Consider the following

problem: Process A sends the values 1 , 2, •• ,,10 to

process B. Process B receives these 10 values and

sums them. A CSP description, which uses a guard com

prising a boolean expression and an input command. is

shown in Fig. 3.5.

A::	 i :integer;

i:::: 1;

2[isl0 + B!i; i:~i+l]

liB::	 j ~x,tota: :integer;
j :::: 1; total: ::: 0 j

r:;~? ::~:~:;~~~»~~:~~ ~:'~~~:~'~ ~~T ~ ;,i'~ !'J :Iq :

Figure 3.5 A guard consisting of a boolean expression
followed by an input command.

The repetitive command, shaded in Fig. 3.5 ter

minates after 10 iterations because the boolean expres

sion j::;10 is false, which causes the guard to fail.

(We also observe that, on this 11th evaluation cf the

guard the input conunand A?x would also fail, because

process A has already terminated.)

A ~epetitive command may contain multiple guards.

The following problem solution illustrates this con

struct: Three processes A~ Band C respectively send

5,10 and 15 integer values to process SUH. Each

process uses a simple function to generate its values.

Process SUM (1) accepts each value sent to it; (2)

adds each value to the cumulative total and (3J after

all 30 values have been received, sends the value of

the total to be printed. A CSP description is shawn

in Fig. 3.6.

22

A:	 i:integer;

i:=l;

2[i<6 ~ SUH!i; i:=i~lJ

1'18::	 j:integer;
j :::: 1 ;
~[j< 11 -+ SUM!j*j; j :=j+1J

lie::	 k:integer;
k: =1;
~[k<16 -+ SUM!k*k*kj k:=k+l]

ISUM: :x,total:integer;

total:=Oj

:':[A?x total::::total+x
- DB?x total:=total+x

DC?x -+ total:=total+x
] ;

print!total

Figure 3.6 An example showing a repetitive command
with mUltiple guards.

This	 description illustrates the following points:

1)	 The cepetitive command, shaded in Fig. 3.6. will accept

all the integers sent to it by processes A.B and C. (In

this example, 5 values from A, 10 from Band 15 from

C) ;

2)	 The order in which integers are accepted from processes

A, B and C is not determined because it depends on the

relative speeds of these three processes;

3)	 After process A has sent 5 values to process SUM it

terminates. This termination causes the guard A?x to

fail. Similarly the guards B?x and C?x fail

after processes Band C terminate. When all the

guards A?x, B?x and C?x of the repetitive command

have failed the command itself terminates and the next

command ,print!total, is executed; and

4) The outpu t command print! total, that occurs in

process Sut1, is interpreted as sending the v.:::lue of

I total' to process 'print' which prints this value.

24

CH!~PTER 4

SYNCHRONIZATION AND BUrr[RING

4.1 Communication between two processes revisi"ted

In chapter 3 we studied the input/outpu t commands. At

the risk of repetition, we shall briefly review this impor

tant topic by means of a concrete example.

If process A wishes to pass the value 7 to process 8,

we may use the pair of I/O commands shown in Table 4.1,

where the vdlue 7 is 'assigned to' the target variable S.

BUsed in A
process

A ? sB ! 7
Commar.ds j '1.\. sour-C:. targetI, ./". expresslon

variablep.estlnatlon ""
inputtype output

Iloos e ' translatiori To process B, from process A J

output 7 input to S.

Table 4.1 Example of I/O commands.

Before such communication can be comple ted) the two

processes A and B must meet the following three conditions:

1) Process A must contain an output command, which

specifies the process B as its destination;

2) Process B must have an input command, specifying the

process A as i"ts source;

3) The type or target variable in "the input corrunar.d must

match that of the expression in the output commend.

If they satisfy "the condi-tions, the output cOIDr.dnd in

process A and the input command in proces s B are called a

pair of corresponding commands. In CSP, some waiting is

usually necess ary for one of the corresponding commanc:. For

example, if the output command in process A is ready before

the input command in process B, then the process A mus: wait

until the input command in process B becomes ready.

Similarly, if --the input command in process B is ready ~efore

the output command in process P" then the process (. must

wCiit until the output command in process _A becomes ~eady.

This waiting for simultaneous execution of a pair cf cor

responding commands is known as synchronization.

In the remaining part of this chapter, we shall further

illustrate the important concept of synchroniza-tion :Jf 1/0

commands with three more examples. The first two deal with a

single buffer and double buffer respectively; the "third, a

solution of the classical PrOducer/Consumer problem using a

bounded buffer of K-slots.

4.2 Buffers

Comrnunica tion between two corresponding processes is

sYhchronized, i. e. executed simultaneously by both

processes. There is no third party inVOlved, such as a

buffer. In a computer system a buffer consists of some per

manent storage used to smooth out temporary variati)ns In

the rate of flow of data, when transmitted from one process

to another.

Consider the case of sending a series of number3, in

26

Lhis e~ample the integers 1 to 10, from a producer process

to another process called the consumer.

A CSP solution containing no buffer is shown in

Fig. 4.1. Once the producer has produced and sent a value to

the consumer it can work on the next value but can not send

it until the consumer is ready to accept it.

PRODUCER::	 i:integer;
i:=l;
~[i$10 + CONSUMER!i; i:=i+l]

I I CONSUMER:;	 x:integerj
2[PRODUCER?x + ••••

Figure 4.1	 Unbuffered communication between
the PRODUCER and the CONSUMER.

We now introduce a buffer process as an intermediary

between the producer and the consumer. The CSP description

is shown in Fig. 4.2.

PRODUCER::	 i:integer;
i: =1;

~[i~10 + BUrrER!i; i:=i+1

II BUFFER,:	 slot:integerj
~[PRODUCER?slot + CONSUMER! slot]

I I	 CONSUMER:: x:in~eger;

~[BUFFER?x + ••••]

Figure 4.2 CSP solution for a single buffer.

The ac~ion	 of the buffer can be described as follo s:

a)	 ~ach value produced is transferred to the buffer as

soon as possible. After the buffer has been 'filled 1

this value is sent to the consumer as soon as poosible.

b)	 When the producer process is ready to output, it out

puts to the buffer; it Ooes not have to wait I::JY' the

consumer ; instead, it can then continue processing

until it produces the next integer. Then, there are two

cases:

1)	 If the buffer has managed, by that time, to output

the previous value to the consumer, it can then

input the next integer; or

2) If the buffer has not yet output the pcevious

val ue, the producer must wait unt il it does.

4.3 Double buffers

We can improve the efficiency of a single buffer

discussed in the previous section by adding one more buffer.

We shall describe two possible methods of double buff2ri';;g.

In the first method we simply put another buffer

between the first buffer and the consumer. Thus the producer

will have to wait only when both buffers are full. This

method is pictured in Fig. 4.3 and the CSP descriptio~ shown

in Fig. 4.4. This simple and elegant solution has the fea

ture that each value passes through both of the buffers.

LIPRODUCER H BUFFERl H BUFFER2 KONSUMER [I
Figure 4.3 Double Buffer

P~ODUCLR:: i:integerj
i: =1 ;

2[i~lO ~ BUFFER1!i; i:=i+1]

I I BUFFER!" slot:integer; 2[PRODUCER?slot ~ BUFFER2!slot

\ I BUFFER2:: slot:integer; *[aUFFER1?slot ~ CONSUMER! slot

I I CONSUME~:; x:integer; *[aUFFER2?x ~

Figure 4.4 A CSP solution for a double buffer.

The second method is to send alternate values to

bufferl and buffer2. A picture of this method is shown in

Fig. 4.5 and a CSP description in Fig. 4.6. This solution

obviates the necessity of passing each value through each of

the buffers. However, it requires a complex alternative

command to send alternate values to buffer1 and buffer2.

This command also ensureS the correct termination of the

producer process irrespective of whether an odd or an even

number of values is produced.

~BUFFERl ~
I-P-R-OD-U-C-E-R-;k""' ~'C-O-N-S-U-M-ER-I

..... ~ ...~

.... ~ BUFFER2 r.- ...

Figure 4.5 Double Buffer.

PRODUCER::	 switch,i:integer;
i:=l; switch:=l;
*[iS1D + [switch=l + BUFFER1!i; switch:=2
- Dswitch=2 -+ BUFFER2!i; switch:=l

] ;

i:=i+1

]

I I BUFFER1,:	 slot:integer; *[PRODUCER?slot ~ CONSUMER!slot

I I BUFFER2::	 slot:integer; 2[PRODUCER?slot + CONSUMER!slot]

II CONSUI1ER::	 switch,x:integer;
switch:=lj
.,[switch=l; BUrFER1?x + switch:=2;
- Dswitch=2; BUrrER2?x ~ switch:=lj

J

Figure 4.6 A CSP sOlution for d double buffer.

4.4 Producer/Consumer Problem

We shall now describe the well-known Producer/Cons~rner

problem, leaving its solution (expressed in CSP) until the

next section. This section may be skipped without loss of

continui ty, if the reader is already familiar with the

problem.

For simplicity, we shall first illustrate the bounded

buffer solution to this problem with an idealized hamburger

stand where the cook produces only ~ hamburger at a t:rne.

Once cooked, he places it sequentially in one of K slots of

the warmer Ca K-slot buffer) ready for a customer. This is

shown in Fig. 4.7. A customer can order only one hamburger

at a time, but he may repeat his order. The problem is how

to coordinate the cook and his customers to ensure that:

1)	 The cook does not prepare more than k hamburgers before

any customer buys one (called overflow);

30

2)	 The customer does not get ahead of the cook (called

underflow.)

The Producer/Consumer problem as it arises in the area

of computer operating systems may have the following inter

pretation. The producer process may represent an input

operation; it is placing the data iota a buffer <of k

records), one record at a time. The consumer process, per

haps representing the evaluation of some mathematical

eXfressions, fetches one record at a time from the buffer.

Although we will not discuss the classical solution

using the p-v semaphores by Dij kstra[6 J, it suffices to say

that, in that solution, only two processes (i.e., a producer

process and a consumer process) are working in parallel.

In contrast. in the solution suggested by Hoare and

presented in Lhe next section, the buffering action is

described as a third process which uses a buffer of K-slots.

In other words, three processes are working in parallel;

they are the producer, the consumer, and the buffer. A

bu~fer of a finite number of slots is known as a bounded

bu:fer.

oJ.:

~

Stove Cook Warmer Customer
(with K-slots)

Figure 4.7	 A Hamburger Stand to Illustrate

the bounded-buffer problem.

4.5 Bounded	 Buffers

This section presents a solution, written in esP , for

the consumer/producer problem. Three processes are used;

They are the consumer, the producer. and the buffer. The

last process, acting as a K-slot buffer, is sho'ir/n in

Fig. 4.8.

32

BUFfERACTION: :

buffer: array of K slots;

nrttade,nrbought,order:integer;

temp: slot;

nrmade: =0;

nrbought::: 0 ;

COIIClent At all times we ensure that:
0 < nrbought < nrmade < nrbought+K;

"
..:[f nrmade < nrbought+K; producer , temp -+

buffer(nrmade mod K) temp;~ nrmade : :: nrmade+l
step....... 2(a)

o[~rbOUght< nrmade ;consumer ? order -+ ' \

..A/" consumer! buffer(nrbought mod K);
_/ nrbought ::: nrbought+l

] step 2(b)

figure 4.8 Process to describe the buffering action

This process contains only two basic steps:

Ste~ 1 Initialize the number of hamburgers madeCnrmade}

to zero and that bought (nrbought) to zero.

Ste~ 2{a) Check to see if the following 'no-overflow' con

dition:

nrmade < nrbought+K

is satisfied. If so we then check to see whether

the process producer has cooked a hamburger. If

so, it will be placed in slot number J where J

nrmade mod K and nrmade is incremented by 1.

Or

Step 2Cb) Check to see if the following I no underflow' con

dition:

nrbought < nrmade

I

is satisfied. If so, we then check to see whether

the consumeI' has ordeI'ed a hambuI'ger. If he has,

then the customer gets one from the slot number

where I ~ nrbought mod K and nrbought is

incremented by 1.

If both of the following situations occur:

1) The process producer terminates (which ca.uses the input

guard producer? temp to fail); and

2) The process consumer terminates (which causes the input

guard consumer? order to fail)

then the repetitive command in Fig 4.8 will terminate, after

which the process BUFFERACTION will also terminate.

Observe that BUFFERACTION will also terminate if the

producer has terminated and the buffer is empty, or, if the

consumer has ter>rninated and the buffer is full.

4.5.1 Hand trace for a 3-s10t buffer

To be more specific, let us take K 3 and study the

details shown in Table 4.2 (on page 35).

At ti![Je to, step 1 yields the following initialization:

nrmade := 0 and nrbought := O.

At t1 the buffer is empty thus the only option pos~ible

is for the producer to make a hamburger and put it in slotO

(step2(a)) .

At t2, t3, t4, t5 and 1:7 there are ha.mburgers available

in the buffer and the buffer is not full. It is thus

possible either for the cook to put another hamburger in the

buffer or for the customer to buy one. Which of these

actions take place depends on:

34

1) Whether the cook only is ready to put one into the

buffer (producer ? temp), in ~hich case he does; or

2) Whether only a customer wishes to buy one, in ~hich

case he does; or

3)	 Whether,simultaneously, both the cook is ready to put

one into the buffer and the customer wishes to buy one.

In this case it is undetermined who gets in first

although both will eventually succeed.

In this hand-trace the cook puts one in at t2, t4, t5 and t7

while the customer buys one at t3.

At t6 and t8 the buffer is full and the only action

possible is for the customer to buy a hamburger. The cook

is prevented from putting another one in because the condi

tion nrmade (nrbought + K is not satisfied.

35

CookTime

to

tl

t2

t3

t4

t5

t6

t7

t8

Make 1
[O.K. as
Place in

Makel
[0. K. as
Place in

Make 1
[0. K. as
Place in

Make 1
[0. K. as
Place in

Make 1
[0. K. as
Place in

Must wait
[5<2+3]

Buffer
orbought I Customer Configura"tionI nrmade

slot
0 1 2

0 0 o:rr
full

"0< 3J
slot 0 01 ~

1< 3]
slot 1 2 0 ~

Take one
from slot 0

2 1 [0. K. as 0< 2] c::E:::J
2< 1+ 3]
slot 2 3 1 ~

3< 1 +3 J
slot 0 4 1 ~

Take one
from slot 1

4 2 [0. K. as 1< 4] ~

4< 2 +3]
slot 1 5 2 ~
as

Table 4.2 Parallel trace for the 3-510t buffer.

36

4.5.2 Time-history of some I/O commands.

We conclude this chapter by presenting a time-history

of the three communicating processes: producer, buffer, and

co~sumer, described in Fig. 4.2. It serves to focus on some

fine points in the model for synchronization and buffering.

In Fig. 4.9 each t shown on the vertical axis

indicates the time when either an I/O command begins to try

to execute or when it succeeds. For example, at time tl the

va~ue 1 (from the producer) is 'assigned to' the variable

slot (in the buffer) without any delay. Immediately after

this. at t2, the value in slot is transmitted to the

variable x (in the consumer) without delay.

At t3 the value 2 is sent from the producer to the

buffer without delay. However, at t4 when the buffer tries

to pass this value to the consumer it is not able to do so.

and has to wait until t6 when the consumer is ready to

accept it.

At tS the producer is ready to send the value 3 to the

buffer but has to wait until t7 when the buffer is able to

accept this value. At t8 the buffer is ready to send this

value to the consumer but has to wait until t9 when consumer

is ready to accept this value. Etcetera.

37

Time

to

t1
t2

t3
t4

t5

t6
t7 -
t8

t9

PRODUCER

Produce
the

1st value

BUFFER! 1

Produce
the

2nd value

BUFFER! 2

Produce
the

3rd value

BUFfER! 3

WAIT

:

Produce
the

4th value

BUFFER ~ONSUMER

PRoDUCCR?slot
CONSUMER! slot EUFFER?x

Consume
PRODUCER?slot the
CONSUMER! slot 1st value

of x:.
:

WAIT

:

BUffER?x
PRODUCER?slot
CONSUMER! slot

WAIT

BUFFER?x

Consume
the

2nd value
of x

figure 4.9 Time-history of three communicating processes
with the shaded areas indicating computations.

38

CHAPTER 5

ARRAY OF PROCESSES

When a number of similar processes is involved, it is

convenient to specify them as an array of processes. In this

chapter this concept is illustrated with several examples.

One of the examples serves to show how each process in such

an array is used to represent a set of data items. The fac

torial and prime number problems are also studied in depth.

5.: Subscripted Process Names

Thus far a process name is used to identify only one

prDcess. It is possible to use an identifier (as used for

arrays) to name a group of processes. Thus

name(k:l .. n): : command list

declares a one dimensional array of n processes: with names

name(l), name(2), •. ,name(n}. In long hand they are:

name(l); : command list

I I name(2): : command list

I I name(3): : command list

I I nameCn):: command list

where each command list may involve the index k which ranges

between 1 and n. We illustrate this concept by an

example. Given a character string, count the number of

occurrences of the characters 'u' ,'v' and 'Wi respectively.

A possible solution in CSP is shown in Fig. 5 .1Ca).

The parallel command consists of five prOCesses named

g ,x,y, z and p. The proces s g inputs the characters from

the typewriter one at a time. Each character is then sent

to the three processes x,y and z which serve to count the

number of the characters 'u','v l and 'WI respectively. In

the parallel command, the termination of the process g

causes the termination of the processes x,y and z which in

turn causes the termination of the process p.

In Fig. 5.1(a) the processes x,y and z have similar

command lists. To take advantage of this similarity, the

CSP representation in Fig. S.l(a) can be rewritten in the

form shown in Fig. S.l(b). Two major changes are made.

First, the process names x,y,z have been replaced by

s(1) ,s(2) and sO). Second, the subscrip-ted variables

char(l) through char(3) are used to hold the characters

I u I, I V I and I Wi. The scope of this array extends

throughout the parallel command.

Fig. S.l(c) shows a shorthand version of that in

fig. S.l(b). s(k:l •. 3) stands for the three process names

s(1),s(2) and s(3) and k is known as the bound variable.

Except for the indices, the same command list is used in all

three processes. The output commands s(1)!c, s(2)!c and

s(3)!c have been given the process names m(1), m(2) and m(3)

respectively. This labelling allows us to rewrite the com

mand [s(1)!c II s(2)!cll sO)!c] as [mej:1..3):: sej)!c].

40

g:: c:character;
':Jtypewriter?c -+ [x!c II y!c

I Ix:: c:character; t:integer; t:=O;
*[g?c -+ [c='u' ~ t:=t+1
- Dc~'u' -+ skip]

] ;
p! ('u I l t)

Ily:: c:character; t:integer; t:=O;
H[g?C -+ [c='v' -+ t:=t+1
- Dc~'v' -+ skip]

] ;
pH 'v' ,t)

liz:: c:character; t:integer; t:=O;
*[g?c -+ [c='w' -+ t:=t+1
- Dc~'w' -+ skip]

] ;
p!(l W',t)

lip:: c:character; n:integer;
~[x?(c~n) -+ lineprinter! (c,n)
- Dy?(c.n) -+ lineprinter! (c,n)

Dz?(c,n) -+ lineprinter! (c,n)
]

II z;c]]

Figure 5.1(a) Solution without subscripted process names
and array elements.

"1

char:(1 .. 3)ctaracter;

char(l):='u'; char(2);:::'v' charC 3)::= 'w'

r g:: c: ctaracter;
..::[typewriter?c [s(l)!c II s(2)!c II s(3)!c]J

Ils(1)::	 c:character; t:integerj t:=O;
*[g?c [c=char(l) t:=t+1
- Dc.:char(l) -+ skip]

] ;
p! (charel) ,t)

115(2)::	 c:character; t:integer; t:=O;
~[g?c -+ [c=char(2) -+ t:=t+1
- Dc~char(2) -+ skip]

] ;
p! (char(2),t)

115(3)::	 c:character; t:integer; t:=O;
~[g?c -+ [c=char(3) -+ t:=t+1
- Dc;o:char(3) -+ skip]

] ;
p! (char(3) ,t)

I Ip::	 c: character; n: integer j
;':[s(l)?(c,n) -+ lineprinterJ(c,n)
- Ds(2)?(c,n) -+ lineprinter! (c,n)

Ds(3)?(c,n) -+ lineprinter!(c,n)

]

]

Figure 5.1(b) Solution in which 3 similar processes have
sUbscripted process names and array eleme.r:ts.

42

char:(1 .. 3)character;
char (1) : ::: ' U '; char (2) : :; I V I; char (3) ; = ' IN' ;

[g:: c:character;
~[typewriter?c ~ [mej:l .. 3): :sej)!cJ]

JlsCk:1..3):: c:character; t:integer; t:=O;
'~[m(k)?c -...	 (c=char(k) -+ t:=t+1
- Dc.,tcharCk) -+ skip]

] ;
p! (charCk) ,t)

lip::	 c:character; n: integer;
.:.[ej:l •. 3)sej)?(c,n) lineprinterl(c,n)]

ee) Short form of solution given in Fig. 5.1(b).

Figure 5.1 Programs that count the number of characters 'U',
'v' ,'WI in a character string.

S.2 Bounded Buffer Using an Array of Processes

In this section we use an array of processes to imple

ment the bounded buffer which was introduced in chapter 4.

~'":',::',::'jI{::+/~SC1Dl)I

..-

Bounded Buffer

Figure 5.2	 The process s(O) outputs integers one at a time.

The processes s(1),s(2), ... ,s(100) have the

effect of a bounded buffer.

The process s(101) computes the sum of these

integers and prints it.

As shown	 in Fig. 5.2 we input integers one at a time

from a producer process s(O). Each integer in turn is

passed through all the processes of the bounded buffer:

s(l),s(2), ". ,dIDO). For 1::;i::;100) the integer in the

process sCi) will be passed to the process s(i+l) only when

the latter is ready to receive this integer. The process

s(101) (consumer) is used to compute and print the sum of

all the incoming integers. The CSP representation is shown

in Fig. 5.3.

[5(0) ..	 p:integer;
2[cardreader ? p ~ s(l) p]

Ils(i:l .. 100)::	 q:integer;
~[s(i-l) ? q ~ s(i+l) ! q]

115(101):;	 r,sum:integerjsum:=O;
*[s(100) ? r ~ sum:=sum+r J;
lineprinter ! sum

Figure 5.3	 The above CSP representation finds the sum of
a set of the integers and prints this sum.

We	 note that:

1)	 The processes s(l) to s(100) all serve the same pur

pose: to push an integer away from the producer

towards the consumer. As shown in Fig. 5.3, these

processes have identical command lists) varying only in

the value of i.

2)	 Each of the processes s (1) to s (100) represents a slot

in the bounded buffer. If the process s (1) cannot

accept a new integer, the process s (D) mus t wait unt i 1

the process s(l) is ready. Similarly, the process

s(101) cannot receive an integer unless the process

s <l 00) is ready to send it. The SiUTle is true for any

sCi) and s (i+l).

44

3)	 lor the sake of simplicity, let us take a 'snapshot' of

:he six buffer slot s(l) through 5(6) as shown in

:ig. 5.4(a). All values used in this intermediate

5tate are arbitrarily assumed. The details of these six

?rocesses, working in parallel, are as follows:

1.	 s(l) is ready to output the value 3 to 5(2) and

5(2), being empty~ is ready to input this value

from s(l).

2.	 s (2) is empty and, as a result. cannot transmit

any result value to s (3) and s (3), not being

empty, cannot accept any input from 5(2).

3.	 5(3) is ready to output the value 4- to s(4) but

5(4), still holding the value 6, cannot accept any

input from 5 (3) •

4.	 5(4) is ready to output the value 6 to 5(5) and

5(5), being empty, is ready to input this value

from 5(4-).

s.	 s (5) is empty and, as a result, cannot transmit

any value to s(6) but s(6), being empty, is ready

to input from s(5).

rig. 5.4(b) gives a snapShot of the 6-s10t buffer after both

the possible communications have been completed.

GradQally, all the integers in any buffer are pushed to the

right.

s(l) s(2) s(3) s(4) 5(5) 5(6)

I H empty H H HemptyH empty I
3	 4 6

Ca) An intermediate state of the 6-slot buffer.

sill 5(2) 5(3) s(4) s(0) 5(6)

F~ H 4 H empty H KmptyI3	 6

(1) The state of the above 6-s10t buffer after the two
possible communications have taken place.

FigQre 5.4" Communications between slots of the bounded buffer.

5.3 Case Study 1: Factorial Using Recursion

This section deals with a study of a CSP solution for

the factorial function:

1 if n=O

factorialCn) ;
{
n~factorialCn-1) if n>Q and n~limit.

rloare's solution [14J is reproduced in Fig. 5.5.

fac< i:1. .limit)::
,', [n:integer; facCi-1) ? n ~

[n;D ~ fac(i-1)l1
On>O ~ fac(i+1)l(n-1); r:integer;

fac(i+1)?r; facCi-l)~Cn.r)

]

I I fac(O): :USER
]

Figure 5.5 Solution to the factorial function.

As the solution shows, each process facCi) of the array

inputs the value of n from its predecessor (process

facC i -1) and outputs the va.lue of factorial{ n) back to its

predecessor (process fac(i-1J). If n is not equal to zero,

it requires the assistance of its successor (process

facCi+1» to compute the value of factorial (n-1). facCO)

is the user program which initiates the calculation and

obtains the final result.

For the purpose of illustration, we take n=3. The

interrelationship of the five processes involved in the cal

culation is depicted in Fig. 5.6. The arrowed lines show

the communication between two processes; and the trans

46

USER

I fac!])" ... ;fac(1)!~;... ..;fac(1)?~;.. I
,

CiJ----~- --- ~
,~ ,

V
fac(l):: ~[fac(O)?n ~ [n=O ~ fac(O)!l o- On>O fac(2)l(n-l) ;r:integer;--jo-

r- --E ------ ----I ,---.

• fac(2)?r;fac(O)!(n{'r)]
Y A
,	 I ,	 ,

rrr------~---
- - -I

A,~ ,
Y

fad2):: *[fac(l)?n [n=O --jo- fac(l)ll--jo q)
,

- [.In>O -+ fac(3)!(n-l);r:integer;
_J

r---~---------_I ,--.
I fac(3)?r;fac(1)!(n";r)]
-} A
I ',

J--- - --<- ---- --,

~ ~	 A, ,,
fac(3):: ':'[fac(2)?n	• -+ [noO ~ fac(2)!1 I t1l

r __ 0<En~o _-+_ ~a~~4~ ~(_n~l) ;r: inte.g~r.:.;... _ J
I fac(4)?r;fac{2)!(n;':r)]

-} ,	 A
',

GJ§ ~
~ ~

fac(4): : *[fac(3)?n -+ [n=O -+fac(3)!l
- On>O -+ fac(S)!(n-1);r:integer;

fac(S)?r;fac(3)!(n*r)]

Fig.S.6 The five processes involved in evaluating factorial(3).
The arrowed lines show the communication pattern.

mitted integers are shown in circles. The step number,

enclosed in a box, shows the order in which the communica

tion takes place between any two processes. There are in

total 8 steps involved.

5.~ Case Study 2: Generation of Prime Numbers

In this section we examine in detail a CSP solution to

the we II-known problem of finding prime numbers by

Eratosthene's sieve method [9,11]. For the sake of sim

plicity, we shall only consider the sequence of integers

from 2 to 25

sl: 2,3,4,. .• ,25.

For the uninitiated, l4e shall illustrate below in four steps

how all the prime numbers in sl can be obtained.

1.	 Take the first integer (i.e. 2, a prime number).

Eliminate all its multiples from the sequence 51. We

now obtain a new sequence:

82: 3,5,7,9,11,13,15,17,19,21,23,25.

and note that the first number eliminated by 2 is

2.... 2=4.

2.	 Similarly, take the first integer (i.e. 3, a prime

number) in the sequence s2. Eliminate all its multiples

to produce a new sequence:

s3: 5,7,11,13,17,19,23,25.

We note that the first number eliminated by 3 is 3R3=9,

(because 3-2 has already been eliminated),

48

3.	 Again, take the first integer in the sequence 83 (i.e.

5, a prime number). Eliminate all its multiples to

?roduce the sequence:

54: 7,11,13,17,19,23.

we note that the first number eliminated by 5 is

5*5=25.

4.	 Finally, take the first number in the sequence 54 (i.e.

7, a prime number). We note that the first number to be

eliminated would be 7*7=49 (because all the earlier

mUltiples of 7 must already have been eliminated). As

a result no elimination will be made. The remaining

integers:

11,13,17,19,23

are all primes. In summary, the primes in the sequence

are as follows:

2,3,5,7,11,13,17,19 and 23.

5.4.1 CSP Solution for Primes Using Eratosthenes Sieve

The CSP solution to the sieve problem (for integers

from 2 to 25) is given in Fig. 5.7. There are 8 processes,

namely SIEVE(O), SIEVE(l) to SIEVE(S), SIEVE(6) and print.

The purpose of SIEVE(O) is threefold. The first purpose is

to print the prime number 2 (from our previous knowledge).

The second is to eliminate all the even numbers. The third

is to pass all the odd numbers to SIEVE(l).

The array of 5 processes SIEVECi: 1 •• 5) is rather

involved. In Fig. 5.8 is listed each CQJnmand used and its

interpretation. Several important points are not self

49

SIEVE(i: 1..5)::

p .mp: integer;

SIEVE(i-l) ? Pi

print ! p;

mp:=p; comment mp is a multiple of Pi

:':[m: integer; SIEVE(i-l) ? m -+

~[ffi>mp -+- mp:=rnp+p J;

[m=mp -+ skip
Om<mp -+ SIEVE(i+l) ! m

]

! I SIEVE (0) : : print: 2; n: integer; n::: 3;
*[n~25 -+ SIEVE(1) ! 0; 0:=0+2

II SIEVE(5): :~[n:integer; SIEVE(S) ? n -+ print! n

II print: :~[(i:O .. 6)n:integer; SIEVE(i) ? n

Fig. 5.7	 A CSP solution to generate and print
in ascending order all primes less than 25[14].
Note there are 8 processes involved.

50

explanatory in Fig. 5.8. The first number received by a

process, and placed in p (command 2)t is a prime number and

will be retained by that process. All the subsequent

numbers received by the same process (command 5), will be

passed on to the next process if they are not a mUltiple of

the said prime p. For example, STEVE(l) retains the first

prime number 3 and passes on the remaining numbers

5,7 t l1,13,17,etc. The numbers 9,lS,etc. are mUltiples of

3. As such, they are eliminated by SIEVICl) (see

Fig. 5.9).

Similarly SIEVE(Z) retains the second prime 5 and

passes on the remaining numbers 7,11,13,17,etc. Moreover,

the only input number to be eliminated is 25. This is also

shown in Fig. 5.9.

The question arises as to why 6 SIEVE processes, namely

SIEVECO) to SIEVECS) are used in Fig. 5.7. The reason is

in this specific example Cwhere n=2S) we only need

processes i.e., SIEVECO),SIEVEC1), and SIEVE(2) as explained

at the beginning of this section and in Fig. 5.9. However

to use more will do no harm. When n is large J it is con

venient and safe to use ~+l SIEVE processes as follows:

SIEVECO),SIEVE(l), ... ,SIEVEC..,n). This rule of thumb is

used in Fig. 5.7.

3

1

Command Conunanci used Explanation for i=3
number in SIEVI:(i)

p ,mp: inte ger;

~

2 SILfCi-l) ?p;

3 print!p;

~
4

""~, ,

p and mp are declared as
integers.

SIEVE(3) will continue if and
when it gets an integer from
SIEVE(2). This integer is
assigned to p.

Send the prime p to the
process called print.

Make a copy of this prime
number in mp.

5 ll[m: integer i
sIEVE(i-l)?m

IJ-'-8+
6 i![m;.mp mp:=mp+pJ;

1
7(a) [m~r + skip

Wait until SIEVE(3) has
received a number from
SIEVE(2).

Execute the repetitive
command marked B. In this
command check to see if m is
larger than the mUltiple of p.
If so, update mp until mp~m.

Check to see if m is a
multiple of p. If so, ignore
the number and repeat the
loop marked A.

7Cb) Dm<mp"'" SIEVE(i+l)!mJJ	 If m is not a multiple of p,
send m to the successor
process SIEVE(4). Repeat the
loop marked A.

Fig.5.S Explanation of each command used in the SIEVE(i)
where 1~i~5. In this example i is taken as 3.

52

(START)

SIEVE (1)

keeps I removes

3 19,15,21

SIEVE(0)

+-3,5,7,11, .. -,25<E-
keeps

2

removes

all even
numbers

7 ,5~L".".H.,;.".",

...... 7 ,11,13,17,19,23

SIEVE(2)

keeps

5

removes

25

SIEVE(3)

keeps removes

7 none

SIEVE(4)

I keeps Iremoves I
11 I none

23,19,17,13,11-----400

13'17'19'23~~•••• ,

fig.5.9 With each process is associated a prime number.
Each process eliminates those numbers which are

a mUltiple of its prime.
The diagram shows the range of numbers 2sns25.

S3

CHAPTER 5

CONCLUDING REMARKS

The Examples of parallel processes in this report are,

for the most part) familiar programming problems that ha,ve

,::Jeen recast in a somewhat different way using parallel com

positioll) input/output primitives and guarded commands. the

use of the CSP languuge conveniently leads to the rapij and

clear development of complex parallel processes.

The CSP language has already been used in operating

systems design [13] and simulation [17]. Among the areas CSP

could be use d are Numerical Analys is) Proce 5 s Control and

On-line system design.

The implementation aspect of CSP has deliberately not

been discussed in the main body of this report because

research is still in progress [10]. The overheads inVolved

in creating processes in CSP is of particular interest and

importance.

Many schemes have been proposed to implement

synchronization. They include the events of PL/I [16]~ the

queues and man i tors [12 J in CONCURRENT PASCAL [1,2] and

PASCALPLUS [3]; the interface module and signal in

MODULA [21]. None of these seems, however) to be as con

ceptually simple as the synchronized I/O commands of esp.

Various questions remain open when CSP is used. They

include:

5!l

Ca)	 Tne method used ""[0 ciescribe a ddta structure. For

exar,ple, the K-slot 0uffer, used ir: rig. 4.5,

represents a datd structure. jlow does this representa

tion, usin6 one process for the ent~re buffer, compare

wi th K processes each representing <'l slot as used in

Fig. 5.2?

(b)	 '...Jhat is the o\/erheac ilssociated with each of the

representations mentioned in Ca)

(c)	 Should the repetitive co~ma~d have a specific ter

minator i.e.

~[i~10 ~ total:=total+iji:=i+l

Ui>10 ~ exit from the loop

55

ACKUOWLEDGH1ENTS

':he at:.1:nors wish to thanK ,r'.~ academic members of the

.t'r'obramming Research Group, Oxford University I Professor C.

A. R. J-joare and Mr. J. Stc,y, for welcoming them for their

sabocttical leave and for providing a stimulating envir0nment

to wurk in.

Specifically we thank:

Proiessor Hoare ior providin~ his assistance and

advice. He has patiently read the complete draft twice and

oftereel valuable suggestions and detailed criticism.

l-1r. C. Holt for being directly helpful in many hours of

cons true t i ve discussions) and for illuminating various dif

ficul t points. He has read and criticized the complete

draft.

Professor J. D. Lipson of University of Toronto for his

perceptive readings of the manuscript and many helpful sug

6esti0ns.

Mr. M. K. narper for his critical readings of the final

draft and for his help on the local computer system and Mr.

A. M. R. Newman who provided us with valuable help in con

nection with the local text editor. Last but not least we

thank Mrs. A. nampton l who assisted with the preparation of

many of the figures.

so

REFERENCES

1.	 Brineh Mansen, P.
The Programming Language Concurrent Pascal.
1ELL TT'aIls. Se£t. Eng. 1,2 (June 1975). 199-?07.

2.	 Brinch Hansen, P.
The Architecture of Concurrent ?rograms.
Prentice-Hall (1977), 47-65.
Conourrent Pascal is described and used to de ve Zop
three non-trivial concurrent programs: a single-user
operating 8ystem~ a Job-Stream system and a real. time
scheduler.

3.	 Bustard, D.W.
A user manual for PASCAL ?LuS.
Internal Publication, Department of Computer Science,
The Queen's University of Belfast.

4. Coffman, E.G. and Denning, P.J.
Operating Systems Theory.
Prentice-Hall (1973), 7-9.
A process is described and several. references are
given to definitions offered by other authors.

5.	 Colin, A.J.T.
Introduction to Operating Systems.
MacDonald/American Elsevier Computer Monographs no. 17.
(1971), 10-17.
Desaribes the differen~e between programs and pro~eS8e8.

5.	 Dijkstra, E.W.
Co-operating Sequential Processes, in
Programming Languages (ed. F. GenuySJ,
Academic Press (1968), 43-112.

7.	 Dijkstra, E.W.
The Structure of the T.H.E. Multiprogramming System.
Comm.ACM, 11,5 (May 1968), 341-346.

8. Dijkstra,E.W.
Guarded Corrunands, nondeterminancy, and formal derivation
of programs.
Comm.ACM, 18,8 (Aug. 1975), 453-457.
This paper introduces the guarded aommand and is
regarded as a prerequisite of the CSP paper.

57

9. rialberstam, H. and Richar·d l fl.E.
The Sieve of Eratosthenes: rormulation of the General
::;ieve problem in Sieve Methods.
Academic Press-C1974), 12-35.
The fiT'3t three pages provides an informal- descrip
tion of the si.eve method. The rer-wining des{n'iption
is a rigorous mathematicaZ treatment of the subject.

10.	 riales, T.F. and nolt, C.M.
Verbai cOEUllunication.

1:l.	 r-ioare, C.A.?,
Notes on t ructured Progr'ammln£, lr

Structure ?rogramming,Ac2Idemic Press(1972), 127-130.
The powel'set data type is u6ed to soZve the prime
number pl'ob ten.

12.	 n:::".1I'e, C.A.R.
Monitors: an Operating System Structuring Concept.
Corrun.ACM, 17,10 (:Jet. 1974), 549-SS7.

13.	 noare. C.A.R. and McKeag, R.M.
Structure of an Operating System.
UnpuLlished.
This paper 8uggests that the stl'uctUl'e of an
opeJ'ating system can be clearly expl'eaaed as a
hiel'archy of communicating sequential pl'oces8e8.

14.	 Hoare, C.A.R.
Communicating Sequential Processes.
Comm.ACM, 21,8 (Aug. 1978).

15.	 Hoare~ C.A~R. and Holt, C.M.
Ver'bal corrununication.

16.	 IBM System/360 PLjI Reference Manual.
IfHI Corp., C28-8201.0 .

17.	 (aubisch, W.n. and Hoare, C.A.R.
Discrete Event Simulation Based on Communicating Se
quential processes.
Unpublished.

18.	 KUO , S.S.
Assembler language for Fortran~ Cobol and PLll
Programmers.
Addison-Wesley Company, Reading, Massachusetts <:974).

19.	 Naur~ P. (ed.).
Report on Algorithmic Language ALGOL 60 .
Comm.ACM, 3,5 (May 1960) I 299-314.

58

20.	 Hadnick. S.E. and Donovan, J.J.
Operating Systems.
McGraw-Hill (1974), 247-248.
An excellent book on operating systems.

21.	 Wirtn, N.
Modula: a Prograwning Language for Modular
Multiprogramming. Software - Practice and ExperienCE, 7,
3-35, (Jan-Feb 1977).
Modula includes general multiprocessing facilities~

namelJ rrocesses~ interface modules and signals.

59

Aj?Pr:::iDIX

i"JRHAL Sy:rTAX OF CSP CCW!ANDS

In this ap?endix B;IF notation is used to describe the

Cit' cam.T:lanas. T;'1e curly braces { } have been introduced into

BlJF to denote none or more repetitions of its contents.

Types of Commands

.; cO!TUnand:> :::: < simple COffiJ:1and >1 < structured command>

< ~ im~le commanc:> :::: < null command:> 1< dssignment command,.

I < input command:> I < output command)

<: structured command:> :::: < al ternative corrunand)

I<repetitive command>

I<parallel command>

< null command:> :::: skip

<COJJ)Ji\dnd list> ::={<declaration>;I<cor.unand>;} <command>

1 Alternative and Repetitive Commands

< repeti tive cOr.Jnand:> :::: ~< 31 ternaTi ve command>

< a1 ternative command> :::: [< guarded command >{O< guarded command>}]

< 6uarded command> :::: < guard:> -<- < command list>

I«range>{)<rant;e:>})<&uard> -<- <colTL.rnand list>

<guard> .. :: <guard list>l<guard list>;<input command>

l<input command>

<buard list> :::: <guard element>{;<guard element>}

<guard element> ;;:: <boolean expression>l<declaration>

< range> :::: < bound variable >:< lOwer bound >.. < upper bound>

<lower bound> :::: < integer constant>

< upper bound> :::: < integer corlstant>

50

2 hrallel Corrunands

<pa;,allel command> ::= [<process>{ll<process>}]

<: pIJcess >- :::: <: process label x command list>

< pucess label>- :::: <: empty >1 <: identifier> ::

I<identifier>«label subscript>{,<label sUbscript>})

<laDel subscript> ;;= <inte,;er constant>j<range>

<inte6er constant> ::::: <numeral>l<bound variable>

< bcund variable>- ::::: <: identifier)

3 Assignment Corrunands.

<: assignment command> ::;: <: target variable> ::: <: expression>

<expression> ::= <simple expression>l<structured expression>

<s:ructured expression> ::= <constructor>«expression list »

<constructor> ::= < identifier> 1< empty >"

<expression list> ::= <empty>l<expression>{,<expression>}

<target variable> ::= <simple variable>l<structured target>

< structured target> :: = < constructor >« target variable list »

<target variable list> :: = < empty> I <target variable>

{,<target variable>}

4 Input and Output Command.

<~nput command> ::= <source>?<target variable>

<Dutput corrunand> ::= <destination>!<expression>

<source> ::= <process name>

<jestination> ::= <process name>

<;Jrocess name> :: = < identifier>1 < identifier>« subscripts »

<subscripts> :: = < integer expression >{ ,< integer expression >}

Programming Research Group Technical Monographs

August 1978

This is a series of technical monographs on topics in
the field of computation. Further copies may be obtained
from the Programming Research Group, (Technical Monographs),
45 Banbury Road, Oxford, OX2 6PE, England. (The cost
indicated includes surface postage. If faster delivery is
required it should be indicated and an additional 30 per
cent sent.)

PRG-l (Out of Print)

PRG-2 Dana Scott.
outline of a MathematicaZ Theory of Computation

(£C. 50)

PRG-3 Dana Scott.
The Lattice of FZow Diagrams

(£1.00)

PRG-4 (Cancelled)

PRG-5 Dana Scott.
Da-ta Types as Lattices

(£2.00)

PRG-6 Dana Scott and Christopher Strachey.
Toward a MathematicaZ Se~antics

for Computer La.nguages
(£0.60)

PRG-7 Dana Scott.
Con-tinuous Lattices

(£0.60)

PRG-8 Joseph Stoy and Christopher Strachey.
OS6 - An Operating System for a SmaZZ Computer

(£1.00)

(com/d.)

PRG-9 Christopher Strachey and Joseph Stoy.
The Text of OSPub

(£3.50)

PRG·l0 Christopher Strachey.
Va~ietie8 of Progpamming Language

(£0.50)

PRG-ll Christopher Strachey and Christopher P. Wadsworth.
Continuations: A Mathemati~al Semanti~s

fo~ Handling Full Jumps
(iO.60)

PRG-12 Peter Mosses.
The Mathematical Semantics of A.lgot" 60

(£1.00)

PRG-13 Robert Milne.
The Fo~mal Semanti~s of Computer Languages
ana their Implementations

Available as:
Technical Microfiche TCF-2.
A set of 0 Microfiche (£4.00)

or
Photocopy PRG-X13 (£10.00)

PRG-14 Shan S. Kuo, Michael H. Linck and Sohrab Saadat.
A Guide to Communi~ating Sequential Pro~eS8es

(£1.00)

