
CCT"f ,'6~n

A Theory of

Communicating Sequential Processes.

C.A.R. Hoare. S.D. Brookes. A.W. Roscoe.

Technical Monograph PRG-16

May 1981

Oxford Uniersity Computing Laboratory.

Programming Research Group.

45 Banbury Road.

Oxford. OX2 6PE

OXford University
Computing Laboretory
Programming Research Group-Ubrary
8-11 Keble Roed
Oxford OK1 3QD
Oxford (O~.A5) 54141

(0 19S1 by C.A.R Hoare, S.D. Brookes, A.W. Roscoe.

Oxford university Computing Laboratory,

Programming Research Group.

45 Banbury Road,

Oxford. OX2 6PE

13 ~

;;;
<:"

.
~

~

~

~

~

~

u ~

a
.

~

C

~

J C

T
~

~

C
>

.=;0
.
~
c J E

E

0 u

£ " ~

0 E

;;
.~
;0 E

~

~

;0 E

<:

~

m

~

&
 ;;; a

.
~

a
.

J
Q; ~
J

c
" m 0>

c
~

~

~ c

!!

0 " ~

E

J c m

c
" m

c ~
.
~

C
>

c
"

c ~
~

~

'" ;; ~

m

E

.
~
c E

;;; a; I
" c 0
c

'5 ~

.'!?
." ~ ~ 0 a

.

~

f- ~

§ ~

" ~

c J
0 u u m

CONTENTS

Page

O. Introduction

1. Definition of a Pr.Jcess	 5

2.	 Nondeterminism 15

2.1, Nondeterministic composition 15

2.2. Distributivily	 16

2.3. Limits	 17

2.4. Continuity	 19

2.5. Recursion	 21

3.	 Operators on Processes 23

3.1. Parallel Composition by Intersection	 23

32. Conditionar Composition	 24

33. Parallel Composition by Interleaving	 25

34. Sequential Composition	 26

3.5. Iteration	 27

3.6. Concealment 29

3.7, Inverse Images 31

4.	 Applications 33

4.1. A COUNT Register	 33

4.2. Channel Naming	 34

4.3. Buffers and Chains	 37

5.	 Prospects 42

6.	 Relerences 44

A THEORY OF

COMMUNICATING SEQUENTIAL PROCESSES

o Introduction.

In the lasl decade there has been a remarkable growth in general

understanding of the design and definition of computer programming

languages. This understanding has been based upon a recognition that

the text of each program expressed in the language should be given a

mathematically defined meaning or denotation. In the same way as any

other notational system of logic or mathematics. For a conventional

sequential programming language, the simplest mathemallcal domain

suitable fOr this purpose is the space of partial functions which map from

an abstract machine state belore execution of a command to the stBte

of the machine afterwards. For a programming language with jumps. the

appropriate mathematical domain Is slightly more complex. involving

continuations. For a programming language in which subprograms are

themselves assignable components of the abstract machine stale. the

appropriate reflexive domain of continuous functions has been discovered

by Dana Scott [4]. His techniques have been applied to a variety of

familiar and novel programming languages. The concept on which all

these developments rest is the familiar mathematical concept of a partial

function: and Its familiarity has undoubtedly contributed to the widespread

acceptance and success of the approach. However, there are two features

of certain new experimental programming languages Involving concurrency

which are not so simply treated as mathematical functions.

(1) In the parallel execution of commands of a program, the effect of

each command can no longer be modelled as a function from an initial

state to a final state of an abstract machine; it is also necessary also

to moael the continuing interactions of a command with its environment.

(2) In the execution of paraltel programs, it IS desirable to abstract from

the relative rates of progress of the commands being execut~d in parallel.

In general. this will give rise to non-determinacy in the behaviour and

outcome of the program.

Both these problems arise in acute form in the treatment of a language

like that of Communicating Sequential Processes [1].

It is the purpose of this monograph to construct a mathematical domain

which should play the same role in defining the semantics of

communicating processes as the domain of partial functions does for

sequential and deterministic programming languages, Every etfort has

been made to keep the domain simple, and to ensure that th~ n~c~ssary

operators over objects in the domain have elegant and intuitively valid

properties.

The flrsl section of the monograph containS a definition of th~ required

domain of processes. FOllowing the lead of [21. we first Intro(juc~ lh~

concept Df a rransition which is a ternary relation between

(1)	 the inItial state of a process

(2)	 a sequence describing Its interactions with i1s environment

during its execution

(3)	 a possible state of the process after those interactions.

Next, we note that the Internal states of a process are not obs~rvable

from Its environment. We therelore define the concept of an observation

of a process, whiCh is a finitely describable experiment to which a process

3

can be subjected. We then postulate that two processes are identical

if they cannot be distinguished by any such finite observation. This

reasoning leads directly to the construction of our proposed mathematical

space of processes.

The next section shows that this space has the usual ordering properties

required of a semantic domain. The relevant partial ordering Is simply

set inclusion in the reverse of Ihe normal direction, 50 that one process

is an approximation to another if it is Jess deterministic. We show that

Ihis is a chain-complete partial ordering over the space of all processes.

The Important consequence 01 this is Ihat every set of recursIve equations

in process-valued variables has a least solution: and this permits the

use of recursion both in a programming language and in Us formal

definition

The third section defines a wide range of operators over the dOmain of

processes: these include sequential composition, conditional composition,

two forms of parallel composltlon. and (perhaps the most crucial) a

concealment operator, Which permits abstraction from the delalls of

internal communicatlons between processes connected in a network.

These operators enjoy a number of elegant and useful algebraic

properties. We hope that this range of defined operators will be a

sufficient basis In terms of which to define all other operations required

in the semantics of a parallel programming language, without any lurther

concern for the details of the underlying mathematical model. Thus these

operators should play the same role as the basic operators defined by

ScoU for the LAMBDA calculus. Which shield the practising user 01 the

calculus from the complexities of the construction 01 the underlying

dOmain.

The fourth section gives some examples of the application of the model.

by showing how it can be used to define some complex lJul useful

programming language constructs, and to describe some Simple but

interesting parallel algorithms.

-
j

0
, ro 5'

0 ro 2 o· ~ " (
)
 "

c 0 0 ro '" 0;

ro " 0 " " ro (
)

0;
 ;; , 0;

ro " ro < " <5 " 3 ";; S.

;;

:3 !!.

+
'

"

 "
 '" 0: 3 3 '" ~

0;
 '" ~
 '" c ~
 • ro 0

,

(
)

0
,

~

(
)

c " ro '" " ~ ~
 ro "

ro ~
3

2i o· ~ ~

~

Q
.

c 0 " S.

3 ro 5'

0 a 0 ~

~

(
)
 iii ~ ~
.

 '" ~
 iii ~
.

cr

~

S.

3 " iii

3 ~

5

Definition of a process

The ultimate unit In the behaviour of a process is an event. E... enls are

regarded as instantaneous: if we wish to represent an acti\lity with

duration. we must introduce two events 10 represent Us starl and Its finish.

so that other B\lents can occur between them. We shall not be Interested

In the length of the time Interval which separates the e\lents. but only

in the relative order in which they occur. We let A stand for the set

of all events with which we shall be concerned. The beha\liour 01 a

process up to some moment in time can be recorded as the sequence

of all B\lents in which it has partiCipated; this is known as a trace and

the set of all possible traces is denoted by A-

Let 5 be a trace and tet P and Q be processes. A tran~it,on is a

proposition

p ~ Q

which means that s is a possible trace of the beha\liour of P up 10 some

moment in time. and that the sUbsequent beha\liour at P may be the

same as that of Q. Thus if I is a possible Irace of Q. after which it

may beha\le like R. then clearly sl (s followed by t) is also a possible

Irace of P. after which it can beha\le like R.

Th.s !act is formalised as a general law:

p ~ Q & Q ~ R => P ~ R. ILl)

Con\lersely. if P ~ R . then there must exist some intermediate process

Q. which beha\les exactly like P would beha\le after doing s but belore

starting on t This is expressed In the law:

p ~ R = 3 Q. P ~ Q & Q ~ R. (L2)

6

The empty trace 0 Is the sequence with no e\lents. It describes the

behaviour ot a process which has not yet engaged In any eXle rn ally

recordable e\lenl. We adopt the con\lenllon that after doing nothing a

process may remain unchanged:

p ~ P. (L3)

<>
If a :;. P. then the possibility of the transition P -----+ a means that P

may make internal progress. which cannot be obser\led from outside. after

which it can beha\le like Q rather than P. Since a process is in general

nondeterministic, its internal progress wilt require making of arbitrary

choices. which are wholly uncontrollable and in\lisible from outside. Such

a choice can only reduce the range 01 possible future beha\liours 0' P.

by excluding beha\liours which would have remained possible if some

alternati\le choice had been taken. This 1act Is expressed by the theorem:

P ~ Q & Q ~ R ~ P ~ R.

The Init/als of a process P are those events In which it can engage on

Its very first step; they are dellned

<.>initialB(P) z (a13 Q. P -----. QJ

where (a> Is the sequence contaIning only "a". The choice of which

of these e\lenls will actually occur will depend (at least in part) on the

environment in which the process Is placed. Let X be the set 01 e\lents

which are possible for that environment. Then the event that actually

occurs must be in the intersection (X n initials(P)). If this intersection

is emply. then nothing further can happen; the process and its

environment remain locked fore\ler In deadly embrace (3]. Un10rtunately,

It P Is non-deterministic. deadly embrace is still possible e\len when the

Intersection's non-empty. ThiS occurs when P can progress in\lisibly

to become Q. and the intersection (X n initials(Q)l is empty. In such

7

a case. we say that X IS a possible refusal of P, and thaI P can refuse

x.

We want to be able to distinguish between processes by observing their

behaviour in finite environments. It will be possible to distinguish between

P and Q jf and only ;t there IS a finite sequence 5 of events possible

lor P and Q, and a finite set of events X, such that P can refuse X

after doing 5 but Q cannot (or vice versa). We adopt this view of

dislingUlshability because we consider a realistic environment to be one

which is at any time capable of performing only a finite number of events.

Bearing these remarks in mind, we define the sel 01 all P's refusals as:

refusals(P) = {XI X is finite &

3 Q. P ~ Q &

(X n initial'(Q) ()))

where {} is lhe empty set.

From this definition il follows that

(1)	 {} € refusals(P)

(2)	 if Y € refusals(P) and x .£ Y then X € refusals(PL

(3)	 if X € refusals(P) and Y is a finite subset of (A - inltials(P»

then (X u Yl € retusats(Pl.

CA - inilialscP» Is the set of events that P cannot perform. The third

theorem above states that P can refuse these events, together with any

other set of e ents it can refuse.

A trace of a process is a sequence of e\lenls in which It may engage

up to some moment in time. The set of all such traces is defined:

traces(P) ~ (513 Q. P ~ Q).

B

From this definition it follows Ih~t

<> '" t'l:aces(P)

at € tracee(P) ~ S f	 tracesCP).

The second theorem states that any prefile (i.e Inilial subsequence) Of

a trace of P Is also a trace of P.

It 5 is a trace of P. and if. aUer engaQlng in the even1s 01 s. P can

refuse the finite set X. we say that the pair (5. Xl is a failure 01 the

process P The sel of all such failures is delined:

f.ilures(P) • f (s,X) I	 3 O. P --4 0 &

X ~ tefus.Js(O».

From lhis definlfion it follows that 1he set F = failures(P) has the

properties:

(Plj (5, X) E: F => S E A* & X £. A & X is fin i te

IP2) ((>, f 1) f F

IPS) (st"f}lfF=(s,()FF

(P4) X S Y & (A r Y) f F => (s, X) f F

CPS) Let. U:Ie {al(s(a),ftl F Fl and let"_ Y be a

f init_e BubAet_ of (A - U); then

(s, X) f F = (s, (X lJ Y)) f F.

The failures of a process represent possible externally observable aspects

01 its behaviour. The tact that (s, Xl f; faIJureS(P) means that it is Oossibie

for P to do s and then refuse to do any more. In spite 01 the fact thaI

9

ilS environment allOws any 01 Ihe events of X. Our next postulate s1f.lles

that there exists a process corresponding 10 any possIble set of failures.

If F satisfies the five properlies 01 the previous

pl::lr.agraph then there exists a process P such that

failures(P) ::: F (L4)

Finally. we postulate that the failures of a process are the only externally

observable aspects of lis behaviour. Thus two processes thaI fall in

exactly Ihe same CIrcumstances are indistinguishable by external

observation. Since we deliberately choose 10 ignore the details of the

internal construction of processes. II is reasonable 10 adopt the prinCiple

of identity of indiscernables:

failureg(p) == failures(Q) => P Q. (Lll

Postulates l4 and lS together slate that a process is uniquely defined

bv its failure set. In future. we shall Jdenrify a process with lIs failure

set. and define the transition relatIon rhus:

p ~ 0 '" Cvt~, X. (t, X) E" Q ~ (st~,X) E" Pl.

From this delinitlon we deduce (using conditions Pl - PS):

P ...!!... Q = 3R (P ~ R & R ~ Q)

P~Q~Q~P

t.races(P) ~ (51 (8, fll • P)

init,ials(P) (al «a), fl) • P)

refusals(P) (XI (O,X) • PI

fai lures (P) P.

10

Since lr~nsi'ions can be defined in terms of failure sets and failure 5615

in terms of transilions. il IS permissible to use either method in the

definition of anV particular process. II will be found convenienl 10 Qive

an intuitive explanation of the intended behaviour of a process by giving

the laws governing ils transitions. followed by a formal aefinition in terms

of refusal sets. Usuallv. the laws will give onlv sufficlenl conditions for

lhe transitions at the process being defined Then the fOrmal definITion

will specify the smallest refusal sel which safisfies the laws: i.e .. the one

wilh the least failures.

(1)	 The simplest process is STOP. a process that never does anything

The only law which if obeys is'

STOP ----> STOP."
The	 process thai obeys onlv this law is defined:

STOP (0, XliX S l\ & X 15 Unit.e).

Clearly. it refuses 10 do whatever the environment may offer.

(2)	 If Q is a process and "a" is an event. then the process

(<I -fo Q) is a process WhiCh first does "a" and then behaves like

Q

Q ~ R =:> (a --Jo Q) ~ R.

We also permit Q to make Internal prOWess while waiting for "a"

<>Q~ Q' = (a --> Qj --> (a -fo QI).

11

The	 smallest process which satisfies these laws is:

(a--+ Q)' «O,X)I X~ (A-{a)) &

X is finite)
U «(a)s,X) I (s,X) € Q}.

Clearly. it cannot refuse 10 do "a" jf offered: but may (Indeed must>

refuse everything else.

Examples: P	 :1!! (a ~ STOP)
a

P b e (b -. STOP).

(3)	 Let B be a subset of A. and let F(x) be 9 process for each x

in 6. Then (x;B ~ F<x)) Is a process which first does any event

x in B and then behaves like F(x),

F(b) ~ R ==- (x:B -i> F(x» ~ R)

for	 all b in B.

(~x. X € B = (P(x) ...52.., F'(x») =
(x:B -. F (x» ...52.., (x:B -.	 F' (x».

The	 smallest definition satisfying these laws is

(x:B	 -. F(x» • {(O,X)I X ~ A-B &

X is finite)

u	 {«x)s,Xll x € B &
(s,X) € P(x»).

Note that x Is a bound variable of this construction. so lhat

(x:B -. F(x» • (y:B -. F(y.».

12

Example: Pab = (x: (a. b) ---.. STOP>'

(4) Let Q. ~ P u• P.b

e PUPQb b .b

Q.b
e P U Pb•

Q e Q.b U STOP.

Figure 1 shows the transitions between these processes (other than

those deducible by transitivity)

~t;.
~Qo.~
 0.?

Q S-4 Oa.b~ Pb~ STOP
o..~~ yQb~

<>

Figure 1

13

If A = {a.b}. figure 2 shows Ihe initials and refusals ot each 01

these processes. proving that they are distinct.

process initials refusals

Q	 (a.b) { }. (a). (b). (a.b)

Q.b (a.b) (}.(a}.(b)

Q, (a.b) () . (b)

Q
b (a.b) [). (a)

P,b { a.b} ()

P (a) ().{b)
,

P	 (b) ().(a)b

STOP ()	 {).(a).(b).{a.b)

Figure 2.

(5)	 RUN is a process which will always do anything offered by the

environment. Thus it satisfies the laws:

RUN ~ RUN for all s in A*.

14

The required definition is

RUN : {(S, ()) Is. A*)

Clearly. RUN can never refuse anything,

(6)	 CHAOS is a process that can do anything at all; but in contrast

10 RUN, it can also at any time refuse to do anything at all.

CHAOS ~ STOP for all s in A*.

The	 required definition is

CHAOS ~ ((s,Xlls • A* & X ~ A & X is finite).

l~J

2 Nondetermlnism.

ThiS section investigates the properlles of nondelerrninism. It uses the

methods of IFittice theory to show how every recursive eQuation uniQuely

defines a process; the mafhemFitics reQuired is not difficult. and Is tully

explained.

2 1 Nondeterministic composition.

If P and Q are processes. the combination (P n Q) is a process which

behaves exactly like P or like Q: bUf the cholce befween them is wholly

nondeterrninistic: it is made autonornously by the process (or by its

implemenfor). and cannot be influenced or even observed by the

environment Thus <P n Ql can do (or refuse to do) everything tM! P or

Q can.

P~ R v (1 ~• R = (PnQ) ~• R.

The smallest process WhiCh satisfies thiS taw is sirnply:

pnQ P IJ O.

This operatIon is clearly associalive. cornmutative. and idempotent. and

has CHAOS as its zero·

(P n Q) n'R = P n (Q n 'R) (aSSOCIAlive)

(P n Q) (Q n P) (commutative)

(P n P) P (idemoolent)

CHAOS n P CHilDS (zero)

16

2.2 Distribu1ivity.

One Dr the m<:lin reasons 10r speci1ying f.I nondeterministic prOCess SUCh

as (P n Q) is 10 allow an implementor the lreedom to seleel and

implement either P or Q. whichever Of them is Cheaper. or Qives better

performance. Suppose F is some function from processes 10 processes.

-F()" m<1y be regarded as an assembly with a vacant sial into WhiCh

an arlJitrary component m<:ly be plugged. e.g. F(Pl or FIQ}. The behaviour

of the assembly is then a function of the beh<:lviour of this component

Suppose tha' an implementor hi'lS to implement (FCPl n F(Q». The

straightforward way of doing this ;s 10 implement F(P) and F(Q) <'Ind tben

selecl between them. An alternative way IS first to select the component,

and Dluq in iust thaI one. This alternative Is the same as the slan{1ard

way 01 implemen1ing FCP n Q) We woul{1 like to ensure that both

implementations give the S<:lme result. Le.

FCPnO) = F(P)nFCOl.

A function F which s<:ltisfies this condition for all prOCesses P and Q is

sai{1 to be distributive. Another reason for preferring {1istributive funclions

Is that they simplify prools of the properlies 01 processes. by c<:lse an<:llysis

of the alternative behaviours

AS an example. the construction (<:I ---+ P) is distributive In P. since:

(a -> (pnQ») (a ---+ P)n(a ---+ 0).

This means thai there is no discernible diflerence whether the choice

between P and 0 is made before or <:Ifter the OCcurrence 01 ~a". A

function Of two or more arguments is disTributive if it is distribu1ive in

17

each argument separately Thus nondeterminIstic compositlon 15 itself

distributive. because

pn(QnR) (PnQ)n(pnR)

and (QnR) np. (Qnp)n(RnP).

Further. the construction (x:B -+ F(x» is distributive In F(x) for all x in

B

(x,B ->	 (F(x) n G(x») •

(x,B -> F(X» n (x,B -> G(x».

Thus all operators Introduced 50 far Bre distributive. and we shall make

this a requirement for all operators Introduced hereafter.

2.3 Limits.

The relation P ~ Q means that the process P ma.y. as a result of

Internal progress. transform itself automatically to the process Q. A chain

of processes is an infinite sequence {Pi II;;"O}. each of whicn may

transform itself Into its successor; thus It satlsfles the taws:

p ~ P.	 for all I.
I 1+1

For each such chain there exists a Jfmlt process (UIP1L which can au

(or refuse> anything thaI every member of the chain can do (or refuse):

<> 5	 ~
(Vi. P ---. P 1 & P. -> Q) = (U·P) ~ Q.

I 1+ I I I

18

The definition of the smGlllesl process which satisfies these laws is:

(U P) ~ np provided that ~i . --->P, " P 1+ I1 1 I I

ThiS operator IS distributive:

U, (FlnQ.) '" (U/\) n (U.Q.)

provided that {PI j i;otO} and {QI i i~O} are <..:tlains.

Furthermore:

r ~ (UP) for all i., , ,

and for all processes Q

(lfi. p ~ Q) ==> (UP) ~ Q., , ,

The relatlon P ~ Q means simply thai the set Q is contcllned in the

set P. Thus everything that Q can do so can P

traces(Q) £ traces(P),

and everything that Q can refuse so can P

refusals(Q) £ refusals(p).

In other words P dllfers from Q only in that it Is less determinisliG, cHId

that Q can result from P by resolution of some of P's inherent

nondeterminism. Thus If 'VI. p' ~ P . this can mectn lhctl there IS
I 1+ 1

a potential inftnity of nondeterministic decisluns to be taken; but perhcllJS

none of them will actually reach the limit (UrP1L Thus (U1P) can lie
I

regarded as an "ideal" element. of which the PI are an ever impruving

sequence of approximations. getting as close as we may Wish to the ideClI.

but never actually reaching It. tlowever. in Implementiny <UtI) we wish

19

to allow an implementor (if he wIshes) to take aff the non-deterministic

choices in advance Of delivering his product.

2.4 Continuity.

Let r be a distributive function trom processes to processes. and

let {PI I i~O} be a chain. Then r- is monotonic in the sense that

p ~ Q => F(P) ~ F(Q)

for alt P and Q. Suppose now that an implementor is faceIJ with the

F(U.rrtask of implementlng The straightforward method would be to

obtain the limit <Uti) and then "Plug" It Into the assembly F(). But

suppose that the limit (UjP
j
) Is in some sense unattainable. Then W/4 can

apply r: to each of the approximations PI' obtaining the chaIn

(FCP
j
) I 1)0). and then take the limit of that. We would lIke to be sure

that both implementations are the same:

U,F(P,) = F(U,P,).

Then. even if the limit U. rep.) is unattainable. we can be sure of getting

as close to it as we need by the sequence of approximatlons

F<P.>. If this condition holds for all chains, then F is Sctld to be,
continuous. Another good reason for preferring continuous funcUons is

that they simplify proofs of the properties of processes. A Ihiro reason

will be explained in the next section.

As an example, the construction (a -+ P) Is con1inuous in P. since

(a ---> (U,P,)) ~ U,(a ---> P,).

20

A function of two or mOre arguments is contlnuous if it is cuntinuous

in each argument separately. Thus nondeterministic compusitiun IS

conllnuous. because

(U1P
j

) n Q U,(P, n Q)

and Q n WiP,) ~ Ui(Q n P,)

provided that {Pi I i)O} is a chain.

Furthermore. the consfruction (x:B ~ F(x») is continuous In F(x) for all

x in 8:

(X,B ~ W,F,(x))) ~ Ui(X,B --> F,(x)).

Finally. the limit construction is i1self continuous:

U,W,P,j) ~ U,W,P,,)

prOYided that for all i, {P'J1j)O) is a chain, and for all j, {PIJli)O)

is a chain.

Thus all operators Introduced so far are continuous, and we shall make

this a requirement for all operators introduced hereafter. This will ensure

Ihat any expression composed from named components by applying

continuous operators will also be continuous in each uf its named

components.

21

2.5 Recursion.

Let F be a continuous functlon from process~s to processes. We define

the n-fold compos ioan of F by induction on n:

FO(P) = P

F"·'(p) = F(F"(P».

Since F IS continuous. it is also monotonic. so the set

(F" (CHAOS) In~O)

constitutes a chain; and its limit 15 defined

"p. F(p) = U F"(CHAOS).
"

Note that in Ihis construction. "p' plays the role of a bound variable.

50 that:

"p. F (p) = "g. F(g).

Let p be a variable standing for an "unknown" process. which is known

only to satisfy the equation:

p = F(p).

Provided that F 15 continuous, it is clear that ,u.p.F(p) Is a solution for

p in this equation. Furthermore. it is the most general solution. In the

sense that it can progress autonomously to every other solution:

Q = F(Q) ~ "p.F(p) ~ Q.

22

ThUS the equalion

p " F(p)

can ~e regarded as a recursive definition of the process J.Lp,rcpJ; fur

example. we could have defined

RUN (Up_(x,A p))

RUN. (Up- (x,B p)) for any B '= A_

A similar construction can be used to find the solution of mutually

reCurSive equations such as

p " F(p,q)

q " G(p,q)

even when the number of equations is infinite.

The desire 10 define processes freely by recursion is one of the major

motives for requiring all operators to be continuous.

23

3 Operf.ltors on processes

In Ihis section we define The most Important primillve operiHars on

processes. and Slate their chief properties The section is sad Iv deVOid

of examples; Ihese will lJe found in the next section.

:1.1 Pal"alteJ comoosition by intersection.

The combinf.llion (P II O} is intended 10 behf.lve like both P find Q.

proqressing in parr.lllel Thus an event can occur on IV when both P find

Q f.lre able 10 panicip<1te in il slmultaneouslv. The same is lherefore

true of seQup.nces of events'

p...!.., p' & Q"'!'" Q' = (PIIQ)...!.., (P'II Q')

The smallest process which sf.ltisfies this law is defined:

(PIIQ) ~ (r5,XlJY) I (s,X) € P & (s,Y) € Qj.

-r:hus (PliO) Cf.ln refuse a set if P can refuse some of il find Q Cr.ln

refuse the rest

The operator II is distributive. conTinuous. associArive and commutative.

It has STOP as its zero find RUN as its unit. i.e ..

(PIISTOP) STOP and (PIIRUN) ~ P.

Furthermore

(xoR -4 F(x)) II (y,r -> G(y)) ~

(z,(Rnr) -> (F(z)IIG(z))).

24

32	 Condilionftl composition.

The process (P 0 OJ behf.lves elfher like P or like Q; but if differs from

(P n Q) In thf.ll the choIce between 'hem cftn be influenced by the

environ men I on the very firsl step. 11 the environment ofler~ ftn event

"a" which IS possible for P but not 10r Q. then P is selected: f.lnd

conversely for O. but If Wf.I" is Possible for bOlh P ~nd Q. the selection

between them is nondelermin~te. ~nd the environment does not gel ~

second chf.lnce to Influence It. Thus

P ~ R v Q ~ R => (P 0 Q) <:a>sl R

Before occurrence of the first event. P and 0 mf.lV progress indepf:!ndently:

0 1 p ~ p' & Q ~ 0' ~ (P 0 Q) ~ (pi 0)

The least process which satisfies these I~ws is defined:

(P 0 Q) ~ ((O,XJI(O,X) c P & (O,X) • Qj
U ((_,X) I • _ () &

((s,X) c P v (s,X) f QJ).

fP 0 Ql refuses f.I se1 il and only if it is refused by both P find Q.

The ooerator 0 Is disfributlve. continuous. f.lssociative. commutMive. f.lnd

tdempolent. It h~s unit STOP. Furthermore il f.ldmils distrlbution thus'

pn (Q 0 R) ~ (pnQJ 0 (PnRJ

(z, (B U C) ---+ H(z))

(x:B ~ F(.)) 0 (y,C ---+ G(y))

where H(z) if z C (B-C) then F(z)
else	 if 7 E (~-B) then G(z)

else F(z) n G(z).

25

When r := G. this last theorem is much more simply expressed:

(x:BUC ~ F(x) =

(x,B ~ F(x)) 0 (x:C ~ F(x».

3.3 Parallel com position by interleaving.

The process (P HI Q) behaves like P and Q operating in paralleL but it

differs radically from (P II Q) In that each event requires participation of

only one of the processes rather than both. Thus each trace of <P III Q)

is an interleaving 01 a trace of P and a trace of Q. as stated in the

law

P ~ p' & Q Q' = (PIIIQ)...!.., (P' IIIQ')

where r is an interleaving of 5 and t.

The smallest process whIch satisfies this law is

(P III QJ = (r,X) I 3s,t. (s,X) € r Ii. (t,X) € Q Ii.

r is an interleaving of sand t}

(P III QJ can refuse a sel only if both P and Q refuse it.

The operator Ii I is distributive. continuous. associative. and commutative.

It has unit STOP and zero RUN.

furthermore, if P (x:B ~ F(x) and Q = (y:C ~ G(y» th~n

(P III Q) = «x:B ~ (F(x) III QJ)

o (y:C ~ (P III G(y))).

Thus If an event can be performed by both processes. it is

nondeterministic which of them actually performs it.

26

34 Sequential Composition.

Let·v· denote an evenl which we Interpret as successful termination 01

a process. Then SKIP is defined as a process which does nothing but

terminate successfully:

SKIp· (v ---> STOP).

The process (P;Q) behaves like P until P terminates successfully. alter

which it behaves like Q. However, the occurrence of the "..,J" al the end

of P does not appear in any trace 01 (P;Q); "..J" occurs automatically

without the knowledge or participation 01 the environment. Thus. if 5

does not contain "tick", we formulate the laws:

p ~ p' & Q ~ Q' ~ (P;Q) ~ (P';O')

p ~ P & Q ~ R ~ (P;Q) ~ R.

The definition which satisfies these laws IS

(P;Q) = {(s,X) I 5 does not contain" &

(5, XU(v)) £ P)

u {(st,X) I s does not contain" &

(s <V>, () £ P & (t, X) £ Q).

This definitIon shows that while P is slill running. (P;Q) cannot refuse

X unles.s P can also refuse to terminate successfully.

In general. it is a useful con"'enlion that ·v- should be used only In the

process SKIP. in particular. in the construction (x:B --+ F(x)). the set

B should ne...er contain .. v'; and in future we shall assume that this

convention IS observed.

27

Sequential composition is distributi ...e. continuous. and associative.

furthermore:

(SKIP:P) • P

(STOP: P) = STOP

(x:B	 ---+ F(x)):P = (x:D -> (F(x):P»

(since" I B)

(SKIP 0 Q):P = pn (P 0 (Q:P»).

3.5	 Iteration.

The process .p beha ... es like an infinite sequential composition 01 the

process P;

P:P:P;

It can	 be simply defined by recursion:

'p =	 IJ.q. P: q

Iteration has the 'ollowing properties:

(P: 'P) = 'p

('(x:B	 -> F(x»)):P = '(x:B -> F(x»

(sInce" I B)

28

tSTOP STOP

'SKIP ~ CHAOS.

This last result IS the most surprising; 'I would seem more intuitive thaI

·SKIP should equal STOP indeed. il is permitted to implement it as

STOP But in general it is very important to distinguish ·SKIP from STOP.

FOr el<ampte. an Implementation of STOP uses no electricity, whereas an

implementation of ·SKIP may use an unlimited amount. Since it never

interacts with ils environment Ihere is no way of SWitChing it off! Such

a process must never be switched on, in any environment. CHAOS is

another process thaI must never be used in any environment. 11 is not

unreasonable 10 equate such equally useless processes.

It can be argued thaI Ihe process CHAOS might actually do somethlny,

whereas intuitively ·SKIP cannol. But consider the analogy of an

electronic circuit with a race condition. Such a circuit must never be

used. but if it is used it may break: and a broken device may behave

in any way Whatsoever. We allow the same possibility for ·SKIP.

A terminating form of Iteration can be defined

P until Q ~ ~p. (Q DIP; p».

ThiS repeats P any number of times, possibly ending with a single

execution of Q. It has properties:

tp = P until (*P) = P until STOP

((x,B --> F(x)) until (y,c --> G(y)),P ~

(X,B --> F(x)) until (y,C --> (G(y) ,P»)

SKIP until Q ~ (CHAOS 0 Q).

29

The third result is again surprising. it could be argued that in the

implementation of (SKIP until QL the opportunity to behae like Q occurs

rnfinitely often: and it is "unfair" to neglect such an opportunity forever.

But it seems impossible to define a notion of "fairness" such that a ~fair"

process Can be distinguished from an "unfair" one by any finite

observation That is why our Iheory makes no stipulation of fairness,

and treats every race condition as a POSSible cause of breakage.

Some Of these problems can be 8\1oided If we insist that • and until

are used only on processes whose first €\lent cannot be ·v·

$'(x,B -+ F(x)) iLp.(x,B -> F(x), p)

(x,B	 -> F(x)) until (y,C -> G(y))

iLp.«y'C -> G(y)) 0 (x:B -> (F(x):p))),

The .same technique can be used to define a parallel iteration, in which

each activation of the bOdy of the loop progresses in parallel with all

previous activations·.

"(x,B -> F(x)) ~ iLP. (X,B -> (F(x) III p)).

Unfortunately, this technique cannot be applied when the same problem

arises in the next section.

3.6	 Concealment.

Let "b" denote an event (other than ":v") which is to be regarded as an

internal operation of the process P; lor example. it may be an interaction

between some component processes from which P has been constructed.

We wish such events 10 occur automatically whenever they can. withoul

the participation or even the knowledge ot the environment of P. We

there/ore define (P\b) as the process which behaves like P. except thai

30

every occurrence of "b" is removed from its traces; it therefore satisfies

the law:

P 2, R = (P\bJ ~ (R\bl

where s\b is formed from 5 by removing all occurrences of "b",

r=or reasons explained in the previous section. if P can engage in an

infinite sequence of occurrences of ·b~, without ever interacting with Its

environment. then (P\b) equals CHAOS.

 <>
(Vn. P ~ P +,) ~ Po\b -4 CHAOS.

n n

The required definition is:

P\b ~ «s\b, Xl I (s, XU(b» € P)

U «(s\b)t, Xli Vn.(sb', ()j (p &

(t, Xl (CHAOS}

where sbn is 5 followed by n OCCurrences of b.

This operation is distributive and continuous, and

(P\b)\c • (P\c}\b

(P\b)\b • P\b.

Therefore If B is any finite sel 01 symbols, {b" b2, "b }. we cann
define

P\B' (... «P\b,l\b,l\ ... \b,).

31

Other theorems are

STOP\b STOP

RUN\b CHAOS

CHAOS \b - CHAOS

(b ---> P) \b = P\b.

(x:B -+ F(x))\b = (x:B ---> (F(x)\b» if b t D.

((b ---> P) 0 (x: B ---> F (x))) \b •

(P\b) n «P\b) 0 (x:B ---> (F(x)\b») if b t D

3.7 Inverse Images.

Let r be any fu nClion from events to events. Then r 1 (P> is a

process which can do "s" whenever P could have done 1(a):

P ~ Q => Cl(p) ~ Cl(Q)

where f(s) Is formed by applying 1 to each symbol of s.

The required definition is:

C'iP) = «s, X)I(f(s). fiX)) < P & X is finite}

where fiX) - (f(x) Ix < X & x is the domain of f)

32

f- 1 is distributive and continuous; furthermore

f-'(g-'(p» = (g 0 f)-l(p)

C 1 (STOP 1 STOP

C'(RUN) RUN C 1 (I\)

C'(x:B ---> F(x» = (y:C'(B) ---> C'(F(f(y»))

1-1 distributes througn D. II. III. and <provided f- 1 ('I/> = {v}l and

C'(P\B) C'(Pl\C'(B)

where f-1(X) = (ylf(y) € Xl

provided each elemenl of X is in the range of f.

33

4 Applications.

In Ihis section we give a number of examples 01 fhe use of the operators

delined above In the description of simple processes. In each case.

we use laws about transitions to specify the required behaviour of a

process before constructing it

4,1 A	 COUNT register.

A COUNT is a process which behaves like an unbounded non-negalive

integer register, with initial value zero, It engages in three kInds of event:

~up"	 denotes Incrementation of the register and can occur al any

time.

"down"	 denotes decrementation of the register and cannot occur

when its value is zero.

"iszero"	 can occur only when lhe value is zero.

Thus Ihe behaviour of COUNT is specified by the law

COUNT ~ Q =>	 EQ & initials (Q) {up, iszero} \I

LESS & initials (Q) (up,down)

where EQ means the number of ·up"s and "down"s in s are equal and

LESS means there are less "down"s than 'up"s in $.

34

A simple definition of a process COUNTo' whiCh satis1ies these laws.

can be given by infinite mutual recursion. The process

COUNT defines the behaviour 01 a count register holding the value n.
"

COUNT ~ (iszero ---> COUNT) 0 (up ---> COUNT,)
O o

COUNT + = (down ---+ COUNT) 0 (up ---+ COUNT +2)·n 1 n n

Anotner process which satisfies these laws is ZERO. where

ZERO (iszero ---> ZERO) 0 (up ---> (POS;ZERO»)

and POS ~ (down ---> SKIP) 0 (up ---> (POS;POS).

Note that POS terminates successfully when it first performs one more

"'down' than ·up". tn order to compensate for an initial "up·, it needs

to perform two more "down"s than "up"s This is achieved by first

performing one more. and then one more again. A third definition of

the same process is CO' where

Co = (iszero ---+ Co) 0 (up ---+ C)
1

C ~ POS· C .n+ 1 • n

4.2 Channel naming.

In this and later sections. we shall assume that the only events are

communications between processes. Thus each event consIsts of IWO

parts "m.t", where "m" is the name of a channel along which the

commUnlcallon takes place, and "t· is the content of the message which

passes. We define:

chan(m.t) m contm(m.t) t.

35

If P is a process which engages in events without a channel named.

then (m.P) is the process which engages in m.t whenever P would have

engaged in t:

(m.P) contm-1(p) .

For example.

m.COUNT3 - (m.down -> (m.COUNT,)) 0
(m.up -> (m.COUNT.)).

We can now construct two separate COUNTs. communicating along

differently named channels:

(n. COUNT.) III (m. COUNT,).

Suppose now that a process MASTER requires 10 use a count register.

communicating with it along channel named ~m·. To use the register.

it engages in the events °m.up". °m.down", and "m.iszero", By using II.

we can ensure that the process em.COUNT> engages in these events at

the same time as the MASTER. But first we need to ensure that

(m.COUNT) will ignore all communications of the MASTER. except those

which are directed along channel "m". This Is done by using the III

parallel operator.

Let M - {m.up, m.down, m.iszero}.

P ignoring X (P III RUN,).0

Then we define:

[m: COUNT,II MASTER]

«(m.COUNT,) ignoring (A-M))IIMASTER)\M.

36

It the MASTER requires to use two differently named counts. we can

similarly define:

[n'COlJNToll [m'COlJNT,IIMASTERj].

For example. the MASTER may contain the following process code, which

terminates successfully when II has added the current value of m to the

current value of n. leaving the former unchanged:

ADD : ~p«m.iszero -> SKIP) 0
(cn.down ---+

(n.up -> (p,(m.up -> SKIP»»))

ADD has the property that:

[n'COlJNT,11 [m'COlJNT,IIADD, RESTOFMASTERjJ

[n'COlJNT,. ,II [m, COlJNT, II RESTOFMASTERj j.

This example shows how simultaneous participation in events by parallel

processes can achieve the effect of communication between them.

It 15 possible (with care) 10 use the master/slave relation recursively. 85

shown by yet another definition of the COUNT register.

COlJNT : ~p. «iszero -> p) 0
(up -> ([m'pIILOOPj,p»)

where LOOP : ~q. «up -> (m.up -> q» 0

(down ---+ «ro. iszero ---+ SKIP) 0

Im.down -> q»)).

The LOOP passes on to Its subordinate process (m.p) all incoming "up"s

and "down"s, until a "down" happens when the subordinate process is

zero. The LOOP then terminates successfully. Thus [m:p II LOOP] behaves

like POS, provIded that p behaves like ZERO.

37

4.3 Buffers and chains.

We define a BUFFER (of type n as a process which inputs any sequence

of values (of type T) from a channel named "in". and outputs the same

sequence of values along a channel named ·our. Let m be a channel

name. and

m.T ~ (m.tlt € T)

(arm) ~ contm(a\(A-m.T».

less formally. ·(s r m) is the sequence of values whose communication

along the channel "m" Is recorded in s. Now a BUFFER is a process

which for all Q satisfies the laws:

BUFFER ~ Q =:

S € (in.T U out.T)'* &

(5 r out) is an initial subsequence of (6 r in) &

(sPout = sPin ~ initials (Q) = in.T) &

(srout. srin -= initials (Q) n (out.T)' ().

The third line states that an empty buffer must input any value of type

T, and the fourth line states that a nonempty buffer must always be

prepared to output some value of type 1. It is left undetermined whether

a nonemply buffer may refuse to input

A simple example that meets this specification Is the single-portion buffer

81

Bl ~ '(x:(in.T) ---> (out.(cont,,(x)) ---> SKIP))

38

In luture we shall use abbreviations:

(?x:T --> F(x» for (y:(in.T) --> F(cont,"(y»)

and !x for (out.x ---io SKIP).

Thus the example 81 could be rewritten:

B1 = *(?x:T ---+ !x).

An unbounded buffer can be defined by an infinite set of mutually

recursive equations. indexed on the current conlent of the buffer. which

starts empty:

BUFF <> = (?x; T --)0 BUFF <)I»

BUFF <)1>5 = (?y: T ---+ BUFF <x>s<y» 0 (! X; BUFF$) •

The process (p»m is one in which everthing output by P on channel

"out" IS simultaneously input by process Q on channel "in"; and all such

communications are concealed from their common environment. Thus

all external communication on channel "in" is received by P and Ignored

by Q. and all external communication on channel ·out" Is sent by Q and

ignored by P, Communication between P and Q is eslablished by

transformIng each event "out-x" of P and each event "in.x· of Q Into the

same event "x· This is achieved by the inverse of the function

insertm(x)	 m.x if X € T

x otherWise

(P»Q) «insert ,-l(p)) ignoring out.T)
ou

II ((insert -l(p» ignoring in.T))\T
'"

(here we have assumed that T Is finite).

39

A buffer which stores two portions before refusing further input can be

defined:

B2 ~ B1 »B1.

in general. a buffer with n portions is defined by induction:

B, ~ B1

B + = Bl) >B

O 1 n

An unbounded buffer can be defined:

B~ ~ ,,"p. (?x:T --> (p» (!x; Bl))).

A buffer which may have any bound or none is

B, ~ ,,"p. (BIn (?x:T --> (p » (!x ; Bl»)).

Note thaI it is not possible in our model to define a buffer with a

nondeterministically chosen finite bound. without also allowing an

unbouncJed buffer as an implementation. This is because there is no

finite lest which could detect that the burter is unbounded.

let f T.l ~ T- be an arbitrary monotonic function on strings. i.e. f(s)

is always an initial subsequence of Hstl. A process P is said to be

a pipe for f if il salisfies the following laws:

P~Q-==:>

5 € (in.T U out.T)~ &
(s r out) is an initial subsequence of f(sr in) &

«(srout) ~ f(srin) = initials(Q) ~ in.T) &

«srout) ~f(srin) = initials(Q) nouLT ~ {l).

40

Thus a buffer is just a pipe for the identity function. If P is a pipe

for f and Q is a pIpe for g. then (P»Q) is a pipe lor (g o n. A simple

example is a pipe for the sine function:

SIN: *(?x:REAL ~ ! sine (x))

and so are <SIN » BJL (Be» SIN>, etc.

Suppose now a MASTER process requires 10 use the SIN process 10

compute sines, using a channel name "sin" It sends the argument x

by sin!x (an abbreviation for (sin.in.x ~ SKIP», and it inputs the result

by (sin?y:REAL ---. F(y»), which is also an abbre\liatlon fOr something

similar. (Note the coding trick that assimilates output by the master with

input by the slave.) The reqUired effect can be achieved by the

combination

[sin:SINllMASTERJ.

A pipe for the tangent function can be defined:

[sin:SIN II [cos: COS II TAN])

where TAN = *((?x:REAL -+ sin! x;cos!x);

(sin?y:REAL --> (cos?z:REAL -> ! (y./z»»)

A process P is said 10 be a variable (of type T) if it is always prepared

to output the value it has most recently input: i.e. tor all Q:

p ~ Q => (s r in = <> => initials(Q) = in.T)

& (srin'#<>=>

initials(Q)

(in.T u {out. last (srin)))).

~1

A process definitIon satisfying these laws is:

VAR = (?x:T -+ Vll:)r

where V, (?y:T ---> V) 0 (!x,V) for all x in T. , '
v.,.. is the behaviour of a variable with value x. A 'resh local instance

of such a variable can be declared thus:

[m:VAR, I' MASTER] .

A stack (for type T) is a process P which outputs everything that it has

Input. on a last-inlflrst-out principle; and outputs the signat "isemptyM

when empty. For all Q it obeys the Jaws:

P~Q~

(length (s r in) • length (s rout) =
initial'(Ql • (in.T u (out.i,empty»)

& (length(aP in)) length"(arout) =
in.T ~ initials (Q) &
initials(Q) nauLT_ (})

st'::oub> .P , Q & length(t r in) • length(t rout) =
x = last(sr in).

Three different Implementations of a slack can be modelled on three

different implementations of the COUNT. We hope the reader will enjoy

constructing them.

42

5 Prospects.

The original objecti e of denotational semantiCs was to pro.... ide a clear.

consistent, and unambiguous definition or a programming language which

is likely to ha.... e more than one implementation. Such a definition could

serve usefully as a national or international standard: It would give a

precise specification which must be mel by each implementor; and it would

tell each programmer exactly what he can rely on in all implementations.

Thus It would achieve the primary Objective of slandardisation, namely

the reliable conjunction or programs and implementations from widely

differing sources. The deficiencies of existing language standards can be

directly attributed to their (ailure to take advantage of this known

technology - a failure which 10 future generations will seem amazing.

In the area 01 parallel programming languages. we hope that the

de elopment of a suitable semantic model at an early stage will forestall

a repetition of the problems thaI hae beset the de....elopment and

standardisation of sequential programming languages.

Apart from the impro.... ed quality of programming language standards. the

techniques of mathematical semantics hae much to offer in impro.... ing

the reliability of computer programs. In the first place. lhey offer the

possibility lhat an implementor can pro....e with mathematical rigour that

his implementation meets the standard specification of the language.

Clearly. no program can be more reliable lhan the implementation of the

language in which it is expressed for input to a computer.

A second ad.... antage of a mathematical descriptIon of a programming

language ;s that it offers the indi iduai programmer the opportunity 10

pro....e lhe correctness of his program with respect to some description

of ItS Intended beha iour. For this. he would need 10 identify the

mathematical object denoled by his program. and then pro.... t:t that this

object exhibits the required mathematical propertJes. Unfortunately. this

method 01 program pro ing is impractically laborious: it is like trying 10

43

501...e differential eqLJattons using only the orrginal defrnitions of derivatives

in the epsilon-della terminology of analysis. What is required tor praCtical

program development and proof is a formal calculus. similar to lhe

assertional calculu S for sequential programs, WhiCh will permit a

reasonably direct expression of the purpose at each command. and a

method of prOVing that II meets its purpose Such a calculus must be

firmly based on a proof of its conformity with the mathematical model.

just as the differential calculus is ultimately based on the Dedeklnd model

of real numbers. But these are topics for future research

44

References

III C. A. R. Hoare

Commun. A. C

Communicating Sequtlntlal

M 21 8, Aug 1978

Processes

[2] Robin Milner Calculus

Springer Lecture Notes

Spnnger Verlag 1980.

of

in

Communicating Systems

Computer Seience 92

(3] E. W. Dijkslra Cooperating Sequential Processes

in Programming Languages. ed. r. Genuys

Academic Press.

[4J D. S. Scali Data

SIAM Journal on

Types as Lattices

Computing 5 1976. pp.522-587

