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1. INTRODUCTION

The purpose of this project was to use the "rigorous approcach-
[5] to software dewvelopment +to develop an implementation of a type
of B-tree as a structure for storing mappings from keys +to data. A
B-~tree is a ganeralised binary +tree, for which there exist
algorithme for insgerting and deleting keys which ensure that the
tree remaine balanceéd. The particular type of B-tree specified,
known as a Bt-¢{ree, was chosen because it can allow random access
+t0 any key as well as sequential access toe keys, as all keys reside

in the leaves,

Initially, the saimpler problem of representing abstract
mappings as binary trees was tackled {(and is shown) in order +to
illuetrate and wunderstand +the entire refinement process, from
abstract specification down to corresponding program code. Only

the find operation was considered,

The B*-tree development starts with an abstract specification
of a mapping from keys +to data, with operations defined for
finding, inserting and deleting a key. Then, +two levels of
gpecification follow, each less abstract, which represent a
mapping as a tree structure and have corresponding operations for
finding, insertion and deletion, which mocdel the operaticns of the
initial epecification., The first of these levelps, Representation

1, represents a tree as a set of nested sets, with the leaves of



the +tree consisting of mappings from keys to data. The second
level, Representation 2, represents the tree by using lists - each
non-+terminal node cons8isting of an ordered 1list of keys and a list
of nodes, and each terminal node again consisting of a mapping from

keys +to data.

Each stage of the refinement is related to the preceeding atage
by a retrieve function and is shown to be correct with respect to
the preceeding stage in accerdance wilh Data Type and Operation
Proof Rules for Refinement [5], as described in Chapter 2. As the
Structure of the data types and operaticons of Representation 3 are
g8imilar to those of Representation 2, the correctness proocfs for
Repregentation 2 are appealed to in the arguments of the

correctness of Representation 3.

The final s8tage of the development is the corresponding
realization - running PASCAL code which implements the data types
and operations. Included in +the code as an indication of itse

Correctnese are weakest pre-condition type assertions [2] [3].



2. THE RIGOROUS METHOD OF SPECIFIGATION AND DEVELOPMENT.

what follows has been summarized [From reference [5], which

should be consulted for a complete exposaitiion.

In +tihe rigorous method, a specification is written aa a
congtiructive specification of a data type. Development can then
proceed either by opération decomposition or by data refinement.
What is described below is the +terminology and notation used in

conslructve specihcation and development by data refinement .

A program is considered to be an gperation {(or operations) on
a state oFf a particwular class, An gperslion can change the valuesa of the
coemponents {(or variables) that comprisge a state, but cannot alter

its structure.

In order to specify a program, a class of states must be
defined, and it is best tpo design the structurée of the states by
cheosing a data type which matches +the problem as closely as
possible. Such a data +iype is one which probably cannot be
implemented directly, and this is known as an absiract cgala type and is
considered to be characterized by its operations. The notation
used in defining state descriptions ias sbaract synfax {Ffor a description
see (5], Ch. 14), and set, list and mapping notations are also used

Eor describing abstract data types. An example of a safe descriplion ime;

Studc :: N:Student-name-set Y:Student-name-set

which defines a class of states



Studc = (<n,y>In.y & Student-name-set}

Thia means that any object in the claas of stater Studc has two
variables, with names N and Y, and in any particular state these

will each be a set of student names.

A data type could be defined mplcily, by using axiomsa to relate
it8 operations to each other, but the consrucive approach, which is
what has been used, gpecifies what the effects of the operations

will be in terms of the underlying atate.

operations are specified by ueing predicates; pre- and
Post—conditions, as this producea shorter specifications which
embody the properties required without specifying how they are to

be achieved.

An operation is specified by 4 clauses, in the following
format:
1) Statesp: 8
Thie specifiea the name of the clase of statea for the operation.
2) Type: a1 ... an —>rl .., rm
This specifiea the typea of any arguments accepted and resulte
produced.
3) pre-OF: State al ... an — Bool
This ip a predicate of a state which specifies over what subset
of the class of etates the operation should work.
4) poeost-oP: 3tate al ... an 8tate rl ... rm —» Bool
This is a predicate of +two states and defines +the required

relationship between the initial and final state.

An example of implicit operation definition:

(Using the state Studc, the operation RES tests whether a atudent



REsS

States: Studc

Type: stiudent-name — Bool
pre-RES (<n,y>»,nm) 2 nmad (n U y)
pogt-RES (<hi,y>,nm,. <n’',¥y'>,b) 2 n* = nand y' = ¥ and b < (nm 8 y)

Now that the specificatieon etyle and definiiions have been
defined, the method of atepwise developmenli called dasta refinement Can

be deacribed.

The initial stage is a specification which ia choaen to be as
ahatract as possible, but must capture the required properties of
the problem to be specified, A good abstraction will shorten and
clarify the apeci fication. A dala type mvarisnt i8 a predicate which muet
be true of all states which can be created by an operation in a
specification, (Such states are said to be vaw) . The choice of data
type ia made so aa to minimize any data type invariant required,
An example of a data type invariant which might be regquired f'or
states ¢f class Studc, could atate that a student name could not be

a member of both the N and Y sets gimultaneously:

inv-Studc(<n,¥Y>} 2 na N y = {}

The need to record a data type invariant arises because,
although it may be evident from the specification and reality, it
will be required explicitly in later development correctness

procfs and 1t will also prevent errors in future alterations to the

..5.-



specification. After the operations have been specified, each
operation must be shawn to preserve any data type invariant which

might exist. The rule for pressrvation of vaidity is:

(¥ 8)(inv(8) and pre-0OP (s8,args) and post-OQP(3,argse,s8',res) =

inv(s')) (R}

Ratinemen! i3 Lthe term given to creating a lesa abalract reeiizetor for
an ahsatract data type, which uses a more concrete data type, known
as a representation, and has new operations which mode! those of the
specification. Refinement 18 alsoco concerned with relating a
realization +to ite specification and proof of Hs cwreciness. The
operations of the representation should be proved to preserve the
validity according to rule (A} for the invariant and states of the

representation.

Refinement is an iterative process, consisting of a series of
developments, each of which is successively more concrete and is
Proved to be correct with respect to the stage preceeding. should

earlier 1nvariants prove inadeguate, backtracking may be reguired.

A retrieve functon relates a representation to its abstraction anad is
the basis for data refinement proofs. Objects of a representation
may contain more information than those of the absatraction and so
a retrieve function cperates on a state of the revresentation and
retrieves the necessary information for the corresponding state in

the abstraction.

An example of a representation for Studc might be based on a



class of states contlaining lists of student names:

Studcl : : NL: Student-name-list BL: Bool-1list

and agsuming a datia type invariant:

inv-Studcl(<nl,bl>) 2 len nl = jen bl

the corresponding retrieve function might be:

retr-studc: Studcl — Studc
retr-studc(<nl,y1l>) 2 <mnl(1)l1 € 1 € jen nl and not bl (i)},

Mml¢i)l1 € i € /en nl and bl (i)}>

The f{irst part of a refmement proct i8 proof of cafa lype correctness.

Two rules exist for this.

The first of these rules is used to prove the totality of the
retrieve functicon cover valid states of the representation. It has

the form:

(Note: & suffix of 1 indicates that the function or object is an

element of the realization)

(¥ 8l1) (invl {8l) = (1 8) {8 = retr(sl) and inv{retr(al)))) (B)

The second of the data type proof rules is concerned wiih the

concept of adequacy. That is,

"for each (valid) element of the abstract data type ihere must
exiast at leasi one value of the representation which is mapped by



the retrieve function onto the abatract walue™. {([S5], pl83)

There may exist more than one value. The formal proof rule to show

adequacy is:

(v 8) (inv(8) = (} 1) (invl(8l) and 8 = retr (gl))) (<)

The second part of a refinement prooi is concerned with operstion
modeling. TwWo rules exist for proving that each operation of the

realization models the corresponding one of the gpecifiication.

The first rule, the domains ruie, shows that the pre-conditiocn is

sufficlently wide and has the form:

(v 81) (invl (8l) and pre-coP(retr (sl),arge) = Ppre—oOPl(8l,argsa))

(D)

The second rule is known as the resuts ne, and atatee that given
any 8atate satisfying the pre-condition of OPl., and the reault state
after being operated on by OPl (i.e. a #&tate satisfying the
pPost-condition of OP1l), this pair of states must satiafy the
Peot-condition of OP when viewed through the retrieve function.

The form of this rule is:

(¥ 8l) (invl(sl) and pre-oOPl(el,args) aw poat-OPl (sl,args,sl’,res)

= post-0OP(retr(a1), args, retr{8l’'), res)) (E})

The refinement step of providing a realization and proving it

Ccaorrect may be repeated until a sufficiently concrete stage ias




reached. As the method is rgorows, rather than formal, i1he refinement
proofs need not be done formally if an informal argument can show
their truth satisfactorily. In the development of Bt-trees which
follows, the procfeg of the firat stage of refinement are fairly
formally preeented whereas those of the second stage indicate how
the proof could be written (often by appeal to the structure of the

@arlier proofa).

The final development satage is that of operation decomposition.
Examplea of formal proofs by weakest pre-conditionsa [2] [3], were
followed in this step which uses "decorating assertions” in +the

program code as a rigorous argument of its correctness.

-9-



3. REPRESENTATICN OF ADSTRACT MAPPINGS AS BINARY TREES

3.1 Specafication

Since it is iniended 1o use a binary iree as a siruciure in
which 10 siore a mapping from keys 1o daia, using a mapping as ithe
data 1ype in 1ihe ipitiial apecification ig8 a good abslraciion. Ii
allowsa ihe find operalion 1o be epecified in terme of its effeci

Wwithoul prescribing how ii is 1o work.

SPECIFICATION
50 = Key — Data

APPLYD

States: s0

Type: Key — Data

pre- APPLYDsq k) 2 k€ dom 0
post-APPLYO3n k80" ) = ag = 8 09 T = 5 (W)

3.2 Representation 1

This stage of 1he refimemenli represenlis a4 mapping as a binary
tree. If the tree is not empty, each node of i1he 1iree coniains a
key and its associaled data as well as a pair of poinliers (either
ar both of which may be null), 10 a 1lefi and righl subiree
reapeciively. All ihe keys occurring in 1he lef1 subiree of a
Particular node will have values leds ihan ihe value of ihe key in
the node, and the values of i1he keys of i1he right subiree will be
greaier 1ihan 1he node key. This 18 siated 1n tLhe data 1ype

invariani.




s1 = [Bt1]
811 = 51 Key Oata 351

inv3$1 $1 — Bool

nvS1sy) & g9 = il or et <HEG> = 3y m
V¥ Tk S wica(t)Ik < k) and invS1(it) ang
o rk © xkairt)rk > 0 and 1avSICrt))

where xks; S1 — Key-sel
Aka(8y) = 41 gy = ol
then { ]
alae lof <ickdrt> = 81 10
{k] U wnion (aks{lt), xka(r))

where vaon: (X-sex-set —» N-gel
umaonies) & (ei(] s G ssXe € 3)}

ratrso: 51 — S0
ratrS(sy) = o a1 = rif
then [ ]
eise el <ltkd,rt> = 3; i

[k — &7 U munran {retrSOUt) retrsoiri}}

where munion: (Key —sOsta)-set — (Key —» Data)
pre-mup/onima) € (¢ mi1m2 G maddom m1 R dom m2={ ) or m1 = m2)
municrimal X[k —» dl(] mE meik & dom m and d = mik)]

NOTE 3.1: pre-munron is tultilled from retrS0 because of the wvariant invS1,

APPLY1

States: S1

Type: Key — Data

pra-APPLY 1(8 1 k) 2 ke ukalsy)
Post-APPLY1(S 1, k81 d} = ay” = 31 8nd d = applyf1{ay,k}

where appiyt1: Bt1 Kay —» Data
pre-apphyfi(s 4 * k & xka{s1)
appiytiisy m 2 jel <ith,dri> = 81
o k=W
then o
olge of k < K
then appiyt1(Itk)
#ize appiyf1(rt,k}

NOTE 3.2 applyf1 cannat ba yndenned becavse of the pre-condition, pre-appivt?, and
the 1mvanant, invS1.



Two funciiona which are of use in Lhe correciness proofa which

follow are:

19-pdis): (X-sei-hst — Bool
la-pdlsi(al) 2 ¥ | & {1 ../ ar} | i A [Xis-disjmii), SN

where 13-dis) X-set X-set —» Bool
iz-cha)jal e = a1 M a2={ )

3.2.1 Proofs of ihe Correctnesa of Represeniatlion 1

The refinement proofa which follow show 1hati Representaltion 1

is correct with regpect to ithe Specificalion given in Section 3.1.

(A) Preservation of ithe invarianti:

The rule to be proved is:

pre-APPLY 1(21,k) and ipv5i({s1) and post-APPLY (81 x81'd} == invS1(z1")

3ince APPLY1l is an identiiy operation on 81, 1he preservalion

of 1the invariant follows immediately.



{(B) Totality of the retrieve funciion

The rule to be proved is:
(1) (¥ 81 € SNnvS1(s1) = (3 50 6 50X80 = retrSOa1)))

Proofi: By structural induction on si
BASIS

(D) 81 =m

{3) invS1en

{4) a0 = [ ] = retrS0la1) which concludes the basis.

INDUCTIVE HYPOTHESIS

I{ a1 = <ikdrt> apsume

(5) inwSHIt) = (} 50 © SOXa0 = retrSO(ILY)
(6] SNt = () 50 6 SOXs0 = retrSO(rt)}

It follows immediately from (5) and (&), that for
a1 = <ltkdrt>
since
(71 nvS1(a1)} = a-pdisj(<dom retrSoit),dom retrSart), (k}>)
that
@ invs1(sy =
(3 80 & SONsD = [k —» d] U munma {rearSOtLretrSari)}) {cE. HOTE a.1)
that 18
9) InvS1(s1} = (1 s0 © SONsD = ratrSO(st)h



{C} Adequacy

The rule to be proved 18:
{1 v 80 € 5007 81 6 S1Xinv51(31} and 0 = retrS0aniy

Proof: By induction on dom s0

BASIS

(D dom s50:}

In this case

3) 80 =[]

(4 8% = a8 51 and irv51(sl}

(5) 80 = retr8(s1) = [ ] which concludes the basis

INDUCTIVE HYPOTHESIS
Asgume that if
dom 80 # { ] and k @ dom s0 then
{6} (¥ o0 G (¢ 6 50| dom s C idom 80 — (kP)}) ((F 31" & S1Xinv5Hei") and 30 =
retrSos17)

It now remainsa to be shown thal s0 can be represenied.
Let
s, [k1,8] be a partition of dom s0 such 1hatl
O @ 0isXis < ki anc (¥ e & rsXa > k)
then under the induction hypothesis (6):
80 ! 5 can be represenied by it @ 51 such 1thal
(7) invS{ttand so I 1z = retrSO(t)
50 t n can be represented by rt 6 §1 such ihat
(8} InvS1(r) and 30 I rg = retrSO(rY)
From this it follows that
20 can be represented by s1 = <ltksik,rt> and
B ¥ 1k 8 xks(M)XIk<k) and (¥ rk O xkslrt(k<rk)
and S 10 and invSHrt)
and 0 = [k—>d] U munion (retrSoit), retrSO(rt))
which is exacily
(10) invS1(31) and s0 = retrS$0(31), and this concludes Lhe proof.



Operation Proofs

(D) Domains Rule
The rule {c he praoved is:
(1} ¥ &' 6 S1NvSI(a1} and pra-APPLY(retrS0(s1},k) = pre-APPLY1{31,k))

Rewriting this using the definitions of pre-APPLY and pre-APPLY1
gives:

{2) ¥ at 6 S1XinvS1(s1) and k 6 dom retrSD(et) = k € xkslal))

Proof: By gtructural induction on s

BASIS

3 2l =it

In this case (2) becocmes

4) kG {} = k8 {} which is cbviously true.

INDUCTIVE HYPOTHESIS

If s = <iLwgdrt>» then assume that

(5) 1S and k B dom retrSOIN = k 6 xksi) and
(B) rnvalirt) and k G cdom retrS0(r) = k 8 xka(rt)

It now remaines to be shown that (2) is 1rue of
81 = <ILK d 1>

(N mv51{s7) = 1nvSI(I) and nvsit)

(by definitiion of inv51)
(8) invS1s”) => a-pdrafi< (K'), xkallt), xka(rt)>)
(9) k & dom retrSO(s1) =

k8 (k') U umon [dom retrSOUL, dom retrSO(rt})

(10) k € xksls1) <= k 6 {K'] U union [xksiM), xksirt)}
Under the induction hypothesis (5) and (6),
11) In¥S1(s1} and k 8 dom retrS0s1) = k 6 xks(s1) {by (n and &)

-15-



{E) Resgults Rule
The rule tc be proved 1is8:

(1) (val © SINNvSi(al) and pre-APPLY1(s1,k) and poat-APPLY1(s1,ka1'd)
= poat-APPLY(retrSO(a1)krelrSiXs 10,03

Expanding this gives:
(@ (¥ &1 9 51uwS1(s1) and k 6 aks(al) and al=s1 and d=applyfi(sik)
== retr50(s1=retrSO(a1) end d=ratrSOUs1)(k))

It follows immediately from
=31

that
ralrSo{a1Freirsola)

80 what must be proved is:

(3) (¥ 81 8 S1XinvS1(a1) and h O aksisl)} => applyf Ha1,k) = retrSOis1Xk)

Proof: By etructural induction on ai

BASIS

(4 31 = <pit W, d, nit >

In this casae,

(5) iwS1a1) And k G xha(aT) => K=k,

hence

(6) applytitsi,h} = retrSO(aIXk) = ¢ which proves Lhe basis.

INDUCTIVE HYPOTHESIS

If a1 = <itk'dr> agsume

(77 InvStiL end k G xkailt) = applyf10LK) = retrso(txk) and
(B8} invS1rl and k © xksirt) => applyiI(rLk) = retrSOrKk}

Now for sl = <idn>

Case 1:

(9) k = k' and nvS1{a1} and h @ xhs(s1)

Ag for the baasias, applyfilat,h} # ratrSNeIXNK = ¢ {by nvSls )

Cage 2:

{10} h < K and ivS1{a1) and k & xka{al)

In this case k G xkallt) by invSis1)

(11) appifi(al,k] = apphii(it) and

(12 retrsos1XK) = retrSO(rXK

under the induction hypothasaia (7) and (8) Lhese are equivalent.
Caae 13:

{13} k > k' and in¥S1(31) and k 8 xhaal)

This case ia proved similarly 1o Case 2, which compleies ihe proof
of the results rule.



This level of refinement meodels an array,

binary tree onto linear storage,

REPAESENTATION 2

S2  : RQOT:(Ptr] ARRAYPtr — Node2
Node2 ; [Pir] Key Data {Ptr]

invS2 S2 — Boal

InvS2Ass) & (i pm = pm.p(ARH,qﬂgzl) in
it pat {union rn@ pm C dom pm) then faise oiss
keys-are—ordered{ROOTI1,), ARAAY(s )} and has-no-loopsipm)

where keys-are-ordared: [Ptr] (Ptr — Node2y —» Bool
pre-keyz-—are-ordared(ptr,m) & upion rng pm < dom pm
keyg-ara-ordared(ptr,m) 2 ptr = nif or
tfat <lp,kd,rp> = miptr} in
(¥ Ik & xhka2(ip,mXik < K) and
¥ rk 6 csXrpm)Xrk > k) and
keya-are—orderediip,m) and
keys-are-ordaredirp.m)

whera xka2 [Ptr] (Ptr — Noded — Key-sel
pre-xks2(ptr,m} = unron rag pm C dom pm
xkaAptr.m) S f ptr = nit
then { }
wae jol <Ip,kdrp> = miptr) n
(k] U union {xkaZip,m), xks2Arp,m))

whare pmag: (Ptr — Node2) —» (Ptr —» Ptr-set)
pmapim) =2 [p —» {le¢ <lp, , ,rp> = mip) in
{Ip.rp} - { nit P p 8 dom m]

whers has-ro-icopa: (Ptr — Ptr-set; — Bool

pre-has-no-loopsipm) 2 uvnien rag pm C dom pm
has-no-lcopsipm) % (¥ p 8 dom pm)
(p & union {reachabielptr) | ptr @ pmip)})

whare reachable: Ptr (Ptr — Pir-set) — Ptr-set
raachable{p,pm} & build-selp,pm.{ }}

whare bulld-aat Pir [Ftr — Ptr-aat) Ptr-sat — Ptr-set

build-set(ptr,pmps) = if pmiptr) = { | or pit 6 ps
then ps wiae

union [bulld-settp,pm,{ptr} U ps) | p G pmiptri}

=1 ?_

and in efifec{ mapa a



retr§1: 82 -— §1
retr3liss) = ramSHACOT(ag: ARRAT(S)

whare retrnSt [Ptr] (Pir ~— Noda2) -— [Bt1]
retrnSiiptr,m) 2 o pir = pif
thert i
else jat <Ip,kd,rp> = miptr) m
<ratrnS1{lp.,m}kd . retrnS1{rpm)>

APPLYZ
States: 52
Types  Key — Data
Pre-APPLYAs,0 = k & xkeMROOTaR, ARRATA)
post-APPLY Xsak,ay,d) = g7’ = 8 and
d = applyf AROOT(s 2 ARAAT(8 2} k)
where appiytz Ptr (Ptr -— Node2) Key -— Data
pre—appiyt2ptr,mx) 2 k & xkyXptrm)
applytdptr,m,k} = ted <lp,k'd,rp> = mipir) i
i k=
then o
alge i k< K
then applyf Xip,m,k}
s/ze applytZrp,m,k)

The proofs of the correctness of Representalion 2 wiih respeci
to Representation 1 are not shown here. The purpose of 1has example
of absiract maps on binary irees is only 1o illusirate ihe data
refinement melhod which 18 used in specifying B*-irees, in which

more complicaled dala refiinemeni proofs are done.

3.4 Realization

Thia gives the PASCAL ccde, including aseeriions, corresponding
to APFLYZ. The implementation of ihe ARRAY: PLr » Node2 componenti
of 82 is implicit in the pointer type variables of PASCAL. AN
invariant, invS3, corresponding te the invariant inv32, must be

true of the pointers.




APPLY3

The following dala definitions are required for ihe procedure

apply3:

TYPE data_type = . .. ;
ptr = ~node;
nede = RECORD
key: integer;
datia:dala_type;
lptir, rpir:ptr
END;
VAR root:pir;
k:integer;
res:data_type:;

The procedure, apply3, is:

PROCEDURE apply3 (root:ptr; k:integer; res:data_iype);
VAR p:ptr:
node_key:integer;
BEGIN (APPLY3} {inv353(93) and K 6 xka3{root})
p:=root;
if p = nil
then {terminale-error
elge node_key:=p~, . key:
while node_key <> k do
begin node_key = p”.key and 1nvS3(s3) and
k G xke3(p) and node_key # ki
1f kK < neode_key
then p:=p*. lptr
else p:=p~.rptir;
if p = nil
then lLerminate-error
else node _key:=p*. key
end; {(node_key = pb*,key and 1nvsi(az) and
Kk 6 xka3(p) ad node_key = Kk}
reg:=p*.data
END; {APPLY 3} {res = applyfz2{relrsz(rool) k}}

Termination follows from depth3(p} decreaping on each iteraiion of

the loop (cf. has—no-locopa) .
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4. REPRESENTATION OF ABSTRACT MAPPINGS AS B+.rREES

4.1 Description of B-trees [1] [6] (7]

A B-iree i8 a useful structure for saioring large mappings Iirem
keys 10 data, where the keys are unigue and have some natlural
order. A B-iree i8 a generalization of a binary Lree, and a Bt-tree
is a special form of B-lree in which all ithe keys and daia reside
in the leaves. A B-tree of order m has al leasi{i m and ai mosi 2m
keys at each non-leaf node olher t1han ihe rooi, and one more
Poinier to a descendant node ithan key in each ¢f ihese nodes (i.e,
beitween m+1 and 2m+l peoiniers). The leaves musl conlain from m 1o
2m keys and, in Lhe case of a Bt-iree, ihe same number of pointers
to datia as keys. Thus Lihe nodes are always alL leaasli half full. A
B-tres always remainas balanced - all ithe leaves occcur al ihe same
depih. Unless 1he rcot is a leaf, it musi contiain al leasi 1 key

and 2 peoiniers,

A B-1iree can allow 1he fcllowing operailions 1o be performed:
(assume kj denoiles L1he ith key and d; i1he associated datla)
find: retrieve data 4; associated wiih a given key kj
insert: add a key, k; and iis dala, d¢;j 1o the mapping, provided
that x; is unigque
delete: remove dala d; associaled wiih a given key kj

next: retrieve dj,; given 1hat d;i has jusi been reirieved

A B*-iree is organized into an index of non-leaf nedes, and a
sequence set of leaf nodes, which may be linked sequentiially from
left to right as depicied, which facilitiaties ihe nexl operation

which 18 laborious in an ordinary B-iree.
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The algoriihms f{for inseriicn and deletiion ensure -+1lhat +the
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The find operation

AEINEIR

—
=
p—
Al
L
w
[~
a

ESNE i NN




Suppose that key &7 ie 10 be found. The search sglartis at ihe
root and 3 possible paths may be iaken. For keys & 50 ihe leftmost
pPath would be taken; for keye » 50 and & 93 the centre path is
chosen and for keys > 93 the rightmoat path 18 selected. This
selection procesp ie repeated al each node uniil an exact match 1is
found or a leaf is reached - which denoles i1hai i1he key has not

been found.

For a Bt~1ree, a find operaliion muel search all 1he way Lo a
leaf, as all the keys reside in ihe leaves, and 1he key values in
non-leaf nodes simply serve apg separalore as lhese nodeg do not

contain data.

Lo [ s Loz [yles ]

[5 (3] [e 2] [27 ] 38 |4z | [47 |69

* R .
A B -tree of order 1

The insert operation

This occurs in two stages. Firsily a find operation 18 carried
ocut, which must progress all the way down 1o the correclt leaf for
insertion. The inseriion takes place in ihe leaf and the balance of
the tree is restored, if necessary, by a procedure which worke up
from the leaf to the root. If the find siops at a leai ithat 18 not
full, the new key and data are 8imply ingeried. If however, Lhe
leaf is full (i.e. it containas 2m keys) it mus+t be split into two

nodes with the asmallest m keys and the associated daka in one node,



ihe largest m keys and dalia in a second node, ard ithe middle key 18
inseried into ithe keylist of the pareni node ito become a separator.
1{ the parent node 18 not full, the key can be added and +ihe
inseriion process compleied. I{ ihe pareni node ia full, it must be
split in a similaxr manner. If the splitiiing procesa propagales all
the way 1o ihe root, and i1 also haa to be split, i1hen the tree

increases one level in heighl - i1t grows from the rooti.

In ihe case of a B*-iree, Lthe inaseriion algoriihm is similar,
with 1he only difference occurring when a leaf node is aplii. Then,
instead of the middle key being promoted 1o 1he pareni node, only
a copy of this key is promoted, as all i1he keys musi reside in the
leaves. Otherwise the inseri operation worke in ihe same way as for

BE-irees,.

Examples

Ingertion in a B-tree of order 1

Starting wiith a B-iree of the form:

Insertion of 1he key 12 would yield:
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and insertion of the key 26 would produce:

lngertion in a 8%t-tree of order 1

Insertion of the key 56 into:

1\*1|5:ll| | sa[su ] [ 5556 ] [1a0
== = -

The delete operation

Deletion also occura in two stagea, starting with a find +to
locate the node containing the Key to be deleted. If this key does
not reside in a leaf, an adjacent kKey has to be found in a leaf and
pPut into the position of the deleted key - this moves the empty
peBition to the leaf. An adjacent Key 18 obtained from the leftmest
leaf of the right subtree of the deleted key peosition. If the leaf
then has less than m keys, balance must be restored. If the sgum of
the keys of a neighbouring leaf and the leaf in question is greater

than 2m, the keys of the two nodes are evenly diwvided between the



nodes and ihe original separalor key in ihe pareni node is replaced
(redistripution)y . IT 1he aum of 1he Keyes i® less ihan 2m, the nodes are
merged (the opposilLe of gplitting) and the separator key in Lhe
pareni node is pulled Adown and added 1o ihe combined node, If
merging propagaies all ihe way up 1o i1he rool i1he heighli of +1ihe

iree can decrease by one level.

pDeleilion is simpler in a B*-iree, as non-key values may be
lefi in 1he non—leaf nodeg, and ihe key 1o be delelied will reside
in a 1leaf. If{ a redisiribuiion of 41wo lealf nodes occura, tLhe
gseparalor key in 1he pareni node musl be overwriiien wiih a copy of
the middle kKey of i1he iwo nodes concerned. If A merge occurs in iwo
leaf nodes, i1he separalor Key in i1he parenl node is discarded. In
1ihe resi of 1he Lree ihe deleie pperalion works in exaclly i1he same
manner as in a basic B-1iree.

Examples
Deletion in a B-+ree of order 2

The deletion of key 37 in the tree depicted below, requires that
the next sequential key, 42, be found and put into the empty slot.
The kKey to swap into position ig found in the laftmost leafl of the
subtree on the right of the empty alot.

o2 |57 ] -]

(a) Redistribution
The deletion of kKey 15 1in

\
Il [T [[ [1
2], s I TasfTar Lides [ T
Jod

}
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(b) Merging
Deletion of key 14 in

[

Pl

caugses merging

LIl Test B [T T
VAR

Deletion in a B*-tree of order 2
(a) Redistribution




Deleting key 12z produces:

[ [ go] lizs
Pl (7311 T1
[rTast T | 1537

(b) Merging

Now, deleting key 1% Produces:

—
[e=]
=1
)

For neon-leaf nodes the deletion processes of redistribuliion and
merging are identical to thoae proceases aciing on a B-tree, as

ahown in the preceeding examples.
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4.2 gpecification

The specificaliocon uses Lihe game absiracl dala iype as was used
for binary trees, bui ii has been exiended by Lihe definiiion of two

further operations, insert and deleie.

SPECIFICATION

M = Key — Data

FIND

Slates: M

Type: Key —» Data
pre-FIND{m k) 2 X6 domm

Post-FIND{mkm',d) & m" = m and d = mik)

INSERT

States M

Type: Hey Data —>

pre-INSERTmyd) = Kk & dom m
post-INSERT(mkd,m? € m' = m U [k—d]

DELETE

States: M

Type: Key —

pre-DELETE(m,X) o kS dormm
post-DELETEim.km" & m* = mi{k}

4.3 Representation 1

This stage uges as a represeniation a iree siruciure in the form
of nested sels8. This data type was chosen becauge il caplures the
eggential properties of the nocde epliiiing, merging and
redistribuling of the B*-tree algoriihms for inseriion and
deletion. However the deiails of ihe aciual organizalion of keys in

the index part of the tree does nol have 1o be gpecified.

The main difficulty in ihe refinemeni proocis for ihis level was
in Pproving +1hat 1he ingerli and delele operalions pregerve the

invarianti.
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431 Data Structyre and Data Type Invariant

B-tree : . DRDER: Mat TREE: Node

Node = (noda | Tnode
Inode = Node-set
Tnode = Key — Data

inv: B-free —» Bool
invity @ invr(ORDER(), TREE(L)

whera invr, Nat Node —» Bool
mvr(im,n) 2 common=-invin) and size-invr{m,n)

where common-inv: Node — ool
common-inv(n) § cases of n
n & Ingde keysets-ara-ordersd(n) angd balanced(n) and
(¥ sn € n¥common-inv(an)}
n € Tnode: true
ennd

whara size-in¥r, Nat Node —* Dool
siza-invr{m,n) 2 cszes of n
n 6 Inode: 2 € aize(n) € 2*me1 and
¥ sn & nisiza-invlenli

n 9 Tnode: sizeln) & Z*m
end

where siza-inv Nal Node — DBool
size-invim.n) = cases of n
n € Inode: m11 € sizetn) & 2*m1 and
O an G n)size-inviman))
n G Tnode: m € mzein) € 2*m
wnd

NOQTE 4.1: Tha size Invariant of an Inods 13 related lo tha number of descandants it can

have. m+1 has been vsed 5o that tha definitians will hold for & tree of ary order 2 1,
The mizs invariant ol a Tnode speciea how many keys can occur in the node.

whera size: Noda — Nat
wize(n) @ casea of n
n & Inode: card n
n & Tnode: card dom n
ond
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where keysotg-are-—ordered: Node —» Bool
keyseta-are-ordered(n) = cases of n
n G Inode (V 31,82 & nX(at = 82} or
(cotiect-keyntal) << collect-keys(s2)
or
fcotlect-heysisl) >> collect- keys{s2))
n & Trode frue
L

where collect-leys, Node — Kay-sat
collect-heysin} = cager of n
n G lnode; union {collect-keyxisn) | an & n}
n & Tnode: dom n
end

wherg <<: Mat-set Nat-set — Bool
81 << 2R (¥ o1 G s1)Y e2 & a2fel < ¢2

where >>: Nai-set Nat-set — Bool
8l >> g2 2 (V &1 & 31AY a2 6 adNe1 > ad

where union: (X-setl-set —» N-aat
umtoniss) @ (el(} 3 © saKe € 3))

where balancad; Noda — Bool
batancedin) & card depthsin} = 1

whare depths Node —> MNat-set
depthsin) B cases of n

n 6 Inode: umon (depths{an) | an & a} +4 1
n 8 Tnode: {1}
ond

where ++: Int-set Nat —p Int~get
3+ 2 (avile @ g}

4.3.2 The Retrieva Function

reir B-troe — (Key — Data}
retr{t) @ retre{TREE())

where retrn; Noda — (Key —» Dala}
retrn{n) ® casea of n
n € Inode munien (retenisn) P an 6 n)
n 9 Tnode: n
end

where mumom; (Key —» Data}-sel —» (Key —* Data)

pre-munion{ima) 2 (¥ mim2 & ma)dom m1 N dem m2=(} o m1 = m2D
uniorirma) e[k —dl(} m & miNk & dom m and ¢ = miky]
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FIND

States: B-tree

Type. Key —» Data

pre~FIND{tK) 2 k € collect-kaya(TREE())
post-FIND(LEt',r} = t' = t &g r = find(k, TREE{t)

where hnd: Key Noge —+ [Dats
pre- Fnd(kn) @ b & collect-keystin)
find(k,n) 2 ceges of n
n & Inede: find(k selsctink)
n 9@ Tnods (k)
ond

where select Inode Key —® HNode
pre-asetectin,hk] H k € collect-koyain)
posi-selectinrl 2 r S n and k O <ollect—heys(r)

INSERTY
States: B-tree
Type:  Msy Data —
pre-INSERT (L k,0} ® k& colleci-keya(TREE(L)
post-INSERT1{Lk d 17 2 CRDER(tY = OADER(t} ano
TREE(t] = inaartr{CRDERIN, TREE(L)kd)

where ingertr; Nat Node Mey Data — Node
pre-inssrtrim,n kol 2k € collect-keys(n)
inaertrim,n,kd) @ /el m = ingertn{m,n,kd}
it size{rn) = 1
then element(rn)
elae rn

where insertn: Nal Node Key Data -— Inode
pre-inaertn(m,nkd) = k € coliect-keysin)
ingertn(m,n,k.d} % cageg of n
n © Inode: fef cn = selecteln,{k)}
led cna = insertn{m,cn,kd)
fat rn = n -~ fcn] U cns
o wizelm) < 2'm+1
thenn [rn}
efse sphiti(rn)
n & Tnode: /& rn = n 4 [k—rd]
if mze(rn} € 2°m
then {m}
eige spirttim}
end

where slement Hode -2el — Node
pre-elamentfna) © <& ns = 1
poat- alamentinarl ® r & ns

where salacic: Inade Key-set —» Node
poat-gelectc(n ka,r) = (} Ins,hns C nXos-divimon(nins,hns,{r}) and
1g-ordered{ins.collect -lays{r) U ks hnaj}k
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where is-drvigion: Inode  Node-iet Node-set Mode- sat — Dool
18 diviaon (n,Ins,hns,mna) & ia-pdia(<ins,hns,mns>) and
tine U tmns U hng = my {cf. section 3.2

whera is—ordeved: Node-sel Key-sst Nodeset — Pool

in-orderediing,ka,hns) @ (coilect-keys(ina) << ka) ang
ka << collect-keyshna))

where apiiti; Inode — Inode -set
pre~aplitiin) 2 mzeln) 2 2 and keysets-ers-ordersdin)
post-aplitin,ng) & union na = n and card Ny = 2 and
keysels-are—-ordered{na} and lef {n1.n2} = na m
(gize{n1) = aizein) drv 2 and mize{n?} = mze{n} -
sizeln1))

where splitt: Tnode — Tnode—set
pre-splittin} a sizeln) > 2
post-spli{n,na) & munion nd = n and cArd na = 2 and
keysets-are-crderedins} ang ist [{n1,n2} = na
{size{n1) = sizein} div 2 ang wreind) = azein} -
szeln1])

DELETE1

States: B-tres

Type: Key —

pre—-DELETE1LK) & k @ collect-heys(TREE()}

post-DELETENLKI? @ ORDER{D = ORDER(L) ang
TREE(tY = deleteriORDER(), TREE(t),k}

where deleter: Nat Node Key — Node
pre deleterim,nk) 2 k 8 collact-keys(n)
deleter(m,n,k) & jof rn = delatenimn,k
i m 8 Incde and sizedrn) = 1
then element{irn)
elge m

where deloten: Nat Noda Key —» Node
pre-deleten{m,n, k) 3 k G collect-keysin)
daleten{m,n,k) S cases of n
n € Inode: /e cn = select(n.k)
let ra = deletan(m,cnk)
it aizeirn) @ minimum- aizelm,ra)
then n - {en} U {m)
efse
i nn = neighbourincn)
it mizedrn) + size{nn) >
2*mintmum-sizelm,m}
ihen
n - {cn,rn] U redigtribute{rn,nn)
wae n - [cnnan) U margeirn,nn)
n & Tnode: n\(k}
end

where minmum-asize: Nat Node —» Nat
minimym -aize{m,n) & cazes of n
n € Inode: m+1
n € Tnode: m
ond



where neighbour: Inode Node —» MNode
pre-neighbourtn,sn} Snenedcardn P2
port-neighbourta snrn) 2 {3 Inghns C n)
{ig—divisson(n,Ina,hns, {rn,an}) and
15- ordered{ins,collect- keys{{rn.an}},hnap}

where redutribute: Node MNode =+ inode
pre-redistribyteln1,n2) & {{n1 € Inode and n2 € Inode) o
(n1 6 Tnode and n2 G Tnode)) and
size{n1) + mze(n2) P 2 and
keysets-ara—ordered{{ni,n2j) and
weyseta-are-orderedinl) and keysats-are- ordered{n)
redistributeln1,n2l 9 cases of nin2
ni,n2 6 Inede: spliti o element ¢ mergeini,n2

n1n2 € Trode: aplitt o element ¢ marge{n1,n2)
wond

NOTE 4.2 This might have been betier deitned 1n terms of a post-condition tor
the purpose of writing the correaponding program code,

where merge. Mode Node —+ Inode

pre-mergein1.n?l 2 (M1 6 Mnode and n2 S Inode) or
{n1 € Tnode angd n2 G Tnode)
margel{ni,n2 & cases of n1,n2
n1.n? € inode: {n1 U a2)
n1.n2 € Tagde: {n1 + n2}
end
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4.3.4 Proofs of the Correcinesgs of Represgeniaiion 1

4.32.4.1 pala Type Proofs

(B) Toialiiy of ihe Reirieve Function

The rule to be proved as:
(1) (v t € B-treeXinvit) = {3 kdm € {(Mey —> Data)ikdm = reir(t)}
On substiiuliing definiiions, 1this may be wriilen as;

(2» ¥ t € BtresXin¥rtQRDER(L), TREE()) =>
(3 wm € (Key — Datajdxdm = retrm{TREEW))

Proof:
Casge 1 TALE() O Tnode
In i1his case, (2 becomes

(3} =mze(TAEE() € Z*ORDER() == (3 kdm E {Ney —» Data)Xkdm = TREE(t])
which can immediately be seen 1o be 1irue,

Case 2 TREE) G inode
In 1his cage 1he proof ise by siruciural induciion on TREER
BASTIS (¥ sn € TREE(}Xsn € Tnode)
Eguaiion (2) becomes
{4) keysets-are ordersd(TREE(T) anc balanced(TREE(t)) and
2 & sze{TREE(} & Z"QROER(t}1 and
¥ 9n € TREE(XORDEA(L & sizeism) & Z*ORDER(L =
{} kim O (Key —» Oata)¥kdm = munion [anlsn G TREE(HN
which can be seen 1o be Llrue because keysets—are-ordered guaraniees that
the domains of the mappings to be united are disjoint,

Now suppose

(¥ sn € TREE(L)Xan € Inode)

INDUCTIVE HYPOTHESIS

(5} ¥ sp & TREC{UNcommeon-invisn) and size— Invisn) =
{} xdm € {Key — Date){kdm = rairn(zni))

In 1his case {2) becomes
(&) keysels-ase-ordered(TREE(l) and balanced(TREE()) and
{¥ sn € TREE(YXcommon-invisn} and sire—inv(sn})} and
2 K pze(TREE()) & Z*ORDER(tH1 ==
(] Wm € (Key —» DatalXkdm = mumon {retrn(sn) isn € TREE(})
which fcllows from the Inducliive Hypolhesis, because beianced ensures
that there are no nodee with mixed Inodes and Tnodes as subnoedes.

NOTE 43, The above proof could not be parformed simply by induction on Node because
of the speciai case of & tree consisting only of a single Tnode.
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(C) Adequacy

The rule to bhe proved i1a:

{1) (¥ kdm & (Key ~— Date)X(} t 6 B-tree)invil) and kdm = ratrit)])

On aubsliituting definiiionsa, thls may be wriiien as

(2) (¥ hdm € (Key — Dale)X(3} t € B-treaXinvr{ORDER{t),TREEM) and
kdm = retrn{TREE(D))))

Proof: This is shown by an informal argumentl.
Clearly, any mapping.

kdm guch 1hal card dom kdm < 2*ORDER(t)

can ba represented by

TREE(t) = kdm
and this satisfies

vr{ORDER(L), TREE(L)) and kdm = retrn{TAEE(L))

For a mapping, kdm, such that
card dam kdm > Z*ORDER(t)

it is poassible +to order 1he domain of 1he mapping and then to
partition mm into a get of disjoint mappings, each of which has a
domain of size between ORDEA{t} and 2"ORDER(t), and which form the
ierminal nodes of ihe tree. The resuliing gel will have cardinalitiy
? 2 and satisfies commen-inv and sze-mvr (@ag ORDER(t) @ 1), Should the
set have cardinality > 2*QRDER{t)+1, ii can be pariititioned in such a
way that each resulting set has cardinality between ORDER()+1 and
2*ORDER (t}+1 and +the partition has cardinalitiy 2 2 and satisfies
cammon—iny and sre-invr. Thig partiticoning process can Conlinue until a
set results which has cardinality <€ 2*0ORDEA(t)+1 and what has
resulted is TREE (1}, such that

Invr (ORDER {t) ,TREE (t} ) a&nd kdm = retra (TREE (L} } .

Adequacy camn be preoved formally by induction on dom kim, since
the proeof that INSEATT 18 a +teial operatliion implies that the
representaticon of any km can be generated using INSERTI.

NOTE 44 The apecial case of the root size nvariant 18 precisely required to permit
the representation of small mappirgs. Thia special case will necesaitale the separation
of properties several timea n the proofs that follow.
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4.3.4,2 Dperation Proofs

Ooperaiion FIND1

(A) Preservation of i1he invariant

A8 FIND! ie an identily operalion on the B-iree, il

immediately that 1he invariani is preserved,

Progf ihat FIND]1 models FIND

(D) Domains Rule

wWhat must be shown is:

(1) (¥ t € Btree)inv(t] and pre-FIND{retr{tLk} = pre—FINDI{tk)}
on aubstiiuting definitione, this becomes

(2 (¥ t 8 Bires)dinvit) and k € dom retrn(TREE(t) =
& 8 colect-kays(TREE(R

Proof:
The firsi siep is to prove thal
(3) (¥ m € Hat, n 6 NodeXcommon-invin) snd & & dom retrnlm) =
k 8 collact-keys{n})
This ia proved by siructural induction on n
PASIS
(4) n 8 Tnede (2 becomes
{5) commonnvinl and k 8 dom n = k & dom n
which follows immediately.

INDUCTIVE HYPOTHESIA3 n 6 Inede

assume

(6) (¥ an 8 n}common-invisn) and k © dom retrnisn) ==
k 6 coliect-keysian)}

(71 common-in¥{n) and k & dom retrn(n) {Hypothesis)
B (¥ sn 6 nKkcommen-invisn)} and {common-inv)
9 (3 sn 6 nXn 8 dom retrnizn)) {retrn)
(10) k @ collect-keysian) for such an sn by (B2
Thus

{11) k & collect-keysin) {collect-keys)

from which

¥ t € B-tree)mwt) and? k 8 gom retrn(TREE()) =
* @ collect-keys{TREE()))

followuws al once,

follows



wWhat must be shown ia:

1) (¥ t 8 B-traaXinvit) and pre-FIND1{tk) and post-FINDItkt' d) =
post-FIND{retr(t),k retrit.a))

on substituling definidiions, 1his becomes

(23 (¥ t 8 B-treeXinvit) and k €& collect-keys{TREE() ant 1=t and
d=tind(k,TREE(t) = retril)=retrit) ancd o=retrn(TREEI)XK)

It follows immediately from
t=t that retrt)=retr(t),

g0 whal must be ahown ia

(3) (¥ t €& B-treeXinvit) ane’ k € collect-key®(TREE() =>
Hnd(,TREE() = relra(TREE(XK)

Proof:

The firsi step is to prove that

(3) (¥ m © Nat, n 6 NodeXcommon-invin) and k € calieci-keyg(n} =>
hndlk,n) = retrn{nXK)}

This is proved by structural induction on n
BASIS

) n & Tnode (3) becomes

(5] common-invin} and k & dom n = nfk)} = nik)

which follows immediately.

INDUCTIVE HYPOTHESIS n 8 Incde

assume

(6] {¥ sn & nXcommon-inv(gn) and k 8 collsci-keys(sn} =
hnd(sn) = retrn(snXk))

{7} common-invin) snd %X & collect-kays(n) {(Hypathesia)
{B) (¥ sn @ nXecommon-imv(sn)) and (common-iny)
{9} (3 sn 6 nXk © collect-keys(sn)} iby (N and collect-keys)
{10} hndikan) = retra(snXk} £or auch a sn by (6]}
Thus

{11} tindlkn} = retro(nXiy {defimtions of hnd and raetrn)

from which

¥ 1 & B-treeXinvit) and k © collect-kays(TREE(1)) =
Hindi, TREE(tH = relrn{TREE{1XK)

follows al once.
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Operation INSERTI

A funciion which 193 of use 1n the following proofs is:

not-n: Key Node — Bool
not-1nlk,nl 2 k € collect-keys(n}

(A) Preservation of the Invariant

The rule to be proved is
(1) pre-iNSERTI(LX) and inv(t) and post-INSERTI(LRL) = inv(l]
Thia may be expanded 1o

(2 nol-n{k, TREE()} ano myrDRDER(tLTREEQN =
1w OADER(tLIn3artr(ORDER{), TREE(t) k)

the proof of (2) has been done by decomposing whal has (o be
proved into a number of lemmas and proving those which are not
immediately apparent. These lemmag and their proofs then combine

to provide the proof that INSERT1 preserves the inwvariant.

The lemmas for insertion are listed below, and are followed by
Lhe necessary proofs from which the irulh of Theorem 1.12 and thus

equation (2) folliows:




Inseriion Lemmas for Tneodes

Assuming
m € Nat and n 6§ Tnode &and notl-intkn) and n'minsertnim,n, k.d)

for the following 4 lemmas:
L1.1 size-imvWim,n) => n' & Tnode-set and 1 & gawn’) S 2
L1.2 keysets-ars-ordered(n’) and colleci-kaysin? = collect-keysin) U {k}
LT3 balanced(n
L14 size-invimn) = (¥ 50" 8 n'Xsize-invim,sn'))
Aaguming
m & Nat and n 8 Tnade and nct-in(k.n) and size-invrim.n) and

n'=insertrim,ni,d}

LS size-invr(m,n)

Ingeriion lLemmas for general nodes

Assuming
m & Nat and n @ Node ang common-inv(n) end not-in(k,n) and
a'Sinaartn{m,n kd)

for the nexi 4 lemmas

L1€ size-inavimn) = n' B Inode and 1 S sizein’) § 2
(from L1.1, spliv and nsertn)

L17 hkeysets-are-ordered(n’) and collect-kayx(n") = coliect~keysin} LI (k]

L18 batancad(n #nd (¥ sn” G n'Ndepths{en = depthsinh)

L19 common-inv{n7}

Agssuming
m € Nat and n € Node and size-invim,n) and not-intk.n) and
n'=inssrtn(m,n,k,d)

L1.10 (¥ 3n" € n'Hsize-ine(m,an'h

Agsuming
m € Nat and n & Node and size-invrim.a) and not-in{k,n} and
n'zingertrim,n kd)

LY 11 size-myrim,n')

Theorem T1.12 nvr(m,n) and not-inlkn) and n'=insertr(im,n,kd) =

1avrtm,n'}
{rom L19 and L1119}
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Proof of Lemma 1.7

To prove:
(1) n 6 Nede and common-inv(n} and act-in(k,n) and n=msertn(m,n k.d) =>
keyssli-are- ordered{n’} snd collect-keyain)=collect- keye(n} U [k}

Proof: By siruciural inductiion on n
BASIS

(2] n € Trode

which {cllowe immediately {from L1l.2.

INDUCTIVE HYPOTHESIS n @ inode

asgume

(3 (¥ 3n e npigommon-invisn) gnd nol-infksn} and an'=msartnirm,sn,k.d}
== kemiats-are-orderad(sn’ and collect-keys{snT=collect-kays{sn} U [k])

{4} commen-invin} and not-in(k,n) {lypothesia)
(5) et cn = selecteln,{k])

(6) en€n {aalecic)
{7} common-invicn)} (31, (#), (B) and common- 1nv)
(8} not-infk.en) ((4), (E), coliect- kays)

{9 lef cnd = ingarta(m,cn,kd]
{10) keysets-are-crderedicns) and collect-keysicnsj=collect-keywicn} U (X}
by (73, (8), (D), (3N
) et m=n - {ca] U cns
(12} wayls-are-ordered(rn) ity (10, (17), seleclc and (4))
(13) collect-keyslrn} = collect- keysin) U [k} {by (10} and {131
(14) n* = sizelrn) & 2*m then {rn} else splitirn)
The lemma holds in boih casges, from ihe definiiiona of
apliti, collact-keya and keysels—are—ordered .



Proof of Lemma 1.8

Thig ise an imporitant property of a B-iree, which is noi abvious .,

To prove:
(1) n & Nede and common-invin) and not-inlkn} and n=insertnim,n,kd) =
bslancadin and (¥ an' € n"Ndepths{sn? = deptihs{n}}

Proof: By siruciural induction on n

BASIS

{21 n € Tnode

which {follows immediately from L1.3 and L1.1

INDUCTIVE HYPOTHESIS n 6 Inode

assume

(3) (v an € nXcommon-invisn) and nol-inlksn)} ans sn=insertn(m,sn,kd)
== balapced(sn’) asd (¥ 3an' & an'Ndepths{asny = deplha{anT))

(4) comman-inv(n) ang not-in{kn} (Hypotheaut)
(5 (¥ sn € n¥comman-invi{sn) and not-inikanj) ({4), common-iy and not-1n)
(6) lat cn = setectcin, [k])

(N cn6n {aelectc)
{8) common-invicn} and not-in(kcn} {5 and (7))
19} balanced{cnt by (8))

(10) (v sn & n)deptha{sn)=depthaicn)}

(n @ Inode and baiancedin) =»{¥ 31,32 & nXdeptha(si}=deptha(s)
(11) depthein) = union [depthelsn) |sn & n} ++ 1 = depthe(cn) ++ 1
(12 /et cns = insertnim,cn,k.d)

(13) balanced(cns) and f¥en' 8 cnaXdepths(sn? = dapthe(cn)) by (3
{14) ¢t rn = n - {cn} U cns

{15) {¥ arn € rnXdepthe(arn) = depthsicn)) (by (10) and (130
(16) depthsirn) = depths(n} {by (10, (11) snd (15))
(') balancad{rn) {card depths(rni=card depthsin}=1 by (1E))

(18) n' = & sigwiral & Z*m then [rn) sae splititrn}

The lemma holde in boih casesa, from (16), (17) and 1the defimition

of spliti,
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Proof of Lemma 1,9

To
n

prove:
n € Mote and common-invin) and not-inlkn) and n'zinsertnirm,nkd) =
comman-inv(n'}

Proof: By siructural induciion on n

BASIS

(2) n & Tnsde

{3) keysetyare-ordered(n’) by L1.2)
(8) balanced{n” [by L1.3)
(5) n' & Tnode-set (by L1.1)
(6) {¥ an' € n'Ncommon-inv(sn')}

(7} common-inv{n") by (3), (4, (B)

INDUCTIVE HYPOTHESIS n G Inode
agsume

8)

{9

oM
an
{12
13)
149
(15)
(16)
(7}
[41:]
(19)

{¥ an & n)Xcormmon-inv{sn) and not-inlksn} and sn'=insertn{m,an,kd)
=> common-inv{sn"}}

commen-«nvin} and not-in(kn) . {liypothesis)
keysels-are-orderedin®) by L1.7)
balanced{n by L18)
Tet cn = selectein,(k})

cngn (sslecic)
common-inv(cn) and not-in{k.cn) {(9), {13), common-inv and aot-in))
Iet cas = insertn{m,cn,kd}

common+-iNvicns) {by (14), (15), (ay
let n'=n - {en} U cpa

o &n' € n'common-invisn'}} (by (9, (13}, {16} and common- ipv)
common-iAvin® by {100, (11} and (16)

NOTE 45 Induction is required for Lhis proof becauss common-1av 13 recursive.




Procf of Lemma :.10

To prove:
{71} N & Nede and size-inv(im n} and not-in{k,n) and A=inaertnim.nkd} ==
¥ an” & n"Wsize-Invim,an")

Procf{: By siruciural induction on n
BASIS

(2 n € Tnode

which follows immedialely from Ll.4.

INDUCTIVE HYPOTHESIS n & inode

asgume

(3} (¥ an 8 nXsize-invim,sn) and not-inik,an} gng sn'=inaertn(m,sn,kd)
=> (¥ sen' & an'Nyize—rnvim,aaa))

(A)  Bize-inv(m,n) and not-inilen) {Hypothesis)
{5) (¥ sn 6 niaize-invim,an) and not-infan)) ({4), size-nv angd nol-m)
(B} fof en = selectedn.(k])

(M ené€n (selectc)
(8) size—invimcn) and not—nilken) «S5) and (7))
(9) et cna = inaann(m.cn kd?

{10} t¥an’ € cnsKsize-invim,an') {by (30
(11} 1 & sizeicns) € 2 (by L1E)

(12 tet rn = n - {on} U cns
{13} size{n) € size{rn) € sizeln) + 1
(14} n" = it sizedrn) & 2*m then [rn] efae splilira)
Casge (a):
{115 aize(rn) € 2*m
{16) (¥ sn’' & nNaize-InWim,an’)}
follows immediately from
size{n) & aize{rn) & 2%m and nze-invim,n)
cage (b):
(17) sizolen) > 2*m
(18) size—invim.n) and (13) = gize{ra} = 2*m+1
{19) (¥ an® @ nXsize-invim,sn'})}
follows immediately from the definiiion of spiti.
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Proof of Lemma 1.11

To prove:
{1} n & Nede and mize-invr(im,n) and not-in(k.n) ang n'=)nsertr(m,n k.d)
=2 ge-inyrimnn

Prooif:
For n G Tnede
This case followa immediately from L1.5.

For n & Incde

(& sze-nmvrim,n) and not—in{kn) (Hypotheas)
(3) (¥ 3n & nXsze-invim,an) and not-inlksnn (12}, size-invr and net—in}
(4) ‘et cn = selectcin,{k})

(5 ecnan (selecte)
(6} aize-invim,cn) and not-infk.cn) ((3) and {51
(7} et en = insertnim,cn, kd)

{8) (¥sn' @ cnaXsize-invim,sny) (by L1.10)
O 1< szeicns) & 2 (by L1s)

{10) jet n=n - {cn] U cns
(11) mzein) € sizedrn) < size(n) + 1
(12) (¥ sm & rnXzize-invim,arn)) {by (3), (5}, (B8} and (1Q))
(13} o = # size{rn) S 2*m lhenr (rn} edsa aplitdrn)
Case (a):

sizelm) & 2¢m

o' = and size-inavrim,n? (by {11), {12} snd wze-invr)
Caee (b}):

nreirn) > m

n' = spiitiirn) and mze-invrim,n by (12}, spliti}




Proof that INSERT]1 modela INSERT

(D) Domains Rule

wWhat musi be shown isg:

(1} v t @ B-tree)invil) ano’ pre-INSEAT{retrthid) =
pre—NSERT1(L,kd))

On subsiituting definitiona., this becomes

(D (¥ t & B-treaXinvit) and k € dom retrn(TREE{t) =
h § callect- keys(TREE(L))}

Prooi:
This proof is identical 1o the proei of the domains rule for

operatlion FIND1l, except that all occurrences of Kk 6 . . . are
replaced by k & . . .



(E) Results Rule
The rule 10 be proved is:

e{1) (¥ t ¢ B-treelinvt} and pre-~INSERT1(i,kd] and post-INSERT1(L k"
= post-INSERT(retril) kd,retr(ty

Expanding this gives

(2) (v t € B-treaX:nv(t] and k& coilect-keys{TREE{t) and ORDER(7 =
ORDEAI =>

retra(nsertr{ORDER(1),TREE{),kd) = retrn(TREE(H U [k — o]}

Prooil: By structural induction on TREE (1}
BaASIS
(3} TREEN) & Trode
Equation (2) becomes
{4) invit) and k € coliecl-keys{TREE(t)) and ORDER{t] = ORDER(H =
relrnidRDERIY, TREE(LLk.0) = TREE(Y + [k ~* d}
(5) tef rn= TREE(t) + [k — d]
(8) insentnlOADER{Y,TREE()kd) =
of susrn) & 2*ORDER(L) then {rn] else sphtirn)
Case ]:
sizelrn) & 2*ORDERA(L)
(T} ingerfORDER(N,TREE(kd) = rm = TREE() + [k —> o)
(8} retroin) = TREEM + [W — d]
Cage 2:
sizelrn] > Z*ORDER(Y)
() insedr{ORDERA(L, TREE(D kD) = sputt(ra) = splithTAEENM) + [k —* d]}
(10} retrisplittirn)) = murvon [retra(sn) | sn 6 apittTREE(H [ k-—>d]}}
= TREE(t} + [k — d]

Now if TREE(t} G Inode

INDUCTIVE HYPOTHESIS Assume

{11} 0¥ sn € TREE(tinv(t} and k € collect-keyslan) ==
(refrniinaartn{ORDER(t), an kd)) = retrn{sn) + [k — d])

(12) tet cn = selactc(TAEE(t),{k}}

(13) cn & TREE() {selacts)
(14} Jo¢ cns = insertn{QRDER{),cn .k d)
(15) retrn{cns) = retrnicn) + [k — d] by (11

{16) el rn = TREE(W) - [en} U cns
{17} insartn(ORDERILTREE(t) D) =
i size{rn) & 2*ORDER(t)+1 then {rn) edse splitirn)
Case (a):
tire(rn) & Z*ORDER{t)+1
(18} insertr(OADERM),TREEW ) d) = rn = TREE( - {cn} U cns
(19) retrrdrn) = retrn(TREERY - retrnien) U retrnfom+[(k—*d]
sretrn(TREEIH [k—=d] {en 8 TREE()
Casae (Db):
uze{rn) > F*ORDERI(tH1
(20) insertr(ORDER(),TREE(L) ki d} = spliti(rn) = spnti(TREE() - {cn} U cna)
(21} ratrntspiitiirn)) = mumon {reten(sn}! sn G split(TREE(-{en] U cra))
= ratyn(TREE(D) - ratrnicn) U retrnicn) + [k — d)
= retrn{TREE(tH+[k—>d] fecn € TREE()
whach completies the proof.



Operation DELETEL

A funciion which is of use 1in Lhe following refinemenl proofs is:

18-in: Key Noda — Bool
18(k,n) @ k € collect-kaya(n)

The rule to be proved is:
(1) pre-DELETEI(LK) and 1nv¥Wt} ang post-DELETENtkt) = inv(t)
This may be expanded Llo:

(2} 15— inll TREEILY) and (nvrtOADER{L),TREE()} =
invi{ORDER(t),deleter(ORDER{t]L TREE(D,k)}

once again, lhe proof has been donhe by drawing up a list of
Lemmas for Deletion (and proving Lhose which are notil obviously
true), from which i1he truih of (2) can be deduced. These lemmas

correspond 1o 1he Lemmas for Inseriion in form,

The lemmas are lislied below and are followed by seleclied proois
of 1hose lemmas which are nei i1mmediately appareni and do noti
fallow +1he 1lines of 1he proof ef 1he corresponding lemma for

insertion.
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Deletiicn Lemmas for Tnedes

Assgsuming
m € Mat ang n € Tnode and 15-1n{k,n) and n'=delaten(m,n k)

for 1he following 3 lemmas:
L1.13 size-nAm,n} => n' € Tnode and sire{n’) = size{n} ?
L1.14 xeysets- are-ordered(n') ang collsct-keys(n] = collact-keysin) - [k}
L1.18 balanced({n’
Assuming
m B Mat angd 1 8 Tnode and la-In{k,n) and size~invr(m,n) and

n' = delater{m,nk)

Lt 16 size-inve{m,n?

Deleiion Lemmas for general nodes and Inodes

ABssuming
m & Nal ang common-inv(n) and is-in{k.n) and n' = deleten{im,nx)

ipor i1he following 4 lemmas

L1.17 n & tnade and size-invim,n) == n' Gincde and aze(n’) § szeln)
tfrom marge, radistribute and delete)

also assuming that
n & Node
{for ihe nexi 3 lemmas:
L1.18 ktysets-ara-orderedin?) and collect-keys(n’) = collect-keys(n) - [k}
L1.19 baanced(n’) and depths(nh = depthain)
L1.20 common-mnwin?
{proof of thia follows the proof of L 1.9, and 13 dane by wnduction uaing Lemmas 1.13,1.14,
1.15, 118 and 1.19)
Assuming
m© Nat angd n 6 inode and size-inv(im,n} and - in{k,n} and
" = delater{m,ni)
L1.27 (¥ sn* B nXaze-1nv(m,an")
Assguming
m & Nat and n S Inode and size-invr(pn) and s-infkn} and
n' = deleter(m,r,n)
L1.22 size-invrim,n") {from L1.76 and L17)

Theoram 123 nvr{m,n) and i1s-in(k,n) and n' = deletar(m,nk} == nvrin’)
(ram L1.20 and L1.22)



Proof of Lemma 1.18

To prove:
{1 n 8 Node and comman-invin} and is-in(k.n) and n'=delalanim,n i) =>
keyseta-are-ordered(n'] and collect-keysin) = collect- kaysin} - {k}

Proof: By struciural induction on n

BASIS
(D n & Tnode

which follows immediately {rom L1,14.

INDUCTIVE HYPOTHESIS n G Inode
asaume
(3} (¥ an @ nicommen-inv(sn) and 1s-in(ksn) and sn'=deleten{m,sn,k}
= keyssts-are-ordered(sn’) and collect-keys(sn)=coliect-keya{sn}- (k]}

{4} common-inv{n) and 13-in{kn) {Hypothess)
{5) (¥ an @ nNcommon-inv(sn)} and ({4) and commaon- i)
{6) (] an @ n}is-in(sn)) ((4) and rs-in)
{7} /et cn = selectik.n)

{8 ¢n 8 n and a-infk,cm) {select)
{9) common-mvice) {5) and (B))

{10} /et rn = delaten{m,cn k)
{11) keysets-ere-ordered(rn} ang collacti-keysirn}=collect-keysicn)- [k}
(by {8 (9) and (AN

case 1:
sizedrn) 2 minimum-size{m,rn}
(D e =n- (en} U {rn]

(13) keysetz-are-ordered(n'} and collect-keys(n=coliect-keysin}- [k} by (11))
Case 2:

size{rn) < miimdm-aizedm,rn)
{1%) jef nn = peighbour(n,cn) (defined because (m*1) # 2}
(syrm e (neighbour}

Case 2(a)
wzelrn) + size(nn} 3 2*m
(16}  collect-keysiradistributeirn,nni)=coliect-keysirn) U caollect-keyainn)

(172 heysets-arp-ordersdiredistnibutedrn,nn)) {by dehnitron ¢ redistribyta)

{20 n' = n - {cnnn} U redistribute{rn,an)

(21} keyselg-arg-ordered(n” and (by (4, {11), (15, {16) and {17

(22  collect-keys(n"=collect-keys(n) - {k} (by (17), (15), (20), (16) and collect-keys)
case 2(b)

aze(rn) + srze(nn) < 2*m
(73} coliect-keys{merge{rn,nn)) = colleci-keys{rn) U collact-kayzinn}
(24} n'=n- (cnnn} U merge{rn,nn}
(25} keysels-ara-ordered(n’} and
(by {4}, {t1), {23), merge, keyzels-are-ordered and neighbouyr)
(26} collecl-kays(n = collact-keysin) - [k}
{by [1%), (23), (24] snd collect-keys)
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1.1

Proof of Lemma

To prove:

(') n €@ Node and comman-invin) and 13-1n(k,n} and n‘=deleten{m,nk) =
balanced(n’} énd deplhain’} = depths(n)

Proof: By diruciural induciion on n

BARSIS

(2) n € Tnede

whaich {ollows i1mmedialiely from L1.13 and L1.15,

INDUCTIVE HYPOQTHESIS n G Inode

asgume

(3) (¥ sn & nXcommon-nvisn) and is-infksn) and sn'=delaten{m, snk)
=> talancedisn’ apcd deptha{sn=depths({sn}}

{liypalhesis)

{4) common-invin} and is-in(kn}

(S) (¥ an € nlicommon-invisn)) ang {(4) end comman-inv)
(6) (1 sn € nXia-in{k,sn}} {41 and 13- in)
(7} Jef cn = gelect{kn)

(8) ¢n €n and i1s~in{kcn)

{9} common-inwicn)
(10) (¥ 30 © nXdepths(sn) = depthsi{cn))

(relect)
(5] and (@)

(n & Inede and balancedin} = (¥ 31,32 € nXdepths(sll=depthsia )}

(11) dapths(n) = union {dapths(sn}|sn & n} <4 1
= depths(en} r+ 1

(12) tat m = delatap(m,cn,k)

(13) balarcedirn) ang depths{rn) =depthsicn}

Case 1:
sizelrn) @ minimum-gizedm,rn)
(14) n" =n - (en} U (rn}
(15) (¥ ' € n'Ndepthsisn'} = depthsicn))
{16} deptha(n7 = depths(n)
(17} balenced(n”)

Case 2:
sizeirn) < mInimum- zedm,rn}

(18) fet on = neighbouringcn)
{(19) An € n
{20) depthsinn) = depthsien) = depths{rn)

Case 2(a)
gre{rn) + size{nn) & Zminimum-size{m,rn)
depthsiredistributeirn,nnj] = depthsirn) = depthsica)

[defined becauvse {mi1}

(2n

(22 n=n- {cn.an] U redistribute{rn,nn}

(23) (¥ s’ 8 n'Xdapths(an = depthsicn))

(24)  gepthsin = dapthetn)

(25) balanced(n’) {by card deplhs(n}=1

Case 2(b}
szelrn) + mrzelnn} < Fminmum-azedm,rn)

This follows gimilar argumenlis 1o Lhose of Case 2(a},

properiy o1 merge:
daptha(rn)=depthsinn) ana balanced{rn} ard balanced(nn) =
balancadimarge(rn,nny}

_SD_

(by (B), 19) and (3}

(by (10) and (13))
oy (10), {17), (15)

(card depthsinFcard depthsin’=1 by (4)

L]

(neighbour)
(by (10} and {130

{by 20}
{by (20) and (21))

{by (10} ang {23))
= card dapths{n?, {24) angd [4}}

and uses the



rocf of Lemma 1. 2]

To prove:
(1) n € Inode and mze-invim,n) and 18-infk,n) ard n=deletenimnk} =
¥ sn' € nsize- invim,en)

Proof: By siructural induciion on n

12) mze-invim,n) and 1s-inlk,n) (Hypothesis)
(3 (v an € nXsize-invim,sn)) (2> and size-nv)
(@ (] sn € n)is-wikn)} {2 and collect- keys)
DASIS

(5} (¥ an & nXMsn € Tnode)
{6) Ie¢ cn = selectlkn)

N cn € n and 18-in{kcn) {select)
{8) c©n € Tnode ang aize- invim,cn) 2, (3 and (7N
{9) /et rn = deletan(m,cn,k)

{10} rn = cm\[k} {deleten)
{11) size{rn} = size{cn} - 1 (by L1132}
Cage 1:

size{rn) # minimum- size(rn,rnl

12 smze-invim,rn) (s1ze{rn) ¢ sizelcn) and sizae- ivcn) by {(8))

(13 n"=n- {en} U [rn}
{14) (¥ ' € n)siZe-invim,an’)

Case 2:

size{rn} < minimum-aize{m,rn)
(15) /ot nn = neighbour(n.cn) (defined becsuse (m41} @ 2)
{16) nn 9 n and sze-Nvim,nn) (neighbour and (3))

Case 2(a)
azelrn) + size(nn) 3 Z*minimum-sizelm,ra)
(171 n'=n - {cnnn} U rediatribute{rn,nn)
Immediate by defaniiion of redsmbute and (B), {(11)
Case 2(b)
size{rn] + size(nn) < Z*minmum-sizedm,rn)
{18) n'=n - {emnn} U merge{rn,nn}

by (2, (7), (129

and (16) .

Immediate by definition &f merge and (8), {(11) and (15},

(¥ 8n € nkKsn € Inode)

INDUCTIVE HYPOTHESIS

assume

{19) (¥ sn € nXsize-invim,an} and r3-infk,an) and sn'=deleten{m.xn k)
=» (V¥ 330’ 8 snNsze-Inv(m,aenM)

(20) fei cn = select(k,n)

{21) cn € n and 18-1n(kecn} {selsect)
{22) (¥ sn € cnXsize-inv(man)} (by {3}, {21) and mze- inv)
(23] fei rn = daleten{im,cnk}

(24) (¥ stn 6 rnXsize-invim,srn}) (by {21), (22), and (1))
Case 1:

mzeirn) @ minimum- size{m,rn}
{2 =p- {ca)] U {rn]
(&) (¥ sn* € n'XsiZée—inv(m,sn"}

-S"-

(by (21), (22) and (24)



Casge 2:
sizedrn) < minimem-aizedm,rn)

(27} iet An = neighbourin.cn) (dehined because (m+1} » 2)
(28) nin 6 n (neighbour)
(29} (¥ sn G nnX size-invim,sn)} (by (28} and (3))

Case 2(a)
s1ze(m) + sizednn) # *Mipmum-sizedm,rn}
()  n'=n- {cnnn} U redistribute(rn,nn)
Immediate from 1he definiiion of redistnbute, (22) , (24) and
(29),
Case 2(h)
size{m) + size{nn) < Z*muinimum-size{m,.rn}
(31}  n' =n- (cn,nn} U mergelrn,nn}
Immediatie from 1he definiiion of meme, (22), (24) and (29).
Thig concludes the proof of Ll.21.

NOTE 4.6: As L1.21 18 concerned wilh Inodes, 1 he basis cannot
s8imply be a Tnode.

The lemma states {hai after DELETE1 has operaled on an Inode,

ithe Biie invariant is preserved for all iis subnodes,.
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BProcf ihai DELETE11 .

(D) Domains Rule
wWhat musi be ghown is
(1) (v t & B-lreeXinv(t) and pre-DELETE(retr(t),k} =% pre-DELETE 1{t.k}
On gubstituling @efiniticna, 1his becomes
(2) (¥ t € B-treeXinv(t) and k € dom retrn(TREE(L) =

15~ 1n(k, TREE{))
Proof:

This proof is identical 1o the procf of Lihe domains rule for
operation FIND1.

(E) Resulis Rul

The rule 1o be proved is

(1) ¥ L © B-treeXinv(t} and pre-DELETENLK} and post-DELETEWLKtD
=> posl-DELETE(ratr(t)k retr{t7)

Expanding this gives

(2} (¥ t & B-treeinv(t) and 1s-In{x, TREE(t)) and ORDER{L) = ORDER(t)
=3 ratrn(deleter(ORDER{T,TREEMLK} = retrn{TREE( (K])

Proof: By structural induction on TREE (L)

BASIS

(33 TREE({) @ Tnode

equalion (2) becomes

{4) inv(l) and k © don TREE{Y) ang ORDER(L) = ORDER{) =
retrn{deleter{ORCER(L,TAEE(t) k) = TREE(MN{k}

This follows immediately as

(5] deletes{ORDERE, TREE{)K) = deletenfORDER{,TREE() k} = TREE(D) [&}

s0

(6] retrn{delstar{ORDER(), TAEEt) k) = TREE{D\ (k]

If TREE(t) € inode

INDUCTIVE HYPOTHESIS Assume

(7 (¥ an & TREE(DMinw(t) ang a-wniksn} =
reirn(dsleten(ORDERC(L),an,k} = retrnisa)\[k)}

{8} Jof cn = selscHTREEL),h}

19y cn 6 TREE{) and $-Kkcn} (salect)
(10} fed rn = delaten{ORDER{t),cn k)
(11} retro{rn) = retrnien (K} {by (3} and (7H
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Cagse 1:
size{rn} # mimmum-size(ORDER(,rn)
(12) deleten(ORDLRIL, TREE(t,K) = TREEM - {cn} U {rn}

(13) mize{deleten(CROER), TREE()LK)) = sizelTREE() (from {127)
(14) deleter(ORDEA(H,TAEE(t),k) = TREEM - {cn] U (rn) (from{13}}
(13) retrnidelter(OROLCA(L), TREE(LK) =
retr(TREE() - retrnleny U retraleni (k] (by (9), (11} and (14))
= retraTREEMN [k}
Case 2:
srze{rn] < minmum-size{CACERLL),rn)
(16) feé! nn = naighbour{TREE(t)cn) (defined becsuse (m11) # 2)
(17} nn G TREL(t) (neighbour)

Case 2{(a)
sizelm) + size{nn) # 2*minimum- gize(DRDER(t},rn)
(18}  deleten{ORDER{t),TREE{t),k] = TREE(t} - {cn,nn} U redestribute{rn,nn}

(19 sizeldateten(ORDER{L), TREE(t} k) = sire{TREE(1)) {by (9), (17), (1B} and radistribute)

{20)  deleter(ORDER(Y, TREE(t),K) = TREE(t} - [cn,nn} U redistribute{rn,nn)
[21y  relrnidaleter(ORGER(),TREE(t.kY) =
retrn(TREE(t} - retriien) - retrntnn) U retrn{redistrbutedrn,nn)}
= retrn(TREE()) - retrn(ecn) - retrnfnn) U retrn{rn} U retrn(na)
= relrn(TREE(tN - retmicn) —~retmieniv(k] U retrminn}
= ratrn(TREE(tH\{k}
Cage 2(Db)
size{rn) + size{nn) < Z*rmirumum-s1ize{OROER(),rn)
(22}  deleten{ORDER(),TREE(),K) = TRAEE() -~ {en,nn} U marge{rnnn)
(23)  sizeldeleten(ORDEA(L), TAEE(LL.K) = sixe{TREC{t) - 1
1t szeldeleten(ORDEA(L, TREE(MN,kh = 1
(24) fhen TREE(L} = (sn.nn}
(25) deleter(OADER(), TREE(LK) = m U nn
(26) retrn{deleter(OROER{L),TREE{t}k)) = retrnirn) U retrninn)
= retrnlen)h (k] U retmi{nn)

= retrn(TREE)\ [k}
LT
# size{delaten{(OROER(),TREE(tLk) > 1
(Zn deleter(DRDER(N, TREE(N),k) = deteten(QRDER(), TREEt)N)

= TREE{t) - {cn,nn} U marge{rn,nn)

{redistnbute)
by {11}

(by {22 and merge)

{merge}

by (110

by (240

(delater)
(by (22

vhich again givea (by a similar argumeni 1o +Llhat used in

case 2(a)):
retrn(deleterCADEA(L), TREE(]K) = retrn(TREE(tI (K]



4.4 Represenlation 2

This sliage uses as a represenialion a Lree siruciure which isg
defined by us=ing lisis, and ihe actual representalion of ihe keys
in the index pari of Lhe lree is specified, An Inode now consisdis

of a list of keys, as well as a lisi of nodes, and {he data Lype

invariant siaties 1n whal manner iLhese lisis musi be ordered.

As i1he dAala 1ype, BP-iree, is a more concrele {orm of Lhe A—tree
ugded in Representation 1, 1ty structure clesely reaembles cthe
skructure of a 8-fee and many of the functions correspond cloesely
Lo i1he funciions defined for Representalion 1. This faciliia-lies
1he refinement procfs {for this level, as Lhey have a gimilar form

1o Lhe corresponding proofs which were done {or Represenialion 1.

REPRESENTATION 2

a4 1 Data Structure and Data Type Irvariant

BP-kres . ORDEAP. Nat TREEP, MNodep

Nodep = Inodep ! Tnodep
Incdep = KEYL. Key st TREEL: Nodep-Iis1
Trodep = Key —* Data

nvp: BP-tree —» Bool
invp(t) = 1avrp{ORDERP(t), TREEP(L))

where invrgr Nat Nedep —* Bool
invrplrn,n) € common—invpXnl anag size- invrp{m,n}

whara common-invp: Nodep —+ DBool
common-invpin} = cases of n
n € Inodep: keysets-are-crdaredp(n) and balancedpin)
and (¥ 1 € [V . flenTREELN))
(comman- nypTAEE L{NXN1M
n € Tnodep; irue
end
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whera size-iwrp: Nat Nodep —+ Bool
BiZ@-mvrp(m,n) = ceged of n
n € Inodepr z & mizep(nt & Z"m+1 and
v 1 G (1., fer TREEL(M})
{31za~-1nvp{m,TREEL{nXiNk

n § Tnodep: sizepin) & Z*m
end

where S1zg-invp: Nat  Nodep —* Boedl
size-jwp(m,nl 2 cases of n

n & Inodep: m+1 & sizeptn) & 2*m1 and
len KEYL(n) = azepin) - 1 and
16 {1 _tan TREELIMI})
{siza -invptm, TREEL{mN

n G Tnodep: m & sizepin; & Z"m

end

where s1zep Modep —» Nat
sizepin} 2 cases of n
n € Inodep: fen TREELIn)
n € Tnodep: card dom n
end

where keysls-are-orderedp: Nodep ~— Bool
kaysets-ere—grderedpin) 2 casea of n
h € tnodep:. 19-ordered(KEYL(N)) and
™ 6 (1 .. ten KEYL(N)))
{collect- keysp(TREEL(nXj}} <<=
{KEYL{nNi}] <<
collect- keysp(TREEL(AX1+ 1}}}
n € Thodep: frue
end

whera I13-ordered: Key-ist — Baol
ws-ordered(kl) = (¥ 1 € {1 .. {fen kI - 1)XKHD < kKi+1H

where cieci-keysp: Modep — Key-sot
collect-keyspin) S cages of n
n € Inodep: unisn (collect-keysp(TREEL{NXiy |

1 8 ¢ € ten TREEL(M)
n & Tnodep: dom n

end

where (= Nat-set Nat-set —> Bool
81 <<= 37 2 (¥ o1 € 31X¥ 82 € s2Nel K ed

where blancedp: Nodep —» Baok
beiancedpin) 2 ¢ard depthspin) = 1

where depthsp: Nedep —» Nat-set
depthspin) & ceses of n
n € Incdep: union [dapthsp(TREEL{nX} |

1 € ( € ten TREEL(n)} ++ 1
n € Trnodep: {1}
end



442 The Retneve Function

retrp. BP-tree -— B-iree
retrp(t} & <OROEAP(t),retrnp{ TREEFP(L))>

whera retrnFp. Nodap — Node
ratrap(n) ¥ cesea of n

n 6 Inodep: (retrnp(sn) | an € elems TREEL(N))
n G Tnodep. n
end

443 The Operationa

FINDP

States: BP-tree

Type: Key —» Data

pre-FINDP(LI) 2 k G collect-keysp(TREEF(H)
past-FINDP(LKt',r) € I' = t and r = hindp(k TREEP(H)

where findp; Key Nodep — Data
pre-hndp(kn) 2 k € collect-keysp{n)
tindplk,r) 2 casey of n
n € Incdep: /el i = iIndex{k,KEYL(n))
thindp(k, TREEL(nXi»
n € Tnodep: nik)
end

whare index: Key HWey-list —» Nal
index{k Kk} = « ki = < >
then 1
efse if k & Ad ki
then 1
e/sa 1 4 indax(k, ¢ ki)

INSERTP
States: BP-tree
Typa: Key Data —»
pre~INSERTPit k,d) = k € collect~keysp(TREEPt))
post-INSERTP{Lk,G,t? & ORDEAP(t? = CADERP and
TREEPItD = ingertrp{ORDERP(t), TREEF(L), k.d}

whera insartrp; Nat  Nodep HKey Data — Nodep
pre~insertrp(m,nkd)} S k & cellecl-keyap(n}
Insartrpim,n,kd) & el ra = inzertnp(m,nkd}
i sizeplrn} = 1
then TREEL(rnX1)
ofss n

where insertnp: Nat Nodep Kay Data — Inodep
pre-insartnpim,n,k.d} 5 k & colleci-keysp(n)
nyertnp(m.nkd) 2 casea of n
n & Inodep /of itikcksn = selectpink)



et oMl = insertnpim,cn,kd)
fel sn =<< > <cn>>
et ra = replace(n,ancnlit)
if sizepira) & Zm+1
then << >.<m>>
else sphtiplm,rn)
n G Tnodep: fet m = n + [k—3d]
it sizepirn) € Z*m
then << > <rn>>

efse sphtiplim,rn)
end

wheare selecip: Inodep Key — Nat Nat Key Nodep
post-selecipin i ritririin) € it = index{h,KEYL{n))
H ot > len KEYL(n)
then rik = nt -1
efse ik = nt
ri = KEYL{nXnk)
rm = TREEL(nXret)

where feplsce: inodep Inodep Inodep Mat Wat — Inodep
pre-replace(r1,12,13,nk,nt) € 15-aubnodelil,2) end
((KEYLOUZ2=< > and nk=ni) or
(nk=poaition{KEYL(O 2X 1), KEYLG10)
and nt=position(TAEELH2X 1), TREEL{11))
repface{i 1,12,13,nk,nl) 2 <alter(KEYL(i1}KEYL(2,KEYL{id} k),
alter{TREEL(I1),TREELO2, TREEL(iZ),nt)>

whare )s-subnode: Inodep Inodep —* Boo!
15-subnedel1,2) 2 f KEYLOZ) = < >
then len TREELUZ=Y and TREEL(IZX1) €&
elems TREELOT)
efae 19-aublist(KEYL{I1),KEYL{12)) and
13-sublisKTREEL{11 120} and
poaition(KEYLO2ZH 1), KEYLOTH =
posilon(TREEL(1ZX1),TREEL(11)}

wharae is-subhst: X-Iist  X-Irst — Baol
pre-is-gublistl1,)2) € D < len 12 & len 11

15-3ubhst(11,42) 2 (116 {1..ten 11]Xi=position(l2(1),11}
and (¥ | O [1.. len 12} D=110+)-1)

wheare position: X X-list —> Nat

pre-position{axl] = x G efems xlI
position(zxf) o x = hd x

then 1

elae Trposrhonix, tf xI}

Bl

whara gfter: X-list X-list X-list Nat — X-Dhst
pre-alter(11,12,13,) € (12=< > and T K 1 K fen 11 + 1) or
(1s-aublisk11,120 and 1=postion{l21}11))
alter(11,12,13,1) <= fronti-1,10) 113 |l backiion 11-len 12-1+1,11)

NOTE 47 The (ength of the preceeding frva functions suggesta that they could
be restructured. An altarnative approach would have been to relurn only a pair
ol indicas to positions in the key and tree hsts from selectp, and then to use

only these indices as arguments in the function replace.



where front: Nat0 X-hst —» X-list
trontin)) 2 «f n=0
then € >
elsg it n > fan |
then |
aise <hd (> |l tronttn-127 1

where backc NatQ X-list ~—> X-lst
post-packinlsl} & jf n =0 orn > jen |
then = < >
efse len rl = n and
1 ® [1..niXrlliy = len | - n + 1)

where aplibhp: Nat  thodep —> Inodep
pre-splitip{m,n} 2 fen KEYL(n} = Z*m+1 and fen TREEL(n) = Z*m+2
splitipim,n} B <<KEYL(nXm4+1)>,<<iront{m,KEYL(n) tront(m+1,TREEL(n))>,
¢ back{m KEYL(n]},backim+1,TREEL(n)>> >

where splittp: Nat Tnodep —* Inodap
pra-aplittpim,n} a mizep(n) » 2
post-aplittp{m,n,r} a Jel akgk = halve{dom n)
r = <<max(gk)>,<[k—>n(k) | k © sk},
[k—entk} [ k & gkJ>>

where halve: Key-sel ~> Hey-sot Key-sat
pra-halve(ks,sks,gks) = card ks » 2

post-halvelkssks,gka) = (sks U gks) = ks and (3ks << gks) and
{card sks = card gks + 1)

where max Nat-zet — Nat
pre-max(s) € § * { }
post-max{ar) € r 8 5 and {F} r>= &

where >»>= Nat-set Nat-set — Bool
51 322382 @ (¥ @1 8 31X¥ a2 6 sMel # o)

DELETEP

States; BP-tree

Type: Key —

pre-DELETEP(LK) 2 k6 collect~keysp(TREEP{L)

post-DELETEP(tLKtD & OADERP() = ORDERP{t) and
TAEEP{tD = deleterp(DRDERP{t),TREEP{tLK)

where deleterp: Nat MNodep Key —* Nodep
pre-defeterp{m,n,kt = k 9 collect-keyapin)
deleterp{m.n,k 4 tef rn = delatenpim,n.k]
if rn 8 Inpdep and sizep{rn) = 1
then TREEL(rnX1)
elge n
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wherse deletenp: Nat Nodep HKey —» Nodep
pre—delstenp(m.n,k) = k 8 collect-keyap(n)
detetenpim,n,k) S casas of 0
n 8 Inedep: /el itikeken = selectpink)
lef rn = deletenp{m.cnk}
o mzep{rn} # mimmum-sizepim,rn}
then lef sn = << > <end>>
replace{nan << > <m>>tt)
elae
fef nn = neighbeurpin,t)
ot sn = <<ck> <ennnd >
o mzepir) » sizapina) ¥
2 minimum-gitep{m,rn)
than
replaca{n,an,redigtribute pira,nn ci, ik rt)
slae
replace{n,an,mergep{rn,nn,ckik,it)
n 8 Tnodep: mik}
end

whare minmum-sizep: Nat  Noadep —» Nat
minmvm-gizepim,n} S caqses of n
n 9 tnodep: m+?
n & Tnodep m
end

whare neghbourgr inodep MNat —» Nodep
pre-naighbourpin,il S i § fen TREEL{n)
nexhbourpin,) 2 f 1 = lsn TREE(n)
then TREEL(nXi-1}
efae TREEL(nXi+1)

where redistnbuiep: Nodep Nodep Hey —* Inodep

pre-rediatributep{n1,n2k) ® ({(n1 8 Incdep and n2 6 odap) and
(ferr KEYL(RT) + fen KEYLIND > 2*m-1} and

{fen TREEL{n1)=len KEYL(n1):1 and /er TREEL(nZx/en KEYL(NA+1N

a~ {n1 G Tnodep and n2 G Tnodap and /en TREEL(n1HIen TREEUND
7 2) end

{icollect-kayspin?) <<x [k] << collect- keyspin2)) or
(cotlect-kaysp(n2) <<= [k} << collect-heyspin1))

redistributepin1,n2k} 2 casas of n1,N2
n1,n2 & Inodep aphtip 6 TREEL(mergepin1,n2 kK1)
n1,n2 & Tnodep: sp(ittp o TREEL(mergep(n1,nZi)X1)
ang

whare mergep: Nodep Nodep Key —» Inodep
pre-mergep(ni,n2k) 2 (n1 & Inodep and n2 & Inodep) o
in1 8 Tnodep and n2 € Tnodep)
mergep(n1,nzkl S cases of N1,n2
n1,n2 6 inodep:
1 collect-keyspin1) << collect-keysp(nZ)
then << > <KEYL(n1} 1 <k> || KEYL(n2,TREEL(nY) || TREEL(nA2>
wige << > <KEYL(n2} !l <k> | KEYL{n1),TREEL(n2 || TREEL(n1}>>

n1,n2 & Tnodep: << > <n1 + n2»>
end



4.4.4.1 pala Type Proofs

(B) Totaliiy of the retrieve funclion
The rule 10 be proved is:
(1) (¥ t2 € BP-treeinvp(t2 = (] 11 & B-tree} (t1 = retrp{t2) and \nviratrp{t2)))

On substituting definitions, 1his becomes

(2 (¥ t2 & BP-treeXinyrp(OQRDERMILA,TREEPOZ) ==
(} t1 © B-treeXt1 = <ORDERP(L2,retrn(TAEEP(tZ)>
and invr{ORDERP{L 2, retrnp(TREEP{L )1}

Proof:

When r(etmp is applied 1o an elemeni of Tnodep, i1l 18 an identiily
funcktion, and if it 1s applied to an elemenlt of Inodep, it relies
only on the operator eems peing applied 1o a 1lisi 1o be a i1otal
function. Since TREEL(n), where n 6 iodep, is always a 1lisk, and since
the conditiions of invw are weaker ihan ihose of imwp, ii follovws 1ihat
the retrieve function retrp is total. This can be proved formally by
structural induction on TREEP (12) .

(C) Adegquacy
The rule 1o be proved is

(1 (¥ 11 & B-trea)inwlny == (] 12 6 BP-treeXinvp(t® ang
ty = retrpit2)

On substituling definitions. this becomes

(2 (¥ t1 & B-trea)invr(DRDER(L1), TREE(t1)} =>
{j t2 € BP-tree}
(invrp{OROERP(12), TREEP(t2) ard 17 = <DRDERP{ B retrnp(TREEPH2))>))

Prooct;
This ia easiest shown by informal argument.

I{t1 G B-tree and TREE(t1) G Tnode and invr(DRDER(ILIREE(I) ia {rue,
then t1 can be represented by iz =<ORDER(t1)TREEN)> and