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PARTIAL CORRECTHESS OF COMMUNICATING SEQUENTIAL PROCESSES

Zhou Chao Chen and C.A.R. Hoare

Programming Research Group, University of Oxford.
tnstitute of Computing Technology, Academia Sinica, Peking.

We introduce a programming notation to describe
the behaviour of groups of parallel processes,
communicating with each other over a nerwork of
named channels. An assertion is a predicate with
free channel names, each of which stands for the
sequence of values which have been communicated
along that channel up to some moment in time. A
process invariantly satisfies an assertfon if that
assertion Is true before and after each commun -
ication by that process. We present a system of
inference rules for proving that processes satisfy
assertions, and illustrate their use on some
examples, The validity of the inference rules is
established by constructing a model of the
programming netation, and by proving each inference
rule as a theorem about the model. Limitations of
the model and proof system are discussed in the
conclusion.
CR categories:  4.22 5.24

key words and phrases: program correctness,
parallel programming, axiomatic semantics,
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Introduction (0}

The possibility of using multiple processors,
simultaneously carrying out a single task, has
opened a new dimension in computer programming. To
assist the programmer in exploiting the possibility,
it must be made available within the context of a
high level language; and one such approach Is in-
formally described in [2]. But informal descrip-
tions are notoriously unreliable, and some of the
intricacies of parallelism are notoriously subtle.
For seguential programming languages, these problems
have been solved by the techniques of denotational
semantics [S]. Furthermore, the axiomatic methads,
which provides a basis for proofs that programs
expressed in a language will meec thelir specification
has been extended to parallel programs [6]. This
paper makes an ambitious attempt to give bath a
denotational and an axiomatic definition for a
language involving parallelism, and praves that the
defInitions are consistent. To achieve this goal,
the language has been kept very simple; for example
It does not include local variables, assignments, or
even sequential composition; and loops are construct-
ed by tail recursion. In spite of these omissions,
the expressive power of the language can be
illustrated by non-trivial examples [1]. A more
serious deficiency is that the proof metchad
establishes only partial correctness, and cannot

prove {or even express) the absence of deadlock.
There does not seem to be any easy way of extending
the method to deal with this problem. However, the
fact that we evade the problem of ''fairness' seems
to be a merit.

Processes and their description {1}

We regard a process as a potential component of a
network of processes connected by named channels,
along which they communicate with each other. Each
occurrence of a communicatlon between a process

and one of its neighbours in the network is denoted
as a pair "c.m ", where '"m'" is the value of the
message and "c'' is the name of the channel along
which it passes. For example, '"ourpur.3' denates
communication of the value 3 on the channel named
Yloutput', and "input.3'' denotes communicatian af
the same value on a different channel. For the
sake of simplicity, we do not distinguish the
direction of communication: transmission of a
message on 3 channel and its receipt by anather
process on the same channe!l are regarded as the
same event, which occurs only when both pracesses
are ready for it. Thus "wire ACR' denates

simul taneows transmission and receipt af an acknow-
ledgement signal ALK along the channel 'wire'.

The sequence of communications in which a process
engages up to some moment in time can be recarded
as a trace of the behaviour of that process. Far
example, a process named '‘copier" is connected to
its neighbours by two channels named '"'input' and
Ywire'':

input > wir%

The task of the copier is just to copy messages
from the input channel to the wire. Thus the
following are possible traces of 1ts behaviour:

(i) <>, i.e., the empty trace, describing its
behaviour before it has input anything.

(ii) <input.3, wire.3> is a sequence of two
communicatlons describing 1ts behaviour when it has
copied its first message, which has value 3.

(i1{) <input.2?, wire.2?, input.0, wire.O,
input.3> describes a different possible behaviour
of the copier.

Another example is a process named ‘'recopier' which
simply copies messages from '‘'wire'' to ‘'output"



Its possible traces include:

<», <wire.3, output.3»,
<wire.27, output.27, wire.0>, etc.

In this paper, we regard a process as being
defined mot by its internal states and transitions,
but rather by its externally observable behaviour;
or, more precisely, by the set of all traces of
its possible communications with its neighbours

Im the case of the copier process, this set will
include {for example} all traces of the form
<input.m> or <input.m, output.m>, where m ranges
over all possible message values. Thus a process
can be identified with a formal language over an
alphabet of communications. Such languages can
conveniently be defined by a notation similar to
the production rules of a formal grammar, as will
be shown in the remainder of this section.

(1.1)

We shall assume that the reader is familiar with
the following kinds of syntactic category, and
their usual interpretation.

Prellminarles

(1) Constants, denoting particular values,
e.g., 3 or 27,

[2) variables, denoting unknown values,
e.g., i,J,k,Xx,y,2.

(3) Expresslons, built from varlables, constants
and operators, each of which defines a
value in terms of itsconstituant variables,
e.g., {3*+y). Note: expressions are not
allowed to contain process names or channel
names.

{4) Names and expressions denoting sets of
values or types, e.g.,
NAT denotes the natural numbers {0,1,2, ...}
{0..3} denctes the finite range (0,1,2,3}
(ACK,NACK] denotes a pair of acknowledgment
signals,

In a practical programming notation, a strict
typing system would be desirable to ensureconsist -
ency of variables, expressions and messages passing
along each channel. For simplicity, In this paper
we shall henceforth ignore the matter.

We now introduce the following new syntactic
categories. The forms of the identifiers and
variables and expressions are familiar; and we rely
on the good will of the reader to distinguish them
by context or meaning.

(5) Process names, serving as non-terminal
symbols of a grammar, e.q. copier, recopier,
sender, receiver.

(6} Process array names, such as g,mult,.. If e
I's an expression, then gqle] is a subscripted
process name, denoting a particular process
for each distinct value of e.

(7) Process equations of the form pAP, where pis
a process name and P.is an expression defining

the bahaviour of the process. |f the name
p occurs inslde the eapression P, the
equation Is recursive in the famillar sense.

(8) Process array equations, of the form
"q[1:M]AP"*, where q is a process array name,
M 1s a set-valued expression {or type}, | is
a variable ranging over M, and P is an
expresslon defining the behaviour of a
process. P may contain occurrences of the
variable [; it is the different values of
I that can differentiate the behaviour of
distinct elements of the array g. As before
an occurrence of gfe] inside P is understood
in the usual recursive sense,

(9) Lists of equations for processes and process
arrays, which declare and define a set of
processes and process arrays, possibly by
mutual recursion.

Note. Process names will be used only for
recurslve definition or for abbreviatlon,
and never to specify the source or
destination of a communication. These are
specified indirectly by use of channel
names, as described below,

(10} Channel names, e.g. input, wire, output.

{11} Channel array names, e.g. row, col. If e
is an expression, then row[e], col[as] are
subscripted channel names, denoting a
particular distinet chamnel for each
distinct value of e,

{12) Channel arrays, of the form "c[M]" where ¢
is a channel array name, and M denotes a
set of possible subscript values.e.g.
col[0..3] denotes the set
{eol1[0], col[1], col[2], col[3]}-

(13} Lists of channels, including channel names,
channel arrays, and subscripted channel
names. These are used to declare or specify
the sets of channels connecting pairs or
networks of processes.

Process expressions (1.2)

It remalns to speclfy the most important features
of the notatlonal system, namely the process
expressions which appear on the right hand side of
process equations, and thus deflne the behaviour of
the processes named on the left hand side. The
exposition of this section is guite informal.
Formally speaking, each process expression defines
a set of traces of its possible behaviour, In terms
of the values of its free variables, as described
in 3.1 and 3.2.

(1) STOP is the process that never does any-
thing. Its only trace is <>,

(2) A process name denotes the process specifled
by the process expression appearing on the
right hand side of its defining equation.



(3

{4)

(5)

(6

(7

A subscripted process name q[e] denotes the
process Q',where the definition of q has the
form g[i:H]4Q, and Q' is formed from Q by
replacing each occurrence of 1 by the value
of e, provided that this is in M,

If ¢ is a channel name (possibly subseripted)
and e is an expression, and P is a process
expresslon, then *'(cl!e*P}' is a process
expression. It denotes the process which
first transmits the value of e on channel ¢,
and then behaves like P. e.g.,

{wire!j +copler},
{col[1] 1 (3%i+]) ~mult [1]).

If x Is a variable, and M is a set expression
and ¢ is a channel name {possibly subscripted)
and P is a process expression, {(In general
contalning the varlable x) then "{c?x:M+P)"
is a process which first communicates on
channel ¢ any value of the set M, provided

M is nonempty. |f x denotes the value
communicated, P specifies the subsequent
behaviour of the process. This models Input
of a value from channel ¢ to the variable x,
which serves as a local {bound) variable in
P. The actual value given to x is usually
determined by an output ''cl!e'' performed by
the process of the network located at the
other end of the channel ¢. e.g.,

(input?x:NAT + (wire!x~> copier})
{col [1-1]Ty:NAT + (eol [i] ! (3%x+y} +muit{i]))

Note. In future, brackets may be omitted
on the convention that the arrow Is right
assaciative, e,g.,

wire?x NAT +output!x + recopier

If P and Q are process expressions, then so
is (P|Q}. It denotes a process that behaves
either like P or like Q; the choice between
tham may be regarded as non-determinate. e.g.

((wire!ACK+outputix » receiver)
| {wire!MACK + receiver)}

Note. in future the inner brackets may be
omitted, on the convention that + binds
tighter than |,

Let X be the set of channel names occurring
in P and let Y be the set of channel names
oceurring in Q. Then (P)(HYQ) denctes a

network canstructed from processes P and Q,
which are connected to each other by
channels in the intersection of both sets X
and Y. However P may still be externally
connected to other neighbours by channels

in the set (X-Y¥), and Q may be externally
connected by channels in the ser (Y-X}.

Thus each external communication by

(P!”YQ) is either made by P on a channel of

{X-Y), and is ignored by Q, or vice versa,
However any internal communication between
P and Q uses one of the channels of XnY.

"N

A communication on such a channe! ¢ requires
simultaneous participation by beth P and Q;
one of them determines the value transmitted
by an output '"c!e'", and the other is
prepared to accept any value (of the set M}
by an input "c7x:H". e.g.,

A network diagram

input , |copier wire recopier | output

I's denoted by the expression
{copler‘J kreco;uier),

where X = {input,wire} and
Y = {wire,output}.
Note. When the content of the sets X and

Y are clear from the context, or from an
accompanying diagram, it is convenient to
omit them.

Let L be a 1ist of channels which are used
for internal communication between
processes of a network P. Then (chan L;P]
Is a process in which all internal
communicatlons along any of the channels

in L are removed from the externally
recordable traces of P. Such communication
is expected to occur Independently and
automatically, whenever the processes
connected by the channel are all ready for
it. If more than one such commuynication is
passlible, the cholee between them is non-
determinate.

The effect of declaring channels local to a
network can be pictured by &nclosing the
network in a '"black box', and removing the
names of the internal channels, For example:

input

copier > recopierj

_Jeutput

is a pictorial representation of the process
expression

{chan wire; (copier||recopier))

Note. Qur decislion to ignore the direction
of communication leaves open the posslbility
that a channel may have a single process
which outputs on it and many other processes
which input from it. All such inputs occur
simultaneously with the output, In theory,
It is possible that all processes connected
by 2 channel can simultaneously input from
It, with a highly non-determinate result.

In pur examples we shall ayoid such
phenomena; a practical programming language
should be designed to make them impossible.



{(1.3)

Examples aof process definitions

(1) A process which endlessly copies numbers
from a channel named "input'" to a channel
named ''wire'',

copier & (input?x:NAT -+ wire!x + copier).
A similar process is:
recopier & (wire?y:NAT + output!y + recopier).

(2)A "'sender” process inputs a value y on a
channel named "input'" and then behaves like
a[y]:

sender & (input?y:M + q[y]).

(3)The process q[x]{for any x in M) first trans-
mlts the value x along the channel named
"wilre'; it then inputs from the wire either
an ACK signal or a NACK signal. In the first
case, its subsequent behaviour is the same as
that of the sender. In the other case, it
transmits the message as often as necessary,
until it gets ACK:

gfx:M] & (wire!x + (witely: {ACK) +sender
[wire?y: {NACK} = q[x]})

(4)A "receiver' process inputs messages on the
wire. |t then either returns an "ACK' signal
and outputs the message, or it returns a
"NACK'' signal and expects the message to be
retransmitted. The choice between these
alternatives is non-determinate;

receiverd (wire?z:M +
(wire!ACK+ output!z + receiver
|wire!NACK + receiver}}

{5}A communication protocel is implemented as a
sender and a receiver connected by a single-
wire bi-directional channel; communications
on this channel are regarded as local and are
concealed.

T

pratocol

. sender| receiver| | outl:_aus

protocol A {chan wire; (senderl Ireceiver))

input

(6)A network of multipliers mult [i:1..3] is
designed to input the successive rows of a
matrix along channels row[1..}]and transmit
aleng an ''output' channel the scalar product
of each row multiplied by a fixed vector
v[1..3]. The overal) structure of the net-
work is as shown in the following diagram.

I reroes

col[0)
el mult[1]
cal[1]
row[2]
mult[2]
col[2]
S multL[—;_]—_l
col[3]

last outgut;

Each process mult[i] inputs a value x from
row{i], multiplies it by v[i], adds the product
to a partial sum y which it has input from
col[i=1], and outputs the result on col[l].
These actions are then repeated.

mult[i:1..3] & (row[i]7x:NAT +col [1=1]2y:NAT
ol [1)Mv[i]*xey)+ mult[i])

The two other processes look after the boundary
conditions,

zeroes A (col[0]) !0+ zeroes)
Yast A (col[3]7y:NAT+output!y+last}

These processes can be assembled in a network,

network A (zeroes| [mule[1]}!
mole[2] ]} melt[3]]}1ast)

Finally [nternal communicatlion can be localised

multiplier 4 (chan col[0..3]; network).

Partial correctness of processes (2)

If P is a process expression and R Is an assertlion,
we define '"Psatf!' as meaning that the assertion R
is true before and after every communication by P.
In general, R will be a predicate contalning
constants, variables, expressions and logical
connectives. |If a variable occurs Free in both P
and R, then it is understoed as the same variable,
and ''PsatR" must be true for all values it can take.

Hote. We do not allow process names to appear in
assertions.

We intend that channel names should appear as free
variables of R; they denote the sequence of values
communlcated by P along that channel up to some
moment in time, For example, we write 's55t' to
mean that the sequence t begins with s, i.e.



sse = 4p uo{su=t)

Now the assertion "wire < input'" means that the
sequence of values transmitted along the wire is
nothing but a copy of some initial segment of what
has been transmitted aleng the input channel. This
assertion is always true of the copier process, so
we can validly claim that 'copier sat wire < input".
Similarly, we can claim that ''recopier sat output <
wire' and that ‘'protocol sat outputs input'. We
shall give a set of inference rules for proofs of
the validity of such claims in the remainder of this
section.

But flrst we define some useful operators on
sequences.
(1) 1f s is a sequence and x Is a message value,
A . N .
%5 is the sequence whose first message is x

and whose remainder is s.

{2) #s is the length of the sequence s; thus for
example

copier sat {¥input s¥wire+1)

(3 s; (for iell..#s}) is the value of the ith

message of s; thus
multiplier sat {Ayi:NAT. t<isFoutput

= output; = ‘}; ‘v[j]* row[]] i]
J-

Note: free channel names in P and R are
regarded as bound in "PsatR". This is
because '""PsatR" has to be true for all
possible sequences of messages communicated
by P along those channels.

Inference rules (2.1)

Let T and A be lists of predicates, including
possibly predicates of the form *'PsatR". Then an
Inference is a formula of the form "T+A", which
means that all the predicates of A can be validly
inferred from the set of assumptions listed in T.
An inference rule has the form:

[l r Al V
TZ r AZ

which means that whenever the inference above the
line is valid, the inference below the line is valid
too. We shall take for granted the familiar
Inference rules for natural deduction, for example,
if x is not free in ', then

T'rHR {(d-introduction)
[ HixeM,R
(T ¢vT (triviality)
'+ Psac T

The inference above the line states that T is
always true {on assumptions '). It follows that
T is true before and after every communication
of P.

Example: F wireswire.
Therefore + copier sat wireswire.

{consequence)

(2)C v PgatR, R=S
Tk Psat$

If R is invariantly true of P, and whenever R
is true so is 5, then § is also invariantly
true of P,

Example:

Let ' =copier sat wiresinput,

then T copler sat wiresinput,
wiresinput= x"wires x"nput,

and therefore T rcopier sat <“wiresx™input.

(3) T + PsatR, Psat$
Ja Pia_t(RGSI

If R is always true of P and so is 5, then so
is (RS},

(conjunction)

(4)The process STOP always leaves all channels
empty. Llet R., be formed from R by replacing
all channel names by the constant empty
sequence <.

T+ Res
T+ SI0P sat R
Exampleir <> 5 <>,

Therefore + STOP sat wire<input.
Simllarly » STOP sat ((3"{4*c))s<3,b>c6dze)

(emptyness)

{5)The process {c!e +P) behaves like P, except that
the sequence of communications along channel c
has the value of e prefixed to it. Let Rga. be

formed from R by replacing all occurrences of
the ¢hannel name c by the expression efc.

T+ Rcy, Psat REa, {output)
't (cle—+P) sat R

Example: +{37¢>)5¢3, d>6cr50n,

STOPsat(3A(47c)) <3 ,b>Ed<e,
therefore +(ch+5TOP)sat((34c)s<3,b>edze),
similarly r(c!3+cl4+5T0P)sat(cg<3,b>gdse).

Note. |f ¢ is a subscripted channel name from

an array d[M], then pd[f} is taken to be
erd[f

rd

AT:M.ifi=F then erd[flelsed[i],

where | is a fresh variable (not free in f or
e]. This applies in the next rule too.



(6)

(7)

{8)

(9)

The command (c7x:M+P) is like {c'n~+P),
extept that it is prepared for communication
of any value of x drawn from the set H. It
must therefore satisfy its invarlant for all
such values. Let v be a fresh varlable which
Is not free in P, R or c.

I+ R {Input)

x [
TveH. Pv sat Rv’\c

<>

T+ {cx:M+P) sat R.

fxample. Let T = copier sat {wire < input}.

Then [ F <> < vA<>, copier sat

(VAWEFQSVAInput} {proved before).

AT rergex WyeM, (wirelv +copier)sat (wiresvAinput)

{output,¥-int)

» Te{inputTu: M +wire! x+copier)sat(mre5|npul)
{input}

Suggestion: read this proof backwards.

The process (P|Q) behaves like P or like Q.

It satisfies an invariant whenever both

alternatives satisfy it.

I+PsatR, QsatR {alternative)

rv(P|Q)sath
An example will be given later,

Let X be a Tist of channels, including all
channels mentioned in R and let ¥ be a list
of channels, including a)l channels mentioned
in 5. Suppose that P satisfies R and Q
satisfies 5. Then, when they run in parallel,
we claim that (Py]|yQ) satisfies the
conjunction (R&S). Clearly, communication by
P on any channel of the set (X-Y) satisfies R,
and does not affect 5, because S does not
mention any of these channels. Similarly,
communication by Q on channels of {Y-X)
preserves the truth of R as well as 5. But
communication on a channel of XnY which connects
P with Q requires simultaneous participation
of both P and Q; P ensures that it maintains
the truth of R and Q ensures that it maintains
the truth of 5. So it must satisfy both RES.

[+PsatR, Qsats (parallelism)

Fr (P [ [yQ) sat (ReS)

Example: '+ copier sat wire < input,
Tecopier sat output Swire
Therefore ricopier [, recopier)sat
oytput<wire & wiresinput “Tparallelism)
and so copler [T recopler)sal(outputs input)
Y (consequence)

(where X =[input,wire) and ¥ ={output,wirel).

(assume)

Let R be an assertion which does not mention
any channel of the list L. Suppose P sat R;
then the truth of R is unaffected by
canmunications on any of the channels of L; and
remains true even when all such communications
are concealed.

(10)

TePsath v {chan)

]"l-(chanL;P)it_R

Example. l-(copierxHYrecopier)ﬁ
output £ Input

(al ready shown)

therefore k(chan wi re;copierx| |yrecopier)sa:

outputs input.

Consider a process name p, defined recursively
by the equation pAP. We allow such deflnitions
to appear in the list of assumptions of an
inference. Suppose we wish to prove that
‘‘psatR". As always, it is necessary 1o show
that R Is true of empty sequences. Also it
is necessary to show that the expression

defining the behaviour of p satisfles R. But
in proving that PsatR, we will encounter
recursive occurrences of the name p. In order

to complete the proof, We will need to know
something about the behaviour af p. The
inference rule given below allows us to assume
about p the very thing that we are trying to
prove about it, nanely psatR

If pis not free in .

T+R H

> {recursion)

I'y psatR + Psath

T', pAP + psatR

Note: The iInference rules for recurslon depend
on two subsidlary inferences, here separated
by semicolon.

Let P stand for
{Input?x: NAT+w|re x copler).
»5< {theorem)

Example:

Coplel' Sat w”escnput L4
PsatmreSlnpuI: (already proved)

therefore copiedP r copier satwiresinput,
recursion).

This rule extends to process array deflnitions:
if g is not free in I,

I b (WM. 5.} 3 T, (¥xeH.q[x]sats) F(¥xe M. Q5at5)
[, q[x:M]AQ v (¥xe M. q[x]sars)

and also to longer Jists of equations, for
example: if both p and q are not free in [,

THR, . (VXEM. S,
T psatR, (VreM. q[x] satS}rPsatR, (¥xeM. Qsats)

T,pAP, q[x:M]AQ » psatR, (vxeM.q{x]sats)



Examples (2.2.)

(1) Let Al be the list of definijtions.

sender A{input?x:M—+q[x])
q{x:M]Alwire!x + (wire?y:[ACK} » sender
|wire?y:{NACK} + q[x]]))

Let f be a function from {Mu{ACK,NACK}}* to M%
such that the value of f(s) is obtained from s by
cancelling all occurrences of ACK, and all
consecutive pairs <x,MACK>, e.g.

fl<x,MACK, y, ACX>) =y
thus f(<>) = <>, f{<x>} =<x> , f(xPACKAwire) =
xMf{wire),
and f(x*NACK"wire) = fwire).
We want to prove that Al + sender sat fiwire)<input.

Proof: Let Al be the 1ist of predicates

sender sat f(wire)sinput,
vxeM. qlx[satf(wire)sxrinput.

We shall prove the stronger lemma that
Al v Al by rule (recursion}.

It is easy to check the first subsidiary inference
that + f(<>)}s<>, ¥xeM, F{<>)sxt<>, The main part of
the proof Is displayed in table 1.

{2) Let A2 be the definition.

receiver Al{wirelx;:M+ (wire!ACK +
output!x + receiver
|wire!HACK + receiver))

We wish to prove that AZr receiversatoutputsf(wire),
The proof is left as an exercise,

(3) Let A3 be the definition
protocal A (Chamire;senderxlfyreceiVer).
We wish to prove that Al, AZ, A3 r protocol
sat outputsinput,

(already proved

(1) sendersat f(wirelsinput
from Al)

(2) receiversatoutputsf{wire} {(already proved
from A2)

(3} (sender||recelver)sat (f(wire)sinput &
outputsf(wire))
{parallelism (1}, (2))
(4) (sender||receiver)sat outputsinput

{consequence(3), transs)

(5} (chan wire;sender||recelver)sat outputsinput
{chan,{4))

(6) protocol sat outputsinput
(a3, recursion (5),<>s<>)

Prove the second subsidary inference:

sender sat f(wire}sinput ,
WxeM, Q|K|§E£ fl{wire}sx*input

Hinput?x:M+q[x]} sat f{wire)sinput,
YxeH. (wire'x + (wire?y:{ACK) + sender

| wirety: (NACK} +qglx] )}
sat fiwlre)sx*Input

(1) sender sat f(wire)sinput (assumption)
(2) ¥xeM.g[x]satf(wire)sxrinput {assumption)
(3) fl<>)zes {def f}

(&) (inputl?x:M—+q[x])satf(wire)<input
_' (input (2),(3))

(v-elim (2))
(assumption)

(=-elim(5},(6})

(8)  flwire)sinput=f (xAACKAwIre) sxAinput
{def f)

{9) flwire)sx?inpur=f {xANACKAwire}sxAinput
(def f)

(10} sender sat F(x"ACK'wire}sx*input
(consequence {1),{8})

(5) xeM=q[x]satf{wire)sxrinput
(6)  xeM
(7} qix]satf(wire)sx*input

(11)  vve[ACK}.sender sat f(xPMvAwire)sxAinput
- (v Int (10})

(t2)  qgix] sat f(xANACKAwire)sxAinput
{consequence {7),(2))

(13)  ¥velNACK). glx] sat f{x*v*wire)<x*input
- (¥v-int {12))

(14)  flex>) < <x» (def f)

K15) (HirE?y;{AEK]"sender) sat f{xAwire)SxAinput
(nput (11}, 014

(16) (wirety:{NACK}+q[x]} sat F{xAwire}sx” Input
(input {13),014))

(17) (wire?y: {aCK}+>sender |wirety:{NaCK} ~q[xl}
sat f (xPwire)<x™Input

{alternative {15),(16))

(18}  f<>) € <n> (def f)

(19) (wire!x+*(wirety: ALK} +sender

|wirety: {NACK} +q[x]))
sat f(uire)sx’\input

{output {17}, (18))
(=-int (6},{19)}

{v-int (20))

20) xeM = (19}

(21) WxeM. (19)
Lhe desired inference is just  {t),(2) + (4},{21).

Table 1




Validity of the inference system (3)

The validity of an inference system is
established by defining a mathematical mode) (or
Interpretation) of the formulae of the system, and
proving that the inference rules correspond to
mathematically provable facts about the mode)l. For
the predicate calculus, an interpretation of a
formula s known as an environment, i.e. a mapping
from free variables of the formula orto points of
some appropriate mathematical space. For
programs expressed in a programming language, it is
desirable that an interpretation should bear some
resemblance to the behaviour of an intended
implementation of the program. The potential
behaviour of a communicating process is described
by glving the set of al) its possible traces, i.e.
a preflx-closed set of sequences of communications.
Prefix closures (3.1.)

Let A be the set of all possible communications,
that is, all pairs 'e.m" where ¢ is a channel name
and m is a message value. For any subset B of A,

B is defined as the set of all finite sequences
constructed from elements of B. A prefix closure
Is any subset P of A% which satisfies the two
conditions

<> ¢ P,
st ¢ P=s5¢ P for all s,t in A%
From this it follows that:

{<>} and A¥ are prefix closures.
If P is a prefix closure, then {<>]EPc ax
If P, is aprefix closure for all x in M,

thea U, P and N P are also prefix clesures.

Thus prefix closures form a complete lattice,
and any set of recursive equations using continuous
operators will have a unique least solution. In
fact, all the operators we use will satisfy the
stronger condition of distributing through arbitrary
unions, as do the operations M and u:

{KEH PX)HQ =x9M(Pan)' (x‘éHPx)”QHEn(PxUQ)-
If P is a prefix closure, and acA, we define

{a+P} = {<>} u (ars|seP].
Theorem. (a+P) is a prefix closure,
Proof, By inspectlon, <> ¢ (a=P).

If st = <> then
s = <>, 50
s ¢ {a+P).

Let st ¢ (a+P).

If s#*«<>then 5= a*s" for some s', and
st =ars't where s'teP.

Since P is prefix-closed, s'eP.
which equals s, [s in (a+P}.

Hence a’s*,

(distributlvity
of -r)

{def+ )

v
Theorem. (a;leJHPx) = U (a‘*Px)

Proof. LHS = {<>}u{ars|se xEHPx}

= [<>}u‘EH{a"s|ser] {set theory)

= Uylle>julats|scP 1) (set theory)

= RHS {def )

If L is a set of channel names, and s |s in
Ax, then we define s\C as the sequence formed from

s by omitting all communications along any of the
channels of C. Thus:

<N\ =<,
{c.m*sNC=c.m*(&C) if ceC
=s\C

if ceC
{s\C) (t\ e},
st®Jvw. u=vw & WC=5 & wil=t

st\C
Wi

If P is a prefix closure, then we define
PC={AC|seP} , P/C={s[s\CeP)

Theorem. P C and P/C are prefix ¢losures, and

they are distributive in P.

Proofs are omitted; they are similar to the previow
proof.

AL clearly models the effect of localization
of channels in C. |[f P contains no communication
along any channel of C then P/C is the set of traces
formed by interleaving a trace of P with an
arbitrary sequence of communicacions on the channels
of C, which are, as It were, lgnored by P.

Let P communlcate only on chaanels in X,
and [ communicate gnly on channels in ¥, Then
define

P, (P7 =) M@/ (X-¥))

Ler s be a trace of this set. It fallows that

s\ XeP and s\ ¥YeQ. Thus every communication of s
along any channel of X '"requires' particlpation

of P; similarly, every communication along channels
of ¥ “requires' participation of Q; therefore
communications along a commgn channel of XNY
requires simultaneous participation of both of them.
We use this operator to model parallel composition
of processes.
Theorem. xny' Is a distrlbutive operator.

Proof.Trivial.

Oenotational semantics of process expresslon: (3.2.)

The semantics of process expressions is
defined by a function which maps an arbitrary
process expression onto its meaning, namely, a
prefix closure, containing all possible traces of
the behaviour of the given process. But a process
expression in general contains free variables and
process names, and the meaning of the expression
will depend on the meanings of these variables
and names. So the semantic function {5 based on



an enyironment wahich maps names onto their
mearnings; more precisely, it maps variable names
onta values, process names onto prefix closures,
and pracess array names onto arrays of prefix
closures. We stipulate that its domain does not
include channel names. |f p is an environment
and x is a name and v is a meaning of a sort
appropriate for x, then p[v/x] is defined as the
environment which maps x to v and every other
name to the same meaning as given by p:

plv/x] (y)=v if y=x
=ply) if yhx.

If e is an expression, we extend the definition of
p to let ple] stand for the value that e takes when
the free variables of e take the values ascribed

to them by p. Thus, for example,

pl3] =3, pletf] = plel+pl F1, etc.

Note, parameters which are syntactic objects like
expressions are contained in double square brackets
I1, as is usual in denotational semantics.

Now it remains to extend further thedefinition
of p to apply also to pracess expressions,so that
g[P] is the prefix closure denoted by P when the

re¢ variables of P take the values ascribed by p.
This is done by considering separately each
possible syntactic structure For the process
expression P, using recursion where necessary to
deal with its substructure.

(1) pIsTOPY = {<>}
(2) plp) =plp) if p is a process name

(3} ofplell=p(p)(plel] if p is a process array
name

(#) plcl =c if c is a channel name

(5) plcle]l=ciplel] if c is a channel array
name

(6} plcle+Pl = ({plcl.plel) ~plprl)

(1 plet=:m~Pl = (<>Ju  uil{plel.v) + (p{v/x])IPD)
veplml

(8) piriQl = plrluplal

(9) pl? || ch=plP] n
X v pl x1 pl I

(10) plchan X;Pl = pl P}Y ol X]

Semantics of inference rules

(3.3.)

Let s be a sequence of communications. We
define ch(s} as the function which maps every
channel pame ''¢'' onto the seguence of messages
whose communication alaong ¢ is recorded in s.
Thus if

* usually written p and pronounced ''rha',

s=<input.27, wire.27,input.0, wire.D, input.3>

then ch(s) (input)= <27,0,3>
ch(s) {wire) = <27,0>
ch(s){c) = < for c#wire and c*input

in general,
ch{<>}= hc.<>
chle.m*s) = ch(s)[(mr(ch{s){c)))/c]

If p is an environment (which does not ascribe
values to channel names} then {p+ch(s)) Is an
environment in which channel names have the
values ascribed to them by chis): I.e.

=ch(s){x) iF x 1s a channel name
=chis){c[plel)1fx is a sub-
scripted channel name c[e]
plx] if x contains no channel
names
This is the environment which is used to calculate
the truth or falslty of an assertion, R, according
to the normal semantics of the predicate calculus
e.g.

(p+chis))Txl

(prch(s))ERes] = {{prch(s))IR])) & (prch(s)}ESH
(ptch(s) ) inputswirel=ch(s) (input)sch(s) wire}
(p+ch(s))[szH.ﬁ!FVV.VEQ[HI"(E[v/x]+ch(s)llﬂ]

The predicate "PsatR' states that all traces
of the process P satisfy the predicate R, i.e.

p PsatR]l= Vs.sepl PR={p+ch({s))[4).
and pl¥xeH. P_sﬂRH=VV.V(QIH]‘E[V&HP&RI.

If T is a predicate containing free channel names,
we similarly define pET= ¥s.{prch(s))ATL, i.e., T
has to be true for all peossible sequences of values
passing along the channels.

We now need to define the semantics of a
possibly recursive process definitlon pAP. We
define plpAP] as being true IFf and only if the
value ascribad by p to the name p is indeed the
intended recursively defined process, that is,
the least salution (in the domain of prefix
closures} to the equation pAP. Since all the
operatars from which P 1s constructed are contimuous,
this can be computed as the union of a series of
successive approximations, age a;, ags -y

where
= pl STOP]
= LH
a; 1= el®i/p] )Pl

(here a; allows recursion only ta depth i, after
which it staps}

pl paPl = {plp)= iguai)

This technique applies also to process array
definitions such as qfx:M]AQ. Here each
appraximation a, is itself a process array, and so
is defined using A-notation



ag = AviM._pl STOP)

{This 1s the array such that an[v] =pl STOP]
all v in M),

for

a," AviMop[3i/d) [v/x]1Qd

plalx:M)aQl = (plg) =Av:m. U {a,[v]))
120

I P.I, RZ' Rn Is a list of predicates, then

LRy Ry, ...,Rnl‘glﬂllﬁplﬂzls -6 olR )

An Inference is valld If and only if its antécedent
logically Implles lts consequent, in all possible
environments.

rsR=__ vp.plT1=plsl

df
e.9. (pAPrpsatR) = (¥p, plp)= U a*¥s(seelph =
iz0

(p+rchis))LRE))

An inference rule A is valid if and only if

B
pi B} can be validly deduced from the assumption
plA]. This needs to be established for each
Inference rule of our system.

G.u.)

Proofs

First we prove some simple lemmas about
environments. They can be proved by induction on
the structure of the formula R.

(a) If R: is formed from R by replacing every.free

occurrence of x by a free occurrence of e, then
[since e contains no channe! names):

(Q*Ch(s)][R:] = {p+ch(s)}[plel/x]R.

(b) If L
names by <»

is formed from R by replacing all chanel

(p+ch(<>))EA) = glR 1.

() If c is a channel name and e s an expression
{(containing no channel names)

(g+ch(5))lﬂzacﬂ = {p+ch((c.plel)?s))IR]
(eren(s)IRIAEH (11 = (oven( (@[el 71 ple))"s) N

and

(d) If the set of channe! names in piX] does not
contaln any of the channel names mentioned In R,
then,

(p+ch{s) )R] = (p+rch(s\phxT) )R]

{since ch{s)(c}=ch(s\C}(c) whenever c€C.)

{1} Triviality. Suppase
¥ ppe

vp. pkTI=plT). Then

pITl= ¥s. (prch{3)IT]
= ¥s. sepl PI={p+ch(s))IT]
= plP sat 7.

(2) Consequence. Assume ¥p. pIT]= plPsatR)spl R=5].

pIT1={¥s. seplP1={p+ch(s)IRl)&{¥s, {p+ch(s)IAl
={p+*ch(s))f5])
=¥s. sep[PI=(prch{s} )15
= plPsatSl.

(3) Conjunction. Trivial.
(4) Emptiness. Assume ¥p, plTl=plR_ 1. Then
ERENTIN
={g+ch{<>})[R} (lemma (2))
=5, s=<>*(p+ch{s)}iAl
=¥s. sepl STOP]={p+ch{s))IR] (def STOP)

=pl STOP sat AJ.

{5} Output. Suppose Yp. g[f'l]'(pﬂk()]seI[Pig_:_RZAcl).
Given p such that piTl then

oR_,J and p[PﬂRZACI. T hus

seplelesP]=(s=<>V s=plcl.plelArt)

(for some ¢ in p[P}).

In the first case,
(lemma (2))
(by piR_,L1).

s=<>=((prch{s))[R1 = gIR_,1)
={p+ch(s))R}

In the second case,

s=plel.plel”t={(p+ch(s))[R]
= (p+chiplcl.plel~t) )[R])
~((prch{s) HAI= (p+ch(0))[RCA 1)

(lemma (3})
={p+ch(s))iR]

c
(by piPsatR s 1 ).

So vp. piTl=¥s. seplclie*Pl=(p+chis)i[R]), i.e.

¥p. pIrl=pl (cte+P)satRf.



(6) Input. Assume ¥Yp. p[T]={p[R..]

5 plvveM. Pcs_a_ERs,\c]) .

Given p such that plT],
then g{A__1

$ 4 <
and plvveM. vaathAc]' 1.e.

VU-UEDIHI'E["‘/V"P:_s_g_L-RSAc] Thus
sepl cTx1H+P=se ({0}m Qr”l
(plel.vplu/x]EPI))
=s=<> v s=plcl.u?t

(for some ue plM] and rep[u/x]IP]).

Let us only check the second case:

s=ple] .ure= (p+ch(s){R]= (p+eh(ple] .urt) }LR]
=(p+ch{s)[Rl=

(e[u/vi+
chlp[v/yel.plus,]lvdAe))in]

{since v Is not free In A and c)
=(p+ch(s)[RY={p[u/v]+ch{t) )RS, ]
{Vemma (3))

Furthermore since v is rot free in P,
therefore tep[Y/x]IPl is equivalent to
t€9[u/v]lpt]. Then (p[u/y]+ch(£))[REAT follows
from the asumption
Yu. ucp(H]I'p[u/v]lP’\ji@_g_ﬂsnc]- so {prch{s))iR].
Hence

¥s. sepletx:M+Pl={p+teh(s) )R}, provided piT]).

(7) Alternative. Trivial.

(8) Parallelism, Assume
vp. plrh=~(plPsatRlspl 0sats5)). Given p

such that p[ T, then

plPsatR] and plQsatSl. Thus
P - P O
sepl P, || W~ se el ]lp[X]P[Y] elad)

= s\ {plYD-p[%]) ¢ pLPL
esh (pix1-plY]) e gl

= {prchis\ (pl Y] -pfx])))iR]s
(prchis\ (pExi-pl¥1)))SE

{by pIPsatRl and plQsatsi)
= {prchGRIR] & (prch(s))is)
(lemma (4))

= (p+ch(s))iR&S].
So Ws. seplP || Qi=(p+ch(s)}{ReS], provided plT].
xly P

(9) Chan.
that

pirl, then plPsath).
sepl (chanl;PY = sc (Rl PR EIL])
= sethglL]
(for seme t In p{Pl)
(preh N RI=(p+eh(ty plL])}
[R]

Suppose ¥Wp. plTl=plPsatR]l. Given p such

Thus
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(ptehi{s))iR)=
%ych(t))iﬂl

= (p+ch(s))IR]
(by pl PsatRl).

Hence ¥s, sepl (chanl;P}l=(p+ch(s})IR],
provided pll].

(lemma (4)}

{10) Recursion, We deal only with the simple case;
treatment of mutual recursion Is similar but much
more tedious.
Suppose Yp. plr)=piR..] and
PP vEﬂ?le‘hp‘i’pggﬂl)'p'lP_s_ﬂﬂl
Given p such that plT'} and plpAP, let us prove
¥s. sepipl=(p+tch(s)I[R].

Since g[[pAP]ﬂg(pFigoa; and plpl=p{p}, therefore

sepl pl= se.l aj.

Consider First the base case.
seag = sep STOP]
=gz
=(pch{s)){RI=pIRe>)
={p+ch{s) )R]

(lemma (2))
{by flrst premise).
Note now that (plal/pl+chis))IRl=(p+ch{s)}HR]. This
is because R contains no process name and
plai/p] differs from p only in ascribing adifferent

value to the process name p. Similarly
plal/p)irl=plT], since p 1s not free in T.

Now assume for arbitrary i

¥s. sca;={p+ch{s))[R]

then ¥s. seplal/plipl={p+ch{s}[R]
(seplai/p]lpl=scail,
i.e. pal/pllp sat R].
(tet p'=plai/p]),
eki/p JLP sat R,
scolai/p 1pI=(efsi/p I+chishIR])
sedl+i=(preh(s))R]
(al+1=9§T,p JEPY and
(p+eh(s))IR]=(ph!/p J+ch(s)}R]

Mence Ws. se U%i'(wch(s}llkl s
sepipl=(p+ch{s))IR] .

By second premise

i.e. ¥s.
thus ¥s,

i.e. ¥s.



Conclusion (&)

The worst defect of the proof system described
In this paper is that it deals only with partial
correctness; thus it permits a proof of the
praperties of every trace of the behaviour of a
process P, but it cannot prove that P will actually
behave in the desired way. For example P may
deadlock before it has completed its appointed
task, or indeed before doing anything whetscever!
This is because the process STOP satisfies any
satisfiable invariant whatsoever. A similar
complaint Is made against the theory of partial
correctness of sequential programs, in which a
non-terminating loop satisfies every specification.

The worst defect of the prefix closure model
of the behaviour of a praocess is that it takes
an unrealistic approach to non-determinism. For
example, consider a process Q which may non-
deterministically decide on a path that leads to
deadlock, or may decide to behave like the process
P. 1n our model we have to define this as

Q=STOP|P ;

but unfaortunately this is identically equal to P.
The same identity holds if the deadlock could
happen after a certain number of communications.
Of caurse, it is possible to implement the union
process P, Q for arbitrary P or Q; but only by
running both P and Q in parallel, up to the point
where a communication occurs which is not possible
for one of them, after which that one can be
discarded, But this is not the kind of non-
determinism that arises naturally in the
implementation of paralle! processing networks,
where the choice between alternatives occurs at
the moment the first communication takes place,
and may therefore be timedependent.

It is hoped that the adoption of a more
realistic model of non-determinism will permit
the formulaction of proof rules faor the total
correctness of processes; but much further analysis
will be regquired. The complexity of the definitons
and proofs in this paper glves little hope for an
easy solution.
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The previous paper introduced a notation
for describing cthe behaviour and proving
invariant properties of processes communi-
cating eover an arpbitrary network of named
chanpnels, In this paper we confine atten-
tion te chains of linearly connected
processes, in which each process can
communicate only wlth its nelghbour to the
left or to the right. These chains ¢an be
used in the design of multi-level communi-
cations protocelsy, and an example of such
is given in the final section.

CR Categories: 4,22 5.24

Key words and phrases: partial correctness,
parallel programming, comnunivatiens
protocels, communicating processes.

L. Communication protocols.

From the most abstract point of view,

a single-directional communication
protaccl can be specified as a process
which accepts mMeSsages at the transmitt-
ing end (the left), and accurately re-
produces them at the receiving end {(the
right). Its bpehaviour can be described as
that of a prccess P communicating with
its environment through channels named
"left" and "right". The specification of
its correctness states that the sequence of

values transmitted teo the right shall
always be an 1lnitial subsequence of the
sequence of wvalues input from the left,
l.e.

P sat right < left.

A very simple process which satisfies this
specification can be defined.

copier A (left?x:M+*right!x+copier}

where M 15 the set of message values that
can be communicated.

In practice, of course, a communicat-
ion protocel must be implemented as two
processes, a sender and a receivex, <oONnec-
ted by a transmission medium which physie-
ally separates them:

[protocol
left receiver | right

The sender copies messages from its left
te the channel on 1ts right, and the
receiver copies messages f[rem the channels
on its left to the end reclpient on its
right. s

1n defining the sender and receiver
{or any other processes connected ln
series with each other) it is very conve-
nient to allow each process to use the
name "left" to refer te the channel on its
left, and the channel name "right" to re-
fer to the channel name on its right.
A1l processes defined in this paper wlll
cbsexrve this convention, 1n order to
connect such processes in serles, we need
to deflne a new compcsition cperator,
denated by <>
Using this operator, we can give a formal
definitiaon of the plcture:

protocol A (sender <> recelver)

where sender - mecelver = copier

The formal definition of this coperation
{e<»() must ensure that whenever the proce-
ss P communicates on its right and the
Process O communicates on its left, the
effect is the same as if they were commun-
icating on the same channel. Let us glve
this channel the temporary name "t”. Now
we define P[F /right ) as the process

which behaves exactly like P, except
that whenever P uses the name "right”,
F[ t/right | uses the name "t") more
formally:

e lelt/rigntll= {s|t/right |se plEl}

where s[t/right] is formed from s
placlng every uccurence of the channel
name "right” by "t".

by re-

Q[ t/left] is defined similarly. The
required communication between P and @
can now be achieved by composing them in
paraliel:

(P[ t/right] ij |Y(Q[ t/left] 1,



where x = {left,t }and y = {t,right}. Then

the communications on the channel "t" must
be caoncealed by declaring "t* as a local
channel of the constructien;

P<>p= ;. (chan t;(P[t/riqht]x]|YQ[t/1eft]])

Bfter such a complicated definition, it is
comforting teo check that if P and @
communicate only to the left and to the

right, then (P<>Q)has the same property.
Thus (P<*>g)can be successfully composed
with another such process R, and the comp-
csition operator is associative.

(P<>Q)<>*R = P> [Q<>R}
Physically, this means it does not matter
in what order the processes are conhnected.
Syntactically, it means that brackets can
be omitted without fear of ambiguity.
The proof rule for this form of composit-
ion follows directly from its definition.

' P sat R, @ sat S

Tr{P<>Q) gat (R;S)

where R and 5 are predicates of the chann-

el names "left" and "right", and
_ right left
(R38) =¢¢ Jt- R, Ch .
s . right
where t is a fresh variable, and R is

replacing all okcurenc-

es of "right" by "t" anpd séEft is

ly formed from S.

formed from R by

similar-

A predicate R containing only two free
variables "left" and "right" has an
obvious correspondence wlth a

retation

{<left,right>|R}

Under this cprrespondence, the cperation
(R};S) is exactly the relational composit-
iecn of R and 5) and we can freely use
its convenient properties, e.g., that it
is associative and distributes through

vor".

The design of the sender/receiver protocol
given above was absurdly simple., For a
practlcable protocol, we need to take into
account the unreliability of the transmis-
siaon medium over which the messages are
sent. The unreliable behavicur of the
medium can also be modelled as a process,
which communicates with the sending
process (on its left) and the receiving
process f{(on !ts right):

protocol

left e
—ﬁEEEEEE}A4;;di;%]——4;;ceiver—~

The formal definition of this series is
just as eXxpressive as the picture, and
takes less space

right

praotocel p {sender<>medium<®receiver)

The unreliability of a medium is best
described by introducing an element of
non-determinism into its behaviour. Let

y range cver elements of some set N, and
let P, be a pracess description for each
value gr y. Then ﬂ P  describes a

Ye Y

preocess that behaves like any of the Py.

the choice between them being wholly

arbitrary. In terms of sets of traces,
this can be simply defined as the unicn
of the traces of all the Py a5 Y ranges

Qover N
pl T »] =u plv/yil Bl
YEN VII VEE__[[N]I Y

The corresponding procf rule is

' v ¥ yEN, Pysat R

'\ (1 P sat R}
yEN Y

A5 an example of an unreliable medium,
conslider one that may cerrupt a message
in passing, If x is a message value,
let corruptions {x) be the set of poss-
ible message values whick can result fronm
such cerrupticn, Of caurse, it is not
excluded that the message may pass with-
cut corrupticen, i.e.

X € corruptions (x).
(both the mathematician and engineer will
regard this as such a special case that it
is not worth mentioning separately}. Now
the behaviour 0f the medium can be defined

medium a (left?x:M~T(right!y+medium))
- YEcorruptions (x)
Here, the selection cof a particular

corruptien of x is nondeterministic.
This medium satisfies the specification:

g right £ # left
& ¥i < 3 right. (righti £ corruptions
(left}i} where # ¢ denNotes the length of

the sequence ¢,



The unreliability of such a medium can and
should be mitigated by increased scophisti-
cation in the design of the sender and the
recelver, In this case, it is the
receiver that should try to reconstruct
the correct value of a message from its
corrupted version, Let "correction(yl"
be a function that achieves this effect,
i.e.

¥ Yy £ corruptions{x)= cvorrection{y) x

V)

Then the "receiver" can be defined:

receiverD A (left?y:M*rightlicorrection(y)

*receiver ).
a
This satlsfies the specification

f right < 4 left

& yi< # right, (righr.1 correction (leftiw

We now wlish to prove that the combination
{medium <> receivero) is an error-free
protocol, i.e., that

(medium <> receiverol sat right < left.

Using our proof rule for <*, we need to
establish:

Fe<# left & (Vis# t. t, B corruptionms

{leftll)

& # right < # t & vi < # riqght,

riqhtl - carrectlon (tl])
= right € left

This fellows immediately from the pestulat-
ed properties of the corruptions and their
corrections,

Unfortunately, it is not possibile in
general to find nontrivial corruption and
correctlen relations for arbitrary
messages; 50 1t 1s necessary flrst to
introduce some redundancy inte the
messages, and to strlp off the redundancy
afterwards. Let us intreduce twe
functions "expand" and "contract” for this
purpose, and stipulate that their composit-
lon 13 the identity functlon

{expand; contract) = I,
Now we can define new senders and
receivers

(left?x:;M*right!expand (x}™
sender |

1

A
senderl L)

receiver

12

(left?x:M*right!contract(x}
*receiverl)

In crder te achieve reliable transmission,
we use the protocel defined earlier as the
medium over which the expanded messages are
gent
protocoll

A sender1 <> protocolo <>

i .
rece verl
That this is an errcr-free protocol can be
readily proved by the proof rule of the
compesition operator

(expand;Ijcontract) =(expandj;contract}~=1

The technique of using a previously defined
protocol as a transmission medlum for a
more elaborate protocol can be used to
advantage in simplifying the design of
elaborate protocols; indeed, it can be
applied repeatedly at many levels; where
the lowest level is the physical transmls-
sion medium, and the highest level is the
protocol presented to the "end user®. Each
level has its own sender and recelver, and
each of them treats the next lower level

as the medium for transmission of its
messages, Pictorially, the structure is
like a set of nested boxes:

left

m . right

More formally, the levels can be defined

& <* medium <> Ro

s

level
-] o

]

<>
level Si

level <> R
1 <]

i

level & 5 <> <>
n = "n

R

level
n n

-1

protocal & leveln

But this conceptual structure for the
protocal la gquite different from 1ts physl-
cal implementation, in which the senders

at all levels are collected at one end of
the transmission medium, and all the
recejvers at the other, as descrlbed in the
definitions:

sender &4 (§ <> ., <> 5 <> 5 )
- n 1 Q

receiver & (R_ <> R <*» ., £¥ R}
2 R, 1 n



protocel A sender <*medium <>receiver

The associativity of the composition
operator is wvwltally important tg ensure
that the physlcal and the logical group-
ings of the processes will exhibit
ldentical behavicurs.

The medium descrihed above 1s a relative-

ly well-behaved cne, In practice, a trans-
misslon medium may lose messages, as well as
corrupting them, or inserting spurious
messages, For simplicity, we shall confine
attentlon to a medium which simply loses
messages

lossy medium E (lefr?xtM*{(right!x*lassy
medium)

I lossy medium }))

where the I operater denotes non-
deterministic choice between the two
operands whleh it connects.

In order to c¢counteract the unreliability

of such a medium, it 1s essential for the
recelver to be able to send back to the
sender ane of a range of signals acknowledg-
lng receipt of messages. Let A be the set
of all such signals passing from right to
left, It is reasonable to postulate that
these can be distinguished from messages
passlng in the other directicn, i.e.

AOMH

¢

a medium which transmits
acknowledgements can be defined in the
usual way as a processj and there ls no
guarantee that it will be immune to loss:

The behavliour of

copy back = {(right?a:A*(leftla*copy back

1 copy back)

The overall behavicur of the transmissian
medium 1s a merging of the potentiail
behavicurs of the message medium and the
acknowledgement medium,

mediumn lossy medium J|| copyback.
wrere EbP||lol = {s| J t,u.teryr)l & uwerlol
4

s is an interleaving of t and ul.

The proof rule for interleaving operator is

that, if AnM = ¢, then
I' vp sat Rl & leFt ™M = righttM = <>,
Q sat R2 & left PA = rightta = <>
T rp|{| g sat Ri(lefrPp,rightta) &
RZI{left™, righteM),

where stC stands for the sequence obtained
from s by cancelling the messages not in

C. An alternative d
medium without using

efinition of the
1] is:
medium 4 lefezx:n* &l x| |rightoy:a+zl y |

Rlx:M & right!x*medium|rignht?y:A+Lr (x,y |
medium

rly:alsd left!y*medium|left?xiM*Ry [x,y ]| |
mediunm

ir[x:H;y:A]E right!x*r[y]‘left!y*ﬁlxII
rlyl®Ix]

In order te counteract the losses on the
medium defined above, we introduce a
system of adding serial numbers to the
messages and to the acknowledgement
signals, Let n range over natural
numbers, and let s5{n] be the behavicur

of the sender before input of the nth
message, and let gln,x] be its behaviocur
after {nput of the nth message wlth walue
x. In this state, it mer=ly repeats
output af the pair of wvalues (n,x) until
it receives the nth acknowledgement, all
other acknowledgements heing ignored. An
acknowledgement is represented by a natural

number, in this example A=NN.
sender & s[1]

s[n:PN] & {lefrix:M+q[n,x])

q[n,x] & (right!tn,x) * gq[n,x] )

|(right?a:NN+if a=n then s{succ(n)]

else g[n,x] }

Here, if...then...else has its usual
meaning:

p [if P then P eise Q] if p{B] true

then pl[ P} else p Lo}

The corresponding proof rule is

r,se = p sat R; ' By sat R
' {(if B then P else Q) sat R

OF course, in practice the retranamission
of messages should not occur wlth too

great rapidity; the process should spend a
reasonable time waiting and listening for
the acknowledgement, But such considerat-
ions of timing have been deliberately
excluded from our mathematical theory,
which is concerned only with these lagical
properties of the processes whlch are
independent of timing.

The Receiver 1s similar ta the sender.
state after receipt of the nth message
rn], On receipt ofF the next message,
serial number is examined. If this is

Its
is
the
not



equal to suce{n} the message is ignored,
A message with a correct serial number

is transmitted to the right, and its
acknowledgement 1s sent back to the ieft,
Acknowledgements for the previous message
are repeated until a message with the next

higher serial number is input
receliver E e[ ol
rln:nN] & (left?(a:NN, xiM) ~

LE a=succ({n)then right!x¥*r[succ(n)]
else r[n]

|leftta * r[n ]]

Here, the notation left?({a:NN,x:M)} is
used to input an ordered pailr of values,
the first of which is called "a" and the
gecond "x"

Note that the spurious acknowledgements
for the non-existent Oth message wili be
successfully ignored by the sender. More
importantly, the set of acknowledgement
signals can be reduced toc merely two
members A = {O,l}, with succi(D}) = 1 and
succ (l}) = O,

2, Weakest environment

In deslgning a chain of processes to meet
gome overall specificaticn S, we may
choose to design first the leftmost
element of the chain to meet some specif-
ication Q.

Glven ©Q and S, it is interesting to
engquire what is the minimum specification
R that must be met by the right part of
the chain in order that their combination
must meet the original specification,
i.e.,
(Q; R} = &

The required specification is called the
weakest right condition, and is defined:

s Q “df vwz.Q{z,left)= S(z,right)
Thls definition has two i1mportant
properties, Firstly (8 r Q) itself
{considered as a pracess) would be a
sultable candidate to plug in on the

right of 2 in order that the combination
should satisfy 8.

Lemma 1
(g; (8 roQ)) = 5.
Procf
LES = Jt.Q{left,t) & ¥z.Q{z,t}= Slz,right)

def; and

(Qileft, )
= S(left,right})

= Jt.9(lefe,t) &

+ S(left,right)

Secondly {5r) is both a necessary and
sufficient condition which must be satisfied
by any process if it 1s to serve its

purpose in combination with Q!

Lemma £
(RiR}= 5 iff R = {(SrQ)
Proof
LHS = ¥&,r(¥t.QI(%,t) & R{t,r))= S(k,r
def;
= v&,r,t. 9i(%,c} & R{t,r} = 5{b,r)
= ¥R, r,t . Rit,r} ={Q{%, t) =5(%, r})
= vt,r. R{it,r) = w.o(R,t)= s(%,r)
= RHS
def r
Thearem T'+Pl sat g, P2 sat (5rQ)

T'—(pl <> p2) sat §

0f course, exactly similar reasoning applies
1f we wish to design first the rightmost
member of a chain, We therefcore define the
weakest left condition:

R ¥ s =4 V2 R{right,z} = Si{left,z
Lemma 3 (% 533 R) = 3.
Lemma 4 L(R3R) =8) felQ =(rR L 811,
Theorem I'—pqsat (R&s) & P2 sat R

P—(p1 <> P2) sat s

In designing a multi-level communication
protocol, it i® reasonable to design the
higher levels first. Each level of the
protocol has an cverall specification §,
and consists of a sender wlth specifica-
tion @ and a receiver with specification R.
It is interesting to enguire what is the
weakest specification which must be met by
the lower levels of the protocol 1n arder
that the design of the given level (Q,R)
meet lts specification S. We call thls the
weakest inner conditicen, and define

wic{Q,5,R) = Yz, z,.00z),1efr) &

af

R(:ight,z2) d s(zl,zz);

"wic" could alsc be defined in terms of &

and ¥, as shown in the following lemma:
Lemma 5 wle(Q,8,R) = R &{s5rQ) =
(R 2 8) r 0.

The following lemmas give the deslred
properties of wic. They can be proved from

the properties of % and =z.
Lemma 6 (@; wic{Q,5,R); R) = §),
Lemma 7 (M = wlc(Q,8,R)} 1ff ((Q;M;R) = S).



Theorem

'FP1 sat g, P3 sat R, P2 sat wic((,S,R}

[ (Pl <> P2 <> p3} sat §
In designing a protocol, it is legically
impossible to guard against every
conceivable errcor which can occur in the
transmission medium: For exanmple,
nothing whatever can be done with a
medium that delivers wholly random bits,
or worse, one which, (like a more
spiritual medium) delivers messages of a
plauslble but wholly fictitious
transmitter. The best that can be done
is to guard against most of the likely
failure modes of the transmission medium,
So it is useful to enguire of any given
protocol what i1s the worst behaviour
of the medium which it can tolerate,
still meet its overall specification.
This is nothing other than the weakest
inner condition of the whole protocol.
The designer of the physical medlum must
ensure that the probabillity of wiolatlng
this conditicon 1s negligibly small,

and

New let us check 1f the previous protocel
can talerate the medium, which loses
messages.

By the calculus given Aalready we can prove
that the processes "sender”, “receiver”
and "medium™ satisfy the following
specifications respectively.

Each time when "aender" receives a nth
message X from Lts left side, it may
transmit a variety of message sequences
to its right side, which constitute the

set Tx,n, where
Ty,n=ap Lo} Y A{NN-{a}}ya"{n},
where A B =df {51 SZISIEA & SZEB}.

So the specification of "sender”" can be

defiped as

T({left,right) = lefteM* & righte Tleft,

df
where

T<> = &>} and Txl"x S x =

2 n

PPN ~

raa <n.s. € £
{sl 52 sn‘ ¥i<n 51 Txi,i & 35.5 Txn,n

s <5
n -

Similarly we describe the specification of
"receiver"” as follows.

Ryon “ar ({m} u {un-{a} x ¥ *"l(n+i,x0)}

af left € Rright

& right € M*,

Ri{left,right} =

where {913 ®,5",5'€E R & 5< 5'}
and
2 - {s "a." - <
Kyrkoneeoak = AS) g, ., n+l|¥1 nRsle
X, .
i, 1
& Ju,s '
3 +5. 56 Rx,n+l +1 % s}

The overall specification for the protocol
is left > right.
Then wic{T,left?> right,R)

=¥ %7, T(zl,left)& R{right,z

2

- z. > I

12

,z2 EM*. left € Tzl &

2
=y z

sz *z

right € R22 1285

The specificatian of "medium" - LOSS can

roughly be described as : rightUNNxM can

be obtained from leftTNNxM by cancelling

some meéssages of NHNxM, and left NN can be
obtained from right FNN by cancelling some
messages of NN.

Now we ¢an see LOSS=wic(T,left > right, R},

Because if lefteTz. & righteRz
LOSS (left,right), then "left” wust be of
form +
MAlx, 13772 Al 30 -
whlle ""lght“ mus;,t be of for%'r

(x,n"f*"(xz,z) 2* (x3,3)

%

where u* stands for any sequence of u and

ut for nonempty sequence of u.

The above definitions of the weakest
conditions are given in terms of the over-
all specification and the specifications
of first designed parts. Given process P,
we know, the most precise specification of

P, which can be defined in terms of channel
predicate, is
P(Sl,szl =d53.=;_sf.§[ P]a& stleft= s, &

sfright = 52.
S50 we define the weakest condition for given
processes and overall specification:

S P wz,P(z,left) =5(z,right),

car
P is =q¢ ¥ Z-Piright,2) = s{left,z},

and wic(Pl1,5,P2) ¥ zl,zzPI(zl,left) &

“ar
PZ{riqht,zz) “S(zl,zzl,

where P,Pl and P2 azre processes and 8 is a
channel predicate.

The following theorem shows that these
definiticons are reasonable,

Theorem.

(1) Bl (p<>Q)sat sk =

el ¢ tszp) 1

ele

w
&
"

(ks) 1



{2) Pl (P1<>Qe2P2) sat §] =
PlQ sat wic(P1,5,P2)]

Based on these definitions we can develop a calculus
for the proof of correctness of processes in terms
of weakest canditions, $Say, in this calculus we
can get inference rules:

T—$ r(P1<»P2) = T+ (SrP1)rP2

T (P1<>P2) IS =0 e P 1(r215s)
[—wic(P1c»Ql, §, Q2<vP2) =

e [— wic{Ql,wic(P1,5,P2),Q2).

The details of the calculus will not be presented
in this paper.

3. An HOLC protocol.

In this section we present an HDLC protocol
using the suggested approach, and simulate a
medium with a burst of error. We then prove the
partial correctness of the protocol in spite of
these errors. Since the details of proofs are
quite tedious, only a sunmary of them are given,

This is a point-to-point unbalanced system
to collect files from a secondary station following
the HDLC procedure. There are three levels in
the protocol. The outermost level, level 2, is
responsible for initiating the link, transmitting
the data and disconnecting the link, according to
the commands from higher levels, e.g. a user or
file system. In level 2, the timeout retrans-—
mission and frame numbering are used to control
error. This léve! works on messages, while the
level ! transfarms messages into bit streams
or vice versa like interface. The lowest expands
and contracts bit streams for cyclic redundancy
checks, transparency and framing. So the lowest
level may be divided inta three sublevels. The
whole protocal can be pictured as the following
diagram:

LEvEa

LEvEL

[T

= it} e

! i | N TR | ; ) )
! T 1

omluky 1 r.nL. N FN.PLEL 1 ERPILR AR 1 i

enrbes . T T Edonnly

e L TamusmmeucyL HERUN TRESHTENCIA noroiae R

3.1. Level 2.
When PRIMARY receives an order ''colltect" from
user, a file collection starts;

(1) PRIMARY initiates the link: sending SARM
{Set Asychronous Response Mode) to SECONDARY,
setting timer for retransmission of SARM, then
waiting for the response UA

{Unnumbered Acknowiedgement) or DM [Disconnected
Mode) . DM means that SECONDARY has no data Lo
be transmitted, so PRIMARY informs iLs user with
"no', and this short transaction ends. UA means
that SECONDARY wants to transmit a file, so
PRIMARY informs user with ""yes", and waits for
data from SECONDARY.

{2) SECONDARY transmits data: a serial number

Ns {modulo 8) is attached by SECONDARY to each
item of data got from the file system; this

data is then sent to PRIMARY with time-out
transmission until RR (Receive Ready) is answered
back. PRIMARY acknowiedges receipt of data from
SECONDARY with RR, and checks Ns to aveid
duplicated data, If the serial number is in

order, the data will be passed to user. If not,
the data will be cancelled.
(3) Primary disconnects the link: At end of

data collection 'eof' is received by SECONDARY
from file system. SECONDARY sends RD (Reguest
Disconnect) to PRIMARY, and resends it until it
receives 01SC (Disconnect) back. When RD reaches
PRIMARY it informs user with '""eof', and answers
SECONDARY with D1SC.

The program PRIMARY can be written as follows:

R

lright

PR IHARY

P A (left?collect + INITIAD)
| {(right?x:M +right!DISC ~P),
where ale stands for atx:{e} and H far the set of
all messages passing from SECONDARY to PRIMARY,
INITIAT A right!SARM +up!set~ WAIT
WAIT A right?UA+upireset » lefriyes+ RECEIVER
|right?DM>up'reset + leftinos P

right?=:M-{UA, DM} WAIT
upTtimeout + INITIAT

RECEIVER ARLD:

R[N:NNT A right? (a:NN, x:DATA) > right!RR+
if a=n then left!ix> R+l (mod8)]
else R[n]

|right?AD + leftleof + right!DISC+ P
right?x: M-{(NN x DATA), RD}+R[n];
TIMER & up? set > {uplreset+ TIMER| up!timeoutr TIMER)

PRIMARY A (chan up; TIMER|{P),
XY

where X-{up} and ¥= {up,left,right}.



SECDNDARY can be presented as follows:

left )

SECONDARY

SAleft?y:A~if y=SARM
then righticollect +
{right?yes + left!UA -+ SENDER
[right?no » left!DM +§]

else §,

where A stands for the set of all messages from
PRIMARY to SECONDARY;

SENDER & S[D];
S[n:NN] & {right?x: DATA=~ Q[n,x])

[(rightTeof+ lafc!RD +up'set +WDISC)
Q[n:NN,x:DATA] 4 left! (n,x}+up!set+WRR[n,x];
WRR[n:NN,x:DATA]4 1eft7RR +up!reset + S{n+1 (mod 8}]

| lefe?SARM +up! resec + lefuUA+Q[n, x]

|Tefc2y:A-{RR, SARM}+WRR[n,x]
lup?timeout +Qn,x];

WOISC & Veft?01SC +up!reset > 5
| ieft?SARM + up!resec + §
|leftZy: A-{D!SC,SARM} +WDISC
|up?timecut > left!RD +up!set +W01SC;
TIMER A upYset + (upTreset + TIMER| up!timeout+TIMER);
SECONDARY & (chan up;TIHERilS),
Y

where X ={up) and ¥ ={up,left,right}

This protocol cannot guarantee that all the
messages from the user can reach the system over
a medium which may {ose messages. This is because
the loss of DM may cause the retransmission of
SARM, and SECONDARY cannot recognise if this SARM
Is a new initializing signal or a retransmitted
one. However, the data messages from file system
to user are our main ctoncern here, and this protocol
can guarantee the correct data transmission over
certain unreligblie mediums as well.

50 the overal) specification of the protocol
can be given as left[DATA<right[DATA.

The specifications of PRIMARY and SECONDARY can be
formulated in the following way:

Let the predicate 51 specify the sequences along
the channel "right'" of PRIMARY and let function

f pick up the ordered data messages from the
sequences. Then the specification of PRIMARY can
be described as

PRIM{left,right)= S1(right)sleft}DATASf(right).
Let the predicate 52 specify the sequences aleng
the channel "left" of SECONDARY. Then the
specification of SECONOARY is

SECD(left, right)= . s2(left)&f(left)<right [DATA,

Thus wic{PRIM, left[DATA<right}DATA, SECD)

=¥z ,z, . Sllieft)sz 1DATAS £ () eft)
65 (right)sf(rightJSzzrDArn
= z, [DATA<z, [DATA
= \I‘z],z2 . S1{1efe)es2{right)= fleft)<f(right}).

This level is intended to work above the {awer
leveis which may delect the errors caused by an
unreliable medium, This intention can be checked
as follows:

Let us define predicate LOSS{left,right) similarly
to Section 2. f.e. cancelling some messages of

A from “left]a" and some of M from "right}M" can
form s, and s, such that 51=right-,|'ﬂsleftf‘ﬂ=sz

Then we ¢an prove

LOSS=wic (PRIM, left|DATA<right [DATA, SECD) .
i.e.
LOSS(left,right)&est (left}s52{right/™
f(left)<f(right)

3.2. Level 1.

This level reaiizes the transformation between a
message and its binary code according to HDLC
syntax. When receiving a message from level 2,
level | transforms it into 3 bit stream with
separators "'start' and "‘end', then sends it to
level 0. Conversely, when receiving a <start, bit-
stream, end> from level 0, level 1 transforms it
into the corresponding message, and passes it to
ievel 2. If the received bit stream ends with
the separator ''error' (i.e. there is scme error
in this stream which has been detected by level D)
or no meaningful message corresponds to this bit
stream, then this bit stream will be cancelled

by this level.

For distinguishing between signals in different
directions we use "start'', “0", ', "end", and
“error'" for signals from left to right, and
Ystart™, "0, 1Y, Yend 'Mand “'error ''for signals
from right to left.

The CSP processes |INTERFACEL and INTERFACER of
this level are not presented here, since they just



do some routine coding and decading.

Let decod be the function transforming the meaninqg-
ful bit streams into messages accarding to HJLC
syntax, and error streams, meaningless streams or
incomplete streams into the empty sequence,

Then the specifications of INTERFACEL and
INTERFACER are:

INTL{1eft,right)= _ leftPAzdecod(rightfa)

& leftMsdecod(rightH),

df

and INTR{left,right}= o decod{leftfA}zright ba
& decod(JeftM)<rightu.

In 3.1. we have shown that given PRIMARY
and SECONDARY as the outer level, and left}DATA =
rightrBATA as the overall specification, if the
inner level satisfies the specification LOSS, then
the whole protocol can satisfy the overall
specification.

Now let us take LOSS as the overall
specification of level 1 and INTERFACEL and
INTERFACER as the outer level, and then laok for
an appropriate specification for the irner level
(level 0).

Since wic(INTL,LOSS, INTR)

= Uzl,zz.(21rAzdecud(]eftrA)
& 2 MMsdecod{Teftpu)
gdecod(rightpa)zz, ja
Edecod(right}H)Szsz)
= LOSS(zl,zz)

=10%S (decod (Veft pA) ,decod (right}A})
£L0SS (decod {Teft M) ,decod (right pm))

=L0SS (decod(left),decod(right)).

Let ERROR be a predicate to describe that
there are some detected transmission errars.
ERROR (lefct,right) holds if and oniy if there are
sequences s, and s, obtained from "leftha ¢ ang -
“rightfﬁ” respectively by changing some bit
streams to error streams, i.e. changing the end
separator to 'error', and stream body as well,
such that 512rightPA and IeftPHssz.

Then we can prove
ERRDR{left,right)=L05S (decod(left) ,decod(right) )

~nic{INTL,LOSS, INTR) .

Thus we will take EAROR as the specification of
level D: i.e. if level 0 can detect transmission
errors, then the whole protocol works,
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3.3. Level D.

1.3.1. CRC sublevel.

Both CRC generaticon and check can be realized
by shift register. The HDLL generating
16,,12,.5

polynomial plx) is a “+x “+x

+1, and the shift
register for p(x) is:

bit stream
+iredatuninrnsy | -p.-p--)4-l-—'°9-"!'-l+4-qvﬁt*?
5

This shift register can be simulated in C3P as
follows.

wib

Let p=D3106|0h|, where a" stand for n consecutive
a's. Let tl(s) be the sequence ohtained from s
by cancelling its first bit - hd(s).

CRCGEN A lert7start+righ::starr+5H|FT[016]
SHIFT[x: {0,114} 8 leftiyi{0, 1) rightty
s ifhd{x}=1 themSHIFT {t] {xfy@p]

elseSHIFT[t1{x}y]

?

|left?end+CRC[x];
CRC[x:{0,137] A if x=<> Ehen rightiend>CRCGEN
else right!hd (x)»CRC[tT{x}].

CRECHECK A right?start' rleft!start'+SHIFTER[<~,<»]}
SHIFTER[x:{G',l'}ﬁ,y:{ﬂ'%I'}*]Q right?tz:{o',1'}
~iflength{x)s15thenSHIFTER [ z,y"z]
else leftlhd(x)

»1Fhd (y}=1" thenSHIFTER[ t1{x)"z, 1 {yV'z@ p]
+alseSHIFTER[ t1{xPz, t1 (yP7]
| right?end > CHECKTy];

CHECK[y:{B',1°}#]afy-0' "6theniefr end  .CACCHECK
elselefrierrar+CRCCHECK;

CRCL & CRCGEN||]CRCCHECK

CRCR is similar to CRCL, bur exchanging
left' and “right"”, and{start,0,1,end,error} and
{start',0',1',end"' ,error'}.

Let cr¢ be the function on bitstreams
defined as follows: if a bit stream with checksum
is divisible by p{x), then its corresponding
value is the stream itself; if not divisible, then
the value is the stream ended by separator "error"
(or "error'}if the stream 7s incomplete, then its
value is the empty sequence.

Let crc' be the function defined
same way as crc, except that the vajue of
incomplete stream is the incomplete stream itselfs

in the



Let DIVISIBLE be @ predicate.DIVISIBLE (s)iff
all the complete streams in saredivisible by p(x).

Then the specification of CRCL and CRCR are:

ALz, leftfazerc(righcfa) & DIVISIBLE(right}a)
& leftiMscre! {rightu)

and

RR= . cre' (lefttAlzright}a

¢ cre(leftM)sright! & DIVISIBLE{leftii).

Now we define a predicate to describe a burst of
errors of length less than 17 in a frame; then
we can prcve that it implies the weakest inner
condition wic(RL, ERROR, RR).

BURST (left,right) holds 1ff by adding
(modulo 2) bit streams of length less than 17 to
the frames (complete or incomplete) of ”leftrA”
and "rightfW', we can obtain s; and s, such that

sizrightfA and leftMss,.
Since the burst errors less than 17 can be
detected by CRC checksum of p{x), we can prave
BURST = wic (RL, ERROR, RR)

3.3.2.

Transparency sublevel.

This sublevel is responsible for inserting
a redundant zero after five consecutive ones
before transmitting frames, and removing the
redundant zeros after receiving frames, for the
sake of distinguishing the frame body from the
frame flag (0100).
INSERT A left?start+right!start>COUNT[0];
COUNT[x:NN] A if x=5 then right!Q-+COUNT[O]
else(leftt0+right!0+COUNT[D]
|TeSt?i+right! 1-+COUNT [x+1]
|1eftTend+right! end+INSERT)

REMOVEArightistart'+left!start'+COUNTI[O];
COUNTI(x:NNJA right?1'+left!1'+COUNTL x+1]
|right?0'~if x25 then COUNT1[0]
eise left!0"+COUNTI[D]
|right?end*+left!end ' +REMOVE;

TRANSPARENCY A INSERT]| ] |REMOVE .

Similarly we can present TRANSPARENCYR.

Let redund be the function which cancels
redundant zercs from bit streams. Then the
specifications of this level can be given as
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TRANPL (left,right)= lef ttA>redund {right|a)
& TeFtMsredund(right]m)

and

TRANPR (left,right}= . redund(leftfA}zrightfa
& redund{leftiM)<rightH

Frame sublevel,

1.3.3

This leve! is to transfarm the separators
"start' and "end' jnto the HOLC frame flag
(0160) and vice versa.
FRAME & left?starﬁright'.u-»(righu1)6+rigm!n+PA55;
PASS A leftTx:(0,1)+right!x+PASS
|Veft7end+right!0+(right!1)Caright {0+FRANE;

DEFRAME & rightZx:{0%,1'}+1f x=0
then FLAG[0]
else OEFRAME,
FLAG[x:NN]A right?!*+FLAG[x+1]
|right70'+if x=6 then left!start+BUFfc>]
else DEFRAME ;
BUFB[x:{D',1'}*]5 if x=0'1'60"
Jeft!end '+DEFRAME
else (rightTy:(0'1°]
+ iflength(x)57 thenBUF8[x~y]

then

elseleft'hd(x)+BUFB 1 (x)"y]
FRAMEL A FRAME|||DEFRAME
FRAMER can be given simlarly.

Let fram be the funcrion on bit streams which
transforms the odd slag o160 into the separator
“start'' and the even one into "end', and cancels
the unframed bit streams.

Then the specifications for this sublevel will be:

FLOeft,right)= leftfAzfram(rightfA)
& leftMMsfram(rightiM)

and

FR(Veft,right)= . fram(leftMjzright}a
¢ fram{left}H)Srightfu

3.4, Medium.

Now we are simulating a medium of possible
burst errors, the length of which is less than 17.
At first let us check if the protocol can tolerate
it.

Unfortunately, it is not true in the case
that burst errors produce ar destroy frame flags.



Suppose we have data 103106104108, 115 cRe
checksum is 016, So the framed bit stream for this
data is

0% 10310f10%08 0!8 1%
170 L0 o

fiag data LRC flag

Thus if a burst of error of length 16 happens on
the fast 16 bits, and changes the bit stream to

errcr
0o 10310%0]  oFo® 01608
om——— et e
flag wrong CRC flag

data

then a wrong, but undetectable data, 10310610h|,

reaches the destination.

So we simuiate a medium, which may cause burst
errors, but never produce or destroy frame flags
in the fellowing way. We plant a new level between
CRC level and TRANPARENCY level; it consists of
two processes: one may cause 3 burst of error for
transmission from left to right, and the other cne
for right to left.
WiREAleftTstart+right!star t+WIRE

|teftly:{0. 1]+ (right! y*WIRE|right'y @1 +
ERROR[1])

‘Ieft?end*right!end + WIRE ;

ERROR[x:NN]& leftZy:{0,1]+if x<15
then (right!0+ERROR [x+1]
|right 1+ERROR [x+1])
else right)+ERROR[x]
|1eft?end+right!end+WIRE;

PASS & right?x:M+left!x>PASS;
MEDIUML A WIRE|!|PASS.
MEDIUMR is similar to MEDIUML

The specification of them are:

ML{left,right)= . BURST (Teft [A, right P}

£ leftMsright|M.
and
MR(left,right)= . teftfazrightfa
& BUAST(leftMm,rightfM).
Let BUFF{left,righe)=  lefePaarightha

¢ leftMMsrightm.
Then we can see

BUFF = wic (ML, BURST,MR) .

3.5. Partial Correctness of the Protocol.
Let us define the whale protoccl as follows:

PRUTGCOLQPRIHARYO!NTERFACELOCRCLOHEDJUHL
$TRANSPARENCY Lo FRAMEL®FRAMERCTRANSPARENCYR
QMEDIUMRGCRCROVNTERFACERG SECONDARY .

Since TRANSPARENCYLOFRAMELOFRAMERGTRANSPARENCYR

sat BUFF can be proved from the specifications of

the elements by the proof rule of composition, we
have roughly shown that

PROTOCOL sat left[OATAr ight [DATA

can be established by the theorem in Section 2.
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