THE FORMAL SEMANTICS OF
COMPUTER LANGUAGES AND THEIR IMPLEMENTATIONS
by
Robert Milne
of

Oxford University

Oxford University Computing Laboratory

Programming Research Group Technical Microfiche TCF-2

NOTE

This monograph is a copy of a doctoral dissertation
submitted to Cambridge University. It is distributed by
the Programming Research Group as Photocopy PRG-X13, and
is also available as Programming Research Group Technical

Microfiche TCF-2.

@ 1974 Robert Milne

Oxford University Computing Laboratory,
Programming Research Group,

45 Banbury Road,

Oxford.

SUMMARY

This dissertation contributes to the mathematical theory
of computer languages by extending the formalism due to Scott and
Strachey to cover language features not considered before and by
developing a framework in which implementations can be analysed.
The features handled by the extensions include parallel processes
and modes which may be declared or coerced; in fact two radically
different treatments of modes are related by an approach that can
also be used to prove the equivalence of appropriate interpreters
and compilers. Implementation techniques are described in terms
of valuations which convert program texts into transformations of
stacks and stores; thus particular techniques may be deemed to be
correct when the resulting semantic equations correspond with the
standard ones of Scott and Strachey. Formulating the pertinent
correspondence involves the construction of predicates which are
not monotonic but which nevertheless connect the equations in a
recursive manner, The proofs that these predicates are satisfied
throughout entire computations entail inductions on the structure
of programs and must therefore be carried out for one language at
a time; however the language discussed in this dissertation is
large enough to justify the claim that the proofs supplied for it
can readily be adapted to apply to other languages. The standard
semantic equations are not suited to establishing the equivalence
of some varieties of program, which must be done with the help of
the additicnal information provided by equations which embody the
essence of certain implementations. On one such relationship of
equivalence, which asserts that every reasonable program may be
replaced by one wherein identifiers denote locations only, depend

theorems which compare several methods of implementing recursion.

CONTENT

CHAPTER ONE: STANDARD SEMANTICS

1.1 The mathematical basis 1
1.2 More abstract models for storage 3
1.3 The initial paradigm 10
1.4 Incidence and reference 17
1.5 Conjugate valuations 24

CHAPTER TWO: STORE SEMANTICS

2.1 State vectors 32
2.2 Inclusive predicates 41
2.3 Two equivalent formalisms 51
2.4 Reflexive projections 57
2.5 Denotation and allocation 68
2.6 Connections between storage management techniques 77
2.7 An extension to cover recursion 89

CHAPTER THREE: STACK SEMANTICS

3.1 Idealized versions of realistic implementations 96
3.2 Preparations for an inductive proof 104
3.3 Two comparable mechanisms 113
3.4 Different control structures for languages 124
3.5 Parallel programming 129

3.6 Manifest types 141

BIBLIOGRAPHY

APPENDIX ONE:

APPENDIX TWO:

APPENDIX THREE:

INDEX

STANDARD SEMANTICS

STORE SEMANTICS

STACK SEMANTICS

155

157

162

167

172

CHAPTER ONE
STANDARD SEMANTICS

1,1, The mathematical basis,

1.1.1. The framework of computing theory.

The aim of this dissertation is to examine some of the
implications of the mathematical theory of computing propounded
by Scott [17], which views the meanings of programs as elements
of domains subject to partial orderings. Although a typical
domain will belong to a certain category of complete lattices,
all the rtesults which will be assumed or proved can be qualified
in such a way that they remain valid when domains are taken to
be partially-ordered sets in which every countable chain has a
least upper bound. In particular, both these interpretations of
the term 'domain' are among those that can provide a rigorous
foundation for the theory of programming languages conceived by
Strachey [21], wherein one member of the range of a function o
may be a function 6 which can itself be applied to o. The
present work will adopt the notation of the rigorous formulation
of this theory [20] unless otherwise stated; it will also
presume familiarity with all the other papers by Scott and by
Strachey cited in the bibliography.

In the later sections of this chapter standard semantics
will be developed from the formulation mentioned above in order
to describe Mal, a large computer language in which the types of
variables are checked dynamically. This language has greater
expressive power than Algol 60, but it does not provide some
features of other languages, such as parallel processing and
types which can be declared or coerced during compilation; those

fecatures requiring a further expansion of the formalism will be

considered from 3.4.1 onwards. A formal definition of Algol 68,
which will not be presented below, has confirmed the adequacy of
the treatment to be outlined in 3.6.1.

The abstractness which gives standard semantics its great
elegance also renders it unsuitable for the analysis of certain
kinds of relation between programs. After 2.1.1 classes of Mal
programs will be shown to be equivalent to one another with the
aid of store semantics, which makes explicit much of what is left
implicit in standard semantics. As store semantics represents a
sensible implementation technique, the assertion that it gives
every Mal program a meaning which corresponds with the meaning
provided by standard semantics can be said to entail the
correctness of this technique. Another method of implementing
languages is embodied in stack semantics, which will be discussed
in 3,1.1; in contrast to that inherent in store semantics, this
method is correct only when the programs to which it is applied
have variables with severely restricted scopes. Both store
semantics and stack semantics can be given forms in which the
details of particular implementations are made manifest and in
which finitary objects take the place of functions, but the

necessary intricacies will not be described.

1.1.2, Preliminary conventions,

The symbolism to be adopted for handling sets is perfectly
normal and therefore needs little explanation; suffice it to
remark that if X is a set the members of which are sets then UX
will be the union of the members of X and nX will be their
intersection, whereas if X is a set of elements of a domain then
LIX will be its join and [}X will be its meet. VWhen X has only two
members these operators may be replaced by small infixed versions,

The usual convention that the disjunction and conjunction of

truth values €5 and €, be written as EqVE, and EghEy respectively

will be extended to sets as follows: given any set X comprising

truth values VX will signify the disjunction of the members of

X and AX will signify their conjunction, so that if X is empty VX

will be ¢rue and AX will be false. Likewise when X is a set of

integers VX will be its largest element and AX will be its smallest

element (provided that these entities exist); moreover if

X={v0,v1} VX and AX may give way to vovv, and VoAV, In 3.6.3 the

sum and product of the members of a set of integers will be needed;

for any such set X they will be provided by JX and [[X. This

notation will be modified when sequences of sets are considered:

ULX, [n20} and (X |7=0} will be abbreviated to |JX and (X , and

analogous changes will motivate the use of an’ X, Vﬁn and AX, .
Any function ¢ taking a lattice A into a lattice B is

strict if ¢L=1, monotonic if ¢EOE¢£1 whenever 50251, and con-

tinuous if every directed set XCA satisfies ¢ (LX) =LU{¢£ | E€A}; most

of the functions which will be required in the present work are

continuous, but in fact it would be enough to assume that they

are such that ¢ (UX)=|Ho¢g|£eEX} whenever X is a countable chain.

The word 'function' will usually, but not invariably, refer to

a continuous function; similarly A+B will generally be the lattice

of all functions taking A into B, Ti}l 1.2.2 AxB will be the

set of all pairs (&,n with £€A and n€B under the product ordering.

The forms of bracketting adopted will all be allowed to nest,

but parentheses will Tarely surround the arguments of functions

unless the parsing so decrees; since the application of functions

will associate to the left (so that ¢y& could be written as (¢y)E)

the domain denoted by A+B-+C, say, will be regarded as A-+[B-(C1],

not as [A»B]+C. Both continuous and discontinuous functions will

have their effects on their arguments specified by means of

A-notation [10]; examples of such specifications can be found by
consulting the index.

One continuous function of particular importance is fix,
which is constructed in such a way that if ¢ is any function
mapping a domain A into itself then fix¢=u¢nx, where ¢0=AE.¢ and

n+1=¢°¢n when n20. The definition of continuity ensures that

¢
¢ fizd)=fizd and £3fizxd 1f ¢ is continuous and & is any member

of A for which ¢&=f. Strictly speaking, f7Zz should be set up

anew every time a fresh domain A is encountered, but in fact this
will not be done., Some functions (such as those to be mentioned
in 1.3.1) will be given recursive definitions in which fiz does

not appear; there will, however, always be an obvious means of
eliminating the circularity by introducing fiz.

Another function which should really be provided for a
'universal' domain or for ecach lattice which requires it is cut;
for every lattice A and every £€A other than T cutE=n{EO|T=EEEO=L}
and cutt=T. As £, is a bound variable of the term {EO,T=EE€0=L}
cut is strict and continuous when 74T,

If £5 and &, are arbitrary elements of a domain A the
relation 50451 will mean that for every directed set XCA having
UXE€1 there is some EQGA such that EQEEO. A domain A in which
T<T and cutf>L for all EEA with £>1L will be described as 'slit';

a domain A in which cut&=£ for all £€A will be described as 'flat'.

Many fundamental mappings between domains can be classified
as injections, projections or retractions. When p maps A into B
it is an injection if it is continuous and if there is a
continuous mapping ¢ from B into A having qep=XEf.E and pogE=in.n.
Conversely a continuous function ¢ taking B into A is a projection
if it has a continuous inverse p for which gep=3E.E and pog=in.n;

from 1.2.8 onwards functions akin to peq will also be regarded as

projections, A retraction of A is a continuous and idempotent

function which takes members of A into other members of A,
Although ~ will provide the usual denial of a truth value,

in a somewhat unorthodox manner €, €, will be understood to mean

simply that unless ¢ is false 1t must be identical with €

0 1’

When 61 and 0, belong to some domain the conditional expression
€+61,62 will be an entity which is 91 if € equals true and is 62
if € equals false. Because true and false are only two of the
four elements in T (the lattice of truth values), in 1.2.6, for
instance, it will be necessary to know the values of ELVE s € GAE s

~¢ and €+0,,0, when €gs €4 and € are L or T. These values must be

such that the resulting operators give continuocus functions of €9

Els € 8, and € but there is no other criterion governing them.

1 2!

It is convenient to let Tve, e€vT, TAE, e€AT, ~T and 70,0, be T
for all €€T and to let Lve, evi, LAe, €Al, ~1 and l+61,82 be 1 if
€ is true, false or L, but the feeling that the precise choice
of these values is just a matter of taste will be justified in 1.3.5.
Often it 1s useful to be able to 'filter out' L and T before
applying the test for membership of a domain; this can be achieved
by using not ¢€A, which is true whenever £ is a member of A, but
£:A, which is | when £ 1s 1, T when £ is 7 and ¢rue when £ is any
other member of A. An element of A for which £:A is true will be
called 'proper'; L and T are improper. The sharp distinction
between £€A and £:A will not be obhserved in the test for equality,
go=g1: though this test will sometimes be understood to be a
discontinuous relation having .=1 and t=7 both equal to true,
usually a form like EO=£1 will refer to a test which could be
written more accurately as (€O=£1)A(EOIA)A(£1:A). The context

should always be sufficient to clarify which version of the

equality predicate is intended.

11

1,2, More abstract models for storage,

1.2.1. Arrangcements for obtaining locations.

Cne [eature common to all the languages we shall study 1is the
store, As a first approximation to a domain S which models this
we adopt a lattice of continuous functions mapping each member of
a flat lattice of locations, L, to a palr comprising a truth value
in the four element lattice T and a stored value in some lattice
V; thus ignoring input and output S=L-+[TxV], We take area and
hold to satisfy cga=(areaac,holdoo) for all o€S and o€l; intuitively
holdac represents what the location contains whereas areaoc in-
dicates whether it is inside the region of store in use. This
region can be extended by adjoining newc, a location not currently
within it. More accurately, new is any monotonic function from S
to L such that if areaac is proper for all proper a:lL and if
areqad=false for some a then newo is proper and area(newo)o=false.
Plainly there are many possible new functions and any stack im-
plementation will have an operation which can be regarded as a
restriction of one of them to proper stores. Additional constraints

(such as those to be given in 3.,1.3) can be imposed on them to bring

about a closer correspondence with the particular storage allocation
mechanisms involved. Notwithstanding this all these new functions
possess the following property which is not shared with many

practical implementations.

Supposc that o, and g, are members of § such that for all

1 is proper and equal to areaao, and such that

areqoo =false for some such a:L. By the postulate above newo, and

PTOper o areadd

1

newo, are proper elements of L. Furthermore new(ofJoz) is proper

as areaa(01U02)=areaanJareaao =greqoo, for all proper a. Now

2 1

new(choQ)EnewoﬂJnewc (new being monotonic)} so in fact

2

new(01U02)=new01=new02 as L is flat.

12

With this model, then, the new location selected is in-
dependent of the contents of the store. Yet this should be a
contingent truth about an implementation, not a necessary one,

for if new, and new, are two functions satisfying the postulate

above and if T is a summand of V 1t is natural to expect that

Ag.holdadg+new,o,new, o Will satisfy the conditions for a new

1 2

function,

1.2.2. Coalesced function spaces.

This blemish could be effaced by altering the properties
of new. Abandoning monotonicity would cause difficulties when-
ever a fixed point was required and would run counter to our
intuitions. The other property of new, however, can be weakened
by permitting inferences to be made about newc only when o can be
reified. Thus we demand that new be a continuous function from S
to L such that if koldoo and areqoo are proper for all o:L and if
areaad=false for some o then news is proper and area(newg)o=false.
When this property is imposed on rnew the remarks of 1.2.1 become
invalid, as hoida(o Uc,) need not be proper when holdao, and

1

holda02 are. On the other hand, if g 050, a with o,a and g,0 proper
for all a:L and if areaacl=false for at least one proper location

a then newo,=rewa,. This accords with experience unless the
lattice of real intervals is regarded as a summand of V.

Though the defect is removed by using this stipulation
about new it remains disconcerting that the original new could he
extrapolated from real stores to others in a way incompatible
with practice. Basic functions such as updete can give rise
to similar anomalies unless they too are restricted to real stores;

for instance it is difficult to envisage the effect of finding 1

in a proper location or 0 in an improper one. Moreover the proof

13

that if the body of a while loop can be regarded as a multiple
assignment then so can the entire loop involves assuming that
updateoalo=1 when a:lL and 0:S, In the light of the above this
assumption must be suspect until we provide a model in which it
is inherent, although theorems like 2.6,9 are independent of the
roles assigned to 1 in L, V and S because no semantic equations
make use of them,

In any store ¢ which can be reified neither areaac nor
holdoo 1s improper when o is proper. There is no physical
difference between the stores Xlua.{ false,true’ and
da. (oLl false,true) ,{1,1)); to avoid the possibility that the
basic functions have different effects on them we therefore allow
only one to belong to the domain of stores. Thus we take this
domain to be the set of functions ¢ such that areaac and holdoao
are proper unless o is 1 or T, when both are 1 or 7.

Given lattices A and B with 7«7 in A we define a monotonic
and idempotent mapping 7 from A+B to A+B by
J=Ad NGEB|EAY(AEELA+GE,T), T,

Suppose that A»B is {j¢|écA+B}; when XCA»B we take its
join in A»B to be 7(LiX}, where the join within the brackets is
formed in A-B. With respect to this definition A»B becomes a
lattice which possesses the attribute of continuity [19] under
the conditions detailed below.

We now dispense with our earlier version of the product
of two lattices, henceforth taking AxB to be
{Ceg,m |g:Aan:BIU{C L, (7,7} with
<g1,n1>u<52,n2>=((51U£2:AAn1Un2:B)+(giugz,nlung),1). This
coalesced product is an analogue of the coalesced sum which will be
adopted; in terms of it the domain of stores might be given by

S=L~[T=xV], but actually in 1.3.1 we shall adopt a variant of this.

14

Note that under this convention the domain A* to he descTibed in
1.2.8 is such that if any member £* has E*4v=1L for some v then

E*=1.

1,2,3, Proposition.

Suppose that A and B are continuous lattices such that A
is flat and B is slit. Then A»B is a slit continuous lattice.

4We shall show that if ¢1 and ¢2 are proper elements of
A+B then ¢1<¢2 if and only if for every £:A ¢1g<¢zg and for all
except finitely many ¢ ¢1£=cut(¢25).

Suppose that ¢1 and ¢2 are proper and that ¢1<¢2. Let
Y be a directed set such that UYE¢250 for some EO:A; then
U{AE.£=£O+H,¢QEIH:Y}E¢2 so, Since ¢1<¢2, there exists an nDEY
tfor which (Ag,g=g0+no,¢?g)9®1. Moreover if there is a chain of
finite subsets X CX,GX.G... having JX =XcA and a set {n(£)[&:X)
with ¢2EEH(E) for all £:X, {AE.E:XA~(€:X”)+n(E),¢?g|n20} is
a directed set of members of A»B with join ¢2; hence for some =
(AE.E:XA~(E:XH)+H(E),¢2£)E¢1 and n(g)3¢1g when £ is not in X,.
Thus ¢ E=cut($ £) unless gex Wi, rl.

Conversely suppose that for every £:A ¢1§<¢2§ and for

all except finitely many £ ¢1£=ﬂ{n|T=¢2€En=1}. Let Z be a directed

set with UZE¢2; we shall show that ¢02¢1 for some ¢0€Z and thus
that ¢1<¢2. For any proper ¢:7 ¢ge¢15 except perhaps when £
belongs to the finite set X having ¢1£=cut(¢25). Even when
E:X, ¢,E<0,E and U{¢g|¢EZ]E¢2£ so, as {¢&|¢€Z} is directed,
¢(€)€E¢1E for some ¢(EXEZ, As I is directed there is some ¢O€Z
with ¢09U{¢(€)[€:X}. Thus ¢ £2¢,& for all EEA and ¢,2¢,.
Should Z be a sequence of members of A=B with [JZ=T then
U{¢€|¢€Z}=T for some proper £:A. Since 7«7 in B ¢&=T1 for some

¢€Z and ¢=1. Hence T<T in A~B and, more generally, ¢1<¢2 if

and only if $,=L, ¢,=7 or ¢, i<, E for all £:A and

2
¢1E=H{HIT=¢2EEHDL} except at finitely many £:A.

Now let ¢0 be an arbitrary proper member of A»B. By the
continuity of B we can select n(g):B such that for every £:A
n(£)4¢0g and thus cut(¢0£)<¢og; hence if X is any finite subset
of A (AE.E€X+n(E),cut(¢05))4¢0 by the characterization above.

As B is continuous and slit,

¢, =LHURE E€Xon(E) seut (68 [AIN(E)<4 EAn(E) :B[£: XTI [XCAAK is finite)]
and A#B is continuous. Finally, taking X to be the empty set shows
that cutd, =L when Pg7Ls SO A+B 1s slit and the proof is complete.?

The hypotheses of the proposition may appear bizarre but
in fact they are satisfied by those lattices to which it will be
applied. Although these hypotheses will be the ones invoked below

tlic next result will show that they are not the only possibilities.

1.2.4, Proposition.

Suppose that A and B are continuous lattices such that
A is finite and Tv«7 in B. Then A»B is a continuous lattice,

<Any retraction of a continuous lattice gives rise to a
continuous lattice, so we need show only that the mapping § de-
fined above is a retraction of A+B into itself. Let Z be a
directed set in A+B; as j is monotonic it is sufficient to prove
that U{j¢|¢e2}2j¢0 where ¢0=UZ and Jog =l

If j¢0 1s proper ¢0£ is proper for all proper £:A, and
given any n(€):B with n(£)<¢, £ there is some ¢(£):Z such that
d(E)E=n(E)., As I is directed there is a ¢1€Z with
¢1EU{¢(E)|£:A} and thus ¢1£En(£) for all proper £:A. Hence for
every choice of proper n(g):B such that n(g)<¢0£ for every £:A
there is a ¢leZ having j¢1gen(g) for all £:A. Because B is con-

tinuocus and n(g) is arbitrary U{j¢£|¢ez}e¢0g=(j¢0)g for every

16

proper £:A., Necessarily j¢1l=j¢01 and j¢1T=j¢OT when ¢1 is a proper
member of Z, so U{j¢|¢€2}3j¢o.

Ir J00=Ts ¢OE=l for every proper £:A and ¢O£=T for some
proper £:A, so there exist ¢(E)EZ such that ¢(&)E=1 for every
proper £:A and ¢(&)E=1 for at least one proper £:A. Taking ¢1€2
with ¢1EU{¢(£)]£:A}, j¢1=T as ¢1£=l for all proper £:A and ¢1€=T
for some proper £:A. Thus |J{jo|d€Z}=727(JZ); this proves the result.*

In lact the continuity of j requires A to be finite, for
given XGA define ¢(X)=A&.M{E <E[E €XI>E,15 {0(X)|XCAA(X is finite)}
is a directed set with join A£.E=j(A&.£). When A is infinite, how-
ever, |[{j(o(X))|XCAA(X is Ffinite)}=1.

Suppose that p':AO+A1 and p":BO+B1 are injections on con-
tinucous lattices with T<T and that q':A1+AD and q”:B ~B, are the
reciprocal projections. Let j' be the mapping of AO+BO into
AOHBO regarded as a subset of AO+BO and let 7" be the corresponding
mapping on A1+Bl. Define p'»p"=7"o(p'>p") and g'=q"=j"e(q’'>q");
if j' is continuous, p'eqg’'=iz,f and p"71=7 then p’'#p" is an injection
with reciprocal projection g'#¢". In general AO is not finite so
J' is not continuous, but there are further conditions which en-

sure the continuity of p'#p" and q'=q".

1,2.5. Proposition.

Supposc that p’:AO+A1 and p":B ~B, are injections on con-
tinuous lattices with 1«7 and that q’:A1+AO and q":B B, are
the reciprocal projections., Suppose further that p' is an iso-
morphism, that p"t=71 and that if ¢”(cutn)=1 for any n:B1 g'n=1.
Then p’#»p” is an injection with reciprocal projection g'»g"” whilst
if B1 is slit so is B.

4Note first that p®rv=7 if and only if when ¢'n=t

necessarily n=T1, since g"(p"T)=T.

17

Let ¢:A,»B, and EEA, S then p"(¢(g'E))=1 if and only if
¢(q'E)=1 and hence if and only if £=1, whilst p"(¢(g'E))=71 if
and only if ¢(g’'&)=7 and thus if and only if £=7. Thus
p'mq'=X¢.q’egep” and (gq'=q")e(p'#p")=A¢. 7" (g ep odeqg op) =Ae.¢.
Furthermore,
q'#q"=x6.Nq"(¢(p'E)) B [E:A Jr(AELE:A >g"edep ', T),T

=0 Ng"(9E):B | E:A IogTegep’,T)
so that (p'#p")e(g’'*g”)=x¢.¢ and it remains to be shown only that
q'+q" 1s continuous,

Suppose that Z is a directed set in AlﬂB1 and that
¢O=UZ; we shall show that U{(q'*q")¢|¢€Z}E(q'“q")¢o-

If (q'»q")¢0 is proper, q"(¢og) is proper for all proper
E:A;. Now for every ¢:7 and EiA, ¢,82082cut (¢, L), SO 1t g"(98)=1
in fact G"(¢,E)=q"(cut¢ E)=1 contrary to hypothesis. Hence when-
ever ¢:Z and £:A, are proper g"(¢&) 1s proper, thereby proving
that Ul(g »g")¢|ecZ}=l{g"odop’ |¢€L}=qg"otop".

If (q'”q")¢O=T, for some proper g;A1 q"(¢05)=T 50 ¢0£=T
and $0=T3 hence as T<T in B1' ¢ E=T for some ¢1€Z and $,=T, giving
lI{Cq =g ¢|peZ}=",

Note also that if (g’+»g¢")(eutd)=1L for some ¢:AOHBO,
g"(cut¢E)=1 for some E:A1 so that g"(¢£)=1 by hypothesis and
(g'*q")¢=1.

Should cutn, be proper for all proper n, :B,, take n,=p"ng,
for some proper NgiBy. As g'n,=n a1, q"(cutn,)= and
eutn =MHn,[1ap"n 2p"m, a1}

=MM{g"(p"n,¥|Tan 2p"n =1}
Eﬂ{q"n2|T=n13n2=l}
2" (eutn,)

=1L.%

18

Thus the set of slit continuous lattices is closed under
the creation of A»B from a flat lattice A and a slit lattice B,
and any projection of B of the form above induces one of A»B which
is also of this form. An analogous proof shows that the set is
also closed under the construction of arbitrary products. Here
we content ourselves with a more modest result for which we take
q'xq" to be l(E,n).q'E:AOAq"n:BO+<q'£,q"n),T when q':A1+AO and

.
q .Bi+BO.

1.2.6. Proposition,

If A and B are continuous lattices with T7<T so is AxB,
whereas if A and B are slit so is AxB, Moreover suppose that
q':A1+AO and q":Bl+BO are projections such that ¢'E=T implies E£=T,
g"n=1 implies n=T1, gq'(cutf)=1 implies g’'E=L and g"(cutn)=L implies
g'n=L; then g'xq" is a projection with analogous properties,

4We can show by methods akin to those of 1.2.5 that AxB is
a retraction of {(£,m |£€AaneB}. Hence if A and B are continuous
so is AxB, and when £:A and n:B cut{E,n) =eutf:Arcutn:BH cutf,cutm ,7.

Because A xB is a retraction of {<£,n>|£€AOAn€BD} g'xq” is
continuocus; furthermore, if (g'xg"HWE,M=(T,T) g'E=T or g"n=T so
that (E,M =1, , If (g'*xg")(ecut{&,m)=C(1,1 while AO and BO are
slit g'(eutf)=1 or g"(eutn)=1 so that (g'xg") E,m =CL,1) >

Henceforth when writing elements of domains we shall fre-
quently leave implicit the effect of passing to the quotient space
A+B or AxB. Thus AE.E=£O+¢,¢OE and <EO,¢> may arise when Af£.1. and
(1,1» are meant. Instances of this will be inhcrent in the
definitions of 1.3.2, which will introduce functions acting on
environments,

We shall now verify that a suitable class of slit continuous

lattices is closed under the construction of inverse limits.

19

1.2.7. Proposition,

Suppose that {Bn|n20} is a sequence of slit continuous
lattices having for each n20 a projection jn:Bn+1+Bn such that
jnn=T implies n=71 and jn(cutn)=1 implies jnn=L. Then the re-
sulting inverse limit B is a slit continuous lattice.

4Certainly B is a continuous lattice, so we need only
verify that it is slit. Let p, be the natural injection of Bn
into B and let q, be the reciprocal projection. We shall show
that for any n:B {cut(qnn)|nzo} is an element of B having
q,(eutn)=cut(q n) for all n=z0.

n)), so if

For cvery x>0 and n:Bn qnn:jn(q n)Ejn(cut(q

n+l nt+1

q,n=1L jn(Cut(qn+1n))=L. If g,n=1 on the other hand, G, N1

and jn(cut(qn+1n))=L from the hypotheses, so that
jn(cut(qn+1n))acut(qnn); as Bn is slit we have also cut(qnn)=1,
giving q,_,(p (eut(q, n)))2ecut(q, ,n) and cut(q n)2j (cutlq, n)).
Hence for all possible cases cut(qnn)=jn(cut(qn+1n)) and
leut(q,n)|n20} is a member of B.

Suppose that nO:B; then for any ni:B with n02n1=L there
is some least m=z0 with 7,Mq =t when nzm and thus with
qnnlicut(qnno) when nzm. If wm>0
Qm_1ﬂ1=jm(qmn1)Ejm(cut(qmﬂo))=cut(jm(qmn0))=cut(qm_ln0) in con-
tradiction to the minimal nature of m. Accordingly we can assume
that ﬂ{qnnl|T:n03n1=1}20ut(qnno) for every n=0. However
q,Ceutng)2q (Mp, (g, n) [1=n,2n a1})

2q,(p, (Mg, n, |Tan 2n, =11))

<MHq,n,|v=ny2n a1}

2q,, (eutn),
so that q,(eutn,)3eut(q,n,). When q,Ng=L ve have q,Ceutn)=1
also, whilst when q,My >t we know that nOEpn(cut(qnﬂo))=L and that

qnnOEcut(qnno). Hence for every = g ecut=cuteq , and in particular

20

when cutn=. cut(qnﬂ)=l, so that as Bn is slit for every nz0
n 1s such that 4 n=1.
n
When YCB is directed and JY=7, qO(UY)=T and q,n=T for some

neY, since T<T in BO. If g, n=7 for this 7, Jn(q +1n)=T S0

n
q,41N=T and we may deduce that n=T and that 7«7 in B.*%

Observe also that if for each n=20 kn is a projection of Bn
on to some other slit continuous lattice and if k., n=T only if n=7
while kn(cutn)=1 only if knn=¢ then Uknoqn is a projection of B
on to this lattice having Ukn(qnn)=T only if n=71 and

(K, (q, (cutn))=1 only if [|k (g n)=1.

1.2.8, Methods of combining lattices.

For future reference some methods of constructing domains
will now be described. In the course of this description A and
B will be taken to be lattices (which may be subject to certain
constraints), and g':A+A and 4":B+B will be any continuous mappings
of A into A and of B into B having g'=qg’'eg'=AE.£ and
g"=q"eg"=An.n. Henceforth functions satisfying the conditions
imposed on A and B will be termed 'projections' of A and B, but
they are actually projections on to g'A and onto g"B having
natural embeddings as the corresponding injections.

The set of continuous mappings of A into B, A+B, is itself
a lattice on which can be defined a projection g'+g" by setting
qg'+q"=xr¢.q"o¢eq"; furthermore if A and B are continuous lattices
so is A-B. Of less obvious significance is A®B, which comprises
those functions ¢ in A-+B, such that, unless ¢T=1 or ¢i1=T, ¢£& is
proper 1f and only if & is proper; ¢'#q” is taken to be
X ANg" (d(g'E)):B|E:AY+(AELE:A+q" ($(q'E)), T),T. By 1.2.3 when

A is a flat lattice and B is a slit continuous lattice A»B is a

slit continuous lattice, and by 1.2.5 g'?q" is a projection when

21

q'=AE.E, q"T 1s improper and for every n:B ¢”(cutn)=1 only if
g'"n=1.

The product of A and B, AxB, is not composed of the set
of all pairs (&,m) with £€A and n€B; rather it is formed from
the set of those (£,n) such that £ and n are hoth proper, together
with (1,1 and (7,7, and g'xg” is M E,m .q'E:Arg"n:Bxg'E,q"m) ,T.
Nonetheless when A and B are continuous lattices having T«<T AxB
is also continuous, whilst when A and B are slit continuous
lattices AxB is a slit continuous lattice. In the latter situation
the image of AXB under ¢'xg" is a slit continuous lattice, pro-
vided that ¢'T and ¢”T are improper, g’ (cutf)=L only if gq'&=1,
and q"(eutn)=1 only if ¢'n=1.

As intimated in 1.2.2, the sum of A and B, A+B, is the
set {£|£:A}u{n|n:B}ufL,7} under the ordering induced by amal-
gamating the orderings of A and B; thus when c1:A+B and
c2:A+B L,5L, only if either Ly and Z, helong to A and 5158, in
A or Ly and &, belong to B and LS8, in B, and if B contains at
most two elements A+B is isomorphic with A, The sum of two con-
tinuous lattices having <7 is itself a continuous lattice, and
the sum of two slit continuous lattices is a slit continuous
lattice. Defining g'+q" to be ArL.C:A+q'y,05:B>q"s, T gives a
projection such that when A+B is a slit continuous lattice its
image under g'+g" is alsc slit and continuous so long as ¢'T and
q"t are improper, g’ (cutf)=1 only if g'&=1 and ¢" (cutn}=1 only
if g"n=L. For any r€A+B the test r:A is deemed to result in true
false, L or 7, depending on whether ¢ is a proper member of A, a
proper member of B, 1 or 7; in addition ¢|A is ¢ (regarded as a
member of A) if ¢ is a proper member of A, 7 if & is 7 and .
otherwise. Similar remarks apply to ¢:B and ¢|B. The mapping
which coerces an element of A or B into the corresponding element

of A+B will be omitted from many equations; indeed even the

projections of A+B into A and B will often be left out, so that,
1f T is a summand of a domain E say, and if ¢ is a variable ranging

over members of E, ie.(e[T)>6,,8, will be written as Ae.e>6,,8,.

By the same token ¢g’+g" may be transmuted into ¢’'Ug”.

To form a product of A and B which separates (.,n) from .
when n is proper, or to form a sum of A and B which separates 1.
in A from 1 in the sum, use can be made of A®, This is formed
by adjoining new elements L° and 7° to A in such a way that when
gieA and EQEA L°=51552=T° if and only if EiEEQ in A, Thus EOEA
precisely when EO:A°, and a singleton {dummy} gives rise to
{dummy}°, a lattice containing precisely three elements., The

o_ 0

projection ¢'°:A°+A° is the unique function such that ¢'°1°=1°,

Qo

g T

o____0

=7° and ¢'°£=q’t whenever E€A.
Given lattices A,,...,A it is possible to set up the
1 n
product A1X...XAn and the sum A1+...+An by analogy with AxB and

A+B, When (g .,En)€A1X...XAn its components can be selected

1,..
by letting (gl,...,in)+m=(1Sm5n+gm,T), and
<61,...,€n>+m=(m+15n+(g(ohm)+1,...,€n>,()). For the lattice
{¢»}°, which consists of the vector of dimension 0 together with
1° and 1°, ¥m=T and ()*tm=() for every proper m. Moreover if
<gn+1"'
of A *...xA xA
1 7

sl)

., E y EA x,_,xAn+m the elcment (51,...,gn>§(5 rm

n+m n+1 TR

xR is taken to be (El,...,in,6n+1,...,5 Yo,

Xcu- . +
n+l n+m ntm

an obvious comparable convention covers the vector of dimension
9. The continuous operations of concatenation, §, slicing, ¥,
selection, 4+, and function application will bc given increasing
dcgrees of binding power.

The lattice of finite lists of elements of A, A*, can
therefore be defined to be { (}°+A+AxA+AxAxA+ .., which is slit
and continuous when A is slit and continuous. Should & signify

a typical member of A, E* will be a typical member of A* having

length #£*, where pEx=(gx: {(r}°+0 ,1+4(E£xT1)), Concatenation,

slicing and selection will be applied to lists without any mention
of the mappings between A* and the relevant summands; # will have
lower precedence than these operations, so #e*t1 will be written
instead of #(E*t1). The predicate £:£* means

V{1zvs#E*+(E=E£*4v) ,false|viN}, where N is the flat lattice of
integers., Finally, the projection induced by ¢' on A*, g'*,

is AE*F.EX {0 }°+E* (g (E*+10) Bg'* (E¥t1). Although £* will not
mean (£,...,5 , dummy®* will be understood to be {(dummy,...,dummy} ,
and a similar convention will govern 0%, 1*, 2* and 3*.

In 3.5.3 lists which are infinite in length will be
required. Accordingly when A is an arbitrary slit continuous
lattice A" will be taken to be the least solution of the domain
equation A" =AxA"° and A* will be a solution of A*={¢)}°+AxA";
the elements of A" are necessarily of infinite length, but some
members of A* are finite. The nature of A° illustrates one
feature of our definition of AxB which would not arise were
(g, not identified with L; to ensure that certain domains
subject to recursive equations are not trivial it 1s necessary
to 'seed' the equation by using AxB°, say, rather than AxB.
Though it would be stupid to make A® satisfy the equation
A" =AxA” , A~ can be presumed to satisfy A*={()}°+AxA* with
impunity, since the presence of a sum of domains avoids the need
to suppose that A*={()}°+AxA~°; a similar phenomenon occurs when
A»B is adopted instead of A-B.

if Bl, say, is an arbitrary slit continuous mapping and
jO:Bl—v-BO is a projection of B1 on to a lattice B, then BO is
slit and continuous provided that for all nGB1 j0n=T only if n=t
and jo(cutﬂ)=L enly if j0n=1. The slit continucus lattices are
therefore the objects of a category having as their morphisms

the projections which satisfy the additional conditions imposed

on j, in the preceding sentence. This category is closed under

24

the formation of products, sums and inverse limits; moreover if
A and B are slit continuous lattices then [A+B]1°® is slit and
continuous, while if A is flat and B is slit and continuous
then A»B is slit and continuous. Except in 2.4.4. the domains
to be considered below can be obtained by subjecting objects in
this category to combinations of the functors discussed above,
so they can be assumed to be projections of a universal domain
into itself.

Any functor which takes the category of slit continuous
lattices into itself and which is finitely generated {rom the
functors described above can be viewed as a transformation
acting on projections of the lattices as follows. Let ¥ and B
be such functors for which any projection g of a slit continuous
lattice V such that g7 is improper and g (cutf)=1 only if gB=1
gives rise to projections ®g:aV+»AV and By :By-BY for which >
and BgT are improper, #Hg(cutf)=1 only if BgE=1 and ¥®g (cutn)=1
only if #gn=1; suppose that q(g'oq")=Bg'-Ag"=A(AB.B)=XE.E and
B(g'log")=Hg'oBy"cB(AB.R)=An.n for all projections g’':V-V and
q":V+V¥ satisfying the constraints imposed on g. When €V is V,
AVxBY, gV+BY, AV®, AV* or a lattice independent of V for any
projection g:V-V €4 will automatically be taken to be g, 8gx¥qg,
Aq+Bqg, 4q°, Aq* or A6.6 respectively; when €V is JVeBY &4 will
be 8g»8Bg so long as AV 1is flat and 8g=Xxf.&. In all these cases
€V is a slit continuous lattice, since AV and MV are slit and
continuous; moreover for all the appropriate projections of V
gqT is improper, €q{(cut6)=r only if €4g6=1 and
€(g'eg")=Cq 'o€g"=€(AR.B)=10.6. When AV and BV are only known to
be continuous, writing &V for AV-BV and €q for ¥g-Bg gives a
continuous lattice €V having &(g'cq")}=dq’-€q”"=€(\B,B)=26,0; in
addition €v° is slit and €4° (which is not €(q°) but (€gq)°)

satisfies conditiors analogous to those imposed on gq.

25

1.3, The initial paradigm,

1.3.1, Inverse limit spaces.

Semantic equations can be based merely on the existence of
reflexive domains and on mappings which preserve the joins of
countable chains (in the sense suggested in 1.1.2). Equivalences
between these equations, however, frequently also require that the
domains be 'small enough'; certain lattices will therefore be
viewed as the least fixed points of functions between projections,
although explicit inverse 1limits will not be set up until 2.4.4.
Accordingly the limiting process will be embodied in an assertion
about the effect of applying fix to a particular function; in a
formal system this assertion could be regarded as an induction rule.

If V is a putative space of stored values the corresponding
domain of stores, ®, can be constructed from it and a few flat
lattices like L and T; #V might satisfy #V=[L=[TxV]IxV*xV* for
instance. The space comprising store transformations, €V, might
be &V-+AY, where BV is some other lattice which depends on V;
whether or not a computation terminates is influenced by the store
supplied as an argument, so ®V2@V could not be used as €V, Most
languages need further domains, such as those containing expressed
values, €V, and denoted values, ®V. From these domains can be
built a new space of stored values, ¥; for Pal this is B+L*+IV+gV,
in which 3V represents label entry points, FV represents functions
and B is a fixed flat lattice,

In accordance with 1.2.8, slit continuous lattices like V
are the objects of a category having as morphisms the projections
such as g which have gB=7 only if B=7 and g(eutBf)=1 only if gB=1.
Moreover, the other lattices are built from V in such a way that
€V and @V are continuous while #V, @/ and BV are both continuous
and slit. In fact &, € and B are functors taking the category of

slit continuous lattices into itself; since this implies that ¥ and &

26

are functors defined on the same category, in Pal ¥ is a functor
such that PQ=QO+3Q+fq, where g, is the identity function on B+L*,

When there is a natural isomorphism between V and YV they
can effectively be equated and q, can be regarded as a projection
of V into itself, Under the conventions of 1,2.8 for any
projection ¢ of V into itself for which gt is improper and g8=.
whenever g(ecytB)=1 it is possible to set up a projection ¥g of V¥
into itself having Bg=q,t3q+¥q; plainly Vgt is improper and ¥gR=.
whenever ¥; (cutB)=1. Hence if qn+1=vqn for all n>0 then 4,134,
and the minimal nature of V is expressed by the equality AB.B=an;
by an elementary calculation this equality holds if and only if
AB.B=Ffix (¥), For a few little languages the space of stored values
reduces to B while the other domains continue to be reflexive, so
different functors must be used in formulating the induction rule;
one such is ¥, which will be mentioned in 2.4.2,

These remarks will now be elucidated by discussing the
semantics of a computer language. The paradigm will be a syntactic
variant of Pal [5] because its stored label entry points and
functions reduce the scope for simple proofs about programs. Since
only locations can be denoted even while z>p do x:=0 and
i: if z>0 then x:=0; goto I else dummy do not compute the same
function according to the semantic equations, although 2,4.5 will
present a notion of equivalence which is appropriate to them.

As hinted above, the space of stored values for Pal is built
from a fixed flat lattice B, the form of which is relevant to the
semantics of the language but not to the theorems to be proved
below, In fact B={cdummy}°+T+N+R+H* where T={truec}®+{false}®, N
represents integers, R represents real numbers and H represents
characters (so that H* is the domain of strings). The lattice of

real numbers is a flat one, because that suggested by interval

analysis 1s not slit and yields a discontinuous equality predicate.

27

Taking J to be a lattice of label entry points and F to be
one of functions, V=B+L*+J+F, S=[L~[TxV]IxV*xV¥* and C=S+A., The
additional components of § provide rudimentary input and output
facilities which are not specified by the original language
definition but which are intended to illustrate how real facilities
would influence equivalence results; their use will be justified
in 3.5.4, The semantic equations will presume nothing about the
final domain A to which transformations map stores, but often it
can be taken to be a retraction of S encapsulating the output.

Certain primitive functions will be common to all the kinds
of semantics which will be described. They include
empty=(Aa.(false ,dummy) ,{) ()} ;
area=iac, (o¥1)a+l;
hold=Aac, (0¥1)ot2;
update=roBo,.a:LaB:Vac:5+(ko' a'=0+ true,B ,(c¥1)a") §ot1, T,

Thus every location is deemed to contain a value, but whether
or not that value can be obtained when the location is not in the
region of store currently in use depends on the language concerned.
In 2,5,9 it will be shown that no such location is ever handled by a
Pal program as the implementation cannot delete accessible storage.

A sequence of store accesses is performed by means of
holds=xo*c.a*=() =) ,{hold(a*¥1)0) Sholds (a*t1)5;
updates=Aa*B*g,a*=() +0,update (@*+1)} (R*+1) (updates (@*t1) (R*T1)0).

Because S now contains few superfluous elements new:S-+L may
be taken to be any continuous function satisfying
AO.area(newoYo=ro.Nareaagla:L}+1, false.

As [{8|8:J0}=1 and [{B|B:F}=1, when o is proper the magnitude of any
label entry point or function contained in it cannot influence the
value ot newa.

This operation can also be iterated, giving news:N-S-L*:

news=ivo.v=0+) , Aol Gnews(v-1)(updatea (holduc)o}) (newa).

28

Allowing update to adjoin locations to the area does not conform
with computing practice, but it does economize on definitions of
basic functions.,

Another possible model for storage is [Lo[{flag}®+VITxV*xV*,
where ca=flag indicates that o is not in the area of store in use
whilst oo:V establishes that o is in this area and contains oga.
Although this model provides the store transformations with
precisely those parts of the store on which they truly depend,
it is not physically realistic, Locations outside the area of
accessible storage have contents which may affect the choice of
new locations in a way which this model cannot reflect. Even if
they do not influence that choice there remains the question of
what new locations should contain when the store is extended.
Since the methods to be introduced in 2.4.5 can be adapted to
verify that in the earlier model the result of a computation is
independent of the contents of locations outside the store area,

the artifice described above is not needed to mirror reality well.

1.3.2. The structure of the environment.

The environment supplied as an argument to the semantic
equations associates with every identifier all the values it has
been made to denote 'up till the current program point'., Though
it will be confirmed in 1.5.2 that the meaning of a Pal program
has to depend on the values given to its free variables at their
most recent declarations only, the entire environment will be
necessary in later kinds of equation and will therefore be used
here for consistency. For reasons which will be explained in 2.1.6
identifiers will be permitted to denote L in an environment which
is not L; consequently when Ide is the flat lattice of identifiers

and D is the slit lattice of denoted values the relevant component

of U, the domain of environments, will be taken to be Ide-D°*,

29

The scope of the return link associated with res depends
upon the program text, so the environment must include the list
of links set up on entry to val blocks, Since these links take
both an expressed value from E and a store from S as arguments
they belong to K=E-+(. Consequently res can sometimes denote the
continuation L, which represents a non-terminating program, and,
as the coalesced product is being used, the lattice K°*, not K¥*,
must cope with val in U,

To assist with the detection of errors in programs Pal
demands that when a new denotation is bound into an environment
the erstwhile height of the environment be kept. This requirement
will be ignored, however, because it entails only superficial
changes in the definition of pl[é8/I]1. The domain of environments
will therefore be given by U=[Ide»D°*]xK°*; under a convenient
abuse of notation, if p is an environment and I is an identifier
pf{I] and p[res] will signify the entities more correctly
represented by (p+1)[I} and p¥2 respectively. In order to extend
the environment with §:N° or «:K° it is appropriate to set
p[S8/T1=C AT, I'=1+¢8& §p[I].polI']),p[res]> and
plc/res]1=¢AT.plI],{x) 5pfres]>. TFurthermore, if &*:D°* and I*:Ide*
pL8*/I*1=(T*=() »p, (p[E*T1/I*F11)[E*41/T*+11); all references to
pLdummy*/I*1 or wupdatesa*dummy*ac (such as those to be given in
1.4.4) will tacitly assume that #dummy* is #I* or #o*,

In 2.1.5 several functions for amalgamating and segregating
environments will be needed, but here it suffices to introduce
arid=¢ AT () ()
divert=kpopl.(AI.piﬂIﬂ§pOﬂIH,plﬂresﬂ§poﬂresﬂ);
invert=koopl.(AI.piﬂIH§(poﬂI]+#plﬂI]),plﬂres]§(poﬂresﬂf#plﬂres]));
revert=kpopl-(AI.piﬂIﬂT(#piﬂlﬂ-#pOﬂIﬂ),plﬂresﬂf(#plﬂres]—#poﬂresﬂ)>

conserve=Ap* , p¥=() »aqrid,divert (p*+1)(conserve (p*t1)).

30

Declarations give environments as results so the corres-
ponding semantic equations must be supplied with continuations
taken from X=U+(C. One pecularity of Pal is that an identifier,
r say, may be given a meaning local to a declaration rather than
an expression by a form such as x=0 within y=x., To prevent the
value given to x from being entered in the environment returned
by the complete text the result of a declaration is arranged to
contain only those identifiers set up in it rather than the
current environment, Thus 1f y:X and o:L the declaration above

might give rise to the store transformation y(aridla/yJ).

1,3.3, Value domains.

An expression in a program supplies an argument drawn from a
domain comprising the possible outcomes of expressions [23] to the
next instvuction, This domain of expressed values, E, is
L+B+L*+J+F for Pal whereas the domain of denoted values, D, is
simply L, In 2.1.6 we shall also be concerned with the domain of
witnessed values, W, where w:W if w can potentially appear in the

store, in the environment or as the answer given by an expression.

Because the environment has a simple structure the Pal version of

W is L+B+L*+J+F+K° while, anticipating 1.3.4, #F[T] is rexk.k{plIl+1),
A label entry point is a store transformation taking only

g:S as an argument, The entry point ., however, corresponds to a

non-terminating computation and on intuitive grounds should not be

identified with the stored value ., which is weaker than some

members of B in the lattice ordering. Similarly should 7 in C

correspond to an erroneous computation it must not be regarded as

¥ in V. Indeed making such identifications in our model for storage

might cause a collapse of the store when an assignment was made to

a label variable, and so we must take J to be C° rather than C.

31

An abstraction takes as its arguments a member of one
domain of values and a return link, to which is supplied a member
of another domain of values 'on completing the execution of the
abstraction', In Pal both these value domains are L, so the
lattice of functions is L»[L+C1+C; however more use will be made
of E-[E+C]1+C, which allows for the discussion of language features
such as those to be introduced in 1.4.5., Considerations of
non-termination apply to functions as well as to label entry
points, so in standard semantics F will be taken to be [E+K-+CI°,

Later a lattice of procedures without parameters, G, will
be needed; the structure adopted for this will be [K+C]1°. Typical
elements of J, F and G will be denoted by ©, ¢ and y respectively;
should they (or certain other) Greek minuscules appear without any
explicit mention of the domains concerned they will signify the
ones given in the relevant appendix. Because the episema cannot
be typed some of the remaining letters will have to be used for
more than one purpose, but the context will suffice to remove the
ambiguity. Variables ranging over syntactic domains 1like Exp, the

lattice of expressions, will be represented by Greek majuscules.

The functors which construct lattices from V {(and later from W) will

be designated by Light 0ld English equivalents of the names of the

lattices themselves, which will appear without serifs,

1.3.4. Evaluating continuations.

The semantic equations for Pal rely on the 'continuations'
of Wadsworth [25], and their main novelty is the introduction of
auxiliary valuations to extend the scopes of labels and mutually
recursive declarations beyond their textual positions. The idea
underlying such valuations will be explained here and applied to

the semantics of Mal, of which Pal is a subset.

32

In many languages labels can be set by colon only when they

occur in such a sequence as I1:F eI :Fn where for 1<m<n

1 n
Im:Ide and Fm:Com (the lattice of annotated derivation trees for
commands}. Moreover the scope of a label 1s generally arranged
to be the sequence in which it is declared. Under these circum-
stances there is one semantic equation which applics % to a command
sequence and yields its effect as a labelled block. Labels in Pal,
however, can occur anywhere in an expression and their scopes
propagate beyond the expression when it is an arm of a conditional
clause or the body of a loop. In principle there is no reason
why a jump cannot be made into an arithmetic expression or the pre-
mise of a conditional clause without assigning a local label to a
variable of greater scope; the arbitrary decision in Pal to let
scopes propagate only through evpressions of the above forms and se-
quences of expressions is therefore made manifest in our formalism.
We introduce auxiliary valuations #:Exp-Ide* and #:Exp~U-K-+d%*,
which collect up the labels and the corresponding entry points of
an expression embedded in a particular environment and followed
by a known continuation. The wvaluation #:Exp+U+K-C provides the
effect of an expression ignoring label declarations and is applied
when the labels set within the expression may have scopes exceeding
it, whereas ¢&:Exp+U+K+(regards its argument as a block which con-
fines label scopes. For any E:Exp which is not a label setting,
a conditional clause, a loop or a sequence the lists of labels
and entry points are empty so €[E]=#[E]; in such cases J[E] and
#E] will generally be omitted from the equations in the appendices.
Mutually recursive declarations involve a similar situation,
in that the variables being declared are in scope throughout all
the declarations and the syntax governing Dec, the domain of

declarations, is too complex to permit one Semantic equation

to cover all the cases. Thus besides #:Dec+U-X+C we require

valuations JfDec+Ide* and F:0ec+U+X~+C, one to assemble the

identifiers being declared and the other to evaluate the declara-

tions when these identifiers are already in scope. Thus in Pal

if A:Dec we take 2Arec A] to be

Aexo. (Aa*,a* BTN Al pla*/ Ll 8] Ix(updatesa*dummy*c), 1) (news (#FFA])o),

where the 1list of locations is tested merely to ensure that when

the free store is exhausted execution does not carry on. In fact

Pal tends to vacillatec between two possible values for F[I=L] which

in terms of the functions to be described in 1.3.5 may be written as

Apx RIElp(XB.x(aridlplI]+1/I1)cupdate(pl[Il+1)8) and

Aox ZIElp(AB. . Zv(ra.x(aridla/I]))Boeupdate(plI]+1)R);

we shall adopt the former, but all that follows, including 2.7.5,

remains valid if the latter is used. By contrast @[I=E] is

ApxZIElp(ra.x(aridla/I])), in which the location ultimately

adjoined to the environment is not known on entry to the expres-

sion. The Pal equations governing A, within A, and

&, and ... and A are identical in form with those of appendix 1,

which are the ones for a language in which D is not merely L.
Certain kinds of expression have meanings before they are

supplied with their continuations. In our present case these in-

clude the abstractions and the basic constants, which comprise

flat lattices Abs and Bas respectively. For the first of these

we introduce a valuation #:Abs-+U+F such that when ¢:Abs F[¢]

requires only an environment to make it into a closure; %[fnlI.E],

for instance, is Ap.rex.2L[Elple/I]x. We describe #:Bas+E simply

by stating that if N, P, and H are variables ranging over numerals,

decimals and external representations of characters then #N],

#[P] and Qﬂ”Hl...Hn”D signify appropriate elements in the

summands N, R and H* of E. In addition #{ dummy]=dumny,

34

Bl truel=true, Bl falsel=false, A nill=C> |L* and 81" |=0 |H*;
we shall take B to designate a typical member of Bas.

Because operators in Pal cannot be declared by the pro-
grammer there are valuations ¢:Mon-E-B and #:0ya>[ExE]+B defined
on flat lattices Mon and Dya., Thus we introduce variables 0O:Mon
ranging over the monadic operators of the language and Q:Dya
ranging over its dyadic operators, to which the usual meanings
will be ascribed in examples such as 3.1.5. We shall not specify
these meanings as they are irrelevant to all our theorems pro-
vided that we make the assumption that when eizd and 52:J oTr el:F
and 62:F l0.0ﬂ0ﬂ81=k0.@H0H62, while
lQeJWHQH(ei,e)=AQ€JWHQH(€2,€) and AQe #7 Q)¢ E,ei)zxﬂenV[Qﬂ(s,eg).
These equations are reasonable because in practice any operators
taking label entry points or functions as arguments can only
achieve non-trivial ends (like having a range with cardinality
greater than 1) by using information about the machine represen-
tation of elements of E, Hence although such operators can be
provided in the formalism of 2,1.1, which splits up closures into
their constituents, they are not realistic in standard semantics,
and this lack of realism is reflected in their absence from con-
ventional programming languages. More precisely, unless we
admit 1 or T as possible values for 0&0]31 and#ﬂﬂﬂ(ei,e > when

2

£y and €, are in J or F the continuity of the valuations and the

orderings of B, C° and TE+(K+C]]° entail the assumption above.

1.3.5. Other primitive functions.

To obtain the members of L and V associated with an
expressed value and a store we introduce
lv=Aikeo.e:Llrkeo, (Aa.a:l+kalupdateaco) ,7)(newo);
rv=iked.c:L>(areacork(holdeo)s,T),ke0.

The continuation k is supplied to these functions in order to

35

provide a more satisfactory treatment of errors than could be
given merely by sending the arguments of « to 7. Strictly
speaking we should introduce functions which take remedial action
when an error occurs, but this would add to our notation without
enlarging its conceptual basis or altering the nature of our
proofs., Only in a language having on conditions is it necessary
to make matters so complex; we are content merely to distinguish
faulty computations from those which do not finish by taking T
rather than L to be an error stop.

Notice that both here and in 1.3.1 the meanings of the
primitive functions are specified precisely, instead of being
conveyed by sets of axioms, In some applications the latter
approach would be adequate, but to establish 2.3.1, for instance,
we must know the outcome of rvkoo even when areaws=false. DPro-
viding axioms sufficient to cope with the situations we consider
is tantamount to defining the primitive functions except at
certain improper values. Accordingly it is far less cumbersome
to give complete definitions by fixing a few values arbitrarily
than it is to postulate properties.

In this connection observe also that the presence of con-
tinuations in semantic equations can ensure that L and T are
never passed on by one expression to the succeeding one, for
failures to terminate correctly give rise to improper elements of
A rather than of E or S. Consequently the meanings of the
equations need be influenced neither by any particular choice of
conditional function nor by whether updatetdummy and
updateidummy do or do not commute, A formal proof of this could
be given for the semantics of appendix 1 by using the technique
outlined in 2.2.7; essentially it would show that the ultimate
member of A yielded by an expression applied to a continuation Kk

could not be affected by the values of ki and k.

36

Though the valuation & suffices to determine the outcome
of a Pal expression it is convenient to adopt £ Exp->U->K-»C and
R:Exp>U~>K-+C which coerce that outcome into forms appropriate
to left-hand and right-hand contexts. Thus for all E:Exp we
write ZIEl=3pk.8[E]p(lvk) and R E]=Xpk.€[E)p(rvk). Languages
in which expressions are subject to a much wider range of con-
textual coercions require the more elaborate treatment mentioned
in 3.6.1,

Often we wish to avoid imposing a particular order of
evaluation on a 1list of expressions or declarations because two
implementations may choose different ones. To eliminate point-
less restrictions we make use of a function Z:N+N-N such that for
every v>0 Zv is a permutation of {1,...,v}l. This function
gives rise to j:N->N+N, which is set up in such a way that jv 1is
the inverse of iv whenever v>0, For any lattice A we define
k:N+>A*>A* by Lk=dvE* vsHE*{ E*yivl,...,E*¥+Fivvw.T; hence if for
some lattice B we have ¢:[[A>B]>B]°* and Y:A*>B we may set
run=k¢w.(kn.(¢¢i(n)1)(lﬁl.(¢+£(n)2)(R€2.(¢¢i(n)3)(k53.

e (TN (RE P (R(nIE, ,ou 80))0 00))) (#d).
In particular we require run:[K+CJ°*>[E*>C]>C and
run:[X>CJ]°*>[U*>CI+C; a minor modification to their definitions
would allow their orders of evaluation to depend upon the store.
These functions do not allow us to optimize a program by evalu-
ating only one member of a pair of identical expressions, since
run acts upon code, not upon text. To model a compiler which
optimized z1+x1, say, we would need to introduce additional valua-
tions which would gather up the occurrences of z1 and the other
expressions; an analogue of run which would apply to portions
of text could then be used to evaluate each expression only once.

Such a function usually has no place in a formal definition of a

language, although it is relevant to the correctness of particular

37

compilers,

Implementations ar¢ judged by the extent to which they
measure up to equations having the form of those in appendix 1;
indeed it is the normative role of these equations that is
responsible for the name 'standard semantics'. Furthermore, from
these equations we can derive a class of rules intended to des-
cribe particular language constructs [8], but its utility for
Pal is limited by the possibility of sharing, the absence of
denoted functions and the existence of label variables. To prove
programs correct is is frequently necessary to resort to the formal
semantics; by this means one can, for instance, validate programs
for copying and reversing Pal graphs of locations. The proofs
are no more complex than conventional ones dealing solely with
acyclic trees [2], but they are boring. More interesting is
the following example, which adapts a method due to Park [14] in
order to show that, according to our intuitive beliefs about I,

certain programs fail to terminate,

1.3.6. Example.

Let 4, be f=fnz,z within f=fnz.($f)z and EO be

rec AD inside ($f)0; when Py and g, are proper AK.%HEDHDOKGO is 1.

<Suppose that Po and newsuY4o_ are proper, and let

0

Q_ =newao

0 0° pl=p0[ao/f], clzupdateuodummyoo, a =nrewd,,

02=updatealﬂflfnz.zﬂp1)o p2=pl[ul/f] and

17
3=updateulcfﬂfnz.($f)zﬂp2)02. For any ¥
9]AOHplxciq%ﬂf=fnz.zﬂpl(kp.51f=fnz.($f)zﬂ(d£vertpip)x)ol
=fﬂfnz.zﬂp1(kuﬂfﬂf=fnz.($f)zﬂ(divertpl(arid[a/f]))x)oi
=5ﬁf=fnz.($f)z]02x02
=R fnz. ($£)2l p, (AB.x(aridla, /f1)eupdatea, B)o,

=x(arid[ui/f])03.

38

Now set DB=DD[a1/f], (a2,ua)=news203 and

Uu=updates(a2,a3)<holduics,o)ca. For any «
#1E = V.)
[FOHDOKGO Grec b 1o, (ho LA ($7)0] (divertp pik)o,
=31A0Hp1(kp.21($f)oﬂ(divertpOD)K)ci
<[(sf)0lp ko,
=5'1[fnz.($f)z]|pza3(2vn<)cLL
?gﬁ($f)2ﬂpz[03/z](lvm)cu.
Take g, to be any store such that holda1055h01da103;
then, writing a, for newo and O for updateaufholdalos)GS, a, =T
and hoZda106EhoZda105. In terms of the projections of 1,3.1,

however,

)
)

1 ($f)z]]pztas/z](ZvK)(&qmicS)=rv{1v(rv(%B.BuS(Zw))))ai(qulc_r)

5(qn+1(holda105)|F)a3(ZvK)qun+1cs
Efqn(holdm105|F)aB(ZvK)ce
=(holdeoy \F)aa(ZvK)(ﬁqnGG)
E(koldufk|F)m3(ZvK)qun06)
=¢ﬂfnz.($f)zﬂDQGS(ZUK)(quOB)
#?ﬁ($f)2ﬂp2[u3/z](lvk)(Sqnos),

while.QE($f)zﬂpz[as/z](ZvK)(bqoc5)=l. As o_ obeys the sole

6

constraint imposed on ¢ by induction

5
21($f)z]p2[u3/z](3vk)@bqn05)=l for all »n and in particular
QEEOHDOKUO#?[($f)zHDQ[as/z](lvm)(Uﬁqnou)=i.>

The presence of $f instead of f in AO and E, 1s irrelevant
to the argument above but will be necessary in 2.7.7, where the
elegance of within declarations will be shown to be somewhat
meretricious, Notwithstanding the intention that the identificrs

declared by Ai in A, within A2 should have scopes limited to A2

1

this example demonstrates that this need not happen even in Pal,
The validity of this result does not require the hypothesis

that newo=1 if Nareqac|a:L}=true, provided that L is taken to be

infinite and all the areas of storage are assumed to be finite.

39

1.4, Incidence and reference,

1.4.1. Declarations having side effects,

The exotic flavour of Pal owes much to the fact that only
locations can be denoted. When designing languages with more
efficient implementations and equally elegant semantics it is
natural to remove this restriction. This task is not trivial,
however: although the semantic equation for stored labels can
readily be converted into one for denoted labels which uses a
fixed point this is not so for recursive declarations. If the
right hand expressions in such declarations were necessarily
constants, identifiers or functional abstractions our intuitive
view of recursion would be captured by a simple semantic equation,
but the arbitrary expressions permitted by Pal may influence (and
be influenced by) the store in a way which®this would not reflect.
Here we seek an equation which models declarations with side effects
and which corresponds with Pal recursion in a way to be clarified in
2,7,6, To illuminate the search we use Mal, an enhancement of
Pal wherein I==L and 11""’In==E indicate that the identifiers
declared thereby signify values which in Pal can be only bhe
stored. In contrast to the declarations by reference of 1.3.4
such declarations by incidence require a large space of denoted
values, which tentatively we take to be L+B+L*+J+F; accordingly now
we can safely assume @[I==E] to be ipx.Z[Elp(ie.x(aridle/I])).

Were the equation for rec¢ I==E to mimic that for rec I=E,
probably like the latter it would simplify sensibly when E signifies
an abstraction. We must not be led solely by this criterion,
however, as rec I=E may give a silly answer. I[I is accessed in
the body of E and outside an abstraction before being updated,
the result may reflect the capricious choice of initial content

of the corresponding location; dummy 1is not adopted for this in

40

the manual [5]. llere the main importance of equating @ rec I=E]
with dpx.Zv(Aa. 2l Elpla/I](AB.x(aridla/I])YeupdateaR)) (dummy)

lies in the suggestion that the side effects of E be carried
out once, at the time of declaration, instead of whenever I is
looked up in the environment or during hoth declaration and

inspection,

Tf ¢:Abs a natural candidate for the value of 2[rec I==¢]pxo

is Rl el plfix (e Fldlpole/I1)/I1ks oT
k(fiz(Ap'.plF[3l p'/I1)[I]1Vv1)0 where x is Xe.yx{aridle/I1).
This, however, gives little guidance about] rec¢ I==E] even when
E is if IO then o, else °, where what I finally denotes may
depend on the store in a way which is not known when the environ-
ment above is formed. We cannot give I a random initial‘value
as this will then appear in the environment attached to the
resulting closure; rather we should supply it with something
reflecting the whole of E, Accordingly we adjoin G=[{K+CJ° to
D (so that D becomes E+G), attempt to use
RIE]pLfix (X8 RIE)pLS/T11)/I]kc as the recursion operator and take
41 I} to be Ap'k'.p'TI]+1:G+(p'[II¥1d’, k" (p?’[I]+1).

Unfortunately this form of equation does not satisfy the
demand that the side effects of E happen exactly once., It can
readily be verified that under it
z=1 inside rec¢ f==(z:=-z; fnzx,if z>0 then f0 else 0) inside fi
leaves 1 in the location denoted by z wherecas the corresponding
program in which f denotes a location leaves -1.

To eliminate the side effects during the inspection of
f in the environment we try out
AME]pl fiz(hyc'o" ARIE] ply/I](Aec.k'e0')s"')/I]ko. Here whatever
effect the procedure denoted by I has on the store at the time

of inspection is thrown away, only that part of the result in E

M

being preserved., Now the outcome of the program above 1is to
leave -1 in the location denoted by =z,

Even this operator 1s inaccurate, however, as the store
is not sealed into the procedure denoted by I, so this rcturns
a result which depends on the store at the time of activation
(not that at the time of declaration) in much the same way as
fluid variables depend on the environment. For instance,
z=1 inside (rec f==if z>0 then fnzx.if x>0 then f0o else 0 else fnz.1

inside (z:=0; f1))

switches from one branch of the conditional clause to the other
when the application f1 invokes in turn f0 (with f signifying a
member of G). Because the content of the location denoted by =z
changes between the definition of f and its application, this
member of G selects the second arm of the conditional so that the
program returns a location containing 1. The Pal version of the
program, however, fixes the function assigned to f during the
declaration and is not affected by the change thercafter in the
value of 2, Accordingly it returns a location containing 0 as
result,

To seal in the store properly we therefore take the value
of @l rec I==E]lpyoc to be
RAIE] pLfix(Ay'c" RIEl ply/I1(Xe0”.x'ec')o)/I)xoc or
RMEN(FLx(dp’.plAic’c? ALElp'(Xeo”.k'c0’)0/I]))ko where « is
Ae.X(aridle/I1)., This deals with the programs above in the same
manner as 2[rec I=E]; yet there remain programs which do not
access I in the body of £ but for which the semantic equations
give different answers. Though below we give some examples of
these, they are too pathological to nullify our conviction that
the equations are equivalent in all sensible cases. When they

disagree the equation for rec I=E is sometimes preferable;

rec x=nil aug x typifies this situation,

42

1.4,.2, Example.

Let E, be res fnz.f, E, be (val (rec ==L, inside 0))1

and E2 be (val (rec f=E0 inside 0))1. When Py and c, are proper

@ﬂElﬂp k g 1s inevitably L1 whereas @HEQHQOK is not.,

000 000

4Set = = 1 =
et o =newo,, o, updateui Oys @,=news,,

K1=rv(180.82F+Ba1K00,1shoZdulo|Ns#B|L*+KO(B+hoZda10)o,T),

fun=xv.v=0+1,p [k /resIfico AIE | (fun(v-1))(ed’.kea)o, /f1,

p1=U{fun\)|\J:N} and o =updaten,(re L1 flp [e/z1)o, .

gﬂElﬂpozooDafﬂrec ==E0 inside Dﬂpotxl/reijlsl
=ﬂmEOMp1(AB“Inoﬂpo[Kl/resj[B/fjrl)ol
42ﬂfnz.fB01K101.

For any vx0 there is some K, such that

I fnz. f1 (fun(v+1))k o, =1vk, (Ae F 7] (fun(v+1))le/21)0,
=Z[f1 (fun(v+1))la, / 21k o,
=QIE0](funv)K202
=11fnz.fﬂ(funv)nlo2

while

Zﬂfnz.fﬂLK101=ZvK1(Ae.£1fﬂL[e/z])ol

?Tﬁfﬂl[al/zjxod2
=1.

Moreover these conclusions hold for all proper o4 and the o,

induced by it because if Aw.areaco=true then newo=1; in particular

.f[fnz.f]pik =1 for our original choice of Py and G-

101

Contrariwisec, defining o =updatea2dummy01,

3
p2=p0[K1/res][u2/f] and ¢O=A€,?ﬂfﬂp2[e/z] gives
9ﬂE2]DDKOUO?9HPEC f=ED inside o]ﬂpo[rcl/resjlrcio1
=QHEDH02(A8rfﬂOHpQKloupdateazB)os
=2ﬂfnz.fﬂp2K103
=ZvK1¢003
#?HfﬂDz[ui/z]Ko(update(new03)¢003)

=K032(update(new03)¢003).>

43

To reduce the possibility of jumping out of a declaration
into an expression within its scope Pal arranges that in, say,
rec g=goto 7 inside 7: g a jump is made not to the 7 set by colon
here but to one in an outer block. Other languages are not so
prescient: an Algol 68 version of this fragment, for instance,
would cause the same sort of chaos as arose above. On the other
hand the context conditions of Algol 68 prohibit a form of 1.4.3
in which the label is assigned to a variable of type ref proc void,
Similar prohibitions will also be incorporated in the proof of the

equivalence of rec I=E and rec I==FE to be given in 2.7.7.

1.4.3. Example.

Let EO be 1: m:=1; zi=-x; Ea’
E, be m,x=1,1 inside rec f==E, inside L

E, be m,x=1,1 inside rec f=E0 inside Eq,
E3 be if x>0 then ¢0 else @1 and Eq be if x>0 then fx else qoto m,
where 2, is fnz.if z>0 then fo else 0 and o, is

frnz.if >0 then fo else 1. Then E, and E, yield different answers.

2

o =updates(u0,a1)(1,1)oo, o

1Set (o ul) =new32cro » Oy

g’ =newd, and

2

01=00[u0/m][a1/f] for some proper p, and o let x, be arbitrary.

0? 0

If the recursion operator used is that introduced in 1.4.1
set K1=AE“?ﬂEuﬂ01[€/f]K0, 60=§EE0E02[u2/Z](rvK1),
02=fix(kp.pi[AKO.QﬂEoﬂp(Aeo’.Kso)oi/f]), ¢0;9H®0H02, ¢1=?H@1ﬂ02,

= {
g, updates ¢y

ﬂﬂElﬂoonooOa@ﬁEoﬂszlol

=80(updateu28001)

=@ﬂE3ﬂ92[u2/Z]K103

o, and o =updateal(—1)02.

,u2><80,60) 1 3

=£T qoto mﬂ02[¢1/f]K063

=g[E3ﬂoz[32/Z]K102
Efﬂfxﬂpi[¢0/f]K002

%!ﬂfoﬂpz[al/z]KOGQ_

Define K2=AEU.ZU(Au.eaKO)OU2 and 61=@HE0ﬂ02(a2/Z](rvK2), for which
$IE Do,k o,=A folp,la, /2l 0,
21

=81(updatea28101)

4ﬂﬂE0ﬂp2K

=?HESHpQEGQ/Z]KQ(updateazeioa)

=K2¢1(updatea28103)

=Zv(1u.¢1uxo)002

=vi01(update(new02)002).

|r Qg=mewo, ,

93=pl[a2/f], K “rv(AE Dp k cupdatea,), ¢,5#10 1o, ¢, F12 1p,,

On the other hand, writing 0, =updatec ,dummyo

=GF =
62 [EOHDBEGB/Z]KB, O updates(ao,aQ,aa)(62.¢3,62)03 and
06=updates(u1.a2)(1,¢2>05 gives the outcome of the declaration by

reference thus:

YL 0ok 0"RIE P K40,

=82(updatea3820u)
=4ﬂE3lp3[a2/1]K3(updates<uo,ui,ua)(e?,—1,9?>0u)
=K3¢3(updates<a0,a1,u3>(82,—1,82)04)
=¥l qgoto mlpamoos
=e205
=9lT e Lo /1k, (updatea, 10.)
=K3¢2(updatea1105)
=2 fzlp gk ,06
SP%1K 0%
=fﬂf0ﬂpa[a1/z]K006
=Zv(ka.¢2aK0)005
=ZvK00(update(new06)005).>

lHence under some circumstances the function set up by the
assignment method of performing recursion can change irrevocably
as a result of jumping back into the declaration, whereas that set

up by using a fixed point can switch back and forth between two

distinct forms.

45

1.4.4, Mutual recursion.

The recursion operator of 1.4,1 <can be extended to multiple
declarations by sealing the store into each of the new denoted
values either when the constituent declaration is reached (and
the side effects of preceding declarations are accounted for) or
when evaluation of the sequence starts. These alternatives give
¥ in rec x=0 and y==x the values 0 and dummy respectively; as
rec z=0 and y=z makes y contain 0 it is plain that the former
option 1is correct. Accordingly we still take #:Dec+U+X+C as a
valuation on declarations, defining #F[I==E] to be
ApX . RTElp(re.x(aridle/I1)). Now, however, Zlrec Al is
ApxO. (ha*, (Ao’ ,a* s E-FT Al (Fiz(Ap . pla*/ LAl IS Alp o AT AID) Yo', T)

(updatesa*dummy*c)) (news (#S541)0),
where A% Dec+Ide* collects up the identifiers to be given meanings
which are in V+G and #:Dec+U+S+G* is such that when 1<v<#¥] A]
FlAalpotv 1is Ac'o" FLAlp(rpYc”".k' (p"[#TAl+v]¥1|E)a")a.

Whereas Pal offers only one possible reading of
3IA1 and...and Anﬂ, Mal offers two because the environment returned
by a recursive declaration may not be a portion of that which is
used for the evaluation. Thus although we could use
Apx.runtfﬂﬂlﬂp,...,31Anﬂp)(xcconserve) as the requisite value, we
actually adopt
Apx.ﬂﬂﬁiﬂp(lpl.ﬁﬂazﬂ(divertppl)(Apze?HASH(divertp(aongerva(pi,p2)))

_,.(Apn.x(conserve(pl,....pn)))...))),
(which could be generalized to permit any order of evaluation). The
methods of 2,7.6 can be used to show that in fact these
alternatives yield essentially similar theories under reasonablc
circumstances which include the omission of labels and goto
statements from declarations.

The proof of 1.5.9 will Justitfy the beliel thar this

analysis of recursion coincides with the view of recursive

46

function abstraction given in 1.4,1. This result can also be
established for the alternative version of.?ﬂﬂl and...and Anﬂ
(albeit at the expense of extra complexity), so nothing i1s lost

by selecting one equation rather than the other,

1.4.5. Further features.

The concomitant of declaration by incidence 1s abstraction
by incidence: in Mal fnI..E and nti,...,In..E take parameters
which are not locations, although fnI.E and nti""’In‘E inherit
the abstraction by reference mechanism of Pal. Accordingly we
extend #F Abs+U+F to the new cases by taking FILfnI..E] to be
Ap ek .7 (AR FLIE]p[R/I1k)e and 9an11,...,ln..Eﬂ to be
RD-KEK.PU(KB.#B|L*=n+l0.xﬁhuthostBc/(Il,...,In>]KO,T)E.

For simplicity we do not introduce calls by incidence but retain
our earlier conception of functional application, so that giving
fnI..E an expression returning a value in V will cause that value
to be copied into a new location and then extracted again. Though
this 1s inefficient it is as satisfactory as a more conventional
approach, for the location used ceases to be accessible.

A disadvantage of Pal is that calls by reference [22] allow
the locations denoted by the parameters tc be assigned to in the body
of the function unless they are protected by using E0($E1) instead
of E,E;. To avoid the need to include $ at the time the function
is applied, in Mal we provide 4[E$], which is
Apk AR Elp(re e F (e, ru(AB.eBk")E"),T).

The effect of (EO$)E1 may not be that of EO($E1) because only in
the latter is a member of L used to complete the environment of the
function closure; for instance, (((fnu.fnv.(u:=0; put w))$)1)1
prints 1 whereas (fnu.fnv.(u:=0; put u))($1)1 prints 0. On the
other hand, #[fnI..E] coincides with #[(fnI.L)$].

Given an expressicn L designating a member of L* we can

obtain a new list of locations having the contents of the old

by evaluating #{£E|, which is

Aok R[Elp(heo, (Aa*,a*:E»ko*(updatesa*(holdseo)a), 1) (news(#e| L*)g)).
The use of £ in E,(EE} or in (E,£)E, enables us to protect simul-
taneously all the arguments of a function having several para-
meters,

Because in Mal any stored value may be denoted it is
possible to declare an identifier which signifies a label entry
point. Nevertheless we introduce in addition a way of requiring
a label to be created as a member of D rather than of V., Such
labels are declared by I::E and are given the scopes of their
stored counterparts set by reference. To incorporate them in
the semantics we have only to define X:Exp>Ide* and
2:Exp>U-+K+J*, which list the labels and their entry points. As
labels can now be set by incidence ¢&lE] becomes
Apko. (Aa*. (hp'.a*:E-+F[E]lp'k(updatesa*(P[Elp'k)T),T)

(fix(Ap", pLa*/AIET IL2[E] 0 "k /XTED 1))) (news (#FIE])0).

From henceforth we shall assume that any expression I:Exp
and any declaration A:Dec in a correct Mal program are such that
in the lists #IEIS#TE] and S[al s Al no identifier occurs twice.
We could of course incorporate this restriction in the semantic
equations by making them yield the answer T when repetitions arose;
avoiding this complication (which is conceptually trivial) is
tantamount to viewing the tests on the relevant lists as a feature

of parsing rather than program execution.

1.4,.6, Syntactic transformations preserving meaning.

To 1llustrate the sense in which declarations by incidence
mimic those by reference we now draw up a set of rules for con-
verting a program written in Mal into one which could almost be

written in Pal. As will be shown in 2.5.9 these rules preserve

48

the meaning of the program because they simply induce a corres-
pondence between denoted values and locations containing com-
parable stored values. Thus, typically, we substitute I:E for
certain occurrences of I::E and apply analogous translations to
certain declarations and abstractions. Unfortunately we cannot
simply change I==E into I=E, as the latter introduces an iden-
tifier which may share the location it denotes with something

that 1s then assigned to; we do not, for instance, wish to try

to prove the equivalence of y»=0 inside p==% inside (w:=1; v) and
u=0 inside v=u inside (y:=1; v). Fortunately, built into Pal is

a mechanism for avoiding hidden assignments so we can replace

==F by I=3%$E and, using the additions of 1.4.5, fnI..E by (fnI.E}$,

A similar expedient is adopted with declarations of more

than one variable, which are complicated, however, by the fact
that L* 1s a summand of E while V* is not (so that a vector of
stored values must be handled as one of locations). We exchange

T .,In=EE and

..,1 ==E and fnlI .51 ..E for I
n n

1?° 1*°°

(nti,...,In.E)E respectively, the apposite equations for which are

1,.0

given in appendix 1.

The coercions inherent in Mal permit nominal assignments
to be made to any identifier, as when the identifier does not
signify a member of L a new location is given the stored value
instead. Consequently w==0 inside (w:=1; w) and
w=$0 inside (w:=1; w) are not equivalent although both are legi-
timate, We therefore arrange that if I switches from being
declared by incidence to being declared by reference then all
occurrences of it in the relevant scope are replaced by $I; to
do so we introduce predicates in Ide»B* which indicate when a
variable is to endure this change. The primitive. functions set
up in 1.3.2 for dealing with environments will be carried across

to these predicates, which will be represcnted by the letter vy,

49

If y[IN+1 is ¢true we shall presume that I has been converted
from denoting a member of V or G to denoting a member of L; to
bring about this switch we introduce opt:I1de+[Ide»B*1+T and its
iterative extension to lists, opts:Ide*+[Ide»B*]+T*. Only
convenience dictates that the parameters of opt be limited to I
and y, for all that is actually required is some means, no
matter how capricious, of making a choice.

The translation from one program into another is carried

out by mappings s:Exp>[Ide»B*]1+Exp, g:Exp+[Ide»B*]1+Exp,

d:Dec+[Ide»B*]1+Dec and ¢:Dec+[Ide»B*]+Dec which are built up thus:

c[El=2p. glE] ¢l false*/AIE]l 1lopts (¥TE])Y /¥T1E]1;

lIl=x¢. #4f I} >0+ (0 I]+1=true+$1,1),dummy;

gl Bl=Xy.B;

gUfnOYEl=2d.fn()[E]y;

gl fnI.El=A¢.fnIl..[Ely[false/I1;
,anIi,...,In.E]=Aw.nt1,...,In.aﬂE]¢[faZse*/<Ii,...,In)];

gl fnT. .El=Ap.optl Ilv=true+c[fnI.Ely$,fnI..e[ElY[false/I];
gﬂfnli,...,In..E]=kw.fdoptﬂlmﬂw|15m5n}=trua+9ﬂfﬂ11,....In.5ﬂ$£,

fnl .,In..sIIE]Iu)[faZse*/(Ii,_..,In)];

1o e
gLOE] =Xy .0elEly;

JIE QE =2y, o[E TV E 1¢;
glE =B 1=Ap.o[E Jy:=alE T¥;
;HEi,...,En:=EOﬂ=l¢.4ﬂE1H¢,...,c[EnH¢:=tﬂEoﬂ¢;
glget El=ry.get «[Ely;

glput El=xy.put TEIY;

9[E, aug E1H=Aw.oﬂE0H¢ aug <[E Ty;
;ﬂEi,....Enﬂ=k¢.6HE1]w,....tﬂEnﬂ¢;

¢l SEI=Ay.$4[E]Y;

gLE$T=xy.s[E] $¢;

glEEY=2 Y. 5 [E]Y;

glEST =py. «[ElSy;

50

gIEE J=2p. [T JvelE Ty;

glval El=xy.val e[Elu;

glres EJ=iy,res «[E]ly;

¢l goto El=Xv.goto e¢[EJy;

g4 inside El=xy.4[Aly inside +[ElVLfalse*/#[0] 1lopts T AT)W/APLA]T;
plEys E I=2v.glE TV gIE Ty;

glif E, then E1 else E2H=Aw.if cHEoﬂw then gﬂElﬂw else gﬂEzﬁw;
¢lwhile EO do E1H=Aw.whi1e eﬂEoﬂw do gﬁElnw;

gl I:El=xy.T:g[Elv;

glI::El=dy.plIlv1=true-T:¢[Ely,I::¢lE]V;

#l(EDI=xy. (¢ Ely);

Al I=E]1=20,I=c[E]V;

2l I=E]=xy.I=c[E]y;

dlI ..,In=EH=A¢.Ii....,In=aﬂEﬂw;

1**

I .,In=EH=Aw.Il....,In=tﬂEﬂw;

g
4] I==El=2y.opt[I]y=true=I=$¢[E]y,I==cl1E]y;

([I==El=Xp. Yl Il +1=true-T=2{Ely,I==clEly;

41, .,In==En=A¢.n¢0ptﬂImﬂwllsmSn}=true+Il,...,In=£¢ﬂEﬂw,
S e B LE

JﬂIl....,In==Eﬂ=Aw./deIm]+1|15m5n}=true+11,...,In=6ﬂEﬂ¢,
LyseessI ==<lElY;

JHAO within A1l=l¢.dﬂﬂoﬂw

within 416 VW[falee*/sT0 1 1lopts bls 1 ypleld 17;
(lb, within A D=hy.402 1y
within 402 TyCfalse*/sl b) 1lopts Gel A THvals 115

2l A and;..and Anﬂ=A¢.dﬁA1Hw and...and Jﬁanﬂw;

1
tﬂAl and...and Anﬂ=lw.tﬂﬂiﬂw and...and ¢lA T¥;

dlrec Al=xp.rec ¢[ANY[falee*/21LA] Tlopts (T AN YU/ AT T
¢lrec Al=Xy.rec ¢[Aly;

AL (MY =x. (LEATY);

LA =y, CoL AT .

51

In fact the meaning of a program would be conserved by a
transformation less wasteful of storage than that suggested here.
Instead of updating a new location with the content of that denoted
by I, as we do in $I, we could simply extract the content, leaving
it to the context to determine whether another location must be
provided. Since Pal does not possess a construct which simply
obtains a right hand value without introducing an extra location
we have adopted the formulation above. An alternative would be to
use $I only when the syntax shows that I appears in a left hand
context, but this would complicate our proofs without shedding
light on their outcome.

Suppose that when compiled a program is given § as its
environment whereas its transform under the y rules above is given
the environment p. To express the fact that § and p are related
by ¢ we define
apt= A 5,0 ANHBII]=0v(#D[I1>0A#yf I] =0)+true,

PIINv1:L-+pl I +1:La(yplIlV2=Ffalse),
FIIN+1:6+pII141:GAa (Yl IDY1=Ffalse),
PETI41:VV(PETI+1:La(ylINVv1=true))|I:1de}.
As the rules permit rec I==E to be turned into rec I=E one might
expect apt to allow for the possibility that (pFII]+1,plIN+1) :GxV,
We shall, however, eliminate correspondences of this kind by a
further pass through the program which takes place 'after
compilation' in the manner to be discussed in 2.7.3.

Applying the transformation to a labelled block moves some
members of #[E] into #I¢lEIY] and thus permutes #[EIS¥TE]. The
elements of PIglEIy)pREQ[¢IEIy]IPR have therefore to be ordered
before they can be made to tally with #IE]5482[E)F¥; it is this
that accounts for the complexity of the definitions in 2.4.5. We

carry out this permutation by means of

swap=AI*OI*1E*.I*O=()+(),(€*¢ (U{U]I*O+1=I*1+v}))§swap(I*0+1)I*1€*.

52

1.5, Conjugate valuations,.

1.5.1. Free variables.

One of the most evident connections between programming

languages and A-calculus lies in their use of 'free variables'’,

We could formalize our intuitive understanding of what is meant

by a free occurrence of an identifier by introducing a predicate
free:[Exp+Decl-Ide+T with an inductive definition on the constructs
of Mal; thus we would let freelI I{I,1, for instance, be the
relation IO=I1 while freel A inside EJ[I] would bhe

freel All I1v(freel EIT I A~I: 41 Al &#] Al). However as 1.4.6 has already
provided one group of mutually recursive definitions involving

the syntax we can avoid setting up another group to govern free.
Making the temporary assumption that the opt function of 1.4.6

is Al.false, given some E:Exp and A:Dec we simply write
freelEl=AT.~(E=&4[EJ(XAI'.I7=I+) ,(false))) and

freel Al=AT.~(A=d[A](AI" . I'=IX) ,{false?)). For this opt function
[Ely differs from E if and only if Y[Il=()> for some I:Ide which
occurs free in E; this remark, and the analogous one about & A]Y
and A, can be validated by a structural induction using a more
conventional description of free. Moreover, when the equality
relation adopted by E=¢[E]¢ is the continuous one yielding a
proper truth value only for E and .[El¢y without constituents

which are L or v, free is also continuous,

We tequire freelE]lfres] and freefAllresl, which are true if
and only if res occurs outside the outermost val block of E:Exp
and A:Dec. In particular, for any expression E we stipulate that
freelval E]l res] be false and that freefres EJ[res] be ztrue; the
remainder of the definition of freelE][lres] is obviocus.

In 2.1.4 we shall wish to reduce the environment attached

to a declaration by discarding all the denotations which do not

53

correspond to free variables. Since the domain U to which this
process will apply has a third component besides those for Ide
and res we truncate its members by means of
rendlEl=Xp . ((AT, freel EDI I adiol I >0 p[I] 4 1) ,()),
(freelEll resla#plres]so~ p[res]+1) ,¢)),{));
rendl Al=xp . ¢ (AI.freel AYI II aip[T150+ pl IT+ 1) ,€)),
(freef Al res] a¢plres] >0 p[resi+1) ,¢)),) ;
tearlEl=2p.{ (AI.(freelEINIIVvI:fME]I Sl ENdadpl I]>0 p[I1+ 1) ,0)),
(free[Ellreslatplres]>o>{plresf+1) ,0)), ;
tear[Al=Xp.¢ (AI.(freel AIIIIvI:sIA] ¥l AT YAl IT>0pl I]+1) ,00),
(freel All res] a¥pl res]>o(plresl+1) ,(3), ,
These functions undergo trivial modifications when the domain of
environments is [IdesD°*]xK®* as it is in 1.3.2.

To express the belief that an environment is large enough
to give meaning to a program we define also
rent[El=xp Al~freel[EI[Il véplI]>0|I:1de}a(~FreelEl[res] véplresl>0);
rentlAl=xp AN ~freef Al[Il v#plIl>c|I:Ideta(~Ffreel Allres]viplres]>0);
tornlEl=xp N~I:#[E]1 &¥TEl vép[T1>0|I:Ide}arent[Elp;
torn[Al=2Ap N ~T: 90 A Sl Al v# o[I1>0| I: Ide}arent[Al p.

With the aid of these definitions we can now verify that
when evaluating an expression or a declaration in standard
semantics the only significant values in the environment are those
representing the most recent incarnations of the free variables.
This property is not shared with the stack semantics to he uscd to
describe implementations of Mal in 3.1.1, for which it is essential
that the entire environment appear in the evaluation procedure,

To establish that the environment can be cut back to a free
variable list when the equations of appendix 1 are being applied
we introduce a method of pruning declared environments, namely

snip=AAp A (AT . T gl Al 8 AT Cpl II+ 1) ()), .

54

1.5.2. Proposition.

In standard semantics all E:Exp satisfy [E]=&fElerendlE]l,

LIEI=A E] erendl E] and @[E}=#[E}erendlE], together with

YlE)=2[ElctearlE}, #IE]l=#[E]l ctear|E] and 2[E]=81E] ctear(E];

moreover all A:Dec satisfy D[Al=4l A} orend] Al=dpx.81 Al p(xesnipl 2])

and F[A =gl Al otearl Al=xpx.FI Al p(xesnipl Al).

4The proof of this result involves a structural induction

on the constructs of Mal. Since it is merely an elementary

precursor of the technique required by such proofs as that of

1.5.5 we shall not embark on a discussion of its details.¥

1.5.3, Expression exits.

In order to list
by part of a program we
with the intention that

encountered last during

the possible expressed values returned
introduce ex7it:[Exp+Decl+[Exp*+Dec*]
exit[E] reveal which expressions may be

the evaluation of E. Though it may not

be decidable whether this evaluation will ever end we can

nevertheless collect up
exit[T1=C(D ;
exit[Bl=(B) ;
ext t] &1 =C & ;

extt[OCl=¢ OB :

>

. _ y .
exttﬂEOQElﬂ <EOQE1

exztﬂEl,...,Enﬂ=<(E1.---

. _ y .
emztﬂEOElﬂ (EOE1 ;
exit[val E]=(val E);
exit] res E}=(res E);

exitlgoto E]=(goto) ;

the exits thus:

E .
E)

exitl A inside E}=(A inside B);

exztﬂEO; E1ﬂ=ex1t[E1ﬂ;

55

exttlif EO then E1 else E2]=emitHE1ﬂ§exitﬂE2];
exit[while E, do E1ﬂ=(whi]e E, do £
exit[I:E]l=exi t[ET;

exit[1::El=exit{El;

exit[(E)]=exitlE].

No other forms of expression have obvious interpretations
as commands followed by more expressions, so exitfE] will be
taken to he (P except in some of the cases above; exitﬂE0:=Elﬂ,
for instance, will be (E0:=E1>. For a declaration A exiz[A] will
split up A into its constituent simple declarations by means of:
ext t] I=E}=(I=E) ;
exit[ll,...,In=Eﬂ=(Ii,...,In=E);
extt] I==E] =(I==E) ;

1""’In==E) ;

exit[I, ,...,I ==E}=(I
exitﬂAO within A1ﬂ=(A0 within A1>;

emitﬂai and...and Anﬂ=exitﬂﬂiﬂ5...§exit[Anﬂ;

exitlrec Al=exit{Al;

exit] (A =exit[A].

Any member of the 1ist exit[A] will be termed an 'exit' of
the declaration A, and similar nomenclature will apply to elements
of exit[E].

For ease of implementation it is frequently wise to
restrict programs so that references to locations are not passed
out of the blocks in which they are created. Accordingly we
provide a syntactic constraint sufficient to ensure that this
situation exists. Loosely speaking, we allcew an identifier to be
returned as the result of an expression only when it denotes a
member of V, while we allow an abstraction to be returned only

when all 1ts free variables are global to the expression. To show

that this condition is fulfilled we introduce some y:IdesB* such

56

that ¢[I]+1 is 0, 1 or 2 when I denotes a member of L, V or G
respectively unless I is local to the block, when ¢fIl+1 should
be 3. Following the precedent set by 1.4.6 we extend the
notation provided in 1,3.2 to cover this new element of Ide»B¥*;
the definitions in 1.5.,1 will also be regarded as being applicable
to this domain. We now set up cramped:[Exp+Decl->[Ide~B*]1->T
recursively as follows: cerampedlE]Yy is to be ¢true if and only 1if
any exit I of E in Ide satisfies y[Il+1=1, any exit & of E in Abs
satisfies VT(freeﬂ@ﬂﬂI]A¢HIH+1=3)vfreeﬂ¢][resﬂII:Ide}=faZse, no
exit of E has the form get E aug E

put Eo, E (El,...,E Yy

0? 0 1°? n

QEO, EOE1 oT res EO, any exit of the form $E0, E0$, EOE or val E,
is subject to crampedﬂEoﬂw[S*AfﬂEoﬁ§11EOH]=true, and any exit of
the form A, inside EO is subject to

crampedlIEO]] Yl 3*/]![[\0]] 5 AO]I §j|[E0]] MEO]] J=true. These limitations
are appropriate only for the particular languages we consider, in
which OEO, EOQEl, E0:=E1 and while EO do E1 return as their
results expressed values that are inevitably in B, but variants
of the stipulations above can be given for other algorithmic
languages. For reasons that will become apparent in 2.6.6 it is
convenient to let crampedl Alv be true if and only if any exit

of the form I==E is such that crampedlE]JU[3*/gIE]l &¥TE] 1=true,

any exit of the form T I ==FE is such that E 1is Ei""’En or

12"y
£(E;y...hE) where crampedﬂEme[S*AfﬂEmﬂ&f[Emﬂ]=true whenever
1<m<n, and any exit of the form B, within Ay has
crampedﬂ&lﬂw[S*/jﬂAOHEﬂﬂAOH]=true.

We shall also presume that for every ¥, E and A
torn[E}y=true when cramped[E}y=true and tornf A} l=true when
erampedl| AlYy=true. A more sophisticated set of restrictions than

that imposed by c¢ramped will be introduced in 3.1.4, but for the

purposes of 2.6.5 cramped will be perfectly adequate.

57

1,5.,4, Programs without jumps,

Continuations are required by the equations of appendix 1
merely to provide an understanding of jumps and of certain
aspects of unending computations [l16]. Tt is therefore natural
to expect that a programming language which has been emasculated
by removing its imperative parts may be defined without reference
to continuations. Here we shall carry out this operation on Mal
in order tec prove that the resulting equations are equivalent to
those introduced above.

Applying a function may occasion a jump out of the code for
the function, so it is necessary to restrict those abstractions
which can be applied to those devoid of goto statements; for
simplicity we choose to ban function application entirely. Like-
wise we must exclude the possibility that an identifier could
denote a member of G under p:U by testing some y:Ide~»B* such
that Y[IJ+1=2 whenever p[I]+1:G. We now define
erushed:[Exp+Deci+[Ide»B*]1»T somewhat informally thus:
erushed[ElYy 1is true if and only if no expressions of the form
EOEl’ val By, res EO’ goto Ey, I:f?O or I::EO cccur in £
except within an abstraction and any identifier I appearing in
E outside an abstraction and having free[E]J[lIl=¢true satisfies
~y[I]+1=2, For any A crushed[|A]ly will be ¢true if and only if
any exit of the form I=E, Ii""’In:F’ I==F or 11,...,In==u satis-
fies crushedft]y=true, any exit of the form AO within Al satisfies
both crushed[&oﬂw=true and erushedﬂ&lﬂw=true and, when A
is given the form rec Az, crushedﬂ&zﬂw[o*ﬂﬁEAzﬂ][2*4%{A2H]=true.

Although the connection between the standard kind of

-semantics with continuations and that without is of interest in

its own right we are investigating it mainly because of the role
it will play in 2.7.6. Accordingly we have not endeavoured to

reduce the syntactic constraints to the least possible, as the

58

expressions permitted above encompass all those needed for our
ultimate purpose. In particular we could adapt the techniques
of 2.2.5 to allow function applications 1like E,E, to appear
amid the expressions free from jumps so long as semantic stipu-
lations are made about those closures which are stored or denoted,
but to do so would detract from the elegance of the ensuing pro-
positions.

Our intention is to set up for every valuation a conjugate
which when given an abstract program, an environment and a store
as arguments returns a result which when supplied to any con-
tinuation yields precisely the same answer as would have been
obtained from the original valuation by applying it to the same
program, environment, continuation énd store. Strictly speaking
the conjugates cannot be made to elucidate the meaning of a pro-
gram since they use environments which are created in a framework
where closures must take continuations as parameters, Equations
which are entirely free from the influence of continuatlions can be
constructed with ease, and the methods of 2.2,8 can be applicd
to proving them equivalent to the standard kind, but this is beside
the point; here we are content to take the conjugate of ¥, 1%
to be # itself, just as the conjugate of #, 1%, is #. There being
no label declarations in the expressions we allow the conjugates
of § and # to coincide; thus we may write 9§ for 1#.

The remaining conjugate valuations will emerge in the
course of the following proposition. Suffice it to say here that
those acting on expressions are members of Exp+U+S+[ExS] whereas
1@ and %4, which act on declarations, are members of Dec+U+S-+[UxS],
Morc gencrally, given a lattice Syn (comprising the terminal symbols
derived from a suitable system of syntactic production rules) and a
valuation i?f:Syn+R1+...+Rn+[H1+...+Hm+A]+[11+...+IZ+A], say, 2, the

conjugate of Z, satisfies §2:Syn>R +_ . >R [T x_, . x[_J+[H.x,..xH 7.
1 " 1 7 1 """

59

1.5.5. Proposition.

Let ¢ and p be such that for all I:Ide v[I]+1=2 1if
p[Il+1:G. For every proper ¢ and every E:Exp satisfying
erushed{Ely=true either Axk.&[Elpxo is improper or T€[Elpo is
proper and ix.€[Elpko=ik.(kx T¢[Elp)o; analogous conclusions hold
for &, # and ¥ also. For every proper ¢ and every A:Dec satis-
fying crushed[aly=true either Ax.@[Alpxc is improper or T2[Alpo is
proper, Ax.@lA)pxo=ix.(xxT2[Alp)o and, when I:Ide is such that
#p0'[I1>0 for p'=glAlpov1, p’l1I)+1:E and I:s[Al8#1Al; analogous
conclusions hold for & .

40bserve first that we can set up 1% and 1% as follows,
Take any expression E such that if p and o are proper and if
crushed|El|y=true for some Y having Y[I]+2=2 when p[I]+1:G for
ail I:Ide then («.9[Elpko is improper or Ax.4[E]pko=Ak.{(kxT¥[Elp)o,
where T#[Elpo is proper; as noted above we may take %€ to be 1%,
Define 1#[Elp and T®[EJpo to be
(reg.e:lx e, ,(newo,update(newc)eo))*xT€[Elp and
(Aeog.e:l>(areaco>(holdeo,d (71,7),{e,®)xT&[E]lp respectively.
Suppose that for some proper o Ac.#[Elpxoc 1s neither 1 nor 7,
then Ak A E]lpko=ic.flElp(lvk)o=Ak.(lvk*xT&[Elp)c and
Ak .2l El pko=Ak . &l E} p(rvk)o=ik. (rvkxT&[Elp)o. Let (EO,U > be

0

&l E}poc which, being 14[Elpo, is proper. If €q is a location,

AK.ZUKEOGO=AK.(K*ﬂ%HEﬂp)c and

Ak.rvKe O, .=AKk.areac >(k*TR[Elp)o,7 from the definitions of 1.3.5;

070 0%0

furthermore holdeooo is proper. If €4 is a stored value,

AK.ZUKEOGO=AK.new00:L+(K*ﬂgHEHp)O,T and

Am.rvKEOUO=AK.(K*ﬂQHEHp)o. Thus unless Aik.#{Elpkc 1is improper
it coincides with Ak.(«xx1¥#[Elp)oc and T¥#[Elpc 1is proper; likewise
if 2. ZILlpko is proper it is ik.(«kxTR[E]lp)o and TR[C}po cannot

be improper.

The proof now proceeds by structural induction on the

60

expressions E and declarations A having crushed[E]¢=true and
erushedl Al y=true for some suitable V.

Suppose that E is an identifier I; then if p[Ilv1 is
improper Ax.#[Ilpko is improper for all ¢ whilst otherwise
pl I1¥1 cannot be in G (erushed[I]y being true) and
A G I]pko=rk.(k«14[I]p)o where T¥9[I] is defined to be
rpadp[Il+1|E,0 .

Because 1# is & and T4 is # it is obvious that the result
holds when E is an abstraction ¢ or a constant B if we take
19[¢] and 9¥[B] to be ipo.{F[dlp,0> and rpo.(#[B],? respectively.

We shall omit all consideration of the other types of
expression save three, which will be enough to indicate what pro-
cedures are adopted for the remainder. Suppose that E is of the

form E,+=E and that crushed[E]y=true; assume also that expres-

1

sions are evaluated from left to right, the proof being almost

identical if this is not so, For any proper 9,

zﬂEoﬂpKloo is 1 or T for all K4 or

.?HEOHpK100=(K1*ﬂ£ﬂEOHp)oO for all «, as crushedlE ly=true.

1

In particular, writing AEOuQ[ElﬂQ(Ael.no(dummy)oupdateeoel) as

k, for any « is 4 or 1 for all Kq or

1 0? 0
VHEO:=ElﬂpK000=(K1*mf[Eoﬂp)ao for all Ko If the latter holds

either fﬂE0:=E1ﬂpKOo

write 1£[E lpo, as (€50, and AEy Ko (dummy)oupdatee €, as K,

for all Ko then either‘QHElﬂpK201 is 1 or 7 for all K, OT

QﬂElﬂpK2ol=(K2*ﬂ%ﬁElﬂp)ol for all as crushedﬂE1Hw=true also,

2’

Consequently either gﬂE0:=E1ﬂpK000 is 1 or 1 for all K, OT

QHE0:=E1]pKOOO=(K0*ﬂ§ﬂEO:=E1ﬂp)GO for all « where ﬂgﬂE0:=E1ﬂ is

0’

Ap.(keo.(keid.<dummy,updatee 610))*HQHE1HD)*ﬂ?[EOHp.

0
Suppose that E is of the form b, inside E, and that
crushed[E] y=true for some ¥ having Y[Il+1=2 whenever p[I]J+1:G, so

that crushedﬂﬂoﬂw=true and crushed[Eoﬂw=true. For every proper

61

g, either AX.QHADHQXUO is improper or there are p, and a, with

AX.QHAOHDXOO=AX.xpOoi and <p0,01>=ﬂ@HAOﬂpUO; furthermore poﬂll¢1:E
when I:Ide and #QOHIH>O. In the latter case PfIf+1=2 whenever

divertppollﬂ+1:G and . is proper so either AKJZHEOB(divertppo)Kol

is improper ot XK;?HEO](divertppo)K01=KK.(K*ﬂgﬂEOﬂ(divertppo))01.
Hence taking T#[A inside E,l to be
Ap.(hp I 1 (divertpp,)) »1B1A Jp, for all proper ¢
AK.@HAO inside EoﬂpKU is improper if it is not
Ao (v +19[A inside E lp)o.
<A more complex approach is essential when E is
while E, do E . If crushed[Ely=true and y[I]+1=2 whenever
plID+1:G, we define for every n20 v :6 and ¢ :[S>TExSII° by
Yo=4s ¢O=¢, yn+1=AK.aﬂEOHp(l€.€+9EE1Hp(A€.YHK),K(dummy))
¢ ,=(rea.erd (T91E 1po+2),(dummy,o)) «TRLE,Tp; then by induction

Y v, and ¢ __,2¢ for all n20, while ¥[while £, do E1Hp=UYn.

2
n+l nt+l

<Assume that for some »n20 and every proper o unless
AK.ynKo is improper it equals AK.(K*¢H)0 and ¢ 0 is proper; to
establish the analogous contention for n+1 take any o, such that

AK.Yn+1K00 15 proper.

It is clear from the definition of A that”gﬂEO]ngo
is proper for some k and thus that

AK.Yn+1KOO=kK.eD+§HE1Hp(ke.ynm)ol,K(dummy)cl, where <EO.01) is the

proper pair ﬂaﬂEOﬂpUO; moreover ¢, must be true Or false as

0

AK.Y is proper. If e_=true, ?[Eiﬂp(Ae.ynK)ol must be

n+1% 0

proper for some k and AK.QﬂElﬂp(Ae.YnK)ol must be KK.(Ae.YnK)aicz,
where (e ,0.)is the proper pair 19[£, lpo,; by the induction hypo-

thesis AK.(Ae.ynK)€102=KK.(K*¢n)UQ and ¢ 0, is proper. If

e =false, on the other hand,

62

Ak, Y K00=AK.(K*(kU.(dummy,o>))01

n+1
=AK.(K*(AEU.€+¢n(ﬂ?ﬂElﬂpo+2),(dummy,c))80)01
=Ak.(kx Q) 400,

Hence 1in general

(Kx

AK LY KOO=AK.EO+(K€.YHK)5 5

1990)9,

n+1 n+1

=kK‘€O+(K*¢n+1)OO’(K*¢n+1)00
=kK.(K*¢n+1)OO

and ¢ is proper.

n+1%0

Accordingly for all proper o either AK.Yn Ko 1s 1improper

+1
or it equals KK.(K*¢H+1)O and ¢n+1c is proper, so long as the
corresponding remarks apply to Y, [addition ALy ko=L for all
proper ¢ by definition, so we may deduce that for all »20 and for
all proper ¢ unless AK.ynKU is improper ¢n0 is proper and
kK.YnK0=AK.(K*¢n)o.>

Since ¥ for every n=0, for all proper o either

n+13Yn
AKJJYHKU is improper or there is some m=20 such that when nzm ¢no
is proper and AK.YHKG=AK.(K*¢H)G; under the latter circumstances
U¢no is proper as 7«7 in ExS and AK.UYnKo=kK.(KﬂJ¢H)0 by continuity.
Defining fT«¢[while E, do Eiﬂp to be U¢n oT
fiz(i¢.(Aeog.e>¢ (T41L Npo¥2),(dummy,0))*IRIE o), unless
Ak .9lwhile E, do Elﬂpmc is improper it equals
Ak, (kxTF[while EO do Elﬁp)c and T¥[while EO do Elﬁpc is proper.®
The induction on declarations is very similar, as we can
take 12[I=E] to be Xip.(rev.{aridle/I1,0 Y*MZ{Elp, WII=E] to be
Ap.(reclaridlplINV1/I],update(pl I]¥1)ea)) xTR[Elp and 79[I==E} and
@iI==E] to be Ap.(Aec.{aridle/I1],0))*x1&[Elp. Analogous remarks
apply to Ii""’In=E and Il""’In==E’ and we can incorporate
multiple and other declarations in the scheme by such equations as

HQHAO within A1H=Ap.(lpo.ﬂgﬂﬂlﬂ(diueptppo))*ﬂgﬁAoﬂp and

WVHAO within A1H=Ao.(Aoo.ﬁ31A1ﬂ(divertppo))*ﬂgﬂﬂoﬂo. To illus-

63

trate the technique we examine rec 4, taking y and p to be any
entities such that erushed[rec A]ly=true and Y[I]+1=2 whenever
plIJ+1:G. Given any proper o we take o* to be news(#4[A])o;
if a* 1s improper Ax.@[rec AJpyxo is improper whilst otherwise
Ax.2[rec Apro=AxmyﬂA]pOXoO where
po=fix(hp' . ola*/fI21 iAo' o /1A 1) and o =updatesa*dummy*o.

Because °y and o, are proper and crushed[Alylo*/sl AT 02 /#] A] J=true,

0
either Axﬂgﬂaﬂpoxoo is improper or
Ax.ﬂﬂﬂﬂpoxoo=kx.(x*ﬂfﬂﬂﬂpo)oo. Hence either Ay.®[rec Alpyo is
improper or Ax.2frec Alpxo=ix.(xx9@[rec Alp)o where T12[rec Alpo
is defined to be
(Aa*. (Ao’ a* BTN A (fix(Ap’ .o/ TaX /28] JIST Al oo /L AT 1))a ", T)
(updatesa*dummy*o)) (news (#£1 4])a),

Similarly we can take 99 rec Alpo to be YF[Alpo.>

In fact there 1s even a minor gloss on this result: unless
AKk.E[Elpko is 7 it must be Ax. (¢ M&[E]lp)o (if crushedlElY=true
and Y[Iflv1=2 whenever p[I]+1:G) whether or not ¢ is proper.
Should while EO do E1 be omitted from the list of expressions per-
mitted by crushed there would be a further extension, as then for
every suitable p and ¢ (and for all T in this abbreviated list)
A . &[E]l pko=Y#[E]l po: [ExS]+Ax. (kx¥&€[Elp)o,T. This extensiocn requires
the omission of while loops because standard semantics and its con-
jugate deal differently with unending programs: in standard
semantics a potentially infinite program which encounters an error
may yield 1 for an answer whereas its conjugate equations tesult in
1, as in effect it 'continues after going wrong'. Thus if, say,

32 32
BB, <27 BB, T for some @:Dya, then

iVHQE=A(BO,Bi).-2
n=0 inside while true do n:=n+1 will provide the answer T when
evaluated using # and the answer . when evaluated using 79 unless

L:[S+[ExS11° is presumed to satisfy .71=T7,

64

1.5.6. Proposition.

For every ¥, p, 0 and E:Exp such that ¢ is proper and
crushedlElp=true rx.€[Elikasic,(«xT8[Elp)o unless Ak, $JEFLkO=T]
similar results apply to the other valuatiens, so for every w, p,
o and A:Dec such that o is proper and crushedl All=true
A TT Al LxoEdy. (xx 97T Alo)s unless Ax.F[Aliyxo=T.

4The proof of this follows the lines drawn up in 1.5,5 by
using the fact that
Ak FlIliko=1BAk.kL1=dk, (x+xTF][I] LYoEAk. (k*xT¥[I p)o
as the basis of a structural induction.®

As conjugate equations give rise to elements in
[S»[ExS]]° rather than G it is natural to expect that the version
of recursion involved in them can be rewritten to obviate the
need for the latter kind of element, As a preliminary to this
we show that members of E can sometimes be substituted in the

environment for members of G.

1.5.7, Lemma.

Suppose that for some I*:Ide*, some e*:E* with #e*=#I%*
and some pO:U we define Py and P, to be po[e*/I*] and
01[(...,KK.K(E*+v),...>/I*] respectively. For every E:Exp
&ﬂEﬂp1=JﬂEﬂp2 and, if erushedlElv=true for some Y having
Y I1+1=2 whenever p2[1ﬂ+1:G, ﬂJﬂEﬂp1=ﬂ3HE}p2; analogous con-
clusions hold for %, ® and 4 also, For every A:Dec
Qﬂﬁﬂpl=ﬂﬂAﬂp2 and, if crushedl Al¥Y=true for some ¥ having P[I[+1=2
whenever pzﬂI]+1:G, ﬂ@ﬂAﬂp1=ﬂ@ﬂAﬂo2; analogous conclusions hold
for & also.

4When 1gvg#1*14ﬂI*+vﬂpl=AK.K(e*+v')=§ﬁl*+vﬂp2 for some
v!. Moreover, when I is not a member of I*

¥lIlp =9 1]p =2l I]0, and 14[Tlp =[Ilp =1¥[1lp . Now we use

65

structural induction to complete the proof; for instance if
QIEleéfﬂE]pz for all such Py and Pos
?TfnI.EBplzkeufﬂEHplfe/I]=Aa.ﬂﬂEﬂpz[E/I]z?ﬂfnI.EHDQ,
@anI.Eﬂpl=§ﬂnt.E]p2 and ﬂ?ﬁfnI.Eﬂp1=ﬂgﬁnt.Eﬂp2.>

For any A:Dec satisfying crushed[Aly=true for some
yp:1de»B* we now take W[A] to be
ApO . fix(A¢l* , I*=0) () ,((WL AlpoYy1X[I*¥1]+1> 8¢ (I*t1)) @l AL,
so that 1 is a member of Dec»U+S+E* which lists the effects of
the elements in G set up by a recursive declaration. If p and
o are such that o is proper and y[I]+1=2 whenever p[I]+1:G either
AxTTAlpxo 1is improper or Ayx.FTAlpyo=ix.{(x*WY[Alp)o and
FLAlpoyv=rco" FlAlp(rp’a . x{p'lF[Al ¥Vv]+1|Eda")o

=Ako”, ((Ap'a'.k(p’l#IA]VIY1|Edo")x] Al p)o

=AK,K(T¥T Al potv)

when i1sv<figfAl.

1.5.8. Proposition.

Let ¢, p, o and A:Dec be such that o 1s proper,
erushed] rec Aly=true and for all T:1de y¢[Il+1=2 if p[IT+1:G.
Unless Ax.2[rec Alpyxoc is improper,

WTAN (fix(hp .pla*/flADILPTI AP 0 /#1241 1)) is equal to
WiAl (fiz(ro' . pla*/FLALILTFIAlp o' /T A] 1)) while

Ax.2lrec Alpxo is equal to

AX- (X WFT AL (fLx(hp 'epla* /LI AN LTI Al o' /#[2)1)))a" where
a*=news (##LLA])o and o'=updatesa*dummy*o.

4<Take any proper ¢, p and o such that crushedlirec AlY=true
and Y[I]+1=2 whenever p[I]J+1:G. Suppose that iyx.Z[rec Alpxo is
proper and that #¥]A]>0, the outcome being obvious otherwise.
Define oa*=news(#g[A]l)o, 00=updatesu*dummy*o and p0=p[a*ﬂfﬂAﬂ];

then o* is proper, and if we set p1=fix(xp'.pOL?HA]p'ooﬁfﬂAﬂ])

Ax.@lrec Alpxo=ix. (x»WIAlp do . Writing
fun=hv.v=0+¢,po[9ﬂﬁﬂ(fun(v—i))oobfﬂﬂﬂl and
jOy:AV-U=0+l,DOEﬂ?ﬂAH(joy(V-l))OOb?[AH], we have pi=U{funv|v:N},
and we need show only that mfﬂAﬂpl=w7ﬂA]p2 where p2=U{joyv[V:N},
as then xy.2[rec Aﬂpxo=kx.(x*%?ﬂﬂﬂpl)GO=Kx.(x*ﬂgﬁAﬂp2)00.
Observe that as Ax;?ﬂAﬂplxoo is proper the proof of 1.5.5
allows us to infer that ﬂfﬂAﬂp'oO is proper and that
Ax.ﬂ{ﬂﬂp'xoo=Ax.(x*W?ﬂAHp')oo whenever p' is proper and included
.in Py essentially this is so because true and falce are incom-
parable and the choice of branch in if E, then E, else E, cannot
be influenced by whether the environment is p' or Py In
particular, for all vz1
AXFTB) (Funv)yo =Ax. (x*WTL] (funv))o, and
91AH(funv)00+v'=km.m(ﬂ$ﬂAﬂ(funv)oo+v') when 1=v’'<##A]. It also
transpires from 1.5.6 that AfoHABLXOOEAx.(x*ﬂ?HAHL)OO and that
yﬂAﬂLdO+v'EAK.K(H&{AHLOO+v’) when 1sv'<##[A]; by 1.5.7, therefore,
YIAY (GoyO)EWT Al (Ffun1)=W1 AN (Joy1).
Assume that for some v=20
IAl (FJoyv)IEWFTAD (Ffun(v+1) YENTTAl (Joy(v+1)).
Then by 1.5.7 again
ﬂVﬂAﬂ(joy(v+1))=ﬂ?ﬂAHpo[ﬁ?[AH(joyv)GOA?ﬂAﬂ]
EﬂfﬂAHpO[ﬂV[Aﬂ(fun(v+1))OOA#ﬂAﬂ]
=%?HAHQO[(...,AK.K(ﬂyﬂAﬂ(fun(v+1))oo+v’),...>ﬁfﬂﬂﬂ]
=W IAlp (o1 A) (fun(v+1))o A#TA]]
=7 A (fun(v+2))
whilst from this
VTl (fun(ve2)) =T A1 p LWL LD (fun(v+1))o #1411
5m7ﬁﬂﬂoo[ﬂ91Aﬂ(jOy(v+1))00ﬁfﬂAD]

=171 Al (Joy (v+2)).

67

Hence for all vz 0
YTAT (Goyv)EWIAD (fun(v+1))99 A} (joy(v+1)) and by continuity
WTHAHpQEﬁVHABplewfﬂAsz, which establishes the result.?®

We can now confirm that the recursion operator of 1.4.4

has the effect one would expect when applied to abstractions,

1.5.9. Corollary,

For any abstractions ¢jf""¢n’ any distinct identifiers
Ii,...,In, any p:U and any o:$§
AXe (Ap"ux(aridl#l o, e’ /T, 1. . [F1¢ bo'/I 1)0)

(fix(lo"-otfﬂ¢lﬂp"/11]...D?H¢nﬂp”/1n]))

is Ax.2[rec Alpyxo where A is 11::®1 and...and In==

40bserve that for any p’
%?ﬂﬁﬂp'0=(aridﬂ?ﬂ®1ﬂp'/I1]...Eﬂl®nﬂp'/ln],0>, so, ¢ being proper,
ﬂgﬂﬁﬂp'0=¢$ﬂ¢lﬂp',...,?H@n]p’). As erushedl Al y=true we may
apply 1.5.8 1immediately to give the result. A direct proof
using the techniques above even shows that the result holds whether
or not p and ¢ are proper.®

It is to this equation for recursive procedures that methods
for validating algorithms [1] most usually apply. However we wish
to establish not that particular programs accord with what their
writers intend but that once written a program will be executed
properly. Consequently we must descend from these empyrean heights

of abstraction and discuss mathematical models for implementations,

68

CHAPTER TWGO
STORE SEMANTICS

2,1. State vectors,

2.1.1. Abstract closures.

The equations for rec I==9¢ and rec I=% which are entailed
by appendix 1 cannot yield the same results for all values of p,
y and o, as only one involves adding a location to the available
storage. However unless this location is assigned to it should
not affect the outcome of applying the function ¢ except by
providing a means whereby the corresponding closure can refer to
itself. To dispel the haze surrounding the link between these
equations the location and its content must therefore be related
to a closure kept in an environment; doing this should also
clarify the sense in which I::E and I:E are equivalent,

Thus in order to connect x(fFfix(A.Flelp[d/I7))0 with
(Aa.xo(updatea(Flelpla/I])o))(news) we are obliged to compare a
closure having itself in its free variable list with one having
a location instead. Whilom closures were regarded as members of
[E+K+C1°, so that their free variable 1lists did not explicitly
appear in the formal semantics; now we split them up to enable
us to tell which locations may be referred to during the
application of a function. Because these lists are essentially
little environments we take the domain of function closures, F,
to be 0°xU, where certain pairs (g,p :0°xU are such that the
entity Ep performs the same task as some 4¢:[E+K+C]°. The lattice
0 is separated from U in the product to avoid identifying i1 in
the domain V with an unending computation; it does not matter
whether or not the component U is separated (as 2.2.7 will confirm)
but since the environment . arises only when forming a fixed point

0°xU is perhaps intuitively more satisfactory than 0°xU°,

69

Label entry points must be dissected similarly before the
expressions I::E and I:E can be related. By analogy with closures
we might expect an entry point to be in the domain Z°xU, where as
no environment is subsumed under the first component 7:Z consists
of code after compilation and before loading. This model is
accurate for badly-designed languages but it is inadequate for
Pal, in which the standard continuation conceals more of the
state than this reveals. Because labels can be assigned, control
can return to an expression in the program some time after leaving
it., If this happens not merely are the identifiers given their
original meanings but the anonymous local variables reappear:
jumping back into 1+(Z:m:=1; 2), for instance, provides the answer
3. Thus as part of the value of an entry point we must keep all
the anonymous quantities which could be needed on returning
to the expression. Inprinciple all the quantities created since
the program began can be required, so 1f Y is the lattice of
stacks (lists of unnamed variables) the transformation representing
a portion of code must take a member of Y as an argument. Hence
Z is U=»Y>S+A, J is Z°xUxY and, as every nameless variable results
from an expression, Y is E¥*,

As hinted above, proving the cquivalence of semantic
cquations can invelve examining triples ol the [form (p,v,o) having
p:U,uv:Y and ¢:S wherein denoted closures can be made to tally with
stored ones. To aid us we allow p, v and o to be passed as
arguments by the program to the continuation 7:Z7; now the formal
description language resembles the interpreter of Landin [10] recon-
stituted as a compiler, having such valuations as &:Exp>Z>U>Y>5->A
and ¥:Exp>Z>U>Y>S>A. From these the values of Z[I:E] and 2[1::E]
may be derived as Mgpu.{(#¥[]E],p,u) 8@[E]lZpu and
Arpu L¥LE] ,p,0) 82[El zou Tespectively. The other valuations are

also given their earlier significance but different arguments, so

that #[fn()E], for instance, is
Aplsve(Agtpiulor uv1|L* =0 >HElc p! (0 t1)a !, 1), rendl TN()E)p .
Removing the environment and the stack from the continuation enables
Il to be substituted for K and X as well as C, so that now pfres]

is in J*. Because the equations set up by this process simulate

an implementation in which complex parts of the state vector can

be stored by assignment the formulation of Mal in terms of them
will be called its 'store semantics'.,

To record all the locations which may be referred to while
computing we must subject G to the same scrutiny as F and J. One
possible reconstruction of it is 0°xUxYxS, for which S[Alp'u'a'+v
is (F[Al,p",u',0" and 9[I]cpuoc is
E(Ap"oa”, o (Cp"{I1¥1|E §u)o)p'uv’s’ when plIl+1 is (E,p',u’r,0",
but this involves an unnecessary degree of dependence on the entire
state at the time of the recursive declaration. The sole semantic
equation to require a knowledge of the stack supplied as an
argument 1s that for labelled blocks which does so because jumps
need it. In our case, however, the continuation is bestowed when
I is looked up in the environment, not when I is declared, and it
carries with it the existing stack. Hence the third component of
G above is as redundant as it would be in our domain of function
closures, and we can take G to be 0°xUxS, &#[A]p’c’¥v to be
(FTAY ,p",0" and #[I]gpuvo to be £(Ap"u"a".zo((p"[I]+1 |E» §v)o)p’(Y o'
when o[Il+1 is ¢(&£,p',0" . It will be established in Z2.3.8 that
these prescriptions together with variants of those in appendix 2
are 1indeed precisely equivalent to the standard ones.

The equations given in appendix 1 can imitate a storage
allocation scheme which releases the storage requisitioned by a
block on exit from it but not one which collects the currently
inaccessible locations. Now that the environment and the stack

have been separated from the code we can define a function

71

site:L+U+Y+S+T such that siteapvo is true if and only if o is the
final 1ink in a chain of witnessed values from (p,v,0) each having
the next as a constituent. A formalization of this must be left
to 2,1.6; here all we need is the existence of a monotonic function,
novel:U>¥Y+3+L, which is constrained by
Apuo.site(noveZpuo)puo=kpu04N{siteapuo|u:L}+L,faZse. Keeping the
entire environment instead of the current one ensures that
choosing a fresh location in this way will not overwrite one re-
quired on returning to an outer block.

Garbage collection is merely a way of arranging to obtain
locations which cannot be reached from the present state vector,
Its essence 1s independent of particular marking and compaction
algorithms, being captured in our notation by novels:N+U->Y->SoL*:
novels=Avpuag.v=0+{) ,

(Aol §novels(v-1)p({ & §v) (updateadummyo)) (novelpud).

We require also mv:0 and sv:0, which are given by

muv=iAgpud.utl:l+gpuo,
(Aa.oa:l->zp({ o) Sutl) (updatea(uv1)a),7)(novelpuc);

sv=Agpuo,uvliLl+(area(v+idorzp((hold(udld)o) §Ut1)o,T),Lpvo
As the construction of S from V does not depend on choosing standard

semantics instead of the present variety we shall take across the

definitions in 1.,3.1 to our later equations.

Unfortunately if we use novel rather than new in the
semantics of Mal the recursion operator above will cause trouble.
The evaluation of ¥[I]zpus when plIl+i=(E,p",0” might require
adding an inaccessible location to the region of store; for this
novelp'{yc' would be used. At the time of declaration, however,
the stack v’ might not have been empty and so novelp'v’c! would
have been used instead. Since there 1s no reason to suppose that

these locations are identical in such circumstances as those of

2,1.2 this operator differs in 1ts cffect from that of 1,3.1,

72

2.1.2. Example.

Let £, be z=1 inside rec f==E inside E,, E, be
nil aug fnz.fz and E, be nil aug (fx)x=x. Then the location
returned by E, may contain either true or false if the recursion
operator above is used in coenjunction with novel.

4<This example makes use of the confusion in Pal between
selecting components from lists in L* and applying functions: fx
represents the former and (fx)x the latter. It also assumes that
members of L* can be tested for equality by a program,

Take any proper po, UO and Oo’ together with some c0:2°

Define a0=novelp0(<1)§uo)oo, o =updateu010 P =oO[u0/xJ,

1 0’ "1
quxﬂElﬂO(ACDU.i(invertp(arid[u+1/f]))(UTi)), L =t erevertp ,
02=fix(10.01[(EO,D,OJ>/f]) and €1=lcpu.£1fzﬂgp[U+1/z](U+1).
@HEOHCODOUOOO=£1PEC f==E1 inside E2ﬂc1p1u001

=£0($[[E21| C1)02U001

=mv(lpu~fﬂ£2ﬂg1p1[<u+1)/f](u+1))p2(<<51,02))500)01

=$1E2]clpi[<a1>/fjuocz.
Here o =novelp2(<<gi,p2)>§uo)o1 and 02=updatea1<g1,p2)cl.

1

Now set ps=01[<a1)/f], a,=novelp ((Eq,00)) 0y 03=updatea2(€1,pg>01’

g2=xpuufﬂf](xpu.mvglp(<u+1=u+2>§u+2))p(<<u+1|L*))§u+1) and

La=hoV0. g, 0, (¢ EFTHL{L*+1) U)o, .

@![EO]ICODOUOGO=‘sﬂ[(fx)x]] C2p3U002
=gi(52°revertpa)(divertpapl)(<ao)§U0)02
=3ﬂfzﬂ(Czorevertps)(divertpspi[ao/a])U002
SEoLaPatd 0y
=mv(xpu.§3p1[<u+1>/f](u+1))92<<51,p2)>01
=C3p1[<a2> /f]U003
=g,p4(Cay §uydo,
=3ﬂfﬂ(lpu.mvclp(<<u+1=u+2>)§U+2))p3(((a2>>§uc)02

=mv§1p3((<a1)=<a2)>§UO)02.

73

Although novelpz((<51.p2))§uo)01 may coincide with
novelp2<(g1,p2>>o1 it need not do so if Uy is not ¢(). Comnsequently
(a1)=4 u2> may be true or false; when G is 0°xUxYxS or [K+C1°,
however, the program invariably produces ¢rue as its result.®

We might choose to obviate this situation by keeping the
stack at the time of declaration as part of the value of a
recursively defined entity. In practice to keep stacks simply for
this purpose would be inefficient, so as we are endeavouring to
model a potential implementation we shall not do this. Indeed an
implementation would not even retain the full environment but would
content itself with a free variable list, thereby making matters
worse, The next example demonstrates that taking G to be 0°xUxYxS
would still leave us in thrall to the vagaries of novel because a

location required by a declaration could be used elsewhere as well,

2.1,3. Example.

Let E, be g,x=0,1 inside EQ; Ea’ E, be nil aug fnz.fz, E, be
nil aug 0=nil aug gz and E, be rec f==E, inside g:=fz. Then the
location returned by E, may contain either ¢rue or false if the
recursion operator above is used in conjunction with novel,

4The arguments involved in this example are very similar to
those of 2.1.2, so we shall only outline them; furthermore we shall
take Eo, Eiand L to be as before. Now, however, we let u,=() and
pg=arid so that the effect of EO does not depend on which of the
recursion operators of 2.1.1 is adopted.

Set & =novelp (010, a,“novelp (1) (updatea 00),

9, updates(a,,a 20,10, pl=po[a0/g][a1/m],
0= fix (0.0 [CE,,p,0)/f1 , a,=novelp ((E,,0,0)0,,
02=updat902<<£1,p2>>01, p3=02[(u2>/f],

03=updateao(<£1,p2>>02, Oq=update(novelp3(dummy)03)(dummy)GB,

a3=novelp1(0>o

g0:2° we write L, =L, erevertp,; MOTEOVeT we define

and 05=updatea 0o, . As noted above, given any

m 3774

c2=xpu.mvclp(<(u+1>=u+2)§U+2), .:3=)\puc.c2p1(<p[[f]]+1|L*+1,(au)>)0u

and C4=kpu.£1E2HCi(revertplp)(u+1).

AETPgV0o=A T3 EplEypyv0y
=EO(319:=fmﬂcu)p2uocl
=mu(ApUJfﬂg:=fxﬂ€“pi[(u+1)/f](UTl))pQ<<£1,p2))oi
=ﬂfl[g:=fx]]?;4p3uoc2

=mv{ (dummy)cs

4Pa
AL P09,
=mv(xpu.9f‘eugxug2p(<<u+1>]L*>§u+1))p1<0>ou
q@[gmﬂc2p1<<a3>>05.

Recause szteaopl(O)GHAsttealpl(O)Ou=true, we know that d,

is neither a, nor o, and thus that assigning to it does not affect

the properties of g and =z.

GdE T P v,0 =E1(C2°revertp1)(dzvertplpl)(a1,<aa))o

0"0°0 0 5

%ﬂﬂfzﬂ(Czorevertpl)(dzvertplpl[al/z])((as))05

“EolaPylr oy

=mv(lpu.c3p1[<u+1)/f](u+1))02((£1,p2>>01

“L4PgV%y

= *
Lye, (Cp IFI¥1[L* 1, Ca))T,
=2;2p1<012,<<13))0LL
=mvc101((a2>=<a3>>04'

Since sitea2p1<0)ou=false a possible candidate for

novelp1<0>o is a

y 53 hence some novel functions will give

{ u2>=< a3> the value true while others will give it the value

fulse. Had standard semantics been used to evaluate the program
a, would have been newo, and arega,o, would inevitably have been
true, $0 the locations could not have coincided and the program

would have returned a location containing false as its result.®

75

2.1.4. Recurrent program states.

The fact exemplified above, that the novel location chosen
during a recursive evaluation may already 'really' be in use,
suggests that the semantics of #[I]zpvo be modified so that during
a recursive evaluation the state vector (p,v,0) to which we finally
return an answer is kept as part of the state set up for the
evaluation. Thus we take P and U to be UxYxS and [Ides»D°*]xJ*xP*
respectively, denote the third component of p:U by plrec} and
extend the conventions and functions of 1.3.2 to plrec] by
dealing with it in the same way as we dealt with p{res]. By 1.2.7
all the lattices we require remain continuous and all except Z and
0 are slit.

We might suppose that, when p[I]+1=C(E,p",0" and
gl=apruto, (AT Z(m¥ 1) K pP[ID 411 E) §my2) (m¥+3)) (p"[recl+1), 41 1]zpuc
would be Ez'p'[{(p,v,0) /recl{)c*'. Then if site were defined as in
2,1.6 any location selected by novel during a recursive evalua-
tion could not already be in use and therefore might well not be
the location chosen at the time of declaration. For the reasons
of efficiency outlined after 2.1.2 we are grudgingly prepared
to put up with this; what is intolerable, however, is that should
this location be returned as part of p”[I]+1 there is no guarantee
that it will be in the area of p"[rec]+1. 1In fact this point causes
difficulties even in examples akin to 1.4.2, 1in which we cannot
ensure that areaq, o, is true. Accordingly we define
replace=kpUOOdl.<Aa.pZotupuol+(ol+1)a,(ao+1)u)§01+1;
recur=Aipuvo. (AT, c(n’+1)(vEn’'¥2)(replace(m'¥1)(n'+2)(1'+310))

(plrecl+1).

Here plot:L+U»Y>+S5+T indicates which locations are directly

accessible through the environment and the stack 'without passing

through' members of P (so that if plotapuostrue, siteapud=true

76

also)}; its precise definition will be given in 2.1.6. Now
FlAle'a’+v becomes (F[A]o(AL"p"v" . recur;p"(p"[HTAl4V]IV1|EY),p’,0"
and 9[I]zpvo reduces to
(A8.8:G(8+1)((S¥2)[lp,v, /recl) (8+43),cp({ & Bu)o) (plIl+1).

The novel store definition of Mal given in appendix 2 is
that suggested by these equations subject to one minor alteration,
Rather than preserve the entire environment in function closures and
in the denotations of rccursively declared identifiers (which helong
to F and G respectively), we kecep a free variable list [22] built up

with the aid of the functions rent and torn introduced in 1.5.1,

The utility of this interpretation of recursion lies in
the theorem to be proved in 2.5.9, under which the result of a
program is independent of the choice of novel function. The
equivalence between it and the standard form holds only when the
syntax of declarations is restricted in such a way that variants
of the proof of 2.6.8 show that all the operators discussed in

this section have the same effect.

2.1.5, The conservation of the environment.

Much of the awkwardness in store semantics arises from
declarations, which in Mal express a wide range of meanings within a
small syntax, Whereas the standard treatment distinguishes sharply
between the environment returned as the result of a declaration
and that in which the succeeding expression is evaluated, here
our wish to model an interpreter which always has the entire
state at its behest militates against such a distinction. The
need for it arises from the intended meaning of A, within Ay, for

on emerging from A, the values attached to identifiers by Ay

will still be lurking around and may obscure parts of the

original environment, We could remove these after-effects of AO

by using a function akin to revert, but instead we cover them
with a layer from the original environment except when Al has
already done so. If the original environment yields only an
empty list of denoted values there is nothing with which to
conceal these accretions, but nor is there any reason to wish to,
as in a correctly composed program no identifier will be used
without either being declared explicitly or appearing in the
library environment. Thus it is enough to set
trim=k&popi.<kI.(~I:fﬂA]§1ﬂAﬂA#plﬂIH>#p0ﬂIH>0+(revertpoplﬂlﬂ+1),<))
§p1ﬂIH>
§(plﬂresﬂ>§<piﬂrec]>.
Discarding the superfluous elements from the environment by

using Ahp .divert(revertpopl)(snipﬂﬂﬂpl) instead of trim would

01
in practice be more efficient and would give rise to less complex
equations for multiple declarations; furthermore it could be
shown to be equivalent to the corresponding notion in standard
semantics by the means we shall adopt in any case. We have
chosen the more extravagant approach above because it extends
readily to the stack semantics of 3.1.1, 1In this there are no
free variable 1lists attached to closures so any function created
in i which requires to refer to identifiers declared in A, must
do so by inspecting an omnipresent environment in which their
values are preserved.

The equations for declarations thus result in every new
environment layer being piled on top of its predecessors, thereby

masking them, The constituents A A of A, and...and An’

127" n 1
however, should be evaluated in the environment pertaining on
entry to the block, which must therefore be retrieved from under

whatever flotsam there may be. The primitive intended to carry

this out is used even on the set of values associated with

78

I when I=E is a constituent of rec (A, and. ..and) because
although I=E leaves the environment unchanged preceding
declarations may not do so. Accordingly we set
cZip:AApOpl.(AI. I:fﬂﬂﬂﬁﬁﬂﬁﬂn#poﬂlﬂ>0+(Pevertooplﬂ1ﬂ¢1),())§01HI])
§<01Hresﬂ>§<plﬂrecﬂ).
Recovering the desired denoted values after carrying out all

of A ,An is no easy task, as they may lie under refuse generated

1,"!
by intermediate within declarations. To dredge them up we carry
the environment that they create through to the point at which in
standard semantics conserve would make them operative. Accordingly

we take pick UAl and.,.and A] to be

Ap*p.(AI.(I:J[Ai(n)lﬂifﬂAi Tat(p*+1)[I1 >0 revert(p*2)p[I]+2) ,

(n)i

LA]

I:f[Ai(ﬂiﬁﬂﬂi(n)nﬂA#(D*+n)ﬂIﬂ>O+(revert(p**(n+1))pﬂlﬂ*”

nin
O)spl I

iCplres]y i¢plrech ,

Here we have taken over 7 from 1.3.5, as it is used in store

semantics as well as the standard variety to leave an order of

evaluation unspecified. In terms of the k¥ of 1.3.5 we define

deal:0°*>[U*>71+7 by

deaZ=AE*wDDUO.(An.(E*+i(n)1)(kol.5*+i(n)2)(Roz-(E*+i(n)3)(ADS-
...(lpnun.w<po,oi,pz,pg,...,on>pn(ﬁun>#uo+?0ﬂun,uﬂn
e)Pg)0,00,)) (FEF)p v,

This can be used to set up the analogous function for expressions

by writing mete=A£*L.deal&* (ho*.z),

As an environment created by applications of the primitive

functions defined above may be of an inordinate size it is useful

to have some means of comparing the shapes of two members of U, §

and p, obtained by transforming programs in accordance with the

rules of 1.4,6. To this end neat is defined by

neat=x{ 5,0 JAWELIF=#pII]|I:1dela (461 resl=#p[rest)a (#6[recl=#p[recl).

79

2,1,6. Tracing algorithms.

Much of this dissertation is concerned with the properties
of pairs of values which arise in the course of computations that
are avowedly equivalent. The halves of such pairs will both lie
in one domain or, failing this, in two domains which will be de-
signated by identical letters, so that the first half can be re-
presented by the same Greek character as the second. Consequently
when dealing with continuations, say, we shall label a typical
member of Z°xZ® by £ and assume without explicit mention that the
first and second components of 2 are £ and ? respectively.
Analogous rules will apply to all other products of corresponding
domains, even when the elements are subscripted; thus éo, for
instance, will be that element of E°xE® which could equally well
be written as (éo,éo).

Of particular importance in store semantics is the lattice
P of state vectors each comprising an environment, a stack and a
store. As a typical state vector is denoted by m whereas typical
members of U, Y and S are denoted by p, v and o respectively,
henceforth it will be convenient to identify = with (p,v,® ,
thereby giving p=m+1, v=n+2 and o=m+3. This convention will
extend also to subscripted and accented variables, so that
underlying all that follows will be such unstated equalities as
ﬁ1=<ﬁ1,ﬁ1>=<(ﬁ1,01,61>,(bl,b

this rebarbative usage is that it will make our notation less

1,61>). The sole justification for
prolix than would otherwise be the case.

Qur initial application of these conventions will be to
devise a procedure for testing values & and & to see whether they
can be witnessed at parallel points in state vectors f and % which
have been created differently (by using two kinds of declaration
or storage allocation, for example). Amongst these points are the

entries in the environments and stacks, which can be lined up by

80

means of

hoten=A0p M{M{1<vs#B[TIa1<vs#d[I]+0=C A1 I1¥v,B[I]+V) , false|I:1de}
v(i1svs#p res]azcv<#dl res]+Q=([resl+v,pl resl+w ,false)
v(ilsve#g[reclalsvs#p[rec]+&=C 8] recl +v , 5[rec]+v} ,false)

|viN};

gyven=i00 V{1gv<#0A1<vs#0+a=C J+v,0+V) ,false|v:N}.

A1l the overt pairings between # and T can be obtained using

yelept :[W°xW°1+[P°xP°]1+T, which is defined by

yelept=Aif.hotenlipvgyvenlilvgyvenl(§+2,8+2) vgyven{ §+3,8+3) .

Here we take W, the domain of witnessed values, to be

L+B+L*+J+F+G+J+P so that label entry points and return links

activated by res are placed in different summands signified by J.

The total tally of pairs is found by proceeding from these

values through the states with the aid of an algorithm which is

like that used in principle during the marking phase of a garbage

collector. Each pair reached gives rise in turn to others; for

instance, two loccations yield their contents while two function

closures provide the members of thelr free variable lists., To

avoid returning the result . when, say, Q:L°xL° and &:5°xS°

are such that (holddd,holdad) =((& ,(@) we effectively 'mark off'

witnessed values when they are encountered by introducing an

integral parameter v Furthermore we distinguish between locations

1°
accessible without passing through members of P and those requiring

a route through a member thereof by means of a further parameter

v Accordingly we utilize the algorithm preovided for seen, which

0"
is intended to give all the pairs witnessed from any particular

pair by searching to depth Vi this it achieves through

81

= < Fa =/\
seen Avoviﬁoaiﬁ.vl 18, =6,

-

1 1
QI:BXB+faZse,

O, tLvd :L»seenvo(vl—i)ﬁo(accessalﬁ)ﬁ,

&1:L*XL*»\@seenvO(Ul-i)&OQQﬂAgyvenazﬁl|GQ:NXN},

61:JXJ¥V{seenvo(v1—1)ﬁO& f

2
A(hotenw2(61+2,® +2)

1
vgyuenﬁz(ml+3,m1+3>AvO<2)|aQ:wxw},

&1:FXF+\ﬂseenvO(vl-l)&oazﬂAhotenQQ(61+2,51+2

{GQ:NXN},

1

B :GXG+\H(seenU0(v1-1)&OQQﬁAhotenQQﬁo

Vseenvo(ul—l)&OQQﬂOAyczepthﬁoAv <1)

Aﬂ0={(m1+2,(),w1+3),(m1+2,(),

Q1:JXJ¥V{seenvO(v1—1)QO& R

2
o ¥ 2

A(hotenQQ(w1+2, 1

0
1+3))]m2:NxN},

ngUQH&Q(51+3,®1+3)Av0<2)|&2;wxw}’

B, :PxP-Viseenv (v ~1)8 0,08 Ayeleptd, B av <1 |f,:WxH],

false.

In fact as we extract the contents of locations by means

of access=)0F.((B:L>(arealf+holdds,8),aY, (Di:l+(areaddrholddd ,H),0),

seagnv_V
01

B,8 % is actually independent of § and O although the

predicate of 3.2.1 1is not. The nature of seenv_ v, 0 0. % when

017071

&1:GXG must remaln inscrutable until 2.6.8.

We gather up all the values which will be witnessed when

this procedure is applied indefinitely using
kent=AUQﬁ.Vﬂ\Qseenvvlﬁ&iﬁAchQPtalﬂ|vlzN}|®1:NXN}.
This in turn enables us to define
site=Xiapvo.kentdla,w {{p,uv,0) ,{p,u,0))aa:l,

plot=hapuo.kenti(a,w{{p,v,a) ,{p,uv,0)) Aa:l and

gpot=iapuo.kent2(o,m ({p,{) ,0 ,{p,{),0)ra:l, in which

the

predicate o:lL cnsures that only proper locations yield proper results.

82

Although kent and its derivatives are monotonic there 1is
no reason to expect them to be continuous, as they are constructed
from disjunctions of infinite numbers of predicates. That they
do indeed provide discontinuities is demonstrated by the sequence
{¢”|n20} such that ¢ ,=)é.arid[§/I] and

¢ =A6.arid[<§[IH(gorevert(arid)),¢n6 (»Y /1Y for all »=0, When

n+1
the program I::I has 7 as its continuation,[J¢nl is an appropriate
environment for it; moreover, as might be imagined, for every
a:L kent 1s such that
kentof a0 (], L,0) ,empty) ,(Uq)ni,() ,empty)) =false,
Notwithstanding this, induction on n shows that whenever 20
seenO(n+1)(a,a)(w,w)((¢nL,(),empty),(¢nl,<),empty))=L for every
w:W such that yelept{w,w ((¢nl,() ,empty) ,(cpnj_,() ,empty)) =true, S50
that Ukento(a,a><(¢nl,<),empty),(¢nl,(),empty))=¢ for all a:lL.

It might be hoped that this discontinuity could be elimin-
ated by the use of different methods of enforcing termination
when tracing the locations ¢(4&,% in a pair (43,3 having
(hold@8 ,holda® =((& ,(&); among the more obvious of these methods
would be that discussed in 3.6.3. Unfortunately all such expedients
are doomed to failure in the present case. To see that this is
so let stte momentarily be a continuous function formed in such a
way that for every a:lL and p:U
sttealarid{9]I] (L erevert(arid)),p,))/ I1)0 (empty)=siteapl) (empty).
By induction on = sitea(¢nl)()(empty)=sitea(¢OL)()(empty), $0 con-
siderations of continuity dictate that
sitea(u¢nl)()(empty)=sitea(¢ol)()(empty). Yet if site is to trace
precisely the locations which can be accessed siteu(¢0a)()(empty)
must be true while sitea(¢0(dummy))()(empty) must be falsej site
being monotonic, sitea(¢01)()(empty) has therefore to take the

value t. In consequence sitea(llp 1)) (empty) is 1 although it
142

83

should really be false.

A similar fate befalls functions obeying the constraint
imposed on novel in 2.1.1, for they may be monotonic but they
cannot be continuous. This can be established by noting that
any monotonic function novel:U-»Y»S»L satisfies
novel(s a)() (empty)3novel(d 1)C) (empty) for every a:l and for all
nz20, so that if no location o satisfies a=novel(¢na)()(empty) then
novel(¢nl)()(empty) must be L, Hence when novel is constrained as
in 2.1.1 Unougl(cbnl)() (empty) takes the value 1 but
novel(|]9,1)¢) (empty) is a proper location provided that L contains
three or more elements.

The root of the discontinuities in kent lies in its
reliance on a domain U which distinguishes between the environments
L and aridli/1]1. The first component of this domain, IdesD°%*,
could be supplanted by Ide»D* only by building a different value
L into J and G, the members of which can be affected by applying
fix to environments as in appendix 2. Thus were the first com-
ponent of U to be Ide~»D* taking J to be Z°xUxY would give
(A7 ' (fixc(Ap’.aridl{C,p',OY/I0))0 (empty) Y (BL1]) (Lerevert(arid))
the value 1, whereas taking J to be Z°xU°xY would yield a reason-
able rendering of &[I1::I]g(arid){}) (empty). Structuring J as
29%U°xY, however, would again give rise to a discontinuous version
of kent even if Ide»D* were to take the place of Ide«D°*. In
short it is necessary either to form environments in a finitary
manner which avoids using fZxz (as will be done in 3.1.1) or to
abandon any prospect of making kent continuous. The latter course
of action will be adopted here despite the fact that it entails
shoring up the theoretical foundations of novel store semantics
for the reasons discussed below.

Because appendix 2 makes explicit mention of novel and

recur, neither of which is a continuous function of the parameters

84

drawn from U, Y and S, the existence of the entities required
therein cannot be taken for granted., On inspecting the semantic
equations 1t becomes evident that the only demand made by novel
and recur is that the domain 7 contain continuations which belie
their title by failing to be continuous, whereas the equations
appear to presume the continuity of the functions only when fix
is applied. Since fiz is required to account for recursion and
labelled blocks, to describe while loops and to set up the
valuations, the spaces which must comprise solely continuous
functions are Z+7Z, U-U, [Exp+C1+[Exp+0] and [Dec+0]>[Dec+0], Thus no
difficulties are encountered in the equations if Z is allowed to
contain discontinuous functions provided that 0 remains equal to
Z+7, the space of continuous mappings from Z into itself. Although
Z will still be written as U»Y>5-+A, in the context of novel store
semantics it will be understood to have some members which are
not continuous. Considerations of cardinal arithmetic preclude
identifying Z with the set of all mappings from UxYxS into A,
but in 2.4.4 Z will be given a form which is sufficiently large
to encompass all the continuations necessary and is also small
enough to permit the construction of the reflexive domain W.

Thus the introduction of novel [which is monotonic but
not continuous) entails making a minor modification to the lattices
which provide the interpretations of programs. This modification is
sufficiently striking to make it desirable to distinguish between
novel store semantics, which is illustrated by appendix 2, and new
store semantics. The latter invokes new where the former invokes
ncvel and makes use of a direct translation of the standard valuation
% into store semantics instead of the more complex treatment of 2.1.4;
further details of the difference between the two kinds of equation

will be given in 2.2.7.

85

The intention of spot is to isolate precisely those loca-
tions which can be accessed without passing through an inter-
vening stack, as they alone among the locations revealed by plot

can be assigned to by a program,

2.1.7, Proposition,

Let v, <2,8, and f be such that seenvova&aa2ﬁ is proper for

and @,. TIf v Vos &, and mi satisfy

every v 1 g

3

7 o = + 0 =
seenvoleowlﬁAseen1v2w1m2ﬁ true then seenvo(vl vz)&DwQﬁ true.

<The proof proceeds by an induction on v, which we shall

only outline, When v,<1, for all Vp<2s Vo &O, Ql, &2 and #

”~ A ~ AI\ = Fal .
seenvovlmomiﬁ seenivzwi&Qﬁaseenvovi&o&lﬁ 0, Gzoseenvo(v1+v2)mo&2ﬁ

Assume, therefore, that for some v, and for all V,<2, 62 and %

such that seenv_v Qaa2ﬁ is proper (for every v

oVs and wa) we have

3

seenvoviﬁo&iﬂAseen1v2ﬁ1&2ﬁaseenvo(v1+v2)wo&Qﬁ for all v, , O,

and &1. Take any suitable vO,Q2 and £ together with some Vi ﬁo

and &, which are subject to the constraint

seenvovlﬁoalﬁhseenl(v2+1)&1&2ﬁ=true.

If GQ:L or ®_:L, seenliv i (access&gﬁ)ﬁ=true, so by the in-

2 271

duction hypothesis seenvo(v1+v2)Qo(acceSSQQﬂ)ﬁ=true and by the

definition in 2.1.6 seenvo(v +v2+1)ﬁo&1ﬁ=true.

1

If §,:dxJ, seeniv 8,8 f=true for some O, 6 satisfying

27174 b

hoten64(6 ¢2,®1+2)=true or gguen64(61+3,&1+3)=true. It is only

1

possible that seenv ,.0,f be proper for all v, and &_ if

oV3¥3¥s 3 3

seenv v 0.0, % is proper for all v, and & as the definition of

0737374 3 3°
seen reveals, Accordingly we may apply the induction hypothesis
to §,, obtaining seenvo(v1+v2)&0&4ﬁ=true and, since
seenv (v +v,+1)8 G,% is proper, seenv (v +v, +1)8,8,=true.

We can also have &2:L*XL*, &2:FXF,02£xG or QQ:JXJ,for all

of which validating the step in the induction resembles closely

86

the paragraph above. Because seenl(v1+1)®1B2ﬂ=true, however,

we cannot have ©,:PxP. 1In consequence we may conclude that,

2

when v, &, and % agree with the premises of the proposition,

c* T2
seenv v, 0,8, Mseeniv B, 0, f2scenv (v +v)0,8,% for all v,, v,, b,
and @1.>

A similar result can of course be established if

geen?2v 0,0.% 1s true: should geenv v, 0 O f be true in this case

27172

seenvo(vl

2.1.8. Corollary.

0°1°071

+v2)ﬁo&2ﬁ will be true whatever the value of v

Oo

Let f be such that seenOvamsazﬁ is proper for all v, and

&, whenever cheptﬁ2ﬁ=true.

3

Then for all v <2 and &, if there

0

are v, and &1 having kentl@1ﬁ=true and seenv

1

kentv0w0ﬁ=true.

<For any v v, and &

0* 73

3

seenvovstQQﬁ

0V18084

is prop

0
f=true then

er whenever

chept&2ﬁ=true by a trivial induction using the structure of

seen. Suppose that seenv v, 0, f=true for some &

0"1 01

kentlmlﬁ=true and for some v

1

and @0. Then seeniv

some &, having yaleptm2ﬁ=true, and by 2.1.7

2

1

1

A = N = I
seenvo(v1+v2)woa2ﬁ true so that kentvowoﬂ true.

having

w162ﬂ=true for

87

2.2, Inclusive predicates.

2,2.1. Cyclic relations between values,

As a prelude to proving that the standard equations for
rec I==E and rec I=E are equivalent, we now start to verify that
the description of Mal suggested by 1.4.5 is similar to one
vielded by a form of store semantics which uses new., A further
result will relate this to the form using novel, which gains 1its
significance from the discussion of 2,1.1. Because we prefer
not to specify the ultimate domains to which continuations map
their arguments the exposition will be couched in terms of a
predicate ¢ on pairs, the first and second elements of which
belong to the final domains for standard semantics and for store
semantics respectively; thus were these domains to coincide one
possibility for a would be the test for equality. Though we need
not assume that these domains are the same we can identify them
both by A without fear of confusion; similar remarks apply to all
the other lattices, such as U, Y and S, Economizing on names in
this way allows us to use the pairing conventions of 2.1.6.

Two programs, one evaluated under standard semantics and
the other evaluated under store semantics, might be deemed to be
equivalent if for every suitable pair of inputs the resulting
pair of answers in A°xA° satisfied a. As we are dealing not with

computing mechanisms but with functions, non-terminating programs

can be subsumed under this provided that a{ 1,1} =true. The standard

entity set up by a compiled program which is ready to be executed
is a store transformation 6:C°; the comparable notion in store
semantics is the entry point (g,p,uv :Z°xUxY., Accordingly we seek
a predicate e on (°x[Z°xUxY] such that e(8,(z,p,0) is true only
if a(86,7pud 1s true for every appropriate pair 8:5°xS°. It is

plain that not all pairs can be appropriate, for when m yields a

stored label the equivalence of the two interpretations of goto m

88

depends on the contents of the relevant locations. We must there-
fore also find a predicate s on $S°xS° to relate the contents of
locations which tally; then ol 8,(z,0,»)>Alal 66,L00 |56},
Suppose that one lattice L is adopted by both the models
we are currently considering, We can define a projection r, of
the domain V for store semantics into that for standard semantics
by r,=A8.8 |BUB [L*U(B:Z°xUxY+1,8:0°xU>1,1), where L in C and : in
E+K+C are used in the conditional expression; we can also define
a projection q, of the standard ¥V into itself by
q,=AB.B [BUB [L*U(B:C°+1,B:[E>K>C]1°+1,1), Let & be the functor
on stores introduced in 1.3,1, If 8:5°xS° is a pair such that
Aa,areaal=Ac,.areaald, #5+2=#3+2 and #6+3=#3+3 and if
NVIB=C holdad holdad) |alvgyvenfl 6426643 ,34250+3)
+B=RvB:COX[ZoxUxY TvR: [E+K+CI°x[0°xUT, true | B}
is true, then $q 6=6r 0 and for any new function
area(new(&roa))6=area(new(5r06))6
=area(new($q06))6
=area(news)s
=Alareaad|a:L}+L,false
=MNareaod|a:L}+1,false.
Hence newoﬁro satisfies the postulate on new functions of 1.2.1
and new(®r 0)=new§ when 6 and 3 are related as above. We can
therefore take newodr to be the function referred to in new
store semantics and demand that the equivalence between locations,
{8, be d=aad:LA&:L; from now on stores 6 and 3 corresponding
in the manner above will have I newd,new?d =true unless newé and
newd are both 1 or both 7.
Although the course of a computation depends only on the
contents of locations within the area of store we demand that in
equivalent stores all the locations hold equivalent values, as the

semantic equations do not proscribe access to locations outside

89

this area. Were we to amend the equations or to introduce more
sophisticated predicates akin to those of 2.4.1 we could

weaken this requirement so that only locations in the store area
were compared, but under our present circumstances we insist that
quﬂ{(areaddAaread6v~areadéa~area&5)Av(hold&é,hold&ﬁ)|Z@}

for all 8:5°x5°,

Here v is intended to relate pairs B8:V°xy® in such a way
that they produce matching effects when used in their respective
computations, so that pairs of values which are read into (or
written from) equivalent stores will also be subject to it.
Accordingly we must also have
sBo#842=#3v 2AHG43=#043ANgyvenBl 6428643,8425543) ~vB, true|BR].
Since the effect of a stored label entry point may be to change
the flow of control we expect that if 5:C° and B:Z°xUxY then g
will be such that vEseB.

The recursion operator for nowvel store semantics provides
a valuation & which may alter the area of the store whereas
standard semantics does not. To ensure that the areas we compare
remain identical, in new store semantics we eliminate replace
and take [Alp’c'+v to be
(TLATe(hzpMuo (AT (¥ 1) (Co"[HLAT yu]+ 2> §mv2)(m¥3))(p "l reclv1)),

tear [Alp',oh

when 1<v<##{ Al.

2.2.2. The information yielded by projections.

The connection between ¢, s and v proposed above entails a
circularity in their definition which cannot be eluded by an
appeal to the Tarski fixed point theorem [Z24) since no function havin
them as a fixed point can be monotonic. We use an induction rule
like that of 1.3.1 to build them up alongside the reflexive

domains. In passing from Pal to Mal we have altered D but not

90

V, so the form of this rule remains the same even if its content
is fresh. Tt is also valid for store semantics, since we extend
to functors and projections the convention that the domains used
therein have the names of their standard counterparts.

Our intention is to get predicates which at each stage
in the iterative construction of the two lattices labelled V will
relate values in one to values in the other. FEach predicate Vv
will add to the information yielded by the one at the stage before,
v in such a way that the entire sequence will reveal all that
we want to know about the values. Owing to the presence of per-
fect information at every stage if @:BXB, we can assert that in
this case vné is b8 where b is a given predicate on BxB., We shall
tacitly assume that » is the identity but there is no reason to
do so: we might, for example, wish to prove that one program acted
similarly to another which interchanged true with false and A
with v and which set ~ before the premise of every loop or con-
ditional clause, when »(true,false) would need to be true and
b true,true) would be false, Should B be in L*xL* we know like-

-

wise that vn§ is R=R since we have taken 18 to be &4=3 whenever
Q:lxL.,

It 1is less easy to decide on the nature of v (1,1,
although as gi=1 for any injection g our discussion of information
suggests that vn+1(¢,¢)=vn<L,L> for all n., If we take our initial
projection g, to be A8.B8|BUB|L* and stipulate that vésvo(qoé,qob
then vo<¢,¢) must be true as there is presumably some (6,(Z,p,u)
with v(6,(z,p,0) =true. There 1s, however, no need to choose this
particular initial projection as other possibilities give rise to
the same domain V; in particular this problem might be circum-
vented were the standard g, to be AB.B|BUB[L*U(Bid+L,BiF+1,1) with
1 belonging to C and to E+K»C in the first two consequents of

the conditional expression. Furthermore though we are prepared

91

to countenance the possibility that the final answer in A given
by a computation might be 1 we permit improper intermediate
results only if an error has occurred. Accordingly we take
Un(l,i) to be 1 and vn(T,T> to be T in the domain T, and we use
a set of projections which is not the most obvious.

There is a natural candidate for that part of this set
which is derived from the standard domain V, since we can simply

take the g, of 2.2.1 and define ¢

Tp4q tO be 9qn when nz0. Loosely

an=q0u3qnujbn for the functors 3 and # suggested in 1.3.3, but in
fact Eqn=AB.B:B+B,B:L*+B,B:J+(an)°8,6:F»(eqn+!qn+cqn)°6,1; as
Eu?qo the postulate about V in 1.3.1 ensures that AB.B=llq,,-

In store semantics we might expect the initial projection
to be AB.B|BUB|L*I(B:d 1,cut(B¥2),cut(B¥3)) ,B:F L,cut(B¥2) ,1),
out of which could be built other mappings using #, ® and ¥,
functors for Z, U and Y which will be defined in 2.4.1. This
would not truncate V correctly, however: Eqn°8, say, somehow
‘includes' (Eqn°c,ﬂqnp,§qnu>, because the environment and stack
of the latter correspond to ones sealed into & in such a way

that they cannot be affected by applying €¢_. Taking {(CZ,p,W
q, q

n+1
to be (Eqn°c,p,u> would give a more satisfactory likeness, but
would nevertheless remain inappropriate, as when the code part
zqn°c was supplied with the arguments p and v it would yield
Ao.ﬂqn(c(mqnp)(anU)(ﬁqnc)), or zqngpu, although only the state
transformation Aa.ﬂqn(cpu(sqna)) could hope to emulate
Ao.ﬂqn(e(ﬁqno)). Thus for every projection g on V we take €4 on
Z to be Arpu.Bgerpuesdg and 3q on J to be AB.(&€g®(B¥1),B¥2,B¥3) .
The continuation supplied to a compiled expression in
store semantics is expected to have the same environment as that

provided to the resulting state transformation. Moreover the

resemblance to standard semantics suggests that its stack will

differ from the one originally given by having an extra element

92

at the top, This addition alone is compared with the expressed
value returned in the standard equations, so the projection
needed for Z, g, is AZpuMgoelp(u=0)+u ,(€g(u¥l)) Butl)edg, whilst
that induced on 0°xU, #q, is AR.((g Rg)°(B¥1),8¥2), Here we
have € g=Ae.c:l»e,ge as E=L+V and

Br=)0c.(da.{ (o¥1)a¥l,qg((o¥1)as2))) §g*(o+2)Eg*(o+3) as
S=CL=LTxVIIxV*xy*,

The appropriate truncations of the space of stored values
are therefore obtained by taking q, to be
AB.B [BUB [L*UCB: 0 1,842,843 ,B:F>(1,842 ,1). As before q , =Pq_
and vq=qousqu15, but now ¥4 and Fg modify only the first components
of their arguments. The proof that AB.B=an requires us to verify
that an=AB.fix(ﬂU(B|N) when ¥ is the original functor for W,
the domain of witnessed values, in store semantics; the details
will not be given here since those for a more interesting variant
may be found in 2.4, 7Z,

Having decided how to regard »(.1,1>) and what information 1s
available to the predicates at each stage we can at last provide
recurrences generating them. The essential relations between
stored values are given by
v =AB.B:BxB>bR, B L*xL*>#B= 4B 18v~gyventR |8}, B:IxIvB:FxF and
v, =M Ba(Bidxde BLBiFxFor B, true).

These can be explicated using others, the formation of which
is reminiscent of the inverse limit construction for V:

e 1=A€.€:LXL+Z€,€:VXV+vn€,faZse;

n+

sn+1=A6dN{(area&dAarea&5v~area&6A~area&6)Avn(holddﬁ,hold&&)|Z&}

AGY2=#34284643=104 3N gyvenBC 6425643,0425043) »v B, true|B);
e M8, 0,00) Aa (Tqg 86.&q rovd [s 8,

ko =hk T, Ne (Bg k€,&q L,p,(8) 50) |en+1s};

fn+1=1(¢,(€,p)>J«{kn+1(AE.an¢EK,(%qn(E(kanurevertp')),divertp'o,v))

'
|kn+1(K,(c,p , W 1,

93

Only in those predicates which involve applying the arguments
as functions is it necessary to truncate them; indeed when the
arguments are in L (as they are for s8, say) even this use of the
projections can be eschewed. To extract all that these relations
can tell us we therefore define the countable conjunctions
v=rB.Av B, e=).Ae &, s=M8.Ns, 48,
c=1(6,(;,p,u>)vﬂcn+1<e,(c,p,u)>, k=K(K,(C,p,U>)y\kn+1(K,(§,p,U>),
and f=k(¢,(g,p))¢\fn+1<¢,(£,p>). We allow for the possibility that
A°xA° may depend on V°xV® by cutting down its predicate to an
appropriate level gt each stage; hence we also require a=lﬁqﬁan+16.

For instance, were A to be S we might take ﬂqn and a__.,

to be éqn

and A8.8=C 1,1} v8=(T,T +true,s & respectively, since these satisfy

n+i

the prerequisites of our next few results.

2.2.3. Lemma.

Suppose that a,f1,1) =true, a16 is always proper, and if

ne1B20, B and v Bov . ((q, xq,)B) for all B:v°xy° then a

~

v a

8o 8
n+2 n+1

Py . o ~ oo, [s] [e]
and an+103an+2((ﬂqnxgqn)o) for all 6:A°xA°. For every member

of the relevant domains and for every n=0,

o~

(1) v,,,Bov B and v Bov . ((q,xq,)B);

P ~ ~ & e g .
(ii) “n+257%n+1"° and en+1838n+2((eqnx qn)E)’

(iii) s, 635n+18 and s 8os (&g, x®q 18);

+2 1 n+2

(iv) cn+2<9,<c,p,u>>:cn+1(6,<;,p,u))

and cn+1<8,(c,o,u))3cn+2<¢qhe,<¢qnc,p,u>>;

(V) k(KT p w0k (kT 0,00

and kn 1(K,{L,p,u)) 3kn+2(kqnx,(hqni;,p,u>> :

+
(Vi) F (0. CE.0 of, (o.(E o)
and fn+1< b, E,p)) :af‘n+2(.fqn¢,jqn(E,p0) .
4Manifestly if v1§=true v0§=true. On the other hand if

v0§=true then vi((qOXqD)§)=true unless, perhaps, é:JXJ oT B:FxF.

Should B:JxJ, vl((qOXqO)§)=cl(1,(1,%*2,B¢3>)=true as €q 1=1 and
al(l,L>=true; should B:FxF, vl((qOXqD)§)=f1(1,(l,§+2>)=true as

F7 1=1 and a,{1,1=true. Hence (i) holds for n=o0.

0

Now assume that (i) is valid when n=m for some m>0 and
that (ii) to (vi) are valid whenever m-12nz=0. We shall show that
(i) holds when n=m+1 and that (ii) to (vi) hold whenever mzn=zo0.

For any €:ExE, by (i) and the definition of q,,

é:vméae £ and

e Ea~g:LxLovw
m m+1

m+2 +1

A~€:LXL:vm€:vm+1((quan)é)aem+?(thmqum)€). As E=1€ 1if

F~3

£
em+1

g:LxL, (ii) is valid when n=m.

The proof that (iii) is valid when n=m is similar to that
for (ii) except in that use is made of ﬁqm rather than €q .

Suppose that cm+2<8,(c,p,u)>=true and that sm+13=true
for some 8. The paragraph above shows that sm+2((QGMX£qm)6)=true,
so, Wwriting for convenience 6=«¢qm+18(ﬁqmﬁ),Eqm+1cpu(6qm6)>,
6=(8q . ,(9(®q 6)),9q ., Cou(dq 5) and a,, .0=true as q_. ,°q =q . Now

a 82a Boa
m+2 m+1 m+ 2

a +4f€qmed,£qm;pua>:true and cm+1<e,<c,p,u>>=true.

((Aq xqq)0)>a ., ((dq _xAq)6); hence

m

Conversely, if ¢ (8,(r,p,0) =true and sm+26=true then

m+1

3 8=true, SO a (ﬁqmeé,Cqmcpua>=true and am+2(¢qmed,¢qm§pua)=true.

m+1 m+1

Since 8 is any suitable pair of stores cm+§¢chﬁh(¢qmc,p,u>)=true
and (iv) follows for n=m.

For any (k,(z,p,0) :K°xJ,
km+2(m,(c,p,u))Aem+153km+2(x,(c,p,u>>Aem+2((¢qu@qm)e)

:;cm+2(1iqm+1r<(03qmé) ,(kqm_l_ll,’ .p . (e qmé) U)

=Ve) (ﬂq

o1 K(Eqmé),(tqm+1c,p,(€qme)§U>)

m+1

3cm+2(kqmr<(€qmé) SRq T,p A€ qmé) §U))

acm+1fkqnf(®qmé),(%qmc,p,(eqme)§U>)

:om+1(ﬁqmmé,<ﬂqmc,p,(é>50))

whilst

95

km+1(K,(C,p,U))Aem Eka+1(K,(£,p,U))Aem £

+2 +1

ce L (Bq KEXRG, T, E) §U))
acm+2<hqué,(%qmc,p,<€)§U))-
Hence the validity of (v) when n=m follows from that of (ii) and
that of (iv). That (vi) holds is similarly a direct consequence
of (v).
Finally, for any 8 in JxJ or FxF

~

vm+QBD(B:JXJ*cm+QB,f B)

2(B:dxdve B.fF, B

m+1

m+ 2

~

oY
m+1

D(B:JXJ+cm+1B,fm+1B)

>(Bixdre . ((Fq,Fq,)B).f

m+2(jmefqm)B))

Sv . ((q)8) .

m+ 2 m+1xqm+1

and by induction the result is proven for all n.»
A predicate a will be said to be 'inclusive' if when-

ever {6 |m>0} i i 6 28 20 5 oa(lJd).
{ ml } is a sequence with 6,,.26, for all m20 Aab_ s,)

2.2.4, Lemma,

Suppose that for any n20 if » 1s inclusive a ., is in-

clusive; then v, ¢, ¢, ¢, k, f and a, defined as above, are in-

clusive.
4<We shall show first that v, is inclusive for every n=n.
Certainly, if {Bm} is an increasing sequence p@OBmavO(UBm) and

v, is inclusive.

Suppose that for some = v, is inclusive, so that a1 is

inclusive and by trivial calculations e, and s, are inclusive.

+1 +1

Let {(em,<tm,gm,um))} be an increasing sequence of members of
JxJ such that cn+1(6m,(cm,pm,um))=tpue for all m=20; the continuity

of'¢qn ensures that for all & we have

> .o G
Aan+1< qneméw - p v O) %y (I" qnemé’utqncmpmumm
sa :f¢qn(Uem)éﬁgh(ucm)Q“%Q(Uum)m

n+

and thus that cn+1qJem,u<gm,pm,um)>=true. We may now show in

turn that as ¢ is inclusive so is k and that as % is
n+1 n+1 n+1

inclusive so is f Thus when {Bm} is an increasing sequence

(UB).

Consequently we know that v, is inclusive for all =n, and

n+1°
o \yo a2

of elements of V°xV° we may presume thalt/\un+1 L

using the hypothesis of the lemma we may conclude that

,\an+1om:an+1(Uom) for all n and for every increasing sequence {om}.

Taking any such sequence,

,\gﬁmq\/gn+16m,m n+1(Uo)Da(Uo) by the definition of a.

k and f are inclusive

Because Jn’ en+1’ Sn+1’ Jn+1’ n+1 n+1

for all »n the commutativity of conjunctions shows also that our
v, €, 8, ¢, k and f are inclusive.®

The predicates ahove thus fulfil our hope that in moving
from stage g, to stage 9,41 the information available increases.,
It only remains to be shown that the total arrived at by the end

of the process yields the self-referential relations desired.

2,2,5, Proposition.

Suppose that a1<l,l)=true, a16 is always proper, and if v, is

~

inclusive, equals velq, *q,) and has vn+1§3vn8 and vnézvn+1((qnan)é)

~

for all R:V°xV® then A g is inclusive, equals ao(ﬁqnxﬁqn) and

has an+203an+16 and an+103an+2((ganQqn)6) for all 8:A°xA®, The

final predicates obey the following conditions:

~

:BxB+bB B: L*xL*+#é=#BA/Hgyvenﬁ§+Z&,true|&},

(i) v=2B.

~

B

B:0xdch,B:FxF+fB,false;

(ii) e=2E E:LxL+1€ €:VxV+vE false;

(i1i) s=28.Al(areadbrareaddv~areabdba~areadd)rv(holdds ,holddd |18}

ABGY2=#342A 064 3=#T43ANgyvenBl 6428643 ,84288+3) »vf,true [R);

97

(iv) e=X8,{z,0,0) Alal86,zpud |s8];

(v) k=M, {z,p,0) Aletké,(1,p,(8) §U)) |ef};

(vi) f=M¢,0E,0) Akide.gex,(E(Loreverto'),divertp’p, 0 |kik,(T,p', W)

4<That (i), (1i) and (iii) hold for the predicates set up
above is an immediate consequence of the way in which conjunctions
distribute over conditional clauses. Thus, for example,
e=?\€./\en+1é‘
=A€4\(€:LXL+Z€,€:VXV+vn€,false)
=A€.5:LXL+Z€,€:VXVprn€,faZse
=AE, E:LxL>1E ,E:VxV>vE, false.
In conjunction with 2.2.3 this shows that ve(q,%q,)=v,,

eo(eanEqn)=en and so(&anQqn)=sn for every nz0, since when

+1 +1

~

B is a typical member of V°xV°®

vnBD/ﬁvm 1((qnan)8)|m2n}

+

Dﬁdvm+1((qnan)a)imzn}hﬁdum 1((qnan)é)|mSH}

+

AL ((anqH)é)}mzo}

mtl
Dv((qnan)ﬁ)
and v((qnan)ﬁ):vn((qnan)ﬁ)avnﬁ from the definitions of the

predicates. Hence if, say, A is S and a, . q is

A6.6=<l,l)v6=<T,T>+true,sn+16 we are assured that ao(ﬁqnxgqn)=an+1.

By the same token co(?qnxﬂqn)=c (so that for every E:ExE

n+l

cn_‘_l(!ique,(ﬂan,p,(B 5U)) :!c(ltqué,(kqng,p,(£) 5) and

fo$a,8q,)=f
Suppose that «(6,(7,p,0) =true and that s6=true for some 8.

n+l1’

Then for every »n s +18=true 50

n

cﬁaneé,eqnchB)=a (¢qn86,¢qncpua)=true and by 2.2.4

n+1
a(Sd,ngB)=aﬂj¢qn86,U£qn§pU6)ﬁAa(Eqneé,chCQUB)=true as
Uﬁqned,ﬁqncpua)} is an increasing sequence.

Conversely, if a(€6,zpud) =true whenever e@=true suppose

that s, ,8=true for some n; s((#q xdq)8)=true and thus

98

an+1{an66.¢qncpu6)=a(6(5qn6),cpu(9qn8))=true. Hence (iv) holds
when ¢ is defined by the countable conjuﬁctions of 2.2.2.
Suppose that k(k ,C,0,0)=true and that eé€=+true for some
(k,lz,p,0) and £:E°xE°, Then for every »n20 in fact e, .15 true
while 2.2,4 gives
/\cn”(i{an:é SR q,5,P LB BUY) AR qué ,(I{qnc NIREIEAND]
:cqjkqué,kaqnc,p,<é)§U))
se{ kE L ,p,{8) BU)) ;
consequently e{ k€ (,p, (8 8UY) =¢true,
Contrariwise, should (k (7 ,p,») be such that whenever

e€=true we have c(kE€ (,p,(8) §V))=true then inevitably

en+1€:>e ((Qﬂqnxcqn YE)oelk (@qné Yz ,p (@ qn?:) §u)) :cn+1<lqn|cé ,(hqnc,p,(a) 5U))

so that kn+1(K,(§,p,U))=tPue for every n=zo0.

The proof that (vi) holds stems from the definition of %
much as the proof of {v) given in the preceding two paragraphs
stems from the definition of ¢, 1Its only noteworthy feature is
the use of the fact that hanOreuertp'=ﬂqn(corevertp') for all
Z, p' and n.¥

We could try to adopt the method of Morris [12] by viewing
the link between standard and store semantics as a homomorphism
between the source and target meanings of programs for which both
the source language and the target language would be Mal. Here,
however, this approach does not seem to be very helpful, for we
cannot turn the predicate v into a projection. Though there is
an initial mapping v’o from the domain V for store semantics into
the domain V for standard semantics it has no natural inverse u"o,
and in consequence functors like ¥ cannot provide iterated
mappings v'n+1 and U"n+1 out of which limiting projections could
be formed as joins. Furthermore no other techniques will yield

projections, since our next result will show that the relations

set up above are unique.

2.2.6. Corollary.

Suppose that v, e, s, e, k, f and a are predicates such
that a{ 1,0 =true and a is inclusive, Suppose further that for
every nx=0 if v@:vnﬁ and vnﬁav((anqn)é) for all B:V°xV° then
a6:an+16 and an+163a((ﬁqnxﬁqn)6) for all 6:A°xA°, Should the
conclusion of 2,2,5 hold for these predicates they must coincide
with those set up above,

<We shall show that for every n and £ these predicates are
rclated to those of 2.2.2 by the implications v@nvnﬁ and
vnﬁ:v((qnan)ﬁ). When n=g any B:VoxVy° satisfies v@:vOB; moreover
because a{ 1,1’ =true we can verify in turn that c(1,1) =true,

k(1,1 =true and f(L, =true, so that v((qoxqo)@)=voe.

Let n be such that vﬁ:vnﬁ and vnﬁsv((qnan)e) for every

B:v°xV°; then as usual corresponding remarks are valid for €,

+1

and I For any (8,{(z,p,u)), if c(@,(c,p,U))Asn+18=true then
in fact s((banEqn)8)=true and
al 8 (q,6),Lpv(8q,5) 2a, (6(Bg,6),L00(Bq, 3)
:a(aneé,Eqncha)
:an+1f¢qned,¢qncpua)
SO cn+1(e,<c,p,u>>=true, whereas if cn+1<8,<c,p,u))=true then

5635n+16:an+1M:qneé,tqncpué>:aﬂﬁqn96,¢qncDUB>. Hence e satisfies

c<6,<c,p,u>)acn+1<B,(g,p,u)) and cn+1<B,(;,p,u)):uxgqne,yqn(c,p,u>>;
from this we may obtain the analogous property of k% and thus infer
that fCo.CE.p) b 2f L (9.¢E,00) and £, ¢ ¢.(E:0)) 2\ Fq $.$9,(E.0 in
all cases. By an argument akin to that in 2.2.3, v@:vn+13 and

vn+1§30((q 1)ﬁ) for every B:V°xV®,

n+1”9p+

As g 1s inclusive the reasoning of 2.2.4 shows that so are
all the other predicates. The induction above therefore proves
that v@;«vnqup((qnmqn)@):v(U(qnan)ﬁ):vﬁ for all R:V°xV°,

Similarly aﬁ%Kan+16346 for every §:A°xA° and we may conclude that

this set of predicates is indeed that constructed in 2.2.2.»

100

2.2.7., Properties of program texts.

As will be confirmed in 2.2.8, the results of 2.2.5 would
not be changed if the undesirable members of the domains were not
factored out (in defiance of the policy propounded in 1.2.2); were
this done the ultimate inclusive predicates could themselves be
used to Testrict attention to the proper values in the components
of the space S. Any decision about whether or not to make the
domains as small as possible by removing redundancy and by
invoking propositions about slit lattices can therefore be made
without regard to the construction given above. There is,
however, one situation in which the improper elements cannot be
deleted: the application of the Knaster fixed point theorem [9] to
facilitate recursion involves 'seeding' the environment with i,
and if, say, plL/I] and (g,r,00 are identified with 1 in U and 1
in D respectively the equation for & provided by appendix 2 will
cause the entire state vector to collapse to 1. This cannot happen
in standard semantics, where a label entry point having 1 as its
environment produces a store transformation belonging to C, not an
improper element of D, even when the first component of U is taken
to be Ide~»D* instead of the more usual Ide»D°*,

The relations set up so far can compare stores but not
environments; in keeping with the preceding paragraph they will be
extended to U in a way which accepts that the denoted value 1 is
legitimate (by contrast with the stored value L considered in
2.2.2). Other theorems would require the introduction of functors
such as &, but here it is enough to let
g=M v, E,p,0 ANeCye,(Aporor EgpK p”,u",0Mm /rec{)o,pr,un)

| k(K (g, pt, 0 s
d=x5.8=(L, L vE=(T,T) *true ,8:EXE+63,3:GXG+g§,faZse;
w=APABITN =0 »true , dCBITI+1,PITT+1> AC#AITI<#p[I]) |I:1de}

A(plres] =0 »truye,k(plresl+1,plresl+1) A (#p[res) <#plres])).

101

It 1is now clear under which circumstances the standard
semantics of an expression should be deemed to be equivalent to
its store semantics: when applied to continuations related by %
the 'compiled' versions of the expression must form continuations
related by e¢. In principle whether this is so may depend on the
valuation enployed, so it is necessary to introduce predicates
covering all the possibilities as follows:

E=AEA{((@[E1fk (L[EIZ,p,0) |rent[ElfAubakik,(C,p,) };
L=AE N LIE] b ALTEN L, 2,0 |rentl El frupakic,iz,p,0) };
R=AENA{(RIE1 bk (RIEVz,p,0) |rentl El fAupakl (T, p, w1 };
G=AE Nc{¥[E]pc,(F[Elz,p,vr} |tornl El fAupakik,{z,p, 01} };
P=XE.FIE] =0 VAIAL(PT E] fc+v, PIET ghuvw | 1<v<# 1 E] }

| tornl E] pAubaki K, T, p, 00 };
@=)AE. X E] =0} VAIA{c(2[E] fx4v,Z[ETzpu+v |1<v<#XTE])

ltorn[EEéAuﬁAk(x,(g,b,u>>}.

Whereas the standard continuation x supplied to any
expression takes exactly one expressed value as an argument, the
nature of the environment handed on to a continuation x reflects
the declaration responsible and the valuation adopted., Taking
v=0 to represent the use of 2 and v=1 to represent the use of &
the environment is constrained by

knit=AAv6061J\{I:fﬂﬂﬂ511AH+51HIH+1:EArevertb HI]+v=bOHIH+v,

0P1
#51[IH=0Arevertboblﬂlﬂ=bOHIH
ACED I TD>0-p, ITI41=p [T1+41,¢true)|I: Ide)
Abiﬂresﬂ=hoﬂresﬂAblﬂrecﬂ=bO[recﬂ.
The predicates on declarations corresponding to those set
up above for expressions are therefore
DA A L] 8] B XS BIATT, D 00
|rentEAﬂ50Au60Aﬁdc<x61,<Q,bl,u)>|knitﬂAH06061Au61}};
T= AL AT A BoxTTAI LD 0

| tornl 818 aub amNelxp ¢ £,0,, V) [knitl 81186, aub 1},

102

In the next section these predicates will be employed in a
proof that the standard equations of appendix 1 are equivalent to
certain new store equations, These will not be written out
explicitly, as they can be derived from appendix 2 merely by
substituting news for every occurrence of novels, viewing my as a
primitive which grabs fresh locations with the aid of new (rather
than the novel function defined in 2.1.,1) and adopting the
valuation & of 2,2,1. It will be assumed in accordance with 2.2.1
that the standard and store new functions are such that new6=newd
whenever the pair § is subject to s8=true.

The proof will proceed by a structural induction on the
syntactic constructs of the language which it would be unduly
laborious to give in full. Consequently only those lemmata which
exhibit the salient features of Mal will be mentioned. Furthermore
the fact that paired semantic equations raise the error flag T
under identical conditions will frequently be left unsaid, and the
corresponding passage in the proof will be withheld. To deal with
the flag, however, a{71,7 will be taken to be ¢true; the hypotheses
of 2.2.3, as well as the properties of non-terminating computations,

demand also that a{ 1,1} be true.

2.2.8. General existence and uniqueness results.

The principles underlying the construction of 2.2.5 can be
applied in contexts quite unlike the present one; in particular
they have been developed independently by Plotkin [15] for use in
a study of A-definability. Before the proof of equivalence is
embarked upon they will therefore be placed in a more general
framework, Thus in the following few paragraphs attention will be
confined to two domains labelled V and two functors designated by

P for which ¥ can be identified with its image under a natural

injection into V. In addition it will be convenient to presumec that

103

there 1is an inclusive predicate vy defined on V°xV® as well as
two projections named dgo each of which maps one of the versions
of V into itself, The restriction of the discussion to two
domains is, of course, totally superfluous and is adopted merely
to conform with the conventions introduced in 2.1.6.

When a' and «" are inclusive predicates defined on A°xA°
(a product of two domains which may not be identical) and when
(gq',q" and (4",q" are two pairs of homonymous projections of
the domains called A, the relation (a’,(g',g")z{a,(qg",g™) will
be deemed to hold if and only if for all EEA°xA® g'Esa”E,
a"Esa’ ((q"°xq"°)E) and (q'°xq’°)ge(q"°xq”°)g. The meaning
ascribed to > by 1.1.2 makes = into a transitive and symmetric
ordering.

If & is a functor generated from the basic functors of
1.2.8, conventionally #g is a projection of @V when g is a pro-
jection of V. Similarly there may be a function a such that
avi g,q) 1is an inclusive predicate on #AV°x@Y° when v is an in-
clusive predicate on V°xV¥° and g represents two homonymous
projections (one for each domain V)., Given a functor @ such a
function & will be termed a 'predictor' for & based on
(vo,(qo,qo)) if and only if
Cav’ql,q" ,(Bq',Aq") 2 av™Mq",q™ (Hq",Mg") 2 av (q,,q) ,(Fq,,8q))
whenever v’ and »" are inclusive predicates on V°xV°® and ¢' and
q" are projections of V such that
(v',(q',q'))2(v”,(q",q"))z(vo,(qo,qo)n q'T and ¢"T are improper,
q'{eutB)=1 unless g'RB=1L and g"(cutB)=1 unless g"B=1, Only the
first of these conditions on v’, v", g' and 4" 1s significant,
of course, since the others are necessary merely to make sure
that the image of a slit continuous lattice is itself slit and
continuous.

For the purposes of the present discussion it is necessary

104

to demand that § be a predictor for ¥ based on some (vo,(qo,q0)>
for which (b%fqo,qo),(qu,vqo))z<v0,<q0,q0)). Sequences of
inclusive predicates and projections arc obtained from y and P
by setting vn+1=ﬁun<qn,qn) and qn+1=?qn for all =>0., Induction

shows that (v for all nz0; in fact as

n+1,<qn+1,qn+1))2<vﬂ,<qn.qn))
the relation > is transitive (vm,<qm,qm))2(vn,(qn,qn)) when mz2n+1,
Under these circumstances vngavm((qn°an°)§) for every BevV°xy°,

so taking » to be A§¢\vn§ and g to be[an gives a predicate v and
a pair of projections (g,q" having (v,(q,q))z(vn,(qn,qn)) for
each n>0. Because ¥ is continuous g is the least projection

for which ¢=¥g and 73q,. Moreover v satisfies an inequality
involving the initial predicate and projections, to wit
(bv(q,q),(9q,9q))=<v,<q,q))2<v0,<q0,q0)), and it is the only
inclusive predicate subject to this inequality when AB.B=an;

the proof that this is so will now be outlined.

If B is.any pair having wuo(g, B=true the nature of p
conspires with the fact that (v,4q,9) 2v _,{q, ,q)) to ensure
that bvn<qn,qn)@=true (and therefore that un+1§=true). Together
with the knowledge that viéovoﬁ this implies that vR=true.
Likewise »f=. when hv<q,q)§=l and vf=T when hv(g,q)E=T, S0
bv(q,q>§3v§ for every BevVexv®,

Conversely, if B satisfies vB=true then vn§=true for all
nz0; hence hv(q,q)((an°qun°)§)=true for all nz20, as
(v,<q,q))2(vn,(qn,qn)) and 9 is a predictor for ¥, Since
bl g,q) 1s inclusive and q=UFqn this means that
hu(q,q)((q°Xq°)§):true. Similar remarks apply ifl U§=l or vb=T
SO vﬁ:bv<q,q)((q°xq°)§) for every Bevexye, Consequently » con-
tributes to a solution of the inequality
(hv(q,q),(Pq,gq))Z(U,(q,q))z(vo,(qo,qo)), and ve (¢g°*g°) must

coincide with Bv{gq,q o (g°%xg”).

105

The proof that » is the sole inclusive predicate having
{pvlqg,q) ,(yq,-l?q))z(v,(q,q})Z(UO,(qO,qO)) if)\B.B=an is merely an
abstract version of 2,2.6. When v 1is any inclusive predicate
which together with a pair of projections (q,q) 1s subject to
this inequality, and when ¢=i8.8, induction establishes that
Co,g,q = ,(q ,q) for all nzo. Thus for every BEVOXV® v is
such that véqunﬁ and./wnﬁqﬂy((qn°an°)§); because
/@((qn°an°)é)ﬁv(U((qn°an°)§)) this particular v satisfies
(0,0q,q) Z(A’é./\vné,(l_]qn,an)) , and if g=|lg, then v=k§/\vné.

Suppose that 8 and B are functors on the category of slit
continuous lattices which correspond with predictors a and b
taking inclusive predicates and projections defined on V°xV® into
inclusive predicates on @AV°x#V° and BY°xBY°, When €V is V, AVxBY,
Av+wY, dve, av*, AV-BY or AV-BY, a4 and b induce ¢, a predictor
for € which is based on (u0,<qo,q0>) when @ and b are based on
(v g9, (provided that AV is flat if @V is &V~BY); thus
should €V be ZV-PV, for instance, tv(q,q>§ will be
Nbolg,q Bq(d (@qE)),Bq (8 @gl)) |aviqg,p EaE MV°xEV°)} for every
inclusive predicate v, every pair of projections {g,q) and every
g:¢V°x€MO. Furthermore, when 8V and BV coincide,

2. avig,p Evbuig, £ and Ag.av<q,q>gabv(q,q>§ are predictors

based on (vo,(qo,qo)). As even the functors introduced in 2.2.2
yield predictors based on <v0,(q0,q0)>, 2.2.5 can be proved simply
by verifying that (vi,<q1,q1))z(v0,(q0,q0)); the direct proof has
been given purely for pedagogical reasons.

Inclusive predicates will later be required in several
other situations, such as that of 2.4.5. Again, however, a direct
proof of their existence will be given in preference to a
demonstration that the appropriate replacement for P is a predictor

based on <vo,<q0,q0)). This decision is dictated by the lengthy

106

[ormul ac arising from its opposite: ¥ will be replaced by B,
which takes three projections as its arguments and requires
a predictor depending on three predicates and six projections,

To provide a final illustration of the power of predictors
consider the problem mentioned in 1.5.4, in which it is necessary
to relate the effect of valuations to the effect of their con-
jugates. When the two forms of V involved are B+L*+J+F and
B+L*+F an appropriate choice of w is provided by taking hu(q,q)% to
be UOEA(E:FXF+lv(q,q)@,true), where v, is roughly as in 2.2.2;
if F is [E~+G1° and E is L+V then v{g,p ¢ can be
Al g, (¢ €g€), 5 €2) |evq,q £} and evlq,q & can be
(€:LxL+18,8:VxVsu(g€ ,q®) ,false). The two forms of G are K»C and
{YE[S+[ExS1]| (yr¥2=1)Aa(y7+2)=7} so taking &g to be hoth
Ayko.y (Ae0 .k (€qe) (8gc)) (Byo) and Ayo. (Egx@dq) (Y (8g0)) gives
VIAL (A BgTkd=ric. ((Aed.k(€qe) (Bga))xy) (Bg5))

Al g, (§ Bq6)vl, ¥ @gd)vD ABv(g, (U @gd)v2, ¥ @g3)+v2)

V(K .@gFk6=L)A (¥ By3)=1)vV((Ak.Bqikd=T)A (} Bg3)=T)))

| 80t q,q 8} | YELS+TEXS]]}

as a candidate for gvi(g,q’ §. If the domain A such that K=E=+5-A
is a continuous lattice then guv(gq,q’ 1is inclusive provided that
v 1s inclusive; in fact g is a predictor for based on sowme
(vo,(qo,q0>> and predicates can be provided for a suitable
formulation of 1.5.5. This formulation would allow the
restrictions imposed by erushed to be reduced by admitting
function applications and denotations belonging to G. A further
version of the proposition can be obtained by adepting S+[E°xS°]
instead of {yE[S+[ExSI1| (yi¥+2=1)a (y7¥42)=7} and by amending £ and
g somewhat, Precisely the same technique can hbe applied to
the comparison of methods of passing parameters in languages that

do not have stores to which assignments can be made,

107

2.3, Two eguivalent fozgalisms.

2.3.1, Lemma.

If GIETAPIE)AQIE]=¢true then E[E]AL[E] ARLE] =true.
<Suppose torn|Elfrupakic (C,5,0) AsB=true, and set
go=corevertb and a*=news(#F[E))§; in accordance with 2.2,1
assume that a*snews(#Ff[E])3. Because af 1,1} Aal 7,7 =truye the
proof that «€[E]px6,8[Elgpud) =true is trivial unless a* is proper.
In this case define p =¢pla*/AIEI],pla*/FIEID ,
6O=(fix(lp.él[ﬁﬂEﬂDK%*ﬂEH]),fmﬂlﬂ‘bl[QﬂEﬂCOOUAXHEH])> and

60=(updatesa*(gﬂEH6OK)6,updatesu*G?HEﬂg V)&, so that

0Po

6HEH6K6=gHEH60K60 and J[E]Cbub=@ﬂ£]coboua Thus to prove that

0
alEE]Bk6 £ El zpud) =true it suffices to show that
rent[E]éOAuﬁoAk<K,(co,bo,u>)A380=true since GI[El=true. Certainly
uﬁ1=true as a* is proper; moreover rentﬂE]ﬁOAk<K,<co,bo,u>>=true
as revertbbo=b. Because P[El=true, should uﬁl=true we will have
cﬂ?ﬂEBﬁlx+v,WﬂEﬂcoblu+v)=true when 1<v<##[E] and thus 360=true.
Hence it is enough to show that u61=true.

Patently 6O=U{funv|v:N} and funv3fun(v-1) when vz1, where
fun=lv.(61[v=O+L*,2ﬂEH(fun(v-1)+1)KﬁfﬂEﬂ],

bltv=o+l*,2ﬂEﬂco(fun(u-1)¢2)uzxﬁEB]);

because u is inclusive by 2.2.4 to show that u60=true we need
only verify that u(funv)=true when vz0. Since d(l.l}Auﬁithue
u(fun0)=true; furthermore when u(funv)=true, u(fun(v+l))=true,
since rentﬂEH(funv%i)Ak<K,(Co,funv¢2,u>>AQﬂEH:true and
u(fun(v+1))ad{c<(fun(v+1)+1)ﬂ1ﬂ¢1,(fun(v+1)+2)ﬂ1ﬂ+1>|I;xHEﬂ}.
Hence uﬁoztrue and (&1 El P, (&1ERC,p,») =true, & being an
arbitrary suitable pair of stores., As this holds whenever §
and the continuations are appropriate we may deduce that E[E]=true.

To show now that LIEJAR[El=true we now need to demonstrate

only that if #(«x,(zg,p,u) =true then

108

kCloe,{mvg,p,0) Akl ruk,{svC,p,W) =true where the function mv
differs from that of 2,1.1 by invoking new instead of novel.
Suppose therefore that k(k,(z,p,0) Ae€rs8=true. Should &:LxL,
CLok€ES,muLp({) BUID =(kES, Lp((&) 5U)® whilst

{rvk€l,svp ({8 8U)D) =areafd k(holdéS)E,tp({ holdeEd §u)o) ,{T,T)
should €:VxV, writing a=newd=newd leads to

(Tok€G ,muro({ &) 5VYD =a:b N ka(updateaéd),zp({ @ V) (updateatd) , (1,1
whilst (rvk€6,murp({ &) 8U)ID) =(k€S, o ((8) 8U)D . Because sB=true, in
the first case el holdi6,holded) =true and in the second
s{updateafl,updateatd) =true, giving

al Tk €G,mvlp({ &) 83U Aal rukES,svrp({B) §u)D) =true, This being so
whenever efAs8=true, we can conclude that

CToe dmor,p,0) ak{roc,{svi,p,V)) =true.?

This result reveals what complications are avoided by never
passing on L or 1 as the intermediate result of an erroneous com-
putation. If, for instance, we did not check news(#£[E])6 to
ensure that it was proper before evaluating &[E]fx we would need
to include such conditions as 81=1agpul=1 1in the definition of
e{0,{C,p,W). Verifying these extra conditions would be tedious;
indeed the recursion operator of 1.4.4 wuses a continuation which

is not strict and which therefore would not satisfy them.

2.,3,2, Lemma,

For all I:Ide and B:Bas ¢[I]aG[Bl=true; when &:Abs has a
body E:Exp such that L[El=true G[¢]=¢true.

<Suppose tornl Il faupakik,{7,p,V) =true and set
S=(BLT)41,pl 1141 . If 8:ExE ed=true and thus
c(Ké,(g,b,(3)§u))=true, whereas if §:GxG

el &k CApmunat, (S41)Z((8429 o™, u”,a™ /rec]X) 8+3),D,0)) =true

109

and «(F[I]6x,(¥[I1z,p,) =true; the Tesult is immediate if
8=(L,L) or g=(T,T).

Similarly, if B=(@[B],#[BD) bB=true as =R, and thus when
uprkik,{z,0,9) =true we have
AZIBl 6k (FIBlz,p,) =al kB, T,0,{ B 6U)) =true

If ¢:Abs we show that G[¢l =true by verifying that when
rent{] fruf=true e€=true where E=(F[d]p,#1¢]1p . Thus suppose
that k«k,{(z,p,v) =true; we wish to show that when Ly=Ceorevertp
and b0=diuartp(é+2) k(le.éem,((é+1)c0,ho,u)>=true.

Should ¢ be fn().E suppose that e€0A560=true and define

fa)

€1=€0:LXL+(areaéodo+<holdéOSO,hoZdéoao>,<T,T>),€O. Now

€€0K60=#€1|L*=Oi¥ﬂEﬂ(rendﬂE]ﬁ)Kﬁo,T by 1.5.2 and

-

(E+1)Cobouao=#él|L*=Oﬁ?HEBC v0,,T. Because #€ |L*=#2, |[L* always,

0P o 1| ;|
these are trivially equal unless #éllL*=O. In this case, writing
60=rendﬂEH6, rentﬂEﬂﬁoAuBOAk<m,<co,bo,u)>A360=true since

He,dt,p,0) =true and aLfﬂEHﬁokén,iﬂEHcoboubo)=true since L{El=true,
Thus cL?ﬂEBﬁOK,L?[EHcO,bO,U))=true and k(ke.éen,((é+1)c0,b0,u)>=true.

Should ¢ be fnI.E, when e€0=true
rent[E1f, Aup ~true where 61=<(pendHEﬂéo)[éo/I],bo[éo/I]>. More-
over k(K,(CO,bl,U))=tPue as kik,{Z,p,u))=true, SO
o EE K C(e¥1IT D¢ 8 §UD) =l I F) B, & (ZIEDT b, , 0} =true by 1.5.2.

The proof is similar for the other kinds of function.*

The comparable results dealing with alterations to the store
are less interesting than the corresponding lemmata for other
theorems and will therefore be left out. The sole point worthy
of note is that in the semantic equations for OE and EOQE1 we
apply rv to the answer notwithstanding its apparent membership

of B already in order to avoid passing T or 1 (resulting from

overflow, say) as an argument to the continuation,

110

2.3.3, Lemma,

If RHEOHALHE1ﬂ=true then GHEOE1E=true.

<Let (x,(z,d,u) be any pair such that for some §
tornﬂEOElﬂﬁAuﬁAk<K,<;,5,u>)=true, and assume that expressions
are evaluated from left to right to avoid needless petty com-
plexity in the proof., Define
Yo=AeX e Y1 Fr(e*v1) (e*42)k, ro (AR 1sB<He* 1 L ¥k (e*VIVB) , T) (e*42)
€0=ADU.U+2:F+(U+2+1)(corevertp)(divertp(u¢2+2))((U¢1)§U+2),svglpu
and c1=Apu.1su+1|Ns#u+2|L*+;p((u+2+(u+1))§u+2),T.
As RHEOH=true to show that c<§ﬂEOE1H6K,(WHEOElﬂco,b,u))=true it
suffices to verify that
k(Ae’.#TElﬂﬁ(Ae".wo(e',e")),L?HElﬁco,b,u))=true.

Accordingly take any €, with e€ =true; because L[E1ﬂ=true,

0
2 | ha & =

cﬁgﬂElﬂﬁ(Ae.wo(eo,e)),tfﬂElﬂﬁo,p,(€O>§u>) true when

k(Ae.wO(éO,e),(cO,b,<é0)§U)>=true. If £,:FxF, f€ =true and

k<KE.éoeK,((éo*l)(C°revertb),divertb(éo+2),u))=true by 2.2.5,

so that k(ke.w0<é0,e>,(co,b,<é0)§u>)=true. Otherwise it is

enough to show that kéx ,(z, ,8,(&) 8u))=true where

Ky =AB.1Boe IL*>k (€ ¥8),T, since then k{rvk,,(svl, ,p,(8) 8W) =true,

L* for some £

If 1sé1|Ns#é having e€1=true,

0

1
Z(€D+él,eo+tl)=1(§O¢él,é0+€1)=true and
Ok €,0T, B LB 8D =el(€ ¥€,) ,0T,D,(8 V€) 50 =true .
Moreover c(Klél,<gl,b,(E1.Eo)§u))=c<T,<T,ﬁ,U))=true when a co-

ercion error occurs, so in all possible cases
~ - " - “ =
k(Kl,(gl,p,(E0)§U))—true and c(%HEOElﬂpK,(ﬁﬂEOElﬂc,b,u)) true.,
Because (x,(z,p,u)> is any suitable pair it is apodictic that
= pS
GHEOElﬂ true.
Next we mention briefly the results about imperative

features which change the flow of control.

111

2.3.4,. Lemma,

If EfEl=true then Glval EjaGlres EJjaclgoto E]=true.

4By 2.3.1 L[ETAR[E]=¢true so it is enough to demonstrate
that when we are given some $ and (x,(Z,p,») having
ubAakik,(z,0,0) =true then k{k,(gorevertp,pl(g,d,v /resl,v)=trye and
k(ﬁﬂresﬂ+1,(cl,b,u>)Ak(ie.s,(gz,b,u))=true where
z,=hou. (plres]ivi)(plresf+142)(Cuv1) Spfres]+143) and
;2=Kpu.(U+1+1)(u+1+2)(u+1%3). The first of these equalities holds
trivially; to validate the second note that
k(é[resﬂ+1,(gl,b,u)>=k(6Hresﬂ+1,bﬂres]+1>=true whilst when £:Jx%J
has ef€=true o é»(CQ,b,(£) §U)) =ef=trye.P

It 1s this result which demonstrates that standard con-
tinuations are abstractions of label entry points which preserve
the stack rather than of ones consisting merely of a code pointer
and an environment. The difference between these kinds of entry
points is illustrated by the program
m,x=0,0 inside (x:=1+(1: m:=1; x); 1f x=1 then goto m else z).
Under standard and store semantics the location denoted by =z will
ultimately contain 2 if expressions are evaluated from left to
right (which implies that mete=Ag*.E*4le., . cE*V(#E*)), If the
entry point corresponding to m does not keep the stack as part
of its value, however, chaos may ensue on returning to the block
and the location denoted by x may finally contain anything. In-
deed for this program it would not even help to reset the stack
pointer on executing a jump as here the desired stack is higher
than that available when the jump is made; only in a language
such as Algol 60 which is devoid of stored labels would this
mechanism be guaranteed to work. Corroboration for this will

be given in 3.3.5, where the stack semantics of Mal will he

analysed.

112

2.3.5. Jemma.

et A be I=E, I==E, I1""’In=E or I1"“'In==E for some

ITorI,,...,I and some E such that E[El=true; then D[A)ATIAl=true.

4¥First we show that DfAl=true when A is I=E or I==L,
Suppose that rentlAlfarup=true and that c(xﬁo,(c,bo,u))=true when-
ever knitﬂ&]@ﬁﬁoAuﬁo=true. Define K0=A€.x(arid[e/I]) and
Lo=tpu-zoluv1/IJ(ut1); by 2.3.1 LIE]lAR[E]l=true so to show that
AP ANy (20 Al T,p,0) =true it suffices to verify that
k(z0,<§0,b,u))=true. Taking any € with ef=true set
60=(arid[é/I],b[é/I]>; then knitﬂ&ﬂ06ﬁoAuﬁo=true and
c(KOE,(co,b,<é>§U>>=c(X50,(c,bo,u>>=true. This being so for any
suitable § and ¢ x,(z,p,»), DII=EJAD[I==E]=true,

To establish that 7[Al=true when A is I=FE or I==L take any
6 and (y,{(z,p,v) having tornlAlprup=true and c(xéo,(c,bo,u>>=true
whenever knitﬂ&ﬂ1660=true. Define
K1=rv(he.(A6.5:L+x(arid[a/I])oupdateés),T)(ﬁ[1ﬂ+1)),
K2=rv(ke.x(arid[€/13)),
c1=sv(Apu.DEIH+1:L+CD(U+1)°update(pﬂIﬂ+1)(u+1),T) and
c2=su(ApU.C(invertp(arid[U+1/I]))(U+1)). As bhefore, we need only
verify that k(K1,<gl,b,u>>=true in order to show that
AT I=E] fy (ST I=Elz,p,v) =true; because PIII+1 is in L if and
only if plIJ+1 is in L even this requirement reduces to proving
that knit[IT=E) 16 aridlplI¥+1/1],p =true and that
s(update(ﬁﬂIE+1)é&,update(bﬂ1]+1)é5)=true when
vBAsd=true, Both these conditions are obviously fulfilled, so
k(Kl,(Cl,b,U>>=tPue and, p being any suitable pair, T[I=El=true.
Likewise knitﬂI==EH16(arid[é/l],invertb(arid[B/I]))=true if v@=true,
and thus a(Kzéd,tzb(<é>§u)b>=true when e€as8=true; hence
oF[T==E] 3 ,«F[I==C17,p,)) =true as RIEl=true.

The proof that DIAJATIA)=true when A is IiseeerI, “E OT

I -»1,==E is only marginally more interesting and can be ignored.®

107

113

2,3,6, Lemma.

Let A2 be AO within Ai for some Ao and Ai; if
DHAOHADHA1I=tPue then DﬂA2ﬂ=true whilst if DHAOHATHA1ﬂ=true then
TEA2H=true.

4«Suppose that DEAOHAD[A11=true and let 5 be such that
rentﬂA2]6Auﬁ=true. To show that DKA2H=true it suffices to prove
that for any such $ inevitably c(QEA2B6X,<@ﬂA2]g,b,U))=true if
f{c(x51,<c,bl,u))|knitEA2]0661Au61}=true. Take any (¥x,{7,p,u»)
constrained by this equality, and define §0=cotr£mﬂﬂlﬂb; now
@ﬂA2E5X=QHAOﬂ(KD-@EAIH(divertﬁp)x) and 9H521C5=9ﬂﬂoﬂ(gﬂﬂiﬂco)b,
so, DHAOH being true, it is enough to establish that
c(@ﬂﬂlﬂ(divertﬁﬁo)x,(@ﬁﬂiﬂgo,bo,u)>=true for all 60 satisfying
knitﬂﬂoﬂoﬁﬁoAuﬁo=true.

For any such 60 take any 63 with knitHAiﬂoﬁoﬁaAuﬁ3=true.
As demonstrated below (in the proof that THA2H=true), writing
ﬁ1=(63,trimﬂﬂlﬂbb3) gives knitﬂAlﬂoﬁﬁlAuﬁi=true, which in turn
shows that knitﬁA2H0661=true, since JTAQH=JHA1] and-ﬂﬂAQH%tﬂﬂlﬂ.
Hence c(x63,<cO,bB,U))=c(x§1,<c,bl,u))=true and, as 63 is an
arbitrary suitable pair and rentﬂﬂlﬂ(divertéﬁD)Au(divertﬁéo.bo)=true,

c(@ﬂﬂlﬂ(divertﬁéo)x,(ﬂﬂAiﬂco,b ,W)=true, Consequently

0
c(@lAzyﬁx,(@ﬁAQ]E,b,U))=true and D[A2ﬂ=true.

Now suppose instead that DHAOHATﬂAiﬂ=true; we shall prove
that THA2]=true by letting p be anf environment pair such that
tornﬂﬂzﬂﬁAu6=true. Given any (yx,{(z,p,»> satisfying
/Hc(xﬁl,(c,bl,u))|kn£t[A2ﬂ1ﬁﬁ1Auﬁl}=true we define CO=CotrimﬂA1ﬂb.
As DEA0ﬂ=true, in order to convince ourselves that
ct?ﬂ52ﬂ5x,c?{A2ﬂc,b,u))=true we need only establish that

cﬁfﬂﬂlﬂ(divertﬁﬁo)x,c?[Alﬂco,a ,W) =true whenever 60 is subject

0
to knztﬂAOBOQDOAupO=true.

For any environment pair 60 which is such that

114

knitﬁAOHOﬁGOAu60=true we set 62=(divert650,bo}; then
CB,ET141,D, 1T = FIII41,pIT141) unless I:/fA 15#44.], and
tornﬁ&lﬂﬁzAu62=true. As TIA 1=true we shall have
c«?ﬂglﬂﬁzx,gfqglﬁCo’bz,u)>=tpue if (X’(Co’bz’u>> is such that
c(xﬁa,(co,bS,U>)=true when knitﬂﬂlﬂiﬁzﬁaAuﬁ3=true. Take any

63 obeying these constraints and define 61=(53,trimﬂalﬂbb3>.
Unless IafﬂAzﬂiﬁﬂﬂzﬂ, revertﬁob3ﬂlﬂ=boﬂlﬂ as knitﬂA1H16063=true
and revertbboﬂlﬂ=bﬂlﬂ as knitﬂAOﬂ0ﬁ60=true, so that
revertbblﬂ1ﬂ=bﬂ1ﬂ; if I:fﬂAgﬂﬁﬁﬂﬂgﬂ revertbobaﬂlﬂ?1=boﬂlﬂfl and

revertp fIl+1=p[1]1+t1. Moreover, unless I:JﬂAQH§11A?ﬁ or #p[IN=0°

Obl
the ultimate environment ﬁl satisfies
b1ﬂ1ﬂ¢1=#baﬂIﬂ>#bﬂIﬂ+revertbbaﬂlﬂ+1,b3[IH+1
=#baﬂIH>#DEIH+DHIH+1,DHIH+1
because #bsﬂlﬂz#boﬂlﬂz#bﬂlﬂ.
In consequence, knitﬂAlﬂlﬁﬁlAuﬁl=true, giving
c(x53,<;0,63,u)>=c(x51,(g,bl,u>>=true and
cﬂﬂﬂ&lﬂ(divertﬁﬁo)x,tyﬂﬁlﬂ;0,50,U>>=true whenever ﬁo conforms to
knitﬂAOH0660Au60=true. This demonstrates that
cG?HA2ﬂ6x,09HA2]c,b,u>>=true for all p and (¥,{(Z,d,»} such that

tornﬂagﬂﬁAuﬁ=true and fde<x51,<;,bi,u))|knitEA?]166 Auﬁ1}=true, S0

1
in accordance with 2.2.7 we may deduce that THA2ﬁ=true.>

A proof that GHAO inside E0]=true when
DEAOHAL[EO]=true would follow the lines of that above quite closely

but would be less complex, as it would contain no discussion of

knitﬂA1H0.

2,3,7. Lemma,

Let Ay be by and...and An for some Biyeoesh 3 if
DﬂAlﬁA...AD[Anﬂ=true then DﬂAoﬂ=true whilst if

Tﬂﬂlﬂﬂ...ATUAnﬂ=true then THAOﬂ=true.

115

4The proof proceeds by induction; plainly the Tesult
holds when n=1, so suppose that it holds for all sets of m de-
clarations with »n>m, By renaming the »n given declarations if
necessary, we can stipulate that the 4, j and k¥ of 1,3,5 induce
the run and deal functions corresponding to evaluation from left
to right.

Thus assume first that DﬂAlﬂA...ADﬂAnﬂ=true, so that by
the induction hypothesis DﬂAn+1ﬂ=true where A . is A, and, .. and L
Take any p and (x,(z,p,u}} such that rentﬂ&oﬂﬁAu6=true and
c(xéo,(c,bo,u))=true whenever knitﬂ&oﬂoaaoAu60=true. Suppose
that 61 satisfies knitﬂ&lﬂoﬁﬁlAu61=true, and define
52=elipﬂﬂiﬂ5ﬁ1,X0=x°d£vertﬁi and gO=Cnp£ckﬂA1ﬂ<b,b2). Then if
#pl T1>0 for any T:Ide, we know that #p[I]>0 and that
bQHIH+1=I:f[Alﬂ5%1A1H+revertbblﬂIH+1,b1[I]+1

=T 418 U &rla D+51 T141,plI0+1
as knit[A1H0661=true. Hence rentﬂ&n+1H5Au(ﬁ,b2)=true and once
we have verified that/N{c(Xoés,(cO,bs,u))\knitﬂ&n+1ﬂoﬁzﬁsAu63}=true
we shall have the result that

0 ¢ - -
c(QﬂAn+1B5XO,</[A Ego,pz,u)) true.

n+i
Take any Py with knztﬂ&n+1]09263Au63=true; writing
ﬁo=(dzvertplps,pickﬁalﬂ(b,bz)53), for any I

revertbboﬂIﬂ=reuertbb3ﬂIﬂ=revertb(reuertb I IT=plI] since

1b3
knit[&lﬂOﬁﬁlAknitHAn+lﬂ062ﬁ3=true. Moreover, unless I:fﬂ&oﬂ§#ﬂaoﬂ
or #p[IJ=0 necessarily
p ITD+1=p [TI+1=p [T1+1=p [I1+1=p[IJ+1, whilst when T:518, 18414]
we must have
B II+1=#p[I1>0>revertd, p I I1142,5 11141
=#bﬂIﬂ>0+blﬂIﬂ+1.#5QHIH>0+51[IH+1,D3EIH+1
=b1ﬂlﬂ+1
since §,[I)=#p, [I]1=#p[I]>0 and uf, =true. Consequently

knitﬂ&oﬂoﬁﬁoAuﬁo=true and C<X053’(C0,53’U))=tr“e for all suitable

116

environment pairs 63.

Hence whenever knit[A1H0661Au61=true
c(9ﬂan+1H§(X°divert61),(ci,bi,u>>=true where
C1=(Ap.@ﬂﬂn+1ﬂ(COpick[AIH(b,p)))oclipﬂﬁlﬂb. Because DHA1]=true this
implies that
cﬂ%[Aiﬂﬁ(kp.@ﬂ&n+lﬂé(xodivertp)),(QﬂAlﬂgi,b,u>>=true. Finally
Ap.divertpoconserve=ipp*.conserve({ p) §p*) and from 2,1.5
App*.pickﬂ&iﬁ<b,p)opickHAn+1ﬂ((p>§p*)=App*.p£ckﬂA0]((b,p>§p*)
as fﬁ&oﬂﬁlﬂaoﬂ has no repeated members, so
cﬂ@ﬂ&oﬂéx,<ﬁﬂaoﬂc,b,u>)=true and, (y,(z,p,v) being any suitable
pairing, DHAOE=true.

The proof that THAOH=true when TﬂAlﬂA..,ATﬁAnﬂ=true uses
knitHAmﬂi instead of knitHAmRO when 1<m<n+1 but is too similar

to the foregoing to be worth giving.*

2.3.8, Lemma,

If Tl Al=true then Dlirec AlaT[rec Al=true.

4Suppose that rentﬂAﬂﬁiAu61=true and that
a(x60,<;,b0,u>)=true whenever knit[&ﬂ06160Au60=true. We wish to
show that e(?[rec Aﬂﬁlx,tgﬂrec Aﬂc,bi,u>>=true; to this end given
any 8, with s8 =true we set a*=news(#/[A})6,,
62=(updatesu*dummy*éi,updatesu*dummy*él) and
=t fix(hp . Ta*/FTAIITLT Al 06, /2T A1 D),

fle(hp.b, Ta*/FIANIIFIAY p5, /2T AT 1)) .

Certainly if a* 1is improper we know that
al@[rec Aﬂﬁlxﬁi,gﬁrec Aﬂcb1u31>=true, so we need consider only
the proper case. Then Z[rec Aﬂ61x61=5ﬁﬂﬂ52x62 and
P rec Aﬂcbiubia?ﬂA]EpQUBQ, so it suffices to establish that

tornﬂ&ﬂﬁghu62A382=true and that c(x60,<c,b0.u>>=true whenever

knitﬂ&ﬂ16260Aubo=true. For any such 60 knit[Al op =true, as

laO

the definitions of 1,3.2 reveal that

117

revertblboﬂIﬂ=revertb250ﬂIHT(I:IHAH§ﬂﬂﬂﬂ+1.0)
=0 L INT (LT A] 84 Al 1, 0)
S
for every Il:Ide; hence all the conditions other than that
u62=true are satisfied trivially,
Define

fun=hv.(§ La*/FIANILv=0>1% A Al (Fun(v-1)+1)6, #1417,

1
bl[a*AﬂHAﬂ][v=O+L*f?ﬂAH(fun(v-1)+2)BQAﬂﬂAﬂ]>-

then 62=U{funv|v:N} and funv2fun(v-1) when v21, so as u 1is
inclusive we have only to show that u(funv)=true for all vzo0. From
2.2,7 it is plain that u{fun0)=true, so the basis for an inductive
proof has been established.

<Assume that u(funv)=true for some vz0; once we have
verified that g((fun(v+1)¥1)[I1+1,(Ffun(v+1)+42)[I]+1) =true when
I:#4T A} we shall know that u(fun(v+1))=true. Define
6q=<tearﬂAH(funv+1),tear[AH(funv+2)>; in standard semantics
FIAl=IT Al etear[Al by 1.5.2 and thus FAAI=#T Al ctearlA] from 1.4.4.
Hence when I:#7A]
((fun(v+1)+j)[IH+1,(fun(v+1)+2)[Iﬂ+1)=<Y0,(£0,§u,62)> where
Yo=k!<0..ﬂ[ﬂ.]lf)4(loo'.K(p[[I]Hi[E)U)C’iQ and
EO#THAHO(ACQUO.(KW’.C(H’+1)((pﬂIﬂ¢1>§ﬂ'+2)(ﬂ'+3))(Oﬂrecﬂ+1)).
Here we use the valuation & for new store semantics given in 2.2.1,
not that of appendix 1.

4<To establish that 9<Yo’<go’bu’62)>=tpug take any
<K0,<go,55,u5>) having k<K0,<£0,b5,u5>)=true and any 83 having
583=true. Define x1=hpo.K0(pﬂIﬂ+1|E)63 and
CeApua. (AT g (m 1) (Col TIv1) Smr2)(mr+3))(plrec]+1).

For all pairs 6q and ﬁ6 constrained by 364=true and
uﬁBAknitﬂAH16u66=true, e(éBHIH+1,b6ﬂIH+1)=true and
al Xy 6,6,,0,P,00 8 =alk (B ITI+1)6,, 0 b ((B TTIVD 5,)3) =true
where 67=<66,b6[(b5,u

5,03>/rec]>. Hence c(x157,(cl,p7,())=true

118

for any b, having up7AknztﬂAﬂ1(54,p4[<pS,US,Ba)/rec])=true,
and, T[A] being ¢rue, we can infer that

AT AL B Q?HAEC1,54[<bs,u5,63>/rec],<>>=true. Since 362=true

yXq2
we even know that a<YOK003’EOCObHE<05’U5’03>/rEC]<>02>=true; this

being so for all pairs having k(KO,(co,b ,US))=true and 363=true

5

we can safely assert that g(YO,(E 62)>=tru9.>

)2y
Because I is a typical member of X A],

/ﬂg((fun(v+1)¢1)ﬂlﬂ¢1,(fun(v+1)¢2)ﬂIﬂ¢1)|I:#1AH}=true.
In addition /ﬂgyven(a,e)(a*,a*)+l(E,e),truele:E}=true and
uﬁl=true, so u(fun{v+l))=true.®

Now u is inclusive and u(funv)=true for all v=0; in
consequence up,=true and, as tornlA]f, and s8, are true,
alFLAY 6, %6, . T1A LD, vd,) =true, Hence for every (y,(z,p;,0)), B,
and 81 subject to rentﬂAﬂﬁiAu31A561=true and to
/ﬂc(x50,<c,b0,u>)|knitﬂrec AHOﬁlﬁOAuﬁo}=true we have shown that
al@[rec Aﬂﬁlxdl,gﬂrec A]gbiuai>=true, and we may conclude that
A satisfies Dlrec Al=true.

That T[rec Al=true is an immediate outcome of the manner

in which the predicates of 2.2.7 can be combined.?

2.3.9., Theorem,

The meanings of a Mal program provided by standard
semantics and by new store semantics are equivalent so long as
the new functions chosen coincide on equivalent stores.

4<This is simply a summary of the foregoing results in
which we take for granted such propositions as that if
RHEOHAGHElﬁAPHEiﬂAQHE1B=true then GHEQHAPHEQHAQHE2]=tPue, where
E, is while EO do Ei; 2,5.6 will discuss a contention akin to
this. Because our proof has not needed any special features of

Mal it is plain that a similar theorem will hold for other

languages which can be described in standard terms.»

119

2,4, Reflexive projections,

2.4.1. Links between machine states.

Having proved that new store semantics and i1ts standard
counterpart are equivalent we can return to the original purpose
for which the former was devised: to employ the algorithm of
2.1.6 to trace out the locations accessible from a program,
thereby linking I==E and I=E. llere we shall develop means for
comparing two state vectors in which some values appearing in the
environment of one correspond to values in the store of the other.
The outcome of this will be a theorem to the cffect that when a
location denoted by an identifier is never updated an object having
affinities with the content may be denoted instead. This is a more
profound property of programs than it may appear at first sight,
for the connection between I::E and I:E is not perspicuous and that
between rec I==E and rec I=E need not exist at all, as is indicated
by 1.4.2. Indeed the complexities of recursion are such that
whereas labels will be analysed adequately by 2.5.1 a full
treatment of declarations must be deferred to 2.7.7.

Because results such as 2.5.8 will be couched in terms of
novel store semantics, before drawing conclusions about the
standard formalism we must reclate the two kinds of store semantics.
The lemmata required for this will be almost identical with those
leading up to 2.5.9, and we shall not scruple to leave out many
of them nor to use their twins in the proof of 2.5.% without
establishing them first,.

The pairs of state vectors with which we shall be concerned
are those arrived at by following through the execution of a
program and its transform under the rules of 1.4.6. Thus we shall
need a relation ¢ (mapping pairs in A°xA® to truth values) to act
on STEIZH06 and &l«[EJY]zpdO3 for every y:I1de»B* and L:Exp and for

every apposite £ and % (using the notation of 2,1.6). If # and ®

120

have themselves been obtained by evaluating an expression and
its transform, at the very least they will satisfy aptyp=true and
be constrained by some glcobal relation of similarity which we
signify by Py In addition those values & and ® which can be
reached through seen from starting points that tally in £ and *
will be comparable in some sense; consequently they will obey
whft=true for a certain predicate w which in principle may depend on
f, the member of P°xP° being investigated. We therefore expect
to be interested in some p of the form p=kﬁ.p0ﬂAﬂdw&ﬂ[kent0&ﬁ}.

Continuations Z and ¢ in Z are equivalent if when applied
to equivalent states they produce results satisfving some given
relation g. We might therefore hope to use some ¢ such that
eZapnoal £p05,Zpu® , but this is not possible. Built into the
environments applied must be a particular configuration of
locations and other denoted values which reflects how the con-
tinuations will act; should ¢(f[I1+1,plI]¥1> be in VxL, for example,
when the code for a program manipulates I that for its transform
must manipulate $I, We thus write T, rather than cZ and insist
that p be compatible with 60 in some respect if a(iﬁﬁé,%ﬁb&) is
to be true. This consonance between $ and 60 must ensure that
aptyp=true if and only if aptw60=true, so we set
fit=kﬁ0ﬁ1.plﬂ1

NN{E:LxLV€:VXVv~gyven€01|€:ExE}
A(@iqoxmqo)’%:(mqox@qo)61A(£q0><§q0)00=(2q0><?qo)01.

Here 9, is a projection of W into itself which is 'sufficiently
large' to discriminate between members of L, V and G, while ®
and P are functors such that ®W and W are composed of environ-
ments and stacks respectively. Anticipating 2.4.8 we can now

-

write c=laﬁo.ﬂda(cp65,zbﬁﬁ)|pﬁAfitﬂﬂ0}.

To ensure that there exists at least one pair 4 with

121

pﬂAfitﬁﬁO:true when fitﬁoﬁoztrue we have included a truncated
version of p in the definition of fi¢t. The codicil constraining
the stacks in Ffit 1s realistic because although the ¢ rules can
pair witnessed values which are not both locations such values are
cocrced by &% into L or by # into V before use, Thus if § satisfies
6l II+1:V and DpIINV1:L, for any ¢ having aptyp=true 9l 11 206
and #[# [I}ylZpvo place a stored value and a hitherto unused
location on their respective stacks, but these accretions are
then converted into members of L, converted into members of V
or discarded; these three possibilities are embodied in I:=E,
£:=T and 1; £ and their transforms under . Notwithstanding this,
the interim effect of an expression must also be captured by a
suitable relation, and we therefore define
set=AﬁOﬂ1.(b0¢1:L+00+1:Lv~site(bo+1)bo(<hold(bo+1)ao>§DO+1)BD,GO+1:V)
AFTECCE LG 11,6) (D, 0 11,8 00 % .

Now the continuations Z and ¢ supplied to I and $I above must be
subject to a constraint which is written as % and is given by
k=22, Ala £405,20u0) Iphasetft).

An expression and its transform thus take state vectors
f and T satisfying fitﬁﬁ1=true for some ﬂl and put elements onto
the stacks to obtain new vectors fi and % having setﬂﬂ0=tru9 for
some ﬁo. In terms of continuations this means we require a
relation o between é and £ in 0 which in 2.4.8 will be shown to
obey o=k€%031./dc<éi,éi)ﬂ1|kiﬁo}.

Because function closures and label entry points can be
witnessed, the arguments adduced in 2.2.1 show that w, p, e, k%,
o and a are self-referential, and accordingly we build them up by
a limiting process similar to that used before, Given a suitable
predicate W on WexW® itself we set

pn+1=xﬁ,pOﬁAﬁdanﬁIkentoaﬂ}.

122

Should we link w_with a projection qn:w+w and a predicate a, .

on A°xA° we might induce %qn:Z+Z and®q :0+0 to give us

=2

AT

e 1 O.Wdan+1(2qncpuo,fqn;puo>|pn+1ﬁAfztﬁﬁ0},
a
¥l

LRCNE S

+1<ancpuc,£qncho>Ipn+1ﬁAsetﬁﬁO} and

k

n+1l

A

e

ﬁo./\{

0n+1=lgﬂ0ﬂ1'ﬁdcn+ixﬁqﬁgc’®qngc)ﬁilkn+1cﬂ0}‘

We wish to distinguish the effects of these predicates
on proper values from their effects on improper values and
thus require that no w:W have g, w=1 unless it be 1 itself, The
analogy with 2,2.2 goes beyond this, however, for here also we
cannot let 78 Gr0,W be (1,1,1)., Intuitively kent¢ arranges to
treat all the accessible witnessed values on the same footing
whereas the predicates u» and s used before single out for special
attention those values which occur at the top of the environment
or are the immediate contents of locations. In our present case,
therefore, although we want to cut continuations down to size by
means of projections we must do so uniformly over all the access-
ible values. The continunations reached from ¢{z,p,uv? are 7 and
those found by passing down through p and v, so it is by this route
that the necessary cuts must be transmitted. All this suggests

that we take 7,4%,0,0 to be (1,Mg,0,8q, 0 and qn+1<C,O,U) to be

{E ° 3 .
qn 5 ’mqrﬁlp”‘:?gn+1U>

To formalize the construction of q, we let z, o and w
signify projections on Z, 0 and W respectively and define # by
W=ow=w,w:Lr+o,w:Brw,w:L*rw0,

wid—> (z3° @B)w,
w:F+ (0°x¥w)w,

w: G (0 xWwexdwdw,
wids (0 XWXV)w;

Bw (w|P).

Omitting the natural mappings of W into Vv, E, D, J and P we have

123

Y=o (AT ol 1)), w*(plres]), w*(plrecl)) , Bu=iv.v*y,
Go= o, (o (odi)adl,wX(ov1)adb2)) ,w*(o+2) ,w*(c¥3),
oMo xPux@u, Bu=WurPyoS-Aw and Bu=Fu-iy,

Since ®Waow is obviously a projection when z, o and w are,
taking q0=f£:c(EB(EJ_) @®L)) and qn+1=j‘im(m(lqn)(ﬂqn)) when 720 yields
a family of projections. The next results are devoted to showing
that they preserve as much of the information yielded by kent

as one might reasonably expect.

2.4.2, Proposition,.

The projections a, defined above form an increasing se-
quence with join lw.w. Furthermore
q0=Am.w:L+m,w:B+w,w:L*+w,
w:J+(L°xmq0x9q0)w,
w:F+(J_°><'CHqO)w,
w:G+(L°xquX9qO)w,
w1d>(1°xq xBg D,
9qo(w|P)
and when nx0
=dw.wdlrw,wiBrw,w: L *rw,
w:l>(2qg °qun+1x§q
iF>t@q °x@1qn+1
:G+(®qn°xmqn+1xoqn+1)w,
:J+(2qn°Xﬁqn+1x§q Y w

ﬁqn+1(w|P).

qn+1

n+1

E

£

e

n+1l

<The latter part of this proposition follows immediately

from the construction. Moreover, if ze)r,r, o=)t.

fina}

and w5Aiw,w then

WzowZlw.w; hence we may conclude that anAw.w for all n=z0., Cer-

tainly g =q,, and if q W54, then 24 TEG 07, =87 and

n+1

"ftx(‘m(iq)(t@q))Ef"ﬂx(mfiq i) (@q P)=a so the sequence

Tn+1 n+2?

124

{qnlnzo} is increasing.

Because the structure of V in store semantics depends ex-
plicitly on that of U and Y it seems perverse to build up the
domains in terms of projections on V alone, Yet the use of E
instead is no more satisfactory since D is not a natural re-
traction of it. Even the denoted values do not exhaust the in-
fluences on U as there are no members of P among them. In short
it is wise to regard W as fundamental and to posit that
Aw,w=f<ix(®W), where the functor ¥ is such that Wu=8Ev) (@w)w,

Under this assumption, to show that Aw.m=an we have only
to verify that for all n=0 r =q, where r . =®r and ro=l. Thus
suppose that for some =20 r 5q.3 then from the definitions of 2.4.1
it follows that ¥r c¥g, , Pr =8 , brnEﬁqn, EWHEEQH and ®r =®q , S0

r =!Brn=m(?_'rn) (@rn)rngm(zqn) (@qn)qnzm(zqn) (@qn)cg and, as

n+1 ntl

BE;) (©9,)q,, "BEq,) ®q,) (fiz WREq,) @)))=fizWRs) ®q))=q, ,,

we hav = B
€ r"}Hl qn+1

Henceforth for brevity we shall not distinguish between

q° and g when ¢ is a projection,

2.,4.3. Proposition.

For every n=0 and for any v ﬁiand f there is some &Owith

0! \)1,
seenvoviao((qHan)Ql)((BanEqn)ﬂ)=true if and only if there are

8, and ma with (qnan)&3=(qnan)®1 and seenv0v1&2®3ﬂ=true. More-

over for any Vi @0 and % kentvoaoc(EqHXﬂq”)ﬁ)=true if and only

if kentv B %=true for some &, with (g xg,)0,=0,.
<We fix attention on one particular % with ﬂ0=(ﬁanQqn)ﬁ

. If v1=0 and

seenvovimo((qnan)wi)ﬁ0=true, m0=(qnan)&1 so that we may take

and proceed by induction on v

m3=m2=a1. If v, =0 and seenv v 0, 0 _f=true for some @2 and By,

0717273
we may take @ =(gq _xg)0, and G,=8,.

Assume that the result holds for some particular Vi and

125

suppose that for some mo and mi seenvo(v1+1)&0((qWan)&l)ﬁO=true.
When qnmlzL or q,b,:L, access((qnan)Ql)ﬂ0=(anqn)(access&1ﬁ)

50 saenvovl&o((qnan)(access&lﬁ))ﬂ0=true and by the induction
hypothesis seenvovlagmqﬁ=true for some 8, and &, with (qnan)$2=ﬁo an

Y, (B, tLd, B,) s

(qnan)&q=(anqn)(access&lﬁ). Let ®3=((61:L+é1,m | 120y

I
then qn63=(61:L+q & &)=(w1:L+qn61,qn(access&1ﬁ+1))=qn61
(by the definition of access) and similarly q,b,=q, b, whilst
seenvo(vi+1)&2&3ﬁ=true. The other cases use the recursive nature
of g in analogous fashions, so invariably there are QQ and &3 with
(QHXqH)Q3=(anqn)&1 and seenvo(ul+1)&2&3ﬁ=true.

On the other hand, if seenv (v, +1)8 B f=true for some &,

and &, with, say, @,:L or b :L, writing 8,=(q,xq,)0, gives

2
seenvovl&o((anqn)(accessaaﬁ))ﬁ0=true and thus
seenv v, B (access((q xq YD O IR =true, with the effect that
seenvo(v1+1)ao((anqn)&a)ﬂO:true. Again the other cases are
equally dull.

Thus seenvovlao((anqH)al)ﬂ0=true if and only if
seenv v, 0,0 f=true for some @, and &, with (qnan)m3=(qnan>ml
whatever the value of v,. To obtain the final part of the result
note that yclept((anqn)@i)ﬂ0=true if and only if yeleptd f=true
for some &, having (qnan)a3=(qnan)m1.>

When a:lL g =0 SO we can also deduce that for any p, v
and o gsiteapvo=true if and only if sitea(Mq, o) (Bq v)(Bq, 0)=true;
similar remarks pertain to plot and spot. Consequently
fit=fito(Bq0Xqu) and set=seto(ﬁq0XBqO).

More generally, we can show by the same technique that if
{ﬂm|m20} is any sequence such that #_ . 2% for all m20 and if &,
is proper whenever kentvo&0ﬁ0=true then when kentvOQ(Uﬁm)=true
there is a sequence {Q,[m20} with & . =0 and kentv O f =true

for all m=0 and with m=umm.

126

2.4.4. Discontinuous functions on states.

The proof of 2.4.2 tacitly assumes that there is a lattice
W on which can be defined the sequence of projections {rn|n20}.
Though this assumption can be justified for new store semantics, in
which Z is a space of continuous functions, its truth is not
immediately obvious when nowvel store equaticns are considered.

Here W will be constructed by a method which is valid even when
some members of Z have discontinuities, For any such lattice
and for any projection w on the corresponding space W

AEpuo Aw(E Wwp) (Bwv) (Bdwo)) will be written as Zw despite the
possibility that it need not be a projection.

On the hypothesis that W does indeed exist it can be seen
from 2.4.3 that, though in accordance with 2.1.6 there are sequences
{pn\nzo}, {lenzo} and {Gn|n20} which increase with » and for which
Unovelpnunon is not equal to noveZ(Upn)(UUn)(Uon), for every p,

v and ¢ Unovelﬁnqnp)(yqnu)(ﬁqno) coincides with novelpuvs. Like-
wise if ¢ is a member of Z which equals |J&g t then by the defini-
tions in 2.1.4 recury equals ||Bqg (recury). Structural induction
on the equations of appendix 2 will therefore demonstrate that
every ¢ having C=Lﬁqnc is such that for all E:Exp and A:Dec
JHEHC=U1qn(€ﬁEHC) andHQHA]c=Lan(9ﬂAﬂc); similar remarks apply
to all the other valuations. In consequence to ensure that the
novel store equations are meaningful it is enough to show that
there exists a lattice Z comprising precisely those mappings ¢ for
which c=Lﬂqnc. |

From arbitrary lattices Z and 0 can be constructed a
lattice W which is constrained 'up to isomorphism' by the equality
W=BZ0W, where the function ® is that introduced in 2.4.1. For the
present purpose it is necessary to set up domains subject to the

relation W=WZ 0 W for each n20, so we introduce {Z_|[n=0},
n nn n n

127

{Onfnzo} and {annzo}, seauences of such lattices comnnected by maps

2 L ~+L , 0 0 +0 and w__:W +W_such that if nz2m20 z2__, o
N m n m nm n m nm

nm nm nm

j i avi z) w i in-
and w, . 8Te projections having mn? and »__ as the unique in

mn

jections reciprocal to them. These sequences are founded on

Zo’ which contains L as its sole element; hence whenever n20

CIPS) X S and 2,2l .1. Once Z and the set {znmlnzmzo} have
been formed for a certain nz0 On can be assumed to be the space
of continuous functions from Zn into itself, so that 0n=2n+2n and

0 _=XE .a of og if nz2m20. The domain W is the smallest
nm n'%nm Cn “mn n

solution of the equation W =2 0 W ; similarly if nem=20 w is the
n nonon nm

minimal solution of w_ =Wz o w . To extend the sequences Z
nm nm nm nm n+l

is taken to comprise all those entities ¢ which map elements

n+l
of‘ﬂMn, QNH and.ﬁwn into elements of ﬂwn in such a way that if

nzm=0 then gn+121(wm ow)L

2% Cpyqe The mappings which connect Z

+1

to the other spaces, z and = can safely be

(n+1)(m+1) {m+1)(n+1)?

defined by

0 ﬂwnm(c(uwmnpm)(awmnum)(ewmnom>) and

z(n+1)(m+1):)\cn+1 mumgm'

p U O .men(c(mwnmpn)(gwn

z(m+1)(n+1)=}\cn+1 n'n n Un)(Bw G,)) 1f nam=0,

m nm n

since all ¢ . subject to the inequality f . =2#(w__ow)T

1 n+1 n o nam’ "n+l

satisfy §n+12(z Even if Cn+1 is not

(m+1)(n+1)°z(n+1)(m+1))cn+1'

monotonic, when nzmz21z0

BWptv m)g ji(wm ownmowlnownl)C

mn o on n+1” 7 =z@mn°wlm°wn1)C

Ez(wlnownl)%ﬁl

n+1 n+i

The inverse limit Z consists of those infinite sequences

{CnIHZO} for which given any nz0 Cn is a member of Zn and znmcn=€m

if nzmz0. The component in Zn of any ¢_ belonging to Z_ will be

written as z_ needless to say, z__ :Z +Z 1s a projection and
oy wp " Tw Ty

)
the corresponding injection, CI is such that for any L, in Z

znmcn 1s the sequence {znmcn|mzo}. Analogous notation will be used

to describe the inverse limit spaces O, and W_ which are endowed

with projections omn:0m+0n and an:wm+wn for every n=0. Easy

128

calculations [19] show that the mapping AZ_ Ua o £ on is an
Rt o}

03?7(!0

isomorphism of 000 on to Zw+Zw having AEL.|Jo 0503 o) as its

nCO
inverse and that when wn is identified wiﬂuﬂﬂnonwn for every n>¢

the mapping Lkﬂhn 0 oW o)ow,_ 1is an isomorphism of W_ on to

@/ 0 _W_ having an o (1B) as its inverse,

o 0y %on wy
More interesting is the result that Z_ is isomorphic in a
natural way with the set of functions which are not necessarily
continuous but which take members of WW_, ®W_ and #W_ into members
of @ _ in such a manner that t={|#(w _,°w,)2 for all C belonging to

this set of functions., The appropriate mapping of Z_ into this

Set 15 AT P U0 AW, o By ()1)o@V, P) (B, VL) (B0, 0,)Y, While

ooy @

its inverse is Az.|jz p v o Aw (:(awnmpn)(ywnmun)(bwnwcn))).

(n+1}e
The proof that these mappings are reciprocal to one another is a
computation which hinges on the knowledge that if f_ is an arbitrary
member of Z_and if 7 is equal to UEw,, ow,)T then

AoV BV o (2, ()L 1) Ban(@, P) B v NS o)) and

(Apnuncn. wmn(C(uw p)(Ew Un)(ﬁwnmcn)) increase in value

z(n+1)DD nee' n

as n increases, There is little to be gained by embarking on the
manipulations of subscripts necessary to confirm this, for the
definition of Z_ and the nature of ¢ provide all the conditions
which are necessary for it to hold. Thus henceforth it will be
presumed that versions of Z, 0 and W suited to novel store
semantics are yielded by the spaces Z_, 0 and W_ constructed in
the paragraphs above. Furthermore when these spaces are identified
with their respective images under the natural isomorphisms

can be regarded as lqn can be

2 tne1)o o (41) m41)0° P (n41)

regarded as @qn and W °,,, can be regarded as 9, for every nz0,
Our later work will therefore revert to the initial usage of 2.4.1 by
taking o and w (with or without subscripts) to be predicates, not

projections.

129

2.4.5. Some protean predicates.

In order to ensure the existence of a sufficient supply of
novel locations we demand that the accessible locations be finite
in number and that L be infinite (except when discussing garbage
collection). Having been set up earlier in the program, the stores
attached to accessible members of G are necessarily smaller in area
than the 'current' one but those associated with members of P
may well be bigger, since if any members of P can be reached through
kent the current store must be a reincarnation of one attached to a
member of G. One fundamental propefty of state vectors, to be pre-
served throughout a computation, is thus
pO=Aﬁ.neatﬁA#G=#DA#6¢2=#a¢2A#6+3=#6+3
A\qf{sitedmﬁﬁéﬂsiteambbb[1Smsn}9V{&m=&Z|1£m<ZSn},faZse|2£n}
mﬂ{(&O:LAQ =0 +area&06Am

0 1 ¢

o n = o o= f\& :LXL .
A(wO.LAwO w1+areawoéﬂw0 wl,true)|kent0&0ﬁﬂkent1&1ﬁ 0 }

We want equivalent programs alwavs to perform assignments

=w1,true)

in tandem and therefore cannot permit any location set up by one

to be paired with two distinct locations by kent, Indeed, in Py
above we even insist that no moiety which is a location be paired
with two expressed values. In aptyf it is envisaged that if
hotenfip=true and ® and % lie in different summands of W then &:L

and h:V, so the initial predicate on witnessed values, Wy in-
corporates the same restriction. As accessible members of G and

P have stores associated with them which may become current we
impose the same condition on them as on the main store. Accordingly
o which is akin to the inclusive predicate v of 2.2.8, is given

by the equation

130

v, S\OR .01 BxB>bD,
O L*xL*> 4= #i,
Didxd+neatl G+2,0+2) AFLY3=#D43
ANEiLxLvE: VxVv~gyvend(§43,5+3) |8:ExE]},

B:FxFrneatl G+2,0+2) ,

D:dxdrneatl D4 2,0+ 2> A#GY 3=#43

AN[B i LxLVE:VxVV~gyvent((43,043 |21 ExE},
B16xGrp ((B42,0) T+ (242,00 , 143,
&:PXP+pOQAﬁd€:LXLV€:VXVv~gyuen€<6+2,a+2>|€:EXE},
@:Lal:E,

We take bé to be é=BAé:BAB:B just as in 2,2,2, Notice that
if % satisfies ﬁﬂwoﬁﬂ]kentoaﬁ}=true then seenvovi&omiﬁ is proper

for all v &, and Ql having yclept@1ﬂ=true, with the effect

0r V1r Yo
that 2,1,8 can be used freely; the proof of this is merely an
induction on vy using facts such as that if QQ:FXF and w062ﬁ=true
then <é2+2,a2+2) is proper. Furthermore sitetdVd=true if and only
if there exists an & having kent0(é,% f=true, and similar remarks
hold for plot and spot; again the proof involves an induction

over values taken by seen of the kind we shall encounter very

frequently,

Taking the definitions of p k and 0, i1 given

n+1’cn+1’ n+l
in 2.4,.1 we set
wn+1=lmﬁ. woibﬁ
A(@-de+fﬂcn+i<w+1,w+1)ﬁO]p0=<w+2,w+2>AOO=<m+3,m+3)Afitﬁoﬁo}
:FxF " o p G o t
fhiFx *fVon+1<A§.(w+1)(C revertpo),kc.(w+1)(c rever bo))ﬁoﬂj
|61=<divertﬁo(5+2),divertbo(m+2>)
AG =0 T AfiEh BT,
:(" G - -
B:Gx 1ﬁﬂ0n+1(w+1,w+1)ﬁoﬁl
{ai=<(&+2)[ﬁ0/recj,(m+2)[ﬁo/rec1>
={{y ()} Lt
AOl L afe ﬂoﬁo},

&:JxJ+chn+1<&+1,a+1)ﬁ0|ﬁ0=<@+2,a+2>A00:<@+3.m+3>Afitﬁoﬁo}

true).

131

We now write w=A&ﬂ¢\wnaﬂ, p=Aﬁ4«pn+1ﬁ, e=ALT AC, LT,

O=AEWOW1”AO £Em _w, and a=A6qﬂgn+16; 2.4.0 will

n+1” 01

R=ATE AR, BT,

show that these relations provide what is wanted. The notion of
the 'inclusive predicate' giver in 2,2,3 must plainly be extended
to relations taking more than one argument: we shall regard w,
say, as inclusive if for any sequences {mm|m20} and {ﬁmlmzo}
such that am+12&m’ (A and wd f =true for all m>¢ we have
demm)(Uﬁm)=true. Likewise o will be inclusive if
A((é,%o,%i),(E,%O,%1)>.o§%0%1 is inclusive in the earlier sense.
As before we shall assume that a{1,1) and a(T,7) are both
true. Now, however, our predicates on expressions compare the
outcome of a program with the outcome of all its transforms under
suitable ¢:Ide»B*., We therefore set
E=AEN{(E[E],fT<[EIVD) % | aptyParentl El yafithfl;
L=AEAl(LIE] ,ZL«[EJ U] % |aptuParentl El YaFfitff]);
R=2EA{ZIET 2T [EIV]) ?% |aptiuParentl ElYafitff]};
G=AEA{F[E], 93 [EIV]) #% | aptiBarent[E] YafFithR]}
A ED SATE] =)
VAALWP Bl £pU 82 El £40+v,
swap (FTE] SHTEN Y AT [2] ¢] 6X4T¢ [D 91D
(P13 [EV91Zpus2MgEEIWIZpu)+w 4
| 1sv<#AT] 4T E])
aptwﬁAtornHEBwﬂfitﬂﬁAkE%}).
Here swap (defined as in 1.4.6) aligns the members of
As[E191ZpUs2T#I TN vl cpu with those of ZIT]Lp0s2IENLH.
The predicates on declarations are
D=AA AP T, BILIAIVID # IALCTT |sewnl ATovR 7 });
AN N ATTAL L, TT4T AT 9T D) ﬂo\/\{cE-?ri|sewn[m]11¢ﬁoﬂ1}}.
Here again the conjunctions take into account all the suitable

v, T, ﬁo and .

132

The analogue of knit required by store semantics is
sewn=kﬁvwﬁoﬂ1.(AﬁgﬂiJ\{I:JHA]§11Aﬂ+revertﬁoﬁiﬂI]+v=6oﬂlﬂ+v
Arevertboblﬂlﬂ+v=boﬂlﬂfv
A(I:JYAH+61[IH+1:L,51HIH+1:V)
Av=ovIMe[Alv]+true,
b1HIﬂ+1:LAbOHID+1:L),
revertéoﬁlﬂlﬂzﬁoﬁlﬂArevertboblﬂIﬂzboﬂIﬂ
A(#5OHIﬂ>0+51[Iﬂ+1=5OHIH+1A51HIH+1=bOEIH*1.
true)|1:1de}
rp tresl=p [resiap [recl=6 [rec]
Abiﬂresﬂ=b0[res]Ab1ﬂrec]:bOﬂrecﬂ
naptPp A0 =0 AFTER RoASLER B
MY apty' D atornl[A1)
(v=0+y[false*/#T Al Jopts (AT AT D Y/X2T AT 1,¢))
((Bq xBg))F) ((Dg *Bg Of,).
As promised carlier, we shall now confirm that our pre-

dicates have the desired self-referential nature,

2.4.6. Lemma.

Suppose that a {1, 1)=true, ala is always proper, and if

wn+1mﬁ3wn&ﬁ and pnmﬂAkentO&ﬂAplﬁ:wn+l((anQn)Q)ﬁ for all Q:W°xW®

and #:P°xP° then a ,0%a, .6 and a 62a (("q,x8q 18) for all

n+1 +1 n+2

8:A°xA°, For every member of the relevant domains and for every
nz0,

(i) wn+1mﬁ:wn(bﬁ and wn(ﬁﬁAkentOfﬁﬂAplﬂDwn+l((qnan)fb)‘ﬁ;

(ii) pn+2ﬁ3pn+1ﬁ and pn+1ﬁ3pn+2(($qnxﬁqn)ﬁ);

. e A A AA z ~ /\-
(ii1) crz+22;'njcn+1z;7T and crz+1:;1bcrz+2((an)< qn)C)W’
. A AA o R XE A A.
(iv) krz+2cﬂ:’krz+12;7T and kn+1cﬂjkn+2((zqn qn)C)ﬂ’
tv) 0, 26MoT420, L& T, and o ET 20 (@, @ HEIT T,

133

40bserve first that by 2.4.3 if &0 and m1 satisfy
kentOQO((ﬁqnxﬁqn)ﬂ)hkentlﬁl((ﬂqnxﬂqn)ﬂ)=true there are &, and

b, having kent0w2ﬁAkent1&3ﬁ:true, m0=(qnan)ﬁg and &1=(QMXqH)Q3.

Furthermore when éO:L and éo=61 necessarily &2:L and ®2=&3, 50

should p, ® be true areaéo(ﬁqné) will be true while &, and &, will

coincide., As similar assertions hold when BO:L and m0=m1 we can
infer that for all % and nz20 if p,f=true then po(($qnx!bn)ﬁ)=true.
4Suppose that ® and % are any entities satisfying
womﬁAkentoaﬁAp1ﬁ=true. Unless Q:dxJd, Q:FxF, 0:6xG or &:dxJ the
definitions in Z.4.5 make it plain that wj((qOXqO)&)ﬁ=true
Since al(L,l)=true, we also know that
cl(l,1>ﬁOVk1<l,1)ﬁOAoi<1,l>ﬁOﬁ1=true for all ﬁo and ﬁl having
fitﬁoﬂonfitﬁ1ﬁ1=true. Thus to show that wi((qoxqo)m)ﬂ=true we
have only to establish the existence of ﬁo and ﬁl for which
fitﬁoﬁOAfitﬁ1ﬂ1=true,
ﬁ0=(a:Fvaa:GxG+ﬂ0,<@+1§<60>,m+1§<ao>>),
M, =(R:FxF(Cdivertf (G+2),0 & §6,,6) ¢ divertd (242),(2) 50 ,3)),
m:GXG+<<(6+2)[ﬁO/rec],<>,&+3),<(m+2)[%0/rec],(>,m+3>),
ﬁo)

and €=(dummy ,dummy) ; this we shall now embark upon.

4By 2.1.8 any v ®, and &, such that

0 V1 ¥

SR ﬁAkentOm1ﬂ=true satisfy kento&oﬁ=true; in particular,

seen\)o\)l 0¥

for any given §, and all @, kentod ~kentol ® where

1 0" 2
= (D 1GX6H (B 42,0 6,43 (842,00 ,b 43,0 1PxP>D,,R). As
p1ﬂ=true and kentoalﬁ=true we have poﬁ2=true and
/\hooaoﬁzlkentoﬁoﬁ2}=true, which between them suffice to show that
p1ﬁ2=true.

We can prove by induction over the values taken by seen

that either kent1@ff=true or there is some &1 having

kentl&ﬁzAkentO®1ﬂ=true where ﬁg is created from &1 as above,

134

Thus we can define

o= (0:IxI-(EH15(6,) ,2t15(T),
D:GxG+{C@dv2,0) ,d+3 (+2,0 ,0+3)),
BrdxI>ot18¢6,) ,0t15¢T,)) ,
)

and can set up ﬁ1 using it in the manner suggested above,

Because kent0oQfi=true our earlier remarks demonstrate that
p1ﬁ0=true when D:GxG. In the remaining cases an induction (to be
alluded to in 2.6.4) confirms that kentu&gﬁoskentv&2ﬁ1 for all

&, and v<2, and the fact that plﬁ =true ensures that p1ﬁ0=true.

2
A similar argument establishes that p1ﬁ1=true so the knowledge

2

that woaﬁ=true allows us to assert that fitﬂOﬁOAfitﬁ1ﬂ1=true.>
As a consequence of this digression we see that
wo&ﬂhkentoaﬁApiﬂswl((qnxQn)Q)ﬁ for all & and #. From 2,4.5 it is
obvious that wimﬁnwomﬁ for all @& and %, so we have constructed a
suitable foundation for an inductive proof of the result.*»
Assume that (i) is valid when n=m for some mz20 and that
(ii) to (v) are valid when m-12n20. We shall show that (i) holds
when »n=m+1 and that (ii) to (v) hold when n=m.
Firstly, for any #%
pm+2ﬁ=poﬁAﬁdwm+1aﬁ|kentoaﬁ}:poﬁaﬂﬂwmmﬂ|kentOQﬁ}=pm+1ﬁ,
while from 2.4.3 because m+1>1 we have
Poyq T2 MAN W, O [kentoldf]
o0 M (g, xq Y8R |kent00R)
:pOﬁAﬁﬁwm+1Qﬂ|kent0®((ﬁquﬁqm)ﬂ)}
op, ((Bg, xBg M)Al B(Rg, Bg If) [kent0d((Rg, xBg OF))
=pm+2(($quihm)ﬁ)'
Consequently (ii) is valid when »=m, and in particular

pm+2ﬂ3pm+1ﬁ3pm+2((ﬂquihm)ﬂ) for all #.

Suppose that e zm =true for some ¢ and m, . If

135

Pt ﬁf\f‘itﬁﬁ =true, p +2((£q Xﬁqm)ﬁ)f\fit((ﬂquﬂqm)ﬁ)ﬁoztr‘ue

[N

and writing 8=(%q £p00 2q. 1pua) gives

0=(Eg L@g §)(Bg 0)(Bq, 6).Bq L(Mg D)(Bq O)(Bq,)

m+1

a 6= . By our iginal mise &> 8 so
nd a 2 true y original pre y ay, ,02a

cm+1gw =true.
Conversely if ¢ zm =true and pm+2ﬁhfttﬁﬁo=true, then
— PO A ’»'»zz el =
pm+1ﬁ true so, writing 8 (Eqmcpuo, q,5Pua) , am+16 true and

a . . 6=true (again by the original premise). Hence

e .o, ((Eq Xiq)C)ﬁ =true and (iii) holds when n=m; the proof of

(iv) is almost identical, Note that in addition

m+2CTT C 15100, 1 (Ba > Bg LT,

Furthermore, for any é, E, %0 and %1

Evoﬂlhknﬁ?((Eqleqm) C)ﬂO

FS ~ A

ET. T Akm+1Cﬂ0:0

Om+2°T0"1 m+ 2

-e NBQWH15(!"’;{mé)‘®qm+1€(iqm%)> f

m+ 2 1

Sa 1<£qm(€(iqm£)).qu(i(iqmc))) ﬂl

m+
Dcm+1(@qm€c ,@gmgc) 7,

AN A ~A AA A

Eﬂoﬂlﬂkm+2CﬂOD Eﬂoﬂl ((Eq xEq)C)ﬁ

m+1

Dcm+1(®qm5c,®qm5§) ﬁl

Dcm+2<®quC ,qugg) ‘ﬁl

From the definition in 2.4.1 it is plain that (v) is valid when
n=me

Suppose that wm+2&ﬁ=true for some ® and f; if n:JdxJ, say,
by (iii) any 60 such that cm+2(m+1,w+1)(m+1§(60),w+1§(30>)=true
has cm+1(é+1,m+1)(é+15(60),m+1§<ao>)=true also. Similar reasoning
applies whatever summand of W & and & lie in, so ineluctably
w Of=true.
m+1

On the other hand, suppose that for some & and #
wm+1®ﬁ=true. If ©:Jxd, writing E=<m+1,m+1> we know that any ﬁo

having ﬂ0=(w+1§(oo),w+1§<ao)> and cm+1gﬂo=true satisfies also

136

cm+2((zquzqm)g)ﬁo=true, from the truth of (iii)} when n=m;

because pm+2ﬂ1Afitﬂ1((£qm+1XEq)ty)=true for every pair f,

m+1

having pm+2ﬂ1Afitﬁ1ﬁO=true, cm+2((2qufqm)C)((ﬁqm+1xﬁqm+1)ﬁ0)=true

and w_ ,((q _,%q)0 (®q, ,*Bq If)=true. Moreover, for any

~on ~ A ~

£, ﬁo and ﬁi 0m+2£W0“130m+2€ﬂ0ﬂ2 whenever (9qm+1XEh ﬂ15ﬂ25ﬁ1

m+1)
{since for any cm+2§w13cm+2;w2), and hence similar arguments be
adduced to verify that when O:FxF

w ({q YRY=true. Finally, for every #

40 D) ((Bg_ +Bg

X
m+1 Im+1 2

m+1

pOﬁQDpO((qu+1xﬁqm+1)ﬁ2) so (i) holds when n=m+1 even without
the assumption that kentomﬂAp1ﬂ=true.
We may therefore conclude that (i) to (v) hold for all =n.*
It is this lemma and its underlying motivation which are
responsible for our inahility to allow w Bf to be true if G:E
and ®:G. In no sense do 1:F and 1:G, say, provide equivalent
programs so the stipulation that wn(i,i>ﬂ=true is unreasonable,
Moreover g acts quite differently on E and on G so &:E and &:G
would yield information at distinct rates on progressing from
“n to Yas1®
2:ExE and §:GxG.,

Loosely speaking, wnéﬂ is on a par with wn+13ﬂ when

2.4.7. Lemma.

Suppose that for any »n=20 if v, is inclusive then Qg is

inclusive; then w, p, ¢, k, o and a, defined as above, are in-
clusive,
€Just as in 2.2.4 we can show by induction that for every

0 and a are inclusive.

n=20 mn’ pn+1’ cn+1’ kn+1’ n+1 n+1

Suppose, for instance, that w_1is inclusive for some x>0,

so that a,. 1 is inclusive. Take any sequence {ﬂm} with ﬁm+1‘ﬂm

for all m=20; then if Ap =true,,\poﬂm=true S0 po(uﬂm)=true.

n+1ﬁm

Because pn+1ﬁ0=true, QO

indicated after 2.4,3) when kentom(Uﬁm)=true there are Qm with

is proper whenever kento&oﬁo=true and f{as

137

&m+196m and kentommﬁm=true for each m20 and with &=U&m. Hence

Apn+1ﬁmqmwnmmﬁm3mn(u&m)(Uﬁm) and pn+1(Uﬁm)=true.
When p__, and a _, are inclusive it is possible to exhibit

the same property for e i1 and kn+1; only the latter will be dis-

cussed here, the proof for the former being almost identical,.

2% and

Accordingly, take {Em} and {f_} having Em+122m, me12Tn

k . qt.m =true for all m20. When setﬁ(Uﬁm)=true, inevitably
sethf =setff =setftf,=...=¢true, as by fixed point induction on
Bii gw'=gw” if lew'=w"™ 1. Should p% be true in addition,
for every mz0

a +1(Eqn£m666,2qnzmbbb)=true and, a being inclusive,

n n+l

a +1(2qn(UEm)ﬁﬁé,Eqn(Ucm)bDb)=true; hence %

n (u%m)(uﬁm)=true.

n+1

h h imila a o
The other cases are similar so Wos Pui1r Cueq? kn+1’ el

and a,.q aTe indeed inclusive for every »n20; the conjunction of a
set of inclusive predicates being inclusive, we may conclude that

w, p, ¢, k, 0 and a are inclusive.>

2.4.8, Proposition,

Suppose that al(i,i)=true and that for any »n20 if v, is
inclusive and every © and % having kentO&ﬁAp1ﬁ=true satisfy
wn((qnan)@)ﬁzm((anqn)&)ﬂ, wn+16ﬁ3wn&ﬁ and wn&ﬁjwn+1((qnan)m)ﬁ

8 is proper,

as well then a1 is inclusive and for every 8 «

1

Pad

an+1((ﬂqnxﬁqn)6)3a((ﬂqnxﬂqn)6), an+263an+1O and

an+16:an+2((ﬂqnxaqn)6). Should w, p, ¢, k and ¢ be defined as

in 2,4.5 they will be subject to

mailto:kento@.ft

138

(i) w=A®ﬁ.w0mﬁ
AR IxI-AL el «ﬁ+1,‘m+1>ﬁ0|ao=<(ﬁ+2,a+z) AD =€V, 1Y) Afitﬁo'ﬁo}
Q:FXF%Aio(AC.(é+1)(cvrevertﬁo),AC.(&+1)(Eorevertbo))ﬁoﬁ
|f31:<diugrtﬁD(MQ),diuertbo(m+2))
A00:<61+1,01+1)Afitﬁlﬁl},
m:GXGwﬂ{o<é+1,m+1>ﬁoﬁi
|61:<(é+2)[ﬁ0/rec],(&+2)Eﬂ0/recD
/\01=(() ,<>>qu:tﬂ0ﬁ0},
BrdxIoANKC Sz, v) B [P = d¥2,042) A0 =(G¥3, D3 AfTER B)
true);
(11) p=rf.p A AwOR|kentonfl;
(1ii) e=AZ7 . Alal £535,2503) [pfafitt };
(iv) x=AEm Alat £505,2p00) |pmsetﬂﬂo};
(v) E /\{c(éi, E

4Conjunctions distribute over conditional clauses so (i)
and (ii) follow from the definitions. Moreover by an induction

on » 1involving 2.4.6, invariably W 4~we (g Yy

Xq
n+l Tn+l
pn-!-l:po('ﬁqnx”qrz)s cn+10(1qnxzqn)=co (Eqnxiqn),

kn D(Eq xBEq)=keo(Eq,xZq), on+1o(®qnx®hn)=00(@qnx®qn) and

a, ,°(8q »Aq)=a-(8q <8g,). We shall establish only (iii) and

(v) from these equalities, leaving (iv) to the imagination.
Suppose that cE%0=true for some £ and %O, and take any #®

with pRAafit®f =true. Then for every n=0, e 10T D, (=true so

0
o, L

a (Eq Eéﬁé,lq IpUd =true and a(zanpuo,Eanpvc>=true. As a 1s

n+l
R R LN -

inclusive a{ Zpua,Zpuao) a(U(an '66),U(Eqniﬁae))=true.

- - e A

Conversely, if /ﬂa(i' o,cpuc>|pﬁAfitﬁﬂ0}=true for some E
and f, let # be such that for some n20 P, ﬁAfitﬂﬂ =true., By

2,4,3 p ((ﬂqnxﬁqn)ﬁ)=true when m>n 50 ((Bq,, Qq Y#)=true and

m+1 n+1

p((Bg, xBq)f)=true. Writing for convenience

9=(L®q §)(®q 0)(®g, 6),T(Mg, »)(Bq, D) (B 5)) gives ad=true, from

139

which we can deduce in turn that an+16=true, an+2((ﬂanﬂqn)o)=true

-,

and an+1((ﬂgnx9qn)6)=true. Hence an+1(2qngpua,2qnibﬁa)=true,

¢, . 1tT,=true and, »n being arbitrary, erm =true.

A A A

Suppose that ofm M =true for some E, Ty and Ty and take

away t with k2%0=true. For every n=o0 kn+1gﬁo=true SO

c(®anc,®anE)ﬂ1=cn+1(9qngc,9qn£;)ﬁ1=true and, ¢ being inclusive,

A, e

c(£;,£g)ﬁ1=true. On the other hand if § is such that

c(éi,%ﬁ)ﬂ1=true when k%ﬁo=true, for any »20 and % with % %0=true

n+1C
k((ﬁanEqn)E)ﬁO=true 50 c(g(ang),E(anZ))ﬁ1=true,

cn+1(S(an;),g(an;))ﬁ1=true and cn+1(®qngc,eqn22)ﬂ1=true, giving

0 1E%O%1=true for every n=0 and ogﬁoﬁi=true.$

2.4.9, Corollary,

Suppose that w, p, ¢, k, o and a are predicates such that
al 1,1y =true and a 1s inclusive, Suppose further that for any =20
if every ® and ® having kentomﬁAp1ﬁ=true satisfy w&ﬂ:wnmﬁ and
wnmﬁow((qnan)mﬁ) also then every 6 satisfies ab=a 0 and

a 63a((ﬁqnxﬂqn)6). Should the conclusions of 2.4.8 hold these

n+1
predicates will coincide with those set up above,

4<The proof that w is unique in the sense just enunciated
follows that of 2,2.6 too closely to have any interest. One value

for @ which obeys the conditions of this result will be given

after 2.7.6.%

140

2.5, Denotation and allocation.

2.5.,1, Lemma,

If E:Exp satisfies G[El=true then FElE]=true.
4Take any v, and # such that apthﬁArentﬂEHwzﬂfitﬁﬂ=true;
to show that o(fﬂEB,ﬁﬂcﬂE]wQH)ﬁﬂ=true it is enough to verify that

whenever k7T %ApﬁoAfitﬁoﬁ=true we have

2

L) 000’54[[‘[”-‘-]]’4)2]]52 OUOC)'O):z':Pue,

Let w1=w2[false*AfHEﬂ][optsﬁfﬂEﬂ)¢2%XHEHJ,

S [E]

* Noky = P) .
Ca*, 5% (novels(ﬁFﬂEﬂ)oouooo.novels(ﬁfﬂ ﬂEﬂwzﬂ)bODOBO),
El=(iQOPeverté,EQOPQUQPtb>, I*ifﬂlﬂEﬂw2ﬂ§fI‘ﬂEﬂw2ﬂn
B,=(fiz(1p.8 [6*/FIENILLIEIL, o0 /ATE]T),
Fla(hp B La*/ 71 (21,1 1020« [EDY,TT, o0 /2T« [ERY, 01,
0,70, and
81=<updatesd*(gﬂEﬂiiéiﬁo)éo,updates&*(gml[Eﬂw2ﬂ315150)50>.

Since pﬁ0=true and L is infinite, 4* and &* gre proper and
(CUEVC,p V0,8 Te TEDW, 1L 0005) =¥ [ElL,0,0,0, (s T1EDy, 0L 00,0, .
Moreover G[El=true and obviously aptwlﬁlhtarnﬂE]w1=true, so, this
case being typical, to establish that E[E]=true we have merely
to show that kEl%iApﬁiAfitﬂ1ﬂ1=true.

Let pﬂzAsetﬁ2ﬁ1=true for some ﬁ2 (on the assumption that
such ﬁ2 exist); writing ﬁ3=((revert5052,62,6z),(reuertbODQ,DQ,bQ))

we have setft fi=set® %, ,=true. Furthermore by 2.1.7 and induction

on v,, for all V<2, Vi, &0 and &1
seenvovi&o®1ﬁ3Akent1®1ﬂSsseenvoviao&iﬂz and, since

yeleptd Mt oycleptd, f rkentlt ., kentvomoﬁaakentvoaoﬁz. Hence
pf =true, a<61526262,21526262>=a<5536363,3535363>=true and

k21%1=true.

<1t remains to be shown that pf,Afief %, =true. As an

abbreviation we introduce the pair of stacks Oq, which is

141

* . 4 3 o] P
¢8*§ENE 6,0 SHENC, 5,0 821E1E, 6,

u
0!
swap (FIEI SHTED)T* (3*820e B, 1T p, 0

0
Sswap (FTENSALEDI* (P [E19,1T, 0,0 620 [Ty, 12,00,)

)

For any & gyvenaﬁubkentlmﬁlAgyven(access&iﬁi)Ou and we can now
convince ourselves that when v<2 kentvmﬂlzgyvenQOQVkentv&ﬁo as
follows.

4The assertion that

seenuoulmoﬁlﬁiA(gyven&ioqvkentlalﬁo):gyven&ioquentvoaoﬁo holds

for all V<2, & and Ql when v,<1. Suppose that it holds for

0 1

all v <2, &, and &, and for some v, ; we shall show that it holds

0

for v .
e 1+1

0 1

Let seenvo(v1+1)®0®1ﬂ1=true and let hoten&104=true or

kentlmlﬂ0=true. If ml:L and gyvend, 0, =true, sit661506060=false
S0 kent1®1ﬁ1=false whilst if Qi:L and kent1®1ﬁ1=false
gyven®104=false; similar remarks pertain when &, :L. Hence if

61:L or mizL, access&lﬂ1=(gyven®10u+access&1ﬂ1,access&lﬁo) and

seenvoulao(accessmlﬁl)ﬁ1=true where gyven(accessmlﬂ1)0u=true or

kentl(accessmlﬂl)ﬂo=true. If al:JxJ, there is some m2 with

seenvovlao&2ﬁ1=true and hoten&2(w1¢2,ml#2)=true or

gyven@2<61+3,m1+3)=true; moreover if gyven®10u=true either
hoten®,0 =true or yeleptB f =true (from the definition of p, as

a pair of fixed points) whilst if kent1®1ﬂ0=true kent1®2ﬂ0=true,
and accordingly gyven®204=true or kent1@2ﬂo=true. If ml:FXF,
seenuovl& B _%,=true for some m2 such that hoten&2<&1+2,m1+2>=true;

0621

since the elements of ¢, and Du are all locations or label entry

4
points, kent1®1ﬁ0=true and kent1&2ﬂ0=true. Analogous remarks
hold when ml:L*xL* or Qi:JxJ so, unless possibly @1:GXG or
mlszP, there is some &2 with seenv0v1m0&2ﬁ1=true and with
gyven&204=true or kent1®2ﬁ0=true; by the induction hypothesis

gyven&oou=true or kentvoaoﬁo=true. When there is no such Qz and

142

when ml is a pair in GxG,

seenvo(v1+1)&0&1ﬂ0=Vqseenv0v1®O®2<(61+2,<),61+3),(mi+2,(),al+w)
AyeleptD (6, +2,0) 8,43 (B, 42,0 ,B,+3)) Imlzww}
:seenvo(v1+1)®0®1ﬁl
=true
and similar remarks apply when ml:PxP. From 2,1.8 we can deduce
that in these cases also kentvomoﬁ =true, thereby completing the
step in the induction,

Consequently the assertion above is valid for all v and

1’

in particular for every v_.<2, & and ml, as

0 0

ycZept&iﬁingyven®10uvkentl&iﬂo, we can infer that

seenvoviﬁo&iﬁlAycZept&iﬂ13gyvena104vkentvo&1ﬁo. From 2.1.6
kentvmﬁlagyvenmo”Vkentv&ﬂo for all v<2 and @.%

These paragraphs make plain that p0ﬂ1=true and that when
kent0®ﬂ1=true but gyvenﬁ04=false w®ﬁ1=true. Indeed, if
gyven®l =true and @:L or m:L necessarily
‘A{N((Q:LAQ=QO)V(Q:LA&=&0))V(&:EXEA®=&O)|kent0&0ﬁ1}=true
so only the case when %:JxJ and gyven&04=true requires further
consideration before we may conclude that pﬁ1=true. Clearly any
® having gyvenm04=true satisfies womﬁ1=true; coupled with the fact
that pﬁo=true this establishes that pﬁ1=true and thus that there
are indeed pairs ﬂ2 having pﬁ2hsetﬁ2ﬂl=true. Hence k2131=true,
and the premises of the lemma now indicate that any ®:JxJ with
gyven@04=true is subject to c<é+1,&+1>(6f1§(61>,m+1§(61)>=true;
this ensures that p%o=true.>

We have therefore demonstrated that when
aptw26Arent[EH¢2Afitﬁﬂ=true o(ﬁﬂED,ﬁﬁcﬂEH¢2B>ﬂﬁ=true
for all v, and *., In terms of the definitions of 2.4.5 this means
that ElEl=true.®

Note that this result does not use any of the properties

of fixz other than that of producing a fixed point., Were there

143

another means of solving the recursive equations on environments
which fix deals with above it too could be shown to be exactly equi-
valent with the technique which stores label entry points.

We are now in a position to resolve the problem raised in
1.3.1 concerning the relation between a while loop and a program
containing a conditional expression and a label instead. In

standard semantics while EO do E, and I::E

1 B where E2 is

if E, then B3 goto I else dummy, can be shown by induction and
the use of 1.5,2 to be identical in their effects so long as I

is not free in EO or in Ei‘ If RHE0H=true and E1 satisfies the
hypotheses of the lemma above, T:1E, and I:E, correspond in store
semantics (using new instead of novel). Under the restrictions
laid down in 2.6.9 this sort of semantics coincides with standard
semantics so the standard translations of I::E, and I:E,, and

thus of while £, do E and I:E,, are such that there are no dis-

cernible differences between them,

2.5.2., Lemma.

If E:Exp satisfies E[E]l=true then L[E]=true and R[L]=true.

4<Inspecting the definitions of 2.4.5 reveals that the
result is entailed by k(mvé,mvi)ﬁAk(st,st>ﬁ=true for every z
and ® having kZT=true. Taking some such E and # it thus suffices

to prove that E satisfies

DO 0 O,mvgp Y Yaal svip

almug o¥0%0 0VoC0r 8PPV

Fay

for some typical ﬁo such that pﬂOAsetﬁOﬁ=true; let EO=(GO+1,00+1).

Owing to the fact that p fi =true, if €,:L areaé060=true

whilst if s 'l novelpou 6, is proper, and we may sensibly define

£ and €. to be (EO:L+EO,noveZo g _&§.) and (s L+holdE

1 5 £.)

0"0"0 0 0’ 0

respectively. Setting ﬁl-(é 1>§UO+1 updateaiszéo> and
ﬁ2=(§0,<52)§u0+1,60), myLo 0 0,=5p, U, 0, and sv TPV 058P0 ,0,3

144

analogous definitions apply to ﬁo, and in terms of them it
suffices to prove that p% rsetfy fi=true and pft rsetft fi=¢rue.

By inductions like that of 2.5.1 we can show that for all
v<2 and & kentv&ﬁla(&=€1vkentv&ﬁo) and kentvmﬂgb(&=€gvkentv®ﬁo).

Since access€0ﬂ=@ actually for all v<2 and & kentv&ﬂzskentv&ﬁo

1
so that w&ﬁobwaﬁz for every & and pf,=true., Because £,:VxV we
have setﬁzﬁztrue, a(Eﬁ 6.0 EE 0.) =true and k<sv£,sv2)ﬁ=true
for every E and # satisfying iZfi=true.

To establish that pf,=true it is merely necessary to show
that p0ﬂ1=true. Three conceivable circumstances exist, corres-

ponding to whether @O:LXL, g,1VxV or éO:V and & :L. In the

first of these, €1=EO and ﬁ1=ﬁ0 so that pﬁ1=true. In the second,

000
and, as pointed out in 2.4.,5, p,, being true there can be no @,

€1=<n0031606060,novelb V.0 so that siteéiﬁoﬁoéovsiteélbob060=false

with kent0®0ﬁ0=true and €,=6, or é1=w0; hence

N~((E: Lag=0 OV (i LAb=R)IV(BEXEAR=D) [kent0D f, }=true when

kent0®ﬁ1=true and @:L or :L, In the third, Ei=<novelp00000,éo)

where siteé ((ég)§00+1)60:false since Setﬂlﬁ:true;

oo
p(ﬁo,<b0,<é2>§bo+1,bo>) being true we may argue as in the second
case that p0ﬁ1=true. In consequence, pﬁ1=true whatever the
nature of éo, and setﬁ1ﬂ=true as €1:LxL, so that

almufp 0 muZp V.0 =true and mvf mold f=true . b

0"c 0’
This lemma thus validates the contention of 2.,4.1 that if
a member of V and a member of L are paired at the top of their
respective stacks they will quickly be replaced by a pair in either
LxL or V=V, In particular, by the time two stacks are preserved as

part of comparable label entry points locations will be coupled

only with locations,

145

2.5.3., Lemma,

For all I:lde and B:Bas G[1] AGlBl=true.
<Suppose that §, # and [are such that
aptwﬁhtorn[IﬂwAk2%=true, and take any ft, having
Fitf Arpf =true. We shall show that
cﬁ?ﬂlﬂ6506060,?ﬂ9ﬂlﬂ¢ﬂ2505060)=true. Because tornﬂIﬂwﬂaptw60=true
5, which we define to be ¢ [TI+1,b,1TJ+1 , is proper.
4Assume first that Y[I]+1=true, so that by the definition
of apt §:V and §:L or 3:V while from 1.4.6
@p [TIYI =% $T1=#[I]omv. Writing
é=(8:L+(area880+h01d380,T>,3), a=novezbo(<é>§bo)bo and
=B, 60,60 ,0d,¢% §d ,updateaBo), we know that @ is

proper (poﬁo and pZot%BOUOOO both being true if E:Lj and

(FITNED 006, SI# I TIVI L0, 0 5)=

o~

551 1 1.2515181). We need now
verify only that pf =true, since from 2.1.6
site&bo((é>§00)60=true and setﬁ1ﬁ=true. In fact we shall show
that kentvmﬂln(a=<S,&>Vkentv&ﬁ0) for all v<?2 and &.

“Plainly yeleptdt >(0=(8,® vkent1d?), access(§, # =§

and kentl(access(é,&)ﬁl)ﬂ0=true. Suppose that for all V,<2, &0

and 0y and for a certain vy seenv0v1®omiﬁlnkent1&1ﬁDskentialﬂl,

and take any ve<2, B and Qi with seenvo(v1+1)® o, f Akent1®1ﬁ0=true.

0711

(o]

If & :L, sited

L 0,=true so b, is not & and holdw,b,is

1Po%0%0 1

holdwlbe. Hence when mlzL or u.,:L accessa1ﬂ1=access&1ﬂo and

1

seenvovl&o(accessﬁlﬁi)ﬁlAkenti(accessaiﬁl)ﬁO:true. When

o] ® * = i =
&1.L xL* seenvovl&o&2ﬂ1 true for some &2 with hotenmzal true

and kent1® f =true by 2.1.8; similarly when @ 1dxd, B FxF

or &l:JXJ seenvovi&0®2ﬁ1=tru9 for some &2 having kenti&Qﬁoztrue.

In all these cases the induction hypothesis permits the con-

clusion that kentv0&0ﬂ0=true. When &fPXP necessarily v, =0 and

seenvo(v1+1)Qoﬁiﬂo=\ﬁseenvovlmoa2alAchepta2Q1]QQ:wxw}

=seenvg(u1+i)m0&1ﬁ1

=true ;

146

likewise when leGXG seenvo(v1+1)&0m1ﬁo=true so in both cases

kentoaoﬂo=true from 2.1.8.

This being so, for all v, <2, v, , B, and &,

0 17 70

seenvOviaomiﬂ1Akent1aiﬂ0:kent1moﬁo as this assertion is wvalid

when v,<1. Hence for all v<2 and @
kentvOf, >(0=(§,00 WiVIseenvy 00, A0, =8vycleptd f)1})
3(&=(5,&)VVTVWseenvvi&mlﬁoAkent1®1ﬁ0}})
a<a=<é,&>vkentvaﬁ0),
which provides what was required.®
Because site&bobobo=false for no v and € does
kentv(é,&)ﬂ0=true, and therefore p0ﬁ1=true. Moreover unless
b=0 kentoﬁﬁiDkentomﬁonw&ﬂoammﬂi; hence pft, =true and

- - -~ -~

551U101,§p1U101)=true.P

2

Now assume that p[Il+1i=false, so that &;LxL, §:VxV or.

8:6x6, In the first two cases,

-, -~

(@ﬂIBcpo Goo,gﬂg[Iﬂwﬂcpouooo>=<cp U, 0,,5p,U,0 } where
ﬁ2=<(50,(6)560,50),(b0,<6)§bo,60>>. Because hotenSp =true,
kentv&ﬁgakentv&ﬂo for all v<2 and & and pft =true. As
setﬂQ"ﬁAkE%=true we can infer that

g Aa A o P ~ - -~ -
a1 Il cp u,0,,#ls 1 T]Yl o v 00 =true.

When &:Gx6 define £=(541,841),

> Cr

ﬁ3=<<(5+2)[ﬁ0/rec],<>,8+3>,((E+2)rﬁ /rec],() 843, so that

0
#IT) 85,000, 9hs 1TIWI TR b 50 = £85,0,6,,28p,0,9 . Since
kent1§%0=true and kgﬁ():true, G(EE,EE) 3=true and in order that
a(Eﬁpauaoa,ch3u303)=true it is enough that pﬂ3=true. Now for

any v<2 and &, writing ﬁq=((§+2,(),5+3),(3+2,(),3+3>),
kent\)&ﬁa=(V{\/{seen\)\)ifb&iﬂaf\yclep tﬂ)i‘ﬁq} }Vfb:‘ﬂo
V(\)ZOAV{\/{seen\J\Ji@&lﬂoAyc Zepz’:(ﬂiﬂo} 1)
=(V{\/{seen\)\)lfh&lﬂuf\ycZept&iﬁq} }th:ﬁo\’(\)=0Akent0®‘ﬂ‘0))
since seenvv1&61ﬁ3=seenvuia®lﬁufor all v, and &1 by definition,

In particular kent0®ﬂ3:(®=ﬁovkent0&ﬂ0) and

147

kenti@ﬁsD(\qseen1v1£S%0}V&=ﬁ0)D(&=ﬁ0Vkent1&ﬁu). Since pﬂo=true
w0ﬁ0ﬁ3:true and since hoten860=true p0ﬁ4=true; accordingly
kentof >wbf, and p % =true so that pf =true as required,
Hence whenever y, # and g are such that

aptwﬁhtornﬂIﬂwth%=true c(gﬂlﬂ&,?ﬂyﬂI]¢ﬂE)%=true, so that
A% I],208 1 IFv]) Aft=true and G[I]l=true. Similarly
olZ[B] ,#lg [Blyl» ift=true, for given any ﬁo setting §=CZHBHJFHBR>
yields bE=true and
kentub((6, (B 86,60 (D, B 50,5 0) >(D=Bvkentvdd)
for all v and Q.*»

~ Were it not for the fact that the transformation of I
into $I makes stored values correspond with fresh locations

rather than with their contents it would be possible to eschew

the distinction between ¢ and k adopted here.

2,5.,4, Lemma.

If ZIE)l=true then G[fn()C]=true,

Gﬂnt.EﬂAGlfnli,...,In.Eﬂ=true and G[fnI..E]ArG[fnI ,In..EH=true.

11
<Suppose # and ﬁo are pairs satisfying pﬁOAfitﬁ0ﬂ=true
and that €O:FXF is such that w€0ﬁ0=true and
hoten&(é0+2,20+2>3h0ten®b0 for all &. Taking ﬁl to be
((ﬁo,(éo)§00,60),(bo,(20)500,60)> we have for every v<2 and &
kentv&ﬁ1=\4\4332nvv1m®1ﬁ1A(m1:€OVchept&1ﬁO)}]
=(VW\Gseenvv1QQ1ﬁ1A(hoten&l(é0+2,éo+2)VycleptGlﬁO)}}vG=€O)

=(ViV{seenvv 08 f A(hotend, 8 vyclepth ®)}PIVO=E)

160
=(VT\QseenvvlaaiﬁOAchept®1ﬁO}}V®=€0)
=(&=€0Vkentv®ﬁo).

The nature of w being such that m&ﬁoawaﬂl for all &,

phyaset T=true.

Given any z and ﬁo, for every abstraction ¢ there is a pair

148

eO:FXF such that for all @ hotena(éo+2,éo+2)nhotenmﬁo and such that

7 "’ ‘ ‘ _” - P A e _"" ~
1 o)z PyVy0, Cpo((60>§uo)60 and §ﬂ9ﬂ®ﬂ¢ﬂ€pouobo—§p0((€0)500)30

In particular if aptyBatorn®]ly=true and ki%ApﬁOAfitﬂOﬁ=tpue it

is enough to show that w€0ﬁ0=true to convince us that, in the
11’
conclude that ¢[&]=true if the fact that w€0ﬁ0=true does not

notation above, a(cp 0 5515181)=true. Moreover we can even

depend on special properties of ﬁo

We shall ignore the possibility that ¢ could be of the
form fn()E as the necessary proof is less interesting than the
following ones. Let the abstraction firstly be fnI.E, and let ¢
and p satisfy aptypatorn[fnI,E)y=true. If Eo and Eo are
Aopu T El cpluv1/I1(vt1) and Acpv. e [El YL false /I zoluvl/I](ut1)

respectively, for any ¢ and %0

#fnIl.E]C Pyq Oo0 is CDD(((EO,Pendﬂnt.EBpO))§UO)OO and

wuynnt.Eﬂwﬂ;pou is E;O<<<éo,rendnfn1.3ﬂbo>>§bo>ao

0%
In accordance with the remarks above it suffices to prove that

all Lq» ﬁl and ﬁQ having

62=(divertﬁl(rendﬂnt.Eﬂﬁo),divertbl(rendﬂnt.EHbO)),

01=(02+1 v ST, fztﬁ ﬁ =trye and ka T [Strue satisfy

-

O(Clorevertﬁ), E (C orevertpi))ﬁ =trye. Suppose that for some

Y A

Fal!

such El,ﬂ and ﬁ2 there exists a pair ﬁ with pﬂ AfLtR R =true;

1 3

2
taking ﬁu to be (63[63+1/I],63+1,63) (and similarly for #) gives

aptwﬁuArentﬂEH54=true and, as kentv&ﬁuakentv&ﬂa for all v and
8, pfi Afith i =true where

ﬂs-(([d +1/I? ¢ +1 , 6 5 (b2[b2+1/11,b2+1,62)). In addition
kE T.=true So k(Ciorevertﬁl,ilorevertbl>ﬁ5=true (as was proven for
a similar case in 2.5.1) and we may deduce that

e Q,E (C_1L revertpi)bububu)-tpue

-

E i revertﬁl)p
el E (T

orevertpl),go(clorevertbi))ﬂ2=true.
Now take y and f to be such that

apt Vpatornl fnI, . E] y=true; when z satisfies kIm=true and ﬁo

149

satisfies pﬁOAfitﬁ0ﬁ=true inevitably

?ﬂnt..EHEBOGOGO is gpo((éo)ﬁﬁo)ﬁo where éo is

-

(gvof rendﬂnt.Eﬂﬁo) and EO is as above. On the other hand,

O!

@ﬂy[fnl..Eﬂ¢HEBoboao is ostensibly influenced by the value of

optlI]y¢; as intimated in 1.4.6, however,

-
-~

@ﬂ(nt.cﬂE]w[faZse/I])$ﬂCDOB 0

OUO and

GIfnI..e{ElWlfalse/I1VTp D 5,

rendﬂnt.EHb0>. The proof of 2.5.2 can be amended

are both EOBO((EO>§DO)60 where éo

-

is (svogo,
teadily to show that when CEQAQ=true for some EQ and fi, we have
a(svéz,stQ)ﬁ2=true, so (remembering that
o(AC.EO(Corevertﬁi),A;.%O(Corevertbl))ﬁ1ﬂ2=true when
ﬁ2=<divertﬁl(éo+2),divertbl(to¢?)) from the paragraph above)
o(Ac.sv(éo(Corevertﬁl)),Ag.sv(éo(Cvrevertbi)))ﬁ1ﬁ2=true under
these circumstances. This being so for all ﬂl, w@oﬁ0=true and
Gl fnI..E]l=true.

In like manner we can show that

G[ntl,...,In.EﬂAGﬁnt .,In..EB=true, but the necessary proofs

12"
diverge slightly from those above because, writing I*=(Il,...,In),
Wﬂ(fnll,...,In,zHEﬂw[faZse*/I*])$FEBO does not coincide with
W[ntl,...,In..sﬂEﬂw[false*/I*]ﬂEBO although the ultimate effects
are the same, The first of these places

[

{gvek ,rendﬂntl,...,In.Eﬂbo) on the stack whereas the second

1

places (svoéz,rend[fnll,...,In.EHbO) on it; here %1 is

rzpuo, (ha*, (Ao H#o*=nstfe [E| V[false*/I*1gplholds{(v¥1)o/T*1(vt1)c?,T)
(updatesa*(holds(u+1)a)o))(novels(#u+l] L*)o)

but £, is

Azpuo, #usl [L*=n>&[e [ElYL false*/I* 11 cplholds(vy1do/I*1(utl)o,T.

However, if we define

§1=52=A;puo.#u+1IL*=n+&1£ﬂ;p[holds(u+1)o/I*J<u+1)c,T,

91 ,...,I ..Elip, adjoins (svef, ,rendlfnl ,...,I .EI§

150

to U,, and we can verify as before that whenever ﬁ1 and f, have

0?
62=<divertﬁl(rendﬂfnll,...,In.Eﬂéo),divertbi(rendﬂnti,...,In.Eﬂbo)),
01=<62+1,02+1) and fﬂtﬁ2ﬂ2=true and whenever El has k21%1=true
c(svén(Elurevertﬁl),sv%n(zicrevertbi))ﬂ2=true if n is 1 or 2 and
if tornﬂfnli,...,IH.EH60=true. Hence the result follows by the
argument of the opening paragraph.*®

Here we make significant use for the first time of the
conditions on the stacks in the definition of fi¢, in that we
arrange to supply an abstraction and its transform with para-
meters both of which are locations or both of which are stored

values, The next lemma requires not only these constraints but

also that of 2.4.5 to the effect that if pf=true then p0ﬂ=true.

2.5.5, Lemma,

If E[E YAELE,]=true then GIE :=E J=true.
4As in the preceding results we can ignore the conditions
in the definitions of 2.4.5 involving label entry points as the

scopes of labels do not propagate beyond EO:=E We shall

1.
assume that mete evaluates expressions from left to right since
the alternative leads to essentially the same proof.
Suppose that when kE%=true for some f and % then
et o= true where
EO=(Agpu.£p(<dummy>§u+2)oupdate(u+2)(u¢1),
AEpU.L Lp((dummy) §ut2Youpdate(V+2) (V¥1) ,
60=61=6, 8O=60=6, 01=<(&>§6,(&>§b> and 00=<(B)§Gl,(B>§bl> for
some &:LxL and B:VxV such that setﬁoﬁlasetﬁ1ﬁ=true. Under these
circumstances k(svio,svio>ﬁ1=true by 2.5.2 so, EEEOH and EEEIH
5) F g > _
being frue, C<'/£[EjﬂCO,VEH‘HEi]]1P]]CO) ﬂl—tr‘ue,
Kmv@E, 1L), mo@le [E 191e,) f=true and
CUfHEOHGﬁHElﬂCO),EﬂtHEOHwHG%E‘HEiﬂwﬂCO)>ﬁ=true when

apt¥patorn[E :=E Jy=true. Thus if for any z and f with KkCm=true

151

cEOﬁ0=true when Eo and ﬁo are as above we shall know that
GHEO:=E1ﬂ=true.
Take any such 7 and n together with some ﬁQ having

pﬁQAfitﬂ2ﬁ0=true and define fi, to be

3
(62,<dummy)562+2,update(62+2)(62+1)62> (and similarly for #_).

Patently setﬂ3ﬁ=true, so should pﬁs be true a(EﬁSGSGS,EB v

0 2U202’C0920202) will be true., That p?

true follows from the assertion that for all v<2 and &

will be true and a(g

kentv&ﬁsa(&=(dummy,dummy)Vkentvaﬁz), which we now ratify.

Suppose that for some v, and all v <2, ®_ and al

1 0 0
seenvov1aoa1ﬁsakent1m1ﬂ2:kentvoaoﬁ2; this is clearly the case
if v,=0. Let v, <2, &0 and By be entities having
seenvo(v1+1)&O&iﬁSAkent1m1ﬁ2=true. If wizL or ml:L,
seenvovl&o(access&lﬁs)ﬁ3=true so should kentl(accessiﬂl'ﬁa)ﬂ2 be
true kentv0&0ﬁ2 will be true by the induction hypothesis. When

G,=0,%2 or w1=02+2, since kent1&1ﬁ2=kent1<U2+2,02+2)ﬁ2=true, we

have &1=<U2+2,b2+2>, access®1ﬂ3=<uz+1,bz+1) and
kent1(02+1,02+1)ﬁ2=true; otherwise access®1ﬁ3=access&1ﬁ2 and
kenti(access&lﬁz)ﬁ2=true by 2.1.8. Hence kentv 0 & =true under

these circumstances; as we can employ the techniques of 2.5.3 to

check that kentv O f _=true unless Ql:L or mlzL, we infer that

070 2
the induction hypothesis may be 'stepped up' freely from v, to
vyt and that for all V<2, Vi, QO and ai
seenvovlmoalﬁaAkent1mlﬁ23kentv0&0ﬁ2. Now for any v<2 and &

kentvdt sMIVIseenvv, 00, A (0, =¢ dummy ,dummy) vyeleptd #,)1})
3(@1=<dummy,dummy)VVQVWseenvvlaalﬁBAkentlaiﬁQ}})
:(Q1=(dummy,dummy)Vkentv&ﬂz).
In consequence pf,=true and, ﬁz being a typical pair

having pﬁQAfitﬁ2ﬁ0=true, cCoﬂ0=true whatever suitable & and #

give rise to EO and %0. From our opgning remarks we may there-

fore conclude that GHE0:=E1H=tru6,>

152

2.5.6, Lemma,

If RHEODAGﬂEiﬂAGHE2H=true then GIE ; E,l=true,

GIif EO then E, else E2H=true and GJwhile EO do E1H=true.

1
4We shall establish only the third part of this result,

as the others involve much the same method. Let E and % be any

pairs having kZn=true and define

Ei%ﬂEoﬂ°(ACpU.U+1+WﬂE1H(Ap'U’.Cp'(u’+1))D(U+1),gp((dummy)§U+1))

and

E=A« [E Tyle(Azou.us 112 [E, 10D (Ao 'u’ g0/ (v $1))p(utl),

Ep((dummy)ﬁuTi))

for some y having aptwaArent[E3Hw:true, where E, is while E, do E e

If EO satisfies cgoﬁ=true, then cﬁlﬁ=true where
E,=®IE, 1 pv.Lp(vt1)) FI3[E,19] hpu.T p(ut1)) , as
k‘AOU-fop(Ufi),Apu.iop(ufl))ﬁAGﬂE1B=true. Moreover, writing
£2=Apu.u+1+glp(ufl),gp((dummy>§U+1) (and similarly for 52)’
k(sv52,3v32>ﬁ=true and, as R[Eoﬂ=true, cufﬁEOﬂEQ,ﬂﬂeﬂEoﬂwHEQ)ﬁztrue.
Hence for all Eo with cgo%=true, c(égo,éao>ﬁ=true; since ¢ 1is
inclusive by 2,4.7 and since o(1,1) fi=true we have
AFLELNC,FI$1ENVID) Rl FinE, find) R=true.

From this we can infer that in fact
k(Apu.fixéo(u+i),hpu.fixép(ufi))ﬁ=true. Now
AE,]L50621E,1E50=(Ac. 21 £, 1 c80521 E 1c80) (hpv. fizEp(ut1))
and analogous remarks hold for the transformed programs; GHEiﬂ
being true and 7 and ? being typical of those pairs with
kZm=true, Glwhile E, do E J=true.»

As a counterpart to 2.5.1 we next outline the proof that a
label set by incidence can be satisfactorily transformed into one
set by reference whatever the nature of the expression labelled by

it. This is in sharp contrast with the situation concerning

recursive declarations, which will be analysed in 2.7.6.

153

2.5.7. Lemma,

If GIEl=true then G[I:E]AGII::El=¢true unless I is a
member of FIE] SA[E].

4We shall consider only I1::E, the proof for I:E being
similar. Let aptUpatorn[I::Elyakifi=true for some ¥, % and 7;
then o{(¥4[1::E] E,@MH I: :E]]w]]E> f=c@ [E1 2,909 [EIV] D f=true
and w((¥[EIC,p,D ,(%Mg LEIVIT,D,0)) f=true,

Suppose that Y[Il+1=true; writing
I*=#Tg[1: :E1v] 5[[I::EDp=C DT> §7[#[E]9] 8¥1¢ [ETv] and
w*=#[#{T::EJW] TpOS2[#1 I: :ETWI Tp0

=((FT3TETYIT,p,0) s21# [ETW] TpLS2Ms [ET 9] AT,

for every v with 1<v<#I* we know from 1.4.6 that
swap (Sl T: :EV X1 T::E])I*w*¥v must coincide with
(v=AALE] +1+w*41, swap (FTE] SAT E]) (I*t1) (w*t1) 4 (v<#F[E]»v,v-1)).
Now w((#[EIZ,p,0 ,w*+1) A=true and if 1svs#I*-1
@[ENCpUE2[EIEp04v, swap (FIET SHLET) (T*+1) (w*t1)4v) R=true,

Similar remarks are germane when Y[I[+1=false so as vy,
% and Z are any pairs having aptwﬁAtornﬂI::EﬂwAk£%=true we can
infer that G[I::El=true.>

We shall leave out all except one of the results about
declarations because their proofs are simplified versions of
those to be given in the next section. Typical among them is
the assertion that if E[El=true then p[A]AT[A]l=true when A takes
the form I=f or Ii""’In=E and p[A]=true when A takes the form
I==g or 1,,...,T ==FE; 2.6.5 will verify a somewhat weaker con-

tention about #T1,,...,I, ==E]. Likewise in 2.6.6 we shall show

n:
that any A, and Al satisfying DHAOHADHA1]=true have

DHAO within A1E=true whereas any A, and Ay satisfying
DIANATEA 1=true have [, within b, ¥=true (provided that

ﬂﬂaoﬂ§fﬂAlﬂ and JHAoﬂéJﬂAOﬂﬁjﬂﬂlﬂ are lists without repeated

154

elements). Multiple declarations will receive a similar
treatment in 2.6.7 where we shall confirm that for all
Bigeeesd) D[ﬂlﬂA...nDﬁAnﬂoDﬂﬂi and,..and Anﬂ and
TﬂAinA...AT[AnﬂaTﬂﬂl and.,.and Anﬂ.

2.5.8., Lemma.

If 7] Al=true then T[rec Al=true and, when
opts(H# Al)=AyY.false* also, Dlrec Al=true,
0° ﬁl and E are such that
optsGﬂ[A])w0=false*, pﬂiAfitﬁ1ﬁ=true and

4 Suppose that Voo il

Net|sewnl rec Bloy R R}=true; let y, be
wo[false*/fﬂﬂﬂ][false*ﬁ*ﬂﬂﬂ]. Because p0ﬁ1=true, if

<&*,&*>=(novels($FﬂAH)616161,novels(#lﬂﬂﬂ)510161) and

82=<updatesd*dummy*éi,updates&*dummy*al), 8, is proper, Define

2

02=01 and

62=<fix(lp.ﬁité*/fﬂﬂﬂ][yﬂﬂﬂoﬁzﬁﬂﬂﬂﬂ]),
Fra(ro.p [0*/FTANILSTET ALY, T 00, /AT AT T .

Plainly, if ® is such that sewnﬂaﬂlwiﬂ2ﬁ=true then

seunlrec Aﬂow0ﬁ0ﬁ=true; thus should pﬁ2 be true both

T8y 26,8,6,,91¢ a1y, 125,0,5,) and

616161,9ﬂd[rec Aﬂwoﬂialﬁiéj> will be true.

By an argument akin to that of 2.5.1 for all v and 8

2

al¥[rec AL

kentv@f = (8=C dummy ,dummy) Vgyveni 6% 8%

ngven&h?ﬂﬂﬂ6262;?ﬂtﬂﬂﬂwiﬂ5282)Vkentv&ﬁl).

Thus to show that pﬁ2=true it is enough tco prove that

gyvenauﬁﬂﬂﬂézdz,yTtﬁAﬂwiﬂbzaz>awaﬁz. Accordingly let I be any

member of #fA]; we wish to verify that for all ﬁs having

fitﬁ3ﬁ3=true we have

kT LA o (ACpu.recurpl ol I1+1|E))
jﬁfﬂﬂﬂw1ﬂ°(Ach.recurco<pHIH+1|E)))ﬁsﬁu:true

where f, =(((tear[16,00 /rec],() ,6,) »(Ctearl AIR, LT, /rec,) ,0,0) .

155

This will be so if every Eo having kEOﬁ3=true satisfies also
/{calﬁ|sewnﬁﬂﬂ1w1ﬁuﬂ}=true where
El=(lpu.recurggp<p[I]+1|E),Apu.recurzop<pﬂlﬂ+1{E)), because
TlAl=true. Take any ﬁs with pﬂSAsewnﬂﬂﬂiwlﬁuﬁ5=true; define

€6, ﬁe and ﬁ7 to be (55HI]+1,b5ﬂIﬂ+1h <55[recﬂ+1,55ﬂrecﬁ+1) and

(<§6,<és)§06,Pepla0356666665),(bs,(és)§Dﬁ,rep1aceb5D63685))

respectively, in accordance with the stipulations of 2.1.4. Now

setf f,=true as €_:V and & .:V, so

- - L N

Chy o

6
5§95254P5V50

Chy W

g =L P V0,0 p U0 Strue if pﬁ7=true. This

we establish below by proving that for all & kent0®ﬂ73kent0&ﬂ5

7
a(gip5

and kentl&ﬁ73(6:L+area667,true)A(Q:L+area&67,true).
4Suppose that for some vy

seenv_v, D 0, 7 Akentl@lﬂSDkentvoaoﬁs for all v,<2, O, and & and

0170717 0 1?
let v, mo and Qi be such that
seenvo(v1+1)&0&1ﬁ7Akent1®1ﬁ6=true. Unless 61:L or mlzL standard
arguments indicate that kentvoﬁoalﬁ6=true. Since
kent1&1ﬁ63(ﬁ1:L+plot61666666,true)A(&l:L+pZot&1b66666,tru3),
however, if 61:L or &1:L access®1ﬁ7=access&1ﬂ6 and
seenvouimo(access&jﬂ7)ﬂ7Akent1(access&1ﬁ7)ﬁ6=true so that by

the induction hypothesis kentvoﬁoﬂ7=true under these circumstances

also, Thus for any v,.<2,

0 v, O, and 8,

seenvov1m0&1ﬁ7Akent1&1ﬁ6:kentvomoﬁ6, and for any v<2 and @

kentvid® sVIiV{seenvv B0, f A (0, =8 vyeleptdf) |v NG, :WxH)
DVTVqseenvv1®&1ﬁ7A(®1:EBVkent1@ﬁ6)|v1:N}!®1:NXN}
DVqseenvv1&€6ﬁ7|v1:N}Vkentv&ﬂ6.

From 2.1.8 kent0Gf _skentodf, and from 2.4.5 p R =true so it

remains to be demonstrated merely that if

Vqseenvv1&€6ﬁ7|v1:N}=true then kent06ﬁ5=true and, when v>o0,

(é:L+areaéd7,true)A(&:L+area&B7,true)=true.

4Suppose that for some vV, We are given the validity of

the relation

156

o~

seenv0v1&0&1ﬁ7Akent1&1ﬁ53kentv000ﬁ6Vkentvomoﬁs for all v <2, 8

and &1, and let v <2, B and &, be such that

0

seenvo(v+1)@0&1ﬁ7Akent1&1ﬁt:true. Again the usual arguments
J

show that kentvoaoﬁ6=true or kentv0&0ﬁ5=true unless, perhaps,

&, :L or o,:L, If él:L and plotd, £6.0.6

1 4 10696 g=true, there is some €

having kentl(&l,é)ﬂ6=true and kentO(éi,E>ﬁ6=true so that, poﬁs

being true, é=w1,kent1&1ﬁ6=true and access®1ﬁ6=accessm1ﬁ5. If

mi:L and plot&lb D666=true the same reasoning indicates that

3]
kent1&1ﬁ6=true and access&1ﬁ6=access&1ﬁ5. I1f mizL but

plot61660666=false or if w, :L but plot&ibsb666=false,

kent1&1ﬂ5=true S0 (61:L+area6165,true)A(w1:L+areaw165,true)=true

L

and access&iﬁ6=access&1ﬁ5. Thus when wi:L or b, :
seenvovl&o(accessw1ﬂ7)ﬁ7=true and either kentl(accessw1ﬁ7)ﬁ6=true

oT kenti(acce35®1ﬁ7)ﬁ5=true; in the former case kentv0&0ﬁ6=true

by the paragraph above, whereas in the latter case kentv0&0ﬁ6=true
oT kentv0&0ﬂ5=true by the induction hypothesis,

6 and &

<
Hence for every V<2, vy, B 1

seenvovlﬁoaiﬁ7Akent1&1ﬁSskentvoaoﬁBVkentvomoﬁ5. In particular,
as kent1€6ﬂ5=true, if \Aseenvv1&€6ﬁ7|v1:N}=true then
kento&ﬁ5=true and, when v>0,
(6:L+area666,true)n(m:L+areama6,true)=true.}

Consequently for all § kentOLf okent0olft. and

kentl&ﬁ73(é:L+area667,true)A(@:L+area®87,true). As pﬁ5=true,

for all @ kent0®ﬁ7:w&ﬁ1 and pﬁ7=true, thereby confirming that

A LGPV 0,00 5V,0) Strue.®
For any ﬁ5 having pﬁEAsewnﬂﬂﬂiwlﬁuﬁ5=true we therefore
Pl - - = [, - - ~ 4
have a<51p5u505,c1p5u505>—true, and for any ﬁ2 and Z, with

kﬁoﬁ3=true we have

KT8] (Ao, recurt pCol TH¥1|D))
3ﬂtﬂA]w1ﬂ(ApU.recurEOp(pHIH+1|E)))ﬁ4=true

where ﬁ4=<<(tearﬂAﬂﬁQ)[wa/rec],(>,62>,<(tearﬂAsz)[ﬁ3/rec],<>,62>>.

157

Now gyven&U?[AH5262,311ﬂﬂﬂw1]b232)aw&ﬁz,

al@f rec Aﬂfﬁiﬁlél,gﬂd[rec A]wOHEblblai)=true. This is so for
and 7 having opts&*ﬂAﬂ)w0=false*, pﬁlAfitﬁ1ﬂ0=true

pfi,=true and

any v, ., f,
and ﬂ¢c£ﬁ|sewnﬂrec Aﬂowoﬂoﬁ}=true, and accordingly Dlrec Al=true.
That Tl rec Al=true is an immediate consequence of the

definitions of 2.4.5.%

2.5.9, Theorem,

The meanings accorded by novel store semantics to a Mal
program and its transform under the rules of 1.4.6 are equivalent,
provided that the lattice of locations is infinite and every
recursive declaration rec A, embedded in the program is such that
any constituent of the form A, within A, gives rise to lists
!1A0H§JHA1] and fﬂﬂoﬂédﬂA0H§¥1A1I without repeated members while
opts (M AQ]])=AY, false™*.

41 opts 1Al)=)y.false* for every constituent of the form
rec A it is possible to apply 2.6.5, which requires that no exit
of a recursive declaration be changed by transformations using i
{(so that I==E, for instance, becomes I==¢[E]y and not T=¢[EJy).
The condition on within declarations will be explicated in 2.6.6.

Note that at no point in the preceding proofs do we demand
that the novel function used by § be the one used by ¥: all that
we need is that they both obey the postulate of Z.1.1. Moreover
if we let opt be AYT.false, so that we consider one program
evaluated with the aid of two novel functions, f and % request
fresh locations simultaneously. Thus we can delete the
requirement that L be infinite and also the requirement imposed
on Within declarations (as the proof of 2.6.6 will indicate) to
obtain the further result that distinct novel functions give a
program meanings which are equivalent in the sense suggested by

the predicate a set up in 2.4.5.%

158

2.6. Connections bhetween storage management techniques.

2.6.1, Additional invariants of computations.

We shall complete the link between standard and store
semantics by proving that the store equations alluded to in
2.5.9, which invoke novel, frequently coincide in effect with
those of 2,3.9, which invoke new and approach recursion somewhat
differently. The proof closely resembles the one we have just
considered, and we need only analyse the cases not dealt with
above. Accordingly we shall concern ourselves principally with
declarations and shall provide results which after slight
amendment will fill the gaps in the foregoing theorem.

Throughout this section we shall presume that the state
vector pair ff has arisen through evaluating a program using novel
store semantics to yield f and evaluating a transform under some
Y of the program using new store semantics to yield 7. We retain
Y simply so that our results may be placed in the context of the
theorem above without much ado. Because storage is no longer
allocated to T by means of novel we cannot ensure that fresh
locations will be inaccessible using site, and thus cannot debar
a location from being paired with distinct expressed values,.
However if the locations accessible using plot are necessarily in
the current area of store we can demand that no fresh location
& satisfy kent1{¢,® fi=false for all €. To guarantee the existence
of a steady supply of locations we restrict the area of & to be
finite. The constraints imposed on fi remain as they were, since
nothing has been changed in its mode of construction, Consequently
we now set

p0=3\’ﬁ'.neatﬁ/\ FO=H#0A#G542=0042A#G543=4#0143

A\Hﬁﬂsite&ﬁﬁﬁﬁAarea&maliﬁmfn}+ {&m=&1[1€m<lsn},falseIQSR}

- . - = areal - =~
Aﬂd(mo.LAmO G, AV=0~+ woéAwO o)

1
S v Lah = =1 +areay 3ad =¢ kentvl fakentlf}.
A(wo LAwO wiAv 1+ wo mo 1)l 0

[

159

For a technical reason which will not emerge until
2,6.,5 we now bring into play a property of expressions which
hitherto has been irrelevant, The only locations which a
program can assign to are those which can be handled by passing
through the environment and the store. Though these need not be
denoted there must be chains of values leading to them which do
not require the presence of either the current stack or one
forming part of a label entry point. Accordingly unless a
location is accessible in this way or can be supplied by mv its
content must be left unchanged by the evaluation of an expression.
To permit the process of 2.4.56 to be carried out as before in
fact we demand that only a projection of this content be preserved,
writing
f

1*P1™
Mﬂ{é:LXng:VXVV~gyven€01|€:EXE}

fzt=kﬁ0ﬁ

A(Blg xBg)P = lq,<Bg)P A (Bq *Bq)0, =(Rg, *Bq)0,
NA{Spotab10151V(qO(holda51)=qo(holdaao)A~3pataboboao
v~gyven(a,u)(D1,D1)|u:L}.

Owing to the adoption of new rather than novel by the
semantic equations our knowledge of the contents of locations is
circumscribed by plot, not site. The values returned by
expressions are subject to

07070
V(DO+1:L+~pZot(DO+1)bO(<hold(00+1)ao>§DO+1)50,true))

set=AﬁOﬁ1.((60+1:LAsp0t(DO+1)b 0,8,

AFLBOCE ,0,11,800 0D .0 t1,3) %, .
Now that fitﬁoﬁi expresses a relation between 60 and 61
must give a more closely confined definition of w&f when
@: FxF, as the stores concerned must coincide. In addition if the
locations on the stack which cannot be reached using spot are not
to be assigned to during a call of a function they must not be

passed as parameters; this we ensure by using set to insist that

160

the topmost element of the stack does not fall into this category.
We continue to demand that a location never be paired with a
stored value on the stack.

Stronger conditions must be imposed on wQf when &:GxG
also, as we wish to compare two different approaches to recursion.
We take w, to be constructed from our present p, just as it was
built up in 2.4.5 from the earlier version, except that if we have
B:GxG wo&ﬁ is
p0<(6+2,<),6+3),(&+2,(),&+3))Ahoten((qoxqo)ﬁ)(q06+2,q0&+2);
this enables us to demand that
w=l&ﬁ.wOGﬁ

A(QIJXJﬁA{c(@+1,&+1)ﬁ0l60=(6¢2,a+2)A00=(6¢3,5+3)Afitﬁoﬁo}a
Q:FxF-»/\{o(A;.(mi)(;orevertﬁo),lc.(aw_l)(coreuwtbon ﬁ0ﬁ1
|f>‘1=< divertp (&+2),divertp (+2))
A61:60Afitﬁ ﬁl
Aset® (B, ,0,.60 ,(p,,0,,800 1,
iB:GXG+/\{o<m1,aJ+1>ﬁ0ﬁ1
B, =C(&¥2)LF /rec],(B+2)LR /recl
AD L= O AfiER By
Ahoten((q,%q)0) ((®q <Bq)P)1,

DI xI+ALKCGHL, Dv D) ﬁ0|ﬁ0=<m2,m+2> MO = B¥3, 043 At R0,

true).

Here e, k and o are presumed to satisfy the equations of 2.4.1
when we use in them the set defined above and a predicate p given

again by p=k&ﬁ.p0ﬁA/ﬂwQﬁlkentomﬁ}.

and o and

Thus we must set up Yur Pur1r Cniae kn+1 n+1

obtain w, p, e, ¥ and o as infinite conjunctions which are subject
to an analogue of 2.4.8. When #:6xG, for instance, we take
wn+1®ﬁ to be true if w, 0% and on+1<6+1,&+1>ﬁ0ﬁ1 are true whenever

61=<(6+2)[ﬁ0/rec],(a+2)[%0/rec]), 01=(<>,()>, fitﬁ1ﬁ1=true and

161

hoten((q,%q,)0)(@q,<¥g)b)=true (the last condition being used
in 2.6.8 solely to ensure that pZota(&¢2)()emptyszotabi()empty
for all a:L). We shall not provide the proof of this analogue,
as it is almost identical to the one given above.

We shall go even further than this by adopting predicates
E, L, R and ¢ having different content to those of 2.4.5 but pre-
cisely the same form. Now, however, they do not exhaust the
properties of expressions in which we are interested.

Unlike our earlier theorems, which held for all Mal
programs, we are here seeking a connection between two kinds of
semantics which do not coincide in their effects on all possible
programs, as is shown by 2.1.3. We must therefore deny to re-
cursive declarations the right to return values whence could be
reached locations not in scope on entry to the declaration. In
practice this means that every exit from an expression E in such
a constituent of a recursive declaration as I==E must be a global
identifier denoting a member of V, a constant B or an abstraction
¢ without local identifiers among its free variables; in the
notation of 1.5.3 there will then be some y:Ide-»B* (not to be con-
fused with that below) such that cramped[Ely=true. To remove the
local identifiers from the environment we define
tie=Abp. ¢ (AL #plL1>0+(0<PlIT+1s2+¢ o[I1+1) ,¢)),¢>),¢),0)y. The
limitations on the locations accessible from a value are provided
by the predicate field:U»Y->S5-T, which is
field=xova.Alplotapl) emptyv~plotaarid u+1:L+hold(u¥1)a,v+1) empty|ail}
Note that fieZd=Apua.fieZd(ﬁqop)(gqou)(éqoo) by 2.4.3.

Although the predicate underlying & can remain that used
before, that for# must reflect the fact that locations will not be

passed out of scope by a recursive declaration. Accordingly

162

D=M ALK LIBT T, ALTATVI D B IAletT, [sewnl 8]0y f,33;
P=2AAlATTAL L Jleialvl E) f,
h\{c2ﬁ1|sewnﬂAﬂlwﬁoﬁi
NN{fieZd(tearﬁAﬂbo)<biﬂIﬂ+1)60|IbﬂV TATwE 11D,

Hence sewnﬂA]vwﬁoﬂi is defined exactly as in 2.4.5 except for an
additional condition to the effect that true equals
/ﬁspotaboﬁoaov(qo(holdabo)=q0(holdaal)ANSpotaboboao)

v~gyven(a,a>(00,60)|a:L}.

Our initial result will be proven at breakneck speed since
it is largely a preview of 3.3.9. Strictly speaking, we should
incorporate each of its paragraphs in the corresponding later
lemma, but tidiness decrees otherwise. This means that the

reference to 'constituents' in its statement is a little vague,

but clarification will come in the course of the proof.

2.6.2. Proposition.

Let ¥ and % be such that for all I:Ide Y[I]+1=1 only if
plIl+1:V and Y[I]+1=3 if I:#{E]S#[E]. Suppose that wo and E:Exp
have ecramped| E] Yy=true, aptw06=true, tornﬂEﬂw0=true and
a(§506060,2505080>=tru3 whenever pfl asetf fi=true and
fieZd(rend[EH(tiewbo))DOBOA(DO+1:L+~plot(DO+1)b0DDBO,true)=true, and
that any constituents E, and A of E satisfy GHEOH=true and
DHAOH=true. Then<ﬂ?ﬂE]£,?ﬂgﬂEﬂw0]E>ﬁ=true and w{ d*+v,b*+V) R=true
for 1<v<#g[E] $#IT], where ¢*=Z[El{H0S2[EIZp0 and
i*=swap (STEVSAED) (FIyIEN) SxTg FEDY 1) (@lg [EJY 1 Lpus2Ig [ETY 125D).

<Throughout the proof we shall fix attention on one family
of ¥, wo, %, E and E such that crampedl E]y=true, apt¢06=true,
tornﬂE]wo=true and a(éﬁou g 0.V .G =true when pﬁOAsetﬁOﬁ=true and
fieZd(rendﬂEﬂ(tiewbo))DDGOA(OO+1:L+~plot(D0+1)bOD060,true)=true.

We shall also presume that ¢[Il+1=1 only if A0T]+1:V and that

plIl+v1=3 if T:#[EIS¥E]. The proof will proceed by induction on

163

the size of E.
Suppose that E is an identifier, I; for any ﬁo having
pﬁohfitﬂ0ﬁ=true, define 3=(p ﬂIﬂ+1,b0ﬂIﬂ+1>,

(3:L+(area380+hozd580,T),6), b=newd ﬁ1:<50,<5>560,60> and

B=

f,=(0 I0v1=faleert b ,(8 8D ,0) (b, (2§D ,updateaBa)). Then,
just as in 2,5.,3, pﬂiAsetﬂ1ﬁ=true {(where the function set has
meaning of 2.6.1); also 1 cannot be in J#JE]&#TE] so

field(rendﬂEﬂ(tiewbi))lei=true. Hence

#ls LI19,180

-

0Vo%g 0u000)=a(cpiulcl,cp1u101)=true and

GITIE, ST 11,10 f=true.

. =~

a9111h

The situation when E is a constant, B, is very similar and
need not be considered. Indeed, we shall leave out all the other
possible situations except a few key ones.

Suppose that E is an abstraction, ¢; for any ﬁo with
pﬁOAfitﬁoﬁ=true define 61=60, 01=(09H¢H60)Eﬁo,bﬂlgﬂ¢ﬂw0]50)§D0>
and 61=60. By 2.5.4 pﬁiAsetﬁ1ﬁ=true; furthermore for any I having
free[Ilf ¢l=true I is not in Z[E}&#TE] and so
field(rendlE] (tieyp))D 5 =true. Hence the z above has

1

B6,,9le 101y ICp U 0

0]
,gﬂyﬂ¢ﬂwoﬂa)ﬁ=true.

1
al@[o] Cp z v,0,) =true and

LU SR S BN

AT [o]
Suppose that E is of the form E =B, and that evaluation

takes place from left to right. Defining
EO=(lpU.£p((dummy)§U+2)°update(u+1)(u+2),

Apu.Zp(dummy) §ut2)supdate (V¥1) (V¥2))
as in 2.5.5 it suffices to show that for suitable & and 8 we have
cEO((é,(é,&)§6,6>,(5,(B,a>§b,6>>=true. Plainly for all ﬁ2 having
pﬁQAfitﬁQ((ﬁ,(é,d)ﬁd,d),(b,(é,&)ﬁﬁ,é)):true we may assume that
V{plotoarid{ dummy)empty|a:Ll=false, so it is enough to demonstrate
that pfi,Agset®, fi=true where 7, is
(62,(dummy) §62‘i‘2,update(62+1)(152+2)62> {and similarly for ﬁsj_

Observe, however, that the proof in 2.5.5 that for all Viosr Vi

164

QO and 61 seenvovlmoalﬁsAkent1®1ﬁ3:kentv0&0ﬁ2 requires only that

kentimlﬂBA(w1=u2+2vm1=02+2)3(&1=(U2+2,D2+2)), not that

U2+2vw1=02+2)3(®1=<02+2,02+2>), and can therefore

kentO&lﬁsA(wl
be carried across unchanged to the present case, where p0ﬁ2 is
defined as in 2.6.1. Hence pﬁaAsetﬁ3ﬁ=true,

(» - - -~ -~ -~ - - - - - - . -~ - = ~ = .
a CopQUQGQ’COQQUQUz) a(cpaus 32504 303> true and ccoﬁ true

Suppose that E has the form AO inside E,, SO that if
¢3=¢[3*ﬁfﬂﬂoﬂﬁfﬂﬂoﬂif[EOH§JﬂE0]] we have
crampedﬂEoﬂ¢3ADHAOHAE[EOH=true. It follows from the paragraphs

below that if Z. and fi, are pairs such that sewn[A]09 R =true

2

-,

and a(CQQOUOUO,CQDOUOOO>=true for all ﬁo having pﬁoAsetﬁ0ﬁ2=true
and
field(rendﬂEﬂ(tiewSDO))DOBOA(DO+1:L+~plot(bo+1)boboao,true)=true
then, writing w4=w0[false*/fﬂAH][optsﬁ*ﬁAﬂ)woﬁﬁ1AH], we have
c(dﬁEOHEQ,gﬂa[Eoﬂwuﬂgg)ﬁ2=true. However if for any such ﬁo we
define ﬁ=<nov31606060,new60) and
ﬁ1=<(revertﬁéo,(do+1:L+60,<d)§GOT1),(GO+1:L+60,update&(60+i)6o)>,
(revertbbo,(bo+1:L+DO,<&)§DOT1),(00+1:L+60,up&ate&(00+1)30)))
then pﬁiAsetﬁiﬁAfieZd(rendﬂEoﬂ(tiewgbi))blbl=true, as
dboblﬂlﬂ+1=@qobﬁIﬂ+1=@q0b2ﬂ1]+1=wqoboﬂlﬂ+1 unless #b1ﬂ1]=0

or I:ﬂ[AoﬂiﬁﬁA I. For all such ﬁo, therefore,

0

af mv(gorevertﬁ)ﬁoﬁoéo,mv(Eorevertb)bODOB()) =true, S0 that
(mv(iorevertﬁ),mv(Eorevertb)) obeys the conditions 1laid down for
82 above. Thus whenever sewnHAoﬂowoﬁﬁ2=true we know that
c<-‘f|[£:011(iorevem5),;zﬂenzonwon(iorevertb)>ﬁ2=true, and, D4l
being true, c(gﬂEﬂi,@ﬂgﬂEﬂwoﬂz)ﬁ=true when E is AO inside Egy-

We next discuss briefly two forms of expression E for
which Al E] s#[E] need not be vacuous.

Suppose that E is of the form EO; Ei’ and that

crampedIEﬂthﬂEoﬂAGﬂElﬂ=true, From the definition of cramped

165

in 1.5.3 it is clear that crampedﬂE1Hw=true. Accordingly by
the induction hypothesis c<?ﬂE1ﬂ£,?ﬂ?ﬂElﬂwOﬂE)ﬁ=true and
k(kpu.?[Elﬂip(UTl),Apu.?ﬂg[Elﬂwoﬂap(u+1))ﬁ=true, giving

A¢[E

0’ Elﬂi,?ﬂg[EO; Elﬂwoﬂi>ﬁ=true. Furthermore analogous con-

clusions apply to w(d*®v,b*v) # when ¢* and O* are defined as
in the statement of the lemma and 1sv<#g[E] S E].

Likewise if E is of the form if E, then E. else E, and

1
eramped] E] ‘P’\R[[EO]] AG][ElﬂAGﬂE2]1=true, then
crampedﬂElﬂwAcrampedﬂE2ﬂw=true so we may apply the induction
hypothesis to obtain .
cwngl}]i,@[{,uglﬂwoﬁy%,\c<971[52]]g,g[[,[[32]]¢01|2> T=true. When 2,-‘1 and
22 satisfy cEQﬁAcfsﬁ=true, kﬁaﬁ=true where
£3=sv(Apu.u+1+c1p(u+1),Ezp(ufi)) (and similarly for Ea); con-
sequently cGﬁﬂEoﬂia,QLcﬂEoﬂwoﬂza)ﬁ=true and, taking
En=<g[Enﬂf,gﬂgﬂEnﬂwoﬂE) when »n is 1 or 2,
cG?ﬂEﬂf,WﬂgﬂEﬂwoﬂZ>ﬁ=true. Again we may resort to the same tech-
nique for &* and &*.

Finally, suppose that E satisfies the conclusions of the
lemma, and take any ¢, and ﬁ2 having aptw262ArentﬂElwQAfitﬁ2ﬁ2=true
and 62[IH+1:V for every I:1de such that yYJIJ+1=1; we know that
cramped| Ely=true. Let E2 be such that a(62506060,52506080>=true
whenever ﬁo satisfies pﬁOAsetﬁoﬁ2=true and

fieZd(rendﬂEﬂ(tiewbo))DDEOA(DO+1:L+~plot(09+1)boboﬁo,true)=true.
Define Ei=(izorevert62,CQorevertbg>; should ﬁi have pﬁ1=true,
field(rendﬂEﬁ(tiewbi))Diain(D1+1:L+~pZot(D1+1)lelai,true)=true and
ﬁdblﬂ1ﬂ+1=boﬂlﬂ+1v(#wﬂ1ﬂ=o+true,wﬂIﬂ+1=anI:1de}=true for some ao
having set((60,01,61>,(bO,D1,61>>ﬁ2=true, we shall have
rendﬂEH(tiewb1)=rendﬂEH(t£ewbo) and

al{Z,p, 0 01,c1p1u101>=a(c2p00101,t2p0u101>=true- As E satisfies the

conclusions of the lemma we may infer that

166

Op1=true,

cw:[Ej]El,f[[yﬂE]]woﬂE1>ﬁ1=tpue for all fi, such that apty
fitﬁ1ﬁ1=true and
/HblﬂIﬂ+1=bOﬂIﬂ+1v(#wﬂIﬂ=0+true,wEIH¢1=3)lI:Ide}=true, where
w0=w2[false*ﬂfﬂEﬂ][opts(dﬂEﬂwz)ﬂxﬂFﬂ]. Similar remarks are
pertinent to w<6*+u,&*+v)ﬁ1 when &* and &* are as above and
1<v<##[E] $#¥TE], so the argument of 2.5.1 shows that
c(é“l[Eﬂtfg,é’][el[EIlwz}]EQ)ﬁ2=true.>

Before passing on to the main part of the structural
induction we modify the proof of 2.5.3 so that it copes with
the new version of w. Suppose that kEﬁApﬁAfitﬁﬁ=true and that
AlI1+1:G6 for some E and . Then, writing 8 for
(Al rp+a,pl1I0+1) , hoten86=true so wdT=true and
hoten((qoxqo)g)((aqoxmq0)6)=true. Consequently
a(gﬂIﬂféﬁé,?ﬂgﬂIﬂwﬂiaaa)=true when aptyf=true.

In view of our changes to the definitions of fit and set
we must also amend the proof that GHEO:=E1ﬂ=true to ensure that
certain locations are not assigned to. All that is required is
an elucidation of the remark to the effect that setﬁ3ﬁ=true (in
the third paragraph of 2.5.5). For any o such that a=D3+v for
some v>1 and spotapld=false we shall show that
qo(holda83)=q0(holda8) and spotab30363=faZse. Because
setﬁ1ﬁ=true we know that a=bl+v and spotab10161=false; thus
because setﬁ0ﬁ1=true spotaboboaozfazse, and because fitﬁ3ﬁ0=true
spotab2D282=faZse and qo(hoZdaBQ)=q0(holdabo)=q0(holdaa). More-
over as a=0 v for some v>1 plotab1(<h02d(01+1)31)§D1+1)61=true
although spota510161=false; hence as setﬁ1ﬁ=true we cannot have
a=D1+1. Finally spotub38353=false and
qo(holda63)=qo(holda62)=q0(holdaa), thereby establishing that
setﬁ3ﬁ=true.

A scholium is also necessary in the third paragraph of

167

2.5.4, as in accordance with 2.6.1 we now presume that 61=62
and that setﬁQ((52,61,6?),(52,01,32)>=true. Together with the
fact that fitﬁ3ﬁ2=true this ensures that when a=01+v for some v>0

TR
so that fith ((6,00,41/11,8,11,6,), (5, [D,41/11,0,%1,3,)) =true

and when plotap, 0,3,=false then o is not 03+1 and plotup, D, 3 =false

as required.

2.6,3. Lemma,

1f EEEOHAEEE1ﬂ=true then GHE0E1]=true.
4By modifying the argument of 2.5.5 it can be secen

that GHEOE1H=true if whenever E and f obey kfT=true then

o

EO%O=true where

Eo=kpu.u+2:F+(u+2+1)(Eorevertp)(divertp(u+2+2))((U+1>50?2),
sv(kpu.15u+1|Ns#u+2|L*+fp((U+2+(u+1))§U+2),T)pu

and ﬁ0=(§,(d,é)§6,6) for some 4:L and 8:V (and similarly for

and %). Accordingly, take any suitable £ and % and let *#

Lo 0 1

be any pair having pﬁlAfitﬂlﬂD=true.

When GfQ:F then 01+2:F also and we may set up
ﬁ2=((diuertﬁ1(ui+2+2),(61+1)§Uf24§deivertpl(052+2)501+ﬂEDfQ,Gl)).
Because w<61+2,D1+2>ﬁ1=true and
kc((ﬁl,ul+2,61>,(bl,D1+2,al))=kCN=true, should pﬁ2 be true
a<(Ui+2+1)(Corevertﬁl)QQUQSZ,(D1+2+1)(Qorevertbi)pzbgbz) will be

LS

true and a(copluioi,co 1Y4 1) will be true. However

hotena(61+2+2,01+2+2):kentl@ﬁl for all & so familiar techniques

-

serve to confirm that kentv&ﬁgzkentv&ﬁi for all v<2 and & and thus

0P1Y191250P1Y49

s - -

that pfi,=true. Hence al ¢) =true and, ﬁi being
typical of those pairs having pﬁlAfitﬁ ft_=true, cfoﬁo=true.

The proof necessary when 61+2 is not a membher of

follows a predictable pattern and can safely be omitted.*

168

2,6,4, Lemma.

If E[E]=true then ¢[val ElaGlres Elaclgoto El=true.

4The proof that Gfval E]l=true is a greatly simplified
version of 2.5.1 and will therefore be left out, The other two
proofs are closely connected so only that for ¢fres E]=true will
be discussed further.

The proof that L[E]=true given in 2,5,2 is equally
apposite for our present version of Py» SO to show that
Glres El=true it suffices to show that for any ¢ and ﬁo having
ked =true 1if we define
EO=A0U.(OHresﬂ+1+1)(p[res"+1+2)(<U+1)§pﬂresﬂ+1+3) (and similarly
for on then k80ﬁ0=true. Accordingly, take any such I and ff, and
any f, having pﬁiAsetﬁ1ﬁ0=true; if #plﬂres]=0 the result 1s
immediate so suppose that this is not the case and let
ﬁ2=(51ﬂres]+1+2,(61+1)§6lﬂresﬂ+1+3,61) (and similarly for hzj.
Because kentl(61Eresﬂ+1,b1ﬂresﬂl>ﬁftrue and p1ﬁ2=true (as is
shown by 2.4.6) we know that
k(51ﬂresﬂ+1+1,blﬂresﬂ+1+1)((62,02+1,51>,(bQ,D2+1,61))=true and
that kentvdf >kentvdft, for all v<2 and §. From the latter
assertion we deduce that pﬁ2=true and that setﬂ2ﬁ0=true; from the

former, however,

k¢

™

1[resﬂ+1+1,blﬂresﬂ+1+1)ﬁ0=true and so we may conclude that

9

a(go 1Y1 1,coplulol)=true and that kc0ﬂ0=true.}

2.6,5, Lemma.

Let & be of the form T=E, T ,I._=E, T==E or

qreceety,

Ii""’In==E for some I or Tiveess

then D[Al=true and, when A is I=E or Tiseess I =E, TIA)=true.

In and some E having FElE]=true;

~

When A is I==E or I1 I ==E and when ¥, ¢

yeeesly and ﬁO are any

0
entities such that

169

ﬁdI:11AH+wHI]¢1=false,truell:Ide}=true, eramped A] (AT . 2))=true
and for all % if sewnﬂﬂﬂlwﬁoﬁ=true and
N field(tear[A1) BITI+D 3| T:# ¢ [AlV] }=true then cEO%=tpue
we have c(3ﬂﬂﬁio,ﬁﬂtﬂﬂﬂwﬂzo)ﬁ0=true.

<Strictly speaking the hypothesis that
erampedl A] (AI.{2))=true is not adequate to prove the result,
as really what we require is that E (in the case I==E) and E,
when 1<ms<n (in the case Ii""’In==E) satisfy the conclusions
of 2.6.2, For brevity we do not consider the possibility that
eramped[A] (3I1.{2))=true does not entail this, since in a
properly stated induction on the size of Mal programs it would do
so, and our lemmata could obviously be stated in this more
pedantic form,

As an example of the proof that I[Al=true we take A to

be I==E and consider any ¢, . and ﬁo such that c80ﬁ=true

0
whenever sewnHAHOwﬁOﬁ=true. The usual arguments show that
k<Apu.iop[u+1/I](u+1),Apu.%op[u+1/I](u+1))ﬁ0=true so, as R[E]=true
by 2.5.2, when optlIly=false we have c(@[4alZ ,2[4IATVIL) f =true.
Accordingly we turn to the more interesting case that arises when
optlIl=true; then we can assert that
PAIC,,PLLEANpIT) =RIEIC, #< [EIV]C,) where
£, =(Apu.C plud1/TI(VH1) ,mp(Apv. T pLu1/II (V1)) .

It will be enough to show that k(sv£1,5v21>ﬂ0=trwe since
Ef el=true. Take any ﬁl having pﬁiAsetﬁ1ﬁ0=true and define
a=newai, €=access<61+1,01+1)ﬂ1 and
f, =5, [€/11,6,11,6) ,(p [8/1],0,11,updatedd >’ . Because
p0ﬁ1=true, ¢ is proper and ﬁ2 is proper; moreover
sewnﬂaﬂowoﬁoﬁ2=true as we cannot have &=Dl+v for some v. By the
technique of 2.5.3 we can readily demonstrate that for all v

and & kentv@ﬁza(ﬁ=<é,a>vkentvmﬁ1) and thus that waﬂ2=true when

kentomﬁ2=true. Since areaa61=false and poﬁiztrue, site&bibiai=false

170

and therefore p0ﬁ2=true also. Hence pﬁ2=true and

al sl 6,0,6 50T B D 30 =alT 6,0,6,.8 B0

19194 0 ,0,) =true; ﬁi being any

pair with pﬁlAsetﬁ1ﬁ0=true we can infer that k(svii,svii>ﬁo=true
and thus th&tcﬂgﬂdﬂﬁo,@ﬁdﬂAﬂwﬂio)ﬁo=true. This equality is

valid for all suitable ¥, . and ﬁo, so D[A]=true.

0
4We shall only consider the second part of the result when

A ds T .,In==E. Indeed we shall even restrict ourselves to the

l,oc

proof required when E is E .,En, that for £(E1,...,En) being

1,00

almost identical. Accordingly we assume that when 1<m<n the
expression Em satisfies the conclusions of 2.6.2,

4Suppose that y, ¢_ and ﬁo are any entities such that

0
caoﬁ=true whenever # is subject to the constraints sewnﬂﬁﬂiwﬁoﬁ=true

and /{field(tearﬂﬂ]bo)(bﬁIﬂ+1)8|I;ﬂ{fﬂAﬂ¢"}=true. 1f
WH11]+1A...Awﬂlnl+1=fa25e we shall show that
ct?ﬁAﬂEO,EIJ[AB¢]EO)ﬁo=true. To this end we set I*=(T,,...,I),

El=((Apuc.#u+1|L*=n+fo(inuertp(arid[holds(u¢1)G/I*]))(Ufl)U.T),

(Apuc.#u+1|L*=n+£0(invertp(arid[holds(u+1)U/I*]))(U+1)O,T))
and £2=<Apu.£1p(<<u+n,...,u+1>>5u+n).xpu.zlp(<<u+n,...,u+1>>§u+n)>,
so that LTIA]EO,ﬁléﬂﬂﬂwﬂEO)=(%ﬂEﬂﬁl,ﬂﬂaHEHwﬂai). For simplicity
we presume that mete dictates an order of evaluation from left to

right, and we define Em+1=LQﬂEn ﬂfm,?ﬂ¢HEn_m+2ﬂ¢ﬂam) for 2<men+1;

-m+2

+

from the equations of appendix 2 (ﬂﬁEﬂEl,ﬂﬁcﬂEﬂwﬂii)=En+2

Thus ecn+2ﬁ0 will be true if any ﬂn+2 satisfying

B ! o Y=true,

pft, L AfTER, R Ttrue has a(rtg n+29m+2% 42

n+26n+20n+26n+2’gn+2

By 2.6.2 to verify that this is so for some suitable ﬁn+2 we need

only show that when m=»n+1 any ﬁm with pﬁmhsetﬁmﬁm =true, 9 +1:1,

1

is such that a(Emﬁmdmdm,ambmbmam)=true. Continuing along

+1

field(rend[E)(Dm+1)am=true and spot(d +1)p O & =false

-m+2° "m+1

this train of reasoning, ccn+2ﬁo will be true if all sequences

ﬂn+2""’ﬁ2 with ﬁm+1 and ﬁm related as in the preceding sentence

when 2<m<n+1 and with p# AfLER fi_=true are subject to
n+2 n+2 0

171

a(C2520202 2020202) =true. When 2smsn, if Dm+1+v:L and

spot(O +v)b =false then spot(0m+1+v)bm0mﬁm=false,

m+1 m+1 m+1
qo(hoZd(Dm+1+v)6m+1)=qo(hold(bm+1+v)am) and Dm+1+v=0m+(v+1) as

setﬁmﬂﬁ+1:true. Accordingly we can show by induction that

for all m with 2<m=<n+1 spot(0m+1)b20262=false, Dm+1=ﬁ2+(m-1) and
qo(hoZd(Dm+1)om)zqo(hold(0m+1)62); since in addition
&wobm+1=mqobo and for every I:Ilde

rendl E HIE=(#rendﬂEn_m+2ﬂbm+1ﬂIﬂ>O+tearﬂAHbm+lﬁIB,(>)

n-m+2”bm+1
we may deduce that in fact

field(tearﬂﬂﬂbo)(02+(m—1))82=true when 2<m<n+1.
Now we introduce the pair
ﬂ1=((invertﬁQ(arid[holds<62+n,...,6?+1) /1*1),0 o1, 6 Y,

<£nvertb (aridlholds{(d ¥n,...,0

9 +y1) g 2/1*]) D tr, B Yy,
- \ a

2

I

)=<;O {V10155,P 0y jL) For all &

for which <52‘2'2 2,;2 RUN
chept&ﬁlnkentlwﬁ and gyvendl, :gyvenQO ; hence for all v and
A kentv&ﬁlakentv&ﬁg, and in consequence pﬁlAsewn[Aﬂlwﬁoﬁ1=tru9.
Furthermore fdfield(tearﬂﬂﬂbo)<b1HIH+1>Glllkxﬂéﬂﬂﬂwﬂ}=true, SO
by our initial supposition about E a(i pl 1 1,;0p1u101> =true,
which in turn shows that cfn+2ﬁ0=true and that
STUBIE ILELBIVIE) # =true.®

As ¢, EO and ﬁo are typical of the elements such that
¢ﬂ11ﬂ+1A...AwﬂInﬂ+1=faZse and cgoﬁ=true whenever
sewnﬂﬂﬂ1¢ﬁ0ﬁ=true and fdfield(tearﬁﬂﬂbo)(bﬂIﬂ+1)B]I:ﬂﬂfﬂﬂﬂ¢n}=true,
we can conclude that T[A]=true.®

The proof when A is a declaration by reference is a
simplified version of this.?»

Naturally 2.6.2 is irrelevant when this lemma is
regarded as a preliminary to 2.5.9, since the restrictions on E
are required only in the proof that

f{field(tearﬂﬂﬂbo)<blﬂIH+1>51|I:ﬂﬂfHAHWH}=true, which is not

needed by the predicates of 2.4.5, Thus for the purposes of

172

2.5.8 the lemma can be viewed as stating that

cu?ﬂﬁﬂéo,ﬁitHAH¢HEO>ﬁO=true for all v, £ and ﬁo having

0
/ﬁI:ﬂﬂA]+w[Iﬂ+1=false,true|I:Ide}=true and

/{cgoﬁ|sewnﬂ&ﬂ1¢ﬁ0ﬁ}=true.

2.6,6, Lemma,

Let 62 be AO within Ai for some AO and Ai. If
DHAOEADHA1H=true then Dﬂ62]=true, whilst if DHAOHATHA13=true
then TMA2H=true provided that crampedﬂﬂgﬂ(AI.(z))=true and that
Jﬁ&oﬂ§fﬁﬁiﬂ and fﬂaoﬂﬁiquﬂﬁdﬂalﬁ have no repeated elements.

4<Suppose that and ﬁo are entities such that

05 o
fitﬁ0ﬁ0=true and cgoﬁ=true whenever # has sewnﬂagﬂlwoﬁ0ﬂ=true and
f%field(tearﬂAQHbo)(b[Iﬂ+1>6|112Tfﬂﬂgﬂwoﬂ}=true; we shall show
that cL?ﬂAQHEO,31JHA2HwOHCO)ﬁ0=true. To this end we define
w1=¢otfalse*ﬁfﬂﬁoﬂ][opts(ﬂﬁaoﬂ)wﬁxﬂaoﬂ],
§1=(gootrimﬂﬁlﬂpo,cootrimﬂélﬂbo) and C2=071AIHC1;VIIHA1H¢1HCO),
so that the transformations of 1.4.6 yield

(Fﬂazﬂco.ﬂtﬂﬁzﬂwoﬂto) =<i‘3[[A0]]c2.£‘d[[d[[A0]]¢0]]t;2). As Dl A l=true it
suffices to prove that if ﬁl satisfies semnﬂﬁoﬂow ft fi.,=true then

0 01
CEQE =true., In turn as TﬂAlﬂ=true this will be established for

1
any such ﬁi if 981%2=true whenever sewnﬂ&lﬂiw1ﬁ1ﬁ2=true and
/ﬂfield(tearﬂAiﬂbi)(bQEIﬂ+1)BglIﬁﬂtﬂﬂlﬂwlﬂ}=true.

Accordingly, take any such ﬁ1 and ﬂ2 together with any ﬁa
having pﬁSAfitﬁ3ﬁ2=true, and define
ﬂu=((tr£mﬂA1ﬂ5063,ﬁs,63),trim[ﬂlﬂbobs,ﬁs,aa)). By the definitions
of fit, sewn and field we can assume without loss of generality
that ﬁn=(ﬁqoxﬁqo)ﬁn when 0<n<2. As neatﬁBAneatﬁO=true, for
every & hoten&ﬁuDhotenaﬁs and access&ﬁu=access&ﬁ3; hence
for every Vo©2, Vi, GO and mi we know that
seenvovlmo&lﬁuAycleptmlﬁu:seenvovimoaiﬂsAycleptmiﬁa and

ke"tvogoﬁugkentvo&oﬁs’ and, pﬂs being true, pﬁu must be true,

173

It remains to be demonstrated that sewnHAzﬂinﬁOﬁu=true and
that /ifield(tearﬂ&zﬂbo)(bu[I]¢1)5u|I:JﬂtﬂA2HwOH}=true, using
the facts that sewnﬂAoﬂowDﬁoﬁlAsewnﬂaiﬂ1w1ﬁ1ﬁ2=true and
ﬁdfieZd(tearuaiﬂbi)<52ﬂ1ﬂ+1>32|1>¥n:ﬁalﬂ¢1n}=true.

Observe first that Jﬂﬂlﬂ:JﬂAzﬂ and that ﬂﬂﬂiﬂa*ﬂﬂzﬂ.
For every I:Ide (writing for convenience
v=(I:fﬂA1B§%1&1H+1,O)J #bOEIHS#biﬂI] as revertbgbiﬂlﬂ=boﬂ1ﬂ, and
#blﬂIH+vs#b2ﬂIH+v as revertb1b2[1H+v=b1ﬂI]+v; hence
mqo(revertbobu)ﬂIﬂ+v=revertb0b2ﬂIﬂ+v=revertbobiﬂlﬂ+v=bOHIH+v and,
similarly, qu(revertﬁoﬁu)ﬁIﬂ+v=§DHID+v. Moreover, unless
I:JHA2]§31A2] or #bO[Iﬂ=0,
qo(buﬂ1ﬂ+1)=trim[A1]bob2ﬂIH+1=revertb052HIﬂ+1=b0HIH+1 and
q (6,0 T0+1)=F [T1v1. If #5 1I1=0 then necessarily #p 1I]=0
and, aptwﬁo being true, #¢0ﬂ1ﬂ=0. If I:JHAQH then I is not a

member of’dﬂAoﬂ SO w1[1ﬂ=¢0[1] and, as apty Afitﬁ3ﬁ2=true,

162
5uHIB+1:L, buﬂ1]+1:L and wDﬂI]+1=faIse. If I:JIAQBthen I is not
a member of JHAOHQ*HAOH SO wlﬂIﬂ=w0HI] and, as aptw62Af£tﬁ3ﬁ2=true,
6u[IH+1:V and either bqﬂ1]+1:V or bqﬂIH+1:L and wOHIH+1=true.
llence aptw06“=true and sewnﬂﬂgﬂiwoﬁoﬁu=true.

Take any I:AﬂtﬂAQHwoﬂ; as sewnﬂAzﬂiwoﬁOﬁu=true, writing
§4=b4HIH¢1 we have %u:V and
field(tear]| AQ]] bo)¢ bul[I]+1 Bu=field(tear[[A2]] b{))(Ek) 52 . Moreover,
if T' is an identifier not in fﬂﬂoﬂﬁﬁﬁaoﬂ and having
#DlﬂI'H>0, tearﬁﬂljblﬂI'ﬁ=tearﬂA2HbOHI'ﬂ. We know that
field(tearﬂﬂlﬂb1)<éu)62=true, but this is not quite powerful
enough in general to establish that
field(tearﬂﬂ2]b0)<b2ﬂ1ﬂ+1)52=true, as there may be some a:lL
satisfying plota(tearﬂﬂgﬂb0)<)empty=false although
pZotuarid(Eu)empty=plotaarid<blﬂl"]+1)empty=true for some I”

in fﬂaoﬂiﬁﬂﬂoﬂ. In our case, however, we may presume from 1,5.3

that erampedl 8,1 (X I".¢ PHJEAOHEWHAOH+3,2))=true; for such

174

declarations it can be established by the techniques applied

to 4, inside E, in 2.6.2 that

Fieldd (AI".I":o[A 18 A 10 tearld, 17,1171),00 ,O) (R Db, =true,
Hence for every a:L if plotuarid(éu>empty=true then
plota((AI".I":JTAOHEWHAO]+(>,tearﬁﬂzﬂboﬂl”ﬂ),(>,())()empty=true
and consequently field(tearﬁﬂ2]b0)<éu>Bu=true.

We have now shown that any pair ﬁ3 constrained by
pﬁaAfitﬁ3ﬁ2=true induces a pair ﬁu having pﬁuAsewn[AQE1¢Oﬁoﬁu=true;
if in addition crampedﬂﬂzﬂ(hl.<2))=true and
fﬂfield(tearﬂﬂlﬂbi)<b2ﬂIH+1>62|IL*1tﬂAlﬂw1ﬂ}=true then

fdfield(tearﬂazﬂbo)(bqﬂIH+1>Bu]I;ﬂﬂtﬂﬂzﬂwoﬂ}=true. Hence

~ ~ LS -~

alg, p0,0,,8,p,0,00=algp 0,6 ,8.9 0,0)=true and, #, being an
T
21

to pﬁlAsewnﬂAOH0w0ﬁ0ﬁ1=true and DHA0H=true,

L
arbitrary suitable pair, el =true., Since ﬁl is subject only

, A [N

aﬂaﬂﬂoﬂaQQOGOGOg?LKHAOHwOHE V.0) =true, as was to be estahlished.

The proof that DHA2ﬂ=true is very similar.*

Note that the assumption that jEA0ﬂ§ﬂ1A1ﬂ and
LA 1418 84T A] are lists without repeating members is
necessary only to ensure that, in the notation used above,

Y LIl=v, 011 if I:# 1A I6#1A,1. Were we not to transform programs
by means of y this assumption could be eliminated from the proof,
Accordingly it will play no part in 2.6.9.

The requirement that crampedHAQH(AI.(2>) be true, on the
other hand, is germane only because we wish to avoid sending
local variables out from the body of a recursive declaration in
order that we may invoke the valuation & of 2.2.1. Because 2.5.9

refers to only the valuations of appendix 2 it demands no mention

of this requirement, although 2.6.9 will do so.

175

2.6.7. Lemma,.

Let &, be Al and...and An for some Al,...,An; if
DHAlﬂA...ADﬂAnB=true then Dﬂﬂoﬂ=true whilst if TﬂﬂiﬂA...ATﬂAnﬂ=true
then TEAOH=true.

4The proof of this resembles 2.3.7 very closely. Again
the result holds if »n=1 and we assume that it holds for all sets
of m declarations with n>m. For the sake of variety we shall
describe why T{A0ﬂ=true rather than why D[A [=true. Suppose that
deal corresponds to evaluation from left to right and that

A is A. and...and A .
n+1 2 n

Take some wo, £ and ﬁo such that fitﬁ0ﬁ0=true and

0

C£0ﬁ=true whenever semn[ﬂoﬂlwoﬁnﬁ=truc and
/{field(tearﬂﬂoﬂﬁo)<bﬂIﬂ+1)6|lbx1tﬂAOBwoﬂ}=true; we shall demon-
strate that cL7HA0]iO,9ﬂtﬂAoﬂwO]io>ﬁ0=true, which will establish
the contention that THAOﬂ=true in view of the arbitrary choice

of wo, ff and Eo‘

0

Let ﬁl be a pair having sewn[A1]1w0ﬁ0ﬁ1=true and

/%field(tearﬂ&lﬂbo)(blﬂIﬂ+1)61|I:x1tﬂﬂiﬂw0ﬂ}=true, and define

#,=(Cclipla, 16,6,,0,,6) CeliplA 19 b,,D,,3) , so that

oFP1’
apt¢0ﬁ2=true. As we have assumed that TﬂAn+1ﬂ=true, for any E]

such that cZ, T=true whenever sewnlA 11y f f=true and
1 n+l 02

/\{f‘ield(tear[{ﬂn+1]}b2)(BIITYL | I At LA 1,1 }=true we have

n+1
CL9HAH+1HEi,ﬁﬁt[An+1]woﬂal)ﬁ2=true. We shall show that

<600pickﬂﬂlﬂ<5os52),Eo°pi0kﬁﬂlﬂ(bo,b2>> is such a pair al; without
loss of generality 1in doing so we shall take ﬁn to be
(ﬁqOX9q0)ﬁn when 0<n<2,

Take any ﬁ3 having pﬁaAsewnﬂAn+1H1w0ﬁ2ﬁ3=true and

Nl field(tearl A ﬂ52)<b3ﬂlﬂ¢1)53’Iﬁfﬂ‘ﬂA ﬂ¢0ﬂ}=true, and set

n+1 n+1

ﬁu=<<pi0kﬂﬂlﬂ<p0’p2>93’U3’63)’<p£CkHA1n<bO’b2)53’03’63))' Again
pf,=true as kentv(®,>kentv@fi, for all v and & Furthermore

the close analogy between sewn and knit (together with the fact

176

that sewnHAlﬂ1w0ﬁ0ﬁ1Asewn[An+1ﬂ1w0ﬁ2ﬁ3=true) allows us to presume

that sewnﬂA0ﬂ0$0ﬁoﬁ4=true; the detailed proof of this follows the

lines laid down in 2.3.7 and lacks independent interest. Before

-

T DV G)= erify that
404’C004U404> true we must v Yy

/\{field(tear[[AO]]bo)(bu[[I]Hl) au|I:J/]It|[AO]]1pO]l}=true.

we can conclude that a<C0546

Accordingly take any I:xﬂéﬂAoﬂwoﬂ, so that
I:xmt[AlﬂwOﬂ or I:Jﬂtﬂ&n+1]w0]. In the former case
qo(buﬂIﬂ+1)=q0(revertbzbsﬂIﬂ+2)=reuertb1b3[Iﬂ+1=biﬂ1]+1 as
sewn[An+1ﬂ1wOﬂ2ﬁ3=true, and so field(tearﬂAlﬂbo)(bqﬂIﬂ+1>61=true;
because buHIﬂ+1:V this means that field(tearﬂAoﬂbo)(buﬂI]+1)au=true.
In the latter case b4[11+1=53ﬂ1ﬂ+1 and
field(tearﬂﬂn+1ﬂbz)(buﬂI]+1>84=true; moreover, as
aptwoﬁoAsewnﬂAn+1ﬂ1w0ﬁ2ﬂ3=true, tornﬂAn+1ﬂb0=true and, as
sewnﬂﬂiﬂlwoﬁ0ﬁ1=true, for any I':Ide
tearﬂﬂn+1]52ﬂl']=l':fﬂAil§#1A1]+tearﬂﬂn+1ﬂ(revertbobl)ﬂl'],
tearﬂAn+1ﬂb1[I'ﬂ
=118, 188 8 Itearls 1D 01D,
tearﬂAn+1ﬂbO[I’ﬂ.
Hence fieZd(tearHAnflﬂbo)(bqﬂlﬂ+1)6q=true whether I is in
L1011 or in Xfepa Tv,].
Consequently for all f

ntl

3 such that pﬁaAsewn[An+1ﬂ1¢0ﬁ2ﬁ3=true

and Alfield(tearld ,13,)(p I I]}+1>53| THE A MO]}}=true we have

nt+tl

a(§1p3U303,§1p3U303)=tPue. From 2.6.1 it now follows that
F S G . > - .

el ﬂAn+1]c1,Jﬂfﬂﬂn+1]w0Hc1)ﬁ2 true. Should ﬁs satisfy

pﬁsAfitﬁsﬁlztrue and should we define

ﬁ6=((clipHA1ﬂ6065,65,65>,(clipﬂdiﬂb 05,65)) we shall have

Obsl
successively yelept®f oycleptdft, for all &, kentvlff Skentvdft, for
all v and &, and pﬁGAfitﬁ6ﬁ2=true. Hence we even know that

T - o f A 5 b o) =
al ﬂAn+1ﬂc1 clzp[AlﬂpO,yﬂfﬂAn+1ﬂwoﬂEl clzpﬂﬁlﬂbo)ﬁl true.

This being so for all appropriate fi, we can conclude that

Cﬂ?ﬂﬁoﬂ50r7ﬂfﬂﬂo]woﬂto>ﬁ0=true because Tﬂalﬂ=true.>

177

Although this result and the preceding one are couched
in terms of T[A] it is amply evident that they could be phrased
in such a way that 2.6.5 could be applied to them immediately
without quantifying over all wo. It is in fact this reading of

the results to which 2.6.8 really pertains,

2.6.8, Lemma.

If T[A)l=true then Tlrec Al=true and, when
opts (#[A1 Y=xy.falee* also, Dlrec A]l=true,

4<The second part of the statement is the only one which
is not too trivial to be worthy of proof., To deal with it take

any 9y, # and { having Opts(ﬂﬂﬂﬂ)wo=fa133*, fitﬁ0ﬁ0=true and

0
fﬂcgﬁ|sewnﬂrec Aﬂowoﬁoﬁ}=true; let w1=w0[false*/JﬂAﬂ][false*%*ﬂﬂﬂ].
Assuming without loss of generality that pﬁ0=true, as L is infinite
we can set up a proper pair (&*,&* which is
(novels(#ﬁ[&ﬂ)606060,news(#lﬂﬂﬂ)60). We can therefore define
b= fiz(ho 6 La*/FIATIII#LA] 06, /#AY D),

Fiz(ho.d [a*/#121 ITAEIA1Y 103 /23] N,
01=00 and 81=(updates&*dummy*do,updates&*dummy*60>.

Any % which satisfies sewnﬂﬂﬂ1w1ﬁ1ﬁ=true will also be
subject to sewnlrec Aﬂowoﬁ0ﬁ=true; consequently cEﬁ=true for all
such f. As T[Al=true once we have convinced ourselves that
pft =true we shall be able to deduce that both
a(fuan5516161,31[:[[a]ywl]lz‘;blblal> and
al%[rec A]]tfﬁococ?o,@ﬂdl[rec MY IEB D8) are true.

To do this we observe first that
kentv@f = (8=Cdummy , dummy) vgyvend a*,&*)
ngven&(9ﬁﬂﬂ6151,91fﬂaﬂwiﬂbléi)vkentvmﬁo)

for every v and &, Moreover since poﬁ0=true and since

sit96606060Varea&60=faZse for any pair & such that

gyvenl 6*,a% =true, we already know that p f =true.

178

Consequently if we can establish that w&ﬁ1=true when
gyvenﬁhyﬂAﬂﬁidl,ﬁﬂfﬂﬁﬂwlﬂbial)=true we shall have pfl =true.

For some v, let I be #A]+v, and let & be
09HA]5161+v2,ﬂﬁfﬂAﬂwlﬂbial+v2). Reasoning along the lines of
2.5.8 it 1s enough to show that if Eo and f, satisfy k20§2=true,
fith f,=true and hoten((q,%q,)8)((Wq ¥y)p,)=true we have
(T A]]Ei,ﬂé‘lm]]wl]]cl) #,=true, where
ﬁ3=<<51[ﬁ2/rec3,(),61),(bl[ﬁz/rec},<),61>) and
Ei=(lpu.recur£0p(pﬂIﬂ+1]E).

Apuo.(xw'.io(v'u)((pnI]]+1> Erre2)(m'43)) (plreclet) .
Because T[Al=true even this reduces to verifying that for f,
and 21 defined in this way c£1ﬁ4=true whenever #, satisfies
sewnﬂAlelﬁgﬁuAfieldbl(buﬂ1]+1)64=true.

Accordingly take any such ﬁu together with some ﬁ5 such
that pﬁSAfitRSﬁu=true; define €6» ﬁ6 and i, to be
(55HIH*1,55HIH*1% (65ﬂrecﬂ+1,b5ﬂrecﬂ+1) and
(B, € 80, ,replacef 0 6,6 ,(p (28D ,00). Then

6 6 6
(g1p50505,clp5u 05)=(§Op7u7 7,COD7U7O7) and as setﬁ7ﬂ2=true the

Qv

result will be proven if pf_=t¢true. We shall demonstrate this by
showing that for all v>2 and &
kentvmﬁ7:kentoaﬁ5A(v=1Am:L+kent16ﬁ5,true). Just as in 2.5.8 we

have kentv@ﬁ73VqSeenuv16€6ﬁ7IvizN}Vkentv&ﬁ since the proof

6 ?
given before requires only that access@1ﬁ7=accessm1ﬁ6 when
kentl&1ﬁ5=true, which is still the case even if 87 is defined to
be BE. Thus it remains to be established that
NQSeenUv1&€6ﬁ7|v1:N}DkentoﬁﬁsA(v>0Am:L+kent1Qﬁ6,true). It is
this part of the proof which invokes the assumption that
fieldbi(buﬂ1ﬂ+1)6u=true,

Because sewnlAl1y, %, =2true, ¢,0T3+1:V; hence as

Y, [I1¥1=false and apt¥,B,= true p,ETIlv1:V. Moreover fitfe = true,

so we can infer that qoéezmqobuﬂIﬂ+i and that

179

fieldp (&)5 =true, As hoten((qoxqo)ﬁ)((@qoxﬁqo)ﬁ2)=tru@
/{plotub2(>emptyv~plotub1()empty|a:L}=true and from 2.6.1
fieldbz(é6)55=true. Finally, as fitﬁ5ﬁ4=true, ﬁqoﬁ5=ﬂqo(54ﬂrecﬂ+1h
A ﬁ ﬁ = LY - - . - .

and, as sewnl B1¢1 gT,=true, B (P Treclt1)=Pq T; in particular
@q092=mq006 and by 2.4.3
/ﬁplotdb6(>emptyv~plotaarid(€6>empty|u:L}=true.

Defining f_ to be (Carid,(€)),empty),(arid,(E),empty)?,

we now know that when kentiﬁﬁ8=true for some & with &:L we have

pZot&b6D666=true. Since pﬁ5=true and hotenft =true We cCan even

6°5
assert that kentl(é,&)ﬁ6=true for some £; indeed, kentl&ﬁS

being true, kentiQﬁS must be true, and, kenti(é,m)ﬁs being true,
kentO(é,&)ﬁS must be true, so that £=@ as poﬁ6=true. Hence when-

ever kentl&ﬁ8=true and ®:L we have kenti&ﬁ6=true.

Assume that for some particular v, and all v <2, 6 and

1 0

51 we know that

seenv v 0 O f Akentl&lﬁaakentoﬁoﬁSA(vO>OAwO:L+kent1®0ﬁ6,true);

017017
the paragraph above shows this to be so when v, <1. Let v <2,
60 and &1 be such that seenvo(v1+1)60&1ﬁ7hkent1&1ﬁ8=true. If
&1:L then él:E as wO&1ﬁ5=true (kentoﬁiﬁs being true) and

kent1&1ﬁ6=true so that (6 :loplots b 6 grtrue)=true and
access®1ﬁ7=access®1ﬁ6; under these circumstances

seenvovl(accessw ﬁs)ﬁ7Akent1(access®1ﬁ6)ﬁ6=true and kentv060ﬁ6=true

1

by the argument used in 2.5.8. TIf &1:V, &1:6, &1:J or &1:P we
can apply the usual techniques and the induction hypothesis to
confirming that kent0®0ﬁ7=true and, if v, >0 and &O:L, that

kent1&0ﬁ6=true.
Hence for all v and O we have
Vﬁseenvvlﬁésﬁ7|v1:N}DVW\HSeenvv1&®1ﬁ7hyclept61ﬁ8IvizN}|&1:wa}
ﬂJPV{seenvv1661ﬁ7AkentlmlﬁB|v1:N}|&1:wa}
nkentOGﬁsA(v>0A&:L+kent1&ﬁ6.true),

and, more generally,

180

kentv®ﬁ7:kent0&ﬁ5A(v>OA&:L+kent16ﬁ6,true). As poﬁs,
ﬁ&w&ﬁ5|kento&ﬁ5} and kentOﬁGﬁS are all true, p0ﬁ7 and
fﬁw&ﬁ7|kent0&ﬁ7} are true; thus pf =true, Retracing the steps

of the proof, it follows that c(JIAﬂgj}ﬁﬂf[AH¢1HE1)ﬁ3=true for
all suitable ﬁi, ﬁg and Eo inducing ﬁa and 81 in the manner above
and thus that w®ﬁ1=true when gyven&ﬁyﬂﬂﬂéidig?ﬂfﬂAﬂwiﬂh161>=true.
This being so whenever 3, and ﬁ1 are defined in terms of any ¢,
and ﬁo having OptS(ﬂmAﬂ)wO=false* and fitﬁoﬂo=true, the lemma
must be valid.*

It is in the proof above that we require the rather
curious definition of seenvoviaoalﬁ when Qi:GxG. In the sixth
paragraph above we made use of the fact that if I’ is such that
bQHI']+1 is in G then any o which is subject to
plota(bzl'[I’]|+1+2)()empty=tr'ue has p?,otor.bz() empty=true also, We
could not, however, simply modify the algorithm in 2.1.6 so that
when QS:GXG seeni(v1+1)&2&3ﬁ would be true only if
seenivl&zﬁu((arid,(),empty),(arid,(),empty)) were true for some
&4 having haten®u<63+2,m3+2)=true: in the eighth paragraph above
we demand that kenti@lﬁsakenti(access&lﬁs)ﬁG, which would not be
correct were this form to be taken.

Even in a practical implementation we cannot regard
this aspect of the tracing procedure as redundant, If bQHI'ﬂ+1
is in G as a consequence of a declaration of I' earlier in the
program we may presume that any locations reached by passing
through the result returned by bQHI’H+1 will have been already
adjoined to the area of store during the declaration. If I’
represents a library function, however, no explicit declaration
will have been given and unless seenv0v1®o&1ﬁ takes its form from

2.1.6 the definition of p0ﬁ2 may lead to anomalies when I’ is

activated,

181

2.6.9. Theorem.

The meanings of a Mal program provided by novel store
semantics and by new store semantics are comparable so long as
every constituent of the form rec A has crampedl A} (XI.(2))=true,

4If we suppose that opt=AIy.false we can dispense with
the requirement in 2.6.,6 that certain constituents of the form
AO within A1 are such that fﬂAiﬂ has no elements in common with
11A0ﬂ and.#ﬂAlﬂ has no elements in common with fﬂAoﬂéﬂﬂAO]. A
structural induction using 2.6.2 and the definition of cramped

given in 1.5.3 thus establishes that the meanings are comparable

with respect to the predicate a of 2.6.1.*

182

2,7, An extension to cover recursion.

2.7.1. Removing continuations,

Although 2.5.9 ensures that many of the transformations
of 1.4.6 can be performed on a program without modifying its
meaning, we have yet to establish the equivalence of recursive
declarations by incidence and those by reference. In this section
we shall achieve this end by a rather devious route which will in-
volve switching between two types of semantic equation by means of
2.3.9. Taking over the notions of 1.5.4 we shall prove that
Dlrec A)l=true for certain declarations outside the class we have
already catered for. The predicates underlying this assertion
will be those of 2.6.1 (except that areadmd and kenti&oﬁ will
supersede sited (U6 and kentvﬁoﬂ in poﬂ), but all programs will be
deemed to be evaluated using new instead of novel.

Conjugate valuations can be set up for store semantics in
much the same way as for standard semantics; moreover the only
property of their forerunners which they do not have is 1.5.8,
which depends on the fact that free variable lists are not split
off from the code in standard function closures. It is, however,
precisely this property that allows us to replace members of G
in the environment by members of V, thereby providing the rationale
for apt in 1.4.6. Accordingly we shall need to compare these
types of conjugate in order to transfer this property to store
semantics; 2.7.3 will effect this comparison while 2.7.5 will
outline the proof that two related recursive declarations give
rise to equivalent state vectors.

Again we take the conjugates of & and # to be & and #,
writing them as % and 94. Because we do not consider labels we
can continue to conflate % and Y%, which this time are in
Exp+P+P. We could in fact eliminate the stack component from all

state vectors to which these valuations are applied, as the

183

arguments of 2.1.1 which led to its introduction become nugatory
when jumps are entirely removed, To avoid confusion with the
standard conjugates we retain it and demand that 79[I], 7%]¢]
and 19[B] be A p,v,0) {p,{plI]+1|E) §v,00, XMp,u,0 .(p,F[o]p) U,
and X p,v,0 {p,(#B[RB])§u,0) for any I;Ide, 2:Abs and B:Bas. For
every E:Exp we define 1¥{E] and 14 E] to be
(AMp,v,0r .utl:il~p,v,0) ,{p,{newd) §utl,update(news)(V+1)9)) 1E[E]
and
(Mp,u,0 .(de.e:l>(areacor(p,{ holdeo) §ut1,0) ,T),(p,V,0 Y(L+1))-TF[E]
respectively.
It would be possible to avoid returning an environment as
a result on applying % or 7%, but this liberty is not open to
us when we consider 12 and %7, which are now in Dec*P+P. We
take 1#] I=EFE] to be (A(p,uv,0) .(p[u+:/TI]1,vt1,0)) T¥ L] and
@[I==E] to be (X p,uv,0) {pluv+1/I3,vt1,00)eT#[E], and adopt
similar equations, based on those of appendix 2, for the other
forms of declaration. Consequently ﬂ@ﬂ&o within Aiﬂ and
ﬂﬁﬂ&o within Alﬂ become
AT AT il A T (n) (L) ST 1) (1204 1 (1218 J77)) and
Aﬂ'.(lw”.(trimﬂalﬂ(ﬂ’+1)(ﬂ”+1))§W"T1)(ﬂﬂﬁﬂ1ﬂ(ﬂﬁﬁ&oﬂﬂ')),
while 19[rec A] and T rec A] become
AMp,u,® . (Aa*, (Ao (Ap!.a*:E>TAl{p’,uv,0" ,T)
(Ffix(ApT.pla*/FEAl I [Al p"c ' AT AT 1))
{(updatesa*dummy*c)) (news (A A])o)
and 121 A] respectively. To simplify our notation we introduce
a member of Dec-»U>S+E*, ¥, such that for any A:Dec 1¥T14] is
AP0 FLe(ApI* . I*=0) () ,C (TITAY 0, ,o) +1)TT*41]+1) §6(I*t1)) @I AL .
For brevity we define crowded:[Exp+Decl>[IdewB*1:+T, so
that crowded[ElY=¢true if crushed[El¥=true and each constituent of E

of the form A, inside E, satisfies crowdedﬂﬂoﬂ¢=true, while

184

erowdedl A]y=true 1f crushed[AlY=true, A contains no recursive
declarations by incidence, no identifier T having yY[IJ+1=2 is
in STA] ¥ Al, every constituent Al of A obeys crowdedﬂA1ﬂ¢=true

and every expression E1 embedded in A satisfies crowded[E1]¢=true.

2,7.2, Proposition,

Let ¢ and p be such that for all I:Ide Y[IM+1=2 if p[TI]+1:G.
For every proper v and ¢ and every E:Exp subject to crushedlE]y=true
either Az.4[Elzpve is improper or T4[E](p,v,0) is proper and
Az E[E]lgpuvo=Ag.(A{pt,v', 0" .Cp'V'a")(TL[E]¢{p,v,0) }); analogous
conclusions hold for &, ®# and ¢ also. For every proper v and o
and every A:Dec subject to crushed[A]ly=true either Az.Z[Alzpuo
is improper or T¥ Al{p,v,0) is proper,
Az @A) gpvo=ag. (M pt,ut, o .ce'v'a (12 A p,v,00) and for all
I:Ide (2fAJ¢o,v,0» ¥2)[I]+1:6G only if o[IJ+1:6G and I is not a
member of STA]S#M Al; analogous conclusions hold for 4.

4The proof involves a structural induction which differs
from that of 1.5.5 solely because the valuations are those
appropriate to store semantics and therefore lie in Exp+P+P and
Dec*P+P instead of Exp>U~S+[ExS] and Dec+U-+S+[UxS1. As it has
absolutely no additional interest it can safely be left to the

imagination.*»

2.7.3, Proposition,

Let ¢y, v, p and & be proper entities such that in the
notation of 2.2.7 wuPasB=true and for all I:Ide Y[I]+1=2 if
pIIT+1:G. For every L:Exp satisfying erushed[E]Y=true and
rent[E] p=true either Ak.&{E]Hxd and A\y.&L[E]zduvd are both L or T
or p =p, D, ti=v, e<50,00+1>=true and 360=true, where

<EO.6O>=H8HE]66 and ﬁ0=ﬂd[Eﬂ<b,u,a>; analogous conclusions hold

185

for #, # and ¥ also. For every A:Dec satisfving crushedl AlY=true
and rentl Al f=true either Ax.Z1AlPyx6 and rg.20Alzpud are both L

or T or knit[&ﬂ0660=true, 0 =v, u60=true and 380=true, where

0
(60,50)=ﬂ£ﬂﬂﬂ56 and ﬂ0=%9ﬂaﬂ<b,u,6>. For every A:Dec satisfying
eryshedl Al Y=true and torn[Al f=true either Ax.F1A]F%6 and

AL FTA]l cpud are both 1+ or 1 or knitlAl1Bf . =true, DD=U, uﬁo=true

0
and s@o=true, where (§0,60>=ﬂﬁﬁaﬂéd and ﬁo=ﬁﬂlﬂﬂ<b,u,6>.

4<Because the conjugate equations are built up by removing
the continuations from the usual versions but leaving the primitive
functions like update intact, lemmata such as 2.3.5 «can be trans-
ferred wholesale to the present situation. Indeed 2.3.2 requires
almost no alterations whatever, since we have chosen to identify
9# with & and % with #. Thus the proof of 2.3.9 1in effect in-
cludes that of this result, which we shall dwell on no longer.*

Suppose that ¢, v, £ and 8 satisfy the conditions of the
proposition and let A:Dec be such that torn[A]f=true. When
Ax JLAlPxS 1s improper so is 14714166 and when Ag.F[A]Zpud 1s 1im-
proper so 1is 19T AJ¢($,(» ,8) . Writing 60 for
COTT AT S+ 1, 07T AT B() o¥1) , elther 60 and bo take the same improper
value or knitﬂ&ﬁlwﬁﬁoAu60=true; for both possibilities
d(ﬁoﬂID¢1,b0ﬂIB+1>=true when I#{Al. Now assume that § is
(61[l*ﬂﬂﬂaﬁ],ﬁ1[1*ﬁﬁﬂaﬂ]> for some 61, and define
fun=7\\).(61[\)=0+1*,‘IT.9"[IL\.]|(fun(\)—l)¢1)6/é‘t1[.&]]],

P Lv=0u* WA AR (Fun(v-1)+2)3 A1 D .

If u(funv)=true for some v, when 1sv’=#¥#[A]l we know that
dC A A (Funv+1)64v ", RPT AL (Funvi2)3¥v ") =true and u(fun(v+l))=true.
Since u(fun0)=true we can confirm by induction that
uf fisc(lp.ﬁl[ﬂy][&]] pd A A] 1) ,ficc()\p.ﬁl[ﬂ-?[[:l]]péﬁf’[[Al1)) =true, This
would not be the case were we to substitute Ide»D* for Ide»D°* in

U, as may be seen by taking A to be n==1.

186

2.7.4, Lemma.

Suppose that f, o, I* and v, satisfy

1’

.
O,(Aa.(areaaaoA ol ,holda60>>§60+1)),

/ﬂwoﬁﬁlv(é:GA&:a*)]kentoﬁﬁ1}=true,

ﬁ1=(ﬁ0,(po,ﬁ

- . AJ =4 5 - A\
NG tLad @, areawodo w

=\ A ﬁ -
0 5 ml,trueIkentl&oﬁlAkentlwl 1} true ,

0

£’
1l

/ﬁmO:LA o &1+area®06 A(BO=&1V&1:Q*),true|kentlﬁoﬁlAkentlﬁoﬁl}=true,

0
apt ¢ f, [dummy*/I*1,3) =true and fith % =true; presume also that

61 and 61 are of finite area and that

a*=(biﬂI*+1]+1,...,blﬂ1*+#I*ﬂ+1). For some ¢ and E:Exp suppose
that erowdedlE]V=true, that y[I]l+1=2 for all I having 50[Iﬂ¢1:G
or I:I*, and that rentlEly =true. Either lE.ﬁﬂEﬂEﬁOEOGO and
Ag.&ﬂaﬂEﬂwoﬂgboboao are proper or they are both L or T; moreover
the choice of alternative does not depend on 00 or on the value of
5OHIH+1 when yY[I]+1=2, If the former situation obtains then,
writing ﬁ2=(mfﬂEHﬁO,ﬂﬁﬂc[EHwoﬂﬂO> and

ﬁ3=(ﬁ2,<52,ﬁ (Aa.(areaa62A~a:a*,hoZda62)>§62+1)>, setﬁ2ﬁ0=true,

2’
DQ¢1 is not a member of a* and ﬁB obeys the constraints imposed
on f above; in addition, if fﬂw@ﬁn|kentoaﬁn} and
fﬂ60=61V~&O:Lv~mo=&1|kent1&oﬁnAkent1&1ﬁn} are both true when =

is 1 they are both true when » is 3. Similar conclusions pertain
to any A:Dec having erowded[Aly=true and rentﬂﬂﬂw0=true, except

in that when ﬂ2=(ﬂﬁﬂ&ﬂﬁo,%ghfﬂaﬂwoﬂﬁo> instead of setﬁ2ﬁ0=true we

have sewn| A]]Od)oﬁ‘o‘ﬁ‘2=true (provided apty =true).

oo
4¥Needless to say, all the above applies equally to the other

valuations and is proved by a structural induction for which the

foundations have already been laid. The results leading up to

2,6.9 provide sufficient indication of the method of proof for

further discussion to be superfluous.?

187

2.7.5, Lemma.

Let ﬁo, ﬁi’ a*, I* and vy be subject to the constraints

laid down in 2.7.4. For some ¥ and A:Dec suppose that
erowded| A V=true, that Y[IJ+1=2 for all I having 6OHIH+1:G or
I:# A}, that the 1list of identifiers common to 4] and,JﬂtﬂAﬂwoﬂ,

I is included in I*, and that tornﬂﬂﬂwo=true. Assume also

*0,
that any constituent of A of the form A, within A, is such that

no member of.ﬂﬂalﬁis in=f1ADH and no member of.%ﬂAlﬂ is in
Jﬂaoﬂéﬂﬂﬂoﬂ. Either Ac.ﬁﬂﬂﬂcéoﬂoﬁo and XC-5TtﬂAﬂw0ﬂC500050 are
proper or they are both . or T; moreover the choice of alternative
does not depend on OO or on the value of pOHI]+1 when yY[IJ+1=2.

If the former situation obtains then, writing
ﬁ2=<ﬁﬁﬂAﬂﬁO,mﬂﬂ'ﬂAﬂwoﬂﬁo> and

ﬁ3=(ﬁ2,<52,0

constraints imposed on ﬁl above; in addition, if /ﬁwmﬁn,kentoﬁﬁn}

obeys the

(Au.(areaa62A~a:a*,hoZda62>)562+1>), ﬁs

2,

and ﬁﬁm0=w1v~w0:LV~w =w1{kent1w0ﬁnAkent1m1ﬁn} are both true when

0
n is 1, if 60[I]+1=%9ﬂA]6060+v whenever I:I* and I=04A]+v for

some v and if apty =true, then sewnﬂﬂﬂiwoﬁoﬁ2=true and the con-

060
ditions take the value ¢true when »n is 4, Here
ﬁu=(ﬁ3,<bs,03,(Aa.(areaaagva:a*o, hoz@a63)>§53+1)) and
a*0=(boﬂ1*0+1ﬂ+1,...,boﬂI*0+#1*Oﬂ+1).
<The proof about ﬁ2 and ﬁs resembles that of 2.7.4 too
closely to warrant much attention. We shall, however, consider two
of the cases in the structural induction about T, which will
serve to indicate how to deal with the remainder. The first of
these is of interest as an exemplar of the occasions when the
alternative recursion operator of 1.3.4 gives rise tc a margin-
ally less complex proof than the one we have actually adopted.
4<Suppose that A is of the form Ii""’In==E and that

At 2 ElgS 6060 and Ag.&ﬂeﬂEﬂwoﬂcboboao are not improper (since

0

188

otherwise Ac.ﬁ]AﬂcﬁOGOGO and Ag.ﬂﬂtﬂﬂﬂwoﬂcboooao are improper).
Let ﬁ5=(%ﬁmEﬂﬁo,ﬂ&ﬂaﬁEﬂwoﬂﬁo> and

ﬁ6=(ﬁ5,(65,65,(la.(areaac A~a:a*,h02da55))§65+1), so that ﬂ6

5
satisfies the constraints on ﬁl of 2.7.4., In particular
WG 41,0, 41 # =true so #3 +1|L*=n if and only if #05+1]L*=n.
- *= - - =,
Unless #u5+1[L n Acﬂ9ﬁAﬂupOuodo and Ag.émdﬁlﬂﬂwoﬂcpoﬂoao are hoth
T, so presume that #u5+1|L*=n.
4Assume first that ¢0ﬂ11ﬂ+1a...AwOHInH+1=true, so that
Im:I* when 1smsn and, writing a*o for <b5ﬂ11ﬂ+1,...,b5ﬂ1nﬂ+1>,
every member of a*o 1s in a*, Set
f,=({invertf (aridlholds (G ¥1)6 /AT ,...,1)1),0.11,6.),
B *
(p5,05+1,updatesa O(holds(05+1)55)35)),
= 3 ;oL *

ﬁs <ﬁ2,<p2,02,<ka.<areaa62A asa ,holda52>>§62+1>> and
ﬁu=(ﬁ3,<03,03,updatesa*o(holds(05+1)85)63>).

Now Az ZTAlcp 0.6 =Az.zp. 0.0, and Ac.yﬂzﬂAﬂwOﬂcboooao=Ac.g520252

0°0 0 2 22
so both are proper. For every v and & we can show by induction
that kentv&ﬁasgyven®<h02d8(05+1)65,a*0)Vkentv@ﬁ3 since the prop-
erties of ﬁ5 assure us that a* and 05+1 have no members in common,
Hence ﬁs satisfies the conditions imposed on ﬁ1 in 2.7.4.
From 2.7.1 it is plain that h02d5(65+1)65=%VHAH6060+1,
so 1f 6O[J1AH+vH+1=ﬂ91Aﬂﬁodo+v for v having 1sv<## A] we must

have p,=p . Let /dwwﬁr|kent0@ﬁr} and

En

fdﬁo= 1V~mo:LA~&O=®1|kent1@0ﬁPAkent1é1ﬁr} be ¢rue when » is 1, so
that by 2.7.4 they are true when r is 6. Because 6u=66 we can
show by the usual induction technique that kentvdft okentvift for
all v<2 and all @, which suffices to show that the conditions take
the value true when r is 4, Thus the result is established in this
case.”?

When ¢ 1T 1+¥1a... Ay [T T41=false £LADY, is T seneyl ==elElY,

instead of I,,...,I =<[Ely,. We can show that AL #1416 0,6, and

189

Ag.ﬁﬂfﬂ&ﬂwoﬂgﬁoboao are both L and 71 unless they are proper much
as before. A simple variant of the argument concerning 2] I==E]
in 2.6.5 provides the proof of the remainder., Consequently the
present proposition holds when A is Il,...,In==E.>

The verification for I==E proceeds along similar lines
while that for I=E is less interesting still. Accordingly we
next discuss the situation when A is of the form AO within Ay
with AO and Ai constrained as in the statement of the lemma.
Suppose that Aﬁugﬂﬁoﬂcﬁoﬁodo and Ac.@ﬂdﬂaoﬂwoﬂcboboao are both
proper and let ﬁ5=(ﬂQﬂAOﬂﬁo,ﬂgﬂdﬂﬂoﬂwoﬂﬁo> and

ﬁ6=<ﬁ5,<ﬁ5,0 (lu.(areaa65A~a:u*,hoZdu65))§Bs+1)). When

5’
aptw65=true sewnﬁA]owoﬁoﬁ5=true, so as crowdedﬂﬂoﬂw=true in general

ﬁ5 and ﬁ6 satisfy the constraints impoéed on ﬁo and ﬁl in 2.7.4.

Accordingly either AQ“?{Aiﬂ(Cotrimﬂﬂlﬂﬁo)ﬁcﬁoéo and

AC.?ﬂtﬂAiﬂwoﬂ(cotrimﬂﬂlﬂﬁo)bSDSGS take the same improper value
or they are both proper. In the latter case, writing
ﬁ7=(ﬂﬁHAIHﬁS,%ﬂﬂfﬂalﬂwoﬂﬁ5> and
ﬁ2=(<trimﬂA1H6067,G7,67>,(trim[ﬂlﬂbob7,D7,67)),

AL LAl EE 0,6 ,=22.06,0,6, and rc.9Tel a9 D2h D 3 =Ar.zd 0,3,
The proof of 2,6.6 ensures that when

aptw060=true sewn A] 1y ﬁ0ﬁ2=true; indeed this is why it 1is

0
couched in terms of a transformation for which'JHAJH need not

be fﬂ![ﬂjﬂwoﬂ instead of one suited to the special situation of
2.5.9. Now assume also that

6Oﬂ%1AH+vD+1=ﬂEHA]6060+v whenever 1=z=v##[A] and that
ﬂﬁwﬁﬁnlkentoﬁﬁn} and /déo=61v~BO:Lv~&6=m1|kent1®oﬁnhkent1&1ﬁn}

are true when n=1. From 2.7.4 we know that
6SE#IAH+vH+1=ﬂ91AH6060+v and that these conditions are true when

n is 6; consequently 65pf[A1]+vﬂ+1=ﬂ3131H6565+v whenever 15vs#1[&1]

and we can apply the induction hypothesis to 7 Deriving

5

190

ﬁg and ﬁg from ﬁ7 just as ﬁ3 and ﬁu are derived from ﬁQ we thus
see that these conditions are true when n is ¢, Finally, as
kentvld®, skentvdf, for all v and &, ﬁdwﬁﬁn]kentoﬁﬂn} and
ﬁdw0=61V~mO:LV~wO=m1|kent1@0ﬁnAkent1wiﬁn} take the value true
when »n 1s 4,

The proof required when A 1is &, and...and 4, is similar

to this and will therefore be omitted.?®

2.7.6. Lemma.

Let ﬁo and wo satisfy fttﬂOﬁOAaptwopO=tPue, and suppose
that A:Dec is such that opts@fﬁﬂﬂ)wo=true*, rentﬂ&ﬂw0=true and
erowded| Al Y=¢true for some Y having Y[Il+1=2 whenever bOHIH¢1:L
or T:#TAl. Assume also that any constituent of A of the form

AO within Ai is such that as member of fﬂﬂlﬂ is in JmAOB and no

member of.ﬁﬁ&lﬂ is in JHAOBQXIAOE. Take a, to be the relation

g of 2.2.2 and a, to be the relation g of 2.4.5, we assume

o_. and o. in the relevant domains if

that for all o 0., 0, 3

0}

a2<01,oo)Aa1<o ol)Aal(o) =truye then a2<02,oo>=true. For any

3° 3297
& such that /{cﬁﬁ'sewnﬂAﬂOwoﬁoﬁ}=tpue we have

clZlrec AlC,2[L[rec Al LpO]] £ ﬁo=true.

<Let ﬂi have pﬁ1=fitﬁ1ﬁo=true, and define 6, to be

(Z[rec A]ipididl,gﬁd[rec Aﬂwoﬁtb10161> for some 2 subject to

/ﬂcﬁﬁ[sewnﬂ&ﬂowoﬁoﬁ}=true. Set ¢1=¢O[false*[fﬂﬂﬁ][true*ﬂ*ﬂﬂﬂ],
(d*,a*)=(news(ﬁfﬂﬂﬂ)Gi,news(#fﬂlﬂﬂﬁwiﬂ)61>,

b= fia(rp. 0, LAXFTAIITSLT AL 06, A1 1), 0, Lo /FLelAly, 1D,
0,0, and §,=(updates@*dummy*G ,updatesd*dummy*3,> , so that
6u=<.9"|'[A]Ii{SQGQGQ,ﬂJ[[A]]wl}TﬁbQDEGQ). As J!‘Hc‘[[a}]wl]]:ﬁ here we
can take the I* and a* of 2.7.5 to be #[A] and

P IHLAN V) v1,. .0 p T AT+ A#T AT+ Tespectively.

When ﬁ3=(ﬁ2,<52,02,(Aa.<areaa62A~a:a*,holda62))§62+D)

191

we can show that for all &

kentl@ﬂsnhoten&62va=<dummy,dummy)Vkentlaﬁ and consequently

1’

ﬁz and ﬁ3 satisfy the constraints on the ﬁo and ﬁl of 2.7.4, It

follows from 2.7.5 that either Ac.3ﬂAHC626262 and

lc.ﬂﬂfﬂﬁﬂwlﬂchDQBQ take the same improper value or they are

both proper. In the first case a264=true trivially, so we dis-

count it and consider only the second case. Writing ﬁu for

(ﬂﬂl&ﬂﬁg,ﬂﬁﬂtﬂﬂﬂwlﬂﬁ2> we know from 2.7.2 that ﬁq is proper and

that 8,=¢¢6,0,6,,2p,0,5,) .

To remove the members of GxL from the environment we now
introduce

ﬁ5=< (fiw(rp. 5, LE*/FLA11TTAA] pdS/JKHAHJ),GQ,éz) yh,) and

06=07HAHCDSU565,04). Because pSHIH+1=QSHIH+1 unless I:¥[A] we
can infer from 2.7.5 that Ac.ﬁﬂAﬂgéSGSdS is proper and that

06=<gp6u666,6060666> where ﬁ6=<mTﬂA]ﬁ5,ﬁq); we shall show that

a,0c=true. Defining f =(f_,%) we can demonstrate by an obvious

induction that for all v and &
kentvift, shotenl (VO dummy ,dummy vkentvdf, ; since pf =true we

thus know that fdwmﬁ7|kentoaﬁ7},

/ﬂwO:LA O=w1+areaw156AwO=m1,true|kent1w0ﬁ7Akent1w1ﬁ7} and

/&mO.LAwO w1+areaw066Awo=m1,tPue|kent1w0ﬁ7Akent1w1ﬁ7} are all

1N

true. Moreover apty =true, S0 We can apply 2.7.5 to ﬁS and

aPs
ﬁ7 to establish that sewn[Al1y

and p . ®_=true. Consequently sewn[Aloy # ® _=trye and pT_=true, and
06 7 0"0"6 Pl

(Fefe=true, Nuwln [kentodft t=true

in view of the nature of & we have « 66=true.

2
Unfortunately although 66 is 64 66 need not be 64, and to

convince ourselves that a264=true we must use standard semantics,

in which the corresponding entities do coincide. If the program
in which A is embedded has a sensible initial continuation,

2,3.9 entitles us to assume that for some yx, ¢, and 68 we have

8

192

u(ps,ﬁi)As(ég,al)A/ﬂc(xp_<ﬁ’p‘ui))Iknztﬂrec AﬂO(pB,pl)pAup}=true
(adopting the predicates of 2.2.7); from 2.3.8 we even know
that a(68,64)=true, where & 2] rec Aﬂ58x68. Since ¥ rec Aﬂﬁi
is the proper vector ﬁu’ 1A rec A]6868 is proper by 2.7.2 and

thus 1is %5EAH696 where owing to 1.5.8 we can take 59 to be

g’
Fflo(hp . La*/FLA)ILIA A} o6, /#TA]]) and 6, to be updatesd*dummy™§ .

As 8(68,61)=true it is plain that s(dg,és)=true, and therefore by
the remarks following 2.7.2 u(ﬁg,ﬁ5)=true. Whenever
knitﬂAH1(69,55)6=true knit{ rec AH0<68,§1)6=true also; hence

applying 2.7.2 to F[4A] and using the nature of y reveals that

a1(08,66)=a1<(X*ﬂfﬁﬂﬂpg)ég,Cqusée)=true.

n ce A - - - -
In consequen a206Aa1(08’04)Aa1(68’06) true and from our

hypothesis about a, and a, we can deduce that a2<6u’55)=true'

This means that a264=true and thus that

e@rec AL, 2l&[rec AU 1D R =true.®

The restriction on a, and a, is quite plausible, for in

essence it states that the equivalence between members of A must
not concern itself with the locations and functions used to

compute results, In the absence of such a limitation there is no

reason to suppose that 64 and 66 will be equivalent when 66 and

66 are; we might, for instance, take A to be P, a, to be

AL A=, 0 vi=Cr, 1) true,p® and £ to be

{Apuo.{p,u,0) ,Apuvo.{p,v,0)), when pairing 6l+ with 66 may give

rise to illegitimate members of VxG. Intuitively it is more
reasonable to take a, to be
Rﬁ.ﬁ:(1,1)Vﬁ=(T,T)+true¢\ﬁ%é%V”(é:BVé:B)VNvaen(6+3,5+3)lg:VXV},
so that if a, is A, M (F, M =1, v(E,D =CT,T) >true,s8 the
stipulation about a, and a, is valid. The latter version of a,
also satisfies the additional assumption which we require in our

final result.

193

2.7.7. Proposition.

Suppose that a, and a,, as defined in 2.7.6, are such

that for all relevant 04s O4s O, and 0q if

a <01’02)Aa1(0

> ol)Aal(o »=true then a2(02,00>=true and if

32 3292

a.f

5 02,01>Aa2(o 01>=true then a2<o y=true. lLet rec A be a

0’ 21%

recursive Mal declaration such that no constituents of A contain
further recursive declarations by incidence and any constituents
of A of the form g within A, have JﬂAlﬂ disjoint from.#ﬂ&oﬂ and
xﬂﬁlﬂ disjoint from JHAOHQ%HAOH. For any v, and certailn ﬂo

having apty Afitﬁoﬁo=true and

060
crushed rec AE(AI.#QOHIH>O+(5DHI]+1:G+2,1),1)Arentﬂrec Aﬂw0=true
rec A and 4 rec A]wo are equivalent with respect to ﬁo.

<Let ¢1=w0[false*lfﬂﬁﬂ][true*ﬂﬂﬂﬂﬂj,
V=¥ [false* /ST 41 1lopts (KT AT DY, /#TAD] and
Vo=v [false*/S1¢181 0, 0 10 true*/#é 1A1Y,17. Introduce a fresh
version of opt, opt,, having
optO:AIw.¢=wOA13*1AH+true,

(Ap’.optl I1y")
(AL Ve v 0Pl TD 1, o e TR Sy IRl I]) CHYL ID-#y 1 I1));

sewn | is derived from this just as sewn is from opt in 2.4.5,
Take ¢[Aly, to be the transform of A according to 1.4.6, but take
éﬁéﬁAﬂwzﬂw3 and tﬂaﬂwl to be the transforms induced by opt, rather
than those induced by opt; a simple structural induction serves
to show that tﬂtﬂﬂﬂw2ﬂws=tﬂﬁﬂwl.

Suppose that the programs in which A and its transform are
embedded are provided with continuations which tally with res-
pect to . By 2.6.9 there will be some to such that
/&c€0ﬂ|sewnﬂﬂﬂOwoﬁoﬁ}=true. There will also be some %, and %,
having ﬁdc(Zo,tl>ﬁ|sewnoﬂtﬁﬁﬂw2ﬂowo<ﬁo,ﬁ1>ﬁ}=true for which we

can even assume that ﬁdc(CO,Zi>ﬁ|sewnOﬂAH0wo(ﬁo,ﬁ1>ﬁ}=true

194

as Y, 'factors through' v, (in the sense that if
aptwgﬁzAaptws(EQ,ﬁS)=true then aptwl(52,63>=true for all 62 and
53]. Applying 2.7.5 to the transformations induced by opto on
rec tﬂﬂﬂwz and on rec A,

e{2[rec tﬂaﬂwzﬂto,ﬂﬂrec Jﬂtﬂaﬂw2ﬂw3]31><ﬁo,ﬁ1)=true and

e{?] rec Aﬂéo,gﬂrec tﬂaﬂwiﬂti><ﬁo,ﬁi>=true.

Take any ﬁ2 and ﬁs having pﬁ2Afitﬁ2ﬁo=true and

pER D AfieCE,) (h R =true, so that

p(ﬁg,ﬁ3>Afit<ﬁ ,ﬁ3>(O,w ')=true. We have demonstrated that

a uﬁﬂrec tﬂA]w iz 2,J[[rec tﬂAHw 1%.p,0.8.) =true and that

1333

Dlrec £[A]0 ﬂti 30363) true, and hence from

0P
a <9ﬂrec ABCO U 2 2,

our assumption about a,
a <9[rec A]§062 5 Q;QLiﬂrec Ay ﬂto 2 ,8,) =true, as was to be
proved.¥®

The condition about within declarations is essential both
for the validity of the proof of 2.6.6 and for the truth of the
theorem above. In 1.3.6 it was pointcd out that
rec (Ff=fnz.z within f=fnz.(4$f)z) inside ($f)0 does not terminate;
vet 1,4,6 can make it the transform of
rec (f=fnz.z within f==fnz.fz) inside f0, which returns a location
containing 0 as its result. By contrast, the insistence that
there be no recursive declarations by incidence in A is purely
a technical device intended to obviate the need for predicates
on programs akin to those of 2.6.1. Were these to be introduced
rather than requiring that erowded[AlYy=true in Z2.7.5 we would
be content with erushed] Al y=true.

Strictly speaking we should not make assertions like the
one above to the effect that p<ﬁ2,ﬁ3>=true LE pfoapCH,) =true .
Rather we should work in terms of a predicate roughly rcscembling

q,ﬁah which could be built up 2s in 2.2.8 or 2.4.5.

195

CHAPTER THREE
STACK SEMANTICS

3.1, Idealized versions of realistic implementations,

3.1.1. Remitted procedure pointers,

The implementation of recursion implicit in 2.1.4 is
absurdly inefficient, for it demands that during the evaluation
of a recursively declared identifier T there be three stores:
the one forming part of p[I]+1, the one forming part of plrecl+1
and the one which can be modified by the evaluating mechanism.

It would be possible to decrease the amount ¢f memory needed by
copying only those locations a having plota{plI1+1+2)0) (p[I]+1+¥3)
or plota(plrecl+1¥1) (plrecl+1+2)(plfrecl+1+3) equal to true, but
tracing them all would be very time-consuming. In this chapter
recursive declarations will be described in terms of a formalism
which is as convincing as that of 2.1.1 and which nevertheless
gives rise to sensihle implementation techniques. Because these
involve wielding pointers into the stack instead of storing
members of U and Y as portions of function closures and label
entry points, the definition of Mal in appendix 3 (which uses
the resulting equations) will be called its 'stack semantics'.

It is not enough to revise the treatment of recursion,
since Mal has inherited from Pal a domain structure which allows
functions and label variables to be stored. By means of an
assignment any member of V can be passed out of the program block
in which it is set up, so some of the free variables of a function
may not be in scope when it is eventually applied. A satisfactory
interpreter for the language must either keep little elements of
U in closures or preserve more than just the current level of the
environment. Even worse inefficiencies arise with label entry

points, which require not only surrogate environments but private

196

stacks also: pointers into the current incarnations of these
entities are inadequate because the values present at the time

of declaration may have been overwritten long ago. Even programs
like that of 3.1.5 presume the existence of an elaborate mechanism
for handling the stack.

Notwithstanding this, there are many Mal programs which
produce correct answers if their abstractions and labels are
translated into pieces of code lacking supplementary environ-
ments and stacks. When executed, these pieces of code will
obtain the state vectors they require by manipulating pointers
into the existing state; in view of the remarks above they will
not yield gibberish only if they are confined to the blocks
wherein lie their declarations. In 3.1.4 we shall formulate
syntactic constraints on assignment statements sufficient to make
sure that this does not happen.

Suppose that within a particular block no assignments of
locally created members of L*, J or F are made to identifiers
declared outside it. When the flow of control leaves it, the
locations appended to the store area after entry to the block
will not be accessible using plot from those adjoined before
entry. Moreover the environment brought into play will be that
pertaining prior to entry, whilst the stack will differ from the
earlier one only by the addition of an extra element., Hence if
the exits from the block are restricted as in 2.6.2 there will be
no need to retain the locations set up inside it. To discard
them by reducing the area to its original size we introduce
restore=h0001.<Aa.(areaaUOAareauol,hoZda01>)§01+1.

We also require a primitive which by analogy with revert
decreases the height of the stack:

pop=hu u . v, T -H#u).

0
On entering a block we tuck away the current environment

197

level, stack height and store area in the environment so that
they can be referred to when we adjust the state after leaving
the block., For shortness we shall actually hoard the entire
state ¢(p,v,0r rather than ({AI.#p[I],#plres],#plrecl} ,#v,ra.areqca)
Preserving these extra facts does not run counter to the principle
that only one state vector be accessed, because they are never
needed by the semantic equations and can be eliminated by a
structural induction using simple inclusive predicates, As we
have already intimated, in stack semantics G is not a summand of
D and the entity plrec] is not required to serve the purpose for
which it was intended in 2.1.4; accordingly we shall use it as
the vehicle by which we transfer the house-keeping information
from the beginning to the end of the block. For any v plrecl+i41
will provide the pointers set up on entry into a block which
surrounds the current one, so we can return the state to a size
appropriate to it by means of
level=Avn., (37! v i1+ arid, () ,empty} ,v>tol recl-»m,
{(revert(n'+1)p,pop(m’+2)u ,m'+3))
(plrecl+(#plrecl-v+1)+1).

On quitting a block we return as closely as possible to
the state pertaining before entering it by activating
remit=Agpua . (An 7. (Ao” . (revert(m'+1)p) ({ u+1) Spop(m!¥2)via”)

(restore(v¥il:Lrupdate(v+1)dummy(m'+3),m’'+3)0))
(plrecl+141),

In practice the role of pop in remit is nugatory when the primitive
is used at the end of an expression, since the height of the
stack at this point inevitably exceeds that on entry by one.
However it is important to enlarge the area to include u+1 when
u¥l is a location, because we shall permit an expression to return

a location as a result provided its content could have been

198

declared before entering the relevant block; under these
circumstances we shall have to ensure that
plotu(revertpopi)(popuoui)oi will be true for every o having
plota(revertpopi)((hold(ui+1)01>§popu001)01 equal to true.

When storage is automatically being deleted on leaving
an expression there is little virtue in incurring the overheads
of garbage collection, The equations of appendix 3 therefore
employ new, although 3.3.9 applies equally to ones employing
novel; we shall not bother to make mv and sv take account of this.
Morcover we can sct up a continuous version of wovel fer which
novel! stack semantics does not require discontinuous continuations.

Because the flow of control must bc capable of jumping out
of expressions (hut not into them) the valuc of a Ilabel must consist
of more than a translation of the program from the point at
which the label is set onwards. Before execution is allowed to
resume there the environment and stack pointers must be returned
to their original values, and for the sake of economy the store
is attenuated also. Accordingly we now let J be Z°, for which
S[I1:E] and 2[I::E] are
AgpuvodAp'u'o! ZIE]l c(revertpp’)(popuvv’)(restoreso’)} P Elzpuc and
Atpuo.diAp'ulo! gl E)c(revertpp!) (popvu'’)(restoreco’) §2[E] gpuo
respectively. Similarly, to deal with val we put a variant of
remit into the res component of the environment. In contrast to
the situation at the end of a block the presence of pop in remit
can now be crucial, as res E may terminate the evaluation of a
nest of expressions, thereby cutting back the stack.

This approach is not quite adequate for function closures,
however: although a lower level in the environment may be called
for when a function is applied it cannot be obtained purely by
subjecting the current state to revert, as higher levels of the

environment may be needed on leaving the function. Thus when F

199

is 0° we might regard #Ifn()r], for instance, as being
Ao AL P ua L (ApM UL IL*=() ~#TE] (remitr Yo" (vt1)o ", T)

(divertp ' (rendl fn()E] (revertpo’)){o',v't1,a" //recl),
so that during the application of fn()E the environment would rise
above the level prevalent in the surrounding code. Unfortunately
this choice of operator would make an abstraction set up in E and
passed out beyond it demand an environment level exceeding that
available; 3.1.2 will illustrate the folly of doing this.

Accordingly we are obliged to take %[fn()E] to be
Ao AL 00 g (ApT 0L [L*=() > E] (remitr o (u'T1)0’,T)

(divertp ' (rendl FNO)EIp){p',v't1,0" //rec]l),
which cannot bring such consequences in its train. At first
sight this operator does not seem to conform to the principle that
we can always keep pointers instead of spare copies of the en-
vironment; to make it (and its analogues for the other kinds of
abstraction) do so we modify the structure of U laid down in
1.3.2, In the environment appropriate to stack semantics we shall
hold members of N as well as members of D in order to isolate
which declaration of I is referred to by pfIl+1. Because the
free variabhles of an abstraction are always set up in the blocks
surrounding the abstraction, instead of keeping their denotations
as part of the corresponding element of F we need only keep
these pointers; we have desisted from doing so in the operator
above merely to be more concise.

To note the incarnation of 1 to which plI]+1 refers the
environment has simply to preserve the height of p[I] alongside
the denotation. For the purposes of 3.2.8, however, we wish to
specify precisely the block in which the relevant declaration
takes place., This can be done by including in the environment

layer for I another member of N, which represents the depth of

200

nesting of the block, so that we actually set
U=[Tde»[DxNxNJ*Ix[IxNxNI*x[PxNxN]*, We append &:D to p:U at I:Ide
using the convention that
pL8//I1=pl(S,#p[recl+1,#p[I]+1) /I]; likewise when z:J
plg//resl=pl{z,tplrecl+1,#p[res]+1} /res] and when 7m:P
plm//recl=pl{m,#p[rec]+1,#p[recl+1) /rec]. The depth of nesting
components, written as #pfrecl+1, are not essential to the equations
of appendix 3 and can be eliminated in an obvious manner, but some
of them will be required by the predicates of 3.2.5. We cannot
erase all mention of #pfIJ+1, on the other hand, as within
declarations allow an identifier to have more than one meaning
in a block although the height of pl rec] is ﬁnchanged. For any
S*:0* we set
pL&8*//I*]1=(I*=()»p,(pl&*+1//IT*+1]1)[E*+1//I*+11), and we make the
tacit assumption that #dummy*=#I* whenever we write o[Jummy*//T*]
In our equations,.

We supplement the primitives of 1,3.2 with ravel,
which rearranges the denoted values in the order prescribed by
their markers. The values found in the environment where the
markers first come to light are those to which significance is
attached; all the others are viewed as meaningless accretions
which would not be present in an implementation. For any p and
I we examine the set of all v:N such that plIl+vti=p[I]+1t+1; the
maximal element of this set will be nearest the bottom of the
environment and will therefore yield that component of the form
pl I +v+1 which is of interest. This integer is yielded by
lead=2vw*, FLz(Adv v, v">#w*>u ', ¢{ (W IVt 1= Iut1)+v", V") (V'+1))vl;
ravel=ip e, . (. (AT 6Cp TI1)Co 1)), 0Cp Tresl)(p, Ires]),c2))

(Aw* w*l.fix(l¢u.v>#w*o+<),(w*1+leade*0)§¢(v+1))1)

0

aligns every integer with the denotation to which it corresponds.

201

Consequently ravelppl I1+1+1 is the entity required by the
semantic equations. In practice Zeadv(plI]) is #pl I]-pl ID+v+i3+1,
but we shall never never need to presume that this is the case
and our primitives will be unaffected by the nature of pl[IJ+vt2,
There are of course many possible ways of varying the construction
for U adopted here; one of the more important will be analysed in
3.6.3, where modes will be discussed.

We can now set up an implementation of recursion by tying
a knot through the environment in exactly the same way as we did
through the store in 1.3.4. After the recursive declaration
rec I==E has been executed there may be many functions intc which
have been compiled integral markers indicating where the outcome
of the declaration has been put. When I is invoked during the
application of one of these functions ragqvel will ensure that
this outcome will be picked up as the value of I. If &:D we write
p[8///T1=(Aw*. ((AI'. I'=T»w*,plI']).plres],plresh)

(fiz(Adv.v>Hpl I1+¢)
C((v=leadt(plI1))& Spl T 4vi1,pl IT4u)) 8¢ (v+1))1),

In terms of this 2[rec I==E] becomes
ALpuo HIE] (Ap'v'or.gp'lu'+1///T1(v't1)o ") pldummy//IJvo; 3.3.8
will show that this operator is indeed equivalent to that for
rec I=E, The comparable equation for multiple declarations, given
in appendix 3, makes use of the convention that if &*:D* and
I*:Ide* then
pL6*///T*]1=(I*=() +p,(pl8*t1///T*+211)[8*+1///T*+1]). Tt is the
absence of fix from this equation and from that for labels that
enables us to construct the environment from [DxNxNJ}* instead of
TDexNxNJ*,

Notice that if we start the execution of a program in a

suitable library environment the primitives provided here always

202

append additional layers in an orderly fashion. More exactly,
if o the environment at any stage then tidypp=true where
tidy=ie,0, NSNS Co TTE o TTT) |I:Ide}A¢(pO|I res])(p [res])
A((Zevelv(po,(>empty)+1)Hrec}=v-1))
* * ~ *
(Aw oW¥q (1<vs#w O)+true,

R < 4 .
(1:m*o¢v+?,ipoﬂrecH+L)A(Zeadv(w*Obw*1)>#w*0))

|veNY.

3.1.2. Example,

Let E, be x=dummy inside f=fn()fn()x inside E, and let
E, be z=nil inside (f(x))x, Under the first abstraction operator
put forward in 3.1.1 E, does not return the answer dummy.

4lake any proper Por Yo and Ty such that newsuco is proper.

Define a, =newo , 01=updatea1dummy00,

p1=p0[(po,uo,oo)//rec][ul//x], a,=newc, ,

02=updatea2(§1fn()fn()x]pi)cl, p2=p1[<pl,u0,01>//rec][a2//f],

Q,Znewa

3 5 03=updatea3(>02 and pa=p2[(02,00,02)//PEC][a3//z].

For any Zo write Zs =remit§n when 0<n<2, so that

1

@ﬂEDﬁc ap=2[f=fnOfn()z inside z=nil inside (f(m))xﬂcipiuoci

0Po¥o

suppeose that evaluation takes place from right to left,

and define o, =rews

Y 5» Oy=updateo, (F1fn)zlp oy,

pu=divertp3(rendﬂfn()fn()xﬂ(revertp))[<p3,<a3>§u0,63>//recl

1P3
and c4=lpu.(u¢1)c3p(ufi) to give
21(f(m))xﬂc3p3U003=@ﬂfxﬂgup3(<aa)500)03
=1 f1 (Apv. (v¥1)(evz, Ip(vt1))p (Cay, 0 §u do,
= O fnOxle, (svg dp (Cas,a,) v,)0,
=fﬂfn()xﬂ(remit(svcu))pu(<a3>500)03
=(sch)p3(<u3.us)§uo)03

;ﬁﬁfn()xﬂpucsps((us)500)04.

203

As divertps(rendﬂfn()x](revertquB))=p3,
.ﬁ'[[fn()x]lpqcapa((a3>§Uo)ou=2’1l:c]f(rem1,tc3)p3[(pa,uo,crq)//recJuoou
=g3p3(<as>§uo)o4
=c0p0(<a3)§U0)(updatea3<)(restoreaoaq)).
When evaluated using store semantics, on the other hand,

gﬂEoﬂg p v o0 would be gopo(<a1>ﬁuo)ou where hoZdaicq=dummy.>

0"0o 0 0

3,1.3, Alternative approaches,

There is nothing sacrosanct about the version of stack
semantics suggested in 3.1.1, and we have chosen it largely because
it can be built up with very little new notation. Here we men-
tion two minor variations on its principles which are physically
more realistic but do not provide any fresh insights into com-
puting. Our intention is simply to indicate that semantic
equations can be used to describe an implementation in as much
detail as a given application may require and that such des-
criptions can be validated relative to standard semantics by the
means we shall discuss in 3.2.4,

A radical alteration to the equations of appendix 3 would
be wrought by fusing the stack and the store, This could be
achieved by arranging for every value which hitherto would have
been placed on the stack to be stored in a new location (so that
L would become a summand of V). Coercions would be invoked by
the primitive functions to extract these erstwhile members of E
when necessary, while storage would be allocated and discarded
by regarding the store area in use as a contiguous array of
locations., Then if count:L+N and point:N+L satisfied
point=xv.U{a|ecounta=v} and if sum=xo.Mleounta|areacc}, in place

of new and update we might use Ao,point(sumc+1) and

204

Agpo.Cp(ra,a=hold(point(sumag-1))ox true,hold(point(sumo))o) ,
a=point(sumo-1) true,dummy) ,{ countassumo-1,holdaa))

respectively (here we take S to be L»[TxV] for simplicity). On

entry to a block the first empty location would be reserved as

a space in which to put the answer returned. Such considerations

as these would make the semantic equations reflect the truth

about interpreters in an intolerably messy manner, but they

would enable us to express the validity of a display [4] which

calculates denotations by means of an offset as well as the block

level; taking S to be V* would achieve the same end,

To recover the full power of Mal we could introduce an
additional region of storage from which locations would not be
erased on leaving blocks. Thus suppose S were L=[TxTxV], where
the first lattice of truth values indicated which kind of storage
was intended; instead of restore we would require
Acool.la.(01a+1,(01a+1+01a+2,00a+2),01a+3). Before passing
functions and labels beyond their scopes we would have to give
them representations as stored values incorporating more in-
formation than would be necessary as denoted values. A suitable
substitute for update would be
rcpuo. (AB.cp({dummy) 8vt2) (An.a=uv2+ o¥1,0+2,8) ,00))

(U¥1:Z2°Aa0(ud2)41 ¥ usdl,p,ut2) ,ud2:0%Aa0(ud2)+1 Ud1,p) ,uvl),
We could adapt the proof of 3.3.9 to establish the equivalence
of store semantics and equations based on these notions, but we

prefer to defer all further discussion of the heap until 3.5.3.

3.1,4. Syntactic constraints enforcing validity.

To indicate which Mal programs can be executed using the
mechanism of 3.1.1 we use context-dependent predicates which test

the identifiers at the exits of an expression to verify that they

205

are not local to the block. We also insist that in an assign-
ment EO:=E1 no exits of EO denoting locations have wider scope
than the outcome of Ei; only this way can we ensure that a
location will not be accessed outside its extent. Such checks
would not be necessary were we to confine our remarks to a little
language like Algol 60 [13], which shrinks V into B and does not
permit blocks to return procedures as results, but here they are
crucial. In fact we even require more sophisticated tests than
those of 1.5.3, where we were content to distinguish between
local variables and three varieties of global variable,

The predicates we adopt take as arguments a program, an
integer (yielding the level of the block to which we revert after
running the program) and an environment; more precisely, corres-
ponding to the four major valuations we introduce e:Exp>N-+U-T,

g Exp>N-U-T, d:Dec>N~U+T and t:Dec+N+U+T. The members of U thus
invoked associate with each identifier the block level of its
most recent declaration, thereby restricting what can stand as

an expression exit. We also differentiate between those denota-
tions which are locations and those which are not by providing
p:U with some a:L in the first case and some B:V in the second.
To increase the depth of nesting of the blocks we adjoin to p any
state NO:P which can be chosen at will, The dependence of the
predicates on operations performed during the execution of the
program is chimerical, because for any declaration (whether by
incidence or by reference) we can determine how many blocks surround
it purely by examining the text of the program, Consequently a
compiler could test programs to see whether they satisfied these
constraints, It could not, however, predict the sizes of the
stacks needed because we do not require members of L* to have

denoted constituents; were we to do so we would effectively be

206

eliminating arrays with dynamically varying bounds in favour
of those with fixed bounds,

Before discussing the predicates we shall set down a
recursive definition of them thus:
elE}=2vp. gl E] (va(#plrecl+1))pln //recIla*//FIEDICR*/ /AT ET I;
gl Il =2vp.#pl I1>0>v2pl I]+1+42, false;
gl Bl =Avp. true;
glfn()EI=xvp. ((#plresl>o+v2plreshii‘z, false)v~freelE]lresl)

Mgl I1vpv~freel EIN1I] | I:1de}
aelE]vp;
gl fnI.El=Xvp. false;
gﬂfnll.....In.Eﬂ=lVD.faZse;
gl fnI. . El=Xvp. ((#plresl>0+vzplres]l+1+2, false)Vv~freelE]llresl)
AN gl ITvov~free[EI1I1|I:1de}
rel EJ0Vadt elre cl+1 0ol //rec]LB//T1;
gﬂfnll,...,In..EH:kvp.((#p[resﬂ>o+vzpﬁresﬂ+1+2,false)V~free[EHﬂresﬂ)
MNgl IT1vpv~freel EINI1|I:1de}
rel EMvatialreclti)olm, //recIOB*/ /A T 4.0 3T) 75

gl OEl =Xvp.elE] (#plrecl+1)p;
9“E09E1ﬂ=lvp.eHEOﬂ(#pﬂrecﬂ+1)pAeﬂE1ﬂ(#Dﬂrecﬂ+1)p;

glL :=E1H=Avp.(lv0.(lvl.e[EoﬂvopAeﬂEiﬂvip)

0
fﬁI:emitﬂE0H+(ravepr[IH+1+1:L+QHIB+1+2,vo),vo

|T:1de}) (#pfrecl+1))
A(E, has no exits of the form get E, val E,

.. ey
A inside E or L2“3),

QﬂEi,v--,En:=E0H=lvp-(lvo.(Avl.eﬂEiﬂvopA...AeﬂEnﬂvopAeﬂEoﬂvlp)
fﬂ“I:emitﬂE1ﬂ§...§exitﬂEnﬂ+v0,
ravelppﬂ1ﬂ+1+1:L+pﬂIﬂ+1+2,v0|I:Ide})
(#plrecl+1)
a(E_has no exits of the form get E,

val E, A inside E or E E, when 1<mon)

3

207

glget L]=elE];

glput E]l=elE];

QHEO aug E1ﬂ=lov.eﬂE0ﬂVDAeﬂE1ﬂVp;

gﬂEl,...,Enﬂ=lpv.eﬂElﬂva...AeﬂEnﬂvp;

gl $El=€¢lE] ;

glE$]=elE];

gl§El=el El ;

glEE]=elEl

glE E, D=hpv.glE TvoaglE 1 (#plrecl+1)p;

glval Eﬂ:Avp.eﬂEﬂ(vA(#pﬂrecﬂ+1))p[ﬂ0//rec][L//res];

glres El=Xvp.e[Elop;

glgoto El=Avp.elE]l (#plrecl+1)p;

gl inside L]:Avp.eﬂEﬂ(vA(#pﬂrecﬂ+1))p[ﬂo//rec][u*//fﬁﬂﬂ][B*//xTAB]
rdlAlop;y

glEys E I=hve.glE I (#plrec)+1)paglE, fvp;

o3
glif £, then E else Ezﬂ=lvp.eﬂEOE(#pﬂrecﬂ+1)pAgIE1vaAg[E2va;
glwhile E, do E1ﬂ=lvp.eﬂEOﬂ(#pﬂrecﬂ+1)pAg[E1ﬂ(#pﬂrecﬂ+1);
glI:El=glEl;

gl I::El=gIL] 5

gl (BNl =glE] 3

dlI=E] =xvp. false:

th I=E) =xvp. elE] (#pl recl +1)p3

dﬂli,...,In=E]:Avp-false;

TR

dl I==Ef=xvp. e[E] (#p[recl+1)p;

. ,In:E]I=)\\)p.g1[E]] {#pl recl+1)p;

t[I==E]=xvp.elEl (#pl recl+1)ps
dﬁll,---aIn==Eﬂ=Avp.eﬁE](#pHFECF+1)p;

tl1 -,In:=EI=lvp-eﬂEH(#pﬂrecﬂ+1)o;

o
dﬂAO within A1ﬂ=xvp-dHAOHOQAdﬂAJHOp[a*/ﬂfnalﬂlfs*/hrﬁAiﬂ];

208

tld, within & J=xvp.dla Topatla,Jopla*//Pla 1108*%/ /#1412

A(J!"IIAO]] §J[[A1]] and .ﬂ'l[:i\.o]] Mﬂoﬂmal]l

0

have no repeated elements);
dis, and...and Anﬂzkvp.dﬂAlﬂva...Adﬂanﬂvp;

tfA, and...and Anﬂ=kvp.tﬂA1]va...AtﬂAnﬂvp;

1
direc Al=Xvp.t[Alvplo*//#[Al JLR*//#] Al D,
tlrec al=t[A];

dl (A)I1=dla];

tl (A)D=2Al.

Owing to the difficulty in deciding whether fnu.u:=v, say,
satisfies the condition imposed on assignment we forbid the presence
of abstractions by reference. It would be possible to allow those
abstractions which did not contain assignments to their formal
parameters, but the necessary changes to the predicates are ex-
tensive and do not yield a wider class of computations: if I is
not covertly assigned to in [2,5.3 establishes that E is equivalent
to e[El(AI',I’=I+false,true), and thus a version of 2.5.4 confirms
that fnI.E can be replaced by fnI..E, which we allow in any case.
Similar considerations govern declarations by reference which are
not recursive, for unless I=E is equivalent to I=$E it may later
give rise to an illegitimate assignment, As Tecursive declarations
are still permitted z=%y, say, can be replaced by rec =xz=y.

Abstractions by incidence must be severely constrained
because they are used both in function applications and as ex-
pression exits. A failure to confine their free variables to those
which can be passed out of the surrounding context can lead to a
disaster like 3.1.5,.

It is convenient to prohibit get E, val E and A inside E
from appearing as exits on the left hand sides of assignment state-
ments., We could devise a function which would list all the

'secondary' exits from the exits of an expression; were this to

209

be substituted for exzi¢ in the predicates we could remove the
prohibition, but the effort would not justify the outcome, More
unfortunate is the interdiction on the appearance of E,E, among
the exits of the left hand side of E,i=E , as this eliminates
such programs as z=nil aug 0 inside z1:=0. However even it could
be removed by determining all the exits of abstractions in E, as
well as of E, itself; in particular our predicates could be ex-
tended to cover the most important case, when E, is an identifier.
Another category of programs which is needlessly excluded
is typified by (I1: dummy; 7); dummy, in which a valuc is passed out
of scope but no ill-effects arise because it is immediately dis-
carded. Again we could easily modify the predicates (and the

proof of 3.2.8) to deal with this category but the ends do not

justify the means.

3.1.5. Example.

Let E, be x=0 inside ((1+(x:=val (fnz.res 2); 1); E,;) and
let E1 be if z=2 then x else z(x). When evaluated using stack

semantics EO does not return the answer 2.

4Take any proper p, and o and define o, =newo,

0> %qTNevs,,

)y pg=p L, //recllAp.mv(remits yoln,//recl//res],

p,=polC0,,0 ,0 //reclla,//=1, o, =updaten 00
ﬂ2=(p1,(a0,1),01

¢O=9anz.res 2ﬂpa, o] =updates(ao,a1)(¢O,¢O)01, o, =newd

3 2 3?

pu=divertp1(rendﬂres 2ﬂp3)[<p1,(),03)//rec][¢0//z] and
g,=updatec,20,. For any g set 51=Apu.§ﬂE1](mv(remitco))p(ufl),
c2=ApU.svc1((1+u+2)§u+a) and
ga=sv(lpu.czp((dummy)§U+2)oupdate(u+2)(u+1)). Ignoring the alter-

ations to p[rec] caused by using ¢ instead of ¥,

210

@HEOHCOpO<)00=@H1+(x:=va1 (fnz.,.res 2); 1)HC101<)01

=#{x:=val (fnz..res 2)]J¢ <1)01

2P1
=4l val fnz..res 2]C3p1(ao,1)0

1
=4[fnz..res QB(mv(remttga))ps(uo,i)ol
=z_;2p2(1)o3
=C1p1(2} O,

=@ﬂx(x)ﬂ(mv(remttco))p1<)03

=¢0(mv(remztgo))p1(ao)03

=4[res 2](mv(remit(mv(remitco))))p4<)03

=mv(rem1t§3)pu[ﬂ2//rec](2)63

taPif eyl oy

:T-

Other forms of semantic equation yield the intuitive

meaning of the program, in which a location containing 2 is

returncd as the result.*®

211

3,2, Preparations for an inductive proof.

3.2.1. Locations accessible from outer blocks.

Here we shall trace out the relation between evaluating a
program using new stack semantics and evaluating its transform
under the rules of 1.4.6 using new store semantics. Because the
semantic equations of appendix 3 regard functions and label entry
points as consisting purely of code they do not provide all the

information we shall require to construct this relation. In

particular they do not explicitly indicate what area of store is

to be retained when a jump is made nor which markers are to be
adjoined to the environment when a function is applied. We there-
fore deviate slightly from our intention not to preserve portions
of the state vector distinct from it by taking J to be Z°xN and

F to be 0°xU, Thus both #[T:Elzpuc+l and 2[I::Elgpvctl are now

{(Ap'v'c’,4[E] ¢ (revertpp')(popuu’)(restorecc’),#plrecl+1), while

FLfn(OE] 1is

kp.(Ac'p’u’o'.(kp".u’+1|L*=<)+§1EB(remitc')p"(u'Ti)o',T)
(divertp'(rendl fn()Elp){p',v’+1,0" //recl),
rendl fn ()E] 0 ;

analogous modifications are made to %[val E] and to #[%] when ¢
is any other form of abstraction. These components play no part
in the semantic equations, so that #fgoto El, for instance, is
now [E] e (Agpu. (v¥1¥41)p(ut1)); consequently an easy proof
(vaguely reminiscent of that of 2.3.9) suffices to show that
these equations are essentially equivalent to those of appendix 3,
which do not contain so many superfluities.

Even within the predicates the roles of N in J and of
Uin F will be limited to supplying members of [Ide»NIxNxN, N and
L+T. To illustrate this we now give the basic correspondence
between the state vectors # and % arising from a program and its

transform. Owing to our simplified treatment of recursion W

212

reduces to L+B+L*+J+F+J in stack semantics, and we must arrange
that the state %, which is evaluated using store semantics, con-
tains no members of G or P. To extract the witnessed values
from the state fi resulting from stack semantics we apply ravel,
so that
hoten=A08 M{IV{1<v<#S[TIA1<v<#B[I)+D=(ravel SBI TNy i1, RlI] VW | false
|I:1de}
vilsv<#p[res]atcv<#p] res]l>i=(rqvelppl resl+v+1,pl res]+v ,
false)
|viN},
gyven=A00 M{1sv<#da1<v<#d+6=¢ §yv, 040 , false|v:N},
Following 2.1.6 we set
access=A0f { (G:L+(areadb+holdi6,7),d),(B:L>(areatd>holdnd, 1) ,8) .
The tracing algorithm thus becomes

seen=Av0v1wOQ1ﬁ.u1<1+®0=®1,

61:LV&l:L+seenv0(v1—1)Go(access&1ﬁ)ﬁ,
Gl:BxB+false.
Qi:L*XL*JVQSeenvOCv1-1)QOBQﬁAgyven&2®1|®2:WXW},

ﬁi:JxJ+\ﬂseenvo(v1-1)QOGQﬂ
A(hotenﬁz(1evel(éi¥@ﬁ+1,&1+2)Av0<3
ngven&Q(1evel(6ﬁ2)ﬁ+2,&1+3)A%)<2)
|&2:WXW},
7] :FXF¢V{seenvO(v1—1)&OmzﬁAv0<3
Ahoten&2<divertﬁ(m1¢2).al¢2>|m2:wxW},
& :JXJ+\HseenvO(v1-1)ﬁ0&2ﬁ
Alhoten®i, { level (R ¥2)F41,0 ¥Dav _<3
2 1 1 0
4+ R B¢V
ngvenGQ(level(wl2)ﬁ+2,mfﬂ AV <2)
|m2:wxw},

false.

213

On this occasion we let
kent=av0f . V{Viseenvv 06, f
A(hoten@iﬁvgyuen&lovgyvenﬁl(6*2,B+2))
[V NG, s WxH},
The results of 2.1.7 and 2.1.8 remain relevant, so that,
for instance, if Vs Vi QO, ®, and f satisfy kentvoalﬂ=true and
seenv0v1®0®1ﬁ=true then kentv0&0ﬂ=true.

We are also interested in those parts of the state vectors
which can be witnessed at levels corresponding to the heights of
the environment and the stack on entering outer blocks. Accordingly
we write
known=kﬁ0&ﬁ1.Vq\ﬁseenaviﬁﬁiﬁi

A(hotenﬁl(revertﬁgﬁi,revertﬁobi)
ngvenai(popﬁoﬁi,popﬁgbi)ngven61(5+2,a+2))
v sN} @, WxH],

for which knownflft=kent3Of for all @ and % with neatl{ ravelff,d) =true
and #0=#0. Neither kent nor known traces the values witnessed in
the output stream, since they cannot affect the future course of

the computation and may demand environment levels higher than the
prevalent one.

Owing to the rather stringent restrictions imposed in
3.1.4 it is to be expected that the values witnessed at points in
the state vector attainable from outer blocks will be such that
they could themselves have been set up while these blocks were
being executed. Thus if they are in J the associated environments
and stacks must not be higher than those pertaining to the blocks.

Such properties can be expressed in terms of the projections of

2.4.1 using

214

found=lﬁ0&ﬁ1.6:LVQ:L+(6:L+area660,false)A(Q:L+area&61,true),
Q:L*XL*+#Q=#&A/ﬁknownﬁoﬂﬁiv~gyvenﬁ&|&:LXL},
G:JXJ+@+25#5OHrecH
A/ﬁé:LVE:VV~gyven(Zevel(®+2)ﬁ1+2.&+3)|€:EXE}
Aq D¥2=revert(level(d+2)f +1) @g p,)
AG B+ 3=pop (level(G¥2)F, +2) Bq D),
Q:FxF+neat<é+2,®+2)Atidy(é+2)50
A(ravel(divertﬁ1(6+2)){@qo(divertﬁl(®+2)))
:@qo(divertbi(a+2))),
@:JxJ+6+25#5oﬂrecﬂ
AMNLE:LvEVvrgyven(Tevel (@v2)% v2,8+3) [€:ExE}
Aq0&+2zrevert(Zevel(é+2)w1+1)(@qobi)
Aq0®+3:pop(Zevel(é+2)ﬁ1+2)(9q001),
true.

together with suitable versions of P and qq> which will be provided

in 3.2.4,.

3.2.2. Propesition,

Suppose that # f, and 7, satisfy revertp =revertp

0 M1 2 2P0 2P

revertf ,p,=revertf,p,, popS,0 =popd,d, and popd, 0 =popd,0,. If
knownﬁ2(access@ﬂl)ﬁ0=true whenever knownﬁ2®ﬁ0=true then
knownﬁ26ﬁ0=true whenever knownﬁ2®ﬁ1=true.

4Assumec that for some v and all @O and 61 if

seenavﬁo&1ﬂ1=true and knownw2@1ﬂo=true then knownﬁ260ﬁ0=true. Let

@0 and wibe such that seena(v+1)moﬁiﬁl=true and knownw2&1ﬂ0=true.

1f mi:L or mizL seen3vw0@2ﬁ1=true and knownﬁ2®2ﬁ0=true, where

~ - ~ . * * ~ -
B, accessmiﬁi. 1f mi.L x| seenavm0®2ﬁ1 true for some QQ such that

~

271
having knownﬁ2®2ﬁ0=true, and by the induction hypothesis

gyvenl =true. Thus inevitably seenBv&OQQﬁiztrue for some &

2

knownﬁ2w0ﬁ0=true.

Consequently for all v, @, and &

,» B when seen3vl 0, =true

1

mailto:found=A~O@~1.W;Lvw:L+(w:L+areaw60.false)ACW:L+areaw~1'true

215

and knownfi O % =true knownf .0 % =true. As

2710 2710
hotenwi(reverthpi,revertpzoi)Dknownﬂ2m1ﬁ0 and
hotenwl(popugui,popUQUi):knownNleﬁO we can conclude that

knownﬁQQOﬁiaknownﬂz@oﬁo for all mo.>
Suppese further that when knownﬁ26ﬁ0=true

access&ﬁ0=access@ﬁ1. By the argument above knownﬁzaﬁinknownﬁz&ﬁo

for all &, so when knownﬁ2®ﬁ1=true accessﬁﬁ1=accessﬁﬁo. Accordingly

we can use the same argument again and assert finally that for all

A knownﬁ28ﬁ0=true if and only if knownﬁzﬁﬁl=true.

3.2.3, Proposition.

Let {ﬂm} he any sequence such that ﬁm+13ﬁm for all m=o0,
and suppose that for all v and & kentv@ﬁo can only be true if &
is proper. Then for all v and & having kentv@(Jf,)=true there is
a sequence {0 } such that &_ .20 _for all m20, kentvd_® =true for

m m+l m m m

all m>0 and qumm.

<The prool of this is a dreary induction on seen like that
of 2.4.3 which we can ignore without detriment to the quality of

life. The exact counterpart of 2.4.3 can also be established by the

sume means when we have set up suitable reflexive predicates.*

3.2.4. Their final forms.

Pleasing though it may be to have formalized an implemen-
tation of Mal with less complex domains than are needed in 2.1.1,
we cannot rest content until we have confirmed that the stack
valuations compute the correct answer for any program obeying the
constraints of 3.1.4. This we shall do in the next section by
showing that evaluating an expression under new stack semantics is
equivalent to evaluating its transform under new sStore semantics;
together with 2.6,9 this will serve to validate the equations of

appendix 3. The intention of the proof is quite different from that

216

underlying some results on implementations [7]: loosely speaking,
whereas others may be concerned to verify that two ways of
removing the top element of the stack do the same thing we wish
to establish that this 'thing' is the right one. As pointed out
in 3.1.3, though the details of a compiler can be formulated in
our framework slight variations in the organization of the
environment do not by themselves seem to warrant such treatment.

Later we shall introduce our ultimate versions of the
predicates of 2.4.5; the propositions about them which we shall
then verify will culminate in 3.2.8, where the adoption of remit
will be vindicated. First, however, we must set up reflexive
projections suitable for use with the tracing algorithms of 3.2.1,
To do this we simply omit the mappings on some components of the
domain of witnessed values from the projections of 2.4.,2., As W
is now L+B+L*+Jd+F+J while J and F are Z°xN and 0°xU respectively,
q0=Am.w:L+w,m:B+w,m:L*+w,

wid=w,

w: Frw,

wid+w,

L
and when n=z0
=aw.wilw,w: Bru,w:l*>w,

qn+1

m:J+(2qn°Xq Jw,

rnt+l

m:F*GBqn°%Mq Jw,

n+l
m:J+(an°an+1)w,
1.
The functors we use are defined precisely as in 2.4.1 with the
sole exception of that for U, which continues to ignore B (the
functer on the domain of denotations) but is now given by

TWe=>20 . 2T, Wxwxa)* (pl IT), (wxwxw)* (plres]), (Puxwxw)* (pf rec)) .

We shall not bother to provide the analogue of W appropriate to

217

stack semantics, but it is obvious both that such a function
exists and that the projections above concur with a suitable
variant of 2.4.2,

Just as before we are interested in countable conjunctions
of relatiens which truncate their arguments using reflexive pro-
jections. Thus for every »n there are P41 and a1 which together
with a form of fit give rise to
cml:;\iﬁo./\{aml(zqnaéaé,zqnaaoc‘ﬂ D, 1 RAFEERR)
and to c=lﬁﬁ07\cn+1fﬁo. Here iqni refers to the projections
defined above whereas Eqni refers to those of 2.4.1; similar
remarks hold for the moieties of every other kind of pair, so
that »_, for instance, is A@ﬁ.wn((qnan)ﬁ)((ﬁqnxﬁqn)ﬁ).

Our definition of P, must offset the simplicity of the
domains by being very prolix. Because label values in stack
semantics do not incorporate environments it is necessary to
ensure that the current state can provide them when required; in
particular the 1ist of states preserved on entering nested blocks,
pl rec], must be ordered according to the heights of the stacks
(and the areas of used storage) and must be subject to the function
tidy of 3.1,1. We also subsume in P, the assertion of 3.2.1 that
any value obtained using known without leaving a portion of the
state present in an earlier block has to satisfy found if variables
are not to be passed outside their scopes. In addition the pre-
dicate retains most of the features of its counterpart in 2.6.1

and thus turns into the amorphous agglomerate

218

p0=Aﬁ.neat(rav926ﬁ,b>A#6=#0A#6¢2:#6+2A#6+3:#6¢3
KV%Adarea&méAarea&mal1£m5n}¥VQGm=&Z|1Sm<l£n},false|2$n}
mﬂiéO:LA60:61+®0=®1,true|kent3&OﬁAkent3®1ﬁ}
M Biv~gyvenBl 643,84 |B:VxV)
A/{(lﬂoﬂi.ﬂdfoundﬂo&ﬁV~knownW0®ﬁ|0:HXW}
A(revertpoorevertpizrevertpo)A(popUOOpopU1=popU0)
A(restorecoorestoreai=restoreco)Atidypopo
(levelvf)(level(v+1)f)|v:iN}
A/ﬂ/ﬂ~(1sv05#6[IOHA1sv1s#5ﬂI1ﬂ)+true,
Pl Lol vy s Vv~ (BLI I +v =Rl I [¥V)>true,
(”Vanown(ZeveZ(ﬁHIoﬂ+v0¢2-1)ﬁ)(E,bHIoﬂ+v0)ﬁ|E:E}
AI0=IlAﬁﬂIOH+v0+1=5ﬂliﬂ+u1+1)
[vo:Nav, :N}|I :1deal :lde}
Aﬂqobzaqo(rauelﬁb).

The closing clause of this predicate will be required in
3.3.4 and 3.3.5. That relating bﬂI0ﬂ+v0 and bﬁI1ﬂ+v1 is an
amalgam of two others: 3.3.3 will implicitly use the fact that
when ravelﬁﬁﬁloﬂ+v0+1:L we also have
known(level(éﬂloﬂ+v0+2—1)ﬁ)<e,bﬂIoﬂ+v0)ﬁ=faZse for all &, whereas
3.3.7 will require IO and 1, to coincide when PIT D+v,:L and
b[I0ﬂ+v0=bﬂI1ﬂ+v1. The first of these conditions holds only
because in 3,1.4 we prohibited abstractions and some declarations
by reference; the second, however, is inevitably valid but
would be irrelevant were we to adopt the alternative forms for
F11=E] and.?ﬂIl,...,In=En mentioned in 1.3.4.

Since the tracing algorithms of 3.2.1 do not take
account of the output we restrain it in p, by means of
w0=AQﬁ.&:BxB+bQ,(&:LA&:E)V@:JxJVQ:FXFV@:JXJ.

As usual we build up a sequence of predicates W, each of which

induces some a, on A°xA° together with

+1

219

pn+1:1ﬁ,p0ﬁA/{wn8ﬂIkentlﬁﬂ}.

Before defining them we clarify the description of e, above by

+1
setting
fﬁt=lﬁ0ﬁ1.p1ﬁ1
ANE:LXLVE :VxVv~gyventl, [£:EXE)
A(Hg <8) B = (Bq ¥Bg)P, A (Bq xBg)0 =(Bg xBq)0,
Arestoredlorestoredozrestoredl
Arestoreélorestore&ozrestoreal
Aﬁ&A{known(Zevelvﬁo)&ﬁlv~known(ZeveZvﬁO)aﬁOVv>#50ﬂrecﬂ
|&:LxL}|v:N].
The only noteworthy feature of this function is its insistence
that on executing an expression no fresh locations become
associated with the environment levels of outer blocks to which
control may he restored.

As intimated by 3.1.4 the exits of an expression permit the
return of only those members of E which could have been present on
entry to a specified block. The substitute for set therefore takes
an additional parameter, the depth of nesting of the block, and in-
sists that the top element of the stack conforms to it. More
formally, we introduce
pat=kﬁ0vﬁ1.((60+1:LAknown(Zevelvﬁ1)<60+1,00+1>ﬁo)

V(00+1:L+~area(bo+1)61,true))
Afound(ZeveZvﬁO)(access(60+1,DO+1)ﬁo)ﬁo
AFTHCE 30 11,60 WPy D T1,80) /.
Notice that when v=#60Hrecﬂﬂ_and €=access<do¢1,00+1)ﬁ0 we rTequire
only that foundﬁ05ﬁ0=true rather than that foundﬁ1€ﬁ0=true in
order to provide for such programs as nil aug false. Corresponding

to e we have
nt1

jn+1=Acvw0./ﬁan+1<zqncpuo,2qncpuc>|pﬁApatﬁvﬁ0} and

~

J=AC\)1TO./\Jn+1§\)1TO .

Plainly jn+1=AEvﬁ.jn+1Ev((ﬂqoxgpo)ﬁ) and in fact we even

220

know that w _ =xdft.w _ G((¥g xBg,)T), where
W, =AW O

A(@:JXJ%A{Cn(ﬂ+1,Q+1)((60,6 & ,oF15(3))

0’
Aé+1:ApUO.(6+1)(revartﬁop)(popﬁouz(restoreéoa)
‘ﬁ0=level(&+2)ﬁ},

B:FxFrAle ((Gv1)Zeorevertd , (B41) (Zorevertd N,
|fitﬁ1ﬁ1Atidy(m¢z>(zeveZvﬁo+1)Ajnavﬁo
Aﬁ1=(divert60(6+2),(61+1)§GO,60)
Aﬁ1=(d£vertbo(&+2),(01+1>550,60)
Nﬂ{aptw(ﬁi,&+2)

veaptl divertf(d+2) ,0+2) |v}),
B1dxd>A(F CHL,B¥D 0CCA 0,6 ,Bt15(B))
A(®+1)61:remit(é+1)61[ﬁ0//rec]
|ﬁ0=ZeveZ(&¢2)ﬁhaqoég=aq0(revertﬁoﬁl)},
true) .
Having provided the necessary recurrence relations we

can write w=x@f\w &%, p=ifA\p % and a=16,\a Before

n+16'
relating these to the syntax of Mal we supplant the function apt
of 1.4.6 with a version appropriate to stack semantics, which is
apt=AYp.neath
AN #DLID =0ov (#pl T >0a#[I]1=0) +2rue,
rave I6AL I 4141 L3l ITv1:La (Y[I]¥1=Ffalse),
PIID+1:VV(PIIN¥a:LACYI I ¥1=¢pue))|I:1del.

The predicates defined on program texts are very similar
to those of 2.4.5. In the present case, however, we do not wish
to assert that every program is equivalent to its transform if
opt is chosen suitably, for evaluating the program of 3,1.5 using
new stack semantics will have a disastrous effect, whereas
evaluating it 1n new Store semantics will not. Thus we demand

equivalence only when the program is subject to the constraints

of 3.1.4 and set

221

E=AE N SIE1 T, 81+ TEFYID Av~e[El v |apt¥barent[EV YA LvT);
L=AE N LIEN T, 214 TEIYID Av~el E1v6 |aptvparent[EluajEvii};
H=AE.ﬂdc(£ﬂEﬂ£.QﬂtWEH¢HE>ﬂV~eHEﬁvﬁiaptwﬁArentﬂEHWAjﬁvﬁ};
G=AE.N c(VHE]E,QﬁgﬂEBWEE)ﬁV~gﬂEﬂV§|apt¢6htornﬁEHWAjavﬁ}
A{ gl E] 8¥T ET =0
W\bﬂiw(?ﬂﬁﬂ5565§QﬂEﬂ5555+v1,
swap (JIEY AT EY) (FT gl EI VI T2 F EI¢1)
(PIgEEIVIZo082Lg [ETYI LI+) #
Msvls#;[{E]] T E} }
v~gl Elvp laptppatornl EJYafLuT}.

The predicates on declarations also bear a marked re-
semblance to those in 2.4.5, being
p=38. Nt 221, 2T T MU 2) & v~dl AT 0B]/\{c’z;‘%1 |spunl A1 0pR & 31;
T=AA N FTALE FTETATOI D tv~dl 810 |AeEm, |spunf Al 1R %3

Here we describe the state following the execution of a
declaration using an elaborate set of properties the purpose of
which will be clarified in 3.3.7. For the present we merely
include them in a test function spun, which will be given below.
This function is rendered more complex than sewn bv the need to
deal with transformations which map recursive declarations by
incidence into recursive declarations by reference which are
formulated in terms of environments appropriate to store semantics
(rather than ones appropriate to stack semantics). More

specifically, we let

222

spun:AAvwﬁoﬁi.(Aﬁoﬁi.ﬁdI:jﬁAﬂ&fﬂﬂﬂ+revertbobiﬂIH+v=§OﬂIH+v
A(L:fl Al +ravelf, 6 M T14141:L

ravelf [I]4141:V)

194
Ag T TN¥142=46 [recl+1,

0f1 oP111h=p,111

A(#ﬁoﬂIH>0+61EIH+1=5OHIH+1Ab1[I]+1:bOEIH+1,

revertf EIH=50ﬂIﬂArevertb
true)|I:Ide}
Mﬁ{v:0+revert§051EIﬂ=6OKIH,
I:ﬁﬂAﬂ+revert6051EIﬂ+1=5oﬂI]+1
AravelﬁoﬁoﬂIﬂ+1:L
A6 IThe1v2=6 [TD4142,
T A)+6,1T)2ead1 (6, IT1)=6 1Tl tlead1 (6,1 1])

Aravelp EIH+1:VAbiﬂIﬂ+1:LAb0ﬂIH+1:L

050
AﬁiﬂIH+1+2=5OﬂI]+1+2,
true|I:Ide}
rg,Iresl=pg lreslap, frecl=p I rec]
Apiﬂresﬂ=boﬂresﬂAb1ﬂrec]=b0[recﬂ
Arestoreéoorestore61=restoreﬁo
Arestoreaoorestoreéi=rest0rebo
Afﬁﬁdknown(Zevelvlﬁo)aﬂ0V~known(Zevelvlﬁo)aﬁl
vv1>#5oﬁrecﬂ[&:LxL}|v1:N}
Aaptw60A01=OOAfitﬁiﬂihfitﬁoﬁo
A(Aw'.aptw’ﬁiAtornEAHw')
(v=0+Y[false*/FI A Ilopts @AY)Y/ AL D , 1))
((quxaqo)ﬁo)((quxﬁqo)ﬂl)-
Before proceeding to the applications of these predicates we
mention the result which asserts that they are indeed what we
want, Like 2.,4.5, this result could be formulated in terms of

the general theory of 2.2.8, but the notation needed would be at

least as complex as that used above.

223

3.2.5. Proposition.

Suppose that a,f1,1)=true and that for any n20 if v, is
inclusive and every & and f having kenti&ﬁAp1ﬁ=true satisfy
wn((qnan)&)ﬁ:w((qHan}&)ﬁ, v ,0f>w GF and wnmﬂ:wn+1((anqn)m)ﬁ

as well then a, is inclusive and for all 6 ¢8 is proper,

+1

o~

an+1((ﬂqnxﬂqn)6)=a((ﬂqnxﬂqn)ﬁ), an+26:an+1o and
a, ,.02a, ,((Aq x#)8). Then w, p, ¢, § and a, defined as in
3.2.4, are the unique inclusive predicates such that
at1,1) =true, for any n=20¢ if wﬁﬁ:wnﬁﬁ and
wn((qnan)ﬁ)ﬁaw((anqn)ﬁ)ﬁ whenever kentlQﬁAp1ﬁ=true then
aﬁ:an+16 and an+1((9qnxﬂqn)6)30((ﬂqnxﬂqn)ﬁ), and
(i) w=A®ﬁ.w06ﬁ
A(m:dxa+n¢c<m+1,m+1><<50,60,6),m+1§<a)>
A6+1=RQUG.(6+1)(revertﬁoo)(p0pﬁou)(restoreéoo)
|ﬁ0=level(ﬁ+2)ﬁ},
Q:FXF+fdc<(6+1)iorevertﬁo,(B+1)(E°revertb0))ﬁl
Ifitﬁlﬁlntidy(6+2)(ZeuelvﬁO)AjEOuOﬁo
Aﬁ1=<divertﬁo(é+2),<61+1)560,60)
Aﬁ1=(divertbo(®+2),(01+1)§DO,BO)
Mapti(f B4 2)
veaptW divertb(G42) D42 |911,
B IxI-N[FCEHL, 4D 0CCH 0,8 ,DF16())
A(6+1)ﬁizremit(6+1)5l[ﬁoffrec]
|ﬁ0=level(6+2)ﬁhﬁq060=tb0(revertﬁoél)},
true);
(ii) p=af.p AaNwdf|kent1Gf]);
(iii) c=12ﬁ.ﬁda<iaos G ,Ip 6080>|pﬁ0AfitﬁOﬁ};
(iv) F=ALvT.Ala(ip 0,

4The proof is very similar, hoth in outline and in detail,

to that of 2.4.8. Thus first we show as in 2.4.6 that pn+2ﬁ3pn+1ﬁ

224

and p, . ®op, (g, *pq,)f) for all n20 and %, and then we

n+2
follow 2.4.7 by verifying that p and the other predicates are
inclusive, Similarly the demonstration that the predicates are
unique is based on 2.2.6. None of the techniques involved are
novel so we shall not discuss them at all.*

Henceforth we shall assume not merely that gl .i,L1) =true
but that a(T,T) =true as well. Lemmata like 3.3.1 will also re-
quire the presumption that L is infinite in order to be sure
that the transform of a program does not run out of store unless
the program itself does, As our current version of »&f depends
on ®q,6 and quﬁ whereas that in 2.6.1 does not, we shall

analyse the equivalence of appendix 3 with store semantics only

after giving three further results,

3.2.6, Lemma.

Suppose that ﬁo satisfies p0ﬁ0=true, and define ﬁl to be
(fﬂoxino)ﬁo. Then for all & kentl&ﬁ1=true if and only if
kent36ﬁ1=true; in addition, if @ satisfies kent16ﬁ0=true then
foundﬁoaﬁ0=true.

<From the definition of seen in 3.2.1 it is plain that
when kentaaﬁ1=true we have kent1®ﬁ1=true also. Moreover we
know that p ff ,=true, since for all v and 8, kentvd i =true if
and only if kentv&0ﬁ0=true for some QO having &1=(qOXqO)&O.

Assume that for some v and all QO and @, if seeniv&oﬁlﬁi
and kentaﬁlﬁl are true then kentaaoﬁi is true, and take any &O
and Ql having seeni(v+1)m061ﬁ1Akent3&lﬁ1=true. 1f ﬁl:L or mlzL
seenlv&o&gﬁiAkentBQQﬁ1=true, where Q2=accessﬁlﬁ1. If &1:L*XL*
seeniv&0m2ﬁ1=true for some GQ such that gyven&261=true. If
Gi:JXJ seeniv&0®2ﬁ1=true for some &2 having

hotenaz(revert(61+2)61,&1+2)=true or gyvenm2(pop(ﬁ1+3)ﬁ1,m1+3)=true;

as f‘oundﬁlﬁ‘)iﬁ1=true and (ﬁqoxﬁqo)ﬁj-:‘ﬁi, in fact we have

225

m1+2=revert(&1+2)51 and ®, ¥3=pop (@, +3)D,, giving hotend,p =true

B0, = : = havin
or gyven®,V,=true. If ﬁl.FXF seenlv&0&2ﬁ1 true for some &2 aving

hotenﬁz(divert§1(61+2),&1+2)=true; because tidy(®1+2)51=true,

bi=ravelﬁlpl and dzvertbl(w1+2)=ravel(divert61(m1+2))(dtvertpi(m1+2)

we actually know that hoten&261=true. Finally, if ai:JXJ arises

from val we repeat the argument used for label entry points.
Hence under all circumstances there is some QQ such that
seen1v&062ﬁ1Akentaw2ﬁ1=true and from the induction hypothesis we
can infer that kent360ﬁ1=true.

As our assumption is valid when v<1 for all v, @_ and

0

&1 having seen1vGOG1ﬁ1Akent3®1ﬁ1=true kent3&0ﬁ1=true. Moreover

kent3® f =true when hoten&lﬁ =true OT gyvenﬁ101=true, SO

1
kent3&0ﬁ1=true whenever kent1®0ﬁ1=true.

Take some B, having kent1&3ﬁ0=true; then, writing
&4=(qOXqO)&3, kentl@uﬁ0=true and kenta&uﬁ0=true. Since poﬁ1=true,
foundﬁ1&4ﬁ1=true and from the definitions of 3.2.,1 it is plain

that foundﬁ063ﬁ0=true.>

3.2.7. Proposition,

Let ﬁo, ﬁl, ﬁ2 and ﬁa be pairs such that p1ﬁ0=true,

pﬁ2=true and f =(iﬁ0x§q0)ﬁn when n is ¢ or 2., Set v0=#§oﬂrec],

n+1

and suppose that Zeuelvﬁ1=levelvﬁ3 and that

known(Zevelvﬁo)&ﬁO:known(Zevelvﬁo)aﬁ2 for all vy, and all 4.

Assume also that restor962orestor960=restor962, that

restore&zorestoreao=restor962 and that for all v

having 6OEI]+vB+1=§2ﬂIB¢v9+1 ravelp

g* Vg and I

oBofIl4v b1l only if

ravelp EIE¢v9+1:L. Any pair & having kentl&ﬁOAkent1&ﬁ2=true

262
satisfies w@ﬁftrue also; in particular, if kent1®ﬁ2=true
whenever kentl&ﬁ0=true pﬂ0=true.

< As p0ﬁ0=tpue, by 3.2.6 any pair & having kgntlmﬁo=tpue

226

satisfies foundﬁomﬁoztrue. Take any such & and presume also

that kenti&ﬁ2=true; because pﬁ2=true we can stipulate that
foundﬁ2®ﬁ2=true and that wmﬂ2=true when showing that w@f =true.
The desired result is obvious unless @:JxJ, @:FxF or Q:JxJ, and
since the third of these exceptional cases involves the same con-
siderations as the first it will not be discussed.

If ©§:JdxJ the fact that foundﬁoaﬁ0=true assures us that
é+zsv0; hence writing ﬁq=ZeveZ(5+2)ﬁ0 we have
Bq0ﬁ=leuel(é+2)ﬁ1=leuel(&+2)ﬁ3=$q0(leuel(6+2)ﬁ2). From the
definition of f7¢ in 3.2.4 and the knowledge that w6ﬁ2=true it
now follows that c<m+1,m+1)<<§,0,62),E+1§<62))=true and that
@¥1=Apuo. (G¥1)(revertfip)(poplv)(restoredo). Remembering that
foundﬁ20ﬁ2=true we deduce that
<peuert5b1,pop601)=q0&+1=(revertﬁﬁs,popﬁos); applying an analogue
of 2.4.3 to our present reflexive projections we therefore see
that by 3.2.2 for all v and &
known(leuelvﬁ)((ﬁ,ﬁ,do),&+1§(BO)):known(levelvﬁ)ﬁﬁg and
known(levelvﬁ)((ﬁ,ﬁ,dQ),&+1§<62>):known(leuelvﬁ)&ﬁQ. Together
with our initial assumptions these equalities imply that
fit<<ﬁ,6,60>,&+1§<60))<(6,6,623,m+1§452))=true; moreover by
3.2.6 for all & we have
kentl@<<ﬁ,ﬁ,éo),&+1§(BO)):kents((qoxqo)&)<ﬁqo(5,6,60),qo&flﬁ(al))

ckent3((q,%q,)0) ({(Bg »Bg IT.),
which entails p ¢((§,9,6) ,8t153)) =true as p,f,3true. Given any

£, f. and fi, such that c§ﬁ6=true and p, i Afith fi =true we have

5
cEﬁS=true, for every f, satisfying fitf f =true has fitf f =true
while the fact that p1ﬁ5=true ensures the existence of such ﬂ7.
Hence c<6+1,m+1)<<6,6,60),B+1§(60))=true and w&ﬁ0=true.

If 6:FxF note that tidy(é+2)50=true and that

tidy(6+2)62=true since foundﬁo&ﬁ0=true and foundﬁ26ﬁ2=true. In

227

consequence for any I with 1<#(&+2)[I] there are v, and v_ such

8 9
that ﬁoﬂI]+v8+1=(6+2)[Iﬂ+1+1=61ﬂIﬂ+vg+1; for all such Vg and Vgs
ravel§050ﬂ1]+v8+1:L only if rave16252ﬂlﬂ+ug+1:L so0, writing

§B=divert50(é+2) and 69=divert62(6+2), raveZégégﬂIH+1+1:L only if
ravelﬁgﬁgﬂlﬂ+1+1:L. Hence every ¥ subject to aptw(69(6+2),m+2)=true
is also restricted by aptw(68(6+2),m+2)=true; inspecting 3.2.5 will

now confirm that as w®ﬁ2=true necessarily wmﬁ0=true.>

3.2.8. Proposition,

z f . and ﬁi satisfy

Supposc that Vv 0* "o

O’

6O=(revertﬁoﬁl,revertbobi), 0. =0

0=04» ﬁ0=p1ﬂrecﬂ+1+1, #poﬂrecﬂ=#51[recﬂ-1,

Jc0v0ﬂ0=true, p1ﬁ1=true and

/ﬂfﬁknown(Zevelvﬁo)&ﬁov~known(Zevelvﬁo)&ﬁl|v:N}|&:LXL}=true. Writing

U=UA# A: "\o A . -
15V, 61ﬂrecﬂ and Z, (remztco,co revertp0> we have Jclvlﬁl true.

4Take any pair ﬂa having pf Apath v, f =true, and set

€0=(63+1,03+1), §1=access€ ﬂs and

0
ﬁu=((revertﬁoﬁ3,(éo)§pop6063,restore(éo:L+update€0dummy60,60)63),

(revertboba,ba,Ba)),

so that ‘4153“303’C1930353>=‘CopuUu°usCopuDuGu’- To show that

pﬁuApatﬁuv0ﬁ0=true we require also
ﬁ5=((§3,ua+1,03),(b3,53+1,63)) and ﬁ6=((6u’uu+1’ou)’(bu’bu+1'au))°
Observe that given any ff of the form Zevelvﬁo for some v

we can apply 3.2.2 to ﬁi, f . and fi, obtaining knownﬁmﬁ1=true if

0
and only if knownﬁ®ﬁ0=true for all @. Since fitﬁ5ﬁ1=true we also
know that for all & knownﬁ&ﬁ5=true only if knownﬁ&ﬁ1=true. Hence
for all & having knownﬁ&ﬁ5=true knownﬁ&ﬁo=true and, as

knownfi6fl =true and poﬁSAp0ﬁ0=true, area&éuAareauaq=true. In
addition when @ satisfies foundﬁ&ﬁ1=true the definition of found

in 3.2.1 ensures that foundﬁﬁﬁ0=true.

To demonstrate that fitf _fi =true we have only to verify

228

that \lknownfaf v~knownfidft |6:LxL}=true for all % of the form
levelvﬁo for some v. For any & having knownﬁﬁﬁ5=true we know

that access@ﬁ5=access®ﬁ6 unless, perhaps, @&:L. In this exceptional
case ®:L since kent3dft,=true and p,ff=true so it follows from the

paragraph above that areadd Aarea&64=true and aacess&ﬂ5=accessﬁﬁ6.

m

Applying 3.2.2 to f_, #, and f, for all & knownﬁﬁﬁ5=true if and

6

o

only if knownﬁﬁﬁ6=true. As knownﬁ&ﬁsnknownﬁaﬁo for all &,
knownfiGf sknown®df j for all & and fitf f =true.

Take any f and v with ﬁ=leualuﬁ0; pop60p0p60=popﬁ so when
n 1s 3 or 4 for all & knownﬁ@ﬁn=true if and only if knownﬁ&ﬁn+2=true.
The argument above thus establishes that for all & knownﬁﬁﬁ3=true
if and only if knownﬁ@ﬁq=true; moreover when &:L and knownﬁﬁﬁu=true
areaééqAarea&Bu=true. As knownﬁ@ﬁsafoundﬁ@ﬁa for all & we have
knownﬁ&)ﬁ‘u:\foundﬁc’ﬁﬁ‘L+ for all &.
automatically, whilst otherwise

If € _:V accesseoﬁ4=e

0 1

areaEOUSAareaéoa3=true as p,f =true so areaeoéuAareaéOBu=true and

accesseoﬁu:ei. Because vls#poﬁrecﬂ+1 levelv1ﬁ1=levelvlﬁ0 and we
may take v to be v, itself. Unless éO:V or areaéoai=false
known(Zevelv1ﬁ1)€0ﬁ3=true; since we have shown that for all &
known(levelv1ﬁ0)®ﬁ3=true only if known(Zevelvlﬁo)ﬁﬁu=true, unless
EO:V OT areat 0.=false known(levelv 7)€ f =true. Likewise, as
found(Zevelv1ﬁ3)€1ﬁ3=true and for all & known(levelviﬁs)mﬁaztrue
if and only 1if known(levelv1ﬁ3)6ﬁ4=true, we can assert that
found(Zevelv1ﬁ3)€1ﬁ4=true. Since p0ﬁ0=true and VSV,
known(Zevelvoﬂo)eoﬁ4=true and found(Zevelvoﬂu)(accesseoﬁu)wﬁq=true,
giving patﬁuv0ﬁ0=true.

Any f and v subject to ﬁ=ZeveZ\)ﬁu also satisfy either
ﬁ=ZeveZvﬁ0 or ﬁ=ﬁq. We have already established that

/ﬁfbundﬁmﬁuv~knownﬁﬁﬁuIQ:LXL}=true when fi=levelvfi , so it remains

only to discuss knownﬁ&ﬁu when ﬁ=ﬁu. For all &

229

~

knownﬁq&ﬁq=VqVTseenSvﬁﬁlﬁqA(hoten&ipquyvenﬁiou)|v:N}]&1:NXN}
=quqseen3vamlﬁuA(hoten@166VvaenQ106vﬁl=€O)|v:N}(61:LXL}

=(knownf 0% v@=€ vV{seen3vle & |v:N})

= ~ v/\:/\ v/\:/\ .
(knownﬁomﬁu B=€ Vi ei),

the last 1link in this train of reasoning holds because either
e, :L*>xL* and Alknown(levelv .,)a% v~gyven8E, [8:LxL}=true or
VTseenBvﬁéiﬁa|v:N}=(ﬁ=€1). Since foundf Gf, =true for all &
having knownﬁo&ﬁ4=true, fOundﬁumﬁq=true for all & having

knownﬁuﬁﬁu=true. In addition, if @O and ml have

kentS&OﬁHAkent3m1ﬁ4=tru9, knownﬁuﬁoﬁaAknownwumoﬁ3=true so when

60:L and 50=ﬁ1 necessarily &0=&1. The other constituents of

poﬁu follow readily from the corresponding parts of poﬁ3, SO
poﬁu=true.

By induction on v we can show that for all v, mo and ﬁl

writing f,=(Bq,*Wq,)ft, gives
seen1vw0@1ﬁuAkentimlﬁsAknownwu((qOqu)wi)ﬁznkentiﬁoﬁs; the con-
dition knownf ((q,%q,)8,)®, =true is essential to ensure that

foundwuw1ﬁ3=true. For all @,

hoten@lpquyvenﬁlﬁuzkent1@1ﬁ3Aknownﬂuw1ﬁ3, so we have

kenti&oﬂuakentlaoﬂs for all & As p fi Apf =true 3.2.7 implies

0
that pf =true.

- - - -

U ,;0 4U404)=true'

Hence pﬁuApatﬁ4v0ﬁ0=true and a(;o RO

The original pair ﬁa was chosen at random from among those having
pRorpath v R =true, so al £,0,0,0,,5,0,0,0) =true for all such %,
thus confirming that j81v1ﬂ1=true.>

Having confirmed that the predicate j 1is appropriate to
the situation pertaining on exit from a block, we can proceed to
the proof that new stack semantics is equivalent with new

store semantics except for the fact that its recursive declarations

by incidence are akin to rccursive decclarations by reference.

230

3.3, Two comparable mechanisms,

3.3.1, Lemma,

If E:Exp satisfies G[E]=true then E[El=true.

4Suppose that v v, and ﬂo satisfy apt¢060=true,

0? C0’ 0

rent{ E]l =true, j80v0ﬁ0=true and e[Elv_f.=true. To demonstrate

b
0"o0
thatcxdﬂEnio,aﬂeuznwonEO>ﬁ0=tpue select any pair #, satisfying
pﬁlhfitﬁ1ﬁ0=true, and define
w1=¢0[false*ﬂfﬂE]][optsofﬁEﬂ)¢OﬁXﬂE]], El=<remitio,ioorevertbo>
and (&*,a*>=<news(ﬁfﬁEH)dlﬂews(ﬁfﬂvﬂEﬂwlﬂ)51). Introducing
63=61[<61,61,61)//rec][&*/[ﬁﬂEﬂ][dummy*//fHEH],

63=updatesd*dummy*61 and v =v0A#63ﬂrecﬂ we see that

1
; - - - » ‘? ~ -~ -~ - = - - -~ - - LS LS -~
(FLF1£,0,0,6 ,81<[E)w 0z p v 6 =9TEIC, p,0,0,,I#[EIV, IC, 0 0,0

where

p,=(6,[¢,,0,,6.//recIlo*//#IEVILTEIL 5,0, 6,//¥E]],
fla o b L&*/FlglEd b 130204 [TV, 1T, 00, g [ENY 31D,

02=01 and

= * ol - - n"*f}lﬂl N N
62 {updatesl (QﬂEHcipsﬁloa)ol,updateoa (hsuEEwlﬂclbzbl)ol>.

From 3,1.,5 gﬂE]v152=true, and plainly aptw1§2=true, so to

show that a(gﬂEﬂcinU202,§ﬂ9HEH¢1HC102U202>=true it suffices to

fief, B, and jEiv are all true.

convince ourselves that pf 132

5
Any & satisfying kent3&ﬂ1=true cannot have &:6* or

n:0*, as then area661=faZse or aream61=faZse in contradiction

to the fact that p0ﬁ1=true; consequently any & with

known(levelvﬁl)&ﬁiztrue for some v is such that

access&ﬁi:access&ﬁQ:access&ﬁa. We can therefore apply 3.2.2 to

arrive at the conclusion that for all v and &

known(levelvﬁi)&ﬁ1=true if and only if known(ZeveZvﬁi)&ﬁ2=true.

Using 1.4.6 to write

0,=G*s2lENE,6,0,5,,

swap (AIEISATED) (#12 [E1y, 0 8¥1g [E], 1) (a*52ls [ED W, 12,6,0,)),

231

05=(access(65+1,bs+1)ﬁz,...,access(65+#65,bs+#b5)ﬁz) and
OB:OMEOS’ it is plain from the definition of seen in 3.2.1
that for all & knownﬁQQﬁQDknownﬁiﬁﬁQOyvenﬁOG. As p0ﬁ1=true
known(Zevelvﬁi)mﬁiafound(Zeuelvﬁi)&ﬁi for all v and &, while as
GLEl=true gyvenlO >foundf df, for all §. Accordingly
Mfound(levelvft,)) df V~known(levelvfi,)0f, |D:WxWl=true because
Zevelvﬁ2=(vs#53ﬂrecﬂ+leveZvﬁ1,ﬁ2) for all v. From the des-
cription of kentSQﬁg as kentS@ﬂlvgyuenQOB and from the nature
of g,Irec) it follows that not only does poft =true but
pyft,=true also.

Assume that for some v and all mo and o

1

seeniv@oaiﬁ2A(kentl&iﬁivgyvenﬁloe)Dkentlaoﬁlvgyven&106 (which is

certainly the case when v=0) and take any ao and mi having

seeni(v+1)$0&1ﬁ2A(kentlalﬁvayuen£106)=true- Should kentl&iﬂi
be true we know that knownﬁﬁ((qoxqo)al)((pqoxﬁqo)ﬂi) will be
true from 3.2.6 and therefore that foundﬁoaiﬁi will be true.

Thus if 61:L or &1:L and if &_.=accessh, f either O

5 PP =access®1ﬁ1

2
or gyven&206=true, so that seeniUGOQQﬁQA(kentl@QﬂQngvenQQOG)=true.
If B, :JxJ) either foundﬁ0m1ﬂ1=true or foundﬁ2m1ﬁ2=true; con-
sequently every Qz having

hotenwz(revert(m1+2)p2,w1%2)ngvenw2<pOp(w1+3)U2,w1+3)=true has

kent1w2ﬁ1ngvenw206=true, while for some such @, seenlvll 0,7 =true.

If al:FXF then kent1&1ﬁ1=true S0 tidy(éi+2)61=true and
hotenQQ(divertﬁl(61+2),E1+2)Dhoten(divert62(61+2),&1%2) for all
&2; in particular there exists some GQ having
seen1v®162ﬁghkent1®2ﬁi=true. The reasoning being similar when

&1:L*XL* or &1:JXJ and vacuous when QizBXB we may apply the in-
duction hypothesis under all circumstances to obtain
kentiwoﬁivgyuenm006=true.

As hoten&lﬁzvgyven61023kent1®1ﬁ1ngven6106 for all mi

we can now assert that kentiﬁoﬁznkentlﬁﬁﬁlngvenGOOB for all

232

& and that by the proof of 3.2.7 wd f_=true whenever

0 02
kentlaoﬂ1=true. Moreover since p0ﬂ2=true w0m0ﬁ2=tpue whenever

= ﬁ = 0 = e
gyugnQOOG true, so w,0 % =true whenever kent1w0ﬁ2 true; hence

we may assume that p1ﬁ2=true as well as that

known(Zevelvﬁo)&ﬁibknown(Zevelvﬁo)&ﬁo for all 8 and v. As

~

fitﬂ1ﬂ0=true JTV M, =true and we can apply 3.2.8 to f, and ,

to obtain jalv =true.

1%1
From this equality and the stipulation that G[E]=¢rue we

now know that widft,=true for all 6:JxJ such that gyvenBO =true.

As we have already established that poﬁ2=true and that wift, =true

for all G:WxW having kentimﬁiztrue, pﬂQ:true. Finally, for all

ﬁl having pﬂlhfitﬁ1ﬁ0=true a(éEEﬂgoﬁiﬁlél,eﬂc[Eﬂw0ﬂ20515151)=true,

S0 c(éEEHEO,gﬂeﬂEBwOHEO)ﬂ0=true (for all the suitable EO, v and

ﬁo) and ElT]=true.*

3.3.2, Lemma,

For all TI:Ide and B:Bas G[I]aGIB]=true; when ¢:Abs has a
body E:Exp such that L[E]=true Gl&¢]=true.
<Fix attention on one particular collection comprising

v, E, v, ff_ and ﬁi such that aptwﬁo=true, jﬁvﬁo=true and

0
p afith R =true; set ﬁ=levelvﬁ0.

Let I be such that gEIﬂv50=true; writing & for
(rauelﬁlﬁlﬂIﬂ¢1+1,blaIB+1) we know that §:L or S:V as aptw61=true.
Let &=newd B=(8:L+(areado ~holddo ,T),8), B=(Y[I1+1=true>a,d)
and
,G

ﬁ2=((p1,(6)§ul,61),(pi,(é)501,(¢MIﬂ+1=true+updatea80 Ny,

1
). To

Qr -

Zp, v

show that a(gﬂIﬂéalﬁlél,gﬂgﬂIﬂwﬂg 1 181)=true it therefore
suffices to prove that pﬂQApatﬁQvﬁ2=true. As gﬂIﬂv§1=true and

p0ﬁ1=tr’ue, §1[[I]H1+25\J and Zeadl(ﬁi[[:[ﬂ)>#ﬁ1III]]'-#5[[I]]. In addition

233

qublfﬁqo(ravelﬁlbi) so hoten(6,q06>(revertﬁélquo(revertﬁﬁi))=true
and knownﬁ((qoxqﬁ)(accessgal))((DqOX$bO)ﬁ1)=true; this entails
foundﬁ(access(5,&)%2)ﬁ2=true unless p:L*, If Yl I] ¥1=true then
areaé30=false, whilst if &:L and yY[I]+1=false §:L (as aptw61=true)

and knownﬁ8%1=true. Since fitf fi =true it follows that

patﬂzvﬁoztrue; furthermore induction establishes that

kentvoﬁﬁ23(6=(é,E>Vkent%ﬁﬁ1) for all v, and & while 3.2.2 shows

that known(levelvlﬁi)ﬁﬁ :known(levelmlﬁl)aﬁl for all v, and &,

2 1
so pft,=true and a(gﬁIﬂiﬁlﬁlél,gﬂg[IﬂwﬂEB 0.0 =true.

17171
Notice that this result would still hold even if all we knew

about E was that a(ééﬁ&,iﬁﬁa>=true for every # having
pﬁApatﬁvﬁO=true and 6+1:LAknown(Zevel(vQ—l)ﬁOK 6+1,0+1)ﬁ0=false

for some v, such that v2<60ﬂ1ﬁ+1+2. This follows from the fact

that when ravelﬁléiﬂlﬂ+1+1:L we have 51[IH+1:L and

known(Zevel(ﬁiﬂIﬂ+1+2-1)ﬁ1)(ravelﬁ HI]+1+1,biﬂIH+1)ﬁ1=false

161
as p0ﬁ1=true.

The proof that a(@ﬂBHEaiﬁlél,gﬂyﬂﬁﬂwﬂiaiﬁl3i>=true being
palpable we turn to the one for (9{@H5616101,@[gﬂ®ﬂwﬂib 0. 3,)

17271 °
Suppose that tornl 0fly=true and that gﬂ@ﬂv60=true; define
((E,0 ,(E,p) =#1216, ,#slolylp) and
ﬁ3=((pl,((g,pg))§u1,61),(pl,((g,pg))§Dl,31)). Because
g[@ﬂv51=true we have tidyég(revert561)=true, and because
mqool=MQO(raveZp1p1) we know that
mqo(dzvertp1b9)=ﬂqo(raveZ(dzvertplég)(dzvertplbg)); consequently
foundﬁ(63+1,03+1)ﬁ =true., Together with the fact that
fitﬁ1ﬁ0=true this ensures that patﬁauﬁo=true. Again induction

shows that kentvoﬁﬁ3:(6=(63+1,03+1>Vkentvomﬁi) for all v_ and 8,

0
and 3.2.2 shows that known(Zeveluiﬁl)ﬁﬁsvknown(Zevelv1ﬁ1>Qﬁi

for all v, and @. Because p,f,=true we must have p,fi;=true; more-

1
over w&ﬁ;ﬁrue and foundf ®f j=true for all & having

kent1Gf = true. Accordingly from the definition in 3.2.5

234

w&ﬂ3=true for all 4 subject to kent16ﬁ1=true, and to prove that
pﬁ3=tpue it remains only to verify that w(63¢1,63+1)ﬁ3=true. We
shall do this on the assumption that ¢ is of the form fnI..E,
the proof being no more profound when ¢ 1is nti""’In"E‘

4let EO, Vo ﬁq and ﬁs be entities having
fﬂaptwo(55,59)V~apt¢0(divert6369,bg>|w0}=true,
tidyﬁg(levelvzﬁu+1)=true, jEOv2ﬁ4=true, fitﬁ5ﬁ5=true and

ﬁ5=((d1vert§ (US+1>§Uq,64>,(dzuertpupg,(05+1)§Du,au)>.

yPgs
We shall show that c(Eéoorevertﬁu,é(ioorevertbu)>ﬁ5=true by
selecting arbitrarily a pair f, constrained by pﬁeAfitﬁ6ﬁ5=tru8.
For this pair we introduce vy=#g.lrecl+1, [=(remity ,r orevertp),

ffg={{revertp 06+1,66>,<revertpup6,befl,66>> and

4Pe>
R, = diventh [//rec]l6 ¥1:Lohold(6,41)6 0, 41//11,6.+1,60 ,
(PlD#1tLohold(D 418, D +1/11,D, 11,00 ;

the equations of appendix 3 make it plain that

-

ToPgls 6;?ﬂEﬂclp7u7a7 and that

[RA AN

- -~ -

io eaeesagu,nﬁﬂw[fazse/ljﬂ;1p76767

opt[I]¥.

whatever the value of

s

<Since fitﬁ6ﬂ5=true we know that &q056=ﬂqo(diuert5869),

and the fact that ¢idyp =true now assures us that for all &

9fy
hoten&(divert6869,bs>Dhotenﬁ66; consequently for every &

knownﬁ7ﬁﬁ7:knownﬁ5aﬁ6. From 3.2.2 we have in addition that for

all & and vy, known(Zevelvqﬁ7)mﬁ7aknomn(Zeue2u4ﬁ7)mﬁ6 when

v, SVg. The definition of found in 3.2.1 is such that any & which

satisfies foundﬁ6®ﬂ6=true also satisfies foundﬁgﬁﬁ7=true unless
@:L*xL*; to see this when @:FxF, for instance, note that

tidyp Atidy(6+2)663tidy(6+2)58. As p0ﬁ6=true, we know that

968

found(leuelvqﬁe)aﬁ =true whenever known(levelu4ﬁ6)6ﬁ6=true and

6
thus that for all @ and vy, found(leualvuﬁ7)ﬁﬁ7=true if

known(Zeve1u4ﬁ7)&ﬂ7=true. Routine checking of the remaining

235

clauses now confirms that p0ﬁ7=true.

By induction on v, we can establish that for all QO, @1

and v, we have seenlvimoﬁiﬁ7Akent1w1ﬁ6:kent1woﬁ6; this is due to

the relation kentl&lﬁsnfoundﬁsalﬁs set up in 3.2.6, Hence for

every O kent1&0ﬁ73kent1@ f_, and p0ﬂ7 being true, 3.2.7 allows

0 6?
us to deduce that pﬁ7=true.

0

From 3.2.2 it is clear that for every & and vy,
known(Zevelvqﬁu)ﬁﬁn+13known(Zevelvuﬁu)aﬁn when » is 4, 6 or 7.
Since fitﬁ6ﬁ5=true we even know that for all & and V), SV,
known(Zevelvuﬁu)&ﬁenknown(Zevelvuﬁu)aﬁs. Consequently for each
& we have known(Zevelvqﬁu)aﬁgzknown(Zevelvuﬁu)aﬁu if v, SV,-1
and known(Zevelvuﬁg)&ﬁ7aknown(Zevelvuﬁg)aﬁa universally. More-
over, as p0ﬁ7=true, found(levelvuﬁe)mﬁ8=true whenever
known(levelv f)4% =true so p f =true and by 3.2.7 p,ftg=true;
hence from the facts that jfovgﬁu=true and fitﬁ8ﬁ4=true we can
infer that jc0v2ﬂ8=true.

Applying 3.2.8 to ﬁg and #, (in place of ﬂo and ﬁl) we
see that jEl(u2Au3)ﬁ7=true. We originally assumed that
aptyp ,=true, SO aptw(divert6668,bg)=true; thus once we have
established that eﬂEﬂ(vav3)67=true the knowledge that
torm[fnI..E]ly=true and L[E]=true will ensure that
c(.?uE]JEix[znzwtfazse/nn‘gl>ﬁ-7=tme and that

-

a<.s.v[[gn£15 Ple[EJ YL false/I11L

797979
The stipulations of 3.1.7 are such that all Egs Voo Yy

and p having glE v p=true (as well as

/Vj?ee[EoﬂﬂIﬂ+(v12pHIﬂ+1+2V~vozpﬂIE+1+2),true!I:Ide}=tvue and

(freeﬂEOﬂﬂresﬂ+(vlzpﬂresﬂ+1+2v~vnzpﬁresﬂ+1+2),true)=true) satisfies

gEEOﬂv1p=true; the proof of this, and the comparable result for

Ags proceeds by structural induction. In our case we know that

gﬁfnl..EHv61=tpue, tearﬂnt..E]61=5g, tidyﬁg(levelvgﬁu+1)=true

and poft ,=true so gl fnI..E)v,p =true. Hence e[Eﬂ(v2Av3)§1=tPue,

236

a(égo(revertﬁuﬁs)Geds'é(Eo°revertb4)bsosas)=true and

c(Eéoorevertéu,E(Eoorevertﬁu))ﬁ5=true. This being so for all

the appropriate ﬁu and # w(63+1,03+1>ﬁ3=true and pﬁ3=true.>

5’

Hence a<§[¢ﬂ5515151,9[9H¢ﬂ¢ﬂ2515181)=tPu€ for all vy, z,

, ﬁo and ﬁl of the form specified above, and we can conclude

that Gl é]=true.*

v

3.3.3. Lemma.

If EHEOHAE[E1]=true then GHEO:=E1H=true.

<Let V¥, EO’ v, and ﬁo have aptw60=true, tornﬂE0:=E1H¢=true,

0
jEOuOﬁ0=true and gﬂE0:=E1]U060=true. Define
£,=(A0v. T 0 (¢ dummy) §ut2) oupdate(ut2) (V1)

APU. L o (¢ dummy) §Ut2) supdate (U¥2) (V¥1))
and suppose that E, is evaluated before E s SO that
#lE,:=E,1L =2IE](RIE I) and likewise
QI?HEO:=E1HwHEO%Hhﬂfhﬂwﬂ(aﬂeﬂElﬂwﬂgl). Set v, =#6 [recl+1 and
vgaﬁ{lzexitﬂE0H+(ravelﬁoéoﬂlﬂ+1+1:L+ﬁ0HIH+1+2,v1),u1|I:Ide},
for which 3,1,4 dictates that eHE1Hv25O=true. Owing to the

constraints imposed on E_ , however, we can make even wider

O’
claims: if £ is such that every fi satisfying

pﬁApatﬁv1ﬁ0=true, known Zevel(vz-l)ﬁo)(6+1,b+1)ﬁ0=false and

o, p s RN

U+1:L is subject to a{ gpuo,fpuo) =true then actually
chﬂEOﬂE,QﬂcHEOH¢HE>ﬁO=true. This can be established by in-
duction on the complexity of Eys taking as the induction hypo-

thesis that for some E and ﬁu and all ¢ such that

5V59%5 >
U5+1:V or known(ZeveZ(vQ-i)ﬁ4)<05+1,05+1>ﬁu=false we have

al £p 2555555>=true whenever pﬁshpatﬁ5v1ﬁ4=true and
A @IENL,EI5 [E1V1D)), =true.

Suppose that ﬂl is any pair having pﬁlApatﬁ1v1ﬁ0=true,
known(Zevelv2ﬁ0)<dl+1,bl+1>ﬁ0=false and 61+1:L. We shall prove

([" B [Y S _ .
that a @ﬂEiﬂciplulol,ﬂﬂtﬂElﬂw]clplulcl) true by demonstrating that

237

cLﬂﬂElﬂgl,QﬂcﬂEiﬂwﬂcl)ﬁ1=true. Since eﬂEiﬂv =true and

2ﬁ1
EEE1ﬂ=true doing so reduces to verifying that j(svil,sval)v2ﬁ1=trw

or that for some typical pair ﬁ2 having pﬁghpatﬁ2v2ﬁ1=true we

Pl

have a(sv5152u262,sv215 U,0,) =true, Take one particular ﬂ2 and

27272
define £ =access(uz+1,62+1)ﬁ2, 3 =(U2+2,02+2) and

1 2
ﬁ3=<<ﬁ2,<dummy)562+2,update€2€162),
(52,(dummy)502T2,updateé23162));
once we have shown that pﬁanpatﬁ3v0ﬁ0=true the certainty that
jﬁovoﬁo=true will ensure that a(sv61526252,st1520282)=true.
Following the technique of 2.5.5 we can readily confirm

that kentl&ﬁsa(kentlﬁﬂg(ﬁ=(dummy,dummyﬂ) for all &, Here we
wish to establish rather more: that for every & and v

known(Zevelvﬁo)QﬁBDknown(Zevelvﬁl)ﬁﬁ2v(6=€1szv2). Take any v

together with fi, which is Zevelvﬁl, and assume that for some vV,

and all &,, &, and v,EV,

seen3v O 0 % Aknownﬁ&iﬁgaknownﬁaoﬁgv(&0=€

B0, 7, Avzv,). Suppose that

1

for some B, and Ql seens(v3+1)woﬁlﬁ3=true and knownﬁ@1ﬂ2=true.

If al:L but ®, is not &, then @, cannot be €, as p f =true, and

1 1

S0 seenSvsﬁo(accessmiﬁa)ﬁ3=true and knownﬁ(accessmiﬁa)ﬂ2=true.

If &1:L*XL* then seen3v3606ﬁ3=true and knownﬁ&ﬁ2=true for at

least one & having gyvenﬁml=true. Now note that since
known(level(vQ-i)ﬁO)(U1+1,01+1)ﬁ0=false and vz-ls#poﬂrecﬂ we have
known(Zevel(vQ—i)ﬁ0)€2ﬁ1=faZse (patﬁlvlﬁo being true) and
known(Zevel(vz-l)ﬁ1)82ﬁ2=false (patﬁQVQﬂl being true). Hence

if &1=€2 then vzv_, and seen3v3&0€1ﬁ3=true; under these circum-

stances unless QO=€1 we know that €1:L*XL* and as

found(Zevelv2ﬁ1)€1ﬁ2=true there is some & with gyuend€1=true,

Nl

seens(vs-l)ﬁoaﬁaztrue and known(levevaﬁi)aﬁQ:true (indeed as

vy, knownﬁaﬂ2=true). Consequently in all three cases either

vzv,. and m0=€

5 or there exist &2 and v

1 with v <v such that
b 3

seen3v460Q2ﬁ3=true and knownﬁ&2ﬁ2=true. Applying the induction

)

238

hypothesis, knownﬁﬁoﬁOV(ﬁ =€1szv2)=true and we can conclude that

0

&, and v

for all Byy By c

seenBv5&OalﬁSAknownﬁ&lﬁzaknownﬁﬁoﬁgv(m0=€1Av2v2). Because
gyven&(pop(Zevelvﬁ0+2)63,pop(Zevelvﬁ0+2)03)DknownﬁﬁlﬁQ this is
enough to establish that for every GO
known(Zevelvﬁo)&OﬂsaknownﬁﬁoﬂQV(Q0=61Auzu2); more generally for
all & and v
known(Zevelvﬁa)&ﬂszknown(Zevelvﬁ3)&ﬁ2V((Q=81VQ=(63+1,03+1))szvz).

As usual it is plain that then & satisfies
found(levelvﬁQ)&ﬁ2=true either found(levelvﬁ3)6ﬁ3=true or f:L*xL*,
and thus that when known(levelvﬁg)mﬁ3=true either
found(levelvﬁs)&ﬂ3=true or G:L*xL*, The fact that
found(leuelvﬁa)éiﬁQ:true whenever v2v2 therefore ensures that for
all & and v found(levelvﬁ3)6ﬁ3=true if known(levelvﬁa)&ﬁ3=true.
This shows that p0ﬁ3=true, and since
kentl&ﬁaa(kentlﬁﬁf(&=(dummy,dummyn) pﬁ3=true by 3.2.7.

Unless vzv, iﬁo(levelvﬁn)=ﬁqo(Zevelvﬁo) when o0sn<3,
so for every & having known(levelvﬁo)aﬁ3=true we can deduce
successively that known(levelvﬁl)aﬁ2=true, known(levelvﬁo)&ﬁ1=true
and known(levelvﬁl)&ﬂo=true (both patﬂQvQﬂl and patﬁlvlﬁo being

true). Consequently patﬂ3v0ﬁ0=true and a(gopausoa,c0p30303>=true.

Hence every ®, having p® Apatft v ft,=true satisfies
a(sv51526262,st15 v,0.) =trye, and in fact j(svfl,svil>v2ﬂ1=true.
This in turn ensures that a(QEElﬂEiﬁlﬁiél,aﬂsﬂElﬂwH31515181>=true
for a typical ﬁ1 having pﬁiApatﬂ1v1ﬁ0=true,
known(ZeveZvQﬁO)(Gi¢1,01+1>ﬁ0=faZse and 61+1:L. In accordance with
our earlier contention this means that
c(ﬂﬂEOlCQHEiﬂil)#Tﬂa[Eoﬂwﬂ(ﬁﬂciEiﬂwﬂil))ﬁoztrue and that

GIIED:=Ei]]=tr’ue.:l>

239

3.3.4, Lemma,

If EﬂEOHAEﬂE1H=true then GﬂEoElﬂ=true.
4As usual we assume that mete evaluates expressions from

left to right, and we adopt certain ¥, z v_ and ﬂo having

0’ 0

aptwpo=true, tornﬂE0E1Hw=true, J§0u0ﬁ0=true and g[EOE1Hv0p0=true.

We provide

£ =Apu.vv2:Fr(Ub 24 1)L p(CuYD) Sute),
sv(kpu.lsu+1|Ns#u+2{L*+EOp((u+2+(u+1)>§uf2),T)pu

and

Elzkpu.u+2:F+(u+2+1)(Eonreverto)(divertp(u+2+2))(<u+1)§u$2),
sv(xpu.lsu+1iNs#u+2|L*+Eop((U+2+(U+1)>§Uf2),T)pu,

with the effect that ¢[EE,1{ ~#IE 1(#IE 1) and

gﬂ?ﬂEOEiﬂwﬂZO=wﬂeﬂEoﬂwﬂLfﬂeﬂElﬂwEEI). We shall demonstrate that

j(sv@?ﬂEiﬂgl),sv@?ﬂeﬂEiﬂw]21)>v0ﬁ0=true, which together with

EHE0B=true and e[EOHvO§O=true will serve to establish that

c(?ﬂEOEiﬂﬂo,gﬂ?ﬂEoEiﬂwﬂco)ﬁo=true.

Take any ﬁi having pﬁiApatﬁ1u0ﬁ0=true and write
v1=#50ﬂrecﬂ; because EHE1]=true and eﬂE1Hv161=true to show that
a(SUGfﬂﬂlﬂ51)616151,suc¥ﬂcﬂElﬂwﬂEl)blﬁlal)=true it is enocugh to
prove that j(mvéi,mvcl)v1ﬂ2=true where
AC.suC01U161=AC.5920262 and Ac.st510161=AC.§p2D262. To this end
let ﬁs be any pair with pﬁsApatﬁ3u1ﬁ2=tpue; since pﬁ2=true by the
argument of 2.5.2, the existence of such pairs ﬁa is evinced by
(B, ¢ dummy) §6,,8,) ¢ b, ¢ dummy) §0,,8,)> . Define f, to be the
unique pair having Ac.mvcﬁaﬁsd3=AC.C6”646u and
Ac.mvcbabsba=lc.gbqﬁ”64, and set €1=<Uu+1’04+1> and 52=(uu+2,0u+zh
We shall consider the proof further when 62:F only, the other
situations being devoid of interest. In addition we shall pre-

sume that pf Apat® vi, =true, a claim which 2.5.2 readily sub-

stantiates,

240
When éQ:F (C1P,V,0,,C

((€2+1)£O(revert§4§5)usﬁs,(EQ+1)(Qoorevertpu)DSDSGS) where
ﬁ5=((divert64(52+2),(el)§Uu+2,64),(divertpu(€2+2),<al>§04T2,04>>.
We shall show that pf_=true and that if
ﬁe=”5u’64+2"54) ,(ﬁq,DuTQ,Bq))=true jg0v0ﬁ6=true. By 3.2.7
foundﬁuﬁﬁ4=true whenever kenti@ﬁu=true; in particular, if 8:JxJ
and kentl&ﬂq=true then #GMTZZ#(6+3). Consequently we can show
by induction on vy that for all ao, ai and v,

seenlvzwomiﬁsAkentiaiﬁuakentiﬁlﬂs. Furthermore because

patfi v, f Apatft, v & =true we may assert that
found(Zevelvoﬁo)ézﬁu=true and that for every Qi

hotenl skent1l ® . Hence kentl1l f_okent1d ® for all &,; by
1 4 05 0 4 0

1Ps
the same token hoten&a((quxmqo)ﬁs)bhotenms((mqoxﬁqo)ﬁq) for
every &3 and we can infer that for every 62
kentlQZﬁsskentS((qono)Qz)((ﬁqoxﬂqo)ﬂq). It is apparent from
the definition of found in 3.2.1 that foundﬁ5®ﬁ5=true when
foundﬁuﬁﬁuztrue unless @:L*xL*, so every pair { satisfying
kenti&ﬁ5=true is subject to foundﬁ5®ﬁ5=true.

As #(62+2)Hrecﬂ=o any ff of the form Zeuelvﬁs is also of
the form Zevel\)ﬁ4 when VEV, . Accordingly we can apply 3.2.2 to
such state vectors fi, with the outcome that knomnﬁmﬁsaknownﬁa‘ﬁ‘4
for all &, Since foundﬁ&ﬁusfoundﬁQﬁS and p f =true, for every
& and every appropriate f knownﬁ&ﬁsafoundﬁ&ﬂs. Routine checking
now suffices to validate the other clauses of the contention that
poﬁ5=true. We have already pointed out that pft,=true and that
for all & kenti&ﬂsakent1®ﬁ4, so by 3.2.7 pﬁ5=true.

Given any & and f having knownfi@ft _=true and fi=levelvf

for some vw=<y, We can deduce that knownﬁ&ﬁ4=true and that

1
knownﬁaﬁ3=true by successive applications of 3.2.2, Likewise

given any & and f having knownﬁaﬂ2=true and ﬁ=Zevelvﬁ2 for some

241

vy, we know that
knownf@{(p,,(€,)80,11,6) ,¢p,,(E28D,11,8))=¢true; in fact as
path v, =true we can infer from this that knownf@ft =true. Hence
because patf ;v ®,=true we can argue that
known{levelvf)8f ;2known(levelvf)aR

Sknown(levelvf)&t ,

sknown(levelvf,)af,

sknouwn(levelvf)&k
for every & and v, thereby demonstrating that fitﬁ6ﬁ0=true. To
establish that p1ﬁ6=true observe that kentltﬁﬁGDRQntl&ﬁ4 for all
& and that by 3.2.2 found(levelvﬁG)&ﬁGD(found(Zevelvﬁu)aﬁuv@:L*XL*)
and known(Zevelvﬁ6)&ﬁ6:known(Zevelvﬁu)ﬁﬁJ+ for all & and v, In
consequence plﬁBAfitﬁ6ﬁ0=true and j80v0ﬁ5=true.

Together with tidy(é2+2)(Zevelv0ﬁ6+1)=true and w€ fi =true

the facts that pf =true and jg v R =true entail

alt Py,

Uu,glpuuqou)=true. In view of the definition of ﬁq this

means that for every f, having pﬁsApatﬁ3v1ﬂ2=true

- - A -

a(mvglpsusos,mvgipsusos)=true. Hence J(mvcl,mvc1>v1ﬁ2=true and
jL?HElﬂgi;?ﬂeﬂElﬂwﬂal)ﬁ2=true, which ensures that for all pairs

ﬁi with pﬁlApatﬁ1v0ﬁ0=true we have

.516161,30(.2”[[3ﬂEiﬂw]lci)blbibl)=f;rue. Finally

c(QHEOEiﬂEo,gﬂgﬂEOE1]¢HEO>ﬁ0=true for every appropriate ¢, g

a<va?[E1ﬂC1)
O)

v, and ﬂo, S0 GHEOE1H=true.>

3.3.5, Lemma.

If E[El=true then G[val E]ag[res ElaGlgoto El=true.

4For the reasons enunciated in 2.6.4 we shall content
ourselves with proving that Glres El=true. Let ¥, EO’ Vo and ﬁo
satisfy aptwﬁo=true, rent[Bl y=true, jgovﬁ0=true and

glres Eﬂv60=true, and set

242

Eo=(Ap.(ravelppﬂresﬂ+1+1+1)p,
dov.(plreshtiva)(plres)+i1+2)(Cut1) §pfres)+143)),

Then (#[res EIZ ,gl¢[res E]uu]]b =<:£[[E]i£0,g|[eﬂﬁnw]]20> , LIEl =true
and e[Eﬂ060=true, s0 to demonstrate that
olglres ENC,@lg[res Eﬂwﬂﬁ)ﬂo=true we need only confirm that
jgooﬁo=true.

Suppose that ﬁl is any pair having pﬂlApatﬁ10ﬁ0=true and
that #piﬂresﬂ>0, the result being trivial otherwise. Define
€O=<01+1,01+1>, e

=access€0ﬁ1, v =ravelﬁlplﬂresﬂ+1+1+2,

1 7

ﬁ7=ZeveZv7ﬁ1 and

ﬁ2=((p7,(éo)507,restore(éo:L+update€06167,67)61)
(blﬂresﬂ+1+2,(éo)§51[resﬂ+1+3,61)).

As kentl(ravelélélﬂresM+1+1,b1HresH+1)ﬁ1=true, we can write

’
’

" -~

1Y1% 1P2020515,P,U,0,) where

0 y=(Z
z =(ravelﬁlﬁiuresﬂ#1+1+1,b1ﬂresﬂ+1). In order to establish that

O

0111’(:

jq00ﬁ0=true we must simply show that for this typical pair ﬁl

P " R

ac Ly, 0 01,E0516181)=true; this goal will be attained by verifying
that pﬂz, patﬁzoﬁa and jEioﬁS are all true when
ﬁ3=<(62,62+1,62),(52,02+1,62)>. For brevity we introduce

3= ((®q,x¥g)R) when 1<n<3 and €n+2=(q0xq0)gn when 0sn<1, so

that bs=55=revertb and D5=04.

5Py

As Pq fi =levelv, fi, and p,ft,=true any & subject to

knomnﬁ7&ﬁ4=true obeys foundﬁ7mﬁ4=true; in particular, when &:L
area666=true and accessdft,=accessifi, . Moreover the clauses of
p,ft, stipulate that #61ﬂrecﬂ=(v7-1)vo, so any fi; and v, such that

ﬁB:ZeveZvBﬁ satisly either f =levelv f and vgs(v,-1)v0 or fg=fe

6

and v_2v_; under both possibilities knownﬁezknomn(Zevel(vaAv7)ﬁq).

g7V 77
Consequently we can apply 3.2.2 to ﬁu, ﬁe and ﬁg, with the outcome
that for all & and Ve knOMn(ZeveZv8ﬁ6)6ﬁ6=true if and only if
known(Zevel(vghv7)ﬁq)mﬁu=true. Obviously 3.2.2 1is also relevant

to ﬁ5, #_ and ﬁB, so that for all @ and Vg knoun(levezvaﬁﬁ)mﬁ5=tru9

6

243

if and only if known(ZeveZvBﬁB)Qﬁ5=true.

Since patﬁ10ﬁ0=true, found(leveloﬁl)é ff_=true and for all

[N

1
H =€ _vid =£_); hence for

6. and v, seeniv O _E_f D(known(ZeUQZOﬁG)ﬁoﬁSV 0=E VB, =€,

0 1 1702 6
Gﬁ5V$=€ V&=€3). Combining this with

every O knownﬁSQﬁso(knownﬁ 5

6

the above we see that for every & and v known(levelv8ﬁ5)®ﬂ5=true

g

only if known(Zevel(vghv7)ﬁu)&ﬁqV((&=32v&=€3)Av 2v7)=true. Thus

8
known(levelv8ﬁ5)mﬁ5=true only if found(Zevelv8ﬁ5)6ﬁ5=true, because

poﬁ4=true; analogous remarks are valid for ﬁﬁ, and indeed we even

know that known(leveZvBﬁn)Qﬁn=true only if found(leueZvBﬁn)Qﬁn=true
when 2<n<3,

1 Vo and v, such that when os<ns<1
pQHIn]+vn:L. That mqoplﬂres]+1+2=revert(p1ﬂresﬂ+1+2)(ﬂqobl) is

Select any IO’ I

DQHIn]+vn=blﬂInﬂ+vn where

reflected in the certainty that +2

vn+2=#p1ﬂInﬂ—#bgﬂIn]+vn; in addition pgﬁlnﬂ+vn=plﬁlnﬂ+vn+2 and

raveZﬁszﬂIn]+vn+1=raveZﬁlplﬂlnﬂ+vn+2+1 because
Zeadvn+2(piﬂlnﬂ)=#p1ﬂInﬂ—#pzﬂInﬂ+Zeadvn(bQHIn]) when osn=<1,

Accordingly if b2[10ﬂ+v0=52ﬂllﬂ+v1 then we can deduce in succession

that p1ﬂ10ﬂ+v2=p1ﬂI1ﬂ+v that IO=I1 and plﬂloﬂ+v2?1=§1ﬂllﬂ+v3+1

3’
(as p0ﬁ1=true), and that 62ﬂ10ﬂ+v0f1=p25I1ﬂ+v1+1. This completes

those parts of the proof that poﬁzhpoﬁ3=true which are worth giving,

By induction on v, we can readily ratify the statement

1

that when 2=x=3 for all &0, ml and vy

seen1v1&OﬁlﬁnAkentlmlﬁlhknownﬁ7((qOXqO)ﬁl)ﬁuokentlmoﬁl; as a

result kentlﬁﬁQDkentlﬁﬁl and kentl&ﬁsakentl&ﬁl for all @&, From
3.2.7 and the property pOﬁQApoﬁ3=true it now follows that

pﬁzhpﬁ3=true. Moreover for every & and v known(leveZveﬁa)aﬁ2=true

8
only if known(levelv8ﬁ3)6ﬁ3=true, SO patﬁ20ﬁ3=true. That

j210ﬁ3=true is now a direct consequence of the knowledge that

wl ravelp ﬂres]+1+1,blﬂresﬂ+1)ﬁ1=true.

151
Tracing back through the steps of the argument,

- - - ~ - [- - _ . A _
ai gpoUQUQ!Cj_DQU?U?)'tI’HQ, Jcooﬁo true and

244

cl@lres E]Z,2[g¢l res Euwuz>ﬂo=tpue. This being so for all the
apposite v, Z, v and ﬁo we can conclude that G{res E]=true.?

We cannot weaken the condition el[res El=ivp.e[E]0p to
e[res El=Avp.elE]l (p[res]+1+42)p because this would admit such
programs as [: val (res), in which control leaves a block
immediately after executing a res statement. Although less con-
fining constraints on res statements could be provided by using
[1de»[DxNxNI*Ix{NxNxN]J*x[PxNxN1* instead of U in 3.1.4, the cutcome

would be too meagre to pay for the effort involved.

3.3.6. Lemma.

If LIElAD[Al=true then Gl A inside E]=true.

~

4Suppose that ¢_, Z v, and ﬁo satisfy apt¢060=true,

o* C0* "0

torn[A inside E)y=true, j20v0ﬁ0=true and gf{A inside Efv =true;

p
0" 0
we shall show that o(g[a inside EJC,¢l¢(6 inside EIVIT.)f =truc.
To this end we define ¢, =y [false*/s[A]1loptsPIAT)Y/#1A]],

u1=uOA(#poﬂrecﬂ+1) and C1=<P6m%tCo,§o°PevePtpo), and given any

ﬁl having pﬁlafztﬁ1ﬁ0=true we set ﬁ2=<(pl[ﬁ1//rec],ul,61),ﬁl).
Now @[5 inside E1Z 5. 0,0 =9&AHG?HEH£1)5 § 6 while
.U

2 22

R T N R Y B A DT WO

1
o .
27272

0
#lels inside Cly lc . p v,
Patently pRyafitfh f,=true, so as DlAl=true and d[A] 0B =true
to show that

algls inside Eﬂioé glgls inside EIY g p,u, 0. =true

16161’ 017151

we neced only demonstrate that cL?EEHEI;?{gﬂEﬂwiﬂgi)ﬁ=true for all
ff having spunﬂAﬂDwoﬁ2ﬂ=true. There certainly are such #, for

if (&*,&*)=(news(#lﬂ&])dz,news(#JﬂAﬂ)62) we may take ff to be
(52[&*/ﬁfﬂﬂﬂ][dummy*/AWﬂAﬂ],Gz,updatesé*dummy*dz), dealing
similarly with %, Select one particular ﬁ3 having

spunﬂA]0w0ﬁ2ﬁ3=true; because g[A inside Eﬂvoﬁo=true 3.1.4 makes it

evident that eﬂEﬂv163=true. In addition we know that L{E]=true,

245

so o(2[E1E 2le ngnw1u21>ﬁ3 will be true if jT,v f. is true.

As plﬁihfitﬁ1ﬁ0=true, j20v0ﬁ1=true; in addition
#6 Irecl=#5 [recl+1, wg § [recl+ivi=Pg £, and p % =true from
the definition of spun in 3.2.4. Writing
ﬂu=<<revert6163,63,63),<revertblb3,03,63>>, once we have proved
that known(Zevelvﬁi)aﬁuaknown(levelvﬁl)aﬁi for all § and v 3.2.8
will assure us that jElv1ﬁ3=true.

Let ff be of the form Zevelvﬁl for some v, so that
§q0ﬁ=9q0(level(vAv1)ﬁ2). By 3.2.2 for all & knownfdf =true if
and only if knownﬁ&ﬁ3=true. In particular any & satisfying
knownﬁaﬁu=true is subject to Rnownﬁaﬁ3=true also; hence as
spunﬂﬂﬂﬁwoﬁ2ﬁ3=true knownﬁ&ﬁ2=true and knownﬁaﬁ1=true, giving
j81v1ﬁ3=true. This establishes that

al @A inside Euioélﬁ Zls[A inside E]woua p.0,03) =true and that

191 6P1Y1%

o F[A inside Euio,gﬂ9ua inside Bl 12y f =true. As v, £, v

0 "0
and ﬁo can be chosen at will we must have G[A inside FEl=true.®
The proofs needed for those expressions having labels

with propagated scopes resemble such calculations as 2.5.7 too

closely to deserve attention.

3.3.7. Lewma,.

Let & be I=E, I==E, I ,...,I =E or I,,...

I or ITiseeenl, and some E such that EfEl=true; then DIAJAT[Al=true.

,I_=E for some
n

4We First outline the proof that PIA]l=true when & is of
the form I==E and when &[E}=true. Let y,, 20 and %, be such
that dﬂA3060=true and.ﬁ&caoﬁ|Spunﬂﬁﬂowoﬁoﬁ}=true; taking Eo to
be (1,1 confirms that such entities exist. When Vo=#f,lrecy+1
and
C,=Csv(hpu.T olv¥1//II(V11)),

(AC.optHIﬂwo+sv(mvC).st)(ADU.EOQEU+1/IJ(U+1))>

246

we know that eﬂEﬂvOﬁO=true and that
DNB1E, DT 01Y 12y (€L EIZ 81«1 Elyolz) . Since B[Ej=true
the conclusion c(@ﬂﬂﬂgo,gﬂdﬂaﬂwoﬂio>ﬁ0=true will follow immediately
once we have established that j21v0ﬁ0=true. Suppose that f, is
any pair having pﬁlApatﬁ1v0ﬁ0=tPue, and introduce
Eo=access(O v1,0 v D R, €,=C€,, (opt] 1Ty >newd &) and
f=(¢p, L //T0,6,11,6),

(bi[él/I],D1+1,(opt[[I]|w0+updateé1é061,61))) .
By the method of 3.3.2 we can readily show that pﬂ2=true; note
in particular that as é1=new61 (when él is a location) and as
p0ﬁ1=true any I and v_ having b2ﬂ1ﬂ+1=52ﬁ16ﬂ+u6 must have I=16

6 B

and v=v_., We can also show quite casily that spunl Al 0y f . =true,
SO a<§0626262,E0520262)=true and j81v0ﬁ0=true. Hence
c<9[[A]i£O,.02’[[d[[A]WO]]EO) #,=true for any suitable ¢, EO and %,
thereby ensuring that Z[A]l=true.

4We now turn to the proof that T[Al=true when A is a
declaration of the form I==E for which E[E]l=true. Let wa’ ﬁa and
f, be such that ¢[AJof, =true and /chaﬁlspunﬂﬂﬂlwsﬁaﬁ}=true; then
w3HIH+1=true, and writing v3=#63ﬂrecﬂ+1 and
T, sv(Apu.T olud1///T1(ut1)),

sv(lpu,p[[ﬂ+1:Lﬁasp(UTI)oupdate(oﬂiﬂ+1)(U+1),T”

gives elElv, f,=true and F1AVZ, F1¢1A10, 12, ~(LIEIE, ,eI¢1E1Y 1T, .

p
373
As E[E]=true to show that ccfﬂﬂﬂf3,?ﬂz[Aﬂw3]E3)ﬁ3=true it suffices
to verify that quv3ﬁ3=true. Accordingly take any ﬁu having

pft, rpath v, =true, and set & =access(uq+1,t‘.q+1)ﬁ‘ur and

3
fe=C(B,L€,///T1,8,11,6) ,4b,,0, t1,update(d,[1D+1)2, 8,0 .
4There is some § for which Spunﬂﬂﬂ1w3ﬁ3ﬂ=true, so

p3ﬂ1H+1dq p lIl+1:L and <Cupuuucu’€ubuuucu)=<g 0

true, we can presume that bqﬂ1ﬂ+1=5u[163¢u6 only if T=1, and

Zeadi(ﬁuﬂlﬂ)=Zeadv6(6”ﬂ1ﬂ). The description of ﬁq[éa///lj given

247

in 3.1.4 therefore ensures that for all 3 and &
koten@(revert§65,revertﬁb5)=(hotenﬁ<revertééq,revertﬁbu)A~®=S3)
v(0=8 A(leadl(F,0111)>#6 1T1-#5111))
where 33=(és,ﬁuﬂ1]¢1). The fact that spun[Aﬂlwaﬁaﬁ=true for some
f also implies that 63ﬂ1ﬂ+1+2=v3 S0, tidy(levelvﬁ3+1)(Zeuelvﬁ3+1)
being true for all v, we must have vy, whenever v satisfies
Zeadl(ﬁaﬂlﬂ)>#63ﬂ1]—#(leuelvﬁ3)ﬂlﬂ.

Let £ be of the form Zevelvﬁa for some v; a trivial

induction on v, demonstrates that for all &

4 0? &, and v

1 1

(seen3v L. 0. % Aknownﬁwlﬁuh~m1=63)D(knownﬁﬁoﬂuA~w

10,8,). Since

0=%3
patfl vfi =true we know that found(Zeuelvsﬁs)éaﬁu=true; in particular
if €,:L*xL* any & having gyvend€ ;=true is subject to
known(Zevelvsﬁs)&ﬁu=true. No & such that known(levelvsﬁs)&ﬁu=tru9

can be such that &=53, as

known(leuelv3ﬁ3)<ravelﬁupuﬂlﬂ+1+1,63)ﬁu=true and pﬁu=true. Hence

for all A and vl

seenavl&odsﬂss(w0=63vw0=93v(known(Zevelvsﬁs)ﬁoﬁqA~w0=63)). When-

ever gyvenwl(pop(levelv3ﬁ3+2)u5,pop(Zevelv3ﬁ3+2)D5)=true, Qi is

in LxL or V<V because patfl, v, f =true, and again we never have &1=63.
Collecting these assertions together we see that for all
v, i and & with ﬁ=Zevelvﬁ3

hoten&(revertﬁﬁs,revertﬁbs>:(kﬂomﬂﬁ@ﬁuA~5=53)V(@=5 AV2V.) while

3
gyvenﬁ(pop665,p0pﬁb5):(knomnﬁmﬂqA~m=33). From the definition of
known in 3.2.1 it follows that
knomnﬁmﬁss(knomnﬁ@ﬁuA~m=33)v((ﬁ=§3v6=€3)szv3) for all v, f and

0 having fi=levelvf or fi=levelvf . An awareness that p % =true
and that found(le091v3ﬁ3)€3ﬁ4=true now allow us to assert that for
all v and O such that known(leveZVﬁs)aﬁ5=true we have
found(levelVf)B% =1rue. Furthermore when known(levelvfiy)af=true

we have known(levelvfi,)R =true and as patf v 7w =true

known(levelvﬁs)&ﬁ3=true. Thus p0ﬁ5=true and 1if

248

Nwbdft_ |kent10f }=true we shall have pfcaspunlal1y R % =true.»
A mundane induction on vy establishes that for all &0,
6, and v seenlvl&o&iﬁSA(kentl@lﬂuvﬁl=§3)D(kentiﬁoﬁuVﬁO=§3), so for
every kentl&ﬂSD(kentiﬁﬁuv&=§3). When kentl@ﬁu=true, however,
3.2.6 shows that kenti((qoxqo)@)((quxﬁqo)ﬁqj =true and con-
sequently that found(Zevelvaﬁa)@ﬁu=true, while the fact that
pﬁu=true assures us that w@ﬁ4=true. From 3.2.7 we can now deduce

that w&ﬁ5=true for all & having kent1£ﬁ5=true, and accordingly

pﬁSASpunﬂAH1w3ﬁ3ﬁ5=true.

rl - - ~ - . -~

v _0. > =true and, more generally,

Hence al g 0 u 05,8 ,0,U50

- - =l -

al g U,0,) =true for all f, having pf apatf v f =true.

4Py Y0y 5y P LY LTy
This means that jf v _fi_=true and that ctfﬂﬁﬂi3;rﬂtﬂA]¢3ﬂ23>ﬁ3=true

433

for all wa, 23 and ﬁ3 such that tﬂ&ﬂ063=true and
ﬁdcasﬁ|spun[Aﬂ1w3ﬁ3ﬁ}=true, which in turn implies T[A]=true.*

The same result can be obtained by similar means when
Ais I=E, I ,...,I =E or I;5-++»1,==E. For none of these does
the degree of complexity exceed that required above, and indeed
for two of them 1t 1s considerably smaller.»

By methods closely related to those of 2.6.6 we can show
that for any AO and A1 if DHAONADHA1H=true then
DHAO within A1]=true whilst 1f D[AOHAT[A1]=true then
THAO within A1H=true. Likewise a minor variant of 2.6.7 serves to
establish that for all Ai,...,An DHAiﬂA...ADﬂAnB:DIAi and...and Anﬁ
and T[AlﬂA...ATEAnHDTﬂAl and...and Anﬂ. Both proofs demand no
arguments othcer than those introduced already, so they can he
safely omitted. Were we to adopt the alternative to ¢»rim alluded
to in 2.1.5 we would be reduced to asserting that
pl4a., within A1H=true if crampedﬂAO within Alﬂ(AI.(2>)=true, which

c
would be inimical to the motivation underlying within declarations,

249

3.3.8, Lemma,

If TlAl=true then T[rec Al=true and, when
opts (W[A))= Y. true* also, D[rec A)l=true.

<Suppose that vy, ﬁo, ﬂl and ¢ satisfy Optscfﬂﬂﬂ)¢0=true*,
pﬁlAfitﬁ1ﬁ0=true and /dc£%|3punﬂrec Aﬂowoﬁoﬁ}=true; let v, be
wo[false*ﬂfﬁaﬂ][true*ﬁfﬂﬂﬂ]. Because p0ﬁ1=true, if
(u*,a*)=<news(#JﬂAH)61,news(#fﬂﬂﬂ61)> and

62=<updatesd*dummy*él,updates&*dummy*61>, 8, is proper. Define

2
02=01 and

ﬁ2=<61[&*/AIHAH][dummy*/ﬁfﬂﬂﬂ],bi[&*ﬂlﬂﬂﬂ&?ﬂﬂ]]), in terms of

which @[rec AlZ5,0.6. and 2idlrec Aﬂwoﬂiﬁlﬁ G

E I
.0, are .9'|[A]If;pzu

1194 299
0.0

2% respectively. If # satisfies

and 7L a1y, 120,
spun{&ﬂ1w1ﬁ2ﬁ=true then spun| rec A]0¢Oﬁ1ﬁ=true since if

ﬁ=$ﬁoﬁ and I A]
quﬁoﬂlﬂdﬂq0§2ﬂlﬂflead1(62ﬂlﬂ)=ﬁﬂlﬂf1ead1(6ﬂ1ﬂ):revertﬁzﬁllﬂ.
Hence when df rec A]050=true (and THAH062=true also} to show that
o @l rec Aﬂiﬁiﬁiél,
that pﬁQAfitﬁ2ﬁ2=true.

2l rec MY 125, 0,06, =true it suffices to verify

If{ is of the form levelvff, for some v either ﬁ=ZeveZvﬁ1
oT ﬁ=ﬁ2; in the first case knownﬁ&ﬁQDRnownﬁaﬁl for all @ from
3.2.2. The second case is disposed of by noting that induction
shows that kentvlf >(hotenbp,vi=Cdummy ,dummy) vkentvdf,) for all
v and @. When &:8* and &:4% areadd vareadd, =false so
kentS(d,E)ﬁlAkent3<é,&>ﬁ1=faZse for all € as poﬁ1=true; con-
sequently poﬁ2=true. Plainly w&ﬁ2=true for all @ having
wdf =true, and thus /ﬂwmﬁ2|kentlmﬂ2}=true as fﬂw&ﬁ1|kent1mﬁ1}=true;
in conjunction with p,f, =true this ensures that pRoAFIER i =true.

Hence for any wo, ﬁo, ﬁl and 7 having oPtscfﬁAﬂ)¢0=true*,
pﬁlhfitﬁ1ﬂ0=true and f{cgﬁ|spunﬂrec Aﬂowoﬁoﬁ}=true we have
al D[rec Aﬂiﬁlﬁiél,QL{ﬂrec AﬂwoﬂZ515151>=true or dl rec A]060=faZse.

In accordance with 3,2,4 this means that Dlrec A]=true.*

250

3.3.9, Theorem.

The meanings accorded by new stack semantics to a Mal
program and by novel store semantics to its transform are
comparable, provided that the program obeys the constraints of
3.1.4, the lattice of locations is infinite and every recursive
declaration rec b, embedded in the program satisfies the equality
opts LA D)= AI.true¥*,

4The insistence that all declarations of the form rec AO
embedded in the program be subject to opts(MA I)=AI.true*
ensures not merely that we can apply 3.3.8 but that the transform
of the program is devoid of recursive declarations by incidence
and satisfies the conditions of 2.6.9. Thus although 3.3.1, for
instance, is expressed in terms of new store semantics it holds
for novel store semantics as well., Moreover the absence of both
G and P from the domain W defined in 3.2,1 makes it possible to
assert in a similar manner that new stack semantics is exactly
cquivalent to novel stack semantics. In consequence the meaning
of the program according to stack semantics is comparable with
that of its transform (under the rules of 1.4.6) according to
store semantics whichever means of storage allocation is implicit
in the relevant equations,

Should the program satisfy the conditions under which
2.7.6 is applicable rather more than this can be said. Under
these circumstances, the program and its transform are equivalent
when both are evaluated using new store semantics, so in fact the
outcome of the program sugpgcsted by stack semantics is comparable
with the outcome suggested by store semantics. From 2.3.9 it
therefore follows that the answer obtained by implementing the
language with the aid of stacks is precisely that predicted by

standard semantics.*

251

3.4, Different control structures for languages,

3.4,1, Surrogate routines,

Elaborate though it may be, Mal does not evince the
essentials of all computer languages. Its lack of format state-
ments and file-handling facilities is unimportant, however, since
they could readily be embedded in its semantic equations. Likewise
the introduction of arrays and structures (which are akin to
members of L*) would merely require us to complicate the technical
details of appendix 1 without disturbing its core. More sig-
nificant is the omission from Mal of any means of checking types
and encoding implicit coercions during compilation, which will be
treated in 3.6.1. In this section we shall extend the formalism
of 1.3.4 to cope with methods of controlling the execution
sequence of a program which differ from those of Pal.

The use of labels is frequently opposed on the ground that
it transports the intended meaning of a program beyond the
bounds of human and computer comprehension. Even when labels are
permitted languages tend to bar entry to a block after it has
already been left by imposing the constraints of 3.1.4. The worst
effects of doing this can be mitigated by introducing coroutines,
which sometimes achieve less wayward transfers of control than
are afforded by the assignment and invocation of stored label
entry points. Accordingly we begin by augmenting the syntax of
Mal with a set of primitives which exhibit the salient aspects of
coroutines.

Those 1languages which provide coroutines give them a mode
of definition which resembles that for subroutines rather than that
for labels. We follow this convention in our adoption of crQE,
which by analogy with fn()E is deemed to be a coroutine taking the

1ist nil as a parameter. Unlike the corresponding subroutine,

however, the point to which F returns its result is determined not

252

when cr()E is applied but when it is set up; in 3.4.2 for brevity
we shall use p[res] to provide this point, but plainly there are
many more plausible possibilities. Whereas parameters cannot be
passed to labels by geto statements, here we can exploit the
extra freedom allowed by abstractions in order to create crl.E,

crl ,...,I .E

19 n+Ey crl.. B and crl --,1 _..E, which require the value

1,"]
of bound variables to be supplied when the coroutine is first

activated. Such activations occur on encountering resume E_ with Ei»

¢
when E, is passed as an argument to a coroutine E, which then
takes over control from the current one; should the latter ever

be invoked again execution will continue from the textual position
following this resumption. This represents the most significant
distinction between coroutines and denoted label entry points, 1in
that only the continuation signified by the former can be altered
as the execution of the program proceeds.

There is one further difference between our coroutines
and labels:; we permit the suspension of coroutines so that when
a resume instruction demands that control pass to a suspended co-
routine plres] is summoned instead. Thus cancel E will suspend
E while adjoin E will append :E once more to the set of coroutines
which can be resumed. This apparatus is introduced merely to add
force to our claim that the technique to be developed in 3.4.Z
can supply the formal semantics of any of the constructs discussed
by Dahl [3] by modelling the 'sequencing set' or 'activation list’
of a simulation language.

As intimated above a subroutine is subordinate to the pro-
gram which calls it but a coroutine, like a label entry point,
need not be. The declaration rec I==cr()E is therefore more
closely linked with I::E than with rec I==fn()E; the declaration
I==cr()E corresponds not to setting a label by incidence but to

evaluating the expression E in an environment which binds I to

253

a value created in an outer block. Yet though we may permit
the identifier I set by I1::E to denote a continuation we would
be unwise to allow the same liberty to the identifier declared
by rec I=s=cr()E, since the environment would then need to be
modified explicitly at every dynamic occurrence of a resume
instruction. Moreover we would have to alter all the environments
attached to coroutines as well as the current one, for if
rec g==crz.resume g With (=2+1) inside resume g with 0
is to return 1 as its result the same should be true of
rec g==crz.resume k with (z+1) and h==crz.resume h with (z+1)

inside resume g with o,
which returns 2 unless these alterations are effected. The formalism
of 2.1.1 could perhaps be made to accommodate such alterations but
standard semantics cannot, so we are obliged not to take the
denotation of a coroutine to be a continuation.

The obvious means of ensuring that the variables g and &

in the program above change their continuations simultaneously
would be to make them both denote a location containing the
appropriate continuation. On resuming the execution of a coroutine
the appropriate linkage information could then be assigned to the
location corresponding to the coroutine the execution of which was
being halted. We shall not adopt this expedient because it
would corrupt the intention of declarations by incidence, according
to which g==cr{)dummy within g:=dummy should not modify the value
of g. Though it may be that languages should provide only co-
routines stored in this manner, no conventional simulation language
does so and hence we must cater for existing constructs less
obliquely., Underlying a coroutine resumption is a concept as
different from that of an assignment as it is from that of a sub-

routine application, so we shall isolate it in a separate mechanism.

254

There 1is perhaps an analogy between the status of stored
coroutines and on conditions. One behemoth of a language permits
on conditions to be declared at points other than block entry,
thereby altering dynamically the environment bound to subroutines
and label entry points. It is possible to describe such silliness
formally either by supplying part of the environment to a sub-
routine only when it is applied or by adopting a stratagem akin
to that of 3.4,2, The proper course of action, however, is to
design an entirely different language in which on conditions can
be declared only at the heads of blocks; similarly, then, it may
be that coroutines should always be explicitly stored objects
which cannot be denoted and which do not require the contrivance

which we shall now discuss.

3.4.2, Controlled queues of processes,

The considerations of 3.4.1 drive us to provide an abstract
version of the sequencing set, a feature of all implementations of
simulation languages which 1s not needed by other languages. Akin
to the lattice L is a flat lattice of processes, I, which we shall
take to be a summand of D. Whenever an identifier is declared to
be a coroutine it denotes not a continuation but a process through
which is channelled each request for knowledge about the coroutine.
Associated with any program is a queue taken from a domain Q in
such a way that if 1:Q all that is known about the process 1:1 can
be inferred from 11. For Mal we take this domain of queues to be
I»[TxTxK°1, factoring out the undesirable elements as in 1.3.1,

The lattice K° provides the continuation corresponding to the co-
routine while the second constituent truth value lattice indicates
whether or not it has been suspended by applying cancel. The

first constituent serves a purpose very similar to that of areg in

255

that it establishes which processes are in use; to acquire a

fresh process the semantic equations invoke near:Q+S+I, which is
taken to be any continuous function satisfying

ATO.T(nearto) ¥1vi(nearto)+2=d1o, Alti+ivti+2[1: 1)L, false,

Somewhat similar to update is impose:I+[TxTxK°1+Q+Q, which can

be defined by

impoge=X ilwT. (A", 1/=1~+w,T1),

In consequence the iterated version of near, nears:N+Q+S5+1%*, is

given by

nears=AvTo.v=0+) , (A1 .{ 1) Snears(v-1)(impose1 ({ true) §t1tlltdo)(nearta)

At any point during the execution of a program the name of
the current process must be available alongside a sequencing set
in Q holding the continuations which supplant the current one
when other coroutines are resumed. This sequencing set cannot be
built into the continuations because it may have been modified by
the time they are set in motion; the relevant process names,
however, are immutable and can thercfore be incorporated in
members of C, Thus the logical development of 1.3.2 involves
setting C=Q+S+A, K=E+C and X=U+C, where A is a suitable domain of
answers. Before an expression or a declaration can be supplied
with a continuation both the environment and the process on which
it operates must be determined, so typical valuations are now
&:ExprU+I1+K+C and 2:Dec>U~»I+X+C, while the value domains are
provided by the equalities V=I+B+L*+J+F, E=L+V and D=E+G,

As subroutines do not have continuations sealed into them,
they are not associated with particular processes and #:Abs+U-F
can continue in use; now F=[E+I+K-+C]° so that 4 fn()E] is
AplkTo k(Ao k!, ro(AB.B|L*¥=C) »A E]pr1’k',T)a)To and @EEOEiﬂ is
lle.(lw.run<ﬂﬂE0Bpl,ﬂﬂEiﬂpl)w)

(Ae*.eM1iF+(e*+y1)(e*+2)1k,rv (1<p [Nt e*v1|L¥* > (e*+148), 1) (e*42)),

256

where run, rv and Iv are identical with their counterparts in

1.3.5 except for the presence of a member of Q which plays no

part in the evaluation. Labels, on the other hand, contain

process names in their values, with the effect that when a jump

is made the current process reverts to that at the time of

definition of the relevant label; this is made plain by the fact

that [L:Elpi1k+1l and 2[I::E]p1k+1 are both €[E]Jpik. For reasons

similar to those adduced in 1.4.1 recursive declarations must be

dealt with by means of #[AlpiTtotv, which is

ATTo ' T Al pr(Apt o k! (p"l#[8] +V] |E)T’0")T0 when 1<vs<ia]Al,

thereby implying that G=[K+(]1° and that ¢[1] is

Ap1kTo. (A6 .8:G+8kT0o,kéT0)(pfIJ+1). The remaining semantic

equations in appendix 1 are left almost unscathed by the introduction

of coroutines, the sole changes being the intrusion of two extra

arguments which do not interfere with the evaluation; gHEO:=E1ﬂ,

for instance, becomes

lle.runL?ﬂEoﬁpl;%ﬂElﬂpl)(AE*TO.K(dummy)T(update(e*+1)(£*+2)G)).
When we create a new coroutine we select a process which

is not in use and impose on it the appropriate continuation

together with tokens which reveal that the process is active.
Hence the outcome of #[cr{)E] is
APIKTO.{(Aw.K{nearto)(impose(ner»TCwT)0}
(true,true,rv(AB.B|L*=0) »#[Elp(nearto) (plres)+1), 1),
which in view of our remarks about labels ensures that after
running E control reverts to the process creating the coroutine.
The equations for the other kinds of coroutine are related to

those for fnI,E, fnlI ..,In.E, fnI..E and nti""’In"E in pre-

1"
cisely the same way as that for ¢r()E is related to that for the
corresponding subroutine.

The connection between a process resumption and a sub-

routine application is only rendered more devious by the insis-

257

tence that a passive process never be resumed unless by chance it
is that corresponding to pl[res]. In consequence we take
#lresume EO with Elﬂ to be
Ale.(Aw.run(@ﬂEOﬂpl,EﬂElﬂpl)w)

(Ae*to. (AT (1T (e*dalD)va-Tr(e*da|1)+3,plresl+1)(e*+y2)1'0)

(Zmposel{ T1+1,T142,K)> T)).

We can formulate the other properties of our coroutines in an even
more trivial manner, for @[cancel I] is
ok B Efpr(det.er I ke(imposee{ 1e¥l, false,1e+3) 1), T) while
#[adjoin E], its opposite, is
Apte B Elpr(Aet.e:I+ke(imposeel Te¥l,true,1e+3) 1),T). Notice that
in regarding | as a summand of V we are clearing the way for some
rather strange sharing patterns between coroutines which do not
arise in more normal languages. Thus in
g=0 inside h==cr()dummy inside g:=h, for example, assigned to g is
not a continuation but a process marking a continuation which is

altered whenever the continuation tallying with % is altered.

3.4.3, Variant formulations.

The queues introduced for standard semantics naturally
have counterparts in store semantics. The motivation given in
2.1.1 for converting K° into Z°xUxY remains valid in the new
situation provided a recasonable version of Z is adopted, so for
the store semantic equations governing the coroutines of 3.4.2
we can take Q to be I~[TxTx[Z°xUxY]I]. We might expect to require
valuations belonging to the lattices Exp+Z+I-+U>Y->(Q+5-+A and
Dec+Z+1+U+Y>Q+S+A but luckily they are unnecessary. The environ-
ment and stack involved when an expression or a declaration 1is
evaluated need not be supplied as arguments alongside the queue
T because they are already embedded in it. In addition the name

of the current process 1 can be kept in 1 by tagging it so that

258

it alone among the processes satisfies ~Ti+1AT1+2=true; doing
s0 is inelegant but perhaps more in keeping with the inter-
pretive nature of store semantics. Accordingly we extract the
name of the current location with the aid of last:Q-+5$-+1, which
is defined by Zast=ito.U{1|~Tt1+1aT142}),
For store semantics Z is therefore (Q-+5+A, and the
valuations are exemplified by &:Exp+0 and #:Dec~+0 where 0 is
Z+1 as before, The value domains continue to have the forms
imposed on them in 3.4.2, but now J=Z°xUxY, F=0°xl and G=0°x(QxS,
The environment lattice U undergoes a slight change because now
pl rec] must tuck away not the current state vector but the queue
and the store; consequently U is still [Ide«D®*IxJ*xP* provided
that P is (QxS. Moreover the definitions of novel, replace and
recur must be altered to take account of the locations accessible
from processes other than the current one; after doing this
we can demand that ¢ I] be
ATO (A1 (A6, 6:G> (A1, (AB.(S+1)p(imposel false,true,B) (S+2))(6+43))
(84214341, ((8¥2)14342) (1,0 /rec],(8+2)1+3+4+3))
(Last(8+2)(843)),
t(impose false,true,{ TI¥3¥1,T14342,(8 §T14343) T)0)
((Tr¥+343 I+ lastta))
and that L A]to¢v be
(rg!'trat FLAT (ATt"a”. (M. (AB.recurl'(imposel false,true,B) T")0")
(T340, TM4342 0 (T34 2 AT T 1 [E)))
(lastT"o'))},
T,d)
when 1<v<##{A]. We shall not provide more of the equations
needed by the extended version of store semantics because they
can readily be obtained by subjecting appendix 2 to the refinements

of 3.4.2.

259

The formulation of stack semantics in terms of queues can
likewise be put into effect by translating the equations of
appendix 3. Since each process must have access to 1ts own pTi-
vate environment and stack Q is again [»[{TxTx[Z°xUxY]] although
now J=7° and F=0°. We choose not to conflate Q and S because to
us the principles beneath the components of S are very different from
the ones underlying Q, which is concerned with the flow of control
through programs rather than with their results. The queue is
regarded as housing all the information private to a process whilst
the store provides a channel for communication between processes.
In other languages the extent to which a process can send or
receive data using this channel will be determined by flags in
T attached to the relevant entry in the queue. Illence stack
semantics can continue to invoke valuations &:Exp+0 and #2:Dec-+0,
for which #[I] is now taken to be
AzTo. (X (A8. 0 Zmposeil false,true,{ T143+1,T1+3+42,(8 §T143+¥3)) 0 0)

(ravel(T1432)C Ti¥342)[I141+1)) (LastTa)),
as V=I+B+L*+J+F, E=L+I+B+L*+J+F and D=L+I+B+L*+J+F.

When the semantic equations are set up correctly it 1is
possible to prove an analogue of 2.3.9 relating standard and
stack semantics in the presence of queues. Besides the predicates
of 2,2,5 this involves
AT ATV =TIV AT U2 =T 142a k(€143 ,2143) [1sIda(LastTyril),
so that it deals only with a queue v if there is exactly one pro-
cess 1 having ~ti¥iaT142=¢rue. In addition we can define a
version of the function seen:N-N+LW°xW°I+[W°xW°I+[P°xP°]>T more
appropriate than that of 2.1.6 to store semantics with queues,
in which W=L+I+B+L*+J+F+J+P+[TxTxLZ°xUxY]}] and P=0QxS; for instance

seenvo(v1+1)ﬁoa1ﬁ is seenvoviﬁo<(ﬁ+1)é1,(ﬁ+1)w1>ﬁ if ﬁlzlxl and is

260

\4seenv0v180&2ﬁ
A(hotenﬁg(61+3¢2,®1+3+2hdgyven02<61+3+3,®1+3+3)Av0<2n\ﬁ2:wxw}
if 61:[TXTXEZ°XUXY]]X[TXTXEZ°XUXY]]. With the assistance of this
function we can establish theorems like 2.5.9 and 2.6.9 whilst a
version suitable for stack semantics can be used for an analogue
of 3.3,9, By extending the definition of erushed given in 1,5.4
so that any expression satisfying it is devoid of coroutine
resumptions we can even validate 1,5.8 and 2,7.7 for semantic
equations with queues.

It is frequently claimed that stored free variable lists
can perform all the tasks which coroutines can carry out. Here
we shall briefly indicate how to show that this is so for our
choice of coroutines by providing an explicit conversion pro-
cedure which erases them from a program. We associate a member
of L* with every member of I called upon by the program in such
a way that changes in the contents of the constituent locations
reflect changes in the flags and continuation attached to the pro-

cess. To achieve this we pick out identifiers I I, and T,

1

occurring nowhere in the program and define
move:[Exp+Decl+Ide+[Exp+Dec]l] by such equations as
moveﬂcr()E]=AI.IO=(true,true,fn()res moveﬂE][Ioﬂ) inside IO;
movel resume EO with E1H=AI.IO=move[EOﬂﬂIB and I1=moveﬂE1]HIB

inside 12=nt.res I

inside val (I3:=fn .res I;

(if 142 then IOS else I)1

movel cancel El=AI.(movelEl[I])2:=false;
movel[adjoin E]=XI.(movelElIlIl)2:=true.
The other kinds of coroutine are converted in like manner to
¢r()E whereas the expressions inherent in Mal are not altered;
for example, moveﬁEb; E

|

problem now becomes that of proving that when I, does not occur

is AI.(move[EOBHI]; move[ElﬂﬂIH). The

261

at all in £ or A &[E] and 2fA] compute the same answers as
SlmovelEITI N] and.@ﬂmoveﬂEﬂﬂIOﬂﬂ respectively, We therefore
translate these programs using standard semantics, obtaining entities

in which 1,» I, and I, do not appear (by virtue of 1.5.2), and

1
then take members of Z, Q and S suitable for store semantics which
can be shown to be equivalent to them by using the extension of
2.3.9 alluded to above. This reduces the problem to considering
pairs in [QxS]1°x[QxS]° for which we take yclept® (1,5 ,{(1,3)
to be
MI(T1v1viid2+hoten® £14342,T14342) vgyvend® T14343,T14343) ,false)
vvaenG(6+2§6+3,B¢2§a+3)V(G=<Zastfd,(T(Zast%6)+3+2)ﬂ10ﬂ¢1))lI:I}.
Using this and the function seexn mentioned above we extract all
the values witnessed by corresponding states (£,5 and (%,3 so
that we can build up inclusive predicates resembling those of
2.4.5, Finally these are applied in a proof akin to that of 2.5.9
establishing that when kE((f,d),(T,é))=true and

rent|EI(T (Igcstf6)+3+2)=true we must have

c(emu;,;nmoveugmon]}i)<< £,8 ,{%,8) =true.

262

3.5. Parallel programming,

3.5.1. Indivisible operations.

The utility of the technique introduced in 3.4.2 is
neither confined to the description of coroutines nor vitiated
by the ugliness of some language constructs; indeed, we have
already alluded to its role in highlighting the obscurities of
on conditions, Here we shall model parallel programs by adapting
process queues so that they act in a non-deterministic fashion
outside the control of the programmer. Our approach will differ
from that of Milner [11] mainly because of our preference for
composing a sequence of operations as a continuation instead of
dissecting it.

We demand that the workings of computers can be analysed
into discrete operations which cannot be interrupted by one
another; it is fortunate that every implementation which avoids
chaos satisfies this requirement, for a continuum of operations
would need a different treatment. Though a typical computer
might debar assignments to a location while its content is being
extracted, we do not have to presume that the hardware locks arise
at such a macroscopic level, We shall nonetheless do so to enable
us to retain a model for storage akin to that of 1.3.1, but there
would be no difficulty about adapting all that follows to com-
puters permitting greater liberties: for instance, were the in-
dividual bits in a word protected from being overwritten during
the examination of its content, we would replace L»[TxV] by
L»fTx{{0}°+{1}°1*] and encode the members of B and L as bit
patterns in [{o}°+{11°]%*,

The 'indivisible operations' or 'basic steps' pertaining
to a particular implementation are also such that any two in-

stances of them which are not protected from one another can

be performed simultanecusly. Thus if at most one assignment can

263

be made to any location at a given moment, update defines an
indivisible operation such that for all proper a , &,, B, and B,
updatedlﬁl°updatea282 is the effect of interleaving updatex B,

and updateaQBZ arbitrarily unless a, =a Consequently should the

1 72"
implementation be executing several processes in parallel we
can align them arbitrarily to obtain a sequential computation
with the same effect; all that we must insist upon is that the
temporal order of the basic steps in each individual process be
preserved by the sequential computation.

In the mathematical model the counterpart to the mingling
of indivisible operations will be the composition of primitive
functions [like updateaisi and updatea282] in a certain order.
These functions will be attached to processes by 1, a member of
a domain Q similar to that of 3.4.2. After applying the function
given by some process 1:] another process will be chosen while
the remaining primitives required by 1 will be preserved in 1
as the continuation corresponding to 1. The choice of process
will be made by next, which will tentatively be assumed to belong
to I+Q+S+I; thus nexti1o0 will be the process which usurps control
after a function provided by 1:1 produces t1:Q and o0:S. The
nature of next will not preclude the possibility that one
particular process might be selected at every appeal to it, and
in fact when 1 contains only one active process this will in-
evitably be the case. Nevertheless the means whereby processes
take control is constrained by a hierarchy quite different from
that discussed in 3.,4.1, so the present 7 will be distinguished
from the earlier one by calling it a 'sequel'; the semantics for
a language with both coroutines and parallel programming would
therefore be endowed with both a queue and a sequel.

For reasons elucidated in 3.5.3 we now take 7147 (rather

than 17143) to be the continuation associated with 1:I in 71:Q,

264

and we tacitly presume that the definition of impose given in
3.4.2 is modified so that 71 is permitted to have seven com-
ponents, Before invoking a process impose is used to put the
current continuation back into the sequel, and then the fresh
continuation is retrieved. This suggests that to switch from

one process to another we introduce a function do having the form
AMBTO (AT! (T (next110)|C)T'0)

(impose1{ T1+1,T142,T1¥3,T1+L,T1¥5,T1+6,8) 1),

In fact the current continuation need not be put back into the
sequel if next does not call for a change of process, so it is
more efficient to let do be

ABTO. (A" 1=next1To+870, (T(next170)+7|C)T'0)

(Zmposel{ T1¥1,T142,T1¥3,T1+4,T145,T1+6,0) 1),

Minor variants of this are equally plausible: we could, for
instance, select the next process on the assumption that the
sequel preserves the current continuation, thereby giving do the
value

AOTO. (AT J1=next1T'0+0T0,(T(next11'6)+7|C)1’0)

(impoge W T14+1,T1+2,T14+3,T1+4,T1+5,T1+6,0) 7).

To extend the formalism of 1.3.4 by introducing parallel
processing we append extra arguments 1 and T to the equations
of appendix 1 in the positions suggested by 3.4.2, and we then
insert do at every basic step in a computation. As mentioned
above, precisely what constitutes the set of such steps depends
on the implementation; we shall include in it changes to seguels
and stores (which provide paths of communication between pro-
cesses), but doing so by no means exhausts it. The comments
of 3.4.3 establish that associated with every process are
members of U and Y, so when the environment is altered or when
an expressed value is supplied to a continuation the sequel is

implicitly being influenced. Hence that precess 1 to which a

265

given semantic equation refers can be supplanted by another
process in the wake of evaluating a declaration or an expression.
As a result FII] is Ap1kT1o.(A8.8:6+dot (6x)10 ,do1 (kS)to) (plI]+1)
and #[0] is Ap1kT0.dol(k (F[¥]p))to. Since QHEO; Elﬂ entails the
deletion of an element from the stack we take it to be
XDLK.@[{EO]IDI(XE.dol(g[[Ell]ptK)) instead of Apm.fi[{EO]]pl(Ae.?[{El]]pm);
analogous remarks apply to conditional expressions and while loops.
The argument 1 in the semantic equations does not represent
the only process which is currently executing; in contrast to
3.4,2 here it is merely the process on which attention happens to
be fixed at one particular moment. Accordingly 1 will be said to
be the 'present' process, while a 'current' process will be any
process which could become the present process without impediment,
In order to clarify what constitutes such an impediment
Mal will be extended by the addition of semaphores. Thus the
expressions notice E and ignore E will determine whether or not
the semaphore signified by ®E is to affect any future selection
of the present process by next, while raise E and lower E will
respectively add 1 to and subtract 1 from the value of the
semaphore. As no process can even be current, far less present,
unless the value of every semaphore influencing it exceeds g,
next must be suitably constrained. Consequently the information
with which nezxt is supplied must include a record of which
semaphores can affect a given process, This is kept in the sequel
7:Q by letting T1+3 be a 1list of the locations holding semaphores
which have been made to influence 1; T1+1 and t1+2 remain truth
values with much the same roles as in 3.4.2. The component T1+7
contains a continuation, but the facilities for parallel programs
to be provided in 3.5.3 will be such that this continuation need

not be in C. Before describing these facilities, however, we must

investigate the properties of newt.

266

3.5.2, Scheduling algorithms,

The selection of the present process resembles that of a
new location in that while it may depend on the particular im-
plementation involved it is also subject to certain restrictions.
These can be encapsulated in a continuous predicate, able:I-+(0+5-T,
such that ableito is true only if 1 can currently be running;
hence M T1c.able(next110)10=A110.V{able1'16|1":1}+true,1. For
the language we are considering
able=)110, T1+1AT1+2AA 02 T143>holdac |N>0, true | ot LIA(T147:C°)
in accordance with 3.5.1, but here it is immaterial how the current
processes are constrained. We are content merely to observe that
if t. and t, are proper sequels such that T, HT, is proper then

1 2

the continuity of next ensures that A10.nemt1T10=A10.next1120. This

apparently innocuous equality has disastrous implications which
we shall now analyse.

It seems plausible that the values of ®[B] and
Flwhile EO do E1B should be taken to be ipikto.do1(k(B[B]))to and
Ap1K.fim(k6.QﬂEDﬂpl(Ae.e+d01(9HE1Hol(ke.d01e)),dom(x(dummy))))
respectively, so that #[while true do dummy] must be
ApikTo. fix(dor)to, Suppose that an attempt is made to execute

a process 1, embodying the expression while true do dummy in

parallel with another process and that by some chance when the

execution of 1, commences the sequel T, and the store o, are such

that t 1 ,47: :C° and nextl T,0,=1,. The equality above implies

that for all »n=zo

nemtlo(imposelo(T Vot 1, Tyl 42, T 1 43, T 1 ¥U, T 1 45,1 ¥6,6 >T)0

0 0°0 00 00 o'o

where 90=L and en+1=do1gen when n=0. Consequently for each version

of do suggested in 3.5.1 induction on n20 will establish that

BnT000=i and thus that fiz(dor)TOOO L. Intuitively one would not

expect this to be the case, for even when next10T000=10 the

operating system should have the oppertunity of breaking out of

267

the infinite loop by choosing another process after performing
two indivisible operations taken from 1y
To remedy this situation it is necessary to provide next
with a parameter the value of which will alter whenever do is
invoked. Part of the outcome of applying nexzt will have to be
a new value of this parameter which will then be passed on in
such a way that even if the present process, the sequel and the
store are not changed successive calls of next need not produce
the same result., This suggests that if H signifies this extra
domain of parameters next should be sought among the members of
[+H+Q+S+[IxH],
It would be possible to provide an all-embracing version
of H by taking it to be a flat lattice; the elements of this could
then be put in correspondence with those ¢:1+0Q+S+[IxH] such that
AMTo.able(drtovi)to=xrto.V{abler'to |11 }+true,1, Inherent in
this interpretation of H are two more specialized (but equally
satisfactory) ones, which will be termed 'descriptive' and
'prescriptive'. The first of these views elements of H as record-
ing how the processes have been executed so far; thus I* is
appropriate as its H, xi1*.#1* is a rudimentary clock, and for all
1:1, n:H, t:Q and 0:S nextintc+2 can be taken to be either
{nextinto+l) §n or (U §n, depending on whether n is deemed
to be amended when a process comes into play or when it is halted.
In the prescriptive approach a typical n:H provides the order in
which processes will be executed in the future, so that under the
convention of 1.2.8 H is I or possibly I*. There is no reason
why H should not play both descriptive and prescriptive roles
by assuming the form I*xI”, but we shall concentrate on its
prescriptive powers; however to stress the underlying generality
of H we shall call a typical member of H a 'roster' instead of

giving it some more evocative title, As intimated above we can

268

arrange for every descriptive roster to contain the name of the

present process; we shall organize each prescriptive roster in a

similar fashion by taking its top element to be the present

process. This will enable us to discard 1 (the present process)

from the parameter lists of our equations, and to regard necxt

as an element of H-+(Q-+S+H; thus henceforth for any roster n in

a suitable domain H n+1 will be assumed to be the present process,
No matter how H is constructed next must be restricted

by a postulate like

Anto.able(nextntoti)=into.VMiablerto|1: I }>true, L.

Consequently the next process to be executed cannot be selected

from a prescriptive roster n simply by taking the first avail-

able element, which is n+2+1; rather next must trace back through

n until it encounters a suitable process. This can be achieved

by writing

next=AnTto.able(n¥241)T10-M+2,next(N+2)T0.

Not every sensible scheduling policy can be viewed as a member

of I™ from which this particular next function selects a succession

of processes. One policy which requires a different next functian

is that which demands that execution of the present process continue

for as long as possible; for this we might set

next=Anto.able(n¥1l)to-n,next(n+2)TOo,

Further policies are conceivable: one could, for instance,

insist that the siblings of the current process be completely

executed before any other process takes control. Thus to retain

full generality either we must let zmext be any continuous function

subject to the postulate above, perhaps together with

AnTo. fixe (AN’ . neztnto=n'+true,¢(n’'+2))In=AnTt0. (nextnto+i:l),

or we must adopt the more general treatment mentioned above in

which H is a flat lattice.

Prescriptive rosters perhaps provide the most natural

269

framework in which to discuss such problems as whether two
processes deadlock or how to ensure that a program is allowed to
execute only for a certain length of time: the latter issuc, for
instance, can be resolved by using a member of I in which only
the operating system processes occur infinitely often. 1In

this connection it should be noted that a prescriptive roster

in I” corresponds with a time-slicing algorithm only if the com-
puter which is being modelled mathematically has precisely one
processor; under other circumstances the roster is concerned to
arbitrate between all the processes which are currently running
by deeming one of them to be the present process. Thus it

might be preferable to adopt I*” instead of I so that for any
n:H nv1 would be the 1list of all the processes which perform some
action 'during a particular cycle', Within this cycle the first

Temaining operation of one process, n¥l+vv would be applied

0’
before that of another process, n+1+v1, only if v <y, at the
end of the cycle next would replace n+1 with a different list,
which might be n+241. This approach will not be pursued here,
as it yields 1little extra insight,
Whichever sort of roster is employed the lattice of

command continuations, C, is H+(Q+S$+A and the activities set in
motion by choosing a process can be embodied in a suitable function
do, When n+1 signifies the present process and ¥y is a variable
ranging over a continuation domain having C° as a summand this
function is given by
do=2Ynto. (AT’ (An'.n¥1=n’+1+(P|CIn" 10, (T(N'+1)+7|CIN'1’0) (nextnt'c))

((A1.4mpose1{ T1+1,T142,T1+3,TAd4,T145,T14+6,P T)(Nn+1)).
Under this definition of do, should GO:C, nO:H, TO:Q and o :S

0

1:]}=false then do®.n.1,.0

satisfy (1, (n ¥1)+7:C°)wWilablert o oMo 0%

0 0|
need not yield a faulty computation with answer T but instead

270

may he BoniTOGO (for a suitable nl), whereas setting

do=lwnTU.(AT’.(An’.n+1=n'+1+(¢|€)n’TO,(T(n+1)+7|C)n’T'G)(ngxtnTg))
((M.imposerl T141,T142, T 143, T 140, T145,T146,0 T)(Nn+1))
must produce an error stop when doGOnOTOUO is encountered.

Besides being suitable for describing parallel processes
which are explicitly set up by programs such as operating systems
sequels can also provide an account of relevant actions external
to the computer on which the program is executed. These actions
might include supplying an input tape, which will be discussed in
3.5.3, or, more drastically, turning off the power. The latter
case merely needs an appropriate function 4g?#:C° attached by the

sequel to a process 1.:I, together with a version of next which

0

applies to prescriptive rosters and which satisfies neztnOTOUO+1=1

whenever nO:H, TO:Q and 00:5 are such that abZelOTDoO=true, n0+1=10
and Tolg¥7=halt.

An alternative way to represent some external actions entails
taking H to be I"x[Q+S+[(QxS]1]1” rather than I, The function speci-
fied by the top element of the second component of n:H is applied
before a fresh process is selected by next, so do 1is
ANTo (AT, 0D LA (AT (AN T aEn 1y | ConTTo !,

(T'{(n'+1+)+¥7)CHinrt"e ")
(nextnt”o’))
(ZmposeW T'1¥1, T 42, T 143, T 14, T s, T U6, !)
(n+1+1))

{((n¥2+41)10)
and Anto.nextnto+2 1s probably Anto.n+2+2., As only certain members
of Q+S-+[QxS] are likely to arise the component [(Q-+S+[QxS]]" could be
replaced by R where R is a flat lattice of representations on
which can be defined a mapping on to those ¢:Q+5+[(QxS] obeying

suitable constraints, Among these constraints might be

271

Aato.holdaog=hato.holda($dto+2), which would ensure that the only
parts of the store to be altered would be the input and output
buffers. We shall not pursue this topic further, since an ade-
quate description of parallel programs seems to be provided by
taking H to he I", To confirm that this is so we shall now give

a formal description of the language features mentioned in 3.5.1.

3.5.3., Typical equations for parallel processes,

Whereas the processes of 3.,4.,1 can be manipulated by textual
statements those appropriate to parallel execution are not ex-
plicitly mentioned in a program. Consequently I is not usually
part of the expressed value domain of a language; even conventional
languages in which operating systems are written prefer to let
summands like L masquerade as I. Thus when extended as in 3.5.1
Mal retains the lattices V=B+L*+J+F, E=L+V and D=E+G required by
1.4.5. Providing rosters in addition to Sequels necessitates
taking C to be H»Q-+S+A (not Q-»S+A or S-+A), but K and X remain
E+C and U-+C respectively, so the valuations are exemplified by
&:Exp+U+K+C and by @:Dec+U-X-C.

In accordance with the argument of 3.5.,1 the semantic
equations are built up by inserting do at all their hasic steps.
The roster n:H supplied to these equations serves solely to affect
the outcome of do and to indicate which is the present process;
even the sequel T1:Q affects only a few of the equations given
below. Thus gI[I] is dpkn10.{(A§.8:G+do(dk)NnT0,do(kd)NTO)(pf I]+1)
(and G is [K»C1°), while ¢[R] and ¥[®] are Apknto.do(kK(H[B]))nto
and Jpknto.do(k(F[®]p))nTto respectively. Since t:] need no
longer appear as a parameter in the equations, gnEO; Eiﬂ is
ApK.?HEOHp(Ae.do(@ﬂEiﬂpK)), FIif E, then E, else E,l is

ApK.QﬂEOHp(AE.E+do(@ﬂE1DpK),do(?HEQHDK)) and #lwhile E, do Eiﬂ

272

is Apk.fix(A8.HE To(he.erdo(FIE T (he.do0)), do(k(dummy))));

now, however, the definition of do given in 3.5.2 ensures that

the execution of while true do dummy need not continue indefin-

itely if two of its basic steps are performed in quick succession.

Just as alterations to the stack influence the sequel implicitly

so do alterations to the environment; hence #¥[A inside E] 1is

taken to be Xpk.#[Alo(Ap’.do(FIE) (divertpp')k)). By the same

token 2[I==E} and F[I==E] are both equal to

Apx.#IElp(Ae.do(x(aridle/I1))), while 2[I=E] is

Apx FlElp(he.do(x(aridle/I11))) and F[I=FE] is

ApXLIElp(Aento. (A8, 8 :Lrdo(x(aridl$/I1)InT(updatedeo), T} (ol I]¥1)).
For any t1:Q and 1:I 1143 is a member of L* which lists the

semaphores which help to determine whether 1 can be used as the

next process, Thus &[notice E], which is intended to adjoin the

location tepresented by E to the member of L* corresponding to

the present process, is simply

Apk I Elp(Rent. (A1 do(kem(imposer ({ T1+1,T142,{€) 8T+ BT1t3)7))(nd1))

whilst #[ignore E}, which is intended to delete the location from

the 1ist is

ApkLEIp(hent. (Aa* (M. do(kein(imposer ({141, T142,a% 811t3) 1)) (n+1))

(FLx(A¢B.B3=Cr+() , (=841 [(B¥1) }E(R+1)I(T(N+1)+3))).

The operation of increasing (or of decreasing) the value of a sema-

phore is indivisible but that of evaluating the expression E which

gives rise to it need not be; this fact is incorporated in the

semantic equations by letting ¥[raise E] and [lower E] be

ok ZIElp(rento.do(keInT(updatee(holdea [N+1)0)) and

Aok LIElpChento.do(keInT(update (holdea |N-1)0)), in which no

opportunity 1is given to carry out any other actions between

isolating ¢ and modifying its content.

Although the function run set up in 1.3.5 allows expressions

273

and declarations to be evaluated in an indeterminate order, it
does not permit one evaluation to be entangled with another, Thus
according to appendix 1 the execution of El""’En entails exec-

uting B, either before E, or after E so that switching back and

2
forth between F, and F, is not envisaged. Now that the formalism
can handle parallel programs this can be viewed in a fresh light
Rather than reflecting a permutation of a list of expressions or
declarations run will set up processes which will evaluate the con-
stituents of the list, The answers calculated will then be
returned to the parent process 1 so that it can resume execution.
While its offspring are running the continuation ¢ attached to 1

by the sequel will therefore be in E*+C or U*»C, so that the
definition of able in 3.5.2Z will preclude the possibility that

1 could proceed in parallel with its descendants. This situation
does not prevail in all languages and is not typical of operating
systems, which can be executed at the same time as their offspring,
but its variants could obviously be modelled equally well., For
Mal, however, it i1s necessary merely to introduce the functions
run; [K+C1°*+[E*+C1+C and run:[X+C1°*>[U*+C]1>C, When H is taken

to be I and when n+2 is always regarded as the present process
corresponding to n:H, for every y*:{K+C1°*, y:[E*+C3°, n:H, 1:Q and
g:5 runy*ynto equals

(A1*.(Ag.(AT’.downT'0)(fix(A¢u.v>#y*+T,impose(1*+v)(iv)(¢(v+1)))1))
(Av. (AR Ctrue, true , T(NHLI43,1 %, T(N+1)45, T(N+1) 46, (y*+u)k))
en’ '’ (AT". (AP (AB. . do(B+Y ", ¥ ' (dummy*) Y n¥1,n" 1'c")
(VIT"(i*4v) v |1sv/s#y*}))
(Ae*. (T"47)((e*¥1, ... ,e¥*¥(v=-1),6) §e*tv))
(impose (1*¥+v)({ false) 5T (1*¥v)t1)17))))

(nears(#y*)t0).
Unappealing though this formula is, 1t does at least have the merit

of being adequate to describe a realistic language feature; moreover

it is sufficiently general for all our present purposes, in that

274

the definition of run appropriate to declarations differs only
in the domains required by y* and ¢.

The complicated nature of run is inevitable, for it 1is
designed to embody a rather devious course of action. On embarking
upon the evaluation of El""’En’ say, run not only preserves the
given ¥:{E*>C]° as the continuation of n+1, the present process,
but also obtains n new processes using near, which obeys an axiom
like that of 3.4.2, and endows them with fresh entries in the
sequel; the roster could, of course, also be altered but this would
be superfluous., Each fresh entry inherits t(n+1)+3 (the list of
semaphores attached to n+1) and catalogues the siblings of the
relevant process as 1ts fourth component; any one of these siblings
may be invoked by do because they all have continuations belonging
to €, These continuations incorporate the code for some E
having 1=msn as well as some k:K° which describes what is to
happen once the evaluation of E is complete. In fact the effect
of «x depends on whether any of the siblings of the process corres-
ponding to Em have not yet finished executing: if
ViT"{1*4v ')+t |1<v/<fy*} is true there are siblings which must

proceed further so the result returned by E_ is given to the

m
continuation of n+1l but this continuation remains in (E*+C],
whereas if VIT"(1*¥v’)|1<sv'<#y*} is false the continuation of n+1
is put into C by supplying it with a dummy argument list of

length n, Thus after all the Em have been exhausted none of the
descendants of n+l can be called upon by next to become the
present process since each has false as the first component of
entry in the sequel; n+l, on the other hand, can resume control
because its continuation is a member of C, Much of the clumsiness
in the definition of run stems from the need to return the result

of £ to n+1 immediately it has been found, so a simpler function

could be used were the sequel to follow the queue of 3.4.,3 by

275

keeping explicit environments and stacks,
When parallel programming is introduced the value of

13 .,Enﬂ given in appendix 1 can therefore be replaced by

0x
ApKnTG.run<21E1ﬂp,...,EﬂEn]p)(Ae*.K(€*|E))nT0, while

gl A, and...and Anﬂ and.?‘[[A1 and,,,and Anﬂ can be assumed to be

1
roxnto.run{@l A No,..., 214 10 (xeconserve)nto and
Apxnro.runhfﬂalﬂp,...;rﬂ&nﬂp>(xoconserve)nTo respectively.

Likewise WHEO:=E1H becomes
ApK.run(zﬂEoﬂp,@EE1]p>(Ae*nTo.do(K(dummy))nr(update(e*+1)(e*+2)a)).
The siblings of a process are listed in the sequel to

avoid executing two parts of a program in parallel unless the
syntax indicates that this should happen. Sequential standard
semantics suggests that 3 is the outcome of val (o+1,(2,res 3));
however unless the process executing 0+1 is terminated on jumping
out of res 3 parallel semantics may not reach the same conclusion.
Loosely speaking, were this process allowed to stay active after
the jump the stack associated with its parent might grow to the
wrong size; this phenomenon would be expressed in the formalism
by an attempt to apply a member of C to an argument in E. Con-
sequently whenever a process is left by jumping the descendants
of its siblings must be terminated using
hang=x1*1,1%=() »>1,

(Al hang(1*t1) (hang(T1¥4) (imposer ({ false) ST1T1)TY))(1%41),
Thus in parallel semantics #{val E] is taken to be
Apkn ZIElplhen't’c’ . do(ke) n¥1l,n") (n¥1=n'+1>1' , hang{n’+1) 1')c'/reskn
and #[res E] is taken to be Apk .LIElp(re.do(plres]e)). The anal-
agous equations for labels require knowledge of the prescriptive
roster pertaining at the time the labels are declared in order to
identify the present process. Hence g[I:E]Jpkn+l and 2[I::E]pkn+1

are both

276

An'tiot do(FIEIpx)n¥1,n" (n¥i=n'¥1>1/ Jhang{n'¥ D ')0’
although #[goto El is simply Apk.#[Elp(re.do(e|C)) and J is C°.
Slightly different formulae would be necessary were the present
process treated as an additional parameter of the semantic
equations rather than as a distinguished part of the roster.

By contrast with the situation for labels the ostensible
meaning of an abstraction in parallel standard semantics closely
resembles that given by sequential semantics. Thus&[fn()E],
for instance, is Aak.rv(AB.B|L*=() +do(£lE]lpk),T)a and gﬂEoEiﬂ is
Apk. (Y. run(@PLE Ho,20E 10)

(Ae*.e*¥1:Frdo(e*¥1)(e*¥2)k,
rv(AB.1<B |[Nsfe*y1|L*>do(k(e*+14B)),TI(£*42))
so long as rv and sv are modified to take account of the presence
of H and Q.

In a computer which permits concurrent operations it is
natural to view locations as being accessible to particular pro-
cesses instead of to the entire computation. Consequently an
element of [L+T] must be attached to every process in the sequel.
Actually two such elements are attached in order to segregate
the heap storage heaving infinite extent from the stack storage,
which is discarded on leaving the block wherein it is allocated;
Q is therefore taken to be
I TxTxL*=<I*x[L»TIx[L»TIx[C°+[E*>C]1°+[U*+C1°]1]. By introducing
further syntax we could ensure that certain locations required
by a Mal program would be retrieved not by garbage collection
but with the aid of

restore=delel.(AE.(T11+1,T 1+2,T11+3,T11+4,€,T11+6,T11+7>)

1
(Ka.(T01+5)aA(T11+5)a).
Just as this replaces the function restore of 3.1.1 so the

stipulation on new provided by 1.3.1 is superseded by one

277

concerning new:H-Q+5-+L, to wit
ANToN{((T1+45) (newnTto)v(T1+6) (newnto))ati+1|r:1}

=anto AMI((T1v5)av(tive)a)ativi|1: I} |asL}>1, false.

An interesting demonstration of the interaction of a process
with actions external to it is provided by an input buffer. Though
S, the domain of stores, may be [L»VIxV*xV* the second component
of a store o may not list all the members of V which are ever
going to be input. Thus an attempt to evaluate get E when o+2 is
the empty list need not lead to an error; it may just halt the
process until ¢+2 is not empty. This effect could be expressed
by taking #4[get E] to be
ApK.BﬂEHp(Ae.fim(AenTo.#o+2>0+¢0KenTo,doenTU)) where
¢0=AKenTc.do(Ke)nT(updatee(o+2+1)<o+1,c+2+1,o+3>), but this
involves making the process to resume execution when it tests
to see whether o+2 has been filled. A more efficient version of
#[get E] would be
ApK"?HE]p(AenTG.(AT’.#c+2>0+¢onenTo.do(¢0Ke)nT’0)

(tmpose(n¥1)({ T(n¥1)+1,falee) GT(n¥1)T2)1));
the second component of n+1 would then need to be altered when the
computer operator supplied more input. Though the person con-
cerned might believe himself to have free-will, the sequence of
values provided by him can be assumed in retrospect at least

to be w a predetermined member of ¥V (which is defined in

0’

1.2.8)., The process 1, corresponding in 1 to his actions would

0

therefore have at its genesis a continuation 60 such that

60=f£x(k¢wnT0.(A(T',0').w=()+haltnTO,do(¢(w+2))HT'O’).
(11.<11+1,true>§Tl+2,<0+1.0+2§<m+1),0+3>))w0.

This formulation is not entirely satisfactory because 6, is obliged

to alter 1142 for every 1:1, but more realistic equations could

readily be given. Among these would be a group in which 1142

278

represented not a member of T but a member of I*; this member of
I* would be the list of processes which could not become current
until 1 had carried out some action. Hence 9¥[get E] would be
ApKhZHEﬂp(AEUTU.(AT’.#G+2>0+¢0KEHTG,d0(¢OK€)nT’0)
(imposalo((T10+1,(n+1)§T10+2)§T10T2)T))

and 80 would be given by
eo=fix(A¢wnT0.(A<T',o')w=()+ha1tnTU,do(¢(m+2))nT'U’)

(imposelo((T10+1,(>>§T10+2)T,<0+1,0+2§(w+2),0+3)))w0.
A model in which t11+2 belonged to I* might constrain the selection
of the next process by
able=A1T0.T1+1A~(1:T1O+2v...v1:T1m+2)

Mo T1+3+holdao [N>0, true |aiLlIa(T147:C°),

where 10,...,1m are suitable operating system processes.
By following the lines of 3.4.3 we could introduce a form
of parallel store semantics which would be equivalent to parallel
standard semantics in the sense of 2.3.9 provided that do was
inserted at the appropriate points. Qur other theorems could also
be established under the additional assumption that only one member
of I can become the present process (which entails giving run the
same meaning as in 1.3.5). Thus, for instance, all suitable
p:U, n:H, 1:0 and E:Exp satisfy
Ao #lElpknto=iko. ((Ae.do(ke)nT)*1¥[E]lp)o when 1.5.4 supplies the
conjugate valuation,

There is no difficulty about setting up sequels which
describe other features of parallel programming and 'real time'
systems, but the domain Q tends to become complex. Ilowever the
structure imposed above on { is sufficiently large for our
purpocses, as it could be made applicable to Algol 68 with the
aid of minor extensions. Chief among these would be the

addition of components listing the opened and closed input and

output streams attached to particular processes. We shall not

279

detail these but will end the section with an account of the con-

ceptual basis for our treatment of input and output.

3.5.4. Computed state sequences,

It has been claimed that a deficiency of the theory as
developed in appendix 1 is its inability to provide such pro-
grams as while true do put 1 with any answer other than :. This
can be overcome by interpreting programs as families of parallel
processes obeying the equations of 3.5.3; here, however, without
introducing rosters or sequels we shall try to analyse those com-
putations which in sequential semantics yield the answer . and
appear not to terminate.

There is a widespread belief that a program which never
halts should be given a meaning by the semantic equations which
reflects whether or not it prints any results. To achieve this we
could set S=[l»[{TxV]IxV* and A=y~ (taking V* to be as in 1.2.8),
furnish every entire program with the final continuation Xeoc.() |A,
and view #[put E] as lpk.#2[E]p(reo.{c,kem) instead of
Aok HIEYp(leo, kel o¥1,042,(e) §a+3)). When the remainder of appendix
1 is preserved intact this device makes while true do put 1 and
put 0 have as their respective outcomes f<x(Ao.(1,0) (an un-
ending stream of numbers) and (0,{()). Morecver at the cost of
specifying the domain A the output channel would be removed from
the store, where it gives a misleading impression of influencing
the future course of the computation by being supplied as an
argument to the continuation. Nevertheless modifying #put ZJ
has implications which the considerations below lead us to regard
as being both too extensive and too confined.

In accordance with the precepts of 1.4.1 we wish the side

effects of a recursive declaration by incidence to be performed

280

at the time of declaration only. However were we to adopt the
modification suggested above the operators of appendix 1 would
give to rec f==(put 1; fnz.put 2; fFfz)) inside f0 the value
(1,fZxz(ro0.{1,{2,0))) instead of the more fitting {(1,fiz{ro.{ 2,0}).
Unfortunately there is no natural way to amend our treatment of
recursion to make it compatible with an approach which binds the
output more tightly to the continuation than to the store.

Perhaps it is unfair to berate one artifice on the ground
that it invalidates another, but there are in any case further
unsatisfactory aspects to every model which preserves only the
output from computations. Since the input is not saved in a
similar fashion, bilateral streams (which can be both written on
and read) must be handled by the formalism in the manner chosen
for the input streams, although they partake equally of the nature
of output streams. In Algol 68 there is a library function which
will test any stream to see whether it can be written on; as
streams are not tied to particular mechanical devices for trans-
mitting information, we can readily conceive of another function
which would transform an output stream into a bilateral stream.
Such a function would play havoc with the semantics of output pro-
posed above, but within the more conventional model of 1.3.1 (ex-
tended by the means mentioned in 3.5.3) it would simply confirm
the essential uniformity of streams: each is an object not unlike
a process or a location containing a list in V* or H* together with
certain truth values which determine such trivial matters as
whether output can be sent along it.

The argument for distinguishing the outcome of
while true do dummy from that of while true do put 1 but not from
that of while true do 0:=1 seems to rest upon the assumption that
sending something along an output stream is irrevocable whereas

assignments to locations can be overwritten. This confuses

281

physical vcality with mathematical calculations involving lattices.

Certainly the marks made upon line-printer paper may he indelible

and the holes punched in tapes cannot be filled, but this hardly
seems to bear upon the algorithm realized by a program. Indeed
for such devices as traffic lights the physical manifestations
of output are purely ephemeral and can be interpreted equally well
as the updating of locations. It is no more satisfactory to argue
that the difference between the output and the store resides in
the irreversibility of the act of sending a number along an output
stream, for the act of assignment likewise cannot be undone:
once we have updated a location we do not annul the fact that an
assignment has taken place when we later restore the content to
its original value. Furthermore the significant products of
non-terminating programs like operating systems are sequences of
acts with evanescent effects, and whether or not to construe them
as 'output' is a matter of taste.

Given that we ought to distinguish the outcome of
while true do dummy from that of an unending loop which writes
numbers there can be little sense in identifying it with the
outcome of such an expression as while true do get 1. If the out-
put is not to vanish when a program fails to terminate then neither
should the input, for it cannot be affected at all by the algorithm
which uses it. In fact whereas the infinite 1ist of numerals which
is printed might reasonably be thought to deserve the formal
interpretation 1 like the store, the input stream should not be
vicolated by the computation. Accordingly our earlier suggestion
must give way to one in which A, the domain of answers, is V¥ x¥* and
the final continuation is Aeo.({) |A,¢> |A). Now we take ¢[put L]

to be rpk.#[Elp(reo.(keo¥1,{e,keo¥dy) and @[get E]} to be

282

ApK . LIE]p(Aea,. (A0’ {{0o¥241,keT+1) ,KET+D))
{updatec{o+2+41){(ov1,0¥2%1))).

We cannot keep merely the residual dregs of the input by letting
%[get EJ be
Aok ZIElp(heo. (Ao . {keg "v1+2,ke0 "+ 2 Yupdatec (KETY1¥1)0)),
because this would provide while true do get 1 with the answer
and would make a mockery of the intention of continuations. Yet
once we have changed ¢9[get E] symmetry dictates that we turn
4l put E] into the analogous form, which is
Aok RIE)p(reo. (Ao . {xeo'+1,{e,kec’+2)) Y o¥1l,0+2,043%TD))
where S=[L»[TxV]11xV*xV¥* as before.

Having introduced the principle that the semantic equations
can duplicate an entity (in our case the input) we can grasp
what underlies the original modification to the meaning of
?ﬂpuf E]: essentially it is concerned not to remove the output
from a realm where it does not belong but to keep a record of
some of the actions indulged in by the program. There is no reason
why other actions might not be of equal interest; we might, for
instance, wish to examine the way in which the content of a
particular location changes as the computation proceeds. In the
situations above we are simply inspecting what happens at some of
the basic steps (in the sense of 3.5.1) and ignoring what happens
at others., Considerations of elegance and consistency suggest
that instead of doing this we preserve all the changes to the
store by setting S=[L»[TxV]IxV*xV* and A=S*, Each program is
supplied with the final continuation Xeg.(o,() |A and at every
basic step we adjoin the current store to the list in A.

Accordingly g[EO:=E is now

41
ADK.runL?HED]p,@Hﬂiﬂp)(AE*0-<U,K(dummy)(update(€*+1)(€*¢2)o)>)!
E; B4l is Apk.91Eglp(reo.to, 2T Eqlpkod) and @[1] 1is

283

Apko.{A8,8:6~(0g,8ka) ,{o,kda) }(p[Il+1); more generally, wherever
do would appear in collateral semantics this sort of equation
inserts a further store instead. Obvious retractions enable us
to extract the final output and input from the store sequence
arrived at by the end of the computation, thereby providing all
the information obtainable from the earlier versions of the
equations for get E and put E.

Needless to say there are many variants of the scheme
proposed here; in particular both Store and stack semantics
would allow the Tretention of a sequence of state vectors in the
domain A=[UxYxS]*, while their parallel ccunterparts might give
rise to members of A=[HxQxS]*. Moreover it is even possible to
adapt the scheme in order to capture the execution sequence when
semantic equations without continuations are provided. It scems
that whatever formulation of semantics is appropriate to the
problem in hand should be used so long as it can be proved to be
equivalent to the standard semantics of 1.3.4 {enhanced as in
3.5.3 when parallel programming is permitted). In the present

case such a proof can be couched in terms of halt:A»S, which is
defined by halt=Xo.o+¥2=()»o0¥1,halt(o+2[A). We take the domain A
of appendix 1 to be S and regard a typical pair & as having &
drawn from standard semantics and & drawn from the above. If
e=A8.Nal 80,80 |88}, k=ARAlc(ZE,R® |ef}, z=A%.Ac(£6,%® |up} and
a=r8.(A8.8=C1,1) v8=X(T1,T) »true,s8) 6,haltd (and if s has the same
form as in 2.2.5) we can assert that for every E:Exp and A:Dec
A« ELE] R, ELEI DR A (@[AT 64,21 Al %> =true for all p, R and § having
upanklazxf=true. The proof of this follows the usual lines and has
no features of interest.

Two adverse criticisms might be levelled against this
approach to the output of non-terminating programs. Firstly, our

semantic equations do not make plain that the numbers in the output

284

stream cannot influence the course of a program. Yet much the
same is true of the environment, which may contain denotations
for identifiers occurring nowhere in the program, and just as
1.5.2 can cut the environment down to size so a more complex
induction can serve to show the irrelevance of the output to

the remainder of the program. Secondly, the equations for which
A=5" fall foul of recursive declarations in the same manner as
those for which A=V ; however this is immaterial, for the member
of A obtained at the end of the program now represents not the

final result but a record of all that the store has undergone.

285

3,6, Manifest tvpes,

3.6.1. Compiled coercions.

Many computer languages adopt manifest types in order to
arrange that precisely the right storage is allocated to par-
ticular members of V and to facilitate type-checking during a com-
putation. Though these aims are connected they are not identical,
for it is easy to conceive of implementations in which all the
stored values occupy the same space but type-checking is desir-
able or in which locations can differ in size but no errors are
found until programs are executed. Consequently our discussion
of types will be couched in terms of Algol 68 [26], which dis-
tinguishes clearly between allocating storage and coercing values
(the concomitant of checking their types during compilation).
Stored values and locations play contrasting roles in Pal, which
extends more readily to the incidence and reference features of
Mal than to a language with a hierarchy of types where any ob-
ject having type M may be kept in a location of type ref M,
Accordingly even the syntax used henceforth will be that of strict
Algol 68, although recourse will not be made to the more unpleasant
aspects of its terminology.

To ensure that every location contains a value which fits
it exactly we introduce a lattice M, comprising the meanings of
modes, and take the first component of the store domain $ to be
L»[[M-T1xV]., Whenever a new location suitable for holding a
given value is required the locations attached only to defunct
processes are examined to find out whether they are compatible
with the mode of the value. In terms of the domain Q of 3.5.3

new:M>H+>0>S>L must therefore satisfy a more complicated constraint

than hitherto; a suitable candidate is

286

aunto. (Ao V{((T145)av(Ttiv6)a)atidl|1: I v~areaaoy) (newunto)

=aunto A VI ((Twds)av(Tidedadativl|1: I v~areaqoou|a:l }+1, false,
where as in 1.3.1 greaqao is (o+1l)at+l, The member of M>T associated
with a location is not regarded as an attribute of the content,
which continues to be obtained by taking holdoao to be (o+¥1)u+t2,

In general because types can be checked during compilation the
mode of an entity need not be incorporated in the corresponding
stored value. The only exception to this rule arises in the
case of an object having a mode united from several other modes,
when the existence of conformity relations entails keeping the
original mode of the value along with it; thus the declaration
union(bool, char) ec=true, for instance, makes ¢ denote not true
but (u,,true’ , where y, is some member of M which represents the
syntactic entity bool,

Sufficient information is made available during compil-
ation for the types in a program to be checked by a valuation
which links each identifier to the type it is declared to possess
and thus creates a static environment drawn from the domain
Ide»M* before executing the program. For convenience this environ-
ment is amalgamated with the dynamic environment in Ide=D°%*,
thereby providing U with Ide<[MxD°1* as its first component,

In practice a member of M will be paired only with those denot-
ations which fall into certain summands of D (so that (uz,true),
say, will not occur if U, represcnts char), but notwithstanding
this Ide+[MxD°1* is adequate for our present purposes, Strictly
speaking we should set up U in a manner resembling that of 3.1.1
in order to ensure that any compiled program obeys the context
conditions, which like those of 3.,1,4 arrange that no location
subject to the stack discipline is passed out beyond its extent,

but we shall follow existing implementations by ignoring this

287

refinement. After responding to the declaration above an environ-
ment p therefore becomes p[(uo,(ul,true))/c] where
union (bool, char) is represented in M by Moo

Just as V need not be identical with) so there is no
reason why the lattices M found in L»[[M>TIxV] and in Ide»[MxD°]*
should coincide, and indeed those appropriate to Algol 68 do not.

More precisely, since selectors I ..,En lying in the flat

1o
domain Sel can obtain from an object having mode

ref struct (M1 LyyeresM, Zn) objects of modes ref Ml,...,ref M

to which assignments may be made independently, the storage
occupied by a structure is taken to be a list of locations (in one
to one correspondence with the fields of the structure) instead

of an indivisible location, Accordingly the lattice M present

in Ide»[MxD°J* includes a component which signifies the modes
vielded by structures whereas the lattice M in Le[[M>TIxV] does
not; our main concern being with type-checking, from now on we
shall consider only the former version of M,

In keeping with its insistence that an expressed value
belongs to one (and only one) of the lattices L and V Pal permits
expressions to be evaluated in three ways, cmbodied in the
valuations &, &# and #. In Algol 68, however, there is a con-
siderable overlap between D and V; in particular it is possible
to store any sort of location or even a list of locations., It
would be possible to provide syntactic operators which would
extract the contents of these locations, but in fact Algol 68
allows the context of an expression to determine when its result
is to be forced to become a value of another given type. In
principle different sets of coercions could be provided for
every production rule in the syntax, but in fact no more than

seven such sets are required; as even Pal needs two sets

288

(comprising Zv and rv) this total is not excessive. To com-
pensate for this paucity of contexts there is a wealth of poten-
tial ambiguities arising from the fact that sometimes the type
into which the expression must be coerced is not fully known
since all that is available is some predicate in M»T which it
satisfies.

From this it would appear that we could view a coercion
as a member of [M+T]1+[MxE}+[MxE]1 mapping a predicate in M+T and
an initial pair (u,e) :MxE to a final pair. Were this the case
there would be no need to build any coercions into a program
during its compilation, and we could happily proceed to execute
it using an interpreter which would first work out the result of
an expression and would then apply a suitable coercion. In order
to check the type of an expression we would need a domain of ex-
pressed values akin to our present MxE, but nevertheless this
approach would be somewhat less complex than the one we shall
actually adopt. Regrettably it is invalidated by 'balancing', which
we shall now describe,

An expression like a conditional clause or a case clause
contains more than one possible exit (in the sense of 1.5.3) and
hence more than one possible mode for the expressed value which
it would return in the absence of coercions, To arrive at a
common final type all but one of these exits are subjected to the
strongest possible coercion, thereby being forced to take on the
type attained by applying the coercion induced by the context to
the remaining exit; should there be more than one way of choosing
the exits to be coerced strongly they must all lead to the same
final type. The program
ref ref int u=loc ref int; ref int u=loc int; (true|u|v):=v,

for instance, provides the type ref int for the result of the

conditional clause by taking the content of u {thereby coercing

289

it strongly) and by applying a nugatory soft coercion to v;

its net effect is therefore to update the location contained in

u with the integer contained in v, Were the coercion appropriate
to the left hand side of an assignment not applied until the con-
ditional clause had been evaluated u would be updated with the
location » because an object of mode ref ref int is not affected
by a soft coercion,

Balancing thus obliges the coercions to act on the code
which produces expressed values rather than on the values them-
selves, Setting C=H+Q+S+A, K=E~+C and X=U»C as in 3.5.3 we take
the coercions to be members of [M+TI1+[MxGI+[MxG] where G=[K+(C]°.
The semantic equations governing an expression must now be
supplied with yet two more arguments, one being the predicate 7
which the type of the ultimate expressed value must satisfy and
the other indicating the context o wherein the expression is
found. For simplicity we shall give this context the same name
as the coercion to which it tallies, although in a more formal
treatment we would not do so. Because o maps 7 and a pair {(p,y) :MxG
to some other pair in MxG these extra arguments are supplied to
the equations after determining the environment and the current
process. Accordingly the valuations are exemplified by
#:Exp+U+0+P+>[MxG] where 0=P-+[MxG]+[MxG] and P=M>T. The method
of floating labels to the head of a block discussed in 1.3.4 re-
quires that we also introduce a valuation ¥:Exp+U+0+P>[MxG] which
assumes that the lahels are already known to the environment. Our
earlier versions of ¢ and ¥ must accordingly be displaced by ones
such that for all E:Exp we have #[El=Xpomknto.(#[Elpon+2|[K+C1InTo
and also 4[E]=xpomknto. (¥ Elpon+2|L[K+C1)knTo.

When the component of lJ dealing with identifiers is

arranged as above the value of [Tl for any I:Ide must therefore

290

be dpom. (M u,® Jom u,ik.(8:6>do(8k),8:d+dod,8 1 E+do(xS), TN) (plIlv1),
The test for members of & in the formula stems from the adoption
of recursive declarations akin to those of 1.4.1, not from the
presence of procedures without parameters {which are only applied
at the instigation of the context). Contrariwise the test for
members of J arises because jumps can be executed whether a goto
statement occurs or not; more precisely, for every E:Exp ¥[goto EJ
is ¥I{El. We can take across to Algol 68 the description of the
effect of a jump given in 3.5.3 (even including the definition of
hang), so J=C° as before; the sole difference is that J is no longer
a summand of E or of V despite being one of 0,

The semantic equation for ¥ I] is fairly typical in that
o and ® appear only in the combination om. Indeed were it not
for the existence of balancing and of the switches between two
forms of strong context in the expressions known as 'confrontations'
we could amalgamate these arguments, supplying the valuations with
mappings in [MxG]+[MxG]} instead. Before clarifying the nature of
these mappings we must elucidate the structure of M, and so it is

to this task that we now turn.

3.0,2, Declarations of recursive modes.

Because Pal permits any location to contain any stored
value it offers no obstacle to the construction of programs in
which the constituent locations of certain members of L* may hold
further members of L*, 1In a manifest type language, however,
such programs may require a list of location with the same type,
and this cannot be achieved in the framework set up so far. Thus
although the Pal declaration rec x=nil aug false can be written
in the cumbersome forms of strict Algol 68 as

ref struct (ref bool z) x=heap struct (ref bool ¢); ¢t of x:=false

291

the fragment rec x=nil aug z calls for a more elaborate treatment,
This is provided in Algol 68 by allowing new modes to be created

out of those already known; the relevant declarations are recursive,
for if they were not nothing could be accomplished with their aid
which could not be accomplished without it at the cost of extra
writing. In terms of them the fragment above could be translated

as the verbose program

mode p=ref struct (p £); p z=heap struct (p £); ¢ of z:=rx.

The existence of mode declarations ensures that we cannot
automatically identify the syntactic lattice [18] of modes, Mod,
with its semantic counterpart, M; instead we must relate them
through an environment which binds a meaning to each symbol
signifying a mode name in the language. These symbols are the
proper elements of a flat lattice of indications, Ind, so during
compilation an element of Ind+*M* must be constructed alongside
the member of Ide»M* mentioned in 3.6.1.

Types such as struct (M1 21,...,Mn Zn) provide only a
partial parallel to the members of L* employed by Pal, since without
executing an Algol 68 program we can discover all the points in it
where a given component of a structure is selected. In this
respect members of L* are more closely followed by arrays than by
structures; moreover some arrays share with members of L* the
further property of having flexible bounds. These bounds can be
set to their initial values by supplying expressions as part of
the declarer M:Mod in an Algol 68 identity declaration M I=E. For
the sake of consistency bounds must also be permitted in mode T=M,
where T:Ind is declared to have the same meaning as M; under these
circumstances, however, the bounds are not evaluated when T 1s

declared but only when T is later used in an identity declaration.

We shall not dwell on the nature of array bounds in Algol 68 or

292

on the valuations required by their semantics but will presume,
rather inaccurately, that a list of such bounds is an expressed
value in E, Were this so the continuation appropriate to a
declarer would belong to K and the valuation determining its out-
come would be in Mod+U-+K+(C; in consequence the effect of a type
declaration mode T=M would be to include in the denotation of T a
member of K+C which would not be immediately applied. Accordingly
a dynamic environment lying in Ind»G* must be introduced; as the
declarations encountered during the compilation of a program
tally with those encountered during its execution this environment
can be combined with IndeM* to give Ind»[MxGI*, the second com-
ponent of U. To handle declarations of operators U must even be
supplied with a third component, but this raises no new questions
and will be therefore be ignored. The domain U will thus be
[Ides[MxD°I*Ix[Ind»[MxG1*], while any p:U will yield 1lists plI] and
pl T] for all I:Ide and T:Ind.

Note in passing that a language in which 1lists of array
bounds actually did form part of E would in one sense be more

general and cohesive than Algol 68. Yet the plethora of
specialized semantic domains which is found in Algol 68 does
provide a means of making programs less prone to errors by re-
stricting the positions in them where particular 'parts of speech'
can occur, and it is not clear that reducing syntactic restrictions
inevitably (or even frequently) gives rise to a wider class of
useful programs., The evolution of programming languages has often
entailed trading in a rather special construction for one with
wider applicability but less security: this has happened, for
D:=E1 and indeed in

the move from languages with manifest types to those without.

instance, in the replacement of I:=E by E

Whereas removing petty rules usually leads to more elegant

semantic equations, allowing too much liberty may not de so and

293

will hinder proofs about particular programs. The extent to
which language designs resolve this conflict is an important
criterion for their success,

To describe the influence of modcs on coercions we do not
need to discuss the valuation in Mod+U+K-+C, as it is relevant
only during the execution of the program. We shall therefore
examine only A4 Mod+U+M, which ignores array bounds when describing
types. The production rules reveal that a syntactic mode must be
an indication or a basic type like bool or char unless it combines
other modes in a representation of a complex entity such as a
procedure without parameters or a structure. Thus we take the
lattice Mod to be
Ind+{bool}°+{char}®+...+{proc}®xMod+{struct}®°x[ModxSell*+ ..,
where for simplicity we have detailed only a few of the components
and have admitted the non-existent type signifying structures with
no selectors,

The lattice M is roughly homologous to Mod in that the
semantic quantities bool and char, for instance, must be double
atoms., Being intended to provide the 'absolute' meanings of
modes without reference to environments or evaluating mechanisms
M does not contain a version of Ind, the domain of indications.
Notwithstanding this, such distinctions as that between procedures
and structures must carry over from Mod to M so that corresponding
to every other summand of Mod must be one of M. To replace
{proc}®xMod by {proc}®°xM would be incorrect, however, for
although proc . cannot be written in a program intuitively
proc p should tally with (proe,1} in an environment where p in-
dicates the type L. Adopting the coalesced product of 1.2.2
therefore entails substituting {proe}®°xM° for {procl°xMod;

similar alterations must be made to the other summands, so

294

{bool}°+{char}®+...+{proc}®xM°+{struct }°x[M°xSell*+,... gives
the structure of M, Such constants as proe and struct are of
course irrelevant to the formulation of M, but their presence
has some pedagogical value,

The valuation .¥:Mod+U+M is defined for every T:Ind by
taking #TT] to be ip.p[T]+1+1 when Ap.plT] belongs to U-[MxGI*,
The basic modes must be given meanings which take over to M the
roles fulfilled by the types in Mod; hence ATbooll and A#fchar],
for instance, must he Ap.bool and Ap.char respectively. Since
the principle underlying the interpretation of the basic types
applies equally to the higher types AT proc Ml is Xp.{proc A1M o
and AT struct (M1 Zl,...,Mn En)ﬂ is
Ap.(struct.(LMHMlﬂp,El)____,ﬁfﬂMnﬂp,En))>_ Only if M is taken to
be {booll}®+{charl}®+,..+{proc}®xM°+{struct}®x[M°xSell*+,,,, not
{bool}?+{charl®+,,.t{proc}®xM+{struct}°x[MxSel1*+,.,.., does this
recursive construction of .4 give such modes as proc p a value
other than ..

As every Algol 68 declaration is recursive, in accordance
with the remarks of 1.3.4 the meaning of any A:Dec can be ob-
tained only by making its constituents of the form mode T=M
interact, This can be done by collecting up the identifiers and
indications declared, as well as the modes to which they corres-
pond, using &:Dec>[[ModxIdel+[ModxInd]ll*. The construction of
this valuation requires taking &[M I=E] to be ((M,D)),

Almode T=M] to be ((M,T}), «[E; Al to be &#{A] and .sf![Ai,...,An]]
to be.ﬂﬂA1H§...§dﬁanﬂ.

Although the four kinds of declaration mentioned in the
definition of & are only a sample of what Algol 68 has to offer
they provide clear guidance as to how the others are to be under-

stood. On this basis it is possible to introduce &:Dec-U-U,

295

which yields the part of the meaning of a declaration that can

be extracted during compilation. Given any A:Dec Al is
Apfix(Ap’ fiz(Aovovadal Al »p, o (v 1Y [H Tl Al dvd1lp?, 0 [l Al ¥v¥2])1),
for declarations of operators would complicate the definition of

&, not that of %, The presence of Ide»D°* and Ind»G* in the domain
U is irrelevant to the roles of these valuations, sc the entity
1:[K+C]° is put into the environment set up by «[A]+v+2 purely

for the sake of convenience.

The lattice M can readily provide all the members of 0
required by the valuations of 3.6.1. In a soft context, for
example, an expression must be left unchanged by the coercion
unless it is of mode proc MO for some MO:Mod, when the code com-
piled for the expression may include an invocation of the corres-
ponding procedure, This process may be repeated until an object
having a type satisfying the contextual predicate m:P is at last
obtained; thus should M, itself be proc M, for some M1:Mod a
second invocation may be inserted by the compiler., An element
of 0 appropriate to soft contexts is therefore given by
soften=imiu,y) rur 1,y ,u:{proec}°xM°+softenm nt2,ik.y(re. . (e|Glek) , L.
The other coercions can be constructed in a similar fashion
although tiresome complications must be introduced to handle
such phenomena as uniting, where one mode can be converted into
many union modes each containing it.

Unfortunately M is less satisfactory as a source of
elements of P, Many of the contexts in which an expression can
stand require only that after performing the appropriate coercion
the type of the expression satisfy a simple predicate like
Auou:{atruet}®x[M°xSel]*, Strong contexts, however, demand
that the final type of the expression be tested by ku.u=u0 for

some uO:M. Since M i1s not a flat lattice no continuous test for

296

equality can be imposed on it; however, we knew that ir practice if
m is the set of meanings of modes that arise in programs then the
memhers of m are mutually incomparable. We can also introduce a
function, equal, such that
equa1=kvu0u1.v<1+true,
(u0=booZ)A(u1=booZ)+true,
(u0=char)A(u1=char)+true,
/{un:{proc}°XM°lOSnsl}+equaZ(v~1)(UO+2)(p1+2),
Ny :{struct}®x[M°xSel]*|o<ns1}~
(”(#(u0¢2)=#(u1+2))*false,
~/\{u0+2+v+2=p1+2+v+2 | Lsvst(u ¥2) }>false,
Nequal (v-1) (ugv24v ¥1) (uvavv vy [1svr<#(u v2) 1)
false,
For every v equalv is continuous, but there are many

sequences {pn|n20} for which Moy Epn when »n=z0, Uun can arise

1
from a valid Algol 68 declaration and fﬁequaZv(Uun)(uum)|v:N}=true
thiough /Hjequalv(Uun)um|v:N}=1 for all m=0; such sequences can be
constructed using the method of 2.1.6, Thus it is possible to
incorporate equal in the parameters of the semantic equations

only by introducing discontinuous functions #nd using the subset m
of M or by providing equationes fpr every valuc of egualv.

This is sad but perhaps not unacceptable; intuitively 1t is to be
expected that for any valid program there can be derived an
integer v:N such that any two modes required by the program can
be distingished from one another by egqualv. This result will be

established in 3.6.5 with the aid of a treatment of modes more in

keeping with the style of the Algol 68 report than the one

developed above.

297

3.6.3. Interpreted roles for modes.

The unsatisfactory nature of equal arises from the fact
that M is not flat; yet for the reasons outlined in 2.1.6 to adopt
a flat lattice in place of M is to abandon all hope of using fix

to determine the outcome of a recursive type declaration (though we

could use m to factor cut the part of M that we need}. Here we

shall define a valuation on a flat lattice which will be equivalent

to the valuation # of 3.6.2 and which will also model the obvious
implementation technique for recursive types.

Underlying the semantic equations mentioned in 3.6.2 is
the convention that the value given to any T:Ind by an environment
p:U can be obtained simply by inspecting the entry for T in p;
thus ATT] is Xp.p[Tl+1+41. In an implementation, however, the
compiled 'call by value' implicit in this gives way to an
interpreted 'call by name' which replaces T by the right hand
side of its declaration. This operation could be expressed
mathematically by regarding the component of p concerned with
indications not as a member of Ind»[MxG1l* but as a member of
Ind»[ModxG1*, then a valuation «Mod+U+M, for which «#[T] would
be Xp.#4[pl T]+1¥1]p, might be needed instead of .4,

To define U in this way would be to succumb to a temptation
like that of giving denotations to the free variables of a pro-
cedure when applying it rather than when declaring it. This
snare could be avoided by adopting Ind*[ModxUxG1* rather than
Ind+[Mod<G1* and by taking #[T] to be Xp.4l p[TP+1+1] (pfTI+142);
however the coalesced product of 1.2.2 is such that were
Ind®[ModxUxG1* to be a component of U then the version of U
derived from the minimal fixed point of a functor would contain
at most two elements. The use of Ind*[ModxU°xG]* instead would
provide a sufficiently large domain U only at the cost of

depending crucially on lattices other than flat ones, and thus

298

cannot be tolerated.
Fortunately 3.1.1 offers a hope of salvation: as part of
the value of an indication will be kept not an environment but
a cluster of pointers. This cluster will be a certain y:Ind=N
such that for any T:Ind Y[T] will show where to find the appropriate
occurrence of T in the entire environment. Thus the part of
dealing with Ind will be Ind~[Modx[Ind NIxG1* and # T] will be
roughly
A0 ATl TIH24ATCAT) AT pI THTH(H#PI T T -CpI TTH242)IT!T),
Because a declaration of the form M I=F necessitates representing
M in the environment alongside the denotation of I the component
of U concerned with identifiers is taken to be
Ide»[Modx[Ind>N]IxD°1*, As U is now
[Ide=[Modx[Ind=NIxD°J*IxCInd»[Modx[Ind»NIxGI*] the valuation & must
be superseded by a certain #:Dec+U>U, just as A is superseded by
«#. For any A:Dec #[A] can be written in terms of the valuation
#of 3.6.2 as
Ap (A, fix(Apv. vt Al »p,d(v+1) ([A] 4V, P, L) /T Al 4v+2])1)
(AT (M{12u<4d[Al +(T=aT Al ¥v42) , False |[viNt>#pl[TI+1,#p[T1));
if declarations were not recursive #MA] would be
Ap.fiz{Adv. v Al»p,p(v+1) (AT A 40421, AT, #o[T] , 1) /[Al ¥V+2])1,
The member of Ind»N attached to an identifier or an in-
dication by a declaration can be used to extract the pertinent
entries in the environment even when further layers have been
piled on top. To emphasize the irrelevance of the third com-
ponent of ModxUxG to the determination of the value of a type
the environment formed by the process of extraction will keep
+ in each such component., The function dip:[Ind»N]-U->U will

thereforc be given by

299

dip=AyPp. (Ao (AT O AT o (pl TI+(#p[TI-9LT1)))
(fiz(Apu* Fw*=0+) ,((w*v141,w*+142,10) §¢(w*t1))).
The complexity of dip could of course be reduced by allowing it to
yield answers in Ind+[Modx[Ind»N]ll*instead of in U; only a
desire for conceptual economy runs counter to this.

Even when the portion of U concerned with Ind is
Ind>[Modx[Ind>N1xGJ* rather than Ind»[MxG]* it is possible to
convert a pair (M,p} (representing the meaning of an indication
relative to an environment) into an 'absolute' value in M. This
operation can hbe performed by .#:Mod+U+M; this must provide any
T:Ind with the same meaning as the element of Mod linked to it by
the environment, so #[T] must be Ap4[pl[TI+1+101(dip(plTI+1+2)p).
Needless to say .4[bool]l is ip.bool and Al char] is Ap.char while
the higher types are given meanings by extending . in an ohvious
way; thus K[proc M] is ip.{proc . 4IM]) and .#[struct My Ty, M) Zn)ﬂ
is Ap.(struct,! (.l[[Mi]]p,Zl) ye e ,(Jf[[Mn]Ip,En))) .

For any environments § and P drawn from the domains
[Ide»[MxD°1*1x[Ind»[MxG1*] and
[Ides»[Modx[Ind=NIxD°J*Ix[Ind~[Modx[Ind»N1xG]*] respectively the
mappings AM.¥IM]F and AV, KL[M]p are homomorphisms of Mod viewed as
a word algebra into M regarded in the same light. If p and P are
produced by the same program these homomorphisms might reasonably
be expected to coincide. That this does indeed happen will be
proved in 3.6.6; here the foundations for the proof will be laid
by providing a means of building 6 from p, namely
turn=ivo. (A CAT. o (PI I, AT ¢ (pl T 23)

(fie dw*, Q. fuw*=0>0) (N, w*+1+3)) §¢ (W*T1)
Muwrd1vt] (Furn 0-1) (dip W*+1¥2)pr)))).
Until 3.6.6 any mention of an environment will be an allusion to

a member of [Ides»[Modx[Ind=NIxD°]1*1x[Ind>[Modx[Ind=»N]IxGI*1,

not to a memher of [ldes[MxDeI*Ix[Indes[MxG]*73.

300

The environments set up by ¥ during the execution of a
declaration associate only finitely many members of Ide and Ind
with lists in [Modx[Ind»N1xG1* which are not empty. Furthermore
the pointers provided by these lists must themselves refer to
entries drawn from the narrow confines of the environment. These
constraints can be summarized by giving « its conventional inter-
pretations and setting
slim=xp. (Ao, ((J{#pl1]|1:1de}+] {#p[T]|T:Ind}) <)

AMNN Lzv<#pl[I]1+0(plIT+v),true|I:1de}
AN1vtpl TT>¢ (pI TT¥V) , true|T:Ind}|viN})
(K(M,W,Y)./(((#DHTOM=0+0,1)S¢HTDHS#DHTOH)
A(lsvﬂwﬂToﬂ+((dipwpﬂTOH+v+2)HT1HS¢ﬂT1H)),true)
A(M:Ind+(1s#pﬂMﬂ),true)]TO:IndATI:Ind}
For all A:Dec and all p:U if slimp=true then patently
slim(X[Alp)=true. More significantly, if slimp=true and #p[T]>0
for some T:Ind then siim(dip(pl[Tl+1+42)p)=true.

Demanding that coercions take as parameters predicates in

M+T leads to the difficulties encountered in 3.6.2, The pre-

dicates to be discussed below are therefore defined not on M but

on ModxU, the elements of which can be mapped into M by applying

44, Although the domains D° and G embedded in U ensure that

ModxU is not flat, those members of ModxU which must be dis-
tinguished from one another differ in respects that do not depend
on D° or G; consequently the predicate chosen to express the
equality of two modes can be made continuous. A typical coercion
o is in [[ModxUJl-»TI1+[ModxU=xGI+[ModxUxG] while every predicate
required by a context belongs to [ModxUJ+T. In particular, for
any I:Ide ¥ 1] is

Aporm. (Ay.om pl I +2141,dip(pl Il+142)p,v))

(A8, Ax.(8:G+do(6k),8:0+do8,8:E+do(kd8), 7)) (p[I]%1+3)).

301

Though ModxU gives rise to a simpler treatment of equality
than does M, such predicates as that revealing whether a given
pair (M,p» signifies a procedure are less easily defined than
their counterparts on M., Only after starting to evaluate any
(T,p :IndxU is it possible to establish that T has been declared
to be a procedure; moreover the first step in the evaluation of
(T,p) may simply lead to another member of IndxU, so underlying
the predicate must be a recursive algorithm, This is prevented
from returning the answer L on encountering a pair (p,p> with
plpl+1 equal to (o,rT.#plT],1> (and with #[plp equal to L) by the
existence of a list in [ModxUJ* which is compared with every member
of ModxU produced during the evaluation. The comparison is
effected by a continuous function which checks the top element
of the list to see whether it tallies with any of the succeeding
elements of the list in those respects which can influence the
evaluation of a mode. In fact it is convenient to be able to
test two lists simultaneously, so this function, kept, is deemed
to be a member of [ModxUJ}*+[ModxU1*+T. Throughout the remainder of
this section £ will signify a typical member of [ModxUl*; under
this convention kept may therefore be defined by
kept=k£0£1.(k¢0.(A¢1.\ﬂzsvs#go+(¢01=¢0v)A(¢11=¢1v),false|v:N})

(dv . €1+v+1,dip(kT.#(€1+\J+2)|[T]])(€1+\)+2)))
(Av. (¢ £0+\J+1,dip()t'1‘.#(Eo+v+2)[[’1‘]|)(£0+v+2))).

It is necessary to carry out the checks involved in keptz
when members of IndxU are reduced to members of ModxU which are
not themselves in IndxU. This can be achieved using
wend:N+[ModxUJI*+[ModxUl*; for every (M,p) :Modxl this givecs rise to
Hwendw({(M,p)) |v:N}, which lists the members of ModxU created
during this reduction. As the integral parameter v supplied to

wend is intended simply to measure the depth of recursion required,

302

wend=AvE.v<1+1,

~(E¥141:Ind)vkeptEE~E,

(MM, P,y cwend(v-1) (COM,dipP (E41+42))) §E)) ((E+1+2)[E41+1]41)
wind=2g.|Hwendvg |viN},
The 'shielding' conditions of the Algol 68 report ensure that no
pair (M,p) which arises in a program can have wind((M,p)) +1+1:Ind;
were this not the case calamities could arise with the valuation
A, as 3.6.4 will indicate.

Any mode MO having the form proc M1 for some M1 actually

belongs to {procl}®xMod, so M,¥2 coincides with M, ; likewise when

M i M ¥ i
g 18 struct { g Tyt En) its second component, M,¥2, can

be taken to be ((Ml,zl),...,<Mn,Zn)>. Accordingly soften, for
instance, now satisfies
soften=Am{M,p,y) (MM, pD ~ M i Ind)Aam(M ! ,pY A M 0", Y,
~M': {proc}®xMod)~+.,
(M'y2 0" Ak y{(Re. (|Gl))
(wind{(M,p)) 41).
In 3,6,5 it will be necessary to have some knowledge of
the textual composition of syntactic modes. This can be ob-
tained by 1listing all the shorter modes out of which they are
built; thus it is helpful to have available Zug, which 1s given
by
Lug=AM ,M:Ind~«(M) ,
(M=bool)+(M) ,
(M=char)~(M) ,
M:{proci°xMod-(M) §2ug (M+2),
Mi{struct}®x[ModxSeT1]1*>(M) §2ug (M¥2+1+1)8.,.58Zug M¥2+# (M+2)+1)
The test for equality between members of ModxU, tend, is

built up in much the same way as wend but requires two lists in

303

[ModxU1* (namely &o and 51) and an integer v, to mark off parts

of the lists when they are examined. Unless the pairs Eo¥Vy and

£1+v1 are found together in Eo+v1 and €1+v1 their structure 1is

investigated more closely. Should either of them be a member of

IndxU which is reduced by wind to another member of IndxU, a

parameter of bend becomes 2; as 3,6.5 will establish, in the same

situation equal yields the answer 1., Should wind(50+v1)+1+1 and

wind(£1+v1)+1+1 be blatantly dissimilar, the parameter becomes 1,

but the final answer may nevertheless be 2. Thus the function

bend:N+N+[ModxUI*>[ModxUI*+N+[[ModxUl*x[ModxUl*xN] is given by

bend=)\vo\)1g0£1€. (Ad, (AL MO . M1> VoS 1+1,

V1< 1+< goigl'lE) »
kept(gof(vl—i))(ﬁif(vl-i))+¢()(>s,
MO:Indvml:Ind+¢<><>2,
(M0=b001)A(M1=b001)+¢()(>€.
(Mo=char)A(M1=char)+¢<)()e,
AdMn;{proc}°XMod[05ns1}+¢<M0+2)(M1+2>s,
ANM :{struct}®x[ModxSell*[o<n<1}~
@(#(MO+2)=#(M1+2))+¢()<>(1ve).
N/\{MO+2+\)+2=M1+2+\J+2|15\)5#(MO+2)]+
6() () (1ve),
(APl o)y (v1))
(An_(Mn+2+1+1.....Mn+2+#(Mn+2)+1n)
6 () (Ave))
(wind £0+v1>+1+1,wind(£1+v1)+1+1))
(A<M*O,M*1).(Aw.bend(vo—i)(v1—1+#M*0)(w0§go)(w1§£1)e)
(An, fix (APv,v >#M*n+() .

{ <€ M*nh),wind(£n+\))+1+2)) Sy (ve1))1) !

bind=?\\)£0£1.U{bendvovgogl l\)O:N}.

304

3.6.4, Proposition,

Let Eo and 51 be members of ModxUJ* having El=wind50;

define (M)=EO+1 and (Mi,p1)=£1+1, and suppose that

0’Po
slimp0=true and that #poﬂM0ﬂ>o if MO:Ind. Inevitably M1 is proper
and.#ﬂMOﬂpoaﬂ[Miﬂpl. Moreover if M1 is a member of Ind either
JMMOHDO=1 or kept(((Ml,pi))§£0+1)(((M1,p1))§EOT1)=true, while
if My is not a member of IndglﬁMoﬂpO is proper.

4Throughout the proof attention will be fixed on only one
suitable list EO (and the corresponding list Ei). Since slimpo=true
any v

N, v,:N, TO:Ind and T1:Ind having 1svos#p0ﬂTO] and

0° 1
1sv15(p0ﬂToﬂ+vo+2)[Tiﬂ satisfy

dip(dippp [T I¥4v 4230 =dip(p LT 14 (v +#p [T, [-9[T,1)¥2)p,

when w=p0ﬂTOH+v0+2. Hence if 4% is defined to be the difference
between Z{#pOHTH|T:Ind} and the number of pairs of the form
(TO,vG> having
(AE’.keptE'E’)(((pOHTOH+UO+1,dip(p0ﬂTOH+v0+2)p0))§£)=true it can
readily be proved by induction on £ that for all &:[ModxUJ*,
Tl:Ind and vlzN wind(((poﬂT1ﬂ+v1+1,dip(p0[T1]+v1+2)p0>>§E)
coincides with wend(i+i£)(((pOﬂTiﬂ+v1+1,dip(poﬂT1ﬂ+v1+2)po))55).
In particular El is proper and equal to
wend(1+2{#p0ﬂT]|T:Ind})£0; moreover #glsi{#poﬂTﬂ[T:Ind}+#Eo.

By similar reasoning EO is Elf(#gi—#io).

To proceed further it is necessary to truncate .# so that
it follows the algorithm for wend step by step. Thus for all
M:Mod-ﬂbﬂMﬂ is taken to be Xp.L, while when mzo.dh+1[T] is
Ap.J%[pﬂTﬂ+1+1ﬂ(dip(pﬂTH+1+2)p) for every T:Ind,.lm+1[boo1ﬂ is
Ap.bool,_lm+1ﬂcharﬂ is Ap.char..ﬂ%+1ﬂproc M] 1is Ap.(proc,ﬂmﬂMﬂ)
for every M:Mod and.ﬁ%+1ﬂstruct (M, I,.00,M) Zn)] is

Ap.(struct,(bﬂm[Mlﬂ,Zl),...,QﬁmﬂMmﬂ,Zm))). Henceforth it will

be assumed that 4 is the minimal fixed point of the mutually re-

305

cursive semantic equations which it satisfies; this assumption
can be embodied in the assertion that.dEUu%.

Plainly.A;ﬂE1+1+1ﬂ(51+1+2)aA%ﬂM1ﬂpl if nz0. Assume that
for some m having OSms#gl-#Eo—l
J%+mﬁgi+(m+1)+1ﬂ(El+(m+1)+2);1%ﬂM1Bpi for all »n20. As
£1+(m+1)+1=(£1+(m+2)+2)ﬂEi+(m+2)+1ﬂ+1+1 and
E1+(m+1)+2=dip((El+(m+2)+2)ﬁEl¢(m+2)+1ﬂ+1+2)(£1+(m+2)+2)} for
every n>0 ua+m+1ﬂil+(m+2)+1](£1+(m+2)+2)a4;+m{£1+(m+1)+1ﬂ(El+(m+1)+2)
Hence 4%+mﬂg1+(m+1)+1ﬂ(g1+(m+1)+2)a4%ﬂM1Hp1 whenever nz0 and
OﬁmS#El-#EO; because El+(#gi—#£0+1)=€o+1 it is now possible to
infer that-ﬂﬂMOHpO%l[Mlﬂpl.

Should M, not be a member of Mod the nature of ensures
that #M 1o, is proper. Should M; belong to Ind, however, either
kept (E Y1) 8E T1) K€, ¥1} SE F1)=true or for some m having
1sms#€1-#£0 kept(£1+1,£1+(m+1))<El+1,51+(m+1))=tpue_ A simple
structural induction is enough to establish that any pairs
(MQ,DQ) and (Ma,p3> subject to
kept((MQ,p2>,<M3,p3>>(<M2,p2>,(MS,pB))=true are such that
J%HMQHpQ%A%HMSHpQ for all n=0. Consequently if
kept(€1+1,£1+(m+1)>(g1+1,g1+(m+1)>=true for a certain m satisfying
lsms#gl—#go then Ag+m[Mal1;£%HMlﬂpl for all »n=0; in this
situation,JaﬂM1Hp1=i for all n=0 and so.lﬂMO]p0=l.>

This proposition enables us to connect the soft contexts
described in 3.6.2 and 3.6.3. Suppose that fi:M-»T and
%:[ModxUJ~»T are related in such a way that for all pairs (M,p} fi=1
and f(# Ml p)="M,p) unless M is a member of Ind or slimp=false.

For each pair (T,p) having slimp=true and #p[T]>0 either
wind{{T,m)+14+1 is a member of Ind and [T]p=1 or wind({(T,p)) +1+1

is not a member of Ind., As a result every M:Mod and p:U for which
slimp=true and #pfT]>0 when T:Ind give rise to equivalent coercions:

if ¥ is an element of the domain G appropriate to M and if ¥ is

306

drawn from the domain appropriate to ModxU in such a way that

g{ ¥,¥) =true for some relation g then

glsoften#]M]p,V) ,s0ftenT{ M,p,¥)) =true provided that g(1,1 =true.
Unfortunately a knowledge of the properties of wind is

not sufficient to allow us to handle the predicates required in

strong contexts. Accordingly we must now give a similar account

of the properties of bind. For the purposes of this account an

indication T will be said to 'occur' in a mode M if T=ZugM+¥v for

some v having 1<v<#ZugM,

3.6.5. Proposition.

Let £ and £, be members of [ModxUl*; set (M,0p) =E %1,
Ho= HMOHQO, (Mi,p1)=£1+1 and H, = ﬂMiﬂpl, and suppose that #£O=#E1
and that sZimpOAslimp1=true. Assume also that if n is 0 or 1 then
#pnﬂT1H>0 whenever Ti:Ind is an indication which occurs in Mn or

in pnﬂTOH+vO+1 for any TO:Ind and vO:N. There is some

vO:N depending only on (Mo,po) and (Ml’pi) such that

equalv =fﬂequalvu0pi|v:N}; moreover bind0((M ,p2) (M ,p)0 043

oMo

is 0, 1 or 2 precisely when equalv is true, false orT L.

o¥ory
4During the course of this proof (Mg,p and <M1,p1> will

be taken to be fixed pairs satisfying the conditions above. For
any 1lists Eo and £1 in [ModxU]l* the sequence u*n will be taken to be
Fio A4V v>#E) (HIE budi] (E 4vb2) 5¢(v+1))1 if n is 0 oT 1.

Given any v_:N s and £, will be said to be 'closed above' v, when

1 1

they are constrained thus: g0+#£0=(MO,pO), g1+#£1=<M1,p1>,
HE HE
fﬁequalvuoul|v:N}=fﬂﬁdequaZv(u*0+vo)(u*1+v0)Iv:N}|1sts#gO},

for all vO:N with v +1svog#go there are v . such that

1 1"
equalv(u*0+v0)(U*1+UO)=ﬂdequaZ(n=0+1,v—1)(u*0+vn)(U*1+vn)|05nsm}

for every vz1, and for all v :N with 1sv23#gn (if » is 0 or 1)

307

elther there is some vS:N having En+v2=(2ugMn+v3,pn) or there are

vu:N, v5:N and T:Ind having

£n+v2=(Zug(pnﬂT]+v4+1)+U5,dip(pnﬂTﬂ+v4+2)pn). For all such EO and
&4 the integer jvlgogl will be taken to be the difference between
[IKS; (ZugMn)i-Z {I{1svstp [T1+# (Zug (p, [TT+v+1)),0[T:Ind} [viN}|os<n<1}
and the number of 'essentially different' members of (Eo+v1,51+v1>,
which is (fix(l¢v.vS#Eo+((kent(50+v)(El+v)+0,1)+¢(v+1)),O)vi)-

It will also be convenient to let kuigogi be 0, 1 or 2 corres-
ponding to whether
A&v1+1svs#£0+equaziGlﬂgo+v+1ﬂ(£0+v+2))éﬂlgi+v+1](51+v+2)),true|v:N}
is true, false or 1; by induction on the structure of modes it

can be seen that for no vO:N can equaZvOQ#ﬂMzﬂQQ)GﬁﬂMaﬂpa) be

T when (M2’02> and <M3’p8) satisfy the conditions imposed on

(Mo,p0> and (Mi,pl), SO kvlsosi is well-defined.

Consider the following hypothesis: if Vos VY £ and £,

1’ 20

are such that go and 51 are closed above vy and jv1g0§1<v0 then,

writing (52,5 y for bindvlgogl(kvigogi), 52 and 53 are closed

3751
above 0 and €,=k0g &,. On the assumption that this hypothesis

holds for one particular vD:N it will be shown to hold for vyt
by analysing the possible cases arising from the definition of

bend. Let EO and £, be any lists in [ModxUl* which are closed

1

above v, for some vizN having jv1£O£

< +
1 vo+1,

1770
IE) V<L, bzndv150g15=<go,£1,e) for all e, so

bindvigogl(kv15051)+3=k0(bindvlioii(kU1€0£1)+1)(bindvigoil(kv1£0££+2)

If kept(50+(v1-1))(£1+(v1-1))=true, by induction on v,

it can be seen that there is some v, with Osvzﬁvl—i for which

kept((50+v3)5g0+v1)((g1+v3>§£1+v1)=true whenever v2+1sv35v1

and for which kept((go+v2)§£0+v1)(<50+v2)§£1+v1)=false unless v,.=0;

2
moreover bindv1£0£15=bindv2£0£16 for every e:17. Should

kept (g 4vg) BEqtv g dv) 88, tv,) be true there must be some

308

vu:N having v +1S“4£#£0 and

1
kept(go+v3,£1+vu)(£1+v3,£1+vu)=true; an induction on the

structure of Eo+v3+1 and gi+v3+1 will establish that
.l[£n+v3+1ﬂ(En+v3+2);ﬂ[gn+vu+1ﬂ(£n+vu+2) (if n is 0 or 1). The
definition of equal in 3.6.2 therefore ensures that kv1£O£1=ku25051.

If v,=0, bindvlgogi(kvigogl)+3=k0£0£1 in accordance with the

remarks above; if v, >0, bindleoil(kv E &) coincides with

2 1°0°1

bindv2£051(kv2gogi) where jv25061=v0+1, v2<v1 and

kept (£, t(v,-1)) (E 1 (v,-1))=false. Thus this case can be subsumed
under those dealt with below, in which it will be taken for granted

that kept (g t(v, -1)) (€, T (v ,-1))=Ffalse. Henceforth <Mn+2,pn+2>

and u_,, will be written for wind(gn+v1)+1 and.lﬂ6n+vi¢1ﬂ(5n+vi+2)

2
respectively (if n is 0 or 1}; 3.6.4 implies that u2=JﬁM2H02 and

that uaaﬁﬂMsﬂpa. In addition (52,53,31) will be defined to be

bindvlgogl.

If either M, or M, belongs to Ide, bindvlgogle is

bind(vl-i)goglz for all €. By 3.6.4 neither M, NOT W, is T but
at least one is 1, sO equaliu2u3=¢; in consequence k(v1-1)£0£1=2
and CEysEg,e,) =bind (v -1)E £, (k{v, -1)E E). As J v =18 8 =V,
the induction hypothesis ensures that the lists £,and £, are closcd
above 0 and have el=k052£3.

If M2 and Ma are both bool or both char, (and if
kept(EOT(Vl'i))(El+(U1~1))=faZse) then kv1£0£1=k(v1—1)£ogl and,
from the definition of bind in 3.6.3, bindv1€051€=bind(vl'l)Eoiiﬁ
for all . Hence (Eyy8q,8,) =bind (v =1)E 6, (K (v ~1)E,E,); the
induction hypothesis is applicable to bind(v,-1)&,&, (k(v,~1)E E,)

since j(v1—1)50£1=v S0 52 and Ea are closed above o and have

Ol
el=k052£3.
The proof needed when M2 and M, are in {procl®xMod will be

omitted owing to its affinity with that required when M2 and M,

309

are members of {struct}®x[ModxSell*.
If M, and M, belong to {struct}®x[ModxSell*, suppose first
that #(M2+2) and #(M3+3) are different. In this situation

bindv £, €, (kv £ E,)=bind (v -1E £, (kv §E,)V1) and

150 1 170 17071

(kv E &,)Vi=k (v ~1)E &,

(€,,84,8 =bind (v, -1)E & (k(v, -1)E &) and the argument of the

as equallu,u, =false; consequently

preceding paragraphs can be applied. Similar remarks are pertinent

if #(M,¥2) equals #(M;¥2) but the selecctors of the modes do not
correspond. Finally suppose that neither of these faults arises,

so that bzndvigogie is btndv2£4£55 where v,

where £n=((Mn¢2+1+1,pn),...,(Mn+2+#(Mn+2)+1,pn))§En_4 if n is 4 or

is v1—1+#(Mn+2) and

5. The definition of equal given in 3.6.2 ensures that £, and
55 are closed above v, while jv2£4£3=v0, 50 that the induction

hypothesis is relevant to bindvzguga(kvzgugs); as kv25453=kv1£ £

0712

52 and E3 are closed above 0 and sl=k050£1.
This completes as much of the induction as need be given; it
remains only to note that the result holds when jv1£0€1=0

(because then bindv e=bindoE e=e for all ¢) and so it holds

1EO€1 Ogl

whatever value jngogi may take.
Let (£,,E,,e) be bindl{(M, ,p »Y (M, ,p,2)0, SO that £, and N

are closed above 0 and €1=k0€2€3. When » is 2 or 3 write u*n for

fim(k¢v.v>#£n+(),Lﬂﬂgn+v+1ﬂ(£n+v+2))§¢(v+1))1; as u*n+v3=u*n+v4

when kept(£2+v3,g2+v4)(£3+v3,€3+v4)=true, there are at most

0

Jo¢» () distinct pairs of the form (u*2+v0,u*3+v0). For every v

having 1sv05#£2, there is some m=20 for which certain v PR

127" m

are such that for all v=z equalv(u*2+vo)(u*3+v0) coincides with
ﬁdequal(n=0+1,v-1)(u*2+vn)(u*3+vn)|05n5m}; indeed induction on v
even demonstrates that Vysere, v CAN be made to satisfy
kept(£2+vr,£2+vs)(£3+vr,€3+vs):false when 0<r<s=<m., Hence, by

induction on %k, for every v, with 15vos#gz there are v Y

1,--

0 m

310

and an integer k¥ having k-1< if I<m such that

equalv(u*2+u0)(u*3+uo) is ﬁdequal(05n52+1,v-k)(u*2+vn)(u*3+vn)|05n5m}
whenever v2k; furthermore kept(£2+vr,52+vs><£3+vp,53+v8)=false

if Os<r<s=zm, In particular, setting k=70()>{(}) shows that
equalv(u*2+v0)(u*3+v0)=ﬁdequa11(u*2+vn)(u*3+un)|05n5m} for

certain v v_ and for all vzk. Moreover, since 52 and Ea are

1’...,m
closed above o0,

Negualvy |v:N}%ﬁdfﬂequaZv(u*2+vo)(u*3+v0)|v:N}|1sts#£2}.

o1
Hence equal(1+(jo<><)))uou1, f&equalvuoullv:N} and
fﬁequall(u*2+vo)(u*3+vo)|1sv05#£2} coincide. In conjunction with
the fact that El=k0£253 this ensures that bindi((Mo,po))((Mi,pi))0+3
is 0, 1 or 2 precisely when ﬁdequalvcdﬂMoﬂpo)GﬂHMlﬂpl)|V:N} is
true, false or L1.*

There are two forms of the shielding conditions of the
Algol 68 report which correspond in the same way as equal and
bind. The proof of this will be ignored because it does not differ

in important respects from that above., Thus now it will be

shown that -# mimics 4 in the appropriate manner,

3.6.6, Proposition.

lLct p be an environment having slimp=true, and suppose
that for every T:Ind and v:N such that 1<vu<#p[T]
wind{{ pl Tl4v+1,dip (p[TI+v¥2)p)) +141 is not a member of Ind. For
all M:Mod ATM] (U{turnvplv:iND)=MMlp.

4The restrictions imposed on p are such that induction on
the size of p ensures that turn (1+){#p[T]|T:Ind})p is proper, so
that, morc significantly, the environment [[{turnvp|v:N}
is a proper element of [Ide“[MxD°]*]x[Indﬂ[M¥G]*]. By virtue of
the 'shielding' conditions and the fact that for all A:Dec
slim(Z[Al p)=true whenever slimp=true any valid Algol 68 program

obeys these restrictions; were this not so the proof of the present

311

result would require the domain of environments appropriate to

M to be [Ides»[M°xD°1*Ix[Ind=[M°xD®1*1].

The truncated versions of & set up in 3.6.4 are manifestly
such that for all M:MOd-YHMH(turnp)EJ%ﬂM]p. Assume that for some
nz0 every M:Mod satisfies JWMH(U{turnvp|v:N})§J%ﬂMﬂp. For any
T:Ind it is plain that JITH(U{turnvp|v:N})2ﬁ%+1ﬂTﬂp when #p[T]=0;
moreover, when #p[T]>0
AL T] (Ul turnvp |viNIY= (U{turnvp |[VvINIM T] 141

=4l ol TT 42411 (U{turnv (dip (o[TI+1+2)p) |v:iN})

24 [ol TI¥141] (dip (e[TT¥+142)0)

aﬂ%+1ﬂTHp.
Similar inequalities can be established for the other modes so by
induction.ﬂ]Mﬂ(LHturnup|v:N})aﬂ;+1[Mﬂp for every M:Mod and for
every nx0. Hence by the definition of .4 the valuations satisfy
ATMD (U{ turnvp [viND) 2 M) .

When showing that #TM] (U{turnvp|viN})E«g[Mlo use can be made
of inclusive predicate u defined on environments 4 and p with & in
from [Ide~{MxD®I*Ix[Ind=[MxG]1*] and with p in
[IdesfModx[Ind»NIxD°J*3Ix[Inde[Modx[Ind+NIxG1*]. Tt is mnatural
to demand that
w=ACP, 0 A (1< # B[TI (AT TIYV V1S PITI ¥v¥a] (dip (PITIH+Vv¥2)8)),true)

ACHBITI=#PIT])|T:Ind}
so that by an obvious structural induction whenever u{§,p) =true
NIMI 6 Ml P for every M:Mod. For the environment p mentioned in
the statement of the proposition u(turnOp,p) =true. Moreover, for
any vO:N, ul:N and T:Ind such that u(turnvop,p)=true and 1sv15#pﬂTﬂ,
u(turnvo(dip(DﬂTﬂ+v1+2)p),dip(pﬂT]+v1+2)p>=true and
turn(v0+1)pﬂTﬂ+v1+1alﬂO[Tﬂ+v1+1ﬂ(turnvo(dip(p[Tﬂ+v1+2)p))

A o[Tl +v, ¥1] (dip (pLTI¥v +2)p) ,

so that wlturn(vy+1)p,p) =true. Proceeding to the limit,

W I turnvp|viN} 0 =true and #IM] (U{turnvp|v:N})sHMM]p for all

312

modes M belonging to the domain Mod. Together with the result
established in the preceding paragraph this ensures that for
every M:Mod the elements 4TM] ([{turnvp|viN}) and 4[M]p of M
must coincide.?

The procedures adopted in the proposition above have
ramifications far beyond the realm of Algol 68. In particular,
the fascinating theorems due to Gordon [6] can be given short
proofs by introducing valuations akin to 4% and inclusive
predicates like u. The major difference between these proofs and
that above arises from the requirement that the substitutes for
the domains labelled U contain components more closely analogous
to Ind»[[U+M]IxG]* and Ind»[ModxG]* than they are to Inde[MxG1¥
and Ind»[Modx[Ind»NJxG]*., This necessitates the provision of a
self-referential version of u which can loosely be said to
satisfy the equation
w=M 6,8 N Usvs#bﬂTﬂAu(50,5O)+((5ﬂTﬂ+v+1)5OEIH5HTH+V+1HBO).true)

A @BITI=#p0T])|T:Ind};
the use of such a predicate can be justified by an appeal to the
general method of 2.2.8. As compensation for the extra labour
involved in making this appeal the inductive arguments about
turn may be deleted, since in effect their role is taken by the
limiting process to which the appropriate predictor has to be
subjected when w 1is constructed.

The techniques of the foregoing pages have long since been
applied in a formal definition of Algol 68. Of preater interest
than this is the application of propositions like that above to
verify the equivalence of standard semantics and a variety of
semantics which models stored-program machines by representing
functions as finitary objects belonging to flat lattices. It may
not be unfortunate that lack of space precludes the discussion

of either of these topics.

313

a

a
n

able
aceess
apt
area
arid

b

bend
bind
bool

e

®n
char
elip
conserve
count
cramped
erowded
erushed
eut

D

d

deal
dip
divert
do

dummy

2.2.2,

3.

'5'

5.

l3l

1

INDEX

2.4.5, 3.2.4, 3.5.4

2.4.5, 3.2.4

3.2.1

3.2.4

2.2.8, 3.4.3

3.5.2

.5.

314

empty
equal

extt

false

field

iz
flag
found

free

fun

gyven
halt
hang
hold
holds
hoten
i
impose
invert
J
jn

Joy

2.2.

2.2,

2.2,

1.5.

7, 2.4.5, 2.6.1, 3.2.4

.S,

2, 3.1.4, 3.5.4

2.3.1,

2.6.1,

3.2.4,

3.

3.

. 3.

2,4

6.

5

315

kent
kept
knit

known

last
lead
level
lug
v
mete
move
mv
near
nears
neagt
new
news
next
novel

novels

opts

1.3.5,
2.2.2,
2.1.6,

3.6.3

3.2.1
2.2.7,
3.2.1
3.4.3

3.1.1

.3.1,

.5.2

3.

1.

3,

3.

5.

4.5, 2.6.1, 3.2.4

3,

3.

6.

1

316

p 2.4.5, 2.6.1, 3.2.4
P, 2.4.5, 2.5.1, 3.2.4
pat 3,2.4

pick 2,1.5

plot 2.1.6

point 3.1.3

pop 3.1.1

proec 3.6.2

g 2.2.7

q 2.2.8

q, 1.3.1, 2.2.2, 2.2.8, 2.4.1, 2.4.4, 3.2,
R 2.2.7, 2.4.,5, 2.6.1, 3.2.4
r 2.2.1, 2.4.,2

ravel 3.1.1

recur 2.1.4, 3.4.3

remit 3.1.1

rend 1.5.1

rent 1.5.1

replace 2.1.4, 3.4.3
restore 3.1.1, 3.1.3, 3.5.3
revert 1.3.2

rUn 1.3.5, 3.4.2, 3.5.3
rv 1.3.5, 3.4.2, 3.5.3
8 2.2.2, 3.5.4

s, 2.2.2

seen 2.1.6, 3.2.1, 3.4.3
set 2.4.1, 2.6.1

sewn 2.4.5, 2.6.1

site 2.1.6

slim 3.6.3

317

snip 1.5.1
soften 3.6.2, 3.6.3
spot 2.1.6
spun 3.2.3
struect 3.6.2
sum 3.1.3
sV 2.1.1, 2.2.7,
swap 1.4.6
T 2.2.7, 2.4.5,
t 3.1.4
tear 1.5.1
tidy 3.1.1
tie 2.6.1
torn 1.5.1
trim 2.1.5
true 1.,1.2
turn 3.6.3
u 2.2.7, 3.5.4
update 1.3.1, 3.1.3
updates 1.3.1
v 2.2.2, 2.2.8
v, 2.2.,2, 2.2.8
w 2.4.,5, 2.6.1,
W, 2.4.5, 2.6.1,
Wom 2.4.4
wend 3.6.3
wind 3.6.3
x 3.5.4
yelept 2,1.6
z 2.4.4

nm

3.

2.

1.

6.

1’

3.

2.

318

BIBLIOGRAPHY

[1] de Bakker, J.W.: Recursive procedures, Mathematical
Centre Tract 24, Mathematisch Centrum, Amsterdam (1971).

[2] Burstall, R.M.: Some techniques for proving the
correctness of programs which alter data structures,
pages 23-50 of Machine Intelligence 7 (edited by
Meltzer, B., and Michie, D.)}, Edinburgh University Press,
Edinburgh (1972).

[3] Dahl, 0.J.: Discrete event simulation languages,
pages 249-295 of Programming Languages (edited by
Genuys, F,), Academic Press, London (1968).

[4] Dijkstra, E.W.: Recursive Programming, pages 312-318
of Numerische Mathematik 2 (1960).

[5] Evans, A.: A reference manual and primer for Pal,
Department of Electrical Engineering, Massachusetts
Institute of Technology (1969).

[6] Gordon, M.J.C.: Models of pure Lisp, Experimental
Programming Report 31, Theory of Computation Group,
Edinburgh University (1973).

[7] Henhapl, W., and Jones, C.,B.,: The block concept and
some possible implementations with proofs of equivalence,
Technical Report 104, International Business Machines,
Wien (1970).

[8] Hoare, C.A.R., and Wirth, N.: 4n axiomatic definition
of the programming language Pascal, Bericht der
Fachgruppe Computer-Wissenschaften 6, Eidgendssische
Technische Hochschule, Zilirich (1972).

[9] Knaster, B.: Un théoréme sur les fonetions d'ensembles,
pages 133-134 of Annales de la Societé Polonaise de

Mathematique 6 (1928).

319

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

Landin, P.J.: The mechanical evaluation of expressions,
pages 308-320 of Computer Journal 6 (1964).
Milner, A.J.R.G.: Processes: o —athematical model of

computing agents, Colloquium in Mathematical Logic,

Bristol (1973},

Morris, F.L.: Correctness of translations of programming
languages, Computer Science Memorandum 303, Department
of Computer Science, Stanford University (1972)}.

Naur, P., editor: FReport on the algorithmic language
Algol 60, pages 349-367 of Computer Journal 5 (1963}.
Park, D.M.R.: Phe Y combinator in Scott’s lambda-calculus
models, Symposium on Programming Theory, Warwick (1970}.
Plotkin, G.D.: Lambda-definability and logical relations,
Artificial Intelligence Memorandum 4, School of
Artificial Intelligence, Edinburgh University (1973).
Reynolds, J.C.: Definitional interpreters for higher-
order programming languages, pages 717-740 of
Proceedings of the Twenty-Fifth Assocjation for Computing
Machinery National Conference, New York (1972).

Scott, D.S.: Outline of a mathematical theory of
computation, pages 169-176 of Proceedings of the Fourth
Annual Princeton Conference on Information Sciences and
Systems, Princeton (1970},

Scott, D.S.: The lattice of flow diagrams, pages 311-366
of Springer Lecture Notes in Mathematics 188 (1971}.
Scott, D.S.: Continuous lattices, pages 97-136 of
Springer Lecture Notes in Mathematics 274 (1972)}.

Scott, D.S., and Strachey, C.: Towards a mathematical
semantics for computer languages, Microwave Research
Institute Symposia Series Volume 21, Polytechnic

Institute of Brooklyn (1971).

320

[21]

[22]

[23]

[24]

[25]

[26]

Strachey, C.: Towards a formal semantics, pages 198-220
of Formal Language Description Languages for Computer
Programming (edited by Steel, T.B.), North Holland
Publishing Company, Amsterdam (1966).

Strachey, C.: Fundamental econcepts im programming
languages, International Summer School in Computer
Programming, Kebenhavn (1967).

Strachey, C.: The varieties of programming language,
pages 222-233 of Proceedings of the International
Computing Symposium, Venezia (1972),.

Tarski, A.: 4 lattice-theoretical fixpoint theorem

and 1ts applications, pages 285-309 of Pacific Journal
of Mathematics 5 (1955).

Wadsworth, C.P.: Another approach to jumps, Programming
Research Group, Oxford University (1970).

van Wijngaarden, A., editor: Report on the algorithmic
language Algol 68, pages 79-218 of Numerische

Mathematik 14 (1569).

321

tV=B+L*+J+F
tE=L+B+L*+J+F
:D=L+B+L*+J+F+G
tW=L+B+L*+J+F+G+K®
:B={dummy }°+T+N+R+H*
:T={truel®°+{false}®
:Jd=C°

:F=[E>K~+C]°
:G=[K=+C1I°

:C=S-A

:K=E-+C

1 X=U->C
:U=[Ide=»D*]xK"*
$S=[L[TxV]IxV*xy*
(A

:Mon
:Dya
:Ide
:Bas
tAbs
tExp

:Dec

APPENDIX ONE

STANDARD SEMANTICS

stored values

expressed values
denoted values
witnessed values

basic wvalues

truth values

label closures

function closures
recursion closures
command continuations
expression continuations
declaration continuations
environments

stores

answers

locations

integers

Teals

characters

monadic operators
dyadic operators
identifiers

bases
abstractions
expressions

declaraticons

322

@:Mon~E~B
¥:Dya-[ExEJI+B
#:Bas~+E
F:Abs-+U~F

& Exp+U-K-+C
ExprU-K-+C
@ Exp+U+K+C
@ Exp-+U-K~+C
FExprU-rK=Jd*
2 Exp+U+K+J*
FiExp>Ide*
A:Exp+Ide*

Y Dec+Y-»S+G*
9. DecU>X->C
F:Dec+U-+X>C
FDec»Ide*

A Dec+Ide*

@::=fn()E|nt.E|nt1....,In.E\nt..E!nti,....I ..E.

0
E::=I|B|¢\OE|EDQE1|EO::51|E1,...,En:=E0|get E|lput E|E aug E |
Ei,...,En{$E|E$|£E|E£|EOE1|va1 E|res E|goto E|A inside E|
Fys Ey|1f Ej then E, else E_|while E do E1|I:E|I::E|(E).
A::=I=E|Il,...,In=E]I==E|Il.....In==E|AO within Allal and...and &_|
rec Al (a).

323

Flfn Ol =
Ap Aek.rv(AB.¥B|L*¥=0+#E]pK,T)eE.
Afnl.El=
ApJrek ZlElple /I,
Afnl ..., I .El=
Ap.AEK.Pv(AB.#B|L*=H+$1EHDEB/(Il,...,In)}K,T)e.
FlfnI..El=
Ap.rek.ro (ABE Tl plB/I1Kk) e,
FLfnl,,...,I ..El=

n

Ao Aek. PV (ABO L #B | L*=n+S Elpl o Lds Bo /¢ T, sene ,Iﬂ) lko ,T)e,

8l E]l =
Apka, (Aa*, (Ap'.a*:L*»9[Elp 'k (updatesa* (@1 Elp'k)0),T)
(fix Qp".pla*/FIE] 1L2[Elp"c 4TE] 1))
(news ({FLE] o).

#[El=

Apk Sl Elp (Tvk).

A E] =

Apk .8l Elp (oK),

4l 11 =
ApK., (AS8.8:G+8k kb)) (pl IT+1).
4[B] =
Aok .k (H[BY).
4l 2] =
Aok .k (Fl el p).
YLoE] =

Aok JALED p (Ae . rok (10T E)).

324

il EOQEl]] =
Ak crunld(EO]! p A El]] Py Ce*.ru ¥ Qle*¥1,e*42)),

%[[EO: 1

Apn.(xw.runuaﬂEoﬂp,sﬂElﬂp,...;ﬂIEn]p>w)
(Ae*g, Fe*v1|L¥*=n>k (dummy) (updates (™11) (holds(e*¥1)0)0),T).
4 get E]=
Mok LI Elp (e . #{0+2)>0+ke{updatec(ov2¥1){a¥1, (0¥2)t+1,0+3)),7).
Flput El=
Aok Al Elp(ieo,kelovl,042,{(e)8(0+3))),

49lE_ aug E1]|=

0
Apk,runi{®[EO]! p,.fé’[[El]] P (he*, eyl * >k ((e*v1)8¢e*¥2)),T),

hok. runZ1E 1p,...,ZlE 1o Qe*,x(e*L*)).
41 $E] =
Yok AIEl p (Ivk) .,
gLES] =
rpk RIElp(de.e:Frk (e’ .ro(AB. (e |F)Bk')e’),T).
4l €E] =
Apk AL Elp (eo . o™ a*:L*ska*(updates a*(holdsea)a) ,T) (news (#e|l*)o)).
4] ££] =
ApkL. (AT A El pr ")
(Ae., Ad.e:Frec”. . ro(AB.¢Bk™)eM) ,T)
(Aek"a”, Qa* a*:L*>(e|Fla*c" (updatesa* (holdse”o")u"),T)
(news (#e™|L*)a"))).
YLEF 1=
dpk ., (. run([EO]] p,_'f][El]! Py)
(he*. (e’ e* 1 F+(e*d1 [FY (e*¥2)k,rok’ (e*42))

(he'.1se! |[Ns#e*yl |[L*»k(e*+1ve’),T)).

325

glval El=
Aok Kl Elp[c/res Jk.
4l res El =
Aok ZIEIP (plres]v1]K).
4[goto E]=
Aok ARIE]p (Ae.€|C).
gl s inside E]=
Ao 20 4ATe (Ap T LI E]D (divertpp')K).

4l E El=

0 1
ApK.@[EOﬂp(AE.@ﬂElﬂDK).

glif EO then El else E2H=
RpK.%[[EOl]p(AE.EITWI[El]]pK,@[[EQ]]pK).

74 7 =

YIwhile E, do Elﬂ
Apm,fix(le.Q[EOﬂp(ha.e\T+gﬂE1Hp(Ae.e),K(dummy))).

4l1:E]=

dpk 4L E]l ek,

91 1.:E]=
Apk. .9 E]pk.
4l eyl =

Apk .4 Elpx.

4l E E.I=

0* 1
ApK.gPﬂEO]]p(Ae.@‘ﬂElﬂpK)WﬂEl]!pK.
Plif EO then £1 else E2ﬂ=
RDK.QPIIElﬂpKW[[E2]]DK-
[/] =
Plwhile EO do E1]]
ApK.?ﬂEiﬂp(Ae.gﬂwhiTe EO do EiﬂQK).
A1:El=
Apk A9 E] oY 82[El pk.
P I:;E]=

Apk [E] pk.

326

Z[(E)] =
Yok .2l E] ok.

9lE ; E 1=

0’ 1
ApK.QﬂEoﬂp(Aa.gﬂElﬂpK)§2ﬂElﬂpK.
2Lif E, then & else E J=
ApK.-"c'[[Eill p|<§.‘:Z[[E2]I pPK .
NMwhile EO do Elﬂ=
ApK.ﬂEElﬂp(Ae.g[whiTE EO do ElﬂpK).
A1:1]=
Aok J4[E] pr.
IM1::T]=
Apk AF[E] prd § 2F E] pk.
2 (E)] =

Apk.2[C] pk.

SLE ;B 1=
fl[EoﬂﬁjllElﬂ.

JLif E, then E, else E2]I=
f[[Elll §j[[E2]] .

Flwhile E, do E1]|=

FLELD.
AT:L]=

(IY 54010 .
FLI::E]l=

SIED .
S (E) =

FLEL.
HE,: E D=

.X'I[EOII §Jﬂ[E1]] .

327

ATif E, then E, else E J=
ATE DSATE D
Alwhile E, do E1ﬂ=
ATE,D.
ATI:E]=
X1E].
XTI::E]l=
(I»sx1E] .
AT (Bl =
AIE] .

LAY =
AT fia (APT*, Ay #T*=0+() ,{y) 5P (T*T1))
(Ae’o" FTAl o (Ap"a. k! (p"[T*+1]+1 |E)o")o))

1 al).

2 1=£]=
ApX.LTElp (he. xCartdle/I]1)).

g -l =
L7} ‘In_E]]—

1veee
Apx.ﬂﬂEﬂp(AE.#€|L*=n+x(arid[s/(Ii,...,In>]),T)-

201==E]=
Aox.2[Elp (Ae.x (aridle/TI1)).

"_ —_— =
N1 ..,In——Eﬂ

i*"
Apx.ﬁﬂE]p(AEG.#E|L*=n+x(arid[hold560/(Il,...,In>])G,T).

i R -
9¢AO within Alﬂ

Aox-2LA oChp " 2L A,] (divertpp ') x) .

@[A, and...and Anﬂ=

1
pr.run(@ﬂAlﬂp,...,QﬂAnﬂp)(kp*.x(conservep*)).

328

Plrec Al =
Apxo. (Aa*, (Ap’a* :L*>FTAlp 'x (updatesa* (dJummy*)o) , 1)
(Fiz(Ap".elo*/SIATILFI AT 0" (updateso* (dummy®*)a) /o A]]))
(news (#41A])a) .
21 ()] =

Aox . 2l Alpx.

FJl1=zx] =

Apx AlEDlp (Aeo. (AS.8:L »x (arid[8 /1) (updatedea), 1) (p[II+1)).

ﬂ’ﬂIi,...,In=E]]=
Apx. (A " AIE]p (Aeo . #e |L¥=n+k’co,T))
(ea . (AE*.8*: L¥>x(arddlS* AL, , ..., L)1) (updatess*(holdseo)o) ,T)
(<pﬂ11ﬂ+1,...,p[1nﬂ+1>)).
F[T==E] =
Apx. gl le Re.x(aridle /I 1)),
yﬂIl,,,,'In::E]]=

Apx.%ﬂEDp(Aeo.#EIL*=n+x(arid[hozdseo/<Il,...,In>])U,T).
9’[[:30 within Ai]]=
KOX.@ﬂAOﬂp(Ap'JfHAiﬂ(diwnrﬁoo')X).
Tha, and...and A 1=
Apx.gﬂﬂiﬂp(lpl.?ﬂagﬂ(divertpol)
.(?\pn.x(conserve(pl,...,pn> Yoo).
Tlrec Al=
Aox Tl Al px.
Fi W)=
Apx.-FlAlox.

JLI=Cf=
(.

329

JLI==E]=
O,

(),

J[[AO within A1]]=

J[[Alll.
J’I[Al and..,and An]l=
flIAiﬂﬁ...ﬁflIAn]].
Flrec Al=
Jlal.
JI A=
JLAT.
HNI=E]=
{)
JﬂIIl, ,In:E]]=
()
._ﬂ:[::E]]:
(T
-?ﬂ[Il. ,1n==E]|=
<I1,...,In) .
-?i‘I[AO within Ai]]=
.ﬂﬁiﬂ.
M a, and...and A J=
1 n
ﬂAiﬂﬁ...MA I.
n
Hrec A]l=
A A0,
H (M) =

AL A .

330

.- B .

rV=B+L*+J+F
:E=L+B+L*+J+F
:D=L+B+L*+J+F+G
tW=L+B+L*+J+F+G+J+P
:B={dummy}°+T+N+R+H*
:T={truel°+{false}®
1 J=Z°%xUxY

:F=0°xU

:G=0°xUxS
:Z=U->Y~>S->A

:0=2~+1

:P=UxYxS$
:U=[Ide=D°*IxJ*xP*
(Y=E*
PS=[L[TxYIIxV*xy*

:Mon
:Dya
:Ide
1Bas
:Abs
:Exp

:Dec

APPENDIX THWO
STORE SEMANTICS

stored values
expressed values
denoted values
witnessed values
basic values
truth values
label closures
function closures
recursion closures
consecutions
controls

states
environments
stacks

stores

aAnswers

locations
integers

reals

characters

monadic operators
dyadic operators
identifiers

bases
abstractions

expressions

declarations

331

0:Mon~+E~B
w:Dya+[ExE]I-+B
@:Bas-B
F:Abs~U-F

& Exp=+0
ZExp=+0

#: Exp~0

G E xp=+0
PEXpHIrU+Y>J*
2:Exp+Z+U+Yd*
FiExprIde*
X:Exp>Ide*
#:Dec+U+S+G*
2:Dec+0
F:Dec~+0
JDecrlde*

H:Dec+>Ide*

¢::=fn OE|fnI.E|fnI,, I_.E|fnI..E|fnI, ,...,I_..E.
1 7 1 7

1,...,En::E0|get E|put ElEO aug E1|

Ei,...,En|$E|E$|EE|E£]EOE1|va1 E|lres E|goto E|[A inside E

E::=I|B|¢|0E|EOQE1|EO:=31|E

E E1|1f L, then E else E2|whi1e E, do E1|I:E|I::F|(E).

O;
Ar:=I=E|l,,...,I =E[I==E|I,,..., n==E|AO within a [a, and...and A |

rec Al (A).

332

Flfn()El=
Ao X sv(Ap'uio ! Autva|L*=0=#[ElCp’ (W't1)0’, 1), rendl fn()E] P .

FIfnI.El=

ApdAgptutor FlElGp'[v’+1/I1 (' t1)0 ! ,rend] fnI.Elp) .

fﬂntl,....In.EH=
Ap.(ki.(suE,rendﬂntl,...,IH.EHD>)

(kcp'u'o'.#u'+1|L*=n+§ﬁEHcp'[U'+1/<Il,...,In>](U'Tl)ﬁ’,T)-
1 fnI. . El=
Ap Ao, sv(Apfvro ZIElop’[v¥1/I](v't1)0), rendl fnI. . El P .
ﬁﬂntl,...,In..Eﬂ=

r0. (AE.(st,rend[[ntl,...,In..E]]O))

(Agptu'o’ #utv1lL*=n>#[Elge [holdsuN1)o' X Ijsees ,In)](u"fl)G ,T)

il =
Aepuo.(Aag*, (Ap'. (Aot .a*:L*H[E (Ap".C(revertpp™))p'va’,T)
(updatesa* (AE] (Ap".c(revertpp”))p'v)c’))

(fiw(hp ' opla*/FIETIILLIT] (Xp".L(revertpp”))p ' v/XTE] 1))
(novels (#F[E])pvo).

#IE] =

A, 8lET (moig).

A E] =

rr ElE) (sv).

4l Il =

ALPUO. (A8, 816> (S41) L (S+2)[¢p,u,0/ rec DO (843),Tp 8 §U)0) (pIT]41))
¥[B]=

Arpuvo.op{EIB D gu)o.

9[@] =

Agpuc.Cp ({F[21 Bu)o.

333

4l 0E] =
ACAIE]R (Apva,svop ((OJ0]) (uy 1)y Eut1)o).

%HEOQE1H=
Ag.mete<ﬁﬂEoﬂ,@ﬂE1]>(Apuc.svcp((#IQ](U+2,U+1>>§U+2)c).

€§i’[[EO:=E1]]=

1°* n' "0
Ac.(Ac'.meteu@ﬂEO],fﬂEiﬂ,...,WﬂEn])(Apuc.#u+(n+1)|L*=n+c’pUG,T))
(Gpvo.gp (CdummyYut(ned) (updatestuin, ..., u¥1) holds(ui (n+1))o)o).

%l get E] =

Ao ZIET(xpua, #(o+2)>0+gpulupdate (V¥1)E¥v241)o¥1, (0¥2)+1,0+2)), T)
gl put £ =

AL AIE] Chpuo.zpulo+1,0+42,(ud+1 §{o+3)),
%[[EO aug E1]]=

A;.mete(%ﬂEO],zﬂEln)(Apuc.u+2:L*+Cp(((u+2)§(u+1>)§u+2)o,T).
9[E,,...,E 1=

Ac.mete(ﬂﬂEiﬂ,...,EﬂEnH>(Acpuc.Cp(<<u+n,...,U+1)|L*>§U+n,o).
9l $E7 =

AC A ENl Cmoz) .
Y[E$] =

ATLRIED (hpua . u¥1:F+Zp (C AL sv ((U141 |0YT ") ,u¥142) §utido,T),

9l £E] =
Az (AT RIE]ITT)
(Apuo, (Aa*, a*:L*>zp(C o™ §utl) (updatesa™* (holds (V¥1)o)o),T)
(novels (#ud1|L*)puag)).
Y[EE]=

A (Ap T RIEDZ)
(Apuo., (AL, u¥1:Fargo(CAg”, sv (5"),v¥142) §uT1)0, 1)
(Agp"u"a . (ha*, (Ao '.a*:L*>(ud1+1|0)C"p" (L a® §urtl)o’,T
(updatesa* (holds (V"+1)a")a"))

(novels (#UM¥1|L*3p"0"0"))).

334

SIE,E, 1=
AC.(Ac’.(A;".mete<Q[EOB,zﬂElﬂ)(Apuo.u+2:F+c'puo,svc"puc))
(Apuo .1<u¥ 1[N #ud2 | L*>gp (CUb2¥ (V1)) §ut2)o,T))
(ApVo . (U¥2+1|0) (Ap". .z (revertpp”)) (divertp (U+2+42)) (Ui §ut2)a)
4l val E] =
Acpuo MAET (Ap" .z (revertpp™))pl{p,v,0) /resluo,
4l res E] =
Az ZIET (Apuo . (plresl+1+41|Z) (plres?+142) (plres]+1+43)c).
%[goto El =
Az RLEY (Apuo. (UFLH1]Z) (VE1¥2) (L+143)0) .
4l A inside E]=
Azpuo @0 A] (ZIE] (Ap ' .g (revertpp’)))puc.
gﬂEo; E1H=
AL GIE D (Apvo . FlE Tzp(ut1)a).
4lif EO then 2 else E2ﬂ=
Ac.%ﬂEOﬂ(Apuo.u+1jT+?ﬂE1Bcp Wt1)o,4TE, Jzp t1)a),
Flwhile E, do E_J=
Ac.fix(kc’.(Ac".@HEOB(Apuo.u+1|T+c”p(u+1)o,cp(<dummy)§u+1)c)
(FIE, I p'ufa’ g p’(uv!t1)a’})).
Y[T:E]1=
Ao 9lE]T.
¥lI::E]=
Az FlElz.
41 (E)l =
AT Y[E]cC.

AE_ : E 1=

0% "1
Agpu 2ZLE] (p'ufo ! FIE Ize' (V'T1)0 ")pusZL T Tzpu,
ALif E, then E, else E =

lcou.ﬁﬂElﬂcou§ﬁ1E2ﬂ£pu.

335

Plwhile E, do E1ﬂ=
Agpu ZLE I (Ap'uTo ! 9while £ do ElﬂCD'(U'+1)G')pU.
2l1:T])=
Agpv ((FIE[L 0,02 SP[E]lZov.
Pl1::E=
Azpu A Elzov.,
A (EH =
rgov AE]gpv,

[E ; E 1=

0* 71
Agov . 2LE I (ro'v'o ! FIE Igp’(v't1)o")pvi2[E Tzpv.
2[if E, then E, else E2ﬂ=
Agpu 2LE TZpuSalE Ttpv.
Z{while E, do E1H=
kgpu.ﬂﬂElﬂ(Ao'u'c'.@Hwhi1e E, do Eiﬂcp'(u'+1)c')pu.
A[1:E]=
rgpu.2[Elgpu.
21::E1=
Arpv LG [E] L ,p,u)) §LIE] CpU.
2 Y=

Agpu. . 2[Elzpv.

f[[EO; El]]=
fﬂE0H§fﬂE1H.

Flif E, then El else E2H=
fﬂE1H§fﬂE2ﬂ.

Flwhile £/ do E1H=
AlED.

Jl1:E]=

(DY 21] .

336

FlI::El=
JUEL.

FL(E) 1=
FIET.

XIE : E,I=

0r "1

AL I 5ATE, T
AT E, then E, else E2]]=
f[[ElllﬁﬂEQ]].

ATwhile E, do El]]=

#TE,T.
ALI:E]=

XTET.
HTI::E]l=

(D) SXTE].
A1 (E)]=

X1E] .
SIA]=

ApO, Fia(API* . (AE HI*=0+() ((E,tearlAlp,0)) S(I*t1))
(AL FTAY (Ap'u'c !, pecurto ™ p [I*+1]+1|EY 0 1))

A1),

20 TI=E]=
A LTEl(Apvo.zpluvdl/II(vt1)o).

., I =E]=
AE"%HEH(ADUG.#U+1|L*=n+c0[u+1/<11,...,In>](u+1)c,T).
P[I==E]=

Az ZIE] (Apvo.zplu¥1/IT(vt1)0).

g .In::E]]=

AC.@ﬂEﬂ(lDUG.#U+1|L*=n+cp[holds(u+1)0/(Ii,.,_,In)](U+1)0,T)_

337

@lIAO within A1]]=
A;puo.@ﬂAoﬂ(@ﬂAlﬂ(Ap’.a(trimﬂﬂlﬂpp')))puo.
@[[Al and,,.and & 1=
?\C.(?\E*.deaZE*(RD*D.C(p?lckI[Al and,..and A lp*p)))
(Fix Aym.mnr(Agp . @LA] (Ap". L (elip[d Dp'e"))p" 5y (me1),())1)
[rec Al =
Azpua, ha*, Ap'.a*:L*FTAlcp 'V (updatesa* (dummy*)o), T)
(Fiz(hp".plo*/SLA] ILA Al 0¥ (updatesa* (dummy*)a) [IA]1)))
(novels ({F[A] Ypuo),
g0 (M)l =

AC21A]c.

g1 1=t) =
ACVRLE] Chpuo, (A6, §:L>Tp(ut1) (updated(V¥1)a) , T (p[T]+1)).
. ,In:E]] =
AC. (AL .RIE] (Apus.#utl |L*=n-g'puo,T))
(Apvg, (A8*, §*:L*»gp (V1) (updatesS* (holds(vd1)a)a),T)
Cpl T 01, .., L 1Y12)).
Il 1==E] =
AT ALE] (Apuo.C(invertp (aridlv¥1/11)) (vildo).

LI ==El=

12" '

AL (AT LRIE]D puo . #udl | L*=n+C’puo,T))

(Apvo.g(invertp (aridlholds (V¥1)a /¢ I1 yeany In) 1)) (uil)a).
JI[AO within A1]]=
M:oucr.@IIAO]I(ﬁ‘[[Alll(lp'.Q(triml[ﬂll]op')))puo.
ﬂAl and,..and An]]=
?\Q.(?\E*.dealg*(Ap*p.c;(pick[[al and...and An]]p*p)))
(fia:(?\l})m.mén-*(?\CD'.Ff[Am]] (Ap".z(elipl Am]]p'p") Yp" Silmtl) ())1)
Flrec Al=

e Al z.

338

gla] =
rp Tl A) g,

A1 I=E] =
(D,

¢y,
Jf[[AO within A1]|=
.ﬂ[[Al]].
JIA and...and A J=
1 7
JTA J8...85TA .
1 ¥

Jlrec Al=

JL 4] .
JL ()] =
JIAL .
M I=E]l=
().
ﬂlil' :In:E]]=
()}
A I==E]=
(T
.?ﬂ[Il.. ,In==E]]=
<I1""’In> .
.7é“[[AO within Ai]]=

&1, 1.

339

.;ﬂ[al and...and An]]=
ATA 15,5404 1.
#lrec Al=
H# Al .
HL (M)] =

#1141 .

340

APPENDIX THREE
STACK SEMANTICS

:V=B+L*+J+F

stored values

e:E=L+B+L*+J+F expressed values
6:D=L+B+L*+J+F denoted values
wiW=L+B+L*+J+F+J+P witnessed values
B:B={dummy}°+T+N+R+H* basic values
e:T={truel®+{falze}® truth values
1J=2° label closures
$:F=0° function closures
:Z=U~>Y->S~>A consecutions
E:0=L~>L controls
m:P=UxYx$S states
p:U=[Ide”[DxNxNT*Ix[JxXNxN]I*x[PxNxN]* environments
v:Y=E* stacks
o S=[La[TxV]IxV*xy* stores
a:A answers
a:l locations
viN integers
R reals
H characters

tMon monadic operators
(:Dya dyadic operators
:Ide identifiers
:Bas bases
$:Abs abstractions
E:Exp exXpressions
A:Dec declarations

341

0:Mon~E£~+B
#:Dya+[ExE]+B
#:Bas~+B
F.Abs~+U~F

&:Exp~0

Y Exp~+0

#:Exp+0

4. Exp~+0

P Exp+Z+U+Y>S+d*
2:Exp+Z+U+Y+S5+d*
F.Exp-+Ide*
X:ExprIde*
F:Dec+{(»}°
2:Dec~»0

J:Dec»0

S Dec+Ide™*
#.DecrIde*

¢::=fn()E|nt.E[ntl,...,In.E|nt..E|fn11,...,In..E.

| & ,En:=E0|get E|lput E|EO aug E1|

JIEgsees
..,En[$E|E$|£E|E£|EOE1|va1 E|res E|goto E|A inside E|

E::=I]B[¢|OE|EOQE1|EO:=E

Ei"

E, s E1|1f E, then £, else E2|wh11e E, do E1|I:E|I::E|(E).

A::=I=£|11,...,In=E|1==E|11,..., n==E|AO within A1|A1 and...and An|

rec Al (a),

342

FlfnOzl =
Ao AT sv(ApTuto T L (Ap" HU T | L* =02 E] (remitL)p (U T1)0 !, T)
(divertp'(rend[fn()E)p)l¢p ', w't1,07) //recl)).
Fl fn1.1] =
Ap hzptute ! (A" LIT] (remiti)p "IV 41/ /T (0 T1)0 ")
(divertp'(rend[fnl.E]p)L¢p',w't1,0"y //recl).
Flfnl,...,I .El=
Ap.AZ.sv(Aptu'o ! (Ap" #U V1| Lx=n>P[E] (remitl)p"(U'T1)0",T)
(O™ " p! ottt 0" freciuit/ /L, o0, T
(divertp'(rendﬂfnll,...,In.EﬂD)))).
Z1 fnl..tl=
Ao AZ.sv(aptuta! L (Ap" LIE] (remitg)p"lvr41//I](uT1)0r ,T)
(divertp ! (rend[fnI..E]p)(p’',0't1,0" //recl)),
9ﬂfn11,...,ln..Eﬂ=
Ap.AZ.sv (ptutal, (Ap v e | Lx=nsZ[E] (remitg)p(ut1)a ", T)
(™. " p' WTL,a0//recholds N o /Ty ony 101D

(divertp’(rend[{fnli,...,In..E]]p)))),

L) =
xgpuo. (ha*, (Ap’ (A ! (Ap". (Aa",a*:L*+g[E] (remitr)puc" ,T)
(updatesa* (P[E] (remitg)p"us?)o))
(p'[2[E] (remitg)p ' Ldummy*/ /XTE]]vo ' //ATE]])
(updatesa* (dummy*)o))
(pl¢p,v,0) //rec]la*//FIET]))
(news (#F[ET)0).

ZIE] =
ACLELE]D (muT) .

H#ME]=

Az JETED (svi).

343

4l 4]

Azpuo .Zp({ ravelp[I]¥1¥1y V)T,

Agpuo . op (BB §v)o,

ALpuo , Zp ((FEo]p) Eu)o,

4loE] =

4[E

Az JALE] (Apuo.svrgp K O[O0] (u¥1)y §utldo),
OQE1H=

Ag.mete(ﬂ[Eoﬂ,ﬁﬂElﬂ)(Apva.qup(?ﬂlﬂ](u+2,U+1>>§U+2)0)).
:=Bi]|=
Ac,meteﬁYﬂEoﬂ,@[Eiﬂ)(kpUO.CO((dummy)§U+2)(update(u+2)(U+1)0),

E .=E =
: DH

grecTy

Ac.(kc'.mete(@qun,ngiﬂ,...,iﬁEnﬂ)(AOUO.#U+(n+1)IL*=n+c'ou0,T))

(Apvo.gp ((dummy)§ultn+)(updatesivin, ... ,ud1)(holds (V¥ (n+l Ylalao).

Flget El=

AT AED (hpuo, #(o¥2) >0+Zpu(update (V1 Xo¥241X041,(g42)+1,6+3)), T).

4lput El=

AL AIE] (Apvo.zpuloda ,o+2,{u¥1) G {o+3)) 1},

gﬂEO aug E1ﬂ=
lC.mete(ﬂ[EoﬂhgﬁEiﬂ)(RDUO.U¢2:L*+CD(((U¢2)§(U+1))§U+1)G,T).
9le, ,....E I=
kC.meteL?HEiﬂ,...,xﬂEnﬂ)(RDUU.CD(((U+H,...,U+1>IL*)§UTn)U).
91 $E] =
AL LALE] (mog) .
Gl ES] =
AL RIE] (hpuo,ud1:Frgp CAg!,.sv ((W+ 1|0z) §utldo, T),
gl ¢zl =

. (AR EIC)
(Apuo.(Aa*.a*:L*+zp ({a* §utl) (updatesa™* (holds(u+1}0)0),T)

(news (#v+1|L*Yo)).

344

4l ES] =
Az (xz!#IElT)

(Apua . (AL U¥L:Frrp((AT ev(EL")Y Sutl)o,T)

(}\(‘;"p"U"G".(lu*.(}\O”.OL*:L*-*(U+1|0)C"Q"((a*) 5uMtq)o!’ ,T)

(updateso*(holds(u"+1)a")s"))
(news(#U"¥1|L*Y0"))).
#lEE, =
A;.(AC'.(Ac".meteh%ﬂEoﬂ,3mE1H>(Apuo.u+2:F+c'000,suc"p00))
(Apuo.1gvt1|Nehud2|Lrrgp(Cvd24(ud1) Suta)o, 1))
(xpuo.(v¥2|0)zp(vt §uta)o),
4l val El=
Agpvo (AL AEN remitl)p[{p,v,0 //recllC?//reslvo)
(Xp'u'c'.remitLp'{p,v,0 //reclu’o!’),
Y[res E] =
ACFIET(Apuo.(ravelolresl+1t1|Z)puo),
¥[goto El=
A RLER(Apuo.(ud1|Z)p (ut1)o),
%lA inside El=
Azpuo 2[A (LI El(remitt))o K p,v,d //rec]ug,
9HEO; E1ﬂ=
Aa.?ﬂEOH(ADUO.QHElﬂco(u+1)O).
gLif E, then T, else E,I=
A2 RLE N dpuo vt |[THLE lzp(vt1)0 IE, Tzp(vti)o).
Ylwhile E, do E1H=
Ac.fim(kc'.(lc".ﬁﬂEoﬂ(Apuo.u+1|T+§"p(u+1)c,£o(<dummy>§u+1)o)

(gﬂEiﬂ(Ap'u'o'.c’p'(u'fi)o’))).

¥[1:E]=
A ZlElz.
$l1::E]=

rc.ZlElC.

345

90 (E)] =

Az FlE]T.

@HEO; E1ﬂ=
Acpua.?ﬂEO](Ap'u’o’,@ﬂElﬂcp'(U’+1)o’)puo§?ﬂE1];puc_
Aif E, then E, else Ezﬂ=
Acpuo.@HElﬂchG§@[E2ﬂcpuo_
Plwhile EO do E1]]=
Acpuo,@ﬂElu(Ap'u'o’.gﬂwhi1e EO do Elﬂcp'(u’+1)0’)puo.
ATL:E]=

Agpua {hp'u'o! (FIETL (revertpp!) (popuu ') (restoress ")) 82[L |gpvo,

Agpvo 2[E]zpuo,
2l (E)] =
rgpuo P E]cpuo,

21E E D=

0" "1
AcpuoLQ[EOﬂ(Ap'u'o'.gﬂElﬂcp'(U’Ti)d')puo§2ﬂE1ﬂgpu0_
21 if E; then E, else E,l=
Acpuo.ﬂ{EiﬂgpuoéﬂﬂEzﬂcpuo.
2f while E; do E,l=
Acpuo.ﬂﬂElﬂ(Xp'u'o'.gﬂwhi]e E, do Eiﬂgp'(u'Ti)c')puo.
AMT:E)=
rcpvo . 2[E] gpuo.
2 I::El=
ALpuo. {Ap’V'o " F[ENC (revertpp ') (popuV ') (restoredd’)) §2[E] Cova,
20 (E)]=

Azpug . 2[E] gpua,

SLES: E l=
FIE IS AT 1.

346

FLif E then E else E,l=
AE DSAED.
flwhile £ do B J=
SLED.
FLT:E]l=
(O 5211,
FL1::E]l=
FLEL.
FL(E)]=
JLED.
AME; Ejl=
AEDAME,D.
AT f E, then E, else £]=
ATE,TS21E,D.
ATwhile EO do E1]]=

ATE,T.
ALT1:E]=

ATED.
ALI::E]=

(1Y SATET .
AT (BN =

ATE].
FLa] =

0.
PN1=tl=

Ao LIE] (Apuo.gplu¥i//I](vt1) o).,
AL ,.... T =E]=

Ao ZTEL puoL #UdL {L¥=n>gpluvt/ /AT . .., 1) 3 (u11)0,7).

347

A AL E] (Apvo.zpluv1//T](vt1)o).
1,....In==EH=
A ALE] (hpvo. #udd | L*=n>zplholds (Uv1)a/ /¢ IseessI) 10to, 7).
& 1 i =
.MAO within AJ
)\CDUG.‘.’DIIAO]] (Q’IIri\.i]l(Ap'.c(trimll.&l]]pp')))pUG.
@1{51 and,..and An]]=
Ac.(AE*.dealE*(Ap*p.C(pickﬂﬂl and,,,and Anﬂp*o)))
(fieMm.m<n>Chgp " DIA T (hp".glclipld Tp'p"))p " 84 (me1),() 1]
P rec Al =
ACpuo. (Aa*. (Ap'.a*:L*FlAlgp'v{updateso* (dummy*)a),1)
(pLo*//FLAN 10dummy*/ /AT AT 1))
(news (#FA]Yo).
g1 (M=

AC ISJ:ILA!] ()'

JII=E]=
ACRIE] (Apuo. (AS,d8:L>zp(utl) (updated (V¥1)a),T) (ravelp[I]+1+1)).
FTIyses.I, =El=
Ao, (Mg RIET (Apuo.#u+l|L*=n>g/pug,T))
(Apuo., (Ad*,8*:L*>zp(ut1) (updatesd*(holds(u¥l)o)o),T)

({ rave ZplIIlﬂ Y141, , .. ,J’auelpﬂlnﬂ Y141y)),

A RIED (Apuo.gpludl// /I3 (vt)o).

Il I ==El=

1"
Ac.ﬂﬂEﬂ(lpuo.#u+1|L*=n+Cp[host(u+1)0///(Il,...,In)](u+1)o,T).
f{ao within A1ﬂ=
Acpuo..@[mo]] (f/’![Alll (Ap'.c(trimulﬂpo')))pUO-
JLA, and...and A& I=
1 n
AC.(AE*.deaZE*(Ap*p.q(piok[&l and...and An]p*p)))

(Fia(MmomsnrCage " TIA T (Ao "5 (elip[b,Tp P "))e Y EY (me1) 5,00) 1)

348

Il rec

71 (a)

JlI=t

A=

e T Al ¢,

]I:

Ar Tl Al ¢,

1=

(I .

J’l[Ii.

f[[IT==

J’IIAO

J[[A:L

‘cngI =E]]=
n
(Ii,occ,In> .

B} =

(.

),

within A1]I=

J’IIAI]I.

and...and A]=
n

Jla 168...8004A 1.
1 i)

Flrec al=

JI(d)

SLAT .
]]:
JiaT.

349

#llf_\.o within Ai]]=
Jﬂlﬂl]l.

Jﬂ[.f_\.i and...and An]]=
#I[Al]]§...§3ﬂ[ﬂ l.

"

#Flrec Al =
HT AL .

HT (M)] =

HM AL

