
THE FORMAL SEMANTICS OF

COMPUTER LANGUAGES AND THEIR IMPLEMENTATIONS

by

Robert Milne

of

Oxford University

Oxford University Computing Laboratory

Programming Research Group Technical Microfiche TCF-2

1

NOTE

This monograph is a copy of a doctoral dissertation

submitted to Cambridge University. It is distributed by

the Programming Research Group as Photocopy PRG-X13, and

is also available as Programming Research Group Technical

Microfiche TCF-2.

@ 1974 Robert Milne

Oxford University Computing Laboratory,

Programming Research Group,

45 Banbury Road.

Oxford.

2

SUMMARY

This dissertation contributes to the mathematical theory

of computer languages by extending the formalism due to Scott and

Strachey to cover language features not considered before and by

developing a framework in which implementations can be analysed.

The features handled by the extensions include parallel processes

and modes which may be declared or coerced; in fact two radically

different treatments of modes are related by an approach that can

also be used to prove the equivalence of appropriate interpreters

and compilers. Implementation techniques are described in terms

of valuations which convert program texts into transformations of

stacks and stores; thus particular techniques may be deemed to be

correct when the resulting semantic equations correspond with the

standard ones of Scott and Strachey. Formulating the pertinent

correspondence involves the construction of predicates which are

not monotonic but which nevertheless connect the equations in a

recursive manner. The proofs that these predicates are satisfied

throughout entire computations entail inductions on the structure

of programs and must therefore be carried out for one language at

a time; however the language discussed in this dissertation is

large enough to justify the claim that the proofs supplied for it

can readily be adapted to apply to other languages. The standard

semantic equations are not suited to establishing the equivalence

of some varieties of program, which must be done with the help of

the additional information provided by equations which embody the

essence of certain implementations. On one such relationship of

equivalence, which asserts that every reasonable program may be

replaced by one wherein identifiers denote locations only, depend

theorems which compare several met~ods of implementing recursion.

3

CONTENT

CHAPTER ONE: STANDARD SEMANTICS

1.1 The mathematical basis 1

1.2 More abstract models for storage 3

1.3 The initial paradigm 10

1.4 Incidence and reference 17

1.5 Conjugate valuations 24

CHAPTER TWO: STORE SEMANTl CS

2.1 State vectors 32

2.2 Inclusive predicates 41

2.3 Two equivalent formalisms 51

2.4 Reflexive projections 57

2.5 Denotation and allocation 68

2.6 Connections between storage management techniques 77

2.7 An extension to cover recursion 89

CHAPTER THREE: STACK SEMANTICS

3.1 Idealized versions of realistic implementations 96

3.2 Preparations for an inductive proof 104

3.3 Two comparable mechanisms 113

3.4 Different control structures for languages 124

3.5 Parallel programming 129

3.6 Manifest types 141

4

BIBLIOGRAPHY 155

APPENDIX ONE: STANDARD SEMANTICS 157

APPENDIX TWO: STORE SEMANTICS 162

APPENDIX THREE: STACK SEMANTICS 167

INDEX 172

5

CHAPTER ONE

STANDARD SEMANTICS

1,1, The mathematical basis.

1,1.1, The framework of computing theory.

The aim of this dissertation is to examine some of the

implications of the mathematical theory of computing propounded

by Scott [17], which views the meanings of programs as elements

of domains subject to partial orderings. Although a typical

domain will belong to a certain category of complete lattices,

all the results which will be assumed or proved can be qualified

in such a way that they remain valid when domains are taken to

be partially-ordered sets in which every countable chain has a

least upper bound. In particular, both these interpretations of

the term 'domain' are among those that can provide a rigorous

foundation for the theory of programming languages conceived by

Strachey [21], wherein one member of the range of a function a

may be a function e which can itself be applied to a. The

present work will adopt the notation of the rigorous formulation

of this theory [20] unless otherwise stated; it will also

presume familiarity with all the other papers by Scott and by

Strachey cited in the bibliography.

In the later sections of this chapter standard semantics

will be developed from the formulation mentioned above in order

to describe Mal, a large computer language in which the types of

variables are checked dynamically. This language has greater

expressive power than Algol 60, but it does not provide some

features of other languages, such as parallel processing and

types which can be declared or coerced during compilation; those

features requiring a further expansion of the formalism will be

6

considered from 3.4.1 onwards. A formal definition of Algol 68,

which will not be presented below, has confirmed the adequacy of

the treatment to be outlined in 3.6.1.

The abstractness which gives standard semantics its great

elegance also renders it unsuitable for the analysis of certain

kinds of relation between programs. After 2.1.1 classes of Mal

programs will be shown to be equivalent to one another with the

aid of store semantics, which makes explicit much of what is left

implicit in standard semantics. As store semantics represents a

sensible implementation technique, the assertion that it gives

every Mal program a meaning which corresponds with the meaning

provided by standard semantics can be said to entail the

correctness of this technique. Another method of implementing

languages is embodied 1n stack semantics, which will be discussed

in 3.1.1; in contrast to that inherent in store semantics, this

method is correct only when the programs to which it is applied

have variables with severely restricted scopes. Both store

semantics and stack semantics can be given forms in which the

details of particular implementations are made manifest and in

which finitary objects take the place of functions, but the

necessary intricacies will not be described.

1.1.2. Preliminary conventions.

The symbolism to be adopted for handling sets is perfectly

normal and therefore needs Ii ttle explanation; suffice it to

remark that if X is a set the members of which are sets then UX

will be the union of the members of X and nX will be their

intersection, whereas if X is a set of elements of a domain then

UX will be its join and nX will be its meet. When X has only two

members these operators may be replaced by small infixed versions.

The usual convention that the disjunction and conjunction of

7

truth values EO and E be written as EovE1 and E AE 1 respectively1 O

will be extended to sets as follows: given any set X comprising

truth values VX will signify the disjunction of the members of

X and AX will signify their conjunction, so that if X is empty VX

will be true and AX will be false. Likewise when X is a set of

integers VX will be its largest element and /\X will be its smallest

element (provided that these entities exist); moreover if

X={V ,V } VX and AX may give way to vv 1 and V AV • In 3.6.3 the
O 1

v O O 1

sum and product of the members of a set of integers will be needed;

for any such set X they will be provided by LX and nX. This

notation will be modified when sequences of sets are considered:

U{Xnln~o} and n{Xnln~o} will be abbreviated to UX and nXn' andn
analogous changes wi 11 motivate the use of UX , nX ,VX and AX . n n n n

Any function Q taking a lattice A into a lattice B is

strict if ¢L=L, monotonic if ¢sO=¢s1 whenever sO=s1' and con­

tinuous if every directed set X~A satisfies ¢(UX)=U{QSISEA}; most

of the functions which will be required in the present work are

continuous, but in fact it would be enough to assume that they

are such that q,(UX)=IJ{Qi;/i;EX} whenever X is a countable chain.

The word 'function' will usually, but not invariably, refer to

a continuous function; similarly A+B will generally be the lattice

of all functions taking A into B. Till 1.2.2 AxB will be the

set of all pairs (s,n> with i;EA and nEB under the product ordering.

The forms of bracketting adopted will all be allowed to nest,

but parentheses will rarely surround the arguments of functions

unless the parsing so decrees; since the application of functions

will associate to the left (so that ¢Wi; could be written as (¢W)i;)

the domain denoted by A+B+C, say, will be regarded as A+[B+CJ,

not as [A+BJ+C. Both continuous and discontinuous functions will

have their effects on their arguments specified by means of

8

A-notation [10]; examples of such specifications can be found by

consulting the index.

One continuous function of particular importance lS fix,

which is constructed in such a way that if rjJ is any function

mapping a domain A into itself then fixrjJ=UrjJn L , where rjJ°=A~.L and

",n+l __ "'o",n when n;'O. Th d f· ·t· f t··t th t~ ~ ~ e e lnl lon 0 con lnUl y ensures a

rjJ(fixrjJ)=fixrjJ and ~~fixrjJ if rjJ is continuous and ~ is any member

of A for which rjJ~=~. Strictly speaking, fix should be set up

anew every time a fresh domain A is encountered, but in fact this

will not be done. Some functions (such as those to be mentioned

in 1.3.1) will be given recursive definitions in which fix does

not appear; there will, however, always be an obvious means of

eliminating the circularity by introducing fix.

Another function which should really be provided for a

'universal' domain or for each lattice which requires it is cut;

for every lattice A and every ~EA other than T cut~=n{~o IT=~?~O=L}

and cutT=T. As ~O is a bound variable of the term {~O IT=~~~O=L}

cut is strict and continuous when T~T.

If ~o and ~1 are arbitrary elements of a domain A the

relation ~O-<~l will mean that for every directed set X<;;A having

UX~~l there is some ~2EA such that ~2?~O' A domain A in which

T·q and cut~=L for all ~EA with ~=L will be described as 'slit';

a domain A in which cut~=~ for all ~EA will be described as 'flat'.

Many fundamental mappings between domains can be classified

as injections, projections or retractions. When p maps A into B

it is an injection if it is continuous and if there is a

continuous mapping q from B into A having qop=A~.~ and poq=An.n.

Conversely a continuous function q taking B into A is a projection

if it has a continuous inverse p for which qop=A~.~ and poq=An.n;

from 1.2.8 onwards functions akin to poq will also be regarded as

9

projections. A retraction of A is a continuous and idempotent

function which takes members of A into other members of A.

Although - will provide the usual denial of a truth value,

ln a somewhat unorthodox manner EO~Ej will be understood to mean

simply that unless EO is false it must be identical with E
1

.

When 81 and 82 belong to some domain the conditional expression

E+8 ,8 2 will be an entity which is 8 if E equals true and is 821 1

if E equals false. Because true and false are only two of the

four elements in T (the lattice of truth values), in 1.2.6, fOr

instance, it will be necessary to know the values of E VE E AE ,
1

,
O O 1

-E and E+8 ,8 2 when EO' E and E are ~ Or T. These values must be1 1

such that the resulting operators give continuous functions of EO'

E1, E, 81 and 82 , but there is no other criterion governing them.

It is convenient to let TVE, EVT, TAE, EAT, -T and T+8 ,G 2 be T
1

fOr all EET and to let ~VE, EV~, ~AE, EA~, -~ and ~+81 ,8 2 be ~ if

E is true, false Or ~, but the feeling that the precise choice

of these values is just a matter of taste will be justified in 1.3.5.

Often it is useful to be able to 'filter out' ~ and T before

applying the test for membership of a domain; this can be achieved

by using not (EA, which is true whenever (is a member of A, but

(; A, which is ~ when (is ~, T when (is T and true when (is any

other member of A. An element of A for which (:A is true will be

called 'proper'; ~ and T are improper. The sharp distinction

between (EA and (:A will not be observed in the test for equality,

(0=~1: though this test will sometimes be understood to be a

discontinuous relation having ~=~ and T=T both equal to true,

usually a fOrm like ~0=~1 will refer to a test which could be

written mare accurately as (~O=~l)A (~O:A)A (~1 :A). The context

should always be sufficient to clarify which version of the

equality predicate is intended.

10

1.2. More abstract models for storage.

1.2.1. Arran&cments for obtaining locations.

One feature common to all the languages we shall study is the

store. As a first approximation to a domain S which models this

we adopt a lattice of continuous functions mapping each member of

a flat lattice of locations, L, to a pair comprising a truth value

in the four element lattice T and a stored value in some lattice

V; thus ignoring input and output S=L+[TxVJ. We take area and

hold to satisfy oa=(areaao,holdao) for all oES and aEL; intuitively

holdao represents what the location contains whereas areaao in­

dicates whether it is inside the region of store in use. This

reglon can be extended by adjoining newo, a location not currently

within it. More accurately, new is any monotonic function from S

to L such that if areaao is proper for all proper a:L and if

areaao=false for some a then newo is proper and area(newo)o=false.

Plainly there are many possible new functions and any stack im­

plementation will have an operation which can be regarded as a

restriction of one of them to proper stores. Additional constraints

(such as tl'ose to be given in 3.1.3) can he imposed on them to bring

about a closer correspondence with the particular storage allocation

mechanisms involved. Notwithstanding this all these new functions

possess the following property which is not shared with many

practical implementations.

Suppose that 01 and 02 are members of S such that for all

proper a areaa0 is proper and equal to areaa0 and such that
1 2

areaa01=false for some such a:L. By the postulate above new0 and1

new0 2 are proper elements of L. Furthermore new(01U02) is proper

as areaa(01U02)=areaao1Uareaa02=areaa01 for all proper a. Now

new(01U02)~newolUnew02 (new being monotonic) so in fact

new(01U02)=newo1=new02 as L is flat.

11

With this model, then, the new location selected is in­

dependent of the contents of the store. Yet this should be a

contingent truth about an implementation, not a necessary one,

for if newl and new are two functions satisfying the postulate
2

above and if T is a summand of V it is natural to expect that

Ao.holdao~newlo,new2owill satisfy the conditions for a new

function.

1.2.2. Coalesced function spaces.

fhis blemish could be effaced by altering the properties

of new. Abandoning monotonicity would cause difficulties when­

ever a fixed point was required and would run counter to our

intuitions. The other property of new, however, can be weakened

by permitting inferences to be made about newo only when ° can be

reified. Thus we demand that new be a continuous function from S

to L such that if holdao and areaao are proper for all a:L and if

areaao=false for some a then newo is proper and area(newo)o=false.

When this property is imposed on new the remarks of 1.2.1 become

invaliu, as hoZda(olUo2) need not be proper when holdao 1 and

holdao 2 are. On the other hand, if 0la~a2a with 0la and 02a proper

for all a:L and if areaaol=false for at least one proper location

a then newo
l

=newo
2

• This accords with experience unless the

lattice of real intervals is regarded as a summand of V.

'I'hough the defect is removed by using this stipulation

about new it remains disconcerting that the original new could he

extrapolated from real stores to others in a way incompatible

with practice. Basic functions such as update can give rise

to similar anomalies unless they too are restricted to real stores;

for instance it is difficult to envisage the effect of finding

in a proper location or 0 in an improper one. Moreover the proof

l

12

that if the body of a while loop can be regarded as a multiple

assignment then so can the entire loop involves assuming that

updateello=l when eel and 0:5. In the light of the above this

assumption must be suspect until we provide a model in which it

is inherent, although theorems like 2.6.9 are independent of the

roles assigned to 1 in l, V and 5 because no semantic equations

make use of them.

In any store 0 which can be reified neither areaao nor

holdao is improper when a is proper. There is no physical

difference between the stores Aa.(false,true> and

Aa.(a:l+(false,true>,(1,1»; to avoid the possibility that the

basic functions have different effects on them we therefore allow

only one to belong to the domain of stores. Thus we take this

domain to be the set of functions 0 such that areaao and holdao

are proper unless a is 1 or T, when both are 1 or T.

Given lattices A and B with T~T in A we define a monotonic

and idempotent mapping j from A+B to A+B by

j= A¢ .I\{ ¢ ~ : B I ~ : A}+ (A C ~ : A+¢ ~ , T) , T •

Suppose that A~B is {j¢I¢EA+B}; when X~A~B we take its

join in A~B to be .HUn, where the join wi thin the brackets is

formed in A~B. With respect to this definition A~8 becomes a

lattice which possesses the attribute of continuity [19] under

the conditions detailed below.

We now dispense with our earlier version of the product

of two lattices, henceforth taking AxB to be

{(E"Tl> Is:AATl:B}u{(1,.L>,(T,T>} with

(sl,Tl 1>U(S2,Tl 2> =«slUs2:AATllUTl2:B)+{ SlUS2,Tl1UTl2> .1). This

coalesced product is an analogue of the coalesced sum which will be

adopted; in terms of it the domain of stores might be given by

5=l~[TxVJ, but actually in 1.3.1 we shall adopt a variant of this.

13

Note that under this convention the domain A* to he Jescribed in

1.2.8 is such that if any member ~* has ~*+V=l for some v then

1.2.3.	 Proposition.

Suppose that A and B are continuous lattices such that A

is flat and B is slit. Then A~B is a slit continuous lattice.

~We shall show that if ~1 and ~2 are proper elements of

A~B then ~1~~2 if and only if for every s:A ~ls~~2s and for all

except finitely many S ~1s=cut(~2s).

Suppose that ~1 and ~2 are proper and that ~1~~2' Let

Y be a directed set such that UY~~2s0 for some so:A; then

Uo.S.S=SO-+I1'~2SII1:Y}~~2 so, since ~1..(~2' there exists an I1 E Yr

for which CAs.C=~o-+110'~2~)~~1' Moreover if there is a chain of

finite subsets X1~X2~X3~'" having UXn=X~A and a set {11(S) Is:X}

with ~2s~n(O for all s:X, o.s,S:XA-CF,:X
11

)-+r,CE),¢
?

t:ln;>o} lS

a directed set of members of A~B with join ~2; hence for some n

O.s,s: XA-(i; :X)-+ll CU ,¢ 2s)=¢ 1 and 11 CsJ=~ 1s when s is not in Xn•
n

Thu 5 q, 11; = cut (q, i;) un1e 5 5 I; EX n U{ ~ , d .

Conversely suppose that for every s:A ~1s~~2s and for

all except finitely many S ~1s=n{I1IT~~2s=n~1}. Let Z be a directed

set with UZ~~2; we shall show that ~0~~1 for some ~OEZ and thus

that ~1~~2' For any proper ~:Z ~s~~ls except perhaps when s
belongs to the finite set X having ~1s~cutCq,2s). Even when

s:X, <l>1s~~2s and U{<I>sl<l>EZ}=<I>2s so, as {q,SI~EZ} is directed,

<I>(s)s~q,1s for some ~CS)EZ. As Z is directed there is some <l>OEZ

with ~o=U{<I>(s)ls:X}. Thus <l>Os=<I>1s for all sEA and <1>0=<1>1'

Should Z be a sequence of members of A~B with UZ=T then

U{<I>sl~EZ}=T for some proper s:A. Since T~T in B <l>S=T for some

~EZ and ~=T. Hence T~T in A~B and, more generally, <l>1~<1>2 if

14

and only if ~1=~' ~2=T or ~1~~~2~ for all ~:A and

~1~=n{nIT=~2~=n=~} except at finitely many ~:A.

Now let ~o be an arbitrary proper member of A~B. By the

continuity of B we can select n(~):B such that for every ~:A

n(~)~~o~ and thus cut(~o~)~~o~; hence if X is any finite subset

of A (A~.~EX+n(~),cut(~o~))~~o by the characterization above.

As B is continuous and slit,

~O=U{UOC~EX+n(O,cut(~oO1/\{n(~H~o~"n(O:BI~:X}}IX<;Ai\{Xis finite)}

and A~B is continuous. Finally, taking X to be the empty set shows

that cut~o=~ when ~o=~, so A~B is slit and thp proof is complete.~

The hypotheses of the proposition may appear bizarre but

in fact they are satisfied by those lattices to which it will be

applied. Although thes e hypothes es wi 11 he the ones invoked he] ow

the next result will ShO~i that they are not the only possibilities.

1.2.4.	 Proposition.

Suppose that A and B are continuous lattices such that

A 1S finite and T~T 1n B. Then A~B is a continuous lattice.

~Any retraction of a continuous lattice gives rise to a

continuous lattice, so we need show only that the mapping j de­

fined above is a retraction of A+B into itself. Let Z be a

directed set in A+B; as j is monotonic it is sufficient to prove

that U{j~ I~EZ}=j~o where ~o=UZ and j~o=~'

If j~o is proper ~o~ is proper for all proper ~:A, and

given any n(~):B with n(~)~~o~ there is some ~(~):Z such that

~(~)~=n(~). As Z is directed there is a ~1EZ with

~1=1J{~(O I~:A} and thus ~1~=n(O for all proper ~:A. Hence for

every choice of proper n(~):B such that n(~)<~o~ for every ~:A

there is a ~1EZ having j~1~=n(~) for all ~:A. Because B is con­

tinuous and n(~) is arbitrary U{j~~I~EZ}=~O~=(j~o)~ for every

15

proper ~:A. Necessarily j~l~;j~O~ and j~lT;j~oT when ~1 IS a proper

member of Z, so U{j~I~EZ}~j~O'

If J~O=T, ~o~=~ for every proper ~:A and ~O~;T for some

proper ~:A, so there exist ~(~)EZ such that ~(~)~=~ for every

proper	 ~:A and ~(~)~;T for at least one proper ~:A. Taking ~lEZ

with ~l~U{~(~)I~:A}, j~l;T as ~1~=~ for all proper ~:A and ~l~;T

for some proper ~:A. Thus U{j~I~EZ};T~j(UZ); this proves ehe result.:!>

Tn I-act the continui ty of j requi res A to be finite, for

given Xr:;.A define ~(X);ACV{~o-<~I~OEX}-+-s,~; H(x)lxr;At.,(X is finite)}

is a directed set with join A~.~;j(A~.~). When A is infinite, how­

ever, 1J{j(~(X))IXr:;.AA(X is finite)};~.

SUPJlose that p':A -+-A and p":B -+-B are injections on con­o 1 o 1

tinuous lattices with T~T and that q':A 1-+-A and q":B 1-+-B are theo o
reciprocal projections. Let j' be the mapping of A -+-8 0 intoo
Ao"'B o regarded as a subset of Ao-+-B o and let j" be the corresponding

mapping on A1-+-B 1 . Define p''''p'';j''o(p'-+-p'') and q''''q'';j'o(q'-+-q'');

if j' is continuous, p'oq';As.~ and p"T;T then p'Bp" is an injection

with reciprocal projection q''''q''. In general A is not finite so o
j' is not continuous, but there are further conditions which en­

sure the continuity of p ''''p'' and q ''''q''.

1.2.5.	 Proposition.

Suppose that p' : A -+-A 1 and p":B -+-B 1 are injections on con­o o
tinuous lattices with T~T and that q':A1-+-A and q":B 1-+-B areo o
the reciprocal projections. Suppose further that p' is an iso­

morphism, that p"T;T and that if q"(cutn);~ for any n:B 1 q"n;~.

Then p ''''p'' is an injection with reciprocal projection q ''''q'' whilst

if 81 is slit so is B ' o

-i:Cjotc first that p"T;T if and only if when q"n;T

necessarily n;T, since q"(p"T);T.

16

Let ~:Ao*Bo and ~EA1; then p"(~(q'~))=~ if and only if

~(q'~)=~ and hence if and only if ~=~, whilst p"(~(q'~))=T if

and only if ~(q'~)=T and thus if and only if ~=T. Thus

Furthermore,

q I *q"= A~ .A{ q "(~ (p , ~)) : B0 I~ : A1 }-.. (A~ • ~ : A0-"q "0 ~ 0 p , , T) , T

=(A~.A{q"(~O:B I~ :A 1 }-"q"o~op', T)o
so that (p'*p")o(q'*q")'=A~.~ and it remains to be shown only that

q'*q" is continuous.

Suppose that Z is a directed set in A *B and that
1 1

~o=UZ; we shall show that U{(q'*q")~I~EZ}~(q'*q")~o'

If (q'*q")~o is proper, q"(~oO is proper for all proper

~:A1' Now for every ~:Z and ~:A1 ~o~~~~~cut(~o~)' so if q"(~~)=~

in fact q"(~o~)=q"(cut~o~)=~ contrary to hypothesis. Hence when­

ever ~:Z and ~:A1 are proper q"(~~) is proper, thereby proving

that U{(q '*q"H I~EZ}=Uiq"o~op' I~EZ}=q"orjlop'.

If (q'*q")~O=T, for some proper ~:A1 q"(rjlOO=T so ~O~=T

and ~O=T; hence as T<T in B1 , ~l~=T for some ~lEZ and ~l=T, giving

U{(q'*q"lrjllrjleZ}=T.

Note also that if (q'*q")(cut~)=~ for some ~:Ao*Bo'

q"(cut~~)=~ for some ~:A1 so that q"(~~)=~ by hypothesis and

(q'*q")~=ol.

Should cutn 1 be proper for all proper n1 :B 1 , take n1=p"n O

for some proper no:B o ' As q"n1=nO~~' q"(cutn1)~ol and

cutn =n{n IT~p"n O!p"n 'olJo	 2 0 2

=n{q"(p"n)IT~n O!p"n =ol}

2 1 2

O!n{q"n2IT~n O!n ~~}
1 2

=q"(cutn)- 1

=ol.1>

17

Thus the set of slit continuous lattices is closed under

the creation of A*B from a flat lattice A and a slit lattice B,

and any projection of B of the form above induces one of A*B which

is also of this form. An analogous proof shows that the set is

also closed under the construction of arbitrary products. Here

we content ourselves with a more modest result for which we take

q'xq" to be A(~,n) .q'~:AoAq"n:Bo-+(q'~,q"n) ,T when q':A 1-+A and o

q "'B -+B . 1 0 •

1.2.6. Proposition.

If A and B are continuous lattices with T<T so is AXB,

whereas if A and B are slit so is AxB. Moreover suppose that

q':A 1-+A and q":B 1-+B are projections such that q'~=T implies ~=T, o o

q"n=T implies n=T, q'(cutO=.L implies q'~=.L and q"(cutn)=.L implies

q'n=.L; then q'Xq" is a projection with analogous properties.

~We can show by methods akin to those of 1.2.5 that AxB is

a retraction of {(~, n) I~EAAnEB}. Hence if A and B are continuous

so is AxB, and when ~:A and n:B cut(~,n)=cut~:AAcutn:B->{cut~,cutn),T.

Because AoxB is a retraction of {(~,n) I~EAoAnEBo} q'xq" iso

continuous; furthermore, if (q'xq")(~,n) =(T,T) q'E,=T or q"n=T so

that (~.n) =(T,T). If (q 'Xq")(cut(~,n))=(.L,.L) whi 1e A and B are o o
slit q'(cutO=.L or q"(cutn)=.L so that (q'xq")(~,n) =(.L,.L).:I>

Henceforth when writing elements of domains we shall fre­

quently leave implicit the effect of passing to the quotient space

A*B or AxB. Thus AC~=~O-+.L,<po~ and (~0,.L) may arise when AC.L and

(.L,.L) are meant. Instances of this will be inlleH'nt in the

definitions of 1.3.2, which will introduce functions acting on

environments.

We shall now verify that a suitable class of slit continuous

lattices is closed under the construction of inverse limits.

18

1.2.7. Proposition.

Suppose that {B In"o} is a sequence of slit continuous
n

lattices having for each n"O a projection j :B l+B such that n n+ n

j n=T implies n=T and j Ccutn)=L implies j n=L. Then the re-n n n

suIting inverse limit B is a slit continuous lattice.

<J:Ccrtainlv B 1S a continuous lattice, so we need only

verify that it is slit. Let p be the natural injection of B
n n

into B and let qn be the reciprocal projection. We shall show

that for any n:B {cutCq n)ln"o} is an element of B having
n

q (cutn)=cutCq n) for all n"O. n n

For every n"C and n:Bn qnn=jl1Cqn+ln)c:jnCcutCqn+ln», so if

qnn=L jnCcutCqn+ln»=L. If qnn~L on the other hand, qn+ln~L

and jnCcutCqn+ln»~L from the hypotheses, so that

j (cutCq In))=cutCq n); as B is slit we have also cut(q n)~L, n n+ n n n

giving qn_1CPnCcutCqnn)))=cut(qn+ln) and cutCqnn)=jnCcutCqn+ln»).

Hence for all possible cases cutCq n)=j Ccut(q in)) and n n n+

{cutCq n)ln"o} is a member of B.
n

is some least m~O with q n =L when n~m and thus with
n 1

q n =cutCq n) when n"m. If m>O n 1 n o

qm_lnl=jmCqmnl)=jmCcutCqmno»)=cutCjmCqmno»=cutCqm_lnO) in con­

tradiction to the minimal nature of m. Accordingly we can assume

that n{qnnlIT~nO='nl~L}=cutCqnno) for every n"O. However

qn(cutn)='qnCn{PnCqnnl) IT~nO='nl ~L})o

=qnCPnCn{qnnlIT~no=nl~L}))

=n{qnnlIT~no=nl~L}

=qn(cutn o)'

so that qn(cutno)c:cutCqnn)' When qnno=L we have qn(cutno)=Lo

also, whilst when qnno~L we know that no=PnCcut(qnno))~L and that

Ilence for every n q ocut=cutoq , and in particularn n

19

when cutn~.L cut(q n)~.L, so that as B is slit for every n~O
n n

n 1S such that q n~.L.
n

When Yc;B is directed and UY~T, qo (UY)~T and qon~T for some

nEY, since T·n in B ' If qnn~T for this n, jn (qn+ln)=T so o

qn+ln=T and we may deduce that n=T and that T<T in B.~

Observe also that if for each n~O k is a projection of B n n

on to some other slit continuous lattice and if knn=T only if n=T

while k (cutn)=.L only if k n=.L then Uk 0q is a projection of B
n n n n

on to this lattice having Uk (q n)~T only if n=T and
n n

Uk (q (cutn))=.L only if Uk (q n)=.L.
n n n n

1.2.8. Methods of combining lattices.

For future reference some methods of constructing domains

will now be described. In the course of this description A and

B will be taken to be lattices (which may be subject to certain

constraints), and q':A->A and q":B->B will be any continuous mappings

of A into A and of B into B having q'=q'oq'=A~.~ and

q"=q"oq"=An.n. Henceforth functions satisfying the conditions

imposed on A and B will be termed 'projections' of A and B, hut

they are actually projections on to q'A and onto q"B having

natural embeddings as the corresponding injections.

The set of continuous mappings of A into B, A->B, is itself

a lattice on which can be defined a projection q '->q" by setting

q '->q"=A¢.q"o¢oq'; furthermore if A and B are continuous lattices

so is A->B. Of less obvious significance is A~B, which comprises

those functions ¢ in A->B, such that, unless ¢T=.L or ¢.L=T, ¢~ is

proper if and only if ~ is proper; q '~q" is taken to be

A is a flat lattice and B is a slit continuous lattice A~B is a

slit continuous lattice, and by 1.2.5 q'~q" is a projection when

20

q'=\CC q"T IS improper and for every n:B q"(cutTl)=l only if

q " Tl =l.

The product of A and B, AxB, is not composed of the set

of all pairs (s,Tl) with sEA and TlEBj rather it is formed from

the set of those (s, Tl) such that sand Tl are both proper, together

with (1,1) and (T,T), and q'Xq" is \(S,Tl) .q'S:AAqITl:B+(q'S,q"Tl) ,T.

Nonetheless when A and B are continuous lattices having T~T AxB

is also continuous, whilst when A and B are slit continuous

lattices AxB is a slit continuous lattice. In the latter situation

the image ofAxB under q'Xq" is a slit continuous lattice, pro­

vided that q'T and q"T are improper, q' (cutS)=l only if q'S=l,

and q"(cutTl)=l only if q"Tl=l.

As intimated in 1.2.2, the sum of A and B, A+B, is the

set {sls:A}u{TlITl:B}U{l,T} under the ordering induced by amal­

gamating the orderings of A and B; thus when r,1:A+B and

r,2: A+B r,1~r,2 only if either r,1 and r,2 belong to A and r,1~r,2 in

A or r,1 and r,2 belong to B and r,1~r,2 in B, and if B contains at

most two elements A+B is isomorphic with A. The sum of two con­

tinuous lattices having T<T is itself a continuous lattice, and

the sum of two slit continuous lattices is a slit continuous

lattice. Defining q'+q" to be \r,.r,:A+q'r"r,:B+q"r"T gives a

projection such that when A+B is a slit continuous lattice its

image under q'+q" is also slit and continuous so long as q'T and

q"T are improper, q' (cutS)=l only if q'S=l and q"(cutTl)=l only

if q"Tl=l. For any r,eA+B the test r,:A is deemed to result in true

false, 1 or T, depending on whether r, is a proper member of A, a

proper member of B, 1 or T; in addition r,IA is r, (regarded as a

member of A) if r, is a proper memher of A, T if s is T and 1

otherwise. Similar remarks apply to r,:B and r,IB. The mapping

which coerces an element of A or B into the corresponding element

of A+B will be omitted from many equations; indeed even the

21

projections of A+B into A and B will often be left out, so that,

if T is a summand of a domain E say, and if € is a variable ranging

over members of E, A€. (€IT)+8 1 ,8 2 will be written as A€.€+8 1 ,8 2•

By the same token q'+q" may be transmuted into q'Uq".

To form a product of A and B which separates (.L, 11> from.L

when 11 is proper, or to form a sum of A and B which separates .L

in A from .L in the sum, use can be made of AO. This is formed

by adjoining new elements .L 0 and rO to A in such a way that when

~lEA and ~2EA .L°=~1~~2=ro if and only if ~1~~2 in A. Thus ~oEA

precisely when ~o:Ao, and a singleton {dummy} gives rise to

{dummy}O, a lattice containing precisely three elements. The

q'OrO=rO and q,o~=q'~ whenever ~EA.

Given lattices Ai"" ,An it is possible to set up the

product A1x ... xAn and the sum Al +•.. +A by analogy with AxB and n

A+B. When (~l"" '~n)EAlx ... xAn its components can be selected

by letting (~l'''''~ > +m=(1,;m,;n+~ ,r), and n m

(~1"" '~n) tm= (m+l';n+(~ (OAmhl"" '~n> , (». For the lattice

{<lID, which consists of the vector of dimension 0 together with

.L ° and rO, (> +m=r and () tm=(> for every proper m. Moreover if

(~n+l""'~n+m)EAn+lx••• xAn+m the element (~1""'~r/ §(F,il.rl'···'~n+m)

of A1x ... xA. xA. lx ... xA. is t8ken to be (1;1, .. ·,1; ,~ t~ , ... ,~ +) n n+" n+m n n -L n m

an obvious comparable convention covers thp vector of dimension

o. The continl10us operations of concatenation, §, slicing, t,

selection, +, and function application will he given increasing

degrees of binding power.

The lattice of finite lists of elements of A, A*, can

therefore be defined to be {()}o+A+AxA+AxAxAt ... , which is slit

and continuous when A is slit and continuous. Should ~ signify

a typical member of A, ~* will be a typical member of A* having

length #~*, where #~*=(~*:{()}o+O,l+#(~*tl). Concatenation,

22

slicing and selection will be applied to lists without any mention

of the mappings between A* and the relevant summands; # will have

lower precedence than these operations, so #E*tl will be written

instead of # (~*t1). The predicate ~: ~* means

Y{l~v~#~*+(~~~*+v),falselv:N}, where N is the flat lattice of

integers. Finally, the projection induced by q' on A*, q'*,

is A~*.~*:{()}o+~*,(q'(~*+1) §q'*(~*t1). Although ~* will not

mean (~, ... , 0 , dummy* will be understood to be (dummy, ••• , dummy) ,

and a similar convention will govern 0*, 1*, 2* and 3*.

In 3.5.3 lists which are infinite in length will be

required. Accordingly when A is an arbitrary slit continuous

lattice A~ will be taken to be the least solution of the domain

equation A~ ~AxA~ ° and Av will be a solution of Av ~{() }o+AxAv ;

the elements of A~ are necessarily of infinite length, but some

members of Av are finite. The nature of A~ illustrates one

feature of our definition ofAxB which would not arise were

(~ ,1.) not identified wi th 1.; to ensure that certain domains

subject to recursive equations are not trivial it is necessary

to 'seed' the equation by using AXBo, say, rather than AxB.

Though it would be stupid to make A~ satisfy the equation

A~ ~AxA~, A' can be presumed to satisfy Av ~{() }o+AxAv with

impunity, since the presence of a sum of domains avoids the need

to suppose that A·~{()}o+AxA·o; a similar phenomenon occurs when

A~B is adopted instead of A+B.

If B1 , say, is an arbitrary slit continuous mapping and

jo:B1+B is a projection of B on to a lattice B then B is o 1 o o
slit and continuous provided that for all nE B1 jon~T only if n~T

and jo(cutn)~1. only if jon~1.. The slit continuous lattices are

therefore the objects of a category having as their morphisms

the projections which satisfy the additional conditions imposed

on jo in the preceding sentence. This category is closed under

23

the formation of products, sums and inverse limits; moreover if

A and B are slit continuous lattices then [A+B]O is slit and

continuous, while if A is flat and B is slit and continuous

then A~B is slit and continuous. Except in 2.4.4. the domains

to be considered below can be obtained by subjecting objects in

this category to combinations of the functors discussed above,

so they can be assumed to be projections of a universal domain

into itself.

Any functor which takes the category of slit continuous

lattices into itself and which is finitely generated from the

functors described above can be viewed as a transformation

acting on projections of the lattices as follows. Let ~ and ~

be such functors for which any projection q of a slit continuous

lattice V such that qT is improper and q(cutS)~L only if qP~L

gives rise to projections ~q:~V+~V and ~q:~V+~V for which ~qT

and JlqT are improper, l!lq(cuti;l=L only if I!lq!;=L and J!lq<Cutll)=L

only if ~qll~L; suppose that ~(q'oq")~~q'o~q",=I!l(AS.S)~A!;.!;and

~(q'oq")~JIlq'oJBq"'=JB(AS.S)~All.ll for all projections q':V+V and

q":V+V satisfying the constraints imposed on q. When CV is V,

mVxJBV, AV+~V, avo, ~V* or a lattice independent of V for any

projection q:V+V ~q will automatically be taken to be q, I!lqx~,

~q~q, I!lqo, I!lq* or 1.8.8 respectively; when ~V is ~V~.V ~q will

be I!lq~q so long as ~V is flat and I!lq~A!;.!;. In all these cases

~V is a slit continuous lattice, since gV and .V are slit and

continuous; moreover for all the appropriate projections of V

€qT is improper, £q(cut8)~L only if ~q8~L and

(:(q'oq")~4tq'ol!:q",=e:(A8.S)~A8.8. When '$.V and.V are only known to

be continuous, writing ~V for I!lV+~V and ~q for I!lq+~ gives a

continuous lattice £V having f:(q'oq")~Qtq'oltq"'=~(AS.S)~A8.8;in

addition evo is slit and i!:qo (which is not C(qO) but (Cq)O)

satisfies conditions analogous to those imposed on q.

24

1.3. The initial paradigm.

1.3.1. Inverse limit spaces.

Semantic equations can be based merely on the existence of

reflexive domains and on mappings which preserve the joins of

countable chains (in the sense suggested in 1.1.2). Equivalences

between these equations, however, frequently also require that the

domains be 'small enough'; certain lattices will therefore be

viewed as the least fixed points of functions between projections,

although explicit inverse limits will not be set up until 2.4.4.

Accordingly the limiting process will be embodied in an assertion

about the effect of applying fix to a particular function; in a

formal system this assertion could be regarded as an induction rule.

If V is a putative space of stored values the corresponding

domain of stores, 6V, can be constructed from it and a few flat

lattices like Land T; &V might satisfy ~V;[L~[TxVJJxV*xV*, for

instance. The space comprising store transformations, €V, might

be &V+~V, where IV is some other lattice which depends on V;

whether or not a computation terminates is influenced by the store

supplied as an argument, so 6V~~V could not be used as €V. Most

languages need further domains, such as those containing expressed

values, ~V, and denoted values, ~V. From these domains can be

built a new space of stored values, ~; for Pal this is B+L*+1V+1V,

in which 3V represents label entry points, 1V represents functions

and B is a fixed flat lattice.

In accordance with 1.2.8, slit continuous lattices like V

are the objects of a category having as morphisms the projections

such as q which have qB;T only if B;T and q0utB);L only if qB;L.

Moreover, the other lattices are built from V in such a way that

€V and ~V are continuous while &V, ~V and ~V are both continuous

and slit. In fact &, e and ~ are functors taking the category of

slit continuous lattices into itself; sin~e this implies that J and~

25

are functors defined on the same category, in Pal ~ is a functor

such that Vq=qo+Jq+~q, where qo is the identity function on B+L*.

When there is a natural isomorphism between V and ~V they

can effectively be equated and qo can be regarded as a projection

of V into itself. Under the conventions of 1.2.8 for any

projection q of V into itself for which qr is improper and qS"'.L

whenever q(cutS)=.L it is possible to set up a projection Vq of V

into itself having Dq"'qo+Jq+~q; plainly Vqr is improper and ~qS=.L

whenever Dq (cutS)=.L. lIence if q l=lJq for all n;:'O then q l'!.qn+ n n+ n

and the minimal nature of V IS expressed by the equality AS.S=Uq ;
n

by an elementary calculation this equality holds if and only if

AS.S=fix(~). For a few little languages the space of stored values

reduces to B while the other domains continue to be reflexive, so

different functors must be used in formulating the induction rule;

one such is D, which will be mentioned in 2.4.2.

These remarks will now be elucidated by discussing the

semantics of a computer language. The paradigm will be a syntactic

variant of Pal [5] because its stored label entry points and

functions reduce the scope for simple proofs about programs. Since

only locations can be denoted even while x>o do x:=O and

L: if x>O then x:=o; goto 1 else dummy do not compute the same

function according to the semantic equations, although 2.4.5 will

present a notion of equivalence which is appropriate to them.

As hinted above, the space of stored values for Pal is built

from a fixed flat lattice B, the form of which is relevant to the

semantics of the language but not to the theorems to be proved

below. In fact B={dummy}o+T+N+R+H*, where T={true}o+{false}O, N

represents integers, R represents real numbers and H represents

characters (so that H* is the domain of strings). The lattice of

real numbers is a flat one, because that suggested by interval

analysis is not slit and yields a discontinuous equality predicate.

26

Taking J to be a lattice of label entry points and F to be

one of functions, Y=B+L*+J+F, S=[L#[TxY]]xY*xY* and C=S+A. The

additional components of S provide rudimentary input and output

facilities which are not specified by the original language

definition but which are intended to illustrate how real facilities

would influence equivalence results; their use will be justified

in 3.5.4. The semantic equations will presume nothing about the

final domain A to which transformations map stores, but often it

can be taken to be a retraction of 5 encapsulating the output.

Certain primitive functions will be common to all the kinds

of semantics which will be described. They include

empty=(ACl.(false ,dummy) ,() ,(» ;

area=AClcr. (cr+1)cdl;

hold=Aacr. (cr+1)a~2;

update=Aa6cr.a:LAS:YAcr:S+(Aa' .Cl'=a+(true,S) ,(cr+1)a') §crtl,T.

Thus every location is deemed to contain a value, but whether

or not that value can be obtained when the location is not in the

region of store currently in use depends on the language concerned.

In 2.5.9 it will be shown that no such location is ever handled by a

Pal program as the implementation canllot delete accessible storage.

A sequence of store accesses is performed l,y means of

ho lds =Aa * cr • a * =() +() • (ho ld (a* +1) cr) §ho l ds (a* t1) cr ;

updates=Aa*S*cr .a*=() +cr ,update (a*~l) (6*+1) (updates (a*tl) (S*tl)cr).

Because 5 now contains few superfluous elements new:S+L may

be taken to be any continuous function satisfying

Acr.area(newcr)cr=Acr./\{areaao'a:L}+~,false.

As n{Sls:J}~~ and n{SIS:F}~~, when cr is proper the magnitude of any

label entry point or function contained in it cannot influence the

value of newo.

This operation can also be iterated, giving ne~s:N+S+L*:

ne~s=Avo.V=O+(), (;\00.(00) §ne~s(v-1)(updatea(holdacr)cr»(ne~o).

27

Allowing update to adjoin locations to the area does not conform

with computing practice, but it does economize on definitions of

basic functions.

Another possible model for storage is [L~[{flag}o+VJJxV*xV*,

where aa=flag indicates that a 1S not in the area of store in use

whilst aa:V establishes that a is in this area and contains aa.

Although this model provides the store transformations with

precisely those parts of the store on which they truly depend,

it is not physically realistic. Locations outside the area of

accessible storage have contents which may affect the choice of

new locations in a way which this model cannot reflect. Even if

they do not influence that choice there remains the question of

what new locations should contain when the store is extended.

Since the methods to be introduced in 2.4.5 can be adapted to

verify that in the earlier model the result of a computation is

independent of the contents of locations outside the store area,

the artifice described above is not needed to mirror reality well.

1.3.2. The structure of the environment.

The environment supplied as an argument to the semantic

equations associates with every identifier all the values it has

been made to denote 'up till the current program point'. Though

it will be confirmed in 1.5.2 that the meaning of a Pal program

h~5 to depend on the values given to its free variables at their

most recent declarations only, the entire environment will be

necessary in later kinds of equation and will therefore be used

here for consistency. For reasons which will be explained in 2.1.6

identifiers will be permitted to denote L in an environment which

is not L; consequently when Ide is the flat lattice of identifiers

and D is the slit lattice of denoted values the relevant component

of U, the domain of environments, will be taken to be Ide~Do*.

28

The scope of the return link associated with res depends

upon the program text, so the environment must include the list

of links set up on entry to val blocks. Since these links take

both an expressed value from E and a store from S as arguments

they belong to K~E-+C. Consequently res can sometimes denote the

continuation 1, which represents a non-terminating program, and,

as the coalesced product is being used, the lattice KO *, not K*,

must cope with val in U.

To assist with the detection of errors in programs Pal

demands that when a new denotation is bound into an environment

the erstwhile height of the environment be kept. This requirement

will be ignored, however, because it entails only superficial

changes in the definition of pC6/IJ. The domain of environments

will therefore be given by U~Clde~Do*JxKo*; under a convenient

abuse of notation, if p is an environment and I is an identifier

pilI and plresl will signify the entities more correctly

represented by (p~l)III and P~2 respectively. In order to extend

the environment with 6:n° or K:K o it is appropriate to set

p[8/IJ~((\I'.I'~I-+(8)§p[I],p[I']),p[resl) and

pCK/resJ~(\I.plI],(K)§plres]}. Furthermore, if 6*:Do* and I*:Ide*

pC6*/I*J~ (I*~() -+p, (pC6*ti/I*tlJ) C6*+1/I*+1J); all references to

pCdummy*/I*J or updatesa*dummy*cr (such as those to be given in

1.4.4) will tacitly assume that #dummy* is #1* or #a*.

In 2.1.5 several functions for amalgamating and segregating

environments will be needed, but here it suffices to introduce

arid~(\I.(} ,(});

divert~APOPi'(A1, Pi' 1]1 §p , IJI ,P i 1res]1 §p ' resl} ;o o

inVe rt ~ APOP 1.(ALp 1[II § (Po' II t# P1[[I]) , Pi [[re s] §(pol re s]t #P1[re s])}

re ve rt~ APOP 1.(AI. Pi [[II t (#P1[[I1- #pol I]) , Pi [[re s] t (#Pill re s] - #Po [[re s])}

conserve~Ap*. p*~(} -+arid, divert (P*~i) (conserve (P*ti)).

29

Declarations glve environments as results so the corres­

ponding semantic equations must be supplied with continuations

taken from X=U~C. One pecularity of Pal is that an identifier,

x say, may be given a meaning local to a declaration rather than

an expression by a form such as x=o within y=x. To prevent the

value given to x from being entered in the environment returned

by the complete text the result of a declaration is arranged to

contain only those identifiers set up in it rather than the

current environment. Thus if X:X and a:L the declaration above

might give rise to the store transformation x(arid[a/y]).

1.3.3.	 Value domains.

An expression in a program supplies an argument drawn from a

domain comprising the possible outcom~s of expressions [23J to the

next instruction. This domain of expressed values, E, is

L+B+L*+J+F for Pal whereas the domain of denoted values, D, is

simply L. In 2.1.6 we shall also be concerned with the domain of

witnessed values, W, where w:W if w can potentially appear in the

store, in the environment or as the answer given by an expression.

Because the environment has a simple structure the Pal version of

W is L+B+L*+J+F+Ko while, anticipating 1.3.4, ~~IJ is ApK.K(p~IJ+1).

A label entry point is a store transformation taking only

0:5 as an argument. The entry point ~, however, corresponds to a

non-terminating computation and on intuitive grounds should not be

identified with the stored value ~, which is weaker than some

members of B in the lattice ordering. Similarly should T in C

correspond to an erroneous computation it must not be regarded as

T in V. Indeed making such identifications ln our model for storage

might cause a collapse of the store when an assignment was made to

a label variable, and so we must take J to be Co rather than C.

30

An abstraction takes as its arguments a member of one

domain of values and a return link, to which is supplied a member

of another domain of values 'on completing the execution of the

abstraction'. In Pal both these value domains are L, so the

lattice of functions is L+[L+CJ+C; however more use will be made

of E+[E+CJ+C, which allows for the discussion of language features

such as those to be introduced in 1.4.5. Considerations of

non-termination apply to functions as well as to label entry

points, so in standard semantics F will be taken to be [E+K+CJo.

Later a lattice of procedures without parameters, G, will

be needed; the structure adopted for this will be [K+CJo. Typical

elements of J, F and G will be denoted by 8, ~ and y respectively;

should they (or certain other) Greek minuscules appear without any

explicit mention of the domains concerned they will signify the

ones given in the relevant appendix. Because the episema cannot

be typed some of the remaining letters will have to be used for

more than one purpose, but the context will suffice to remove the

ambiguity. Variables ranging over syntactic domains like Exp, the

lattice of expressions, will be represented by Greek majuscules,

The functors which construct lattices from V (and later from W) will

be designated by Light Old English equivalents of the names of the

lattices themselves, which will appear without serifs.

1.3.4. Evaluating continuations.

The semantic equations for Pal rely on the 'continuations'

of Wadsworth [25], and their main novelty is the introduction of

auxiliary valuations to extend the scopes of labels and mutually

recursive declarations beyond their textual positions. The idea

underlying such valuations will be explained here and applied to

the semantics of Mal, of which Pal is a subset.

31

In many languages labels can be set by colon only when they

occur in such a sequence as I :f ; ... ;In:f where for lmn
1 1 n

I :Ide and f :Com (the lattice of annotated derivation trees for m m

commands). Moreover the scope of a label is generally arranged

to be the sequence in which it is declared. Under these circum­

stances there is one semantic equation which cppl i C5 '?f to a commanu

sequence and yields its effect as a labelled block. Labels in Pal,

however, can occur anywhere in an expression and their scopes

propagate beyond the expression when it is an arm of a conditional

clause or the body of a loop. In principle there is no reason

why a jump cannot be made inTO an arithmetic expression or the pre­

mise of a conditional clause without assigning a local label to a

variable of greater scope; the arbitrary decision in Pal to let

scopcs propagate only through cxpressions of the above forms and se­

quences of expressions is therefore made manifest in our formalism.

We introduce auxiliary valuations /:Exp+Ide* and ~:Exp+U+K+J*,

which collect up the labels and the corresponding entry points of

an expression embedded in a particular environment and followed

by a known continuation. The valuation ~:Exp+U+K+C provides the

effect of an expression ignoring label declarations and is applied

when the labels set within the expression may have scopes exceeding

it, whereas C:Exp+U+K+C regards its argument as a block which con­

fines label scopes. For any E:Exp which is not a label setting,

a conditional clause, a loop or a sequence the lists of labels

and entry points are empty so 4[EI=~[EI; in such cases /[EI and

~EI will generally be omitted from the equations in the appendices.

Mutually recursive declarations involve a similar situation,

ln that the variables being declared are in scope throughout all

the declarations and the syntax governing Dec, the domain of

declarations, is too complex to permit one semantic equation

32

to cover all the cases. Thus besides g: Dec+U+X+C we require

valuations .!:Dec+lde* and ~Dec+U+X+C, one to assemble the

identifiers being declared and the other to evaluate the dec lara­

tions when these identifiers are already in scope. Thus in Pal

if II:Dec we take !JI[rec II] to be

APxo . (Aex * . ex * : E~ II] p[a* / J[II]] X(up da te s ex *dummy *0 l , T l (news (#.![III)°),
where the list of locations is tested merely to ensure that when

the free store is exhausted execution does not carryon. In fact

Pal tends to vacillate between two possible values for 5[l=EI which

in terms of the functions to be descrihed in 1. 3.5 JIlay be wri tten as

APX.,*[EJ!p(AS.x(al'id[p[lIH/I]loupdate(p[lIHlSl and

APx.~[Elp(AS.lv(Aa·x(al'id[ex/l]llSoupdate(p[ll+llSl;

we shall adopt the former, but all that follows, including 2.7.5,

remains valid if the latter is used. By contrast g[l=EI is

APx.~[Elp(Aex.x(apid[a/l]ll, ln which the location ultimately

adjoined to the environment is not known on entry to the expres­

sion. The Pal equations governing 11 0 within III and

III and and lin are identical in form with those of appendix I,

which are the ones for a language in which D is not merely L.

Certain kinds of expression have meanings before they are

supplied with their continuations. In our present case these in-

elude the abstractions and the basic constants, which comprise

flat lattices Abs and Bas respectively. For the first of these

we introduce a valuation :F: Abs+U+F such that when cjJ: Abs s>[cjJI

requires only an environment to make it into a closure; ~ fnl.EI.

for instance, is Ap.AEK.~[Elp[E/l]K. We describe ~:Bas+E simply

by stating that if N, P, and H are variables ranging over numerals,

decimals and external representations of characters then ~NI,

!l3'[PI and."4["H ••• H "I signify appropriate elements in the
1 n

summands N, Rand H* of E. In addition &ijdummYI=dummy,

33

~[truej=tl'ue, ~[falsej=faZse, ~[nilJl=() IL* and ,>-III ""II=() IH*;

we shall take B to designate a typical member of Bas.

Because opentors in Pal cannot be declared by the pro­

grammer there are valuations £!!:Mon+E+B and:Oya+[ExEJ+B defined

on flat lattices Mon and Dya. Thus we introduce variables O:Mon

ranging over the monadic operators of the language and Q:Dya

ranging over its uyadic operators, to which the usual meanings

will be ascribed in examples such as 3.1.5. We shall not specify

these meanings as they are irrelevant to all our theorems pro­

vided that we make the assumption that when E1:J and E2:J or E :F1
and E2 :F AO.(!)[OjE 1=AO.m[OjE 2 , while

AQ£.'if1[Qj(£1'£) =AQ£;if1!ilj(£2'£) and AQ£.if1lQ]I(£'£1) =AQ£,'lll1[Qj(£'£2)

These equations are reasonable because in practice any operators

taking label entry points or functions as arguments can only

achieve non-trivial ends (like having a range with cardinality

greater than 1) by using information about the machine represen­

tation of elements of E. Hence although such operators can be

provided in the formalism of 2.1.1, which splits up closures into

their constituents, they are not realistic in standard semantics,

and this lack of realism is reflected in their absence from con­

ventional programming languages. More precisely, unless we

admit ~ or T as possible values for (!)[OjE 1 and1f1[Qj(£1'£2) when

£1 and £2 are in J or F the continuity of the valuations and the

orderings of B, Co and [E+[K+CJJo entail the assumption above.

1.3.5. Other primitive functions.

To obtain the members of L and V associated with an

expressed value and a store we introduce

ZV=AK£O.£:L+K£O,(Aa.a:L+Ka(updatea£o),T)(newo);

rv=AK£O.£:L+(area£o+K(hoZd£o)O,T),K£O.

The continuation K is supplied to these functions in order to

34

provide a more satisfactory treatment of errors than could be

given merely by sending the arguments of K to T. Strictly

speaking we should introduce functions which take remedial action

when an error occurs, but this would add to our notation without

enlarging its conceptual basis or altering the nature of our

proofs. Only in a language having on conditions is it necessary

to make matters so complex; we are content merely to distinguish

faulty computations from those which do not finish by taking T

rather than L to be an error stop.

Notice that both here and in 1.3.1 the meanings of the

primitive functions are specified precisely, instead of being

conveyed by sets of axioms. In some applications the latter

approach would be adequate, but to establish 2.3.1, for instance,

we must know the outcome of rVKao even when areaao=JaZse. Pro­

viding axioms sufficient to cope with the situations we consider

is tantamount to defining the primitive functions except at

certain improper values. Accordingly it is far less cumbersome

to give complete definitions by fixing a few values arbitrarily

than it is to postulate properties.

In this connection observe also that the presence of con­

tinuations in semantic equations can ensure that Land Tare

never passed on by one expression to the succeeding one, for

failures to terminate correctly give rise to improper elements of

A rather than of E or S. Consequently the meanings of the

equations need be influenced neither by any particular choice of

conditional function nor by whether updateTdummy and

updateLdummy. do or do not commute. A formal proof of this could

be given for the semantics of appendix 1 by using the technique

outlined in 2.2.7; essentially it would show that the ultimate

member of A yielded by an expression applied to a continuation K

could not be affected by the values of KL and KT.

35

Though the valuation 4' suffices to determine the outcome

of a Pal expression it is convenient to adopt ~Exp+U+K+C and

~:Exp+U+K+C which coerce that outcome into forms appropriate

to left-hand and right-hand contexts. Thus for all E:Exp we

write 5f'[E]=APK.;[E]p(ZVK) and ~n]I=ApK.4'[E]p(l"VK). Languages

in which expressions are subject to a much wider range of con­

textual coercions require the more elaborate treatment mentioned

in 3.6.1.

Often we wish to avoid imposing a particular order of

evaluation on a list of expressions or declarations because two

implementations may choose different ones. To eliminate point­

less restrictions we make use of a function i:N+N+N such that for

every v>o iv is a permutation of {l, ..• ,v}. This function

gives rise to j:N+N+N, which is set up in such a way that jV is

the inverse of iv whenever v>o. For any lattice A we define

k:N+A*+A* by k=AVt;*.V,;#t;*+< t;*+jVl, ... ,t;*+jVV>.T; hence if for

some lattice B we have ¢:[[A+B]+B]o* and ¢:A*+B we may set

l"un=A¢¢.(An.(~+i(n)1)(At;1·(¢+i(n)2)(At;2·(~+i(n)3)(At;3·

••• (q, +i (n) n) (\ t;n • 1jJ (k (n) (t; 1 •••• , t; n>)). ••))) (# q,) •

In particular we require l"un:[K+C]o*+[E*+C]+C and

l"un:[X+C]o*+[U*+C]+Cj a minor modification to their definitions

would allow their orders of evaluation to depend upon the store.

These functions do not allow us to optimize a program by evalu­

ating only one member of a pair of identical expressions, since

run acts upon code, not upon text. To model a compiler which

optimized xl+xl, say, we would need to introduce additional valua­

tions which would gather up the occurrences of xl and the other

expressions; an analogue of run which would apply to portions

of text could then be used to evaluate each expression only once.

Such a function usually has no place in a formal definition of a

language, although it is relevant to the correctness of particular

36

compilers.

Implementations arc judged by the extent to which they

measure up to equations having the form of those ln appendix 1;

indeed it is the normative role of these equations that is

responsible for the name 'standard semantics'. Furthermore, from

these equations we can derive a class of rules intended to des­

cribe particular language constructs [8], but its utility for

Pal is limited by the possibility of sharing, the absence of

denoted functions and the existence of label variables. To prove

programs correct is is frequently necessary to resort to the formal

semantics; by this means one can, for instance, validate programs

for copying and reversing Pal graphs of locations. The proofs

are no more complex than conventional ones dealing solely with

acyclic trees [2], but they are boring. More interesting is

the following example, which adapts a method due to Park [14] in

order to show that, according to our intuitive beliefs about ~,

certain programs fail to terminate.

1. 3. 6. Example.

Let 110 be f=fn2.2 within f=fn2.($f)2 and Eo be

rec 11 0 inside ($f)O; when Po and 00 are proper AK.~[Eo]PoKOo is ~.

CSuppose that Po and news40
0

are proper, and let

aO=newo ' P1=poCaolfJ, 01=updateaodummyoo' a 1=new0 1 ,o

02=updateQ1 ($1 fn2 .21 P1)°1 , P =P 1 Ca1/fJ and2

03=updatea1(jO'[fn2.($f)2IP2)02. For any X

9l! '" 01 P1XO1=!lI [f= fn 2. 21 P1 (AP .ff![f= fn 2. ($ f) 21 (di ve rt P1P) X) °1

=9.'[fn2. z] P1 (Aa .!T[f= fn2. ($f)2] (divertP 1 (aridC al fJ))X)o 1

=.9'j[f= fn2. ($f)2] P xo 2
2

="II fn2. ($f);::] P (AB. x(aridCa /fJ)oupdatea S)02
2 1 1

=x(aridC a
1 If J)03'

37

Now set P3=PO[Cl1/fJ, (Cl ,Cl) =news20 and2 3 3

0lj=updates(Cl ,Cl)(holdCl 0 ,O) 0 For any K
3 ,
2 3 1 3

!II Eo] Po KO 0=911re c 60] Po (AP •.2'1[($f) 0] (d i v e 1" t pop) K) a a

=9"[60] P1 (AP .2[($f) 0] (d i v e 1" t Pop) K) a 1

=.>1'1 ($f)o] P
3

K0
3

=j<[fnz. ($f)z]P Cl (lvK)Olj
2 3

=2'1 ($f) z] P2 [Cl / z J (lv K) a lj •

Take as to be any store such that holda10S~holdCl103;

then, writing Cllj for newo and 0 for updateClljlholdCl oS)os, ClljcTs 6 1

and holdCl106~holdCl10S' In terms of the projections of 1.3.1,

however,

Z[($f)zlp [Cl /zJ(lVK)(&qn+1 0 s)=l"v(lv(l"V(AB.SCl (lVK»» Cl 1 (6Q n+10 S)
2 3 3

~(qn+1(holdCl10S)IF)Cl3(lvK)(&Qn+106)

~~Qn(holda10sIF)Cl3(lvK)06

~ (h 0 l d a IF) ('(3 (lV K) Ii> QnO 6) 10S

~(holda10,IF)a3IlvK)(6qn06)

='i"I[f~z. ($f)z] P2Cl3(lvK)(6Qn06)

=.2'[($t>z] P} a/ zJ (lVK) (6qn o 6) ,

while ~[($f)z]P2 [Cl3/ZJUVK)(6Qoos)=.l. As 06 obeys the sole

constraint imposed on os' by induction

~($f)z]P2[Cl3/zJ(lvK)(~QnOs)=~for all n and in particular

~[Eo] POKOO=~[($t>z] P2 [a 3 /zJ (lVK) (U6Qnolj)=L:l>

The presence of $f instead of f in ~o and Eo is irrelevant

to the argument above but will be necessary in 2.7.7, where the

elegance of within declarations will be shown to be somewhat

meretricious. Notwithstanding the intention that the identifiers

declared by 6 in 6 within 6 should have scopes limited to 6
1 1 2 2

this ex~mple demonstrates that this need not happen even in Pal.

The validity of this result does not require the hypothesis

that newo=~ if !\{al"eaClola:L}=true, provided that L is taken to be

infini te and all the areas of storage are assumed to be finite.

38

1.4. Incidence and reference.

1.4.1. Declarations having side effects.

The exotic flavour of Pal owes much to the fact that only

locations can be denoted. When designing languages with more

efficient implementations and equally elegant semantics it is

natural to remove this restriction. This task is not trivial,

however: although the semantic equation for stored labels can

readily be converted into one for denoted labels which uses a

fixed point this is not so for recursive declarations. If the

right hand expressions In such declarations were necessarily

constants, identifiers or functional abstractions our intuitive

view of recursion would be captured by a simple semantic equation,

but the arbitrary expressions permitted by Pal may influence (and

be influenced by) the store in a way which'this would not reflect.

Here we seek an equation which models declarations with side effects

and which corresponds with Pal recursion in a way to be clarified In

2.7.6. To illuminate the search we use Mal, an enhancement of

Pal wherein I==E and 11 "" ,In==E indicate that the identifiers

declared thereby signify values which in Pal can be only he

stored. In contrast to the declarations by reference of 1.3.4

such declarations by incidence require a large space of denoted

values, which tentatively we take to be L+B+L*+J+F; accordingly now

we can safely assume 9[I==EI to be ~px.~[Elp(~E.x(arid[E/IJ».

Were the equation for rec I==E to mimic that for rec I=E,

probably like the latter it would simplify sensibly when L signifies

an abstraction. We must not be led solely by this criterion,

however, as rec I=E may give a silly answer. If I is accessed in

the body of E and outside an abstraction before being updated,

the result may reflect the capricious choice of initial content

of the corresponding location; dummy is not adopted for this in

39

the manual [5]. lIere the maIn import:mcc of e'luating jI\[rec I;E]

with \Px.Zv(\a.~[E]p[a/I](\S.x(arid[a/I])oupdateaS»(dummy)

lies in the suggestion that the side effects of E be carried

out once, at the time of declaration, instead of whenever I IS

looked up in the environment or during hath declaration and

inspection.

If ~:Abs a natural candidate for the value of 2[rec I;;~]pxo

is .1tU]p[fix(\s.§I[~]p[S/IJ)/IJKOor

K(fix(\p'.pG<FUJlp'/IJHIJI+1)o where K is \s.x(arid[s/IJ).

This, however, gives little guidance about ~[rec I==E] even when

E is if 10 then ~1 else ~2 where what I finally denotes may

depend on the store in a way which is not known when the environ­

ment above is formed. We cannot give I a random initial value

as this will then appear in the environment attached to the

resulting closure; rather we should supply it with something

reflecting the whole of E. Accordingly we adjoin G;[K+C]O to

o (so that 0 becomes E+G), attempt to use

~[E]p[fix(\o.~[E]p[o/I])/I]Koas the recursion operator and take

,4[1] to he \p'K'.p'[I]H:G+(p'[I]+1)K',K'(p'[I]+1).

Unfortunately this form of equation does not satisfy the

demand that the side effects of E happen exactly once. It can

readily be verified that under it

z;1 inside rec f;;(z:;-z; fnx.if x>o then fO else 0) inside f1

leaves 1 in the location denoted by z whereas the corresponding

program in which f denotes a location leaves -1.

To eliminate the side effects during the inspection of

f in the environment we tryout

£!I[E] p[fix(\yK'O'.Bt[E] p[y/IJ(\SO".K'SO')O')/IJKO. Here whatever

effect the procedure denoted by I has on the store at the time

of inspection is thrown away, only that part of the result in E

40

being preserved. Now the outcome of the program above is to

leave -1 in the location denoted by z.

Even this operator is inaccurate, however, as the store

is not sealed into the procedure denoted by I, so this returns

a I'l'su] t which depends on the store at the time of activation

(not that at the time of declaration) in much the same way as

fluid variables depend on the environment. For instance,

z=1 inside Cree f==if z>O then fnx.if x>O then fO else 0 else fnx.1

inside (z:=o; f1»

switches from one branch of the conditional clause to the other

when the application f1 invokes in turn fO (with f signifying a

member of G). Because the content of the location denoted by z

changes between the definition of f and its application, this

member of G selects the second arm of the conditional so that the

program returns a location containing 1. The Pal version of the

program, however, fixes the function assigned to f during the

declaration and is not affected by the change thereafter in the

value of z. Accordingly it returns a location containing 0 as

result.

To seal in the store properly we therefore take the value

of 9lU ree I==E] PXO to be

~[E]p[fixCAYK'O'..S![E]p[y!I]CAEO".K'EO')O)!IJKO or

1Jl[EJ!Cfix(Ap'.pDK'O'.t'l[E]p'CAEO".K'EO')O!IJ »KO where K is

AE.xCarid[E!I]). This deals with the programs above in the same

manner as ~[ree I=E]; yet there remain programs which do not

access I in the body of E but for which the semantic equations

give different answers. Though below we give some examples of

these, they are too pathological to nullify our conviction that

the equations are equivalent in all sensible cases. When they

disagree the equation for rec I=E is sometimes preferable;

ree ,,=nil aug x typifies this situation.

41

1.4.2. Example.

Let Eo be res fnz.f, E1 be (val (ree f==E inside 0))1o

and E be (val (ree f=E inside 0))1. When Po and 0'0 are proper
2 O

~IE1]POKOO'O is inevitably ~ whereas ~IE2]POKOO'O is not.

~Set a 1=newO'o' 0'1=updatea 110'0' a 2=newO'l'

Kl=rV(ASa.S:F~SalKoO'.l~hoZdalO'IN~#sIL*~Ko(S+hoZdala)a.T),

fun =AV•V=0~~ , Po [K/ res J [A K°' .911 Eo] (fu n (V-1)) (AEa ' . KEa) °' / fJ ,

P1=U{funvlv:N} and 0'2=updatea 2(AE ..:C"J]P 1 [E/Z])0'1'

~IE1]PoKoO'o=~lrec f==E inside 0]po[K1/res]K1a 1o

=<Am Eo] Pi (AS.oX' 0] p [K/reS][S/fJ K1)0'1o

=Jl'1 f n z •n Pi K 101 •

For any v~o there is some K2 such that

~Ifnz.f] (fun(V+l»)K10'1=ZVK1 (AE •.2'IIf] (fun(V+1) HE/Z])O'l

=;t'lfJ! (fun(v+l) Ha/ Z]K 00'2

=.1fI[Eo] (funv) K
2

0' 2

=.il'[fnz . f] (funv) Kia 2

while

.:elfnz.f]~Klal=ZVK1(AE•.:elf]~[E/Z])0'1

=!l'r f] Hal / Z] K 0 cr 2

Moreover these conclusions hold for all proper 0'1 and the 0'2

induced by it because if Aa.areaaO'=true then newO'=~; in particular

!l'lfnz.f]plK10'1=~ for our original choice of Pi and 0'1'

Contrariwise, defining a~=updatea2dummYO'l'

p2=p [K 1/res][cx 2/fJ and ¢o=AE.!l'lfJI P2[E/Z] giveso

~E2]PoKoO'o=!l'lrec f=E inside 0]po[K1/res]K10'1o

=~IEo]P2(AS •.:e10]P2Kloupdatea2s)a3

=.:t'[fnz.f] P2 Kl a 3

=ZVK 1¢oa 3

=;t'lf]P 2[a 1/z]K (update(new0'3)¢00'3)
o

=KOa2(update(newa3)¢00'3)'~

42

To reduce the possibility of jumping out of a declaration

into an expression within its scope Pal arranges that in, say,

rec g=goto I inside I: g a jump is made not to the I set by colon

here but to one in an outer block. Other languages are not so

prescient: an Algol 68 version of this fragment, for instance,

would cause the same sort of chaos as arose above. On the other

hand the context conditions of Algol 68 prohibit a form of 1.4.3

in which the label is assigned to a variable of type ref proc void.

Similar prohibitions will also be incorporated in the proof of the

equivalence of rec I=E and rec I==E to bo given in 2.7.7.

1. 4. 3. Example.

Let Eo be I: m:=l; x:=-x; E3,

E1 be m,x=1,1 inside rec f==E inside E4 ,0

E2 be m,x=1,1 inside rec f=E inside E4 ,0
E3 be if x>O then 1>0 e 1s e 1>1 and E be if x>O then fx else goto m,

4
where 1>0 is fnz •if z>O then fO else a and 1>1 is

fnz.if z>O then fO else 1. Then E and E yield different answers.1 2

P1=po[aolmJ[a1IfJ for some proper Po and 00; let KO be arbitrary.

If the recursion operator used is that introduced in 1.4.1

set K1=AE.Z[E4]P1[ElfJKO' 80=~[Eo]p2[a21IJ(rvK1)'

P2=fix(AP,P1[AKO.iJr[Eo]p(AEO'.KEO)0/fJ), <P 0=,jO][1>0]P 2 , <P 1=§[1>1]P 2 ,

02=updates< a O,a) < 8 0 ,8 0) 01 and 03=updatea 1(-1)02'2

~E1] P K o =91[E BP2K101o o o o
=8 0(updatea 2800 1)

=~[E3]p2[a21IJK103

=~[goto m]P2[<P1IfJKo03

=~[E3]p2[a21IJK102

=~[fxBp1[<P0IfJKoa2

=2'[fO] P [a Iz JK ° 2 ,
2 1 0

43

Define K =AEo.lv(Aa.EaK)oo2 and el=~[Eolp2ra2/lJ(~vK2)' for which2 o

'1[Ell POKOCl O=.fe1I fol P [a /z]K2 1 o0 2

=.!t[E01 p 2K 2Cl
 1

=6 (updatea Cl)2e1 1 1

=~[E3IP2[a2/l]K2(updatea261Cl3)

=K2~1(updatea2elCl3)

=lV(Aa'~lO:Ko)OCl2

=lVK 1(update(newCl)OCl)·
0 2 2

On the other hand, writing Cl =updatea dummyCl a =newCl ,
1

,
4 2 3 4

P3=Pl [a/n, K3=rv(~E41P3K o update(2), ~24l1 <1>0 1 P3 , ~3=9'1f <1>1] P3 ' o

62~[Eo]lp}a/l]K3' Cl 5=updatesl a O,a2 ,(3) I 62'~3,62) Cl 3 and

Cl 6=updatesl a 1 ,(2)(l'~2)Cl5 gives the outcome of the declaration by

reference thus:

~[E2]POKOOO=~[EO]P3K3Cl4

=6 2 (updatea 6 Cl)
3 2 4

=<#[E 3]P [a 2/l]K (updatesl a ,el ,(J.3) I 8 ,-1,°) 0u)3 3 O 1 2 7

=K3~ 3 (up da t e sl a 0 ' a 1 ' a 3) (e 2 ' -1 , e 2) °4)

=.T[goto m]p K Cl
3 o 5

=8 2 °5

=~[E3]P3[Cl3/l]K3(updateO:llCl5)

=K3~2(updateClllCl5)

=.2'11 fxl P K 03 0 6

=~2CllKOCl6

=.2'[fO]P3[Cll/Z]KOCl6

=lV(Aa'~2ClKo)OCl6

=lVKoO(update(neWCl6)OCl6)'~

lienee under some circumstances the function set up by the

assignment method of performing recursion can change irrevocably

as a result of jumping back into the declaration, whereas that set

up by using a fixed pOint can switch back and forth between two

distinct forms.

44

1.4.4. Mutual recursion.

The recursion operator of 1.4.1 can be extended to multiple

declarations by sealing the store into each of the new denoted

values either when the constituent declaration is reached (and

the side effects of preceding declarations are accounted for) or

when evaluation of the sequence starts. These alternatives give

y ln rec x=O and y==x the values 0 and dummy respectively; as

rec x=o and y=x makes y contain 0 it is plain that the former

option is correct. Accordingly we still take ,r: Dec+U+X+C as a

valuation on declarations, definingT[I==E] to be

APX.~l'[E]p(AE.x(al"id[E/I])). Now, however, ,!jf[rec 6] is

ApXa • (ACl * . (Aa ' • Cl * : E+916] (fi x (A p , . p[a*1.1 [6]][S"[6] p , a ' I;t'[6]])) Xa ' , T)

(updatesa*dummy*a)) (nez,)s(#JI[611)a).

where Jr:Dec+lde* collects up the identifiers to be glven meanlngs

which are ln V+G and .9': Dec+U+S+G* is such that when l:;V:;#;t'jf 611

.'I[6]I(la~v 1S AK'O' .T[6] p(AP"O". K' (p"[,;t[[6] +vII HIE)a')a.

Whereas Pal offers only one possible reading of

·~·1[l:Il and ... and 6) , Mal offers two because the environment returned

by a recursive declaration may not be a portion of that which is

used for the evaluation. Thus although we could use

APx.l"un('9'"[6
1
]p, ... ,916n]p) (xoconsel"ve) as the requisite value, we

actually adopt

ApX.916] P(Ap1 .91 62] (d i v e1" t PP1) (Ap2..rJl 6 3] (di v e 1" t p(con s e l"V e(p1 ' P2)))
1

•• • (APn .x(consel"ve(P1 '··· ,Pn))).,.))).

("hich could be generalized to permit any order of evaluation). The

methods of 2.7.6 can be used to show that in fact these

alternatives yield essentially similar theories untler reasonable

circumstances which include the omission of labels and goto

statements from declarations.

The proof of 1.5.9 will Justify the belief thaT this

analysis of recursion coincides with the view of recursive

45

function abstraction glven 1n 1.4.1. This result can also be

established for the alternative version ofY[~l and ... and ~n]

(albeit at the expense of extra complexity), so nothing is lost

by selecting one equation rather than the other.

1.4.5. Further features.

The concomitant of declaration by incidence is abstraction

by incidence: in Mal fnI .. E and fnI
1

, ... ,I .. E take parametersn
which are not locations, although fnI.E and fnI 1 , ..• ,I .E inherit n

the abstraction by reference mechanism of Pal. Accordingly we

extend :F: Abs+U+F to the new cases by taking:F[fnI .. E] to be

Ap.AEK.l"V(AS.3'[E]p[S/I]K)E and ~fnIl •...• In .. E]1 to be

AP. AEK. l"V (AS. # S IL*= n+ AO .f! q pi ho LriH So / (I 1 •...• In) JK a • T) E.

For simplicity we do not introduce calls by incidence but retain

our earlier conception of functional application, so that glv1ng

fnI .. E an expression returning a value in V will cause that value

to be copied into a new location and then extracted aga1n. Though

this is inefficient it is as satisfactory as a more conventional

approach, for the location used ceases to be accessible.

A disadvantage of Pal is that calls by reference [22] allow

the locations denoted by the parameters to be assjgned to in the body

of the function unless they are protected by using E ($E 1) insteado

of E E1 . To avoid the need to include $ at the time the function o

is applied, in Mal we provide ',[E$], which is

ApK.~[EI p (AE. E : F+K (AE ' K' . l"V (AS. E SK') E ') • T) •

The effect of (E $)E 1 may not be that of E ($E 1) because only in o o
the latter is a member of L used to complete the environment of the

function closure; for instance, «(fnu.fnv.(u:=o; put u»$)l)l

prints 1 whereas (fnu.fnv.(u:=o; put u»($l)l prints o. On the

other hand, ~[fnI .• EI coincides with ~[(fnI.E)$].

Given an expression E designating a member of L* we can

46

obtain a new list of locations having the contents of the old

by evaluating <6[£Ell, which is

APK.Sl[E] P(AE(J • (Aa * . a* : E->- Ka * (up da te s Cl * (h 0 Zds E<J) (J) , T) (ne ws (# ElL *)(J)) .

The use of £ in Eo(£E) or in (E £)E 1 enables us to protect simul­o

taneously all the arguments of a function having several para­

meters.

Because ln Mal any stored value may be denoted it is

possible to declare an identifier which signifies a label entry

point. Nevertheless we introduce ln addition a way of requiring

a label to be created as a member of D rather than of V. Such

labels are declared by I::E and are given the scopes of their

stored counterparts set by reference. To incorporate them in

the semantics we have only to define ~:Exp->-Ide* and

~:Exp->-U->-K->-J*, which list the labels and their entry points. As

labels can now be set by incidence C[EI becomes

APK(J.(Aa*.(Ap'.a*:E->-~[ElpIK(updatesa*(~[Elp'K)(J),T)

(fi x (A p " . p[a*/.f[E1] [.l! [E1P"K /Xl EI]))) (news (#Jf[EI) (J) .

From henceforth we shall assume that any expression E:Exp

and any declaration 6:Dec in a correct Mal program are such that

in the lists J1[EI §Jf1[E] and .)1[6] §)f{6] no identifier occurs twice.

We could of course incorporate this restriction in the semantic

equations by making them yield the answer T when repetitions arose;

avoiding this complication (which is conceptually trivial) is

tantamount to viewing the tests on the relevant lists as a feature

of parsing rather than program execution.

1.4.6. Syntactic transformations preserving meaning.

To illustrate the sense in which declarations by incidence

mimic those by reference we now draw up a set of rules for con­

verting a program written in Mal into one which could almost be

written in Pal. As will be shown in 2.5.9 these rules preserve

47

the meaning of the program because they simply induce a corres­

pondence between denoted values and locations containing com­

parable stored values. Thus, typically, we substitute I:E for

certain occurrences of I::E and apply analogous translations to

certain declarations and abstractions. Unfortunately we cannot

simply change I==E into I=E, as the latter introduces an iden­

tifier which may share the location it denotes with something

that is then assigned to; we do not, for instance, wish to try

to prove the equivalence of u=o inside v==u inside Cu:=1; v) and

u=o inside v=u inside Cu:=1; v). Fortunately, built into Pal is

a mechanism for avoiding hidden assignments so we can replace

I==E by I=$E and, using the additions of 1.4.5, fnl..E by CfnI.E)$.

A similar expedient is adopted with declarations of more

than one variable, which are complicated, however, by the fact

that L* is a summand of E while V* is not (so that a vector of

stored values must be handled as one of locations). We exchange

11 "" ,In==E and fnI 1 , ... ,In .. E for I 1 , ... ,I =£E andn

CfnI 1 , ... ,I .E)£ respectively, the apposite equations for which are n

given in appendix 1.

The coercions inherent in Mal permit nominal assignments

to be made to any identifier, as when the identifier does not

signify a member of L a new location is given the stored value

instead. Consequently w==o inside CW:=1; w) and

w=$o inside CW:=l; w) are not equivalent although both are legi­

timate. We therefore arrange that if I switches from being

declared by incidence to being declared by reference then all

occurrences of it in the relevant scope are replaced by $1; to

do so we introduce predicates in Ide~B* which indicate when a

variable is to endure this change. The primitive. functions set

up in 1.3.2 for dealing with environments will be carried across

to these predicates, which will be represented by the letter ~.

48

If ~[III+l is true we shall presume that I has been converted

from denoting a member of V or G to denoting a member of L; to

bring about this switch we introduce opt:lde~[Ide~B*J~T and its

iterative extension to lists, opts:lde*~[Ide~B*J~T*. Only

convenience dictates that the parameters of opt be limited to I

and ~, for all that is actually required is some means, no

matter how capricious, of making a choice.

The translation from one program into another is carried

out by mappings .:Exp~[Ide~B*J~Exp, a:Exp~[Ide~B*J~Exp,

d: Dec~[Ide~B*J~Dec and I: Dec~[Ide~B*J~Dec which are bui 1 t up thus:

<[Ell =A~. d EH[false*IfnI] [opts (Xl! Ell)~/.)f"[Ell];

a[III=A~.'~[I]>D~I~[I]~l=true~$I,I),dummy;

,[B]=A~.B;

,[fn()EII=A~.fn()<[EH;

1IfnI.EII=A~.fnI.• IE]~[false/IJ;

,I fnI 1 •...• In' E] =A~. fnI 1 •· ..• In .•1EH[false */(11 " ..• In> J;

,I fn 1. . E] =A~. op tl IH=true~,I fn1. Ell ~$. fn1. .•1Ell ~[fa leelI];

.[fnI 1 .. E]=A~.f\{optfll J'~ll'OI"'On}=true~l[fnIl•.••• I .£II\li£,
 , 1 n ri n

fnI ••••• In ..• 1E] ~![false* 111
1 •...• In> J;

1

fl OE] =A~. 0" Ell ~;

,I Eo~El] =A~ .•[EoH~ .[ElH;

,IEo:=Ell1=A~.• [Eoll~:=4[El]~;

,[El' ...• En : =E] =A~. <I E1H <[EnH : =,[Eo H ;
 o

,Iget EII=A~.get .[E]~;

,Iput EII=A~.put ,[E]~;

'lEo aug Ell1=A~.o[Eoll~ aug .[El]~;

'[El •...• E) =A~ ••n 1h ·[Enll~;

gl$EII=A~.$.[E]~;

1 [E $ 11 = A~ • .[Ell $~ ;

,1£E]=A~.£a[E]~;

1[E£II=A~ .• [EII£~;

49

,[E E lJ =;\1/J. eITE H<[E h;
O 1 O 1

, [val E] =;\ 1/J. val • [Eh ;

~[res EII=;\1/J.res .. [El1J!;

1[goto E] =;\1/J. goto .ITEh;

?[ll inside E]=;\1/J.d[llh inside ,,[El1J![false*/..f[Il]J[opts\1l'U])1/J/;t'[Il]J;

,ITE ; E11=;\1/J.?ITEoH; ,ITE1h;o

~[if Eo then E else E 11=;\1/J.if .. IE]1/J then ,IE]1/J else ,[E2]1/J;
1 2 o 1

,[while Eo do E]=;\1/J.while e[E]1/J do ,[E]1/J;
1 o 1

,[I:E]=;\1/J.I:,[E]1/J;

,[I: :E]=;\1/J.1/J[III +1=t1"ue-+I: ,ITEH ,I:: ?ITEl1J!;

,[(E)] = ;\ 1/J • (1' ITE l1J!) ;

J[I=E]=;\1/J.I=e[E]1/J;

I[I=E]=;\1/J.I=.[E]1/J;

J[1 1 ••••• In =E] =;\ 1/J • I 1 ••••• In = ..[El1J! ;

I [1 ••••• In =E] =;\ 1/J. 1 1 ••••• In = e[EH ;1

J[I==E]=;\1/J.opt[I]1/J=t1"ue-+I=$e[E]1/J.I==.[EI1/J;

'[I==E]=;\1/J.1/J[II+l=t1"ue-+I=.[E]1/J,I==eIE]1/J;

J[I ••••• I ==E]=;\1/J./\{opt[I 11/Jll~m~n}=true-+I ••••• 1 =£.[E]1/J,
1 n . m 1 n

I 1 ·····In ==·[EI1/J;

l[Il ••••• I ==EI=;\1/J./\{1/J[I]+1lbm~n}=t"ue-+Il••••• I =.[E]1/J,n m n

I 1 ,····I ==4EH;n

J[llo within 11l]=;\1/J.J[llo]1/J

wi thin .alllll1J![false*/.f[llo] Hopts(*'[llo])1/J/.lf'[llo] J;

{[llo within 11l]=;\1/J·J[llo]1/J

within .t[11ll1J![false*/,,[llo] J[opts (.It'[llo])1/J/..lf'[llo] J;

4[1l1 and ••• and lln]=;\1/J.J[lll]1/J and ••• and J[lln]1/J;

1[1l1 and ••• and lln]=;\1/J.tl ll
1

]1/J and ••• and t[llnH;

J[ree 1l]=;\1/J.ree t[llh[false*/.fIll]J[optsClf."1[Il])\p/J!"[lllJJ;

![ree 1l]=;\1/J.ree 4'lllH;

J[(ll)] =;\ 1/J • (.dill H) ;

tl (ll) 11= ;\1/J. <.t[ll] 1/J).

50

In fact the meaning of a program would be conserved by a

transformation less wasteful of storage than that suggested here.

Instead of updating a new location with the content of that denoted

by I, as we do in $1, we could simply extract the content, leaving

it to the context to determine whether another location must be

provided. Since Pal does not possess a construct which simply

obtains a right hand value without introducing an extra location

we have adopted the formulation above. An alternative would be to

use $1 only when the syntax shows that I appears in a left hand

context, but this would complicate our proofs without shedding

light on their outcome.

Suppose that when compiled a program 1S given D as its

environment whereas its transform under the ¢ nIles above is given

the environment P. To express the fact that p and p are related

by III we define

apt=A~!(6,p) .t\{#p[III =ov(#p[I] >OA#¢[I] =O)+true.

6[I]+1:L+p[1]+1:LA(¢[I]+1=faZse),

6[1]+1:G+p[I]+1:GA(¢[I]+1=faZse),

P[I] H :VV(P[1] H: LA(¢[III H=true)) II: IdeL

As the rules permit rec 1==E to be turned into rec I=E one might

expect apt to allow for the possibility that (6[1]+1,11[I]H) :GxV.

We shall, however, eliminate correspondences of this kind by a

further pass through the program which takes place 'after

compilation' in the manner to be Qiscussed in 2.7.3.

Applying the transformation to a labelled block moves some

members of.lf"[E] into fh HU] and thus permutes .I[E] §Jf1[E]. The

elements of ~[1[E]¢]pK§~[1[E]¢]PK have therefore to be ordered

before they can be made to tally with ~[E]6f§g[EI6f; it is this

that accounts for the complexity of the definitions in 2.4.5. We

carry out this permutation by means of

swap=U* 1* E*.I* =()+() (E*+ (UCJJ!I* H=I* +v}) §swap(I* h)I* E*.
010' 01 01

51

1.5. Coniugate valuations.

1.5.1. Free variables.

One of the most evident connections between programming

languages and A-calculus lies in their use of 'free variables'.

We could formalize our intuitive understanding of what is meant

by a free occurrence of an identifier by introducing a predicate

free:[Exp+DecJ+lde+T with an inductive definition on the constructs

of I-'al; thus we would let free[10] [1 1], for instance, be the

relation 10=1 1 while free[~ inside EI[I] would be

freeH]![Ilv(free[E][II"-I:j[~lI§Jf[~]! l. However as 1.4.6 has alTPady

provided one group of mutually recursive definitions involving

the syntax we can avoid setting up another group to govern free.

Making the temporary assumption that the opt function of 1.4.6

is AI.false, given some E:Exp and ~:Dec we simply write

free[E]=AI.-(E=.[E]!<AI'.I'=I+() ,<false») and

freeH]=AI.-(~=d[~](AI'.I'=I-.·{),<false»). For this opt function

.[Eh differs from E if and only if l/![I]={) for some I:Ide which

occurs free in E; this remark, and the analogous one about d[~]l/!

and ~, can be validated by a structural induction using a more

conventional description of free. Moreover, when the equality

relation adopted by E=,[E]l/! is the continuous one yielding a

proper truth value only for E and ,[Ell/! without constituents

which are .L or T, r"ee is also continuous.

We require f"ee[EJ[re s] and fred ~H res], whi ch aTe true if

and only if res occurs outside the outermost val block of E:Exp

and ~:Dec. In particular, for any expression E we stipulate that

free[val E][res] be false and that free[res E][res] be true; the

remainder of the definition of free[E][res] is obvious.

In 2.1.4 we shall wish to reduce the environment attached

to a declaration by discarding all the denotations which do not

52

correspond to free variables. Since the domain U to which this

process will apply has a third component besides those for Ide

and res we truncate its members by means of

rend[E]=AP.< (ALfree[EHI]A#pU]>O+< p[I]+1),<> l,

(free[EHres]!A#p[res]]>o+{ p[resJ!+1),<> l,(»

rend[lI]=AP.< (ALfree[lI][I]A#p[I]>O+< p[I]+1>,< »,

(free[1I] [res] A#p[res] >0+< p[resl +1> ,<>),<»

tear[E]=Ap.< (AI.(free[E][I]vI:![E] §.rlE])A#p[I]>o+< p[I]+1> ,<»,

(free[E][res]A#p[res]>o+< p[res/,+1> .<>),<»;

tear[1I]! =Ap.< (AI. (free[1I]! [I] vI:f[1I] §;r1[1I])A#p[I] >0+< p[I]! +1> ,< >),

(free[liD[res] A#p[res] >0+< p[res] +1> .<>).<» •

These functions undergo trivial modifications when the domain of

environments is [lde~Do*JxKo* as it is in 1.3.2.

To express the belief that an environment 1S large enough

to give meaning to a program we define also

rent[E]=AP.A{-free[E][I]v#p[I]>O[I:lde}A(-free[E][res] v#p[res]>o);

ren t [1I] =Ap •J\{ - fre e [1I] [I]! v#p[I] >0 II: Ide} A(- fr ee [1I] [res] v#p[res] >0) ;

torn[E] =Ap .!\{ - I :.f[E] §j1 E] v#p[I] >0 I I: Ide} Arent[E] p ;

torn [ill =Ap .I\{ - I: J'[iI] §.M1I ill v# p[II >0 II: Ide} Are n t [lI] p.

With the aid of these definitions we can now verify that

when evaluating an expression or a deClaration in standard

semantics the only significant values in the environment are those

representing the most recent incarnations of the free variables.

This property is not shared with the stack semantics to he used to

describe implementations of Mal in 3.1.1, for which it is essential

that the entire environment appear 1n the evaluation procedure.

To establish that the environment can be cut back to a free

variable list when the equations of appendix 1 are being applied

we introduce a method of pruning declared environments, namely

snip=Hp.< OI,I:.f[ll] §;f1[1I]+< p[I]+1),<>),< >>.

53

1.5.2. Proposition.

In standard semantics all E:Exp satisfy I[E]=C~E]orend[E],

.p[E] =Ifl[E] 0 rend[EI and 31'[E] =9lI[E] 0 rend~ E], together wi th

~[E]=~[E]otear[E]. ?~E]=~~E]otear[E] and 9~E]=9~E]otear~E];

moreover all ~:Dec satisfy ~[~]=~~~]orend[~]=APX.~[~]p(xosnip~~])

and 5'"[i\] =91[~] 0 t ead i\] =Ap X.5'"[i\] p (X0 s nip ~ i\]) •

~The proof of this result involves a structural induction

on the constructs of Mal. Since it is merely an elementary

precursor of the technique required by such proofs as that of

1.5.5 we shall not embark on a discussion of its details.~

1.5.3. Expression exits.

In order to list the possible expressed values returned

by part of a program we introduce exit:(Exp+DecJ~[Exp*+Dec*J

with the intention that exit~E] reveal which expressions may be

encountered last during the evaluation of E. Though it may not

be decidable whether this evaluation will ever end we can

nevertheless collect up the exits thus:

exit[ID =(D

exit[B] =(B>

exit~<I>]=(<I»

exit[DE] =(DE>

exi t~ E QE] =(E QE)o 1 0 1

exit[E •... ,E] =«E , ... ,E »;
1 n 1 n

exit~EoE1]=(E E) ; o 1

exit[val E] =(val E>;

exit[res E] =(res E);

exit~ goto E]=(goto E)

e xi t~ ~ ins ide E] =(i\ ins ide E>;

exit[E ; E JI =exitIT E];
011

54

exit[if EO then E else E JI =exit[E]§exit[E];
1 2 1 2

exithhile Eo do E]=(while Eo do E1) ; 1

exit[I:E]=exit[E] ;

exit[I::E]=exit[E] ;

exit[(E)]=exit[E].

No other forms of expression have obvious interpretations

as commands followed by more expressions, so exit[E] will be

taken to be (E) except in some of the cases above; exit[E :=E 1] ,o
for instance, will be (E :=E). For a declaration ~ exit[~] will

o 1

split up ~ into its constituent simple declarations by means of:

exi t[I=E] =(I=E> ;

exit[1 1 "" ,In=E]=(1 1 "" ,In =E)

exi t[I==E]I =(I==E) ;

e xi t [1 ' ••• , In ==E] =(1 1 ' •••• In ==E>1

exit[~o wi thi n ~1] =(~o wi thi n ~1)

exit[~1 and ... and ~)=exit[~1]§... §exit[~);

exit[rec 8]=exit[~];

exit[(~)] =exit[~] •

Any member of the list exit[~] will be termed an 'exit' of

the declaration ~, and similar nomenclature will apply to elements

of exit[E].

For ease of implementation it is frequently wise to

restrict programs so that references to locations are not passed

out of the blocks in which they are created. Accordingly we

provide a syntactic constraint sufficient to ensure that this

situation exists. Loosely speaking, we allow an identifier to be

returned as the result of an expression only when it denotes a

member of V, while we allow an abstraction to be returned only

when all its free variables are global to the expression. To show

that this condition is fulfilled we introduce some ~:Ide*B* such

55

that ~[I]+l is 0, 1 or 2 when I denotes a member of L, V or G

respectively unless I is local to the block, when ~[I]+1 should

be 3. Following the precedent set by 1.4.6 we extend the

notation provided in 1.3.2 to cover this new element of Ide~B*;

the definitions in 1.5.1 will also be regarded as being applicable

to this domain. We now set up cramped:[Exp+Dec]+[Ide~B*]+T

recursively as follows: cramped[E]~ is to be true if and only if

any exit I of E in Ide satisfies ~[I]+1=1, any exit ~ of E in Abs

satisfies V{(free[~][I]AHI]+1=3)vfree[~][res]/I:Ide}=false, no

exit of E has the form get Eo' put Eo' Eo aug E1, (E 1 , ... ,E),n

£E ' E E1 or res Eo' any exit of the form $E ' E $, E £ or val Eoo o o o o

is subject to cramped[Eo]~[3*/f[Eo]§~Eo]]=true,and any exit of

the form 6 0 inside Eo is subject to

cramped[E H[3*/.,[60] §.Jt1[6] §j"[Eo] !i;t1[E]]=true. These limitations
o 0 o

are appropriate only for the particular languages we consider, in

which OEo' E QE 1 , E :=E1 and while Eo do E1 return as their o o

results expressed values that are inevitably in B, but variants

of the stipulations above can be given for other algorithmic

languages. For reasons that will become apparent in 2.6.6 it 1S

convenient to let cramped[6]~ be true if and only if any exit

of the form I==E is such that cramped[E]~[3*/j'[E]'i;t1E]]=true,

any exit of the form 11 " •. ,In==E is such that E is E1 , ••• ,E or n

£(E 1 , ... ,E) where cramped[E]H3*/j'[E] §.;t'[E]J=true whenever
n rn m m

l~m~n, and any exit of the form 60 within 6 has
1

cramped[6 H[3*/.,[60] §l!'[6]]=true.1 0

We shall also presume that for every ~, E and 6

torn[E]~=true when cramped[E]~=true and torn[6]~=true when

cramped[6]~=tpue. A more sophisticated set of restrictions than

that imposed by cramped will be introduced in 3.1.4, but for the

purposes of 2.6.5 cramped will be perfectly adequate.

56

1.5.4. Programs without jumps.

Continuations are required by the equations of appendix 1

merely to provide an understanding of jumps and of certain

aspects of unending computations [16J. It is therefore natural

to expect that a programming language which has been emasculated

by removing its imperative parts may be defined without reference

to continuations. Here we shall carry out this operation on Mal

in order to prove that the resulting equations are equivalent to

those introduced above.

Applying a function may occasion a jump out of the code for

the function, so it is necessary to restrict those abstractions

which can be applied to those devoid of gata statements; for

simplicity we choose to ban function application entirely. Like­

wise we must exclude the possibility that an identifier could

denote a member of Gunder p:U by testing some ~:Ide~B* such

that ~[I]+1=2 whenever p[II+1:G. We now define

cruBhed:[Exp+DecJ~[Ide~B*J+Tsomewhat informally thus:

cruBhed[E]~ is true if and only if no expressions of the form

E OE 1 , val L ' res 1~0' gata 1: ,1:1: or 1::1: ('CCUr in £ o 0 0 0

except within an abstraction and any identifier I appearing in

E outside an abstraction and having free[E][I]=true satisfies

~Y[I]+1=2. For any ~ cruBhed[~]~ will be true if and only if

any exit of the form I=E, 1 •...• 1 =F, I==E or 1 •...• 1 ==L s3tis­1 n 1 n

fies cruBhed[E]~=true, any exit of the form ~o within ~1 satisfies

both cruBhed[~ol~=true and cruBhedl~ll~=true and, when ~

is given the form rec 6 2 , cru"hed[1',2]~[0*/.1P'2DJ[2*/Jt'I[~2n=true.

Although the connection between the standard kind of

. semantics with continuations and that without is of interest in

its own right we are investigating it mainly because of the role

it will play in 2.7.6. Accordingly we have not endeavoured to

reduce the syntactic constraints to the least possible, as the

57

expressions permitted above encompass all those needed for our

ultimate purpose. In particular we	 could adapt the techniques

of 2.2.5 to allow function applications like E E to appearo 1

amid the expressions free from jumps so long as semantic stipu­

lations are made about those closures which are stored or denoted,

but to do so would detract from the elegance of the ensuing pro­

positions.

Our intention is to set up for every valuation a conjugate

which when given an abstract program, an environment and a store

as arguments returns a result which when supplied to any con­

tinuation yields precisely the same answer as would have been

obtained from the original valuation by applying it to the same

program, environment, continuation and store. Strictly speaking

the conjugates cannot be made to elucidate the meaning of a pro­

gram since they use environments which are created in a framework

w~ere closures must take continuations as parameters. Equations

which are entirely free from the influence of continuations can be

constructed with ea5~, and the methods of 2.2.8 can be applied

to proving them equivalent to the standard kind, but this is beside

the point; here we are content to take the conjugate ofY, IIY,

to be Y itself, just as the conjugate of ill, lIill', is fl. There being

no label declarations in the expressions we allow the conjugates

of g and '!J to coinci de; thus we may wri te III for II~.

The remaining conjugate valuations will emerge in the

course of the following proposition. Suffice it to say here that

those acting on expressions are members of Exp+U+S+[ExSJ whereas

II~ and II~, which act on declarations, are members of Dec+U+S+[UxSJ.

More generally, given a lattice Syn (comprising the terminal symbols

derived	 from a suitable system of syntactic production rules) and a

+AJ+[] +] .. , ~""valuation X:Syn+R1+... +Rn +[H + . 1 '" +H mi'+ • • Z+AJ ., say, " the

conjugate of ~, satisfies 1f2':Syn+R + +R +[1 x x] '+[H x xH J
1 '" n l' . . Z., l' .• T7'

58

1.5.5. Proposition.

Let ~ and p be such that for all I:Ide ~[I]~1=2 if

p[I]~l:G. For every proper 0 and every E:Exp satisfying

crushed[E]~=true either AK.g[E]pKO is improper or ~1[E]po is

proper and AK./[E]pKO=AK.(~~I[Elp)o; analogous conclusions hold

for ~, ~ and ~ also. For every proper a and every 6:Dec satis­

fying crushed[6]~=true either AX.~[6Ipxo is improper or ~~[6]po is

proper, AX.~[6]pXO=AX.(X*~~[6Ip)0and, when I:Ide is such that

#p'[I1>o for p'=g,[6]poH, p'[I1H:E and I:jT[6]§£1[6]; analogous

conclusions hold for:r.

~Observe first that we can set up ~~ and ~~ as follows.

Take any expression E such that if p and a are proper and if

crushed[E]~=true for some ~ having ~[I]~1=2 when p[II~l:G for

all I:Ide then AK.~[E]pKO is improper or AK.W[E]pKO=AK.(K*~~[Elp)o,

where ~~[E]po is proper; as noted above we may take ~C to be ~~.

De fine ~~[E] P and ~~[E] p to be

(AEO.E:L+«:,o) ,(newo,update(newo)Eo))*~&'[E]p and

(AEo.E::L+(areaEo+(holdEo,o) ,(T,T)),(E,O))*~G[E]p respectively.

Suppose that for some proper 0 AK.8[E]pKO is neither ~ nor T;

then AK ..st1 E] pKO=AK .<f[E] p (IvK) O=AK. (IvK*U'[Ell p) 0 and

AK.~[E]pKO=AK.I[E]p(rvK)o=AK.(rvK*~8[E]p)o. Let (EO'OO) be

~~[E]po which, being ~~[E]po, is proper. If EO is a location,

AK.lvKEooo=AK.(K*~~[E]p)oand

AK.rvKEooo=AK.areaEooo+(K*~~[E]P)O,Tfrom the definitions of 1.3.5;

furthermore holdEoo is proper. If EO is a stored value,o

AK.lvKEooo=AK.newoo:L+(K*~2[E]P)0,Tand

AK.rvKEooo=AK.(K*~~[E]P)o. Thus unless AK.2[E]pKO is improper

it coincides with AK.(K*~2[E]p)0 and ~2[Elpo is proper; likewise

if AK.~~ElpKa is proper it is AK.(K*~~[E]p)o and ~~[E]po cannot

be improper.

The proof now proceeds by structural induction on the

59

expressions E and declarations 6 having crushed[EI~=true and

crushed[61~=true for some suitable ~.

Suppose that E is an identifier I; then if p[II+l is

improper AK.~[IlpKa is improper for all a whilst otherwise

p[II+l cannot be in G (crushed[II~ being true) and

AK.~[IlpKa=AK.(K*~~[Ilp)awhere ~~[II is defined to be

Apa • (p[I I HIE, a) •

Because ~.F is .F and ~!1l' is !FJ it is obvious that the result

holds when E is an abstraction ~ or a constant B if we take

~:9'UI and ~~[BI to be Apa.(jOU]P,a) and Apa.(9f[B],rr) respectively.

We shall omit all consideration of the other types of

express10n save three, which will be enough to indicate what pro­

cedures are adopted for the remainder. Suppose that E is of the

form E :=E 1 and that crushed[E]~=true; assume also that expres­o

sions are evaluated from left to right, the proof being almost

identical if this is not so. For any proper a o
~[Eo]PKlaO is 1 or T for all K1 or

.2'[EoJlpKlaO=(Kl*~.2'[Eolp)aofor all K1 as crushed[Eoll~=true.

In particular, writing A£o.!FJ[E1Ip(A£1.KO(dummy)oupdate£O£1) as

K1 for any KO' either ~[Eo:=ElIPKoao is L or T for all KO or

:f1[Eo:=E1JlpKoaO=(Kl*~~[Eolp)aofor all KO' If the latter holds

write If.PI[Eo]pa as (£0,a) and AE 1 .K (dummy)oupdate£0£1 as K2o 1 o

for all KO; then either ~[El]PK2al is 1 or T for all KO or

~[El]PK2al=(K2*~~[El]p)al for all K2 , as crushed[El]~=true also.

Consequently either W[E :=E 1]PK a is 1 or T for all KO or o o o

~[Eo:=El]PKoao=(Ko*~~[Eo:=El]p)aOfor all KO' where ~W[Eo:=El] 1S

Ap . (A£ 0 . (A£ 1a . (dummy, up dat e £ 0£ 1a))*~9l[E1JI p)* ~:l'[Eo] P.

Suppose that E is of the form 60 inside Eo and that

crushed[E]~=true for some ~ having ~[I]+1=2 whenever p[I]+l:G, so

that crushed[601~=true and crushed[Eo]~=true. For every proper

60

00 either Ax'~[~olpxoo is improper or there are Po and 01 with

AX.!F[~olpxoo=AX'XPOoi and < PO,ol) ='Il~[~olpoo; furthermore Po[l]+1:E

when I:Ide and #Po[II>o. In the latter case ~[II+l=2 whenever

divertPP [I]+l:G and 01 is proper so either AK~[Eol(divertPPo)KOl o

is improper or AK~[Eo](divertPPo)KOi=AK.(K*~[Eol(divertPPO))Ol'

Hence taking 'Il~[~o inside Eol to be

AP.(Apo.'Il~[Eo]l(divertPPo»*'Il~[~olp, for all proper °
AK.~[~O inside EolpKO is improper if it is not

AK.(K*'Il(9[~O inside Eo]p)o.

~A more complex approach is essential when E is

whi1e Eo do Ei . If erushed[EI~=true and ~[II+i=2 whenever

p[I]+l:G, we define for every n~O Y :G and ~ :[S+[ExSJJo byn n

YO=L. ~O=L, Yn+l=AK.~[Eolp(AE.E+~[Eilp(AE'YnK),K(dummy»

~n+l=(AEO.E+~n('Il(§[Ei]pO+2),<dummy,0)) *'Ilg,[E ol p; then by induction

Yn+i =Y n and ~n+l='~n for all n~o, while \J[whi1e Eo do E1IP=Uyn .

~Assume that for some n~O and every proper ° unless

AK.y KO is improper it equals AK,(K*~)0 and ~ ° is proper; to
n n n

establish the analogous contention for n+l take any ° such that a
AK'Yn+iKOO is proper.

It is clear from the definition of y that g,[E IPKO
n+ 1 a a

is proper for some K and thus that

AK'Yn+iKOO=AK.EO+~[El]P(AS.YnK)Ol,K(dummy)ol'where < EO,Ol) is the

proper pair 'Il~Eo]poo; moreover EO must be true or false as

AK'Yn+iKOo is proper. If Eo=true, ~[El]P(AE'YnK)ol must be

proper for some K and AK.~[Ei]P(AE'YnK)Ol must be AK.(AE'YnK)E102,

where (E i ,02) is the proper pair 'IlWI!E 11Ipo i ; by the induction hypo­

thesis AK.(AE'YnK)Ela2=AK.(K*~n)02and ~na2 is proper. If

Eo=false, on the other hand,

61

AK.Y KO =AK.(K*(Ao.(dummy,o) »0
nT1 O 1

=AK . (K* (AEO. E+ ~ n (~ (9[Ell po~ 2) ,(dummy, 0)) EO) 0 1

= AK . (K * ~n T1)00 .

Hence in general

AK'Yn+1KOo=AK.E0>(AE'YnK)~la2'(K*~n+l)J0

=AK.EO+(K*~ 1)00' (K*~ l)Onn+" n+,;

=AK.(K*~n+l)Oo

and ~n+l00 is proper.

Accordingly for all proper 0 either AK.y lKO is improper
n+

or it equals AK.(K*~ 1)0 and ~ 10 1S proper, so long as the
n+ n+

corresponding remarks apply to Y ' Tn addition AK'YOKO=.L for all n

proper ° by definition, so we may deduce that for all n~O and for

all proper ° unless AK.Y KO is improper ~ 0 is proper and
n n

Since Y ~Y for every n~O, for all proper ° eithern+l n

AK.Uy KO is improper or there is some m~O such that when n~m ~ 0 n n

is proper and AK.Y KO=AK.(K*~)0; under the latter circumstances n n

U~ 0 is proper as T·n in ExS and AK .Uy KO=AK. (K*U~)0 by continuity.
n n n

Defining ~w[while Eo do E1]p to be U~n or

fix(A~.(AEO.E+~(~(§[El]lpo~2),(dummy,0) unless)*~91[Eo]P),

AK.~[while Eo do E1]pKO is improper it equals

AK.(K*~~[while Eo do E1]P)0 and ~~[while Eo do E1]PO is proper. p

The induction on declarations is very similar, as we can

take ~9[I=E] to be AP.(AEO.(arid[E/IJ,O))*~$[E]p, ~I=E] to be

AP.(AEo.(arid[p[IlH/IJ,update(p[I]H)Eo))*~.'Il[E]p and ~9[I==E] and

W[I==E] to be Ap. (AEO.(arid[E/IJ ,0))*~~[E]p. Analogous remarks

apply to Ii"" ,In=E and 11"" ,In==E, and we can incorporate

multiple and other declarations in the scheme by such equations as

~9[ll0 within Ll1]=AP.(APO.~~[Lll]1(divertPPo»*~~[Llo]lp and

~:r[Llo within Lll]=AP.(APo.If.91lLll] (divertPPo»*~!il[Llo]p. To illus­

62

trate the technique we examine rec 6, taking ~ and p to be any

entities such that crushed[rec 6]~=true and ~[I]+1=2 whenever

p[IH 1: G. Gi ven any prope rowe take (J * to be news (#.I[6]1)0;

if a* is improper AX.~[rec 6]PXo is improper whilst otherwise

AX.~[rec 6]1 pxo=AX.,9"[6] PoXo where
o

po=fix(Apl.p[a*/~[6]J[~[6]pIOo/~[6]J)and 0o=updatesa*dummy*o.

Because Po and 0 are proper and crushed[6]~[0*/.I[6]J[2*/~[6]J=true,0

either AX.~[6]poXoo is improper or

AX.~ 6] POXOO=AX. (X*II,9"[6] Po)0 , Hence either AX.!9>[rec 6] PXo is

0

improper or AX.~[rec 6] PXO=AX.(X*II.[rec 611 p)o where II~[rec 61 po

is defined to be

(Aa* . (A0 ' . a * : E+~[II] (fix (AP, . P , [a */f[6] J [~[6] P ' 0 ' /~ II] J))0 ' , T)

(updatesa*dummy*o))(news(#.1[61)0).

Similarly we can take 119l] rec 6] po to be IIT[II] po.>

In fact there is even a minor gloss on this result: unless

AK.C[E]pKO is T it must be AK.(K*IIClElp)o (if crushed[E]~=true

and ~[I]+1=2 whenever p[I]+1:G) whether or not 0 is proper.

Should while Eo do E1 be omitted from the list of expressions per­

mitted by crushed there would be a further extension, as then for

every suitable P and 0 (and for all E in this abbreviated list)

AK.C[E]pKO=III[E]po:[ExSJ+AK.(K*IIG[E]p)O,T. This extension requires

the omission of while loops because standard semantics and its con­

jugate deal differently with unending programs: in standard

semantics a potentially infinite program which encounters an error

may yield T for an answer whereas its conjugate equations result in

i, as in effect it 'continues after going wrong'. Thus if, say,

32 321r[n]=A(B ,B 1) .-2 <B +B 1<2 +B +B 1 ,T for some n:Oya, theno o o

n=O inside while true do n:=n+1 will provide the answer T when

evaluated using @ and the answer i when evaluated uSlng \f~ unless

i:[S+[ExSJJ O is presumed to satisfy iT=T.

63

1.5.6. Proposition.

For every >jJ, P, a and E:Exp such that a is proper and

crushed[E]>jJ=true AK.~[E]LKa~AK.(K*~/[E]p)aunless AK,4UEgLKO=T;

similar results apply to the other valuati0ns, so for every Ib, P,

a and 1'1: Dec such that rr is proper and crushed! tH\I,=true

<{The proof of this follows the lines drawn up in 1. 5.5 by

using the fact that

AK.~[I]LKa=L~AK.K~L=AK.(K*~gnI]~lo~AK.(K*~~[I]plo

as the basis of a structural induction,~

As conjugate equations give rise to elements in

[S~[ExSJJO rather than G it is natural to expect that the version

of recursion involved in them can be rewritten to obviate the

need for the latter kind of element, As a preliminary to this

we show that members of E can sometimes be substituted in the

environment for members of G,

1. 5. 7, Lemma.

Suppose that for some 1*: Ide*. some £* :E* with #£*=#1*

and some Po:U we define P1 and P2 to be po[£*/I*J and

Pl[(... ,AK.K(£*+vl,,,,> /I*J respectively. For every E:Exp

8[E]P 1=I[E]P 2 and, if crushed[E]~=true for some >jJ having

>jJiI]+1=2 whenever P2[I]+1:G, ~IIE]Pl=~I[E]P2; analogous con­

clusions hold for 2,~ and '0 also, For every L'l:Dec

!»[L'l]P 1=£ijL'l]P 2 and, if crushed[L'l]>jJ=true for some >jJ having >jJ[I]H=2

whenever P2[I]+1:G, ~~[L'l]Pl=~~[L'l]P2; analogous conclusions hold

for Y also,

<tWhen l<;v,;#1* :1J[I*+v]Pl=AK.K(E:*+v'l=:'U*+v]P2 for some

v'. Moreover, when I is not a member of 1*

64

structural induction to complete the proof; for instance if

~[E]Pi=~[E]P2 for all such Pi and P2'

SF Hn 1. E] p1=AE:.,f'[EJI p1[E:! I] =AE •.f'II EI p2[E / 1] :;1'[f n 1. E] p2 '

~[fn 1.E]Pi=!J[fn 1.E]P2 and 1Ii§'[fn 1.E]Pi=II~[fn 1.E]P2.:l>

For any A:Dec satisfying crushed[A]~=true for some

~:Ide~B* we now take ~[A] to be

Apa.fix<A<f>I*.I*={)+{) ,< (~[A]pa+1)[I*+1]+1) §<f>(I*t1»~[A]),

so that 1I~ is a member of Dec+U+S+E* which lists the effects of

the elements in G set up by a recursive declaration. If p and

a are such that a is proper and ~[II+i=2 whenever p[I]+l:G either

AX.ffIIA]PXa is improper or AX ..9'1!A]PXa=AX.(X*Il5'1IA]p)a and

9'[A] po +v= AKa" $[A] P(AP ,a ' • K(P , [X[A] +v] +1 IE) a") a

=AKa" . ((Ap ,a ' • K(P , [H[6] +v] +1 IE) a") *W1l AJI p)a

=AK. K(II9'[A] pa+v)

when l:5V:5#,lI'[AJI •

1.5.8. Proposition.

Let ~, p, a and A:Dec be such that a is proper,

crushed[rec A]~=true and for all I:Ide ~[I]+1=2 if p[I]+l:G.

Unless AX.~[rec A]PXa is improper,

1I9l[A] (fix(Ap'. p[a*/.1[6]] [9'[6JI p'a' /)f'[A]]» is equal to

~[A] (fix (AP , . P[a* /J[A]] [119'[A] P , a ' /;fI[A]] » whi1e

AX.~[rec A]PXa is equ~l to

AX. (X*1I!fl[A] (fi x (AP '. P[a*IJ[AJI J [11.9'[AJI p , a ' IJI"[A]])))a ' whe re

a*=news(#J[A])a and a'=updatesa*dummy*a.

~Take any proper ~, p and a such that crushed[rec A]~=true

and ~[IJI+1=2 whenever p[I]+l:G. Suppose that AX.~[rec A]PXa is

proper and that ~[A]>O, the outcome being obvious otherwise.

Define a*=news(#.I[A])0, 0o=updatesa*dummy*a and po=p[a*IJ[A] J;

then a* is proper, and if we set p =fix(Ap'.p [9'[A]p'a I.Jt'I[A]])
1 a a

65

AX.~[ree ll] PXO=AX. (X*Ilr"[ll] P l)O o' Writing

fun=Av.v=O+l.Po[V[ll](fun(v-l))Oo/~[ll]Jand

jOy=AV.V=O+l.PO[~V[ll](joY(V-l))Oo~[ll]J.we have pl=U{funvlv:NJ,

and we need show only that 1lr"[lllp =W[1l]P where p2=U{foyvlv:NJ,

l 2

as then AX.~[ree III PXO=AX. (X*W[III P l)OO=AX. (X*W[ll] P 2)oO'

Observe that as AXJ1Ill] P1Xo O is proper the proof of 1.5.5

allows us to infer that 1l1'[ll] P'o 0 is proper and that

AX.r[ll]p'XOo=AX.(X*tr[lljp')Oo whenever p' is proper and included

. in Pl ; essentially this is so because true and false are incom­

parable and the choice of branch in if Eo then E1 else E2 cannot

be influenced by whether the environment is P' or Pl' In

partjc\ll~T. for all v~l

AX."[llJj (funV)XOo=AX. (X*~ llJj (funv))00 and

9'lIll] (funv)oo+v'=AK.K(~.9'1Ill](funv)Oo+v') when L;v'"b"[lll. It also

transpires from 1.5.6 that AX51Ill]lXOo=AX.(x*mllll)Oo and that

.9'[ll]_LOO+V'=AK.K(~9'[ll]lOO+V')when hv,,,#Jt1!ll]; by 1.5.7. therefore,

W[ll] (j 0yO) '= W[ll] (fu n 1) '= WIll] (j 0Y 1) .

Assume that for some v~o

1l.'T[ll] (j 0 y v) "Ilr[ll] (f u n (V+ 1)) "If.:rj[i1] (joy (v + 1)) .

Then by 1.5.7 again

119'"[ll] (j oy (v+ 1)) = W[ll] Po [1l.9"[ll] (j oy v)°0 /;t'[6]]

=119'"[6] Po [1l.9"[ll] (fun (v+ 1)) °0 /;t'[ll]]

= W[ll] Po [(•.•• AK • K (~9'II III (fu n (v +1)) °0 +v ') ••••) /.If[III]

=119'"[ll] Po [.9'[ll] (fun (v+ 1)) °0 /.-.f[ll]]

=W[ll] (fun(v+2»)

whilst from this

WlI i1] (fu n (v+ 2)) =1(1"[ll] Po [1l.9"[ll] (fun (v+ 1)) °0 /~[ll]]

=lIr[ll] Po [liS'[ll] (j oy (v+ 1)) °0 /11'[ll]]

=tr[ll] (j oy (v+ 2)) .

66

Hence for all v~o

W[l\D(joyv)e:W[ll] (fu,,(v+l»e:~5[1l](joy(v+l» and by continuity

W[ll] P2e:m ll] Pi e:W[lI] P2' whi ch establishes the result.:!>

We can now confirm that the recursion operator of 1.4.4

has the effect one would expect when applied to abstractions.

1.5.9. Corollary.

For any abstractions <I> 1"" ,<I>n' any distinct identifiers

Ii"" ,In' any p:U and any 0:5

AX. (A pl. X(al'i d [§[<I> 1] P , / I 1] ••• [§[<I> n] p , / In])0)

(fi x (Ap " . p [§[<I> 1] p " /I 1] ••• [§[<I> n] p " /I n]))

is AX.i1J[rec ll]pXo where II is 11==<1>1 and ... and In==<I>n'

<Observe that for any p'

l17"[lI] p '0=(al'id[§[<1>1] p' /Ii]'" [.'i"II wnll p '/1,,],0) , 50, 0 being proper,

~9'[lllplo=(·'F"[<I>l]P',,,,'[<I>n]pl). As cl'ushed[ll]1)i=tl'ue we may

apply 1.5.8 immediately to give the result. A direct proof

USing the techniques above even shows that the result holds whether

0r not p and 0 ar€ proper.:!>

It is to this equation for recursive procedures that methods

for validating algorithms [1] most usually apply. However we wish

to establish not that particular programs accord with what their

writers intend but that once written a program will be executed

properly. Consequently we must descend from these empyrean heights

of abstraction and discuss mathematical models for implementations.

67

CHAPTER TWO

STORE SEMANTICS

2.1. State vectors.

2.1.1. Abstract closures.

The equations for rec I==~ and rec I=~ which are entailed

by appendix 1 cannot yield the same results for all values of p,

X and G, as only One involves adding a location to the available

storage. However unless this location is assigned to it should

not affect the outcome of applying the function ~ except by

providing a means whereby the corresponding closure can refer to

itself. To dispel the haze surrounding the link between these

equations the location and its content must therefore be related

to a closure kept in an environment; doing this should also

clarify the sense in which I::E and I:E are equivalent.

Thus in order to connect K(fix(A¢.?[~]p[¢/I]»Gwith

(Aa.Ka(updatea(ff[~]p[a/I])G»(newG)we are obliged to compare a

closure having itself in its free variable list with one having

a location instead. Whilom closures were regarded as members of

[E+K+C]O, so that their free variable lists did not explicitly

appear in the formal semantics; now we split them up to enable

us to tell which locations may be referred to during the

application of a function. Because these lists are essentially

little environments we take the domain of function closures, F,

to be OOxU, where certain pairs (~,p) :ooxU are such that the

entity ~p performs the same task as some ~:[E+K+C]o. The lattice

o is separated from U in the product to avoid identifying 1 in

the domain V with an unending computation; it does not matter

whether or not the component U is separated (as 2.2.7 will confirm)

but since the environment 1 arises only when forming a fixed point

0° xU is perhaps intuitively more satisfactory than OOxUo.

68

Label entry points must be dissected similarly before the

expressions I::E and I:E can be related. By analogy with closures

we might expect an entry point to be in the domain zoxU, where as

no environment is subsumed under the first component s:Z consists

of code after compilation and before loading. This model is

accurate for badly-designed languages but it is inadequate for

Pal, in which the standard continuation conceals more of the

state than this reveals. Because labels can be assigned, control

can return to an expression in the program some time after leaving

it. If this happens not merely are the identifiers given their

original meanings but the anonymous local variables reappear:

jumping back into l+Cl:m:=lj 2), for instance, provides the answer

3. Thus as part of the value of an entry point we must keep all

the anonymous quantities which could be needed on returning

to the expression. In principle all the quanti ties created since

the program began can be required, so if Y is the lattice of

stacks (lists of unnamed variables) the transformation representing

a portion of code must take a member of Y as an argument. Hence

Z is U+Y+S+A, J is ZOxUxY and, as every nameless variable results

from an expression, Y is E*.

As hinted above, proving the cqui v~~leIlce of semantic

equeltions Celn involve examining triples o[the [arm (P.u.o) having

P:U,u:Y and o:S wherein denoted closures can be made to tally with

stored ones. To aid us we allow P, u and 0 to be passed as

arguments by the program to the continuation s:Z; now the formal

description language resembles the interpreter of Landin [10] recon­

stituted as a compiler, having such valuations as ~:Exp+Z+U+Y+S+A

and 91: Exp+Z+U+Y+S+A. From these the values of i?[I :E]I and:J![I: :E]

may be derived as Aspu.«!i1[E] ,p,u» §g>[E]spu and

Aspu.«91[E]1 ,p,u» §.:2[E]spu respectively. The other valuations are

also given their earlier significance but different arguments, so

69

that 99f fn()E], for instance, is

Ap.(sv ,(A~'p'u'o'.u'HIL*=() +j!j[E] ~'p' (u 'tl)o' ,T) ,rend[fn()E] p)

Removing the environment and the stack from the continuation enables

Z to be substituted for K and X as well as C, so that now p[res]

is in J*. Because the equations set up by this process simulate

an implementation in which complex parts of the state vector can

be stored by assignment the formulation of Mal in terms of them

will be called its 'store semantics'.

To record all the locations which may be referred to while

computing we must subject G to the same scrutiny as F and J. One

possible reconstruction of it is O'xUxYxS, for which ~[6]p'u'0'+v

is (Y"[6] ,p' ,u' ,0') and \f[I] ~puo is

~(Ap"u"o".~P«p"[I]HIE)§u)o)p'u'o' when p[I]+l is (~,p',U',o'),

but this involves an unnecessary degree of dependence on the entire

state at the time of the recursive declaration. The sole semantic

equation to require a knowledge of the stack supplied as an

argument is that for labelled blocks which does so because jumps

need it. In our case, however, the continuation is bestowed when

I is looked up in the environment, not when I is declared, and it

carries with it the existing stack. Hence the third component of

G above is as redundant as it would be in our domain of function

closures, and we can take G to be OOxUxS, ~[6]p'o'+v to be

(Y[6],p',o') and !9'[I]~puo to be ~(AP"u"o".~p«p"[I]HIE> §u)o)p'()o'

when p[I]H is (~,p',o'). It will be established in 2.3.8 that

these prescriptions together with variants of those in appendix 2

are indeed precisely equivalent to the standard ones.

The equations given in appendix 1 can imitate a storage

allocation scheme which releases the storage requisitioned by a

block on exit from it but not one which collects the currently

inaccessible locations. Now that the environment and the stack

have been separated from the code we can define a function

70

site:L+U+Y+S+T such that siteapua is true if and only if a is the

final link in a chain of wi tnes sed va lues from (P, u, a) each having

the next as a constituent. A formalization of this must be left

to 2.1.6; here all we need is the existence of a monotonic function,

novel:U+Y+S+L, which is constrained by

Apua.site(novelpvo)pva=APva.A{siteapvala:L}+L,false. Keeping the

entire environment instead of the current one ensures that

choosing a fresh location in this way will not overwrite one re­

quired on returning to an outer block.

Garbage collection is merely a way of arranging to obtain

locations which cannot be reached from the present state vector.

Its essence is independent of particular marking and compaction

algorithms, being captured ln our notation by novels:N+U+Y+S+L*:

novels=Avpva.v=o+O,

(Aa.(a) §novels(v-l)p« a) §v)(updateadummya»(novelpva).

We require also mv:O and sv:O, which are given by

mv=Aspvo.v+l:L+ s pva,

(Aa.a:L+sp« a) §vt1)(updatea(v+1)0) ,T)(novelpuo);

s V = A 1; pv a . u +1 : L + (are a (t! +1) a+ 1; p ((h a I d (u +1) 0) § V t 1) r; • T) • 1; pel 0 .

As the construction of S from V does not depend on choosing standard

semantics instead of the present variety we shall take across the

definitions in 1.3.1 to our later equations.

Unfortunately if we use novel rather than new ln the

semantics of Mal the recursion operator above will cause trouble.

The evaluation of ~[II spur; when PIT 1]1 +1=(E;,p' ,0') might require

adding an inaccessible location to the region of store; for this

novelp'()a' would be used. At the time of declaration, however,

the stack V' might not have been empty and so novelp'v'a' would

have been used instead. Since there is no reason to suppose that

these locations are identical in such circumstances as those of

2.1.2 this operator differs in its effect from that of 1.3.1.

71

2.1. 2. Example.

Let Eo be x=l inside rec f==E inside E2 , be
1

E1

nil aug fnz.fz and E2 be nil aug (fx)x=x. Then the location

returned by Eo may contain either true or false if the recursion

operator above is used in conjunction with novel.

~This example makes use of the confusion in Pal between

selecting components from lists in L* and applying functions: fx

represents the former and (fx)x the latter. It also assumes that

members of L* can be tested for equality by a program.

Take any proper p ,u and ° , together with some s :lo
o 0 0 0 •

Define Clo=noveIPo« 1) §Uo)oo' 0l=updateCl lo ' P =PO[Cl/X],o o 1

~o~[El]o(Aspu.~(invertP(arid[u+llf]))(Utl)),s1=sOorevertpo'

P2=fix (AP.P 1[(~0.P,01) IfJ) and ~l=AsPU.~fz]sp[u+1lz](uh).

~[E H P U ° =2'[rec f==E inside E H P U ° 00000 1 21101

=~ 0 (~E2] s 1) P2U0° 1

=mv(Apu •.:i'[E]s P [(u+1) IfJ(uh))p «(~l'O » §u)0
2 11 2·2 0 1

=~E2] slPl [(Cl} IfJ u 0
0 2 •

Here Cll=novelp2«(~1,P2»§u O)ol and 02=updateCll(~l'P2)01'

Now set P3=Pl [((1) IfJ, a2=noveZP2« 1;1,02» 01' 03=update Cl 2 (~1' P2) ° 1 ,

~2=APU.&[fl(Apu.mv~lP«u+1=U+2) §ut2)p«(U+1IL*» §utl) and

~3=APUO'~2P3« p[f]H\L*+1) §uO)02"

~[Eo]~opouooo=~(fx)x]S2P3u002

=~1 (~2orevertp3)(divertp3Pl) « Cl O) §U o)02

=.21[fz]1 (s2orevertp3) (divertp3Pl [Clolz])U 0 20

=~0~3P2() °1

=mv(APU'~3P1[(U+1)IfJ(uti))P 2« ~1.P2»01

=s3 P1 [(Cl 2) IfJ u
0 0 3

=s2 P3 « Cl 2) §U)°2
o

=.5f[fl (Apu.mv s1 P«(u+1=u+2» §ut 2))P 3«(Cl 2» §U)02O

=mv~lP3« (Cl 1) =(Cl 2» §U O)02'

72

Although novel p ((~1.P2» § vOlo 1 may coincide with2

novelp2«~1.P2»01 it need not do so if V o is not (). Consequently

(ex)=(a) may be true or false; when G is OOxUxYxS or [K+C]O,
1 2

however, the program invariably produces true as its result.>

We might choose to obviate this situation by keeping the

stack at the time of declaration as part of the value of a

recursively defined entity. In practice to keep stacks simply for

this purpose would be inefficient, so as we are endeavouring to

model a potential implementation we shall not do this. Indeed an

implementation would not even retain the full environment but would

content itself with a free variable list, thereby making matters

worse. The next example demonstrates that taking G to be OOxUxYxS

would still leave us in thrall to the vagaries of novel because a

location required by a declaration could be used elsewhere as well.

2. 1. 3. Examp 1e .

Let Eo be g,x=0,1 inside E ; E , E be nil aug fnz.fz, E be
2 3 1 2

nil aug o=nil aug gx and E be rec f==E inside g:=fx. Then the
3 1

location returned by Eo may contain either true or false if the

recursion operator above is used in conjunction with novel.

-tThe arguments involved in this example are very similar to

those of 2.1.2, so we shall only outline them; furthermore we shall

take so' s1 and 1;1 to be as before. Now, however, we let u o=() and

po=arid so that the effect of Eo does not depend on which of the

recursion operators of 2.1.1 is adopted.

Set O!o=novelP (0)° 0 , ct 1=novelp (1) (updatectooool,o o

°1=updates(ct o'ct 1) (0.1)° 0 , P1=P O[ct/g][ct/x],

P2=.fix(AP'P1[(~0.p.01)lfJ , ct2=novelp2«S1,P2»01'

a 2=updatect 2« S1'P))°
1

, P =P [(ct) IfJ,
2 3 2 2

a 3=up date ct °((Sl' P 2)) a 2' °4 =up da te (nove l P 3 (dummy) a 3) (dummy)° ,
3

73

C(3=novel p (0>a and 0 =updatea 00 • As noted above, given any
1 4 s 3 4

s :Zo we write s =s orevertp ; moreover we define o 1 0 0

s2=\pu.mvs1P« (u+1> =u+2> §ut2), s3=\puCJ .s2 P1 « p[f] +11 L*+1,(Ct 4>>)CJ 4

and s4 =\pu.:t1I E] s 1 (revertp1P) (uti).2

'31[Eo] soP 0u 0a0 =2j[E 3; E2] s 1 p 1u 0 a1

=i;o (.'l.'[g: =fx] s4)P2 u 0 0 1

"'mv(\pu.:t'[g:=fx]s4 P1[(u+1> IfJ(uti))P2« i;1'P 2» a 1

=!f\[g : =fx] s4 P 3u 0a2

=mv s 4 P (dummy> a
 3 3

=.9l! E 2] s1 P 3u 0° 4

=mv(\pu.£ii[gx]s2 P «(u+1> jL*) §uti))P (O>01 4

=il[gx] s 2 P1((a 3> >° S •

Because sitea (0> a "sitea (0> 0 4=true, we know that
OP1 4 1 P1 a 3

is neither a nor and thus that assigning to it does not affecta 1o

the properties of g and x.

SI[Eo] soP 0u 0° 0 =i; 1 (s 2 0 re ve r t P1) (di vert p 1 P1) (a 1 ' (a 3> >° S

=.5f1[fz] (s 2 0 re ve r t P1) (di vert p 1 P1 [a / z]) ((a 3) > ° S

=i;Os3P2(>a 1

=mv (ApU. ~ 3 P 1 [(u +1> I fJ (uti)) p 2((~ l' P 2> > ° 1

=~3P3uOa1

=s 2 p 1 « P3 f f] +1 IL*+1 , (a 4> >)0 4

=s2 P1(a 2 ·(a 3>>°4

=mv s P ((a 2> =(a 3>>°4·
1 1

Since sitea P (0> 04=false a possible candidate for
2 1

novelp1(0> 04 IS a 2 ; hence some novel functions will give

(((2> =(((3) the value true while others will give it the value

fals •• Had standard semantics been used to evaluate the program

a would have been new0 and areaa 0 would inevitably have been
3 4 2 4

true, so the locations could not have coincided and the program

would have returned a location contsining false as its result.~

74

2.1.4. Recurrent program states.

The fact exemplified above, that the novel location chosen

during a recursive evaluation may already 'really' be in use,

suggests that the semantics of -[Iltpuo be modified so that during

a recursive evaluation the state vector (p,u,o) to which we finally

return an answer is kept as part of the state set up for the

evaluation. Thus we take P and U to be UxYxS and [Ide~Do*]xJ*xP*

respectively, denote the third component of p:U by p[rec] and

extend the conventions and functions of 1.3.2 to p[recl by

dealing with it in the same way as we dealt with pIres]. By 1.2.7

all the lattices we require remain continuous and all except Z and

o are slit.

We might suppose that, when p[II +1=(~ ,p' ,0') and

t ' =Ap"u "0" . (ATT . t (TT +1) (p"[I] +11 E> §TT +2) (TT +3)) (p"[r e c] +1), <§~ I II t pu°
would be ~t'P'[(p,u,o) /rec]Oo'. Then if site were defined as in

2.1.6 any location selected by novel during a recursive evalua­

tion could not already be in use and therefore might well not be

the location chosen at the time of declaration. For the reasons

of efficiency outlined after 2.1.2 we are grudgingly prepared

to put up with this; what is intolerable, however, is that should

this location be returned as part of p"[I]+1 there is no guarantee

that it will be in the area of p"[rec]+1. In fact this point causes

difficulties even in examples akin to 1.4.2, in which we cannot

ensure that areaa 0 is true. Accordingly we define
2 2

replace=APuo 00 1 .(Aa.plotapu0 1+(01+1)a.(Oo+1)a) §01 t1 ;

recur=Atpuo. (ATT'. t(TT '+1) (U§TT '+2) (replace(TT '+1) (TT '+2) (TT'+3) 0))

(p[rec]+ll.

Here plot:L+U+Y+S+T indicates which locations are directly

accessible through the environment and the stack 'without passing

through' members of P (so that if plotapuo=true, siteapuo=true

75

also); its precise definition will be given in 2.1.6. Now

.'/[fI] p , a ' +\} beeorne s ($"[fI] 0 (A1; " p Ill) " • l'ecur 1; " p "(p "[;f'[fI] +\)] +11 E>) ,p I ,a ' >

and ~[I]1;Pl)O reduces to

(A8 • 8 : G+ (8+ 1) 1; ((8+ 2) [(p , l) ,a> / re c]) (> (8+ 3) , 1; p « 8> § l)) a) (p[1]1 +1) .

The nove~ store definition of Mal given in appendix 2 is

that suggested by these equations subject to one minor alteration.

Rather than preserve the entire environment in function closures and

in the denotations of recursively declared identifiers (which helong

to F and G respectively), He keep a free variahle list [22} built up

with the aid of tIle functions rent and torn introduced in 1.5.1.

The utility of this interpretation of recursion lies in

the theorem to be proved in 2.5.9, under which the result of a

program is independent of the choice of nove~ function. The

equivalence between it and the standard form holds only when the

syntax of declarations is restricted in such a way that variants

of the proof of 2.6.8 show that all the operators discussed in

this section have the same effect.

2.1.5. The conservation of the environment.

Much of the awkwardness in store semantics arises from

declarations, which in Mal express a wide range of meanings within a

small syntax. Whereas the standard treatment distinguishes sharply

between the environment returned as the result of a declaration

and that in which the succeeding expression is evaluated, here

our wish to model an interpreter which always has the entire

state at its behest militates against such a distinction. The

need for it arises from the intended meaning of flo within fl l , for

on emerging from fl l the values attached to identifiers by flo

will still be lurking around and may obscure parts of the

original environment. We could remove these after-effects of flo

76

by using a function akin to revert, but instead we cover them

with a layer from the original environment except when 6 has1

already done so. If the original environment yields only an

empty list of denoted values there is nothing with which to

conceal these accretions, but nor is there any reason to wish to,

as ln a correctly composed program no identifier will be used

without either being declared explicitly or appearing ln the

library environment. Thus it is enough to set

trim;A6P P .(AI.(-I:J'[6])§)fj[61i\#P [I]>#Po[I]>0->(revertP P [I]h) ,(»)O 1 1 o 1

§P
1
[I])

§(Pi' res]l> §(Pi! reeD)

Discarding the superfluous elements from the environment by

using A6POP1.divert(revertpoPl)(snip!6]Pl) instead of trim would

in practice be more efficient and would give rise to less complex

equations for multiple declarations; furthermore it could be

shown to be equivalent to the corresponding notion in standard

semantics by the means we shall adopt in any case. We have

chosen the more extravagant approach above because it extends

readily to the stack semantics of 3.1.1. In this there are no

free variable lists attached to closures so any function created

in 6 which requires to refer to identifiers declared in 6 0 must1
do so by inspecting an omnipresent environment in which their

values are preserved.

The equations for declarations thus result in every new

environment layer being piled on top of its predecessors, thereby

masking them. The constituents 61 "" ,6 of 61 and ••• and 6 • n n

however, should be evaluated in the environment pertaining on

entry to the block. which must therefore be retrieved from under

whatever flotsam there may be. The primitive intended to carry

this out is used even on the set of values associated wi th

77

I when I=E is a constituent of ree (~1 and ... and ~n) because

although I=E leaves the environment unchanged preceding

declarations may not do so. Accordingly we set

Clip=A~POP1'(n. I:Jf[~] §Jtj[~]"#Po[I]>O->(revertP P1[I]+1} .())§Pl[I]}o

§(P1 11 resli> §(P1[ree]).

Recovering the desired denoted values after carrying out all

of ~1" "'~n is no easy task, as they may lie under refuse generated

by intermediate within declarations. To dredge them up we carry

the environment that they create through to the point at which in

standard semantics conserve would make them operative. Accordingly

we take pick [~1 and ••. and ~n] to be

AP*P. (A1. (I :Jf[~ i (n) 1JI ~ ~ i (n) 1]1 ,,# (P* t1) [I] >0+(re ve r t (P*+ 2) P[I] +2)

. .. ,
I:Jf[~.()]§Jtj[~.()],,#(p*+n)[I]>0+(revert(p*+(n+l))p[I]+2)

1-nn 1.,.nn

()) §p[I])

§(p[res]) §(p[reeD)

Here we have taken over i from 1.3.5, as it is used in store

semantics as well as the standard variety to leave an order of

evaluation unspecified. In terms of the k of 1.3.5 we define

deal:Oo*+[U*+Z]+Z bv,

de a l =A!; * ljJ Po v O. (An. (!; *+i (n) 1) (APl' !;*+i (n) 2) (AP2. (!;*+i (n) 3) (AP3.

... CAr v .ljJ(PO'Pl'P2'P3' n) P (iiv >Iiv +~(n)v v » nn '- 'n n n O'"n'n

.. ,)r 3)P 2 }P 1)) (#!;*)Pov ' o
This can be used to set up the analogous function for expressIons

by writing mete=A!;*~.deal!;*(Ap*.~).

As an environment created by applications of the primitive

functions defined above may be of an inordinate size it is useful

to have some means of comparing the shapes of two members of U, P

and p, obtained by transforming programs in accordance with the

rules of 1.4.6. To this end neat is defined by

ne at =A(P, p) .t\{# p[I] =#P[I] II : Ide}" (# p[re s] =#p[re s])" (# p[re cD =#~ [re e]) •

78

2.1.6. Tracing algorithms.

Much of this dissertation 1S concerned with the properties

of pairs of values which arise in the course of computations that

are avowedly equivalent. The halves of such pairs will both lie

in one domain or, failing this, in two domains which will be de­

signated by identical letters, so that the first half can be re­

presented by the same Greek character as the second. Consequently

when dealing with continuations, say, we shall label a typical

member of ZOxZo by ~ and assume without explicit mention that the

first and second components of ~ are ~ and t respectively.

Analogous rules will apply to all other products of corresponding

domains, even when the elements are subscripted; thus ~o' for

instance, will be that element of EOxEo which could equally well

be written as (Eo,E)'o
Of particular importance in store semantics is the lattice

P of state vectors each comprising an environment, a stack and a

store. As a typical state vector is denoted by TI whereas typical

members of U, Y and S are denoted by p, U and a respectively,

henceforth it will be convenient to identify TI with (p,u,a),

thereby giving p~TI+1, U~TI+2 and a~TI+3. This convention will

extend also to subscripted and accented variables, so that

underlying all that follows will be such unstated equalities as

1l1~< 11 ,ii) ~« 15 ,6 ,(),< P1,u ,il 1». The sole justification for
1 1 1 1 1 1

this rebarbative usage is that it will make our notation less

prolix than would otherwise be the case.

Our initial application of these conventions will be to

devise a procedure for testing values wand W to see whether they

can be witnessed at parallel points in state vectors 11 and IT which

have been created differently (by using two kinds of declaration

or storage allocation, for example). Amongst these points are the
.

entries in the environments and stacks, which can be lined up by

79

means of

h 0 te n= \w~ .V{V{l '5V '5 #p[I] " 1'5V '5 #Ii [I II +w=(p[III +V , p[III +v) ,fa ls e II: Ide}

v(l'5vdp[res] "l'5V'5#1)[res]+w=(p[res] +v ,p[res] +V) .false)

v (1'5 vdp[r e ell" 15 V'5 #P [re e] +w= (p[re ell +v •p[re ell +V) • fa ls e)

Iv:N};

gyven=\wO.V{l5V'5#U"1'5V5#U+W=(U+V ,w+v) ,false Iv:N}.

All the overt pairings between TI and TI can be obtained using

yclept:[WOXWO]+[POxPO]+T, which is defined by

yclept=\w~.hotenw~vgyven@Ovgyven@(6+2,a+2)Vgyven@(6+3,a+3)

Here we take W, the domain of witnessed values, to be

L+B+L*+J+F+G+J+P so that label entry points and return links

activated by res are placed in different summands signified by J.

The total tally of pairs is found by proceeding from these

values through the states with the aid of an algorithm which is

like that used in principle during the marking phase of a garbage

collector. Each pair reached gives rise in turn to others; for

instance, two locations yield their contents while two function

closures provide the members of their free variable lists. To

avoid returning the result ~ when, say, &:LoxLo and 8:SoxSo

are such that (holda6 ,holdaa) =« a) ,< a» we effectively 'mark off'

witnessed values when they are encountered by introducing an

integral parameter VI' Furthermore we distinguish between locations

accessible without passing through members of P and those requiring

a route through a member thereof by means of a further parameter

v O' Accordingly we utilize the algorithm provided for seen, which

is intended to give all the pairs witnessed from any particular

pair by searching to depth VI; this it achieves through

80

seen=AvOvlWOW1~·Vl<1+WO=Wl'

W : LV W :L+seenv (v -1lw (accessw ~)~,
l 1 o l O l

W : SXS-+faZse ,
l

Wl:L*xL*+\!{seenvO(vl-l)WOW2~Agyvenw2wllw2:WxW},

Wl:JxJ-+V{seenvO(vl-l)WOW2~

A(hotenw (W +2,W +2)
2 l l

vgyvenw (W +3,W +3) AV <2) Iw :Wxw},
2 l l O 2

W : Fx F-+V{ seen v a (vi - 1)W w fI Aho tenw (Wl +2, Wl + 2)
l o 2 2

!w
2

:WX W},

wl:GxG-+\!{(seenvO(vl-1)WOW2~Ahotenw2PO

vseenVO(Vl-1)WOw2f1oAycleptw2f1oAVo<1)

Afl =«W +2,() ,W +3) ,(W +2,() ,W +3» /w :WxW},
o l l l l 2

Wl:JxJ-+V{seenVO(Vl-l)WOw2f1

A(hotenw2(Wl +2 'W l +2)

Vgy ve nw 2(W1 + 3 ,w 1 +3) AV0< 2) IW2 : WxW} ,

W1 : px p-+V{s e e n Va (Vi -1) wow 2W1AY cZ ep t w2W1AVa <1 IW2 : Wx W} ,

false.

In fact as we extract the contents of locations by means

of access~AGlf1.((iii: L+(aY'eaiii6->holdiii6,iii) ,iii), (w: L-+(aY'eawa+holdwG ,w) ,w»,

seenvOvlwOwl~ is actually independent of P and 0 although thc

predicate of 3.2.1 is not. The nature of seenvOvlwOwl~ when

wl:GxG must remain inscrutable until 2.6.8.

We gather up all the values which will be witnessed when

this procedure is applied indefinitely using

kent=Avwfl.V{\!{seenvvlwwl'i1Aycleptwl'i1lvl:N}lw1:WxW} •

This in turn enables us to defi nc

site = Aa pu a • ken t O(a , a) ((p , u ,a) ,(p , u , a)) Aa : L ,

plot=Aapua.kentl(a,a)« p,u,a),(p,u,a» Aa:L and

spot=Aapua.kent2(a,a) « p,O ,0),(p,() ,0» Aa:L, in which the

predicate a:L ensures that only proper locations yield proper results,

81

Although kent and its derivatives are monotonic there is

no reason to expect them to be continuous, as they are constructed

from disjunctions of infinite numbers of predicates. That they

do indeed provide discontinuities is demonstrated by the sequence

{<pnln;,o} such that <po=Ao.arid[o/IJ and

<p n+ l=AO .arid[«(J[1]1 (7; 0 revert(arid» ,<P n 6 (» /IJ for all n;'O. When

the program 1::1 has 7; as its continuation, U<Pn~ is an appropriate

environment for it; moreover, as might be imagined, for every

a:L kent is such that

kentO(a,aJ «U<Pn~'() ,empty) ,(U<Pn~'() ,empty» =false.

Notwithstanding this, induction on n shows that whenever n;'O

seenO(n+l)(a,a) (w,w) « <p ~,() ,empty) ,(<p ~,() ,empty» =~ for every
n n

w:W such that yclept(w,w)« <p ~,() ,empty) ,(<P ~,() ,empty» =true, so
n 17.

that IJkentO(a,a) « <p ~,() ,empty) ,(<p ~,() ,empty» =~ for all a:L.
n n

It might be hoped that this discontinuity could be elimin­

ated by the use of different methods of enforcing termination

when tracing the locations (&,~ in a pair (6,a) having

(hold&6 ,hold&a) =((a) ,(&» ; among the more obvious of these methods

would be that discussed in 3.6.3. Unfortunately all such expedients

are doomed to failure in the present case. To see that this is

50 let site momentarily be a continuous function formed in such a

way that for every a:L and p:U

sit e a (ari d [(~ [I] (7; ore ve rt (ari d)) , p ,())/ IJ)() (emp ty) =s i t e ap() (e mp ty) •

By induction on n sitea(<Pn~)() (empty)=sitea(<Po~)() (empty), so con­

siderations of continuity dictate that

sitea(U<Pn~)() (empty)=sitea(<Po~)()(empty). Yet if site is to trace

precisely the locations which can be accessed sitea(<Poa)() (empty)

must be true while sitea(<p 0 (dummy»() (empty) must be false; site

being monotonic, sitea(<p ~)() (empty) has therefore to take the
o

value ~. In consequence ,sitea(U<p ~)() (empty) is ~ although it
n

82

should really be false.

A similar fate befalls functions obeying the constraint

n

imposed on novel in 2.1.1, for they may be monotonic but they

cannot be continuous. This can be established by noting that

any monotonic function novel:U+Y+S+L satisfies

novel(rjJ a)() (empty):"novel(rjJ .L)() (empty)
n n

for every a:L and for all

n"o, so that if no location a satisfies a=novel(rjJ a)() (empty) then

novel(rjJn.L)(} (empty) must be.L. Hence when novel is constrained as

in 2.1.1 Unovel(rjJ .L)() (empty) takes the value .L but
n

novel<UrjJn.L)() (empty) is a proper location provided that L contains

three or more elements.

The root of the discontinuities ln kent lies in its

reliance on a domain U which distinguishes between the environments

.L and arid[.L/1J. The first component of this domain, Ide#Do*,

could be supplanted by Ide#D* only by building a different value

.L into J and G, the members of which can be affected by applying

fix to environments as in appendix 2. Thus were the first com­

ponent of U to be Ide#D* taking J to be ZOxUxY would give

(A1; , • 1; , (fi x (Ap , •ari d[(1; , ,p , ,(>>II]))(> (e mp ty)) ($'[I] (1; 0 re ve r t (ari d))

the value .L, whereas taking J to be ZOxuoxY would yield a reason­

able rendering of 8[1: :1] 1;(arid)() (empty). Structuring J as

ZOxUoxY, however, would again give rise to a discontinuous version

of kent even if Ide#D* were to take the place of Ide#Do*. In

short it is necessary either to form environments in a finitary

manner which avoids using fix (as will be done in 3.1.1) or to

abandon any prospect of making kent continuous. The latter course

of action will be adopted here despite the fact that it entails

shoring up the theoretical foundations of novel store semantics

for the reasons discussed below.

Because appendix 2 makes explicit mention of novel and

recur, neither of which is a continuous function of the parameters

83

drawn from U, Y and S, the existence of the entities required

therein cannot be taken for granted. On inspecting the semantic

equations it becomes evident that the only demand made by novel

and recur IS that the domain Z contain continuations which belie

their title by failing to be continuous, whereas the equations

appear to presume the continuity of the functions only when fix

is applied. Since fix is required to account for recursion and

labelled blocks, to describe while loops and to set up the

valuations, the spaces which must comprise solely continuous

functions are Z+Z, U+U, [Exp+OJ+[Exp+OJ and [Dec+OJ+[Dec+OJ. Thus no

difficulties are encountered in the equations if Z is allowed to

contain discontinuous functions provided that 0 remains equal to

Z+Z, the space of continuous mappings from Z into itself. Although

Z will still be written as U+Y+S+A, in the context of novel store

semantics it will be understood to have some members which are

not continuous. Considerations of cardinal arithmetic preclude

identifying Z with the set of all mappings from UxYxS into A,

but in 2.4.4 Z will be given a form which is sufficiently large

to encompass all the continuations necessary and is also small

enough to permit the construction of the reflexive domain W.

Thus the introduction of novel (which is monotoni c but

not continuous) entails making a minOT modification to the lattices

which provide the interpretations of programs. This modification is

sufficiently striking to make it desirable to distinguish between

novel store semantics, which is illustrated by appendix 2, and new

store semantics. The latter invokes new where the former invokes

nevel and makes use of a direct translation of the standard valuation

~ into store semantics instead of the more complex treatment of 2.1.4;

further details of the difference between the two kinds of equation

will be given in 2.2.7.

84

The intention of spot is to isolate precisely those loca­

tions which can be accessed without passing through an inter­

venlng stack, as they alone among the locations revealed by plot

can be assigned to by a program.

2.1.7.	 Proposition.

Let V <2,Q2 and ~ be such that seenvOv3w3Q2~ is proper forO

every and Q3' If v 1 ' v 2' W and w1 satisfyv 3 o

seenvOvlwOwl~Aseenlv2wlw2~=truethen seenvO(vl+v2)wOw2~=true.

~The proof proceeds by an induction on v which we shall
2

only outline. When V 2<1. for all VO<2, v ' wo' w w2 and ~ 1 ,1

seenvOvlwOwl~Aseenlv2wlw2~~seenvOvlwOQ1~Awl=w2~seenvo(vl+v2)wOw2~'

Assume, therefore, that for some v and for all V O<2, w and ~
2 2

such that seenvOv3w3w2~ is proper (for every v 3 and w) we have
3

seenvOvlwOwl~Aseenlv2wlw2~~seenvO(vl+v2)wOw2~for all v 1 ' Wo

and w1 ' Take any suitable vO,w2 and ~ together with some v
1

' Wo

and w1 which are subject to the constraint

seenvOvlwOwl~Aseenl(v2+1)wlw2~=true.

If ~2:L or ~2:L. seenlu2wl(acceHsw2~)~=true.so by the in­

duction hypothesis seenvO(vl+v2)wO(accessw2~)TI=trueand by the

definition in 2.1.6 8eenvO(vl+v2+1)WOwl~=true,

If w2:JxJ, seenlv 2w1w4TI=true for some w satisfying
4

hotenw4(~lf2'~lf2)=true or gyvenw (w 1 f3,W 1 f3)=true. It is only4

possible that seenvOv3w3w2~ be proper for all v 3 and w if3

seenvOv3w3w4~ is proper for all v 3 and w' as the definition of
3

seen reveals. Accordingly we may apply the induction hypothesis

to w4 ' obtaining seenvO(vl+v2)wOw4~=true and, since

seenvO(vl+v2+1)wOW2TI is proper, seenvO(vl+v2+1)wOw2~=true.

We can also have Gl 2 :L*xL*, w2:FxF,w2:GxG or w2:JxJ,for all

of which validating the step in the induction resembles closely

85

the paragraph above. Because seenl(v +1)w ft=true, however,1w1 Z

we cannot have wz:pxP. In consequence we may conclude that,

when vO' W and ft agree with the premises of the proposition,z

seenvOvlwO~lftAseenlvzw1wZft~seenvO(v1+vZ)wO~zftfor all vi' v ' wz o
and W ."1>

1

A similar result can of course be established if

seenzv 2w1wZft is true: should seenv Ov1wOw1ft be true in this case

seenvOev1+vZ)wOwzft will be true whatever the value of vo'

2.1.8. Corollary.

Let ft be such that seenOv 3w3w2ft is proper for all v 3 and

w3 whenever yeleptw ft=true. Then for all V O<2 and W if there2 o

are v1 and ~1 having kent1w ft=true and seenv Ov 1w wft=true then1 O 1

kentvowoft=true.

<tFor any v 3 and w seenv Ov3w3wZft is proper wheneverv O' 3

ycleptwzft=true by a trivial induction using the structure of

seen. Suppose that seenv Ov1ww ft=true for some A havingw1O 1

kent1w ft=true and for some v1 and woo Then seenlv 1w1wZft=true for1

some W having ycleptw2ft=true, and by 2.1.7z
seenvOevl+v2)wOw2ft=true so that kentv w ft=true."1>o o

86

2.2. Inclusive predicates.

2.2.1. Cyclic relations between values.

As a prelude to proving that the standard equations for

rec I==E and rec I=E are equivalent, we now start to verify that

the description of Mal suggested by 1.4.5 is similar to one

yielded by a form of store semantics which uses new. A further

result will relate this to the form using novel, which gains its

significance from the discussion of 2.1.1. Because we prefer

not to specify the ultimate domains to which continuations map

their arguments the exposition will be couched in terms of a

predicate a on pairs, the first and second elements of which

belong to the final domains for standard semantics and for store

semantics respectively; thus were these domains to coincide one

possibility for a would be the test for equality. Though we need

not assume that these domains are the same we can identify them

both by A without fear of confusion; similar remarks apply to all

the other lattices, such as U, Y and S. Economizing on names in

this way allows us to use the pairing conventions of 2.1.6.

Two programs, one evaluated under standard semantics and

the other evaluated under store semantics, might be deemed to be

equivalent if for every suitable pair of inputs the resulting

pair of answers in AOxAo satisfied a. As we are dealing not with

computing mechanisms but with functions, non-terminating programs

can be subsumed under this provided that a(L,L)=true. The standard

entity set up by a compiled program which is ready to be executed

is a store transformation 6:Co; the comparable notion in store

semantics is the entry point (~,p,u) :zoxUxY. Accordingly we seek

a predicate c on COx[ZOxuxYJ such that c(6,(~,p,u» is true only

if a(66,~puo) 1S true for every appropriate pair 8:SoxSo. It is

plain that not all pairs can be appropriate, for when m yields a

stored 1abel the equivalence of the two interpretations of gata m

87

depends on the contents of the relevant locations. We must there­

fore also find a predicate s on soxso to relate the contents of

locations which tally; then c(e,(i;,P,u»::>!\{a< e6,i;pUCl) Is$},

Suppose that one lattice L is adopted by both the models

we are currently considering. We can define a projection r ofo

the domain V for store semantics into that for standard semantics

by ro=AS.S IBUS IL*UCS:ZoxUxY+.L,S:OoxU+.L,.L), where .L in C and.L in

E+K+C are used in the conditional expression; we can also define

a projection q of the standard V into itself byo
qo=AB.S IBUS IL*UCB:Co+.L,B:[E+K+CJo+.L,.L). Let 6 be the functor

on stores introduced in 1.3.1. If $;SOxSO is a pair such that

Aa.areaa6=Aa.areaaa, #6+2=#0+2 and #6+3=#a+3 and if

!\{V{S=< holda6 ,holdaa) Ia}vgyvenS< 6+2§6+3 ,a+2§Cl+3)

+S=Sv~:COX[ZOxUxYJvS:[E+K+CJox[OOxUJ,trueIS}

is true, then eq 6=er a and for any new function o o

areaCnew C6r a»a=areaCneW C6r a»6 o o

=areaCnew(6q 6»6
 o

=area(new6)6

=!\{areaa6Ia:L}+.L,!alse

=!\{areaaala:L}+.L,false.

Hence new o6r satisfies the postulate on new functions of 1.2.1 o

and new(6roa)=new6 when 6 and a are related as above. We can

therefore take newo6ro to be the function referred to in new

store semantics and demand that the equivalence between locations,

la, be a=aAa:LAa:L; from now on stores 6 and a corresponding

in the manner above will have Z< new6 ,newCl) =true unless new6 and

newa are both .L or both T.

Although the course of a computation depends only on the

contents of locations within the area of store we demand that in

equivalent stores all the locations hold equivalent values, as the

semantic equations do not proscribe access to locations outside

88

this area. Were we to amend the equations or to introduce more

sophisticated predicates akin to those of 2.4.1 we could

weaken this requirement so that only locations in the store area

were compared, but under our present circumstances we insist that

s8:>A{ (areaa6 AareaM v-areaM A-areaaCJ) AV(ho ~da6 ,ho ~dao) I ~&}

for all 8:S oxSo.

Here v is intended to relate pairs 6: VOxvO in such a way

that they produce matching effects when used in their respective

computations, so that pairs of values which are read into (or

written from) equivalent stores will also be subject to it.

Accordingly we must also have

slb#6+2=#O+2A#6+3=#CJ+3AA{gyven§(6+2§6+3 ,CJ+2§cl+3) -+v@,true I§}.

Since the effect of a stored label entry point may be to change

" ~the flow of control we expect that if 6:Co and 6:lo xUxY then 6

will be such that vS:>eS.

The recursion operator for nove~ store semantics provides

a valuation Y which may alter the area of the store whereas

standard semantics does not. To ensure that the areas we compare

remain identical, in new store semantics we eliminate rep~aee

and take Y[6]p ' a'+v to be

(S'[6) 0 (A1;p"v"a". (A1T. 1;(1T+1) (p"[~6] +v] +1) §1T+2) (1T+3» (p"~ reel +1).

tear [6]p , ,a I)

when 1,;v,;#.J!'1[6] .

2.2.2. The information yielded by projections.

The connection between e, s and v proposed above entails a

circularity in their definition which cannot be eluded by an

appeal to the Tarski fixed point theorem [24J since no function havin

them as a fixed point can be monotonic. We use an induction rule

like that of 1.3.1 to build them up alongside the reflexive

domains. In passing from Pal to Mal we have altered 0 but not

89

v, so the form of this rule remains the same even if its content

is fresh. It is also valid for store semantics, since we extend

to functors and projections the convention that the domains used

therein have the names of their standard counterparts.

Our intention is to get predicates which at each stage

in the iterative construction of the two lattices labelled V will

relate values in one to values in the other. Each predicate v
n+l

will add to the information yielded by the one at the stage before,

v , in such a way that the entire sequence will reveal all that
n

we want to know about the values. Owing to the presence of per­

fect information at every stage if S:BxB, we can assert that ln

this case v S is bS where b is a given predicate on BxB. We shall
n

tacitly assume that b is the identity but there is no reason to

do so: we might, for example, wish to prove that one program acted

similarly to another which interchanged true with false and A

with v and which set - before the premise of every loop or con­

ditional clause, when b(true,false> would need to be true and

b(true,true) would be false. Should S be in L*xL* we know like­

wise that v n B is S~S since we have taken l& to be a~a whenever

&:LxL.

It is less easy to decide on the nature of v (1,1) ,n

although as ql~l for any injection q our discussion of information

suggests that v 1(1 ,1) ~v (1,1> for all n. If we take our ini tial
n+ n

projection qo to be AS. 81 BUS IL* and stipulate that vB::>v (qoS,qoS>o

then v (1,1) must'be true as there is presumably some (e,(/;,p,u»o
with v(e,(/;,P,u» ~true. There is, however, no need to choose this

particular initial projection as other possibilities give rise to

the same domain V; in particular this problem might be circum­

vented were the standard qo to be AB.BIBUSIL*U(S:J+l,B:F+l,l) with

1 belonging to C and to E+K+C in the first two consequents of

the conditional expression. Furthermore though we are prepared

90

to countenance the possibility that the final answer in A given

by a computation might be 1 we permit improper intermediate

results only if an error has occurred. Accordingly we take

v (1,1) to be 1 and v (T,T) to be T in the domain T, and we use n n

a set of projections which is not the most obvious.

There is a natural candidate for that part of this set

which is derived from the standard domain V, since we can simply

take the qo of 2.2.1 and define q 1 to be ~q when n20. Loosely-n+ n

'l)q =q oUJ'q u1"q for the functors J and ~ suggested in 1.3.3, but in n n n

fact l/qn=\S.S:B-+S,S:L*-+S,S:J-+C~qn)OS,S:F-+Cl£qn-+ltqn-+Cqn)OS,l;as

Vl"qo the postulate about V in 1.3.1 ensures that \S.S=Uqn'

In store semantics we might expect the initial projection

to be \S. S I BUS IL*UCS:J-+(l,cute S+2) ,cutC S+3) ,S: F-+< l,cutC S+2) ,1),

out of which could be built other mappings using ~, U and ~,

functors for Z, U and Y which will be defined in 2.4.1. This

would not truncate V correctly, however: ~q °8, say, somehow n

'includes' Clq °1;,lIq P,~q u), because the environment and stack n n n

of the latter correspond to ones sealed into e in such a way

that they cannot be affected by applying ~qn' Taking qn+l(s,p,U)

to be (i! q °1;,P,u) would give a more satisfactory likeness, but
n

would nevertheless remain inappropriate, as when the code part

lq Os was supplied with the arguments P and u it would yield
n

\a.~qnCScmqnP)C~qnu)C6qna)),or lqnspu, although only the state

transformation \a.~q Cs puC6q a)) could hope to emulate n n

\a .~q C8 Ci5q a)). Thus for every projection q on V we take Cq on n n

Z to be \spu.:llqospuo6q and J q on J to be \S.(<(qOCS+1l,S+2,S+3)

The continuation supplied to a compiled expression in

store semantics is expected to have the same environment as that

provided to the resulting state transformation. Moreover the

resemblance to standard semantics suggests that its stack will

differ from the one originally given by having an extra element

91

at the top. This addition alone is compared with the expressed

value returned in the standard equations, so the projection

needed for Z, J!tq, is "Al';pu.laq0l';p(u=()->-u,Ufq(U+1)} §ut1)0ilq, whilst

Here we

have eq="AE.cL->-E,qE as E=L+V and

6 q =AO.("Ao:.((o+1)0:+1,q«o+1)0:+2») §q*(O+2)§q*(O+3) as

S=[L~[TxVJJxV*xV*.

The appropriate truncations of the space of stored values

are therefore obtained by taking qo to be

"AS.S [BUS IL*U(s:J->-(i,S+2,S+3) ,S:F->-(i,S+2) ,i). As before qn+l=tlqn

andUq=qoU:JqU.:fq, but now1 q and.:fq modify only the first components

of their arguments. The proof that "AS.B=Uq requires us to verify
n

that Uqn="AB.fix(W)(SI W) when W is the original functor for W,

the domain of witnessed values, in store semantics; the details

will not be given here since those for a more interesting variant

may be found in 2.4.2.

Having decided how to regard v(i,i) and what information is

available to the predicates at each stage we can at last provide

recurrences generating them. The essential relations between

stored values are given by

vo="AS.S:BxB->-bS,S:L*xL*->-#B=#BA!\(l&v-gyvenasl&},s:JxJvS:FxF and

v l="AS.vOSA(S:JxJ->-c lS.S:FXF->-f l S ,true).n+ n+ n+

These can be explicated using others, the formation of which

is reminiscent of the inverse limit construction for V:

e l=A~.~:LxL->-l~,~:VxV->-v E,false;
n+ n

s ="A6.!\«areaa6Aareac,.cJv-areaa6A-areaM)Av (holda6,hold&o) Ila}
n+l n

A#6+2=#O+2A#6+3=#O+3A!\{gyvenS(6+2§6+3,C)+2§O+3) ->-v S,true IS};
n

c 1=A(8.(/;,p,u».!\{a l(l[q 86,l[q /;puo) Is 1<J};n+ n+ n n n+

k =A(K.(/;,P,u» ./\{c l(kq KE,(kq /;,p,(E) §u» Ie if};
n+ 1 n+ n n n+

f +l=A(<P,(E;,P» .I\{k 1("AE •.:fq <PEK,(!>q (E;(1ta /;orevertp' »,d1:vertP'P, U»
n n+ n n' n

Ik (K,</;,P',U»}.
n +1

92

Only in those predicates which involve applying the arguments

as functions is it necessary to truncate them; indeed when the

arguments are in L (as they are for se, say) even this use of the

projections can be eschewed. To extract all that these relations

can tell us we therefore define the countable conjunctions

v =AS./\v)3, e = Ae.I\e n + 1e, s = A8 .I\s n + 10 ,

C=A< e,< 1;,P.V» .l\c +1<e,< 1;,P,V» , k=A< K.< s.P.v» .l\k +1<K,< s,P.v» ,n n

and f= A< Q>, <t; , p)) .I\fn +1< Q> , < So p)) We allow for the possibility that

AOxAO may depend on VOxVo by cutting down its predicate to an

appropriate level at each stage; hence we also require a=A6.l\a +16. n

For instance, were A to be S we might take >!lq and a 1 to be ~q n n+ n

and A6.6=< .l • .l) v6=< T,T) +true,s 10 respectively, since these satisfyn+

the prerequisites of our next few results.

2 . 2 . 3. Lemma.

Suppose that a <.l,.l) =tpue, a 8 is 81Vlays proper, and if1 1

v lS~v S and v s~v l((q xq)6) for all S:VoxVo then a 28~a 18n+ n n n+ n n n+ n+

and a 18~a 2((~q x~q)6) for all 6:A °xA 0. For every membern+ n+ n n

of the relevant domains and for every n~O,

(ii) e 2s~e is and e be ((!/tq xl'!q) E) •
n+ n+ n+l n+2 n n '

(iii) s 2B~s 16 and sn+16~sn+2((·qnx·qn)8);n+ n+

(iv) C 2< e,< 1;,P,V» ~C 1< e,< s,p,v»
n+ n+

and C 1< e,< 1;,P,V» ~C 2<!lLq e,<((q 1;,P,V»n+ n+ n n

(v) k 2<K,<1;,P,u»~k l<K,<s,p,v»n+ n+

and k 1< K,< s,p,v» ~k 2Ctq K,<Aq 1;,p,v»·
n+ n+ n n '

(vi) I 2< Q> ,U; ,p) hf 1< Q> ,U;, p»n+ n+

and f < q, ,U;, p) hI 2<:$q Q> ,:$q < 1;, p» .n+l n+ n n

<Manifestly if v1S=true vo8=true. On the other hand if

voB=true then vi ((qoxqo)S)=true unless, perhaps, S:JxJ or B:FxF.

93

Should	 S:JxJ, viCCqoxqO)S)=ci(1,(1,S~2,S~3»=trueas !tq 1=1 and
o

a (1,1>=true; should S:FxF, Vi«qoxqo)S)=fi(1,(1,S~2»=trueas
i

:fq
O

.L=1 and a
i

(1.1> =true. Hence (i) holds for n=O.

Now assume that (i) is valid when n=m for some m~O and

that (ii) to (vi) are valid whenever m-i~n~O. We shall show that

(i)	 holds when n=m+i and that (ii) to (vi) hold whenever m~n~O.

For any e:ExE, by (i) and the definition of qm'

e 2eA-E:LxL~v iE~V E~e iE and
rot	 mt m mt

e ieA-E:LxL~v E~V l«q. x{))E)~e 0«'1" xfl")E). As e JE=U if
mt	 m mt. rr"r' rn.+;: "rrl ',>,!,/ m+

E:LxL, (ii) is valid when n=m.

The proof that (iii) is valid when n=m is similar to that

for (ii) except in that use is made of ~q rather than eq . m	 m

Suppose that c 2(e ,(Z; ,p ,v» =true and that s i6=true
m+ m+

for some 6. The paragraph above shows that s 2CC~ xaq)6)=true,
rot	 m m

so, writing for convenience 6=«(;q i8Cflq 0) ,!tq r,pvC6q en>,
m+ m m+l m

8=(~qm+iC8C"qmO)),~qm+1Z;PVCjilIqm~» and a o6=true as q l oq =q. Now1"7+__	 mt m m

a 28~a 16~a 2CC~q xqq)6)~a i«gq xaq)6); hence
mt mt mt m m mt m m

a l(!tq	 80,rt:q Z;pva> =true and c 1(e,(Z;,p,v» =true.
rot m m	 mt

Conversely, if c 1(e ,(z;,p ,v> > =true and s 8= true then
m+ m+2

sm+18=true, so a l(Eq 86,~q Z;pva>=true and a 2(f£q 80,f£q Z;pva>=true.ro+ m m	 mt m m

Since 6	 is any suitable pair of stores c 2(f!,q 8,(QCq Z;,p,v»=true
mt m m

and (iv) follows for n=m.

For any (K,(Z;,p,v» :KoxJ,

k + (K,(Z;,p,V»Ae l bk 2(K,(Z;,p,v»Ae 2«'eq xl!!q)Om 2 mt mt rot m m

~c 2(l\q l K (l/lq £),(T<.q lZ;,p,(eq E>§V»

mt rot m rot m

~c l(~q l K (lIlq €) ,(T<.q lZ;,P,(~q £> §v»
rot mt m rot m

~c 2<:l<q K(flq €) ,(l,q Z;,p ,(flq E> §v> >
rot m m m m

~c l(i<q K(lIlq €) ,(l(q Z;,p,(flq £> §v»
rot m m m m

~c i(~q KE ,(J(q Z;,p,(E> §v> >
rot m m

whilst

94

k l(K,(i;,p,U»Ae 2S:Jk l(K,<i;,p,U»Ae l S
m+	 m+ m+ m+

:Jc l(Jtq KE,(Jtq i;,p,(E) §U»m+ m m

:JC 2(ltq KE,(ltq I;,P,(~) §U»m+ m m

Hence the validity of (v) when n=m follows from that of (ii) and

that of (iv). That (vi) holds is similarly a direct consequence

of (v) .
A

Finally, for any S ln J xJ or Fx F

v 28:JCS:JXJ+c 28,f 28)m+ m+ m+

:JCB:JXJ+c 18,f 18)
m+ m+
"

:J vm+ 1 !3

:JCB:JxJ+c lB,f 18)
m+ m+

:J C8: J xJ+ c +2CC31q mx31qm) B) ,fm+ 2C;1qm x$qm) 8))
m
A

:Jvm+2CCqm+lxqm+l)!3),

and by induction the result is proven for all n.>

A predicate a will be said to be 'inclusive' if when­

ever {6 Im::>O} is a sequence with 6 lC!6 for all m::>O /\a6 :JaCU6).m	 m+ m m m

2.2.4.	 Lemma.

Suppose that for any n::>O if v is inclusive a + is in­n n 1

clusive; then v, e, s, c, k, f and a, defined as above, are in­

clusive.

~We shall show first that v is inclusive for every n. n

Certainly, if {8 } is an increasing sequence /\voSm:JvoCUBm) and m

V is inclusive.o

Suppose that for some n v is inclusive, so that an + is
 n	 1

inclusive and by trivial calculations eland S 1 are inclusive.
n+ n+

Let {(e ,(I; ,P ,u » } be an increasing sequence of members of
m m m m

JxJ such that c 1(e ,(I; ,P ,u »=true for all m::>o; the continuity
n+ m m m m

ofll:q	 ensures that for all 8 we have
n

95

I\.a (I(q e	 6 €.q I; P u iJ) :::> a 1(UIt q e 6,Ulta I; p u iJ)n+1 n m' n m m m n+ n m 'n m m m

:::>a 1(lICq (Ue)6,lt q (UI;)(Up)(Uu)iJ)

n+ n m n m m m

and thus that c 1(1j e ,U(I; , P , u » ;true. We may now show in
n+ m m m m

turn that as c 1 is inclusive so is k 1 and that as k 1S
n+	 n+ n+1
A

inclusive so is f n +1
• Thus when {Sm} is an increasing sequence

of elements of VOxvo we may presume that!\v 16:::>v 1(U6).n+ m n+ m

Consequently we know that v is inclusive for all n, and n

using the hypothesis of the lemma we may conclude that

!\a 16:::>a 1(U6) for all n and for every increasing sequence {6 }.n+ m n+ m	 m

Taking any such sequence,

7\l\a 16 :::>'i\a 1(U6):::>a(Uo) by the definition of a.(\:a6 m	 n+ m n+ m m

Because V ' e n +1 , sn+1' jn+1' k n +1 and f n +1 are inclusiven

for all n the commutativity of conjunctions shows also that our

V, e, s, c, k and f are inclusive.~

The predicates ahove thus fulfil our hope that in moving

from stage qn to stage qn+1 the information available increases.

It only remains to be shown that the total arrived at by the end

of the process yields the self-referential relations desired.

2.2.5.	 Proposition.

Suppose that a (.l,.l);true, °16 is always proper, and jf v is
1 n

inclusive, equals vo(q xq) and has v 1S:::>v S and v S:::>v 1«q Xq)6)
n n n+ n n n+ n n

for all S:Voxvo then a 1 is inclusive, equals ao(§q xaq) and
n+ n n

has a +26:::>a +16 and an+10:::>an+2«~qnx~qn)6) for all 6:AoxAo. Then n

final predicates obey the following conditions:

(i) v;AS.S:BxB+bS,S:L*xL*+#S;#SAI\{gyven&S+l&,truel&},

6: JX J+cS,6:FxF+fS,false;

(ii) e;A~.~:LxL+l~,~:VxV+v~,false;

(iii)	 s;A8.1\{(area66 Aarea&iJ v-area66A-area&iJ)Av(hold66,hold&iJ Il&}

A#6+2;#iJ+2A#6+3;#iJ+3A!\{gyvenS(6+2 §6+3 ,iJ+2 §iJ+3) +vS ,true IS};

96

(iv) c=\(8,(1; ,p ,u» ./\{a(86 ,1;pua) Isa};

(v) k=\(K,< 1; ,p ,u» ./\{c(KI: ,< 1; ,p ,(E) §U» Ien;

(vi) f=\(<jJ,(~,p» ./\{k(\€.<jJ€K,< ~(Z:;oJ"eveJ"tp'),divet'tp'p,u» Ik(K,<1;,P',u)}}

~That (i), (ii) and (iii) hold for the predicates set up

above is an immediate consequence of the way in which conjunctions

distribute over conditional clauses. Thus, for example,

e =\ f. ./\elf.
n+

=\E./\(f.:LxL+Zf.,f.:VxV+v f.,false)

n

=\E.f.:LxL+lE,E:VXV+/\v f..false n

=\f..f.:LxL+lE,f.:VxV+vf.,false.

In conjunction with 2.2.3 this shows that vo(q xq)=v ,
n n n

eo (If!q xeq)=e and so (6q xlbq)=s for every n;oo, since when
n n n+1 n n n+1

S is a typical member of VOxV o

v;3::>/-,{v 1«q xq)S)!m;on}n m+ n n

::>/-,{v l«q xq)~)lm;on}"Nv 1«q xq)S)lm,;n}
17+ n n rn+ n n

A

::>v((qnxqn) S)

and v«q xq lS)::>v «q xq)S)::>v S from the definitions of the
n n n n n n

predicates. Hence if, say, A is 5 and an +1
1S

\/1.8=(.L,.L) v8=(T,T)+tJ"ue,s 18 we are assured that ao(:ilq X:ilq)=a l'
n+ n n n+

By the same token co(Jq x1q)=c 1 (so that for every E:ExE
n n n +

c 1(!tq K€ ,(1;.q 1;, P ,(f) §U» ::>c()<.q d' ,(J(q 1;, p,(E) §U) » and
n+ n r. n n

fo(~qnx1qn)=fn+l'

Suppose that c(8,(1;,P,u»=tl'ue and that s8=tl'ue for some 8.

Then for every n s 18=tJ"ue so
n+

a(l!: q e6,"q 1;puo) =a (It q e6,f!-q 1;puo) =tJ"ue and by 2.2.4
n n n+ 1 n n

a(86, 1;puo) =a(Ultq e6 ,U~q 1;puo) =/\a(ltq 86 ,ltqn1;PUo) =tJ"ue as
n n n

{(It q e6 ,~q 1;puo)} is an increasing sequence.
n n

Conversely, if a(86,1;puo)=tJ"ue whenever s8=tJ"ue suppose

97

an+1<Cqne6 ,Cqn(;Puo) =a< eCilqn6) ,(;pu C6qno» =true. Hence (iv) holds

when C is defined by the countable conjunctions of 2.2.2.

Suppose that k< K,< (;,P ,u» =true and that e£= true for some

Then for every n;'O in fact e 1£= true
n+

while 2.2.4 gives

I\cn+1<JtqnKE ,<];.qn(;'P ,< E) §U»	 :Jl\c<lIqnKE ,<ltqn(;'P ,<~) §U»

:::>c<IJJtq KE ,1J<ltq (;,P ,< E) §U»n n

:::>c< K E,< (; ,p ,<€> § U» ;

consequently c< KE,< (;,p,< E) §U» =tl'ue.

Contrariwise, should <K,< (; ,P ,u» be such that whenever

e£*'true we have c< K£" ,< (; ,P ,< ~) §u» =true then inevitably

e + 1£:::>e C CeqnxCqn)£):::>c< KC<eqnE) ,< (; ,p ,<~qn€> §u» :::>cn+1<:ltqnKE ,<Jr.qn(;'P'<~)§u»n

so that k 1< K ,< (;,P ,u))=true for every n ;'0.
n+

The proof that (vi) holds stems from the definition of k

much as the proof of (v) given in the preceding two paragraphs

stems from the definition of e. Its only noteworthy feature is

the use of the fact that ltq (; orevertp'=Jr.qn n C(; orevertp') for all

(;, p' and n.»

We could try to adopt the method of Morris [12] by viewing

the link between standard and store semantics as a homomorphism

between the source and target meanings of programs for which both

the source language and the target language would be Mal. Here,

however, this approach does not seem to be very helpful, for we

cannot turn the predicate v into a projection. Though there is

an initial mapping v'a from the domain V for store semantics into

the domain V for standard semantics it has no natural inverse v"o '
and in consequence functors like 11 cannot provide iterated

mappings v'n+1 and v"n+1 out of which limiting projections could

be formed as joins. Furthermore no other techniques will yield

projections, since our next result will show that the relations

set up above are unique.

98

2.2.6. Corollary.

Suppose that v, e, s, C, k, f and a are predicates such

that a(1,1) =true and a is inclusive. Suppose further that for

"A A " " every n;,o if vBJV 6 and v 6Jv«q xq l6l for all B:VoxVo then n n n n

a6:>a 6 and a 16Ja«l1Iq x!1l.q l6l for all 6:AoxAo. Should the
n+l n+ n n

conclusion of 2.2.5 hold for these predicates they must coincide

with those set up above.

<We shall show that for every nand S these predicates are

related to those of 2.2.2 by the implications vSJvnS and

v SJV«q xq lSl. When n=o any S:VoxVo satisfies VSJvoS; moreover n n n

because a(l,l)=true we can verify in turn that C(l.l)=true,

k(1,1) =true and f< 1,1) =true, so that V«qoxqolSl=VOS.

Let n be such that VSJvnS and v BJV«q xq lSl for everyn n n

S:voxvo; then as usual corresponding remarks are valid for e
n+l

and S l' For any (8, (1; , p, u», if c(8, <1;, p, u» As 18= true thenn+ n+

in fact s«6q xiq l8l=true and n n

a< 8 (6q 6 l , 1; pu (6q in) Ja 1< 8 (6q 6 l , 1; pu (6q ill)n n n+ n n

Ja(Cq 86,l£q 1;pua)

n n

=>a 1<£ q ea.Cq 1; pu (\)n+ n n

so C <8,< 1;,p,u»=true, whereas if c 1(8,(1;,P,u» =true then
n+l n+

scrJs 18Ja (eq 86,~q 1;pua) Ja(!f:q 86.~q 1;pua). Hence" satisfiesn+ n+ 1 n n n n

c(8,(1;,P,u»Jc (8,(1;,P,u» and c 1<8,(1;,P,U»Jc(3fq 8,Jq (1;,p,u»
n+ 1 n+ n n

from this we may obtain the analogous property of k and thus infer

that f(q,,(i;,p» Jf +1(q,,< i;,p» and f +1<q,,(i;,p» Jf(jq11q,,;tq,,(E;.p) > in
n n

all cases. By an argument akin to that in 2.2.3, vB=>v is andn+

vn+1BJV«qn+lxqn+llBl for every S:VoxVo.

As a is inclusive the reasoning of 2.2.4 shows that so are

all the other predicates. The induction above therefore proves

that VS:OAvnB=I\V«qnxqnlSlJV(U(qnxqnlSlJvS for all S: VOxVo.

Similarly a6J/\an+16Ja6 for every 6: AOxAo and we may conclude that

this set of pr8dicates is indeed that constructed in 2.2.2.>

99

2.2.7. Properties of program texts.

As will be confirmed in 2.2.8, the results of 2.2.5 would

not be changed if the undesirable members of the domains were not

factored out (in defiance of the policy propounded in 1.2.2); were

this done the ultimate inclusive predicates could themselves be

used to restrict attention to the proper values in the components

of the space S. Any decision about whether or not to make the

domains as small as possihle by removing redundancy and by

invoking propositions about slit lattices can therefore he made

without regard to the construction given above. There is,

however, one situation in which the improper elements cannot he

deleted: the application of the Knaster fixed point theorem [9] to

facilitate recursion involves 'seeding' the environment with ~,

and if, say, p[~/IJ and <1;,~,u) are identified with ~ in U and ~

in D respectively the equation for $ provided hy appendix 2 will

cause the entire state vector to collapse to~. This cannot happen

in standard semantics, where a label entry point having ~ as its

environment produces a store transformation helonging to C, not an

improper element of D, even when the first component of U is taken

to be Ide~D* instead of the more usual Ide~Do*.

The relations set up so far can compare stores hut not

environments; in keeping with the preceding paragraph they will be

extended to U ln a way which accepts that the denoted value ~ is

legitimate (by contrast with the stored value ~ considered in

2.2.2). Other theorems would require the introduction of functors

such as ~, but here it is enough to let

g = A(Y , (!; , p ,0)) .I\{ C(YK , (AP "U II 0 II • !; 1; p [(P II , U II ,0 II) / re c] () 0 , p , , U '))

I k(K , (1; , P , , U '» };

d=A8. 8=(~,~) v8=(T, T) +true ,g: ExE+e8, 8: GXG+g 8 ,false;

u = Ai3 .I\{ p[I] =() +t rue, d(p[I] h , P[I] h) A (# p[I] ,;# p[I]) II : Ide}

A (p[res] =() +true ,k(p[res] h,P[res] h) A (#p[res] $#p[res])).

100

It 1S now clear under which circumstances the standard

semantics of an expression should be deemed to be equivalent to

its store semantics: when applied to continuations related by k

the 'compiled' versions of the expression must form continuations

related by c. In principle whether this is so may depend on the

valuation enployed, so it is necessary to introduce predicates

covering all the possibilities as follows:

E=AE.I\{c(CfEHK.(I[En~,p.u»Irent[EHAupAk(K.(~,p,u»};

L=AE.f\{c(2[E]lpK,(.2"[En~.~.u» Irent[E]pAUpAk(K,(~.~,u»};

R=AE .f\{c (-" [E] PK ,(9i'[E] ~, P. u» Irent[E] pAUpAk(K,(~, P. u)) };

G= AE '/\{c (19' [E] PK,(!J [E] ~ , P , u» I t orn[E] p AU pA k(K, (~ , ~ , u)) };

P=AE .,f[E] =() vl\{l\{c(&'[E] pd-v ,11'[E] ~pu+v) l1:5v,;#,f[Ell}

I torn[E] pAUpAk(K,(~,p,u» };

Q= AE ..:ill E] =() vf\{f\{c (9 [E] pd v ,.f [E] ~ ~u +v) I 1:5 v,; #XlI Ell}

Itorn[E]PAupAk(K,(~, p, u» }.

Whereas the standard continuation K supplied to any

expression takes exactly one expressed value as an argument, the

nature of the environment handed on to a continuation X reflects

the declaration responsible and the valuation adopted. Taking

v=o to represent the use of ~ and V=1 to represent the use of ~

the environment is constrained by

kni t= A/we 0 p1 ./\D: J[II] §.;It1l IIJI-+P1 [III H: EAreve rt ~ 0 P1 [1] tv= P o[In tv,

Pi ~ In = 0 Arev ert Ii 0 P1[n =~ o[I]

A(# Po [n > o-+P 1 [rn H = ~ o[1] H , true) I I: Ide}

"Pi[res] =P [res] APi [rec] =Po[rec].o

The predicates on declarations corresponding to those set

up above for expressions are therefore

D= AII ./\{ c(~ [6] PoX, (!» [II nSo Po' u))

Irent[II] POAUPOAI\{C(XP 1 ,(~, Pi ,u» Iknit[II] OPOP1 AUP1}};

T= AII ./\{c(j""[II] PoX, (j""[!I] So Po' u))

Itorn[lI]p oAuP AI\{C(XP 1'(~,P1'U» Iknit[II]1PoP1AUP1}}'o

101

In the next section these predicates will be employed in a

proof that the standard equations of appendix 1 are equivalent to

certain new store equations. These will not be written out

explicitly, as they can be derived from appendix 2 merely by

substituting news for every occurrence of novels, viewing mv as a

primitive which grabs fresh locations with the aid of new (rather

than the novel function defined in 2.1.1) and adopting the

valuation ~ of 2.2.1. It will be assumed in accordance with 2.2.1

that the standard and store new functions are such that new6=new~

whenever the pair B is subject to s8=true.

The proof will proceed by a structural induction on the

syntactic constructs of the language which it would be unduly

laborious to give in full. Consequently only those lemmata which

exhibit the salient features of Mal will be mentioned. Furthermore

the fact that paired semantic equations raise the error flag T

under identical conditions will frequently be left unsaid, and the

corresponding passage in the proof will be withheld. To deal with

the flag, however, a(T.T) will be taken to be true; the hypotheses

of 2.2.3, as well as the properties of 'non-terminating computations,

demand also that a(.L,.L) be true.

2.2.8. General existence and uniqueness results.

The principles underlying the construction of 2.2.5 can be

applied in contexts quite unlike the present one; in particular

they have been developed independently by Plotkin [15J for use in

a study of A-definability. Before the proof of equivalence is

embarked upon they will therefore be placed in a more general

framework. Thus in the following few paragraphs attention will be

confined to two domains labelled V and two functors designated by

II for whjch lJV can be identified with its image under a natural

injection into V. In addition it will be convnnient to presume that

102

there is an inclusive predicate V defined on yOxyo as well as o
two projections named qo' each of which maps one of the versions

of Y into itself. The restriction of the discussion to two

domains is, of course, totally superfluous and is adopted merely

to conform with the conventions introduced in 2.1.6.

When a' and a" are inclusive predicates defined on AOxAo

(a product of two domains which may not be identical) and when

< q' ,q') and < q" ,q") are two pairs of homonymous projections of

the domains called A, the relation <a',<q',q'»;,<a",<q",q"» will

be deemed to hold if and only if for all €eAoxAo a,g~a"€,

a"€~a'«q"Oxq"O)€) and (q,Oxq,O)€=(q"Oxq"O)€' The meaning

ascribed to ~ by 1.1.2 makes;, into a transitive and symmetric

ordering.

If § is a functor generated from the basic functors of

1.2.8, conventionally ~q is a projection of ~Y when q is a pro­

jection of Y. Similarly there may be a function a such that

av< q,q) is an inclusive predicate on lilyoxl1lYo when v is an in­

clusive predicate on YOxYo and q represents two homonymous

projections (one for each domain V). Given a functor 111 such a

function a will be termed a 'predictor' for 111 based on

(vo,<qo,qo» if and only if

(av'(q' q') (l1Iq' I:Jq'»>(av"(q" q"). (l1Iq" I1Iq"»>(av (q q) (l1Iq I1Iq»
, , , - '" - 0 0' 0' 0' 0

whenever v' and v" are inclusive predicates on yOxYo and q' and

q" are projections of Y such that

(v',(q',q'»;,(v",(q",q"»;,(vo,(qo,qo»' q'T and q"T are improper,

q'(autS)~.L unless q'S~.L and q"(cutS)~.L unless q"S~.L. Only the

first of these conditions on v', v", q' and q" is significant,

of course, since the others are necessary merely to make sure

that the image of a slit continuous lattice is itself slit and

continuous.

For the purposes of the present discussion it is necessary

103

to demand that b be a predictor for 11 based on some (v '(qo,qo»
o

for which (bvo(q 0 ,q 0) ,(Yq 0 ,lJq 0» ;,(v 0'(q 0 ,q 0»' Sequences of

inclusive predicates and projections ~rc obtained from II and lJ

by setting v =bv (q a) and q l='lJq for all n20. Indllction
n+ 1 n YI.'"n n+ n

shows that (v 1'(q 1,q 1»;:(v ,(q ,q » for all n~O; in fact as
n+ n+ n+ n n n

the relation;, is transitive (v ,(q ,q » ;,(v ,(q ,q » when m;,n+1.
m m m n n n

Under these circumstances v S~v «q °xq °)6) for every
n m n n

so taking v to be \S.!\VnS and q to be Uqn gives a predicate v and

a pair of projections (q ,q) having (v ,(q ,q» ;,(v ,(q ,q» for n n n

each n;'O. Because ~ is continuous q is the least projection

for which q=Vq and q=qo' Moreover v satisfies an inequality

involving the initial predicate and projections, to wit

(tlv(q,q) ,(}Jq,lIq»=-(v,(q,q» ;,(vo,(qo,qo» ' and it 1S the only

inclusive predicate subject to this inequality when \G.S=Uqn;

the proof that this is so will now be outlined.

If S is. any pair having tlv(q,q) S=true the nature of b

conspires wi th the fact that (v ,(q ,q)) ;,(v ,(q ,q » to ensure
n n n

that ~v (q ,q)S=true (and therefore that v l S =true). Togethern n n n+

with the knowledge that v1S~voB this implies that vS=true.

Likewise vS=~ when bv(q,q) S=~ and VS=T when tlv(q,q)S=T, so

bv(q ,q) S~vS for every SEVoxVo.

Conversely, if S satisfies vS=true then v S=true for all n

n;,O; hence bv(q,q) «!lqnOxlJqnO)S)=true for all n;,O, as

(v ,(q ,q» ;,(v ,(q ,q » and b is a predictor for 1I. Since
n n n

bv(q ,q) is inclusive and q=Ut1qn this means that

Ilv(q,q) «qOxqO)B)=true. Similar rePlarks apply if vi3=~ or VB=T

so v6~tlv(q,q) «qOxqO)S) for every SEVoxvo. Consequently v con­

tributes to a solution of the inequality

(Ilv(q,q) ,(Vq,lIq»;,(v,(q,q»;,(v ,(qo,qo» ' and vo(qOXqO) must
o

coincide wi th bv(q ,q) ° (qOxqO).

104

The proof that v is the sole inclusive predicate having

(b v (q ,q) , (JJq i 11 q)) =(v ,(q ,q)) ,,(v 0 ,(q 0 ,q 0)) if AS.S=Uq is merely an n

abstract version of 2.2.6. When v is any inclusive predicate

which together with a pair of projections (q ,q) is subject to

this inequality, and when q=AS.S, induction establishes that
~

(v ,(q ,q» ::(v ,(q ,q» for all n"O. Thus for every SEVoxV o v is
n n n

such that vS"l\v S andl\v S::>l\v((q °xq O)S); because n n n n

N ((q °xq 0)s)::>v (U((q °xq O)S)) this particular v satisfies
n n n n

(v ,(q ,q» ,,(AS .I\v S,(Uq ,Uo »
n n 'n

, and if q=lJq
n

then V=AS.j\V S.
n

Suppose that ~ and j[l are functors on the category of slit

continuous lattices which correspond with predictors a and b

taking inclusive predicates and projections defined on VOxV o into

inclusive predicates on ~vox~Vo and ~Vox~Vo. When CV is V, ~Vx~V,

.W+lIV, ~Vo, I!lV*, ilIV")IIV or ilIV-+Ji.V, a and lJ induce c, a predictor

for Qt which is based on (v '(qo,qo» when a and b are based on
o

(v '(qo,qo» (provided that I!lV is flat if ~V is >'lV+>lIV); thus
o

should I(.V be ~V-+pjV, for instance, w(q ,q) ewill be

!\{bv(q,q><Jilq(8(i!lq€)),i8q(8 (liIq~))) 111v(q,q)~A(~:.voXi!lVO)} for every

inclusive predicate v, every pair of projections (q,q) and every

e:~Vox~Vo. Furthermore, when ilIV and ~V coincide,

A€.l1v(q,q)€vbv<q,q)€ and A€.l1V(q,q)~"lIv(q,q)~ are predictors

based on (v 0'(q o,q 0»' As even the functors introduced in 2.2.2

yield predictors based on (v 0'(q o,q 0» , 2.2.5 can be proved simply

by verifying that (v 1'< q 1,q 1» ,,(v 0'< q o,q 0» ; the direct proof has

been given purely for pedagogical reasons.

Inclusive predicates will later be required in several

other situations, such as that of 2.4.5. Again, however, a direct

proof of their existence will be given in preference to a

demonstration that the appropriate replacement for b is a predictor

based on (v '(q o,q 0»' This decision is dictated by the lengthyo

105

formulae arising from its opposite: ~ will be replaced by m,

which takes three projections as its arguments and requires

a predictor depending on three predicates and six projections.

To provide a final illustration of the power of predictors

consider the problem mentioned in 1.5.4, in which it is necessary

to relate the effect of valuations to the effect of their con­

jugates. When the two forms of V involved are B+L*+J+F and

B+L*+F an appropriate choice of u is provided by taking uv(q,q) S to

be vaS"(S:FxF+fv(q,q) §,true), where va is roughly as in 2.2.2;

if F is [E+GJo and E is L+V then (v(q,q) ¢ can be

I\{llv(q ,q) (;, (~q€.), ~ (€qE) I ev(q, q) nand ev(q ,q) E' can be

(€:LxL+l€,E':VxV+v(qE,qE) ,false). The two forms of G are K+C and

{yE[5-+[ExSJJ I (Y.Lt2=.L)" (nt2)=T} so taking tlq to be hoth

AyKa.y (AEa.K(~qE)(&;qa))(~a) and Aya. (£qxitq) (y(6!a)) gives

V{I\{ «(AK,oIJ q YK6=AK. «AEa ,K(qfqE) (~a))*1jJ) (&qa))

"ev(q,q) (1jJ ~6)H,y(&qa)H) "J'v(q,q) (1jJ (&q6)-1-2,y (61 0)-1-2))

v «AK .8qYK6=.L)" (y r5rjo)=.L)V «AK .8qYK6=T)" (y (&qO)=T)))

11Iv(q, q) 8} !1JiE [S+ [E x SJ J }

as a candidate for IIV(q ,q) ? If the domain A such that K=E-+S+A

is a continuous lattice then llv(q ,q) is inclusive provided that

v is inclusive; in fact g is a predictor for ~ based on some

(v '(qa ,qo» and predicates can be provided for a sui table a

formulation of 1.5.5. This formulation would allow the

restrictions imposed by crushed to be reduced by admitting

function applications and denotations belonging to G. A further

version of the proposition can be obtained by adopting S-+[EOxsoJ

instead of {yE[S+[ExSJJ! (y.Lt2=.L)" (nt2)=T} and by amending f and

g somewhat. Precisely the same technique can he applied to

the comparison of methods of passing parameters in languages that

do not have stores to which assignments can be made.

106

2.3. Two equivalent formalisms.

2 . 3. 1. Lemma.

If C[E]APIEIAQIE]=true then E[EIAL[EIAR~EI=true.

-tSuppose torn[EI pAUpAk< K,< s,P, U» AsIJ=true, and set

so=sorevertp and a*=news(#.fIEJI)6; in accordance with 2.2.1

assume that a*=news(#}1EI)0. Because a< 1-,1-) Aa< T,T) =true the

proof that a<8IElpK6,4[E]spuM =true is trivial unless a* is proper.

In this case define 13 1=< pCa*/J'[E1 J ,p[a*//[E]I J) ,

13 a=(fi x (AP. P1 [.2 [Ell PK!JI1[E] J), fix (AP • P1 [.2 [E] So pu /.Jf1I E] J) and

IJ =< updatesa*UJ'[Eli 00K)6, updatesa*(9'[Ell sopou)o), so thato

4[E]PK6=~[ElIpoK60 and 4[E] spuo=WIEli soPouoo' Thus to prove that

aUf[EI pK6,C [Ell spuo) =true it suffices to show that

rent[E]poAUPoAk<K,< so,po'u» AsIJo=true since C[E]I=true. Certainly

u P1
=true as a* is proper; moreover rent[E]poAk< K,< 1;0'Po'u» =true

as revertppo=p. Because P[EI=true, should upl=true we will have

c<9'[EHP1K+v,,'3'[E]l;oPlu+v)=true when bv,;#j[E] and thus slJo=true.

Hence it is enough to show that u P1
=true.

Patently Po=U{funvlv:N} and funv~fun(v-l) when V~l, where

fun=Av.<	 Pl [v=o+.L* ,.!i[E] Cfun<v-l)+l)K/*lE] J,

P [v=o-·.L* ,.2[E] 1;0(funCv-l)+2)U!;("[E] J)1

because u is inclusive by 2.2.4 to show that upo=true we need

only verify that uCfunv)=true when v~o. Since d< .L.1-) AUP 1 =true

u(funO)=true; furthermore when u(funv)=true, uCfun(v+l))=true,

since rent[E]I(funv+1)Ak<K,< l;o,funv+2,U»AQ[E]=true and

u(fun(v+l)) =;\{c< (fun(v+l) +1)[II +1, (funCv+l) +2 H I] +1) I I:Xl[E]I }.

Hence upo=true and c<t.'[E]pK,<8[E]I;,p,u»=true, 8 being an

arbitrary suitable pair of stores. As this holds whenever 13

and the continuations are appropriate we may deduce that E[ElI=true.

To show	 now that L[E]AR[E]=true we now need to demonstrate

only that if k(K,< I;,P ,u» =true then

107

k(lVK,(mvr;;,p,v» Ak(I'VK,(SVr;;,p,V» =tI'ue where the function mv

differs from that of 2.1.1 by invoking new instead of novel.

Suppose therefore that k(K,(r;,p,v» AeEAs6=tI'ue. Should E:LxL,

(lvK!~6,mvr;p« E) §v)o) =(KiE6, r;p« E) §v)o) whilst

(I'vKiE6,svr;p« E) §v)o) =areaiE6+(K(holdiE6)6, r;p« holdEO) §v)a) .(T.T)

should E:VXV, writing a=new6=newo leads to

(l v K € 6 , mv r; p « E) §v) 0) = a : L+(Ka (up da te aiE 6) , r; p « a) §v) (up da te aE 0» , (T , T)

whilst (I'VKE6,mvr;p« E) §v)1l> =(KiE6,r;p« E) §v)o). Because s6=tI'ue, in

the first case e(holdE6,holdEo)=tI'Ue and in the second

s(updatea€6,updateaEO) =tI'ue, giving

a(lVKiE6.mvr;p« E) §v)o) Aa(I'VKE6.svr;p« E) §v)o) =tI'u,e, This being so

whenever eE As6=tI'ue, we can conclude that

k(lVK,(mvr;,p,v» Ak(I'VK,(svr;,p,v» =tI'ue.>

This result reveals what complications are avoided by never

passing on L or T as the intermediate result of an erroneous com­

putation. If, for instance, we did not check news(~J[E])6 to

ensure that it was proper before evaluating C[E]pK we would need

to include such conditions as BL=LAtpVL=L in the definition of

c< e.< t;,p,v». Verifying these extra conditions would be tedious;

indeed the recursion operator of 1.4.4 uses a continuation which

is not strict and which therefore would not satisfy them.

2.3.2.	 Lemma.

For all I: Ide and B:Bas G[I]AG[B]=tI'ue; when ~:Abs has a

body	 E:Exp such that L[E]=tI'ue G[~]=tI'ue.

«Suppose tOI'n[I] pAUpAk(K,(r;, p ,v» =tI'ue and set
~	 {\ ~

0=(p[IH1,p[I]t1). If o:ExE eo=tI'ue and thus

C(K6,(r;,p,(8) §v» =tI'ue, whereas if 6:GxG

C(6K.(Ap"v"a". (8+1)~«6+2)[(p",v",a") /rec])()(8+3),p,V» =tI'ue

108

and c(0'[I]pK,(~[I]1;,P,u»~tl"ue; the result is immediate if

6~(.L,.L} or 6~(T,T}.

Similarly, if S~<'<?1[B],,'J1[B]) bS~tl"ue as S~S, and thus when

upf\k(K,(1;,P,u}) ~tl"ue we have

c(~[B] pK,(g[B] 1;,P,u}) ~c(KS,(1;,P,(6} §U» ~tl"ue

If e:Abs we show that G[el~tl"ue by verifying that when

l"ent[e] Pf\up~tl"ue eE~tl"Ue where E~(~[ell p,§l[ell p}. Thus suppose

that k(K,(1;,P,u» ~tl"ue; we wish to show that when 1;o~1;ol"evel"tP

and po~divel"tp(E+2) k(IIE.EEK,((1'+1)1;o'P 'U» ~tl"ue. o

Should e be fn().E suppose that eEof\s80~tl"ue and define

El~Eo:LxL+(areaE060+(holdE 6 ,holdE O) ,(T,T») ,EO' Now
0 0 o o

EEOK60~#ElIL*=0+.:e[E] (l"endHJP)K6 ,T by 1.5.2 and
0

(E+1)1;oPouoo=#ElIL*~o+.:e[E]1;oPouOO,T. Because #E1IL*=#E:1IL* always,

these are trivially equal unless #E 1 IL *~o. In this case, writing

po~l"end[EJP, l"entHJP f\UP f\k(K,(1; ,P ,u» f\s8 =tl"ue since
o o 0 0 0

k(K,(1;,P,v» ~tl"ue and a(:t'[EII poK6n,.21{EI1;oPoVoo> =tl"ue since L[E]~tl"ue.

Thus c(~[E] POK ,(!l'[E] 1;0 ,Po ,u» ~tl"ue and k(liE. EEK,((£:+1)1;0 ,Po ,V» ~tl"ue.

Should e be fnI.E, when eEo~tl"Ue

rent[E] Plf\uPl~true where Pl~((rend[EJI po)[Eo/IJ ,PO[EO/IJ) More­

over k(K,(1;o,Pl,v»~tl"ue as I«K,(1;,P,u»~tl"ue, so

c(EE0K, ((E +1) 1; 0 ' ~ 0 ' (E1) §V)) ~ cUC[E] P1K, (!l' [E] 1; 0 ' P1 ' V)) ~ t l"U e by 1. 5 • 2 •

The proof is similar for the other kinds of function.~

The comparable results dealing with alterations to the store

are less interesting than the corresponding lemmata for other

theorems and will therefore be left out. The sole point worthy

of note is that in the semantic equations for OE and Eo~El we

apply l"V to the answer notwithstanding its apparent membership

of B already in order to avoid passing T or .L (resulting from

overflow, say) as an argument to the continuation.

109

2.3.3.	 Lemma.

If R[E IAL[E 1=true then GIE E 1=true.
o 1	 o 1

<tLet (K ,<I;, Ii ,u» be any pair such that for some P

torn[EoE1IpAUpAk(K,(s,p,u»=true, and assume that expressions

are evaluated from left to right to avoid needless petty com­

plexity in the proof. Define

1J! a=AE* • E* +1 : F-+(E* +1) (E* +2) K,rv (AS. 1"S,,# E* +1[L* -+K (E* +H S) , T) (E* +2)

So =Apu • U+2 : F-+ (U+2+ 1) (sore ve r t p) (di v e r t p (U+2+2)) (U+1) §Ut 2) , s v S1 pu

and S1 =APU• 1"U+1' NS#u +2 1L*-+ SP (U+ 2+ (U+1)} §Ut 2) • T.

As R[Eol=true to show that cUlV[EoE1IPK,(f<JIEoE1Iso,p,u»=true it

suffices to verify that

k(AE'.Y!rE 1]p(AE".1J!0< E' ,E"}),<.I!'IE Is 'p,u}} =true.
1 o

Accordingly take any fa with efo=true; because L[E 1]=true,

c(.P[E 1ll	 p (AE.1J!O< Eo,E)),<.PIE 1Jls 'p,< EO} §U» =true when o

k< AE.1J!O(Eo,E} ,< sO'p,(EO} §U» =true. If fo:FxF, tf1=true and

k< AE.SOEK,< (Eo+1)(sorevertp),divertp<Eo+2),U» =true by 2.2.5,

so that k< AE.lj!O< SO,E) ,< so,P,< EO) §U» =true. Otherwise it is

enough to show that k< K1 ,< s1'P ,((0) §U» =true where

K 1=AI3.l'S'-#E OI L*-+K(!'O+S), T, since then k< rVK 1 ,< svs ,P ,< (o) §u» =true.
1

If 1,,1'11 N"#Sol L* for some f 1 having ef 1=true,

z< E +l"1,E +(1} =Z< E +l"1,E H'1) =true and o o o o

c< K E1 ,< s1'P,< E ,(0} §U» =c(K(E +E 1),< s,p,< EO+S 1} §U» =true.1 1 o

Moreover c< K E1 .< s1'P,< E .(0} §u}) =c< T,< T,p,U}} =true when a co­
1 1

ercion error occurs, so in all possible cases

k< K1 ,< s 1 ' P,< (a) §U} } =t rue and c<!41 Eo E11 pK,< ~ I Eo E1] s , P,u} } =true.

Because <K,< s,p,u» is any suitable pair it is apodictic that

G[E E]=true.".
o 1

Next we mention briefly the results about imperative

features which change the flow of control.

110

2.3. 4. Lemma.

If EIE~=true then Glval E~AGlres E~AGlgoto E~=true.

~By 2.3.1 LIEHARIE~=true so it is enough to demonstrate

that when we are given some 6 and (K,(~,~,u» having

U6Ak(K,(~,~,u»=tY'ue then k(K,(s°Y'evert~,pc(~,~,u)/res],u»=tY'ueand

k(pi res]1 +1 ,(s1' ~ ,u» Ak(AE. E,(s2' ~,u> >=tY'ue where

S1=APu.(plres~+H1)(plres~+H2)(u+1>§plres~+H3) and

s2=Apu.(U+1+1)(U+1+2)(U+l+3). The first of these equalities holds

trivially; to validate the second note that

k(plresH1,(s1'~'U» =k(p[res~+1,~[res~+1>=true whilst when E:JXJ

has eE'=tY'ue c((,(~2' ~ ,(E) §u» =eE'=tY'ue.:I>

It is this result which demonstrates that standard con­

tinuations are abstractions of label entry points which preserve

the stack rather than of ones consisting merely of a code pointer

and an environment. The difference between these kinds of entry

points is illustrated by the program

m,x=o,O inside (x:=1+(l: m;=l; x); if x=1 then goto m else x).

Under standard and store semantics the location denoted by x will

ultimately contain 2 if expressions are evaluated from left to

right (which implies that mete=As*.s*+lo ••• os*+(#s*»). If the

entry point corresponding to m does not keep the stack as part

of its value, however, chaos may ensue on returning to the block

and the location denoted by x may finally contain anything. In­

deed for this program it would not even help to reset the stack

pointer on executing a jump as here the desired stack is higher

than that available when the jump is made; only in a language

such as Algol 60 which is devoid of stored labels would this

mechanism be guaranteed to work. Corroboration for this will

be given in 3.3.5, where the stack semantics of Mal will he

analysed.

111

2.3.5. emma.

et ~ be I=E, I==E, I 1 , ••• ,I =E or 11"" ,In==E for some
n

I or Ii ••• ,In and some E such that E[E]=true; then D[~]AT[~]=true.

~First we show that D[~]=true when ~ is I=E or I==E.

Suppose that rent[~]t)Aup=true and that c(Xpo'(~,po'u» =true when­

ever knit[~]OppoAupo=true. Define Ko=As.x(arid[s/I]) and

~O=ApU.~p[utl/I](utl); by 2.3.1 L[E]AR[E]=true so to show that

c(9[Mpx,<.2[~]~,p,u»=trueit suffices to verify that

k(K '(~o' P, u» =true. Taking any € wi th e€=true set
O

po=(aridU/IJ, p[s/IJ); then knit[~] OPPoAupo=true and

c(KOS,(~o,p,(s) §u» =c(xp '(~,po'u» =true. This being so for anyo

suitable p and (x,(~,p,u», D[I=E]AD[I==E]=true.

To establish that T[~]=true when ~ is I=E or I==E take any

P and (x,(~,p,u» having torn[~]pAup=true and c(XPo'(~,Po'U» =true

whenever knit[~]lPpo=true. Define

K1 =rv(AS. (AO.O :l->-x(arid[o/IJ) oupdateos) ,T) (D [I] +1.)),

K2=rv(As.x(arid[s/I])) ,

~l=sV(APU.p[I]H:l->-~p(ut1)oupdate(p[I]H)(UH),T) and

s2=sV(APu.s(invertp(arid[utl/I]))(utl)). As before, we need only

verify that k(K
1

,(~l'p,u» =true in order to show that

c(3'"[I=EIPX ,(.9l[I=EH, p, u» =true; because p[I] H is in l if and

only if p[I]tl is in l even this requirement reduces to proving

that knit[I=E]lp(arid[p[I]+l/I],p) =true and that

s(update(p[I]+1)§6,update(p[I]+1)a~=true when

vSAscr=true. Both these conditions are obviously fulfilled, so

k(Kl'(~l'P,u»=true and, p being any suitable pair, T[I=E]=true.

Likewise knit[I==Ellp(arid[§/IJ ,invertp(arid[S/IJ) =true if vf:=true,

and thus a(K E6, t P« s) §u)o) =true when e€As8=true; hence
2 2

c(.r[I==E]PX,(3'"[I==E]2,ii,u»=true as R[E]=true.

The proof that D[~]AT[~]=true when ~ is Ii"" ,In=E or

I 1 , ... ,I ==E is only marginally more interesting and can be ignored.~ n

112

2

2.3.6. Lemma.

Let 6 be 6 within 6 for some 60 and 61 ; if
2 0 1

D[6]AD[6]=true then D[6]=true whilst if D[6]AT[6]=true theno 1 2 0 . 1

T[6]=true.

~Suppose that D[6]AD[6]=true and let ~ be such that
0 1

rent[6]PAup=true. To show that D!6]=true it suffices to prove
2 2

that for any such p inevitably c<9[62]PX,<~[ll2]I;.P.V»=true if

I\{c< XP 1,<I;.P1 .V» Iknit[62]OPP1AuP1}=true. Take any <X.<i;,P.v»

constrained by this equality, and define 1;0=l;otrim[61]p; now

~[62]PX=~[60](AP.~[61](divertPP)X) and ~[62]I;P=~[60](~!61]1;0)P,

so, D[6] being true, it is enough to establish that
o

c<~[61](divertPPo)X.<~[61Ho.Po.v»=true for all Po satisfying

knit[6]OPP Au p =true.
0 o o

For any such Po take any P3 with knit[61]opOp3Aup3=true.

As demonstrated below (in the proof that T[6 11=true) , writing
2

13 1=< P3 ,trim[lll]PP3) gives knit[61]opP Aup =true, which in turn
1 1

shows that knit[6]OpP =true, since Jl[6 2]=Jl[6 1] and;t1f62]=Je161L
2 1

Hence c< XP 3 .< l;o,P3'V» =c< XP 1 ,< I; .P 1 ,V» =true and, as 13 3 is an

arbitrary sui.table pair and rent[/,;] <divert6p)AU(divertpp ,P) =true,
1 0 a a

c(!i[lll](divert660)X.<~[ll1]l;o,Po,V»=true. Consequently

c<~[ll2]PX .<~1L62] I;,P,V» =true and D[6 2]=true.

Now suppose instead that D[6]AT[ll]=true; we shall proveo 1

that T[6]=true by letting 13 be any environment pair such that
2

torn[62]pAup=true. Given any <X,< I;,P.v» satisfying

!\{c<XP1,<I;,P1.V» Iknit[6 hep AUP }=true we define I; =l;otrim[6 AP.2 1 1 0 1
As D[6]=true, in order to convince ourselves that

0

c<§"[6 Hx.<Y[6 H.p.v»=true we need only establish that2 2

c<9'"[lll] (divert66)X.<5"[61H 'p 'V» =true whenever Po is subject0 o o

to knit[6]OPP Au p =true.
0 o o

For any environment pair Po which is such that

113

knit[1l0~ oPPoAupo=true we set P =(divertppo,15o>; thenz

(pz[1~ +1, pz[1] +1) =(p[1~ +1, p[IH1) unless I :f[tlo~ §,~1[ll0~' and

torn[1l1~P2AuPZ=true. As T[lll~=true we shall have

c(.r[tll]P2X,(.r[1l1~1;0,152,u»=trueif (X,(1;o'P 2 ,U» is such that

c(XP3'(1;0,153'u» =true when knit[111~lpzP3AuP3=true. Take any

13 3 obeying these constraints and define pl=(p3,trim[1l1~PP3)'

Unless 1:.7[llzl §;{1112~' revertp 15 3[1~=15o[H as knit[lll~ le OP3=true o

and revertP15o[1~=p[1] as knit[llo]Oepo=true, so that

revertp15 1 [Ill=p[I]; if 1:.7[llz] §;!'1[1l2] revert15oP3[nt1=PO[I~t1 and

revert15oPl[1]U=P[IH1. Moreover, unless 1:Jf~1l2H~1l?~ or #p[I~=0

the ultimate environment 13 1 satisfies

P [1]+1=#15 [1]>#15[1]+revertP15 [1]+1,P [1]+11 3 3 3

= #P3 [1] ># p[III +p[I] +1 , pi 1] +1

because #P 3[III ~#15o[1] ~#pl H.

In consequence, knit[1l1~16P1AuPl=true, giving

c(Xp3 ' (1; a ' p 3 ' U)) =c(XPl ,(1; ,15 1 ' U)) =t rue an d

c(.r[lll~ Cdivertppo)x,(.rl 111] 1;o"oo'U» =true whenever eo conforms to

knit[llo]OPPoAupo=true. This demonstrates that

c(.r[1l2]PX,(.r[1l2]l;,il,u»=true for all p and (X,(1;,15,u» such that

torn[112~ pAup=true and A{c(xp],(1;, ° ,1)) Iknit[1\2] lP1\ AUP] }=true, so1

in accordance with 2.2.7 we may Jcduce that T[1l2]=true.~

A proof that Gill inside Eo]=true when o

DIllo]AL[Eo]=true would follow the lines of that above quite closely

but would be less complex, as it would contain no discussion of

2 • .3.7. Lemma.

Let llo be 111 and ... and lin for some 11l •..• ,lln; if

D[lll]A, •• ADlll]=true then Dill ~=true whilst if n a
T[lll]A •.. AT[lln~=true then TIllo]=true.

114

~The proof proceeds by induction; plainly the result

holds when n=l, so suppose that it holds for all sets of m de­

clarations with n>m. By renaming the n given declarations if

necessary, we can stipulate that the i, j and k of 1.3.5 induce

the run and deal functions corresponding to evaluation from left

to right.

Thus assume first that D[~lIA .•• AD[~nl=true, so that by

the induction hypothesis D[~n+l]=true where ~n+l is ~2 anr •.. and ~n'

Take any p and <X,< ~,p,v}} such that rent[~o]pAup=true and

c(xpo'(~,po,v}} =true whenever knit[~o]OppoAupo=true. Suppose

that Pl satisfies knit[~1]OPP1AuPl=true, and define

P2=clip[~1] PP1' xo=xodivertPl and ~o=~opick[~l](P,(). Then if2

#p[I]>O for any I:Ide, we know that #p[I]>O and that

P
2

[1] +1=I:-H ~11 §;t1[~1] -+revertpPl [1] +1, Pl [1] +1

=1 :J[~1]! §;tj[~ll-+p[II +1, p[1] +1

as knit[~110PP1=true. Hence rent[~n+llpAu(P,P2)=true and once

we have verified that !\{c(X OP3'(~0,P3'v» Iknit[~n+lloP2P3AUP3}=true

we shall have the result that

c(~[Ll +1] rx ,('2[Ll +l] ~O,P2 ,v» =true.n o n

Take any P3 with knit[~n+lloP2P3AuP3=true; writing

il o=(divertP1P3,pick[~11(p,(
2

) P
3

) , for any I

revertppo[II=revertpP3[II=revertp(revertplP3)[I]=p[II since

knit[~110ilillAknit[~nt1loil2i13=true.Moreover, unless I:J[~ol§;tl!~ol

or #p[II=o necessarily

PO[1]+1=P3[1]+1=p 2 [1]+1=P l [1]+1=p[1]+1, whilst when I:j[~1I§;t1!~11

we must have

Po [I]! +1 =# P[1] >O-+re vertp 2 P 3[1] +2. P 3[1] +1

=#p[II >o-+Pl [1] +1.#P [1] >o-+Pl [1] +1, P [II +12 3

=P [II+1
l

since #iJ 2 [I];"#P l [I]!2:# p[1] >0 and UPl =true. Consequently

knit[~oloPPoAuilo=true and c(X OP3'< ~0,P3'v» =true for all suitable

115

environment palrs P3'

Hence whenever knit[6]OPP AuP =true
1 1 1

a(21Hn+l]P(xodivertPl)'(~l,Pl,\J» =true where

~1=(AP.!'P[6n+l](~opiak[61](p,p) »oalipI6
1

J!p. Because DI6
1
]=true this

implies that

a('¥[6
1

] P(AP •.P[6n+l]P(xodivertp» ,(9[6
1

] ~l,P,\J)} =true. Finally

Ap.divertpoaonserve=App*. aonserve« p} §p*) and from 2.1. 5

App*.piak[6](p,p) opiak[6 +]« p) §p*)=APp*.piak[6]« p,p) §p*)

0 1 n

1 n 1 0

as J[601 §A1601 has no repeated memhers, so

a(!Y[6]PX,(!1'[6 H,p,\J» =true
0 0

and, (X,(~,p,\J» being any suitable

pairing, D[6 1=true.
0

The proof that T[6]=true when T[6]A ••• AT[6 l=true uses

knit[6]1 instead of knit[6 10 when l~m~n+l but is too similar m m

to the foregoing to be worth giving.~

2. 3.8. Lemma.

If T[6]=true then D[rec 6]AT[rec 6]=true.

~Suppose that rent[6]P1AuP1=true and that

c< xpo'(~'Po,tJ)} =true whenever knit[6]OP1POAuPO=true. We wish to

show that a i .'»[rec 6] P1 X,(!?[rec 6] ~'Pl'\J» =true; to this end given

any 61 with s6 =true we set a*=news(#"[6])6
1

,
1

62=(updatesa*dummy*61,updatesa*dummY*~1) and

1)2=(fixe AP'P [a*/.f[6] J[[,I'[6] p6 2 /.N1I 6] J),1

fiX(AP.Pl[a*;'f[6IJ[9'[6]p~2/;tj[6]J»•

Certainly if a* is improper we know that

a(.P[rec 6]P x6 ,!i'[rec 61~Pl\Jal) =true, so we need consider only
1 1

the proper case. Then Q[rec 6]P1X61=.o/T6IP2X62 and

!i'[rec 6]~p \Ja =~[6]!~p \J0 , so it suffices to establish that
1 1 2 2

torn[6] P2AUP2As62=true and that c(Xpo'(~'Po,\J» =true whenever

knit[6]lP 2PO
AuP O=true. For any such Po knit[610P

1
1)0=true, as

the definitions of 1.3.2 reveal that

116

revertP1PO[II=revertP2PO[Ilt(I;f[~I§~~171,O)

=P2[I1t(I:.f[~1 §.nl~]7l.0)

=Pl01

for every I:Ide; hence all the conditions other than that

up2=true are satisfied trivially.

Define

fun =AV•(1\ [ct *1.1 [~ I][V= 07.1 * ,.9'lI ~I (fun (V- 1) H)6 /Jf'[~I] ,

Pl[ct*/.f[~I][v=O+.l*,,9'\f~I(fun(V-l)+2)a/.;l?'[~]]) ;

then p2=U{funv!v:N} and funv=fun(v-l) when V~l, so as u is

inclusive we have only to show that u(funv)=true for all v~o. From

2.2.7 it is plain that u(funO)=true, so the basis for an inductive

proof has been established.

<Assume that u(funv)=true for some v~o; once we have

verified that g((fun(v+1)H)[IIH,(fun(v+l)+2)[IIH) =true when

I:;fj[~] we shall know that u(fun(v+l»=true. Define

13 =(tear[~l1 (funv+1) ,tear[~]1 (funv+2»; in standard semantics
4

§II ~I =91[~I tear[~I by 1. 5.2 and thus .9'1f ~I =91[~I tearW M from 1. 4.4.0 0

Hence when I:.;t'[~I

((fun (v+ 1)+ j lIT ITI +1 , (fun (v+ 1)+ 2 H II H) =(yo' (!; 0' 15 4' a2» where

YO=AKCJ.9l[~I!\(APCJ'.K(P[I1+11E)CJ)6 and2

!; 0=5"[~ I 0 (A 1; PU CJ • (A1T ' • 1; (1T ' +1) « p[I I +1) § 1T ' +2)(1T ' +3))(p[reel +1)) •

Here we use the valuation V for new store semantics given in 2.2.1,

not that of appendix 1.

<To establish that g(Y '(!;0,P4,a2» =true take anyo

(K O'(!;o,ps'u » having k(K O'(!;o,ps'u » =true and any e havings s 3

se 3=true. Define xl=APCJ.KO(p[II+1IE)63 and

1; 1 = Apu CJ . (A 1T ' • 1; (1T ' +1) « p[I] H) § 1T ' +2) (1T ' +3))(P[r eel +1) .

For all pairs e and P6 constrained by se 4=true and
4

uP6"knit[~] lp p 6=true, e(P6[II +1, P6[II +1) =true and
4

a(Xl P76 4 ' 1; 1 P7() a4) = a(K 0 (P6 [II +1) 6 3 ' 1; 0 Ps « P6 [I] H) §us) a3) = true

where 13 7=(P ,P [(i\,U ,() Iree]). Hence c(x li ,('l'P ,(» =true6 6 S 3 l 7 7

117

for any P7 having uP "knit[6]l< P4,P4[(PS,U S,(3) /I'ec]) =true,
7

and, T[6] being true, we can infer that

a(.'1"[6] r\x l ,<9l! 6] ~l,P4[(P ,us ,(3) /rec] ,(» =true. Since s8 =true s 2

we even know that a(YOKO(J3'~0~OP4[(PS,uS,a3)/reC]()a2)=true;this

being so for all pairs having k(KO'(~o,PS'Us» =true and s8 =true
3

we can safely assert that g(y 0'(~O,P4,(2» =true. Jo

Because I is a typical member of Jl1! ll] ,

/\{g((fun(v+l)h)[I]h,(fun(v+l)+2)[I]h) II:"""ll]}=true.

In addition l\{gyven(c:,c:)(a*,a*)+Z(c:,c:) ,truelc::E}=true and

uP =true, so u(fun(v+l))=true.Jo
l

Now u is inclusive and u(funv)=true for all v~o; in

consequence uP 2=true and, as torn[ll]P and s8 are true,2 2

a(.'T[ll]P2x62,.'T[ll]?;;P2uo2)=true. Hence for every (X,(?;;,P l ,U», Pi

and 81 subject to rent[ll]PlluSl"s81=true and to

I\{a(xpo'(~,po'u» Iknit[rec ll]OP1PO"uPO}=true we have shown that

a(~[rec ll]Plx61,~[rec ll]?;;P
l

uG
1
)=true, and we may conclude that

II satisfies D[rec ll]=true.

That T[rec ll]=true is an immediate outcome of the manner

in which the predicates of 2.2.7 can be combined.Jo

2.3.9. Theorem.

The meanings of a Mal program provided by standard

semantics and by new store semantics are equivalent so long as

the new functions chosen coincide on equivalent stores.

<This is simply a summary of the foregoing results in

which we take for granted such propositions as that if

R[Eo]IIG[El]IIP[El]IIQ[El]=true then G[E]IIP[E]IIQ[E]=true, where
2 2 2

E2 is while Eo do E1 ; 2.5.6 will discuss a contention akin to

this. Because our proof has not needed any special features of

Mal it is plain that a similar theorem will hold for other

languages which can be described in standard terms.Jo

118

2.4. Reflexive projections.

2.4.1. Links between machine states.

!Iaving proved that new store semantics and its standard

counterpart are equivalent we can return to the original purpose

for which the former was devised: to employ the algorithm of

2.1.6 to trace out the locations accessible from a program,

thereby linking I==E and I=E. !Iere we shall develop means for

comparing two state vectors in which some values appearing in the

environment of one correspond to values in the store of the other.

The outcome of this will be a theorem to the effect that when a

location denoted by an identifier is never updated an object having

affinities with the content may be denoted instead. This is a more

profound property of programs than it may appear at first sight,

for the connection between I::E and I:E is not perspicuous and that

between rec I==E and rec I=E need not exist at all, as is indicated

by 1.4.2. Indeed the complexities of recursion are such that

whereas labels will be analysed adequately by 2.5.1 a full

treatment of declarations must be deferred to 2.7.7.

Because results such as 2.5.8 will be couched in terms of

noveZ store semantics, before drawing conclusions about the

standard formalism we must relate the two kinds of store semantics.

The lemmata required for this will be almost identical with those

leading up to 2.5.9, and we shall not scruple to leave out many

of them nor to use their twins in the proof of 2.5.9 without

establishing them first.

The pairs of state vectors wi th which we shall b" concerned

are those arrived at by following through the execution of a

program and its trans form unde r the rules of 1. 4.6. Thus we shall

need a relation a (mapping pairs ln AOxAo to truth values) to act

on $[E]~p66' and G[.[EllljJ]~~\)Cl for every tp:lde"S* and E:Exp and for

every apposite 2 and TI (using the notation of 2.1.6). If TI and ~

119

have themselves been obtained by evaluating an expression and

its transform, at the very least they will satisfy apt~p=true and

be constrained by some global relation of similarity which we

signify by Po' In addition those values wand wwhich can be

reached through Been from starting points that tally in IT and TI

will be comparable in some sense; consequently they will obey

wwft=true for a certain predicate w which in principle may depend on

~, the member of pOxpo being investigated. We therefore expect

to be interested in some p of the form p=Aft.poftAA{wwftlkentOwft}.

Continuations e and ~ in Z are equivalent if when applied

to equivalent states they produce results satisfying some given

relation a. We might therefore hope to use some c such that

c2Aprr:oa(epva ,~puCr) , but this is not possible. Built into the

environments applied must be a particular configuration of

locations and other denoted values which reflects how the con­

tinuations will act; should (p[I1 +1 ,p[I! +1> be In VxL, for example,

when the code for a program manipulates I that for its transform

must manipulate $1. We thus write c2rro rather than c2 and insist
~,..,..,..

that il be compatible with ilo in some respect if a(spuo,spuo) is

to be true. This consonance between p and Po must ensure that

apt~p=true if and only if apt~po=true, so we set

fit=AftOft1,P1ft1

AA{E:LXLvs:VxVv-gyvens01Is:ExE}

A('8q 0 x~ 0) p0 =(~q 0 xllq 0) P1A(~q 0 x~q 0)°0 =(~q 0 x!!'q 0)°1 .

Here q is a projection of W into itself which is 'sufficiently
o

large' to discriminate between members of L, V and G, while M

and ~ are functors such that &W and ~W are composed of environ­

ments and stacks respectively, Anticipating 2.4.8 we can now

write c=A2rro.A{a(ep,J6,~pu(j) IpftAfitftftoL

To ensure that there exists at least one pair ft with

120

p~Afit~~o=true when fit~o~o=true we have included a truncated

version of p in the definition of fit. The codicil constraining

the stacks in fit is realistic because although the ~ rules can

pair witnessed values which are not both locations such Val\leS are

coerced byY into L or by ~ into V before use. Thus if p satisfies

6[11~1:V and ~[1I~l:L, for any ~ having apt~p=true ~[11~6C&

and ~[i[II~I~pucr place a stored value and a hitherto unused

location on their respective stacks, but these accretions are

then converted into members of L, converted into members of V

or discarded; these three possibilities are embodied in 1:=I:,

£:=1 and I; E and their transforms under~. Notwithstanding this,

the interim effect of an expression must also be captured by a

suitable relation, and we therefore define

set=A~O~l' (uoH :L.... UoH: Lv-siteCuoH l~oC(holdCuoH lao> §u oti lao,uoH :Vl

Afi t< <60' (j ati, 6a> ,< ~ 0' Dati. aa> >~ 1 .

Now the continuations S and ~ supplied to I and $1 above must be

subject to a constraint which is written as k and is given by

k=A2~ a .I\{a< epu&, ~pua> 'pflAsetflfl oL

An expression and its transform thus take state vectors

TI and IT satisfying fit~~l=true for some ~1 and put elements onto

the stacks to obtain new vectors TI and IT having set~~o=true for

some ~o. In terms of continuations this means we require a

relation 0 between € and ~ in 0 which in 2.4.8 will be shown to

obey o=A~~0~1.Nc<€£,n>'ftllk2~oL

Because function closures and label entry points can be

witnessed, the arguments adduced in 2.2.1 show that w, p, c, k,

o and a are self-referential, and accordingly we build them up by

a limiting process similar to that used before. Given a suitable

predicate w on WOxWo itself we set
n

121

Should we link w with a projection q :W+W and a predicate a
n n n+l

on AOxA o we might induce lq :Z+Z and<Oq :0+0 to give us

n n

C +1 =AeiT o.f\{an+l(ZqnEpuo ,Zqn~pVO} IPn+l7tAfitii'7to} ' n

k l=AeiT .l\{a l(Zq EpUo,lq ~P0~} II' 17tAset7t7to} andn+ o n+ n -n n+

on +1= A~ ~ 0; 1 .J\{ C n+ 1(eil q n € E,(9q n ~~} 7t1 Ik n +12TI o}.

We wish to distinguish the effects of these predicates

on proper values from their effects on improper values and

thus require that no w:W have q ow=.1 unless it be .1 itself, The

analogy with 2.2.2 goes beyond this, however, for here also we

cannot let qo(I;,P,v) be (.1,.1,.1} Intuitively kent arranges to

treat all the accessible witnessed values on the same footing

whereas the predicates u and 8 used before single out for special

attention those values which occur at the top of the environment

or are the immediate contents of locations. In our present case,

therefore, although we want to cut continuations down to size by

means of projections we must do so uniformly over all the access­

ible values. The continuations reached from (I;,P,v} are I; and

those found by passing down through p and v, so it is by this route

that the necessary cuts must be transmitted. All this suggests

that we take qo(s,p,v} to be (.1,l!qop,!lq ov} and qn+l(I;,P,v} to be

(• q ° r Qiq p nq v}.n .." " n+l ,r:.: rt+l

To formalize the construction of q we let z, 0 Hnd w
)1.

signify projections on Z, 0 and Wrespectively and define mby

~OW=Aw.w:L+w,w:B+w,w:L*+w,

w: F+ (0 ° xliiI") w•

w: G+ (0 ° xl!Wx,","-,) w,

~ «(01 P) •

Omitting the natural mappings of Winto V, E, D, J and P we have

122

lIJIJ =AP •(AI •u 0 *(,J ~ I ~) ,W *(p« res]) , IJ * (p ~ r eell) , !lIJ =AU. IJ" 1) ,

!fI,) = A(J • (Aa •(((J +1) a t 1 , u) * (() +1) a +2 » , Iv *((J t 2) , w*(G t 3) \ ,

Since mZOIJ is obviously a projection when z, 0 and IJ are,

taking qo=fix(in(l1.) (i!l1.)) and q 1=fix('lO(Zq) (eo)) wh8n n,"O yields
n+n 'n

a family of projections. The next results are devoted to showing

that they preserve as much of the information yielded by kent

as one might reasonably expect.

2.4.2. Proposition.

The projections qn defined above form an increasing se­

quence with join AW.W. Furthermore

qo=Aw.w:L+w,w:B+w,w:L*+w,

w:J+(1.°X~ox·qo)w,

w:F+(1.°x~qo)w,

w:G+(1.°x~qox~qo)w,

w: J+(J. 0 x~ 0 X!!q 0) w,

i)qo(wIP)

and when n>-O

w: J+(Zq ox1blq lX§q)w,
n n+ n+l

w: F+(*q °x~)w
n n+1'

w: G+ (18 q 0 xl!lq xti6q) w
n n+l n+1 •

w: J+(,l q 0 x1!:lq x!?q) w.
n n+l n+l

<The latter part of this proposition follows immediately

from the construction. Moreover, if z'CAI;. 1;, Oc:AI;.1; and U'CAW.W then

mZOW'CAW.W; hence we may conclude that q 'CAW.W for all n~O. Cer­n

tainly q O'Cql' and if q 'Cq 1 then lq =,lq e" ceq and n n+ n n+1' I n -n+1

qn+1=fix ('!D(lq) (@q)=fix('lll(Zq 1) (eq »=0 ,so the sequence
n n n+_ n+ln+2

123

{'I !n;,o} is increasing.
n

Because the structure of V in store semantics depends ex­

plicitly on that of U and Y it seems perverse to build up the

domains ln terms of projections on Valone. Yet the use of E

instead is no more satisfactory since 0 is not a natural re­

traction of it. Even the denoted values do not exhaust the in­

fluences on U as there are no members of P among them. In short

it is wise to regard W as fundamental and to posit that

Aw.w=fix(J»), where the functor W is such that 'Ww=llI(l'oJ) (1&7,J)W.

Under this assumption, to show that AW.W=Uq we have only
n

to verify that for all n;'O 1" ='1 where 1" 1=~ and 1"0=1. Thus n n n+ n

suppose that for some n;'O 1" ='1 ; then from the definitions of 2.4.1 n n

it follows that 1Mp ="'~ , ~p =!lq , /t>p =6'1 , Zp =cQ and 191' =f>Q , so
n --Yn n n n n n' n n-n

l' 1=»lr =!m(lJ') (eI')1' ':!tI(Zq) ($Jq) Q ~1lI(i!q) (19'1) Q 1 and, as
n+ n n n n n n"n n n "n+

'lll(l,q) (15)'1)'1 l=llI(lq) (*'1) (fix (m(lq) (~'1)))=f'ix(~(lo) ('$)'1))='1 l'
n n n+ n n" n n - n n n+

we have 1" 1='1 1'~n+ n+

Henceforth for brevity we shall not distinguish between

'10 and 'I when q is a projection.

2.4.3.	 Proposition.

For every n;'O and for any vO' vi' w1 and 1l there is some Gl witho

seenvOvl~0«qnxqn)~1)«~qnx~qn)~)=t1'ueif and only if there are

~2 and ~3 with (qnxqn)Gl3=(qnxqn)~1 and seenvOvl~2~3~=t1'ue. More­

over for any vO' ~O and ~ kentvoClo«t!qnXJlqn)1T)=tpue if and only

if kentvo~2~=t1'ue for some ~2 with (qnxqn)w2=~0'

~We fix attention on one particular ~ with 1T =(~q x~)1To n n

and proceed by induction on v1 . If v1=0 and

seenvOvl~o«qnxqn)wl)~O=t1'ue,~o=(qnxqn)Cll so that we may take

Cl3=Cl2=~1' If v1 =0 and seenv Ov 1w2Cl 3 ft=t1'ue for some w and w2 3 '

we may take Gl 0=(qn xq n)Cl 2 and w1=~2'

Assume that the result holds for some particular v1 ' and

124

suppose that for some ~o and ~1 seenvO(v1+1)~O«qnxqn)~1)ftO=true.

When q w:L or q w:L, access«q xq)~1)ftO=(q xq)(access~1ft) n 1 n 1 n n n n

so seenvOv1~O«qnxqn)(access~lft»ftO=trueand by the induction

hypothesis seenvOv1~2~4ft=true for some ~2 and ~4 with (qnxqn)~2=wO an,

(qnxqn)~4=(qnxqn)(access~1ft). Let ~3=((w1:L-+w1.w4),(w1:L-+w1.w4»

then qnw3=(w1:L-+qnw1,qnw4)=(w1:L-+qnw1,qn(access~1ft+1»)=qnw1

(by the definition of access) and similarly qnw3=qnw1' whilst

seenvO(v1+1)~2~3ft=true, The other cases use the recursive nature

of qn in analogous fashions, so invariably there are w2 and ~3 with

(qnxqn)~3=(qnxqn)w1 and seenvO(v1+1)~2~3ft=true,

On the other hand, if seenvO(v1+1)w2~3ft=true for some w2

and ~3 with, say, w3 :L or w3 :L, writing wo=(qnxqn)w2 gives

seenvOv1wO«qnxqn)(accessw3ft»)ftO=true and thus

seenvOv1wO(access«qnxqn)w3)ftO)ftO=true, with the effect that

seenvO(v1+1)Wo«qnxqn)w3)ITO=true, Again the other cases are

equally dull.

Thus seenvOv1wo«qnxqn)w1)ftO=true if and only if

seenv Ov 1w2w3ft=true for some w2 and w3 with (qnxqn)w3=(qnxqn)w1

whatever the value of v
1

' To obtain the final part of the result

note that yclept«qn xq n)w1)ft O=true if and only if ycleptw 3ft=true

for some w having (q xq)w 3=(q xq)w1'~
3 n n n n

When a:L qoa=a so we can also deduce that for any p, u

and a siteapua=true if and only if sitea(mqop)(~qou)(~qoa)=true;

similar remarks pertain to plot and spot. Consequently

fit=fito(~qox~qO) and set=seto(~qox~qo)'

More generally, we can show by the same technique that if

{ft Im~o} is any sequence such that ft 12ft for all m~O and if Wm m+ m o
is proper whenever kentvowofto=true then when kentvowCUftm)=true

there is a sequence {wmlm~o} with w 1=w and kentvow ft =truem+ m m m

for all m~O and with w=Uw . m

125

2.4.4. Discontinuous functions on states.

The proof of 2.4.2 tacitly assumes that there is a lattice

W on which can be defined the sequence of projections {r In~O}.
n

Though this assumption can be justified for new store semantics, In

which Z is a space of continuous functions, its truth is not

immediately obvious when novel store equations are considered.

Here Wwill be constructed by a method which is valid even when

some members of Z have discontinuities. For any such lattice

and for any projection w on the corresponding space W

Af;pvo.Ill1J(i;(lIIwp)(!,wu)(~WO)) will be written as ~w despite the

possibility that it need not be a projection.

On the hypothesis that W does indeed exist it can be seen

from 2.4.3 that, though in accordance with 2.1.6 there are sequences

{p In2:o}, {u In2:0} and {o In?-0} which increase with n iind for which n ~ n

IJnove lp U 0 is not equal to nove l (Up) (Uu) (Uo), for every p,
nnn n n n

U and 0 Unovel(lIIq p)(ltq u)(l&q 0) coincides with novelpua. Like­
n n n

wise if I; is a member of Z which equals Uklnl; then by the defini­

tions in 2.1.4 recurl; equals UZqn(recurl;). Structural induction

on the equations of appendix 2 will therefore demonstrate that

every I; having I; =1JZq I; is such that for all E :Exp and to :Dec n

II L]JI;=IJlq (I~ £111;) and ~I to]I;=Ulq (E'JI to] I;); similar remarks apply
n n

to all the other valuations. In consequence to ensure that the

novel store equations are meaningful it is enough to show that

there exists a lattice Z comprising precisely those mappings I; for

whi ch I; =lJlq 1;.
n

From arbitrary lattices Z and 0 can be constructed a

lattice Wwhich is constrained 'up to isomorphism' by the equality

w=mzow, where the function ro is that introduced in 2.4.1. For the

present purpose it is necessary to set up domains subject to the

relation W=mz 0 W for each ,,2:0, so we introduce {Z In2:0},
n n n n n

126

{On 1n20 } and {Wnln20}, seauences of such lattices connected by maps

z :Z -+Z ,0 :0 -+0 and W :W -+W such that if n2m20 z ,0
nm n m nm n m nm n m nm nm

and ware projections having z ,0 and W as the unique In­nm mn mn mn

jections reciprocal to them. These sequences are founded on

ZO' which contains ~ as its sole element; hence whenever n20

Once Z and the set {z In2m20} have
n nm

been formed for a certain n20 0 can be assumed to be the spacen

of continuous functions from Z into itself, so that 0 ;Z -+Z and
n n n n

o ;>.1';. zoE; 0Z if n2m20. The domain W is the smallest
nm n nm n mn n

solution of the equation W ;~ 0 W ; similarly if n2m20 W is the
n n n n nm

minimal solution of W ;Wz 0 W To extend the sequences Z 1
nm nm nm nm n+

is taken to comprise all those entities S 1 which map elements
n+

of WiW ,!'W and iloW into elements of \!lW in such a way that if
n n n n

n2m20 then S 12l(W oW)s l' The mappings which connect Z
n+ mn nm n+ n+l

to the other spaces, Z(n+1)(m+l)and z(m+l)(n+l)' can safely be

defined by

z (n+ 1) (m+ 1) =ASn +l PmL\n°m .:Aw nm (S (flwmn Pm) ('Wmn U m) (ewmn°m » an d

z(mtl)(n+l)=Asn+1Pnunon.I?IWmn(s(lNWnmPn)(!'wnmun)(eWnmOn» if n2m20,

since all ~ 1 subject to the inequality S 2 l(W oW) S 1
n+ n+l mn nm n+

satisfy Snt l cc (z(m+l)(n+l)oz(n+l)(m+l»sn+l' Even if sn+l is not

monotonic, when n2m2Z20

l(w oW)s 12l(W oW oW, oW ,)s l;l(w oW, oW ,)s 12l(W, oW ,)smn nm n+ mn nm ~n n~ n+ mn ~m n~ n+ ~n n~ n+l

The inverse limit Z consists of those infinite sequences
00

{s In20} for which given any n20 S is a member of Z and z s;s
n n n nm n m

if n2m20. The component in Z of any s belonging to Zoo will be n 00

written as z s' needless to say, z :Z -+Z is a proJ'ection andron 00' oon 00 n

the corresponding injection, z ,is such that for any r in Zn°O On n

z
n oo

s is the sequence {z s Im20}. Analogous notation will be used
n nm n

to describe the inverse limit spaces 0
00

and Woo which are endowed

with projections 0 :0 -+0 and W :W -+11 for every n20. Easyoon 00 n ron 00 n

127

calculations [19] show that the mapping A~oo'Uz 00°0 ~ooozoo is an
00n n n

isomorphism of 0 on to Z +Z having A~.Uo (z o~oz) as its

co 00 00 nCO COn nOO

inverse and that when W is identified with mz 0 W for every n~O
n n n n

the mapping U(mz 0 W low is an isomorphism of Woo on tonCO noo nco oon

~Z 0 W having Uw o(mz 0 W) as its inverse.
00 00 00 nco con con 0071

More interesting is the result that ZOO 1S isomorphic in a

natural way with the set of functions which are not necessarily

continuous but which take members of l1IlW • ~fI and IlioW into members
00 0000

of ~W in such a manner that ~=Ul(w oW)~ for all ~ belonging to
00 nOO con

this set of functions. The appropriate mapping of Zoo into this

set is A~oopoovooooo'U~wnoo(zoo (n+1)~oo(iJwoonPoo)(!'woonV oo) (§>woono oo »' while

its inverse is A~.Uz(1) (Ap v a .~w (~(elW p)(Pw v)(lilow a »).n+ 00 n n n con nco n nco n nco n

The proof that these mappings are reciprocal to one another is a

computation which hinges on the knowledge that if ~oo is an arbitrary

member of Z and if ~ is equal to Ul~ oW)~ then
00 con nco

Ap u a .I!lw (z ()~ (lilw p)(!'W v)(~l') a» and
00 00 nco n+l con oon 00 ~n00 00 00 00 00

z (1) (Ap v a .~w (~(lHw p)(!'w v)(~W a » increase in valuen+ 00 n n n ron nco n noo n nco n

as n increases. There is little to be gained by embarking on the

manipulations of subscripts necessary to confirm this, for the

definition of Zoo and the nature of ~ provide all the conditions

which are necessary for it to hold. Thus henceforth it will be

presumed that versions of Z. 0 and W suited to novel store

semantics are yielded by the spaces Zoo' 000 and Woo constructed in

the paragraphs above. Furthermore when these spaces are identified

with their respective images under the natural isomorphisms

z (n+1)00 ° z oo(n+1) can be regarded as lei n • 0 (n+1)000000(n+1) can be

regarded as 18q and w oW can be regarded as qn for every n~O. n noo if>n

Our later work will therefore revert to the initial usage of 2.4.1 by

taking 0 and w (with or without subscripts) to be predicates. not

projections.

128

2.4.5. Some protean predicates.

In order to ensure the existence of a sufficient supply of

novel locations we demand that the accessible locations be finite

in number and that L be infinite (except when discussing garbage

collection). Having been set up earlier in the program, the stores

attached to accessible members of G are necessarily smaller ln area

than the 'current' one but those associated with members of P

may well be bigger, since if any members of P can be reached through

kent the current store must be a reincarnation of one attached to a

member of G. One fundamental property of state vectors, to be pre­

served throughout a computation, is thus

P =A~.neat~A#u=#UA#IT+2=#~+2A#IT+3=#~+3 o

A\I{!\{sitea pUITAsitea ~u~llsmsn}+\/{a =&lllsm<lsn},falseI2sn}
m m m

A!\{Cwo:LAwO=wl+areawoITAwO=wl,true)

ACwo:LAwO=wl+areawo~AwO=~l,true) IkentO@o~Akentl@l~A@o:LxL}.

We want equivalent programs always to perform assignments

in tandem and therefore cannot permit any location set up by one

to be paired with two distinct locations by kent, Indeed, in Po

above we even insist that no moiety which is a location be paired

with two expressed values. In apt~p it is envisaged that if

hoten@p=true and wand wlie in different summands of W then w:L

and W:V, so the initial predicate on witnessed values, w , in­o
corporates the same restriction. As accessible members of G and

P have stores associated with them which may become current we

impose the same condition on them as on the main store. Accordingly

wo' which is akin to the inclusive predicate v o of 2.2.8, is given

by the equation

129

w:L*xL*->-#w=#w,

w:JxJ->-neat(w+2,w+2) A#w+3=#w+3

A!\{E:LxLvE:VXVv-gyvenE(w+3,w+3) !E:ExE},

w: FxF->-neat(w+2 ,w+2) ,

w:JxJ->-neat(w+2,w+2) A#W+ 3=#w+3

AI\{E:LxLvE:VXVV-gyvenE(w+3,w+3) 1€:ExE},

w:GxG->-Pa« w+2,<> ,w+3) ,(w+2,<> ,w+3» ,

w:PXP->-PaWA!\{E:LxLvE:VXVv-gyvenE(w+2,w+2) IE:ExE},

W:LAW: E.

We take bS to be 8=8AS:BA8:B just as in 2.2.2. Notice that

if ~ satisfies !\{waw~lkentaw~}=true then seenvavlwawl~ is proper

for all va' vi' w and wi having ycleptwl~=true, with the effecta

that 2.1.8 can be used freely; the proof of this is merely an

induction on vi using facts such as that if w2:FxF and waw2~=true

then (w2+2, w2+2) is proper. Furthermore siteapu~=true if and only

if there exists an E having kenta(E,a)~=true, and similar remarks

hold for plot and spot; again the proof involves an induction

over values taken by seen of the kind we shall encounter very

frequently.

Taking the definitions of Pn+l,c +1 ,k +1 and 0n+l givenn n

in 2.4.1 we set

w =AW~.W w~n+l a

A(W: J xJ->-t\{ cn +J. (wH ,wH) ~ a IPo =(w+ 2 , w+ 2) A°0=(w+ 3 ,w+ 3) Afi t~ a~ a}

w:FxF->-No (AI; (wH)(l;ol'evel'tp) A1;,(wH)(l;orevertp) ~ ~
n+l . a ' a a 1

I I) 1 =(di ve rtp a(w+2) , di ve rtP a(w+2)

AO a=(UJ. t1) Afit~l~l}'

w:GxG->-t\{o (wH W+l)~ ~ n+l	 • a 1

/13 =((Gl+2)[1T /reCJ,(W+2)[1t /rec])
J. a a

A0 =(() (» Afi t~ ~ },
l' a a

w:JxJ->-t\{c + 1(w+ l,w+ 1) ~ aI1)0=(w+ 2 ,w+ 2) AO =(w+ 3 ,w+ 3) Afit~ a~ a}n	 a

true) .

130

"'''' "'''' We now write W=AWft./\Wn10ft, p=Aft./\Pn+1 ft , C=A~1TO./\cn+1~1TO'

"'''' '" '" "'''' '" "'''' '" k=A~1To./\kn+1~1To' O=A~1To1T1./\on+1~1To1T1 and a=Ao./\a +1oj 2.4.6 willn

show that these relations provide what is wanted. The notion of

the 'inclusive predicate' given in 2.2.3 must plainly be extended

to relations taking more than one argument: we shall regard w,

say, as inclusive if for any sequences {10 Im~o} and {ft Im~o} m m

such that 10 l~w, ft l~ft and ww ft =true for all m~O we havem+ m m+ m m m

w(Uw)(Uft)=true. Likewise 0 will be inclusive if
In m

......... ",,,, '"

A« ~,1TO,1Tl) ,(C1TO,1T1» .O~1T01T1 is inclusive in the earlier sense.

As before we shall assume that a(.1,.1) and a(T,T) are both

true. Now, however, our predicates on expressions compare the

outcome of a program with the outcome of all its transforms under

suitable ~:Ide#B*. We therefore set

E= H.j\{ o(of [EI ,ell. - [EH I) ftft Iap t~~ APen t[EHAfi tftft} ;

L= AE ./\{ o(~ E] ,S!'][, [EHI) ftft Iap t~~ Aren til. EH Afi tftft} ;

R=AE./\{o(~[E1 ,9l'[- [EH]) ftft lapt~~APent[EHAfitftft};

G= AE.j\{ o(!'1 [E] ,q;h [EH]) ftft Iap t~~ Aren til. EUA fi tftft}

A(J'1[E] §Jf1[Ell =()

swap(fI[E] §X[E])(Jh [EH] §Jf1[1 [EU])
..,........ ..,

(Y'h [EU] ~pu §j!h [EUI ~pu Hv) ft

11svsVII.E] §.Jfj[EI}

apt~~Atorn[E]~AfitftftAk2~}).

Here swap (defined as in 1.4.6) aligns the members of
............

.9[~[E]~]~PU§~[1[E]~I~pu with those of Y'[E]~pu§~[E]~pu.

The predicates on declarations are

... "''''
D=All ./\{ c(~[lI] ~ ,~[d [lIU] ~) ft 0 1/\{c ~1T 1 IseWn [lI] 0~ft 0 ft 1 }} ;

T=AlI .j\{c(5'[lI] E,.9lI. 1 I.lI]~]~) ft 0 !/\{c2; 1 1sewn[lI] l~ft 0 ft 1}}'

Here again the conjunctions take into account all the suitable

~, 2, fto and ft l ,

131

The analogue of knit required by store semantics is

s e!Jn =AL1 v 1jJil aill • (A il aill ./\{I :J'[L1 ~ §;f'i[L1] + 1'e ve l' t 15 015 1 [I]t v= 15 a[II tv

A1'eve1't~o~l[Iltv=~o[I]tv

A(I :/[L1~ +15 1 [1] +1 : L • 15 1 [II { 1 : V)

A(v=OvI:.'l1t [L1~ 1jJ]+t1'ue,

~l[I]{l:LA~O[I]+l:L),

1'eve1'tpopl[I]=po[I]A1'eve1'tPo~l[I]=~o[I~

A(#po[I~ >0+15 1 [II +1= 15 0[1] HAp 1[II H =~ 0[1]1 H,

t1'ue)II:Ide}

Ap [res]1 =Po[res]Ap [ree] =po[ree]1
1 1

Ap 1 [res] =Po [re s ~ A~ 1 [re e] =~ 0 [re c]

Aapt1jJ~oA01=OoAfitillillAfitiloilo

A(A1jJ'.apt1jJ'~lAto1'n[L1~1jJ')

(v=o+1jJ[false*/.fj[L1]][opts(Jf1[L1])1jJ/Jt1[L1]] ,1jJ))

(U~q ax~ a)il a) (UPq axllq a)ill) •

As promised earlier, we shall now confirm that our pre­

dicates have the desired self-referential nature.

2.4.6. Lemma.

Suppose that a l(.L,.L>=t1'ue, 016 is always proper, and if

!J l~il~w wil and!J ~ilAkentOwilAPlil~!J l«q xq)~)il for all ~:WoxWo
n+ 11 _ 11 n+ n n

and il:poxpo then a 26~a 16 and a 16~a 2«~q xaq)6) for all
n+ n+ n+ n+ 11 11

6:AoxAo. For every member of the relevant domains and for every

n~O,

(i) !J ~il~!J wil and!J ~ilAkento~ilAPlil~!J l«q Xa)w)il;n+1 n n n+ n 'n

(i i) Pn+2il~Pn+lil and Pn+lil~Pn+2«~qnxllqn)il);

(i i i) c 22~~c 12~ and c 12~~c 2«lq xlq)E)~;n+ n+ n+ n+ -n n

(i v) k 221bk 12~ and k 12~~k 2«lqn xi! Qn)2)IT;n+ n+ 11+ n+ .

(v) 0n+2g~0~1~an+2t~0~1 and an+lt~oIT1~on+2«eqnxeqn)g)~0~1'

132

~Observe first that by 2.4.3 if ~o and ~i satisfy

kentO~o«~q x~q)~)Akenti~i«~q x~q)~)=tpue there are ~2 and

n n n n

~3 having kentow2~Akentiw3~=tPue, ~0=(qnxqn)w2 and ~1=(qnxqn)~3'

Furthermore when wo:L and wO=w necessarily w :L and w2=w ' soi 2 3

should Po~ be tpue apeawo(.qnG) will be tpue while Wo and wi will

coincide. As similar assertions hold when wo:L and wO=w we can
i

infer that for all ~ and n~O if Po~=tPue then po«~nxtqn)~)=tPue.

~Suppose that ~ and ~ are any entities satisfying

woG:i~AkentO~~APi~=tPue. Unless ~:JxJ, ~: FxF, ~: GxG or ~: JxJ the

definitions in 2.4.5 make it plain that wi«qoxqo)~)~=tpue

Since a <.L ,.L) =tpue, we also know that
i

''1(.L,.L) ~oVki(.L,.L) ~OAoi(.L,.L) ~O~l=tPue for all ~o and ~i having

fit~o~oAfit~l~l=tPue. Thus to show that wl«qoxqo)~)~=tpue we

have only to establish the existence of ~o and ~1 for which

fit~o~oAfit~l~l=tPue,

~o=(w:FxFv~: GXG+~o'(Wti§(6) ,wti§(0- »),
0 0

~ l=(~: FxF-+((diveptpo(w+2) ,(E) §v ,6) ,(diveptpo(w+2) ,< E> §u ,(» ,
o 0 o 0

~: GxG-+(((w+2) [l1/rec] ,() ,w+3) ,((W+2)[1I
0
/rec] ,() ,w+ 3» ,

'flo)

and E'=(dummy ,dummy) this we shall now embark upon.

~By 2.1.8 any va' Vi' ~o and Wi such that

seenvOvlwO~l~Akento~l~=tPuesatisfy kento~o~=tpue; in particular,

for any given ~i and all Wo kentO~0~2~kento~o~ where

~2=(~1:GxG-+«wi+2,(),w i +3) ,(W l +2,() ,w i +3» '~l:pxP-+~l'~)' As

Pl~=tPue and kentowl~=tpue we have PO~2=tPue and

A{wO~O~2IkentO~0~2}=tPue,which between them suffice to show that

Pi~2=tPue.

We can prove by induction over the values taken by seen

that either kenti~~=tpue or there is some Wi having

kenti~~2Akento~1~=tpue where ~2 is created from ~i as above.

133

Thus we can define

ft = CCi:JxJ+(wt1§(6) ,1iJt1§((» ,
o	 2 2

Ci:GxG+« w+2,() ,w+3) ,(1iJ+2,<> ,w+3» ,

Ci:JxJ+(wt1§(62) ,1iJt1§((2» ,

ft 2)

and can set up ft 1 using it in the manner suggested above.

Because kentoCift=true our earlier remarks demonstrate that

P1ftO=true when Ci:GxG. In the remaining cases an induction (to be

alluded to In 2.6.4) confirms that kentvCi ft =>kentvw ft 1 for all2 O 2

Ci 2 and v<2, and the fact that P1ft2=true ensures that P1ftO=true.

A similar argument establishes that P1ft1=true so the knowledge

that woCift=true allows us to assert that fitftoftoAfitft1ftl=true.>

As a consequence of this digression we see that

wOCiftAkentoCiftAPlft=>W1CCqnxqn)Ci)ft for all Ci and ft. From 2.4.5 it is

obvious that w1wft=>w Owft for all wand ft, so we have constructed a

suitable foundation for an inductive proof of the result.>

Assume that (i) is valid when n=m for some m~O and that

(ii) to (v) are valid when m-1~n~O. We shall show that (i) holds

when n=m+1 and that (ii) to (v) hold when n=m.

Firstly, for any ft

p 2ft =P OftAA{w 1Ciftlkentowft}=>PoftA!\{w wftlkentOCift}=p 1ft ,m+ m+	 m m+

while from 2.4.3 because m+l~l we have

P 1ft =p ftAA{w CiftlkentoCift}m+ o m

=>poftAA{w 1CCq xq)w)ftlkentoCift}
m+ m m

=POftAj\{W 1Cift IkentowC Cllq xtlq)ft)}
m+	 m m

=>poCCt!a x!\q)ft)AA{w 1CiCC~q xflq)ft)!kentowCCt)q xllq)ft)}'-m m m+ m m m m

=p 2CCt)q xllq)ft).m+ m m

Consequently (ii) is valid when n=m, and in particular

for all ft •Pm+2ft=>Pm+1ft=>Pm+2(Ctlqmxflqm)ft)

~~ ~

Suppose that cm+ 2 1;'IT o=true for some
~

I; and 'ITo' If

134

p 1'it"fit'it'it =tY'ue, p 2((.Jlq xf.lq)ft)"fit((.Ilq x.Ilq)'it)'ito=tY'uem+ a m+ m m m m
~ ~ ~ ~

and writing ~=(~q ~pvo.~q ~pvo) gives
m m

~=(i! qm+ 1 e(UJq mP) (!'q mU) (6q mO) ,lqm+ 1~ (~qmP) (!'qmU) (6q m'iJ»

and a 2~=tY'ue. By our original premise, a 26~a 10 som+ m+ m+

cm+1~TIO=tY'ue.

Conversely if c l~TIO=tY'ue and p 2'it"fit'itfto=tY'ue, thenm+ m+

p 1'it=tY'ue so, writing o=(lq Epu6,~q ~p\icr), a 16=tY'ue andm+ m m m+

a 20=tY'ue (again by the original premise). Hencem+

C 2«lq xlq)2);0=tY'ue and (iii) holds when n=m; the proof of
m+ m m

(iv) is almost identical. Note that in addition

C 2~TIO~C m+ 12~0~c 1((lq m)2);0'm+ m+ xlqm

Furthermore, for any g, 2, ~o and ~1

°m+2gTIoTI1"km+12~0~om+2~TIoTI1"km+2«i!qmXi!qm)~)~0

~c 2(<5'Iq l~(lq E) .<5'Iq l~(i!q ~)} 'it 1m+ m+ m m+ m

~c l(~q (€(lq E)),&q (~(i!q ~»}'it1m+ m m m m

~c 1(8q €E ,eq ~b 'it,m+ m m

and

°m+1tTIoTI1"km+22;0~om+1~;0;1"km+1«lqmxi!qm)~)'ito
......

~c l(e q P; ,4'>q P;> 'it 1m+ m m

~c 2(<9q €E ,eq U) ftm+ m m 1 •

From the definition in 2.4.1 it is plain that (v) is valid when

Suppose that w 2w'it=tY'ue for some wand 'it; if w:JxJ, say,m+

by (iii) any 6 such that c + (wH ,wH} (wt1§(6) ,wt1§('iJ }} =tY'ue
0 m 2 0 o

has c + (wH ,W+1} (wt1§(00) ,wt1§('iJ }} =tY'ue also. Similar reasoningm 1 o

applies whatever summand of W wand w lie in, so ineluctably

w 1w'it=tY'ue.m+

On the other hand, suppose that for some wand 'it

w + wft=tY'ue. If w:JxJ, writing 2=(w+1,w+1) we know that any 'ito m 1
~~

and c ~TIo=tY'ue satisfies also
m+1

135

c"1+z«lq"1xlq"1)e)ffO=true, from the truth of [iii) when n="1;

because P"1+z~1Afit~1«~q"1+1xJq"1+1)~O)=truefor every pair ~1

having p 2~1Afit~1ffo=true, C 2«Zq xlq)2)«~ 1X~q 1)ff)=true"1+	 "1+ "1 "1 "1+ "1+ o

and w"1+2«q"1+1xq"1+1)w)«~q"1+1x~"1+1)ff)=true. Moreover, for any

~, ff o and ff 1 0"1+z~IToIT1~o"1+2€IToITZ whenever (~q"1+1x~"1+1)ff1~ff2~~1
...... A	 /\ "" A

(since for any s c"1+Zs~1~c"1+2s~2)' and hence similar arguments be

adduced to verify that when w:FxF

«q"1+1 xq"1+1)W) «flQ"1+1xlllqm+1)fi')=t1"ue. Finally, for every TT Zw"1 +z

Po~z~PO«~Q"1+1xJq"1+1)ffz) so (i) holds when n="1+1 even without

the assumption that kentow~AP1~=true.

We may therefore conclude that (i) to (v) hold for all n.R

It is this lemma and its underlying motivation which are

responsible for our inability to allow w wff to be true if w:E
n

and w:G. In no sense do L:F and L:G, say, provide equivalent

programs so the stipulation that w (L,L) ~=true is unreasonable.
n

Moreover qn acts quite differently on E and on G so w:E and w:G

would yield information at distinct rates on progressing from

Loosely speaking, w €ff is on a par with w 18IT when n	 n+

€:ExE and 8:GxG.

2.4.7.	 Lemma.

Suppose that for any n~O if w is inclusive then a is n n+ 1

inclusive; then w, p, c, k, 0 and a, defined as above, are in-

elusive.

~Just as in 2.2.4 we can show hy induction that for every

Suppose, for instance, that w is inclusive for some n~o, n

so that a is inclusive. Take any sequence {~ } with ff 1=ffn+1 "1 "1+ "1

for all "1~o; then ifN ~ =true, I\p ~ =true so p (U~)=true.n+1 "1 0 "1 0 "1

Because p ff =true, w is proper whenever kent ow fi' =true and (asn+1 0 0 0 0

indicated after 2.4.3) when kentOw(U~)=true there are w with"1	 "1

136

@ 13 @ and kento@.ft =true for each m~O and with @=U@ Hencem+ m m rr m·

!\p 1ft :l'/\W@'ft:oWCU@)CUft)andp1CU'ft)=true.n+ m n m m n m m n+ m

When P 1 and a 1 are inclusive it is possible to exhibitn+ n+

the same property for C 1 and k 1; only the latter will be dis-n+ n+

cussed here, the proof for the former being almost identical.

Accordingly, take {~m} and {ftm} having 2m+13~m' ft +13ft and m m

k 1 2 ; =true for all m~O. When setftCU'ft)=true, inevitahly

n+ m m m

set'ft'ft =set'ft'ft 1=set'ftft 2=••. =true, as by fixed point induction on
 o

m.Ll. q ow':=q
0

w" if lr::w'~W"cT, Should pft be true in addition,

for every m~O

a l(lq 2 pua,lq ~ pua)=tl'ue and, a 1 being inclusive,n+ n m n m n+

a l(lq cu2)p66,lq CU~)pua)=tl'ue; hence k lCU~)CU'ft)=tl'ue.
n+ n m n m n+ m m

The other cases are similar so w ' Pn+1' c +1 ' k +1 , 0n+1n n n

and a 1 are indeed inclusive for every n~O; the conjunction of an+

set of inclusive predicates being inclusive, we may conclude that

W, p, c, k, 0 and a are inclusive.p

2.4.8. Proposition.

Suppose that Ql(~,~) =tl'ue and that for any n~O if w is n

inclusive and every ~ and ft having kentO@ftAP1ft=tl'ue satisfy

W CCq xq)@)ft:owCCq xq)@)ft, w l@'ft:ow @ft and w @ft:ow l«q xq)~)ft
n n n n n n+ n n n+ n n

as well then Q + is inclusive and for every 6 a 6 is proper,
n 1 1

a «~q xaq)5):oa«aq xSq)6), a 26:oa 16 and
n+l n n n n n+ n+

a 16:oa 2«I!lq x~q) 6). Should w, P, c, k and 0 be defined as

n+ n+ n n

in 2.4.5 they will be subject to

137

mailto:kento@.ft

(i) W=AWIt.WOWIt

A(W:JXJ~!\{e(w+1,w+1> ItO 113 0=(w+2,w+2) AO =(w+3,w+3) AfitltOlt }O O

w: FxF~!\{ o(A~ • (w+1) (~ 0 re v er t PO) , A~ • (w+1) (~ 0 re ve r t PO» ft 0It

1 ~1 =(divel"tpO (w+ 2), divertp 0 (w+2»

AO O=(u ti, v ti) AfitltJ. It 1}'1 1

iD:GxG~!\{o(w+1,w+1) 11 110 1

113 1=((W+2)[1T O/reCJ,(W+2)[TI- O/recJ>

A0 =«> ,(» Afit1l 1l) ,
1 0 0

W:JxJ~I\{k(w+1,w+1> 1l0Ipo=(W+2,W+2> AO O=(w+3,w+3> AfitltOlt }O

true) ;

(ii) p=All.pollA!\{wwlllkentoiDll};

(iii) e=A~~o.l\{a(26ua,~pua> IpllAfitll1l0};

(iv) k=A~;o.l\{a(£6ua,~pua> Ipll Asetllll };
o

(v) O=A~~0 ~ 1 .!\{e(~~, ~~> 11 1 1 k~~ oL

~Conjunctions distribute over conditional clauses so (i)

and (ii) follow from the definitions. Moreover by an induction

on n involving 2.4.6, invariably W 1=wo(q 1 xq 1)'
n+ n+ n+

p =po(llq xllq), e o(lq xlq)=eo(lq xlq)
n+1 n n n+1 n n n n'

k +1 o(i!qnxrqn)=ko (l!:qnXl!:qn) ' 0n+1 o(<E>qnx~n)~oo (<$)qnxl/£lqn) andn

a +1 o(~qnx21qn)=ao(aqnxl!lqn)' We shall establish only (iii) and n

(v) from these equalities, leaving (iv) to the imagination.

Suppose that e2~0=true for some ~ and ~o' and take any 11

with pllAfitllll =tl"ue. Then for every n~O, en+1~~oAPn+11t=tl"ue so o

a 1(i!q ~pu6 ,Zq ~pua> =true and a(i! q e6ua ,rq ~pua) =true. As a is
n+ n n n n

inclusive a(2pu~, ~pua> =a(U(lq 26ua) ,U(i!q ~p~a» =tl"ue. n n

Conversely, if !\(a(ep(j6,~pua> IpftAfitllllo}=true for some 2

and 11 0 let 11 be such that for some n~O Pn+11lAfitll1l0=true. By

2.4.3 P 1«~q xllq)ll)=tl"ue when m>n so p 1«~q X~q)ll)=true andm+ n n n+ n n

p«~q X'q)ll)=tl"ue. Writing for convenience
n n

6=(~(lIlq p')(!Jq u)(6q 6) ~(t!lq :")(~qnV)("q a» gives aCJ=true, from n n n' nl'-' n

138

which we can deduce in turn that a 16=true, a 2«aq x~)6)=true
n+ n+ n n

~ ~ """"

and a 1«aq xaq)6)=true. Hence a 1(i! q !;pua ,l!q !;pua} = true,n+ n n n+ n n

c +12;o=true and, n being arbitrary, c2~o=true.n

Suppose that o€;O;1=true for some ~, ;0 and ;1' and take

away g with k2~o=true. For every n~O kn+12rro=true so

c<t)q €£,<9q ~~} 'ft =c 1(f)q €E,8q ~~} 'ft 1=true and, c being inclusive,n n 1 n+ n n

c(€£,~~} 'ft 1=true. On the other hand if g is such that

c(€~,~~} 'ft 1=true when k2TIo=true, for any n~O and 2 with k + 2;o=truen 1

k«!q x!q)2)TI =true so c(€(iq ~),~(iq ~)}'ft1=true, n n o n n

c 1(~(i!q E) ,biq ~)} 'ft 1=true and c 1(f)q €2,eq U} 'ft 1=true, givingn+ n n n+ n n

0n+1~TIO~1=true for every n~O and ogTIOTI1=true.~

2.4.9. Corollary.

Suppose that w, p, c, k, 0 and a are predicates such that

a(i,i}=true and a is inclusive. Suppose further that for any n~O

if every wand 'ft having kentow'ftAP 1'ft=true satisfy ww'ft~wnw'ft and

w w'ft~w«q xq)w'ft) also then every 0 satisfies a6~a 16 and n n n n+

a 16~a«~q x~q)6). Should the conclusions of 2.4.8 hold thesen+ n n

predicates will coincide with those set up above.

~The proof that w is unique in the sense just enunciated

follows that of 2.2.6 too closely to have any interest. One value

for a which obeys the conditions of this result will be given

after 2.7.6.~

139

2.5. Denotation and allocation.

2.5.1.	 Lemma.

If E:Exp satisfies G[Ell=true then E~Ell=true.

<tTake any 1/!2 and ft such that apt1/!2P"rent[EJI1/!/'fitftft=true;

to show that o(C[Ell,6'[.[Ell1/!2 ll)iliI=true it is enough to verify that

whenever ke2~"pfto"fitiloil=true we have

a(S'[Ell E2POuOoO ,G'[' [Ell1/!2]~2POUOoO)=true.

Let 1/!1 =1/!2[false* U[EI][optsC.JfHI)1/! 2 f.Jf1[E]],

(&*,a*> =(novelsC#,f[EI)pou060,novelsC#/J['iEh21)~ouOOo)'

~1=(E2orevertP'~2orevert~), r*=J[·[Ell1/!2] ~Jf1[·[E]1/!2]'

Pl =([ixCAp·po[&*//i E]] [.tIE] e1 PU O!%lfEll]) ,

fixC \p. ~ 0 [a* /,/[. IEh]] [oi[. IEll1/!2 n 1 pu 0 j.;t[e [Eh21]) ,2

01=00 and

$1 =(updates&* C9'[E] e1 is 1u0) 6 0 ,update sa* (/7"[. [EI1/! 2 J1 ~1 P 1 U0) a0)

Since pfto=true and L is infinite, &* and a* arc proper and
...

(<I'IE] ~2P00000 ,.E'[e [E]ljI2] ~2P00000> =(~[E] ~, Pl 0 1°1 ,~h IEh 1 ll ~lPl 0 1 (1) •

Moreover G[EI=true and obviously apt1/!1i11"torn[EI1/!1=true, so, this

case being typical, to establish that E[Ell=true we have merely

to show that k21TI1"Pi\1"fiti\1i\1=true.

Let pil 2"setft 2ft 1=true for some il (on the assumption that
2

such ft 2 exist); writing ft 3 ,,« revertpoP2,u2.62)'(revert~0~2,u2'~2»

we have setft 3ft=setil 2ft 1=true. Furthermore by 2.1.7 and induction

on v 1 ' for all v O<2, v 1 ' Wo and w1

seenvOvlwOwlft3"kentlwlft3JseenvOvlwOwlft2 and, since

ycleptwlft3Jycleptwlft2"kentlwli13' kentvowOft3JkentvowOft2' Hence

pft 3=true, a(elP2\\62'~lP2U2(2) =a(eiS3G363,~P3u3a3> =true and

k~liTl=true.

<tIt remains to be shown that pftl"fitftlftl=true. As an

abbreviation we introduce the pair of stacks 04' which is

140

(&*§~[E]~161aO~YIEIE161aO§~IEI~16160'

swap etlIE] §~ E])1" C&* §.'l [-lEh 211 ~ 1P1U0)

§swapCj'[EJI §.:;(IIEJI)I*W'I'IEh2]~1P1 uo§~ldEh2]~1Pl ° 0)

For any ~ gyvenw04~kent1w~1AgyvenCaccess@1~1)04and we can now

convince ourselves that when v<2 kentvQ~1~gyven~04vkentvw~0as

follows.

~The assertion that

seenvOv1@0@1~1ACgyven~104vkent1~1~0)~gyven~104vkentvow holdso~o

for all V o<2, ~o and ~1 when V
1

<1. Suppose that it holds for

all V <2, W and ~1 and for some v ; we shall show that it holds
O o 1

for v 1 +1.

Let seenvOCv1+1)QO~1~1=true and let hoten~104=true or

kent1Q1~0=true. If Q1:L and gyvenw 10 4 =true, sitewlpod060=false

so kent1Q1~1=false whilst if Q1:L and kentlw1~1=false

gyvenw104=false; similar remarks pertain when w1 :L. Hence if

w1 :L or w1 :L, access~1~1=(gyvenw104+accessw1ft1,access~1~0)and

seenvOv1wOCaccess~1ft1)~1=true where gyvenCaccessw1~1)04=true or

kent1Caccess~1~1)~0=true. If w :JxJ, there is some w2 with1

seenvOvlwOw2~1=true and hotenw2(wl~2,wl~2)=true or

gyvenw2(w1+3,w1~3)=true; moreover if gyvenQ104=true either

hotenw 0 4=true or yclept~2ftO=true (from the definition of ~1 as2

a pair of fixed points) whilst if kent1w1~0=true kent1~2~0=true,

and accordingly gyvenw 0 4=true or kent1~2~0=true. If w1:FxF,2

seenvOv1QOw2~1=true for some w2 such that hoten~} W1+2,W1+2) =true;

since the elements of 6 4 and u4 are all locations or label entry

points, kentlwl~O=true and kentlQ2~0=true. Analogous remarks

hold when Q1: L*xL* or ~l:JxJ so, unless possibly ~1:GxG or

w1:PxP, there is some w2 with seenvOvl~Ow2~1=true and with

gyvenw 0 =true or kentlw ~ =true; by the induction hypothesis
2 4 2 0

gyvenQ 0 =true or kentv w~ =true. When there is no such w2 and o 4 0 0 0

141

when wi is a pair in GxG,

seenVO(Vi+i)WOwi1i'O=V{seenVO\\WOW2«Wl+2,O ,W +3) ,(W +2,O ,W +3»i i i

l\ycZeptw «W +2,O ,W +3) ,(W +2,O ,W +3» Iw :W X W}
2 i i i i i

=seenvO(vi+i)WOWi~l

=true

and similar remarks apply when w
i

:PxP. From 2.1.8 we can deduce

that in these cases also kentvoGlo~ =true, thereby completing the

step in the induction.

Consequently the assertion above is valid for all vi. and

in particular for every VO<2, W and wi' as o

ycZeptwi~1~gyvenwi04vkentiwl~O'we can infer that

seenvOviGlOwi~1I\ycZeptwi~1~gyvenwi04vkentvowi~O. From 2.1.6

kentvw~1~gyvenw04vkentvw~ofor all V<2 and w.>
These paragraphs make plain that PO~l=true and that when

kentow~i=true but gyvenw04=faZse wW~l=true. Indeed, if

gyvenw0 4=true and w:L or w:L necessarily

;\{-((w: Ll\w=w)v(w: Ll\w=w))v(w: ExEl\w=wo) IkentoGlO~l }=trueo o

so only the case when w:JxJ and gyvenw0 4=true requires further

consideration before we may conclude that p~l=true. Clearly any

W having gyvenw0 4=true satisfies wOw~l=true; coupled with the fact

that p~o=true this establishes that p~l=true and thus that there
A A

are indeed pairs ~2 having p~2I\set~2~1=true. Hence k s1 TI 1=true,

and the premises of the lemma now indicate that any w:JxJ with

gyvenGl0 4=true is subject to c(wH,wH)(wti§(6 >,wti§(a »=true;
1 i

this ensures that p~o=true.>

We have therefore demonstrated that when

apt~2Pl\rent[EI~2I\fit~~=true o(I[EI ,8['[E)~2)~~=true

for all ~2 and~. In terms of the definitions of 2.4.5 this means

that E[E)=true.>

Note that this result does not use any of the properties

of fix other than that of producing a fixed point. Were there

142

another means of solving the recursive equations on environments

which fix deals with above it too could be shown to be exactly equi­

valent with the technique which stores label entry points.

We are now in a position to resolve the prohlem raised ln

1.3.1 concerning the relation between a while loop and a program

containing a conditional expression and a label instead. In

standard semantics while Eo do E1 and I::E 2 , where E2 is

if Eo then E1 ; goto I else dummy, can be shown by induction and

the use of 1.5.2 to be identical in their effects so long as I

is not free in Eo or in E1 . If R rEal =tpue and E1 satisfies the

hypotheses of the lemma above, I::E 2 and I:E correspond in store2

semantics (using new instead of novel). Under the restrictions

laid down in 2.6.9 this sort of semantics coincides with standard

semantics so the standard translations of I: :E and I:E and2 ,2
thus of while Eo do Eland I:E 2 , are such that there are no dis­

cernible differences between them.

2. 5.2. Lemma.

If E:Exp satisfies ErEI=tpue then L[EI=tpue and R[E]=tpue.

<Inspecting the definitions of 2.4.5 reveals that the

result is entailed by k< mvE,mvb 'ITi\k< svE,svb 'IT=tpue for every 2
A

and 'it having k2rr=tpue. Taking some such s and 'IT it thus suffices

to prove that 2 satisfies

for some typical 'ITo such that p'IToi\set'iTo'iT=tpue; let EO=<UO~l,UO~l)

Owing to the fact that Po'ITo=tpue, if Eo:L apeaE
0

6
0
=tpue

whilst if EO:V novelp u 6 is proper, and we may sensibly define o 0 0

E and E2 to be (Eo:L+Eo,novelpou060) and (E :L+holdE 60 ,E l
1 o o o

respectively. Setting 11 1=< Po,< E1) §u tl,updateE1 E260) and o

11 2=< P ,< E2) §u tl,6 0) , mvepouOaO=Eplulol and svEpouooo=Ep2u2a2;o o

143

analogous definitions apply to ITo' and In terms of them it

suffices to prove that p~lAset~l~=true and p~2Aset~2~=true.

By inductions like that of 2.5.1 we can show that for all

v<2 and ~ kentv~~1~(~=€lvkentv~~o) and kentv~~2~(~=€2vkentv~~o)'

Since access€O~=€1' actually for all v<2 and ~ kentv~~2~kentv~~o

so that w~~O~w~~2 for every ~ and p~2=true. Because €2:VxV we

have set~2~=true, a< CPlu101,1;P1\)j01) =true and k<svC,sv1;) ~=true

for every 2 and ~ satisfying k2~=true.

To establish that p~1=true it is merely necessary to show

that PO~1=true. Three conceivable circumstances exist, corres­

ponding to whether €o:LxL, €o:VxV or EO:V and Eo:L. In the

first of these, €j=€o and ~1=~O so that p~j=true. In the second,

€1=(novelpouo6o,novelpouo~o) so that 8iteE1POuo6ovsiteE1POuO~o=false

and, as pointed out in 2.4.5, P1~O being true there can be no ~o

with kentOQo~o=true and E1=W O or Ej=W O; hence

~-«w: LAW=Wo)v(w:LAW=Wo»V(~:EXEAQ=~o)lkentO~O~1}=truewhen

kento~~1=true and w:L or w:L. In the third, €1=<novelp u 6 ,E)o o o o

where siteEop « E2) §uot1)6o=false since set~1~=true; o

p< 1i'o.q,o'< E) §u t1.0 » being true we may argue as in the secondo o

case that PO~1=true. In consequence, p~1=true whatever the

nature of €o' and set~1~=true as €l:LxL, so that

a<mvfpouooo,mv1;~o\)ooo)=true and k<mve,mv1;)ft=true.~

This lemma thus validates the contention of 2.4.1 that if

a member of V and a member of L are paired at the top of their

respective stacks they will quickly be replaced by a pair in either

LxL or VxV. In particular, by the time two stacks are preserved as

part of comparable label entry points locations will be coupled

only with locations.

144

2 • 5 • 3.	 Lemma.

For all 1:Ide and B:Bas G[1]AG[B]=true.

~Suppose that W, ft and 2 are such that

aptW~Atorn[1]WAk2~=true, and take any ft havingo

fitftoftApfto=true. We shall show that

a<:9'[I]epo,Jo'\,§h[I]w]~pouooo)=true. Because torn[I]WAaptW~o=true
A

0, which we define to be < po[I]+1,p onHi), is proper.

~Assume first that W[I]+l=true, so that by the definition

of apt 6:V and 6:L or 6:V while from 1.4.6

~h [Ill wll =:9'[$111 =.01'[I] omv. Wri ting

S=(6: L+(area8o +hoZd6o ' T),6), a=nove ZP « 73) §\)o)00 and o o	 o

ft 1 =< < P	 '< 5) §(io,6 0) ,< 1'>0'< a) §\)o,update~Sao» , we know that ii iso

proper (poft and pZot8P u O both being true if 8:L) and o	 o o o

<@'[I]2po,Joao,~td1H]~pouooo)=(£Pi,J16i,~Plui0i) We need now

verify only that pft 1=true, since from 2.1.6

siteapo(S) §\)0)0 0=true and setft ft=true. In fact we shall showi

that kentv~fti~(~=(8,~ vkentv~fto) for all v<2 and ~.

~Plainly ycZept~fti"(~=(6,~) vkenti~'ilo)' access< 6,a) 'IT 1=6

and kentl(access(6,a) ft)ft O=true. Suppose that for all V <2, ~o
1 o

and ~1 and for a certain vi seenvOvl~O~l'ITiAkenti~l'ilO"kentl~l'ftl'

and take any VO<2, ~o and Ul l with seenvO(vi+i)UloUli'ftlAkentiUli'ITO=true.

If w :L, sitew 1 u00 0=true so wi is not a and hoZdw 10 i is1
PO

hoZdwi 0 • Hence when w :L or w:L accessUl 'ft i =accessUl 'il and0	 i i i 1 O

seenvOvl~0(access~1'fti)'ITiAkenti(access~1'IT1)ftO=true.When

~l:L*xL*, seenvOvlUloUl2'IT1=true for some Ul 2 with hotenUl 2Ul i =true

and kentlUl 'il =true by 2.1.8; similarly when ~l:JxJ, ~l:FxF2 0

or Uli:JxJ seenvOvlUloUl2'IT1=true for some Ul 2 having kenti~2ftO=true.

In all these cases the induction hypothesis permits the con­

clusion that kentvoUlo'ilo=true. When Ul1:pxP necessarily vo=o and

seenV (v +l)Ul Ul 'IT =V{seenv v ~ Ul GJ AycZeptGJ GJ IGJ :\-IxvO a 1 010· a 1 0 2 1 212

=seenVO(Vi+l)GJoUll'ITi

:;;::true ;

145

likewise when wl : GxG seenvO(vl+l)WOwllo=true so in both cases

kento~olo=true from 2.1.8.

This being so, for all v <2, v ' W and wo l o l

seenvOvl~0~111Akent~wlftO~kentlwoI0 as this assertion is valid

when v~<~. Hence for all v<2 and ~

ken tv~1~ ~ (w=< 8 ,~) vV{V{ s ee nvv 1wGl l 11A(Wl =;\ vyc leI' tW l ft 0) }})

~eGl=< 8,a) vV{V{seenvvlGlGllloAkentlGlllo}})

~(Gl=< il,a) vkentvGlTI) ,o

which provides what was required.~

Because sitea~o~oao=false for no v and E does

kentv< E,a) lo=true, and therefore p l l =true. Moreover unless o

w=a kentOwll~kentowfto~wwfto~wwll; hence pl l =true and

a(EI\v10l,~P1Ulo-l) =true.~

Now assume that ~[I]+l=false, so that 6;LxL, 6:VxV or.

6:GxG. In the first two cases,

<~[1] EpoUo0o,rfl1 [1] ~]~POUo~o) =< Eii2V202 ,~P2u}'2) where

ft 2=< <Po ,< 8) §(jo ,6 0) ,< ~o ,< 8) §~o ,a »' Because hoten;\po=true,o

kentvGll2~kentvwlo for all v<2 and wand pI2=true. As

set'2'Ak2~=true we can infer that

a<:9'[1] 2POV000,:9'''[Ih]~poUoo-o)=true.

When 8:GxG define ~=<6+~,8+l),

1 3=« e6+2)[ii /rec],o .6+3) ,< e6+2HTI /rec] ,<) .6+3» so that o o

C~[I] 2Pou00o,[fh[Ih]~pov000)=< €Ep3u303,np3U303)' Since

kentl;\;o=true and k2~0=true, c< €2,t~)13=true and in order that

a< ~ei53v303,t~P3u3a3) =true it is enough that pt 3=true. Now for

any v<2 and W, writing Ilj=« 8+2,<) ,6+3) ,< ~+2 ,0 ,8+3» ,

kentvwft3=eV{V{seenvvlGlwl'3Aycleptwlllj}}vGl=fto

vev=oAV{V{seenvvlwGl~loAyclept~llo}}))

=eV{V{seenvvlGlGlllljAycleptGllftlj}}vGl=ftovev=OAkentOw'o))

since seenvvlw~lff3=seenvvlwwlftljforall v l and Gl by definition.l

In particular kentowft3~(w=lovkentOGlfto) and

146

kentlWIT3~(\I{seenlVl~6;0}VW=ftO)~(w=ftOvkentlwft4)' Since pfto=tpue

WOIT Oft 3=tpue and since hoten6Po=tpue PO~4=tPue; accordingly

kentow~3~wwft3 and POIT 3=true so that pIT 3=true as required.

Hence whenever ~, IT and 2 are such that
AA ~ "

apt~p/\torn[1I~/\ki;'1T~tpue c«(g[1li;l;9'[j[1]I~li;}'1T=true, so that

o(;§'[I],;9'[? [lhl} ftIT~true and G[I1=tpue. Similarly

o(;?[BII,~[dBh]}IT'IT=true, for given any ft setting B=(:l!'[B],a[B]}o
A

yields bB=true and

kentvw((po'(S) §u .6 } ,(po'(B) §\)o,o-o}} ~(~=Bvkentvwfto)
 o 0

for all v and w.p
Were it not for the fact that the transformation of I

into $1 makes stored values correspond with fresh locations

rather than with their contents it would be possible to eschew

the distinction between c and k adopted here.

2.5.4. Lemma.

If L[E] =true then G[fn()E]I =true,

G[fnI.E]/\G[fn1 , ••• ,1 .E]=true and G[fnI..E]/\Glfn1 1 , •.. ,1 .• E]=true.
1 n n

~Suppose ft and ft are pairs satisfying pfto"fitftoft=trueo
and that ~o:FxF is such that wEofto=true and

hotenw(E +2,E +2} ~hotenwi'lo for all W. Taking ii l to beO O

« po'(Eo) §u ,6 0} ,(po'(Eo) §\)o,o-o}} we have for every v<2 and W o

kentvwftl~V{V{seenvvlww1'IT1/\(W1=tovycleptwl'ITO)}}

=(V{V{seenvv1wwl'IT1/\(hotenwl(Eo+2.Eo+2}vycleptwlITO)}}vw=E O)

= (V{V{ se e nVV 1GlGl 1 'IT 1/\ (ho tenGl 1p 0 vy c lep tw 1'IT 0) } }vGl~t 0)

=(V{V{seenvv1Glw1iio/\ycleptGl1'IT0}}vw=~0)

=(w=~ovkentvw'ITo)'

The nature of W being such that wwftO~WW'IT1 for all W,

pIT1/\setIT1%~tPue.

Given any 2 and ii ' for every abstraction ~ there is a pairo

147

fO:FxF such that for all mhotenm(fo+2'~0+2} ~hotenm60 and such that

'§[1JD E60vooo=Epo« f } §u)60 and ~j ~ 1JD ljiD ~Pouoao=~Po« ~o) §u)~o·o o o

In particular if aptlji6~torn~1J]lji=true and k2~~p~0~fit~0~=true it

is enough to show that wfo~o=true to convince us that, in the

notation above, a(~61V161'~~lu1a1} =true. Moreover we can even

conclude that G[~]=true if the fact that wfo~o=true does not

depend on special properties of ~o.

We shall ignore the possibility that ~ could be of the

form fn()E as the necessary proof is less interesting than the

following ones. Let the abstraction firstly be fnI.E, and let lji

and 6 satisfy aptlji6~torn~fnI.EDlji=true. If €o and ~o are

A~p\J ..Jf'[ED ~p[\J+1/IJ(\Jt1) and A~P\J.~' HH[false/IJIJ ~p[\J+1/IJ(\Jt1)

respectively, for any ~ and ~o

:1[fnLED E60vooo is Epo« (io,rend~ fnLED po» §u)6 0 ando

(9~I'[fnLE]lji]~pouoao is ~po«(~o,rend[fnLE]po» §uo)~o·

In accordance with the remarks above it suffices to prove that

all 21 , ~1 and ~2 having

62=(divertp1(rend[fnI.E]po),divertP1(rend~fnI.E]po),

01=(u t1,u 2 tl> , fit~2~2=true and k21~1=true satisfy
2

a(€0(Elorevertp1)'~0(~lorevertP1) ~2=true. Suppose that for some

such 21, ~1 and ~2 there exists a pair ~3 with p~3~fit~3~2=true;

taking *4 to be (P3[U 3+1/IJ,U 3t1.6 3) (and similarly for TI 4) gives

aptlji64~rent[Elp4=true and, as kentvQ~4~kentv~~3 for all v and

Q, p~4~fit~4~5=true where

~5=« P2 [U 2+1/IJ,u 2t1,6 2) ,(P2[U2+1/IJ,u2t1'~2»' In addition
~ ~ ~ ,

kr;lTf1=true so k(r;loreverti51'~lorevertP1)~5=true (as was proven for

a similar case in 2.5.1) and we may deduce that

a(i o (E1 oreverti51)i54u464'~O(~i orevert~i)P4u4~4) =true

a(€O(~1 orevertp1) ,~o(~1 orevertp1) ~2=true.

Now take lji and ~ to be such that
~ ~ ~

aptlji~~torn[fnL.E!lji=true; when ~ satisfies k~Tf=true and ~O

148

satisfies p~oAfit~o~=true inevitably

~[fnI..EDr,poGo~o is ~~o(<Eo) §u)6 0 where EO iso

(svo€o,rend[fnLEJI Po> and €o is as above. On the other hand,

@[~[fnI .. ED~D~pouoao is ostensibly influenced by the value of

opt[ID~; as intimated in 1.4.6, however.

~[(fnI•• [ED~[false/IJ)$D~pouoao and

~[fnI. •• [Eh[false/IHlpouoao are both ~OPO«EO) §uo)oo where Eo

is (svo~o.rend[fnI.ElIpo)' The proof of 2.5.2 can be amended
A

readily to show that when c22TI2=true for some s2 and ~2 we have

c(svr,2,sv~2) ~2=true, so (remembering that

o(AS'~o(sorevertPl),AS'~o(sorevertPl»~1~2=true when

P2=(divertP (E +2).divertP (E +2» from the paragraph above)
1 o 1 o

o(AS'SV(~o(sorevertPl»,AS.SV(~o(sorevertPl»)~1~2=true under

these circumstances. This being so for all ~1' w~o~o=true and

G[fnI .• ED =true.

In like manner we can show that

G[fnl
1

, ••• ,I .EDAG[fnI •••• ,I •• ED=true, but the necessary proofsn 1 n

diverge slightly from those above because, writing 1*=(11 •.•• ,I) ,

(9'[(fnIl, .•. ,In"[E]ljJ[false*/I*J)$]~podoes not coincide with

lif[fnIl, ... ,In ... [ED~[false*/I*JD~po although the ultimate effects

are the same. The first of these places

(svo~l,rend[fnIl"".In.EDPo) on the stack whereas the second

places (svo~2,rend[fnIl,... ,In.EDPo) on it; here ~1 is

AS puo . (Aa * . (A0' . #a* =n-+.:t'[. [E 11 ~[fa ls e * II * H s p[ho lds (u+1) a II *] (ut 1)0' • T)

(updatesa*(ho lds (u+ 1)0)0» (nove ls(#u+ 11 L*)0)

but ~2 is

Aspuo.#uH IL*=n-+:E[. [E]I~[false*/I*JD sp[holds(u+1)o/I*J(utl)O.T.

However, if we define

~1=~2=ASPuO.#U+1IL*=n-+l1E]sp[holds(U+1)0/I*J(utl)0,T,

(j[fnI •.•. ,In .• Ellr,po adjoins (sv o €l,rend[fnI 1 ,· •• ,In.EDpo)1

149

to uo' and we can verify as before that whenever ~1 and ~2 have

P2=(d i vert p1 (re n d[f nIl' ••• , In' E] po) , di vertPj(1"e n d[fn I 1 ' ••• , In' E! po)} ,

01=<U tl,u t1} and fit~2~Z=true and whenever 21 has k211T1=true2 Z

,,(sV€n(~lorevertPl),sV~n(~lorevertPl}) ~2=true if n is 1 or 2 and

if torn[fnI1 , ••• ,I .E!po=true. Hence the result follows by the n

argument of the opening paragraph.>

Here we make significant use for the first time of the

conditions on the stacks in the definition of fit, in that we

arrange to supply an abstraction and its transform with para­

meters both of which are locations or both of which are stored

values. The next lemma requires not only these constraints but

also that of 2.4.5 to the effect that if p~=true then po~=true.

2 • 5 • S.	 Lemm a ,

If E[E !AE[E]=true then G[E :=E]=true.
o 1	 o 1

~As in the preceding results we can ignore the conditions

in the definitions of 2.4.5 involving label entry points as the

scopes of labels do not propagate beyond E :=E1 , We shall o
assume that mete evaluates expressions from left to right since

the alternative leads to essentially the same proof.

Suppose that when k2;=true for some 2 and ~ then

c201TO=true where

2 =< A1;pu, ~p« dummy> §ut2)oupdate(u+2) (uti),
0

A1;pu. ~p« dummy> §ut2)oupdate(u+2) (uti» ,

P =P =P, 6 =6 =8, ° 1=« &> §u,< Ct> §\» and ° =« il> §u1 ,< s> §\)1> for
O 1 0 0	 0

some a:LxL and S:VxV such that set~o~lAset~l~=true, Under these

circumstances k<sv~o.sv~O>~l=true by 2.5.2 so. E[E o! and E[El !

being true, ,,<8I'[El]~O•.1l['[Ell1)i!~0>~1=true,

k< mv(.1l[E1! ~o). mv(8l'[' [E1!1jJ! ~o» ~=true and

,,<2'[Eoll (.•q E1! ~o) ,..2'1[< [E ll1jJ! (81'[< [El!1jJ! ~o» ~=true wheno
apt1jJpAtorn[E :=E !1jJ=true. Thus if for any 2 and ~ with k21T=true o 1

150

c2 0TI =true when 20 and ~o are as above we shall know that o

G[Eo: =E
i

D=true.

Take any such ~ and IT together with some ~2 having

P~2Afit~2~0=true and define TI to be
3

(P2'(dummy> §u 2t2,update(u +2)(U +1)o2> (and similarly for "3)'2 2

Patently set~3~=true, so should P~3 be true a(Ep3U363,~P3U3~3>

will be true and a(EOP2ui2,toP}J2a2> will be true. That P~3 is

true follows from the assertion that for all v<2 and @

kentvw~3~(@=(dummy,dummy> vkentvw~2)' which we now ratify.

Suppose that for some vi and all V <2, W and wi
O o

seenvOviwOwl~3Akentl@1~2~kentvowO~2; this is clearly the case

if v i =o. Let V <2, W and wi be entities havingo o
seenvO(vi+i)WO@1~3Akentl@1~2=true. If w

i
:L or w

i
:L,

seenvOviwO(access@1~3)~3=trueso should kenti(accesswl~3)~2 be

true kentvowO~2 will be true by the induction hypothesis. When

W1=U 2+2 or w=U 2+2, since kentiwl~2=kenti(U2+2,U 2+2> ~2=true, we
i

have @1=(U 2+2,U 2+2>, accesswl~3=(u2+1,u2+1> and

kenti(u +1,U 2+i> ~2=true; otherwise accesswi~3=accesswi~2 and2

kenti(access@1~2)~2=true by 2.1.8. Hence kentvOQO~2=true under

these circumstances; as we can employ the techniques of 2.5.3 to

check that kentvowO~2=true unless w1 :L or w :L, we infer that
i

the induction hypothesis may be 'stepped up' freely from vi to

V1 +l and that for all V O<2, vi' @o and wi
seenvOviwOQ1~3Akentlwi~2~kentvowO~2' Now for any v<2 and W

kentvw~ 3 ~V{V{ seenvv 1 QW ~ 3 A(@i =(dummy. dummy> Vy cleptwi ~ 2)}}
1

~(wi=(dummy.dummy>vV{V{seenvvi@wi~3AkentiQi~2}})

~(@i=(dummy.dummy>vkentvw~2)'

In consequence p 1l3=true and, TI 2 being a typical pair

having P~2Afit~2~0=true, c2 0TI =true whatever suitable 2 and TIo

give rise to 20 and TI ' From our opening remarks we may there­o

fore conclude that G[E :=E 1D=true.> o

151

2 • 5• 6. Lemma.

If R[EoIAG[ElIAGIE21=true then G[E1 ; E21=true,

Glif Eo then E1 else E21=true and G[while Eo do E11=true.

~We shall establish only the third part of this result,

as the others involve much the same method. Let 2 and ~ be any

pairs having k2n=true and define

€=&l'ITE 0I 0 (AI; Pu . uH -+(~[Ell (Ap , u ' • I; p , (u ' ti)) p(uti) , ~ p « dummy) §uti))

and

~=,~. [E 0IIjJ 10 (AI; pu . uH -+(411 1E1H] (AP ,U' • I; P , (u ' ti)) p(u ti) ,

~p« dummy) §uti»

for some IjJ having aptIjJBArent[E311jJ=true, where E3 is while Eo do E1 .

If 20 satisfies c20IT=true, then c2 IT =true where
1

21=(~[Ell(ApU'~oP(Uti) ,W[:fITE1]11jJ](APu'~oP(Uti))), as

k(APU.eoP(uti),APu'~oP(Uti»TtAG[El]=true. Moreover, writing

~2=APU .U+1-+~lP(utl) ,~p« dummy) §ut1) (and similarly for ~2)'

k(sV~2 ,sv~2) Tt=true and, as R[Eo] =true, c(a.'IE] ~2.ffle [EoHI~2) Tt=true. o

Hence for all 20 with c20IT=true, c(€eo'~~o) Tt=true; since c is

inclusive by 2.4.7 and since C(L,L) Tt=true we have

c«(9 [E) ~ ,o/h ITE 3H] ~) Tt=c(fixCfi x~) Tt= true.

From this we can infer that in fact

k(APu.fix€p(utl),APu.fix~p(utl» Tt=true. Now

,~E3]ep6§~IE3]epU=(AI;.~IE1]I;P6§2IEl]l;pd)(APu.fix€P(utl»

and analogous remarks hold for the transformed programs; GIE 1]

being true and 2 and ft being typical of those pairs with

k2~=true, Glwhile Eo do El]=true.~

As a counterpart to 2.5.1 we next outline the proof that a

label set by incidence can be satisfactorily transformed into one

set by reference whatever the nature of the expression labelled by

it. This is in sharp contrast with the situation concerning

recursive declarations, which will be analysed in 2.7.6.

152

2.5. 7. Lemma.

If G[E];true then G[I:E]IAG[I::E]I;true unless I is a

member of,/~ E] §.:.t[E] •

~We shall consider only I: :E, the proof for I:E being

similar. Let apt1jJpAtorn[I: :E]1jJAkeif;true for some 1jJ, ~ and e;
then ocq I: : E] ~ ,:'§[.. [I: : E]1jJ] 2} ft; o(~ [E] e,0/[~ [E]1jJ] b ft; true

and w((W[E] Cp,u) ,(Wb [E]1jJ]~,P,u)} jl;true.

Suppose that 1jJ[I]+l;true; writing

.........

w*="'[1 IT I: : E]1jJ] ~pu §2[HI: : E]1jJ] ~pu

;((W[.. [E]1jJ] 2, p, u) } §,J'11 [E]1jJ] ~PU §2b [E]1jJHpu,

for every v with l~v~#I* we know from 1.4.6 that

swapC,f[I::E]§Jtj[I::E])I*w*+v must coincide with

(v; #.I [E] +1 +w * +J. , swap (J1[E] §,)f[E]I) (1* t 1) (w*t1 H (v~ #.I[E] +v , v -1)) .

Now w«~[E]e,p,U} ,w*+1}ft;true and if l~v~#I*-l
~,,;,,; ,,;,,;,,;

w(.9'[E] ~pu §.:i [E] ~pu +v, swap e/[E] ~ E]) (I*tl)(w*tl)+v} ~; true.

Similar remarks are germane when 1jJ[I]+l;false so as 1jJ,

ft and 2 are any pairs having apt1jJ~Atorn[I::E]1jJAk2~=truewe can

infer that G[I: :E];true.p

We shall leave out all except one of the results about

declarations because their proofs are simplified versions of

those to be given in the next section. Typical among them is

the assertion that if E[E];true then D[6]AT[6];true when 6 takes

the form I;E or I
1

, .•• ,I ;E and D[61;true when 6 takes the form n
I=;E or 11 "" ,In;;E; 2.6.5 will verify a somewhat weaker con­

ten tion about .rn 11 ,,, • ,In ;;E] • Likewise in 2.6.6 we shall show

that any 6 and 6 satisfying D[6]AD[6]=true have
0 1 0 1

D[6 within 6];true whereas any 6 and 61 satisfyingo 1 0

D[6]AT[6];true have T[6 within 6];true (provided that o 1 0 1

J't1[6 n JfI,61] and f1f 6]§.>tj[6]§Jfj[61] are lists without repeated
0 0 0

153

elements). Multiple declarations will receive a similar

treatment in 2.6.7 where we shall confirm that for all

I'll"" ,6 D[6 1]A •• • AD[l'ln]=>D[l'll and ••• and I'ln] and
n

T[1'l1]A ... AT[6]=>T[1'l1 and ... and I'l].
n n

2.5.8. Lemma.

If T~I'l]=true then T[ree I'l]=true and, when

opts(,,»j[I'l])=AljJ.false* also, D[ree I'l]=true.

A

~Suppose that ljJo' ~o' ~1 and s are such that

opts(X1!I'l])ljJo=false*, p~lAfit~l'it =true and

A{c2~lsewn[ree I'lloljJo~o~}=true; let ljJl be

ljJo[false*/J[I'l]J[false*/X1!I'l] J. Because P 'it1 =true, ifO

(a*,1't*) =(novels(#J[I'l])Plu161,novels(#J'1[I'l])Pl,)li'll) and

8 =(updatesa*dummy*6 ,updates1't*dummy*i'll) , is proper. Define2 1 8 2

02=01 and

p2=(fix (A p. Ii1 [a* / J'[I'l] J [.\I'[I'll p6 2/~ I'll J) ,

fix (A p. P1 [1't* /J[I'l] J [51 t[6]ljJ 1] pi'l/.;f[I'l] J)

Plainly, if ~ is such that sewn[l'l]lljJl'it2~=true then

sewn[ree l'l]oljJo~o~=true; thus should p'it 2 be true both

a(.r[I'l] ~P2u262 ,9lrt [I'l] ljJl] ~P2u2a2) and

a(91[ree I'l] E6 v a ,!P[d[ree l'l]ljJo]~;; u a) will be true.
11111 J

By an argument akin to that of 2.5.1 for all v and ~

kentv~~2=>(~=(dummy,dummy) Vgyven~(a*,1't*)

vgyven~($'[I'l] P26 2 7[f [I'l] ljJ 1] P2i'l2) v ken tv~~1) .

Thus to show that p~2=true it is enough to prove that

gyvenw(.Y'[i\1i5262,.\I'[f[I'l]ljJ11P2i'l2)=>w~'it2' Accordingly let I be any

member of.;f[I'l]; we wish to verify that for all ~ 3 having

fit~3~3=true we have

o(.:T"[I'l] (AsP\). recursp(p[II +11 E))0

Y[/[I'l]ljJl]o(A1;pu.recursp(p[II+1IE))~3fl4=true

where ~4=« (tear[I'l]P2)[11/reeJ,() ,(2),((tear[I'l]P 2)[it/ ree J,() ,i'l2»'

154

This will be so if every 2 having k20TI3;true satisfies also
0

/\{c21TIlsewn[b]1~1ft4ft};truewhere

2
1
;(APIJ.recur£op<p[I]HIE) ,ApIJ.recur~op(p[I]IHIE»,because

T[b];true. Take any ft with pftsAsewn[bI1~1ft4ftS;true; define s

E6 , ft and ft 7 to be (ps[I]H,I\DIH), <ps[recIH,ps[recIH) and6

« P6'((6) §u6,repZaceP6u6666s) ,(P6 ,(E6) §U 6 ,repZaceP6U6G6G 5»

respectively, in accordance with the stipulations of 2.1.4. Now

setft 7 ft 3;true as (6:V and E6:V, so

a(£1Ps,Js6s'~1PSUSaS);(EOP7U707,2oP7U7a7) ;true if pft 7;true. This

we establish below by proving that for all Q kentOQft J kentOQft7 s

and kent1Qft 7
J (w:L+areaw6 7 ,true)A(w:L+areawG7 ,true).

~Suppose that for some v
1

seenvOv1wOQ1ft7Akent1w1ft6JkentvOQOft6 for all V o<2, Wo and Q1' and

let vO' Wo and Q1 be such that

seenvO(v1+1)QOQ1ft7Akent1w1ft6=true. Unless w1 :L or w1 :L standard

arguments indicate that kentvowOQ1ft6;true. Since

kent1w1ft6J(w1:L+pZotw1P6u666,true)A(w1:L+pZotw1P6U6G6' true),

however, if w1:L or w1 :L accessw IT ;accessw ft and1 7 1 6

seenvOvlwO(accesswjft7)ft7Akent1(accesswlft7)ft6;true so that by

the induction hypothesis kentv w ft 7;true under these circumstances o O

also. Thus for any VO<2, v 1 ' W and wo 1

seenvOv1wOw1ft7AkentlQ1ft6JkentvowOft6' and for any v<2 and W

ken tvwft 7JV{V{ S e envv 1 wQ 1 'IT 7A(w1; E6 Vy cZep tW'IT 6) Iv 1: N} Iw1: WxW}

JV{V{s e e nw 1 WW 1ft 7A(w 1 =E6 vken t 1wft6) Iv 1: N} Iw1 : WxW}

JV{seenvv1wE6ft7Iv1:N}vkentvwft6'

From 2.1.8 kentOw'IT6JkentOw'ITs and from 2.4.5 POft 6;true so it

remains to be demonstrated merely that if

V{seenvv1wE6ft7lv1 :N};true then kentoQfts=true and, when v>o,

(w:L+areaw6 ,true)A(w:L+areawG ,true);true.7 7

~Suppose that for some v1 we are given the validity of

the relation

155

seenvOv1wOw1~7Akent1wl~5~kentvowO~6vkentvowO~5 for all v O<2, Wo
and w and let v O<2, W and w be such that1 ' o 1

seenvo(v+1)WOw1~7Akent1w1~5=true. Again the usual arguments

show that kentvowO~6=true or kentvowo~s=true unless, perhaps,

w1 :L or w1 :L. If w1 :L and p[otw166u666=true, there is some E

having kent1(w1,E}~6=true and kentO(w 1 ,E} ~6=true so that, PO~6

being true, E=wl,kent1wl~6=true and accessw1~6=accesswl~S' If

w1 :L and p[otw1P6u606=true the same reasoning indicates that

kent1wl~6=true and accessw1~6=accessw1~S' If w1 :L but

p[otw166u666=fa[se or if w1 :L but P[otw1P6u606=fa[se,

kentlw1~S=true so (wl:L+areaw165.true)A(w1:L+areaw1os,true)=true

and accessw1~6=accesswl~S' Thus when w1 :L or w1 :L

seenvOv1wO(accessw1~7)~7=true and either kent1(accesswl~7)~6=true

or kent1(accessw1~7)~S=true; in the former case kentvowO~6=true

by the paragraph above, whereas in the latter case kentvowO~6=true

or kentvowo~s=true by the induction hypothesis.

Hence for every V <2, v ' W and wo 1 o 1

seenvOv1wOw1~7Akent1w1~S~kentvowO~6vkentvowo~s' In particular,

as kent1E6~5=true, if \Aseenvv1wE6~7Iv1:N}=truethen

kentOw~5=true and, when v>o,

(w:L+areaw6 ,true)A(w:L+areawo ,true)=true.>6 6

Consequently for all wkentOw~7~kentow~5 and

kent1w~7~(w:L+areaw67,true)A(w:L+areawo7,true).As p~s=true,

for all W kentOw~7~ww~1 and p~7=true, thereby confirming that

a(~OP7u7G7'~OP7U7a7} =true.>

For any ~5 having p~sAsewn[AI1~1~4~5=truewe therefore

have a(E1P5us65'~1P5U5a5} =true, and for any ~2 and 2 with0
" 'I

k~OTI3=true we have

c($"lAl C\p\.!.recur~op(p[II +11 E>)

§j[/[AI ~11 (Ap\.!. recur~oP(p[II +11 E>)} ~ 4 =true

where 11'4=« (tear[AH)[11i rec],() ,6 2},((tear[A]P2)[Tt 3/rec],() ,02}}'2

156

Now gyven6\<.'I'[llH262,Yj[t[llhlH>2~2> ::>1J6\1l 2 , p'fr 2=true and

a<9[rec 1l]Ei5 1,\61 ,£'il[d'[rec llh]21\U 0"1>=true. This is so for o 1

any 1jJ0' 11 0 , 11 1 and 2 having opts (..If'1[1l] l1jJo=false*, p1l1"fit1l11l0=true

and A{e~f[lse1Jn[rec ll]01jJ ft ft}=true, and accordingly D[rec ll]=true.
o o

That T[rec ll]=true is an immediate consequence of the

definitions of 2.4.5.~

2.5.9. Theorem.

The meanings accorded by novel store semantics to a Mal

program and its transform under the rules of 1.4.6 are equivalent,

provided that the lattice of locations is infinite and every

recursive declaration rec 112 embedded in the program is such that

any constituent of the form llo within 111 gives rise to lists

Jt'[llo] §.11l 11 1] and .I[llo] §Ji1[llo] ~ 111] without repeated members while

opts(Ji'[1l2] l=A1jJ.false*.

«If opts (X'[ll] l=A1jJ.false* for every constituent of the form

rec II it is possible to apply 2.6.5, which requires that no exit

of a recursive declaration be changed by transformations using 1jJ

(so that I==E, for instance, becomes I==.[E]1jJ and not I='[EI1jJ).

The condition on within declarations will be explicated in 2.6.6.

Note that at no point in the preceding proofs do we demand

that the novel function used by ~ be the one used by IT: all that

we need is that they both obey the postulate of 2.1.1. Moreover

if we let opt be A1jJI.false, so that we consider one program

evaluated with the aid of two novel functions, TI and IT request

fresh locations simultaneously. Thus we can delete the

requirement that L be infinite and also the requirement imposed

on within declarations (as the proof of 2.6.6 will indicate) to

obtain the further result that distinct novel functions give a

program meanings which are equivalent in the sense suggested by

the predicate a set up in 2.4.5.~

157

2.6. Connections between storage management techniques.

2.6.1. Additional invariants of comnutations.

We shall complete the link between standard and store

semantics by proving that the store equations alluded to in

2.5.9, which invoke noveZ, frequently coincide in effect with

those of 2.3.9, which invoke new and approach recursion somewhat

differently. The proof closely resembles the one we have just

considered, and we need only analyse the cases not de~lt with

above. Accordingly we shall concern ourselves principally with

declarations and shall provide results which after slight

amendment will fill the gaps in the foregoing theorem.

Throughout this section we shall presume that the state

vector pair ~ has arisen through evaluating a program using noveZ

store semantics to yield ~ and evaluating a transform under some

~ of the program uSlng new store semantics to yield IT. We retain

~ simply so that our results may be placed in the context of the

theorem above without much ado. Because storage is no longer

allocated to IT by means of noveZ we cannot ensure that fresh

locations will be inaccessible using site, and thus cannot debar

a location from being paired with distinct expressed values.

However if the locations accessible using pZot are necessarily in

the current area of store we can demand that no fresh location

& satisfy kent1«(,&) ~=faZse for all E. To guarantee the existence

of a steady supply of locations we restrict the area of 0 to be

finite. The constraints imposed on n remain as they were, since

nothing has been changed in its mode of construction. Consequently

we now set

AV{A{sitea pUGAareaa aI1~m~n}~\!{a =a~11~m<Z~n},faZseI2sn} m m rn t.-.

AA{(W :LAw =w A\!=o~areaw GAOl =w)
001 001

A(W : LAw =w A\!=1~areaw OAW =w) I kent\!Glo~Akent1Gl~}'
001 001

158

For a technical reason which will not emerge until

2.6.5 we now bring into playa property of expressions which

hitherto has been irrelevant. The only locations which a

program can assign to are those which can be handled by passing

through the environment and the store. Though these need not be

denoted there must be chains of values leading to them which do

not require the presence of either the current stack or one

forming part of a label entry point. Accordingly unless a

location is accessible in this way or can be supplied by mv its

content must be left unchanged by the evaluation of an expression.

To permit the process of 2.4.6 to be carried out as before in

fact we demand that only a projection of this content be preserved,

writing

fit=AftOftl·Plfti

AA{E:LXLvs:VXVv-gyvenED1IE:EXE}

A(mqox~qo)po=(~qoxwqo)plA(~qox~qo)Do=(~qox~qo)Di

AA{spotaPlvlalv(qo(holdaai)=qo(holdaoo)A-spotapouooo

v-gyven(a ,a) (v 'V) la:U.
1 1

Owing to the adoption of new rather than novel by the

semantic equations our knowledge of the contents of locations is

circumscribed by plot, not site. The values returned by

expressions are subject to

set;AftOfti·«VOfl:LAspot(VOfl)POVOaO)

V(UoH :L->--plot(uoH)P « hold(uoH)00) §u tlla ,true))o o o

Afit« Po,v otl,6 0)'(Po,uoti,a » ft i .o
Now that fitftOfti expresses a relation between 8 and 80 1

must give a more closely confined definition of wwft when

w: FXF, as the stores concerned must coincide. In addition if the

locations on the stack which cannot be reached using spot are not

to be assigned to during a call of a function they must not be

passed as parameters; this we ensure by using set to insist that

159

the topmost element of the stack does not fall into this category.

We continue to demand that a location never be paired with a

stored value on the stack.

Stronger conditions must be imposed on wQft when Q:GxG

also, as we wish to compare two different approaches to recursion.

We take W to be constructed from our present Po just as it was o

built up in 2.4.5 from the earlier version, except that if we have

Q:GxG woQft is

po((w~2,() ,w~3) ,(w~2 ,() ,W~3» IIhoten((qoxqo)Q)(qow~2 ,qoW~2)

this enables us to demand that

W=leQft.W Qllo

II(Gl:JXJ+/\{c(w+1,w+1) ftolpO=(W~2,W~2) 1I00=(W~3,W~3) IIfitftofto} '

Q: Fx F+/\{ o(Ie 1;. (W+1) (1; 0 re vert Po) , Ie 1; • (w+1) (1; 0 re Ve r t po» 11 aft 1

Ipl=(divertPo(w~2).divertPo(w~2»

118 1=80Ilfitf11 ft 1

II set ft 1« P ,6 0 ,6 0)'(Pl,u O,1l 0» },
1

Q: GXG~/\{o(w+1 ,w+1) ft aft 1

IPl =((W~2)[1fo!recJ ,(W~2)[ito!recJ)

1100 =«) ,0) IIfitft 1 ft 1

IIhoten«qoxqo)Q)«~qox~qo)po)}'

Q: J xJ +/\{ k (w+1 , w+1) 11 a 11) 0=(W~ 2 •w~ 2) II °0=(w+3 , w~ 3) II fi t 11 aft a} ,

true) .

Here c, k and 0 are presumed to satisfy the equations of 2.4.1

when we use in them the set defined above and a predicate p given

again by p=leQft.poftll/\{wQftlkentoQft}.

Thus we must set up W ,p l' C l' k 1 and oland n n+ n+ n+ n+

obtain w, p, c, k and 0 as infinite conjunctions which are subject

to an analogue of 2.4.8. When Q:GxG, for instance, we take

Wn+1Qll to be true if woQft and 0n+l(w~l,w~l) ft Oft 1 are true whenever

P1=((w~2)[1fo/recJ,(wO)[ito/recJ), 01=«) ,(», fitftlftl=true and

160

hoten((qoxqo)w)«ilIqoxWqO)Pl)=true (the last condition being used

in 2.6.8 solely to ensure that plota(w+2)()empty~plotaPl()empty

for all a:L). We shall not provide the proof of this analogue,

as it is almost identical to the one given above.

We shall go even further than this by adopting predicates

E, L, Rand G having different content to those of 2.4.5 but pre­

cisely the same form. Now, however, they do not exhaust the

properties of expressions in which we are interested.

Unlike our earlier theorems, which held for all Mal

programs, we are here seeking a connection between two kinds of

semantics which do not coincide in their effects on all possible

programs, as is shown by 2.1.3. We must therefore deny to re­

cursive declarations the right to return values whence could be

reached locations not in scope on entry to the declaration. In

practice this means that every exit from an expression E in such

a constituent of a recursive declaration as I==E must be a global

identifier denoting a member of V, a constant B or an abstraction

~ without local identifiers among its free variables; in the

notation of 1.5.3 there will then be some ~:Ide~B* (not to be con­

fused with that below) such that cramped[E]~=true. To remove the

local identifiers from the environment we define

tie=A~p.((AI.#p[I]>o+(O,;~[IPL2+(p[IP1),0),0),0 ,(». The

limitations on the locations accessible from a value are provided

by the predicate field:U+Y+S+T, which is

fie ld= Apua .,A,{p lotap() emp tyv-p Io taarid(u+1:L +ho Id(u +1)a, u+1> empty Ia: L}

Note that field=APua.fieId(.qop)(~qou)(6qoa)by 2.4.3.

Although the predicate underlying g can remain that used

before, that for~ must reflect the fact that locations will not be

passed out of scope by a recursive declaration. Accordingly

161

D= At, .f\{ c(9[L'l] ~ ,9[.1 [L'l H] 2> il 0 II\{ c 2;;1 Is e"m [L'l] 01/J il 0ill}} ;

T= At, .1\{ c(?H] ~ ,.nt [L'l H] ~> il 0

It\{c~;; 1 1sewn[L'lJll1/Jil 0ill

"N fie ld(tear[L'l]p 0) (P1[IE +1> Go II :..>r1[t [L'lH] } }} •

Hence sewn[l'>]v1/Jft Oil is defined exactly as in 2.4.5 except for an1

additional condition to the effect that true equals

A{spotaPouoooV(qO(holdaoo)=qoCholdaol)"-spotapouooo)

V-gyven(a,a)(uo,u o> la:LL

Our initial result will be proven at breakneck speed since

it is largely a preview of 3.3.9. Strictly speaking, we should

incorporate each of its paragraphs in the corresponding later

lemma, but tidiness decrees otherwise. This means that the

reference to 'constituents' ln its statement is a little vague,

but clarification will come in the course of the proof.

2.6.2. Proposition.

Let lP and il be such that for all I: Ide 1/J[1] +1=1 only if

p[I]+1:V and 1/JITI]+1=3 if I:.f[E]§.:t[E]. Suppose that 1/J and E:Exp
o

have cramped[E]1/J=true, aptwop=true, torn[E]1/Jo=true and

a(2P00060'~pouooo> =true whenever pilo"setiloil=true and

field(rend[E](tie1/JPo))uoOo,,(uo+1:L+~plotCuo+1)Pouooo,true)=true,and

that any constituents Eo and 1'>0 of E satisfy G[Eo]=true and

DHol =true. Then c(91 ITE] E,W[t ITEH] 2> 1\=true and w(w*~v ,w*h> ft=true o

for l,;v,;#.fITE] §.;(1E] , where w*=&1IEI epU§~[E] Ep'; and

w* =swap (.f[E] §~ E]) Cf[1 ITEH 0] M1[7 [E]1jJ 0]) (9'[f ITE]1jJ 0] ~ pu §.2 [1 ITEH 0] ~ pu) •

~Throughout the proof we shall fix attention on one family

of 1jJ, 1/J ' ft, 2 and E such that cramped[E]1jJ=true, apt1/Jop=true,o

torn[EHo=true and a(Ep00060'~pouoOo) =true when pilo"setftoil=true and

field(rend[E](tie1/JPo))uoao,,(uo~l:L+-plot(Uo~l)pouoao,true)=true.

We shall also presume that 1jJ[I]~l=l only if p[I]~l:V and that

1/JITI]~1=3 if I:jITE]§.4EL The proof will proceed by induction on

162

the s 1 ze of E.

Suppose that E is an identifier, Ij for any ft havingo

p'itoAfit'itoft=true, define 6=(p [I]H,Po[I]H),

S=(8:L+(area8a +hold6a ,T),6), ex=ne1JG ' 1i =(Po,<8)§U '00) and
o o o 1 o

1il=(1)Jo[I]H=false+(P '(6) §Uo,G)'(p '(ex) §uo,update~B;o»)' Then,o o o

just as 1n 2.5.3, p'it Aset'it 'it=true (where the function set has
I 1

meaning of 2.6.1); also I cannot be in /[E] ~E] so

field(rend[E] (tie1)JP))u G1=true. Hence
1 1

a«(9[I]EpoiJoao,~b[IUo]~poUoao)=a(~;liJlal,~Pl~I~I)=true and

c(<§ [I] E,<§[? [I] 1)Jo]~) 'it =true .

The situation when E 1S a constant, B, is very similar and

need not be considered. Indeed, we shall leave out all the other

possible situations except a few key ones.

Suppose that E is an abstraction, ~; for any ft with o

pftoAfitftofl=true define Pl=PO' 01=«3'[~]Po) §Uo,(%][J.[~Uo]Po)§u)o

and 01=00' By 2.5.4 pft
I
Asetft

1
ft=true; furthermore for any I having

free[I][~]=true I is not in ,j'[E] !i?I1E] and so
A

field(rend[E] (tie1)JP))u G =true. Hence the s above has
1 1 1

a(~[<1>] ~pouo60 ,:9'[.1' [<I>U] ~po0ooo) =a(Eplulal ,~Pl~lal) =true ando

c(~ [<I>] E,:1b [<I>Uo]~) ft=true.

Suppose that E is of the form E :=E1 and that evaluationo

takes place from left to right. Defining

e =(APU.~p« dummy) §ut2)oupdate(uH) (U+2),o
,

Apu.sp«dummy) §ut2)oupdate(uH)(u+2) ,

as in 2.5.5 it suffices to show that for suitable & and Bwe have

c2 0((6,(B,a) §u,o) ,(13 ,(B,II) §u,o» =true. Plainly for all ft having
2

pft 2Afitft 2((6,(€ ,a) §u ,0) ,(13 ,(i3 ,a) §0 ,0» =true we may assume that

V{plotaarid(dummy)emptYla:L}=false, so it is enough to demonstrate

that pft3Asetft2ft=true where TI 3 is

(6 ,(dummy) §u t2,update(u +1)(V +2)6 2) (and similarly for TI).
2 2 2 2 3

Observe, however, that the proof in 2.5.5 that for all vo' vI'

163

W and wi seenvOviwOwlft3Akentlwlft3~kentvowOft2 requires only thato
kentiwift3A(wi=U2+2Vwi=u2+2)~(wi=(U2+2,u2+2»),not that

kentowift3A(wi=u2+2Vwi=u2+2)~(wi=(U +2,U 2 t2»), and can therefore2

be carried across unchanged to the present case, where P
O

ft
2

is

defined as in 2.6.1. lIenee pft Asetft ft=true,
3 3

a(e062u2a2'~OP2v202)=a(e63u363,~P3U303)=true and c2 0
ft =t1'ue.

Suppose that E has the form ~o inside Eo' so that if

lji3=lji[3* /.I[~o] §;f][~oHf[Eo]§$[Eon we have

cramped[Eo]lji3AD[~0]AE[Eo]=true. It follows from the paragraphs

below that if 22 and ft 2 are pairs such that sewn[~]0$Oftft2=true

and ~ e260u060,t2~onOaO)=true for all ft having pft Asetft ft 2=true o o O

and

field(rend[E] (tielji3PO))Uo~oA(Uo+i:L+-plot(Uo+i)Pouo~0,true)=true

then, writing lji4=ljio[false*/J'[~]J[opts(;t'JI~])ljio/;f'1[~] J, we have

c(d'[E]e ,1[- [Eo]lji4]~2) ft =true. However if for any such ft we
o 2 2 o

define (l=(novelpou060,newoo) and

ft 1 =((re Ve l' t PPO' (u 0 +1 : L+u 0 ,(Ii) § u 0 t 1) , (u 0 +1 : L+6 0 ,updat e Ii (u 0 +1) 6 0) ,

(revertppo ,(u +1 :L+u ,(a) §u ti) ,(u +1 :L+~o ,updatea(u +1)~o))
o o o o o

then pftlAsetftlftAfield(rend[Eo](tielji3Pi))ui~1=true,as

!Itt OPi [1] +1= ~q 0p[1] +1= l!lq op 2[I] +1=l!Iq oPo[I] +1 unles s #P i [I] =0

or I:J'[~o]§.'t1~o]' For all such ft ' therefore,o

a(epiu16i,~PiUi0i)=true and

a(mV (~orevertP) Po u 060 ,mv (~o revertp) p 0u 00 0) =true, so that

(mv(Eo1'evertp) ,mv(~orevertp) obeys the conditions laid down for

22 above. Thus whenever sewn[~0]oljiOftft2=true we know that

c(:e[Eo] (Eo1'evertp) ,.I!1[e [Eo] ljio] (~oreve1'tP) ft 2=true, and, D[~o]

being true, c(@[E]~,;§h[EHo]~)ft=truewhen E is ~o inside Eo.

We next discuss briefly two forms of expression E for

which j[E]§X[E] need not be vacuous.

Suppose that E is of the form E ; E , and that o 1

cramped[E]ljiAG[E llAG[E]=true. From the definition of cramped
o i

164

in 1.5.3 it is clear that cramped[E1]~=true. Accordingly by

the induction hypothesis c(~[E1]~,W[J[E1]~O]~)~=trueand

k(APV.~[E1] Ep(vtl) ,ApV.:9'[J [E
1

H
o

] 2p(vt1» ~=true, giving

c(~[Eo; E1]~,@'b[Eo; E1Ho]2)~=true. Furthermore analogous con­

clusions apply to 1J(W*h!,w *tv) ~ when w* and 01* are defined as

in the statement of the lemma and l:>v,;#,1 [E] §,:Jf1[E] .

Likewise if E is of the form if Eo then E
1

else E
2

and

crampedrrE]~AR[Eo]AG[E1]AG[E2]=true,then

cramped[E1]~Acramped[E2]~=trueso we may apply the induction

hypothesis to obtain ,

c(!f'[E1]~'~[J[E1Ho]2);;A"(~[E2]~'~[J[E2Ho]2);;=true. When 21 and

22 satisfy Ce2TIACe3TI=true, ke3TI=true where

£3=sv (Apu.u+1+1;l P (ut1) '£2 P(Utl» (and similarly for 2); con­
3

sequently c(Gi[EoH3,9t[dEoHo]~3)~=true and, taking

2 =(~[E H,W[a[E H]2) when n is 1 or 2,n n 'n o

c(W[E]£,:~[:dEHo]~)rr=true. Again we may resort to the same tech­

nlque for w* and 01*.

Finally, suppose that E satisfies the conclusions of the

lemma, and take any ~2 and ~2 having apt~2P2Arent[E]~2Afit~2~2=true

and P2[I]+1:V for every I:Ide such that ~[I]+l=l; we know that

cramped[EH=true. Let 22 be such that a(£2POuo6o'~2POUOOO) =true

whenever ~o satisfies p~oA8et~o~2=true and

field(rend[EI (tie~~o»OoaoA(Oo+t:L+-pZot(Oo+l)~oOoao.true)=true.

Define 21=(£2orevertP2'~2orevert~2);should ~1 have p~l=true,

field(rend[EI (tie~~1»0101A(Ol+1:L+-plot(Ol+1)Pl01o1.true)=trueand

A{~1[II+1=~o[I]+lV(#~[I]=O+true.~[I]+1=3)II:Ide}=truefor some Po

having set«P O,u 1 ,6 1) ,(PO,Ol,ol»~2=true, we shall have

rend[E](tie~~l)=rend[E](tie~po)and

a(e1P1u101'~lP1U101) =a(~2POu101,t2~oU1a1) =true. As E satisfies the

conclusions of the lemma we may infer that

165

l

C(;f[EDE1,§[I'[E]ljIO]~1}TI1=true for all TIl such that aptljlOP1=true,

fitiT1TI1=true and

!\{P [1] +1=po[1] +1v C#ljI[1]=O+true ,ljI[1] +1=3) II: Ide}=true, where

ljIo=ljI2[false*!AED][optsC.Jf1[Eh 2)!:t1lF:! J. Similar remarks are

pertinent to w(w*+V,W*+V}TIl when w* and w* are as above and

l';v,;#/[Ell §Jf'[EI, so the argument of 2.5.1 shows that

c(t [ED 2 ,.>'[e [Eh 2D2 } iT 2= true.»2 2

Before passing on to the main part of the structural

induction we modify the proof of 2.5.3 so that it copes with

the new version of w. Suppose that k2TIApTIAfitiTfT=true and that

p[ID+l:G for some 2 and TI. Then, writing 8 for

(p[IHl ,1'>[1] +1) , hoten8p=true so w8TI=true and
A

hotenCCqoxqo)o)CCmqoxMqo)p)=true. Consequently

a(~[I] 2pua '~[9 [U ljID 2puo} =true when aptljlp=true.

In view of our changes to the definitions of fit and set

we must also amend the proof that G[E :=E D=true to ensure that o 1

certain locations are not assigned to. All that is required is

an elucidation of the remark to the effect that setfT TI=true (in3

the third paragraph of 2.5.5). For any a such that a=u 3 +v for

some v>l and spotapub=false we shall show that

q Choldao 3)=q Choldao) and spotaP3u3b3=false. Because o o

setTI 1TI=true we know that a=u l +v and spotaPlulol=false; thus

because setTI OTI 1=true spotaPouooo=false, and because fitTI3iTO=true

spotaP2u202=false and qoCholdao2)=qoCholdabo)=qoCholdao). More­

over as a=Ol+v for some v>l plotal\ C(holdCu l +1)b l } §u t1)ol=truel

although spotaPlulol=false; hence as setiT l iT=true we cannot have

a=u l +l. Finally spotaP3u3a3=false and

qoCholdao3)=qoCholdaa2)=qoCholdaa) , thereby establishing that

set'i1 3iT= true.

A scholium is also necessary in the third paragraph of

166

2.5.4, as in accordance with 2.6.lwe now presume that 8 =6
1 2

and that set1l 2«P2,u 1 ,a?) ,<P2,v 1 ,(2»=tl"ue. Together with the

fact that fit1l 1l 2=tl"ue this ensures that when a=v 1+v for some v>o3

and when plotaP2v202=false then a is not V3+1 and plotap~v~o~=false

so that fitll~« P2[U +1/IJ,u tl,(), < P [v h/IJ,v tl,(2»=tl"ue2 2 2 2 2 2

as required.

2 • 6 • 3. Lemma.

1£ EIlE]AE[E 1=tl"ue then G[EoE11=tl"ue.o 1

~By modifying the argument of 2.5.5 it can be seen

that GIEoE11=tl"ue if whenever 2 and 11 obey k2i=tl"ue then

a2o~o=tl"ue where

~ 0 =Ap\J • \J+ 2 : F-.. (u+ 2+ 1) (~ 0 1"e ve l"t p) (dive l"t p (u+ 2+2)) « \J h) § \J t 2) ,

sV(AP\J.l,;uHIN';#\J+2IL*-,,~p«\J+2+(\J+1) §\Jt2),Tlp\J

and TI =< ~,< d,s) §u,a) for some d:L and B:V (and similarly for
o

~o and TI)' Accordingly, take any suitable e and 11 and let 11 1o

be any pair having pTI Afit1l TI =tl"ue.1 1 O

When \\+2:F then V +2:F also and we may set up
1

1T 2 =< <d i v e 1" t ~ 1 (u 1 +2+ 2) ,< v1 +1> §v11"2 .a 1) ,<di v e1"t P1 (v t 2+ 2) ,< v1+:I} §vIt 2 ,cJ 1)) •

Because w<v +2,u +2) 1l =tl"ue and
1 1 1

~ ~~

kr,< < ~1 ,15 t2 ,() ,< P ,u t2 ,(1» =kr,rr=tl"ue, should p1l be tl"ue
1 1 1 1 2

a< (vl+2+1)(Eo1''evel''t~1)p2v262.(ul+2+1)(201''evel''tPl)p2v21l2) will be

tl"ue and a< ~OP1U161,2oPl,\al) will be tl"ue. However

hotenw<v +2+2,V 1+2+2) ~kentlw1l1 for all wso familiar techniques1

serve to confirm that kentvw1l2~kentvw1l1 for all V<2 and wand thus
~",,~

that p1l 2=tl"ue. Hence a< r,OP1\Jlol,r,OP1\Jlol) =tl"ue and, 11 1 being

typical of those pairs having p1l 1Afit1l11l =tl"ue, a2oTIo=tl"ue.
0

The proof necessary when 15 1+2 is not a member of

follows a predictahle pattern and can safely be omitted.~

167

2.6.4. Lemma.

If E[EI=true then G[va] EIAG[res E1AGIgoto EI=true.

~Thc proof that G[va] E]=true is a greatly simplified

version of 2.5.1 and will therefore be left out. The other two

proofs are closely connected so only that for G[res E]=true will

be discussed further.

The proof that L[E]=true given in 2.5.2 is equally

apposite for our present version of Po, so to show that

G[res E]=true it suffices to show that for any e and fto having

k2ITo=true if we define

eo=APv.(p[res]+Hl)(p[resll+H2)(V+1) §p[resll+H3) (and similarly
, A A

for '0) then k'ofto=true. Accordingly, take any such, and ~o and

any ~1 having p~lAset~l~O=true; if #Pl[res]=o the result is

immediate so suppose that this is not the case and let

li 2=(~1[res]+H2,(vl+1) §Pllres]+H3,ol) (and similarly for 1\2)'

Because kentl(~11 resll +1 ,Pl[reslll)~ttrue and P1TI 2=true (as is

shown by 2.4.6) we know that

k(P 1[res]+Hl,Pl[res]+Hl)«P2 ,v 2tl,61) ,(P2,u 2tl,a 1»=true and

that kentv~~2~kentv~~1 for all v<2 and w. From the latter

assertion we deduce that p~2=true and that set~2ftO=true; from the

former, however,

k(Pl[resHH1,Pl[resl+1+1)fto=true and so we may conclude that

a(EOP1U161,20P1Ul0l) =true and that keoITo=true.l­

2.6.5. Lemma.

Let A be of the form I=E, Ii"'" In =E, I==E or

I1, •.. ,In==E for some I or I 1 , .•. ,I and some E having E[EI=true;n
then D[AI=true and, when A is I=E or I 1 , •.• ,I =E, T[AI=true.n

A

When A is I==E or I 1 , ... ,I ==E and when ~, '0 and ~o are anyn

entities such that

168

f\{I:-"4[tI]+1J!U]h=faZse,trueII: Ide}=true, cramped[tI] (H.(2))=true

and for all ~ if sewn[tI]11J!~0~=true and

f\{fie Zd(tear[tI] po)(p[I] h) a I I :Aj[t [tlh] }=true

we have c($"[tI]eo,.9lIt[tlh]~o)~o=true.

~strictly speaking the hypothesis that

cramped[tI] (;\1.(2))=true is not adequate to prove the result,

as really what we require is that E (in the case I==E) and E m

when 1~m~n (in the case I
1

, •.• ,I ==E) satisfy the conclusions n

of 2.6.2. For brevity we do not consider the possibility that

cramped[tI] (;\1.(2))=true does not entail this, since in a

properly stated induction on the size of Mal programs it would do

so, and our lemmata could obviously be stated in this more

pedantic form.

As an example of the proof that D[tI]=true we take tI to

be I==E and consider any 1J!, 2 and ~o such that ceoIT=true
0

whenever sewn[6] o1J!~o~=true. The usual arguments show that

k(APU'~op[uH/I](uti),APu.20p[UH/I](Uti) ~o=true so, as R[E]=true

by 2.5.2, when opt[I]1J!=faZse we have c(9[tI] e ,9[6[tI]1J!] 20) ~o=true. o

Accordingly we turn to the more interesting case that arises when

opt[I]=true; then we can assert that

(§I[tI] ~o ,9[&' [tlh] ~o) =("[E] ~1 ,bi'[. [Eh] ~1) where

~1=(ApU. ~oP[UH/IJ (uti) ,mv(Apu. ~op[uh/IJ (ut1)

It will be enough to show that k(sv~1,sv~1) Wo·t~ve since

E[E]=true. Take any ~1 having p~1Aset~1~0=true and define

a=newG s=access(u1~1,u1~1) ~1 and1 ,

~2=((1\ [ElI] ,u ti ,6) ,(P1 [a/IJ ,u ti ,updatea'EG 1» Because
1 1 1

PO~1=true, S is proper and ~2 is proper; moreover

sewn[tI]01J!0~0~2=true as we cannot have a=u ~v for some v. By the
1

technique of 2.5.3 we can readily demonstrate that for all v

and W kentvw~2"(w=(E,a) vkentvw~1) and thus that wGl'il 2=true when

kentoGl~ =true. Since area&G =false and p 1) =true, siteap U G =false
2 1 01 111

169

and therefore PO~2=true also. Hence pTI 2=true and

a(sV~lPl(J161,sv21r\'\~1} =a(~OP2(J262,20P2u2a2} =true; ~1 being any

pair with p~lAset~l~O=true we can infer that k(sV~l,sV~l} ~o=true

and thus that o(~[~]~o,~[d[~]~]~o}~o=true. This equality is

valid for all suitable 1jJ, eo and ~o' so D[~]I=true.

eWe shall only consider the second part of the result when

D is I
1

, •••• I ==E. Indeed we shall even restrict ourselves to the
n

proof required when E is E •••• • E , that for [CE ••••• E) being
1 n 1 n

almost identical. Accordingly we assume that when l~m~n the

expression E satisfies the conclusions of 2.6.2.
m

eSuppose that Ij!, eo and ~o are any entities such that
A

oso~=true whenever TI 1S subject to the constraints sewn[~]llj!~o~=true

and f\{fieldC tear[~]Po)(p[I] +1} aI I:Jt1[I IT ~HI }=true. If'

Ij![Il]+lA ••• AIj![In!+l=false we shall show that

o(.:f1~]~0,.n"[~H]20}~o=true. To this end we set 1*=(1 1 ,,, .. In}'

2 =((\ p\.l<J • 11\.1 +1 IL*= n+~ 0 Ci nv er t pC ari dC ho Ids C\.I +1) <J II*])) C\.I t1) er, T) ,
 1

CAP\.l<J. II \.I+l I L*=n+2 0CinvertpCaridCholds(\.I+l)<J/I*J»C\.Itl) <J,T)}

and 22=(AP\.l'~lPC«u+n•••• ,U+l}} §\.Itn),AP\.l'~lP((\.I+n,•••• \.I+1}} §utn)} ,

so that <.rH]Eo •.9lI'HH]2o}=Uf[EH1,iJf[~[EH]~1}' For simplicity

we presume that mete dictates an order of evaluation from left to
A , ,

right, and we define s l=(2'[E 2]s ,.2'[.[E +2]Ij!]s} for 2~m~n+l;m+ n-m+ m n-m m

from the equations of appendix 2 (iJf[E]~1,iJf[.[E]IjJ]~1}=en+2'
A •

Thus Os ~ w111 be true if any TI satisfyingn+2 0 n+2

~ Afit~ ft -true has a(;' ~ U 6 ~ " u ~)=trueP n+2 n+2· 0- ~n+2f'n+2 n+2 n+2'~n+2f'n+2 n+2 n+2 •

By 2.6.2 to verify that this is so for some suitable ~n+2 we need

only show that when m=n+l any ~ with p~ Aset~ ~ l=true, u +l:L,
m m m m+ m

fieldCrend[E 2]P l)(u +l}a =true and spotCu +l)p u a =falsen-m+ m+ m m m m m m

is such that a(Ep (J 6 ,2 p u a }=true. Continuing along
m m m m m m m In

this train of reasoning, o2n+2~O will be true if all sequences

~n+2""'~2 with ~m+l and TIm related as in the preceding sentence

when 2~m~n+l and with p~ Afit~ TI =true are subject to
n+2 n+2 0

170

a(~2li2(j262,2})2U}12) =true. When 2mn, if U + 1 fv:L andm

spot(um+ l
fV)P lum+ 10 l=false then spot(um+ lfV)P um+ m m m a =false,m+

q (hold(u lfv)o l)=qo(hold(u lfv)a) and U lfV=u f(v+l) as o m+ m+ m+ m m+ m

setft ft l=true. Accordingly we can show by induction that
m 1:"+

for all m with 2mn+l spot(Umfl)P2u202=false, U fl=u f(m-l) and m 2

qo(hold(u fl)Om)=qo(hold(u fl)o2); since in addition m m

mqoPm+l=~qoPo and for every I:Ide

rend[E +211 P 1[II =(#rendH 2]P 1[I] >O+tear[,~] P l[1] ,())
n-m m+ n-m+ m+ m+

we may deduce that in fact

fieLd(tear[~]pO)(u2f(m-l))a2=truewhen 2mn+l.

Now we introduce the pair

ft 1=((inve rt Ii 2 (ari d [ho Ld s < C2 fn , ••• ,(j 2H) 6 2II*]) ,(j 2 tn ,If2) ,

(inve rtP 2 (arid[ho lds(u 2 f n, ••• ,u 2H) °2 /1*]) , u 2 tn, a2)) •

for which (i2P2'\62'~2P2U202)=< eOP1Ul0l'~OP1Ulal)' For all Gl

yalept~ftl~kentlwft2 and gyven@Ol~gyvenGl02; hence for all v and

Gl kentv@ftl~kentvwft2' and in consequence pftlAsewn[~]l¢ftOftl=true.

Furthermore /\{fie ld (tear[~] Po)(P1[I] H) °1
1
I ~ t [~HJ }=true, so

by our initial supposition about 2 a(~OP1(jl(\'~OPlulcrl) =true,
0

which in turn shows that ae 2ft =true and thatn+ 0

c(~~] ~o,nt[~H]~o) fto=true.:l>

As ¢, 20 and fto are typical of the elements such that

¢[Il]flA ..• A¢[In]fl=false and c20TI=true whenever

sewn[~]l¢ftoft=true and /\{field(tear[~]po)(p[I]H)1lII~t[~]¢]}=tru",

we can conclude that T[~]=true.:l>

The proof when ~ is a declaration by reference is a

simplified version of this.:l>

Naturally 2.6.2 is irrelevant when this lemma is

regarded as a preliminary to 2.5.9, since the restrictions on E

are required only in the proof that

j\,{fie ld(tear[~] po) (P 1[1]1 H)°1
1

1:-*1[1 [6] ¢] }=true, which is not

needed by the predicates of 2.4.5. Thus for the purposes of

171

2.5.8 the lemma can be viewed as stating that

c<.:r[lI]~o,~1[t[lI]1jJ120)1T0=truefor allljJ, 20 and 11 0 having

I\U:)f1[lI] ->ljJ[I] h= false, true II: I de} =true and

l\{c20TI Isewn[lI] 1ljJ11 011}=true.

2.6.6. Lemma.

Let lI 2 be lIo wi thi n lI 1 for some lIo and lI 1 • If

D[lI]AD[lI 1=true then D[lI 21=true, whilst if D[lI IAT[lI11=trueo 1 o

then T[lI]=true provided that cramped[lI]OI.< 2})=true and that2 2

;t[lIo] §J[lI 1] and j[lIo] §.Jt1[lIo] §.1!1l1] have no repeated elements.1

~Suppose that ljJo' 20 and 11 are entities such that0

fitl1ol1o=true and c2 0;=true whenever TI has sewn[lI 2]1ljJoll ll=true and o

t\{fi eZ d (tear[lI 2] PO) <p[1] h) a I I :Jt1 t [lI 2]1jJ 0] }=t rue; 11 e sha 11 show

that c<.r[lI2]~O,91[nll2ho]~0}110=true. To this end we define

ljJ1=ljJo[false*j.f[lIo] J[opts(..Jf1[lI])ljJ/X1[lI] J,o o

21 =< Eootrim[lI1Hio,20otrim[lI11P0} and ~2=<.r[lI1]~1•.nt[lI1]1jJ11~0} ,

so that the transformations of 1.4.6 yield

suffices to prove that if 11 1 satisfies sewn[lI]OljJoTI 11 1=true then o o
c22TI1=true. In turn as T[lI 11=true this will be estahlished for

any such 11 1 if c21TI2=true whenever sewn[lI1J!1ljJ1111112=true and

I\{fi e ld (tear[lI1IP 1)< P2[II ti} a2 II ~ t H 1h 1I }=true •

Accordingly, take any such 11 1 and 11 together with any TI 32

having p113Afit113112=true, and define

By the definitions

of fit, sewn and field we can assume without loss of generality

that l1n=(~qox~qo)TIn when O~n~2. As neate3Aneat~0=true, for

every Q hotenQe4~hotenQe3 and accessQTI4=accessQ11 3 ; hence

for every V >2, v ' Q and Q1 we know that
O 1 o

seenvOv1QOQ1114AycleptQ1TI4~seenvOv1QOQ1113AycleptQ1113and

kentvoQo114~kentvoQo113' and, PTI 3 being true, p1l 4 must be true.

172

It remains to be demonstrated that sewn~~2]1¢oftOft4=true and

tha t f\{fie ld (t earl ~ 2] Po)(P4I I] H) a4
1
I :.7t~ n ~ 2H 0] }= true, using

the facts that sewn~~0]0¢OftOftlAsewnl~1]1¢lftlft2=trueand

I\{fie ld(tear[~1] Pi)(P21 I] H) 02 1 I:->f'1[t I ~1 Hi] }=true.

Observe first that .f~~1!=J~~2] and that .Jt1[~1]~~2].

For every I: Ide (writing for convenience

v=(I:JI"Hl]§.Jt1[~l]+l,O)) #P [I!<;#p [I] as revertp P [I]=P [I], andO 1 o 1 O

#P1[Iltv<;#P2IIltv as revertP P2[Iltv=P 1[I]tv; hence1

~qo(revertPoP4)[I]tv=revertPoP2[I]tv=revertPoPl[I]tv=po[I]tvand,

similarly, ~qo(revert~064)[I]tv=60[I]tV. Moreover, unless

I:.I[~2]§Jt1[~2] or #po[I]=o,

qO(P4[I]+1)=trim[~1]pOP2[I]+1=revertPoP2[I]+1=Po[I]+1and

qO(64[I]H)=~o[I]H. If #~4[I!=0 then necessarily #~o[I]=O

and, apt¢po being true, #¢0[I]=0. If I:J'H) then I is not a

member of.lt4l~o] so ¢l[I]=¢o[I] and, as apt¢lP2Afitft3ft2=true,

~4[I]H:L, P4[I]H:L and 1J!o[I]H=false. If I:..Ji1[~2]then I is not

a member of .I[~o] ~~o] so ¢l[I]=1J!o[I] and, as apt¢P2Afitft3ft2=true,

~4[I]+1:V and either P [I]+1:V or P4[II+l:L and ¢o[II+l=true.4

Hence apt¢oP4=true and sewn~~2]1¢ofloft4=true.

Take any I:4t~~)¢0]; as sewn[~2]1¢oftOft4=true, writing

t =P 4[II+l we have t :V and4 4

fie ld(tear~ 6) P)(P [I] H) 11 =field(tear~ 6] P)(S4) 11 Moreover,
2

.
o 4 4 2 o

if I' is an identifier not in .I[6] §.1fj[6] and having
0 0

#Pl[I'JI>o, tearHl]Pl[I']=tead62Jlpo[I']. We know that

field(tear~ 61] i\)(E
4
) 02=true, but this is not quite powerful

enough in general to establish that

field(tear~62]pO)(P2~II+l)1l2=true, as there may be some a:L

satisfying plota(tear[6]po)() empty=false although
2

plotaari~E4)empty=plotaari~Pl~In]+1)empty=truefor some In

in J1~ 6] §.Jfj[6]. In our case, however, we may presume from 1.5.3
0 0

that cramped[61] (A In.(In:.I[6]§.1t1[6]+3,2))=true: for such0 0

173

declarations it can be established by the techniques applied

to 6 inside Eo in 2.6.2 that0

fi e l d< (AI". I " :J'I 6] §)t'j[6] -..<) ,t ear[6] P1I I"]), <) ,<» <£4) O2=true.
0 0 1

Hence for every a:L if plotaarid< £4) empty=true then

p lot a< (AI " . I " :J'1[6
0

] !i1t1[6
0

] +<) , t earl 6
2

] Po [I"]) ,<) ,<))<) emp ty = tru e

and consequently field(tear[6]p)< £) a =true.
2 0 4 4

We have now shown that any pair ~3 constrained by

P~3Afit~3~2=true induces a pair ~4 having p~4Ase~nI62]1~0~0~4=true;

if in addition crampedl6] (AI.< 2))=true and
2

!\{field(tear[61]P1)< P2[I]+1) a2 !I:..Jt1ItI 61h 1]}=true then

I\{fie ld(tear[62] p)< P4' III +1) 041 I;;t'1!t [62h 0] }=true. Henceo

a< ~lP3U363'~lP3U3(3) =a< EOP4U464,tOP4U4(4) =true and, ~2 being an

arbitrary suitable pair, c22TI1=true. Since ~1 is subject only

to p~lAse~n[60]0~0~O~1=true and DI6 0]=true,

a<916 0] ~2Poi\60,£lld[60ho]~2POUOoO) =true, as was to be estahlished.

The proof that DI6]=true is very similar.p2

Note that the assumption that j[6 0] §Jt[61] and

.I160]!i1t[60] §1{1[61] are lists wi thout repeatin!, members i5

necessary only to ensure that, in the notation used above,

~l[I]=~O[I] if I:.f!6)§X1[6 2]. Were we not to transform programs

by means of ~ this assumption could be eliminated from the proof.

Accordingly it will play no part in 2.6.9.

The requirement that cramped! 62] 01.< 2)) be true, on the

other hand, is germane only because we wish to avoid sending

local variables out from the body of a recursive declaration in

order that we may invoke the valuation ~ of 2.2.1. Because 2.5.9

refers to only the valuations of appendix 2 it demands no mention

of this requirement, although 2.6.9 will do so.

174

2.6.7.	 Lemma.

Let 6 0 be 6 and ••• and 6 for some 6 1 "" ,6 ; if1 n	 n

D[6]A ••• AD[6]=true then D[6]=true whilst if T[6]A ••. AT[6]=true
1 n 0 1 n

then T[6]=true.
0

~The proof of this resembles 2.3.7 very closely. Again

the result holds if n=l and we assume that it holds for all sets

of m declarations with n>m. For the sake of variety we shall

describe why T[601=true rather than why D[6]=true. Suppose that
0

deal corresponds to evaluation from left to right and that

6 1 is	 6 2 and ... and 6.
n+ n

Take some ljJo' 2 and 'Il such that fit'llo'llo=true and
0	 o

c20il=true whenever Rewn[6o]10oTInil=truc and

A[field(tear[60]i5o)(p[II+1)ClII:Jt1!t[60]ljJ0J}=true; we shall demon­

strate that c(.r[60]~0,.o/l[t[60]ljJo]~0>'Ilo=true, which will establish

the contention that T[6
0
]=true in view of the arbitrary choice

of ljJo' 'Il and 20 ,o

Let TIl be a pair having seuJn[6
1

]lljJo'llO'lll=true and

I\{fie ld(tear[61J! Po)(P1[ID +1) Cl 1 II;;tj[t [61]ljJ 0] }=true, and define

TI 2 =« clip[6 1 DP Pl ,6 1 ,6) ,(clip[61IPOP1,ul,Cll» , so thatO 1

aptljJOP2=true. As we have assumed that T[6 + 1]=true, for nny sl
n

such that c21rr=true whenever sewn[6 +] lljJO 'Il 2il= true and
n 1

;\{fie ld(tear[6 + 1] P2)(p[I] +1) aI I:Jt1! t [6 + 1J!ljJoJ! }=true we have
n	 n

c(·;T[6n+l]~1,.o/l[t[6n+l]ljJ0]~1)1l2=true. We shall show that

(E opick[6](PO,P 2) '~oopick[61](PO,P 2» is such a pair e1 ; without o	 1

loss of	 generality in doing so we shall take ll to be n

(~qox~o)'Iln when OSnS2.

Take any 'IT e having p1l Asewn[6 IH1ljJOTI 'Il =true and . c' 3 n+ 2 3

;\{field(tear[6n+l]P2)(P3[I]+1)Cl3!I:Jt1!t[6n+l]ljJol}=true, and set

'IT 4=«pick[6](P 'P 2) P ,6 ,6
3

> ,(pick[61]<PO,P2> P ,u ,(»· Again1 o 3 3 3 3 3

p'll4=true as kentvw'IT4~kentvw1l3 for all v and W. Furthermore

the close analogy between sewn and knit (together with the fact

175

that sewn[6111~0~0~lAsewn[6nTlI1~0~2~3=true)allows us to presume

that sewn[6010~0~0~4=true; the detailed proof of this follows the

lines laid down in 2.3.7 and lacks independent interest. Before

we can conclude that a(~oP4\\64'~OP4u4a4> =true we must verify that

Nfi e ld Cte ar[6 a I Po) (P 4[II +1> i\ I I :.71[t [6 aU a I }= true.

Accordingly take any I:-*1t[60Uol, so that

I:Jt1[t[6 U I or 1:41 [6 11 ~ I. In the former case
1 a nT a

qoCP4[II~1)=qoCrevertP2P3[II~2)=revertP1P3[II~1=Pl[II~1 as

sewn[6nTlll~0~2~3=true, and so fieldCtear[61Ipo)(P4[I1+1>ol=true;

because P4[II~1:V this means that field(tear[60Ipo)(P4[II~1>o4=true.

In the latter case P4[II~1=P3[II~1 and

fieldCtear[6nTlIP2)(P4[II+1>o4=true; moreover, as

apt~oPoAsewn[6nTlI1~0~2~3=true,torn[6nTllpo=true and, as

sewn[61]ll~oftOftl=true, for any I': Ide

tear[6 lp [I'I=I' :.1[6] §.l!"[6]+tear[6] CrevertP P)[I'],
nTl 2 1 1 nTl o 1

tear[6 lp [I']

nTl 1

=1' :.I[6] §.It'j[6 1]+tear[6nTl] Poi 1'1 ,1

tear[6]P [I'].nT1 o

Hence fieZd(tear[6n+l]Po)(P4[I]~1>o4=truewhether I is in

..:tl!t[6 1U] or in X[tHnTlU]'O o

Consequently for all ~3 such that pft3Asewn[6nTl]1~0~2~3=true

and !\{fieldCtear[6nTl]P2)(P3[I]+1>o3 1 I;X1[t[6nTl]~0]}=true we have

a(~lP3\)303'~lP3\)30') =true. From 2.6.1 it now follows that

c(3'[6nTl]£1'·;!'1[tHnTlUoI21>~2=true. Should ~5 satisfy

p~ 5Afit~5111 =true and should we define

1l6=«clip[611P0Ps,65,6s> ,(clip[1l11P 0PS,U S,05» we shall have

successively ycleptw~6~ycleptwft5 for all w, kentvw1l6~kentvw1l5 for

all v and w, and p1l6Afit1l6~2=true. Hence we even know that

c(3'[6nTl] £1 0 clip [6 1] 6a ,ff[t [6 nTl] ~ a I ~ 1 0 c li p[6] P0> ~ 1 =true.1

This being so for all appropriate ft 1 we can conclude that

c(.r[60]~o,.9'['[60]~0]~0>1l0=tr1<ebecause Ti611=true.:I>

176

Although this result and the preceding one are couched

in terms of T[6] it is amply evident that they could be phrased

in such a way that 2.6.5 could be applied to them immediately

without quantifying over all ~IO' It is in fact this reading of

the results to which 2.6.8 really pertains.

2.6.8.	 Lemma.

If T[6~=tpue then T[rec 6~=tpue and, when

opts (Jf1[6])=A1jJ.false* also, D[rec 6]=tpue.

~The second part of the statement is the only one which

is not too trivial to be worthy of proof. To deal with it take

any 1jJo' ~O and e having opts(~6~)1jJo=false *, fit~o~o=tpue and

/\{a2~lsewn[rec 6]01jJo~0~}=tPue; let 1~1=1jJo[false*/.I[6~J[false*/Jt'1[6~J.

Assuming without loss of generality that P~o=tpue, as L is infinite

we can set up a proper pair (a*.&*> which is

(novels (#.f[6~)POUoG O,news (#.I[6~)a 0> We can therefore define

Pl =(fix(Ap. Po [a* /.1 [6~] [S'H~ p6/;f[6] J),

fix(Ap·po[&*;'.f[6]J[.9'1['[6Hl~pa/~6]J»,

o
1

=0
0 and &l=(updatesa*dummY*Go,updates&*dummy*oo>

Any ~ which satisfies sewn[6~11jJl~1~=tpue will also be

subject to sewn[rec 6~01jJo~0~=tPue; consequently a2~=tpue for all

such ~. As T[6~=tpue once we have convinced ourselves that

P~l=tpue we shall be able to deduce that both

a(.r[6~ tP1 Ul G1 ,91f '[6] 1jJ 1~ ~ P1\) 1°1> and

a(!J<'[rec 6] EpovoGo,Ei'[d'[rec 6Ho]~po\)ooo> are tpue.

To do this we observe first that

kentv@~l~(@=(dummy,dummy>Vgyven@(a*,&*>

vgyven@(91 6] P161 ,91' [6H 1~ P1a1> v ken tvill~ 0)

for every v and @. Moreover since p ~ =tpue and sinceo 0

sitewpou060vapeawao=false for any pair ill such that

gyvenill(a*,&*)=tpue, we already know that p ~ =tpue.
·01

177

Consequently if we can establish that w~~l=true when

gyvenGj(&'1Jll]Pldl,S1"t[llH1]Pl0l) =true we shall have p~l=true.

For some v2 let I be .J/111]+v 2 and Jet w be

(.9'[llHldl~v2.Y1!t[llHl]Plol~v2)' Reasoning along the lines of
A A A

2.5.8 it is enough to show that if So and ~2 satisfy k SO TI 2=true,

fit~2~2=true and hoten«qoxqo)w)«~qoxmqO)p2)=truewe have

c(nll]~l,91t[ll]l/Jl]~l)~3=true, where

~3=« 1\[1T2/recJ,() ,6) ,(Pl['it 2/recJ,() '01» and1

(1=(APIJ.recurEop(p[I] hi E) •

APIJ a • (A7r ' • 2 (TI ' +1) « p[I] +1) § TI ' ~ 2) (TI ' ~ 3)) (p[r e c] +1 »
0

Because T[ll]=true even this reduces to verifying that for ~3

A A

and sl defined in this way cSl~4=true whenever ~4 satisfies

sewn[1l]1l/Jl'3'4Afieldpl(p4[I]~1)04=true.

Accordingly take any such ~4 together with some ~s such

that p~SAfit'S~4=true; define e '6 and '7 to be6 ,

(P U]+l,P [I]+1), (Ps[rec]+1,P [rec]+1) and
S s s

« P6'(€6) §u6,replaceP6u666ds) ,(P6 ,(~6) §U 6 ,06» Then

(E1PSuScJs,21PSUSGS) =(EOP7u707,2oP7U7G7) and as set~7fr2=true the

result will be proven if p'7=true. We shall demonstrate this by

showing that for all v>2 and W

kentvw~7~kentow~SA(V=lAW:L+kentl~'6.true). Just as in 2.5.8 we

have kentvw~7~V{seenvvlw€6~7Ivl:N}vkentvw~6'since the proof

given before requires only that accesswl~7=accesswl~6 when

kentlw 1'6=true, which is still the case even if 07 is defined to

be 06' Thus it remains to be established that

V{seenvvl~€6~7Ivl:NbkentOw~sA(V>OAw:L+kenUw~6,true).It is

this part of the proof which invokes the assumption that

fie ldP1 (P4[I] +1) 04= true.

Becaus e s ewn[ll] 1 l/J1 ~ 3~4= true, i\[1] +1: V; hence as

l/Jl[I]+1;false and apt1)J1 P4=true)\[IJ!+1:V. Moreover fit~S~4=true,

so we can infer that qoE6=~qoP4[In+l and that

178

fie lap 1(E 6> (} S= t1"ue. As hoten ((q OX q O)W) ((mq OX~q O)fJ 2)= t1"ue,

I\{plota~2<> emptyv-plota~l()emptyla: L}=t1"ue and from 2.6.1

fieldp2(E > 0s=t1"ue. Finally, as fitftsft4=t1"ue, llqo TI =llqo(P 4[ree]+1),
6 s

and as selJn[liD l1JJ ft ft = t1"ue, llq (P [reeD H)=llq TI ; in particular
,	 134 04 02

....	 -&l!JqOP2- qOP6 and by 2.4.3

A{plota P6(> emptyv-plotaa1"id(E
6

> empty la: L}=t1"ue.

Defining 'fl to be « a1"id, (E >, empty>, (a1"id, (E >, empty> >,
a 6	 6

we now know that when kentlw'fl =t1"ue for some wwith w:L we have
a

plotw~6v606=t1''ue. Since p'fl s=t1"ue and hoten'fl 6 Ps=t1"ue we can even

assert that kentl(E,W> 'fl =t1"ue for some E; indeed, kentlw'fl
6 a

being t1"ue, kentlwft must be t1"ue, and, kentl(E,W> 'fl being t1"ue,
s 6

kentO(E,W> 'fl must be t1"ue, so that E=~ as P 'fl =t1"ue. Hence when­s O 6

ever kentlw'fl =t1"ue and w:L we have kentlw'fl =t1"ue.
a	 6

Assume that for some particular v and all V <2, W and
1 o o

w we know that
1

see n v 0v 1W01ll 1'fl 7 Ak e n t 11ll1'fl a=> ken tow o'fl SA (V 0> 0 AW 0: L+k en t 1III O'fl 6' t1"ue) ;

the paragraph above shows this to be so when v 1<1. Let v O<2,

W and 111 1 be such that seenvO(vl-<-1)wOwl'fl7AkentlIll1'fla=t1"ue. If o
w :L then w :E as lJ Ill 'fl =t1"ue (kentow 'fl being t1"ue) and

1 1 o 1 S	 1 S

kentllll
1
'fl 6=t1"ue so that (w 1: L+plotw 1~ 66 666' t1"ue)=t1"ue and

accesslll ft =accesslll 'fl ; under these circumstances
1 7 1 6

seenv OV 1 (accessw 1'fl 6)'fl Akent l(accessw 1'fl 6)'fl =t1"ue and kentv lll 'fl 6=t1"ue
7	 6 o o

by the argument used in 2.5.8. If w:V, w:G, w1 :J or w1 :P we1 1

can apply the usual techniques and the induction hypothesis to

confirming that kentOIll
0

'fl
7

=t1"ue and, if vo>o and wo:L, that

kentlIll 'fl =t1"ue.
0	 6

Hence for all v and III we have

V{seenVV 1ll€6'fl !v : N}=>V{V{seenvvlIll1ll1'fl7Aycleptwl'fla!vl :N}!w1 :WxW}
1 7 1

=>V{V{seenvvlwwl'fl7Akentlwl'flalvl:N}lllll:WxW}

=>kentow'fl A(V>OAw:L+kentlw'fl ·t1"ue) ,
S	 6

and, more generally,

179

kentvw~7~kentow~5A(V>OAW:L~kent1w~6,true). As PO~5'

A{ww~5Ikentow~5} and kentOTI6~5 are all true, POTI 7 and

l\{ww~7Ikentow~7} are true; thus p~7=true. Retracing the steps

of the proof, it follows that C(.11[II]~1,9'"[t[lI]hjJ1]21)TI3=truefor

all suitable ~1' TI 2 and 20 inducing ~3 and 21 in the manner above

and thus that wW~l=true when gyvenW(.Y'[II]P161'.'i'[f[II]ljJ1]P1cr1)=true.

This being so whenever ~1 and ~1 are defined in terms of any ~o

and ~O having opts (-*1!II])~o=faZse* and fit~oTto=true, the lemma

must be valid.:!>

It is in the proof above that we require the rather

curious definition of seenvOv1wOw1~ when w1:GxG. In the sixth

paragraph above we made use of the fact that if I' is such that

~2[I']+1 is in G then any a which is subject to

pZota(P2[I']+H2)() empty=true has pZota~2() empty=true also. We

could not, however, simply modify the algorithm in 2.1.6 so that

when w3:GxG seen1(v1+1)w2w3~ would be true only if

seen1v w w ((arid,() ,empty) ,(arid,() ,empty» were true for some
1 2 4

w4 having hotenw (W3+2,W 3+2) =true: in the eighth paragraph above
4

we demand that kent1wl~6~kent1(accesswl~6)~6'which would not be

correct were this form to be taken.

Even in a practical implementation we cannot regard

this aspect of the tracing procedure as redundant. If P2[I']+1

is in G as a consequence of a declaration of I' earlier in the

program we may presume that any locations reached by passing

through the result returned by ~ [1']+1 will have been already
2

adjoined to the area of store during the declaration. If I'

represents a library function, however, no explicit declaration

will have been given and unless seenv
1
w

O
W

1
TI takes its form from

O
v

2.1.6 the definition of PO~2 may lead to anomalies when I' is

activated.

180

2.6.9. Theorem.

The meanings of a Mal program provided by novel store

semantics and by new store semantics are comparable so long as

every consti tuent of the form rec b has cramped~ b] (AI.< 2))=true.

~If we suppose that opt=AI~.false we can dispense with

the requirement in 2.6.6 that certain constituents of the form

b O wi thi n b are such that .f[bill has no elements in common with
i

.w'I b] and Jt1[b] has no elements in common wi th .f[b] §;f1 b]' A
O i o O

structural induction using 2.6.2 and the definition of cramped

given in 1.5.3 thus establishes that the meanings are comparable

with respect to the predicate a of 2.6.1.~

181

2.7. An extension to cover recursion.

2.7.1. Removing continuations.

Although 2.5.9 ensures that many of the transformations

of 1.4.6 can be performed on a program without modifying its

meaning, we have yet to establish the equivalence of recursive

declarations by incidence and those by reference. In this section

we shall achieve this end by a rather devious route which will in­

volve switching between two types of semantic equation by means of

2.3.9. Taking over the notions of 1.5.4 we shall prove that

D[rec ~]=true for certain declarations outside the class we have

already catered for. The predicates underlying this assertion

will be those of 2.6.1 (except that areaa 6 and kentlwo~ will m

supersede sitea pd6 and kentvw ~ in p ~), but all programs will be
mOO

deemed to be evaluated using new instead of novel.

Conjugate valuations can be set up for store semantics ln

much the same way as for standard semantics; moreover the only

property of their forerunners which they do not have is 1.5.8,

which depends on the fact that free variable lists are not split

off from the code in standard function closures. It is, however,

precisely this property that allows us to replace members of G

in the environment by members of V, thereby providing the rationale

for apt in 1.4.6. Accordingly we shall need to compare these

types of conjugate in order to transfer this property to store

semantics; 2.7.3 will effect this comparison while 2.7.5 will

outline the proof that two related recursive declarations give

rise to equivalent state vectors.

Again we take the conjugates of.fT and fM to be" and 9J,

wri ting them as 11$ and 1ffM. Because we do not consider labels we

can continue to conflate 1fd and 1f~. which this time are in

Exp+P+P. We could in fact eliminate the stack component from all

state vectors to which these valuations are applied, as the

182

arguments of 2.1.1 which led to its introduction become nugatory

when jumps are entirely removed. To avoid confusion wi th the

standard conjugates we retain it and demand that ~W[I], ~W[~D

and ~W[BD be A(p,u,a> .(p,(p[HHIE> §u,a), A(p,u,a) .(p,(S'[~Jlp) §u,a)

and 1.(p,u,a).(p,(9l'[BD> §u,a> for any I:Ide, cp:Abs and B:Bas. For

every E:Exp we define ~.lt1[E] and ~.'1I'[E] to be

(A(p,u,a) .u+1:L+(p,u,a) ,(p,(newa) §uti,update(newa)(u+1)a))o~&'[ED

and

(A(p,U ,0) • (As. s: L+(areasa+(p,(holdsa) §utl ,a) ,T) ,(P ,u ,a)) (uH)) o~&'[E]

respectively.

It would be possible to avoid returning an environment as

a result on applying ~f or ~W, but this liberty is not open to

us when we consider ~9 and ~S', which are now in Dec+P+P. We

take ~Jil[I=ED to be (A(p,u,a).(p[uH!IJ ,uti,a))o~~ED and

W[I==E] to be (A(p,u,a).(p[uH!IJ,uti,a))o~9i'[ED, and adopt

similar equations, based on those of appendix 2, for the other

forms of declaration. Consequently ~W[~o within ~i] and

~$![~o within ~i] become

AIT'.(AIT".(trim[6il(IT'+1)(IT"+1) §'IT"tl)(~.9?[6](~£il[~]'IT')) and
1 0

Arr ' • (AIT" • (tri m[~ 1D ('IT ' H) ('IT" H) §'IT"t 1) (~~ ~ 1] (I\9lI ~ 0] IT ')) ,

whi Ie IL!K[re c ~] and ~$![re c ~D become

1.(P , U,a) • (Aa * . (Aa ' • (AP , . a * : E+ \l.91 ~ JI (p , ,\) , a ') ,T)

(fi x (AP" • P[a * /5 IT ~ D] [Y'[~ [p "a ' Pt'[~]])))

(updates a*dummy *a)) (news (Y[~])a)

and ~.9/[~] respective ly. To s imp Ii fy our notation we in traduce

a member of Dec+U+S+E*, ~.9", such that for any ~:Dec ~.9'1[~D is

Apa.fix(AepI*.I*=() +C> ,((~9l[~](P,C> ,a) HHI*+lllH) §ep(I*ti))(Jf'[~I).

For brevity we define crowded:[Exp+Dec]+[Ide#B*]+T, so

that crowded[E]~=true if crushed[E]~=true and each constituent of E

of the form 6 inside Eo satisfies crowded[~o]~=true, while0

183

crowded[~]~=true if crushed[~]~=true, ~ contains no recursive

declarations by incidence, no identifier I having ~[I]+1=2 is

in .11[~] §Jrj[~], every consti tuent ~1 of ~ obeys crowded[~1] ~=true

and every expression E embedded in ~ satisfies crowded[E1]~=true.1

2.7.2. Proposition.

Let ~ and p be such that for all I:Ide ~[I]+1=2 if p[I]+1:G.

For every proper U and a and every E:Exp subject to crushed[E]~=true

either A1;.of[E]1;pua is improper or 118[E](p,u,a) is proper and

A1;.4[E] 1;pua=A1;. (A(pl,U' ,a') .1;p'u'a') (III[E](p ,U ,a)); analogous

conclusions hold for ~, ~ and ~ also. For every proper U and a

and every ~:Dec subject to crushed[~]~=true either A1;.~[~]1;pua

is improper or 1I!iil[~](p,u,a) is proper,

A1;.!')[~]1;pua=A1;.(A(p',u',a').1;p'u'a')(II!lI[~](p,u,a») and for all

I:Ide (~[~](p,u,aH1)[I]+1:Gonly if p[I]+1:G and I is not a

member of ~~]§~~]; analogous conclusions hold for ~

~The proof involves a structural induction which differs

from that of 1.5.5 solely because the valuations are those

appropriate to store semantics and therefore lie in Exp+P+P and

Dec+P+P instead of Exp+U+S+[ExSJ and Dec+U+S+[UxSJ. As it has

absolutely no additional interest it can safely be left to the

imagination.:!>

2.7.3. Proposition.

Let ~, u, p and 8 be proper entities such that in the

notation of 2.2.7 upAsu=true and for all I:Ide ~[I]+1=2 if

p[I]+1:G. For every E:Exp satisfying crushed[E]~=true and

rent[E]p=true either AK.I[E]pKG and A1;.€[E]1;PUIT are both i or T

or 1'>0=1'>, tJ t1=U, e(E ,tJ +1) =true and su =true, where o o o o
(Eo,G) =1I4'[E]P6 and lto=III[E](p,U,IT) ; analogous conclusions hold o

184

for g, a and ~ also. For every 6:Dec satisfying crushed[6]~=true

and rent[6]1 p=true either AX . .@[6] pxa and AI; ,9[6] I;pvCl are both 1.

or T or knit[6]Oppo=true, uo=v, upo=true and soo=true, where

(po,a) =1f~6]6a and Tt O=1f9[6](p,v,Cl}. For every 6:Dec satisfyingo

crushed[6]~=true and torn[6]p=true either AX.~[6]pxa and

A1;..9'1I 6]l;pva are both 1. or T or knit[6]1ppo=true, uo=v, upo=true

and soo=true, where (po,u }=1fS'J[611P6 and TI =f"116](p,v,a).o o
~Because the conjugate equations are built up by removing

the continuations from the usual versions but leaving the primitive

functions like update intact, lemmata such as 2.3.5 can be trans­

ferred wholesale to the present situation. Indeed 2.3.2 requires

almost no alterations whatever, Since we have chosen to identify

11# wi th :F and II~ wi th £4. Thus the proof of 2.3.9 in effect in-

eludes that of this result, which we shall dwell on no longer.~

Suppose that ~, v, P and ° satisfy the conditions of the

proposition and let 6:Dec be such that torn[6]p=true, When

Ax.~[6lPxa is improper so is 1f.f1[6]1 pa and when AI;.9"[6HpvCl is im­

proper so is 1I.f1[6](p,O ,a}. Writing Po for

(IT.9lIll]p6+1,IT.9lIlllJP() a+1} , either p and p take the same improper
a a

value or knit[6]1~PPoAupo=true; for both possibilities

d(po[I].f1,po[I].f1}:true when I:Jf1[6ll. Now assume that 13 is

(15 1[J. * /.tf[6]] , p1[J. */4 6]J) for some pl' and define

fun=Av.(15 1[v=o+1.* ,IfYJI 611 (fun(v-1)+1)6j.7t[[6] J,

P1[V=O+1.*,IfY'[6] (fun(v-1).f2)Cl/Jfj[6]]).

If u(funv)=true for some v, when 1sv'~#Jfj[A] we know that

d(II.'11/6](funv+1)6-!-v',1IY'[6](funv.f2)Cl+v'}=true and u(fun(v+1))=true.

Since u(funO)=true we can confirm by induction that

u(fi x (A p • 15 1[lfoY'[6] poPf1 6]]) , fi x (A p • P1[11.9'[6] papt'[6]])} =true. Thi s

would not be the case were we to substitute Ide#D* for Ide#Do* in

U, as may be seen by taking 6 to be n==1.

185

2.7.4.	 Lemma.

Suppose that ~ , ~1' a*, 1* and ~ satisfya a
~ 1=< tio ,(Po '00 ,< Aa.< areaaoo"-a:a* ,holdao » §oo tV> ,o

A{wOw~1V(w:G"w:a*) Ikentow~1}=true,

A{wo:L"wo=w1~areaw060"wO=w1,true'kent1wo~1"kent1w1~1}=true,

/\{wo:L"wO=w1~areawooo,,(wO=w1vw1:a*),truelkent1wo~1"kent1wO~1}=true,

apt~0(p1[dummy*/1*J,P1)=true and fit~o~o=true; presume also that

61 and 01 are of finite area and that

a*=(P 1[1*+1]+1, ... ,P 1[1*+#1*]+1). For some ~ and E:Exp suppose

that crowded[E]~=true, that ~[1]+1=2 for all I having PO[1]+1:G

or 1:1*, and that rent[E]~o=true. Either As.C[E]sPo~060 and

As.<fl. [E]1!Jo] sPouoo are proper or they are both .L or T; moreover o
the choice of alternative does not depend on Do or on the value of

PO[1]+1 when ~[1]+1=2. If the former situation obtains then,

writing ~2=(M'[EJITI o ,If4'[. [EJI~oHto) and

~3=(TI 2,< p2 ,0 2 ,< Aa.< areaa0 2,,-a:a*,holda0 2» §02 t1», set~2~0=true,

°2+1 is not a member of a* and ~3 obeys the constraints imposed

on ~1 above; in addition, if /\{ww~ IkentOw~ } and
n n

/\{wo=wlv-wo:Lv-wO=wllkent1wo~n"kent1wl~n} are both true when n

is 1 they are both true when n is 3. Similar conclusions pertain

to any ~:Dec having crowded[~]~=true and rent[6]~0=true, except

in that when TI 2=< 1fft'[~]TIo,If!?~.d[6]~0]TiO) instead of set~2~0=true we

have sewn[6]0~OITO~2=true (provided apt~oBo=true).

<Needless to sa~ all the above applies equally to the other

valuations and is proved by a structural induction for which the

foundations have already been laid. The results leading up to

2.6.9 provide sufficient indication of the method of proof for

further discussion to be superfluous.p

186

2.7.5.	 Lemma.

Let TI ' TIl' a*. 1* and ~o be subject to the constraints o

laid down in 2.7.4. For some ~ and ~:Dec suppose that

crowded[~I~=true. that ~[II+l=2 for all I having p [II+l:G or o

I:Jf1[til, that the list of identifiers common to .JrI! ~I and .F[t [tlHol.

1*0' is included in 1*. and that torn[~I~o=true. Assume also

that any constituent of tI of the form ~o within ~1 is such that

no member of -'[till is in·if1 ~0]1 and no member of £j[tl 1] is in

A~o]§JtHo]' Either A1;.S1I~I1;Pou060 and A1;.5'[t[~Hol1;Pouobo are

proper or they are both L or T; moreover the choice of alternative

does not depend on 00 or on the value of po[I]+l when ~[I]+1=2.

If the former situation obtains then. writing

TI 2=< ~.9[~]1T 0 •~$l[t [tlHo]it 0> and

TI 3=< 11 2 ,< P2'U2'< Aa.< areaao 2,,-a:a*.holdao 2}} §o2t1}} , TI 3 obeys the

constraints imposed on TIl above; in addition. if A{wWTI /kentOwTI }n n

and A{wO=wlv-wo:Lv-wO=wllkentlWoTIn"kentlWlTIn} are both true when

n IS 1. if poII]H=~S4[tI]p060+v whenever 1:1* and I=.!f'[~pv for

some v and if apt~opo=true. then sewnl~]1~oTIOTI2=true and the con­

ditions take the value true when n is 4. Here

TI 4=<11 3 ,<P3,V 3 .<Aa.<areaao 3va:a*0' holao.0 3» §b 3tl» and

a*o=<poII*oHIH,····poII*oHI*oIH) •

~The proof about TI 2 and TI resembles that of 2.7.4 too
3

closely to warrant much attention. We shall, however. consider two

of the cases in the structural induction about IT which will
4

serve to indicate how to deal with the remainder. The first of

these is of interest as an exemplar of the occasions when the

alternative recursion operator of 1.3.4 gives rise to a margin­

ally less complex proof than the one we have actually adopted.

~Suppose that ~ is of the form II"" ,In==E and that

A1;.~IEI1;Pou060 and A1;.-"i'I- IEH l1;P u o are not improper (sinceo o o o

187

otherwise A1;.51[LiI1;Pou060 and A1;.S1J:t [Lihol 1;P u o are improper).o o o

Let 11 5;(~a'[EI11 0' 1I9i1[. [Eh 01 Tt 0> and

11 ;(11 ,(P5 ,u ,(Aa.< areaaIJ5A-a:a*,hoZdaos» §ostl>, so that 11 66 5 5

satisfies the constraints on 11 of 2.7.4. In particular1

W (U +1,U +1> ~5;true so #U5+11L*;n if and only if #us+lIL*;n.O 5 5

Unless #U5+1IL*;n A1;.91[LiluPou060 and A1; •.9I!/ILiJllj; JI1;P u o are botho o o o

T, so presume that #U5+1IL*;n.

~Assume first that 1j;0[I l+l~ ••• AIj; [I I+l;true, so that
iOn

Im:I* when bm';n and, writing a*o for (P [I 1+1, ••• ,P5[I l+1>,5 1 n

every member of a*o is in a*. Set

11 2;((invertP CaridChoZdsCu +1)6 /(Ii"" ,In> J) ,u 5tl,6 5>,5 s 5

(P 5 ·u 5t1·updatesa*oChoZdsCu 5+1)05)05» •

11 3;(11 ,(P .U .(Aa.(areaao2~-a:a*.hoZdao2» §o2t1» and2 2 2

11 4;(TI 3 ,(P3 ·u 3 ·updatesa*oChoZdsCu +1)05)03> >.5

Now A1;.$[LiI1;Pou060;A1; .1;P 2u 20 2 and A1;.1'[1 [LiIi)Jol1;PouoOO;A1;.1;P2u202

so both are proper. For every v and wwe can show by induction

that kentvw11 "gyvenw(hoZdsCu +1J6 ,a*o> vkentvw11 3 since the prop­3 5 5

erties of 11 assure us that a* and U5+1 have no members in common.5
lienee 11 3 satisfies the conditions imposed on~:l in 2.7.4.

From 2.7.1 it is plain that hoZdsCu5+1J65;~~[6IP060+1,

so if po[Jf1[LiJlhJ]J+l;lI.'11[LiIl'i060+v for v having l,;v,;#.Jf'1[i\] We must

have ~2;~0' Let l\{ww11rlkentow11r} and

l\{wO;wlv-wo:L~-wO;wllkentlwo11r~kentlwl11r}be true when l' is 1, so

that by 2.7.4 they are true when l' is 6. Because ~4;~6 we can

show by the usual induction technique that kentvw1l "kentvwll for
4 6

all v<2 and all w, which suffices to show that the conditions take

the value true when l' is 4. Thus the result is established in this

case .1>

When 1j;0[Ill+1~ ... ~1j;0[Inl+1;faZse t[Li]lj;o is I 1 , ... ,I ;;,[E]Ij;on

instead of Ii ,In;e[Elllj;o' We can show that A1;.S1Li]1;P u 06 ando o

188

A~.31t[6]~0]sP000~0 are both 1 and T unless they are proper much

as before. A simple variant of the argument concerning ~[I;;E]

1n 2.6.5 provides the proof of the remainder. Consequently the

present proposition holds when 6 1S I 1 , ... ,In;;E.~

The verification for I;;E proceeds along similar lines

while that for I;E is less interesting still. Accordingly we

next discuss the situation when 6 is of the form 6 within 610

with 60 and 61 constrained as in the statement of the lemma.

Suppose that A~.~[60]~Pou060 and A~.~[d[60]~0]~P000~0 are both

proper and let il s;(1T.5<l[60]TIo,IT~[6[60ho]iT0) and

TI 6;(TI '(ps,0 '(Aa.(areaa~sA-a:a*,holda~s» §~st1» Whens s

apt~P5;true sewn[6]O~oiloils;true, so as crowded[60]~;true 1n general

il and TI 6 satisfy the constraints imposed on 'il and ill in 2.7.4.s o

Accordingly either A~31l61] (~otrim[61]PoH50u060 and

A~.31t[61]~0](~otrim[61]pO)ps0s~stake the same improper value

or they are both proper. In the lat ter case, wri ting

TI 7;(1T9l! 61] 1TS,IT9l!t[61ho]iTs) and

TI 2;« trim[61]POP7,u7,67)'(trim[61]POP7,07'~7»'

A~.9'I[1I] ~PO()060~A~.~P2()262 and Ac.1'lIl I lI]1)Ja] ~PaUaila;AC~P2u2il2'

The proof of 2.6.6 ensures that when

apt~opo;true sewn[6] 1~oTIoil2;true; indeed this is why it is

couched in terms of a transformation for which~1I11 need not

be J[/[61]~ol instead of one suited to the special situation of

2.5.9. Now assume also that

pol.Jf1] 6JI+v]+1;1T.9l[61P060+v whenever 15v#£'[61 and that

!\{WWTI IkentOwTI } and !\{w ; w1v-w O: Lv-wa; w11 kentlw il Akentlw 1TIn}n n o o n

are true when n;l. From 2.7.4 we know that

ps[~6]I+vll+1;IT.'I1[6]lp060+v and that these conditions are true when

n is 6; consequently ps~~[61]+v]+1;IT:n61]ps6s+vwhenever 15V5~~[61]

and we can apply the induction hypothesis to ITs' Deriving

189

'ITs and 'IT g from 'IT just as 'IT and 'IT are derived from 'IT we thus
7 3 4 2

see that these conditions are true when n is g. Finally, as

kentvwft4~kentvwfi' for all v and W, A{ww'IT Ikentowfi' } and
g n n

A{wO;wlv-wo:Lv-wO;wllkentlwofi'nAkentlwlftn} take the value true

when n is 4.

The proof required when 6 is 61 and ..• and 6 is similar
n

to this and will therefore be omitted.~

2.7.6. Lemma.

Let fi'o and ~o satisfy fit'ITofi'oAapt~opo;true, and suppose

that 6:Dec is such that opts~6])~0;true*, rentIT6]1~0;true and

crowdedIT6]~;true for some ~ having ~ITI]+1;2 whenever PoITI]+l:L

or I::1f[6]1. Assume also that any constituent of 6 of the form

6 within 6 is such that as member of 1IT6] is in .*Il60] and no
0 1 1

member of f[6] is in .f[6] §J!'~ 6], Take a to be the relation
1 0 0 1

a of 2.2.2 and a to be the relation a of 2.4.5, we assume
2

that for all 0 , 0 , O and 0 in the relevant domains if
0 1 2 3

a (0 ,0) Aa (0 ,0 > Aa (0 ,0 > ;true then a (O ,0 > ;true. For any
2 1 0 1 3 1 1 3 2 2 2 0

~ such that A{c~fi'lsewn[6]0~ofi'ofi'};truewe have

c(IilITrec 6H,gITdITrec 6]~oH>flo;true.

~Let ft have pfi'l;fitfi'lfi'o;true, and define 6 to be1 4

(!t[rec 6HPlulol pI[4'[rec 6HoHPlul01> for some ~ subject to

;\{c~fi'lsewn[6]O~0fi'0fi'};true. Set ~1;~0[false*;'fITll]J[true*I.*1I6]J,

(6.* ,iV>;(news(Itf[6])° ,news(VITi [6] w])° > ,
1 1 1

p2;(fi x (Ie p • P1 [6.* /.1 IT 61][9'[6] po 2 IJf1[6]]) , P1 [a~ In(HI ~ 1 I] > ,

°2;° 1 soand !32;(updates6.*dummy*01.updatesa*dummy*01>' that

64;(.'THHP2u262,:r[t[6]I~lHp2u202>' As Jt1[iHH 1]=O here we

can take the 1* and a* of 2.7.5 to be Jt[6] and

(P2[-*1[6]H]H ••••• P2[£1[61+1Ut[61IH> respectively.

When fi' 3; (1i 2 ,(P2 •u 2 ' (Ie a. (are aao 2A-a: a * •ho ldaa 2> > § a 2 t 1> >

190

we can show that for all W

kentlw~3~hotenwP2vw=<dummy,dummy) vkentlWTI1' and consequently

~2 and ~3 satisfy the constraints on the ~o and ~1 of 2.7.4. It

follows from 2.7.5 that either A1;.5"[Li]1;P215262 and

A1;.5"['[LiD~lD1;P2D2~2 take the same improper value or they are

both proper. In the first case a 204=true trivially, so we dis­

count it and consider only the second case. Writing TI
4

for

<~~Lilii2,1]5[t[Li]I~lH2) we know from 2.7.2 that TI is proper and4

that ° 4=< ~P415464,~r\D4Cl4)'

To remove the members of GxL from the environment we now

introduce

TI 5=< < fix(Ap. Pi [a*!j"[LiD J[~9'[LiD p6 5!JfU LiD]) ,15 ,6) ,Tr 2) and

°

2 2

06=<9"[LiJ/1;p 515 56 5 ,(4)' Because p 5[I)IH=P3[I]IH unless I:JI"ILiD we

can infer from 2.7.5 that A1;SULiD1;P 515 56 5 is proper and that

6=< 1;P615666,1;P6D6Cl6) where TI 6=< ~J1LiD1T5,Tr4}; we shall show that

a 206=true. Defining TI =< iT ,TI } we can demonstrate by an obvious
7 5 3

induction that for all v and W

kentvWTI7~hotenwP5vw=< dummy,dummy} vkentvw1i'l; since pTI 1=true we

thus know that A{w~1i'7Iken~O~1i'7}'

A{wo:LAwo=wl+areaw166AwO=wl.truelkentlWoTI7AkentlW1TI7} and

A{wo:LAwo=wl+areawoCl6AwO=wl,truelkentlWoTI7AkentlW1TI7} are all

true. Moreover apt~oP5=true, so we can apply 2.7.5 to TIs and

1i'7 to establish that sewn[LiDl~lTI5TI6=true, A{w~TI6IkentowTI6}=true

and POTI 6=true. Consequently sewn[LiDo~oTIOTI6=true and pTI 6=true, and

in view of the nature of ~ we have a 26 6=true.

Unfortunately although 06 is 04 66 need not be 64 , and to

convince ourselves that a 04=true we must use standard semantics,2

ln which the corresponding entities do coincide. If the program

in which Li is embedded has a sensible initial continuation,

2.3.9 entitles us to assume that for some X, 15 8 and 6 8 we have

191

u(PS,P) AS(6 ,°) A,t\{e(XP,(Cr,U1» Iknit[rec lI~O(PS 'P) pAup}=tl"ue1 8 1 1

(adopting the predicates of 2.2.7); from 2.3.8 we even know

that a(6 8 ,6 4)=tl"ue, where 6 s=9J[rec lI]P8X68' Since lT~rec lI]11 1

is the proper vector 1f , IT!IIIrec lI]P 6 is proper by 2.7.2 and
4 8 8

thus is IT.~ lI] Pg6 g' where owing to 1.5.8 we can take Pg to be

fix(;\p.p8C&*/.fil\UCIT9'I!lI] p6 /.Jf[lIU) and 6 to be updates&*dummy*6 ,g g s
As s(6 ,6)=tl"ue it is plain that s(6 ,6)=tl"ue, and therefore by

8 1 g s

the remarks following 2.7.2 u(Pg,ps)=tl"ue. Whenever

knit[i"ITI 1(Pg,p) p=tl"ue knitd rec lI]O(P ,P) p=tl"ue also; hence s 8 1

applying 2.7.2 to 31l1TI and using the nature of X reveals that

a (6 8 ,6) =a ((X.~lInPg)6g,1;P6U666) =tl"ue.
1 6 1

In consequence a266Aa1(6s,6~ Aa
1

(6
8

,6
6

) =tl"ue and from our

hypothesis about a and a we can deduce that a (6 ,o6)=tl"ue.
2 1 2 4

This means that a 6 =tl"ue and thus that
2 4

c(.'I[rec lIH,£t[d[rec lIJ!1)J H) 'iTo=tl"ue.l> o

The restriction on a and a is quite plausible, for In
1 2

essence it states that the equivalence between members of A must

not concern itself with the locations and functions used to

compute results. In the absence of such a limitation there is no

reason to suppose that 64 and 06 will be equivalent when 6 and6

06 are; we might, for instance, take A to be P, a
2

to be

>'TI.'iT=(~,~) v'iT=(T,T)+tl"Ue,p'iT and e to be

(>'p\Jo.(p,\J,o) ,>'P\Jo.(p,\J,a», when pairing 64 with 06 may give

rise to illegitimate members of VxG. Intuitively it is more

reasonable to take a to be
2

>. TI , 'iT=(~ ,~) v'iT=(T , T) +t r'ue,/\{w i3 ~ v- (Ii: Bvi3: B) V-gy v e n(6 i 3 , a +3) Is: VxV} , o

so that if a is >.(6,it) .(6,it)=(~,~)v(6,it)=(T,T)+tl"ue,s8the
1

stipulation about a and a is valid. The latter version of a
1 2 2

also satisfies the additional assumption which we require in our

final result.

192

2.7.7. Proposition.

Suppose that a and a as defined in 2.7.6, are suchz ,
1

that for all relevant 00' 01' 02 and 03 if

a
z
(01,oz}Aa 1(03,01}Aa

1
(03,oZ}=tl"ue then az(oz,oo}=tl"ue and if

a (oZ,ol} Aa (oO,ol}=tl"ue then az(oz,oo}=tl"ue. Let rec {, be aZ z

recursive Mal declaration such that no constituents of {, contain

further recursive declarations by incidence and any constituents

of {, of the form {,o within {,1 have .![{,lJ1 disjoint from Jt1[{,01 and

Jf1{,11 disjoint from .f[{,ol ~{,ol. For any tjlo and certain ~o

having apttjlopoAfit~o~o=tl"ue and

ol"ushed[rec {,1(AI.#Po[II>o+(~o[II+l;G+Z,l),l)Al"ent[rec{,I~o=tl"ue

rec {, and d[rec {,I~o are equivalent with respect to ~o.

<Let ~l=~o[false*/.fHI][tl"ue*/Jt1I{,1 J,

tjlz=~o[false*/f[{,IJ[opts(Ji'HI and)~0/Jt1I{,1]

~3=~0[false*/J[t[{,hzJIHtl"ue*/Ji'1[t[{,JI~z]]' Introduce a fresh

version of opt, opt ' having
o

op to =n~. ~=~OA I Yf1I {,II +tl"ue ,

(AtjI , • or til II ~ ,)

(AI. (Av. v> 0-+(~)[I I +1 , •.. ,~[II tv} § ~ 2 [II ,tjI[II) (#~[II - #~ 2[II)) ;

sewn is derived from this just as sewn is from opt in 2.4.5.
o

Take t[{,I~z to be the transform of {, according to 1.4.6, but take

t[t[{,I~zl~3 and t[{,I~l to be the transforms induced by opt rather
o

than those induced by opt; a simple structural induction serves

to show that t[t Hh h 3=t[{,h 1 . z

Suppose that the programs in which {, and its transform are

embedded are provided with continuations which tally with res­

pect to o. By 2.6.9 there will be some ~ such that a
l\{o~o~lsewn[{,IO~o~o~}=tl"ue. There will also be some ~1 and TIl

having I\{e(~0'~1} Ttl sewno[tIT {,hzlotjlo(TI ,TI 1} ~}=tl"ue for which we
O

can even assume that I\{e(CO'~l} 'iTlsewno[{,Jlo~o(TI O,TI 1} 'iT}=tl"ue

193

as ~1 'factors through' ~2 (in the sense that if

apt~2p2Aapt~3(P2,P3) =true then apt~l(P2'P 3) =true for all 13 2 and

P3). Applying 2.7.5 to the transformations induced by opt ono
ree t[Ll]~2 and on ree Ll,

c(9[ree t[L\H2Ho'~[ree t[t[LlH 2H 3H 1)(it O,it 1) =true and

c(9[ree Ll]~a'~[ree t[LlH]t1) (1T ,it) =true.
1 a 1

Take any ~2 and it 3 having p~2Afit~2TIa=true and

p(it 2 ,it 3) Afit(it 2 ,it) (it ,it) =true, so that3 a 1

p(1T 2 ,it 3) Afit (1T ,it) (it ,it) =true. We have demonstrated that
2 3 a 1

a}~[ree t[Ll]~2]taP2U2G2,!tI[ree t[Ll]~1]tlP3U3G3)=true and that

al~[ree LlH a P26 26 2 ,9[ree t[LlHIHIP3U3G3)=true, and hence from

our assumption about a
2

a 2(9[ree L'I] ~oP26262 ,9-l[,/[ree Ll]1 ~a] t a P2U2G2) =true, as was to be

proved.>

The condition about within declarations is essential both

for the validity of the proof of 2.6.6 and for the truth of the

theorem above. In 1. 3. 6 j twas pointeu ont that

ree (f=fnz.z within f=fnz.($f)z) inside ($f)a does not terminate;

yet 1.4.6 can make it the transform of

ree (f=fnz.z within f==fnz.fz) inside fa, which returns a location

containing 0 as its result. By contrast, the insistence that

there be no recursive declarations by incidence in Ll is purely

a technical device intended to obviate the need for predicates

on programs akin to those of 2.6.1. Were these to be introduced

rather than requiring that crowded[Ll]~=true in 2.7.5 we would

be content with crushed[L\]~=true.

Strictly speaking we should not make assertions like the

one above to the effect that p(1T ,it)=true if p~2Ap(it2,it3)=true.
2 3

Rather we should work in terms of a predicate roughly Yesemhling

plf Ap(it 2 ,TI) Ap(1T ,it 3), \'/hich could be built up ~s in 2.2.8 or 2.4.5.2 3 2

194

CHAPTER THREE

STACK SEt1ANTICS

3.1. Idealized versions of realistic implementations.

3.1.1. Remitted procedure pointers.

The implementation of recursion implicit in 2.1.4 is

absurdly inefficient, for it demands that during the evaluation

of a recursively declared identifier I there be three stores:

the one forming part of p[I]+l, the one forming part of p[recl+l

and the one which can be modified by the evaluating mechanism.

It would be possible to decrease the amount Gf memory needed by

copying only those locations a having plota (p[1] +1+2)() (p[II +1+3)

or plota(p[recl+1+l)(p[rec]+1+2)(p[rec]+1+3) equal to true, but

tracing them all would be very time-consuming. In this chapter

recursive declarations will be described in terms of a formalism

which is as convincing as that of 2.1.1 and which nevertheless

gives rise to sensihle implementation techniques. Because these

involve wielding pointers into the stack instead of storing

members of U and Y as portions of function closures and label

entry points, the definition of Mal in appendix 3 (which uses

the resulting equations) will be called its 'stack semantics'.

It is not enough to revise the treatment of recursion,

since Mal has inherited from Pal a domain structure which allows

functions and label variables to be stored. By means of an

assignment any member of V can be passed out of the program block

in which it is set up, so some of the free variables of a function

may not be in scope when it is eventually applied. A satisfactory

interpreter for the language must either keep little elements of

U in closures or preserve more than just the current level of the

environment. Even worse inefficiencies arise with label entry

points, which require not only surrogate environments but private

195

stacks also: pointers into the current incarnations of these

entities are inadequate because the values present at the time

of declaration may have been overwritten long ago. Even programs

like that of 3.1.5 presume the existence of an elaborate mechanism

for handling the stack.

Notwithstanding this, there are many Mal programs which

produce correct answers if their abstractions and labels are

translated into pieces of code lacking supplementary environ­

ments and stacks. When executed, these pieces of code will

obtain the state vectors they require by manipulating pointers

into the existing state; in view of the remarks above they will

not yield gibberish only if they are confined to the blocks

wherein lie their declarations. In 3.1.4 we shall formulate

syntactic constraints on assignment statements sufficient to make

sure that this does not happen.

Suppose that within a particular block no assignments of

locally created members of L*, J or F are made to identifiers

declared outside it. When the flow of control leaves it, the

locations appended to the store area after entry to the block

will not be accessible using pZot from those adjoined before

entry. Moreover the environment brought into play will be that

pertaining prior to entry, whilst the stack will differ from the

earlier one only by the addition of an extra element. Hence if

the exits from the block are restricted as in 2.6.2 there will be

no need to retain the locations set up inside it. To discard

them by reducing the area to its original size we introduce

restore=Aono1.< Aa. (areaaO Aareacw ,holdao 1» §Olt1.o 1

We also require a primitive which by analogy with revert

decreases the height of the stack:

pOP=AuOul,ult(#ul-#uO)'

On entering a block we tuck away the current environment

196

level, stack height and store area in the environment so that

they can be referred to when we adjust the state after leaving

the block. For shortness we shall actually hoard the entire

state (p,u,a) rather than « leI,i!p[I] ,i!p[res] ,i!p[rec]) ,i!u,leCl.areacw)

Preserving these extra facts does not run counter to the principle

that only one state vector be accessed, because they are never

needed by the semantic equations and can be eliminated by a

structural induction using simple inclusive predicates. As we

have already intimated, in stack semantics G is not a summand of

D and the entity p[rec] is not required to serve the purpose for

which it was intended in 2.1.4; accordingly we shall use it as

the vehicle by which we transfer the house-keeping information

from the beginning to the end of the block. For any v p[rec]+1+1

will provide the pointers set up on entry into a block which

surrounds the current one, so we can return the state to a size

appropriate to it by means of

Zeve Z; Ie v 7T. (), 7T I • V< 1 +(a p ,: d ,() ,p mp hi) ,v Af pi r ec] +7T •

(revert(7T'+1)p,pOp(7T'+2)U.7T'+3))

(p[rec]+(lIp[rec]-v+l)+l).

On quitting a block we return as closely as possible to

the state pertaining before entering it by activating

re mi t ; Ie ~ pUa • (Ie 7T ' • (Ie a " • ~ (rever t (7T ' +1) P) « U+1) §pop (7T ' +2)U)a ")

(restore(u+1:L+update(U+1)dummY(7T'+3),7T'+3)a))

(p[rec]+H1).

In practice the role of pop in remit is nugatory when the primitive

is used at the end of an expression, since the height of the

stack at this point inevitably exceeds that on entry by one.

However it is important to enlarge the area to include U+1 when

U+1 is a location, because we shall permit an expression to return

a location as a result provided its content could have been

197

declared before entering the relevant block; under these

circumstances we shall have to ensure that

plota(revertP P)(PopU OU)o1 will be true for every a havingo 1 1

plota(revertP P1)(hold(U 1+1)ol §popu Ou)o1 equal to true.o 1

When storage is automatically being deleted on leaving

an expression there is little virtue in incurring the overheads

of garbage collection. The equations of appendix 3 therefore

employ new, although 3.3.9 applies equally to ones employing

novel; we shall not bother to ~ake mv and sv take account of this.

Moreover we can set up a continuous version of nnveZ for which

noveZ stack semantics does not require discontinuous continuations.

Because the flow of control must be capable of jumping out

of expressions (hut not into them) the valuo of a IClbcl must consist

of more than a translation of the program from the point at

which the label is set onwards. Before execution is allowed to

resume there the environment and stack pointers must be returned

to their original values, and for the sake of economy the store

is attenuated also. Accordingly we now let J be Zo, for which

9'[I:E] and.![I: :E] are

A~ puo • (AP , v ' 0 I .go [E] ~ (rever t Pp') (p opuu I) (re s to r eoo ')} §9"[E] ~ puo and

A~ pu 0 •(AP , U ' 0 ' . 'if [E] ~ (re ve rt p p ,) (p opuu ') (re s to re 0 0 I)} §$ [E] ~ pvo

respectively. Similarly, to deal with val we put a variant of

remit into the res component of the environment. In contrast to

the situation at the end of a block the presence of pop in remit

can now be crucial, as res E may terminate the evaluation of a

nest of expressions, thereby cutting back the stack.

This approach is not quite adequate for function closures,

however: although a lower level in the environment may be called

for when a function is applied it cannot be obtained purely by

subjecting the current state to revert, as higher levels of the

environment may be needed on leaving the function. Thus when F

198

is 0° we might regard §1[fn()III, for instance, as being

AP • A~ , p , u ' a ' • 0 P /I • U ' +1 IL*=(} +Jf1[EI (remit ~ ,) P /I (u ' t 1) a ' , T)

(di ve rt p , (re nd[f n()EI (re ve r t pp ,)) [(p , , u ' t 1 , a '} / / re c J) ,

so that during the application of fn()E the environment would rise

above the level prevalent in the surrounding code. Unfortunately

this choice of operator would make an abstraction set up in E and

passed out beyond it demand an environment level exceeding that

available; 3.1.2 will illustrate the folly of doing this.

Accordingly we are obliged to take %[fn()E] to be

Ap • A~ , p , u ' a ' • (Ap 1f • U ' +1 IL*=(} +.!t1f EI (re mi H ') P /I (u ' t 1) a ' , T)

(divertp'(rend[fn()Elp)[(p',u'ti,a'} //recJ),

which cannot bring such consequences in its train. At first

sight this operator does not seem to conform to the principle that

we can always keep pointers instead of spare copies of the en­

vironment; to make it (and its analogues for the other kinds of

abstraction) do so we modify the structure of U laid down in

1.3.2. In the environment appropriate to stack semantics we shall

hold members of N as well as members of 0 in order to isolate

which declaration of I is referred to by p(II+1. Because the

free variahles of an abstraction are always set up in the blocks

surrounding the abstraction, instead of keeping their denotations

as part of the corresponding element of F we need only keep

these pointers; we have desisted from doing so in the operator

above merely to be more concise.

To note the incarnation of I to which p[I]+1 refers the

environment has simply to preserve the height of p(I] alongside

the denotation. For the purposes of 3.2.8, however, we wish to

specify precisely the block in which the relevant declaration

takes place. This can be done by including in the environment

layer for I another member of N, which represents the depth of

199

nesting of the block, so that we actually set

U=[Ide~[DxNxN]*]x[JxNxN]*x[PxNxN]*.We append o:D to p:U at I:Ide

using the convention that

p[o//IJ=p[(0,#p[ree]+1,#p[I]+1) /I]; likewise when i;:J

p[i;//res]=p[(i;,#p[ree]+1,#p[res]+1)/res] and when rr:P

perri /rec]=p[(rr ,#p[rec] +1 ,#p[reeD +1) /ree]. The depth of nesting

components, written as #p[rec]+1, are not essential to the equations

of appendix 3 and can be eliminated in an obvious manner, but some

of them will be required by the predicates of 3.2.5. We cannot

erase all mention of #p[I]+1, on the other hand, as within

declarations allow an identifier to have more than one meaning

in a block although the height of p[rec] is unchanged. For any

o*:D* we set

p[0*//I*]=(I*=()+p,(p[0*t1//I*t1])[0*+1//I*+1]), and we make the

tacit assumption that #dummy*=#I* whenever we write P[iummy*//I*]

in our equations.

We supplement the primitives of 1.3.2 with ravel,

which rearranges the denoted values in the order prescribed by

their markers. The values found in the environment where the

markers first come to light are those to which significance is

attached; all the others are viewed as meaningless accretions

which would not be present in an implementation. For any p and

I we examine the set of all v:N such that p[I]+vt1=p[I]+1t1; the

maximal element of this set will be nearest the bottom of the

environment and will therefore yield that component of the form

p[I]+v+1 which is of interest. This integer is yielded by

lead="Avw* .fix("AcjJv 'v". v">#w*+v'. cjJ((w*+v"t1=w*+vt1)+v".v I) (v"+l))V1;

ravel ="A POP 1 .	 (A cjJ • (AI. cjJ (Po [I]) (p1 [1]) • cjJ (Po [res]) (p1[res]) •()))

(AW*ow\.fix("AcjJv.v>#w*o+() .(w*1Headvw*o) §cjJ(V+1))1)

aligns every integer with the denotation to which it corresponds.

200

Consequently ravelpp[I]+l+l is the entity required by the

semantic equations. In practice leadv(p[I]) is #p[I]-p[I]+V+3+1,

but we shall never never need to presume that this is the case

and our primitives will be unaffected by the nature of p[I]+vt2.

There are of course many possible ways of varying the construction

for U adopted here; one of the more important will be analysed in

3.6.3, where modes will be discussed.

We can now set up an implementation of recursion by tying

a knot through the environment in exactly the same way as we did

through the store in 1.3.4. After the recursive declaration

rec I==E has been executed there may be many functions into which

have been compiled integral markers indicating where the outcome

of the declaration has been put. ~~en I is invoked during the

application of one of these functions ravel will ensure that

this outcome will be picked up as the value of I. If 0:0 we write

p[oIIIIJ=(AW*.((H'.I'=I-+w*,p[I']),p[res].p[res]»)

(fix(A4>v. v>#p[1]-+() •

(«v=leadl (p[III))+(0') Sp[1]1 +vtl, p~ I] tv)~ S(y (v+l))1).

In terms of this ~[rec I==E] becomes

A~ pu 0 .!Jl'[E] (A p , u ' 0 ' • ~ p , [u ' +1 I I IIJ (u ' t1) 0 ') p[dummy I I I] u0; 3. 3. 8

will show that this operator is indeed equivalent to that for

rec I=E. The comparable equation for mUltiple declarations, given

in appendix 3, makes use of the convention that if 0*:0* and

I*:Ide* then

p[0*IIII*J=(I*=()-+p,(p[0*t111II*tlJ)[0*+111II*+lJ). It is the

absence of fix from this equation and from that for labels that

enables us to construct the environment from [OxNxNJ* instead of

[ooxNxNJ*.

Notice that if we start the execution of a program in a

suitable library environment the primitives provided here always

201

append additional layers in an orderly fashion. More exactly,

if P the environment at any stage then tidypp=true where

ti dy =APoP 1 .N (A<j>.N <j> (p0 ~ I])(P1[n) I I : Ide} A <j> (P0 ~ re s]) (p1 ~ re s])

A((leve lv(Po ,(> empty> H)IT ree] =V-1))

(AW*OW*1·-(1~V~#w*o)+true,

(1:5 w* 0 +v -l-2 slip 0 IT re e II +1) A (l e adv (w * 0 "tu * 1) >H w* 0))

!v:N}.

3.1.2.	 Example.

Let Eo be x=dummy ins i de f=fn ()fn ()x ins ide E1 and let

E1 be x=nil inside (f(x))x. Under the first abstraction operator

put	 forward in 3.1.1 Eo does not return the answer dummy.

<t[';lke any proper Po' U and eJ such that ne",s4eJo is proper.o o

Define	 a =ne",eJ ' eJ =updatea 1dummYeJ ' 1 O 1 o

P1=po[(po,uo,eJo)llree][alllx], a 2=ne",eJ 1 ,

eJ 2=up dat ea 2 (§[fn ()fn ()x] Pi) eJ l' P2=P1 [(P1 ' U0 ' eJ 1> I Ire e] [a / / fJ ,

a 3=ne",eJ • eJ 3=updatea 3(> eJ 2 and P3=P2[(P2 ,u O,eJ 2> I IrecJ[a 31Ix].
2

For any '0 write, l=remit, when 0~n~2, so that
n+ n

(!}[EohopouoeJo=.!l1f f=fn()fn()x i nsi de x=nil i nsi de (f(x))x]s1P1uOeJ1

=21[x=ni 1 i nsi de (f(x))x] '2P2uOeJ2

=.!l1f (f(x))x] '3P3uOeJ3.

Snppose that evaluation takes place from right to left,

and define a =ne",eJ a =updatea (S'l[fn()xl P4)eJ
3

,	 3 ,
4 4 4

P4=di vert P3 (rend[f n () fn ()x] (re ve r t P1 P3))[(P3 ,(a 3> §U0 ' eJ 3) I Ire e]

and '4=APU.(U+1)'3 P(ut1) to give

.!l1f (f(x))x] '3P3uOeJ3=9t[fx] '4P/(a 3> §u O)eJ 3

=!!t[f] (APU• (UH) (S v, 4) P(Ut 1)) P3 (a 3 ' a 3> §U0) eJ 3

=.It!fn()fn()x]P 1 (sv'4)P ((a ,a > §U)eJ
3 3 3 O 3

=.2'[fn()x] (remit(sv'4))P (a > §U)eJ
4 3 O 3

=(sv'4)P (a ·a > §u O)a3 3 3 3

"ifi'1[fn()x]P '3 P (a> §u)eJ4 3 3 0 4

202

As divertP S(rend[fn()x](revertP P »=P '
4 S S

S"1 fn()x] P s P « as) §u)04=!tI! x] (remit ss)p [(P ,Uo ,04) / /reC]U 0
4 S S O s s 0 4

=ssp « as) §U)04s O

=soP « as> §U)(updatea () (restoreo 00 4 »·
o O s

When evaluated using store semantics, on the other hand,

(4[E] soPouoo would be soP « c(1) §U)04 where hoZdct10 4=dummy.l>o o o O

3.1.~. Alternative approaches.

There is nothing sacrosanct about the version of stack

semantics suggested in 3.1.1, and we have chosen it largely because

it can be built up with very little new notation. Here we men­

tion two minor variations on its principles which are physically

more realistic but do not provide any fresh insights into com­

puting. Our intention is simply to indicate that semantic

equations can be used to describe an implementation in as much

detail as a given application may require and that such des­

criptions can be validated relative to standard semantics by the

means we shall discuss in 3.2.4.

A radical alteration to the equations of appendix 3 would

be wrought by fusing the stack and the store. This could be

achieved by arranging for every value which hitherto would have

been placed on the stack to be stored in a new location (so that

L would become a summand of V). Coercions would be invoked by

the primitive functions to extract these erstwhile members of E

when necessary, while storage would be allocated and discarded

by regarding the store area in use as a contiguous array of

locations. Then if count:L+N and point:N+L satisfied

point=\v.U{ctlcountct=v} and if sum=\o.\!{countctlareacto}, in place

of new and update we might use \0.point(sumo+1) and

203

Aspa.sp(Aa.a=hoZd(point(sumo-l))o+(tpue,hoZd(point(suma))a),

a=point(suma-l)+< true,dummy),(counta";suma-l,hoZdaa»)

respectively (here we take S to be L~[TxVJ for simplicity). On

entry to a block the first empty location would be reserved as

a space in which to put the answer returned. Such considerations

as these would make the semantic equations reflect the truth

about interpreters in an intolerably messy manner, but they

would enable us to express the validity of a display [4] which

calculates denotations by means of an offset as well as the block

level; taking S to be V* would achieve the same end.

To recover the full power of Mal we could introduce an

additional region of storage from which locations would not be

erased on leaving blocks. Thus suppose S were L~[TxTxVJ, where

the first lattice of truth values indicated which kind of storage

was intended; instead of restope we would require

AaOol·\a.(ala+l,(ala+l+ala+2,ooa+2),ala+~, Before passing

functions and labels beyond their scopes we would have to give

them representations as stored values incorporating more in­

formation than would be necessary as denoted volues. A suitable

substitute for update would be

\spua.(\S,sp«dummy) §ut2)(\a.a=u+2+< a+1,a+2,6> ,aa))

(u+1 :Zo"O(U+2)+1+< u+1,p,ut2) ,u+2 :Oo"a(u+2)+1+< U+l,p) ,u+1),

We could adapt the proof of 3.3.9 to establish the equivalence

of store semantics and equations based on these notions, but we

prefer to defer all further discussion of the heap until 3.5.3.

3.1.4. Syntactic constraints enforcing validity.

To indicate which Mal programs can be executed using the

mechanism of 3.1.1 we use context-dependent predicates which test

the identifiers at the exits of an expression to verify that they

204

are not local to the block. We also insist that in an assign­

ment E :=E no exits of Eo denoting locations have wider scopeo 1

than the outcome of E ; only this way can we ensure that a
1

location will not be accessed outside its extent. Such checks

would not be necessary were we to confine our remarks to a little

language like Algol 60 [13], which shrinks V into B and does not

permit blocks to return procedures as results, but here they are

crucial. In fact we even require more sophisticated tests than

those of 1.5.3, where we were content to distinguish between

local variables and three varieties of global variable.

The predicates we adopt take as arguments a program, an

integer (yielding the level of the block to which we revert after

runnlng the program) and an environment; more precisely, corres­

ponding to the four major valuations we introduce e:Exp+N+U+T,

g:Exp+N+U+T, d:Dec+N+U+T and t:Dec+N+U+T. The members of U thus

invoked associate with each identifier the block level of its

most recent declaration, thereby restricting what can stand as

an expression exit. We also differentiate between those denota­

tions which are locations and those which are not by providing

p:U with some a:L in the first case and some S:V in the second.

To increase the depth of nesting of the blocks we adjoin to p any

state ITo:P which can be chosen at will. The dependence of the

predicates on operations performed during the execution of the

program is chimerical, because for any declaration (whether by

incidence or by reference) we can determine how many blocks surround

it purely by examining the text of the program. Consequently a

compiler could test programs to see whether they satisfied these

constraints. It could not, however, predict the sizes of the

stacks needed because we do not require members of L* to have

denoted constituents; were we to do so we would effectively be

205

eliminating arrays with dynamically varying bounds in favour

of those with fixed bounds.

Before discussing the predicates we shall set down a

recursive definition of them thus:

e[ED =Av p. g~ ED (VA (# pITre cD +1)) P[IT 011 r e c] [ex*1I.lHD] [S*1I:t]" ED] ;

g~ ID =AVp. #p[I] >o+v;>p~ III +1+2 .false;

g~BD=Avp.true;

g[f n () ED =Av p. ((# p[res D>o+v;, p[re s] +1+ 2 • fa ls e) v- fre e [ED ~ res])

A/\{g[Ihpv-free[EHID II:Ide}

Ae[EDvp;

g[fnI. Ell =AVp. false;

g[fnIl·····In·ED=AvP.false;

g[fnI. .E]=AVp. «#p[res] >o+v;,p[resD +1+2 .false)V-fredEH resl)

A!\{g[Ihpv-free[EUI] II:Ide}

Ad ED(VA(# p[re d +1))p[IT 01 1 rec][SI II] ;

g[fn I 1 ••••• In' • Ell =Av p. ((# p[res 11 >o+V;, p[res 11 +1+ 2 • fa l s e) v- fre e [Ell [res])

A!\{g[IDvpv-free[ED[ID II:Ide}

Ae[E](VA(1/0[rec!+1))p[lT OI IrecHS*1 1< 1 1 , ••• ,In) J;

g[OE] = A" p. e [E] (# p [r e c] +1) P ;

g [Eo >IE 1D=Av p. e [Eo 1 (# p[r e cD +1) PAS [E11 (#p[r e c] +1) p ;

g[E :=E 1]=AVP. (AVO' (Av1·e[EohoPAe[E1h1P)
o

/\{I:exit[Eo]+(ravelpp[ID+1+1:L+p~I]+1+2.Vo)·Vo

I I : Ide}) (# p[r e c1+ 1))

A(E has no exits of the form get E, val E,O

~ inside E or C E);

2 J

g [E1 ••••• Erz : =Eo 1= AVp. (AVo' (A v 1 • e [E1]v 0PA••• AS [En] V0 PAS [EO]v 1 P)

!\{-I:exidE]§ ••• §exidEn]+V '
1 o

rave l p p [I] +1+ 1 : L+p [I] +1+ 2 •V 0 I I: I de})

(#p[red+1)

A(E has no exits of the form get E,
m

val E, ~ i nsi de E or E E when 1 c mc n) ;
2 J

206

g[get 1]=e[EI;

g[put II=eII11;

glE aug E11=Apv.eIEo]vpAeII1]vP;o

gl I 1 ' ••• , In I =Apv • eI I 1]) VpA ••• Ae I In]v p ;

gl $I] =e1 II;

g[E$1 =e1 II;

g[fII =el II ;

g[If] =e[EI ;

g[E oI 11 =Apv. gl I o]v pAg[E 1I (#p[re el +1) p ;

g[val II=AVP.elEl(VA(#plreel+1))p['TT0//ree][l-//resJ;

g[res IJI=Avp.e[Elop;

g[goto II=Avp.elEl (#p[recl+1)p;

gIll inside L] =Avp.elEl (VA(#p[reel+1))p['TT //reeJ[a*//.1ITllI][B*//411]Jo

AdITllJlop;

g[Eo; I11=Avp·g[Eol(#plrecl+1)pAg[E1Ivp;

glif I then I else £21=AVP.e[Eol(#p[reel+1)pAg[I1IvPAg[I2Ivp;o 1

g[while I do I 1=AVP.eII l(#plreel+1)pAgII 1(#p[reel+1);
o 1 o 1

gl I:II =gllE];

gUI: :EII=g~L:1 ;

gil (E)I =glEI ;

d[I=II =Avp'faZse;

tp=EI =Avp.e[EJI (~p[reel +1)p;

d[I 1 ,··· ,In=II=AvP'faZse;

tP , ... ,1 =II=Avp.e[EI(#p[ree]+1)p;

1 n

dJI==q= AVp. e[IJI (#p[recl+1)p;

tP==E]=Avp.e[EI (#p[reel+1)p;

dJI , ... ,1 ==II=Avp.e[EI(#p[reel+1)p;
1 n

t[I 1 , ••• , I n==Ell = Av p. e [I I (#p[re cI +1) P;

d[II 0 wit h i n 111 I = Av p. d[II 0lop Ad[111 lop [a * / J.I [111 JI J [13 * / /Jf1[111 I J ;

207

t [Ll 0 wi t h; n 6] = i\ v P. d[6] 0 pAt [6] 0 p [a*11.1 [6]] [B* IIJf'1[6 1]]
1 0 1 1

A(Jf'1[6
0

] §J[Lll] and .1[6
0

] !i"l1I 6
0

] §.1t1[6
1

]

have no repeated elements);

and ... and 6]=i\vp.d[Lll]vPA ••• Ad[6]vp;

n n

and ... and 6]=i\vp.t[6]vPA .•• At[Ll]vp;
n 1 n

6] =i\vp. t[Ll]vp[a* / /.1 [61] [8* / /;f'[6]] ;

t[rec 6] =t[6] ;

d[(6)] =d[6];

t[(6)]=t[61.

Owing to the difficulty in deciding whether fnu.u:=v, say,

satisfies the condition imposed on assignment we forbid the presence

of abstractions by reference. It would be possible to allow those

abstractions which did not contain assignments to their formal

parameters, but the necessary changes to the predicates are ex­

tensive and do not yield a wider class of computations: if I is

not covertly assigned to in L 2.5.3 establishes that E is equivalent

to e[E](i\I'.I'=I~false,tpue), and thus a version of 2.5.4 confirms

that fnI.E can be replaced by fnI .• E, which we allow in any case.

Similar considerations govern declarations by reference which are

not recursive, for unless I=E is equivalent to I=$E it may later

give rise to an illegitimate assignment. As recursive declarations

are still permitted x=$y, say, can be replaced by rec x=y.

Abstractions by incidence must be severely constrained

because they are used both 1n function applications and as ex­

pression exits. A failure to confine their free variables to those

which can be passed out of the surrounding context can lead to a

disaster like 3.1.5.

It is convenient to prohibit get E, val E and A inside E

from appearing as exits on the left hand sides of assignment state­

ments. We could devise a function which would list all the

'secondary' exits from the exits of an expression; were this to

208

be substituted for exit in the predicates we could remove the

prohibition, but the effort would not justify the outcome. More

unfortunate is the interdiction on the appearance of E2E3 among

the exits of the left hand side of E :=E as this eliminates1 ,o
such programs as x=nil aug 0 inside xl:=O. However even it could

be removed by determining all the exits of abstractions in E2 as

well as of E2 itself; in particular our predicates could be ex­

tended to cover the most important case, when E is an identifier.2

Another category of programs which is needlessly excluded

is typified by (Z: dummy; Z); dummy, in which a value is passed out

of scope but no ill-effects arise because it is immediately dis­

carded. Again we could easily modify the predicates (and the

proof of 3.2.8) to deal with this category but the ends do not

justify the means.

3.1.5. Example.

Let Eo bc x=o inside «l+(x:=val (fnz.res 2); 1); E1) and

let E1 be if x=2 then x else xIx). When evaluated using stack

semantics EO does not return the answer 2.

<tTake any proper Po and 00 and define ao=newo ' o

Pl=PO[(Po,O ,°0) //rec][ao//xJ, °l=updatea Oo ' a 1 =newo 1 ,o o

lT 2=(P1 ,(a ,l) '(1) , P3=P 1[lT//reC][AP.mv(remiH 3)p[lT 2//recJ//resJ,o

<p =91Ifnz.res 2!P 3 , 03=updates(a ,O:l><<P '<P O) 01' a 2=new0 3 ,o O O

Plj=divertP (rend[reS 2]P 3)[(P1 ,() '(3) //rec][¢o//z] and
1

0lj=updateo:
2

20
3

• For any So set sl=APU.~[El!(mv(remitso))P(utl),

s2=\pu.svs1« 1+u~2) §ut3) and

s3=sV(Apu.s2P« dummy) §ut2)oupdate(u~2)(u+1)). Ignoring the alter­

ations to p[rec! caused by using ~ instead of ~,

209

I§[EO]~OPO()OO=I§[1t(x:=val (fnz .. res 2); 1)]~1P1()01

='§[x:=val (fnz •• res 2)]~2P1(1)01

=q[val fnz •• res 2]~3P1(ao,1)01

=\§[fnz •• res 2](mv(remiH »P (a ,1) 01
3 3 O

=~2P2(1) °3

=~ 1 P 1 (2) °3

=\§[x(x)] (mv(remit~o))P () 031

=1>o(mv(remit~o)P1(aO) 03

=<;f[res 2] (mv(remit(mv(remiH »))Plj() 03 o

=mv(remit~3)plj['1T2//ree](2) 03

=~3P1(a) 0lj3

Other forms of semantic equation yield the intuitive

meanlng of the program, in which a location containing 2 is

reTurned as the result.~

210

3.2. Preparations for an inductive proof.

3.2.1. Locations accessible from outer blocks.

Here we sllall trace out the relation between evaluating a

program using new stack semantics and evaluating its transform

under the rules of 1.4.6 using new store semantics. Because the

semantic equations of appendix 3 regard functions and label entry

points as consisting purely of code they do not provide all the

information we shall require to construct this relation. In

particular they do not explicitly indicate what area of store is

to be retained when a jump is made nor which markers are to be

adjoined to the environment when a function is applied. We there­

fore deviate slightly from our intention not to preserve portions

of the state vector distinct from it by taking J to be IOxN and

F to be OOxU. Thus both ~ITI:EIspuO+l and g[I::ElspuO+l are now

(Ie p , U' 0 ' • q; [E I s (re vert pp ,) (p op uu ') (re 8 tore 00 ') , # P [re c1+1>, wh i Ie

$f[fn ()EI is

Ie p . (Ie s ' p ,U' 0 ' • (Ie p" . U' +1 I L*=() +;t[Ell (re mi t s ') p"(U' t 1) 0 ' , T)

(di v e r t p , (re nd[fn ()EI p) [(p , , U' t1 ,0 ') / / re c]) ,

rend[fn ()EI p) ;

analogous modifications are made to '!J[val EI and to'[~1 when ~

is any other form of abstraction. These components play no part

in the semantic equations, so that 19[9oto EI, for instance, is

nowet[Elo(le~pu.(U+1+1)p(ut1)); consequently an easy proof

(vaguely reminiscent of that of 2.3.9) suffices to show that

these equations are essentially equivalent to those of appendix 3,

which do not contain so many superfluities.

Even wi thin the predicates the roles of N in J and of

U in F will be limited to supplying members of [Ide~NJxNxN. Nand

L~T. To illustrate this we now give the basic correspondence

between the state vectors * and ~ arising from a program and its

transform. Owing to our simplified treatment of recursion W

211

reduces to L+B+L*+J+F+J ln stack semantics, and we must arrange

that the state n, which is evaluated using store semantics, con­

tains no members of G or P. To extract the witnessed values

from the state ~ resulting from stack semantics we apply ravel,

so that

hoten=AGlB.V{V{l,;v,;#P[I] Al,;v,;#pU]+w=(ravelppU] h+1, p[11 h) ,false

11:Ide}

v (1,; v,; #p[re 5] AH v,; #p[re 5] +w =(ravel pp[res 1+v +1 , p[re 5] +v) ,

Jal-Be)

Iv:N};

gyven=AGlO .V{ HV';#WA1';V,;#w+Gl=(u+v, \)h) .false Iv: N}.

Following 2.1.6 we set

acce s s = AGifl. ((w: L+(areaw6+ho Idw6 , T) ,w) , (w: L+(areawa+ho ldwa , T) ,w»
The tracing algorithm thus becomes

seen=AvOvlGlOGllf1·Vl<l+GlO=Gll'

w : L vW1 :L+seenv O(v 1 -1)Gl (accessGl 1f1)'il,1 o

Gl : BxB+false,
1

Gl 1 : L* xL*+V{ seen v 0 (v 1 - 1)Gl oGl 2f1 Ag YV enGl 2Gl 1 IGl 2 : WxW} •

Gl 1 : J xJ +V{ see n v 0 (v 1 - 1)Gl oW 2fI

A(hotenGl 2(level(wl+2)~+1.wl+2) A\!o<3

V gy venw (level(w1+2)H2,W 1 +3) AVO <2)
2

IGl :WxW}.
2

wl:FxF+V{seenvO(vl-l)GlOGl2f1AVo<3

AhotenGl (divertp(w +2).W +2) IGl :WX W}.
2 1 1 2

Gll:JxJ+V{seenvO(vl-l)GlOGl2f1

A(hotenGl (level(wl+2)~+1.wl +2)AV <32 O

vgyvenw (level(w +2)H2,W +3) AV <2)
2 1 1 0

false.

212

On this occasion we let

kent;AVW~.V{V{seenvviwwi~

lI(hotenwi~vgyvenwiOvgyvenwi (6+2 ,iH2))

IV
i

:N} IW
i

:WxW}.

The results of 2.1.7 and 2.1.8 remain relevant, so that,

Cor instance, if va' vi' WO' wi and ~ satisfy kentvowi~;true and

seenvOviGJOwl~;true then kentvowo~;true.

We are also interested in those parts of the state vectors

which can be witnessed at levels corresponding to the heights of

the environment and the stack on entering outer blocks. Accordingly

we write

knOWn;ATIOw~1·V{V{seen3vlwwl~1

lI(hotenwl(revertpoPi,revertpoPl)

vgyvenw1(popu '\ ,popu v) vgyvenw (6+2 ,IH2))o O i 1

Iv1 :N} Iw :WxW},
i

for which knownTIw~=kent3w~ for all wand ~ with neat(ravelpp,p) ;true

and #u;#v. Neither kent nor known traces the values witnessed in

the output stream, since they cannot affect the future course of

the computation and may demand environment levels higher than the

prevalent one.

Owing to the rather stringent restrictions imposed in

3.1.4 it is to be expected that the values witnessed at points in

the state vector attainable from outer blocks will be such that

they could themselves have been set up while these blocks were

being executed. Thus if they are in J the associated environments

and stacks must not be higher than those pertaining to the blocks.

Such properties can be expressed in terms of the projections of

2.4.1 using

213

found=A~O@~1.W;Lvw:L+(w:L+areaw60.false)ACW:L+areaw~1'true),

@:L*xL*+#w=#wAA{known~oa~1v-gyven&@la:LxL},

@;Jx J +W+2s#po[rec]

AA{E:Lv1::VV-gyven(levelCw+2)~1+2.W+3) IE:ExE}

AqoW+2=revertClevelCw+2)~1+1)C~qoP1)

AqoW+3=popClevelCw+2)~1+2)C~qoU1)'

@:FxF+neat(W+2,W+2)AtidyCW+2)po

ACravelCdivertP1cw+2»(~oCdivertP1Cw+2»)

=~qoCdivertp1Cw+2»),

w:Jx J +W+2s#p [rec]o
AA{E:Lvs:Vv-gyven(levelCw+2)~1+2,W+3) IE:ExE}

AqoW+2=revertClevelCw+2)rr1+1)C~qoP1)

AqoW+3=popClevelCw+2)~1+2)C~qoU1)'

true.

together with suitable versions of Po and qo' which will be provided

in 3.2.4.

3.2.2. Proposition~

Suppose that ~o. ~1 and ~2 satisfy revertP 2PO=revertp 2P1 ,

revertP 2Po=revertp 2P1' popu 2u =popu 2u1 and popu 2u =popu 2u1 , IfO O

known~2Caccessw~1)~O=truewhenever known~2w~O=true then

known~2w~O=true whenever knownrr2w~1=true.

<Assume that for some v and all wand w if a 1

seen3vwOwl~1=true and knownrr2w1~O=true then knownrr2wO~O=true. Let

W and w1 be such that seen3Cv+l)WOw1~1=true and knownrr2@1~O=true.o

If w1 :L or w1 :L seen3vwOw2~1=true and knownrr2w2~O=true, where

w2=accessw1~1' If w1:L*xL* seen3vwOw2 ft 1=true for some w2 such that

gyvenw 2w1=true. Thus inevitably seen3vwOw2~1=true for some w2

having known~2w2~O=true. and by the induction hypothesis

knownrr2wO~O=true.

Consequently for all v, W and w1 when seen3vwOw1~1=trueo

214

mailto:found=A~O@~1.W;Lvw:L+(w:L+areaw60.false)ACW:L+areaw~1'true

and knownrr2wl~O=true knownrr2wl~O=true. As

hotenw 1(revertp2Pl,revertp2Pl} ~knownrr2wl~O and

hotenwl(popu2ul,PoPu2ul} ~knownTI2wl~O we can conclude that

knownTI2wO~1~knownTI2wO~O for all w'>O

Suppose further that when knownrr2w~O=true

accessw~o=accessw~l' By the argument above knownrr2w~1~knownrr2w~O

for all W, so when knownTI2w~1=true accessw~l=accessw~o' Accordingly

we can use the same argument again and assert finally that for all

3.2.3. Proposition.

Lot {n } be any sequence such that ~ 1~~ for all m~o,
m m+ m

and suppose that for all v and wkentvw~o can only be true if w
is proper. Then for all v and whaving kentvwCUW)=true there is

Tn

a sequence {w } such that w l~w for all m~O, kentvw ft =true for m m+ m m m

all m~O and w9jw .
m

<{Tho proof of this is a dreary induction on seen like that

of 2.4.3 which we can ignore without detriment to the quality of

life. The exact counterpart of 2.4.3 can also be estahlished by the

same means when we have set up suitable reflexive predicates.>

3.2.4. Their final forms.

Pleasing though it may be to have formalized an implemen­

tation of Mal with less complex domains than are needed in 2.1.1,

we cannot rest content until we have confirmed that the stack

valuations compute the correct answer for any program obeying the

constraints of 3.1.4. This we shall do in the next section by

showing that evaluating an expression under new stack semantics is

equivalent to evaluating its transform under new store semantics;

together with 2.6.9 this will serve to validate the equations of

appendix 3. The intention of the proof is quite different from th~t

215

underlying some results on implementations [7]: loosely speaking,

whereas others may be concerned to verify that two ways of

removing the top element of the stack do the same thing we wish

to establish that this 'thing' is the right one. As pointed out

in 3.1.3, though the details of a compiler can be formulated in

our framework slight variations in the organization of the

environment do not by themselves seem to warrant such treatment.

Later we shall introduce our ultimate versions of the

predicates of 2.4.5; the propositions about them which we shall

then verify will culminate in 3.2.8, where the adoption of remit

will be vindicated. First, however, we must set up reflexive

projections suitable for use with the tracing algorithms of 3.2.1.

To do this we simply omit the mappings on some components of the

domain of witnessed values from the projections of 2.4.2. As W

is now L+B+L*+J+F+J while J and Fare IOxN and QOxU respectively,

qO=Aw.w:L+w.w:B+w.w:L*+w,

w: J+w.

w:F+w.

w: J -+w,

.L

and when n;:,o

q l=AW.w:L+w.w:B+w.w:L*+w.
n+

w:J+(Zq °Xq)w,
n n+l

w:F+($q O~q l)w.
n n+

w:J+(i!q °Xq)w

n n+ 1 '

The functors we use are defined precisely as in 2.4.1 with the

sole exception of that for U, which continues to ignore :Ill (the

functor on the domain of denotations) but is now given by

We shall not bother to provide the analogue of ~ appropriate to

216

stack semantics, but it is obvious both that such a function

exists and that the projections above concur with a suitable

variant of 2.4.2.

Just as before we are interested in countable conjunctions

of relations which truncate their arguments using reflexive pro­

jections. Thus for every n there are P +l and a +1 which togethern n

with a form of fit give rise to

a 1=A2rro.f\{a +l(lq E6Go ,lq ~pua) jp IfiAfitfiflo}
n+ n n n n+

and to a=Aerro.l\an+12rro' Here iqnE refers to the projections

defined above whereas lq ~ refers to those of 2.4.1; similar
n

remarks hold for the moieties of every other kind of pair, so

that w ' for instance, is Awfl.w «q XQ)w)«~q x~q)fI).n n n·n n n

Our definition of Po must offset the simplicity of the

domains by being very prolix. Because label values in stack

semantics do not incorporate environments it is necessary to

ensure that the current state can provide them when required; In

particular the list of states preserved on entering nested blocks,

p~rec], must be ordered according to the heights of the stacks

(and the areas of used storage) and must be subject to the function

tidy of 3.1.1. We also subsume in Po the assertion of 3.2.1 that

any value obtained using known without leaving a portion of the

state present in an earlier block has to satisfy found if variables

are not to be passed outside their scopes. In addition the pre­

dicate retains most of the features of its counterpart in 2,6.1

and thus turns into the amorphous agglomerate

217

PO=\fI.neat(ravelpp,p) A#U=#\)A#6+2=#cH211#6+3=#cH3

AV{!\{areaa 6Aareaa ~ll~m~n}~\I{a =alll~m<l~n},falseI2~n}
 m m m

AA{WO:LAWO=Wl~WO=wl,truelkent3woflAkent3wlf1}

A/\{WOsrrv-gyvenS(6+3,~+3) I S:VxV}

AI'{ (\ rr 0 rr 1 ·/\{foun drr 0 wfl v- known rr 0 wfll Gl: WxW}

A(revertpoorevertPl=revertpo)A(popUOoPoPul=PoPUO)

A(restoreooorestoreol=restoreOo)Atidypopo

(level\J'ff)(level(\J+l)'ff) I\J:N}

A!\{!\{-(l~\JO~ #i5[1] AL\J #p[Ii])~true,1 ~ 0

po[Io]+\Jo:VV-(P[Io]+\Jo=pIIln+\Jl)~true,

(-V{ know n (level (ri [1] +v 0+2- 1) if)(E , P[1] +\J 0) fli E : E} 0 0

AIo=I1Ap[Io]+\Jotl=P[Il]+vltl)

l\Jo:NA\Jl: N}II :IdeAI 1 :Ide}o

Amqop=~o(ravelpp).

The closing clause of this predicate will be required in

3.3.4 and 3.3.5. That relating P[Io]+\Jo and p[I 1]+\Jl is an

amalgam of two others: 3.3.3 will implicitly use the fact that

when ravelp p[I]\+'IJ +1:L we also have
o o

known(level(P1Io]+\Jo+2-1)1f)(E.P[Io]+\Jo)fI=false for all E. whereas

3.3.7 will require 1 0 and Ii to coincide when pIIol+\Jo:L and

p[Iol+\Jo=P[I11+\Jl' The first of these conditions holds only

because in 3.1.4 we prohibited abstractions and some opclarations

by reference; the second. however. is inevitably valid but

would be irrelevant were we to adopt the alternative forms for

,r[I=EI andff[I1 I =EI mentioned in 1.3.4. n
Since the tracing algorithms of 3.2.1 do not take

account of the output we restrain it in Po by means of

wo=\Glfl.w:BxB~bGl.(w:LAW:E)vw:JxJvGl:FxFvGl:JxJ.

As usual we build up a sequence of predicates w each of which n

induces some a 1 on AOxAo together with

n+

218

Before defining them we clarify the description of c 1 above by
n+

setting

fi t= Hi 0 11 1' P1 11 1

AA{E:Lx LVE: VxVv-gyvenE0 !E:ExE}
1

A (tiq 0 XlIlq 0) Po = (aq 0 X5:j 0) P1 A (!q 0 x!'q 0) °0 = (!'q 0 x!'q 0) °1

Arestorea l orestorea =restorea lo

Arestoreb l orestoreo O=restoreb l

AA{A{known(levelv~0)a1l1v-known(levelv~0)a1l0vv>#Po[rec]

la:LxL} Iv:NL

The only noteworthy feature of this function is its insistence

that on executing an expression no fresh locations become

associated with the environment levels of outer blocks to which

control may be restored.

As intimated by 3.1.4 the exits of an expression permit the

return of only those members of E which could have been present on

entry to a specified block. The substitute for set therefore takes

an additional parameter, the depth of nesting of the block, and in­

sists that the top element of the stack conforms to it. More

formally, we introduce

pat=;\il Ovil l · «uoH :LAknown(levelv~l)< uoH ,uoH} ilo)

v(u fl:L+-area(u fl)b l ,true»o o

Afound(levelv~o) (access< uoH,uoH) il o)1I o

Afit« PO,u otl,6 0}'< PO,D otl,b o}) TIl'

Notice that when v=ffpo[rec]B and E=access<u fl'U fl} ilo we requireo o

only that found~oEilo=true rather than that found~lEilo=true in

order to provide for such programs as nil aug false. Corresponding

to c 1 we haven+

j 1=\2v;0·Na l(j!q £pua,lq r,puc)-} Ip1lApatilvil } and
n+ n+ n n o

j=\evTIo·Ajn+levTIo·
A A A

Plainly jn+l=\sVTI.jn+lsV(~qoxiqo)il)and in fact we even

219

know that Wn+1=AW~.wn+1w((~qoxtqo)~)'where

wn+1=AW~.WoW~

A(W:JXJ+!\{cn(wH,wH) « p ,v ,6) ,wt1§(a»
o o

AW+1=APUO.(w+1)(revertp p)(popv u)(restore6 o)o o 0

ITI =leV8l((u+2)rr},o

GJ:FxF+!\{c «WH)eorevertPo,(wH)(~orevertp)>11n 0 1

Ifit~1~1Atidy(w+2)(levelvTIO+1)AjneVTIo

ATI =(divertP (w+2),(v H) §v ,6)1 O 1 O 0

ATrl=(divertPO(w+2),(U1H) §uo,ao)

A!\{aptljJ(P ,w+2)
1

v-aptljJ(divertp(w+2) ,w+2) IljJ}},

w:JxJ+!\Un(wH,wH) 0«po,v ,6) ,wt1§(a»o

A(w+l)P =remit(w+l)P [TI //recJ1 1 O

ITIo=level(w+2)rrA~060=~qo(revert6061)}'

true) .

Having provided the necessary recurrence relations we

can write W=Awll,l\wnw~, p=HAPn+1~ and a=A61\a +1 6. Before n

relating these to the syntax of Mal we supplant the function apt

of 1.4.6 with a version appropriate to stack semantics, which is

apt=AljJ$.neatp

AI\.J #p[I] =ov (#p[I] >OA #ljJ[I] =0) +true,

rave lp p[I] +it1 : L+p [1] H : LA (ljJl I] H =fa l se) ,

p[I] H : VV (p[1] H : LA (ljJ[I] H =true)) II : Ide} .

The predicates defined on program texts are very similar

to those of 2.4.5. In the present case, however, we do not wish

to assert that every program is equivalent to its transform if

opt is chosen suitably, for evaluating the program of 3.1.5 using

new stack semantics will have a disastrous effect, whereas

evaluating it in new store semantics will not. Thus we demand

equivalence only when the program is subject to the constraints

of 3.1.4 and set

220

E="AE.N c(Inn ~ ,/[. [Eh] ~> fIv-e[EbiSl ap t1jJpArent[EUAj2vTI} ;

L ="AE .Nc(g>nn ~ ,~[. nun 2> 7lv-e nbiS lap t1jJpArent[EUAj 2viI} ;

R="AE .;\{c(arnn ~ .~[, nun2> 7lv-en~ vii lap t1jJpArent[EUAj2vTI} ;

G="AE .I\{ c(~nn Eo!!f[~ nn 1jJ n~> ff v-g[En viS lap t1jJpA torn HUAj 2VTI }

A <lHn §:t1I En =()

vl\U\{w(~[En~6v6§~[En~6v6+Vl'

swap (Jnn!iXl[En) (j'hHU]!iXl[j [Eun)

(~h Hun ~i30 §9[P [Eun ~i3v)+v1> ff

11"V1"#j'[En mE]}

v-g[EnviS!apt1jJpAtorn[En1jJAj2vTI}.

The predicates on declarations also bear a marked re­

semblance to those in 2.4.5, being

D="A 1I ·Nc(~[LID ~ ,!l'[d' [1IU n2> ff aV-d[1I na is a !I\{ c 2;1 Ispun [lIJI a1jJ'il aill }} ;

T="AlI ./\{c(.r[1In~ ,:r1[' [lIU] 2> il av-d[1I] ais a II\{ c 2iT 1 Ispun [lI] I1jJil aill } }.

Here we describe the state following the execution of a

declaration using an elaborate set of properties the purpose of

which will be clarified in 3.3.7. For the present we merely

include them in a test function spun, which will be given helow.

This function is rendered more complex than sewn bv the need to

deal with transformations which map recursive declarations by

incidence into recursive declarations by reference which are

formulated in terms of environments appropriate to store semantics

(rather than ones appropriate to stack semantics). More

specifically, we let

221

spun =A6\)ljJii' aii' l' (Ail aii' 1 .!\{I :J'[6] ~ 6] +revertp P1[I] tv=p [I] tvo o

A (I :.I"[6] +rave l 15 1 1\ [I]I +1+ 1 : L

ravelp1 P1[I]+1+1:V)

AP 1[II +1+2= #P [rec] +1,o

revertpoP1[I]=po[I]ArevertpoP1[II=po[II

A(#p a' I] >o+P 1[II +1 =Pa[I] +1"P1[II +1 =p a[I] +1 ,

true) II: Ide}

A!\{\)=o+revertp P1[II =P ' I] •o o

I:J'[61+revertpop1[I]t1=Po[I]t1

Aravelp p [I]+1:Lo o

AP 1[II +1+2=P [I] +1+2.
O

I:Jt'1[6] +15 [II tlead1 (P [I]) =p [II tlead1 (p [I])
1 1 o o

Aravelpopo[I]+1:VAP1[I]+1:LAPo[I]+1:L

A P1 [I]I +if 2 = Pa[I] +if 2.

trueII:Ide}

AP1[re s] =Pa[re s] AP1[reel =Pa[re eI

AP1 [res] =P [res] AP1[ree] =po[reelo

Arestore6 orestore61 =restore6
0 0

Arestore~oorestore~1=restorebo

A!\{/\{known(level\)1rrO)dii'ov~known(level\)1rrO)aii'1

V\)1>#po,reellli:LxL} 1\)1: N}

AaptljJpoA01=OoAfitii'1ii'1Afitii'oii'o

A(AljJ'.aptljJ'P1Atorn[6]ljJ')

(\) =o+ljJ[fa lse * I'" 6] Hopts~' 61) ljJ/Jt1[61] ,ljJ))

«~qox~qo)ii'o)«~qox~qO)ii'1)'

Before proceeding to the applications of these predicates we

mention the result which asserts that they are indeed what we

want. Like 2.4.5, this result could be formulated in terms of

the general theory of 2.2.8, but the notation needed would be at

least as complex as that used above.

222

3.2.5.	 Proposition.

Suppose that a (l.,l.} =tY'ue and that for any n;:'O if 1J is1	 n

inclusive and every wand ~ having kentlw~AP1~=tY'ue satisfy

1J «q	 xq)w)~:J1J«q xq)w)~, 1J lw~:J1J w~ and lJ w~:J1J l«q Xq)w)~
n n n n n n+ n n n+ n n

as well then a +1 is inclusive and for all 0 00 is proper,n

a 1((I!lq xl!lq)o)=a((illq xl!lq)0). a 20:Ja 10 andn+ n n n n n+ n+

a l0:Ja 2«laq xl!lq)0). Then lJ. P. c, j and a, defined as inn+ n+ n n

3.2.4. are the unique inclusive predicates such that

a(l.,l.} =tY'ue, for any n~O if lJW~:JlJ w~ and
n

lJ «q Xq)w)~:JlJ«q xq)w)~ whenever kentlw~AP1~=tY'ue then n n n n n

aO:Ja 10 and a 1((illq xl!lq)o):Ja((Jq X0q)0). andn+ n+ n n n n

(i) lJ=AW~.lJOW~

A(W:JXJ-+I\{e(wH ,wH} « po,Do,a) ,wt1§(it}}

AWH=APUO, (wH) (Y'eveY'tpop)(popUoU) (Y'estoY'eaoo)

1~0=[eve[(w+2)~},

w: FxF-+I\{ e< (w H) ~ 0 re ve Y' t Po' (wH) (~ 0 re ve Y' t po)} fi'1

Ifit~1~lAtidy(w+2)([eve[v~o)Aj20vo~0

ATI =<diveY'tp (w+2),<u H} §uo,a }1 o 1 o
A7t

1
=< divertpo(w+2)'(\)lH} §\)o,it o}

Al\{apt1jJ< Pi ,1M2}

v-apt1jJ< diveY'tp(w+2),w+2} 11jJ}},

w:JxJ-+!\lj< wH,w+1> 0< < po,uo,a} ,wt1§(0»

A(W+l)Pl=Y'emit(w+l)Pl[TI O//recJ

1~0=[eve[(w+2)~Aaqopo=~o(Y'eveY'tPoPl)}'

tY'ue) ;

(ii) p=A~.po~A!\{lJw~lkentlw~};

(iii) e=A2iT.!\{a< eoouooo.2povooo} Ip~oAfit~o~};

(iv) j=A2v~.!\{a<~pouo60.2pouoo6Ip~oApat~ov~}

<t:The proof is very similar, hath in outline and in detail,

to that of 2.4.8. Thus first we show as in 2.4.6 that Pn+2~:JPn+l~

223

and p 'fbp 2 CCtkl xJl'l) ii') for all n;' 0 and ii', and then wen+l n+ n n

follow 2.4.7 by verifying that p and the other predicates are

inclusive. Similarly the demonstration that the predicates are

unique is based on 2.2.6. None of the techniques involved are

novel so we shall not discuss them at all.?

Henceforth we shall assume not merely that a(1,1) ;true

but that a(T,T);true as well. LemJJ1ata like 3.3.1 will also re­

quire the presumption that L is infinite in order to be sure

that the transform of a program does not run out of store unless

the program itself does. As our current version of ~~ii' depends

on mqoP and ~qou whereas that in 2.6.1 does not, we shall

analyse the equivalence of appendix 3 with store semantics only

after giving three further results.

3.2.6. Lemma.

Suppose that ii'o satisfies poii'o;true, and define TIl to be

C~ox~o)ii'o' Then for all ~ kentl~ii'l;true if and only if

kent3wii'1;true; in addition, if wsatisfies kentlwii'o;true then

found~o~ii'o;true.

<tFrom the definition of seen in 3.2.1 it is plain that

when kent3wii'1;true we have kentlwii'l;true also. Moreover we

know that P ii'l;true, since for all v and w kentvwlii'l;true ifO l

and only if kentvwoii'o;true for some W having wl ;(qo xq o)w ' o o

Assume that for some v and all W and w if seenlvw wl ii'lo l O

and kent3w ii'1 are true then kent3w ii'1 is true, and take any Wl o o
and w having seenl(v+l)WOwlii'lAkent3wlii'1;true. If wl : L or wl : L

l
seenlvwOw2ii'lAkent3w2ii'1;true, where w2;accessw l ii'1' If wl :L*xL*

seenlvw w ii'1;true for some w such that gyvenw 2wl ;true. If
O 2 2

w:JxJ seenlvw w ii'1;true for some w having
l O 2 2

hoten~2(revert(w +2)P l ,w +2) ;true or gyvenw2(popCwl+3)ul,wl+3) ;true;l l

as found~lwlii'l;true and C~qox~O)ii'l;ii'l' in fact we have

224

w1+Z=revert(w1+Z)P1 and W1+3=pop(W 1+3)U 1, giving hoten~z61=true

or gyvenw v =true. If W1:FxF seen1vwowZ~1=true for some W having
Z 1 z

hotenw (divert~1(w1+Z),w1+Z) =true; because tidy(w 1 +Z)P1=true,z

P1=ravel~1P1 and divertP1(w1+z)=ravel(divert~1(w1+Z))(divertP1(wl+Z)

we actually know that hotenwz61=true. Finally, if w1 :JxJ arises

from val we repeat the argument used for label entry points.

Hence under all circumstances there is some W such that z

seen1v~owZ~1Akent3wz~1=trueand from the induction hypothesis we

can infer that kent3wO~1=true.

As our assumption is valid when v<1 for all v, w and o

~1 having seen1vwOw1~1Akent3w1~1=truekent3wO~1=true. Moreover

kent3~1~1=true when hoten~161=true or gyvenw
1

0 1=true, so

kent3~O~1=true whenever kent1wO~1=true.

Tak~ some w3 having kent1w3~O=true; then, writing

w4=(Qo xQ o)w 3 , kent1w4~O=true and kent3w4~O=true. Since PO~1=true,

foundTI1w4~1=true and from the definitions of 3.2.1 it is plain

that foundTIow3~O=true.~

3.2.7.	 Proposition.

Let ~O' ~1' ~z and ~3 be pairs such that P1~O=true,

p~z=true and ~n+1=(iqoxtqo)~n when n is 0 or 2. Set vo=#~o[rec],

and suppose that levelvTI =levelvTI and that
1 3

known(levelvTIo)a~o~known(levelvTIo)a~2for all v~vo and all Q.

Assume also that restore6zorestoreoo=restoreoz, that

restoreuzorestoreao=restorea and that for all vs' v and Igz

having	 P [I]+V t1=Pz[I]+v gt1 ravelpo~o[I]+Vs+1:L only ifo s

ravelpZ~2[I]+v9+1:L. Any pair w having kent1w~oAkent1~~2=true

satisfies w~1true also; in particular, if kent1w~z=true

whenever kent1w~o=true p~o=true.

qAs po~o=true, by 3.2.6 any pair whaving kent1w~o=true

225

satisfies foundrrow~o=true. Take any such wand presume also

that kentlw~2=true; because p~2=true we can stipulate that

found~2w~2=true and that wW~2=tPue when showing that ww~o=true.

The desired result is obvious unless w:JxJ, w:FxF or w:JxJ, and

since the third of these exceptional cases involves the same con­

siderations as the first it will not be discussed.

If w:JxJ the fact that found~ow~o=true assures us that

W~2~VO; hence writing ~4=ZeveZ(w~2)~0 we have

~qorr=ZeveZ(w~2)rrl=ZeveZ(w~2)~3=tqO(ZeveZ(w~2)~2)'From the

definition of fit in 3.2.4 and the knowledge that wW~2=true it

now follows that c(w+1 ,0'1+1) « 6,d,6 2) ,0'1t1§(02» =tpue and that

w~1=Apva.(w~1)(pevert6p)(popdv)(restope6a). Remembering that

found~2w~2=true we deduce that

(pevert6~1,popa~1)=qo0'1tl=(revert6~3,popd~}; applying an analogue

of 2.4.3 to our present reflexive projections we therefore see

2

that by 3.2.2 for all v and &

known(ZeveZv~)« r5,d,6) ,0'1t1§(00»
0

=known(ZeveZv~)a~o and

known(ZeveZv~)« r5,d,6) ,0'1t1§(02» =known(ZeveZv~)&~2' Together

with our initial assumptions these equalities imply that

fit« 6,6,6) ,0'1t1§(00» « 6,6,6) ,0'1t1§((2» =true; moreover by
0 2

3.2.6 for all wwe have

kentiw«6,G,6) ,0'1t1§(00» =>kent3«qo xq o)w)(J)q o(6,d,60) ,q 0'1t1§((1»
0 o

=> ken t 3 ((q 0 x q 0) Gl) ((\\-1
0

x tl? 0) 11 0) ,

which entails Pl« 6,l5,6 0) ,iiltl§(00» =tpue as Pl~O=true. Given any

e, TIs and ~6 such that c~TI6=true and Pl~s~fit1lS~6=true we have

ceTIs=true, for every ~7 satisfying fitTI 711 =true has fit~7116=trues

while the fact that P TI S=true ensures the existence of such 11 7 ,1

Hence c(w+1,0'1+1)«6,d,6) ,0'1t1§(oo»=true and wGHTo=true.0

If w:FxF note that tidY(W~2)60=true and that

tidy(W~2)62=true since found~oGl1lo=true and found~2w~2=true. In

226

consequence for any I with 1~#(w+2)[I] there are v and v g such
8

that ~0[I]+v8t1=(W+2)[I]+1t1=P1[I]+Vgt1;for all such v and v ' g8

ravel~0~0[I]+v8+1:L only if ravel~2P2[I]+Vg+1:L so, writing

~8=divert~0(w+2) and P =divertp 2(w+2), ravel p P8[II+1+1:L only ifg 8

ravelpgPg[I]+1+1:L. Hence every Wsubject to aptW(~g(W+2),w+2)=true

is also restricted by aptw(P8 (W+2),W+2) =true; inspecting 3.2.5 will

now confirm that as w~~2=true necessarily w~~o=true.>

3.2.8. Proposition.

Suppose that vo'
A

~o' ITo and ~1 satisfy

60=(revertp P1 ,revert~0~1) , ° 0=° 1 , If 0=P1 [ree] +1+1, #p [rec] =#~1[recl-1,o o
j20vo~0=true, P1~1=true and

A{/\{known(levelvlfo)a~ov-known(levelvlfo)a~1Iv:N}la:LxL}=true.Writing

v1=vO"#~1[rec] and ~1=(remiteo'~oorevertPo) we have j21v1~1=true.

<Take any pair ~3 having p~3"pat~3v1~1=true, and set

EO=(15 3+1'\)3+1), E1=access€0~3 and

~4=« revertp P3 ,(EO) §Popu0153,restore(Eo:L+updateEodummy60,60)63) ,o

(revert~0~3 '\)3 ,1l 3» ,

so that (e1P3jJ363'~1P3\)31l3)=(eOP41\04,2oP4\\(4) To show that

p~4"pat~4vO~0=true we require also

~ 5=((P3 ,15 3t 1 ,6 3) , (~ 3 ' \) 3t 1 , 1l3» and ~ 6 =((!\' 15 4t 1 .6 4) , (~ 4 ' \) 4t 1 , 1l 4» •

Observe that given any If of the form levelvlf for some v o

we can apply 3.2.2 to ~1' ~o and If, obtaining knownlf~~1=true if

and only if knownlf~~o=true for all~. Since fit~5~1=true we also

know that for all Q knownlfa~5=true only if knownlfa~1=true. Hence

for all a having knownlfa~5=true knownlfQ~o=true and, as

knownlfa~3=true and PO~3"PO~0=true, area&6 4"areaaIl 4=true. In

addition when ~ satisfies foundlf~~1=true the definition of found

ln 3.2.1 ensures that foundlf~~o=true.

To de~onstrate that fit~6~0=true we have only to verify

227

that !\{knownrr&ftoV-knownrr&ft61&:LxL}=true for all IT of the form

levelvrr for some v. For any whaving knownrrwfts=true we know
 o

that accesswft s =accesswft 6 unless, perhaps, w:L. In this exceptional

case w:L since kent3wft 3=true and P1ft3=true so it follows from the

paragraph above that areaw64Aareawo4=true and accesswft =accesswft 6 . s

Applying 3.2.2 to ft ' ft 6 and rr, for all wknownrrwfts=true if ands

only if knownITwft 6=true. As knownrr&ftsJknownIT&fto for all &,

knownIT&ft 6
JknownIT&ft for all a and fitft6ftO=true. o

Take any IT and v with rr=levelvIT ; pop6 o pop6 =pop6 so when o o

n is 3 or 4 for all wknownrrwft =true if and only if knownrrwft 2=true.
n n+

The argument above thus establishes that for all wknownrrwft 3=true

if and only if knownITwft 4=true; moreover when w:L and knownITwft 4=true

areaw64Aareawo4=true. As knownrrwft3Jfoundrrwft3 for all wwe have

knownrrwft4Jfoundrrwft4 for all W.

If EO:V accessE ft =E 1 automatically, whilst otherwise o 4

areaE 6 3AareaE o 3=true as POft 3=true so areaEo64AareaEoo4=true and o o

accessE ft 4=E 1 . Because v15#Po~reC!+1 levelv 1IT 1=levelv 1rr O and we o

may take v to be v1 itself. Unless EO:V or areaEoo1=false

known(levelv rr)E ft =true; since we have shown that for all w
1 1 o 3

known(levelv 1rr O)wft 3=true only if known(levelv 1rr O)wft 4=true, unless

EO:V or areaEooo=false known(levelv 1TI O)E ft 4=true. Likewise, aso

found(levelv1rr3)E1ft3=true and for all wknown(levelv 1rr 3)wft 3=true

if and only if known(levelv 1IT 3)wft 4=true, we can assert that

found(levelv1rr3)E1ft4=true. Since pofto=true and V15V O'

known(levelv TI)E ft 4=true and found(levelvoIT4)(accessEoft4)wft4=true,o o o

giving patft4vofto=true.

Any rr and v subject to rr=levelvIT 4 also satisfy either

rr=levelvrr or TI=rr 4 . We have already established that o

!\{foundrrwft4v-knownrrwft4Iw:LxL}=true when rr=levelvTI ' so it remainso

only to discuss knownrrwft 4 when TI=rr 4 , For all w

228

knownrr4Qrr4=V{V{seen3VWW1IT4A(hotenw1P4vgyvenw104) Iv:NJlw1 :w xWJ

=V{V{Seen3vQQ1IT4A(hotenw1P6vgyvenw106vw1=~O) Iv:NJlw1:LXLJ

=(known~OWIT4vW=~OvV{Seen3VW~lIT3Iv:NJ)

=(knownrrOwIT4vw=~Ovw=~1);

the last link in this train of reasoning holds because either

~1:L*xL* and A{known(levelv1rr3)aIT3v-gyvena~1Ia:LxLJ=trueor

V{seen3Vw~lIT3Iv:NJ=(w=~1)' Since foundrrowIT4=true for all W

having knownrr OQIT 4=true, foundrr4wIT4=true for all whaving

knownrr 4QIT 4=true. In addition, if W and w1 have o

kent3QoIT4Akent3W1IT4=true, knownrr4wOIT3Aknownrr4wOIT3=true so when

wo:L and wO=w 1 necessarily wO=w1 ' The other constituents of

POIT 4 follow readily from the corresponding parts of POIT 3 , so

POIT 4=true.

By induction on v we can show that for all v, W and wo 1

writing IT2=(Pqox~qO)IT3 gives

seen1VWOw1IT4Akent1W1IT3Aknownrr4«qoxqO)W1)IT2~kentlWoIT3; con­the

dition knownrr4«qoxqO)w1)IT2=true is essential to ensure that

foundrr4w1IT3=true. For all w1

hoten~1P4vgyven~1D4~kent1wlft3Aknownrr4wlIT3' so we have

kent1Qoft4~kent1woft3 for all wo0 As POIT4ApIT3=true 3.2.7 implies

that pIT 4=true.

Hence pIT4ApatIT4vOITO=true and a(e054G464'~O~4n4a4)·true.

The original pair IT 3 was chosen at random from among those having

pIT 3ApatIT 3v1 IT 1=true, so a(e153u303'~1~3n3a3) =true for all such ~3'

thus confirming that j21v1~1=true.~

Having confirmed that the predicate j is appropriate to

the situation pertaining on exit from a block, we can proceed to

the proof that new stack semantics is equivalent with new

store semantics except for the fact that its recursive declarations

by incidence are akin to rccursive dcclarations by refcrence.

229

3.3. Two comparable mechanisms.

3.3.1.	 Lemma.

If E:Exp satisfies G[EI=true then E[EI=true.

~Suppose that ~o' 20 , V and ~D satisfy apt~opo=true,o

rent[EI~=true, jeovofto=true and e[E]vopo=true. To demonstrate

that c<'[EIEo"['[E]~o]~o>fto=true select any pair ft 1 satisfying

pftlAfitftlftO=true, and define
A , '

~l=~o[false*I)'[EI] [opts (·!f[EJI)~aI.Jf1[E]], 1;1=< remit1;o,1;oorevertPo>

and <a* ,1*> =< news(#A E])6 1,news(#/h [EI ~1]),\>. Introducing

63=61 [< P1 ,(j 1,61> II re c] [a *IIA E]] [dummy * I /:RJr EI] ,

6 3=updatesa*dummy*6 1 and V1=V A#6 3[rec] we see that o
I ~~~~ If~ - ~~~~	

< [E] 1;001 ° 1° 1 , [[E] ~011;001° 1° 1>-<~[E] 1;1°2°2°2 ,~[jl[E] ~1] 1;1°2°2°2>

where

13 2 =< 61 [< 61 ,6 1 ,61 > Ilrec][cx*IIAE]][9[E] E1P3v1a311.JY1IE]],

fix (Ao. P1 [a* Ifh I £11 11 ~] [,E1[J 1n 11\ Ii ~1 01\ 1.x1I 11 EI ~ 111 J» ,1
1

02=01 and

(}2=< updatesa*W'1!E] 21~30163)° 1 ,updatesa*(G"[1f ~ EI ~Jll ~lP2iJl)C\>

From 3.1.5 gIE]v 1P2=true, and plainly apt~lP2=true, so to

show that a<~[EIE1P2U262,~I?[EI~11~1P2~2~2>=true it suffices to

convince ourselves that PTI 2 , fitft2TI2 and j21V1TI2 are all true.

Any wsatisfying kent3wft 1=true cannot have w:a* or

w:1*, as then areawo1=false or areawG1=false in contradiction

to the fact that P ft 1=true; consequently any W withO

known(levelvTI 1)wft 1=true for some v is such that

accesswTI1=accesswft =accesswft 3 , We can therefore apply 3.2.2 to2

arrive at the conclusion that for all v and w
knownClevelvTI)wTI 1=true if and only if known(levelvTI)wTI 2=true.1	 1
Using 1.4.6 to write

° 4 =< a*§.[Elf 1 P4u16 4'

swap (.II[EI §.;t[EI) (fl? [Eh1][§X[.1 I EH 1 JI) (a* §,2 Ii I EH 11 ~ 1P2U1) > ,

230

05=(access(U5+1'\)5+1) 11 2" .. ,access(U5+#U 5 '\)5+#\)5) 1T 2) and

06=04§05' it is plain from the definition of seen in 3.2.1

that for all W knownTI2w1T2~knownTI1w1T2vgyvenw06' As P0 1T 1=true

knownClevelvTI1)w1T1~foundClevelvTI1)w1T1for all v and W, while as

G[E]=true gyvenw06~foundTI2w1l2 for all W. Accordingly

AffoundC levelvTI2)w1T2v-knownClevelvTI2)w1I2 Iw:WxW}=true because

levelvTI 2=Cvs#P3[rec]+levelvTI1 ,TI 2) for all v. From the des­

cription of kent3w1T 2 as kent3w1T 1
vgyvenw0 and from the nature6

of P2[rec] it follows that not only does P 1l 1=true but0

P 1T 2=true also. o

Assume that for some v and all wand w
o .1

seen1vwOw11i'2ACkent1w1111vgyvenw106)~kent1wo1l1vgyvenw106 (which is

certainly the case when v=o) and take any W and w havingo 1

seen1Cv+1)WOw1112ACkent1w11T1vgyvenw106)=true. Should kent1w 11T 1

be true we know that knownTIoCCqoxqO)w1)CC~qox~qo)1T1)will be

true from 3.2.6 and therefore that foundTIow1111 will be true.

Thus if w1:L or w1 :L and if w2=accessw 1T 2 , either w2=accessw 1T 11 1

or gyvenw 20 6=true, so that seen1vwOw21T2ACkent1w21T2vgyvenw206)=true.

If w:JxJ either foundTI W11T 1=true or foundTI2w1112=true; con­1 o
sequently every w2 having

hotenw (revertCw 1+2)P 2 ,W +2) vgyvenw (popCW +3)u ,W +3) =true has2 1 2 1 2 1

kent1w21T1vgyvenw206=true, while for some such w2 seen1vwOw2~2=true.

If w1:FxF then kent1w 11 1=true so tidyCW 1+2)P 1=true and1

hotenw (divertp CW1+2) 'W 1+2) ~hoten(divertp 2CW1+2) ,w 1+2) for all2 1

w2 ; in particular there exists some w2 having

seen1vw1w2112Akentlw21T1=true. The reasoning being similar when

w1:L*xL* or w1:JxJ and vacuous when w1:BxB we may apply the in­

duction hypothesis under all circumstances to obtain

kentlw 1l 1vgyvenw 0 6=true. o 0

As hotenw1~2vgyvenw102~kent1w1111vgyvenwl06 for all w1

we can now assert that kent1wo1T2~kent1wo1T1vgyvenwo06for all

231

Q and	 that by the proof of 3.2.7 ww n2=true whenever o O

kentlw ft 1=true. Moreover since P TI =true w w ft =true whenever o O 2 O O 2

gyvenQ006=true, so w wOft =true whenever kentlw ft =true; henceO 2 o 2

we may assume that P TI =true as well as that
1 2

known(levelv~o)aftl~known(levelv~o)aftofor all a and v. As

fitTIlftO=true j20vO;1=true and we can apply 3.2.8 to ft 1 and ft 2

to obtain j21vlTI1=true.

From this equality and the stipulation that G[ED=true we

now know that wwft
2
=true for all w:JxJ such that gyvenQ06=true.

As we have already established that POft =true and that wwft =true
2 2

for all w:WxW having kentlwft l =true, pTI =true. Finally, for all
2

TIl having pTI1AfitftlftO=true a(e[ED~oP1U161,~[l[ED~oD~oPlulal)=true,

so "(~[EDEo,.r[e[EHoD2o)fto=true (for all the suitable 2
0

, v and

TIol and E[ED=true.~

3.3.2.	 Lemma.

For all I:Ide and B:Bas G[IDAG[BD=true; when ~:Abs has a

body E:Exp such that L[ED=true GIID=true.

~Fix attention on one particular collection comprising

~, 2, v, fto and TIl such that apt~po=true, j~vTIo=true and

pTI 1AfitTI 1TI O=true; set ~=levelv~o'

A

Let I be such that g[IDvpo=true; writing 0 for

(ravel p1Pl[H+Hl,Pl[IP1) we know that 6:L or 8:V as apt~Pl=tl"ue.
......"	 ... "lo.

Let a=newo 1 , S=(o:L+(areaoo l +holdo0 1 ,T),O), £=(~[ID+l=true+a,o)

and

TI 2=((P 1 ,(8) §v 1 .6 1) ,(P1 .(E) §ul,(~[IP1=true+updateaSal,Ol)}'

so that (\9'[H2plU16l ,l1h[IHD~Plulcrl)=(ep20202.2p2U2a2)' To

show that a(.[II261U161,WI1'ID~I~Plulal)=trueit therefore

suffices to prove that pTI
2

ApatTI
2

vTI
2
=true. As g[IDvPl=true and

POTI 1=true. Pl 'H+H2';v and leadl(P 1[H »#P 1[Il-#pIH. In addition

232

~a P ~~a (ravelp P) so hoten< 8,q 8}<revert6Pl,aqO(revertPP1)}=true
'0 1 '0 1 1 0'

and knownrr«qoxqo)(access8;1))«~qox~0)~1)=true;this entails
'
,

foundrr(access(o,E} ~2)~2=true unless 8:L*. If ~[I]+l=true then

areasoo=false, whilst if s:L and ~[I]+l=false 8:L (as apt~Pl=true)

and known1i6;1=true. Since fit~l~O=true it follows that

pat~2v~0=true; furthermore induction establishes that

kentVow~2"(w=(8,s} vkentvOw1!l) for all va and G'i while 3.2.2 shows

that known(Zevelvlrrl)w~2"known(ZeveZvlrrl)G'i~1for all vi and w,
so p~2=true and a(\J[I] 261,\61,lilh[IU] ~Pl,\al} =true.

Notice that this result would still hold even if all we knew

about 2 was that a(E6G6,~p0a> =true for every ~ having

p~Apat~v~o=true and 6+1:LAknown(ZeveZ(v 2-1)rr)(6+1,0+1)~0=faZse
o

for some v2 such that v2<p [II+l+2. This follows from the fact o

that when ravel p1P1[II+l+l:L we have P1[II+l:L and

known(ZeveZ(Pi [II +1+2-1)rr 1)(raveZP 1p [II +1+1 ,i\[I] +1> ~1 =faZse1

as P01l 1=true.

The proof that a(~[BISpl~lal,~[1[BI~12plulal}=truebeing

palpable we turn to the one for (~[iPI~P1Cl~1.~[~[<P]I~]12pluljl>'

Suppose that torn[<pI~=true and that g[<plvpo=true; define

« LPg) ,(eP g) >=(9<UIP 1 ,§1I~[<PHIP 1) and

1l 3=« 15 1 ,« LPg> > §6 1 ,6 1> ,(p1 ,« LPg)} §0 1 ,Cl"1}} Because

g[<Plvp 1=true we have tidYPg(revertpP)=true, and because1

~oPl4DqO(raveZP1Pl) we know that

t1q a (divertp 1Pg)=Ilq a (rave Z(divert P169) (di vertp 1Pg)); consequently

foundrr(6 3+1,0 +1} ~ =true. Together wi th the fact that3
fit~l~O=true this ensures that pat1l3v~0=true. Again induction

shows that kentv w1l ,,(w=(6 +1,0 +1} vkentvow~l) for all va and w,O 3 3 3

and 3.2.2 shows that known(ZeveZvlrrl)w1l3"known(ZeveZvlrrl>w1l1

for all Vi and w. Because PO~l=true we must have PO~3=true; more­

over ww~ l=true and foundrr 3W~ 3= true for all G'i having

kentlw~l=true. Accordingly from the definition in 3.2.5

233

w~~3=true for all ~ subject to kent1wft 1=true, and to prove that

prr 3=true it remains only to verify that W(U +1,U +1) ft =true. We3 3 3

shall do this on the assumption that ~ is of the form fnI .. E,

the proof being no more profound when ~ is fnI 1 •..• ,I .• E. n

~Let 20' v2 ' ft 4 and ft be entities havings

J\{apt1J!o(PS'P g) v-apt1J!o(divertp 3P9 ,P 9) l1J!o}=true,

tidYP g (levelv 2IT 4+1)=true, j2ov2ft4=true, fitftsfts=true and

ft =((divertp 4P9 ,< U +1) §u 4 ,6 4) ,(divertp!jP g ,(u +1) §u 4 ,i'l4» • s s s

We shall show that c(~Eoorevertp4'~(~Oorevertp4» ~s=true by

selecting arbitrarily a pair ft 6 constrained by pft6Afit~6ftS=true.

For this pair we introduce v3=#P 6[rec]+l, 21=(remiteo'~oorevertp4)'

~s=«revertP4P6,u6t1,66)'(revertp 4P6 ,u 6t1,i'l6» and

~ 7=((di ve rt Ps P9[11 s / / re cJ [U 6 +1 : L+ho l d(u6 +1) 6 6 ,u6 +1 / / 1] ,u 6t1 ,66) ,

(P 6 [u 6+1: L+hold(u 6+1)i'l6 ,u 6+1/IJ ,u 6t1,i'l6» ;

the equations of appendix 3 make it plain that

~eOP6u666=~[E]E1P7v7a7 and that

~~OP6u6a6=2['[E]1J![false/IJ]~lP7v7a7whatever the value of

optU]1jJ.

~Since fitft6~5=true we know that mqoP6=mqo(divertPSPg)'

and the fact that tidYP 9P4=true now assures us that for all w
hotenw(divertPSP9,P6)~hotenw~6; consequently for every w
knownTI7wft7~knownTI6wft6' From 3.2.2 we have in addition that for

all wand v 4 known(levelv4TI7)wft7~known(levelv4117)wft6 when

v4~v3' The definition of found in 3.2.1 is such that any @ which

satisfies foundIT6w~6=true also satisfies found11swft7=true unless

w:L*xL*; to see this when @:FxF, for instance, note that

tidYPgPSAtidY(W+2)P6~tidY(W+2)pS' As p Oft 6=true, we know that

found(levelv4116)@~6=truewhenever known(levelv4IT6)w~6=true and

thus that for all @ and v 4 found(levelv4IT7)wft7=true if

known(levelv4IT7)@~7=true. Routine checking of the remaining

234

clauses now confirms that PO~7=true.

By induction on vi we can establish that for all ~o' wi

and vi we have seeniviwOwi~7Akentiwi~6Jkentiwo~6;this is due to

the relation kentiwi~6JfoundTI6wi~6 set up in 3.2.6. Hence for

every Wo kentiwo~7Jkentiwo~6' and PO~7 being true, 3.2.7 allows

us to deduce that p~7=true.

From 3.2.2 it is clear that for every wand v
4

known(levelv4TI4)w~n+iJknown(levelv4rr4)w~n when n is 4, 6 or 7.

Since fit~6~5=true we even know that for all a and v4~v3-i

known(levelv4TI4)a~6Jknown(levelv4TI4)a~5' Consequently for each

a we have known(levelv4TI4)a~8Jknown(levelv4TI4)a~4if v4~v3-i

and known(levelv4TI8)a~7Jknown(levelv4TI8)a~8universally. More­

over, as PO~7=true, found(levelv4TI8)w~8=truewhenever

known(levelv4TI8)w~8=trueso PO~8=true and by 3.2.7 Pi~8=true;

hence from the facts that j20v2~4=true and fit~8~4=true we can

infer that j20v2~8=true.

Applying 3.2.8 to ~8 and ~7 (in place of ~o and ~i) we

see that j2i(V2AV3)~7=true. We originally assumed that

apt~e3=true, so apt~(divertP 6 P8 ,P8) =true; thus once we have

established that e[E](v AV)P =true the knowledge that2 3 7

torn[fnI..EJ!1jI=true and L[EJ!=true will ensure that

c<.!l'[E] E17[dEH[falseIIJ]~1) ~7=true and that

a(2'[E] E1P7,) 767 ,!P[. [EH[false II]] ~i P7U?,J 7) =true .:1>

The stipulations of 3.1.1 are such that all EO' vO' v 1

and p having g[Eo]vop=true (as well as

;\{free [E 0] [1]+ (v 1 ;, pi! n +if 2v~v 0;' pfi I!; +if 2) • tY'ue I I: Ide} = t Y'lie anc]

(free[EO][resl+(v1;,p[reS]+1+2V~Vo?plres]+1+2).tY'lIe)=trlie)satisfies

g[E]v
i P

=true; the proof of this, and the comparable result for
o

6 proceeds by structural induction. In our case we know that
0

,

g[fnI..EJ!vP1=true, tear[fnI..E]P =P
9

, tidYP g(levelv 2TI 4+ 1)=true
1

and PO~4=true so g[fnI..E]v 2P1=true. Hence e[E](v 2Av 3)P 1=true,

235

a(€~0(revertP4P6)U 60 6 , ~(20orevert1\)P6,\o6> =true and

c(€eoorevert!\,~(20orevertP4»l1S=true. This being so for all

the appropriate 11 and l1 , W(U +1,U +1> 11 3=true and p11 3=true.>
4 s 3 3

Hence a(~[~]eplu151,~[9[~]~]2plul0l>=true for all ~, 2,
v, 11 and 11 of the form specified above, and we can conclude0 1

that G[~]=true.>

3.3.3.	 Lemma.

If E[E]AE[E]=true then G[E :=E]=true.
o 1 o 1

<tLet JjJ, 20 , V and 11 0 have apt~po=true, torn[Eo:=Ell~=true, o
A

jsovo~o=true and g[E :=E]v PO=true. Define o 1	 O
A '
sl=(APU.SOp« dummy> §ut2)oupdate(u+2)(u+1),

APu.2 0p« dummy> §ut2)oupdate(U+2)(u+1»,

and suppose that Eo is evaluated before E so that
1

,

~[Eo:=Ell E =9'\[E] (6!t[E 11E) and likewise o o 1

(l1[HEo:=E1JJjJ]20=!l"[e[EoJJjJ](gr["[Elh]~1)' Set v 1=#po[rec]+1 and

v2=A{I:exit[Eo]+(ravelpopo[I]+1+1:L+Po[II+l+2,Vl),VlI1 :Ide},

for which 3.1.4 dictates that e[E1Iv2Po=true. Owing to the

constraints imposed on Eo' however, we can make even wider

claims: if 2 is such that every 11 satisfying

p~Apatl1vl110=true, known level(v2-1)~0)(U+l,U+l>~o=false and

u+l:L is subject to a(Epu;,2pu~>=true then actually

C(.!l'[Eo]E,.Jt'[. [Eoh]2> 11 0=true. This can be established by in­

duction on the complexity of Eo' taking as the induction hypo­

thesis that for some E and 11
4

and all 2 such that

a(EPsus5s,2Psusos> =true whenever pITsApat~svl114=true and

u +1:V or known(level(v2-1)~4)(u +1,u +1> IT4=false we have s s s

c(~[E] E,~h [E] JjJ] 2> ~4 =true.

Suppose that ~1 is any pair having p7l'1Apat111vl110=true,

known(levelV2~0)(ul+l,ul+l>110=falseand U +l:L. We shall prove1

that a<'~[E1H161u151,.!J[·[E1H]21Plul0l>=trueby demonstrating that

236

c(if[E1B~1.if[.[E1HB~1)ftl=true. Since e[Elh2Pl~true and

E[E 1B=true doing so reduces to verifying that j(svEl.sv~1)v2ftl=trw

or that for some typical pair ft having pft 2Apatft 2v2ft l =true we2

have ~ svf162~262,svtl~2~2a2)=true. Take one particular ft 2 and

define E =access(U2H,u 2H) ft 2 , E2=(U2+2,u 2+2) andl

ft 3=((P2'(dummy) §u 2t2 ,update£2£16 2) ,

(P2 ,(dummy) §u 2t2 ,updateEllCl2» ;

once we have shown that pft 3Apatft 3v Oft O=true the certainty that

jeovo~o=true will ensure that a(svf P ~ 6 ,sv~ ~ u a) =true.
1 2 2 2 1 2 2 2

Following the technique of 2.5.5 we can readily confirm

that kentlGlft ::>(kentlGlft V(Gl=(dummy,dummy») for all w. Here we3 2

wish to establish rather more: that for every Gl and v

known(levelvTIo)Glft3::>known(levelvTI1)Glft2V(Gl=E1AV~v2)' Take any v

together with TI, which is levelvTI and assume that for some1 , v 3

and all Gl ' w and v4~v3o l

seen3v4GlOGllft3AknownTIGllft2::>knownTIGlOft2v(Glo=E1AV~v2)' Suppose that

for some W and Gl l seen3(V +l)W Gl ft =true and knownTIGl ft 2=true. o 3 O l 3 l

If wl :L but w is not E2 then w cannot be £2 as p Oft 2=true, andl l

so seen3v3GlO(accesswlft3)ft3=true and knownTI(accessw l ft)ft 2=true.3

If Gl l :L*xL* then seen3v Gl &ft 3=true and knownTI&ft 2=true for at3 O

least one a having gyvenaw l =true. Now note that since

known(level(v2-l)TIo)(ulH,ulH)fto=false and v2-l~lIpo[recB we have

known(level(v2-l)TIo)E2ftl=false (patft l v l ft O being true) and

known(level(v2-l)TI1)E2ft2=false (patft 2v 2 ft l being true). Hence

if Gl l =E 2 then v~v2 and seen3v Gl El ft 3=true; under these circum­3 o

stances unless Gl O=E l we know that El:L*xL* and as

found(levelv2TI1)Elft2=true there is some &with gyvenaE l =true,

seen3(V -l)Gl &ft 3=true and known(levelv 2TI 1)aft 2=true (indeed as3 o

v~v2 knownTI&ft =true). Consequently in all three cases either2

v~v2 and WO=E l or there exist Gl 2 and v 4 with v4~v3 such that

seen3v Gl Gl ft =true and knownTIw ft 2=true. Applying the induction4 O 2 3 2

237

hypothesis, knownTIwo~oV(Wo=E1AV~v2)=trueand we can conclude that

for all wO' w1 and Vs

8een3vswOw1~3AknownTIw1~2~knownrrwO~2v(wo=E1AV~v2). Because

gyvenw(pop(levelvTIo+2)u3,pop(levelvno+2)u3}~knownTIw1~2 isthis

enough to establish that for every W o

known(levelvTIo)wO~3~knownTIwO~2v(wo=E1AV~v2); more generally for

all wand v

known (le ve l VTI 3)w~ 3 :::>known (l e ve l VTI 3) w~ 2v ((w= 81vw= (U3 +1 ,U 3 +1>)AV~V 2) •

As usual it is plain that then w satisfies

found(levelvTI2)w~2=true either found(levelvTI3)w~3=true or w:L*xL*,

and thus that when known(levelvTI3)w~3=true either

found(levelvTI3)w~3=true or w:L*xL*. The fact that

found(levelvTI3)E1~2=truewhenever v~v2 therefore ensures that for

all wand v found(levelvTI3)w~3=true if known(levelvTI3)w~3=true.

This shows that PO~3=true. and since

kent1w~3~(kent1w~2v(w=(dummy ,dummy>)) P~3=t!'ue by 3.2.7.

Unless v~v1 ~o(levelvTIn)=.qo(levelvTIo)when O~n~3,

so for every a having known(levelvTIo)&~3=true we can deduce

successively that known(levelvTI1)a~2=true, known(levelvTIo)a~1=true

and known(levelvTI1)a~O=true (both pat~2v2~1 and pat~1v1~O being

true). Consequently pat~3vO~O=true and a(EOP3u363'~OP3i)303> =true.

Hence every ~2 having p~2Apat~2v2~1=true satisfies

a(8V£1P2u262,8V~1P2u2a2> =true, and in fact j(8V£1,8V~1> v2~1=true.

This in turn ensures that a(~[£1IE1P1u161,~[.[E1Iwl~1P1u1a1>=true

for a typical ~1 having p~1Apat~1v1~O=true,

known(levelv TI)(U +1,U +1> ~o=fal8e and U1+1:L. In accordance with2 O 1 1

our earlier contention this means that
,

c(.i'1IEo](.~[E111 £) ,9'[- [Eoll1jJ11 (!Al[«[E 1HH 1) ifo=true and that
1

G[E ;= E 1=true.> o 1

238

3.3.4.	 Lemma.

If ERE IAE[E 1=true then G[E E1]=true.o 1 o

<As usual we assume that mete evaluates expressions from

left to right, and we adopt certain W, 20 , V and ~o havingo
aptwpo=true, torn[E E1Iw=true, j20voTIo=true and g[E E1]v O

po=true. o	 o

We provide

E1=ApU•U+2 : F-+ (U+2+1) ~ 0p« U+1) §Ut 2) •

SV(APU.l';U+1'N';#U+2IL*-+~oP«U+2+(U+1) §Ut2),T)pU

and

~ 1 =APU. U+2 : F-+ (u +2+1) (~ 0 0 re ve rt p) (di ve 1"t p(U+2+2))((U+1) §Ut 2) •

Sv (Apu • l,;U +1 iNs #U +2 IL*-+ ~ 0P« U+2+(U+1) §u t 2) • T) pu,

with the effect that ~[EoEliEo~[Eo](Y[El]El) and

<§[g[EoE1HHo=!f[e[EoH](.!&'[B[E1H]~1)' We shall demonstrate that

j(SV(.ll'[El]El),sv(.ll'[B[E1HH1)vO~O=true,which together with

E[Eo]=true and e[Eo]vopo=true will serve to establish that

C(~[EoEl]eO,~[g[EoEl]~]2o)~o=true.

Take any TIl having p~lApat~lvO~O=true and write

v1=#po[rec]; because E[E 1]=true and e[EllvlPl=true to show that

a<sV(.c[Eln~1)plDl6'1,sV(:e[.[Eln~n21)plul1l1)=t1"ue it is enough to

prove that j(mvEl,mv~1)vl~2=true where

As.svsPlu161=AS.sP2u262 and As.SVSPlul1l1=AS.sP2u21l2' To this end

let ~3 be any pair with p~3Apat~3vlrr2=t1"ue; since p~2=true by the

argument of 2.5.2, the existence of such pairs ~3 is evinced by

«P2'< dummy) §d 2 ,6 2),< P2'< dummy) §u 2 ,1l 2». Define ~4 to be the

unique pair having AS.mvSP3u363=AS.sP4u464 and

As.mvsP3u31l3=As.sP4u41l4' and set E: 1=<u 4+1,u 4+1) and E: 2=<U 4+2,U 4+2).

We shall consider the proof further when E: 2 :F only, the other

situations being devoid of interest. In addition we shall pre­

sume that p~4Apat~4v~2=t1"ue, a claim which 2.5.2 readily sub­

stantiates.

239

When c2:F <elP4u4a4'~lP4V4a4) elaborates into

<CC2+1)~OCrevertP4PS)us6s,CE2+1)C~OorevertP4)pSuSas)where

fts=«divertP4Cc2f2),<Ei) §u 4t2,6 4} ,<divertP4CE2f2),<El) §u 4t2,0 4»

We shall show that pfts=true and that if

ft 6=« P4 ,u4t2,6 4) ,<i\,u 4t2,a 4»=true j2ovOft6=true. By 3.2.7

foundTI4Qft4=true whenever kentlQft 4=true; in particular, if w:JxJ

and kenti@ft 4=true then #d4t2~#(wf3). Consequently we can show

by induction on vi that for all @o' wi and v 2

seeniv2wO@lftSAkenti@lft4Jkenti@lftS' Furthermore because

patft3vift2Apatft2vOftl=true we may assert that

foundClevelvoTIo)E2ft4=true and that for every Q1

hotenQ1PSJkenti@lft4' Hence kentl@oft J kentl@oft 4 for all @o; bys

the same token hotenQ3CC6QoxWqo)ps)Jhoten@3CC6Qox6qo)P4) for

every Q3 and we can infer that for every w
2

kentlQ2ftSJkent3CCQoxQO)Q2)CC~Qox~QO)ft4)' It 1S apparent from

the definition of found in 3.2.1 that foundTIswfts=true when

foundTI4wft4=true unless w:L*xL*, so every pair Q satisfying

kentl@ft =true is subject to foundTIs@fts=true.s

As #<E2~2)[recl=o any TI of the form levelvTI is also of s

the form levelvTI 4 when v~vi' Accordingly we can apply 3.2.2 to

such state vectors TI, with the outcome that knownTIwft JknownTI@ft 4s

for all Q. Since foundTI@ft4JfoundTI@fts and POft 4=true, for every

@ and every appropriate TI knownTIwftsJfoundTI@fts' Routine checking

now suffices to validate the other clauses of the contention that

pofts=true. We have already pointed out that pTI 4=true and that

for all @ kentl@ftsJkenti@ft4, so by 3.2.7 pTIs=true.

Given any & and TI having knownTI&ft 6=true and ff=levelvTI o

for some v~vl we can deduce that knownTI&ft 4=true and that

knownnnft =true by successive applications of 3.2.2. Likewise
3

given any & and ff having 7u70WnTI&ft 2=true and TI=levelvTI 2 for some

240

v';v 1 we know that

known1i&«Pi,(s2) §u i t i ,oi) ,(Pi,(E: 2>§v i ti,Cl i »=true; in fact as

pat~lvO~O=true we can infer from this that known1i&~o=true. Hence

because pat~3vi~2=true we can argue that

known(levelv1io)a~6~known(levelv1io)&~3

~known (leve lv1i 2)&~ 3

~known(leve lVTI 2)&~ 2

~known(levelv1io)afto

for every a and v, thereby demonstrating that fitft6ftO=true. To

establish that Pi~6=true observe that kentiwft6~kentiwft4 for all

wand that by 3.2.2 found(levelv1i6)wft6~(found(levelv1i4)wft4vw:L*xL*)

and known(levelv1i6)w~6~known(levelv1i4)w~4for all wand v. In

consequence Pift6Afit~6ftO=true and j20vOft6=true.

Together with tidy(S2+2)(levelv 1i +i)=true and w€2~3=true o 6

the facts that pfts=true and j20vO~6=true entail

a(E164C4;4'~1~404a4) =true. In view of the definition of ~4 this

means that for every ~o having p~3Apatft3vi~2=true

a(mV~lP3u36 3 .mv~lP3u3a 3) =true. Hence j(mvE i , mv 2i) vi ft 2=true and

j(.II'[Ei]~1,£1'[dEl]1jJ]21)ft2=true,which ensures that for all pairs

~l with pft Apatft ft O=true we havel l v O

a(s v (.2'[E1] E1) P1U1<5 1 ' s v (.Sf'[. [E1] 1jJ] ~ 1) Pi U1Cl l) =true. Fina11y

''(IF[EoE1]£0,~h[EoE1]1jJ]20) fto=true for every appropriate 1jJ, 20 ,

V and ~o' so G[E El]=true.>o	 o

3.3.5.	 Lemma.

If E[E]=true then G[val E]AG[res E]AG[goto E]=true.

<For the reasons enunciated in 2.6.4 we shall content

ourselves with proving that G[res E]=true. Let 1jJ, 20 , V and ft o o

satisfy aptljJpo=true, rent[E]ljJ=true, j20vfto=true and

g[res E]vpo=true, and set

241

e =(Ap.(ravelpp[res]+H1H)p.o
Apu.(p[res]HH)(p[res]+H2)«uH) §p[res]+H3)

Then (0'[res E]~,'li'h[res Eh]~) =(2'[E]~o•.S!'I[dEh]~o) • L[E]=true

and e[E]Opo=true, so to demonstrate that

c(~[res E]E,'li'[g[res E]~]2) ITo=true we need only confirm that

j2 o11 =true. o o

Suppose that IT 1 is any pair having pIT ApatIT 0ft =true and1 1 O

that #Pl[res]]>o, the result being trivial otherwise. Define

E =(\\H'\)l H), E1=acceSSE IT 1 , v7=l'avelplpl[res]+HH2,o o

11 =levelv 11 and7 7 1

ft 2 =((15 ,(EO) §u7,l'estOl'e(Eo:L+updateEoE167,67)61)7

(P 1[res] +1+2.(Eo) §P 1[res] +H3 "\» .
As kentl(ravelp1p1[resl+1+1,Pl'resl+tl ft 1=true, we can write

(EOP1U161,2oPlulcrl)=(tlP2u262'~lP2u2cr2)where

21=(ravel p
1Pl[resJI+H1+1,P 1IresJIH). In order to establish that

j2ooITo=true we must simply show that for this typical pair ft 1

a(EOPlu161'~OPlulcrl)=true; this goal will be attained by verifying

that PIT 2 , patIT20IT3 and j~10ft3 are all true when

rr 3 =« P2,u 2tl,6 2),< P2'\)2t1,02». For brevity we introduce

ftn+3=«~qOx~o)ftn) when 1~n~3 and En+2=(Qoxqo)En when O~n~l, so

that P =P S=revertp P4 and \)S=\)4.6 s

As ~Qo117=levelv7TI4 and POft 4=true any W subject to

known11 7wrr 4=true obeys foundTI7wIT4=true; in particular, when w:L

areaw66=true and accesswrr 1=accesswft 6 • Moreover the clauses of

POft 1 stipulate that #P1[recl=(v7-1)VO, so any 11 and V such thats s

11 =levelv TI 6 satisfy either 11 =levelv 11 4 and vS~(v7-1)VO or 11 =11s s s s s 6

and v ?'v 7 ; under both possibili tics !:nownTI s=knouJ>l(levelCv A v7)11 4),s s

Consequently we can apply 3.2.2 to ft ,ft and 11 , with the outcome
4 6 S

that for all wand V known(levelv 11 6)wIT 6=true if and only if s

known(level(vsAv7)114)wIT4=true. Obviously 3.2.2 is also relevant
s

to ft ' IT 6 and 11 ' so that for all ~ and Vs knownClevelvs116)wft6=trues s

242

if and only if knownClevelvsrr6)~~5=tpue.

Since pat~10~0=tPue, foundClevelOrrl)El~l=tPue and for all

W and v1 8eenlvl~oE2~6~CknownC levelOrr6)~0~5vwo=E2vwo=E3); hence foro

every W knownrr5w~5~CknownTI6w~5vw=E2vw=E3)' Combining this with

the above we see that for every wand V knownClevelvsrr5)w~5=tPue s

only if knownClevelCvsAv7)rr4)w~4vCCw=£2vw=E3)AVs~v7)=tpue.Thus

knownClevelvsrr5)w~5=tPue only if foundClevelvsrr5)w~5=tpue,because

PO~4=tPue; analogous remarks are valid for ~6' and indeed we even

know that knownClevelvsrr)w~ =tpue only if foundClevelvsrr)w~ =tpuen n n n

when 2';n,;3.

Select any 10' 11 , va and v1 such that when O,;n';l

P2[I nHvn :L. That !IlqoPl[resH1+2=peveptCP1[reS]+1+2)ClKQoi\) is

reflected in the certainty that P2[I]~v =p [I]~v where
n n 1 n n+2

v 2=#P 1[I]-#P2[I]+v ; in addition P2[I Hv =P 1[I]~v 2 andn+ n n n n n n n+

pavelp2P2[I]~v ~l=pavelp P [I]~v 2~1 because n n 1 1 n n+

leadv +2 CP 1[I])=#P1[In]-#P2[In]+leadvnCP2[In]) when O,;n,;1.n n

Accordingly if P2[10] h =P 2[11]1 ~vl then we can deduce in succession o

that Pl[Io]~v2=Pl[Il]~v3' that 10=1 1 and Pl[Io]~v2tl=Pl[Il]~v3tl

(as Poff 1=true), and that P2[Io]~votl=P2[Il]~vl~1. This completes

those parts of the proof that PO~2APO~3=tPue which are worth giving.

By induction on v1 we can readily ratify the statement

that when 2';n';3 for all wO' w1 and v1

8eenlvlwowl~nAkentlwl~lAknownrr7CCQoxQO)wl)~4~kentlwo~1; as a

result kentlw~2~kentlwftl and kentlwft3~kentlwftl for all W. From

3.2.7 and the property p ft AP ft 3=tpue it now follows that o 2 o

P~2AP~3=tpue. Moreover for every a and Vs knownC levelvsrr3)a~2=tpue

only if knownClevelvsrr3)a~3=tpue, so pat~2oft3=tPue. That

j210n3=tpue is now a direct consequence of the knowledge that

w(pave l P1P1[re 5] ~ it1, P1[re 5] {l) ft 1=tpue .

Tracing buck through the steps of the argument,

243

a(W[res E] E,lllh[res E]11)I]~) ~o;tPue. This being so for all the

apposite 1)1, 2, v and ~o we can conclude that cUres E];tpue.>

~e cannot weaken the condition e[res E];Avp.e[E]Op to

e[res E];Avp.e[E](p[res]+1+2)p because this would admit such

programs as l: val (res l), in which control leaves a block

immediately after executing a res statement. Although less con­

fining constraints on res statements could be provided by using

[Ide*[DxNxNJ*Jx[NxNxNJ*x[PxNxNJ* instead of U in 3.1.4, the outcome

would be too meagre to pay for the effort involved.

3.3.6.	 Lemma.

If L[E]AD[6];tpue then G[6 inside E];tpue.

~Suppose that 1)10' 20 , va and ~o satisfy apt1)l0po;tpue,

topn[6 inside E]1)I;tpue, j20vo~0;tPue and g[6 inside EEVopo;tpue;

we shall show that a(~i'[6 inside E]~0,g1h[6 inside EH]~o)~o;t!'ue.

To this end we define 1)I1;1)Io[false*/J[6]J[opts(;t"[6])1)I/p[6]J,

V1;v OA(#po[rec]t1) and 21;(!'emitEo'~oopevePtPo)' and given any

~1 having p~1Afit~1~o;tPue we set ~2;«P1[1T//recJ,u1,61),'it 1)·

Now iJ'[L\ i nsi de En E p ~ a ;.!?[6] ($I[EE E)p U 6 while
0111	 1222

\1[1[6	 inside EHo]~OP1U1a1;£I![.dHhoE(.;i'[<[Eh1E21)P2U2G2'

Patently P~2Afit~2~2;tPue, so as D[6];tpue and d[6]OP2;tpue

to show that

a(lifH inside E]E l\u1a1 ,WhH inside EHo]~OP1u1a1);tpueo
we need only demonstrate that a(.;i'[E]E1,.2'[.[Eh1]~1)~;tpue for all

~ having spun[6]o1)lO~2~;tPue. There certainly are such ~, for

if (a*,c.*);(news(#-'[6])6 ,news(#-'[6])G) we may take 1T to be2 2

(P2[a*/ 1.1'16] Hdummy*/ /.£'[6]1 J ,° 2 ,updatesa*dummy*6), dealing2

similarly with~. Select one particular 1T having3
spun[6]o1)l0~2~3;tPue; because g[6 inside E]Vopo;tpue 3.1.4 makes it

evident that e[E]v ;tpue. In addition we know that L[E];tpue,1P3

244

so c($[E] el~[e [EH1J]~l} f/ 3 will be true if j21v1f/3 is true.

As Plf/1Afitf/lf/O~true, j~ovO~l~true; in addition

#P3[rec]~#Pl[recJI+l, t!qOP3[recJI+Hl~"q01fl and Pl~3~true from

the definition of spun in 3.2.4. Writing

~4~« revertP P ,6 3 ,() ,< revertP P ,u 3 ,Cl"3)}' once we have proved
1 3 3	 1 3

that known(levelv1fl)af/4~known(levelV1fl)a~1for all a and v 3.2.8

will assure us that j21vl~3~true.

Let 1f be of the form levelv1f for some v, so that1

tlqoii~'qo(Level(vAvl)1f2)' By 3.2.2 for all GJ known1fGJf/4~true if

and only if known1fGJ~3~true. In particular any a satisfying

known1fa~4~true is subject to known1faf/3~true also; hence as

spun[6]0~0~2f/3~true known1fa~2~true and known1fafll~true, giving

jelvlf13~true. This establishes that

a<~[6 inside E]~OPlu161,\fhH inside EJltVoJl~OPlt\al} =true and that

c<lV[6 inside E]~0,lV[f[6 inside EJltjJo]~o) flo~true. As ~o' 20 , V o

and flo can be chosen at will we must have G[6 inside EI~true.~

The proofs needed for those expressions having labels

with propagated scopes resemble such calculations as 2.5.7 too

closely to deserve attention.

3.3.7.	 Lemma.

Let fj be I~E, I~~E, 1 1 ,,,, ,In~E or 1 1"" ,In~E for some

I or 11 "" ,In and some E such that E[Ei~true; then D[6J1AT[6]~true.

<We first outline the proof that DI6]~true when 6 is of

the form I~~E and when E[E]~true. Let ~o' eo and TI o be such
~

that d[6]OPo~true and l\{c20f/lspunll\]OtjJofloll}~true; taking ~o to

be <ol,ol) confirms that such entities exist. When Vo~#Po[rec]+l

and

21 ~ < s V (Apu • ~ 0 p [u +1! ! 1] (ut 1)) •

(A S. op t[I] ~ 0 -..s V (mV 0 •s v 0 (APU . ~ 0 p [u H! 1] (ut 1))}

245

we know that e~I]vopo=true and that

(~~ Li] Eo ,~~d~ LiH o] 2 0) =(I[I] ~ pl[. I IH o] ~1) Since EI q =true
,

the conclusion a(~[Li]l;o,!ZI~d[Liho]~o)fi'o=truewill follow immediately

once we have established that j2 1v OTI O=true. Suppose that TIl is

any pair having pff1Apatfi'lvOffO=true, and introduce

to=aaaess(61{1,ul{1)ffpfl=(€1,(optlI]1jJo+ne1J01,Eo) and

ff 2=« p1 [€ / II], 6 1t1, G1) ,

(P 1 [E 11 IJ , u 1t1 , (0 p t[I]!ljJ 0+ up da teE 1E 0°1 , °1))

By the method of 3.3.2 we can readily show that pff =true; note
2

in particular that as E =ne1J0 (when E1 is a location) and as
1 1

p ff =true any 1 and v having P2[I]{1=P2~I6]{v6 must have 1=1 6o 1 6 6

and v=v " We can also show quite easily that spun[Li!OljJoff ff =true,
6 o 2

so a(eOP262G2'~OP2u2a2)=true and jelVoffo=true. Hence

a(9[Li] eo ,~[d[Li] ljJo] ~o) ffo=true for any suitable ljJo' and ff '20 o

thereby ensuring that D[Li]=true.

~We now turn to the proof that T[Li]=true when Li is a

declaration of the form I==I for which E[I]=true. Let ljJ3' e3 and

ff 3 be such that t[Li]oP3=true and !\{a23ff/spun[Li]lljJ3TI3ff}=true; then

ljJ3[II{1=true, and writing v 3='P [reC!+1 and3

2 =(s v (Apv • ~ 3 P [V H 1111] (v ti)) ,
4

s V (Apv . pH P 1 : L+~ 3P(vti) 0 upda te (p[I] H) (v H) , T)

gives e[I]v 3 P3=true and (.r[1l]E3.r[t[1l]ljJ4]23)=(I[I]E4,e[,[EH3]~4)

As E[E]=true to show that a(9'"[ll]E3.r[l[llH3]~3H\3=trueit suffices
~

to verify that j'4v3ff3=true. Accordingly take any ff 4 having

pff4Apatff4v3ff3=true, and set E =aaaess(6 4 {l,U 4 {1) ff 4 and
3

ff
5
=« P4[£311IIJ,64tl,G4)'(P4,v 4ti,update(P4[IP1)E 30 4»

~There is some ff for which spun[ll]lljJ ff ~=true, so
3 3

P3[I] H:L, P4[I] H: Land (~" p, U, 6" , ~ p u a)=(£ p U IT , ~ p u a)
.,..,..,..,. 4444 35553555

Likewise NweZP 3P 3[I!HH:V and raveZP4P4[IPH1:V, so, POfi'11 being

true, we can presume that P4[I]{1=P4[I
6
]{v

6
only if 1=1 6 and

Zeadl<15
4[I])=Zeadv (P4[I!). The description of P U'/IIIJ given

6 4

246

ln 3.1.4 therefore ensures that for all p and ~

hotenw(revertpps,revertpps> =(hoten~(revertPP4,revertPP4>A~w=63)

v(w=8 A(leadi(P3[n »#P3[n-#p[n))3

where 83=<E3,P4[nh>. The fact that spun[1I]1lji3~3~=true for some

~ also implies that P3[I]+1+2=V 3 so, tidy(leveIvTI3+i)(levelvTI3+1)

being true for all v, we must have v~v3 whenever v satisfies

Ie ad1(p3[I]) > #P3[n - #(Ie ve I VTI 3) [I JI •

Let TI be of the form leveIvTI for some v; a trivial3

induction on vi demonstrates that for all w ' wi and vio

(seen3viwOwi~sAknownTIwi~4A~wi=63)~(knownTIwO~4A-Wo=63)'Since

pat~4v~3=true we know that found(levelv3TI3)E3~4=true; in particular

if E3:L*xL* any a having gyven&E 3=true is subject to

known(levelv3TI3)&~4=true, No & such that known(levelv3TI3)&~4=true

can be such that a=c , as
3

,
known(levelv3TI3)(ravelp4P4[I]+1+1,o3> ~4=true and p~4=true, Hence

for all W and vio
A A A ...

seen3ViWOo3TIS~(WO=o3vWO=E3v(known(levelv3TI3)wO~4A-WO=O3))'When­

ever gyvenwi(pop(levelv3TI3+2)Us,pop(levelv3TI3+2)Us>=true, wi is

in LxL or VxV because pat~4v3~3=true, and again we never have w=6 3 ,
i

Collecting these assertions together we see that for all

v, TI and W with TI=levelVTI3

hotenw(revertpp revertpp > ~(kn01'JnTIW~ A-w=6)v(w=8 AV~V) whiles' . s 4 3 3 3

gyvenw(popUU ,popuu >~(knownTIwft A~w=6). From the definition ofs s 4 3

kno.,n in 3.2.1 it follows that

kno'JnTIwfts~(knoWnTIwft4A-W=Z3)V«w=g3vw=E3)AV~V3)for all v, TI and

w having TI=leveIvTI or TI=leveIvTI ' An awareness that P01l4=true3 s

and that found(leveIV3TI3)E3~4=truenow allow us to assert that for

all v and wsuch that known(leveIVTIs)W~s=truewe have

found(leveIVTIs)Wlls=true. Furthermore when knoMn(leveIvTI 3)&l =trues

we have known(levelvTI 3)&1l 4=true and as patl 4v 3TI 3=true

Thus p I =true and if o s

247

Afw@ftslkentl@ftS}~true we shall have pftsAspun[~Dl~3ft3ftS~true.>

A mundane induction on vi establishes that for all @o'

wi and vi 8eenlvl@O@lftSA(kentlwlft4vWl=g3)~(kentlwoft4vWo=83)'so for

every @ kentlwfts~(kentlwft4vw=63)' When kentlwft 4=true, however,

3.2.6 shows that kent1(qo xq o)@)<<l!q x"qo)ft) =true and con­o 4

sequently that found(ZeveZv3~3)@ft4=true,while the fact that

pft 4=true assures us that wwft 4=true. From 3.2.7 we can now deduce

that wwfts=true for all whaving kentlwft =true, and accordinglys

pftsA8pun[~Dl~3ft3ftS=true.

Hence a(£3;SCS~S'~3PS~Sa5> =true and. more generally.

a(E464~464'~4~4~4a4> =true for all ft 4 having pft 4Apatft 4v 3ft 3=true.

This means that je4v3ft3=true and that c(9'"HH3~[t[~H3n3>ft3=true

for all ~3' 23 and ft 3 such that t[~DoP3=true and

Afc23ftI8pun[~Dl~3ft3ft}=true,which in turn implies T[~D=true.>

The same result can be obtained by similar means when

~ is I=E, I 1 , .•• ,I =E or Ii •...• In==E. For none of these doesn

the degree of complexity exceed that required above. and indeed

for two of them it is considerably smaller.>

By methods closely related to those of 2.6.6 we can show

that for any ~o and ~1 if D[~oDAD[~lD=true then

D[~O within ~lD=true whilst if D[~oIAT[~l]=true then

T[~o within ~lD=true. Likewise a minor variant of 2.6.7 serves to

establish that for all ~1"" '~n D[~lDA ••• AD[~n]~D[~l and ... and ~nD

and T[~]A ... AT[~ I~T[~ and •.. and ~ I. Both proofs demand no
1 n 1 n

arguments other than those introduced already, so they can be

safely omitted. Were we to adopt the alternative to trim alluded

to in 2.1.5 we would be reduced to asserting that

D[~O within ~ll=true if cramped[~o within ~l](AI.(2>)=true. which

would be inimical to the motivation underlying within declarations.

248

3.3.8.	 Lemma.

If T[6]=true then T[rec 6]=true and, when

opts(.lf[llJI)=Alj!.true* also, D[rec 6]=true.

4:Suppose th~t 1J!0' 11 0 , 11 1 and 2 satisfy opts(.lf[6])1J!0=true*,

pl11Afitft1fto=true and !\{c2~lspun[rec 6]01J! 1l 01l}=true; let 1J!1 be
0

1J!0[false*/.I[6]][true*,w[6HJ. Because P0 1l 1=true, if

(a*,a*>=(news(#.1[6])o1,news(#.f[6]il » and
1

8 =(updates6.*dummy*o1 ,updates1i*dummy*il > 8 2 is proper. Define
2	 1

02=01 and

P2=(P1[6.*//.f[6] Hdummy*/,w[6]],Pl[1i*/.f[6] ~[6HJ> in terms of
.... r' ,

which.1l[rec 6]1;P1\)1(Jl and.1l[d[rec 6h]1;P 1\)1(J1 are~[6]1;P2\)2(J2o

and.r[/[6h1]~P2u2a2 respectively. If ft satisfies

spun[6]11J!1ft2ft=true then spun[rec 6]01J! Oft 1ft=true since if

11=~ 0 11 and I:Jt'[M

f1q oP o[I] =lIIlq 0P2[I]t leadl (P2[I]) =p[I] tleadl (p[I]) =revertp2 p[I] .

Hence when d[rec 6]opo=true (and T[6]OP2=true also) to show that

a(.1l(rec 6]ep1u1a1,~[d[rec 6]1J!0]~P1ula1> =true it suffices to verify

that pft2Afitft2ft2=true.

If 11 is of the forn levelv11 2 for some v either 1i=levelv11
1

or 11=11 .
2 '

in the first case knownl1wft2~knownl1wft1 for all wfrom

3.2.2. The second case is disposed of by noting that induction

shows that kentvw1l2~(hotenw~2vw=(dummy,dummy>vkentvwft 1) for all

v and w. When 6.:6.* and 1i:1i* area6.61varea1iil1~false so

kent3(6.,E>ft1Akent3<E·,1i>ft1~falsefor all 12 as POft1~true; con­

sequently POft2~true. Plainly ww1l 2=true for all w having

wwft1~true, and thus !\{ww1l2Ikent1w1l2}=true as !\{wwftllkent1w1l1}=true;

in conjunction with POft 2=true this ensures that pft2Afitft2ft2~true.

Hence	 for any 1J! , ft , 11 and ~ having opts(;l'1[6])1J! = true* ,o 0 1 - 0

p1l 1Afit1l 11l 0=true and A{c2~lspun[rec 6101J!01l01l}=true we have

a(£j[rec 61~P1u1a1,£j[d[rec 6Ho]2p1u1G-1>=true or d[rec 6]oPo=false.

In accordance with 3.2.4 this means that D[rec 61~true.~

249

3.3.9. Theorem.

The meanings accorded by new stack semantics to a Mal

program and by novel store semantics to its transform are

comparable, provided that the program obeys the constraints of

3.1.4, the lattice of locations is infinite and every recursive

declaration rec 60 embedded in the program satisfies the equality

opts(.1l'1[6])=ALtrue*.
0

~The insistence that all declarations of the form rec 60

embedded in the program be subject to opts(J!'[6])=AI.true*
0

ensures not merely that we can apply 3.3.8 but that the transform

of the program is devoid of recursive declarations by incidence

and satisfies the conditions of 2.6.9. Thus although 3.3.1, for

instance, is expressed in terms of new store semantics it holds

for novel store semantics as well. Moreover the absence of both

G and P from the domain W defined in 3.2.1 makes it possible to

assert in a similar manner that new stack semantics is exactly

equivalent to novel stack semantics. In consequence the meaning

of the program according to stack semantics is comparable with

that of its transform (under the rules of 1.4.6) according to

store semantics whichever means of storage allocation is implicit

in the relevant equations.

Should the program satis fy the conditions under which

2.7.6 is applicable rather more than this can be said. Under

these circumstances, the program and its transform are equivalent

when both are evaluated using new store semantics, so in fact the

outcome of the program sug~ested by stack semantics is comparable

with the outcome suggested by store semantics. From 2.3.9 it

therefore follows that the answer obtained by implementing the

language with the aid of stacks is precisely that predicted by

standard semantics.>

250

3.4. Different control structures for languages.

3.4.1. Surrogate routines.

Elaborate though it may be, Mal does not evince the

essentials of all computer languages. Its lack of format state­

ments and file-handling facilities is unimportant, however, since

they could readily be embedded in its semantic equations. Likewise

the introduction of arrays and structures (which are akin to

members of L*) would merely require us to complicate the technical

details of appendix 1 without disturbing its core. More sig­

nificant is the omission from Mal of any means of checking types

and encoding implicit coercions during compilation, which will be

treated in 3.6.1. In this section we shall extend the formalism

of 1.3.4 to cope with methods of controlling the execution

sequence of a program which differ from those of Pal.

The use of labels is frequently opposed on the ground that

it transports the intended meaning of a program beyond the

bounds of human and computer comprehension. Even when labels are

permitted languages tend to bar entry to a block after it has

already been le£t by imposing the constraints of 3.1.4. The worst

effects of doing this can be mitigated by introducing co routines ,

which sometimes achieve less wayward transfers of control than

are afforded by the assignment and invocation of stored label

entry points. Accordingly we begin by augmenting the syntax of

Mal with a set of primitives which exhibit the salient aspects of

coroutines.

Those languages which provide coroutines give them a mode

of definition which resembles that for subroutines rather than that

for labels. We follow this convention in our adoption of cr()E,

which by analogy with fn() E is deemed to be a coroutine taking the

list ni 1 as a parameter. Unlike the corresponding subroutine,

however, the point to which E returns its result is determined not

251

when cr()E is applied but when it is set up; in 3.4.2 for brevity

we shall use p[res] to provide this point, but plainly there are

many more plausible possibilities. Whereas parameters cannot be

passed to labels by goto statements, here we can exploit the

extra freedom allowed by abstractions in order to create crI.E,

crl 1 , ...• I .E, crI..E and crl1 , ... ,I .. E. which require the valuen n
of bound variables to be supplied when the coroutine is first

activated. Such activations occur on encountering resume Eo with E1 ,

when E1 is passed as an argument to a coroutine Eo which then

takes over control from the current one; should the latter ever

be invoked again execution will continue from the textual position

following this resumption. This represents the most significant

distinction between coroutines and denoted label entry points. in

that only the continuation signified by the former can be altered

as the execution of the program proceeds.

There is one further difference between our coroutines

and labels; we permit the suspension of coroutines so that when

a resume instruction demands that control pass to a suspended co­

routine p[res] is summoned instead. Thus cancel E will suspend

E while adjoin E will append E once more to the set of coroutines

which can be resumed. This apparatus is introduced merely to add

force to our claim that the technique to be developed in 3.4.2

can supply the formal semantics of any of the constructs discussed

by Dahl [3] by modelling the 'sequencing set' or 'activation list'

of a simulation language.

As intimated above a subroutine is subordinate to the pro­

gram which calls it but a coroutine, like a label entry point,

need not be. The declaration rec I;=cr()E is therefore more

closely linked with I::E than with rec I;;fn()E; the declaration

I;;cr()E corresponds not to setting a label by incidence but to

evaluating the expression E in an environment which binds I to

252

a value created in an outer block. Yet though we may permit

the identifier I set by I::E to denote a continuation we would

be unwise to allow the same liberty to the identifier declared

by rec I~~cr()E, since the environment would then need to be

modified explicitly at every dynamic occurrence of a resume

instruction. Moreover we would have to alter all the environments

attached to coroutines as well as the current one, for jf

rec g~~crz.resume g with (z+l) inside resume g with 0

is to return 1 as its result the same should be true of

rec g~~crz.resume h with (z+l) and h==crz.resume h with (z+l)

inside resume g with 0,

which returns 2 unless these alterations are effected. The formalism

of 2.1.1 could perhaps be made to accommodate such alterations but

standard semantics cannot, so we are obliged not to take the

denotation of a coroutine to be a continuation.

The obvious means of ensuring that the variables g and h

in the program above change their continuations simultaneously

would be to make them both denote a location containing the

appropriate continuation. On resuming the execution of a coroutine

the appropriate linkage information could then be assigned to the

location corresponding to the coroutine the execution of which was

being halted. We shall not adopt this expedient because it

would corrupt the intention of declarations by incidence, according

to which g~~cr()dummy within g:~dummy should not modify the value

of g. Though it may be that languages should provide only co­

routines stored in this manner, no conventional simulation language

docs so and hence we must cater for existing constructs less

obliquely. Underlying a coroutine resumption is a concept as

different from that of an assignment as it is from that of a sub­

routine application, so we shall isolate it in a separate mechanism.

253

There is perhaps an analogy between the status of stored

coroutines and on conditions. One behemoth of a language permits

on conditions to be declared at points other than block entry,

thereby altering dynamically the environment bound to subroutines

and label entry points. It is possible to describe such silliness

formally either by supplying part of the environment to a sub­

routine only when it is applied or by adopting a stratagem akin

to that of 3.4.2. The proper course of action, however, is to

design an entirely different language in which on conditions can

be declared only at the heads of blocks; similarly, then, it may

be that coroutines should always be explicitly stored objects

which cannot be denoted and which do not require the contrivance

which we shall now discuss.

3.4.2. Controlled queues of processes.

The considerations of 3.4.1 drive us to provide an abstract

version of the sequencing set, a feature of all implementations of

simulation languages which is not needed by other languages. Akin

to the lattice L is a flat lattice of processes, I, which we shall

take to be a summand of D. Whenever an identifier is declared to

be a coroutine it denotes not a continuation but a process through

which is channelled each request for knowledge about the coroutine.

Associated with any program is a queue taken from a domain Q in

such a way that if T:Q all that is known about the process 1:1 can

be inferred from T1. For Mal we take this domain of queues to be

I~[TxTxKoJ, factoring out the undesirable elements as in 1.3.1.

The lattice KO provides the continuation corresponding to the co­

routine while the second constituent truth value lattice indicates

whether or not it has been suspended by applying cancel. The

first constituent serves a purpose very similar to that of area in

254

that it establishes which processes are in use; to acquire a

fresh process the semantic equations invoke near:Q+S+I, which is

taken to be any continuous function satisfying

ATa.T(nearTa)+l vT(nearTa)+2;ATa.A{Tl+l vTl+2Il: I}+l.faZse.

Somewhat similar to update is impose:I+[TxTxKO]+Q+Q, which can

be defined by

imp 0 s e ; A1 WT • (A1 ' • 1 '; 1 +w • T 1) •

In consequence the iterated version of near, nears:N+Q+S+I*, is

given by

nears;AvTa.v;o+(} ,(AL(l) §nears(v-1)(imposel« true} §ntlh)a)(nearTaJ

At any point during the execution of a program the name of

the current process must be available alongside a sequencing set

in Q holding the continuations which supplant the current one

when other coroutines are resumed. This sequencing set cannot be

built into the continuations because it may have been modified by

the time they are set in motion; the relevant process names,

however, are immutable and can therefore be incorporated in

members of C. Thus the logical development of 1.3.2 involves

setting C;Q+S+A, K;E+C and X;U+C, where A is a suitable domain of

answers. Before an expression or a declaration can be supplied

with a continuation both the environment and the process on which

it operates must be determined, so typical valuations are now

':Exp+U+I+K+C and -:Dec+U+I+X+C, while the value domains are

provided by the equalities V;I+B+L*+J+F, E;L+V and D;E+G.

As subroutines do not have continuations sealed into them,

they are not associated with particular processes and ~:Abs+U+F

can continue in use; now F;[E+I+K+C]O so that ~fn()E] is

APlKTa.K(ACtl'K'.rv(AS.SILk;(}+Ji1IE]Pl'K',T)a)Ta and ~9[E:oEl0 is

APlK.(A1jJ.run(&t[Eo] Pl,.l1:E1] pI} 1jJ)

(AE* • E*+1: F+ (E* +1) (E* +2) 1 K•rv (1'; BIN,; # E* +1 IL*+K (E*+1 +B) •T) (E*+2)) ,

255

where run, rv and Iv are identical with their counterparts in'

1.3.5 except for the presence of a member of Q which plays no

part in the evaluation. Labels, on the other hand, contain

process names in their values, with the effect that when a jump

is made the current process reverts to that at the time of

definition of the relevant label; this is made plain by the fact

that 9"II:E]plKH and j1II: :E]plKh are both 0'[E]plK. For reasons

similar to those adduced in 1.4.1 recursive declarations must be

dealt with by means of9'[I\]PlTo+v, which is

AK'T'o'.5'[1\]1 Pl (Ap"T"o". K' (p"~ 1\] +v] IE)T'O')TO when l';V';~ 1\],

thereby implying that G=[K+C]O and that 111 II is

AplKTO.(AO .O:G+OKTO,KOTO)(p[I]+1). The remaining semantic

equations in appendix 1 are left almost unscathed by the introduction

of coroutines, the sole changes being the intrusion of two extra

arguments which do not interfere with the evaluation; 0'1IE :=E],o 1

for instance, becomes

AP1 K. run(2'[Eo] p1 ,3l[E1] P1) (A E *TO . K(dummy h (up dat e (E *+ 1) (E *+2) 0)) •

When we create a new coroutine we select a process which

is not in use and impose on it the appropriate continuation

together with tokens which reveal that the process is active.

Hence the outcome of~lcr()EI is

AplKTO.(Aw.K(nearTo)(impose(npn~TO)WT)O)

(true. true ,rv(1.6,61 L*=() +~I E] p(nearTO) (pi res] +1). T» ,

which in view of our remarks about labels ensures that after

running E control reverts to the process creating the coroutine.

The equations for the other kinds of coroutine are related to

those for fnI.E, fnI , ... ,I .E, fnI..E and fnI •••• ,I .. E in pre­
1 n 1 n

cisely the same way as that for cr()E is related to that for the

corresponding subroutine.

The connection between a process resumption and a sub­

routine application is only rendered more devious by the ins is­

256

tence that a passive process never be resumed unless by chance it

is that corresponding to p[res]. In consequence we take

~[resume Eo with E] to be1

APi K. (A ljJ • l'un(~[Eo] Pi .!tIl E1] pI) ljJ)

(A E*Ta . (AT ' . (T ' (E* +1 I I)+ 2+T '(E* +1 I I H 3 •P[re s] +1) (E*+2IT 'a)

(imp 0 s e I (T1+ 1 •T1+ 2 , K> T)) .

We can formulate the other properties of our coroutines in an even

more trivial manner, for _[cancel E] is

APi K.Ell[E] Pi (AET• E: I+K E(i mpo seE(TE+1 ,fa Is e , TE+3) T) , T) whi 1e

§'[adjoin E], its opposite, is

APIK.iif[E] Pi (AET. E: I+KE(imposeE(TE+1 ,tl'ue ,TE+3) T), T). Notice that

in regarding I as a summand of V we are clearing the way for some

rather strange sharing patterns between coroutines which do not

arise in more normal languages. Thus in

g=o inside h==cr()dummy inside g:=h, for example, assigned to g is

not a continuation but a process marking a continuation which is

altered whenever the continuation tallying with h is altered.

3.4.3. Variant formulations.

The queues introduced for standard semantics naturally

have counterparts in store semantics. The motivation given in

2.1.1 for converting KO into lOxUxY remains valid in the new

situation provided a reasonable version of l is adopted, so for

the store semantic equations governing the coroutines of 3.4.2

we can take Q to be I~[TxTx[ZOxUxYJJ. We might expect to require

valuations belonging to the lattices Exp+l+I+U+Y+Q+S+A and

Dec+l+I+U+Y+Q+S+A but luckily they are unnecessary. The environ­

ment and stack involved when an expression or a declaration is

evaluated need not be supplied as arguments alongside the queue

T because they are already embedded in it. In addition the name

of the current process I can be kept in T by tagging it so that

257

it alone among the processes satisfies -T\~lAT\~2=true; doing

so is inelegant but perhaps more in keeping with the inter­

pretive nature of store semantics. Accordingly we extract the

name of the current location with the aid of last:Q+S+I, which

is defined by last=ATo.U{\ 1-'\~lAT\~2}.

For store semantics Z is therefore Q+S+A, and the

valuations are exemplified by I:Exp+O and ~:Dec+O where 0 is

Z+Z as before. The value domains continue to have the forms

imposed on them in 3.4.2, but now J=ZoxUxY, F=OoxU and G=OoxQxS.

The environment lattice U undergoes a slight change because now

p[rec] must tuck away not the current state vector but the queue

and the store; consequently U is still [Ide~Do*JxJ*xp* provided

that P is QxS. Moreover the definitions of novel, replace and

recur must be altered to take account of the locations accessible

from processes other than the current one; after doing this

we can demand that fI[I] be

A, a . (A\ • (AO • 0 : G+(A\ • (A B. (0 H) ~ (imp o.q e \ (fa 1s e , true, 8) (0+ 2))(0+ 3))

«0~2)1+3H,«0+2)1+3~2)[(T,O) /rec],(0~2)1+3~3»)

(Zast(0+2)(0+3)),

~(impose\(false,true,(T1+3+1,T1+3+2,(0) §T1+3+3» T)O)

((T\ +3 +3) [I] H)) (Zas t TO))

and that .9"[flJI TO+V be

(A~"'O' .9"[fl] (AT"O". (A \. (A8.recur~ '(impose\(false ,true ,8) ,")0")

(T"1+3+1,T"1+3+2,((T"l+3+2)[J.;lt1ffl]+v]HIE»)

(Zas tT"rr")).

T ,0)

when l,;v,;1t;!1[fl]. We shall not provide more of the equations

needed by the extended version of store semantics because they

can readily be obtained by subjecting appendix 2 to the refinements

of 3.4.2.

258

The formulation of stack semantics in terms of queues can

likewise be put into effect by translating the equations of

appendix 3. Since each process must have access to its own pr1­

vate environment and stack Q is again I~[TxTx[ZoxUxYJJ although

now J;Zo and F=O°. We choose not to conflate Q and S because to

us the principles beneath the components of S are very different from

the ones underlying Q, which is concerned with the flow of control

through programs rather than with their results. The queue is

regarded as housing all the information private to a process whilst

the store provides a channel for communication between processes.

In other languages the extent to which a process can send or

receive data using this channel will be determined by flags 1n

T attached to the relevant entry in the queue. lIenee stack

semantics can continue to invoke valuations 4:Exp+O and ~:Dec+O,

for which ~II] is now taken to be

Apo . (A\ • (A0 • G imp os e \ (fa Zs e , true, (T\ +3 +1 , T\ +3 +2 ,(0) § T\ +3 +3)) T) 0)

(raveZ(T\ +3 +2) (T\+3 +2)[1] +1 h)) (ZastTo)),

as V=I+B+L*+J+F, E=L+I+B+L*+J+F and D;L+I+B+L*+J+F.

When the semantic equations are set up correctly it is

possible to prove an analogue of 2.3.9 relating standard and

stack semantics in the presence of queues. Besides the predicates

of 2.2.5 this involves

so that it deals only with a queue T if there is exactly one pro­

cess \ having - T\ H" T 1+2; true. In addi ti on we can de fine a

version of the function seen:N+N+[WOxWoJ~[WOxWoJ+[POxPoJ+Tmore

appropriate than that of 2.1.6 to store semantics with queues,

in which W;L+I~B+L*+J+F+J+P+[TxTX[ZOxUxYJJand P;QxS; for instance

see n V (v +1) W W 11 iss e e nv v Gl ((1H1) W ,(il+1) W) 11 if Gl : I x I andis a 1 01 010 1 1 1

259

V{seenv v1 Gl Gl 'il
o O 2

A (h 0 te nW (W1+3+ 2 , W1+3+2)v (gy v e nGl (W1+3+ 3 , W1+3+ 3) A v0 <2» I ID 2: WxW}

2 2

if Gll:CTxTx[ZOxUxYJJxCTxTxCzoxUxYJJ. With the assistance of this

function we can establish theorems like 2.5.9 and 2.6.9 whilst a

version suitable for stack semantics can be used for an analogue

of 3.3.9. By extending the definition of crushed given in 1.5.4

so that any expression satisfying it is devoid of coroutine

resumptions we can even validate 1.5.8 and 2.7.7 for semantic

equations with queues.

It is frequently claimed that stored free variable lists

can perform all the tasks which coroutines can carry out. Here

we shall briefly indicate how to show that this is so for our

choice of coroutines by providing an explicit conversion pro­

cedure which erases them from a program. We associate a member

of L* with every member of I called upon by the program in such

a way that changes in the contents of the constituent locations

reflect changes in the flags and continuation attached to the pro­

cess. To achieve this we pick out identifiers 10 , 11 and 1 2

occurring nowhere in the program and define

move:CExp+DecJ+lde+CExp+DecJ by such equations as

move[cr() E] ~>. 1. 10 ~(true. true. fn() res move[E][1]) ins ide 10 ;

0

move[resume Eo with El]~>'LIo~move[Eo][IB and I
1

=move[E
1
][II

inside I =fnLres I2
inside val (I3:=fn .res I;

(if 102 then 103 else 1)1 1);
2

move[cancel E]=>.I.(move[EI[I])2 :=false;

move[adjoin E]=AI.(move[E][IB)2:=true.

The other kinds of coroutine are converted in like manner to

cr()E whereas the expressions inherent in Mal are not altered;

for example, movel! Eo; Ell! is AI. (move[Eo I [I]; move[E1] [II). The

problem now becomes that of proving that when 10 does not occur

260

at all in E or 6 4[E] and g[6] compute the same answers as

4[move[E][I]] and £i'[move[E][I]] respectively. We therefore
o o

translate these programs using standard semantics, obtaining entities

in which 10 , Ii and 12 do not appear (by virtue of 1.5.2), and

then take members of Z, Q and S suitable for store semantics which

can be shown to be equivalent to them by using the extension of

2.3.9 alluded to above. This reduces the problem to considering

pairs in [QxSJox[QxSJo for which we take ycleptGJ« f,6> ,< T,a})

to be

V{(fl+lvfl+2+hotenGJ(f\t3t2.'hiJ+2> vgyvenGJ(ftt3t3.T\HH> .false)

vgyvenw(6 .. 2 §6H ,a .. 2 §ill 3) v (GJ=(las t f6 , (T(las tTa H 3.. 2) [1] H>) , \ : I } •
0

Using this and the function seen mentioned above we extract all

the values witnessed by corresponding states (f ,6> and (T ,a> so

that we can build up inclusive predicates resembling those of

2.4.5. Finally these are applied in a proof akin to that of 2.5.9

establishing that when k2((f ,6> , (T ,a» ~true and

rent[E](f (lcstf6)+3+2)=true we must have

c(4[E]i;,I[move[E][Io]]~>« f,6> ,(T,a» =true.

261

3.5. Parallel programming.

3.5.1. Indivisible operations.

The utility of the technique introduced in 3.4.2 is

neither confined to the description of coroutines nor vitiated

by the ugliness of some language constructs; indeed, we have

already alluded to its role in highlighting the obscurities of

on conditions. Here we shall model parallel programs by adapting

process queues so that they act in a non-deterministic fashion

outside the control of the programmer. Our approach will differ

from that of Milner [11] mainly because of our preference for

composing a sequence of operations as a continuation instead of

dissecting it.

We demand that the workings of computers can be analysed

into discrete operations which cannot be interrupted by one

another; it is fortunate that every implementation which avoids

chaos satisfies this requirement, for a continuum of operations

would need a different treatment. Though a typical computer

might debar assignments to a location while its content is being

extracted, we do not have to presume that the hardware locks arise

at such a macroscopic level. We shall nonetheless do so to enable

us to retain a model for storage akin to that of 1.3.1, but there

would be no difficulty about adapting all that follows to com­

puters permitting greater liberties: for instance, were the in­

dividual bits in a word protected from being overwritten during

the examination of its content, we would replace L~[TxV] by

L~[Tx[{o}o+{l}O]*] and encode the members of Band L as bit

patterns in [{O}o+{l}O]*.

The 'indivisible operations' or 'basic steps' pertaining

to a particular implementation are also such that any two in­

stances of them which are not protected from one another can

be performed simultaneously. Thus if at most onc assignment can

262

be made to any location at a given moment, update defines an

indivisible operation such that for all proper a 1 , a 2 , S1 and S2

updatea1S1oupdatea2S2 is the effect of interleaving updatea 1 S 1

and updatea
2

S
2

arbitrarily unless a 1=a 2 • Consequently should the

implementation be executing several processes in parallel we

can align them arbitrarily to obtain a sequential computation

with the same effect; all that we must insist upon is that the

temporal order of the basic steps in each individual process be

preserved by the sequential computation.

In the mathematical model the counterpart to the mingling

of indivisible operations will be the composition of primitive

functions (like updatea S and updatea S) in a certain order.
1 1 2 2

These functions will be attached to processes by T, a member of

a domain 0 similar to that of 3.4.2. After applying the function

given by some process 1:1 another process will be chosen while

the remaining primitives required by 1 will be preserved in T

as the continuation corresponding to 1. The choice of process

will be made by next, which will tentatively be assumed to belong

to 1+0+$+1; thus next1To will be the process which usurps control

after a function provided by 1:1 produces T:O and 0:$. The

nature of next will not preclude the possibility that one

particular process might be selected at every appeal to it, and

in fact when T contains only one active process this will in­

evitably be the case. Nevertheless the means whereby processes

take control is constrained by a hierarchy quite different from

that discussed in 3.4.1, so the present T will be distinguished

from the earlier one by calling it a 'sequel'; the semantics for

a language with both coroutines and parallel programming would

therefore be endowed with both a queue and a sequel.

For reasons elucidated in 3. S. 3 we now take '1+7 (rather

than '1+3) to be the continuation associated with 1:1 in T:O,

263

and we tacitly presume that the definition of impose given in

3.4.2 is modified so that T\ is permitted to have seven com­

ponents. Before invoking a process impose is used to put the

current continuation back into the sequel, and then the fresh

continuation is retrieved. This suggests that to switch from

one process to another we introduce a function do having the form

A\ 8 Ta • (A T ' • (T ' (next \Ta) Ie) T ' a)

(imp 0 s e \ ('[\ + 1 , T \ + 2 , T \ + 3 , T \ + '+ , T \ + 5 , T 1+ 6 , 8) T).

In fact the current continuation need not be put back into the

sequel if next does not call for a change of process, so it is

more efficient to let do be

A\ 8 Ta • (AT' • \ =n ext \ Ta+8 Ta, (T (ne xt \ Ta) + 7 Ie) T ' a)

(impose\(T\+1,T1+2,T1+3,T1+'+,'[\+5,T\+6,8) T).

Minor variants of this are equally plausible: we could, for

instance, select the next process on the assumption that the

sequel preserves the current continuation, thereby giving do the

value

A18Ta. (AT'. \ =next\T 'a+8Ta. (T(next\T 'a)+7\ C)T 'a)

(imp 0 s e \ < T 1 + 1 • T 1 + 2 • T 1 + 3 • T 1 + '+ • T 1 + 5 • T \ + 6 • 8) T) •

To extend the formalism of 1.3.4 by introducing parallel

processing we append extra arguments \ and T to the equations

of appendix I in the positions suggested by 3.4.2, and we then

insert do at every basic step in a computation. As mentioned

above, precisely what constitutes the set of such steps depends

on the implementation; we shall include in it changes to sequels

and stores (which provide paths of communication between pro­

cesses), but doing so by no means exhausts it. The comments

of 3.4.3 establish that associated with every process are

members of U and Y, so when the environment is altered or when

an expressed value is supplied to a continuation the sequel is

implicitly being influenced. Hence that process \ to which a

264

given semantic equation refers can he supplanted by another

process in the wake of evaluating a declaration or an expression.

fls a result \J[H is AplK,O.(AO.o:G->-dol(OK),o,dot(KO)'rO)(p[I]+1)

and W[~] is AP1KTO.dol(K(§1[~]p»,o. Since \J[E ; E] entails the
o 1

deletion of an element from the stack we take it to be

AP1K.~[EO]Pl(AE.dol(~[E1]P1K» instead of AP1K.~[Eo]pl(AE.~[E1]plK);

analogous remarks apply to conditional expressions and while loops.

The argument I in the semantic equations does not represent

the only process which is currently executing; in contrast to

3.4.2 here it is merely the process on which attention happens to

be fixed at one particular moment. Accordingly I will he said to

be the 'present' process, while a 'current' process will be any

process which could become the present process without impediment.

In order to clarify what constitutes such an impediment

Mal will be extended by the addition of semaphores. Thus the

expressions noti ce E and ignore E will determine whether or not

the semaphore signified by E is to affect any future selection

of the present process by next, while raise E and lower E will

respectively add 1 to and subtract 1 from the value of the

semaphore. As no process can even be current, far less present,

unless the value of every semaphore influencing it exceeds 0,

next must be suitably constrained. Consequently the information

with which next is supplied must include a record of which

semaphores can affect a given process. This is kept in the sequel

,:Q by letting ,1+3 be a list of the locations holding semaphores

which have been made to influence I; ,1+1 and ,1+2 remain truth

values with much the same roles as in 3.4.2. The component ,1+7

contains a continuation, but the facilities for parallel programs

to be provided in 3.5.3 will be such that this continuation need

not be in C. Before describing these facilities, however, we must

invpstigatc the properties of next.

265

3.5.2. Scheduling algorithms.

The selection of the present process resembles that of a

new location in that while it may depend on the particular im­

plementation involved it is also subject to certain restrictions.

These can be encapsulated in a continuous predicate, able:I~Q~5~T,

such that ablelTo is true only if 1 can currently be running;

hence A1To.able(nextlTo)TO=A1To.V{ablel 'Toll ':I}~true,L. For

the language we are considering

in accordance with 3.5.1, but here it is immaterial how the current

processes are constrained. We are content merely to observe that

if T1 and are proper sequels such that T1UT is proper thenT2 2

the continuity of next ensures that Alo.nextlT o=Alo.nextlT o. This1 2

apparently innocuous equality has disastrous implications which

we shall now analyse.

It seems plausible that the values of ~[B] and

(fUwhile Eo do E1] should be taken to be AP1KTO.dol(K(!ll'[B]))r0 and

AP1K.fix(A8.~[Eoll pI (AE. E~dol (W[E111 pI (AE.do18)) ,dOl (K(dummy))))

respectively, 50 that ~[wh;le true do dummy] must be

AP1KTO.fix(dol)TO. Suppose that an attempt is made to execute

a process 1 embodying the expression while true do dummy in
0

parallel with another process and that by some chance when the

execution of 1
0

commences the sequel TO and the store 00 are such

that T01 0+7:C o and nextloToOo=lo' The equality above implies

that for all n;'O

nextlO(imposel O(Tolo+l,Tolo+2,Tolo+3,Tolo+4,Tolo+5,To10+6.6n>TOloO=lo

where 8 =L and 8 l=dol 8 when n;'O. Consequently for each version
0 n+ 0 n

of do suggested in 3.5.1 induction on n;'O will establish that

8 T O =L and thus that fix(dolO)TOOO=L. Intuitively one would not n o o

expect this to be the case, for even when nextloToOo=lo the

operating system should have the opportunity of breaking out of

266

the infinite loop hy choosing another process after performing

two indivisible operations taken from 1 0 .

To remedy this situation it is necessary to provide next

with a parameter the value of which will alter whenever do is

invoked. Part of the outcome of applying next will have to be

a new value of this parameter which will then be passed on ln

such a way that even if the present process, the sequel and the

store are not changed successive calls of next need not produce

the same result. This suggests that if H signifies this extra

domain of parameters next should be sought among the members of

I-+H-+O-+S-+[lxH].

It would be possible to provide an all-embracing version

of H by taking it to be a flat lattice; the elements of this could

then be put in correspondence with those ¢:I-+O-+S-+[lxH] such that

A1To.able(¢\To-H)TO=A1To.V{ablel'ToI1':I}-+true,1. Inherent in

this interpretation of H are two more specialized (but equally

satisfactory) ones, which will be termed 'descriptive' and

'prescriptive'. The first of these views elements of H as record­

ing how the processes have been executed so far; thus 1* is

appropriate as its H, Al*.#l* is a rudimentary clock, and for all

1:1, n:H, T:O and o:S nextlnTo+2 can be taken to be either

(nextl nTo+l) §n or (I) §n. depending on whether n is deemed

to be amended when a process comes into play or when it is halted.

In the prescriptive approach a typical n:H provides the oreer in

which processes will be executed in the future, so that under the

convention of 1. 2. 8 H is I~ or possibly I" There is no reason

why H should not play hoth descriptive and prescriptive roles

by assuming the form I*xI~, hut we shall concentrate on its

prescriptive powers; however to stress the underlying generality

of H we shall call a typical member of H a 'roster' instead of

giving it some more evocative title. As intimated above we can

267

arrange for every descriptive roster to contain the name of the

present process; we shall organize each prescriptive roster ln a

similar fashion by taking its top element to be the present

process. This will enable us to discard \ (the present process)

from the parameter lists of our equations, and to regard next

as an element of H+Q+S+H; thus henceforth for any roster n in

a suitable domain H n~1 will be assumed to be the present process.

No matter how H is constructed next must be restricted

by a postulate like

AnTa.abZe(nextnTa~1)=AnTo.V{abZe\Tall:I}+true,L.

Consequently the next process to be executed cannot be selected

from a prescriptive roster n simply by taking the first avail­

able element, which is n~2~1; rather next must trace back through

n until it encounters a suitable process. This can he achieved

hy writing

next=AnTa.abZe(n~2~1)Ta+n~2.next(n~2)Ta.

Not every sensible scheduling policy can be viewed as a member

of I- from which this particular next function selects a succession

of processes. One policy which requires a different next function

is that which demands that execution of the present process continue

for as long as possihle; for this we might set

next=AnTa.abZe(n~1)Ta+n,next(n~2)Ta.

Further policies are conceivable: one could, for instance,

insist that the sihlings of the current process he completely

executed before any other process takes control. Thus to retain

full generality either we must let next be any continuous function

subject to the postulate above, perhaps together with

AnTa.fix(A~n'.nextnTa=n'+true,~(n'~2))n=AnTa.(nextnTa+1:I),

or we must adopt the more general treatment mentioned above in

which H is a flat lattice.

Prescriptive rosters perhaps provide the most natural

268

framework in which to discuss such problems as whether two

processes deadlock or how to ensure that a program is allowed to

execute only for a certain length of time: the latter issue, for

instance, can be resolved by using a member of 1- in which only

the operating system processes occur infinitely often. In

this connection it should be noted that a prescriptive roster

in 1- corresponds with a time-slicing algorithm only if the com­

puter which is being modelled mathematically has precisely one

processor; under other circumstances the roster is concerned to

arbitrate between all the processes which are currently running

by deeming one of them to be the present process. Thus it

might be preferable to adopt 1*- instead of 1- so that for any

n:H nH would be the list of all the processes which perform some

action 'during a particular cycle'. Within this cycle the first

remaining operation of one process, n+l+V , would be appliedo
before that of another process, n+1+v1, only if v <v 1 ; at the o

end of the cycle next would replace n+l with a different list,

which might be n+2+1. This approach will not be pursued here,

as it yields little extra insight.

Whichever sort of roster is employed the lattice of

command continuations, C, is H+Q+S+A and the activities set in

motion by choosing a process can be embodied in a suitable function

do. When n+1 signifies the present process and ~ is a variable

ranging over a continuation domain having Co as a summand this

function is given by

do =A~T)"ra • (A, ' • (An' •n+1 =n ' +1+(~ IC) n ' ,a , (, (n ' +1 H 7 IC) n " ' a) (ne xt n, ' a))

((A1 • imp 0 S e 1 (,1 +1 , , 1 +2•' 1 +3, , 1 +4- • , 1 +5 •, 1+ 6 .~) ,) (n +1)) .

Under this definition of do, should 8 :C, n :H, , :Q and a :S o 0 0 0

satisfy ('o(no+l)+7:CO)vV{ablel'oaol l:I}=false then do8ono'ooo

need not yield a faulty computation with answer T but instead

269

may be 8 n1 TOO O (for a suitable n), whereas setting
0 1

do= A\jJn Hi • (AT I • (An' • n +1 =n ' +1 -+ (\jJ Ie) n ' Hi , (T (n +1)+ 7 Ie) n ' T ' CY) (ne x tn TO))

((AI • imp 0 s e I (T\ +1 , T\ + 2 , T\ +3 , T\ + '+ , T\ +5 , TI +6 ,\jJ) T) (n +1))

must produce an error stop when d080noToCYo is encountered.

Besides being suitable for describing parallel processes

which are explicitly set up by programs such as operating systems

sequels can also provide an account of relevant actions external

to the computer on which the program is executed. These actions

might include supplying an input tape, which will be discussed in

3.5.3, or, more drastically, turning off the power. The latter

case merely needs an appropriate function haZt:Co attached by the

sequel to a process 1 :1, together with a version of next which
0

applies to prescriptive rosters and which satisfies nextnoToCYo+1=1

whenever no:H, TO:Q and CYo:S are such that ablel T o =true, no+1=10o o o
and T l +7=halt.o o

An alternative way to represent some external actions entails

taking H to be r x[Q-+S-+[QxSJJ- rather than 1-. The function speci­

fied by the top element of the second component of n:H is applied

before a fresh process is selected by next, so do is

A\jJ n TCY • (A(T ' ,CY ') • (AI • (AT" • (An' • I =n ' +1 +1-+ (\jJ Ie) n ' T ' CY ' ,

(T ' (n ' + H 1 H 7\ c)n' T"cy')

(nextnT"CY'))

(imp os e I(T ' I +1 • T ' I +2 , T ' 1+3 • T ' I + '+ • T ' 1 + 5 , T ' 1+6 • 1jJ) T I)

(n+H1))

« n+2+1)TCY)

and AnTCY.nextnTCY+2 is probably AnTcy.n+2+2. As only certain members

of Q-+S-+[QxS] are likely to arise the component [Q-+S-+[QxSJJ- could be

replaced by R- where R is a flat lattice of representations on

which can be defined a mapping on to those ~:Q-+S-+[QxSJ obeying

suitable constraints. Among these constraints might be

270

AaTa.holdaa=AaTa.holda(~Ta+2). which would ensure that the only

parts of the store to be altered would be the input and output

buffers. We shall not pursue this topic further, since an ade­

quate description of parallel programs seems to be provided by

taking H to he I-. To confirm that this is so we shall now give

a formal description of the language features mentioned in 3.5.1.

3.5.3. Typical 8'1uations for parallel processes.

Whereas the processes of 3.4.1 can be manipulated by textual

statements those appropriate to parallel execution are not ex­

plicitly mentioned in a program. Consequently I is not usually

part of the expressed value domain of a language; even conventional

languages in which operating systems are written prefer to let

summands like L masquerade as I. Thus when extended as ln 3.5.1

Mal retains the lattices V=B+L*+J+F, E=L+V and D=E+G required by

1.4.5. Providing rosters in addition to sequels necessitates

taking C to be H~Q~S~A (not Q~S~A or S~A), but K and X remain

E~C and U~C respectively, so the valuations are exemplified by

4;Exp~U~K~C and by ~;Dec~U~X~C.

In accordance with the argument of 3.5.1 the semantic

equations are built up by inserting do at all their hasic steps.

The roster n:H supplied to these equations serves solely to affect

the outcome of do and to indicate which is the present process;

even the sequel T:Q affects only a few of the equations given

below. Thus ~[I] is ApKnTa.(Ao.o:G~do(oK)nTa,do(Ko)nTa)(p[I]+1)

(and G is [K~C]O), while <§[B] and \§[~] are ApKnTa.do(K(Sf[B]))nTa

and ApKnTa.do(KWF[~]p))nTa respectively. Since l:I need no

longer appear as a parameter in the equations, ~[Eo; E1] is

APK.~[Eo]p(AE.do(~[E1]pK)),~[;f Eo then E1 else E2] is

ApK.m[Eo]p(AE.E~do(~[E,]pK).do(~[E2JpK))and ~[wh;le Eo do E1]

271

is APK .fixC Ae.~ EoN P(AE. E+do(~[El Np(AE. doe)). doe K(dummy))));

now, however, the definition of do given in 3.5.2 ensures that

the execution of while true do dummy need not continue indefin­

itely if two of its basic steps are performed in quick succession.

Just as alterations to the stack influence the sequel implicitly

so do alterations to the environment; hence ~[~ inside EN is

taken to be APK.!i'[~Np(Ap'.doc.'l'I[EN(divertpp')K)). By the same

token ~[I==EN and~[I==EN are both equal to

APx.tR'IIERp(AE.doCxCarid[E!I]))), while ~[I=ER is

APx.9'lfENp(AE.doCxCarid[E!IJ))) andsr[I=ER is

APx.~[ENpCAEnTo.CA8.8:L+doCXCarid[8!I]))nT(update8Eo),T)Cp[I]+l)).

For any T:Q and l:I Tl+3 is a member of L* which lists the

semaphores which help to determine whether l can be used as the

next process. Thus ~[not;ce EN, which is intended to adjoin the

location represented by E to the member of L* corresponding to

the present process, is simply

ApK.ZI! EN pC AEnT• CAl. do CKC lnC imp os e l « Tl +1 , Tl +2 ,(E) §Tl +3) §Tl t 3 h)) Cn+1))

whilst ~[;gnore E], which is intended to delete the location from

the list is

ApK .n EN pC AEn T. CAa. * . CAl. do CKE)ncimp ose l « Tl +1 ,Tl +2 ,a.*) §Tl t 3h)) Cn+1))

(fix(A<jJS.S=()+() ,(E=S+1+(),< S+1>)§<jJ(St1))(T(n+l)+3))).

The operation of increasing (or of decreasing) the value of a sema­

phore is indivisible but that of evaluating the expression E which

gives rise to it need not be; this fact is incorporated ln the

semantic equations by letting ~[ra;se E] and ~[lower EN be

ApK.2[ENp(AEnTo.do(KE)nT(updateE(hoZdEoIN+l)O)) and

APK~[E]p(AEnTo.do(KE)nT(update(hoZdEOIN-l)O)),in which no

opportunity is given to carry out any other actions between

isolating E and modifying its content.

Although the function run set up in 1.3.5 allows expressions

272

and declarations to be evaluated in an indeterminate order, it

does not permit one evaluation to be entangled with another. Thus

according to appendix 1 the execution of E1 , ... ,En entails exec­

uting E1 either before E2 or after E2 , so that switching back and

forth between E1 and E2 is not envisaged. Now that the formalism

can handle parallel programs this can be viewed in a fresh light

Rather than reflecting a permutation of a list of expressions or

declarations run will set up processes which will evaluate the con­

stituents of the list. The answers calculated will then be

returned to the parent process 1 so that it can resume execution.

While its offspring are running the continuation ~ attached to 1

by the sequel will therefore be in E*+C or U*+C, so that the

definition of able in 3.5.2 will preclude the possibility that

1 could proceed in parallel with its descendants. This situation

does not prevail in all languages and is not typical of operating

systems, which can be executed at the same time as their offspring,

but its variants could obviously be modelled equally well. For

Mal, however, it is necessary merely to introduce the functions

run:CK+CJQ*+CE*+CJ+C and run:[X+C]o*+[U*+C]+C. When H is taken

to be r- and when n+1 is always regarded as the present process

corresponding to n:H, for every y*:[K+C]o*, ~:[E*+C]O, n:H, ,:Q and

o:s runY*~n,o equals

(A 1*. (H; . (A, ' . do ~n, ' a) (fi x (A<p v. v> #y *+, • i mpo s e (1 * +V) (i;v) (<p (v+ 1))) 1))

(A v. (A K. (true. true., (n +1)+ 3.1 * .' (n H)+ 5., (n H) +6 • (y*+v) K>)

(AEn' , ra I • (A, " • (A~ , • (A8 . do (8+~ r • ~ , (dummy *)) (n +1 • n r> , ' or)

(Vh "(1* +V ')+ 1 11,;v ' ,; #y * }))

(AE*. (,"1+7)« E*H ••.•• E*+(V-1).n §E*tV))

(impose(1*+V) « false> §, r (1 *+v)U), r))))

(nears(#y*),o).

Unappealing though this fonnul Q is, it does at Jeast have the meri t

of being adequate to describe a realistic language feature; moreover

it is sufficiently general for all our present purposes, in that

273

the definition of run appropriate to declarations differs only

in the domains required by y* and ~.

The complicated nature of run is inevitable, for it is

designed to embody a rather devious course of action. On embarking

upon the evaluation of El , ... ,En' say, run not only preserves the

given ~:[E*~CJo as the continuation of n+1, the present process,

but also obtains n new processes using near, which obeys an axiom

like that of 3.4.2, and endows them with fresh entries in the

sequel; the roster could, of course, also be altered but thi s would

be superfluous. Each fresh entry inherits T(n+1)+3 (the list of

semaphores attached to n+1) and catalogues the siblings of the

relevant process as its fourth component; anyone of these siblings

may be invoked by do because they all have continuations belonging

to C. These continuations incorporate the code for some E
m

having 1~m~n as well as some K:K o which describes what is to

happen once the evaluation of E is complete. In fact the effect
m

of K depends on whether any of the siblings of the process corres­

ponding to E have not yet finished executing: if
m

V{T"(1*~V')~111~v'~#Y*} is true there are siblings which must

proceed further so the result returned by Em is given to the

continuation of n+l but this continuation remains in [E*~CJ,

whereas if Vh"(*+\!')ll~\!'~#Y*} is false the continuation of nH

is put into C by supplying it with a dummy argument list of

length n. Thus after all the E have been exhausted none of the m

descendants of n+l can be called upon by next to become the

present process since each has false as the first component of

entry in the sequel; n+1, on the other hand, can resume control

because its continuation is a member of C. Much of the clumsiness

in the definition of run stems from the need to return the result

of E to n+l immediately it has been found, so a simpler function m

could be used were the sequel to follow the queue of 3.4.3 by

274

keeping explicit environments and stacks.

When parallel programming is introduced the value of

~[El"" ,EnD given in appendix 1 can therefore be replaced by

APKTlTO • l"un<.2'I[Ell P , ••• ,.i1f En I p) (A E* • KC E* IE)) n TO, whi 1e

!ll[ill and ... and ilnD and 5"[ill and ... and ilnl can be assumed to be

APxnTo.l"un<.f}[illlp, ••• ,!oiI[ilnDp) (xoconsel"Ve)nTo and

APxnTo.l"un<j'"[illlp, ••• ~[ilnlp) (xoconsel"Ve)nTCJ respectively.

Likewise ~[Eo:~Ell becomes

ApK .1"un<,W[E DP ,.'it[Ell p) (AE*nTo. do(KC dummy))nT(update (E*+1) (E*+2) 0)).
o

The siblings of a process are listed in the sequel to

avoid executing two parts of a program in parallel unless the

syntax indicates that this should happen. Sequential standard

semantics suggests that 3 is the outcome of val (0+1,(2,reS 3));

however unless the process executing 0+1 is terminated on jumping

out of res 3 parallel semantics may not reach the same conclusion.

Loosely speaking, were this process allowed to stay active after

the jump the stack associated with its parent might grow to the

wrong size; this phenomenon would be expressed in the formalism

by an attempt to apply a member of C to an argument in E. Con­

sequently whenever a process is left by jumping the descendants

of its siblings must be terminated using

hang~A 1 *T. 1 *~<) +T,

(Al.hang(1*t1)(hang(n+4)(imposel«false) §ntl)T)))(l*+1).

Thus in parallel semantics ~[val EI is taken to be

APKn •.w[E] P [AEn' T ' (J , • do (KE) < n +1 , n') (n + 1~ n ' + 1+T ' , hang< n ' + 1> T ') (J , / res] Kn

and IJ[res E] is taken to be APK.,W[E] p(AE.do(p[res]JE)). The anal­

ago us equations for labels require knowledge of the prescriptive

roster pertaining at the time the labels are declared in order to

identify the present process. Hence &[I:E]pKn+1 and ~[I::E]pKn+l

are both

275

AT]' T ' 0 ' • do (§[EJ pK)(11 +1 ,11 ') (11 +1 =11 ' +1 +T ' , hang (11 ' ~ 1) T ') 0 ' ,

although ~[goto Ell is simply APK.~[EJpOE.do(£IC)) and J lS Co.

Slightly different formulae would be necessary were the present

process treated as an additional parameter of the semantic

equations rather than as a distinguished part of the roster.

By contrast with the situation for labels the ostensible

meaning of an abstraction in parallel standard semantics closely

resembles that given by sequential semantics. Thus!F[fn()EH,

for instance, is ACtK.rvOS.I3IL*=()+do(:t'[EHpK),T)Ct and ~[EoE1J is

APK.(A1)J.run(.:i!'[E Hp,Bl[E 1Hp) 1)J)O

(A£*.£*~1:F+do(£*~1)(£*~2)K,

rv (A B• 1$ BIN,; #£* ~ 1 IL*+do (K(£* ~ H S)) , T) (£*~ 2))

so long as rv and sv are modified to take account of the presence

of Hand Q.

In a computer which permits concurrent operations it is

natural to view locations as being accessible to particular pro­

cesses instead of to the entire computation. Consequently an

element of [L~TJ must be attached to every process in the sequel.

Actually two such elements are attached in order to segregate

the heap storage heaving infinite extent from the stack storage,

which is discarded on leaving the block wherein it is allocated;

Q is therefore taken to be

I~[TxTxL*xI*x[L~TJx[L~TJx[co+[E*+CJo+[U*+CJoJJ.By introducing

further syntax we could ensure that certain locations required

by a Mal program would be retrieved not by garbage collection

but with the aid of

r'e s to re= ATO TJ •), 1 . (A£ . (T1 d 1 •T11~ 2 •T11~ 3 •T11~ 4 •£ •T1 d 6 •T1 d 7))

(ACt.(T01~5)CtA(T11~5)Ct).

Just as this replaces the function restore of 3.1.1 so the

stipulation on new provided by 1.3.1 is superseded by one

276

concerning new:H~Q~S~L, to wit

An T0 .V{((n +5 l (n ew n T0 l v (n +6 l (new mol l "n +1 1\ : 1}

=AnT 0 .!\{V{((n +5) a v (n +6) a l "n +1 1\ :1} Ia : L}~ .L , fa l s e •

An interesting demonstration of the interaction of a process

with actions external to it is provided by an input buffer. Though

S, the domain of stores, may be [L~V]xV*xV* the second component

of a store 0 may not list all the members of V which are ever

going to be input. Thus an attempt to evaluate get E when 0+2 is

the empty list need not lead to an error; it may just halt the

process until 0+2 is not empty. This effect could be expressed

by taking ,[get E] to be

APK.~E]p(AE.fix(A8nTo.#0+2>0~~oKEnTo,do8nTollwhere

~0=AKEnTO.do(KElm(updateE(0+2+1l(0+1,0+2t1,0+3)l, but this

involves making the process to resume execution when it tests

to see whether 0+2 has been filled. A more efficient version of

,[get EI would be

Ap K•.2'[E] p (AEmo. (AT ' • #a +2 >0~~ 0 KEnT 0 •do (~ 0 KE l nT ' 0 l

(imp 0 s e (n +1 l (T (n h l +1 , fa l s e) §T (n +1)t 2 l T l l ;

the second component of nil would then need to be altered when the

computer operator supplied more input. Though the person con­

cerned might believe himself to have free-will, the sequence of

values provided by him can be assumed in retrospect at least

to be ' a predetermined member of V' (which is defined inwO
1.2.8). The process \0 corresponding in T to his actions would

therefore have at its genesis a continuation 80 such that

8 0 =fi x (A~w mo. (A(T ' ,0') • w=() ~ha l tTH 0 •do (~ (w +2 l l nT ' 0 ' l ,

(A\.(n+1,true) §nt2,(0+1,0+2§(w+1) ,0+3» lw '
o

This formulation is not entirely satisfactory because 80 is obliged

to alter T\+2 for every \:1, but more realistic equations could

readily be given. Among these would be a group in which T\+2

277

represented not a member of T but a member of 1*; this member of

1* would be the list of processes which could not become current

until 1 had carried out some action. Hence ~[get E] would be

APK~[E]p(AEnTo.(AT'.#0+2>0+~oKEnTo.do(~oKE)nT'0)

(impose1 « T1 +1.(n+1) §Tl +2) §Tl t2)T))o 0 O o

and 80 would be given by

8 0 =fi x (A~w mo • (A(T' ,0 ') w=() +h a I t nTO • do (~ (w+2)) nT ' 0 ')

(impose1o«T1 +1·(» §Tl t2)T,(0+1,0+2§(w+2) ,0+3»)w ' o O O

A model in which T1+2 belonged to 1* might constrain the selection

of the next process by

able=AlTo.Tl+1A-(1:Tl +2V ... V1:T1 +2)o m

AA{a:Tl+3+holdao!N>O,tpuela:L}A(Tl+7:CO).

where 10 ••••• lm are suitable operating system processes.

By following the lines of 3.4.3 we could introduce a form

of parallel store semantics which would be equivalent to parallel

standard semantics in the sense of 2.3.9 provided that do was

inserted at the appropriate points. Our other theorems could also

be established under the additional assumption that only one member

of I can become the present process (which entails giving Pun the

same meaning as in 1.3.5). Thus. for instance, all suitable

p:U. D:H, T:Q and E:Exp satisfy

AKo.~HE]PKnTo=AKo.«A£.do(K£)DT)*~~[E]p)owhen 1.5.4 supplies the

conjugate valuation.

There is no difficulty about setting up sequels which

describe other features of parallel programming and 'real time'

systems, but the domain Q tends to become complex. However the

structure imposed above on Q is sufficiently large for our

purposes. as it could be made applicable to Algol 68 with the

aid of minor extensions. Chief among these would be the

addition of components listing the opened and closed input and

output streams attached to particular processes. We shall not

278

detail these but will end the section with an account of the con­

ceptual basis for our treatment of input and output.

3.5.4. Computed state sequences.

It has been claimed that a deficiency of the theory as

developed in appendix I is its inability to provide such pro­

grams as while true do put 1 with any answer other than i. This

can be overcome by interpreting programs as families of parallel

processes obeying the equations of 3.5.3; here, however, without

introducing rosters or sequels we shall try to analyse those com­

putations which in sequential semantics yield the answer i and

appear not to terminate.

There is a widespread belief that a program which never

halts should be given a meaning by the semantic equations which

reflects whether or not it prints any results. To achieve this we

could set S=[L" [TxVJ]xV* and A=V' (taking V' to be as in 1. 2.8),

furnish every entire program with the final continuation AEO.() lA,

and view lJ'[put E] as ApK •.'Il[E]p(ho.< E,KEO)) instead of

\pK.gj'[E~p<\EO.KE< 0+1.ot2,< E) §ot3». When the remainder of appendix

1 is preserved intact this device makes while true do put 1 and

put a have as their respective outcomes fix(Ao.< 1,0» (an un­

ending stream of numbers) and < 0,<». Moreover at the cost of

specifying the domain A the output channel would be removed from

the store, where it gives a misleading impression of influencing

the future course of the computation by being supplied as an

argument to the continuation. Nevertheless modifying (9JJ put E]

has implications which the considerations below lead us to regard

as being both too extensive and too confined.

In accordance with the precepts of 1.4.1 we wish the side

effects of a recursive declaration by incidence to be performed

279

at the time of declaration only. However were we to adopt the

modification suggested ahove the operators of appendix 1 would

give to ree f=={put 1; fnz.put 2; fz» inside fO the value

(l,fix(Ao.< 1,< 2,0»» instead of the more fitting <1,fix(Ao.(2,0»).

Unfortunately there is no natural way to amend our treatment of

recursion to make it compatible with an approach which binds the

output more tightly to the continuation than to the store.

Perhaps it is unfair to berate one artifice on the ground

that it invalidates another, but there are in any case further

unsatisfactory aspects to every model which preserves only the

output from computations. Since the input is not saved in a

similar fashion, bilateral streams (which can be both written on

and read) must be handled by the formalism in the manner chosen

for the input streams, although they partake equally of the nature

of output streams. In Algol 68 there is a library function which

will test any stream to see whether it can be written on; as

streams are not tied to particUlar mechanical devices for trans­

mitting information, we can readily conceive of another function

which would transform an output stream into a bilateral stream.

Such a function would play havoc with the semantics of output pro­

posed above, but within the more conventional model of 1.3.1 (ex­

tended by the means mentioned in 3.5.3) it would simply confirm

the essential uniformity of streams: each 1S an object not unlike

a process or a location containing a list in V* or H* together with

certain truth values which determine such trivial matters as

whether output can be sent along it.

The argument for distinguishing the outcome of

while true do dummy from that of while true do put 1 but not from

that of while true do 0:=1 seems to rest upon the assumption that

sending something along an output stream is irrevocable whereas

assignments to locations can be overwritten. This confuses

280

physicRl reality with mathematical calculations involving lattices.

Certainly the marks mad~ upon line-printer paper may he indelible

and the holes punched in tapes cannot be filled, but this hardly

seems to bear upon the algorithm realized by a program. Indeed

for such devices as traffic lights the physical manifestations

of output are purely ephemeral and can be interpreted equally well

as the updating of locations. It is no more satisfactory to argue

that the difference between the output and the store resides in

the irreversibility of the act of sending a number along an output

stream, for the act of assignment likewise cannot be undone:

once we have updated a location we do not annul the fact that an

assignment has taken place when we later restore the content to

its original value. Furthermore the significant products of

non-terminating programs like operating systems are sequences of

acts with evanescent effects, and whether or not to construe them

as 'output' is a matter of taste.

Given that we ought to distinguish the outcome of

while true do dummy from that of an unending loop which writes

numbers there can be little sense in identifying it with the

outcome of such an expression as while true do get 1. If the out­

put is not to vanish when a program fails to terminate then neither

should the input, for it cannot be affected at all by the algorithm

which uses it. In fact whereas the infinite list of numerals which

is printed might reasonably be thought to deserve the formal

interpretation ~ like the store, the input stream should not be

violated by the computation. Accordingly our earlier suggestion

must give way to one in which A, the domain of answers, is V' xV' and

the final continuation is AE:O.«} IA,O IA}. Now we take ,,~put E]

to be ApK.£l[E]pCAE:o.< KE:O+1,< E:,KE:O+2}») and \'1[get E] to be

281

APK •.:t'[E]p(AEa.(Aa'.« a+2t1,KEO"t1) ,KEa ' +2»)

(updateE:(a+2+1)(a+1,a+2t1))).

We cannot keep merely the residual dregs of the input by letting

~I get E] be

APK•.2'[E] p (AE:a • (A a ' • (KE a ' + H 2 ,K Ea ' + 2)) (up da te E (K E:a + H 1) a)) ,

because this would provide while true do get 1 with the answer

and would make a mockery of the intention of continuations. Yet

once we have changed ~[get E] symmetry dictates that we turn

,[put EI into the analogous form, which is

ApK.&f[EI p (AEa • (Aa ' • (KEa ' +1 ,(E, KE: a ' +2))) (a t1 ,a +2 , a + 3t 1>)

where S:[L~[TxVJJxV*xV* as before.

Having introduced the principle that the semantic equations

can duplicate an entity (in our case the input) we can grasp

what underlies the original modification to the meaning of

~[put E]: essentially it is concerned not to remove the output

from a realm where it does not belong but to keep a record of

some of the actions indulged in by the program. There is no reason

why other actions might not be of equal interest; we might, for

instance, wish to examine the way in which the content of a

particular location changes as the computation proceeds. In the

situations above we are simply inspecting what happens at some of

the basic steps (in the sense of 3.5.1) and ignoring what happens

at others. Considerations of elegance and consistency suggest

that instead of doing this we preserve all the changes to the

store by setting S:[L~[TxVJJxV*xV* and A:S·. Each program is

supplied wi th the final continuation AEa.(a,() IA) and at every

basic step we adjoin the current store to the list in A.

Accordingly ~[EO::Ell is now

ApK • run (2'[EO] p ,Bi[Ell p) (A E*a· (a, K(dummy) (up da te (E* +1) (E* +2) a)),

9[E O; Ell is ApK.!'1[Eolp(AEa.(a,90[Ellpi<:J») and ~[II is

282

ApKa. 00.0: G+(a, OKa) ,(a, Koa))(p[1] +1); more generally, wherever

do would appear in collateral semantics this sort of equation

inserts a further store instead. Obvious retractions enable us

to extract the final output and input from the store sequence

arrived at by the end of the computation, thereby providing all

the information obtainable from the earlier versions of the

equations for get E and put E.

Needless to say there are many variants of the scheme

proposed here; in particular both store and stack semantics

would allow the retention of a sequence of state vectors in the

domain A=[UxyxSr, while their parallel counterparts might give

rise to members of A=[HxQxSr. Moreover it is even possible to

adapt the scheme in order to capture the execution sequence when

semantic equations without continuations are provided. It seems

that whatever formulation of semantics is appropriate to the

problem in hand should be used so long as it can be proved to be

equivalent to the standard semantics of 1.3.4 (enhanced as in

3.5.3 when parallel programming is permitted). In the present

case such a proof can be couched in terms of halt:A+S, which is

defined by halt=Ao.O+2=()+o+1,halt(o+2I A). We take the domain A

of appendix 1 to be 5 and regard a typical pair 6 as having 0

drawn from standard semantics and 0 drawn from the above. If

c=A~.l\{a(86,(0) Is8}, k=A~.Nc(KE,KS) leO, X=AX.!\{C(xp,x1\) lup} and

a=A6.(A8.8=(.L • .L)v8=(T,T)+tpue.s8)(o.halto) (and if s has the same

form as in 2.2.5) we can assert that for every E:Exp and ~:Dec

c(,[E] PK ,4'[E]PK) /\ c(~[~] p:x,~[~]Px) =tpue for all p, ~ and X having

up/\k~/\xX=tpue. The proof of this follows the usual lines and has

no features of interest.

Two adverse criticisms might be levelled against this

approach to the output of non-terminating programs. Firstly, our

semantic equations do not make plain that the numbers in the output

283

stream cannot influence the course of a program. Yet much the

same is true of the environment, which may contain denotations

for identifiers occurring nowhere in the program, and just as

1.5.2 can cut the environment down to size so a more complex

induction can serve to show the irrelevance of the output to

the remainder of the program. Secondly, the equations for which

A-S· fall foul of recursive declarations in the same manner as

those for which A-V· ; however this is immaterial, for the member

of A obtained at the end of the program now represents not the

final result but a record of all that the store has undergone.

284

3.6. Manifest types.

3.6.1. Compiled coercions.

Many computer languages adopt manifest types in order to

arrange that precisely the right storage is allocated to par­

ticular members of V and to facilitate type-checking during a com­

putation. Though these aims are connected they are not identical,

for it is easy to conceive of implementations in which all the

stored values occupy the same space but type-checking is desir­

able or in which locations can differ in size but no errors are

found until programs are executed. Consequently our discussion

of types will be couched in terms of Algol 68 [26], which dis­

tinguishes clearly between allocating storage and coercing values

(the concomitant of checking their types during compilation).

Stored values and locations play contrasting roles in Pal, which

extends more readily to the incidence and reference features of

Mal than to a language with a hierarchy of types where any ob­

ject having type M may be kept in a location of type ref M.

Accordingly even the syntax used henceforth will be that of strict

Algol 68, although recourse will not be made to the lnore unpleasant

aspects of its terminology.

To ensure that every location contains a value which fits

it exactly we introduce a lattice M, comprising the meanings of

modes, and take the first component of the store domain S to be

L~[[M+TJxVJ. Whenever a new location suitable for holding a

given value is required the locations attached only to defunct

processes are examined to find out whether they are compatible

with the mode of the value. In terms of the domain Q of 3.5.3

new:M+H+Q+S+L must therefore satisfy a more complicated constraint

than hitherto; a suitable candidate is

285

\~nTa.(\a.V{((Tl+5)aV(Tl+6)a)AT1+111:I}v-areaaa~)(neW~nTa)

=\~nTaJ\{V{((Tl+5)aV(Tl+6)n)AT1+111:I}v-areaaa~la:L }~i.faZse,

where as in 1.3.1 areaaa is (a+l)a+l. The member of M~T associated

with a location is not regarded as an attribute of the content.

which continues to be obtained by taking hoZdaa to be (a+l)a+2.

In general because types can be checked during compilation the

mode of an entity need not be incorporated in the corresponding

stored value. The only exception to this rule arises in the

case of an object having a mode united from several other modes,

when the existence of conformity relations entails keeping the

original mode of the value along with it; thus the declaration

union(bool, char) c=true, for instance, makes c denote not true

but (~l,true), where ~1 is some member of M which represents the

syntactic entity bool.

Sufficient information is made available during compil­

ation for the types in a program to be checked by a valuation

which links each identifier to the type it is declared to possess

and thus creates a static environment drawn from the domain

Ide~M* before executing the program. For convenience this environ­

ment is amalgamated with the dynamic environment in Ide~Do*,

thereby providing U with Ide~[MxDoJ* as its first component.

In practice a member of M will be paired only with those denot­

ations which fall into certain summands of D (so that (~2,true),

say, will not occur if ~2 represents char), but notwithstanding

this Ide~[MxDoJ* is adequate for our present purposes. Strictly

speaking we should set up lJ in a manner resembling that of 3.1.1

in order to ensure that any compiled program obeys the context

conditions, which like those of 3.1.4 arrange that no location

subject to the stack discipline is passed out beyond its extent,

but we shall follow existing implementations by ignoring this

286

refinement. After responding to the declaration above an envlron­

ment p therefore becomes p[(~o,(~1,true» Ie] where

union (bool. char) is represented in M by ~o.

Just as V need not be identical with 0 so there is no

reason why the lattices M found in L#[[M+T]xV] and in Ide#[MxDO]*

should coincide, and indeed those appropriate to Algol 68 do not.

More precisely, since selectors "1' ... '"n lying in the flat

domain Sel can obtain from an object having mode

ref struct (M1 l:1' •.. ,M l:n) objects of modes ref M1 ••••• ref Mn n

to which assignments may be made independently, the storage

occupied by a structure is taken to be a list of locations (in one

to one correspondence with the fields of the structure) instead

of an indivisible location. Accordingly the lattice M present

in Ide#[MxDO]* includes a component which signifies the modes

yielded by structures whereas the lattice M in L#[[M+T]xV] does

not; our main concern being with type-checking, from now on we

shall consider only the former version of M.

In keeping with its insistence that an expressed value

belongs to one (and only one) of the lattices L 8nd V Pal permits

expressions to be evaluated in three ways, embodied in the

valuations I, ~ and~. In Algol 68, however, there is a con­

siderable overlap between 0 and V; in particular it is possible

to store any sort of location or even a list of locations. It

would be possible to provide syntactic operators which would

extract the contents of these locations, but in fact Algol 68

allows the context of an expression to determine when its result

is to be forced to become a value of another given type. In

principle different sets of coercions could be provided for

every production rule in the syntax, but in fact no more than

seven such sets are required; as even Pal needs two sets

287

(comprising Lv and rv) this total is not excessive. To com­

pensate for this paucity of contexts there is a wealth of poten­

tial ambiguities arising from the fact that sometimes the type

into which the expression must be coerced is not fully known

since all that is available is some predicate in M+T which it

satisfies.

From this it would appear that we could view a coercion

as a member of [M+TJ+[MxEJ+[MxEJ mapping a predicate in M+T and

an initial pair ()I,£) :MxE to a final pair. Were this the case

there would be no need to build any coercions into a program

during its compilation, and we could happily proceed to execute

it using an interpreter which would first work out the result of

an expression and would then apply a suitable coercion. In order

to check the type of an expression we would need a domain of ex­

pressed values akin to our present MxE, but nevertheless this

approach would be somewhat less complex than the one we shall

actually adopt. Regrettably it is invalidated by 'balancing', which

we shall now describe.

An expression like a conditional clause or a case clause

contains more than one possible exit (in the sense of 1.5.3) and

hence more than one possible mode for the expressed value which

it would return in the absence of coercions. To arrive at a

common final type all but one of these exits are subjected to the

strongest possible coercion, thereby being forced to take on the

type attained by applying the coercion induced by the context to

the remaining exit; should there be ~ore than one way of choosing

the exits to be coerced strongly they must all lead to the same

final type. The program

ref ref int u=loc ref int; ref int u=loc int; (truelulv):=v,

for instance, provides the type ref int for the result of the

conditional clause by taking the content of u (thereby coercing

288

it strongly) and by applying a nugatory soft coercion to v;

its net effect is therefore to update the location contained in

u with the integer contained in v. Were the coercion appropriate

to the left hand side of an assignment not applied until the con­

ditional clause had been evaluated u would be updated with the

location v because an object of mode ref ref int is not affected

by a soft coercion.

Balancing thus obliges the coercions to act on the code

which produces expressed values rather than on the values them­

selves. Setting C=H+Q+S+A, K=E+C and X=U+C as in 3.5.3 we take

the coercions to he members of [M+TJ+[MxGJ+[MxGJ where G=[K+CJo.

The semantic equations governing an expression must now be

supplied with yet two more arguments, one being the predicate ~

which the type of the ultimate expressed value must satisfy and

the other indicating the context 0 wherein the expression is

found. For simplicity we shall give this context the same name

as the coercion to which it tallies, although in a more formal

treatment we would not do so. Because 0 maps ~ and a pair (~,y) :MxG

to some other pair in MxG these extra arguments are supplied to

the equations after determining the environment and the current

process. Accordingly the valuations are exemplified hy

~:Exp+U+O+P+[MxGJ where O=P+[MxGJ+[MxGJ and P=M+T. The method

of floating labels to the head of a hlock discussed in 1.3.4 re­

quires that we also introduce a valuation Y:Exp+U+O+P+[MxGJ which

assumes that the lahels are already known to the environment. Our

earlier versions of ~ and g must accordingly be displaced hy ones

such that for all E:Exp we have '[EI=\porrKnTa.(.[Elpo~+21[K+CJ)nTa

and also ~[EI=\po~KnTa.(~Elporr+21[K+CJ)KnTa.

When the component of IJ dealing with identifiers is

arranged as above the value of'Y[II for any I:Ide must therefore

289

be \pOTI. (\(\l,o) • OTI(\l,h. (0 :G-+dO(OK) ,0 :J-+doo ,0: E-+do(KO), T)) (p[III +1).

The test for members of G in the formula stems from the adoption

of recursive declarations akin to those of 1.4.1, not from the

presence of procedures without parameters (which are only applied

at the instigation of the context). Contrariwise the test for

members of J arises because jumps can be executed whether a goto

statement occurs or not; more precisely, for every E:Exp ~[goto EI

is ~[E]. We can take across to Algol 68 the description of the

effect of a jump given in 3.5.3 (even including the definition of

hang), so J=C o as before; the sole difference is that J is no longer

a summand of E or of V despite being one of D.

The semantic equation for ~[II is fairly typical in that

o and TI appear only in the combination OTI. Indeed were it not

for the existence of balancing and of the switches between two

forms of strong context in the expressions known as 'confrontations'

we could amalgamate these arguments, supplying the valuations with

mappings in [MxGJ-+[MxGJ instead. Before clarifying the nature of

these mappings we must elucidate the structure of M, and so it is

to this task that we now turn.

3.6.2. Declarations of recursive modes.

Because Pal permits any location to contain any stored

value it offers no obstacle to the construction of programs in

which the constituent locations of certain members of L* may hold

further members of L*. In a manifest type language, however,

such programs may require a list of location with the same type,

and this cannot be achieved in the framework set up so far. Thus

although the Pal declaration rec x=nil aug false can be written

in the cumbersome forms of strict Algol 68 as

ref struct (ref bool t) x=heap struct (ref bool t); t of x:=false

290

the fragment ree x=nil aug x calls for a more elaborate treatment.

This is provided in Algol 68 by allowing new moJes to be created

out of those already known; the relevant declarations are recursive,

for if they were not nothing could be accomplished with their aid

which could not be accomplished without it at the cost of extra

wri ting. In terms of them the fragment above could be trans la ted

as the verbose program

mode p=ref struet (p t); p x=heap struet (p t); t of x:=x.

The existence of mode declarations ensures that we cannot

automatically identify the syntactic lattice [18] of modes, Mod,

with its semantic counterpart, M; instead we must relate them

through an environment which binds a meaning to each symbol

signifying a mode name 1n the language. These symbols are the

proper elements of a flat lattice of indications, Ind, so during

compilation an element of Ind~M* must be constructed alongside

the member of Ide~M* mentioned in 3.6.1.

Types such as struet (M L , ... ,M L) proyjde only a
i i n n

partial parallel to the members of L* employed by Pal, since without

executing an Algol 68 program we can discover all the points in it

where a given component of a structure is selected. In this

respect members of L* are more closely followed by arrays than by

structures; moreover some arrays share with members of L* the

further property of having flexible bounds. These bounds can be

set to their initial values by supplying expressions as part of

the declarer M:Mod in an Algol 68 identity declaration M I=E. For

the sake of consistency bounds must also be permitted in mode T=M,

where T:Ind is declared to have the same meaning as Mj under these

circumstances, however, the bounds are not evaluated when T 1S

declared but only when T is later used in an identity declaration.

We shall not dwell on the nature of array bounds in Algol 68 or

291

on the valuations required by their semantics but will presume,

rather inaccurately, that a list of such bounds is an expressed

value in E. Were this so the continuation appropriate to a

declarer would belong to K and the valuation determining its out­

come would be in Mod+U+K+C; in consequence the effect of a type

declaration mode T=M would be to include in the denotation of T a

member of K+C which would not be immediately applied. Accordingly

a dynamic environment lying in Ind~G* must be introduced; as the

declarations encountered during the compilation of a program

tally with those encountered during its execution this environment

can be combined with Ind~M* to give Ind~[MxG]*, the second com­

ponent of U. To handle declarations of operators U must even be

supplied with a third component, but this raises no new questions

and will be therefore be ignored. The domain U will thus be

[Ide~[MxDO]*]x[Ind~[MxG]*],while any p:U will yield lists p[II and

piTl for all I:Ide and T:lnd.

Note in passing that a language in which lists of array

bounds actually did form part of E would in one sense be more

general and cohesive than Algol 68. Yet the plethora of

specialized semantic domains which is found in Algol 68 does

provide a means of making programs less prone to errors by re­

stricting the positions in them where particular 'parts of speech'

can occur, and it is not clear that reducing syntactic restrictions

inevitably (or even frequently) gives rise to a wider class of

useful programs. The evolution of programming languages has often

entailed trading in a rather special construction for one with

wider applicability but less security: this has happened, for

instance, in the replacement of I:=E by E :=E1 and indeed inO

the move from languages with manifest types to those without.

Whereas removing petty rules usually leads to more elegant

semantic equations, allowing too much liberty may not do so and

292

will hinder proofs about particular programs. The extent to

which language designs resolve this conflict is an important

criterion for their success.

To describe the influence of modes on coercions we do not

need to discuss the valuation in Mod+U+K+C, as it is relevant

only during the execution of the program. We shall therefore

examine only JV:Mod+U+M, which ignores array bounds when describing

types. The production rules reveal that a syntactic mode must be

an indication or a basic type like bool or char unless it combines

other modes in a representation of a complex entity such as a

procedure without parameters or a structure. Thus we take the

lattice Mod to be

Ind+{bool}o+{char}o+ ... +{proc}OxMod+{struct}Ox[ModxSelJ*+ ..• ,

where for simplicity we have detailed only a few of the components

and have admitted the non-existent type signifying structures with

no selectors.

The lattice M is roughly homologous to Mod in that the

semantic quantities booZ and char, for instance, must be double

atoms. Being intended to provide the 'absolute' meanings of

modes without reference to environments or evaluating mechanisms

M does not contain a version of Ind, the domain of indications.

Notwithstanding this, such distinctions as that between procedures

and structures must carryover from Mod to M so that corresponding

to every other summand of Mod must be one of M. To replace

{proc}OxMod by {proc}OxM would be incorrect, however, for

although proc L cannot be written in a program intuitively

proc p should tally with (proc,L) in an environment where p in­

dicates the type L. Adopting the coalesced product of 1.2.2

therefore entails substituting {proc}OxMO for {proc}OxMod;

similar alterations must be made to the other summands, so

293

the structure of M. Such constants as proc and struct are of

course irrelevant to the formulation of M, but their presence

has some pedagogical value.

The valuation .V: Mod+U+M 1S defined for every T: I nd by

taking.k[T] to be >Cp.p[T]+Hl when >Cp.p!T] belongs to U+CMxGJ*.

The basic modes must be given meanings which take over to M the

roles fulfilled by the types in Mod; henceXl[booll andA1fcharll,

for instance, must be >Cp.booZ and >Cp.char respectively. Since

the principle underlying the interpretation of the basic types

applies equally to the higher types ,A1 proc M] is >Cp.< proc,A1[M] p)

and.k1 5 truct (M l: , ... ,M l:)] is
1 1 n n

>cp <struct <CV[M]p l:) <%[M]p l:») Only if M is taken to . • l' 1 •... , n' n

be {booZ}°+{char}o+ •• • +{proc}OxW+{struct}Ox[WxSel]*+ .•• , not

{booZ}o+{char}o+ ••• +{proc}OxM+{struct}Ox[MxSelJ*+ ••• , does this

recursive construction of~' give such modes as proc p a value

other than 1.

As every Algol 68 declaration is recursive, 1n accordance

with the remarks of 1.3.4 the meaning of any lI:Dec can be ob­

tained only by making its constituents of the form mode T=M

interact. This can be done by collecting up the identifiers and

indications declared, as well as the modes to which they corres­

pond, using d:Dec+[[ModxldeJ+[ModxlndJJ*. The construction of

this valuation requires takingd[M I=E] to be «M,I»,

#'II.mode T=MJI to be « M,T» , d[E; 6] to be ,,-,[6] and sI[61"" ,6]
n

to be sI[61] § ••• §d[6] •
n

Although the four kinds of declaration mentioned in the

definition of d are only a sample of what Algol 68 has to offer

they provide clear guidance as to how the others are to be under­

stood. On this basis it is possible to introduce ~:Dec+U+U,

294

which yields the part of the meaning of a declaration that can

be extracted during compilation. Given any L1:Dec ~L1] is

Ap . fix (AP , • fi x (A q,v • v> #JiI[L1] +P , q, (v+ 1)[('f"lw[L1]1 +v H] p , ,.L) !d[L1] +v +2]) 1) ,

for declarations of operators would complicate the definition of

Jl1, not that of:J:. The presence of Ide"Do* and Ind.. G* in the domain

U is irrelevant to the roles of these valuations, so the entity

.L:[K+C]O is put into the environment set up bY,~[L1]+V+2 purely

for the sake of convenience.

The lattice M can readily provide all the members of a
required by the valuations of 3.6.1. In a soft context, for

example, an expression must be left unchanged by the coercion

unless it is of mode proc M for some Mo:Mod, when the code com­o

piled for the expression may include an invocation of the corres­

ponding procedure. This process may be repeated until an object

having a type satisfying the contextual predicate rr:P is at last

obtained; thus should M itself be proc M for some M :Mod a o 1 1

second invocation may be inserted by the compiler. An element

of a appropriate to soft contexts is therefore given by

soften=Arr(].l.y) .rr].l+(].l.y) .].l:{P1"oc}OxMo+softenrr(].l+2,AK.y(AE.(EIG)K» • .L.

The other coercions can be constructed in a similar fashion

although tiresome complications must be introduced to handle

such phenomena as uniting, where one mode can be converted into

many union modes each containing it.

Unfortunately M is less satisfactory as a source of

elements of P. Many of the contexts in which an expression can

stand require only that after performing the appropriate coercion

the type of the expression satisfy a simple predicate like

Av.v:{struct}Ox[MoxSel]*. Strong contexts, however, demand

that the final type of the expression be tested by AV.V=V for
O

some].lo:M. Since M is not a flat lattice no continuous test for

295

equality can be imposed on it; however, we knQw that ip practice if

m is the set of meanings of modes that arise in programs then the

members of m are mutually incomparable. We can also introduce a

function, equal, such that

equal=Av~O~1·v<1+true.

(~o=bool)A(~1=bool)+true,

(~o=char)A(~1=char)+true,

.... ,
f\{~ :{proc}OxW lo,;n:O}+equal(v-1)(~ +2)(~1+2),

n 0

A{~ :{struct}Ox[MOxSelJ*I0,;n';1}+
n

(-(#(~o+2)=#(~1+2»+false,

-A{~o+2+V+2=~1+2+V+211';V';#(~o+2)}+false,

~equal(v-1)(~o+2+V'+1)(~1+2+vl+1)11';V'';#(~o+2)})

.... ,
false.

For every v equalv is continuous, btLt there are many

sequences {~ In~O} for which ~ 1~~ when n~O, U~ can arise
n n+ n n

from a valid Algol 68 declaration and A{equalv(U~)(U~)lv:N}=true
n m

though /\{ equalv(U~)~ Iv:N}=.L for all m~O; such sequences can be n m

constructed using the method of 2.1.6. Thus it is possible to

incorporate equal in the parameters of the semantic equations

only by introducing discontinuous functions ?nu using the subset m

of M or by proviJing equation~ for every value of equalv.

This is sad but perhaps not unacceptable; intuitively it is to be

expected that for any valid program there can be derived an

integer v:N such that any two modes required by the program can

be distingished from one another by equalv. This result will be

established in 3.6.5 with the aid of a treatment of modes more in

keeping with the style of the Algol 68 report than the one

developed above.

296

3.6.3. Interpreted roles for modes.

The unsatisfactory nature of equal arises from the fact

that M is not flat; yet for the reasons outlined ln 2.1.6 to adopt

a flat lattice in place of M is to abandon all hope of using fix

to determine the outcome of a recursive type declaration (though we

could use m to factor out the part of M that we need). Here we

shall define a valuation on a flat lattice 'vhich will be equivalent

to the valuation ~'of 3.6.2 and which will also model the obvious

implementation technique for recursive types.

Underlying the semantic equations mentioned in 3.6.2 is

the convention that the value given to any T:lnd by an environment

p:U can be obtained simply by inspecting the entry for T in p;

thusAKT] is Ap.p[T]+1+1. In an implementation, however, the

compiled 'call by value' implicit in this gives way to an

interpreted 'call by name' which replaces T by the right hand

side of its declaration. This operation could be expressed

mathematically by regarding the component of p concerned with

indications not as a member of Ind"'[MxGJ* but as a member of

Ind... [ModxGJ*, then a valuation ..4': Mod+U+M, for which.4'[T] would

be Ap ...4'[p[T] +1+1]1 p, might be needed instead of A:

To define U in this way would be to succumb to a temptation

like that of giving denotations to the free variables of a pro­

cedure when applying it rather than when declaring it. This

snare could be avoided by adopting Ind"'[ModxUxGJ* rather than

Ind"'[ModxGJ* and by taking.l[T] to be AP ...AI! p[T]HHI(p[TI+1+2);

however the coalesced product of 1.2.2 is such that were

Ind"'[ModxUxGJ* to be a component of U then the version of U

derived from the minimal fixed point of a functor would contain

at most two elements. The use of Ind"'[ModxUoxGJ* instead would

provide a sufficiently large domain U only at the cost of

depending crucially on lattices other than flat ones, and thus

297

cannot be tolerated.

Fortunately 3.1.1 offers a hope of salvation: as part of

the value of an indication will be kept not an environment but

a cluster of pointers. This cluster will be a certain ~:Ind~N

such that for any T:Ind ~[TI will show where to find the appropriate

occurrence of T in the entire environment. Thus the part of

dealing with Ind will be Ind~[Modx[Ind NJxGJ* and .41[TI will be

roughly

Ap....,fl[p[TI H H] (AI •() • AT ' . P[T 'It (# p[T '] - (p[T] -I- H 2) [T '])}

Because a declaration of the form M I=E necessitates representing

M in the environment alongside the denotation of I the component

of U concerned with identifiers is taken to be

Ide~[Modx[Ind~NJxDO]*. As U is now

[Ide~[Modx[Ind~NJxDoJ*Jx[Ind~[Modx[Ind~NJxGJ*J the valuationK must

be superseded by a certain W:Dec-+U-+U, just as X is superseded by

~. For any ~:Dec ~[~] can be written in terms of the valuation

.It 0 f 3. 6 • Z as

Ap . (A~ .fi x (A<jJv . v> #..t[~] +p • <jJ (v +1)[(.<f[~] tv -I- 1 • ~ • .L) /""'i[~I -I-v -I- 2J)1)

0. T • (Vf1:o:,,:o: #.<Ii'[~] -+ (T='1J ~] -I-v -I- 2) • fa Is e Iv : N}+# P[T] +1 • #p[T])) ;

if declarations were not recursive ~~I would be

Ap.fix(A<jJv.v>#d[~]+p.<jJ(v+l)[(d[~]-I-v+1.AT.#p[T],.L} M[~I-I-v-l-2J)1.

The member of Ind~N attached to an identifier or an in­

dication by a declaration can be used to extract the pertinent

entries in the environment even when further layers have been

piled on top. To emphasize the irrelevance of the third com­

ponent of ModxUxG to the determination of the value of a type

the environment formed by the process of extraction will keep

.L in each such component. The function dip:[Ind~NJ+U+U will

therefore be given by

298

dip=A1jJp. ocp.< n.o ,AT.cp(p[T]t(#p[TD -1jJ[T]»))

(fi x (Acpw * . #w*=0-+<) ,< <w*+1+ 1 , w*+1+ 2 ,.l)) § cP (w*t 1))) .

The complexity of dip could of course be reduced by allowing it to

yield answers in Ind-+[Modx[Ind~NJJ*insteadof in U; only a

desire for conceptual economy runs counter to this.

Even when the portion of U concerned with Ind is

Ind~[Modx[Ind~NJxGJ* rather than Ind~[MxGJ* it is possible to

convert a pair <M ,p) (representing the meaning of an indication

relative to an environment) into an 'absolute' value in M. This

operation can be performed by ~:Mod-+U-+M; this must provide any

T:lnd with the same meaning as the element of Mod linked to it by

the environment, so.A'[T] must be ApAp[T]+1+1](dip(p[T!+1+2)p).

Needless to say ..t'[bool] is Ap.booZ and,.A'[char] is Ap.char while

the higher types are given meanings by extending .Ii in an ohvious

way; thus.Jl[proc MD is Ap.<pI'oc,.)i[M]) and..t[struct (M 1 L1 •· .• •M
n

L)]
n

is Ap.< struct.«..t[M 1]p.L 1) • <,.A'[MnDp.L
n
»).

For any environments P and P drawn from the domains

[Ide~[MxDOJ*Jx[Ind~[MxGJ*J and

[Ide~[Modx[Ind~NJxDOJ*lxrlnd-[Modx[Ind~NlxGl*Jrespectively the

mappings AM ..A1MD P and A".)I[M] P are homomorphisms of Mod viewed as

a word algebra into M regarded in the same light. If P and pare

produced by the same program these homomorphisms might reasonably

be expected to coincide. That this does indeed happen will be

proved in 3.6.6; here the foundations for the proof will be laid

by providing a means of building P from P, namely

tuI'n=Avp. (ACP.< AI.q,(p[IJ),AT.CP(pITTJI»)

(.fix (Aq,W*. (A)1. Itw*=o-+O ,«)1,w*+1+3» ~q, (w*t1»

i;A~w*+1+1] (t,n'l (V-i) (dip (w*+1+::')p»»).

Until 3.6.6 any mention of an environment will be an allusion to

a member of [Ide~[Modx[Ind~NJxDoJ*Jx[Ind-[Modx[Ind~NJxGJ*J.

not to a memher of [Ide~[MxDoJ*Jx[Ind~[MxGJ*J.

299

The environments set up by ~ during the execution of a

declaration associate only finitely many members of Ide and Ind

with lists in [Modx[Ind#NJxGJ* which are not empty. Furthermore

the pointers provided by these lists must themselves refer to

entries drawn from the narrow confines of the environment. These

00constraints can be summarized by giving its conventional inter­

pretations and setting

slim = \ p . (\<jJ . ((I {# p[I] II : I de }+I {# pI I] II : I nd }) <00)

A!\U\{1::;v,;# p[I] ->-<jJ (p[I] h) , true I I: I de}

A!\{1::;v::;#pI I] ->-<jJ(plI] +v) ,true II: Ind} Iv:N})

(\(M, 1J! , y) .!\{ ((# pITT 0] =0->-0 , 1) ::;1J! I I 0] ::; # pi I]) o
A(1::; v,; 1J! I I 011 ->- ((dip 1J! pI I oII +v+2) I I 1] ::; 1J! I I 1])) , true)

A(M : I nd->- (1::; #pi M]) , true) II : I ndAI 1 : In d } o
For all 6:Dec and all p:U if slimp=true then patently

slim(SI6]p)=true. More significantly, if slimp=true and #pII]>O

for some I:Ind then slim(dip(pII]+1+2)p)=true.

Demanding that coercions take as parameters predicates in

M->-T leads to the difficulties encountered in 3.6.2. The pre­

dicates to be discussed below are therefore defined not on Mbut

on ModxU, the elements of which can be mapped into M by applying

~. Although the domains DO and G embedded in U ensure that

ModxU is not flat, those members of ModxU which must be dis­

tinguished from one another differ in respects that do not depend

on DO or G; consequently the predicate chosen to express the

equality of two modes can be made continuous. A typical coercion

o is in [[ModxUJ->-TJ->-[ModxUxGJ->-[ModxUxGJ while every predicate

required by a context belongs to [ModxUJ-;-T. In particular, for

any I: Ide 11 I] is

\pOTI. (\y.OTI(pi III +Hl,dip(p[IlI+H2)p,y))

((\0 . \ K. (6 : G->-do (6 K) , 6 : J -;-do 6 ,6 : E->-do (K 6) • T)) (pII] +1+ 3)) •

300

Though ModxU gives rise to a simpler treatment of equality

than does M, such predicates as that revealing whether a given

pair (M,p) signifies a procedure are less easily defined than

their counterparts on M. Only after starting to evaluate any

(T,p) :IndxU is it possible to establish that T has been declared

to be a procedure; moreover the first step in the evaluation of

(T,p) may simply lead to another member of IndxU, so underlying

the predicate must be a recursive algorithm. This is prevented

from returning the answer i on encountering a pair (p,p) with

p[p]+1 equal to (p.AT.#p[TI ,i) (and withAp]p equal to i) by the

existence of a list in [ModxUJ* which is compared with every member

of ModxU produced during the evaluation. The comparison is

effected by a continuous function which checks the top element

of the list to see whether it tallies with any of the succeeding

elements of the list in those respects which can influence the

evaluation of a mode. In fact it is convenient to be able to

test two lists simultaneously, so this function, kept, is deemed

to be a member of [ModxUJ*~[ModxUJ*~T. Throughout the remainder of

this section ~ will signify a typical member of [ModxUJ*; under

this convention kept may therefore be defined by

kept=A~O~1.(A~O.(A~1.\I{2~V~#~o~(~o1=~oV)A(~11=~1v),faZselv:N})

Ov.(1;1 +v+1,dipOT.# (1;1 +V+2)[T]) (1;1 +v+2)))

Ov.(l;o+v+1,dipOT.#(l;o+V+2)[T])(l;o+'J+2)).

It is necessary to carry out the checks involved in kept

when members of IndxU are reduced to members of ModxU which are

not themselves in IndxU. This can be achieved using

wend:N~[ModxUJ*~[ModxUJ*; for every (M ,p) :ModxLJ this gives rise to

U{wendv«M,p» Iv:N}. which lists the members of ModxU created

during this reduction. As the integral parameter v supplied to

wend is intended simply to measure the depth of recursion required,

301

:

Wend~A\!i;.\!<1->.L,

-(i;+1+1:Ind)vkepti;i;->i;,

(A (M,1jJ ,y) . wen d (\! -1) « (M, dip 1jJ (i; +H 2)) § 0) ((i;+ H 2)[i; +H n +1)

wind~Ai;.U{wend\!i;I\!:N}.

The 'shielding' conditions of the Algol 68 report ensure that no

pair (M,p) which arises in a program can have wind«M ,p» H+1:Ind;

were this not the case calamities could arise with the valuation

.£, as 3.6.4 will indicate.

Any mode M0 having the form proc M1 for some M1 ac tually

belongs to {proc}OxMod, so M +2 coincides with M ; likewise wheno 1

Mo is struct (M
1

i:
1

, ... ,M
n

In) its second component, Mo+2, can

be taken to be «M
1
,I

1
) , ... ,(Mn,In » Accordingly soften, for

instance, now satisfies

so fte n ~ ATI(M, p ,y) . (A(M' , p') . - (M ' : I nd) A TI(M' , p ') ->(M' , p , ,y) ,

-(M': {proc}Oxt10d)->.L,

(M'+2,p',AK.y(AE. (EIG)K))

(wind«M,p» +1).

In 3.6.5 it will be necessary to have some knowledge of

the textual composition of syntactic modes. This can be ob­

tained by listing all the shorter modes out of which they are

built; thus it is helpful to have available lug, which is given

by

lug=!cM.M: Ind->(M) ,

(M=bool)->(M) ,

(M~char) ...(M) ,

, .. ,

M: {proc}OxMod->W) §lug (M+2),

M: {s truct} °x[ModxSe 1] *"'(M) § lug (M+2+H 1) § ••• § lug (M+2+# (M+2) +1)

The test for equality between members of ModxU, bend, is

built up in much the same way as wend but requires two lists in

302

[ModxUJ* (namely So and sl) and an integer v1 to mark off parts

of the lists when they are examined. Unless the pairs so+v1 and

sl+vl are found together in sotv 1 and sltvl their structure is

investigated more closely. Should either of them be a member of

IndxU which is reduced by wind to another member of IndxU, a

parameter of bend becomes 2; as 3.6.5 will establish, in the same

situation equal yields the answer~. Should wind(so+v 1) +1+1 and

winJ(sl+vl) +1+1 be blatantly dissimilar, the parameter becomes 1,

but the final answer may nevertheless be 2. Thus the function

bend:N+N+[ModxUJ*+[ModxUJ*+N+[[ModxUJ*x[ModxUJ*xNJ is given by

bend=AvOv1!;;OSl E • (A~. (A(/b,M1) .v < 1+~.o

v1<1+(sO·sl,E) ,

kep t (s at (v 1- 1)) (s 1t (v 1-1)) +~() () E,

M :Indv M1 :Ind+~() () 2,o
(M =bool)A (M =bool)+~() () E,o 1

(Mo=char)A(Ml=char)+~() () E,

... ,
I\{ M

n
: {proc}O xMod Ia<;n<;1}+~(Mo+2) (M1+2) E,

I\{ M : {s t rue t}" x [M 0 d xSe 1 J* I0 <; n<; 1} + n

(-(#(M +2)=II(M1+2))+<j>() () (lVE),o
-I\{ M +2+v+2 =M1+2+v +211 <;v"" (M +2)}+o o

<j>()()(lVE),

(An.(M +2+Hl,. ,.,M +2HUi +2)+1»)n n n

....
<j>() () (1 vE))

(wind(so+v 1) +Hl,wind(sl+vl) +1+1))

(A(M*o,M*l)' (A1j!.bend(v -1) (V 1-1+#M*o) (1j!O§So)(1j!l§sl)E) o

(An.fix (A1j!V. v >#M* +() ,
n

« M* +v,wind< s +vHH2)}§1j!(V+l))1):
n n

303

3.6.4. Proposition.

Let So and s1 be members of [ModxUJ* having s1=winds ;
o

define (Mo'po) =so+1 and (M ,P1) =s1+1, and suppose that1

slimPo=true and that #Po[Mo]>O if Mo:Ind. Inevitably M 1S proper1

and.J([M]po=.Jt[M J!P1' Moreover if M is a member of Ind either o 1 1

AMo]Po=.L or kept«(M ,P » §sot1)«(M ,P 1» §sot1)=true, while
1 1 1

if M1 is not a member of Ind,J([Mo]p is proper.o

~Throughout the proof attention will be fixed on only one

suitable list So (and the corresponding list s1)' Since slimPo=true

any vo:N, v 1 :N, To:Ind and T1 :Ind having 1~Vo~#Po[To] and

1~v1~(Po[To]+VO+2)[T1] satisfy

dip (dip ljJ Pa[T1J! +v 1+2) Pa=dip (Po [T1] +(v 1+# Pa[T1 11 -ljJ[T1JI)+ 2) Po

when ljJ=P [T]+V +2. Hence if is is defined to be the difference
o o o

between IUPo[TJ!IT:Ind} and the number of pairs of the form

(To'v) havingo

(AS'.kepts's')«(PO[TO]+v0+1,dip(PO[TO]+VO+2)PO»§s)=true it can

readily be proved by induction on is that for all s:[ModxUJ*,

T1 :Ind and v :N wind«(po[T1]+v1+1,dip(po[T1]+v1+2)Po»§S)1

coincides with wend(1+ii;)«(po[T1J!+v1+1,dip(poIIT111+v1+2)po» §i;l.

In particular s1 is proper and equal to

wend(1+IUP [TIIT:Ind})i;o; moreover #s1~IUPo[TI [T:Ind}+#i;o'o

By similar reasoning So is slt(#s1-#sO)'

To proceed further it is necessary to truncate JI so that

it follows the algorithm for wend step by step. Thus for all

M:Mod ..4 [M] is taken to be AP • .L, while when m?O ..A'm+l[TI is o

Ap.,J([p[T]+Hll(dip(p[T]+H2)p) for every T:Ind,,J(1[boolJl 1S m m+

Ap.bool,.Ii 1[char] is Ap.char,.,Ii 1[proc M] is AP.(proc,.Jt [M])
m+ m+ m

for every M:Mod and.1t 1[struct (M I , ... ,M I)] ism+ 1 l n n

AP.(struct,«.,Ii [M],I) , .•. ,(.,Ii [M],I »). Henceforth it will
m l l m m m

be assumed that.At is the minimal fixed point of the mutually re­

304

cursive semantic equations which it satisfies; this assumption

can be embodied in the assertion that .4=U.4 .
n

Plainly .4n[~1+1+1](~1+1+2)~n[Mi]Piif n~O. Assume that

for some m having Om#~i-#~o-i

.4n+m[~1+(m+i)+1](~1+(m+i)+2)~n[Mi]Pifor all n~O. As

~1+(m+i)+1=(~1+(m+2)+2)[~1+(m+2)+1]+1+1 and

~1+(m+i)+2=dip«~1+(m+2)+2)[~1+(m+2)+11+i+2)(~1+(m+2)+ for2),

every n~O.4 1[~1+(m+2)+1ll(~1+(m+2)+2)=.11 [~l+(m+i)+1] (~l+(m+i)+2)n+m+ n+m

Hence ~+m[~l+(m+i)+1](~l+(m+i)+2)=.II}MilJpiwhenever n~O and

Om#~i-#~O; because ~i+(#~i-#~o+i)=~o+i it is now possible to

infer that.HI! MolJ Po=·.t1I Mi] Pl'

Should M not be a member of Mod the nature of ensures
i

that .4[Mi]P is proper. Should Mi belong to Ind, however, eitheri

kept « ~i +1) §~O t1) « ~i +1) §~O t1)=tY'ue or for some m having

im#~i-#~O kept(~l+1'~l+(m+i)(~l+1'~l+(m+l) =tr'1<e. A simple

structural induction is enough to establish that any pairs

(M2 ,P 2) and (M ,P) subject to
3 3

kept« M ,P) ,(M ,P » « M ,P) ,< M ,P » =tY'ue are such that2 2 3 3 2 2 3 3

.dn[M2]P2=.IIn[M3IP2 for all n~O. Consequently if

kept(~i +1'~l + (m+i)(~1 +1'~1 + (m+l) =tY'ue for a certain m satisfying

lm#~l-#~O then ~+m[Mi]Pi=.11n[MiIPl for all n~O; in this

situation J(}M lJ P1 =1. for all n~O and so ..k[M] P =1..:P1 o o

This proposition enables us to connect the soft contexts

described in 3.6.2 and 3,0,3. Suppose that TI:M~T and

it: [ModxUJ~T are related in such a way that for all pairs (M,p) 111.=1.

and 11 ~ M] p)=it(M,p) unless M is a member of Ind or slimp=false.

For each pair (T ,p) having slimp=tr'ue and #p[T] >0 either

wind{(T. p» +1+1 is a member of I nd and./l[1] P=1. or wind« T, p» +1+1

is not a member of Ind. As a result every M:Mod and p:U for which

slimp=tY'ue and #p[T]>O when T:Ind give rise to equivalent coercions:

if y is an element of the domain G appropriate to M and if y is

305

drawn from the domain appropriate to ModxU in such a way that

g(1,~ =true for some relation g then

g(softennC.N'[M]p,y) ,softenii< M,p,y» =true provided that g(i,i) =true.

Unfortunately a knowledge of the properties of wind is

not sufficient to allow us to handle the predicates required in

strong contexts. Accordingly we must now give a similar account

of the properties of bind. For the purposes of this account an

indication T will be said to 'occur' in a mode M if T=lugM~v for

some v having l~v~#lugM.

3.6.5.	 Proposition.

Let 1;0 and 1;1 be members of [ModxUJ*; set (Mo'po) =1;0+1,

].10= [MoJ!po' (M1 ,Pl) =1;1+1 and].11= [t1 1]Pl' and suppose that #1;0=#1;1

and that slimPoAslimP1=true. Assume also that if n is 0 or 1 then

#Pn[T]>0 whenever T1 :Ind is an indication which occurs in M or
1 n

in Pn[To]~Vo~l for any To:lnd and vo:N. There is some

vo:N depending only on (M .Po) and (M1 ,Pi) such thato

equalvo].10].11=I\{equalv].10].11Iv:N}; moreover bindO«M ,Po»«t11 ,P1» 0+3 o

is 0, i or 2 precisely when equalv].10].11 is true, false or i. o

4:During the course of this proof (Mo'Po) and (M1 .P 1) will

be taken to be fixed pairs satisfying the conditions above. For

any lists 1;0 and 1;1 in [ModxUJ* the sequence].1*n will be taken to be

fix (A$v.v>#l;o-+() ,(.A'[l;o~v+1] (l;o~v+2) §$(v+l))l if n is 0 or 1.

Given any v 1 :N 1;0 and 1;1 will be said to be 'closed above' vi when

they are constrained thus: 1;0+#1;0=(Mo'Po)' 1;1+#1;1=(M1 ,P 1),

#1;0=#1;1'

/\{ e q ua l Vj.l 0].11 I v : N} =f\{1\{ e q ua l v (].1 *0+v 0) (].1*1 ~ v 0) I v : N} 11~v 0~ # I; 0} •

for all vo:N with vl+1~VO~#1;0 there are v 1 ' •••• v such that m

equalv (].1* 0~vo) (].1* 1~vo) =I\{equal (n=O-+l, v-l) (].1* 0~vn) (].1* 1~vn) IO~n~m}

for every Vel, and for all v :N with l~V ~#I; (if n is 0 or 1)
2	 2 n

306

ei ther there is some v : N having I;n +v =(lugM +v ' P) or there are
3 2 n 3 n

v 4 :N, vs:N and T:lnd having

I;n+v2=(lug(Pn[T]+v4+1)+vs,dip(Pn[T]+V4+2)Pn)' For all such 1;0 and

1;1 the integer jv 1;01;1 will be taken to be the difference between
1

IT{#(lugM)+L{l:{l:5V:5#P [T]-+#(lug(p [T]+v+1»,0IT:lnd}!v:N}lo:5n:51}
n n n

and the number of 'essentially different' members of (I;Otv1,l;ltvl) ,

which is (fix(A~v.v:5#l;o-+«kent(l;otv)(l;ltv)-+O,l)t~(V+l»,O)Vl)'

It will also be convenient to let kV 1;01;1 be 0, 1 or 2 corres­
1

ponding to whether

I\{ v 1 +Lv :511 I; 0-+e q ua Z1 ~ I; 0 +v +1] (I; 0 +v +2)) ~ I; 1 +v +1] (I; 1 +v +2)) • true Iv : N}

is true, false or ~; by induction on the structure O' modes it

can be seen that for no vo:N can equalvo~M2]P2)~M3]P3)be

T when (M ,P2) and (M ,P) satisfy the conditions imposed on
2 3 3

(M ,po) and (M1 ,Pi) , so kV 1;01;1 is well-defined.o 1

Consider the following hypothesis: if vO' vi' 1;0 and 1;1

are such that 1;0 and 1;1 are closed above vi and jv
1

1;01;1<v
O

then,

writing (1;2,1;3,E} for bindv 11;01;1(kv 11;01;1)' 1;2 and 1;3 are closed

above 0 and E
1

=k01;21;3' On the assumption that this hypothesis

hOlds for one particular vo:N it will be shown to hold for vo+l

by analysing the possible cases arising from the definition of

bend. Let 1;0 and 1;1 be any lists in [ModxUJ* which are closed

above vi for some v1:N having jv 1;01;1:5V +l.1 O

Tf V1<1. bindv11;01;1E=(1;0,1;1,E) for all E, so

bindv 1 sOsl (kv 1sOsl) +3=kO (bindv 1 sOsl (kv 1sOsl)+1) (bindv 1 sOl;l (kv 1 soslH21

If kept(Sot(V 1 -l») (Sit (V 1 -1))=true, by induction on Vi

it can be seen that there is some v with 0:5V :5V -l for which
2 2 1

kept« so+v 3) §sotv1) « sl+v3) §s1"tv)=true whenever v +1:5v :5v1 2 3 1

and for which kept « so+v 2) §sO tv 1) « so+v 2) §sl tV 1)~false un less v = o·2 •

moreover bindvlS0S1E=bindV2S0S1E for every E:T. Should

307

v 4 :N having v1+1~v4~#~O and

kept(~oh3'~1+v4)(~1+v3'~1+v4)=true;an induction on the

structure of ~O+v3+1 and ~1+v3+1 will establish that

..fI[~n+v3+1] (~nh3+2)=AHn+v4+1](~n+v4+2) (if n is 0 or 1). The

definition of equal in 3.6.2 therefore ensures that kV1~O~1=kv2~O~1'

If v2=O, bindv1~O~1 (kv1~O~1)+3=kO~O~1 in accordance with the

remarks above; if v 2>O, bindv1~O~1 (kv1~O~1) coincides with

bindv2~O~1 (kv2~O~1) where jV2~O~1=vO+1, v 2<v 1 and

kept(~ot(v2-1))(~lt(v2-1))=false. Thus this case can be subsumed

under those dealt with below, in which it will be taken for granted

that kept(~ot(Vl-l))(~lt(vl-l))=false. Henceforth (M +2 ,Pn+2)n

and Il + 2 will be written for wind(~n+v1) +1 and.i[~n+v1+1] (~n+v1+2)
 n

respectively (if n is 0 or 1); 3.6.4 implies that 1l2=~M2]P2 and

that 1l 3=.J([M3]P 3. In addition (~2'~3,sl) will be defined to be

bindv1~O~1'

If either M2 or M3 belongs to Ide, bindv1~O~ls is

bind(v1-1)~O~12 for all s. By 3.6.4 neither 11 2 nor 11 3 is T but

at least one is ~, so equallIl21l3=~; in consequence k (v1-1)~O~1=2

and (1;2,1;3'''1) =bind(V 1 -1)1;01;1 (k(V 1 -1)1;01;1)' As j (v 1 -1)1;01;1="0

the induction hypothesis ensures that the lists ~2and ~3 are closed

above 0 and have sl=kO~2~3'

If M2 and M3 are both bool or both char, (and if

kept(~ot(v1-1))(~lt(v1-1))=false)then kV1~O~1=k("1-1)~O~1 and,

from the definition of bind in 3.6.3, bindv1~O~ls=bind(v1-1)~O~ls

for all s. Hence (~2'~3,sl)=bind(v1-1)~O~1(k(V1-1)~O~1);the

induction hypothesis is applicable to bind(v1-1)~O~1(k("l-l)~O~l)

since j(v1-1)~O~1="O' so ~2 and ~3 are closed above 0 and have

sl=kO~2~3'

The proof needed when M and M3 are in {proc}OxMod will be2

omitted owing to its affinity with that required when M and M

2 3

308

are members of {struct}Ox[ModxSelJ*.

If M2 and M3 belong to {struct}Ox[ModxSelJ*, suppose first

that #(M +2) and #(M +3) are different. In this situation
2 3

bindv1~O~1 (kv1~O~1)=bind(v1-1)~O~1«kv1~O~1)V1) and

(kv1~O~1)V1=k(v1-1)~O~1 as equal1~2~3=false; consequently

(~2'~3,E1) =bind(v1-1)~O~1(k(v1-1)~O~1) and the argument of the

preceding paragraphs can be applied. Similar remarks are pertinent

if # (M +2) equals # (M +2) but the selectors of the modes do not
2 3

correspond. Finally suppose that neither of these faults arises,

so that bindv1~O~1E is bindv2~4~5E where v is V -1+#(M +2) and2 1 n

where ~ =« M +2+H1,p) , ... ,(M +2+# (M +2)+1,p » §~ 4 if n is 4 or n n n n n n n­

5. The definition of equal given in 3.6.2 ensures that ~4 and

~5 are closed above v while jV2~4~3=vO' so that the induction2

hypothesis is relevant to bindv2~4~3(kv2~4~3); as kV2~4~3=kv1~O~1'

~2 and ~3 are closed above 0 and E1=kO~O~1'

This completes as much of the induction as need be given; it

remains only to note that the result holds when jV1~O~1=O

(because then bindv1~O~1E=bindo~O~1E=E for all E) and so it holds

whatever value jVl~O~l may take.

Let (~2 '~3 ,E) be bind1((M ,po» « M ,P 1» 0, so that ~2 and ~31 o 1

are closed above 0 and E1=kO~2~3' When n is 2 or 3 write ~*n for

fix(AcjJV.V>#~ +() ,(•.g~~ +v+1] (~ +v+2) §cjJ(V+1))1; as ~* +v3=~* +v 4n n n n n

when kept(~2+v3'~2+v~(~3+v3'~3+v~ =true, there are at most

jO() () distinct pairs of the form (~* 2+v O' ~* 3+v O). For every Vo

having 1~VO~#~2' there is some m~O for which certain v 1 , ..• ,vm

are such that for all v~~ equalv(~*2+vO)(~*3+vO) coincides with

A{equal(n=O+1,v-~)(~*2+vn)(~*3+Vn)lo~n~m};indeed induction on v

even demonstrates that v , ••• ,v can be made to satisfy
1 m

kept(~ +v '~2+v) (~3+v '~3+v) =false when O~r~s~m. Hence, by
2 r s r s

induction on k, for every V with 1~VO~#~2 there are v 1 ,.,.,vo m

309

and an integer k having k-l~l if l<m such that

equalv(~*2~vO)(~*3~vO) is A{equal(0~n~l+1,v-k)(~*2~vn)(~*3~vn)lo~n~m}

whenever v;,k; furthermore kept< 1;2~vr,1;2~vs>< 1;3~vl",1;3~vs> =false

if O~l"~s~m. In particular, setting k;jo< ><) shows that

equalv(~*2~vO)(~*3~vO)=A{equal1(~*2~vn) for(~*3~vn) 10~n~m}

certain v1 ' ..• ,v and for all v;,k. Moreover, since 1;2 and 1;3 are m

closed above 0,

A{e qua lv~ 0~ 1 1v : N}=;\{;\{ equa l v (]J* 2~v 0) (]J * 3~v 0) 1v : N} 11 ~v 0~# I; 2} .

Hence equal(1+(jo()()))~0~1' ;\{equalv~O~llv:N} and

;\{equall(~*2~VO)(~*3~vO)11~VO~#1;2} coincide. In conjunction with

the fact that E 1=ko1;21;3 this ensures that bindl«M ,po»«M1 ,P1» 0~3 o

is 0,1 or 2 precisely when Nequalv(..II[M]Po)(.A[M1]P 1)lv:N} is o

tl"ue, false or ~.~

There are two forms of the shielding conditions of the

Algol 68 report which correspond in the same way as equal and

bind. The proof of this will be ignored because it does not differ

in important respects from that above. Thus now it will be

shown that.l/ mimics .¥ in the appropriate manner.

3.6.6. Proposition.

Let r be an environment having s limp=tl"ue, and suppose

that for every T:lnd and v:N such that l~v~#p[T]

wind« p[THv+1 ,dip (p[T] ~v~2)p» ~H1 is not a member of I nd. For

all M:Mod .+1[M] (U{turnvplv:N})=.A1[M]p.

<tThe restrictions imposed on 0 are such thatinductioll on

the size of p ensures that turn(1+L{#p[T]!IT:lnd})p is proper, so

that, more significantly, the environment U{turnvplv:N}

is a proper element of [Ide~[MxDO]*]x[Ind~[MxG]*]. By virtue of

the 'shielding' conditions and the fact that for all 6:Dec

slim(~[6]p)=true whenever slimp=true any valid Algol 68 program

obeys these restrictions; were this not so the proof of the present

310

result would require the domain of environments appropriate to

The truncated versions of~ set up In 3.6.4 are manifestly

such that for all M:r1od .¥[M] (turnp)='-"o[M] p. Assume that for some

n;'O every M:Mod satisfies .K1lM] CU{turnvplv:N})=,-" [M]p. For any
n

T:lnd it is plain that .¥1[T]1 (U{turnvplv:N})='.J1 l[T]P when #p[T]I=o;
n+

moreover, when #p[T]>O

.¥U] (U{turnvplv:N))= (U{turnvplv:N})[T]+Hi

=.A[p[T]+Hi] (!J{turnv(dip(p[T]+H2)p)lv:N})

;I [p[T]+Hi] (dip (p[T]+H2)p)
n

=.K + i [T] p.n

Similar inequalities can be established for the other modes so by

induction .¥1[M] (U{ turnvp Iv: N}) ='.It i[M] p for every M: Mod and for
n+

every n;'O. Hence by the definition of../l the valuations s8tisfy
n

.¥1[M] (U{turnvplv:N})~M]p.

When showing that .K[M] (U{turnvp Iv :N})~/[M] p use can be made

of inclusive predicate u defined on environments ~ and ~ with ~ in

from [Ide~[MxDoJ*Jx[Ind~[MxGJ*J and with ~ in

[Ide~[Modx[Ind~NJxDOJ*Jx[Ind~[Modx[Ind~NJxGJ~J. It is natural

to demand that

U=A(~,~) ./\{(b%#~[T]-T(MT]+v+1=Ap[T]+v+1](dip(~[T]+V+2)p»,true)

II (#P[T]=#P[T]) IT:lnd}

so that by an obvious structural induction whenever u(p,~) =true

.Y1lM]p~H]p for every M:Mod. For the environment p mentioned in

the statement of the proposition u(turnOp,p) =true. Moreover, for

any vo:N, v i :N and T:lnd such that u(turnvop,p) =true and bV i "#P[T],

u(turnv (dip(p['!]+V +2)p) ,dip(P[T]+V +2)p) =true and
o i i

turn (V +i)p[T]+v +1=.A[P[T]+V +1] (turnv (dip(p[T]+V +2)p»
O i i o i

~p[TJI+v1+1]1 (dip (P[T]+V i +2)p),

so that u(turn(v o+i)p,p)=true. Proceeding to the limit,

u(U{turnvplv:N},p) =true and.Kl[H] (U{turnvplv:N})"..61[M]p for all

311

modes M belonging to the domain Mod. Together with the result

established in the preceding paragraph this ensures that for

every M:Mod the elelT'ents "t1M] CU{turnvp/v:N}) and.A'[M]p of M

must coincide.>

The procedures adopted in the proposition above have

ramifications far beyond the realm of Algol 68. In particular,

the fascinating theorems due to Gordon [6] can be given short

proofs by introducing valuations akin to J and inclusive
n

predicates like u. The major difference between these proofs and

that above arises from the requirement that the substitutes for

the domains labelled U contain components more closely analogous

to Ind#[[U+M]xG]* and Ind#[ModxG]* than they are to Ind#[MxG]*

and Ind#[Modx[lnd#N]xG]*. This necessitates the provision of a

self-referential version of u which can loosely be said to

satisfy the equation

U=A(p,p) .I\{ (Hv,;#P[T]"u(Po,P)+«P[T]+v+1) P ;Jl1[p[T]+v+1]p),true)
o o o

" (# p[T] = # P[T]) IT: I n d } ;

the use of such a predicate can be justified by an appeal to the

general method of 2.2.8. As compensation for the extra labour

involved in making this appeal the inductive arguments about

turn may be deleted, since in effect their role is taken by the

limiting process to which the appropriate predictor has to be

subjected when u is constructed.

The techniques of the foregoing pages have long since been

applied in a formal definition of Algol 68. Of greater interest

than this is the application of propositions like that above to

verify the equivalence of standard semantics and a variety of

semantics which models stored-program machines by representing

functions as finitary obj ects belonging to flat lattices. It may

not be unfortunate that lack of space precludes the discussion

of either of these topics.

312

INDEX

a 2.2.2, 2.4.5, 3.2.4, 3. 5.4

a n 2.2.2, 2.4.5, 3. 2.4

able 3. 5.2

access 2.1.6, 3.2.1

apt 1.4.6, 3.2.4

area 1.2.1, 1.3.1, 3.6. 1

arid 1. 3.2

b 2.2.1

bend 3.6. 3

bind 3.6. 3

bool 3.6.2

c 2.2.2, 2.4.5, 2.6.1, 3.2.4, 3. 5.4

c n 2.2.2, 2.4.1, 2.6.1, 3.2.4

char 3.6. 2

clip 2.1. 5

conse rve 1. 3.2

count 3. L 3

cramped 1. 5.3

crowd"d 2 . 7 . 1

crushed 1.5.4, 2 . 2 . 8 , 3.4. 3

cut 1.1. 2

D 2.2.7, 2 • 4 .5, 2.6.1, 3. 2 . 4

d 2.2.7, 3.1. 4

deal 2.1. 5

dip 3.6 . 3

divert 1. 3.2

do 3.5.1, 3. 5. 2

dummy 1. 3.1

313

E 2.2.7, 2.4.5, 2.6.1, 3. 2.4

e 2.2.2, 3.1.4, 3. 5.4

e n

emp ty

2.2. 2

1. 3.1

equal 3.6. 2

exit 1. 5.3

f 2.2.2

f n

false

2. 2.2

1.1. 2

fie ld 2.6.1

fit 2.4.1, 2.6.1, 3. 2.4

fix 1.1. 2

flag 1. 3.1

found 3. 2. 1

free 1. 5.1

fun 1.4.2, 1.5.8, 2.3.1, 2.3. 8

G 2.2.7, 2.4.5, 2.6.1, 3. 2.4

g 2.2.7, 3.1 .4

gyven

halt

2.1.6,

3.5.2,

3. 2.1

3.5.4

hang

hold

3.5. 3

1.2.1, 1. 3.1

holds 1. 3.1

hoten 2.1.6, 3. 2.1

i 1.3.5, 3.6.4

impose 3.4.2, 3. 5.1

inve rt 1. 3.2

J 1.2.2, 1.3.5, 3.2.4, 3.6.5

jn

joy

3. 2 . 4

1. 5.8

314

2.4.5, 2.6.1, 3.5.4, 3.6.5

2.6.1

2.6.1, 3. 2 . 4

3. 5.3

3.1.1

3.1.3, 3.5.3, 3.6.1

k 1.3.5,

k n
2.2.2,

kent 2.1.6,

kept 3.6. 3

knit 2. 2.7

known 3. 2 . 1

L 2.2.7,

l 3. 2.1

las t 3. 4. 3

lead 3.1.1

leve l 3.1.1

lug 3.6.3

lv 1.3.5,

mete 2.1. 5

move 3. 4. 3

mv 2.1.1,

near 3. 4. 2

ne aI'S 3. 4. 2

neat 2.1.5

new 1.2.1, 1.3.1,

2.2.2,

2.4.1,

3. 2. 1

2.4.5,

3.4.2,

2.2.7,

nelJS 1. 3.1

next 3.5.1,

nove l 2.1.1,

nove ls 2.1.1

0 2.4.5,

0 2.4.1,n

0 2. 4.4 nm

opt 1. 4.6

opts 1. 4.6

p 2. 2. 7

3.5. 2

3. 4.3

2.6.1

2.6 . 1

315

P 2.4.5,

Pn 2.4.5,

pat 3,2.4

pick 2.1.5

plot 2.1. 6

point 3.1. 3

pop 3.1.1

proc 3.6 . 2

Q 2. 2 . 7

q 2. 2 . 8

qn 1.3.1,

R 2.2.7,

r n 2.2.1,

rave l 3.1.1

recur 2.1.4,

remit 3.1.1

rend 1. 5.1

rent 1. 5.1

replace 2.1.4,

restore 3.1.1,

revert 1. 3. 2

run 1.3.5,

rv 1.3.5,

s 2.2.2,

s n 2.2.2

seen 2.1.6,

se t 2.4.1,

sewn 2.4.5,

site 2.1.6

slim 3.6.3

2.6.1,

2.5.1,

2.2.2,

2.4.5,

2.4. 2

3.4. 3

3.4. 3

3.1.3,

3.4.2,

3.4.2,

3.5.4

3.2.1,

2.6. 1

2.6 . 1

3.2.4

3. 2 . 4

2.2.8, 2.4.1, 2.4.4, 3.2.4

2.6.1, 3. 2.4

3.5.3

3.5.3

3.5. 3

3.4. 3

316

snip 1. 5.1

soften 3.6.2,

spot 2.1. 6

spun 3. 2. 3

struct 3.6.2

sum 3.1. 3

sv 2.1.1,

swap 1. 4.6

T 2.2.7,

t 3.1. 4

tear 1. 5 .1

tidy 3.1.1

tie 2.6. 1

torn 1. 5.1

trim 2.1.5

true 1.1. 2

turn 3.6. 3

u 2.2.7,

update 1.3.1,

updates 1. 3.1

v 2.2.2,

v 2.2.2,n

w 2.4.5,

w 2.4.5,n

w 2.4.4 nm

wend 3.6. 3

wind 3.6. 3

x 3.5.4

yclept 2.1. 6

2 2.4. 4nm

3.6. 3

2.2.7, 3.1.1

2.4.5, 2.6.1, 3. 2. 4

3. 5.4

3.1. 3

2. 2 . 8

2 . 2 . 8

2.6.1, 3.2.4

2.6.1, 3.2. 4

317

BI BLIOGRAPHY

[1]	 de Bakker, J.W.: Recursive procedures, Mathematical

Centre Tract 24, Mathematisch Centrum, Amsterdam (1971).

[2]	 Burstall, R.M.: Some techniques for proving the

correctness of programs which alter data structures,

pages 23-50 of Machine Intelligence 7 (edited by

~le1tzer, B., and Michie, D.), Edinburgh University Press,

Edinburgh (1972).

[3]	 Dahl, O.J.: Discrete event simulation languages,

pages 249-295 of Programming Languages (edited by

Genuys, F.), Academic Press, London (1968).

[4]	 Dijkstra, E.W.: Recursive Programming, pages 312-318

of Numerische Mathematik 2 (1960).

[5]	 Evans, A.: A reference manual and primer for Pal,

Department of Electrical Engineering, Massachusetts

Institute of Technology (1969).

[6]	 Gordon, M.J.C.: Models of pure Lisp, Experimental

Programming Report 31, Theory of Computation Group,

Edinburgh University (1973).

[7]	 Henhap1, W., and Jones, C.B.: The block concept and

some possible implementations with proofs of equivalence,

Technical Report 104, International Business Machines,

Wien (1970).

[8]	 Hoare, C.A.R., and Wirth, N.: An axiomatic definition

of the programming language Pascal, Bericht der

Fachgruppe Computer-Wissenschaften 6, Eidgenossische

Technische Hochschu1e, Zurich (1972).

[9]	 Knaster, B.: Un theoreme sur les fonctions d'ensembles,

pages 133-134 of Annales de la Societe Polonaise de

Mathemati que 6 (1928).

318

[10]	 Landin, P.J.: The mechanical evaluation of expressions,

pages 308-320 of Computer Journal 6 (1964).

[11]	 Milner, A.J.R.G.: Processes: a ~athematical model of

computing agents, Colloquium in Mathematical Logic,

Bristol (1973).

[12]	 Morris, P.L.: Correctness of translations of programming

languages, Computer Science Memorandum 303, Department

of Computer Science, Stanford University (1972).

[13]	 Naur, P., editor: Report on the algorithmic language

Algol 60, pages 349-367 of Computer Journal 5 (1963).

[14]	 Park, D.M.R.: The Y combinator in Scott's lambda-calculus

models, Symposium on Programming Theory, Warwick (1970).

[15]	 Plotkin, G.D.: Lambda-definability and logical relations,

Artificial Intelligence Memorandum 4, School of

Artificial Intelligence, Edinburgh University (1973).

[16]	 Reynolds, J.e.: Definitional interpreters for higher-

order programming languages, pages 717-740 of

Proceedings of the Twenty-Fifth Association for Computing

Machinery National Conference, New York (1972).

[17]	 Scott, D.S.: outline of a mathematical theory of

computation, pages 169-176 of Proceedings of the Fourth

Annual Princeton Conference on Information Sciences and

Systems, Princeton (1970).

[18]	 Scott, D.S.: The lattice of flow diagrams, pages 311-366

of Springer Lecture Notes in Mathematics 188 (1971).

[19]	 Scott, D.S.: Continuous lattices, pages 97-136 of

Springer Lecture Notes in Mathematics 274 (1972).

[20]	 Scott, D.S., and Strachey, C.: Towards a mathematical

semantics for computer languages, Microwave Research

Institute Symposia Series Volume 21, Polytechnic

Institute of Ilrooklyn (1971).

319

[21] Strachey, C.: Towards a formal semantics, pages 198-220

of Formal Language Description Languages for Computer

Programming (edited by Steel, 'LB.), Harth Holland,

Publishing Company, Amsterdam (1966).

[22]	 Strachey, C.: Fundamental concepts in programming

languages, International Summer School in Computer

Programming, Knbenhavn (1967).

[23]	 Strachey, C.: The varieties of programming language,

pages 222-233 of Proceedings of the International

Computing Symposium, Venezia (1972).

[24]	 Tarski, A.: A lattice-theoretical fixpoint theorem

and its applications, pages 285-309 of Pacific Journal

of Mathemati cs 5 (1955).

[25]	 Wadsworth, C.P.: Another approach to jumps, Programming

Research Group, Oxford University (1970).

[26]	 van Wijngaarden, A., editor: Report on the algorithmic

language Algol 68, pages 79-218 of Numerische

Mathematik 14 (1969).

320

APPENDIX ONE

STANDARD SEMANTICS

S:V=B+L*+J+F stored values

E:E=L+B+L*+J+F expressed values

c:D=L+B+L*+J+F+G denoted values

w:W=L+B+L*+J+F+G+Ko witnessed values

S:B={dummy}o+T+N+R+H* basic values

E:T={true}o+{false}O truth values

e:J=co label closures

q,:F=[E+K+C]O function closures

y:G=[K+C]O recursion closures

e:C=S+A command continuations

K: K=E+C expression continuations

X:X=U+C declaration continuations

p:U=[Ide~Do*]xKo* envi ronmen t s

o:S=[L~[TxV]]xV*xV* stores

o:A answers

a:L locations

v:N integers

R reals

H characters

O:Mon monadic operators

Q: Dya dyadic operators

I: Ide identifiers

B: Bas bases

<I>:Abs abs tract ions

E: Exp expressions

!1:Dec declarations

321

(!J:Mon+E+B

ir:Dya+[ExEJ+B

£!IJ:Bas+E

SF: Abs+U+F

J: Exp+I de*

Jt: Exp+I de*

.I: Dec+I de*

.1'1': Dec+I de*

<P : : =fn C) E I fn I • E I fn I 1 •..•• In' E I fn I .• E i fn I 1 ••••• In' • Eo

E::=IIBI~IOEIEO~ElIEO:=El !E 1 •.••• En:=Eolget Elput E!E aug Ello

E1 ••••• E IEIEI£EIE£IE E1lval Elres EJgoto EI6 inside EI n 0

Eo; E11if Eo then E1 else E21while Eo do E1 !I:EI1::E!CE).

6: :=I=EI1 1 I =EI1==EI1 1 1 ==EI6 within 61161 and .•• and 6 In n 0 n

rec I'll (6).

322

3'l[fn ()E];

AP • ASK. r v (A S • #S I L*; 0-+.11'1[E] PK, T) S •

jIj[fn 1. E] ;

AP.ASK •.&t'[E] p[S/IJK •

.9'[f nIl' •.• , In' E] ;

Ap.AsK.rv (AS.#SIL*;n-+.II'1[E]p[S/< 1 "" ,In)]K,T)S.1

3'l[fn 1. . E] ;

AP • ASK. rv (A S .~U I] P[S / IJ K) S •

3'l[fnI 1 , •.. ,In' .E];

AP• ASK. rv (A So •# S IL* ;71 -+.If[E11 P [ito Zcis So / < 1 , , ..• , I,)] KO , T h: .

G[E] ;

APKO • (A a * • (A P , • a * : L*-+'§[E] P , K (up da te s a * (@'I[ED p , K) a) , T)

(fix (Ap".p[a*U[E]] [.2[Ell p"K/.Jt1IE]]»)

(news (#f[E])0) •

.If'[E] ;

Ap K • 8[E] p (l V K) •

Ii[E] ;

«/[1] ;

ApK. (A 0 .0 : G-+o K, KO) (p [1] +1) •

<§[B] ;

ApK.K(H[BI).

'§[ip];

APK.K(:11[ip] p).

(9[OEll ;

APK .:'3l[E] P (As .rVK «(!I[0] s».

323

(91 EO (JEll =

APK.l"un(.02IEolp,2QIE1Ip) (A£*.l"vK(ifl(JI(£*+1,£*+2) ».

'91 Eo: =E 1= 1

ApK• l"un(YI EO I P ,9f1 Ell p} (A £ *0 • K(d ummy) (up da t e (£ * +1) (£ * +2) 0)) •

(91 E 1 ' ... ,En: =Eol =

APK. (A1jJ.l"un(9f1 Eol p,21r Ell P, ••• ,:t1I En] p) 1jJ)

(A£ *0 • # £x +1 IL* = n->- K (dumTl'y) (up da t es (£ ~ t 1) (h 0 Zds (£ * +1) 0) 0) , T) •

~ qet EI =

APK .YI EI p (A£o. # (0+2 »O->-K£ (update£ (0+2+1)(0+1, (0+2)tl ,0+3)), T).

~ put EI =

Ap K.9111 EI p (A £0 • K£ (0 + 1 ,0+ 2 , (£) § (0 + 3)}) •

(#1 Eo aug Ell =

Ap K• l"un<'0! 1 E01 p ,2"1[E1 J\ p) (A £ * • £ * +1 : L*->- K((£ * +1) § (£ * +2)) , T) •

~I E1 •...•E) =

APK.l"un(YIE1Ip, ••• ,,!t[Enlp} (A£*.K(£*IL*».

'91 $EI =

APK ..011 EI p (lVK).

'91 E$]I =

ApK.,1*1 EI p (A£ • £ : F->- K(Ie £ ' K ' • l"V (A S. (£ IF) SK') £ ') , T) •

:91 £EI =

ApK .9f[EI P (A£O. (Aex* • ex*:L*->-Kex* (updates ex*(ho Ids £0)0) , T) (news (#£ IL *) 0)) •

(91 [£1 =

Ap K• (AK' ..011 EI pK ')

(A£. (A <p • £ : F->- K(A£ "K " • 1" V (AB• <p SK") £ ") , T)

(A£ "K "0 ". (A ex * • ex* : L* ->- (£ IF) ex * K" (up d ates ex * (hoI d s £ "0 ") 0 ") , T)

(news(#£"[L*)o"»).

<§[E oE 11 =

APK. (A 1jJ. ,'un<.91'[Eo I p,2'[Ell p) 1jJ)

(A£*. (AK'. £*+1: F->-(£*+1 [F) (£*+2) K,1"VK' (£*+2»

(A£ ' • b £ ' I No<; # £* +1 I L*->- K(£ * H +E: ') , T)) •

324

'011 val E] =

APK.!tIl E] P [K Ires] K.

(§[re s E] =

APK ..:e[E] P (p [re s] H IK) .

'!I[goto E] =

ApK ••<>t[E] P (AE:.E: Ie).

<IJ[ll inside E]=

ApK.!lJ [ll] p (A p , •.:t'I[E] (dive 10 t p p ,) K) •

'd[E' E]I=
0' 1

ApK .(f[Eo] p (AE: .<1/[E] pK).

1

gI[if Eo then E else E] =
1 2

ApK .Si[E 0] P (AE:.E: IT-+qI[E 1] pK ,q)[E] PK).

2

q}[while E do E]=a 1

APK.fix (A e .au Eo] p (A E • E I T-+(9'[E 1]1 p (A E • e) ,K (dummy))) •

'9[I:E]=

APK .<9[E] PK.

'9[I: :E]=

ApK •'!I [E] PK.

<;J1[(E)] =

::"[E ; E JI=
O 1

APK .9'[Eo] p (AE .\1[E] PK) §!ii'[E] PK.

1 1

!ii'[if Eo then [1 else E]=
2

APK.!ii'\[E] pK§!ii'[E] pK.

1 2

!ii'[while Eo do E]=
1

APK.!ii'[E]P(AE.'.'l[while Eo do E]PK).
1 1

!ii'[I: E]I =

ApK.(~[E] pK) §.9'[E] pK •

.'JO[I : : E] =

APK .!ii'[E] PK.

325

&'[(E)I =

ApK.9'[ElpK.

2[E . E] =
0' 1

ApK.2 [EO] p (A E • (9[E 1] pK) §!Z [E 1] pK•

..2[i f Eat hen E 1 e 1seE} =

APK .!Z[E] pd.P[E] PK •
1 2

.2[while Eo do E]=
1

APK •.2[E 11p(AE.W[while Eo do E 1!PK) •
1 1

.'i[I :L1 =

APK • !<I [EI pK.

!Z[I : : E] =

APK.< \4[E] pK) §.'i[E] pK.

!Z[(E)]! =

APK .!l[E] pK.

I[Eo; Ell =

j[E oJ§/[E
1
1.

JI ; f Eo the n E 1 e 1seE 21 =

f[E] §I[E] •
1 2

I[whi 1e Eo doE 1] =

I[E] •
1

II I:E] =

(1> §lIT 1;]1 •

II I; ;E] =

f[El! •

f[(E)]=

fITE] •

.i1! Eo; E
1

] =

.Jt1 Eol §.i1! E]! •
1

326

ff[if EO then E
1

else E21=

ff[Ell §.il[E21.

:;([while Eo do E11=

ff[Ell.

ff[I :EI =

.x1I EI •

.x1I I ::EI =

<I)§.)([lEI •

.;f"[(E)I =

$l[EI.

9'II "'I =

Apo.fix(A1jJI*.	 (Ay.#I*=o-+() ,<y) §1jJ(I*t1»

(A K ' 0 ' .S'll '" I p (AP "0" • K ' (p "[I *h I ~ 1 IE) 0 ') 0))

~[I=EI =

APX.Y[EI P (I.E. X(arid[ElI J)).

!'iI[I 1 •...• In=E] =

APx.&I'[E] p(I.E. #E IL*=n-+x(arid[E!< I 1 , ••• ,In) J) ,T).

~[I==EI =

APXJll[E] P CAE. X(arid[E!I]».

!ill I 1 ••••• In ==E] =

APX.&1'[E] P (A EO. #ElL *=n -+x (ari d [ho ~ds EO!< I 1 ••••• I n) J) 0 • T) •

~["'o within "'1 1=

Arx·~["'0] p(Ap' .l!I["'11 (divertpp') x).

0'["'1 and ... and IInll =

APx.run(9[1I
1
Ip •••.•£ifl['"n Ip}(Ap*.x(conservep*».

327

ei'[re c 1I1 =

APxa • (A 0: * • (A P , .0:* :L * +.9lI 1I I P 'X (up da te s 0: * (dummy *)a) , T)

(fi x (A P " • P Co: * 1;<[1I I] [5"[1I I P " (up da te so: * (dummy *) a) IJt1fl\ IJ))

(news (#;<[1I1)a).

~[(1I)]1=

APx.~[l\lpx.

5[I=EI =

APX.0I[E I p (Asa • (A 6.6 :L +x (arid C6 IIJ) (update 6sa) • T) (p II I H)) •

5[Ii ••• ' .In=EI =

APX. (AK '.0I[EI P (Asa. #s IL*=n+K 'sa, T))

cAsa. (A6*.6*:L*+x(aridC6*/<I •••• ,1)])(updates6*(holdssa)a) ,T)
1 n

« P[I IhP[I)h))).
1

5[1==EI=

APX•.0![1:] P (A s . X (a ri d Cs I IJ)) .

9"[Ii ••.•• I n ==E] =

APx.0I[Elp(Asa.#sIL*=n+x(aridCholdssa/(I •••• ,1)])a,T).
1 n

5111l 0 within 1I 11 =

.\ p X .0' [I'l 0] p (.\ p •• .:/11 1\ 1] (cU" ,n' t, p p •) x) .

51111 and ••• and lin] =
1

APX·~[1I1]P(AP1·~[1I21(divertPPl)

•• ,(Ap .x(eonserve(P p))) ...)).n	 1 n

51[rec 1I]=

APXSlll\] PX.

m:	 (1I)J =

APX·~ I'l] PX.

J[l=II =

(D

I[I I =E 1=

1 n

(Ii'" .• I) .
r:

328

JB==I]=

().

Jill"" ,In==E]=

O.

JI~o within ~l]=

JI~l]'

JI~l and .•• and ~n]=

JI~l]§···§JI~n]·

Jlrec ~]=

§I~] .

JI	 (~H =

.1][6] •

Jt1I I =I]I =

().

Jt'[I 1 ' .•• , I n =I] =

().

Jt'[I==I]=

(I> •

Jl'I[I 1 •..• ,I n ==II =

(1 , ••• ,In) •
1

.*1[lln within ~11=

.~ ~11 •

Jl'I[~l and ..• and ~nl=

Jtl[~11 § ••• !iJt1[~nl •

Jt1Irec ~I=

.Jt'1[~ I .

.lt1[(~)]=

Jt1I ~]I .

329

APPENDIX TWO

STORE SEMANTICS

S:V=BtL*tJtF stored values

E:E=LtBtL*tJtF expressed values

6:D=LtBtL*tJtFtG denoted values

w:W=LtBtL*tJtFtGtJtP witnessed values

S:B={dummy}OtTtNtRtH* basic values

E:T={true}Ot{faZse}O truth values

e:J=zoxUxY label closures

~:F=OoxU function closures

y:G=OoxUxS recursion closures

1;:Z=U+Y+S+A consecutions

~:O=Z+Z controls

1T:P=UXYXS states

p:U=[Ide#Do*]xJ*xp* environments

u:Y=E* stacks

a:S=[L#[TxV]]xV*xV* store s

o:A answers

(1: L locations

v:N integers

R re als

H characters

O:Mon monadic operators

Q: Dya dyadic operators

I: I de identi fiers

B: Bas bases

<l>:Abs abstractions

E: Exp expressions

t.:Dec declarations

330

19: Mon+E+B

*= Dya+[ExEJ+B

111: Bas +B

.7: Abs+U+F

&: Exp+O

:t: Exp+O

~: Exp+O

<!J: Exp+O

&:Exp+Z+U+Y+J*

:2: Exp+Z+U+Y+J*

j': Exp+I de *

,;f": Exp+! de*

fj': De c+U+S+G*

!'I: Dec+O

,:T: De c+O

.I: De c+! de*

:}If': Dec+!de*

<1>: : =fn () E I fn I. ElfnIl' ..•• In' E I fn I. . E I fn I 1 ' •••• In' • E.

E: :=IIBI<I>IOEIEo~ElIEo:=ElIEl"" ,En:=Eolget Elput EIE aug Ello

El EnlEIEI£EIEiIEoEllval Elres Elgoto EIL1 inside EI

Eo; E11if Eo then E1 else E21while Eo do E1II:EII::F:1 (E).

L1: :=I=Ell 1 I =EII==Ell 1 I ==EIL1 within L111L11 and ••• and L1 In n o n

rec L11 (L1).

331

.?l[fn ()EI =

Ap •(Ar; • s V (A p , I! ' a ' • #I! ' +1 I L* = 0+2'[EI r; p , (I! ' t 1)0 ' ,T) ,re nd[fn ()EI p)

.'7[fn 1. Ell =

Ap •(Ar; p , I! ' 0 ' .2'[EI r; p , [I! ' +1/ IJ (I! ' t 1)a ' ,re nd[fn 1. EI p)

.'7[fnI , ••• , In .EI =
1

AP.(A~.(sv~,rend[fnIl,···,In·Elp))

(Ar;p'I!'O' .#I! '+11 L*=n+Y![EI r;p' [I! '+1/(11"" ,In)] (I! 'tl)O' ,T) •

.'7l fn 1. . Ell =

Ap • (A1;. s v (Ap , I! ' a ' .2'[EI r; p , [I! ' +1 II] (I! ' t 1)0 ') ,re n d[fn 1. . EI p)

M fnI 1 , ... ,In •• EI=

AP. (AC(sv~,rend[fnIl.... ,In .. Elp»

(Ar; p , I! ' a ' • #I! ' +1 , L* =n+2'[EI r; p , [h 0 Zds (I! '+1) a ' /(1 , " • ,In)] (I! 'tl) a " T)
1

Ar; P I!O • (A0 * • (Ap , • (Aa ' •0 * : L* +qJ[E 11 (Ap " • r; (re ve r t p P ")) p , I! a ' , T)

(up date s 0 * (&I[E I (Ap " • r; (re ve r t p P ")) p , I!) a '))

(fi x (Ap , • p [0* /,f[E I] [2 [E 11 (A p " • r; (re vert p p ")) p , I! /.i1f E I]))

(noveZs(#JHI)Pl!o).

2'[Ell =

AI;. C1IEI (mvr;) •

.'Jf[EI=

Ar;.$[EI (svr;).

(g[II =

Ar; pI! a • (A0 • 0 :G+ (0+1) r; ((0+.:') [(P , I! ,0) / r e c])() (0+3) , r; P « 0) § I!) a) (p[I I +1))

\9[B]=

Ar;pl!o.r;p«~[BI) §I!)O.

Ar; PI! a • r; p (($'[1i I p) § I!) a •

332

~[OEI =

~~ .:~[E] (~pua .sv~p « t!I[O] (u+ 1) §ut l)a).

\1[E ailE 11 =

~ ~ • me t e (Gl[E a] ,&i[E 1]) (~ pu a •s v ~ p (<11'1 il] (u + 2 , u +1)) §u t 2) a) •

~[Ea:=El]=

~ ~ • me te (.2'[E a] ,.'i7f[E 1]) (A p ua • ~ p « dummy) §Ut 2) (up dat e (u +2) (u +1)a)) •

@[E 1 •·· • • E : =Eall = n

~~. (~~I.mete(.'Jt[Ea],2'[E1], ••• ,2'[E]) (~pva.#u+(n+l)IL*=n+~lpua,T)) _ n

(~p ua • ~ p ((dummy) §ut(n+1) (up "A te s(u +n , ••• , u +1) (h a l ds (u + (n + 1)) a)a) •

(9[ge t E] =

~ ~ .$[E] (~ pu a • # (a +2) > a +~ p u (up da te (u +1) (0 +2 +1)(a +1 , (a + 2) t 1 ,a + 3)), T)

q[put Ell =

~~.&i[E](~pua.~pu(a+1,a+2,(u+l) 5(a+3)).

q[Ea aug E 1] =

~ ~ • me t e (S![E a] ,$[E 1]) (~p u a •u +2 : L*+ ~ p « (u +2) §(u +1)) §u t 2)a , T) •

(9[E
1

, ..• • E] =
n

~~ .mete(.2'[E11, ••• ,2ITEn]) (~~pua. ~p « (u+n, ••• ,U+1) I L*) §utn ,a).

(1[$E] =

~~ .91[Ell (mv~) •

<§[E$] =

A~ .iR[q (~pU a • u +1 : F+~ p « A~ I • S V ((u + H 1 I0) ~ ,) ,u +H 2) § utl) a , T) •

@[£ElI=

(Apva • (A (l. * • (l. * : L*+ ~ p « 0; *) §u tl) (up da t e so; * (h 0 l ds (u +t)a) a) , T)

(novels (#u'~ll L*)pua)).

<§[HI =

A~ • (~ ~ , •&i[E] ~ ,)

(~ p u a . (A C u h : F+ ~ p« ~ ~ " • s V (!; V') ,u +it 2) § uti) a , T)

(~ ~ " P "U"'1 " • (A (l. * • (A a ' • (l. * : L*+ (u + 1 +1 I0) ~ " p " ((l. *) § u"t 1) a ' ,T

(updates(l.* (holds (u"+l)a")a"))

(novels (#V"+l\ L*)p"u"a"))).

333

<.9[E E]=o	 1

A1; • (A 1; , • (A1; " •me te (.'71 [E 0] ,.til E 1] > (A pu a •u +2 : F+1; , pua , s v1; "pua))

(Apu a .1.,U+1 IN., #u +2 I L*+ 1; p « u + 2+ (u H) > §u t 2) a , T))

(A pua • (u + 2+1 I 0) (A p " • 1; (re ve rt p p ")) (di ve rt p (u +2+ 2)) «uti> § v t 2) a)

~[val E]=

A1;pua .!t1[E] (AP".1; (revertpp"))p[(p,u ,a> /resJua.

\1[res E] =

A1;$[E](Apua.(p[res]+1+1Iz) (p[res]+1+2) (p[res]+1+3)a).

~[goto Ell =

A1; ..~[E] (Apua. (u+1+11 Z) (u+1+2) (u+1+3)a).

\9[6 inside E]=

A1;pua .£il[6] (..!t1[E] (Ap' .1; (revertpp')))pua.

'#[E'E]=
O' 1

A1;.'i9[E J! (APua.:9[E J!1;p(ut1)a).
O 1

\1[if Eo then E else E]=
1 2

A1;.Gi[Eo] (APua.uHIT+(9[E
1

]1;p (ut1)a,W[E
2

]1;P (ut1)a).

~[wh i 1e Eo do E 1] =

A1;.!ix(A1;'. (A1;".:'il[E] (Apua.uul T+1;"P (ut1la,1;p « dummy> §ut1la)
o

«(l1[E 11 (A p , u ' a ' . 1; , p , (u ' t 1) a '))) •

'd[I: E] =

A1;."'[E] 1;.

~[I: : E] =

A1;.~9[E]1;.

'§[(E)] =

A1;.(§[E]1; •

"'''''E' E]=,7, O. 1

A1; pu ,,9'[Eo] (A P 'u 'a ' . \9[E1] 1; p , (u ' t 1)0 ') pu §9'[E 1] 1; pu •

9'[i f Eo the n E 1 e 1seE 2J! =

A1;PU.&'1E1] 1;pu§9'[E] 1;pu.2

334

9"[whi le EO do E
1
] =

AI; PU ,.9[E 111 (A p ,u ' 0 ' •~[whi 1e E do o E]l;p'(U'tnO')pu.
1

9"[I: E] =

AI;PU.< <:9'[Ell I; ,P ,u» §;}>[Ell I;PU.

9"[I : : E] =

AI;PU.&'[E] I;PU •

€I[(E)]=

AI;PU .1J'lIEI I;PU.

~[E . E] =
O' 1

Ar;;pu.~[E JI(Ap'u'O'.<f[E]r;;p'(U'tnO')pu§.2[E]r;;pu.o 1 1

.2[if EO then E else E]=
1 2

Ar;;pu.~[Ellr;;pu§~[E2]r;;pu•

.\![whi 1e Eo dOE 111 =

Ar;;pu •.2[E](Ap'u'o'.<§[while E do E]r;;p'(u'h)o')pu.
1 0 1

!l[I : E] =

Ar;;pu •.2[E]r;;pu •

.Q[I: :EI =

Ar;; pu •(('5[E] r;; • p • u» §.!iI[E] r;; pu •

.2[(E)]=

Ar;;pu •.2[E] r;;pu.

j[Eo; E 1] =

j[Eo] §j'[E] •
1

j[if Eo then E else E] =
1 2

/[E] §/[E).1

j[while Eo do E]=
1

j[E 1] •

/[1:£]=

< 1) 5/11£] •

335

1[1: :E]=

,![E] •

fl(E)]=

,1[E] •

.?t1E ; E]=
O 1

$I[E 0 II §.;t'J[E1] •

ff[if EO then E else E]=
1 2

.;([E] §ff[E]·

1 2

ff[while Eo do E1]=

,iH 1] •

ff[I:E]=

.X1IE] •

.;t'[I::E]=

< 1> §.;t'J[E] •

X1 (E)] =

.;t'] E] •

Apa. fixe A1jJI*. (AI;. #1*=0+< > ,< < 1;, teal'[lill p ,a» §1jJ(I*t 1))

(Ac:f[liD (Ap'U'a' .1'ecul'~P'(p'[1*+1] +11 E) a')))

(-'~1[li]).

q,J[I =E] =

A~ .!t'[E] (Ap Ua • ~ p [U+1 / IJ (Ut1) a) •

!ll[1 1 ' ... ,I n =E]I =

ACJl[E] (Ap Ua • # U+1 IL* = n+ ~ p [U+1 / (I 1 ' ••• ,In >] (u t1) a , T) •

!t)[I==E]=

AC~[E] (A pU a • ~ p [U +1 II] (u t 1) a) •

E'JI[I 1 , .. · ,In==E]=

A~ ...~[E](Apua.#u+1 IL*=n+~p[holds(u+1)a/< 1
1

, ••• ,In>] (ut1)a,T).

336

~[11 0	 wi thi n 11] =
1

AI; pU0 .f'J [11 0] (Ii' [11] (A p , • I; (tri m[11] p p ,))) pU 0 •

1	 1

~1I1	 and ••• and lin] =

A1;. (A t; * • de a l t; * (A p * p • I; (p i c k [11 and ... an d 11 n] p * p)))
1

(fix(Aljim.m,;n+<Al;p'.~[lI] (Ap".1;(clip[lI]p'P"))p') §~J(m+1),(»)1) m	 m

~[re C III =

AI; Puo • (A a * • (A p , • a * : L*+5[lIll; p , U (up da t e sa * (dummy *)0) , T)

(fi x (A p " • p [a * / J'[lI]] [.'I1I lI] p" (upd ate s a * (dummy *)0) /.*1Ii\I])))

(novels (#J'[lIJI)pUO).

q}[(lI)]=

AI;.gJ[lI]r;.

.0/"[1= EI =

AC31[Ell (Apu 0 • (A6 • 6 : L+1; P (U h) (up dat e6 (U+1) 0) , T) (p [1]1 H)) •

.9ll Ii' •••• In =EI =

AI;. (AI;' .i!i[EJI (ApUO. #uhl L*=n+1; 'pUO, T))

(ApUO. (\6*. 6*:L*+I;P(Ut1) (updates6*(holds(Uh)0)0) ,T)

:T[I==E] =

AC~[E] (ApUO .I;(invertp (arid[u h/ Il)) (uti)0) •

.9lI I 1 ••••• In ==EI =

At;. (AI;' .~[EJI (APuo.#Uhl L*=n+I;'pUO,T))

(Ap uo • I; (in ve rt p (ari d [h a lds (U +1) 0/(Ii ' ••• , In)])) (u tl) 0) •

:T[II 0 wit hi n lI] =
1

AI;puO .!'.l[II oJI un lI11 (AP' .I;(trim [lI11 pp'))) pUO.

9lll and ... and lI]=
i n

At;. (At;* .dealt;*(AP*P.I;(pick[lI and ••• and lInl p*p)))

1

(fix (Aljim • m'; n+(AI; P , •.'T[II mI (A p " • I; (c l i pIT II m] p , p ")) p ') § ~J (m+ 1) ,()) 1)

y[re c III =

337

.'f[Cli)] =

A1;..'f[Ii]1; •

(1) •

.I[1 •.••• In =£] = 1

(1, ... ,1>.
1 n

.1[1==£]=

<> .

.I[1 1 •...• In ==E] =

<> •

.I[Ii wi thi n Ii 1]1 = o

.I[Ii]·
1

J1[Ii and ••• and Ii]=
1 n

.I[Ii H ... §f[lin].
1

.I[re c Ii] =

j[Ii] .

J1[(Ii)]=

.1[1'1].

Jf1[I=E]=

<> •

.1/'1[11 In=E] =

(> •

.1/'1[I==E] =

(1) •

,*1 1 1 In==E]=

(I 1 ,···,I >· n

.1/'1[1'1 within Ii]1=
0 1

.Jt"[L'Il] •

338

£1[1l1 and ... and lin] =

£1[111] § ••• §.7t1!1ln] •

Jf'[re c ll] =

339

APPENDIX THREE

STACK SEMANTICS

B:V=B+L*+J+F stored values

E:E=L+B+L*+J+F expressed values

cS:D=L+B+L*+J+F denoted values

w:W=L+B+L*+J+F+J+P witnessed values

B:B={dummy}o+T+N+R+H* basic values

E:T={t~ue}o+{false}O	 truth values

e:J=zo label closures

cj>:F=O° function closures

~:Z=U+Y+S+A	 consecutions

~:O=Z+Z controls

n:P=UxYxS state s

p:U=[Ide~[DxNxNJ*Jx[JxNxNJ*x[PxNxNJ* environments

u:Y=E* stacks

o:S=[L~[TxVJJxV*xV* store s

o:A	 answers

a: L	 locations

v:N	 integers

R reals

H characters

O:Mon	 monadic operators

Q: Dya	 dyadic operators

I: I de	 identifiers

B: Bas bases

1J:Abs abstractions

E: Exp expressions

ll: De c declarations

340

(9: Mon+E+B

ir: Dya+[ExEJ+B

iJd:Bas+B

F: Abs+U+F

8:Exp+0

!t:Exp+O

9/: Ex p+O

'!J: Ex p+O

9: Exp+Z+U+Y+S+J*

,/:Exp+lde*

f: Exp+lde*

f1:Dec+{()}O

~:Dec+O

;:r: De c+O

j:Dec+lde*

jf: Dec+lde*

<I> : : =f n ()E I f nI . E I fn I 1 ' ••. , In' E I fn I .. E , fn I 1 ' .•• , In' . E.

E: :=IIBI<I>IOEIEor2ElIEO:=ElIEl"" ,En:=Eolget Elput EIE o aug Ell

El, ... ,EnlEIE[£E!E£IEoEl[val Elres Elgoto Eill inside EI

Eo; E11if Eo then E1 else E21while Eo do E1II:EII::EICE).

A::=I=Elll' ... ,In=EII==Elll ,In==EIL1o within L111L11 and ... and L1 I n

re c L11 (L1) •

341

s>II fn () EI =

\p .\1; .svOP'v'O' .OP" .#v'h I L*=o+'?[EI (I'emit1;)p"(v 't1)o' ,T)

(di ve I'tp , (I'e n d [fn () EI p)[(p , ,v ' t1 ,0 ') II re cJ)) .

ff[fnI.L]=

\ p • \ 1; P 'v ' a ' • (\ p " .:t'[E] (I'e mi t 1;) P "[v ' +1III] (v ' t1) a ')

('dive rt p , (I'e nd[fn I. Ell p) [(p , ,v ' t1 ,0 ') II r e cJ) .

.11[fnI •...• In' EI = l

\p .\1; .sv (\p'v'o'. (\p". #v'h IL*=n+'?[EI (remit1;)P" (V 'tl)O' ,T)

((\ p", • pili [(0' ,v 'tl ,a ' >1 Ire C][V'+111(I 1 ' ••• ,In>])

(divertp'(rend[fnI ·····I ·EIP)))).
1 n

ff[fn 1. . EI =

\ p • \ 1; • s v (\ p , v ' a ' • (\ p " .:t'[EI (re mi t 1;) p "[V ' +1111] (v ' t1) a ' •T)

(di ve rtp I (I'e n d[fn 1. . E I p)[(p , ,v ' t1 ,0 ') II re c])) .

§9f fn I 1 ••••• In' • EI =

\ p • \ 1; • s v (\ p , v ' a ' • (\ p " • #v ' +11 L*=n+:t'[E I (re mi t 1;) P " (v ' t 1) C! ' • T)

((\p'" .r:!"[(p' ,v'tl,o'}llreCJlhoZds(v'+l)O'II<I l ,···, In}))

(divertp' (I'end[fnI •...• In' • EI p)))).l

4I[r:l=

\ 1; pVC! • (\ 0: * . (\ p , • (\ a ' • (\ P". (\ C! " • 0: * : L*+(41 [E I (re mi t r,) p "va" , T)

(updateso: * (G'[E] (re mi t1;) p "VC! ') 0))

(p , [.'2 [q (remi t 1;) P , [dummy * I IX][E I] va ' IIJflf E]])

(updateso:*(dummy*)O))

(p[(p ,v ,0) Ilree] [a*11,f[E]]))

(news (#,f[E]) 0) •

.'f[EI =

\1;.S[E] (mvO .

~ E] =

\1; "l'[E] (sV1;).

342

<§[I 1 =

A1;pua .1;P(ravelp[I 1+1+1) §u) a.

(§[BI =

A1;pua .1;P « ~B I) §u)a.

(§[<lJI =

A1;pua .1;p«S-l<lJlp) §u)a.

A1; ..0W[Ell (Apua .sV1;P « l'J[OI (uti) §utl)a).

(§[E IlE 1= o	 1

A1; • me te (~[Eo 1 ,.0W[E 1 1) (A Pua • S v 1; P (('7'11 1111 (u + 2 , u tl)) §u t 2) a)) •

'§[E ·=E 1=
O· 1

A1; .mete(,Z'[Eol ,.o/l[E11) (Apua .1;P« dummy) §ut2) (update(u+2) (uti)a).

(§[E 1 ,,·· ,En: =Eoll =

A1;.(A1;'.mete(9J?[E I,21IE 1, ... ,21[E I>(APua.#u+(n+l)IL*=n+1;'pua,T))o 1 n

(Apua .1;P « dummy)§ut(n+l)(updates(u+n, ••• ,utl)UlOlds (u+ (n+l))0)0).

§[getEI=

A1; .21[E I (A pua • # (a +2) > 0+1; pu (up da te (u ti)(0+ 2t 1)(a +1, (a + 2)t 1 , a +3)) , T) ,

(§[put EI=

Az;.9I?[E] (Apuo.Z:PU(0+l,O+2 ,(uh) § (0+3)).

'§[Ea aug E 11 =

A1; • me t e <.0W[E a1 ,5t[Ell) (A pua • u + 2 : L*+1; P « (u + 2) § (u h)) §u tl) a , T) •

0'[E • ' ••• Enl =
1

A1;.mete(,Z'[E11 •••• ,5t[Enl) (APua.1;p«(u+n, ••• ,u+l) IL*) §utn)a),

(§[$EI =

A1; ..0'![EI (mv1;) •

'5[E$I=

A1;.9I?[EI CApuo. u+ 1: F+1;P « A1;' .sv «u+ 11 0)1;') §ut 1)0, T).

'5[£EI =

(A pu a • (ACI. * • CI. * : L*+1; P « CI. *) §ut 1) (up dat e SCI. * (h 0 l ds (u tl) a) a) , T)

(news (lIutj IL*)0)).

343

(§[En =

AI;. (AI;' .l'-i'[Ell I; ,)

(Apuo •(A~ • U+ 1 : F+ I; p((AI; 1/ • B V (~ I; 1/) §u t 1) 0 , T)

(AI; 1/ P I/u 1/ 0 1/ • (Aa * • (Aer I • a * : L*+(u +1 I 0) I; 1/ P 1/ « a *) §u 1/ t 1) er I , T)

(upda t e s a*(h0 Zds (u 1/ +1)01/)01/))

(neuJs(#u 1/+11 L*)er"))).

(9[E E] = o	 1
AI; • (AI; I • (AI; " • me te (.'?t [Eo] ,.!l1I E1]) (ApU0 • U+ 2 : F+ I; I PU0 , B V I; "p U0))

(APUO. l,;u+11 N,;#u+ 21 L*+I;P((U+ 2+(U+ 1) §ut 2)0, T))

(APU0 • (U+ 2 I 0) I; p((U+1) § Ut 2) 0) •

(§[val Ell =

AI; puo •(AI; I .~ EI (re mi t I;) P [(P , U ,0) lire c] [I; I II re s]uer)

(Ap'U'O' .remitl;p'[(P,u,o> Ilrec]u'o').

(!J[res EI =

AI; •.'t'[EI (ApUO.(Y'aveZp[res] +1+11 Z)pUO).

~[goto E]=

AI; ..gf[E](APUO.(u+11 Z)p (uti)er).

~[li inside Ell =

A~puo.0}[lil(2[EI(remitO)p[(p,U,O) Ilrec]uo.

;9[E . E] =
0' 1

Ai;.~[E](APUO .~[E I I;p(uti)o).

o 1

~[if Eo then E else E]=
1 2

Ai;.iJl[E](ApUO ,u+11 T+~[E] I;P(uti)o ,~[E2] I;P(uti)O).
o 1

~[while Eo do E 1=
1

AI; •fi x(AI; I • (AI; 1/ •.<1! [Eo 11 0 puo • U+1 IT+~ 1/ P (ut 1)0 , I; P ((dummy) §ut 1) 0)

('Y [E 1] (Ap I U '0 I • ~ I P , (U 't 1) 0 '))) •

~[I:EI=

AI; .(!l[Ell 1;.

~[I: :EI=

344

;1[(Ell =

AI;	 .~[E]I; •

9[E'E]=o '	 1

AI; puo .9 [EO] (AP ,U ' 0 ' .5 [E]1; p , (u ' h) 0 ') pu 0 §&[E]1; Puo •

1 1

9[if EO th en E e1s e E] =
1 2

Al;puo.9[E]l;puo§&[E]l;puo.
1 2

9[whi le Eo do E] = 1

Al;puo.9[El~ (Ap'U'0'.5[while Eo do E gp'(u'h)0')puo.
1

~ I :E] =

AI; puo • (AP 'u ' 0 ' •~[E] I; (re ve rt p p ') (p C'[Juu ') (re s t 0 reoo ' » §& [E] I; puo •

3"[I: :Ell =

AI;PUO .&[E]1;PUO.

3"[(E)] =

AI; puo ..'1'[E]I; puo •

!'l[E ' E] =
0' 1

AI; pU0 •.11 [Eo] (A P ,U ' 0 ' • 0'[E] I; P , (u ' h) 0 ') pu 0 §~ IT E1] I; pU0 •

1

-'I[if Eo then E1 else E2]1=

AI;PUO.!'l[E]I;PUo§2[E]1;PUO.
1 2

-'I[wh i 1e Eo d0 I: 1] =

AI;PUO.!'2[E] Pp'u'o'.~[while Eo do E]I;P'(U'tl)0')puo,
1	 1

J:I[I : E] =

2[I: : E] =

A1; puo • (AP 'u ' 0 ' •W[E] I; (re ve r t p p ,) (p op UU I) (re s tore 00 I » §J:I [E 111; Puo •

fITE o; Ell =

f[Eo] § f[£1] •

345

![if EO then E else E]=
1 2

jI[E 1] §I[E 2] •

![while Eo do E]=
1

![E1JI.

j[I: E] =

(I) stilL II.

j[I::E]=

![E].

j[(E)]=

j[E] •

...vIr E . E] =
.At 0' 1

~EO] §JtI[E] .
1

.:fIl; f Eo then E else E] =
1 2

.:fIl E] §.;(j[E] •
1 2

,;([while Eo do E
1
]=

$'[E
1
]·

.;41l I :E] =

.;t'][E] •

$'[I::E] =

.:t1 (E)] =

.:t1 E] •

o.

~[I=E]=

A1; •.se[E] (Apu a • 1; P[u H / / 1] (u t1) a) •

lll[1 1 " .. ,In=ETI =

A1; •.'ii'[E] (A pua • #u +11 L*=n + 1; P [u +1 / / (I 1 ••••• I n} J (u i" 1) a , T) •

346

~ I ==ED =

A1; .91[ED (ApUO .1;p [u+1/ /IJ (ut 1)0).

~[I 1 •.••• In ==ED =

A1;..'Jl'[ED (Apuo.#U+11 L*=n+1;p[holds (u+1)o//(I , •••• 1)]lut 1)0,T).
1 n

~llo within lllD=

A1;puO .~[lloD (st'[lllJI (Ap' • 1; (tl"im[lll Dpp'») pUO.

~lll and ... and llnD=

A1;.(At;*.dealt;*(AP*P.1;(pick[lll and ... and lln1p*p»)

(fix(A1jJm.m,;n+(A1;p'.!l)[ll D(AP".1;(clip[ll Ip'p"»p') §1jJ (m+1),())1)m m

~rec llD=

A1; puo • (A a *. (A p'. a * : L*+:r[II 111; p , U (up date s a * (dummy *)0) • T)

(p[a*//.f[lll J[dummy*//Jt'HI J»

(news (#.f[III)0).

~[(ll) I =

,9'"[I=EI =

A1;..'Jl[E D(Apuo • (A6 • 6 : L+1; P (U t1) (up da te 6 (U +1)0) • T) (rave l p[I I +H 1)) •

S'1I I 1 •...• In =E] =

A1;. (A 1; , •.'R[EI (ApUO. #u+11 L*=n+1; I PUO. T»

(Apuo • (AD * • 6 * : L*+1; P (u t 1) (updat es 6 * (h 0 l ds (U+1) 0) 0) • T)

« rave l p [I 11 +1 +1 , •••• ."a V(? l p[I n ~ +1 +1) » •

:TII==EI=

A1; •.1i[EI (Apuo.1;P[U+1/ / /I] (utl)0).

:T[I •·.· .In==EI=

A1;.£>t[EI(APUO.#u+1IL*=n+1;p[holds(U+1)o///(I , ••• ,1 } J(Ut1)O.T).
1 n

.:7[llo within llll=

A1;Puo.~[llol(.:7[llll(AP'.1;(trim~llllpp'»)Puo.

g~lll and ••• and llnl=

A1;. (At;*.dealt;*(AP*P.1;(pick~lll and ••. and llnlp*p»)

(fix (AljJm.m,;n+(A1;P'.Y~ll I (AP",1; (clip[ll Ip'P"»p'}§1jJ(m+l) ,0)1)m m

1

347

.:T[re c 6] =

A~ •.:T[6] ~ •

.:T[(6)] =

A~ .5"[6] ~.

J[I =E] =

(I) •

.I[1 1 ' ••• ,I n =E] =

(I 1 ,···,Ij .

.I[I ==E] =

n .

.I[I 1 ' ••• ,I n ==E] =

n .

.I[6 with i n 6) =
0

.1[6] •

1

.1[6 and ... and 6]=
1 n

.I[6] § ••• §.I[6 n] •
1

j[re c 6] =

.I[til .

.I[(6)] =

.9'[6] •

n.

Jl!1[1 1 ' ••• ,In =E] =

n.

Jl!1[I==E]=

(I) •

Jl!1[1 1 "" ,In==EJ! =

(I, ... ,I).
1 n

348

Jt1Ill within 111]=
O

JrlIll]·
l

JrlIll and ... and lin] =
l

.ltl[111] § ••• §Jt1I lin] •

Jt'[re ell] =

JrII ll] •

Jf1I (ll)] =

Jt1I III •

349

