Oxford University

Computing Laboratory _
Programming Research Group-Library
8-11 Meble Road

Oxford OX1 3QD

Oxford (0865) 54141

FORMAL SPECIFICATION
OF A

DISPLAY EDITOR

BERNARD SUFRIN

Technical Monograph PRG-21
June 1981

Oxford University Computing Laboratory
Programming Research Group

45 Banbury Road

Oxford DX2 6PE

Abstract

We present a formahisation of the design of a Display Editor Tne formalisatigh 1s
rigorous enough to serve as a touchstone for the correciness ol implementations of
the edilor and to perrmil various desirable properlies of the design 1G be proven.

The formalisation 1s expressed In (shgntly embeihshed} convantional matnemaucal
notation. the specialised features of which are explained in the text

In a companion paper i(Sufrin 8)ol we give crileria by which the correciness of
implamematons may be judged., and demonstrate how an mplementation can be
developea Irom the specification and shown to satisly the correctness criler@

@ 1981 by Bernard Sufrin

Oxford University Computing Laboratory
Programming Research Group

45 Banbury Road

Oxford 0X2 BPE

0 Introduction -
Specmcahon S:rucwre .
Design Princlipies
Specification Style

1 Ediling Documents
1.1 A Smmple Editor Model
1.2 A Simple Edilor

1.3 Enriching the Simple Madel
Defiming Signiiicant Places
Motion ang Deletion to Slgmﬂcanl F'Iaces
Coirecting Erroneous Deletions .

1.4 The Bas!c Document Editor
Notgltional Inerlude .
Praperties of the Recall Command
Designing Whe Keyboard .

1.5 The Complete Document Edilor

2 Dispiaying Documents
A Simple Display Model .
Reiating Unbounded Displays to Documents
Disptays and Windows

3 Displaying the Edited Document
The Complete Editor State
Specitying a Wingdowing Palicy

4 Summary

5 Cencluslon

Appendices
1 -~ informal Description of the Edltor
2 -- Additignal Features

Cut and Paste
Automatic Ilndentaluon

3 —— Summary of Notatlon
Generic Definitions
Useful Combinators
Finite Mappings
iteration ot a Function . .
image ol a Set 1hrough a Functlon
Sequences . Lo . .

References

W W =

23

.27
. 29

30

35

. 38

. 39

Acknowiedgemenis

I am deeply imndebted to Jean-Raymond Abrial for introducing me to the art of
specillcaton. and for reawakening my interest in mathematics after it had been
dormant far many years. Thanks aiso to Tany Hoare and Ib Sorensen [or many frydful
discussions. to John Hughes for discovering a serious llaw in an earlier formalisaton,
and tg Geraint Jones and Tim Clement for critically reading parts ol the manuscript.
It was the challenge of trying to formalise Richard Bornal's lovely but complicated
screen-editor -- DED —- which began this enterprise.

The work Is part of a programme of research into Sofiware Engineering Methods
supported by the United Kingdom Science and Engingering Research Council under
grant GRAsA/43124,

INTRODUGTION

In this manograph we present the formal speclicatlon of a display edior which has
been in use at the Programming Research Group since December 1879 and s
informatly descriped in Appendix 1.

Our goal 's to give a mathematical model which can serve both to communicate our
ideas aboul editor design and 10 act as a touchslone for correctness of
implementauons. The design heremn offérs a reasonably comifortablg human interface
coupled with the possibillly of implementation on fairly cheap hardware. We hope thal
our {ormallsation Inspirégs oOther implementations When the time comas to discuss
a standard for editors then 1@chniques such as those used here may prowde an
appropriate framework for concise and unambiguous definition.

The purpose of a formal system specification 's to capture preclsely and abviously
the requiremeénts of the syslem designer and his cllent -- independently of whather
the struclures and functions embodied 1n it are Immediately s/mplamentable. [n gractice
a formal spacification will be used both in reasoning about properties of the system
being specified and as a means of communication bstwesn designer. implemantar.
and users It should be an adequate basis DGth for judgements about the correciness
of implementations of the system tc be made. and for conclusions about systam
behaviour tc be drawn independently of (and preterably in advance of implemsntation.

The goal of facilitating reasoning is not really compatible with the Idea that the
specification should itself be executable. Althpugh it is wery tempting when making
constructive specifications (o consider them simply as “‘very high—level programs” such
iemptatron should be resisted -- the purpose ol the specilication is to express
retalionships (between system components) rather than the algorithms which malntaln
them. The design of algonthms has i1s place further alpng in the sysiem development
process. an ‘atgeruhmlg’ cast of mind at the speclfication stage can make the task
of formalisation much more difficult. Tc summarise: neither the ‘‘realism’’ of the data
apstractions employed nor its ‘runability” shouid be a maller of undue concern during

the formalisation of a specification.

For this reason we feel free to define funclions impiicitly —— that Is by giving pre—
and post- conditions -- rathar than explicitly -- by lambda-abstraclion, The effact
1s o clanty our expianatign and facititate reasoning (alpeit at the risk of specifying
sgameathing which 15 not a funcuony The following example may help to clarlly the
difterence one can define subtraction either implicitly Dy:

: N x N - N

(¥vnl, n2: N | nl > n2) ((nl - n2) + n2 = nl)

2
or expliclly by:

~-:rNx N+ N

- =(xnl, n2Z | nl > n2) (pred"2 (nl)) where pred = suc’!

in the frst case we have specified the relationship we wish to hold between lhe
argumaenis and resuits of -, In the second we have constructed a function which
can be proved fo satisfy that relationship. It Is often easler to do the {ormer than
it Is to do the latier; Indeed It Is somselimes a simplar way o Iadigating the constraints
within which some freedom of choice may be exercised by &n implementation.

The Struciure of this Specification

Qur speclficatten is in three main sections: firs! we present the speclticallon ol a
documer edlting subsystem: next. we speclfy a document display subsystem: finally
we glve the desired relationship between these two independenily specifled companents.

The structure liselt signifles a major design decision. It is all 100 often the case thal
software designs reflect t00 closely the precise characteristics of hardware on which
they willl initially be implemented. We beileve that this adversely effects lhe dgsigner’s
ablilty 10 come up with a really simple and effeciive human interface -— not t¢ mention
a simpie explanatlon of his or her design. A display editor should not be designed
simply or even mainly around what appears on the display: 1he temptation 10 adapt
the gesign 1o specific properties of the display device are then too greal.

In cur design. therefore. editor commands are explained solely as transformations on
documenls; the role of lthe display subsystem can be summarised as keeping that part
of rhe document which surrounds the cursor In wiaw whilst minimising major screen
changes. We believe (with some empirical justification) that this makss it possible 10
tmplament the design on a wide variety of display devices.

An important design principle Is reflected in the fact that we have not clutiered our
definition with hosts of "‘features’”. Although we are qulte happy for implementers
10 cusiomise our specification to their own taste. we think that the ‘1emptation to
encumber an editor with ali the generality of a general-purpose string-processing
ianguage should be resisted. The payoff In this case Is that the prose description
of the edillor 1s & mere four pages long and most 0f the editing tasks one ever neads
10 do can be done once these pages are understood

Anothar Imppriant grinciple i1s that the editor has no hidden modes! The Interpratation
of every key Is fixed. rather than dapending on some non-manifgst aspect of the history
of the edit session so far The efiect of this is that prediction of the effect of & keysiroke
is simplified. and that many common edlling actions eveniually become reflexgs rather
than complicated keystroke sequences which must be consclously consldered The
eflect of this is 10 enable the typist to concantrate on the composition of the documnent
rather than the complexities of lhe edilor interface.

Specification Style

A definition in denotational style would involve the Invention of an gbstract sintax of
eaitor commands. the definition 0of a model for the editor states, and the dafinltion
ol a semanti¢c function 10 map commands Inlo the stata lranstorming functions which
define their effects. The extremely simple structure of the edltor command *‘language’”
does not warranl the Invention of an abstract syntax, however., and we have chosen
ingteac (o stay ip the world of semantics —— dalining a state model and some stale

transformations.

It should be understopd that most of the “"commands’™ of the editor are intenged to
be Invoked by single keystrokes. A “"syntax’ far commands is simply a picture ot a
keyboard; the corresponding semantic function jusi connects each key on the keyboard
ta one of the state 10 state functions.

Rather than confronting the reader with a great deal ot detail all at onca we have
chosen o present the specilication of the editing subsystem in stages. At each slape
we present a mathematical model powerful enough 10 capture ithe deslgn decislons
we wish ta tlustrate.

Sectlon 1: Editing Documents
1.%: A Silmple Editor Model

The first editor to be speciflad has commands which permit insertion. deleton. and
motlon of just one ¢character at a time. Every command takes effect at. and may change
the position of. the current position In the document —— which for historical reasons
wili be called the cursor.

The essentlai characteristics of the state of such an editor are the contenl of tha
document being edited. and the position of the cursor In the document. We conslder
the cursor 10 be between Ccharacters rather than at a character. so these two
characteristics can be captured by a pair of sequences of characters —-- henceforth
called a DOC. One sequence corresponds to that part of the document which preceeds
the cursor. the other to thal which follows the cursor. The set of characters which
may appear in documents wlll henceforth bg denoted CH.

DocC

seg[CH] =~ seg[CH]

The following are the primitive DOC-transforming functions which will be used 0 specily
the effects of ednor commands.

del,
move: DOC -+ DOC
ins: CH — (DOC — DOC)

content: DOC — seq[CH)

It

move (1, r I 1= (»)(head(l), C(last(l)? * 1)
del = (x 1, r | 1 # O)(head(l), 1)

ine = (x ch)
(x 1, 1)(l * Cch>, 1)

content = (x 1, r3(l * 1)

The functions head and last are partal —-- thelr domains being the non—null
sequences (head maps a sequence {0 the sequence conslsting of all but s last
element). t is ewvident from their deiiniuons that move and del are also partial,
and we record thizs fact in their signatures Their exact domains are alsa recorded
as part of the i-expressions which deline them:

6
Examplgs
(CCURRENT), (spP G 51 T1 0N>)

move
(C{CURREMN), (TspPOSITTION»
deil
({CURERE>, (T8sp PO S I TTI1I ONY)
del
(CCURR), <TBpPOSITI QN
inesert(Y)

(SCURRY, <(TspPOSITI1OQRWN)

Tha functions so far defined are not sufficient to give the semantics for even the
slmplest sditor since there Is nothing carresponding to rightward motion. Rather than
remedy nis ad-hoc. we introduce a method for defining direcion. which we will use
throughout the monograph

mirrer: DQC — DOC

mirror = (%» 1, r)(reverse(r), reverse(l))

Example mirror appiied to:

(<F 0 0>, <B A 22)
grves:

(<2 A B>, <C O F>)
foliowing this by a move we get:

(<Z A>, (B ©C O F>)
then by another mirror we get:

({F 0 0 BY, (A 2))
in other words a rightward move!

7
It 15 easy 10 see that rightward delete and rightward insert can ba defined similarly.
we therefore daefine the following “'directional’” combinators.

tight,

left: (DOC—+~DOC} — (DOC-»DOC)
right = (x f)(mirror o f a mlrror)
left = (x £)(f)

The function right maps any DOC function 1o its “‘rightward’’ counterpart, whilst left
15 simply a mnemgnic renaming of the identity on DOC 19 DOC funcilons. We can
now dellne the semaniics of a tamily of simple editors whose c¢ommands correspond
to the lunclions,

left(move} left(del) left(ine(c}) (for all c:cCH)
right (move) right (del} right(ins{c)) (for all c:CH}

and have lhe following desirable praperties
1. An insertian tollowed by a deletion has no net ellect on the document.

c. A move in one direction followed by a move In the opposite drgction
has no net effect

3 A deletion In gne directlon can be achieved by a move in that direction
folicwed by a delste in the opposite dlrection.

4. Motion has no net effect on the tontenl of a document.

Proving the theorems which formalise these properties is relatively easy and Is left
as an exercise for the reader.

DOC PROPERTIES
F (¥ c: CH)

(left{del) o left(ine(c)) = id4(DOC) A

right(del) o right(ins(c)) = id(DOC))

b left(move) o right(move) = 1d(dom(right{move))) A
right{move) o left{move) = id(dom{left(move)))

 left(del) ¢ right(move) = right(del) A
right(del) o left(move) = left(del)

I content o left(move) = content a
content o right(move) = content

8
Hint. use the following generlc properties of sequences:

X
SEQ PROPERTIES
F (¢ s, 31, B2: seq[X]; x: X)
head(s)=tail(reverse(a))
reverse(reverse(s)) = B
revergse(sl * s81) = reverse(s:) * reverse(si)
head(s * (x>) = 3
last(s * (x>) = x

Quantifying over '‘Actions’' and '’Directions’’

When piving the semantics of aditors we wlll often define higher—order functlons whose
arguments and results are variables quantified over the functions which we have just
deflned. For this reason we give names (0 two classes of function.

The ACTIONs are a subset of the DOCument-transforming functions. and the
DIRECTIONs are a subset of the (nigher orden functigns on the
DOCument-iransforming functions.

ACTION: P(DOC-DOC)
DIRECTION P{ (DOC—+~DOC) — (DOC-»BOC))

ACTION = {del, move}
DIRECTION = {left, right}

1.2: A Simple Edltor

The DOC moaal and ihe functions thereon say a great deal of what needs 1o be sald
of any simpla editor. In order 10 deflne the interface o one particular edicr with
greater precision we need 10 present a more detatled specitication of the available
commands,

As an example of cur general approach we presenl here a simple editor. The affact
of each of its commands will be modelied by a state-to-stale function. Editor stales

-- hencelorth denowed ED -- are modelled here by a single DOC.

ED

DoC

We face a small problem In using the funchons deflned above to speciy Lhe aeffect
of commands on edlor states: desplte the fact that we wish the affect of evary command
1o be compietely deflned, the functions on DOC are not all totat. For example,
right (move) s only defined for a DOC which has 1ext following the cursor: desplte
this we wish to specify the effect of an attempt to move the cursor rightwards beyond
the end of the document as '"'no change to the conwent of the document nor the position
of the cursor.”

We can resolve the problem by defining a very general combinator, Lxy, which maps
a partial function. £. into a total function which agrees with £ on its domain (a subset
of the generic set X) and elsewhere agrees with the identity funcuon on X

X

try: (X—=»X) —s (X-+X)

try = (» £)(14(X) @& F)

This genertc form of definiion -- signitied by the X above the double bar -- denotes
a schema which can be instantlated for any gctua/ set. Thus for a set Y

tryfY] denotes a function of type (Y-=»Y)—(Y—Y)

10
Exampiss:

try[ED] (move) (<e n>, <d>) = ({e n d>, (>)
but:

try(ED](move) {<e n d), <) = (<e n d>, <)

It Is customary 10 omit the generic argument ([ED] abovel when invoking
generically-defined tfunctions. since their generic type Is usualy evideni from context

In the smpie specilication which appears belaw. the (state—io—state tunctigns which
model the effects ofl commands come in two famliles: the FUNCTION commands
(each ol which is particularised by @ DIRECTION and an ACTION) and the INSERT
commands {partucularised by a specific CHaracter).

INSERT: CH — (ED — ED)
FUNCTION: (DIRECTIONxACTION) -» (ED — ED)

(Vv a: ACTION;: d: DIRECTION; c: CH)
INSERT(c) = ins(c)
FUNCTION{d, a) = try(d(a))

Wa summarise the avallable commands by defining cmd as & subset of 1he
ED-translorming functions, /e the union of the ranges of the funclions INSERT and
FUNCTION. The main gasign decision recorded here in additian 1o he properties which
these commands “'inherit’* from the DOC model is ths exclusion of rightward Insertion
from Lhe command repertoira.

cmd : P(ED -» ED)

cmd = ran(INSERT) U ran{FUNCTION)

One of lhe tasks of the designer of an implgmentation of this aditor will be 10 provide
a mapping from keys on the chosen keyppard to each of the cmds specitied above.
We know of na ergonomic principles 10 guide the design of such a mapping alihough
it is clear that the “‘visible’” characters on the keyboard shoutd be mapped to INSERT
commands. and that the four FUNCTION commandgs should be mapped to special
“tunctlon keys'' if possiblg.

11
FUNCTION(left, del) FUNCTION(right, move)

FUNCTTON (left, move) F FUNCTION(right, del)
(o) o @ m)

Y Oe006
qj %

\
N

INSERT(Q) INSERT(R)

®

INSERT(g) INSERT(r)

Keyboard Oesign for the Simple Editor

1.3. Enriching the Simpie Model

Defining SignHicant Places in Documents

The nen level of specification includes commands which act ¢n larger unlts -- words,
lines. and the who!s document In order to be able 10 specify such commands we
need to enrich our simple model by formalising the idea of word. line and documeént
boundares.

We intrpduce a (constant) newline character and define the set -- line -- of
documents whose cursor is posilioned at the peginning of a llre.

nl: CH

line: P{DOC)

line = { 1, r | 1 = <> v last(l) = nl }
Example:

({las tnl?> «(nex t>») ¢ line

but:

((last > <(nlnewxt)) g line

The Image of this subset of the documents through mirror is written:

mirror(line)

(bold parentheses dengte ‘image”) and is equivalent 10 the set:
{ 1, v | r=X> v first(r)=nl }
Example

(¢l ast >, nlnext?) ¢ mirror{ line)

In other words. the mirror Image characterises the documgnis whose cursers are
positioned at the end of a line!

13

By Inmroducing a dlfterent constant -— space -- we can define the set of documents
whose cursor |s positioned at the left hand end ol a word. It is convanient 10 have

thls set include the line boungdaries.

sp: CH
ap # nl
word P(DOC)
word = { 1L, r | 1=¢(> v last(l)e{sp, nl} A
r=¢> v firat{r)g{ep, nl}} U line

Examplas:

({pur ple spsp?>,

{proae?’) ¢ word

(¢f 1 ma lnl > «dr aft >) € word

but:

(¢painful? (spproblemm) £ word

The mirror Image of this set of documsnts is:

mirror(word) =

mirror(line) U
£ 1, r | 1l=¢> v last(l)£{sp, nl} &
r=¢> v first(r)e{sp, nl}}

Example:

(¢par1nf uld, (spproblem)e mirrox{ word)

Thus the mirror image of word adequately describgs the set of documents whose

cursors are at the end of a word

Another significant set of documents are those whose cursors are at thg beginning

ot the document. Finally there ars those whose cursors are posltionsd al a charactar

boundary —- viz the entire set ol documents!

document : P (DOC)
chatracter: P(DOC)

character = DOC

document = { 1, r | 1=<¢(% }

14

It will be uselul to give names to the functions mirror and id(CUT) which more
closaly rallect the rote they can play in specifying which “'sde’ of a word. line or

document is meant.

beginning,
ending: DQC—DOC

beginning = mirror
ending 1d (DOC)

The foliowing sets correspond 1o documents whose cursors

“'significant”” boundaries:

are positioned at

beginning(character) ending(character)
beginning(word) ending(word)
beginning(line) ending(line)
beginning({ document) ending(document)

with 1he obvious property that

beginning(character) = ending(character

) = character

Stncg we later want to quantlfy over the “'sides”” and ‘‘places”’ we define tha two

sets SIDE and PLACE.

SIDE: P(ED—ED)
PLACE: P(E(DQC))

SIDE
PLACE

{beginning, ending}
{character, word, line, document]

Motion and Deletion to Significant Places

In order 1o specify molion or dggletlon ""t0 the next (previous) ... we lrst defing
fungtlions which map documents into their distance Ge number of moves) o the nearest

' in a given dir@cuon i there is such a place. Notlce that we have nol given an
algorithm which discovers the distances. simply specitied what they are.

dist: (DIRECTIONxP(DOC)) — (DOC -+ N)
diat =
(» dir, place)
(» doc | distancea = {}) (min (distances))
where distances =
{d:N | d>0 a dir(move)d (doc) € place}

Example:
dist(right, ending(word))(<h e r>, <sph andep i a>) =25

but
(¢h e x>, <8p h andspis>) ¢ dom(diat(right, ending(line)))

Moving or deleling to a given place in a given direcuon s specifled simply as an
neration ol the action. The effect 15 unspecified for documents In which Ihe place
15 unreachable,

to: ((ACTIOW=xDIRECTION)xP(DOC}) — (DOC-DOC)

to = (A action, dir, place)

(* doc | doc € dom{dist(dir, place})
(dir(action)” (doc))

where n = diet(dir, place)(doc)

Example:

(del, right} to ending(word})
maps

(¢he >, (aphandspi s))
10

(¢h e r) (sp i 8})

16
The funclions

[move,
(move,

left)

right)

(del, left)

(del,

obviously correspond

The tunclions

(move,
(del,
{move,
(del,
(move,
(del,

(move,
(del,
{move,
(del,
(move,
(del.

right)

left)
left)
left)
left)
left)
left)

left)
left)
left)
left)
left)
left)

to

8181518

character
character
character
character

left (move), right (move),
right {del) of our c¢rigina! modal.

ISISISISISIE I5ISlsls1sls

beginning(word)
beginning (word)
beginning({line)
beginning(line)
beginning({document)
beginning(document)

ending(word)
ending{word)
ending(line)
ending(line)
ending (document)
ending (document)

left(del),

and

together with their rightward-acting counterparts are suitable for modelling commands

whose propertles are cbvlous generallsations of the desirable propertles of the simple

moedaeal.

1. Moving from a (character., word. line) boundary to the same kind of
boundary then moving back in the opposite direction to the same kind

of boundary, has no ngl effect.

2. A deletion can be achleved by motion In the appropriatg direction
followed by deletion In the opposite dlrection.

3 Motion has no net effact on the content of a document.

17
Tnese propertles are formaiised by the following theorem. whose prool is cnce maore
left as an exercise for 1he reader.

PLACE THEOREM
F (v place: P{DOC))

lmove o rmove = id{dom(rmove)}) A

rmove o lmove = id{dom{lmove)) A

rdel = ldel o rmove A
ldel = rdel o lmove A

cont.ent o try(lmove) = content a
cont.ent o try(rmove) = content

where rmove = ((move, right) to place)
and Imove = ((move, left) to place)
and lde 1l = ((del, left) to place)
and rdel = ((del, right) to place)

Hint: use the foliowlng lemmas.

DIRECTION LEMMAS
F mirror o mirrcor = id{(DOC)

F right o right = id(DOC-»DOC)

F (¥ n: N) right(move)" = right(move")

18
Correcting Erronecus Deletlons

We wish 1o define an editor 1n which fairly large amounts of tlext can be deieled at
a singie keystroke. Since it Is all 100 gasy to misiakenly nit a xey we include a “‘recall’”
cammangd, which undoes the most recent delete command.

In order t¢ specify the effect of such a command we enrich the DOC mode! further
by defining three funcuons on DOCs wnich are ahalogous to concatenation and
sgguence diftergence. We also define two relations anaiogous 10 sequence pgrefix andg

suftix

Notice that tne difference funcuons are specified impitcilly te by pre- and posi-
conditions) ratner ihan explicitly.

L DOCxDDC — DOC
e DOCx=DOC -+ DOC
AN DOCxDOC - DOC
infixes: DOC <« DOC

cutfixes: DOC «» DOC

x* = (% (1, r), (Ll', r'))(1l * 1', r* * r}

(v d, d': DOC)
(d infixes d') e (3 d@''; DOC | d'*' *x*x d = d')
(d outfixes d') < (F d'': pOC | 4 ** g'' = q°

(v d1, da: DOC | di outfixes di)
dz ** (di // dz2) = da

(v di, dz: DOC | d2 infixes d1)
(d1 \\ dz) ** da = da

Examples.
(<P QO>, <A 2Z>) ** ({0 B>, <>) = ({(F © O B>, <A Z>)
(¢F O, <A Z>) outfixes (¢F © 0O B:, (A 7))
(<0 B>, <>») infixes (<F 0 0 B>, (A Z>)
({F 0 O B>, <A 2>) // (KF 0>, <A 2>} = (<0 B>, ()
({F 0 O B>, €A Z>) \\ ({0 B>, <>) = (<F 0> ,<A Z>)

It Is evident that every deletion maps a documeant 1o one of Its outfixes. and that
consequently the outer-difference Detwgen a DOCument and a deletion applied to it
15 well-defined. Mora formally:

I- (v d: DOC; dir: DIRECTION; n: N | dedom(dix(del)"))
(dir(del)” (d) outfixes d)

1.4: The Basic Documeant Editor

We now deflng a more powerful editor which supports character word and line motion
and deletlon, together with a timited form of recovery from erroneous deletions,

The editor state has twwo components, namely the text being edited and lhe “’last

deletlon’’,
ED
text: DoC
deleted: DOC
Editor commands are. as before, modelled by ED to ED functions -- of which thare

are now three families. namely the FUNCTION commands, the INSERTion comrnands.
and the RECALL command. Notice that neither insertion nor motlon commands atfect
the iast deleted text. This means that a rudimentary form of '‘cut and paste’* can
pe performed by deleting, moving and recalling. A more general form of cut and paste
15 specified in Appendix 2.

FUNCTION: (DIRECTIONxACTIONxSIDExPLACE) — (ED — ED)
INSERT: CH — (ED — ED)
RECALL: ED — ED

(Vv d: DIRECTION; a: ACTION; s: SIDE; p: PLACE; c: CH)

INSERT (c) =
(»ED)
(uED")
text'=ins(c) (text);
deleted'=deleted

FUNCTION(Q, a, 8, p) =
(»ED)
(nED')
text'=try((a.d) to s(p))(text);
a=del=
deleted'=text // text';
a=move=—

deleted'=deleted;

RECALL =
(*ED)
(uED')
text'=text ** deleted;
deleted'=deleted

20

Notatlonal Interlude:

The exprassion

(AED) ...
denotes aractly, the same function as.

(» text: DOC; deleted: DOC) ...

In which the text of the ED schema is substituted tor the accurence of ED The names
af the components of ED are bound within **..°" by the quentilier .

The expression {(gED*') ... list of predicates ...

gdenates an element of ED for which all of the given predicates hold (u is pronounced
"*make—an”). The names of the components of ED', is deleted' and text' are
bound by the guantitier u, just as the names deleted and text were bourd by
the quantiler ». The ’''dashing’’ permis components of the argumenis and resuits
of h—u functions to be distinguished.

Writing down a p-expression 0oas not in itsglf guaranige the existence of an elemeni
with the required properties: this must {in general) be provan independently by showing
that the predicates are mutually consistent. In the abave case this is trivially evident.

(For a mgre comprehensive explanation of thg “'schema’’ netawon and its relation 1o
mathamaiical quantifiers see [Sufringlal.

Properties of the Recall Command

1 Is evident from the above definiton that the RECALL command corrects the effect
af any errongous delstion on the textual component of the state. More farmally:

I- (¥ e: ED; dir: DIRECTION; eide; SIDE; place: PLACE)
(RECAILL{ deletion (e))).text = e.text
where deletion = FUNCTION{dir, del, eide, place)

As pefore we summarise the commands which should bé made avallable to the user.
There are actually iewer usefu/ FUNCTIONs 1than there might seem to be al first sight.
For exampie: the eno of a document can never be found ta the left of the cursor,
the beginning ol a document is never to the right of the cursor and the beglnning
and ending of a character arg identlcal

The function delete left to ending of line and the function delete right
10 beginning of line are neesded so infrequently that they can be omited from
the keyboard and simulated with a couple of other keysirokes when nacessary.

We found In practice that the avallabllity of both the beginning(word) and the
ending{word) functions complicates the keyboard designer's task and gives the lypist
too many ways of performing word-related tasks. The ending(weord) funclions are
best left out.

Our decislon to omit these commands Is racorded In In the following definition aof the
sel ol available commands.

cmd: P(ED — ED)
cmd = ran (INSERT) U ran{FUNCTION) U [RECALL} - excluded

where excluded =
FUNCTION(DIRECTIONxACTIONx{ending}x{word}) U
FUNCTION({right}xACTIONx{beginning}x{document}) u
FUNCTION({left}xACTIONx{ending}x{document}) U
fFUNCTION(left, delete, ending, line)} v
{FUNCTION(right, delete, beginning, line)}

22
Suggestied Keyboard Design (Partlal)

When shited the functlon keys marked CHAR, WORD and LINE should map {0 deletions.
olherwise they should map 10 motlons.

CHAR

(delete)
LINE WORD

(move)

SHIFT

REPLACE

UPF IND
FIND

QWERTY
ASDTF
zTXC

(move)

(delete)

CHAR | WORD | LLINE {RECALL QUOTE

23
1.5 The Complete Document Edlior

The commands defined in the previous saction form the basic repertoire ol the edlior.
In this seclticn we show how they can be used 10 form patierns and replacemant texis
for the searching and subslitution commands.

We begin to specity these commands ty ignoring the problem of how the typist supplies
the pauerns and replacements to the editor. The find functions move the cursor In
the appropriale direction to the nearest place n the document which matches a glven
pattern (if such a match occurs). The replace ifunclions remove the matching text
from a decumeni positioned at an instance of a pallern, and insert 1hae replacement
in its place.

find: (DOCxDIRECTION) — (ED-ED)
replace: (DOCxDOC) -+ (ED—+ED)

find = (A pakttern, dit)
(XED | textedom((move,dir) to match))
(uED')
text'=((move,dir) to match)(text)
deleted'=deleted
where match = { d: DOC | pattern infixes d }

replace = (x pattern, repl)
(XED | pattern infixes text)

(uED')
text' = (text \\ pattern) ** repl
deleted' = pattern

A formal definition in a more traditional style might leave to the implementer the task
of choosing a method for e typist \c supply pattarns for the flnd command and
replacements for the replace command. For a highly interactive program the human
intarface needs to be specified more pracisely, and s0 we specify below (flrst informally.
and then formally) the detalls of a suitable method of constructing pattems and
replacements.

Hitherto evaery character typed has been Inserted inio the current document. In order
to spacify patterns and replacements we need 10 be able t0 type text which dogs not
have an immediate effect on the document. The QUOCTE key signals the start of such
a text ~—— which can be composed using all of the basic editing commands and without
naving any effect on the document ltselt. Tha FIND and REPLACE keys sighal the
compleuon of pattern (replacement) text. and have an appropriate eflect. In the case
of the FINO key the effect is to move the cursor ¢f possible) to the next ifstance
of the pattern in the document. The REPLACE key changes the tfext of a document
which Is aiready positioned at an Instance of the FIND pattern by substltuthg the
replacemeant text ior the FIND pattarn.

24
Thus to change the next instance of FOO to BAZ. one types
QUOTE F O O PIND QUOTE B A 1 REPLACE

Both ths FIND and the REPLACE keys remember their last argument. so thal (for
exampis) t0 replace the next Instance of FOO one simply types:

FIND REPLACE

whareas t0 deiste the next instance one would have tlyped:

FIND QUOTE REPLACE

subsaquent deletions belng performed by

FIND REFLACE

Later we will show lhat these dellnitions do not contradict our strictures about hidden
modes:; one of the properties specified of the complete editor is that QUOTEd text
Is always displayed.

We now render more formally the informal definition glven above, As belore we specify
the effects of these commands as slate t0 state funclions

Edltor staltes are denoled by the set EDITOR. whose main, guoted, and mode
componaents reflect the fact that one Is either editing the main document. or composing
quoted text which will be used either as a pattern or a replacement. The pattern
and replacement components reflect the fact that the FIND and REPLACE keys
remembear their iast argumenits.

EDITOR
main: ED
quoted: ED
pattern: Doc
repl: DOC
mode: {MAINTEXT, QUOTEDTEXT}

The eflect of each key depends on whether one is composing the QUOTEd or the
MAIN text. Each key Is therefore defined in lerms of two partial functions whose domains
correspongd to the two different modes.

In what follows we have omilted predicates of the form (component'=component)
simply in order to make the functlon definitions more compact.

BASIC: c¢md — (EDITOR — EDITOR)
FIND: DIRECTION — (EDITOR — EDITOR)
QUOTE: (EDTTOR — EDITOR)

REPLACE: (EDITOR — EDITOR)

(V c: cmd; dir: DIRECTION)

BASIC(c) =
(AEDITOR | mode = MAINTEXT)
(UEDITOR')
main' = c{main)
®(*EDITOR | mode = QUOTEDTEXT)
(4EDITOR)
guoted' = c(quoted)
QUCTE =
(LEDITOR | mode = MAINTEXT)
(EDITOR')
quoted' = EmptyED;
mode' = QUOCTEDTEXT
B(AEDITOR | mode = QUOTEDTEXT)
(LEDITOR"')
gucted' = EmptyED;
mode' = MAINTEXT

FIND(dir) =
(AEDITOR | mode = MAINTEXT)

(UEDITOR")
main' = (try(find(pattern, dir)))(main)
quoted' = EmptyED

@ (AEDITOR | mode = QUOTEDTEXT)

(UEDITOR")
main' = (try(find(pattern', dir)))(main)
gucted' = EmptyED
pattern' = {{(>, content(qucoted.text))

mode' = MAINTEXT
REPLACE =
(*EDITOR | mode = MAINTEXT)
(2EDITOR ')

main' = (try(replace(pattern, repl)))(main)
guoted’ = EmptyED
B(AEDITOR | mode = QUOTEDTEXT)
(4EDITOR")
main' = (try(replace(pattern, repl')}) (mawn)
gquoted' = EmptyED
repl' = quoted.text
mode’ = MAINTEXT

where EmptyED = (uED)
text = (<{¥,)
deleted = (<>, <(»)

25

26

To help explaln our design decislons we have numbered several of the predicates:

the carresponding anngtations [oliow.

7. &

8.

Any of the basic commands can be used to compose gquoted text. Thelr
effect on the quoted text Is Identical to thelr eflect on the document.

This is actually a suitable place to incorporate ¢ommands which interface
the editor to 1ts environment Although thelr formal definition is beyond
the scope ot this monograph. the commands for leavlng the editar and for
aborting an editor sesslon are typed in our Implementations as:

QUOTE g QUOTE
QUOTE a b o r t QUOTE

An unquoted FIND uses the pattern remembered from the lasi quoted FIND.

A quoted FIND uses the guoted text to form its pattern. FIND will always
position the cursar so that It Is at the beglaning of the lext matching the
pattern This Is more useful In practice than posltioning the cursor at the
eng of the match.

An unguoted REPLACE uses the pauern remembered fram the last quoled
FIND and the replacemeni from the last gquoted REPLACE.

A quoted BEPLACE uses the quoted text t0 form its replacemant. The cursor
posltion relative 10 the replacement lext will be the same as Its posilion
wlthin the gquoted text.

Once more we can summarise the ¢commands which are 10 be made avaitable, observing

thal these inctude all the commands of the basic edilor, to which we have added the

twa FIND commands. the replace command and the QUOTE command:

key: P(EDITOR — EDITOR)

Xey = ran(BASIC) U ran(FIND) U {REPLACE, QUOTE}

27
Sectlon 2. Displaylng Documenis

A Simpla Display Model

E£ditor commands were specified as transformations on the more-or-less
ong-dimenstonai DOC modal. In order to spsacily the way in which documents are
displayed we nesd a model which reflects the fact that most(l) real displays are
two-gimensional and bounded The boundedness of real displays forces us to have
sama sorl of policy for choosing which part of the document to display In our view
the best choice is to display that part of ihe documem which surrounds the currant
position. emphasising the current position on the display by means of some distinclive
symbol (such symbols are usually called cursorsy This pollcy can be likened 1o looking
at the document through a movable window which locates itself so as to keep the
cursor in view It has the advantage that when changing a document the typist always
sees on the display an exacl picture of the region of the document which has most
recently changed. and can quickly discover whether or not the changes are the ones

intended.

We Begin 1o formalise the idea of a two-dimenslonal display by ignorning the fact that
real ones are bounded A LINE 1s a sequence of CHaraclers which doesn’'l contain
the newlne character nl. An unbounded display and the positon of its cursor can
be completely characterised by four Quantities -- the sequence of LINEs above the
cursor, the sequence of LINEs below the cursor. and the sequences af CHaracters
10 the ieft and the right of the cursor (neither of which contain newlina characters).

LINE
seq[CH-{n1}]

DIsP
above,
below: seq[LINE]
left,
right: LINE

28
Exampie

above

left {The cursor is between> <(these two seguences> right

below

29
Relating Unbounded Displays to Documents

Wa formalise the correspondence beiween an unbounded display and a document by
developing a one-to—one relation -- dasplays. First we define the funciion flatten
~- which maps a (honempty) ssquence of lines 10 a sequence of characlers which
has newling characters separating the text of the onginal hnes. {(Nonce that it is
specifled by a postcondition reminiscent of a recursive definition. Theoretical
justification lor the existence of funclions salisfying such postconditions Is glven rmore

fully in [SufrinBlal.

flatten: seql[LINE] — seg[CH]

(Vv 1n: LINE; s: seql[LINE])
flatten(<{1ln>) = 1ln A
fiatten(<1ln> * 3) = 1ln * <(nl) * flatten(s)

Example:
flatten(<{<l1 L. 1 N E>>) = <1 L I N E>
flatten(<<{LL I N E 1» {L I NE 2)>) =L I NE1lnlL1I1NE 2>
An unbounded display corresponds (through the displays relation) to a8 OQCument
unger Lhe foliowing conditions.
1. Flattening the hnes above and 10 the left of the display cursor gives the
sequence of characters to the left pf the doCument cursor. and
2. Flattening the Jines 1o the right and below tre display cursor glves the
sgquence of characlers to the right of the document cursor.

displays: DISP <= DOC

(v diep: DISP; (l,r): DOC)
(disp displays (1,71)) <
(flatten(diap.above * {disp.left>) = 1) A
(flatten(<{disp.right> * disp.below) = r)

For example:

{ ¢(linel}
(line2>
¢lineli> >
(left> <right?>
(<line5>
{line&> >

displaye (<{linelnlline2nlline3nlleft), {rightnllineSnllinet’)

30

It 15 easy to prove that flatten is a bijection. Je that it maps different (nonempiy}
sequences of lines inte differem sequences of characters and vice-versa. An
eashy-proven cansequence of lhis Is that the displays relation is also a bijectian,
ie that every unbounded display corresponds to @ unique DOCument. and vice-versa.
This 1s nardly surprising: our 1nitial ane-dimensional formalisation ot gocumenis would
have been rather implausible It not for gQur intuition that such a one-one
correspondence exlsted. This property will agaln prove useful when we are considering
an implementation of the editor.

FLATTEN LEMMA
-(¥ 81, sa: eeql{LINE])
(flatten(er)=flatten(sz) < B1L=81)

DISPLAY THEOREM

(¥ dy, dz, d: DISP; doci, docz, doc: DCC)

((d1 dieplays doc) A (dz dieplays doc})} < di=d2 a
((d displaye doc1) A (d displays doc2)} <= doci~docaz

(The formal proofs are omilled here since they are of no nirinsic interest),

Displays and Windows

In order to formanse the idea of a window we observe that the conlent of a display
can be mapped anlo an Iirreqular two-dimensional character matrix. and that its cursor
position can be modelied by a pair of numbers Since the DISP model puls the cursor
between charactwars, each line has one mgre cuesor posiion than i1 has charactaers.
and so the ccolumn index of the cursor cgrresponds to the position of the character
o s Jef.

cureor: DISP — (N x N)
matrix: DISP — ((N x N) -+ CH)

curgor = (ADISP)(l+#above, #left)

matrix = (ADISP)
(a, ¢ | re(l..#lines) A ce(l..#(lines(z})))
(lines(r)(<))
where lines = above * {(left * right> * below

Notice Ihat of the Ihree concatsnation operators delining the sequence lines, the
quter two concatenate sequences of LINEs whereas the inn@r one concatenates
sequences of CHaracters

31
A fundamantal properly of the cursor of a display is that it corresponds 10 a character
on the matrix of the display unless it 15 at the left-hand end of a line. Consequentty
displays canno! be consiructed lrom agrbitrary character matrices and cursor positions,

CURSOR LEMMA
' = (v4: DISP; r, ¢: N ((r, ¢)=cursor(d))
f {(r, c)edom{matrix(d)) <> (c#0))

The functions project and region provide the additional tools we need 1o formallse
the idea of a window., Composition with a projection lunclion corresponds to moving
the origin of a2 matrix. Restricting its domain by a region corresponds to Iimiting
its ‘rarea’’

project: (N x R) — ((R x N) — (N x N))
region: (N x N) — P(N x N)

project = (X} r, ¢)(x i, J)(r+i, c+3)
region (x h, w}((1l..h) = (l..w))

0 project({r, ¢)

I region{h, w)

32

For given consiant screen dimensions ¢height and widtn) tne function window maps
a window offset (row and column) nto a function on DISPlays which has the lollowing
propertigs:

1. The character matrix of its result fits into the required dimensions and agrees
exaclly with the {row, column} projaclion of the mainx of ils argument.

2. The cursor positon of its result 15 the same projection ol the cursor position
of 1ts argument

The function Is partial because it is not possible to project the cursor correctly for
ati choces of window offset A correct projection {eaves the cursor either at the leit
hand end ol a windowed line or corresponding 10 some character on the windowed

display matrix

height: N
width: N
window: (N =~ N) — (DISP -+ DISP)

(vr, c: N; d, d4': DISP)

'=window(r, c)(d) «= (matrix(d')=wm A cursor(d')=wc)

where wm (matrix{d)oproject(r, c))lscreenarea
and wC project(r, <) (cursor(d))
and acreeharea = region(height, width)

It is evdent. nowever. that for a given document thare are several possible cholcas
of window offset which do project the cursor correclly, for example:

I~

CUrsgr

33
It 1s easy to derive an expréssion which gives the precise relation betwesn window

origin and correct projection A window whose origin 1s (X ¢) can cofrectly project

a display whose cursor falls within the approprialely projected screen area

WINDOW THEOREM

JI—{VI’, c: N)

dom(window(xr, c)) = { d: DISP | cursor(d)eecreen }
where screen = project(r, c)(region(height, width))

Sectlon 3: Displaying the Edited Document

The Complete Editar State

35

in this seclion we formalis€ the hitherto informalty stated requlrement that the screen

of the display should be @ window onito the {unbounded display corrésponding to the)

document being

edited.

The function display maps the state of the document-editing module to a “virtual”’

display which the display module musl window, Specification of just what should be
displayed is shghtly complhcated by 1he need 10 s€e guoled text whilst il 15 being
prepared and to distinguish 1t from the body of the main document. The msthod we

have suggested here

Is to “"empea’” quoted lext in the display of the main document

-- se@parating it from the document text by {imptementation dependent: sequences which

play the roie of

guotation marks.

guote:

seg[CH]

unguote: seq[CH]

where

display: EDITOR — DISP

digplay = (X EDITOR)(virtual)}

mode=QUOTEDTEXT =
virtual displays document**guotes**guotation

and mode=MAINTEXT =
virtual displays document
and document = main.text
and quotation = guoted.text
and quotes = (guote, unguote)
The state has a component -— editor -- which models the state of editing module.
and components -~ ScCreen. row. and ¢ol -- which model the state of the display

module. The single invariant on the state indicates the desired relationstip between

the two modules.

DISPLAYED
editor
BCreen
TOW:

ITGR
H ED ITOR
: DISP

N

col: N

‘ screen = (window(row, col))(display(editor))

36
Specilying a Windowing Pollcy

The task of the editng module has already been spsacitied {al least In the sense that
we bhavp given formalisations ol the effecls of every key as functions on its siate).
The task of the display module after each keystroke Is to derive a window offset and
the conent of the screen from the editng moogule In such a way as to maintain the
gwen invariant. It is evident from the considerations of the previous seaclion that in
general there will be some irgedem lo choose the window ofiset, and that a poficy
will theretore be necessary

We suggest an ircremental windowing policy which tries to keep the window offset
constant tor as long as It can. When the cursor moves t0 a point where i1 no longar
appears on the windowed partion of the display another gisplacement is selected. The
advanlages ©Of this policy are principally.

1 When inserting material the typist does not get dlstracted by the task of
fincding the cursor after every keystroke. since it behaves ''like pen on
paper.”

2 Most keystrokes resull in relatively small changes to the content of the
screen. and these take place at or near the cursor. This tacilitates
implementanen on siowish dumb terminals.

We formaiise a windowing policy function below by meens of a gpostcondition. Glven
the current window offset, and a new virtual display the policy function must map them
tc an offset which permils the cursor 1o be shown on the screen.

Notice that the postcondition does not uniquely define the policy but glves an overall
requirement for it. At this level of specification we are nol 10O much concerned with
the exat! Cetails of ihe policy. any funclion satistylng the requirements oullined below
will sufice. This freedom will eisewhere allow a proot of correctness of a particular
display strategy 10 be made independently of the Oetails of the windowing policy.

' policy: (N x N) — (DISP — (N = N))

(¥ £, ¢c: N; d: DISP:
r', ¢': N | (¥r’, ¢'} = policy(r, ¢)(d))

d € dom{window(r, ¢)} = (r', c')=(x, ¢) A
d ¢ dom(window(r, ¢})) = d ¢ dom(window(xr', ¢'))

37

We can now summarise the effact of a single keystroke on the siate ol the display

editor.

effect: key — (DISPLAYEDITOR — DISPLAYEDITOR)

effect = (x» K)
(XDISPLAYEDITOR)
(#DISPLAYEDITGR')
editor' = k(editor)
(row', col') = policy(row, col){virtual)
screen' = window(row', col')(virtual)
where virtual = dispiay(editor')

Thne definition ol effect concludes our specification. Proof that this lunction malmains

the editor siale Invariant is extremeiy simple —- once again we leave it as an exercise

for the reader.

38
4: Semmary

The specification given herein is a revised and much-simplitied version aof the one
from which our first implementation was buiit {SufrinB80al. The simplification reflects
our own deeper understanding of the technmiques of formal specification However In
our {reatment of the cul and paste and the aulomatic indentation laciiities [Appendix
2] there seems to be some conflict between real-life useability and simplcity of
specificattan. Both the faciiities are exiremely useful in the compositon of text; their
speciitations, however. remain somewhat inelegant. indeed one can almogst hear the
whine of the machinery!

The fac1 that the proofs of many of the useful properties of the editor are easy enough
to haw been left as exercises reflects 10 some degree the amazing simpiicity of our
document and dispiay models. Discovaring such simple abstractions is a tough task.
however. 1t seems only to come with a lot of experience and a very large waste-papear
Dasket!

Again because ol the simplicity of our models prospects for the design and proof of
implementations are good. in a note to be pubhished iater [Sufrin81b] we have proven
one ciass of implementation strategy correct. We use technigues sumilar to those
describted in [(dones]l to show the coarrectness of our choice of data representation.
and independently developed techniques 1o design cur algorithms,

In this proof we rely heawly on the fact that the abstract display madel developed
in secion 2 1s also a natural basis for the formaiisation of the properties of ““smart”
terminals. The obvious implementation strategy for this kind of display technology 1s
far the editing module 10 give “"hinis”” 10 the display module whenever the display
needs 10 be changed. The hints indicate {where possible} the ircremental changes
to the screen which are necessary 10 maintain the screen—document relatonship;
when this is not sensible (for example afler a CUT or a PASTE or when a search
lakes Ihe current position off the screenm) then the hint should indicate this, and the
display module behave accordingly This strategy seems to give good performance even
on relatively dumb terminals -- the only time gne consciously waits for the screen
to refiect a change «n the document i1s when the display module is forced to “‘pan”
the window (e move it horizontally}. or to “‘tilt'” it more than th& height of the screen.

39

5. Conclusion

As we stlated in our introducton, gur goal was to give a mathematical model which
serves poth 10 communicate cur 1deas aboutl editor design and 10 give an unamoiguous
definition against which the correctness of implementations might be proven.

In other engineering discipiines this sort of thing is a mater of course. Bridge-builders.
architecls. and aeropiane manufacturers ali expect to have lo reascn formally about
thewr artefacts before buiiding them. They alsc have techmiques by which lo express
therr tinal designs unambigugusly. and the craflspeople who transform these

expressions nto reality do so by means sound enough 10 ensure a faithful realisation

Caomputer Scigntists have over the last few years developed the ntellectual tools
necessary (o permit the constructian of large classes of program n just as sound
a fashion Case studies on the scale of this ediror are still few and far between.
hgwaver, and this has caontributad to the reluctance of prachsing programmers to adrmil
the possibility of reasoning farmaily about programs in advance Of their censlruction
or af vernlying implementatians against independently-specified biueprints.

Untl their reluctance 15 overcome the phrase ''Software Enginearing’’ will remain no
more than an empty pece ol rhetonc. We hope that we have made a conirbution
to this goai.

41
Appendix 1. Informal Description of the Editor

The description which {otlows is extracted from a slightly revised version of I1he
documentation ol an implememnation of the editor which has been in use since late
1979. So that our readers may judge for themselves the extent to which the lormalisation
can caplure the behaviour of the implementation we have inciuded the descriptions
of some of the '“cuslom’ f[eawres of the imptementatuon. /@ those not described in
the tormal specifllcation.

The eduor permits the composition. allerauon and examination of dacuments. The
typist communicates with the editor through a keyboard which is equipped with a number
of special funcupn-—keys: the document is shown on a screen an which the typist's
current position is highlighted by means ol a cursor. Once the document bacomes
oo large o be seen an the screen, the editor ensures that the region surrounding
the typist's current position is shown on the screen., for it 15 at or very close to the
current position that all the typtst's action have therr effect

Single—characier Insertion, delation and moton

visible-characler The character is inseried in ihe document at the cursor; the
cursor moves (o the right. the remainder of the current line
Is pushed right 10 make foom.

NEWLINE inserts a new hne In the document at ithe cursar: any text 1o
the right of the cursor becomes part aof the new line.

in avio-indent mode (gvienough spaces are pul at the
beginning of the line 1o place the first character of the new
iine below Lhe first character of the previous line.

LEFT(DELETE Rubs out the character to the left of the cuisor. When the
cursor is at Lhae lefi-hand end of a line this joins the current
hine to the previous one.

RIGHT(DELETE Rubs out the character at the cursor. When the cursor is at
the right-hand end of a llne thls jolns the line to the next
one.

LEFT{MOVE Moves the cursor leltwards one character position in the

document. If the cursor was at the left-hand end of a line.
then it will 'wrap around’ 10 the right-hand end of the previous
IIne.

RIGHT(MOVE Moves the cursor rnghtwards one characier posiion n the
document, if the cursor was at the right-hand end of a line,
then it wiil “wrap around’ 10 the left-hand end of the next line.
Multiple—charactler insertion, deletion and motion

A WOAD begins where a space is followed Dy a character which 1s not a space.

LEFT (MOQVE(WORD Moves the cursor to the beginning of the previous WORD, or
the start of the current line If that is nearer.

RIGHT(MOVE (WORD Moves the cursor to the beginmng of the next WORDor the
end of the current line it that (s nearer.

L2
LEFT(MQVE (LINE

RIGHT(MCVE(LINE

LEFT(DELETE(WORD

RIGHT(DELETE (WQRD

LEFT(DELETE(LINE

RIGHT(DE. ETE(LINE

TAB

MARK

cuT

PASTE

RECALL

MARGIN

NEXTPAGE
PREVPAGE

QUQTE

Moves the cursor to the beginning of 1the line. or the beginning
of the previous line it 11 15 aiready at the beginning ol a line.

Moves the cursor w0 the end of the line. or the end of the
next e if it is already al the end of a iine

Deletes text between the cursor and the place 1o which
LEFT (MOVE(WORD would move

Celetes tex1 belween 1he cursor and the place to which
AIGHT (MOVE(WORD would move.

Deletes 1ext between the cursor and the place 10 which
LEFT(MOVE(LINE wauid move

Deletes text between the cursor and the place o which
RIGHT(MOVE(LINE would move.

Inserts enough spaces in the line to put the cursor ai the next
:ab position -- these are at eight column intervals,

Miscellanegus useful commands
Place the mark at the cursor.

Cut the text between the cursor and
the mark out of the document.

Insert the mosi-recertly CUT text inta the document at the
cursor.

Inserts the text deieted by the last word—deiele, line-delste.
or REPLACE back ntd the documenti

Sets the right margin at the current column. When the right
margin is set a1 a column other vhan the leftmost column. then
whenever a character is typed 10 the right of the margin,
the “'word’ " of which it 1s a part will aulomalically be moved
1o the beginning of the next line.

Display the next screenful of the document
Display the previous screenful of the aocument

Moving to specilled places in the docurment

Inserts a new (empty) ling at the cursor positign: text

ta the right-ot the cursor appears below this line. The typist
may now use any ol the keys so lar described to compose
a quofglion -- so called because the keys typed dunng its
compasition do not have an immediate effect on the dacument
The quotation is compieled by typing one O©f the foilowing keys:
FIND, UPFIND, REPLACE, QUOTE. Iis effect on the document
depends on exactly which of these s used

43
it the quotawon 15 completed by typing the FIND key. then
the cursor 1s placed at the next place in the document which
maiwches it. the UPFIND key moves UP the document to find
the text. if there is po such place in the document then the
Gursor stays in the same place. and the bell rings. The quoted
text be retained $o there i3 no need to relype it in order 1o
FIND the same text more than once.

If the quotation is completed by typing the REPLACE key. and
the current FIND text matches the document at the cursor then
it will be replaced by the quoted iext. The quoted text will
be retained 3o that there is no need to relype it in order o
REPLACE witn samme text maore than once.

It the quotaticn is completed by typing the QUOTE key., then
the une is inerpreted as a special command. and performed
immediately

Special commands are:

top
b{ottom
q{uit

wirile

INAME

oNAME

mk

itndent
nipindent

abort

wd (fing

lit(tind

Maove the cursor to the 1op of the documen.

Move the cursor to the end of ithe document.

Leave the editor normally,

Write the document to the output file bul do nol leave the editor
(i's a good idea 1o periodically w(rite out a documen! which

you are editing).

Copy the document swored in the file called NAME into the
current document below the current line.

Make a new document from lines between the marked line and
the current line. Store this document in the lle called NAME.

Place the mark at the cursor, then move the cursor to the
place which was formerly marked.

Setl auto-indeni mode.
Clear autg-indent made.

Leave the editar, abandoning any work done this ediling
5e55i0n

Changes (0 word match mode (qv).

Changes lo Jitera! maich mode (qv}.

Ly

FIND
UPFIND

REPLACE

Finds the last FIND text (downwards)
Finds the last FIND text {upwards).

It the text at ihe cudrsor maiches e FIND text, then the text
which was ‘found’ is replaced by the last REPLACE fexl.

Matchtng Criteria

In titergl match mode. a FIND succeeds where the text al
tha cursor exactly matches the characters ol the FIND text
In word match mode and when the FIND text consisls entirely
of letters or dlgits. a FIND succeeds only where tha taxt at
the cursor matches 1he FIND 1text and the characters
immediately preceding and fiollowing the match are neither
letters nor digils.

L]
Appendtx 2: Some Additional Featuraes

In order to slmplify the descriplion glven In this monagraph a number of commands
present In our Implementation were omitted. It is beyond the scope ol this monoagraph
to specify some of these, amongslL which are the Inpul (Qutput) of selected porllons
of the document from (g} the [liling sSystem and the aulomatic ‘'filling"”" and/sor
Justification ot portlons of the document.

Two other important omissions are lormalised below:

Cul and Paste

This permils the typist ta mark-up and move around pieces of text which exiend over
more than a single ling. The output of selected partions of the document to the flling
system is an obvious generalisation of the facility deflned here.

Cut and paste can be added most conveniently to the speciflcation of the basic edltar.
Extend the state defined there with an additional component which maodels the text
removed by the last “cut”

ED
text: Doc
deleted: DOC
hold: DocC

Three additional keys ara provided. The MARK key places a special mark at the cursor.
removing any other mark present in the document. The CUT key removes the text
botween Lhe current cursor position and the mark from the document and places it
in the hold buffer. The PASTE key inserts the content of this buffer into the document
at the cursor.

46

mk : CH
MARK: ED — ED
CUT: ED — ED

PASTE: ED — ED

MARK = (» ED)
(£ ED")
text' = removemark(text) ** mark;
deleted' = deleted;
hold' = hold

COT = (x ED)

(x ED")
text' = removemark(cut(text))
deleted’ = deleted;
hold' = removemarkX(text // text')

where cut =
try{ ((del, right) to marked) @
((del, left) to marked))

and marked = {d: DOC { mark infixes d}
and mark = (<{mk», <>)

PASTE = (A ED)
(¢ ED')
text' = text *= hold
deleted' = deleted
hold' = hold

where removemark = (2 1, r: seg[CH})(rmk(1l), rmk(r))
and rmk = (g f: segq{CH] — seq[CH])
f(¢») = &
(¥ 1: seg(CH]; c¢c: CH | c#*mk)
(L * {¢c>) = £{1) * <(c>
f(L * <mk>) = £(1)

In grder lor the effecy of CUT 10 be easily predictanle. i is evident thal the domains
ol the rightward- and |eftwarg- deleting funcuens from which cut is construgted should
be disjoim -- this is true only for DOCuments which have al mosl one mk present.
This can be ensured for all documenis by defining the available commands so0 that
Ihe MARK key is the only one which inserts the mk character.

cmd: P(ED — EIN

cmd = ran(INSERT\{mk}} U ran(FUNCTION) - excluded vy
{MARK, CUT, PASTE, RECALL]}

where excluded = ... as dehned in section 1.4 ...

The gistance from the beginning of the line ot the first “‘genuine’ word boundary on
the current Ilne is called the ‘““margin’’. When autpmatic indentation Is enabled.
pressing the NEWLINE key inserls a newiine character followed by enough spaces to
make the margin the same as on the previous line. This vastly simplifies the lask
of entering Indented text

margiln: DOC — N
margin = {k d)(col(d) - wordl{d}}

where col = (A d)(min0 (n: ¥ | left(move)" € line})

and wordl = max0({ n: N | left(move)” ¢ (word-line) a
n € col(dy})

and minG = min 8 { {} — 0 }

and max0 = max @ ({} > 0 }

NEWLINE: DOC — DOCC
NEWLINE = () d) spaces(ins{nl)(d))

where spaces = ins(sp)m¥9™?

Uniess otharwise specified we have used standard mathematical notatlon throughout
this cocument, placing ourselves firmly in the framework of modern Sel Theory. A
more complete definition of the notation, together with the rules of interence of our
logic is given in [Sufringlal.

The set of total funchuons betwean two sels —- X and Y -—— is wriften:
X-Y
and is a subset of the sel of parilal tunctlons. which Is written:
XY
This in turp i5 a subsel of lhe set of relations, which is writtan:
XeaY
The sel of relations Is modeiled by the set of all subsets of the cross-product:
AxY

in Olher words:
(X «> ¥Y) = P(X = ¥)

The expression P(X) denotes \he powsrset of a given set. X. ie the set of all its
subsets; F(X) denotes the set of all finite subsets of X; N denotes the set of natural
numbers. 0. 1. 2. The domgin of a relation f(or function. r s wrillten dom(r)
and its range Is written ran(r}). The (dentity function an X is written id(X) .

Generic Definitions

In our notatien. deflnitions and speciflcations may be given generically. This is a
common practce in mathematics which has not yét been hongured with a conventional
notation. but which can usually be recognised In mathematical documents by rhetorlc

of the form “let X and Y denote arbitrary sets.. ' and in cur notalion by the form:

X, X

Useful Combinators

For the sake of brevity and simplicily we glve purely axiomauc speclficatens for
functional arguments of the combinators we have used: in fact these are just special
cases of thair definition s for relations. Construclive detinitions for relaugnal combinators
wnich sausfy the aworms are given elsewhere (Abr@l80i. (SufrinBlal.

50
Functions (and raelations) are Introduced by a §lgrature which glvas thelr mathematical
lype followed by axioms which give thewr properiies. For exampla, composition (of parilal

functions.

X, ¥, Z

p: (Y = Z)x(X -+ YY) — (X —=12)

(V g: ¥Y=2Z; f: X-Y)
(V x: X | xedom(f; A f(x)edom(g))
(£ o g)(x) = £(g(x))

A reasonable syntactic rule of thumb is that functions and relations with alphanumeric
names wll be used as prefixes: those wilh underlined alphanumeric namaes and those
whose names are otherwise formed will be used as infixes. The defining axlom usually
5815 1hg lone,

When the exaclt generic lype of a functon or relation cannol be determined from the
types of its arguments this may be given in the foliowing manner:

foo o[P,Q,R] baz

in which the function foo is composed wilh the function baz by the composition
operator of functionallty:

(Q—R x P+D) — PR
In fact e need for this hardly ever arises, and we usyally omil all actual generic

parameters ([P,Q,K] above) whep wrling lhe names of functiona.

The domain restricuon operator maps a tunction, f and a subset $ ol elements to
a funclion which agrees with f on the sel S and is elsewhere undelined.
X, ¥

P: ((X = YY) x P{X)) — (X = ¥)

(W £: X+Y; S: P(X))
dom(fFS) = dom(f) P S
(v x: X | xedam(£r8)) (fPFS)(x) = f(x)

51
The functional averriding operator maps a palr of functions 10 one which agrees with
the first evarywhere excepl on the domain of the second.
X, x

B: (XY)x(X=Y) — (X-0Y)

(V £, g: X+=Y¥; x: X)

xedom({g) = (EBg)(x) = g(x)
xgdom(g) A xedom(f) = (E®g)(x) = E(x)
xfdom{g) A xgdom(f) = xfdom(£8g)

A function may be mapped to one whose domain lacks a certain set ol elements by
lhe domain contracluion operator.
X, Y

N (X = ¥)xP{X)) — (X = X)

No= (M f: XwY; S: P(X)) (£0(X-5))

The above is an example ot definition by k-abstraction. The 1ull canonical form
demands the specification of the types of the bound variables bul an acceptabte
abbreviation is

No= (x £, S)(EP(X-5))

which, in the context of lhe function's signalure. conveys as much information.

Finlte Mappings

Functlons with flnite domains may be defined by giving all the argument-resull pairs:
for example the function below s of type: N-»N

{f 1L +— 0; 04— 11

and maps 1 to 0 and 0 1o 1.

52
Iterauon g a Function

A homeggeneous function (e from X to X) may be mapped by fteration ino a {unction
of the same type The iteranon operator is specified below in a style reminiscent
ol a recursive definition.

X

(X e X)) x W) — (X e X))

(v £: X-»X; n: N)
f~0 = 1d(X)
f~{n+l) = £ o (f-~n}

thus
fr2 = fo(f*l) = fofo(f+0) = fafoid = fof

We use this operalor so often that we have a special syntactc sugar for it — namegly

superscrplion:

fENPTESSION _ faewpression

Allhough this definition is grafogous 10 ileraion 1n a programming language it is notl
the same thing since the domain of an iterated funciion may be rather restricted. For
example

dom(pred® 3 = (n: N | n»5 }

bacause pred 1s defined on 1he natural numbers only.

Image of a Sel through a Function

The image of a set of elemenis 5 through a function f is defined by:

f(5) ={y: Y1 (3 x: X | xeS5 Ay =F(x)) }

It is the ser of all those elements in Y 10 which f maps an element of S.

The saquences of elements of X ara defined generically as a subsel of the partial
functions from the mawra! numbers 10 X. Their domains are finite segments of the

natural numbers startng at 1

geqg: P(N -» X)

gseq = { £: N-++X | dom(f)eF(N) A dom(f)=1..card(dom(f)) }

Sequences occur so frequently in speciications that we have & notation constructing
them explicitly: the sequences

{ 1l—a; 2vb; 3vrc } { 1—F00 }
can bes writen (a b c> and <(F0O>; the emply sequence is written: {>. The set

of nonempty sequences 5!
segl[X] = seq[X] - ({2}

The most important functions on sequences arg specified below. The length function,
(#) and the eleamentary constructor {cons) are dehned construclively.
X

LI seq[X] — N
cons: X » Beg[X] — sBeqg[X}

$# = (h s)(card(dom(s))

cons = (A X, 8)((2 o suc) & { li=x })

The function card maps a finite set inlo the number of elements it has. thus the
length of a seguence is the number aof elements n ils demain. The sequence
constructor “‘pushes’”” an element onto the front of a sequence. An example will clarity
matters

¢ cons {a b) =

({ l—a; 2v»b] o suc) B { l—c | =
({ 2v»a; 3=b })) 6 { lisc } =
{ 1l—¢; 2va; 3r»c] =

{c a b>

54
The remalning sequance funclions can be detined In terms of the basic constructor
by axioms reminiscent of recursive delinitions.

X
X seq(X] = seg(X] — seqlX]
reverse: seg(X] — seg[X]
head: seqg[X] -+ seq[X]
tail: seg{X] - seqg[X]
first: geq[X] - X

last: seq(X} » X

(¥ s, s1, s2: seq[X); x: X}
<> * g =8
(x cons 81) * 82 = x cons (81 * s21)

reverse((>) = ()
reverse(x cons 8) = reverse(s) * (x)

dom(firat) = dom(tail) = segl[X])
first(x cons 8) = x
tail(x cons 8) = 8

dom({head) = dom(last) = segl[X]
last(s * {x>) = x
head(s * {(x») =8

References

[Abrial 807
Jean-Raymaond Abrial
The Specification tanguage Z: Basic Library
Specihcation Graup Working Paper
Programming Research Group
Oxford. 1980

[Jones]
CB. Jones
Software Development. a Rigorous Approach
Frentice-Hall International Series wn Computer Science
(Sertes Editor C.A.R. Hoare)
Prentice-Hall Inlernationat, 1980.

[Sufrin B0a)
Bernard Swuirin
Speciticgtlon of & Display Editor
Specification Group Workirg Paper
Programming Research Group
Oxford. 1980

1Sufrin B1al
Bernard Sufrin
Reading Formai Spacifications
Technical Monograph PRG-24
Programming Research Groug
Oxford, 1981

[Sufrin 81b]
Bernard Sufrin
Correctness of a Dispiay Editor implementation
Specication Group Warking Paper
Programming Research Group
Oxford. (forthcoming?

55

PAOGRAMMING RESEARCH GROUP TECHMNICAL MONOGRAPHS
JUNE 1981

This Is a series of technical monographs on toplcs In the fleld of computation.
Coples may be gblained from ithe Programming Research Group, (Technicat
Monographs), 45 Banbury Road. Oxford, OX2 6PE. England.

PRG-1 (out of print}
PRG-2 Dana Scott
Outline of 8 Mathematical Theory of Computation
PRAG-3 Dana Scott
The Lattice of Fiow Dlagrams
PRG—4 (cancelled}
PRG-5 Dana Scott
Data Types as Lattices
PRG-6 Dana Scott and Christopher Strachey
Toward a Mathematical Semantics for Computer Languages
PRAG-7 Dana Scotut
Cantinuous Lattices
PRAG-8 Joseph Stoy and Christopher Strachey
Q86 - an Experimental Operating System for & Small Computer
PRG-9 Chrisiopher Strachey and Joseph Stoy
The Text of OSPub
PRAG-10 Chrisiopher Sirachey
The Varleties of Programming Language
PRAG-11 Christopher Strachey and Christopher P. Wadsworth
Cantinuetions: A Mathematical Semantics for Handling Fufl Jumps
PRG-12 Peter Mosses

The Mathematical Semantics of Algol §0

PRG-13 Robert Miine
The Formal Semantics of Computer Languages
and their Implementations
PRG-14 Shan 5. Kuo., Michael H. Linck and Sohrab Saadat
A Guide to Communicating Sequentlal Processes
PRG-15 Joseph Stoy
The Cangruanca of Two Programming Language Definitions

PRG-16 C. A. R. Hoare, 5. D. Brookes and A. W. Roscae
A Theory of Communicating Sequantial Processes

PRG-17 Andrew P. Black
Raeport on the Programming Notation 3R

PAG-18 Elizabeth Fielding
The Specitication of Abstract Mapplngs
and thalr implementation as BY-irees

PRG-19 Dana Scott

Leclures on a Mathematical Theory o! Computation
PRG-20 Zhou Chago Chen and C. A. R. Hoare

Partial Correctness of Communlcating Procssses and Protocols
PRG-21 Bernard Sulrin

Formal Specitication of a Displey Editor

PRG-22 C. A. R. Hoare
A Model for Communlcating Sequential Processes

PRG-23 C. A. R. Hoare
A Calculus of Total Correctness for Communicating Procasses

PRG-24 Bernard Sufrin
Reading Formal! Speciticetions

