
Oxford University
Computing Laboratory
Progmmming Research Group-Ubrary
8-11 Keble Road
Oxfond OX1 3QD
Oxford (0865) 54141

FORMAL SPECIFICATION

OF ,4

DISPLAY ED nOR

BERNARD SUFRIN

Technical Monograph PRG-21
June 1981

Oxford University Computing Laboratory
Programming Research Group
45 Banbury Road
Oxford DX2 6PE

Abstracl

We present a lormallsation 01 the design of a Display Editor The formalisatioh IS
rigorous enough to serve as a touchstone tor the correctness or Implementations 01
the editor and to permiL various desirable properties of the design to be proven.

The formalisation IS expressed In (Slightly embellished) conventional mathematical
notation. the specialised leatures or which are explained in !he text.

In a companion paper [Sufrln 8lb) we give criteria by which the correctness of
implemeniat10ns may be JUdged. and demonstrate hOw an Implementation can be
de\lelopeo rrom the specification and shown to satisfy the correctness criteria

~ 1981 by Bernard Sufrin

Oxford Uni\lersity Computing Laboratory
Programming Research Group
45 Banbu ry Road
Oxford QX2 6PE

o	 Introduction 1

SpecIfication Structure 2

Design Principles 3

Specification Style 3

Ediling Documents

1.1 A SImple Ea itor Model	 5

1.2 A Simple Ea itor	 9

1.3	 Enriching the Simple Model 12

Defimng Significant Places 12

Molion and Delelion 10 Significant Places 15

Correcting Erroneous Deletions 18

1.4	 The Basic Document Editor 19

Notational Interlude 20

Properlles of the Recall Command 20

Designing lhe Keyboard 21

1,5 The	 Complete Document Edilor 23

2 DisplaYing Documents
A Simple	 Display Model 27

Relating Unbounded Displays to Documents	 29

Displays ana Windows	 30

3 Displaying the Edited Document

The Complete Editor State 35

Specifying a Windowing POlicy 36

4 Summary	 38

5 Conclusion	 39

Appendices

Intormal Description of the Editor	 41

2 Additional Features 45

Cut and Paste 45

Automatic Indentallon 47

3 -- summary of Notation 49

Generic Defi n ltions 49

Useful Combinators 49

Flmte Mappings 51

Iteration 01 a FunctIOn 52

Image 01 a Set through a Function 52

Sequences 53

References	 55

Acknowledgements

I am deeply mdebted to Jean-Raymond Abnal 'or introducing me to the art of
speCillccH'on. and for reawakening my interest in mathematics after it had been
dormant lor many years. Thanks also to Tony Hoare and Ib Sorensen lor many fruilfUI
disCussions. to John Hughes for discovering a serious flaw in an earlier formalisatIon.
and to Geralnt Jones and Tim Clement for critically reading parts oj the manuscript.
II was the chaffenge of trying to lormaflse Richard Somal's 10\iely but complicated
screen-editor -- OED -- which began this enterprise.

The wor~ (s part of a programme of research into Software Engineering Methods
supporteo by the United Kingdom Science and Engmeering Research Council under
grant GRAIA/43124.

INTRODUCTION

In this monograph we present the formal specification of a display editor whiCh has

been in use at the Programming Research Group since December 1979 and Is

inlorma!ly described in Appendix 1.

Our goal IS to give a mathematical model which can serve both to communicate our

Ideas about edltor design and 10 act as a touchslone tor correctness of

implementations. The design herein offers a reasonably comfortable human interface

coupled with the possibility of implementation on tairly cheap hardware We hope that

our lormallsatlon Inspires other implementations When the time comes to discuss

a standard for editors then techniques such as those used here may pro~jde an

appropriate framework for concise and unambiguous definition.

The purpose of a formal system specification IS to capture precisely and Obviously

the requirements of the system designer and his client -- independently of whether

the structures and functions embooied In it are Immeoiately Impiementable. In practice

a formal specification will be used both In reasoning about properties of the system

being specified and as a means of communication between designer. Implementer.

and users It should be an adequate basIs both for judgements about the correctness

of Implementations of the system to be made, and for conclusions about system

behaviour to be drawn independentiy at (ano preterably In advance of) implementation

The goal ot faCilitating reasoning is not really compatible with Ihe Idea that the

specification should itself be executable. Although it is very tempting when making

constructive speCifications (0 consider them Simply as "very high-level programs" such

temptation shOuld be resisted -- lhe purpose of the speCification is to express

relationships (between system components) rather than the algorithms which maintain

them. The design 01 algorithms has ItS place further along in the system development

process. an "algOrithmic" cast of mind at the specification stage can make the task

of formalisation much more dillicult. To summarise: neither the 'realism" Of the data

abstractions empioyed nor its "runability" should be a maller of undue concern during

the formalisation Of a specification.

For this reason we feel free to define functions implicitly -- that Is by giving pre­

and posl- conditions -- rather than explicitly -- by lambda-abstracllon. The effect

IS 10 Clarity our expianation and facilitate reasoning (albeit at the risk of speCifying

something which IS not a function) The following el(ample may help to clarify the

difference one can define subtraction either Implicitly by:

W-N---.-.N

(V nl, n2: N I nl) n2) «nl - n2) + n2 '" nl)

2

or explicitly by:

-:NxN-++N

1- '" ().. nl, n2 I nl) n2) (pred"2 (nI)) where pred - suc-

In the first case we have speCified the relationship we wish to hold between the

arguments and results of -. In the second we have conslructed a function which

can be proved 10 satisfy that relationship. II Is olten easier to do the lormer than

It Is to do Ihe latter; Indeed II Is someHmes a simpler way 01 Illdicatlng Ihe constraints

within w~lch some freedom 01 chOice may be exercised by lin impiemeniation.

Tho Structure of thIs Specification

Our specIIicalion is In three main sections: flrSl we presenl the speclflcallon 01 a

documen~ editing subsystem; nSlit. we specify a dOcument display subsystem; finally

we give the desired relationship between these two independently specified components.

The stru,ture Itself signifies a major design decision. It is all too allen the case that

software designs reflect too closely the precise characteristics of hardware on which

they will Initially be implemented. We believe that this adversely ef1ects (he designer's

ability 10 come up with a really simple and effectIve human Interface -- not to mention

a simple explanation of his or her design. A display editOr should n01 be designed

simply or even mainly around what appears on the display; the lemptatlon to adapt

the design to speCific properties Of the display devIce are then too greal.

In our design. therefore. editor commands are explained SOlely as transformations on

documenls; the role of the display subsystem can be summarISed as keeping that part

of the document which ~urrounds the cursor In view whilst minimisIng rna/or screen

change.s. We believe (with some empirical Justification) that thiS makes It possible to

Implement the design on a wide variety of display deVices.

An important design principle Is reflected In the lact that we have not clunered our

dellnltion with hosts Of "features". Although we are Quite happy fOr Implementers

10 customise our specification to their own taste. we think that the temptation to

encumber an edHor with all the generality of a general-purpose string-processing

language should be resisled. The payoff In this case Is that the prose description

of the editor IS a mere lour pages long and most of the editing tasks one ever needs

to do can be done once these pages are understood

Another Important principle IS that the editor has no hidden mOdes! The Interpretation

of every key Is fixed. rather than depending on some non-manifest aspect 01 the history

Of the edit session so far The effect 01 this is thai prediction ot the effect of a keystroke

is Simplified. and that many common editing actions eventually become reflexes rather

than complicated keystroke sequences which must be consciously considered The

effect of this Is 10 enable the typist to concentrate on the composition 0/ the document

rather than the compleXities of the editor interface.

Specification Style

A definition in denotational style would involve the Invention of an abstract srntax of

editor commands. the definition 01 a model for the editor states. and the definition

of a semantic funcr/on to map commands Into the state transforming functions which

define their effects. The extremely simple structure of the editor command "language"

does nO! warrant the Invention of an abstract syntax, however. and we have chosen

Ins lead to stay In the world of semantics -- defining a state model and some state

transformations.

It shOuld be understooa that most 01 the "commands" ot the editor are Intended to

be Invoked by single keystro/J;es. A "syntal<" for commands is simply a picture of a

keyboard; the corresponding semantIc function just connects each key on the keyboard

to one 01 the state to state functions.

Rather than conlronting the reader with a great deal 01 detail all at onca Vle have

chosen to present the specification of the editing SUbsystem in stages. At each stage

we present a mathematical model powerful enough to caplUre the design dllclslons

we Wish to Illustrate.

5

Section 1: Edlttng Documents

1.1: A Simple Edhor Model

The first editor to be speCified has commands which permit insertion. deletion. and

motion of Just one character at a time. Every command takes effect at. and may change

the position ot. the current position In the document -- which lor historical reasons

will be called the cursor.

The essential CharacteristiCs of the state of such an editor are the content at the

dOCument being edited. and the posit/on of the cursor In the document. We consider

the cursor to De between characters rather than at a character. so these two

characteristics can be captured by a pair of sequences of characters -- henceforth

called a DOC. One sequence corresponds to thaI part of the document which preceeds

the cursor. the other to thai which tollows the cursor. The set of characters which

may appear in documents will henceforth be denoted CH.

DOC _

I eeq[CH] " eeq[CH]

The following are the primitive DOC-transforming functions whiCh will be used to specify

the effects of edItor commands.

del,
move: DOC DOC
ins: CH ~ (DOC -. DOC)
content:

move :: ('

DOC -. l3eq[CH)

1, I I I ., 0) (head(l), (last(l» • I)

del = (' 1, I I I ., 0) (head(l), I)

Ina = (' ch)
01, I) (I t (ch>, r)

content = OL I) (I t I)

The functions head and last are partlal -- their domains being the non-null

sequences (head maps a sequence to the sequence consisting of all but Its last

element). It is eVident from their definitions that move and del are also partial.

and we record this fact in their signatures Their exact domains are also recorded

as part of the A-expressions whIch define them:

6

Examples

(C U R R E N T), (sp P 0 SIT ION»)

move

(CURREN), (T sp P 0 SIT ION»

del

(CURRE), (T sp P 0 SIT ION»

del

(CURR), <T sp P 0 SIT ION»

Inaert(y)

(CURRY), <T sp PO S r T ION»

The functions so far defined are not suHicient to give Ihe semantics for even the

simplest editor since there Is nothing corresponding to rightward motion. Rather than

remedy tnls ad-hoc. we introduce a method for defining direction. which we 10'1111 use

throughout Ihe monograph

mirror: DOC

mirror'" p.

~

L

DOC

r)(reveree(r), reveree(l))

Example mirror applied 10:

«P o 0>, (B A Z»)
gIves:

(Z A B), <0 0 P»
following this by a move we get:

«Z A), (B 0 0 F»
then by another mirror we get:

«F o 0 B), (A Z»)
in other words a rightward move!

7
It IS easy to see that rightward delete and rightward Insert can be defined similarly.

We therefore define the following "dIrectional" combinators.

'tight,
left: (DOC......DOC) _ (DOC......OOC)

right (~ f)(mirror 0 f 0 ffilrror)

left (' f)(t)

The runctlon right maps any DOC function 10 Its "rightward" counterpart whllsl left

IS simply a mnemonic renaming of the Identity on DOC to DOC funcllons. We can

now de/lne the semantics of a family of simple editOrs whose commands correspond

to the functions,

left(move) left(del) left(ine(c» (for all c:CH)
right(rnovel right(del) right(ins(c» (for all c:CH)

and	 have the following desirable properties'

1.	 An insartion followed by a deletion has no net eUeel on the document.

2.	 A move in one direction followed by a move In the oPPosite dLrectlon

has no net effect.

3	 A deletion in one direction can be achieved by a move In that dlrectlon

followed by a delete in the opposite direction.

4.	 Motion has no net effect on the Content of a document.

Proving the theOrems which formalise these properties is relatively easy and is lelt

as an exercise tor the reader.

DOC	 PROPERTIES
t- (V c: CH)

(left(del) 0 left(ine(c) .. id(DOC) f\

rlght(del) 0 right(ins(c» - id(DOC)

t- left(move) 0 rlght(move) - ld(dom(right(move)) f\

r ight(move) 0 left(move) = id(dom(left(move)))

I- left(del) 0 right(move) = right(del) f\

right(del) 0 left(move) = left(del)

t- content 0 left(move) = content ,.,
content 0 right(move) = content

8

Hint. us& the fOllowing generic properties of sequences:

x
SEQ PROPERTIES

I- (V 5, 51, 62: seq[X]; x; X)
head(B)~tail(reverse(5))

reverse(reverae(e)) = B
reverse(el ll: 52) .. reveree(e2) * reverae(S1)
head(s * (x») - 5

last(s * (x») '"' x

Quantifying over "' Actions" and • 'Directions t •

When gl~lng the semantics 01 editors we will often define hlgher-oraer functions whose

arguments and results are Yarlables quantified oyer ths functions which we haye just

defined, For this reason we give names to two classes of function,

The ACt' IONs are a subset of the DOCument-transforming functions. and Ihe

DIRECTIONs are a subset of the (higher order) functions on Ihe

DOCum&~I-lransformlng functions.

ACTION: p(DCe_DOC)

DIRECTION PC (DOC_DOC) -+ (DOC-++>DOC))

ACTION ~ {del, move}

DIRECTION {left, right}
z

9

1.2: A Simple Editor

The DOC model and the funcllons thereon say a great deal 01 what needs to be said

of any simple edl10r. In order 10 de/lne the interface to one particular editor with

greater precision we neea to present a more detailed speclllcation 01 the available

commands.

As an example 01 our general approaCh we present here a simple editor. The effect

of each of Its commands will be mOClelled by a stale-lo-state 1unctlon. Editor stales

-- henceforth denoted ED -- are modelled here by a single DOC.

ED
I DOC

We lace a small pro Diem In using the JunChons defined aOave to speCify the effect

01 commands on ediior stales: despite the fact that we wish the effect of every command

\0 be completely defined. Ihe functions on DOC ars not all total. For example.

right(move) IS only defined for a DOC which has leld. fOllowing the cursor; despite

this we Wish to specify the effect of an attempt to move the Cursor rlghtwards beyond

the end 01 the document as "no Change to the contenl of the document nor the Dosltlon

01 the cursor."

We can resolve the problem by dellning a very general comDinator. try. which maps

a partial lunction. f. into a total function which agrees WIth f on its domain (a subset

01 the generic set Xl and elsewhere agrees with the Identity function on x.
X

I	 try, (X-X) - (X-X)

try' (, f)(ld(X) if)

This genenc form 01 definition -- signilied by the X above the double bar -- denotes

a schema which can De Inslantlated lor any scrual set. Thus lor a set Y

trY(Yl denotes a lunctlon 01 type (Y_Y)-+(Y-+Y)

10

Examples:

try[ED] (move) «e n>, <d» - «e n d>. (»)
but:

try(ED] (move) {(e n d>. 0) = «e n d>, <»

11 Is customary to omit the generic argumenr ([ED] above) when Invoking

generically-defined tunClions. since their generic type Is usually evlden\ from context.

In the Simple specilication which appears below. the (slate-Io-state functions WhiCh

model the eHects of) commands come in two families: the FUNCTION commands

(each oj WhlCh is partlculariseCi by a DIRECTION and an A.CTION) and the INSERT

CQmmaMS (partlcularised by a specifiC CHaracter).

INSERT: CH ---+ (ED --+ ED)

FUNCTION: (DIRECTIONKACTION) --<I' (ED --+ ED)

(Va; ACTION; d: DIRECTION; c: CH)
INSERT(c) - ins(c)
FUNCTIONed, a) = try(d(a»

We summarIse the available COmmands by definIng cmd as a subset 01 rhe

ED-translormlng functions. /13 the union of the ranges of the functions INSERT and

FUNCTION. The main aesign aecision recorded here In addition to the properties which

these commands "inherit" from the DOC model is the exclusion of rightward Insertion

from the command repertoire.

cmd: P(ED ---1' ED)

cmd = ran(INSERT) u ran(FUNCTION)

One 01 the tasks 01 Ihe designer of an implementation of this aditor will be to provlae

a mapping from keys on the chosen keyboard to each 01 the crnds speCifIed above.

We know 01 no ergonomic principles to guide the desIgn of such a mapping althOugh

it is clear that the "visible" characters on the keyboard should be mapped to INSERT

commands. and that the four FUNCTION commanas should be mapped to special

"tunCllon keys" if pOSSible.

11

FONCTION(!eft, de!) PUNCTION(right, move)

FONCTJON(left, move) PUNCTION(right, de!)

\ ;;;,+e-o- 8G
Q

q G)C)C}{f)(D

INSERT(Q) ..~ INSERT(R)

INSERT(q) INSERT(r)

Keyboard Design for the Simple Editor

12

1.3: Enriching the Simple Model

Defining Significant Places In Documents

The netl level 01 specification Includes commands which act on larger units -- words.

lines. and the whole document In order to be able \0 specify such commands we

need to enrich our simple model by rormal!slng the Idea 01 word. line and document

boundaries.

We Introduce a (constant> newline character and define the set -- line -- 01

dOCuments whose cursor Is posHioned at the beginning of a line.

I !11: CH

l1ne: P(DOC)

line = { 1, r I 1 ~ <) v last(l) '" nl

Example:

«laatn!). (n ext» £ line

but

(<last>, (nl n ext» t line

The Image 01 this subset 01 the documents through mirror is written:

mirror (line)

(bOld parentheses denote "Image") and is equivalent 10 the set:

{ I, r I r-<) v first(r)=n1)

Example

«1 a s t), <n1 n ext}) € mirror(line)

In Other words. the mirror Image characterises the documents whose cursors are

positiOned at the end of a IIne l

1 J

By Introducing a dl/ferent constant -- space -- we can define the set 01 documents

whose cursor Is positioned at the left hand end of a word. It is con....enlent to have

this set Include the line boundaries.

I "P' CH

sp .. n1

word; P(DOC)

word" { ~, r I 1=0 II last(l)qap, nIl /I.

I-(} II first{r)_{ap, nil} U line

Ellamples:

«p u
«f 1

r
n

p
a

1
1

e sp sp >,
n1), <d r

<p
a f

r
t

o •
>)

e
£

>) E
word

word

but:

«p a i n f u 1 >, <ap p I o b 1 e m» t word

The mirror Image of this set 01 documents Is:

mirlor (word) '"
mirror(line) u
(1, r I !-() II laat(l),t{ap, nl) "

r-O II first(r)€{ap, nil}

Example:

«pa lnf u 1), (spproblem» Emirror(word)

Thus the mirror image 01 word adequately describes the set of documents whose

cursors are at the end of a word

Another significant sel of documents are those whose cursors are at the beginning

of the document. Finally there are those whose cursors are positioned at a character

boundary -- viz the entire set 01 documents!

document: P(DOC)
char acter: P(DOC)

document - (1, r I 1-(> }
char acter = DOC

"

II will be uselul to gle names to the functions mirror and id(CUT) which more

closely reUse! the role they can play in specifYing which "Side" of a word. line or

document Is meant.

beginolng,

end ing: DOC~DOC

beg 1nning mir ror
end ing Id (DOC)

The following sets corre~pond 10 documents wllose cursors are positioned at

Significant" boundaries:

beginning(character endlng(character
beginning(word) ending (word)
beginning(line) ending (line)
beginning(document ending (document

with lhe ob.... lous property that

beglnning(character) = ending (character) ~ character

Since we laler want to quantify oer the "sides" and "places" we define Iha two

sets S IDE and PLACE.

SIDE: P(ED~ED)

PLACE' P(P(DOC»

SlOE {beginning. ending}

PLACE {character. word, line, document)

15

Motion and Deletion to Significant Places

In order 10 specify mOllon or deletion "to the next (previous) we /lrst defIne

functions whiCh map documents Into their distance (Ie number of moves) to the nearest

in a given direCtion II there is such a place. Notice thaI we have no! given an

algorithm which dIscovers lhe distances. simply specified what lhey are.

dlst: (0 IRECTIONxP(DOC» _ (DOC -++ N)

dist =

(A dir, place)
(A doc I distances"" {)) (min (diBtanceB»
where dlstances =

{d:N I d)O A dir(move)d (doc) E place)

Example:

dist(right, ending(word»)«h e r), <sp han d sp is» " 5

bot

«h e r), <sp han d sp is» t dom(dist(right, ending(line»)

Moving or deleting to a gIVen place In a given drrectlOn IS specified simply as an

Lleration 01 lhe action. The effect IS unspecified lor documents In which Ihe place

.s unreachable.

.!=.2.: (ACTIONxDIRECTION) xP(DOC» _ (DOC-++DOC)

to '" (A act ion, dir, place)
(A doc I doc E dom(dist(dH, place»

(du(action)" (doc»
where n "" diet(dir, place)(doc)

Example

(del, rlght) to ending(word)

maps

«h e r>, <sp han d sp is»

10

«h e r) <sp i B»

16

The functions:

(move, left) to character
(move, right) to character
(del, left) to character
(del. right) to character

obviOUSly correspond to left(move) , right(move) , left(del) , and

right (del) of our original model.

The luncllons,

(move, left) to beginning(word)

(del, left) to beginning(word)

(move, left) to beginning(line)

(del, left) to beginning(line)

(move, lett) to beginning(document)

(del, left) to beginning(document)

(move, left) to ending(word)
(del, left) to ending(word)
(move, left) to ending(line)
(del, left) to ending(line)
(move, left) to ending(document)
(del. left) to ending(document)

together with their rightward-acting counterparts are suitable lor modelling commands

whose properties are obvious generalisations of the desirable properties of Ihe simple

model.

1. Moving from a <Character. word. line) boundary to the same kind of

boundary then movIng back In the opposite direction to the same kind

of boundary, has no nel effect.

2. A deletion can be achieved by motion In the appropriate direction

foHowed by deletion In the opposite direction.

3 Motion has no net effect on the content of a document.

17

These properties are formalised by the following theorem. whose proof is Orlce more

left as an eKerclse for the reader.

PLACE THEOREM
r (V place: P(DOC»

Imove 0 rmove ..
r move 0 Imove

id(dom(rmove»
id(dom(lmove»

A
A

rdel.
Idel.

...
""

Ide 1
rdel

0 t:move
0 Imove

A

A

content try(lmove) content A
content try(rmove) content

where rmove .. «move, right) to place)
and Imove = «move, left) ~o place)
and Ide 1 = « del, left) toplace)
and rdel .. «del, right) to place)

Hint: use the following lemmas.

DIRECTION LEMMAS

1- mlrror 0 mlrror = id(DOC)

r right 0 r 19ht = id (DOC_DOC)

r (V n: N) right(move)rl right(move")
.c

18

Correcting Erroneous Deletlons

We wish to defme an editor In which fairly large amounts of text can be deleted at

a single keystroke. Since it Is all 100 easy to mistakenly nil a key we include a "recall"

command. which undoes the most recent delete command.

In order to specify the effect 01 such a command we enrich the DOC model further

by defining three functions on DOCs which are analogous 10 concatenation and

sequence dilterenC6. We also define two relations analogous to sequence prefll(ahO

5ul1ix

Notice lnat the difference functions are speCified implicitly tie by pre- and post­

conditions) ratner than explicitly.

11 'I< : DOCxDOC
_ DOC

II' DOC"DOC -++ DOC

\\' DOC xDOC -+to DOC
infixes: DOC DOC
outf ixes: DOC +--+ DOC

.... = (). (1, r), (1', r'))(l - 1', r' - r)

('d, d', DOC)
(d inf lxes d') 0:=> (3 d": DOC I d' I lr * d = d I)

(d outflxes d'l = (3 d": DOC I d H d" = d')

(V dl, d2: DOC I d2 outfixes dl)
d2 He (dl II d2) .. dl

(V dl, d2: DOC I d2 infixes dl)
(dl \\ (2) He d2 = dl

Examples,

«F 0), <A Z)l He «0 B), 0) = «F 0 0 B). <A Z»
«F 0), <A Z») outfixes «F 0 0 B), <A Z»)
«0 B), 0) infixes «F 0 0 B), <A Z»)
«F 0 0 B), <A Z») II «F 0), <A 2») = «0 B), 0)
«F 0 0 B), <A Z») \\ «0 B), 0) = «F O),<A 2»

It Is evidenl that every deletion maps a C10cumenl 10 one of Its outllxes. and that

consequently the outer-difference Delween a OOCument ahd a deletion applied to il

Is well-defined. More formally:

/- (V d: DOC; dir: DIRECTION; n: N I d€dom(diY(del)"))
(dir(de1)" (d) outfixes d)

19

1.4: The Basic Document Editor

We now define a more powerful editor which supports character word and line mQtlon

and deletion, together with a limited form of reco\lery from erroneous deletions.

The editor state has twO components, namely the text being edited and the "last

deletion".

ED _

text: DOC

I
deleted: DOC

Editor commands are. as belore. modelled by ED to ED functions -- of which there

are now three families. namely the FUNCTION commands. the INSERTion commands.

and the RECALL command. Notice that neither Insertion nor motion commands aUeel

the last deleted text. This means that a rudimentary form of "cut and paste" can

be performed by deleting. mO\llng and recalling. A more general form of cui and paste

IS speCified in Appendix 2.

FUNCTION: (DIRECTIONxACTIONxSIDExPLACE) ~ (ED ~ ED)
INSERT; CH ~ (ED ~ ED)
RECALL: ED ~ ED

(V d: DIRECTION; a; ACTION; a; SIDE; p: PLACE; c: CH)

INSERT(c)
,'ED)

(.uED')
text'=ina(c)(text);
deleted'=deleted

FUNCTION(d, a, a, p) =

,'ED)
(.uED')

text'=try((a,d) to a(p))(text);
a-=del=

deleted'=text II text';
a""move=

deleted'=deleted;

RECALL
"ED)

(.uED')
text'=text ** deleted;
deleted'=deleted

20

Notational Interlude:

The expression

('ED) ...
denOlas exactly. the same funclion as.

(~ text: DOC; deleted: DOC)

In which the text of the ED schema Is substituted tor Ihe occurence of ED The names

of the components o(ED are bound within ." by the Quantifier)..

The 811presslon (.uED') llst of predicates .. _

denotes lin element of ED for which all of the given predicates hold (1J. is pronounced

·'make-an"). The names of the components 01 ED', i8 deleted' and text' are

bound by Ihe quantifier IJ.. Just as the names deleted and text were bound by

the Quantiller X. The "dashing" permits components of the arguments and results

of)...-j./. functions to be distinguished.

Writing down a .u-expresslon does not in itself guaranies Ihe existence of an elemenl

with the required properties; this must (in general) be proven independently by showing

thaI the predicates are mutually consistent. In the above case this is trivially evident,

(For a more comprehensille explanation of the "schema' notation and its rela1ion to

mathematical Quantifiers see ISutrlnBlaD.

Pl'"Opertles of the Recall Command

It is evident from the above definit.'on that the RECALL command corrects the eHect

01 any erroneous deletion on the textual component of the state. More formally:

1- (V e: ED; dir: DIRECTION; aide: SIDE; place: PLACE)

(RECALL(deletion (e))) .text : e.text

vhere deletion"" FUNCTION(dir, del, eide, place)

As before we summarise the commands which should be made available to the user.

There are actually lewer useful FUNCTIONs than there might seem to be at IIrst sight.

For example: the enO of a document can never be found to the left of the cursor,

the beginning 01 a documem is never to the right of the cursor and (he beginning

and ending of a character are Identical

The function delete left to ending 01 line and the function delete right

10 beg lnning or 1 ine are needed so Inlrequently that they can be omltled from

[he keyboard and simulated with a couple of other keystrokes when necessary.

We found In practice that the availability of both the beginning(word) and the

ending(word) functions complicates the keyboard deSigner's task and glveslhe typist

toO many ways of performing word~re'ated tasks. The ending(word) functions are

besl left out.

Our deCision to omit these commands Is recorded In In the fOllowing definition or the

set at available commands.

..cmd: P(ED __ ED)

cmd = ran(INSERT) u ran(FUNCTION) U {RECALL} - excluded

where exe luded c

FUNCTION(DIRECTIONxACTIONx{ending}x{word}) U
FUNCTION({right)"ACTION,,{beginning},,{doeument}) U
FUNCTION({left}xACTIONx{ending}x{document}) U
(FUNCTION(left, delete. ending, line)} U
{FUNCTION(right, delete, beginning, line)}

•
•

2:
11

N N

"
"

-. ·~:!: ' ~~ ii
ja ­

~
 •
•,­

a

~:
=

Q
U

O
TE

U

P
F

IN
D

F
IN

D

R
E

P
IA

C
E

·"- , •
(d

e
le

te
)

a
:
~

3g
<J

>
• ~~

-
~

~

o
·

a
(m

ov
e)

(m

o
v

e)

3
3

a
~

&

~
~

o

.

'
a •
(
)

..•"
I

Q
W

E

R
T

Y

..

..

~
.:x

l
a

"
A

S

D
F

"

:r
0 :x

l
0

<C•
"

X
C

•,

,
a

'Ii

r
• a

z
~

I

S
H

IF
T

I

'" • ,­ 0 0 " 3 • ~ <;
 •a ~
 o' , ~

2)

1.5: The Complete Document Editor

The commands defined in the previOus seclion fOrm the basic repertoire 01 the editor.

In this section we show how they can be used 10 fOrm patterns and replacement tS)(ls

fOr the searching and subsillulion commands.

We begin to specify these commands by ignoring the problem 01 how the typist supplies

the patterns and replacemenlS to the editor. The find functions move the cursor In

!he appropriate direction to the nearest place In the document which matches a given

pallern (if such a match occursl. The replace functions remove the matchIng tS)(1

from a document positioned at an instanca of a paltern, and insert the replacement

In ItS place.

f lnd: (DOCxDlRECTION) ~ (ED~ED)

replace: (DOCxDOC) -+ (ED~ED)

flnd = (). pattern, dir)
().ED I textEdom((move,dir) to match))

(~ED')

text'=((move,dir) to match)(text)
deleted'mdeleted

where match - { d: DOC I pattern lnfixee d }

replace ().	 pattern, repl)
().ED I pattern infixes text)

(~ED')
text' = (text \\ pattern) ** repl
deleted' = pattern

A lormal delinltion in a more traditional style might leave to the implementer the task

01 ChOOSing a method for the typist to supply patterns lor the find command and

replacements for the replace command. For a highly Interactive program the human

interlace needs 10 be specified more precisely. and sO we specify below (first Informally.

and then formally) the details 01 a suitable method 01 constructing patterns and

replacements.

Hitherto every character typed has been Inserted Into the current document. In order

to speCify patterns and replacements we need to be able to type text which does not

have an Immediate effect on the document. The QUOTE key signals the start of such

a text -- which can be composed using all of the basic editing commands and without

having any effect on the document Itsell. The FIND and REPlACE keys signal the

completion of pattern (replacement) text. and have an appropriate eUecl. In the case

at the FINO key the effect Is to move the cursor (If possible) to the next Instance

of the pattern In the document. The REPlACE key changes the text 01 a document

whIch Is already pos/Honed at an Instance of the FIND pattern by substituting the

replacement text lor the FIND pattern.

24

Thus to change the nSk! instance 01 FDa to BAl. one types

QUOT& F 0 0 P I NO QUOTE B A Z REPLACE

Both the FINO and the REPLACE keys remember their last argument. so thai ClOf

examplel to replace the next Instance of FDa one simply types:

FIND REPL1\CE

whereas to delete the next instance one would have typed:

PIND QUOTE REPLl\CE

subsequent deletions being performed by:

P I NO REPLACE

Later we will stlOw (hat these definitions do not contradict our strictures about hidden

modes: one of the properties speCified of the complete editor is that QUOTEd ted

Is always displayed.

We now render more formally the informal definition given above. As before we specify

the effects 01 thase commands as slale to state functIons

Editor slates are denoted by the set EDITOR. whose maln, quoted, and mode

components reflect the lact that one Is either editing the main document. or composing

quoted lext WhiCh will be used either as a pallern or a replacement. The pattern

and replacement components reflect the fact that Ihe FIND and REPLACE keys

remember their last arguments.

EDITOR
maln: ED
quoted: ED
pattern: DOC
repl: DOC
mode: {MAINTEXT, QUOTEDTEXT}

The effect 01 each key depends on whether one is composing the QUOTEd or the

MAIN text. Each key Is therefore defined In terms 01 two parrlal functions whose domains

correspOnd to the two different modes.

In what follows we have omilted predicates of the form (component· -component)

simply in order to make the function definitions more compact.

25

BASIC; cmd ~ (EDITOR ~ EDITOR)
FIND: DIRECTION ~ (EDITOR ~ EDITOR)
QUOTE: (EDITOR ~ EDITOR)
REPLACE; (EDITOR ~ EDITOR)

(V c: cmd; dlr: DIRECTION)
BASIC(c)

(~EDITOR I mode ~ MAINTEXT)
(.uEDITOR')

maln' :; c(malrl)
m(~EDITOR J mode = QUOTEDTEXTj

(.uEDITOR)
quoted' = c(quoted)

QUOTE
(~EDrTOR I mode - MAINTEXT)

(.uEDITOR')
quoted' ~ ErnptYED;
mode' = QUOTEDTEXT

$(~EDITOR I mode - QUOTEDTEXT) 2
(.uEDITOR')

quoted' - ErnptYED;
mode' = MAINTEXT

FTND(dir)
(XEDITOR I mode - MAINTEXT)

(.uEDITOR')
main' - (try(find(pattern, dlr»)(mainl
quoted' = EmptyED

$(XEDITOR I mode - QUOTEDTEXT)
(.uEDITOR')

main' - (try(flnd(pattern', dir»)(main) •
quoted' = EmptyED
pattern' - (0. content(quoted.text))
mode' = MAINTEXT

REPLACE
o.EDITOR I mode = MAINTEXT)

(J,LEDITOR')
main' ~ (try(replace(pattern, repl))) (main) 6
quoted' = EmptyED

$(XEDITOR I mode = QUOTEDTEXT)
(J,LEDITOR')

main'... (try(replace(pattern, repl'))) (mam)
quoted' = EmptyED
repl' - quoted. text 8
mode' z MAINTEXT

where EmptyEDI E (~ED)

text - (0, 0)
de ieted • (0, 0)

26

To help explain OUf design decisions we have numbered several of the predicates:

the corresponding annoti3110ns follow.

1.	 Any of the basic commands can be used to compose quoted text. Their

eUeel on the quoted text Is Identical to their effect on the document.

2.	 This Is actually a sUitable place to Incorpora19 commands which inter1ace

the editor 10 Its environment Although their formal definition is beyond

the scope 01 This monograph. Ihe commands for leaving the editor and for

aborting an editor session are typed in our Implementations as:

QUOTE q QUOTE
QUOTE a bar t QUOTE

3.	 An unquoled FIND uses the pattern remembered from the las\ quoted FIND.

4.	 & 5. A quoted FIND uses the quoted text to form Its pattern. FIND will always

position The cursor so that It Is at the beginning oj the texl matChing the

pattern This Is more useful In practice than positioning the cursor al the

enCJ of the match.

6.	 An unquoted REPLACE uses the pallern remembereO f,..om the last quoted

FIND and the replacement from the last quoted REPLACE.

7.	 & 8. A quoted REPLACE uses the qUOIed ted to fOrm Its replacement. The cursor

posllion relative to the replacement text will be the same as Its position

within the quoted text.

Once more we can summarise the commands which are to be made available. observing

that these InctuCJe all the commands of the basic editor. to which we have added the

two FIND commands. the replace command and the QUOTE command:

key: P(EDITOR ~ EDITOR)
f-I--- ­

key .. ran(BASIC) u ran (FIND) U {REPLACE, QUOTE)

2)

Section 2: Displaying Documenls

A Simple Display Model

Editor commands were specified as transformations on the more-or-Iess

one-dimenSional DOC modal. In order to specify the way in which documents are

displayed we need a model which reflects the lact thaI masH!> real displays are

two-dimensional and bounded The bounded ness of real displays forces us to have

some sari of polley for choosing which part 01 Ihe document to display In our view

the best choice is to display that part 01 ,he documem which surrounds the current

position. emphasIsing the current position on the display by means of some olstinctiv8

symbol (such symbols are usually called cursors) This policy can be likened to looking

at the document through a movable window which locates Itself so as to ~eep the

cursor in view II has the advantage that when changing a document the typist always

sees on Ihe display an e)(act picture of the region 01 the document which has most

recently changed, and can Qulc~ly discover whether or nOl the changes are the ones

Intended.

We Degln to formalise the idea 01 a two-dimensional display by ignormg the fact that

real ones are bounded A LINE IS a sequence of CHaracters whiCh doesn't contaIn

the newline character nl. An unbounded display and the position Of its cursor can

be completely characterised by four quantities -- the sequence of LINEs abOve the

cursor, the sequence 01 LINEs below the cursor, and the sequences of CHaracters

to the left and the rlghl of the cursor (neither of which contain newline characters),

LINE
] seq(CH-{nl}]

D1SP
above,
below: eeq[LINE]
left,
Ilght: LINE

28
Example

above

l.eft (The cursor is between> (these two sequences) right

" --_._"---------­

1-----­

below

29
Relating Unbounded Displays to Documents

We formalise the correspondence between an unbounded display and a document by

developing a one~to-one relation ~- dIsplays. First we define the function flatten
~- whiCh maps a (nonernplyl sequenCe Of lines to a sequence of characters which

has newline characters separatlng the text of the onginal Imes. (NOllce thaI it is

specifleCl by a postcondition reminiscent of a recursive definition. lheoretical

justification lor the exislence of functions satisfying such postconditions Is given more

fully in [Sulrin81aP.

flatten: seql[LINE] ~ seq{CH]

(V' In: LINE; a: eeql[LINE])
flatten«ln») - In ft

flatten«ln> *' s) = In '*' <nl> * flatten(s)

Example:

flatten«(l LIN E») = <1 LIN E)
flatten «(L I N E 1) <L I N E 2») = <L r N E 1 nl LIN E 2)

An unbounded display corresponds (through the displays relation) to a DOCument

under the following conditions.

,. Flattening the lines above and to the left of the display cursor ~ives the

sequence of characters to the lell of the document cursor, and

2.	 Flattening the lines to the right and below the display cursor gives the

sequence of characters to lhe right of the document cursor.

displays: DISP ~ DOC

(V diep: DISP; (l,r): DOC)
(disp displays (l,r) <=­

(flatten(disp.above· <disp.left») = 1) ,.,
(flatten«disp.r1ght) * disp.below) r)2

For example:

<11nel>

<11ne2)

<line3))

<left) <right)

<lineS)

<11ne6)

d1splaye « line Inlllne2nlline3nlleft), <r ightnllineSnlline&»

J 0

It IS easy to prove \t1at flatten is a bijection. ;e that il maps different (non empty)

sequences 01 lines into different sequences of characters and vice-versa. An

easily-pro\lsn consequence of this Is that the dIsplays relatIon is also a bijectiOn,

/9 that every unbounded display corresponds 10 a unique DOCument and vice-versa.
This IS nardly surpriSing: our initial one-dimensional formalisation Of Oocumenls would

have been rather implausible II nol for our intuition that SUCt'1 a one-one

correspondence existed. This property will again prove useful when we are considering

an Implementation 01 the edilor,

FLATTEN LEMMA
~(V 61, s~: eeql[LINE])

(flatten(Sl)=flatten(52) ~ 81=82)

DISPLAY THEOREM

rev dl, d2, d: DISP; dOCl, dOC2, doc: DOC)
(dl dieplays doc) ~ (d2 dleplays doc)) ~ dl-d2 A
((d dlsplaye dOC1) ~ (d ~~ dOC2» ~ dOC1~doC2

(The formal proofs are omitted here since they are of no mtrinsic Interest),

Displays and Windows

In order to formalise the idea of a Window we obserlle that the content of a oisplay

can be mapped onlo an Irregular two-dimensional character matrix, and that its cursor

position can be modelled by a pair of numbers Since the DISP model puts the curSOr

between characters, each line has one more cursor position ttl an il has characters.

and so the column index of the cursor corresponds to the position 01 the character

to its left.

cureor: DISP -Jo (N " N)
matr ix:

cureor
matrix

-

DISP -Jo ((N " N) -++ CH)

(~DISP)(l+#above, #left)
= (~DISP)

(~r, c I H:(l..#lines) A C€(l..#(lines(r)))
(lineB(r) (el)

"'here linea = above'" <left'" right) '" below

Notice that of the Ihree concatenation operators defining the sequence 1 ine8, the

outer two concatenate sequences of LINEs whereas the inner one concatenates

sequences of CHaracters

J I

A fundamental properly of the cursor of a dIsplay is that it corresponds to a character

on the matrix of the display unless it IS at the left-hand end of a line. Consequently

displays cannot be constructed trom arbitrary character matrices and cursor positions.

CURSOR LEMMA

j I- (\f d: DISPi If c; N I (r, c)=cursor(d)

«(r, c)(com(matrix(d) <:::=> (CfloO»

The 'unctions proJect and region prOVide the additional tools we need to formalise

the Idea of a wmdow. Composition with a projection 'unction corresponds to moving

the origin 01 a matrix Restricting ils domain by a region corresponds to limiting

its "area"

proJect: eN >< N) ~ ((N >< N) ~ (N " N))

region: eN >< N) --:Jo peN >< N)

proJect = (). r, c) (). i, j) (r+ i c+j)f

region = (' h, w)«1. .h) " (1. .w»

r

o proJect(r. cl

c

' ­

r reglOn(h, w)

c
h

w

32

For gi~en constant screen dimenSions (height and width) the function windo maps

a wmdow offset (row and column) Into a 1unctlon on OJ SPlays wniCh nas Ine lallowlng

properties:

1.	 The Character matrix of its result fits into the requIred dimensions anCl agrees

exactly with lne (row, column) projecllon of the matrix of its argument.

2.	 The Cursor position of its result IS the same pro;ection 01 tne cursor position

01 Its argument

The function Is partial because It is not possible 10 prOject the cursor correclly for

all chOices of window oUset A Correct projection (eaves the cursor eltner al the lelt

hand end 01 a windowed line or corresponding 10 some character on Ihe windowed

display matrix

I helght: N

wldth: N

Window: (N >< N) _ (DISP ~ DISP)

(Vr, c; N; d, d'; DISP)

d'=window(r, c)(d) = (matrix(d')=wm {\ curaor(d'j'"'we)

where wm: (matrix(djoprojeet(r, e»)rscreenarea
and we : project(r, c) (cursor(d»
and screeharea = region(height, Width)

It is evident. however. that for a given document there are several possible choices

of window 011 set WhiCh do project the cursor correctly, for example"

x

t
"­ I"-- cursor

33

It IS easy to derive an expression which gives the precise relallon between window

ongin ar"ld correct projection A wmdow whose origin IS (r c) can correctly prOject

a display whose cursor falls within the apprOpriately projected screen area

WINDOW THEOREM
i r (0 r, c, N)

dom(window(r, e)) = { d: DISP I cursor(d)€8Creen }
where screen: project(r, c)(region(height, width)

35
Section 3: Displaying the Ectiled Document

The	 Complete Editor State

In this section we formalise the hitherto Informally stated requirement thaI the screen

of the display should be a window onlo the (unbounded display corresponding to thel

document being edited.

The function dlsplay maps the state 01 the document-ediling module to a "virtual"

display which the display module musl windOw, Specif.rca\lon of just what should be

displayed is slightly compliCated by the noed \0 seE! quoted texl whilst II IS being

prepared and to distIngUish It from the bOdy of the main document. The method we

have suggested here Is to "emDeCl' Quoted texl in the display of the main document

-- separating it from the document texl by (implementation dependent> sequences which

play the role of quotation marks.

[quote, seg[CH]

unguote, seg(CH]

, display: EDITOR _ DISP

,	 display = (>.. EDITOR) (virtual)

where mode=QUOTEDTEXT ~

virtual displays document**quotes**quotatlon

and mode-MAINTEXT ~

virtual displays document

and document = main.text
and quotation = quoted.text
and quotes = (quote, unquote)

The state has a component -- editor -- which models the state of editing module.

and components -- screen. row. and col -- which model the state of the display

module. The single Invariant on the state indicates the desired relationship between

the two modules.

DISPLAYEDITOR
ed i tor: ED I TOR
Bcreen: DISP

l row: N
col: N

I Bcreen = (window(row, col) (diaplay(edltor»

I

36

SpeClfyJ'ng a Windowing POliCY

The task Of the editing module has already been specified (al least In the sense that

we have given IOrmalisatLons of the effecls 01 every key as functions on its stale),

The task of the display module after each keystroke Is to C1erlve a window offset and

the content of the screen from the sailing mOdule In such a way as 10 maintain the

gwen Invariant. It is evident from the considerations of the previous secUon thaI in

general there will be some Ireedom to choose the windOw oUset and thaI a policy

will theretore be necessarV

We suggest an incremenfal wlndowmg policy which tries to keep the window elise!

constant for as long as It can, When the curSOr moves to a point where It no longer

appear5 on the windowed portion 01 the display another displacement Is selected. The

advantages of this pOliCy are prinCipally.

When inserting material the typist does not get distracted by the task of

finding the Cursor alter every keystroke. since It Oehaves '"like pen on

paper.'

2 Most keystrokes result in relatively small changes to Ihe content 01 the

screen. and these take place at or near the curSOr. This 1acilitates

implementation on siowish dumo terminals.

We lormallse a WindOWing pOliCY function below by meens 01 a postcondition. Given

the Current window offset. and a new virtual display Ihe policy function must map them

to an offset which permits the cursor 10 Oe shown on the screen.

Notice :hal the postcondition dOes not uniquely define the policy Oul gives an overall

requirelflenl for It. AI this level of speCification we are n01 100 much concerned wilh

the exatl details of the POlicy. any funcUon satisfying the requirements outlineo below

will sullice. This freedom will elsewhere allow a proof 01 correctness ot a particular

display strategy 10 be made indepenaently of the details of the windowing poliCy.

, policy: (N" H) _ (DISP -+ (N " N)).r, c, N, d, DIS',

r', c': N I (r', C') '"' policy(r, c)(d)

dE" dom(window(r, C) ~ (r', c')-(r, c) 1\Fd t dom(wlndow(r, c)) ~ d E" dom(window(r', c l
))

I

37

We can now summarise the stlect of a single keystroke on the slate of the display

editor.

effect: key ~ (DISPLAYEDITOR ~ DISPLAYEDITOR)

effect'" ().k)
().DISPLAYEDITOR)
(~ISPLAYEDITOR')

editor' = k(editor)

(row', col') * policy(row, col) (virtual)

screen' = indow(row', col') (virtual)

where virtual = dlsplay(editor')

The definition or effect concludes our specification. Prool that this lunction maintains

the editor stale Invariant is extremely simple -- once again we leave It as an exercise

for the reader.

38
4: Summary

The speCification given herein is a revised and much-simplified version of the one

from which our first implementation was bljill {Sufnn80al. The simplification reflects

our own deeper understanding 01 the lechnlques 01 formal speCification However In

OUf treatment of the cut and paste and the automatic Indentation facilities [Appendix

2] there seems to be some conflict between real-life useability and simplicity Of

speciflcallon. Both the facilities are extremely useful in the composition 01 text; their

specifications, however. remain somewhat inelegant; Indeed one can almost hear the

whine of the machinery!

The lac I Ihat the proofs of many of the useful properties of the editor are easy enough

to have been lelt as exercises reflects to some degree the amazing simplicity of our

document and dlspiay models. Discovering such simple abstractions is a tough task.

however. It seems only to come with a lot of experience and a very large waste-paper

basket!

Again because or the simplicity of our models prospects lor the deSign and proof of

implementations are gOOd. In a nOle to be published later [Sufrin81bl we have proven

one class of Implementation strategy correct. We use techniques Similar to those

described In (Jones] to show the correctness of our choice of data representation.

and Independently developed techniques to deSign our algorith ms.

In this prOOf we rely heavIly on the ract that the abstract display model developed

in seCllon 2 IS also a natural basis ror the formalisation 01 the properties of "smart"

terminals. The obvIous implementation strategy lor this kind at display technOlogy IS

for the editing module to give "hinls" to the display module whenever the display

needs to be changed. The hints Indicate {where possible> the incremenral changes

to the screen which are necessary to maintain the screen-document relationship;

when this is not sensible (lor example after a CUT or a PASTE or when a search

lakes Ihe current position ofl the screen) then the hint should indicate this, and the

display module behave accordingly This strategy seems to give gOOd perlormance even

on relatively dumb terminals -- the only time one consciously walts lor the screen

to reflect a change In the document IS when the display module is forced to "pan"

the wlnClow (ie move it horizontally>' or to "tilt" 11 more than the heigh! 01 the screen.

39

5: Conclusion

As we stated in our IntroduGlion. our goal was to glV8 a mathematical mOl.1el which

serves both to communicate our Ideas about editor deSign and to give an unambiguous

definition against which the correctness at Implementations might be proven.

In other engmeering diSCiplines thiS sort 0' thing 15 a matter of course. Bridge-builders.

architects. and aeroplane manufacturers all expect to have to reason formally about

their artefacts before building them. They also have technIques by which to express

their trnal deSigns unambiguously. and the craftspeople who transform these

expressions IntO reality do so by means sound enough to ensure a laithful realisation

Computer Scientists have over the last few years developed the Intellectual tools

necessary to permit the construction of large classes of program In Just as sound

a fashion Case studies on the scale of thlS editor are still few and far between,

however. and thiS has contributed to the reluctance 01 prachsing programmers to admll

the possibility of reasoning formally about programs In advance of their construction

or of verifying implementations against Independently-specified blueprints.

Unlll their reluctance IS overcome the phrase "Software Englneenng' Will remain no

more than an empty piece 01 rhetonc. We hope that we have made a contribution

to this goal.

41

AppendIX 1: Informal Description 01 the Edllor

The description which follows is extracted trom a slightly revised verSion of the
documentation of an Implemematlon of the editor which has been in use since late
1979. So that our readers may Judge 'or themselves the extent to which the formalisation
can capture the behaviour of the Implementation we have Included the descriptIOns
01 some of the "custom' features of the ImplementatiOn Ie those nOl described In
the lormal specification.

The edllor permits the composition alterallon and 81(amination of documents. The
typist communicates with the editor through a keyboard which IS equipped with a number
of special luncllon-keys; the document is shown on a screen on which the typist's
current pOSition is highlighted by means 01 a cursor. Once the document becomes
too large to be seen on the screen. the ediCor ensures that the region surrounding
the typIst's current pOSition is shown on the screen. for it IS at or very close 10 the
current position that all the typist's action have their eltect

Single-character Insertion. deletion and modon

visible-character The character is inserted in the document at the cursor:
cursor moves to the right; rhe remainder of the current
Is pushed right to make room.

the
line

NEWLINE Inserts a
the right

new line In the document at
of the cursor becomes part

the cursor'
of the new

any text
line.

to

tn aurO-indfJnt mode (qv)enough spaces Bre put
beginning 01 the iine to place the first character of
line below the Ilrst character of the previous line

at
the

the
new

LEFTmELETE	 Rubs out the character to the left of the cursor. When the
cursor is at the left-hand end of a line this jOins the current
line to the previous one.

RIGHTmELETE	 Rubs out the character at the cursor. When the cursor is at
'he right-hand end at a line this joins the line to the next
one.

LEFT(MQVE	 Moves the cursor leltwards one character POSition In the
document. If the cursor was at the left-hand end of a Une.
then it will 'wrap around' to the right-hand end of the previous
line.

RIGHT(MQVE	 Moves the cursor r1ghtwards one character position In the
document. if the cursor was at the rlght~hand end of a line.
then it Will 'wrap around' to the left-hand end of the next Ime.

Muhlple-characler insertion. deletion and motion

A WORD beginS where	 a space is followed by a character which IS not a space.

LEFTCMOVE(WQRD	 Moves the cursor to the beginning 01 the previous WORD, or
the start 01 the current line If that IS nearer.

RIGHT(MQVECWORD	 Moves the cursor to the beginning of the next WORD or the
end 01 the current line il thai IS nearer.

42

LE FT<MO\'E (LINE

RIGHT (MC'VE(lINE

LEFT(QELETE(WORO

RIGHT(QELETE(WQRD

LEFT <DELETE(UNE

RIGHT(QL.ETE(lINE

TAB

MARK

CUT

PASTE

RECALL

MARGIN

NEXTPAG2:
PREVPAGE

QUOTE

Moves the cursor (0 the beginning 01 the line. or Ihe beginning
of the prevIOus line il It IS already at the beginning 01 a line.

Moves the cursor 10 the end Of the line. or the end 01 the
neXl line if it is already al Ihe end of a Ime.

Deletes \ed between the Cursor and the place to which
LEFT<MOVE(WQAD would move

Deletes ten between the cursor and the place to which
AIGHT<MOVE(WORD would move.

Deletes text between the cursor and the place \0 which
LEFT(MOVE(LlNE would move

Deletes lexl between the curSOr and the place to which
AIGHTCMQVE(LlNE would move.

Inserts enough spaces in the line to put the curSOr at the next
lab position -- these are at eight column Intervals.

Miscellaneous usefUl commands

Place the mark at the cursor.

Cut the text between the cursor and
the marK out 01 the document.

Insert the most-recently CUT text Into the documenl at the
cursor.

Inserts the text deleted by the last word-delete. line-delete.
Or REPLACE baCK Into the document.

Sets the right margin at the curren! cOlumn. When the right
margin is set at a column other Ihan the leftmost column. then
whenever a character is typed to the right of the margin.
the "word" of which it IS a part will aUlOmatically be moved
to the beginning 01 the next line.

Display the next screenful of the document.
DIsplay the prevIous screenlul of the document

Moving to specilled places in the document

lnserts a new (empty) line at the curso r position' text
to the righlQI the cursor appears below thiS fine. The typisl
may now use any of the keys so far l1escribed to compose
a quoterion -- so called because the keys typed during its
cOmpOsl\lon do not have an Immediale effect on the document
The quotation is completed by typing one or the loilowing keys:
FIND, UPFIND. REPLACE, OUOTE. lis effect on the document
depends on exactly which of these IS used

"3
It the quotatIon IS completed tly typing the FIND key. then

lhe cursor 1$ placed al the next place in [he document which
malches it. the UPFIND key moves UP the document to find
the tell!. II there is no such place in the document then the
cursor stays in the same place. and the bell rings. The quoted
tell! be relamed so there is no need to retype it In order \0
FIND the same text more than once.

If the quotation is completed by typing the REPLACE key. and
the current FINO text matches the document at the ClJrsor then
it will be replaced by the quoted lext. The quoted text will
be retained so that there is no need to retype it In order to
REPLACE with same text more than once.

If the Quotation is completed by typing the QUOTE "-ay. then
the line is interpreted as a special command. and performed
immediately

SpeCial commands are:

HOP Move the Cursor to the lOp of the document.

b(ollom Move Ihe cursor to the end 01 the document.

q(uit Leave the editor normally.

w(rlle Write the document to the output file but do nol leave the editor
Cit's a good idea 10 periodically wCrite out a document WhiCh
you are editlngl.

iNAME Copy the document stored in the lile called
currenl document below the current line.

NAME Into the

oNAME Make a new documenl from lines between the marked line and
the current line. Store this document in the file called NAME.

mk Place
place

the mark al the cursor. then
which was formerly marked.

move the cursor 10 the

i(ndenl Sel autO-Indent mode.

n(olnden\ Clear auto-indent mode.

abort Leave the
session

editor. abandoning any work done thiS editing

wdCfind Changes to word match mOde (qrJ.

IiWlnd Changes 10 lif9ral march mode (qrJ.

"
 FINO
UPFIND

Finds
finds

the
the

last
las!

fiND
FIND

le)(1
le)(1

(dOwnwarc1sJ
{upwardSl.

REPLACE It the
which

text
was

at the cursor matches the FIND
"found' is replaced by the last

text then the
REPLACE lexl.

text

Matching Criteria
In literal match mode. a FIND succeeds where the lext at
the Cursor exactly matches the characters 01 the FINO text
In word match mode and when the FIND text cons.isls enlireiy
01 leUers or digits. a FIND succeeds only where the texl at
the cursor matches the FIND led and the characters
immediately preceding and lOllowing the match are neither
leHers nor dlgl's.

45
Appendix 2: Some Additional Features

In order to simplify the description glen In this monograph a number of commands

present In our Implementation were omitted. It Is beyond the scope at this monograph

to specify some of these. amongst which are the Input (output) Of selected pOrllons

01 the document from (to) the riling system and the automatic "filling" and/or

justlficatlon at portions of the document.

Two other important omissions are formalised below:

Cut and Paste

This permits the typist to mark-up and ma....e around pieces of text which extend oer

more lhan a Single line. The output of selected portlons of the document to the filing

system is an ob.... lous generalisation of the facility defined here.

Cut and paste can be added most coneniently to the specification of the baSIC editor.

Extend the state defined there with an additional component which models the text

remo....ed by Ihe last "cut"

ED

I text, DOC

deleted: DOC

hold: DOC

Three additional keys ara pro.... lded. The MARK key places a special mark at the cursor.

remo.... lng any other mark present In the document. The CUT key remo....es the text

between (he current cursor position and the mark lrom the document and places it

in the hold buffer. The PASTE key inserts the content 01 this buffer Into the document

at the cursor.

4&

mk: CH
MARK: ED -+ ED
CUT; ED _ ED

PASTE: ED ---+ ED

MARK = (). ED)
(~ ED')

text' = removemark(text) U mark;
deleted' = deleted;
hold' = hold

CUT'" (). ED)
(p.	 ED')

text' = removemark(cut(text»
deleted' = deleted;
hold' = removemark(text II text'

where cut
try(((del, right) to marked) m

((del, left) to marked))

and marked = (d: DOC I mark in! ixes d)
and mark ~ «rnk> , 0)

PASTE" (). ED)
(ll ED')

text' = text •• hold
deleted' = deleted
hold' = hold

where removemark = (). 1, r: seq[CHJ) (rmk(l), rmk(r))
and rmk = (p. f: seq(CH] -+ seq(CH)

f(O) " <>
(V 1: seq(CH]; c: CH I Cl'mk)

f(l t (c» = fell * (c)

t(l * (rnk» = fell

In order lor the elleel 01 CUT to be easily preaiClaOle. It is evident thai the aomains

01 lhe nghtward- and leftward- deletmg funCTions from which cut is conslructeCl should

be CliSjolnl -- this is true only for DOCuments WhiCh have at most one mk present.

ThIs can be ensured lor all documents by defining the available commanCls so that

the MARK ~ey is the only one which Inserts the mk character.

cmd: P(ED -----) ED)

cmd '" ran(INSERT\{mk») U ran (FUNCTION) - excluded u

{MARK, CUT, PASTE, RECALL}

where excluded ... _. II.S defined In section 1,4

The distance from the beginning or the line ot the llrst "genuine" word boundary on

the current line is called the 'margin" When automatic indentation I~ enabled,

pressing the NEWLINE key In~erls a newline character 101l0wed by enough spaces to

maKe the margin the same as on the previous line, This vastly simpiilie~ the task

01 entering Indented text

margln; DOC -+ N

margw ~	 ().. d)(col(d) - wordl(d»)

where col = ().. d)(minO (n: N I left(move)" € line»)
and wordl = maxO({ n: N I left(move)" € (word-line) A

n (col(d)-»)
and minO ... min 61 () f-> 0
and maxO = max 61 [} f-> 0

NEWL I NE : DOC -+ DOC

NEWLINE =	 ().. d) spaces(lns(nl)(d))

where spaces = ins (Sp)margln(dl

Unless otherwise specified we have used standard mathematical notation throughout
this document placing ourselves firmly in the framework of modern Set Theory. A
more complete definition of the notation. together with the rules 01 inference of our
logic is given in ISufrin8la).

The set of total lunCtlons between two sels -- X and Y -- is written:
X~Y

and Is a subset of the sel 01 partial functions. which Is written

X~Y

This In turn is a subset ot the set 01 relations. WhiCh is written:

X<_Y
The sel of relations is modelled by the set of all subsels of the cross-product:

x.y
in olher words:

(X ~ y) • P(X • y)

The expression P(X) denotes the powerset of a given set. X. ;6 the set of all its

subsets: Y (X) denotes the set 01 all finitfl subsets of X: N denotes the set of natural

numbers. O. 1. 2. The domain of a relation (or 1unction). r IS written dom(r)

and its range Is written ran(r). The Identity 'unction on X is written id(X).

Generic Deflnltlons

In our nOlatlon. deflnllions and specifications may be given generically. This is a

common practice 10 mathematics which has not yet been honoured with a conyentlonai

notation. but WhiCh can usually be recognised in mathematical documents by rhetoric

of the form "let x and Y denote arbitrary sets.... and in our notallon by the form:

X, Y

I :.

Useful Comblnators

For the sake of brevily and simplici\y we give purely axiomallc speclricatlans 10r

lunct/onal arguments 01 the comblnators we have used: in fact these are just special

cases of their definition s for relations. Constructive definitions for relat.onal comOlnators

wnlch sausly Ihe 3Kloms are given elsewhere [Abrlal80L [SufrinBlaJ.

50

Functions (and relations) are Introduced by a signature which gives their mathematical

type followed by aXioms which giye thelf propertIes. For example. composition (of partial

functions)

x. Yo Z

0: (Y _ Z)>«X _ Y) --+ eX ~Z)

(V g: Y_Z; f: X~Y)

(V x: X I xedorn(f) A f(x)edom(g)
(f' g)(x) = f(g(x))

A reasonable syntactic rule of thumb is that functions and relations with alphanumeric

names will be used as prefixes: those with underlined alphanumeriC names and those

whose names are otherwise 'armed will be used as infixes. The defining axiom usually

sels the lOne.

When the exaCt generiC type or a funCtion or relation cannot be determined from the

types of lIs arguments this may be gl'1en In the lollowlng manner:

faa o[P,Q,R] baz

in Which the function faa is composed with the function baz oy the composition

operator of functionality:

(Q~R >< P-+of'Q) ~ P-+of'R
In lact l~e need lor this hardly ever arises. and we usually omit all actual generic

parameters ([P,Q,R] above) when writing the names of 1unctlons

The domain restriCtion operator maps a lunCllon, f and a subset S 01 elemenls to

a junction which agrees with f on the set S and IS elsewhere undefined.

X, y

~; «X -+of' Y) " P(X)) __ (X -+of' Y)

(V f: X-+of'¥; s: P(X))
dom(frS) = dom(f) n s
(V x: X I x€dom(frS) (frS)(x) ... f(x)

51

The functional oerrlding operator maps a pair 01 functions to one which agrees with

the IIrst everywhere eKcepl on the domain of the second.

X, y

III: (X Y) x (X-.+Y) __ (X-.y)

(V f, g: X_y; x: X)

x€dom(g) = (figl (Xl g(xi

xtdom(g) A xEdom(f) = (figl (Xl f (Xl

xtdom(g) A x,tdom(f) = x,tdom(flPg)

A function may be mapped to one whose domain lacks a certain sel or elements by

the domain contraction operator.

X, Y

\: «X 'i)"P(Xl) __ (X Y)

\ • (' f, X~Y; s, P(XII (U (X-5)1

The above is an example 01 definition by),-absiraction. The lull canonical fOrm

demands the specification 01 the types of the bound variables but an acceptable

atlbreviation is

\ • (' f, 5)(tr(X-S)1

whiCh. In Ihe context 01 the function's Signature. conveys as much Information.

Finite Mappings

Functions with finite domains may be defined by giVing all the argument-resull pairs;

lor example the function below Is of type: N-.N

lH-O; Ot-l'l)

and maps to 0 and 0 10 L

52
Iterallon 01 a Function

A homogeneous function (fe from X to X) may be mapped by iteration into a function

of the same type The iteratJon operator is specified below in a style reminiscent

0' a rewrsiv€ definition.

x

I ~. «X --+1' X) '" N) --.--Jo (X -+J> Xl)

(V f: X~X; n: N)

. f~O = J.d(X)
! f~(n+l) ,. f 0 (f~n) ,

thus

f A 2 = f(l(fAl) = fofo(f"O) = fofoid = fof

We use Ihis oper81Or so etlen thai we have a special syntactic sugar lot It -- namely

superscnption:

fellpreSSlon = f"expresSlon

Although this definition is analogous to iterallon In a programming language it is nol

the same thing since the domain 01 an Iterated function may be rather restricted. For

example

dome pred5
) { n: N I nO!' 5 }

because pred IS defined on the natural numbers only.

Image 01 a Set through a Function

The image of a set of elements S through a function f is defined oy:

f(S) = (y, Y I (3", X X€s 1\ Y = f (x)))

It is the se' of all those elemen's in Y to which f maps an element of S.

The sequences of elements Of X are defined generically as a subset of the partial

functions from the natural numbers to X. Their domains are finite segments of the

natural numbers starling at 1

x

seq: peN _ X)

seq = { f: N-++X I dom(f)EP(N) A dom(f)"'l..card(dom(f))

Sequences occur SO frequently in specifications that we have a n01atlon constructing

them elCplicitly; the sequences

(ll--+a; 2 b; 3..-+c} {l~FOO}

can be written (a b c) and (FOO); the emply sequence is written: (). The set

of nonempty sequences is:

seql[X] - seq[X] - {()}

The most impOrtant functions on sequences are specified below. The length lunClion.

(ttl and the elementary constructor (cons) are deftned constructively.

X

I, seq[X] --+ N
cons: X • seq [X] --+ seq [X]

'" po. s) (card(dom(s))

cons'" (X x, a)((s D suc) Ql {l~x})

The function card maps a finite set into the number of elements it has. thus the

length 01 a sequence is the number of elements In its domain The sequence

constructor "pUShes" an element onto the front Of a sequence. An example will Clarify

matters

c ~ <a. b) ­

({ l~a; 2.......b D suc) Ql { l~c

({ 2~a; 3~b}) {fj l~c J '"

{ l~c; 2~a; 3Nc

(c a b)

54

The rernalning sequence luncltons can De dellned In terms 01 the basic constructor

Dy ax.loms reminiscent of recursive definHions.

x

, , seg(X] x seg(X] __ seg(X]

reverse: seg[X] __ seq[X]

head: seg[xJ ~ seg[X]
tall: seg[X] -++ seg[X]
first: seg[X] -x
last: seg(X] -++ X

(V 5, 81, 52: seg[X); x: X)
(> 011 8 = B

(x cons 81) :II 82 = X cons (51 * 82)

teverse«» = ()

reverae(x cons s) = reverse(s) * (x)

dom(first) = dom(tail) - seql[X)
first(x cons s) = x
tail(x cons 8) ~ S

dorn(head) - dom(last) ~ aeql[X]
last(s :t (x» = x
head(s :II (x» = B

55
References

(Abrial 80)

Jean-Raymond Abrial

The Specificetion Language Z: Ba.sic Library

Speclflcatlon Group Working Paper

Programming Research Group

O)(ford. 1980

{Jones!

C B. Jones

Software Development. a Rigorous Approech

Prentice-Hail International Series In Computer Science

(Series Editor CAR. Hoare)

Prenllce-Hall Internatlonat, 1980.

[SUffln 80al

Bernard S ufrln

Specificetfon of 8 Display Ed/far

SpeCifiCation GrolJp Working Paper

Programming Research Group

Oxford. 1980

ISulnn 81a]

Bernard Sufrln

Reeding Formal Speciflcelions

Technical Monograph PRG-24

Programming Research Group

O)(lord. 1981

[Sulrin alb]

Bernard Sutfin

Correctness of it Display Editor Implementetion

Specl1lcalion Group Working Paper

Programming Research Group

Oxford. (forthcoming)

•

PROGRAMMING RESEARCH GROUP TECHNICAL MONOGRAPHS

JUNE 1961

This Is a series or technical monographs on topJcs In the field of computation.
Copies may be obtained from the Programming Research Group. CTechnlcal
Monographs). 45 Banbury Road, Odord. QX2 6PE, England.

PRG-l

PAG-2

PRG-3

PRG-4

PRG-5

PAG-6

PRG-7

PRG-6

PRG-9

PRG-10

PRG-ll

PRG-12

PRG-13

PRG-14

PRG-15

PRG-16

PRG-17

PRG-16

PRG-19

PRG-20

PRG-21

PRG-22

PAG-23

PAG-24

{out of print>

Dana Scott
OurJIne Of a Mathematical Theory of Computation

Dana Scott
The Lattice of Flow Diagrams

(cancelled)

Dana Scott
Data Types as Latrfces

Dana Scoll and Christopher Strachey
Toward a

Dana SCOtt
Continuous

Joseph Stoy
OS8 - an

Mathematical Semantics for Computer Languages

Lattices

and Christopher Strachey
Experimental Operating System for a SmaJ/ Computer

ChrlslOpher Slrachey and JOseph Stoy
The Text of OSPub

Christopher Strachey
The Varieties of Programming Language

Christopher Sirachey and Christopher P. Wadsworth
Contlnuer/ons: A Mathematical Semantics for Handling Fufl Jumps

Peter Mosses
The Mathematical Semantics of Algol 80

Robert Milne
The Formal Semantics of Computer Languages
and their fmpfementatlons

Shan S. Kuo, Michael H. LInck and Sohrab Saadat
A Guide to Communicating Sequentlaf Processes

Joseph SIOy
The Congruence of Two Programm'rtg Language Defln/tloml

C. A. R. Hoare, S. D. Brookes and A. W. Roscoe
A	 Theory of Communicating Sequantlal Processes

Andrew P. Black
Report on the Programming Notation 3R

Elizabeth Fielding
The SpeclffcatJon of Abstract
and their fmplementatlon as

Dana Scott
Lectures on a Mathematical

Zhou Chao Chen and
Parl/al Correctness

Bernard Sulrln
Formal Specification

C. A. R. Hoare

C. A. R.

Mappings
at-trees

Theory ot Computation

Hoare
of Communicating Procasses and Protocols

of a Display EdUor

A	 Model for Communicating Sequential Processes

C.	 A. R. Hoare
A Calculus of Total Correctness lor CommunIcating Processes

Bernard	 Surrln
Reading Formal Specltlcerions

