A MODEL FOR

COMMUNICATING SEQUENTIAL PROCESSES

€. ‘\ R HUARE e ——
i A . I [RFIENC

o [ 22 FEB 2087

| 0»«(00@;, ﬁ\,.-

i

3033969943 :

Technical Monograph PRG=22 ?

June 1981 e et L e e

Oxford University Computing Laboratory
Programming Research Group

4% Banbury Road

0xford 0X2 6PE



1980 Cambridge University Press

This material was first published in
"On the Construction of Programs''
ed. R.M. McKeag and A.M., McNaghton
Cambridge University Press, 1980

pp 229-243, and is reprinted by

kind permission of the publishers.

O e .
"mreth Computing Laboratory
Ll Ung
N P

Sta, ul U.X\? -JU,L‘;



ABSTRACT

A previous paper ({Hoare, 1978b) has suggested that
parallel composition and communication should be accepted
as primitive concepts in programming. This paper supports
the suggestion by giving a simplified mathematical model
for processes, using traces (Hoare, 1978a) of the passible
interactions between a process and its environment.



CONTENTS

Introduction

Basic Concepts and Notations
Parallel Combination of Processes
Sequential Combination of Processes
Alphabtet Transformation

Input and Output

Communication

Named Source and Destination
Sharing

A Multiprogrammed Batch Processing
System

Discrete Event Simulation
Technical Notes
Acknowledgements

References

Page

11
13
14

17

19
21
24
25

26



A MODEL FOR

COMMUNICATING SEQUENTIAL PROCESSES

INTRODUCTION

The primary objective of this paper is to give a simple mathe-
matical model for communicating sequential processes. The model is
illustrated in o wide range of familiar programming exercises,
including an operating system and a simulation study. As the
exposition unfolds, the examples begin to look like programs, and
the notations begin to look like a progremming language. Thus the
design of a langusage seems to emerge naturelly from its formal
definition, in an intellectuelly pleasing fashion.

The model is mnot intended to deal with certein problems of non-
determinism. These have been avoided by observance of certein
restrictions detailed in the technieal notes. XNo attention has
been paid tc problems of efficient implementation; for this, even
further restrictions should ce imposed.

The long term objective of this study is to provide a basis for
the proof of correctness of programs expressed as communiceting
sequential processes. However, in this paper the formalities have
been kept to a minimum mpd no proofs are given.



Concepts

(1)

(3)

(L)

The ultimate constituent of our model is & symbol, which mey bte
intuitively understood as dencting a class of event in which a
Drocess can participate.

(a) "cp" denotes insertion of a coin into the slot of »
vending machine VM,

(1) "large" denctes withdrswal from VM of a lerge packet of
biscuits,

(c) "up" denotes incrementetion of a COUNT register,

The elphabet of a process is the set of all symbols denoting
events in vhich that process can participate.

(a) (5p, 1Cp, large, small, Spchange} is the slphabet of the
vending machine VM.

{e) {up, down, iszerc} is the alphabet of COUNT.

A trace is & finite sequence of symbols recording the actual or
potentiel behaviour of a process from its beginning up to some
mement in time.

(f) <10p, small, Spchange> is a trace of a successful initial
transaction of VM,

(g) < > (the empty sequence) is a trace of its behaviour before
its first use.

{n) <up, down, iszero, down> is not & trace of a COUNT, since
a zero count cannct be decremented.

A process P is defined by the set of all traces of its possible
behaviour. From the definition of a trace, it follows that for
any process P,

(1) < » is in P {i.e., P is non-empty)
(2) if st (the concatenation of s with t) is in P then so is
s by itself {i.e., P is prefix-closed)

These properties will help to simplify the definition of
parallel composition of processes.

Rotations

{1)

The process ABORT is one that never does anything.



ABORT = {< >}

{(2) If c is a symbol end P is a process the process (c+P) first

LI L}

does "¢" and +then btehaves like the process F.
{e+P) = [< 3} v {<e>sls is in F)

where <c> is the sequence consisting solely of the symbol c.
By convention the arrov associates on the right, so that

e3P = o (8P),

(2) The process PLQ behaves either like the process F or like the
process @; the choice will be determined by the environment in

which it is placed.
Hg = FuQ (normal set union)

{See technical note (1).}
By convention -+ binds more tightly than (1, so that

c>Hld»g = (e+P)J(a»qQ}.
(L} The alphabet of e process P will be dencted by P. Usually we

will assume that the elphabet of a process is given by the set
of 811 symbels ocrurring in its traces.

ABORT = {} {the empty set)
—F = {ehP
g = PuQ

{5) We shall frequently use recursive definitions to specify the
behaviour of long-lasting processes. These recursions are to
be understoocd in the same sense as the recursive equetions of
(say) & rontext-free grammar expressed in ENF,

Examples
(i} ¥M = {5p>(S5p+{large+VMISp+ABORT)
Osmal1-+VM
)
010p~>{small+{Spchange+VM)
OlargesVM
)

Cn its first step VM accepts either 5p or 10p. In the first case,
its following step is either the acceptance of a second S5p (prepar-
gtory to withdrawal of a large packet of biscuits) or the immediate
withdrawal of a small packet. The second case should be self-
explanatery. 1In all cases, after a successful transaction, the

3



subsequent behaviour of V¥ is to offer a similar service to an
arbtitrery long sequence of later customers. DBut if any customer is
50 unwise a5 to put three consecutive 5p coins into the slot, the
machine will break (ABORT), mnd never do anything else again.

In & conventionel BNF grammar, the use of mutually recursive
definitions is familiar. To avoid the limitations of context-free
languages, we shell scometimes give an infinite set of wutuslly
recursive definitions.

(3 COUTJ'I‘n describtes the behaviour of a count register with current
valie n., For n>C,

COUE™ = [ur T = N~
Ccour “ Lur»CCUT ¢n+1anmeCUN n—l)

whereas the hehavicur of a zero count is

CCURT,, = (up+comrT1[Jiszero-a-c0U1\ITo).
A Zero count cannot be decremented, but it can respond to a test
"iszers". The use of this test will be illustrated later.

PARALLEI COMBINATION OF PROCESSFS

The traces of a process define all its possible behaviours. The
actusl behaviour of & process P operating in an enviromnment I will
in general be ccnstrained by this environment. The environment E
can alse be defined ms m process, consisting of all sequences of
events in which it is capeble of participating. Fach event that
actualiy occurs must be possible at the time of cecurrence for both
the brocess and for its environment. Consegquently, the set of all
the treces of the process and its enviromnment operating in parallel
with each other is simply the intersection of the two sets {PnE}.

For example, & customer of a vending machine is initislly pre-
pared to accept & large or ever a small packet of hiscuits, if they
are availeble, Alternatively he inserts a coin, without noticing
its wvalue, and ther attempts to withdraw a large packet of biscuits.

CUSTOMER = {< >,<large>, <small> ,<10p>, <5p>,

<10p,large> , <5p,large>}

When V¥ interamcts with this customer, the set of vossible traces of
their irteraction is

VM| .CUSTOMER = {< > ,<10p>,<10p,large> <5p>!

Nc_)te hov V'M_does not permit the customer to withdraw the biscuits
without paying. But even worse, after insertion of 5p the WM is
frepared to yield only a small packet of tiscuits, wheress the

4



foolish customer is trying veinly to extract a large packet. HNo
further events are possihle; machine and customer are locked for-
ever in deadly emYrace (Dijkstra, 19€8),

The description giver above assumes that the alphabets of the
yrocess and its environment are the same, so that every event
requires simultaneous participation of bcth of them. In general,
some of the symbols could be in the alphabet of only cre of tare two
processes, and o the corresponding events cen occur without she
participation of the other process. For example, a customer nay
fumble in his pocket, or curse when he is thwarted; a vending
machine may c¢link on accepting a coin and clunk on withdrawal of
biscuits.

CUSTOMFRE = { <fumble,5p,large>, ...
<fumble,5p,curse,small>, ...}

NOISYVM = {<5p, clink, small, clunk>...}

Events which are particular to only one of the interactinz pro-
cesses cen occur concurrently with events rarticular to the cther
one. It is convenient to model such concurrency by arbitrary inter-
leaving of symbols. Thus the traces of the combined behaviour of
NOISYVM and CUSTONMERE will include

{<fumble,5p,clink,curse,small,clunk>,
<fumble,5p,curse,clink,small,clunk>, ...}

even though the clink and the curse can overlap in reel time. The
reason why interleaving is an acceptable model of concurrency is
that we are interested only in the logical properties of processes
end not in their timing.

The process (P|]@) is the process resulting from the operation
of P and @ in parallel. The curious mixture of synchronisatisn of
symbols in both their alphabhets with interleaving of the other
symbols has a surprisingly simple definition.

—_ = ® — —
(PllQ) = {s|ls is in (PuQ) & {sYP) is in P & {sYQ) is inQ}

vhere sYX (s restricted to X) is obtained from s by simply omitting
all symbole outside X,

"
and X is the set of finite sequences of symbols from X.

Thus each progess ignores events of the other process which d> not
require its participation. In the case that the alphehets of the

tvo processes are the same, {P||g) is just the interseetion ol the
sets (PnQ). In the case where the alphabets are disjoint {Pny={}},

(P1|Q) is the set of all interleavings of a trace from P with a
trace from Q. We adopt the convention that || is the most lessely
binding opereator.



A vell-known example on which to test this definition is the
story of the five dinirg philosophers. The system as a whole con-—
sists of two groups of processes:

DINING ROOM = PHILOSOPEERS| | FORKS

where PHIT.OSCPHERS = ?HILOH...HPHILL

and FORKES = FORKDH...HFORKh
and PHIL, = (i sitsdown -+
i picksup fork i -+
i picksup fork (i & 1) +
i putsdown fork i -+
i putsdown fork (i & 1} -+
i getsup +
PHIL, )
and FOHKi = (i picksup fork i = 1 putsdown fork i = FORKi

(i & 1) picksup fork i +
(i & 1) putsdown fork i + PDRKi)

vhere {1 & 1), (i & 1) are taken modulc 5.

The alphabets of the philosophers are pairwise disjoint. This
means that (characteristically) they do not interact directly with
each other: their joint behaviour is an arbitrary merging of their
indivicuel behaviours. The same is true of the forks. However,
each event of picking ur & fork end putting it down regquires simult-
aneous participaticn of exactly two processes, cne philesopher and
one fork.

It is well known that the simple syster described ahove is
liable to a deadly embrace after:

<0 sitsdown,..., L sitsdown,

0 picksup fork 0O,..., 4 picksup fork b>.

An ingenious solution to this problem is to introduce & BUTLER
process into the dining room: his tesk is to assist each philosopher

to and from his seat, ensuring as he does so that not more than four
philosophers are seated at a time.

HEWDININGROOM = DTNINGROGM| |BUTLERO

where BUTLERr {for n between ¢ and U) describes the behaviour of



the butler when there are n philosophers seated. For exemple
BUTLER, = {O getsup+BUTLFE [1...0L getsup—‘BUTLEF’.?l)

The remaining cases vill be defined later.

SEQUENTIAL COMBINATICN OF PROCESSES

The process ABCRT has teen defined as one that never dces any-
thing, because it is already broken. We now wisk to introduce
another process SKIP, which also does nothing, but for a completely
different reason: 1t has already succeeded, and there is nothing
more for it to da. Successful termination can be regarded as an
event denoted by & special symbol / {success), and the process that
just succeeds 1s:

SKIP = {<>,<v¥>},
(See technical note (2).)

The uge of SKIP can be illustrated by sdapting some previous
examples.

{a) A vending machine which participates in just one transacticn
(successful or unsuccessful):
VM1 = (5p + (S5p + {large + SKIP [J 5p + ABORT)
0 smell » SKIP)
N 10p + (small =+ {Spchange + SKIT)
[ large + SKIP})
{b) A customer, who terminstes successfully after a single success-—
ful transsction:
CUSTOMERC = (5p - large + SKIP
0 10p + large - SKIP)

{e) Their joint behaviour is:

VM1| |CUSTOMERC = (5p + ABCRT
0 10p + large -~ SKIF)
Kote that when v is in the alphatet of both P and @, successful

termination of (P||Q) requires that both of them terminate success-
fully, (See technical ncte (3)).

The introduction of the concept of successful terminaticn permits
the definition of sequential composition (P;Q) of processes P and Q.

7



This tehaves first like F, If P fails, then so does (F;G). PBut if

F has terninated successfully, (T;0) continues by behaving like €.
More fomally,

7.

20 = fsls is in ¥ spd s does net certaln

v{st]s<s> is in F and t is ir G}

Ve adapt the convention that sericolon binds rost tightly, so thet

a+P;00R=a~-+ (0 CR

A simple repetitive statement can te defined

(a)

(e)

(r}

(1)

for i:¢..n»p, = SKIP if h<g
=P P i if psn
LD ’?h if ¢
P ooatil @ =2 (p; (P until 0})

A vending macrine whieh serves st rost three customers:
VM= VM1, VMl Vvl

£nd now twenty customers:

VM2 = for 1:1,.20 + V1

Ar gutometon which accepts any number of "a"s Followed by o
" "

sirgle "b" ané then the same rumber of "¢'s:
tp” = v - exTE D (2 » {(A%RcTy {c -~ sKRIPIIY

A rrocess which accepts any interleaving of more "ur's then
"down"s: Tut terminates successfully on first recelving core

" ",

more "down" thap "up

PCE = (dowr —+ SKIP [ up - (POS,POS))

MNote: to counteract an initial "up" it is necessary to accert
tvo more "down"s then "up"s; this 1 done by flrst accepting
one mere, and then by accepting one more again.

An alternative formuletion of (g):

POg = {up + PCS) until (down -+ SKIP)

A process that tehaves exectly like COUNTC:

7EFC = (iszero - ZEPO [ up » (POS; ZFRO))



{i) An eutomaton that accevts egual rumbers of "a"s, "¢"s, ard "e"s:
aPecfoE” = (ATEcT; (g + skrr)) |1 cTpE!
n..n _ . .
where C'DE will Fe defined Telow.

The first process ensures that the "c's match the "a"s, end

ignores the "e"s. The other process ignores the "a's, but ensures

w_n

that the "c's are matched by the "e''s.
In future we shall often sbbreviate

"(d - SKIP)" to just “3”

ALPEABET TRANSFORMATION

Tet £ be a totel function which maps the symbols of one alpha-
bet ¥ onto symbols of snother elphabet 7, so that:

fly) is in 7 for all y in Y

Given a process F with alphabet ¥, we can define a process f(P)
with elphabet 7, which behaves like P, except that it does Tl
vwhenever P would have done y.

£f(P) = {fls)|s is in P} (See techniesl note (L))
vhere f(s} is obtained from = by applying f to each of its symbols.

{a} to represent the =8d effect of monetary inflation on & vending
machine:

REWVM = £{w)

where f{Sp) = 10p, f(small) = verysmall, etc.
(b} & process used in an earlier example

cPrE® = £(ATRCT)

vhere fla) = ¢, f{v) = @, end flc) = e

The most frequent use of alphabet change will te to give diff-
erent names to otherwise similar processes. £So we intrcduce a set
M of special symbols tc serve as process names. If x denotes an
event, and m is & name in M, then the compound symhol "m.x" denotes
participation in event x bty a process ramed m, We stipulate that
events prefixed by distinct process names are distinet:

m* n implies m.x * n.x

vith the exception that m.” = ¥ for all names m.
9



The prefixing of a name is accomplished by a function
prerixn (x) = m.x for all x.

We can now define m:P es a vprocess with name m, which does r.x when-
ever P vould do x:

:F = prefixm(F) (By comvention r: P3allP = ir: (D;a))|{R)

(¢} Twe distinet vending mechines, operating independertly in
parallel {by interleaving of traces):

(red:vM || green:vM)

In general, the alphabet of a process will contain (in eddition
to events that require participation of its external enviromment)
certain other events vwhich represent its internal workings. These
internal events are intended to occur automatically , without part-
icipation or even knowledge of the enviromnment. To model the con-
ceelmrent of such events, we wish to remove the corresponding syrmbols
from the alphabet of the process, and from every trace of its
beheviour, TLet X he the set of symbols to De concemled; the result
of the concealmrent is defined:

P\x = {sV(F-x}) | s is in P} (See technical note (5)}
where F\Y = P-X {set subtraction)

(d) A soundproofed version of NOISYVM

NOISYVM \ {clink, clunk}

When & process has been defined by parellel composition of two
or more processes, the mutual interactions of the component pro-
cesses are often of no concern to their common envirorment. These
interactions are just the events named by symbols occurring in the
alphebets of more than cone of the cormponents. We represent the con-
ceelment of these events by enclosure in sguare hrackets:

[F])q? = (F|]a) \ (BaQ) - (/1

This definition generalises to more than iwc components:

[P1£1P2|1...I|?n] = (P1||PPH...HPH)\ X - {V}
U —_— -—
where X =ii=j(Pi n Pj)

{e) A USER process uses @ COUNT register named m, interacting with
it by events

{m.iszerc, m.up, m.down}
10



These interactions are to be ccncealed, thereby ensuring that the
register serves as a local varistle for the benefit of only the
gingle user:

rm:COUNTOIEUSIEI
(£) Sirilsr to (e}, but with two registers:
En:CCUﬂTQ!|n1:CCUN?OJ!USF31

{g) Inside the JSFR process, the following subpreccess will ad? the
current vazlue cf n tc o, leaving the value of n unchanged:
ADDETOM = {n.iszero - SYIP

C n.down -~ ({m.up + ADDNTCM)
{(n.up -~ SKID)
A
7
)
Another use for concealment is to remcve v from the alphshet of
a process thet is not intended to terminate. For example, if F is

a normelly terminating process, *P is a process vwhich repeats P for
as long as is required by the enviromment within which it rurs:

*p = (p; (*P))\ V)
(h) 2 femiliar example:

VM = *UM]

INPUT AND GUTPUT

The rodel developed in tne previocus sections is sufficiertly
general to apply to any kind of event. In tke following sectiors
we shall te corcerred vrimarily with communicatior, events, irvolving
output of inforration by cne process end irput of informatior by
another. For these events we introduce particular notatfons, If ¢t
is & value of tyme T, then

't denotes output of a message with value t
7t denctes inp_ut of a message With value t.
(a) A process which behaves as a Boolean varishle. At any time, it

is reedy to input its next value or to output the value w¥hich
it has most recently imput (if any),.



BOCL = (%?true + TRUFROOL [N 7felse + FALSFRCOL)
TEIEEOCL = {ftrue - TRUTECCL [ 7false -+ FATSTEOCL

" ltrue ~ TREUFBOCL}
ard FALSFRCCL is similar,

¥hen a process performs input of some value x, its subsequent
tehavieur will ususlly depend on the value which it has just input.
Llthough the type T of X ray be known, the identity of the value
which is actuelly going to be input is usually nct known; the pro—
cese must bte prepared teo do 7t (input of t) for apy t in T; the
selectisn will be made Ty its environment. To ackieve this we
introduce & form of input commard:

(200 » B ) = (<>} v {<?t>s|for t in T ane ¢ in F,}

N¥ote that the veriable x is a dummy (bound, locel) variable in this
conslruction. Tt is not a symbol, and it does not appear in any
traces of the process.

(L) A process which just copies whet it inputs:
COPYp = {2x:T » Ix + COPY.)

T™is process serves as a one-place buffer,

{¢) Similar to {h), except that consecutive pairs of "*" are

replaced by "t'":

SQUASH = *{?x: CHAR »
if x = "*" then Ix
else {?y:CHAR =+ if

i1y
else ! ™" > 1y))

= "*" then ! "t"
{a) A process which behmves as a variatle of type T:
= TR
VAR, {ox: T » VARX)
where VAR, = (!'x » VAR_ [ (7y:T - VAR_))
x x ¥

VARX is the behaviour of & variable with value x.

Clesrly, BOCL = VAF{false,true}

{e) A process which inputs cards, and outputs their coentents one

cheracter at a time, interposing &n extra space after each
card:

12



UNPACK = *(?c :CARD -
{(for i: 1..80 = ic.} 5 1" ")

i
where CARD = arrey 1..80 of CHAR.

(f) A process which inputs characters one at a time and assembles
them into lines of 125 characters, which are tben output

PACK = PACK
where PACKg

1L;PACK {if length (&) = 175)

(?c: CHAR ~ PACK, ) {otherwise)

[odd

{(g) » queue QUEUE,, at any time is prepared to input & new element
of type T, or to output the element which was input the
earliest {(if any):

QUEUE,, = BUFF <>

T
where BUFF = (%x:T + BUFF__ )
<> <x>
end for s = <>,
= Py
BUFF (7x:T ~ EUFF5<X>

D! first{s) - BUFFrest(s})

(h) & stack ie similar to a queue, except that it outputs the
element which was input the latest; it can also give an
indication when it is empty:

STACK, = *{! isempty + SKIP
02x%:T ~ STKX)
where STK = (?y:T - STK_ ; STK_C !'x + SKIF)
x ¥ x
is a stack with x as top velue, which terminstes when empty,
COMMUNICATION
Suppose tbat we wish two processes P and Q to operste in par-~
allel in such a way thet every message output by P is input directly
by €. The resulting compound process is denoted (P>>Q), which can
be rend: "P feeds Q". %he synchronisation invelved in direct com-
munication requires that each output 't in P be regarded as the

same event as an input 7t in Q. Such events are to be concerled
from their common environment.

The required effect is achieved by transforming the alphsabets
of P and @, prior to their composition., Thus we define

P>>Q = Tgtrip!(F)]||strip?(Q)]

13



t, strip!(7t) = 7t
t

vhere stripi(It)

and strip?{It} = !t, strip?(?t)

Note that all ocutput fror the cutside envircnment 1is irput hy P, and
211 oitput ty € is input bty the envirommert.

{(n) Text is te be irput from BC-column cerds ard output in lines
of 125 characters each:
LISTING = UNPACK>>PACK

(¥) Smiler to the mbove, except thet consecutive "*"s are to be

replaced by 4"
CONVAYS FXAMPLE = UNPACK>>SQUASH>>PACK

{¢) Similar to (a) except that communicetion is desyrchronised by
irterpesing an unbounded buffer :

UNPACK>> QUEUECILF\P. >>PACK

Ttis exemple shows thaet no geperality is lost by teking syn—
ctronised cormunication as primitive.

(d) Similar to {c) but with only double buffering:

I s
LNPACK”COPYCHAE»COPYCHAR)>PACK

NAMET SQURCE AND DESTINATICN

The »> comtinator sllcws construction of chains of anonymous
commuricating processes, eech teking input from its predecessor and
senditg output to its successor in the chein. TFor other more
elaborate patterns of communication we sball use named processes,
and sllow each input or output to quote the name of its source or
destiretion:

mit denotes output of message t to process nemed m

m?t denctes input of message t from Drocess named m.
{2) tc update and test e Boolean variatle named Yv: BOOL

USERE = (...b!'true ...(b7true + ... [b?false +» ...)...)

Tris hes the effect(..b:=true...{if Y then...else..,),..)
Ve also need to input arbitrary values from & nsmed source:

(02x:T » P ) = {<>} u [en?t>si{t is in T end s is in E)



{2} to updete an irteger varistle nened m3
USTRM = [0 1T Lo IroxeI0T » m (ee2)d 0000

Tris hes the effect: {.o. mi=T .., mi=m+3 ...}

Fenceforth we shell use these ccnventicnal notaticns for
urdeting varistles.

—
]
-

o subroutine which repeatedly inputs a floeting peirt argument
ard outputs its tangent ac result:
TN = ¥(?x:TP - sinlx » coslx »

(gin%y :FP + (cosTz:FP » {y/2z)1})
In order to estsblisk synchrorised cormunicatior between s
narmed process m:P and an unremed process ¢, We neec tc ensure thet
eech m!t in § denotes the same event as 7t in P, and eech r?t in O
denctes the sare event as !t in ¢, This is conveniently achieved

bty adapting the defiritior of prefixr wher. applied to input end
cutput events, thus: ’

prefixm(?t} = m!t eord prefixm(!t] = m?t.

In future we shall assume thot this adapted definition of prefix
is used in process naming. m

As in the case of »>», it is vsually desiratle to conceal com—
munications with & nemed process. We therefore define

{r:r|jqQl = (m:P11Q) \ m.x
éf
vhere m.% is the set of all symbtols prefixed by m.
(¢) to declare a locsl Beolean variable for USEPE:
v:ecer| |vsERE]
(e) to declare a local integer variahle for USERM:

(m:VAR_ | |USERM]T

INT

(f) & subroutine which calls two local sutroutines te assist in
its csleculations:

TARGENT = [sir:5TN|)cos:cos|!Tan]

{g) k& subroutine which eomputes a factorial by recursion. #s
before, the argument and result are communicated by input and

output:

15



FAC = (7x:BK » if x = C ther I”
else [f:Feci|
£1(x-1); (£7rm - L))

Fachk artiwvation, Iif recessary, creates nnother activeation to cormpute
the rerursive call,

(h) £ cimiler technique can Ye used to define s recursive data
structure, for exmrple, a set which irputs its merbers, cnd
arswers "!yes" if the value input was already o nmember and
"1n0" ctherwise. Tach sctivation stores ore number x, end uses
a recursive activaticn to store the rest of the set.

Fln = {7217 + 'no »
[rest:o77_I|
T - 1_} y = ¥ then lyes
else restly - (restlyes = lyes
~

U rest?no +

)

no

11)

Tte previous examples show cormunication tetween s single nered
(slave) process and a single urnamed (mester) process. In nore
generel coprunicaticon networks, it 1s necessary to allow one nered
process to communicate with another nared rrocess. As before, this
is seromplished Ty egueting the event r!t ir & process nemed n with
the event n?t in & process nsmed m, Agsin, the definition of
pr‘efili]_r is adapted for this purpose:

prefixr(n?t) = prefixn(m!t) = n.nlt.

(i) & network for multiplicatior of a matrix hy a wvector. Trocesses
CiLl, C0T2, COLR output the colurns of B ratrix IN., Values

Vis Vos ¥ form z vector hy which the metrix is to be multiplied,

The resulting column is ‘o te output to a DISPLAY process.

Cince It i1s desiretle to input three runbers st a tire, srd
multisly three nurters at e time, o network of rrocesses is
required. They are pictured in figure 1, where esch communicetior
channel is arrotated ty the typical value that passes along it.
Each of the processes M., M,, M3 repeatedly inputs & partial sum
from ebove and & column value f¥om the left, and then send its
result down to its succeascr. The algorithm is defined:

[no:uo|{ml:ull|m2:M2[|m3:M3[|mh:DIspLAYJ
where M_ = :(ml:o) (e source of zeros)

0
16



and for 0 < 1 £ 3

Mi = _’:(mi_,?swn:r“‘r" -+
col.?x:FF + n, ! {(sum 4 v.*x
i 1+1 1 )
o
C
-
o y
X
ol N »
_ ——— 1
el . ¥
O+l ¥ )
h 4
b ¥om
CO": 3?.?
At 5\ .
+iy *y,,+f\,;*xﬁ:
" .
[oTonl X2 o
2 = 2
f ¥ AN Y
¥ C+ !d: v_: +.‘\?*)\?1+g‘1‘)9ﬂ,3\
T‘,L

SHARING

Let ¥ te & finite or infinite set, ard let ?}. te a precess for
each x ir X. i

ABRCRT if ¥ is empty
PUHFVH v if ¥ ois {u,v, L)

e
B4
i
H

n

{see technical note {(€))

ABCRT if ¥ is empty

rp 0P O... if Xis {u,v, ...}.
u v

[Dx:X7F.
X

We define ANY as the set of gll process names,
and any{r) = {ri‘\i is an integer}.

{a) PHITOSOPHERS = [|]i:0.,43 FIII,

+1
(i getsup - BUTLER _ ) fer n=0..3

1
17

(b) EUTLFE == [Fi:0..b7 {i sitsdown —~ EU‘I‘LEPn



(¢) 2nexclusion semaphore:
MUTEX = *([Ox:ANY 'x?acquire + x%release]
Tt must be released by the seme process vhich aceuired it,

(&) pn array of three excluslon semaphores, rrotecting three ident-
ical resources:

£ vuser can acquire and releese any c¢ne of the availahle resources by

{Mpine:any{r)Imine’acquire ~» ...use the resource...;
rinelrelease)

(e} A hardware line printer with name R is to be skared for the
cvtput of complete files
Ijh = ®([Mx:AFY x%acquire =
(x72:1IFF + h!% until x%relesse -+ OKIP))

Zach tereticn of the major loop first "acquires" an arbitrary user

X, ant then copies lines from x to h, until receiving a "release”
signal.

(£} mis irproved definition of LP, ensures that eack user's file

is separeted from the next by a "!throw” to the next even page
toundary, and two rows of “lasterisks".
P, = (hithrow + hiasterisks +
2([Ox:ANY x?ecquire + hlasterisks;
{x?2:LINF + if ?#asterisks then h!% else SKIP
until x?release);
kithrew + hlasterisks)
{g) ! shared varisble of type T.
SHARy, = [Ox  ANYIx7?y:T ~ SHy)
vhere SH = {{[x:ANYTx!y + 8I
Y Y
OO ANY Ix?2:7 + syz)

This exemple shows that r communication-brsed theory of perallelisr
ig rot in orinciple different from cone tased on shared varistles.



5, When many rrocesses atternt clirmlte
* orezcurce, oll Tut nrne 3
is released, it is not determined in
* Ire the resgurce. T8 4
acqalsition, we need oo

w113 serareve Lhe reguest ard the

In the previcus exam
crecusly to zoqnlre g’
; 8 viher the re
what seguernce they vi
irrortent to contrel
corp’lcoted srreiuler

granting of the resource 25 distirct eventr.

T e 4
-~ TRYe Ar

S

»

EXA

ctunlly e

M) A "first-come first-served" scheduler, sharing a group of ¥
resources. £ QUEUE is needed to store the names of weiting
users, and an integer to indicate the number of free resources

minus the number of ungranted recf;llests:

TATR . = [ OTIFTT AN
FOTC, = La:PURTT | freaV/ Tn

2w
=1 141

onventiopral n i A een uged T lating varialles,
Convent otations kave leen used Tor updating varial)

A VILTIFROGRAMVFTY RATIF PROCESSIVG RYSTHM
A multirrogrammed tateh processing syster inmuts jobs fror eny
of T cardérezders, executes them on any of F processors, and ovtnuts
the resulits on rny of I line printers. An account is kert of the
cost of eack jok, =nd this Is prirted out at the epd. IF the cost
exceeds & certmin limit, the jor 1s truincated.
The overall structure c¢f the system iIs
MEPS = [CARDRFADERS||LINFPRINTERS| | PROCESSORS ]
where CARDRFADERS = [| |i:l..C]cri:CRC_
i
and  LINEPRINTERS = [||i:1..L11p;:LP, .
i
and  PFOCESSORE = [ l$:1..Flpr, :FROC.
Fuch processor executes 2 streem of jcbs submitted bt users:

FROC = *3INGLEJCD

The process STNGIEJCE executes & single user's jeh; teking irput
from eny free reader and channelling cutput to any free printer :

19



SITZLESCR =

H I ! Y |
Loest i VAR | le NE . !
{(IHr:ery(eridinlacouire
[Ceatiany(1p) Tout lecquire -
cost:=C; RUE,
inlrelesse;
out 'accocunt(cost); out!release

)]

The process RUN needs an auxiliary vrocess USFR (nct sthown here)
which setuslly executes the user's job. This USER is essured to be
initislised to some standard compiler or control language inter-—
rreter, It interposes a reguler "!timeslice" signal after every
millien instructions executed; and sends a "!finished" signal when
the user program is finished (if ever):

AU = [nr:USER| |TOCPT

where LOOP = cost := cort + 1;

if cost > costlimit then SKIF
else {pr?i:LITT + out!t + LOOP
Tpric ~ {in?x:CARD + ¢!x + LOOP)
Cpr?tineslice » INCP
Tprifinished » SYIF
)
In preetice, the interface btetween USER and I1OCF will be implemerted
ty hardware protection mechenisms end by supervisor calls and exits.

In crder tc prevernt interference tetween successive jobs sub-
mittel in a Tetch, the cerds of each job are sersrated fror the
next lot by an "endcard", which is used for nc other purpose. "he
task of CE is to ensure thet the cards for each job are consured
right up te the endcard hut not teyond it!

3, = *([Cx:ANYIx7acquire » (h?c:CAPD » FILF })
whevre FILE = (xIc - if ¢ = endeard ilhen FIIT

else(h?c:CARD + FII.FC)

x?release -+ SCANC)

¢ = endcard then SKIF
else(h?c:CARD =+ scm;c)
240

if
—

where SCANc



If tre user stterrts tc reed Teyond the endeard, he Just rets
furtrer cories of tre erdcerd.

e ncw specify ar arrey cf processes which rerforr pseude-
offlire output of files. Tach rprocess uses a file {acquired fron n
filirg system) to told the user's oultput, and zcquires & real line
printer cnly when the user's output Is complete,

SPCCLLI PR

CHlmmtsap, @ qIp

L]

where SI® = COx:ANY'x%pcquire -+
Cfiany(file) 'flacquire +
(x70:TTHF =+ £13 urtil x%release);
flrewind;
{TTout :eny{1p) Tout lacquire +
(F?2:LIMF + out!? until f%eof);
out 'release}

SIP acts 1 ke a ""process” in a languege like MODUTA; A new "instance”
comes into existence as a result of each "call" of the form:

(MDout:any(s1lp)loutiecquire + ... outltl...out!e?...out!release)

DISCRITE EVFET STIMULATICH

In desigring & progrer to simulate a fragment of the real world,
it 1s pecessary &lso to simulate the passage of real time. Any pro—
cess of the progran may teed to enquire the current value cof sirul-
ated time, by inputting it fror 2 "timer" preocess:

(tirer?t:TIMF + ...t is time now...).

Furthermore, a process may need to delay itself until simulated
time renches some predetermined value, say & o'elock. This is done
ty outputting the required "alarm setting" to the timer process:

timer:8

This is an event which is guaranteed to occur cnly at & o'clock (in
simulated time). Thus, to delsy itself for & urits of simuleted
tire, & process can perform the actions:

FOLD{d) = {timer?t:TIME ~+ timer!{t+d})

The timer process 1s always prepared to output the current
value of simulated time. It is also prerared to input s value,
provided that this is equal tc the current value of sinulated time;
ir this way a process performing a HOLD operation is permitted to

21



continus., TFinally, if all activity of the user processes has tern-

ineted, the simulated time clock is stepped or to its next value,
TN deserites the Yerzvicur of the tirer st siruvlated tire +:
T = (T ATY Tx Iy » TIV
t ’ t
CMlx ANY x 7t ~ TIF

t
Matt L2 mTpe
Lothervise —+ *n‘next(t)

where "othervise"

is an evert which 1s interded tc oceur orly vher
rothirg else can occ

Ur.

It remains tc give a rigorous definition of such an event. If
P is = process, we define rescuee(P) as:

rescuee(l-') = Nel

where o = (sﬂs is in F
ard 1T t<e* is an initial sutstring of s
snd if t<y> is in 7, thern % = e}

How 1if tte USFPE are s groun of processes to he executed ir sirulated
time

similate (URIRE) = 4f

rescue (timer:TIT'of |1' rG) .

timer.,otrervise

+

(o} Iet TATES te & set of nanes of unidirectiomal paths in a net-
work, TFor each posth p in TATEG:
length (1) is the time taken to traverse the poth.
sice {r) is the set of paths Tending from the Aestinstion of p,

FPﬁ‘RKn is & process representing a sirgle traversal of nath py

it is iriggered ty & "gtart” e&iprel from ore o ifts pre-
deceesors, and after traversing the neth, 1t rronsgetes
e start siznel to 211 ils successors in perallel:

fPARK = (Ils:BpTFR"g7start —+
FOLD{lengttit));
({16 sucelp)idlstart + £3CPT)
).

(t} # speciel path "dest" is singled out as the intended cestin-
ation of & journey. It triggers the start noirnt of tre jourrey,
ind then weits for the first spark to propvagate tack tc itself.

22



It tren outputs the tire ard termirates sucressfulTy:

NEFT = =curc

fe) Te cutput the Iergth of the shortest routs in the netvory
hetween the source ernd the destireticn:

sirulate (Z)1p:i(PATES - ‘dest})] piBPARY_

Il dest:nram)

{1} & mechine shop possesses ten groups of machines. Tach group
contains seven mnechineg, which are scheduled by a foreman using
5 "first-come, first-served” discipline. The shon has to Tro-
cess 2 set cf orders i1dentified ty names in ¥. Farh order in
turn uses a resder to input its parameters:
sterttime: at which it enters the shop,
numberofsteps : required to fulfil the order,
and for eech step:
machinegroup: of machine needed for this step,
servicetine: for this step.
fn exelusiorn semaphore is required for prover sharing of the reesder.
Cutput of results has been ignored:
MACHIYECHCP =
simulete ([rdr:MUTEY
f1r}li1. . 100foreman :FCFS,
1 |
110 ] 1% :%]x: ORDEF
1
Fach order must read in its paremeters before starting tc nro-
gress in the simulation proper., All orders initially compete to

use the reader for this purpose. It dces not matter in what sequ-
ence they actually acquire it:

ORDER = (starttime: VAR .|| numberofsters:VAR, . []
e

Rul
rérlacquire; (readerin:8N -+ starttime := n);
(reader?n:NK + nurbter of steps := n);

reflisn. -rumterofstepsJrachinegroup; : VAR,

23



due.,

HIREER D .nurr.herofste‘psTSerV'i'.ceti:|ei: ViR
Pl . o
P:{far {:1,.numberofsteps ~

{reaCer?r:¥I + rackiregreourn, := n};

f . - .
treader?r:RE + serv1cet1mei:=

rérlrelease; FROGREEC

A

Tre first acticr of esch order is to wailt until its starttime |
It then progresses through each ster, ecquiring its rachine

from = fcrerarn, and holding it for the reguired service tire;

FRICRESE =

{sterttime?m:KI ~+ tirerin);

(for 1:1..rurterofctens -
(machinegroupi?mg:N“ -+
foremanmglrequest; foremanm lgrented;
(servicetimei?r:HF + HOLD (n));

foremanmplrelease

\
/

TEZERTTLL KOTFG

B T

tre

(1)

(2)

Te¢ 2void the introduction of

following restrictions:

nen—¢eterminism, we have oheserved

Define pO es the set of symbels denoting events in which P can
perticipate on its first step:

p = {x] < ¢ P}

We use H)q only when POnQO = {1}, =so that the decision between
Foend G can be made on the first ster,

The event of / oceurs only at thre end cf a trace; and vher it
does oeccur, it Is the eonly event that can occur:
Zor 0ll traces =,

if s/ is in F, and st is in F then t = <>

'is ensures that successful terminmtion cf a process is clwvays
ceterministic,

T



{2} If v is in the elphatet P vut nct © ther 21t i allowed only if

the alphstet of £ is wholly conteined in the alphabet of 7. Trig
ersures tke+t successfl terrination of 7 autoreti~ally c.ls chort
any furthker activi s

ty of &.
3 » “ - : . 3
(4} fr alphate* +rapsformetior is always & ore—ore Zurctiorn.

5,‘ Jescerihes the future tehavicur of T wvher s ig
ts pest hehaviour:

{r} For s in T, F
the trace ol

F(s} = {t'st is in P}

Ve defire s\¥ es sT{F-¥)., Ve insist that sfter concenlrert of
¥, the future rehaviour of o process 1s still uniouely deter—
mined ty tre still visltle syrtols of its »ast >eheviour:

Tor #11 s znd

IF e\ = t\Y tren F'aW\¥ = Z{t)\r

[7Y fr infinite array of noreliel processes wust net cormunicete
witt esch other {th

eir alrhatets rust he disjoint}. This
ensures that the Infinite parallelisr can te defined as the
lirit of the parallel corbtinsticon cof a2l Finite sutgets,

ACKUCUTERGIMVERTS

Acknowlecdgererts are due to many colleegues. The inspirstion
for the design of comrunicating processes is due to T I7 jistrs,
R. ¥ilner showed how » wmetheraticsl rodel Tor them could Te ror—
structed. . Camplell snd T. laver ~re responsi'le for the parallel
combinater, M, Francez znd W.F, de Toever helped substartially in
the development. J. Kennaway pove necessary nethematica? suprort,
F.V. McKeag designed tre cnerating syster and W.-E. Kaubisch designed
the sirulation program. Impreoverents over early drafts vere fue to
perspicacicus comrents of T, Tijkstra and A, Yasuhera. ™™= sinnl-
ation exemple is due teo O.—7, Dakl, and sc is tre formuleticn of
Dijkstra's shortest nath mlgorithm. The BUTLFR is due to

C. Scholten.

25



References

Dijkstra, E.W. {1968). Co-operating ssquential

processes. In Programming Languages, ed.
F, Genuys. Academic Press, New York,
pp. h3-112,

Dijkstra, E.W. (1975). Guarded commands,
nondeterminacy, and a calculus for the
derivation of programs. Comm ACK 18.8,
pp. 453-457.

Hoare, C.A.R. (1978a). Some Properties
of Predicate Transformers.
JACM 25, 3, pp. L61-L4BO.

Hoare, C.A.R., (1978b). Communicating
Sequential Processes.
Comm. ACM 21, B, pp. 666-677.

Kaubisch, W.-H., Perrott, R.H. & Hoare, C.A.R.
(1976). Quasi-parallel Programming.
Software - Practice and Experience, 6,

pp. 341-356,

Milner, Robin {(1978). Synthesis of
Communicating Behkaviour. Mathematical
Foundations of Computer Science.
lLecture Notes in Computer Science 64,
Springer-Verlag, pp. 71-83.

26



PROGRAMMING RESEARCH GROUP TECHNICAL MONOGRAPHS
JUNE 19881

This is a serigs Of technicai monographs on lepics in the field ot computation.
Coples may be obtained from the Programming Research Group. Technlcal
Monographs). 45 Banbury Road. Oxford. OX2 6PE. England.

PRG-1 (out aof print)
PRG-2 Dana Scoitt
Outline of a Mathematicai Theory of Computation
PRG-3 Cana Scoft
The Lattice of Flow Diagrams
PRG-4 (cancelied)
PRAG-5 Dana Scott
Data Types as Lattices
PRG-6 Dana Scoil and Christopher Strachey
Toward a Mathematica! Semantics for Computer Languages
PRG-7 Dana Scott
Continuous Latices
PRG-8 Joseph Stoy and Christopher Strachey
086 - an Experimental Operating System for & Small Computer
PRG-9 Christopher Strachey and Joseph Stoy
The Text of OSPub
PRG-10 Christopher Strachey
The Varfeties of Programming Language
PRG-11 Christopher Strachey and Christopher P. Wadsworth
Continuations: A Mathematical Semagnties for Handling Full Jumps
PRG-12 Peter Mosses
The Mathematical Semantics of Algol 60
PRG~13 Robert Mline

The Farmal Semantics of Computer Languages
and their implementations

PRG-14 Shan S. Kuo. Migchael H. Linck and Sohrab Saadai

A Guide to Communicating Sequential Processes
PRG-15 Joseph Stoy

The Congruence of Two Programming Language Definitions
PRG~-16 C. A. R Hoare, S. D. Brookes and A. W. Aopscoe

A Theory of Communicating Sequentlal Fracesses



PRG-17

PRG-18

PRG-19

PRG-20

PRG-~21

PRG-22

PRG-23

PRG-24

Andrew P. Black
Raport on the Programming Notation 3R
Ellzabeth Flelding

The Specitication of Abstract Mappings
and their impteamentation as Bt-trees

Dana Scott
Lectures on a Mathematical Theory of Computation

Zhou Chao Chen and . A. R Hoare
Partial Corraectness of Communicating Processes and Protocols

Bernard Sulrin
Formal Specification of & Display Editor

C. A. R. Hoare
A Model for Communicating Yequential Processes

C. A. R. Hoare
A Calculus for Total Correctness of Communicating Processes

Bernard Sufrin
Reading Formal Specifications



