g1z ey 2

A CALCULUS
OF
TOTAL CORRECTHESS
FOR

COMMUNICATING PROCESSES

BY

C.A.R, Hoare

Oxford University
Somputmg Laboratory

rogramming Research Group-Libra
8-11 Keble %oad P v
Oxtord OX1 3QD
Oxford {0865} 54141

Tecknical Monograph PRG-23
April 1981

Oxford University Computing Laboratory,
Frogramming Research Group,

4% Banbury Roaa,

Oxford, 0X2 6PE,



(© 198 C,i.R. Hoare

Oxford iniversity Computing Laboratory,
Programing Research Group,

45 Bantry Road,

Oxford. Ok2 6FE.



ABSTRACT

A process communicates with its environment and with cther
processes by synchronised output and input on named channels, The
current state of a process is defined by the sequences of messages
which have passed along each of the channels, and by the sets of
messages that may next be passed on each channel, A process satisfies
an assertion if the assertion is at all times true of all possible
states of the process. We present a calculus for proving that a
process satisfies the assertion describing its intended behaviour.
The following constructs are axiomatised: output; input; simple
recurgion; disjoint parallelism; chamnel renaming, connection and
hiding; process chaining; nondeterminism; conditional; alternation;
and mutual recursion, The calculus is illustrated by proof of a

number of simple buffering protocels.
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& CALCULUS o TOTAL COHRECTNESS
FOR COMMUNICATING PROCESSES

Dedication: to my son Matthew 1967-1981.

INTRODUCTION

A process comBDunicates with its environment and with other
processes by synchronised output and input on named channels. The
current state of a process is defined by the sequences of messages
which have so far passed along each of the channels, and also by
the sets of messages that may next be passed on each channel. A
process satisfies an assertion if the assertion is at all times

true of all possible states of the preocess.

We present a calculva for proving that a process satisfies the
assertion deseribing its intended behaviour., This is illustrated
by proof of a number of simple buffering protocols. The claim that
the calculus captures the concept of total correctness is based on
the fact that it proves absence of livelock, and perwits proof of

absence of deadlock.
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& process communicates with its envircnment by sending and
receiving messages on nazed channels (Fig. 14). The names of these
channels constitute the alphabet of the process. A process may bde
constructed from a group of subprocesses, intercommunicating on a
network aof named channels (Fig. 1B, C). A message output by one
process along a channel is received instantanecusly by all other
processes cormnected by that channel, provided that all these processes

are simultaneously prepared to input that message.

On each named channel, it is possible to keep a record cf all
messages passing along it. (For simplicity, we igmore direction of
communication: if desired, this could be recorded as part of each
message.) At any given mement, the record of all messages that have
passed se far on a channel ¢ is a finite sequence, which will he
denoted by the variable "e.past". At the very beginning, the value of
c.past (for each channel ¢} is the empty sequence < » . During the
evolution of a process, whenever a message m is communicated on
channel ¢, the value of c,past is extended on the right by @, and the

new value is {c.past <cm> ).

At any given moment, the set of messages which a process is
prepared to communicate on channel ¢ is denoted by the variable
“c.ready”, Wwhen the process is not prepared tc communicate at all on
channel ¢, the value of c.ready is the enpty set @, When a process is
prepared te input on channel ¢, the value of c.ready ig the set M of
all possible messages (or that channel, Wwhen a process is prepared te
output some message value m {selected from M), then the value of

cyready is the unit set {m} , which has m as its only member,

Variables of the form c,past, c.ready are known as channel
variables., Since we do not wish to be concerned with the internal
states and transitions of a process, we shall identify the current
exiernally observable state of a process with the current values aof

its channel variables.
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An assertion with a given alphabet is a normal sentence of logic
and mathematics, which may contain free channel variables of the form
“c.past" and "c,ready", where ¢ is a channel name in the alphabet of
the assertion, The assertion describes certain possible states of
some process at certain moments of time., For example, the following

are asgsertions, with informal explanations of their meaning.

(a) 1left.past = right.past
"The sequence of messages which has passed so far along the
left channel is the same as the sequence that has passed along

the right channel”

(b) left.ready = M
"The left channel is ready for input of any message in the

set M*

(c) right.past £ left.past
"The messages paseed on the right channel form & proper initial

subsequence of the messages that have passed on the left"

(4) right.ready = {first (lef‘t.past-right.pa.st)]]
"The right channel is ready for output of the earliest message

on the left which has not yet been transmitted on the right”

Asgsertions may be readily combined by the familiar tornnectives of

logic. For example, we define for future use the assertions

BUFF 4 left,past = right.past & left.ready = M
v right,past € left.past &
right,ready = {f‘irst(left.past -right.past)}

This assertion describes all possible states of a buffering process

(or transparent communications protocol), which outputs on its right
channel the same sequence of messages which it inputs from the left,
though poeeibly after some delay, When left.past = right.past, the
process has an empty buffer, and it must then be prepared to input any
message [rom the left, In the alternative case, the buffer is nonempty;
it contains the sequence (left.past - right.past) of messages which are
awaiting cutput on the right; and now the buffering process muat be



prepared to output the first element of this buffer. The assertion
BUFF does not say whether or not input on the left is possible when
the tuffer is nonempty; and thus it does not specify any particular

bound on the size of the buffer.

Let P be a process and let R be an assertion with the same
alphabet as P, Then P is said to gatisfy R if at all times during any ross-
ible evolution of P (before and after each communication) the assertien
7 correctly describes the obeervable state of P, i.e., the sequences
of messages that have passed along its named channels, and the sets of
messages that are ready to be communicated on the very nexi step.

This relation between processes and assertions is abbreviated:
P gat R

For example any process P which is to serve as a buffer or transparent
commynications protocol must satisfy the assertion BUFF. There are
many processes ihat do so - for example, a beunded buffer of any finite

size or even an unbounded buffer; examples will be given later.

1t follows from the intended interpretation of the relation
"satisfies" that the following properties should be true for all

processes P, and all predicates, R, S.
(H1) P sat TRUE

TRUE is a predicate which is always true of everything; it must
therefore always be true of the behavigur of every process,

(A2) — (P sat FALSE)

FALSE ia the predicate that is always false of anything; it canmot

therefore sorrecily describe the behaviour of any process.

(H3) R=23
(P sat R) = (P sat )

1f (R = 8) is a theorem, every state in which R is true is alsc a
state in which § 1s trwe. If all states of P are correctly described
by R, they muat also be correctly described by 5, and hence

({(P sat R) => (P sat 5)) is also true, (H3) is a useful proof rule,
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known as the "rule of consegquence".

Corollary: R=§
(P sat k) = (P sat §)

(H4) Ifn is not a channel variable, and dees not occur in P:
{Vn:N.P sat R(n)) == (P sat (¥ n:N.R(n)})

If, for each n in some set N, P satisfies R{n), then each state of P
is correctly described by R(n), for all n in N. The converse
implication follows from (H3), and ¥ -introduction.

Corollary: (P sat R) & (P sat 5§) = (P sat (R&S))

These four conditions are rather similar to the healthiness
condi tions introduced by E.W. Dijkstra [1] to check the validity of
each clause in the definition of his weakest precondition for
sequential programming. 0Onfortunately, our calculue is not strong
enough tv prove healthiness in all cases; so we have to introduce the
conditions as independent axioms, which must at least be consistent
with the other proof rules of the calculus,

Let R be an aamertion not containing the variable nj then we
define Afn (R restricted to n) as the assertion gatisfied by a process
which behaves as described by R for at least n-1 steps, i.e., at least
until the total number of communications on all channels reaches n,.

Let {a. temy z} be the alphabet of R. Let % s stand for the length

of the sequence s, Then we can define:

Ebn 2 (W a.,past + ... + )&( z.past 2 n) v R
Example: BUFFPn & (3 left.past + W right.past 2 n) v BUFF

Theorem 1. For any aesertion R
{(a} R}MO is a theorem
(b) (VYniMAT.Rtn)=r

Proaf: t¢.past ie a finite sequence for each channel c. So )&(c.past

is & natural number. R does not contain n, so
{Vn:NAT.RPn ) = (Vn.KaT. ¥ a.past + ..o + P& z.past > n) v R

R



Let R be an assertion possibly containing a variable x, and let
e be an expression of the same type as x. Then we define R[e/x] as
the assertion formed [rom R by substituting e for every free occurrence
of x, (If any free variable of e would thereby become bound to a bound
variable in R, the collision must be averted by systematic change of the

offending bound variable.) For example, we define
BUFF' & (BUFF I(n+1)) [¢x> lert.past/left.past)
BUFF" £ BUFF' [(.x) right.past/right.past]

After performing the substitutions, BU.FF“ expands to:

K’cx) left.past + Wexs right,past 2 n+1
WV cxy» left.past = <x> right.past & left.ready = M
Vx> right.past <cx> left.past
& right.ready = {firat (<x>» left,past - <x> right.past)}

The following theorem is typical of the lengthy but shallow truths

required in procls of correctness of programs
Theorem 2. BUFFfn —>{ ¥ x:M.BUFF")

Proof. Each clause of the LHS implies the corresponding clause on

the iHS.

Let R be an assertion with alphabet a..z}. We introduce the
convention that
R [ < >/past)
is the result of substituting the empty sequence <> for every occurrence

of any of the channel variables a,past, ..., z.past, For example

BUFF [€>/past] = < > = <> & left.ready = X
VoerL ey kL.,

which is equivalent to "left.ready = M". Il F sat R, then H[( )/pasa
describes all the possible states of P at its very beginning, before it
has engaged in communication on any of its channels, These states are
defined in terms of a.ready, ..., z.ready, which specify the sets of
compunications for which P should be ready on its very {irst step. Thus
if any process is to satisfy the assertion BUFF, it must at the begimning

be ready to input on its left channel any value in the set M.



By & similar convention

R [G/ready]
is the result of substituting the empty set §§ for every sccurrence

of any of the channel variables a.ready, ..., z.ready. For example

BUFF [;!/readﬂ = left.past = right,past & J = M
v right.past < left.past & ¢ = {}

which is always false. 1f P sat R, then R[( >/pasq describes all
poesible states of P in which it is not ready for communication

along any of its channels, These states are known as deadlock states;
and it is usually desired to prove that they cannot cccur. The states
are defined in terms of the variables a.past, ..., Z.pasi} and
therefore we only need to prove that R [g/ready] is false for all |
values of these variables, For example, any process that satisfies
BUFF can never deadlock (unless the set M of all possible messages is

empty - a possibility which we can realistically ignore).

As a final convention, we allow successive substitutions to be

separated by commas; for example

R [( >/past, g/ready] = (R [‘C 'J'/past] ) [ﬁ/ready]

One of the simplest processes with alphabet A is the process STOPA
which isalready deadlocked at its start. Clearly, it is never
ready to do anything, so c.ready = § for all ¢ in A, Purthermore, the
sequence of messages transmitted along each channel remains forever
empty, i.e. c.past = < »., In summary, the process STOPA has only this
single state; conseguently, it satisfies an asserticn g if and only if
H correctly describes its only state,i.e. if R is true when all the
variables of the form c.ready take the value @, and all the wvariables
of the form c.past take the value < », This informal reasoning

Justifies the axiom

(STOF, sat B) = R [;a/ready. < >/past]



Examples. The [cllowing are thecorems

STCP, sat (c.ready # {x} & Wc.past # 3 )

— {STOP, , sat BUFF)

1R
vhere R = {left,right}

STOP, ia rather a useless process; it has beer introduced here

A
only to provide a simple example of an axicm, and how it can be

informmally justified.
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2, PROCESSES AND PROOF RULES

In the remainder of this monograph, we introduce a number of
programing constructs suitable for the programming of communicating
processes. Kach construct is given a syntax, and an informal
explanation of its semantics, The semantics is [ormalised by an
axiom or proof rule which is illustrated by application to some
gimple erample. Treatment ol each example is spread cver several

consecutive subsections.

2.1 Output
Let P be a process; let ¢ be a channel name in the alphabet of
P; and let e be an expression (not containing chanmel variables).

Then we use the notation
(cle & F)

to denote the process which first cutputs the value of e on channel ¢
and then behaves like P, In its initial state, when the past of all
its chamnels is empty, this process is prepared to communicate the
value of e on channel ¢, so that c.ready = {e)] . It is not prepared
to communicate on any other channel, so initially d.ready = § for all
channels ¢ other than c. An asserticn R is true of this initial state
if and only if it is true when the channel variables of R take their
initial values, as described above, This may be expressed by

substituting these values in R, giving
R £< >/past, {e] Jc.ready, ﬁ/dready>]

(The use of the expression e to stand lor its value is justified only
in a programming notation which excludes assignment of new values to

variables occurring in e.)

The subsequent states of {cle —»F) are very similar to the states
af P; the only difference 1s in the value of c.past. If im a state of
P c,past has value s, then in the corresponding state of (cfe — P},

c.past has the value <e>s. 1In order to prove

(cle —>P) sat ®



it is the process P that must ensure, nct that its own states satisfy
R, but rather that the correspending states of {(cle —» F) ave correctly
described by R. In cther werds, R must be true when the value of

c.past is replaced by { <e>»c.past); or more formally:
P gat (R [<e> c.past/e.past] )

To prove that all states of a process are correctly describded by &, it
is sufficient to prove that the initial state satisfies R, and that
the subsequent states do so too. The preceding paragraphs deal with
these two cases; putting them together we get the rule:

((ete —»P) sat R) = (R[<>/past, {e} /c.ready, ¢/ready]
& P sat (R [<e> c.past/e.past] )

Example.
((right! x —> p} sat BUFF') =
§ & (p sat BUFF' [ <x> right.past/right.past] )

where 5 4 B‘.J'FF'[< > /past, {x]. /right.ready, ¢/ready]
Cn performing the substitutions, S expands to

Kex> + B <> > n+l

v <x» = <D&s =N

v o« L <Cx2& {x} = {I‘irst (<xy - C))},
The last clause makes 5 a trivial theorem.
Theorem 3.
{{right! x —p) sat BUFF'} = (p sat BUFF")

Proof. The thecrem S can be omitted from a conjunction, and the

delfinition of BUFF'" is used.

The axiom for cutput has the same apparent "backwards” quality as
the axiom of assignment in asequential programming. Readers who have
become familiar with the latter may note that the command (cle — F)

has the same apparent effect on ¢,pagt as the command
{F; c.pasti= <e>» c.past)

provided that P contalins no assignment te variables of e. Thus he
second term of the axiom of output iz derivable from the axiom of

asalgnment.
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2.2 Input

Let P(x) be a process whose behaviour (but not alphabet) possibly
depends an the value of the free variable x. Let ¢ be a channel in
the alphabet of P{x), and let M be a finite set of message values

which ¢an be communicated on channel c. Then

(c?x:M —aP(x})}
is the process which is initially prepared to input on channel c¢ any
value in the set M. The newly input value is given the local name x,
and the process subsequently behaves like P(x). The variable X is

Tegarded ag a bound variable, so
(e?x:M—3> P(x)}
ia the same process as
(c?y:¥—P(¥)).
Example,
COPYSTEP £ (left?x:M — (rightlx —>p))

COPYSTEF [{irst inputs a value from the left, then outputs this same
value to the right, and then behaves like p,

The input command is similar to the output command except in two
Teppects, Firstly, the initial value of c.ready is nat just a single
value, tut the whole of the set M. Secondly, the subsequent behaviour
P(x} may depend on the input value x, which is not known in advance;
and therefore P(x)} must be proved ta meet its specification for all
values of x ranging over the get M, This reasoning informally justifies

the axiomn:
Let R be an aasertiaon not containing x.

((c?x:M_3P(x)) sat R) = (R [()/past, M/c.ready, ¢/readﬂ
& Vx:M.(P(x) Bat R[cx‘) c.past/c.past] N

Example.

(COPYSTEF sat (BUFFfn+1)) =
5 & (YxiM.(right!ix —>p) sat BUFF')

where § & (BUFF/n+1) [<‘>/past. M/left,ready, Q/readﬂ
(K< +X o) v (=<2 M=M v (<2< <28 4ae)

The pecond clause makes S a theorem.
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Theorem 4,
{COFYSTEP sat (BUFFfn+1}) = (p sat (VY x:M.BUFF"})

Proof. Thecrem 3, definition of BUFF' and (H4),

2.3 Recursion

Let p be a variable standing for a process with a given alphabet.
Let F{p) be the description of a process (with the same alphabet)

containing none or more occurrences of the variable p. Then

re.F(p)
is the recuraively defined process, which starts of [ behaving like
F{p), and on encountering an occurrence of p, btehaves like {pp.F(p})
again.
Example.

COFY £ pp. (left?xiM—(right!x — p))

The process COPY is an infinitely repeating cycle, each iteration of
which inputs a message from the lelt and outputs the same message to

the right.

L recursively defined process is intended to be a "fixed point™

of its defining function F, i.e.,

yp-F(p) = Flup.7(p)) (1)

Let R be an asseriion, and suppose for an arbitrary process p we
can prove

(p sat (RMn)) = (F(p) sat RMn+t)). (2)
From theorem 1(a} and (H1) it follows that

{pp.F(p)) sat (A10}
By substituting }lp.F(p) for p in (2), and using (1) we get

(pp.Flp) sat Bbn) = (pp.F(p) sat RMn+1))

By the obviocus induction on n we get

Vn.(pp.F(p) sat (Rkn))}
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By (H4) and theorem 1{b), we conclude

(pp.¥(p)) sat &

This reasoning serves as an inflormal justification of the ‘f‘ollowing
proaf mle

{p sat (&Mn)) => (F(p} sat (Rint1))
pp.F(p) sat A

Theorem 5. COPY sat BUFF.
Froof. By the rule given above, it is sufficient to prove
{p sat (BUFFPn))} => (COPYSTEP sat (BUFFMn+1)})
By Theorem 4, this is egquivalent to
(p eat BUFFMn) > (p sat (V¥ x:M,BUFF"))
which follows from Theorem 2 by (H3).

Kow at last we see the motivation for the cheice of assertions
used in the previous examples. Of course, 2 proof would normally be
presentel in the reverse order, with proof requirements for the
component processeg being derived by formal manipulation from the
proof requirement of the whole process. The reader is invited to use

thia top-down method to prove the obvious fact

(pp.(0!0 —» p)) sat (b.ready £ #)

2.4 Chamel renaming

Let P be a process, with channel ¢ in its alphabet, and Jet d
be a chamel name not in its alphabet. Then P[d/c] is teken to denote

a process that behaves just like P, except that

¢ is removed from its alphabet
d is included in its alphabet
whenever P would have used channel c¢ lor input or

output, P[d/rﬂ uses & instead.

P[d/c] can clearly be derived from the definition of the process P
by replacing each occurrence of the name ¢ by an pccurrence of d,
Example.

copy [d/rignt] = pp. (left?x:M_3 (d1x —>p))



4 similar transformation may be made te any assertion satisfied by

P, in accordahce with the following convention

H[d/cj a R@.past[c.past. d.ready/c.reada

The appropriate axiom is quite obviaus

P/ st rli/d ) = (P sat w)

2.5 Disjoint parallelism

Let P and {} be processes with disjoint alphabets, Since they
have no channel name in common, they are unconnected, and therefore
cannot communicate or interact with each other in any way. The
notation (P{“Q) denotes a process which behaves like P and @ evolving
in parallel; its alphabet is clearly the union of the alphabets of
P and §. Channel renaming can be used when needed to achieve dis-

Jointness of alphabets.
Example.

PROT 2 (copy Ea/righﬂ) (i (COFYi:c/left])
This combination is illustrated in Fig. 1B.

The states of (Pl“ «) correspond to elements of the cartesian
product space of the set of states of P and the set of states of §,
If P satisfies 5, then 3 has the same alphabet as P; it therefore
correctly describes the current walues of those channels in the state

of (PmQ) which are in the alphabet of P; and hence
(p|l}e) sat s.

Similarly, i{ @ sat T it follows that
(ell|e) sat T

Hence by (H4, corollary), we justify the proof rule

{P sat 5) & (¢ sat T)
(Plll¢) sat (s &)

Example.

Let BUFF (c,d) £ BUFF |a/rignt] & BUFF [¢/1ert]

15,
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Theorer 6.
F{T sat BUFF (c,d)

Froof. Immediate from Theorem 5 and the proof rules for renaming

and disjoint parallelism,

2.6 Crannel connection

Let P be a process with channels ¢ and d in its alphabet. We
may wish to connect together these two channels, so that messages
passed on either of them are simultanecusly passed on the other. For
technical reasons, we give a nevw name © to the newly connected
channel, and eliminate the names c and d from the alphabet of P. The

process resulting from this connection and renaming will be denoted
(b=c&>d in P)
Example.
FoTOC £ (b = ¢ <4 in FROT)
This is illuatrated in Fig, 1C.

When two channels ¢ and d are connected, a message can be passed
on the connecting channel b if and only if both of the conmected

channels are ready for that communication; so at all times:
b.ready = {c.ready n d.ready}

As a cmnsequence, vhenever c¢ is ready for output and d for input,
d,ready is the universal set M, and the connected channel b is ready fot
output of the same value as c. Similar remarks apply when d is ready
for output and ¢ for input. When both ¢ and d are ready for input,

so is k. When either of ¢ or d is unready then sp is b. There remains
the case that both ¢ and d are ready for output, and the readiness of

b depends on whether the values output are the same. This case is not
very useful, and should probably be excluded in a practicel programning

notation.

Each message transmitted on either of the connected channels ¢

and d is instantanecusly passed by the comnecting channel b to the
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other one, The sequernces of messages so tranemitted must therefore

alvays be the same
b.past = c.past = d.past

It is the duty of an implementaticn of the connection operator
to ensure that b,ready and b.past have the right values, as described
in the above paragraphs. The programmer can just assume that this

has been done. Thus we derive the proof rule

P sat R
(b=c¢yadin P) sat (b.ready = c.ready 7 d.ready

& b.past = ¢.past = d.past
& R)

Unfortunately, the amsertion in the consequent of this rule cortains
the channel names ¢ and d, which are not supposed to be in the alphabet
of the process concerned. This prablem is easily solved by the valid
technique of weakening the consequent (H3); it is easy to check that
the following preof Tule is a logical conseguence of the one justified
above.
P mat R
{b=cesd in P) sat {3 x,y. b.ready = x ny
&R [b.past/c.past,b.past/d.past,
x/c,ready, y/d.ready])

Theorem 7.
PROTOC sat Jx,y. (b.ready = xny & BEB)

where BB & BUFF {c,d) [b.pa.st/c.pa.s‘t, b.past/d.past,
x/c.ready, y/d.ready]

Proof. 1Immediate from theorem 6,
Here is BB written out in full:

(left.past = b.past & left,ready = M
v b,past < left,past & y = {first (left.past - b.pastj})
& (b.past = right,past & x = M
Vv right.past < b.past & right,ready = {first (b.past - right.past)})
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2.7 Hiting

Let P be a process with channel b in its alphabet, Suppose that
b is a channel which comnects twa or more component subprocesses of P,
as described in the previous section, 5Since b is still in the alphabet
of P, it can still be used for communication with the envircnment of F.
Indeed, no communication can take place on channel b without the
knowledee and consent of the environment. However, in the design of
any mechanism, we usually wish to conceal its internal workings from
its environment; and this is especially important for electronic
devices, which can work millions of times faster than the environment,
We therefore wish to hide from the environment of P all communications
passing between subprocesses of F along channel b, Each such communi-
cation is intended to occur automatically and instantaneously as socon
as all the processes connected by the channel are ready for it. And,
of course, channel b must be removed from the alphabet of P. The

requirel effect is denoted:
(chan b in ©)

which declares the name b a8 a local chamnel in P. As with other
local variables, we postulate,

{chan b in P) is the same as (chan c in P Ec/‘!ﬂ )
where ¢ is not in the alphabet of F.
Example,

PROTOCOL £ (chan b in PROTOC)

In this example, the channel b connects the two parallel subprocesses
of the srocess PROTQC., One of the processes acts like a trivial

transmizter of a protocol, and the other as a trivial receiver, The
channel b serves as the transmission line between them. The user of
the methanism is not concerned with the nature, number, or content of
the messages passing along the transmission line, which are therefore

concealed from him, as shown in Fig. 1D.

A state of the process (chan b in P) is said to be stable if there

ia no further poesibility of communication on channel b, i.e.,

b.ready = #



In an unstable state, when communication is possible on channel b,
we want that communi cation to take place invisibly at high speed;
and this will bring the process to a new and usually different state,
Cf course, if one of the other channels is ready at the same time as
b, and the envircnment is prepared to comminicate eon that channel,
the external communication can ¢ccur instead - but this cannot be
relied upon. If the environment is not prepared to communicate on
any of the other ready channels, we insist that a ready internal
communication must sconer or later occur - and preferably sooner.
Thus the unstable states are evanescent, and cannot be relied upon;
in speciflying the externally visibtle behaviour of processes, it seems

gensible te ignore them., In other words we choose to interpret
P sat R
as a claim that R is true of all stable states of F.

For each stable state of (chan b in P), there exists a state of

P in which b,ready = @ and in which b.past has some valus of no lurther

interest, This informal reasoning suggests a prool rule

(P sat R)
(chan b in P) sat {3 b.past. R [#/b. ready] )

(Here we have quantified over a channel variable ag if it were an
ordinary variable. The meaning 1s the same as if an ordinary variable

s had been substituted, i.e.,

Hs, & Es/b.past, ﬁ/b.readﬂ )

Unfortunately this proofl rule leads to a contradiction.

Consider the process
P A pp. b0 —>p
P outputs an unbounded sequence of zeros on channel b, and is always

prepared .to cutput another; we can prove
P sat {b.ready ¥ ¢)

From this, using the incerrect rule given above, we deduce

(chan b in P) sat Jb.past ((b.ready £ ¢) [ﬁ/b.readﬂ)

19.
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The assertion here reduces to # £ $, which violates the condition (H2)

(counterexample due to W.A. Roscoe).

The trouble here is that we have tried tc hide an Infinpite sequence
of internal communications, with disastrous consequences for our
theory, The consequences in practice could be equally unfortunate,
because the resulting process might expend all its energies on internal
communication, and never pay any further attention to its environment.
This phenomenon is known as "livelock" or "infinite chatter", and there
are sound theoretical and practical reasons [or requiring a programmer
to prove it cannot occur. A simple way of doing this is to prove that
the nuwber of messages which can be passed along the hidden channel b
is bounded by some total function { of the state of the other non-hidden

channels:
M b.past £ [ (c.past, ..., z.past)

where ¢, ..., z are all the other chammels in the alphabtet of the

process.
Summarising the discussion above, we formulate the prool Tule:

P zat (R & (Mb.past & f(c.past, +.., zepast)))
{chan b in P} sat (3 b.past, R [ﬁﬁ/b.ready] )

Theorer 8,
PROTOCOL sat (I b.past, x, y. (f = xay & BE))
Proof, BB =3 (BB & M b.past § ¥ left.past)
The conclusion follows from Theorsm 7 and (H}).
We are at last ready to prove
Theorer 9.  FHOTCCOL sat BUFF

Proof. We prove the assertion of Theorem B implies BUFF, Expanding
the assertion BB we get four cases:
left,past = b.past = right.past & left,.ready = 2 = M

v right.past < b,past = left,past & right,ready = {firs‘t(b.past-right.
past)} & ...

v Tight.past = b.past < left,past & x = M & y = {}

v right.past < b.past < left.past & right.ready = first (b.past-right.
past) & y = ...

viere irrelevant phrases are replaced by ellipses,



The first twe clauses obviously imply the corresponding clauses of
BUFF. The third clause describes an unstable state, and contradicts
the term (# = xny); this case is therefore eliminated. The fourth
clause also implies the corresponding clause of BUFF, using

transitivity of < and the fact that

r<b €1 =first (b-r) = first {1-r).

2.8 Process chaining

The connection of processes in a series by their right and leflt
channels is such a useful operation that it deserves a special
notaticn:

(P<=>8) & chan b in (b = c€3d in ((P[a/right]) [|l (afe/1ert])))

where b, ¢, d are fresh channel names.
Example. PROTOCOL = {COFY<L=)>CCPY)

Unfortunately, the proof tule for this defined congtruct is hardly

simpler than its definition.

Let s, x, and y be fresh variables,
Let 53 = 8 [s/right.pasa fx/right.readﬂ
tet 7' = 7 [e/left.past] [y/1ert reasy]

Let f be a total function of pairs of sequences.
P sat 5,  sat T,
S'" & T' = s £ f (left,past, right.past)
(P¢<=>¢) sat (ds,x,y.{xny =g &s'& 1))

Theorem 10, If P sat BUFF and Q sat BUFF
then (Pc=>gq) sat BUFF

Proef. Essentially the same as given for theorem S.

Corollaries: (PROTOCOL<==>COPY} sat BUFF
{ FROTOCOLC=? FROTCCOL) sat BUFF

ate,

21.
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2.9 Nondeterministic unmion

Let P and ( be process descriptions with the same alphabet.
Then the netation
(F or q)

atands for a process that behaves either like P or like Q. The choice
between the alternatives is left completely unspecified, and may be
made arbitrarily as the process (r or @) evolves, or may be fixed by
its im;lementor before the start, The choice cannot be influenced by
the environment of the process, and is undetectable at the time it is
made - though it may be deducible from the subsequent behaviour of the

pI"DCESS.
Example, (PROTCCOL or COPY)

This behaves either like a two-place buffer or a one-place buffer, the
chioice being unspecified and unknown, If, during the life of this
process, the length of lelt,past ever exceeds the length of right,past
by two, then we can deduce that the choice has fallen on FROTOCOL.

If we want to be sure that (P or Q) satisfies R, since
we do rnot know which of P or ¢ will be selected, we had better prove

that they both satisiy R

(Per @) sat® = (P sat R) & (Q sat R)
Theoren 11, (FROTOCOL or COPY} sat BUFF

Proof: from Theorems 9 and 5,

2.70 Conditional

let @ be a Boolean-valued expression not containing any charnel
variables. Let F and § be processes with the same alphabet. Then

the process

if e then F else ©

is one that behaves like P if e evaluates to true, or behaves like Q
if e evaluates tc false. The prool rule is correspondingly simple
{{if e then F else &} sat k)

== if e then (P sat R) else (q sat R)

An example will be given in 2,12,
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2,11 Alternation
Let P(x) and ¢{y) be processes whose behaviour possibly depends
on the values of the free variables x apnd y respectively; but all
of them have the same alphabet. Let c and d be distinet channel names
in this alphabet, Let K be the set of messages that can be communi-

cated on ¢, and let N be the set for d. Then the notation
{c?x:M = P(x) D d?yiN —30(y))

denotes a process which behaves as follows. Initially, it is

prepared to input gither on channel ¢ or on channel d; in the lirst
case its subsequent behavicur is defined by P(x), where x stands for
the value input on ¢; and in the second case, its subsequent bebavigur
is defined by Q(y), where y is the value input on d. Only cne of the
two inputs can take place; but in contrast to nondeterministic union,
the choice can be influenced by the other processes comnected to the
channels c and 4. If the process (or processes) connected to one of
them remaine forever unprepared for cemmbnication, then communication
can still eceur, but only on the other channel, But il all the
processes connected to each of the channels become ready for communi-
cation, then it is nondeterministic on which channel the communication
will take place. An efficient implementation should select the firgt to
become ready; but such considerations of efficiency rightly cannot be
formalised in a caleculus of correctness; and a programmer clearly must
not rely on them, since he has delegated te the implementor all control

over the relative speeds of the processes.

Example,
MERGESTEP £ (left1 ?x:M—» right!(1,x) —>p
DleftQ TxiM_y right!{2,x) — p)
This process has alphabet {left‘i, left2, right}. It inputs a message
x on either leftl or left2, tags it with a 1 or 2 to indicate its
source, and cutputs the tagged message on the right, after which it
behaves like p.
In the initial state of a process described using D s both the

channels involved are ready for input, &nd all the other channelrs are
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unready. FEach subsequent state corresponds either to a state of
F(x) orto a state of ¢(y); and both cases must be proved correct.

The proof rule ip therefore modelled on that for simple input.
Ifc and d are distinct channel names
{c?x:M—> P(x) U d?y:N-—5G{y)) sat R

= RE()/past, M/c.Teady, N/d.ready, ¢/readﬂ
& Yx:M. P(x) sat R[d.x) c.past/c.pasa
& VyiN. aly) sat R):<y> d.past/d.pasf] .
Example.
Let sel(n,s) be a sequence formed from s by selecting only those
items fagged with n, and then removing the tags; or, more formally
sel(n,s) = if s = (> then <>

else if first (s) = (n,x) then <x> sel (n,rest(s))

else sel(n,rest(s))

Let MERGED £ gel(1,right,past} £ leftl.past
& sel(?,right.past) £ left2.past
& (leftl.ready = left2.ready = ¥

v right.ready # #)

Theores 12. MERCESTEF sat (MERGEDMn+1)} =
Wx:M. (right!{1,x)—3p) sat (MERGEDIn+ 1) [ <x> left‘l.pa.st/left'l.pasq
& Vx:M.(right!(2,x)—p) sat (]{ERGEDTnM)[(x) left2.past/1eft2.pasq

Proof. The cmitted terms are trivial theorems.
The reader may care to complete the proof that
(pp.MERGESTEF) sat MERGED

The notation and procf rule for alternation ¢an clearly be adapted
for more than two alternmatives; and since (cle =F) is the same as

(c?x: {e} —F), outmut can te readily substituted for input.

2,12 General recursion

The method of defining protesse$ by recursion can be generalised
to allew mutual recursion, A set of processes defined by mutual

recursion congtitute a solution to a set of simultaneous fixed point



equations, just as }Jp.F(p) is & solution for p in the single equation

rp 4 F(p)

A pair of mutually recursive equations take the form
p 2 F(piq)
a 2 Glp.q)

where F(p,q) and G(psq) are process descripticns, which in general

contain the process wvariables p and q,.

The method of mutual recursion generalises even further to
infinite sets of gimultanecus equations, cne for each member s in some

counting set S
p{s) = F{p,s) for all s in S.

The solutions to all these sinultaneocus equaticns constitute an array
py with an element p(s) for each & in §. This array of processes (s

denoted by the formula

pr(s:3). Flp,s)
However, it is often clearer to write the definitions in the equational

form shown above.

Exampie,
Let M* be the set ol all finite sequences of elements of X
Let TN & (left?x:M —>plcx3))
Let TNOROUT & (left?x:M—> p(s <x7}
[[rightirirst(s) —s p(rest(s))
)
Let STEP 2 if s = <« > then 1N glae TNOROUT
Let B £ pp (s:Mr),STEP

The same definition can be written out more clearly in the form of an
equation in B
B(s) & if 5 =<> then left?xiM—32 (<xp)
elge {left?x:M—> B(s <x>)
[]right.'first(s)—}B(rest(s))

) for all s in W

25.
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For each s in M*, B(s) behaves like an unbounded buffer with

current content 5. Il s is empty,B(s} is prepared only to input
on the left any value x in M, and then behave like B(e¢x>»), that is,
like a buffer containing eonly the value x. But if s is noneapty,
B(s) is prepared:

either (1) to input a new element x, which is appended to the
stored duffer, sc that its subsequent behaviour is H{s<x>),

or (2) to ocutput the first element of its buffer, which is

then renoved, sc that its subsequent behaviour is B{rest(s)).

The proof rule for generalised recursion is similar to that for
simple recursion, except that the formulae are guantified over ail s

in the counting set S.

(Ys:8.p(s) sat (R{s)n) ﬁVs:S.F(p.B) sat (R{s)Mne1))
Yars  ({pp(s:5)F(p,s)) (s)) sat r{s)

Example. Let us define

BUFF(s) 4 BRUFF [(s 1eft.past)/1eft.pas%
BUFF(s) describes the behaviour of a buffer that has input the
sequence s, but not yet output it. BUFF(s) therefore should describe
the future behavicur of the process B(s), as stated in the following

theoren,
Thecrez 13, Ys:5. B(s) sat BUFF(s)

Froof.

By the rule of recursion, we can assume

¥s:M* . p(s) sat (aurF(s)n) (o)
and wmust prove

STEP sat (BUP?(s)T‘nn) for s & M*
which by the zonditicnal rule, splits in twos

s= < >=5IN sat {BUFF(s)Mne1) (1)

and s # € > =31KOROUT sat (BUFF(s) n+1) (2)
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For {1), we assume s = <> and need to prove
(EUFF(s)rnﬂ) [( >/past, M/left.ready, ﬁ/ready] (1a}
pl<x>) sat (BUFF(s)n+1) E_x) 1eft.past/lef‘t.pa3€! (10)

(1a) is a trivial theorem, and the asserticn of (1b) is eguivalent to
BUFF ‘s < x> left.past/lef‘t.pasa r n
which by definition is BUFF (s<x>) [n

So {1b) follows directly from the assumption (0) and the condition g =< >.

For (2) we assume s # < > and need to prove

(BUF’F(S)PrH‘I)[( >/past, M/left.ready, {first(s)} /right.ready, jﬁ/:ead{( (2a)

& Vx:M. p(s<x>) sat(BUFF(s)n+i) [<x>left.pa.st/left.pas€l (2v)
& p(rest{x)) sat (BUFF(s)|n+1) [z.first(s)) right.past/right.pasiz] {2e)

(28) is a trivial theorem. fThe assertion of {2b) is equivalent to
BUFF(s< x>)I‘n, and the assertion of (2¢) is eguivalent to BUFF(rest(s))rn;
a0 both {2b) and (2c¢) follow from the assumption (O},

To check the above claims of trivial theoremhood or equivalence, it

is necessary only to expand the abbreviaticns. Fer example

(BUFF(s)n+1) E:f'irst(s))- right.pa.st/right.past]f
K lelt.past + % {<lirst(s) > right.past) > n+1
v (s left.past) = <first(s} >right.past & left.ready = M
v<first(s) >right.past < (s left,past)
& right.ready = {first((s left,past) - (first(s))right.past)}

BUFF{rest(s))in =
‘k\ left,past + %right.past 2 n
v (rest(s) left.past) = right.past & left,ready = M
vright.past < (rest(s) left.past)
& right.ready = {I‘irst((regt(s)lef‘t.past)-right.past)}

When s £ < >, these are clearly equivalent, clause by clause.
Theorem 14. B(< >) sat BUFF

Proof. Put s = < > in Theorem 13.



28,
3. DISCUSSION

The proof methods described in this monograph can be used to
establish many vseful properties of a process that are expressible
as assertions about values of its channel variables, Such properties

include:
(1} abeence of deadlock, If P sat R, then the assertion

—/nR [Q/ readﬂ

describes all those values of a,past, ..., z.past that do not lead

to deadlock., If this is a theorem, deadleck can never occur.

(2) termination, If F sat R, and if we can prove

R —>a.past + ... + Xz.past { n

then we can be sure that F terminates in at most n steps.

(5) fairness. A process P is said tc be fair with respect to a
channel ¢ if it carmot indelinitely often service the other channels
and neglect to service c¢. Thus any buffer is fair tc its left
channel and any finite bounded buffer is fair to its right channel.

This condition may be Formulated

BUFF, = BUFF & % (left.past ~right.past) £ n
To prove that P is a bounded buffer, we need io prove

n (P sat BUFF, )
Note this is quite different f{rom

P sat (dn. BU’FFn)

since dn BU'E'F‘n is eguivalent to BUFF, which is satisfied by an

infinite buller.

However, there are some properties of a process which are
impossible to formulate in our calculusa. TFor example, it is impossible
tc state or prove that P is a non-deterministic process, Indeed for
any assertion R, il F sat A is proved, then there exists a deterministic
process @ that also satisfies R. In particular, it is not possible to

force an implementation to delay making a non-deterministic cheoice until
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after the start of the processz, or indeed to force a cheice beflore
the gtart. The time at which non-determinism is resolved is taken
to be wholly invisible, and wholly irrelevant to the logiecal

correctness ol a process.

We make no claim that the calculus presented here is complete,
in the sense that every proposition or its negation is provable.

For example it does not seem possible to prove:
*
chan b in (a0 —> (pp. bIO—>p)) sat (a.past € {01 )

or its negation. It is much more important that the calculus should
be consistent in the sense that it should not permit proof of some
proposition together with its negation. The easiest way to prove
consistency I1s to construct a mathematical model of the set of all
processes, and to prove that all the axioms of the calculus are truths
about the model, and that the proof rules preserve this validity.

Suitable models may perhaps be found in [2] or ]:4_] .

It is also desirable to be able to prove simple algebraic jdentities

among processes, for example
(Pe=xe1 or G2)) = ({P<=301) or (Pe=3Q2))
({rightle —> P)<=0(left?x:M—>qQ))
= (pe=>q [e/x] )
Such identities might be readily proved in a suitable model.

4 linal advantage of the constructicn of a model is that it may
give better confidence that the notation introduced for the programming
of processes can actually be implemented in a realistic and efficient
manncer. But mathematical model-building could be a rather artitrary
game, unless the model can be shown to satisf{y some fairly simple proof
rules, which can be used in correctneas proofs of useful programs, It
is hoped that our calculus will serve that purpose, although ita

application to large programs will not be as simple as one might hope,

The set of programming constructs which we have axiomatised is

fairly extensive. DNotable omissions are sequential composition, local
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variatles, and assignment. There is reason ta suppose that the

treatment of these constiructs will present some difficulty.

This monograph has proved that five different processes satisly

the specification BUFF:
COPY
PROTOCOL
{ PROTOCOL &=» COPY)
(PROTOCOL or COPY)
B (<)

Here are two more such processes

(1) cle»

where ¢ & pp (s:M#) if s = < > then IN
else (INOHOUT or OUT)

where OUT & (right!first(x) —3 p(rest(s)))
(2} pp.(left?x:M —3(p <> (rightix —3 COFY}))

In example (1), the depth of buffering may change dynamically (for
example, according to fluctuating availability of stora.ge). Example
(2) is an unbounded buffer like B(< >). 3Both examples may be proved

by methods described here.
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