
~(~, rot 'f L

ACALCULUS

OF

TOTAL CORRECTNESS

FOR

COMMUNICATING PROCESSES

BY

C,A,R, HOARE

Oxford University
Computing l.aboratory
Programming Research Group-Library
8-11 Keble Road
Oxford OX1 3QD
Oxford (0865) 54141

Tecr,nical Monograph PHG-23

April 1981

Oxford University Computing Laboratory,

frogramming Research Group,

4~ Banbury Roaa.

Oxford. OX2 6PE.

@ 1981 C.A.li. Hoare

OX.ford Jniversity Computing Laboratory,
Program.llinp: Research Group,
45 Banbury Road,
Ox.ford. OX2 6p=:;.

ABSTRACT

A process communicates with its environment and with other

processes by synchronised output and input on named channels. The

current state of a process is defined by the sequences of messages

which have passed along each of the channels, and by the sets of

messages that may next be passed on each channel. A process satisfies

an assertion if the assertion is at all times true of all possible

states of the process. '.Ie present a calculus for proving that a

process satisfies the assertion describing its intended behaviour.

The following constructs are axiomatised: output; input; simple

recursion; disjoint parallelism; channel renaming, connection and

hiding; process chaining; nondeterminism; conditional; alternation;

and mutual recursion. The calculus is illustrated by proof of a

number of simple buffering protocols.

CONTENTS

Page

1. Assertions J

2. Processes and proof Rules 10

2.1 Output 10

2.2 ::input 12

2.J Recursion 1J

2.4 Channel renaming 14

2.5 DisJoint parallelism 15

2.6 Channel connection 16

2.7 Hiding 18

2.8 Process chaining 21

2.9 Nondeterministic union 22

2.10 Conditional 22

2.11 Alternation 2J

2.12 General recursion 24

J. Discussion 28

Acknowledgements JO

References J1

A CA.LCULUS 0:' TOTAL COIiRECTNESS

FOR CO!'lMUNICATING PROCESSES

Dedication: to my son Mattheil 1967-1981.

INTRODUCTION

A process communicates vith its environment and ilith other

processes by synchronised output and input on named channels. The

current state of a process is defined by the sequences of messages

vhich have so far passed along each of the channels, and also by

the sets of messages that may next be passed on each channel. A

process satisfies an assertion if the assertion is at all times

true of all possible states of the process.

We present a calculus for proving that a process satisfies the

assertion describing its intended behaviour. This is illustrated

by proof of a number of simple buffering protocols. The claim that

the calculus captures the concept of total correctness is based on

the fact that it proves absence of livelock, and permits proof of

absence of deadlock.

2.

left rigbt8
COPY

1A a process with alphabet (left, right}

left I p r-l I I ~ I right

c

13 a process (p III Q) ...,i th alphabet {left, c, d, right}

~, [, I h"'l ' !'!
1C the process (b "" (cf---7d) in B) wtth alphabet ~left, b, right}

left ~ p I I ~ ~ righ t

1Ti the process (chan b in C) with alphabet tleft, right}

Figure 1

A. process cOllllDUni cates 'oIi th its environ:nent by sending and

receiving messages on na:r.ed channels (Fig. 11.). The names of these

channels consh tute the alphabet of the process. A process may be

constructed from a group of subprocesses, intercommunicating on a

net'olork of named channels (Fig. lB. C). A message output by one

process along a channel is received instantaneously by all other

processes connected by that channel, provided that all these processes

are simultaneously prepared to input that message.

On each named channel, it is possible to keep a record of all

messages passing along it. (For simplicity, 'ole ipnore direction of

communication: if desired, this could be recorded as part of each

message.) At any given moment, the record of all messages that have

passed so far on a channel c is a finite sequence, 'oIhich will be

denoted by the variable "c.past". At the very beginning, the value of

c.past (for each channel c) is the empty sequence < > • During the

evolution of a process, whenever a message m is communicated on

channel c, the value of c.past is extended on the right by m, and the

new value is (c.past <m»).

At any given moment, the set of messages which a process is

prep~ed to communicate on channel c is denoted by the variable

"c.ready". \rr'hen the process is not prepared to communicate at all on

channel c, the value of c.ready is the empty set ¢. When a process is

prepared to inpu t on channe I c, the value of c. ready is the set M 0 [

all possible messages [or that Channel. When a process is prepared to

output some message value m (selected from M), then the value of

c.ready is the unit set {m1, which has m as its only member.

Variables of the form c.past, c.ready are known as ~

variables. Since we do not wish to be concerned with the internal

states and transitions of a process, we shall identify the current

externally observable state o[a process with the current values of

its channel variables.

4.
An assertion with a given alphabet is a normal sentence of logic

and mathematics, which may ':ontain free channel variables of the form

"c.past" and "c.ready", ,"here c is a channel name in the alJlhabet of

the assl.!rtion. The assertion describes certain possible states of

some process at certain moments of time. For example, the f'ollowing

are assertions, 'With informal explanations of their meaning.

(a)	 left. past = right.past

"The sequence of messages which has passed so far along the

left channel is the same as the sequence that has passed along

the right channel"

(b)	 left.ready = M

"The left channel is ready for input of any message in the

set Mil

(c)	 right. past < left. past

"The messages passed on the right channel form a proper lni hal

subsequence of the messages that have passed on the left"

(d)	 right.ready = {first (left.past -right.past)l

nTh\) right channel is ready for output of the earliest message

on the left which has not yet been transmitted on the right"

Assertions may be readily combined by the familiar corunectives of

logic~ For example. we define for future use the assertion:

BUFF ~ left. past = right. past & left.ready = M

v right. past < left. past &

right.ready:::: [first(left.past -right.past)}

This	 aaaertion describes all possible states of a buffering process

(or transf;aXent communications protocol), which outputs on its right

channel the same sequence of messages which it inputs from the left,

though possibly after some delay. When left. past :::: right.past. the

process has an empty buffer, and it must then be prepared to input any

message [rom the left. In the al ternative case, the buffer is nonempty;

it contains the sequence (left.past - right.past) of mess9.€es which are

awai ting output on the right; and now the bufferi118' process must be

).

prepared to output the- first element of this buffer. The assertion

BUFF does not say "hether or not input on the left is possiblehen

the buffer is nonempty; and thus it does not specify any particular

bound on the size of the buffer.

Let P be a process and let R be an assertion ith the same

alphabet as P. Then P is said to satisfy R if at all times during any poss­

ible evolution DC P (before and after each communication) the assertion

R correctly describes the observable state of P, i.e •• the sequences

of messages that have passed along its named channels, and the sets of

messages that are ready to be communicated on the very next step.

This relation between processes and assertions is abbreviated:

P sat R

For example any process P which is to serve as a buffer Or transparent

Communications protocol must satisfy the assertion BUFF. There are

many processes that do so - for example, a bounded buffer of any finite

size or even an unbounded buffer; examplesill be given later.

It follows from the intended interpretation of the relation

"satisfies" that the follo.... ing properties should be true for all

processes P, and all predicates, R, S.

(Hl) P sat TRUE

TRUE is a predicate 'W'hich is always true of everything; it must

therefore alvays be true of the behaViour of every process.

(H2) --, (p .at FALSE)

FALSE is the predicate that is always false of anything; it cannot

therefore ,;orrectly describe the behaviour of any process.

(Hl) R 5= 3
(p sat R) ~ (P sat S)

If (R .:::::;> S) is a theorem, every state inhich R is true is also a

state inhich S is true. If all states of P are correctly desc:ribed

by R, they must also be correctly described by S, and hence

«1'.!!!.l R) ~ (1'.!.!!i S» is also true. (H3) is a useful proof rille,

6.

known as the "rule of consequence".

Corollary: R === S
(P sat R) = (p sat s)

(H4) If n is not a channel variable, and does not occur in P:

(Vn,N.P ~ R(n)) = (p ,.t (\/n,N.R(n)))

If. for each n in some set N. P satisfies H(n). then each state of P

is correctly described by Hen), for all n in N. The converse

implication follows from (H3)~ and 'r/ -introduction.

Corollary: (p sat R) !; (p sat 5) = (p sat (R& S»

These four condi tions are rather similar to the healthiness

conditions introduced by E."II. Dijkstra [1J to check the validity of

each clause in the definition of his weakest precondition for

sequentia.! programming. Unfortunately, our calculUB is not strong

enough to prove healthiness in all cases; so we have to introduce the

condi tions as independent axioms, which must at least be consistent

wi th the other proof rules of the calculus.

Let R be an assertion not containing the variable n; then 'Ie

define Rr'n (R restricted to n) as the assertion satisfied by a process

which behaves as described by R for at least n-1 steps, i.e., at least

until the total number of cOlDlTlunications on all channels reaches n.

Let {a, .•• , z} be the alphabet of R. Let -~ s stand for the length

of the sequence s. Then we can define:

Rt-n ~ (~a,past + +)(z(z.past 2.. n) v R

Example: BUFF I'n ~ (~left.past + * right.past 2. n) " BUFF

Theorem 1. For any assertion R

(a) RI'O is a theorem

(b) (\/mNAT.Rtn) ""R

Proof: c,past is a finite sequence for each channel c. So ~ c.past

is a natural number. R does not contain n, so

(Vn:NAT.Rl'n) == ('r/n.NAT. ~a,past + ••• + ~ z.past::= n) v R

=R

7.
Let R be an assertion possibly containing a variable x. and let

e be an expression of the saute type as x. Then we define Rfe/x] as

the assertion formed from R by sUbstituting e for eVery free occurrence

of x. (Ir any free variable of e "'ould thereby become bound to a bound

variable in R, the collision must be averted by systematic change of th@

offending bound variable.) For example. we define

BUFF' ~ (BUFF t(n+1)) [(X) left.past/leftopastJ

BUFF" ~ BUFF' [0::,. right.past/right.past]

After performing the substitutions, BUFF" expands to:

~<x.> left.past + ~<X) right. past ~ n+1

V <:x') left.past <x> right. past & left,ready M

v<.x.> right.past (o::x;. left.past

& right.ready.: [first «x') Idt.past - <x> right,past)}

The following theorem is typical of the lengthy but shallow truths

required in proofs of correctness of programs

Theorem 2. BUFFtn =;>(\lx:M.BUFF")

Proor. E:ach clause of the LHS implies the corresponding clause on

the iiRS.

Let R be 8.n assertion with alphabet{a•• z.}. We introduce the

convention that

R [< >/p.,,)
is the result of substituting the empty sequence <> for ~ occurrence

of ~ of the channel variables a.past ••••• z.past. For example

BUFF [<>/pastJ == <) = <) & left.ready = M

v<><<''>&

which is equivalent to "left.ready = M". If P sat R. then R t,)/pas~

descri bes all the possible states of P at its very beginning, be:ore it

has engaged in communication on any of its channels. These states are

defined in terms of a.ready. z.ready, which specify the seta of

communications for which P should be ready on its very first step. Thus

if any process is to satisfy the assertion BUFF, it must at the beginning

be ready to input on its left channel any value in the set M.

8.

By a simi lar convention

R[~/readyJ

is the result of substituting the empty set ¢ for every occurrence

of .!!!l. of the channel variablee a.ready, ••• , z.ready. For eXaJllple

BUFF f?/read~ = left. past = right. past & ¢ = M

v right. past < left. past & ¢ ::: [...}

~hich is always false. If P sat R, then R[< >/pas~ descri bes all

possi ble states of P in which it is not ready for communicat.ion

along ~ of its channels. These states are known as deadlock states;

and it is usually desired to prove that they cannot occur. The states

are defined in terms of the variables a.past, ••• , zopast; aIld

therefore 'ole only need to prove that R [~/readYJ is false for all

values of these variables. For example, any process that satisfies

BUFF can never deadlock (W'lless the set M of all possible messages is

empty - a possibiE ty which we can real i stically ignore).

As a final convention, we allow successive substi tutlons to be

separated by commas; for example

R [()/past, ~/readyJ (R [< >/pa,t]) [¢/readY)

One of the simplest processes wi th alphabet A is the process STOPA

which is already deadlocked at its start. Clearly, it is never

ready to do anything, so c.ready ¢ for all c in A. Furthermore, the

sequence of messages transmitted along each channel remains forever

empty, i.e. c.past "" < >. In summary, the process STOPA has only this

single state; consequently, it satisfies an assertion R if and only if

R correctly describes its only state,i.e. if fl is truehen all the

variables of the form c.ready take the value ¢, and all the variables

of the form c.past take the value <). This informal reasoning

justifies the axiom

(STOF
A
~ R) .= fl [¢/readY, < >/pas~

9.

Examples. The follo'Wing are theorems

STOPA sat (c.ready,. LXl & ~c.paBt f. 3)

....., (STOP ..§!. BUFF)
LR

vhere LR = {left .right]

STOPA is rather a useless process; it has been introduced here

only to provide a simple example of an ~iom, and how it can be

informally justified.

10.

2. PROCESSES AND PROOF RULES

In the remainder of this monograph, we introduce a number of

progr~ing constructs suitable for the programming of corrununicating

processes. Each construct is given a syntax, and an informal

explanatLon of its semantics. ';'he semantics is fOl"lIlalised by an

a~iom 0, proof rule which is illustrated by application to some

simple erample. Treatment of each example is spread over several

consecutive subsections.

2.1 Output

Let P be a process; let c be a channel name in the alphabet of

Pi and let e be an expression (~ containing channel variables).

Then we use the notation

(c', ~p)

to denote the process which first outputs the value of e on channel c

and then behaves like P. In its initial state,hen the past of all

its channels is empty, this process is prepared to communicate the

value oC e on channel c, so that c.ready "" {e} I t is no t prepared

to communicate on any other channel, so initially d.ready "'" ¢ for all

channels d other than c. An assertion R is true of this ini tia.l state

if and only if it is true when the channel variables of R take their

initial values, as described above. This may be expressed by

substi tutlng these values in R, giVing

R L< >/past, [e} Ic.ready, ¢1<.readY~

(The use of the expression e to stand for its value is jus"tified only

in a programming notation 'Which excludes assignment of ne.. values to

variables occurring in e.)

The subsequent states of (clIO ---?p) are very similar to the states

of P; the only difference 15 in the value of c.past. If in a state of

P c.past has value s, then in the corresponding state of (c:e ~p),

c.past has the value <e>5. In order to prove

(cle ~p) ~ ~

11.

it is the process P that must ensure, not that its.2::!!. states satisfy

HI but rather that the corresponding states of (c~e ~ F) are correctly

described by R. In other words, R must be true when the value of

c.past is replaced by « e) c.past); or more formally:

p sat (R [.:::e> copast/copast]

To prove that all states of a process are correctly described by .'1, it

is sufficient to prove that the initial state satisfies R, and that

the subsequent states	 do so too. The preceding paragraphs deal wi th

these t."o cases; putting them together we get the TIlle:

«de ----?,p) sat R) ===	 (R[<>/past'le} fe.ready, ¢/readyJ

& P sat (R [<e> copast/copast]))

Example.

« right! x ---7 p) sat BUFF ') ==
S & (p sat BUFF' [< X) rightopast/right.past]

where S ~ B':-TFF' [< >/past, [x} /right.ready, ~/readyJ

On performing the sUbstitutions, S p.xpands to

.* < x> + %" >2: n+1

v .(x'> < >& ¢ = r.

v <,><.(x)& [xl	 tfirst (.(x> - .:: ») } •

The last clause makes	 S a trivial theorem.

Theorem 3.

«right! x ~p) sa.t BUFF') - (p sat BUFF")

Proof. The theorem S can be omitted from a conjunctio~, and the

defini tion of BUFF" is used.

The axiom for output has the same apparent "back\iards" quality a.s

the axiom of assignment in seq~ential programming. Readers who have

become familiar i th the lat ter may note that the command (c: e ----7 p)

has the same apparent effect on c.past as the command

(Pj c.past:= <e) c.past)

provided that P contains no assignment to variables of e. Thus the

second term of the a.xiom of output is der! vable from the axiom 0:
assignment.

12.

2.2 Input

Let p(x) be a process whose behaviour (but not alphabet) possibly

depends ,:)n the value of the free variable x. Let c be a channel in

the alphabet of p(x), and let M be a finite set of message values

vhich can be communicated on channel c. Then

(c?x:M ~p(x))

is the process ..hich	 is initially prepared to input on channel c any

value in the set M.	 The newly input value is given the local name x,

and the process subsequently behaves like p(x). The variable x is

regarded as a	 bound variable, so

(c?x:M~P(x)

is the same process as

(c'y:M~P(y»).

Example.

COPYS'I'EP ~ (left?x:M ----.::,. (right:x -----) p))

COPYSTEF first inputs a value from the left, then outputs this same

value to the right,	 and then behaves like p.

The input command is similar to the output command except in two

respects. Firstly, the initial value of c.ready is not just a single

value, but the whole of the set M. Secondly. the subsequent behaviour

p(x) may depend on the input value x, which is not known in advance;

and therefore p(x) must be proved to meet its specification for all

values of x ranging over the set M. This reasoning informally justifies

the axiom;

Let R be an assertion not containing x.

((C?:l[:M~P(X)) sat	 R) _ (R [<>/past, M/c. ready , ¢/readJ

& Vx:M.(P(x) oat R [0> c.past/c.p.,t] »

Example.

(COPrSTEP sat	 (BUFFln+1» ==
S &; (Y x:1'f. (right:x ---? p) .§.!1 BUFF')

..here S ~ (BUFFtn+l) [<>/past, M/left.ready, ¢/readyJ

=(~<> +*<>2n+1) v « >.0& M. M) v (<>< < > & •••)

The second clause makes S a theorem.

13.
Th!!orem 4.

(COPYSTEP sat (EL'FFr-n+1»:= (p ~ (Vx:M.Bl'FF"»

Proof. Theorem 3, definition of BUFF' and (H4).

2.3	 Recursion

Let p be a variable standing for a process with a given alphabet.

Let F(p) be the description of a process (with the same alphabet)

containing none or more occurrences of the variable p. Then

I'p.F(p)

is the recursively defined process, which starts off behaVing like

F(p), and on encountering an occurrence of p, behaves like (PP.F(P»)

again.

Exa.mple.

COpy ~ }-lp. (left?x:M~(right!x~ p»

The process COpy is an infinitely repeating cycle, each iteration of

which inputs a message from the left and outputs the same message to

the right.

A recursively defined process is intended to be a "fixed point"

of its defining function F. i.e.,

pP.F(p) • F("p.F(p» (1)

Let R be an assertion, and suppose for an arbitrary process p we

can prove

(p sat (Rtn» ~(F(p) sat Rt(n+1». (2)

From theorem 1(a) and (H1) it follows that

(pp.F(p» sat (RtO)

By substituting]Ip.F(p) for pin (2), and using (1) we get

(I'P.F(P) ~ Rtn) ~(pP.F(P) ~ RHn+1»

By the obvious induction on n we get

Vn.(pp.F(p) sat (R'n»

14.

By (H4) and theorem 1(b). we conclude

(pp.F(P) ,,' R

This rea.soning serves as an informal justification of the .:following

proof r'll1e

(p ,at (R~n») ~ (F(p) ,at (Rfn+1))

)Jp.F(p) sat R

Theorem 5. COpy sat BUFF.

Froof. By the rule given above lit is sufficient to prove

(p sat (BUFF~n) ~ (COPYSTEP .at (BUFFfn+'))

By Theorem 01. this is equivalent to

(p sat BUFFf-n) ~ (p sat (Yx:M.BUFF"))

..hich [Qllo'ols from Theorem 2 by (H~).

No,", at last we see the motivation for the o::hoice of assertions

used in the previous examples. Of course, a proof wuld normally be

presented in the reverse order, ...ith proof reqUirements for the

component processes being derived by formal manipulation from the

proof reqUirement of the whole process. The reader is invi ted to use

this top-doYn method to prove the obvious fact

(pp.(b:O --7 p)) sat (b.ready I ¢)

2.4 Ch~~el renaming

Let P be a process, with channel c in its alphabet, and let d

be a channel name .!l2l in its alphabet. Then P[d/cJ is taken to denote

a process that behaves just like P, except that

c is removed from its alphabet

d is included in its alphabet

whenever P ~ould have used channel c for input or

output, P[d/~ uses d instead.

P [dIe] can clea.rly be derived from the defini hen of the process F

by replacing each occurrence of the name c by an occur.ence of d.

Example.

COPY [d/righ~ pp. (left?.. M---7 (d:x ---7p))

15.

A similar transformation may be made to any assertion satisfied by

P, in accordance with the follo.,ing convention

R[d/<?J ~ R @.past/c.past, d.readj'/c.read~

'['he appropriate axiom is qUi te obvi~us

(p EJ/~ sat RB/~) = (p sat R)

2.5 Disjoint parallelism

Let P and Q be processes .. ith disjoint a.lphabets. Since they

have no channel name in common, they are unconnected. and therefore

cannot communicate or interact i th each other in any way. The

notation (rlllQ) denotes a processhich behaves like P and G. evolving

in parallel; its alphabet is clearly the union of the alphabets of

P and Q. Channel renaming can be used when needed to achieve dis­

jointness of alphabets.

Rxample.

PHOT £;, (COpy [j/righi]) III (ConG/left])

This combination is illustrated in :Fig. 1B.

The states of (p JII '.t) correspond to elements of the cartesian

product space of the set of states of P and the set of states of Q.

If P satisfies S, then S ha.s the same alphabet as P; it therefore

correctly describes the current values of those channels in the state

(pIll Q)ofhich are in the alphabet of P; and hence

(pIlIQ) sat s.

Similarly, if Q ill Tit follo....s that

(pIlIQ) sat T.

Hence by (H4. corollary), we justify the proof rule

(p sat s) & (~ sat T)

(pIIlQ) sat (S & T)

ExaIllple.

Let BUFF (c,d) ~ BUFF [d/righ~ & BUFF lc/lef~

16.
TheorelL 6.

F~J~ sat BUFF (c,d)

Proof. Immedia.te from Theorem 5 and the proof rules for renaming

and disjoint parallelism.

2.6 Crannel connection

Let P be a process with channels c and d in its alphabet. We

may 'Jish to connect together these two channels, so that messages

passed on ei ther of them are simul taneously passed on the other. For

technical reasons, 'We give a new name b to the newly connected

channel. and eliminate the names c and d from the alphabet of F. The

process resul ting from this connection and renaming will be denoted

(b=c-':---)dl:!!.P)

Example.

PHOTOC ~ (b = c ~d 1E. PROT)

This is illustrated in Fig. 1C.

When two channels c and d are connected, a message can be passed

on the connecting channel b if aJ'ld only if both of the connected

chalUlels are ready for that communication; so at all times:

b. ready ::: (c. ready n d. ready)

As a consequence, vhenever c is ready for output and d for input,

d.ready is the universal set M, and the connected channel b is ready for

output of the same value a.s c. Similar remarks apply when d is ready

for output and c for input. When both c and d are ready for input,

so is t. "''hen ei ther of c or d is unready then so is b. There remains

the case that both c and d are ready for output, and th" readiness of

b depends on whether the values output are the same. This case is not

very useful, and should probably be excluded in a practical programming

notation.

E<lCh mess~e transmitted on ei th"r of the connected channels c

and d is instantaneously passed by the connecting channel b to the

17.
other one. The sequences of messages so transmitted must therefore

always be the same

b.past ::: c.past = d.past

It is the duty of an implementation of the connection operator

to ensure that b.rea.dy and b.pa.st have the right values, as described

in the above p<i.ragraphs. The progra.m.mer can just aSliume that this

has been done. Thuse derive the proof rule

P sat R

(b = CH d in p) sat (b.ready = c.ready 1 d.ready

& b.past = c.past = d.past

& R)

Unfortunately, the assertion in the consequent of this rule contains

the channel naJlles c and d, 'Which are not l>upposed to be in the alphabet

of the process concerned. This problem is easily solved by the valid

technique of 'Weakening the consequent (H3); it is easy to check that

the folloving proal rule is a logical consequence of the one justified

above.

P	 sat R

{b "" c~d in p) sat (3 x,y. b.ready "" x "y

& R [b.past/c.past,b.past/d.past,

x/c. ready, Y/d.readyJ)

Theorem 7.

PROTOC sat 3x,y. (b.ready "" xfly & BB)

""here BB ~BUFF (c,d) [b.past/c.past, b.past/d.past,

x/c.ready. y/d.readY]

Proof. Immediate from theorem 6.

Here is BB vri tten out in full:

(left. past = b.past & left.ready = M

v b.past <left.past & y = (first (left.past - b.past)1)

&	 (b. past = right.past & 'X "'" M

V right.past <: b.past & right. ready [first (b.past - right.past)1)

j 8.

2. 7 Hi~ing

Let p b~ a process ""ith channel b in its alphabet. Suppose that

b is a channel which cormects to or more component subprocesses of P,

as desc"i bed in the previous section. Since b is stl11 in the alphanet

of p. it can still be used for communication with the environment of P.

Indeed, no communication can take place on channel bithout the

knowledge and consent of the envJ.rorunent. Hm.;ever. in the design of

any lIleaMnisrn, we usuallyish to conceal its internalorkings from

its env':ronmentj and this is especially important for electronic

devices, which canorK millions of times faster than the environment.

Ve therefore ish to hide from the environment of P all communications

passing beh...een subprocesses of F along charmel b. Each such communi­

cation is intended to occur automatically and instantaneously as soon

as all ~he processes corUlected by the channel are ready for it. And,

of cour5e, channel b must be removed from the alphabet of P. The

required effect is denoted:

(chan b in p)

which de-clares the name b a.s a local channel in P. As wi th other

local "VlI.riables, we postulate.

(cltan b in p) is the same as (chan c in P IS/~)
where c is not in the alphabet of F.

Example.

PRDTOCOL ~ (chan b in PIlOTOC)

In this example. the channel b connects the two parallel subprocesses

of the ~rocess PRQTOC. One of the processes acts like a trivial

transmi~ter of a protocol, and the other as a trivial recei ver. The

channel b serves as the transmission line between them. The user of

the mechanism ia not concerned with the nature, number, or content of

the Dles~ages passing along the transmission line, ..hich a.re therefore

concealed from him, as shovn in Fig. 1D.

A state of the process (chan b .in p) is said to be stable if there

ia no further possibility of communication on channel b, i.e.,

b.ready = ¢

'9.

In an unstable state, when communication is possible on channel b.

we want that cOinmunication to take place invisibly at high speed;

and this will bring the process to a new and usually different state.

Of course, if one of the other channels is ready at the same time as

b. and the environment is prepared to communicate on that channel,

the external communication can occur instead - but this cannot be

relied upon. If the environment is not prepared to communicate on

any of the other ready channels, we insist tho.t a ready internal

communication must sooner or later occur - and preferably sooner.

Thus the unstable states are evanescent, and cannot be relied upon;

in specifyinR' the externally visible behaviour of processes, it seems

sensible tc ignore them. In other words we choose to interpret

P sat R

as a claim that R is true of all stable states of F.

For each stable state of (chan b in P)I there exists a state of

P in which b.ready = ¢ and in which b.past has some value of no further

interest. This informal reasoning suggests a proof rulp.

(p sat R)

(chan b ~ p) sat (3 bapast. R ~7b.readiJ 1

(Here we have quantified over a channel variable as if it were an

ordinary variablea The meaning is the same as if an ordinary variable

s had been !'>ubstituted. i.e' l

::3 s. H G/b.past l ¢/b.read~

Unfortunately this proof rule leads to a contradiction.

Consider the process

p ~ pp. b:D-------;.-p

P outputs an unbounded sequence of zeros on channel b. and is always

prepared .to output another; we can prove

P sat (b.ready F ¢)

From this, using the incorrect rule given above, we deduce

(chan b in p) ~ 3b.past ((b.ready -f ¢) [J/b.reaG~)

20.

The as£ertion here reduces to ¢ ~ ¢. which violates the condition (H2)

(counterexample due to W.A. Roscoe).

The trouble here is thate have tried to hide an infinite sequence

of internal communications,i th disastrous consequences for our

theory, The consequences in practice could be equally unfortunate,

because the resulting process might expend all its energies on internal

corrununication, and never pay any further attention to its environment.

This phenomenon is Known as "livelock" or "infinite chatter", and there

are sound theoretical and practical reasons [or requiring a programmer

to prove it cannot occur. A simple way of doing this is to prove that

the nUDIber of messageshich can b(' passed along the hidden channel b

is bounded by some total function f of the state of the other non-hidden

channels:

~ b.past ~ f (c.past, •••• z.past)

.... here c, •••• z are all the other channels in the alphabet of the

proce3S.

Swrunarising the di~cussion abovee formulate the proof rule:

P sat (R &. ()t,.b.past .s: f(c.past, ••• , z.past»)

(chan b in p) ~ (3b.past. R [¢/b.ready])

Theorec 8.

PROTOCOL sat (3b.past, X, y. (¢::: xl"IY &. BB»

Proof. BB ~(BB & ,*b.past ~ ~left.past)

The conclusion follows from Theorem 1 and (H3).

'He are at last ready to prove

Theore~ 9. FHOTCCOL sat BUFF

Proof. We prove the assertion of Theorem 8 impli~s 3UFF. r:xpanding

the assertion BBe get four cases:

left. past ::: b.past ::: right. past & left. ready ::: X ::= M

V right.past <b.past ::: left.past & right.ready ::= {firs-t(b.past-right.
past)} & ...

V right.past ::: b.past < left.past & X =. M ~ y =. [...~

V right. past < b.past < left.past & richt.ready '" first (b.past-rieht •
past) & y =.

~~ere irrelevant phra~es are replaced by ellipses.

21.

The first two clauses obviously imply the corresponding clauses of

BUFF. The third clause describes an unstable state, and contradicts

the term (¢ '" x ny); this case is therefore eliminated. The fourth

clause also implies the corresponding clause of BUE'l". using

transitivity of < and the fact that

r <. b < 1 ==='> first (b-r) first (l-r).

2. B Process chaining

The connection of processes in a series by their right and left

channels is such a useful operation that it deserves a speCial

I;Iotation:

(p<=),) {;, ohan b in (b. o<->d in «P[d/righB) III(Q[o/left))))

where b , c, d	 are fresh channel names.

Example. PROTOCOL = (COFY.(=>COFY)

Unfortunately, the proof rule for this defined Construct is hardly

simpler than its definition.

Let s, x, and y be fresh variables.

Let 8' = S [s/right .. pas~ [x/right.read;]

Let T' = T [S/left.pas~ [r/left.readt]

Let f be a total function of pairs of s.equences.

p ~ S, ~ sat T,

S' & T' ~ s ~ f (left. past, right.past)

(p'(==:,)~) sat (3s,x,y.(xl}y = ¢ & S' & T'))

Theorem 10. If P sat BUFF and Q..§l BUFF

then (P<=>Q) sat BUFF

Proof. Essentially the S'3.me as given for theorem 9.

Corollaries:	 (PROTOCOL<...=:)COPY) sat BUFF

(FROTOCOL<=) PROTOCOL) sat B'JFF

",tc.

22.

2.9 No~deterministic union

Let P and 'l be process descriptions with the same alphabet.

Then the notation

(p £!: ,)

stands for a process that behaves either like P or like Q. The choice

behfeen the alternatives is left completely unspecified. and may be

made arbitrarily as the process (F 2£ Q.) evolves. or may be fixed by

its im;lementor before the start. The choice cannot be influenCl'!d by

the environment of thl'! process, and is undetectable at the time it is

made - though it may be deducible from the subsequent behaviour of the

process.

Example. (PROTOCOL £! COPY)

This behaves ei ther like a two-place buffer or a one-place buffer, the

choice being unspecified and unknown. If, during the life of this

process, the length of left. past ever exceeds the length of right.past

by two, then we can deduce that the choice has fallen on PROTOCOL.

If we want to be sure that (p 2.!. Q) satisfies H. since

we do not know which of r or Q will be selected. we had better prove

that ttey both satisfy R

(P.2!. Q.) sat R (p sat R) & (Q~R)

Theorem 11. (FROTOCOL.£.E COPY) sat B1JFF

Proof: from Theorems 9 and J.

2.10 Conditional

Let e be a Boolean-valued expression not containing any channel

variables. Let F and Q be processes with the same alphabet. Then

the process

if e then F ~ ()

is one that behaves like F if e evaluates to true. or beha.ves like Q.

if e evaluates to false. The F.'roof rule is correspondingly simple

«(if e then F else ,~) sat Ii)

_ if e then (p sat R) ~ (Q sat R)

An example ill be givl'!n in 2.12.

23.
2.11 Alternation

Let p(x) and Q{Y) be processeshose behaviour possibly depenrls

on the values of the free variables x and y respectively; but all

of them have the same alphabet. Let c and d be distinct channel nam~s

in this alphabet. Let M be the set of messages that can he communi­

cated on c. and let N be the set for d. Then the notation

(c?x,M--i>P(x) 0 d?y,N -;.O,(y»

denotes a process which behaves as follows. Initially, it is

prepared to input either on channel c ~ on channel d; in the first

case its subsequent behaviour is defined by p(x). where x stands for

the value input on Cj and in the second case, its subsequent behaviour

is defined by Q(y). "Where y is the value input on d. Only one of the

two inputs can take place; but in contrast to nondeterministic union,

the choice can be influenced by the other processes co~~ected to the

chaJ'Ulels c and d. If the process (or proceBses) connected to one of

them remains forever unprepared for communication, then communication

can still occur, but only on the other channel. But if all the

processes connected to each of the channels become ready for communi­

cation, then it is nondeterministic on which channel the communication

will take place. An efficient implementation should select the first to

become readYi but such considerations of efficiency rightly cannot be

formalised in a calculus of correctness; and a programmer clearly must

not rely on them, since he has delegated to the implementor all control

over the relative speeds of the processes.

Example.

MERGESTEP f} (left1 ?X:M----) right:(1,x)..-..:,p

oleft2 ?x:M---?right:(2,x)-'7 p)

This process has alphabet {left1, left2, right}. It inputs a message

x on either left1 or left2, tags it with a 1 or 2 to indicate its

source, and outputs the tagged message on the right, after which it

behaves like p.

In the initial state of a process descri bed using ~ , both the

channels involved are ready for input, and all the other channele are

24.

unready. Each subsequent state corresponds ei ther to a state of

F(x) or to a state of Q.{y); and ~ cases must be proved correct.

The proof rule is therefore modelled on tha.t for simple input.

If c and d are distinct channel names

(c?x:M---7 P(x) 0 d?y:N~'(y» sat R

= R{S >/past, M/e.ready, N/d.ready, ¢/readJ

& Vx:M. p(x) sat H[",-X> c.past/c.past,1

& "t/y:N. Q(y) sat R[<Y> d.past/d,past]

Example.

Let sel{n,s) be a sequence formed from 5 by selecting only those

items ta.gged with n, and then removing the tagS; or, more formally

sel(n,s) = if 5 :=: <)~ <: >
~ if first (a) = (n,x) then <x> sel (n,rest(s»

else Belen,rest(s»

Let M]]GED ~ sel(1,right.past) £ left1.past

& sel(2,right.past) ~ left2.past

& (left1.ready = left2.ready :=: M

V right.ready F¢)

Theon!lli 12. MERGESTEP sat (MERGEDtn+1) _

\I x: M.. (right: (1 ,x) ---?p) sat (MERGEDtn+1) [(x> left1 .. past/left1 .. pas~

& VX:M.(right:(2,x)~p) sat (MERGEDtn+1) [(x> left2.past/left2 .. pas~

Proof. The omitted terms are trivial theorems.

Th~ reader may care to complete the proof that

(pp .. MERGES"I'EP) sat MERGED

The notation and proof rule for al ternation can clearly be adapted

for more than two alternatives; and since (c1e~P) is the same as

(c?x: {e1----7p), output can be readily substituted for input ..

2.12 General recursion

The method of defining processes by recursion can be generalised

to allow mutual recursion. A set of proceEises defined by mutual

recursion conEititute a solution to a set of simultaneous fixed point

25.
equations, just as }Ip .. F(P) is a solution for p in the single equation

p ~ F(p)

A pair of mutually recursive equations take the form

p C! F(p,q)

q i) G(p,q)

vhere F(p,q) and G(p,q) are process descriptions, which in general

contain the process variables p and q.

The method of mutual recursion generalises even further to

infinite seta of simultaneous equations, one for each member s in same

counting set S

pCB) : F(p,,) for all s in S.

The solutions to all these simultaneous equations constitute an array

p, with en l"!lement p(s) for each s in S. This array of processes is

denoted by the formula

pp(s,s). F(p,,)

However, it is often clearer to write the definitions in the equational

form shown above.

Example.

Let M* be the set of all finite sequences of elements of M

Let IN ~ (left?x:M ------?" p(.::: x»))

Let INQROlJ'l' ~ (left?x:M --7' pes <x»

oright:r irst(s) ~ p(rest(s»)

Let STEP ~ 1.£ s = ..(> then IN else INOROUT

Let B e pp (s:~).STEP

The same definitior. can be written out more clearly in the form of an

equation in B

B(s) ~ 11. 8 "'.(> then left?x;M~B «x;»

else (left?x:M---...:lo B{s <.x»

--0 right!first{ s) ~B(rest(s)

for all s in !'If

26.
Por each s in M*. B(s) behaves like an unbounded buffer wi th

current content s. If s is empty,B(s) is prepared only to input

on the left any value x in M. and then behave like B(", x» I that is.

1 ike a buffer containing only the value x. But if s is noneiIlpty.

B(s) is prepared:

either (1) to input a new element x, which is appended to the

stored buffer, so that its subsequent behaviour is 3(s<x» I

..£!. (2) to output the first element of its buffer, which is

then rer>.oved. so that its subsequent behaviour is B(rest(s)).

The proof rule for generalised recursion is similar to that for

simple !"ecursion, except that the formulae are quantified over all s

in the counting set S.

(I'''S.p(8) sat (R(8)fn) =>V"S.F(p.s) sat (R(8)fn.'»

V"S «VP(8'S)F(p,s)) (,» sat R(8)

Exa~ple. Let us define

BU~F(s) a BUFF [(s left.past)/left.pas~
BUFF(s) describes the behaviour of a buffer that has input the

sequence s, but not yet output it. BUFF(s) therefore sho"clld describe

the future behaviour of the process B(s). as stated in the following

theorem.

Theorel: '~. Vs:S. S(s) sat SUFF'(s)

Froof.

By the rule of recursion. 'ole can assume

\is:~* • p(s) ~ (SUFF(s)~n) (0)

and lDust prove

ST~P sat (BUFr(s)~n~l) for s t: 11*

which by the ~onditional rule. splits in two:

8 = <>=91N ~ (BUPP(s)tn.,) (1)

and s ~ <>~lNORO'JT sat (BUrF(s)tn+1) (2)

27.

For (1), we assume s = <> and need to prove

(EUFF(s)tU+l) [< >/past. M/left.ready, ¢/readY] (la)

p(<:::x» sat (EUFF(s)~n+l) Gx> left.past/left.pas~ (lb)

(la) is a trivial theorem, and the assertion of (lb) is equivalent to

BUFF [8 <.x> left.past/left.pas~ In

which by definition is BU.FF (5 0::: x» In
So (1b) follows directly from the assumption (0) and the condition s =: <>.

For (2) we assume s '# < > and need to prove

(BUFF(sln+l)[<:>/past, M/left.ready, [first(s)} fright.ready, ¢/readY] (2a)

& Yx:M. pes <x» sat(BUFF(s)~n+1) [<x>left.past/left.pas~ (2b)

& p(rest(x» sat (BUFF(sHn+l) [.:::first(s» right.past/right.pas~ (20)

(2a) is a trivial theorem. The assertion of (2b) is equivalent to

BUFF(s":: x>}(n, and the assertion of (20) is equivalent to BUFF(rest(s»)1n;

so both (2b) and (2c) follo from the assumption (0).

To check the above claims of trivial theoremhood or eqUivalence, it

is necessary only to expand the abbreviations. For example

(BUFF(s)~n+ 1) [<: first(s) >right. past/right. past] ==
$ left.past + ;ft (.::::first(s) > right. past) .2: n+1

V (s left. past) = <first(s) >right.past & left.ready = M

V <first(s) >right.past <. (s left.past)

& right.ready = f first((s left.past)- < first(s»rieht.past)}

BUFF(rest(s))rn =
}S left.past + ,%right.past ~ n

V (rest(s) left. past) = right.past & left.ready = M

vright.past < (rest(s) left.past)

& right. ready = [first((rest(S)left.past)-right.past)}

\tr'hen s ., < >. these are clearly equivalent, clause by clause.

Theorem 14. B(<' » sat BL'"FF

Proof. Put s = -< > in Theorem 13.

28.

3. DISCUSSION

The proof methods described in this monograph can be used to

establish many useful properties of a process that are expressible

as assertions ,about values of its channel variables. Such properties

include:

(1) absence of deadlock. If P sat R, then the assertion

-, R [f/read~

describes all those values of a.past, •••• z.past that do not lead

to deadlock. If this is a theorem. deadlock can never occur.

(2) termination. If f sat R, and if we can prove

R --==?~a .. past + ••• +~z.past {n

then we can be sure that F terminates in at most n steps.

(3) fairness. A process P is said to be fair with respect to a

channel c if it cannot indefinitely often service the other channels

and neglect to service c. Thus any buffer is fair to its left

channel and any fini te bounded buffer is .fair to its right chann~la

This condi hon may be .formulated

BUFF == BUFF' & * (leftapast - rightapast) ~ n n

To prove that P is a bounded buffer, we need to prove

3 n (p sat BUFF)
n

Note this is ~uite dif.ferent froll\

P sat C3n. BUFF)n

since :3n BUFF is e~uivalent to BUFF t which is satisfied by an
n

infini te bu ffer.

However, there are some properties of a process which ar~

impossible to forlllulate in our calculus. For example. it is illlpossible

to state or prove that P is a !12!!-deterministic process. Indeed for

any assertion R. if F ~ a is proved. then there exists a deterministic

process Q. that also satisfies R. In particular t it is not possible to

force an implementation to delay making a non-deterministic choic~ until

29.

after the start of the process, or indeed to force a choice before

the start. The time at which non-determinism is resolved is taken

to be ..holly invisible. and wholly irrelevant to the logical

correctness of a process.

We make no claim that the calculus presented here is complete,

in the sense that every I:roposition or its negation is provable.

For example it does not seem possible to prove:

chan b in (aW----7(pp. b:O~p) sat (a.past E (01*)
or its negation. It is much more important that the calculus should

be consistent in the sense that it should not permit proof of some

proposition together ..ith its negation. The easiest way to prove

consistency is to construct a mathematical model of the set of all

processes, and to prove that all the axioms of the calculus are truths

about the model, and that the proof rules preserve this validity.

Suitable models may perhaps be found in [2J or [4J.

It is also desirable to be able to prove simple algebraic identities

among processes, for example

(P=>(01 2!: Q2)) " (P<==o)Ql) 2!: (P<=>Q2))

« right: e ------? P)<=:>(left?x: M~ Q.))

(p.c==>Q [e/xJ)

Such identities might be readily proved in a suitable model.

A final advantage of the construction of a mojel is that it may

give better confidence that the notation introduced for the programmi~

of processes can actually be implemented in a realistic and efficient

manner. But mathematical model-building could be a rather arbitrary

game, unless the model can be shown to satisfy some fairly simple proof

rules, which can be used in correctness proofs of useful programs. It

is hoped that our calculus viII serve that purpose, although its

application to large programs will not be as simple as one might hope.

The set of programming constructs which we have axiomatised is

fairly extensive. Notable omissions are sequential composition, local

,0.
variables, and assigrunent. There is reason to suppose that the

treat~er.t of these constructs ~ill present some difficulty.

This monograph has proved that five different processes satisfy

the specification BUFF:

corY
PROTOCOL

(PROTOCOL ~ COPr)

(PROTOCOL or COPY)

B I(»

Here are tliO mo:oe such processes

(1) C(»)

where C ~ pp (s: M*) if s :=. < '>	 then IN

~ (INOROU'I' .£! OUT)

where OUT ~ (right!first(x) ----7 p(rest(s)))

(2) pp.Ileft?X<M-,>lp (_>Irigh"x_~COPY»)

ln example (1), the depth of buffering may cnange dynamically (for

example, according to fluctuating availability of storage). b:ample

(2) i~ an unbounded buffer like B(':::: ». Both examples may be proved

by methods described here.

Acknowledgements

This monograph has greatly benefi t ted from the advice and

inspiration of visitors anj students at the Programming Research

Group, particularly Rick Hehner, Zhou Chao Chen, steve Brookes, Bill

Roscoe and Cliff Jones.

31 •

References

[1] ;.'10. ilijkstra. Guar,ied COmman(1s, rlGn-(H,tern;inacy and a calculus

for th~ de-rivation of proP;Tams. Comm. AC~l. 18, 8. 1915.

[2J C.A.ii. Hoare, S.D, Brookes, A...'. Roscoe. It Theory of Communicatir.g

Sequential Processes. FRG Monograph No. 16.

[~ Zhou Chao Chen, C.A.A. Hoare. Partial Corr!.'ctnes.". of ~omrr.unicatilig

Sequential Processes. Proe. Internati.onal Conferf'l"lce on

Distributed Computing. April 1981.

[~ Robin !":ilner. A Calculus of CO:71DJunicating Systems. Lecture

Notes in Co~puter Science No. 92. Springer, 1980.

PAOGRA....ING RESEARCH GROUP TECHNICAL "ONOGRAPHS

JUNE 1981

This Is a serIes 01 technical monographs on topics in the lIeld 01 computation.
CopIes may be obtained from the Programming Research Group, Cfechnical
Monographs>. 45 Banbury Road, Oxford. OX2 6PE. England.

PRG-l (out of print)

PRG-2 Dana Scott
Outline of a MathematIcal Theory of Computation

PRG-3 Dana Scott
The Lattice 01 Flow Diagrams

PRG-4 (cancelled)

PRG-5 Dana Scoll
Data Types as Lattices

PRG-6 Dana Scott and Christopher Sirachey
Toward a Mathematical Semantics for Computer Languages

PRG-7 Dana Scott
Continuous Lattices

PRG-B Joseph Stoy and Christopher Strachey
OS6 - an Experimental Operating SYstem for a Small Computer

PRG-Q Christopher Sirachey and Joseph Stoy
The Text of OSPub

PRG-lO Christopher Strachey
The Varieties of Programming Language

PRG-ll Christopher StraChey and Christopher P. Wadsworth
Continuations: A MathematIcal Semantics for Handling Fulf Jumps

PRG-12 Peter Mosses
The Mathematical Semantics 01 Algol 60

PRG-13 Robert Milne
The Formal Semantics of Computer Languages
and their Implementations

PRG-14 Shan S. KUD. Michael H. Linck and Sohrab Saadat
A Guide to Communicating Sequential Processe:o

PRG-15 Joseph Stoy
The Congruence of Two Programming Language Definitions

PRG-16 C. A. R. Hoare. S. D. Brookes and A. W. Roscoe
A Theory of Communlcaf/ng Sequential Processes

PRG-17 Andrew P. Black
Report on the Programming Notation 3R

PRG-1B Elizabeth Fielding
The Specification of Abstract Mappings
and their implemantatlon as S+-trees

PRG-1Q Dana Scott
Lectures on a Mathematical Theory of Computation

PRG-20 Zhou Chao Chen and C. A. R. Hoare
Partial Correctness of Communicating Processes and Protocols

PRG-21 Bernard Sulrln
Formal Specification of a Display Editor

PRG-22 C. A. R. Hoare
A Model for Communicating SequenTIal Processes

PRG-23 C. A. R. Hoare
A Calculus for Total Correctness of Communicating Processes

PRG-24 Bernard Sufrln
Reading Formal Specifications

