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Abstract 

This paper ellplalns the prinCiples of graph reetuctlon anet etevelOps a new graph 

reetuctlon methoet baseet on super-comblnators. An optimality criterion for the new 

methoet Is derlveet anet a simple melhoet ot generating optimal cotte presented. The 

results ot all experimenlal comparison are reporteet. showing the super-combinator 

methoet to be more efficient than previous ones. 
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Introduction 

There is a growing interest nowadays in functional programming languages an" systems. 

and in special I'lardware lor elilecuting Ihem on. Many lunC1Ionlli language 

Implementallons ar-e based on 8 system celled graph reducllon. This pap9r gives an 

Introduction to graph reduction In general. describes some partiCular schemes used 

In the past and then introduces a new scheme which Is potenllally more efficient. 

Considerallon of the new scheme clarifies the relatiOnships between all the various 

schemes. 

Graph Reduction 

A graph reducllon (GRJ computer does not run a program In the conventional sense. 

Instead. It operale:s on an expression. continually simplifying It until II 18 In the sImplest 

possible form. This process of slmpllficallon Is called reduction. 11 the expression given 

to th.e machine Is a program In a funclionai language. then the tlnal result will be 

Ihe value 01 the program. 

In tact the language In which the expressions within the machine are represented Is 

unlikely to be useable as a lunctional language. because these shOuld be designed 

for the convenience of people. not machines. The design' of a suItable machine 

language and the translation Into It Of user progrems Is lhe topic 0' ttlis paper. 

The simplest maChine language 10 be considered is lhe language ot con,stant applicative 

forms (cafs). The syntax 01 this language IS 

E ::"" C (E E )
l 3 

C is a set Of con,stanr" SUCh as integers. charaClers and booleans. There 15 a class 

01 conSlant monadiC functions called operafor;s. (E Ell represents the applicationl 
01 (he function E l. 10 the argument E The luncllon may be an operator or a

3
, 

compound elpression. Expressions in this language are simplified by epplylng operators 

10 arguments. For elample. II NEG is the imeger negalion operal0r then WEG 2) is 

a constant applicalive torm. end may be simplified 10 the Integer -2. 

Within the GR machine. constant applicatlve forms cen be represented' by paIrs linked 

together in the manner 01 Lf5P list cells. The head' of the pair represents the funcllon 

end the tall 01 the pair represents the argument. An expression can thus be represented 

by a single pointer. whIch Is Importenl because It enables expressions to be substItuted 

In others elflclently. 
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The synlax lor application only allows a function to be applied to a single argument. 

II might be Ihough! thaI operators or more than one argument could nOl be lined InlO 

tne scneme. fortunatOly this is not SO. Operators 01 several arguments may be curried, 

meaning that an operatar requiring n arguments. when applied to one argument. 

becomes an operatOr requiring n-I argumenls Wllh the value at the first argument 

bound into il. For example. + IS an operator requIring two arguments which adets them 

together. 8M (+ 1) Is an operator requiring one argument which adds one to it. 

( (+ 1) 2) represents (+ 1) applleet to 2 and can be slmplifieet 10 3. The GR 

machine implements the currying of operators by not applying an operatOr unlil all 

lis e rguments are present. 

The synta)l given becomes very unwieldy when operalors wllh several arguments are 

useet lrequerltly. To ameliOrate this It Is convenient to assume thai eppllcallon Is 

len-assoclati~e and omit breckets that serve only to force association to the left. For 

example. this allows us to write «(+ 1) 2) as (+ 1 2), dropping the Inner brackets. 

In future this extended synlax will be used to etenOte expressions wllhln the machine. 

II is Important to realise thai when this is done. no extension 01 the rf1prf1~entarlon 

language used within Ihe real machIne Is implied. II Is simply a more convenient way 

01 writing il. CThOse used to LISP should take note thai this Is the oppo~lte convention 

to thai used In LISP) 

The GR machine simplifies caf~ by locating the leftmost operator anet applying 11. H 

the operator can only be applied to operands In their simplest form then the maChine 

simplifies Ihe argumenlS beiore applying the operator. In the example. 

(" {+ 1 2J ( .• 3 4)) 

the ma~tllne llrst locares the" operator. " reQuires simple integers. so Ihe machine 

goes on 10 simplily tne aq~umenls This converls the expression IntO 

(x 3 7) 

Now. the multiplication can be performeet and Ihe whole expression becomes 

21 

This Is In I1s simplest possible form anet the machine halls. 
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How efficient can such 8 reduction machine tie? lei us consider each Step 01 the 

reductlon process with the proposed representation In mind. The leltmosl operator can 

be loealed by following function pointers unlll an operator Is found. The arguments 

of an operator are near It In the expression and cln be noted at the seme time 85 

the operator Is being fOund. Replacing 8 sUb-expression by B slmpll1lad version Involves 

only upd81ing 8 polnlsr to point 10 the new version. None 01 Ihesa operations Is 

Inherently expensive and so the pOlenllal for an elflclanl GR maChine sBsms good. 

Implementlng ConCflUonals 

So far we haye shown hOw cats can tie used to represent arlthmellc expressions. They 

will be useless 8S 8 machine-coda. though. unless they cen encode condltlonels. One 

mIght conslcer exteru11ng the language with the production 

E ::- if E1 then E elae E 3J 

but. In fact. 1hls Is not necessary. A new operator. IF, can be Introduced and deflned 

by raduction rules: 

IF tI:ue E.... E.. -+ z.... 
IF [uae Z.... E.. -+ Z.. 

The meaning of thess rules Is 1hat when lhe machine encounters an ellpresslon of 

the form of the left-hand siete. II replaces It by the ellpresslon on the right. IF requires 

Its firsl argument to be simplified. then selects one of lis other two argumenlS according 

to the value 01 the lirs!. So tor eKample. 

IF ( E 0) (NEG E) E 

simplifies 10 the absolute yalue 01 E. Condi11onal ellpresslons In the source language 

can be implemented Dy the translation 

if E 1 then E els8 E 3 ~ IF E E 2 E
J 1 J 

Here and elsewhers the double errow (~) means that the 8QuaUOn Is 8 transformation 

rule Ihat a compllsr would apply. replacing ellpresslons of the form 01 Ihe lefl-hand 

slce wilh the corresponding expression on me rlghL 
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Implementlng Functions 

Even with conditional expressions. cars stili seem inadequate as a machine language 

because there is nOthing to correspond to functions In the source language. A new 

piece of syntax brings them very much closer: the ~-expressron [Curry ana Feysl. Let 

us extend the language wllh the productions 

E :;- V ~v. E 

V Is 8 class 01 '1srlable". ~V. E represenlS 8 monadic functIon. which when applied 

to an argument returns E with the argument substltu1ed for all occur-eneas of V within 

It. Occurrences of variables In expressIons must be bound bY' an enclosing 

l-expresslon. Expressions Inyolvlng no ).5 are called appllc8tlve form/J. A new rectuellon 

rule Is necessary II the machIne Is to simplify l-expresslons. The rule Is to treat 

l-expresslons as operators with one argument. The resull of applying e ~-e)(preS510n 

to an argumant Is obtained by substituting the argument for the bound' "'arlable In 

lis bOdy. otherwise called bInding the argument to the bound variable. For ell,ample. 

(~x.+x2)3 

may be recluced to 

+ 3 2 

and thence 10 

5 

Less trivially. 

Py.	 + Y (IU .• z.) (0 yy») 4 

may De Simplified in the 10110wing stages: 

(ly.	 + Y ((l•••• z) (. y y») 4 

+ 4 «~z. x z z) ex 4 4) 

+	 4 (x (x 4 4) (x 4 4)) 

+4(x1616) 

+ 4 256 
260 



There are two Importanl points to note about Ihls reduction rule. Firstly. Ue argument 

of a ).-expresslon does not have to be simplified before substltutlon -- Indeed. If the 

),,-expresslon does not use the value 01 Its parameter In delivering lis own value. then 

the argument will never be simplified. Secondly. even Ihough substituting an argument 

may causa II to appear more than once In Ihe result. this does not cause It to be 

copied or reduced more than once. This Is because It Is a polnfer to the argument 

that Is actually substituted. Also. whenever an expression Is simplified. the old 

expression Is overwritten with the new version. This ensures that all pointers to the 

old expression now point to the sImplified versIon. To show 

().x. + x x) (+ 2 3) 

being reduced to 

+ (+ 2 3) (+ 2 3) 

Is slightly mIsleading. Rather It Is reduced to 

+U-.+ 2 3 

Now II Is clear that when (+ 2 3) Is simplified for the first operand or .. the 

expression becomes 

+ ~5 

and no second evaluatIon 01 (+ 2 3) will be reQuired. ThIs scheme lor reducing 

each expression at most once gives rise 10 lazy 9'18/uarJon IHenderson & Morrisl. 
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Implementing Oeclarallons and Recursion 

The ~-nOlilljon allows us to write non-recursive funclJons. but our language Is sWI 

epparenlly not very riCh. In fact. any functional programming language construct can 

be translaled Inio the ~-notallon. Declarauons. both recurslvB and" non-recursive. BrB 

the only Important constructs that are missing. We shall show how fo express these 

In the ~-not8Uon. 

Non-recursIve declarallons can be Implements" by the fransletion 

1et V - E in E = (J.V. E:zl E 11 z 

As the former should be evaluated by subsliluling E 1 lor V In E It Is clear that
2 

this translallon Is correct. Recursive declarations BrB a lillie harlter. requiring 8 new 

bsslc Operator. Y. Y must be applied 10 e function. end computes Ita least fixed" pOint. 

Y Is defined by the reducllon rule 

Y f _ f (Y f) 

Now. It we translale 

1etrec V • E in E
1 z 

WhiCh binds E 1 to V within both Eland E 1 into 

(l.V. E ) (Y (lV. E ))
l 1 

Ihen V acoulres the value. within E) of 

Y (lV. E )
1 

But. by the rule for Y Ihis is the same as 

(lV. E 1 ) (Y (lV. E 1» 

which Is £1 wl1h V laking the same value as In E . So as V lakes the same value z 
In Eland E J 'he translation Is Correct. 
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Notice that the right-hand side of the rule for Y contains c.nother application of Y. 

If this applicallon Is later reduced lhe expression becomes f (f tY f», which can 

be reduced again to f (f (f tY f»), and 80 on. The original expression Is clearly 

equivalent 10 the Infinite applicatIon f (f (f (f ••• »). A reel GR maChine would 

take actvanlage of the facl that (Y f) appears on the right hand slete flf the rule 

lor Y to build a circular structure. So 

(Y f) 

Is actually reauced" to 

e:.v
 
which has the desired effect. 

Since we can translate functlons and declarations which afe the meal of functional 

languages Into the l.-nolatlon. II Is unnecessary to extend the machine language any 

further. 

Tumsl&Ung to Comblnators 

However. there are good reasons for believing that the machine language has already 

been extended too far. Introducing new syntax with a new reduction rule must Inevitably 

complicate the machine execullng the language. For example. the linked pair 

representation described above Is inadeQuaie lor the extended language. Also. because 

l,-reduCIlon may substitute inside lhe body 01 a nested l,-expresslon. the Internal 

SlrUC1Ure 01 Ihese pseudo-ooerators is important - they are nol "pure code". This makes 

II dHflcull to use unorthodox representations lor l,-expresslons. SUCh as microcode. 

Moreover. there Is a danger of Inefficiency in substituting Into very large l,-eKpressions. 

because substitution must visit every leal 01 the body. For Ihese reasons. It would 

be nice to retain the language 01 constant appllcaUve forms II al all possIble. 
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11 should be mentioned' that the problems described' In the paragraph above can be 

approaCh6l1 by a scheme 01 delayed SubsfifutJon ILanetlnJ. In this approach expresSions 

are aCcompanied by a list of substitutions to be applleet to them (the envlronmenr). 

The subslltuUons are only actually performed when sImplifying a variable. While this 

approach Is apparently more efficient. Turner has shown that the overhead 01 

manipulating and searching environments may cancel out any gains maete elsewhere. 

Another disadvantage Is thaI. as an 8Kpresslon Is no longer complete In Itself. but 

requires an environment lor Its InterpretaUon. 8 simplified' expression cannot be 

overwrlUen with the new version as was ltescrlbeet above for cars. 

Fortunately. the language of cats can be gIven the 18me power 8S the ).-notat10n 

simply by al1ctlng a few new primitive operators known as comblnatCJra [Curry and Feys]. 

The comblnators requlrect are S. K, anct I, defined by the rules 

S x y z ._ (x z) (y z) 

Kxy -x 
, x _ x 

To show that the inclusion ot these comblna1ors gives the power of the ).-notation 

11 Is necessary to ctefine a translation scheme between the two. II Is only necessary 

10 define the translation of a ),-expression whose body Is already an appllcatlve form. 

::Jacause as the translation proctuces an appllcatlve form from a ).-expresslon one may 

work outwards from the Innermost ),-expresslon eliminating each ). In turn. The 

transiallon rules are given by cues of the syntax. If the body Is e constant, then 

),V. C ~ K C 

because 01 (he rectuciion rule 

KCE--+C 

For the same reason. H the body is a variable ctifferent Irom the ).-variabfe then 

),V
1

• V 2 = K V, 

If the bOety Is the bounct variable then 

),V_ V ==> 

because 

IE _ E 
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Comparison wHh the reetucllon rules shOws that each translation rule pneservas the 

meaning 01 the expression. The only case remaining Is thai of a i-expression whose 

body Is an application. 

lV. (E E 2 )
1 

But consider the expression 

S ('V. E,) ('V. E2) 

When applied to an expression Ey' this reduces to 

S o.V. E1 ) O.V. £2) B., -+ CO.V. £1) E.,> «iV. E]) E,.> 

Huh Is: E with V replaced by E... applied to E with V feplacetf by E.,.. But this Is1 2 
exactly the same as (El E 2) with V replaced by E.,. So 

iV. £1 £2 -==- S C).V. B 1 ) O.V. E 2 ) 

As this role produces smaller i-expressions then the original. repealed application 

of all lour rules must eventually terminate gtvlng an appllcatl....e form. Since a program 

can contain no free variables. II will slll1 contain no free ....arlables after repeated 

appllcallon of the rules. and hence no variables at all. So a program may be translated 

Into a consfant apPIICaU.,a form. Hence the language of C./3 already has .all the power 

of the ~-notalion. 

Turner's Optimisations 

ThiS does nOI mean thai there are no funher problems Involvel1 In USing comblnators 

10 implemenl functIonal languages In facl. using the transialion scheme l1escrlbel1 

above causes programs 10 grow enormously when they are lranslatel1. The reason may 

be seen by considering the expression 

eEl Ez } 
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Suppose \hls expression Is enclosea In a ),.-expresslon binding v. Then at some stage 

It will be translated Into 

«5 (.v. E, » (>Y. E,ll 

whIch requires two cells for Its representallon. double the number requIred' by the 

Initial version. If It Is also contaIned In a ),.-expresslon blnd'ing W, then It will later 

be translaled Into 

1(5 «5 (K 5)) (.W.V. E,'» (.W.V. E,ll 

which requires four cella. In general. 8n expressIon cOntained Within n nested 

l.-expreSSIQns will expend by a faClor of 2" durIng this translation. 

This would De a prOhlblUve Impectlment to using comblnators In a real Implementation 

had Turner not shown U'1al the problem may De avoided by Introetuclng a few new 

combinators and some optimisation rules (Turner). The sImplest and' most Important 

of his optlmls81l0n lules Is the following: 

S (K Xl (K Y) ~ K (X Yl 

tustltled because 

S CK Xl (K Y) Z _ (K X Z) (K Y Z). 
_ XY 

--.. I( (X 'i) Z 

Note that lhis rule replaces an expression reQuiring four cells for Its representation 

by one reQuiring only two. Because 01 the large muHiplying factor described above. 

lhis small reduction may lead 10 a large reduction In Ihe size or Ihe IInal program. 

NOle Ihat /(3 are -f1oaled· up lhrough the expreSSion as Jar as possIble by this rule. 

Turner goes on to make use of this IJy defining new combinators to abIJreviate 

commonly occurring fOrms. For example. two new comlJlnalors Band" C are Introduced 

so that 

5 (K Xl 'i ~ B X Y 
S X (K Y) _ C X Y 



These may be used as eteltning propertIes to eteduce reducllon rules for B ana C. 

namely 

_ S (lie X) 'X z 
C X 'X Z .... S X (lie 'X) Z .... X Z (K Y Z) .... X Z Y 
B X Y Z .... K X Z (Y Z) .... X IY Z) 

With a few more combInators anet reduction rules etenned In the same style [Turner). 

one can prove that translation to c~mblnators does not more than squere the size 

of. an expraSilon. enet In practise will be considerably bener. Ineteed. Turner founa 

that the combinator varsion was otten smaller than the originaL 

These optimisation rules also give an unellpecleet aetdltlonal advantage. Because of the 

first rule. applications of K 81ways noat oul of constant ellpresslons. For ellample. 

(+ 1 2) 

Inslete a function will be translated' Into 

K (+ 1 2) 

in whICh lhe constant expreSSion la ami Intact. Because It Is present In the program 

from the slarl 01 the ellecutlon. not built each time the function contaIning "II Is called. 

the expression will be evallJateet only once. It will then be overwrlnen with the value 

3 which wllt be useet thareafler. So ·constant roldlng- happens automatically under this 

Implementation. 

Moreover. any sul)-ellpresslon Of a l.-expresslon Inctependent of the bound variable 

benefits similarly. Consider for example 

l.m. + m (. 2 n) 

Using 1he optimlsatlon rules gIven above. this is translated Into 

C (B + IJ (. 2 n) 



Notice thaI. tust as In the case of the constant expressIon above, the expression (>( 

Z n) Is preserved Intact In the translation. II n Is bounet to the value 4. for example. 

then when (" Z n) Is reetuceet on the first call 01 the function. Its value. 8. will 

overwrl1e 1M original expressIon. so that the function IJctually becomes 

C (B + IJ 8 

In effect. wilen n Is bOunet 10 a vlJlue the subeltpresslon (>( Z n) becomes a constent 

expression anet so benefits from the automatic constant folding, This property gives 

moveout from functions. anet hence moveout from lOOps because a loop Is lust a 

recursive lunctlon. This klnet of evaluation scheme Is called a fully lazy evaluation. 

because II ensures that each expression Is evaluateet only once. In contrast. orOlnary 

lazy evaluation ensures that each expression bound to a Yar/able Is evaluateet only 

once. 

With lhese optimisatiOns graph reOuctlon becomes a practIcal Implementation technique. 

with the Important advantage of full laz.lness. The etlsadYantages of Tumer'S COmbinator 

lPicheme thOugh. are firstly thal the machine coete form of a program Is far removeO 

Irom Ihe source form. This makes Interpretation or Intermediate values etlfflcult. for 

<.~xample during etebugging. Seconetly. compllalion Is slow. This is partly because Cl 

the number 01 optimisatiOn rules that must be applieet. More seriously. the compilation 

algorithm I ha".e describeet makes as many passes over eaCh expression as there are 

),s enClosIng It. so compile time Is not linear In program siz.e. Thiretly. uecutlon Is 

broken down inlO ".ery small steps. making tt'le overheaet· of linking one slep to the 

.... ext ConSiderable. The remainder at IhlS paper deSCribes an approach thai overcomes 

these disadvanlages to some extenl 

IntrOducing Super-combinators 

The key 10 me new approach IS (0 generalise the class 01 combinatol"S. Relerring baCk 

to the delinltlons Of S. K. / etc. we see fhat each one could have been dellned as 

a l,-expres$lon: 

s - ),x),.y),z. (x 2) (y z) 

J< - ),uy. x 

I - ),x. X 
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These i-expressions ha....e two speCial properties thai make them suitable for use as 

operators. Flrslly. they ha ....e no froo ....ariables and so afe "pure code", hence their 

Internal struclure Is Of no conseQuenCe and any suitable representation may be used 

for them. Secondly. their bodies are appllcatlve forms. This means that when cals are 

substituted lor Iheir bound ....ariables. Ihe result Is a caf. II they are 10 ~e used as 

operators in 8 car reetuction machine this property Is vital. Any ).-axpression wlth these 

two prOparlies Is a camt:Jinator, and henceforth It Is assumed 11'181 any combInator Is 

a suitable operator for a cat rfJductlon machine. Where !l Is necessary to dlsllngulsh 

generalised combinators Irom Turner's. they are caUed sup6r-comblnator~. 

As there are Infinitely many possible comblnators, the GR mechlne will not contain 

definitIons 01 them all at onoe. A complier must generate definitions fOr the comblnators 

it uses In the program graph. These definitions will be presented' In this paper es 

).-ellipresslons or as aquatlons, but In practlce would probably be compiled Into 

SOmething else. for elliample microcode. Once again. a translation scheme from general 

).-ellipresslons Into applicallve forms must be provided. This can be done wary simply. 

T,k.e any ).-expresslon, 

).v. E 

Firsl the bOl1y Is converted into an appllcatlve form by Invoklng.the complier recursively. 

J,.v. E' 

Then the Iree variables or lhe ).-expresslon are IdenUfled'. Suppose they are P, Q, 

.... R. lhe ).-eliioression is prefillied by a ). binding eaCh free variable. giVing 

).P ).Q , •• ).R ).V. E' 

The J,.-ellipression resulting is a combinator, because E' Is an applicalive form and 

all lis tree variables P. Q I R are bound. Cal! lhls combinator a. Its definmg equation 

IS 

a P Q ••• R V --+ E' 

Then the original J,.-expression is equivalent 10. and can be replaced cy: 

a P Q ••• R 

When Ihls lorm Is applied to an expression E, the application of a can be reauced. 

E Is bound to v, and eaCh free varlacle takes ils own value In E', so Ihe appliCati ...e 

form Is truly eQuivalent to the original ).-expresslon. 
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As an IIluslratlon. consider the source language deflnillon 

e1 n 8 if n - 1 then hd 8 elBe 81 Cn - 1) (tl 8) fi 

This defines the 'unction el,. which selects the nth element from the sequence e. 

In the }.-notallon It Is 

.1 - Y (lOHn'B. IF (- n 1) (hd B) (el (- n 1) (tl Bll) 

ConsIder IIrst the InnermOst l-exprasslon. 

'B. IF (- n 1) (hd Bl (el (- n 1) (tl Bl) 

Its 'ree variables are nand e1, so the combinator a Is Introetucect with the definition 

anBIB -+ IFc-nl) (hdB) (BI(-nl) (tlB» 

Now the whole l-elpresslon can be replaced by 

a n 81 

and 80 

e1 - Y (lelln. a n ell 

Repealing lhe process. combin81ors IJ anlt ., are Introduced derlned by 

IJ e1 n -+ a n e1
 

"1 e1 -+ IJ e1
 

and so finally 

e1 - y 'Y 

1\ Is clear by inspection thai this choice 01 combinators Is not optimal. The most serious 

problem. though. Is nol obvious. In fact. this compilation algorithm does not give 8 

fUlly lazy Implemenlalion. To see this. consider the partial application (e 1 2), ;9 the 

function Ih!lII returns the seconl1 element of e sequenca. 

012 • lB. IF C- I 2) (hd BJ (el (- 2 1) (tl Bll 



ThiS Is equl'<lalent 10 

el 2 },s. IF-FALSE (hd 8) (ell (tl B» 

where IF-FALSE Is eteflneet by 

IF-FAL.SE EtnM E,... -. E,... 

Of course. In a fully lazy Implementation. this Is what (el 2) woulet become etter 

one application. This woulet ensure that the expressions UF (- 1 2» anet (e1 (

2 1» are e'<lalueted only once. Howe'<ler. applying the comblnators cterl'<led abo'<le we 

tlnet 

e1 2 ..... Y., 2 
..... ., el 2 

-J> 6 el 2 

..... a: 2 e1 

anet no further reauetlon Is possible until 8 Is supplleet. A separate copy of Ihe 

expressions mentloneet above Is createet each time a: Is applleet. anet so they must 

be evaluate<t mare than once. Thla la not a fully lazy Implementation. 

A Fully Lazy Super-combinator Implementation 

Fortunately the expressions sublect to such repeateet evaluation are easily letenUfleet. 

Any sub-eJCpresslon of a },-eJCpresslon which etoes not etepenet on the bounet '<Iarlable 

risks It SuCh expressions are called the free expressions Of the },-elpression by 

analogy with free variables. Free eJCpressions which are nOI pari of any larger free 

expression are celleet maximal tree expresslon~ of lhe },-expression. 

The translation scheme gi'<len abO'<le con'<lerts the mInimal free expressions 01 each 

},-expression inlO parameters 01 lhe corresponeting combinator. Consieter a sclleme 

whiCh converts the maximal free expressions into parameters instead. First we must 

establIsh lhal tllis IS a '<laUd translation scheme. is that genuIne comoinators are 

produced and thai each },-eJCpression Is replaceet by an appHcali'<le form. Let us 

consider the appllcallon 01 Ihe new SCheme 10 a single },-eJCpresslon whOse bOdy Is 

already an appliCative form. The combinafor proetuceet musl satisfy the l1efinitlon. Ie 

Its bOdy must be an appllcatlve form anet It must ha'<le no free '<Iarlables. Us body 

will certainly be an appllcatlve tOrm. because II Is cterlY8et from an appllcall'<le form 

(the body Of the original },-expresslonJ by substituting new parameter names lor certain 

eJCpresslons. It can ha'<le no tree '<I.rlables because any tree '<Iarlable must be part 
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01 some maximal free expression. and so will be removeCf as part of a parameter. 

So a genuine combinator Is produced. The final resull which replaces the original 

).-expreS~lon Is lust lhe new combinatOr applleet to the maJdmat free expressIons. each 

of which was already an appllcatlve form. So the ),,-expresslon Is replaced by an 

appllc811ve form. Tharelore lt1is new translallon &cheme Is vallet. 

Applying It to the e1 example. 

'e. IF C- n 1) Chd e) (e1 (- n 1) (t! e)) 

has mellmal free expressions UF (- n 1» and (el (- n 1». So the new 

combinator a Is deflneet by 

a p q e -+ p (hd .) (q (t! .))
 

, ,
 
end the Ceflnltlon of e1 becomes 

e1 - Y (.e1>n. a (IF CO n 1)) (e1 (- n 1»)) 

Continuing the process. IJ anet 'Yare denned by 

IJ e1 n -+ a (IF C- n 1)) (e1 (- n 1))
 

'Y e1 -+
 " e1 

and e 1 is given by 

el .. Y 'Y 

as before 

Now. reconsider the partial application (e1 2). Wllh lhe new combmators 

el 2 _ y 'Y 2 
_ 'Y el 2 

....... IJ el 2 

-+ a (IF (- 2 1)) (e1 (- 2 1)) 



Now whenever (e 1. 2) Is used. the same copIes 01 the free expressions are used 

and hence they are evalualea only once. In fact. 

el 2 --+ a IF-FALSE (a IF-TRUE (el (- 1 I»} 

end It will be reducea to this on the flrsl call. In this ekample the new scheme gave 

fUlly IUy evaluatlon. In fact It does so In general. 

A slight modification Is advIsable In a real complier to Improve the treatment 01 constant 

exprasslons. According to Ihe description above. constant ekpresslon~ are tree 

expressions and so will be exported as parameters. It Is an unnecessary overhead 

to pass constants Irom one place to another In this way. It the application of a 

combInator Is redefined sO that conSlant sub-expressIons or the boefy are not reCreated 

on each cal!. but 8 pointer to a single version used Instead. then It Is ~nnecessary 

to expon such sub-91presslons. From now on It Is assumed that combInator application 

In deflnea In such a manner. 

T~ls compllatlon scheme can be Implemented by a recursive tree walk. The bOdy of 

each ),-expression is scanned, and each expression classilled as cons/anI, free,' or 

variable (ie aepenc1ent on the bound varlableL The m8lC.lmai free expressions are easily 

Identlfiea durIng the tree walk. and. unless they are constant. the compiler exports 

them as follows. The newly found mfe (maximal free expresslon~ Is comparea with each 

previously tound one. If It Is the same as any of them Ihen II Is replaced by Ihe 

corresponding parameter name. Otharwlse a new parameter nama Is allocBled and the 

mre replaced by It. The complier records the correspondence between parameter names 

and mfe3. When the whole bOefy has been scanned Ihe compiler can generate code 

tOr Ihe new combinator it has founo. and use the cembinalor to construct the 

replacement applicalive form as described abOve. 

Tnts SCheme is the mosl adVantageous one so lar l1escrlbed. Evaluation Is fully lazy. 

a~ In Turner'S nHBlled. Compilation is lasler. Danly because the algorilhm is simpler. 

and parlly because me expressions replacing), -expressIons are 1M general COnSideraDly 

smaller lhen ltle original ),-expression, whereas using Turner's combinalQrs they are 

aoout Ihe same size. Ttlis is because the part of the expression that Mcomes the 

new combinator a-erinitien is thereby removed from 1utther consideration. Parts of Ihe 

program may stili be scanned many tImes. but because lhey shrink on each scan 

IhlS is not nearly so serious as In Turner's scheme. The code generated Is Close 

10 the program source because each combinator corresponcts directly 10 a source 

),-expresslon. This makes the Interpretation of Intermediate states easier. Finally. 

execution sleps are large ana so Ihe overheads of linking each step 10 (l'1e nexi are 

less significant. Experiments show that this melhoa dOes Indeed give faster execution 

than Turner's. which In turn Is faster than the other methocts. 



Ordertng Super-combinator Parameters 

Even this scheme generales sUb-optimal combInators though. Recall Irlat 7 was definea 
atlove by 

7 el ...... P el 

Clearly. ., and /l ha"'e exactly Ihe same effect and there Is no neetf for a separete 

comblnalor 7 at ell. It Is reasonable to expect a complier 10 d"etect such reduMant 

comblnators and eliminate Ih.em. Fewer comblnators maans fewer retfucUons to be 

performed. and hence more speed. 

Eve n hatf., been dellned" by. say• 

., n el ...... p (. n 2) e1 

it would ~e reasonable to expect a compUer to slmplffy ., by dropping the retfundant 

Darameter el, so that., woultf be ctellned by 

., n ...... P (R n 2) 

The effect of this Change Is to allow ., to be applied earlier. when fewer parameters 

are a...aiIIlDle. and ~ence for Its result to be shared more wltf8ly. Stlarlng the result 

mOre wh::fe1y means Irlaf 7 Itself will ba called" less onen. anl1 hence sa...es time. 11 

will tie- assumed that the complier detects sUCh retfuntfant 'parameters antf comblnalors 

and Optimises them out. bUI without takIng any further Interest in hOw It does it. 

Recall two mOte ae/inillons that appeared abo"'e . 

.8 el n _ u n el
 

II n el s _
 

In this case no parameters appear 10 be reaunaan!. However. n antf el were inlroauced 

as parameters 01 a by the complier ilseU. beceuse they were maximal Irae expressions. 

The order in WhiCh these parameters occur has so lar been left complele1y arbitrary. 

Had" the compiler arranged them In lhe olher order the tfellnilions woull1 appear as 

/l el n a el n
 
a el n a ......
 



and now IJ Is the same combinator as a and can be eliminated. n follo.....s Ihat some 

orders of parameters permit more optimisation than Olbers and the compiler should 

choose an Order allowing maximum opllmisatlon. 

The order chosen for combinalor parameters a/so aUecls the compilation 01 enClosing 

l-expressions. The applicali...e lorm replacing eaCh }.-axprassion may well conlaln free 

expreSSions of the next enClosing l-eltpresslon. The order 01 the combinalor parameters 

will affect the size and number Of Ihese free expressions. and should be chosen to 

make tham as large and few as possible. The larger free eltpresslons are. the earlier 

large expressions are created and so Ihe more widely they are shared. The lewer 

free eltpresslons are. the fewer paramelers their enclosing combinators ha~e. and the 

mOre efficient thOse combinators are. 

for eltample. consider Ihe appllCatl...e form 

a (hd 81 n (t1 81 

In WhiCh the parameters of a can be arranged In any order: If the Immediately enclosing 

l-expresslon blncts n then Ihe maximal free expressions 01 'he form as It stands are 

(a (hd 8]) and (t1.,). Howe...er. II It were rearranged as 

a (hd 8) (t1 a) n 

then the on Iv maxImal Iree expression would be (a (hd 8) (t1 a)). 

It. on the other hand. Ihe Immeoial81y encloslno ),-exoression bound S then the optImal 

ordering 01 the oarameters would be 

an (hd 5) (t1 B) 

making la n 1 Ihe only maximal free expression. So, 10 maximise lhe size and minimise 

the number oj mle.s 01 the nexl enClosing ), -expression. all Ihe mfe.s ot Ine 

J. -expressIon being compiled WhiCh are also free expressiOns of the nert enClosing 

l-expresslon must appear before those WhiCh are not. 



20 

Suppose a J.-expresslon Is being replaced by 

a: E 1 •.• En 

then there should tie some I such that for all I less than or equal to I. El Is a 

free expression of the next enclosIng ~-expresslon. end no El with I greeter than I 
Is. This guarantees that 

cr E ••• E1 1 

will also De 8 Ir8e 8ll:presslon Of the nelC1 enclosing ~-QJ(presslon. Now consider the 

~-expresslon enclosing Ihal. To maximise the size of It$ mfes In the seme manner 

ell the E
l 

which are mrs" of It shOuld appear oefore the E1 which are nOI. and so 

on and so fonti. In general. the optimal oreterlng of the parameters unlter thIs criterion 

cen be esfabllshed 85 follows. Every E1Is a free expressIon of the ~-expresslon being 

compllecr. but It may also be 8 free expression 0' one, or more enclosing ~-expresslons. 

Call the Innermost ~-expresslon of which E
j 

Is not a free expression Its native 
).-expresslon. W the native ~-expresslon of perameter E, enCloses the natIve 

~-expresslon of E then E precedes In the optimal ordering. This does not
j j

E j 
necessarily eteflne the optimal oreterlng unIquely. because expressions with the same 

native ~-expresslon may occur In any oreter. However. any oreterlng satisfying this 

condition Is es optimal es eny other. 

Notice Ihat an expression has no meaning outside Its native ~-expresslon. because. 

by delinillon. the bound variable of ils nalive ).-expression occurs In it somewhere. 

Notice also thai constant expressions have no native ~-expressjon. because Ihey are 

free in all ).-expressions. For the sake 01 unilormity They are assumed to be nalive 

to some nOtional ~-expression enclosing Ihe whole program snd binding the names 

cl all COf'lslants. 

Now. having deduced an optimal ordering Irom our second criterion. let us return 10 

our first" tne compiler shOuld arrange the parameters so as to allow maximum 

eliminatIon 01 redundant parameters. The compiler only has any choice In the matter 

In the case 01 one comDinalor delined directly as a call 01 another. For example. 

consider 

,8pqrs -+ cr ..• 8 ••. 
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NO parameter Is redundant unless the last one Is. but the last parameter of 8 

combinator must always be the bound variable Of the A-expression It was "erived from. 

This means that. In the 8lr8mple. s was ltle bound varIable 01 the i-eJ:presslon 

Irnmeaiata1y enclosing a. If U'l8 paramelers 01 a have been Ordered opllmally as defined 

abOve. then all parameters Involving 8 come at the end of Its parameter list. If there 

15 only one such parameter. and It Is e Itself. then B Is a redundant peremeter Of 

IJ end can be ellminatect. Now, the call of a must have taken the form 

a E, E. B 

Where 8 ctId not OCCur In any of the Ef This means that each E. Is tree In 11. and 

hence ao Is all ot (a E 1 E ,>- So In tact. It there ere any E Ihen IJ must have 
r j 

been eteflned by 

.spa -+ p8 

Yfh,ere p corresponds to (II E 1 ... En). If II had only 8 a5 a parameier Uan R must 

have been defined' by 

lJa-+lls 

In Ihe Ilrst case JJ Is equal to t. The ),-e'll.presslon IJ Is beIng generatM Trom will 

be replaced by (J3 (II E 1 .., En)) ie by CJ fa E 1 •.• En}}' R might as well be 

eliminated entirely and the ),-e'll.presslon replaced by (a E ... En) directly. In the 
1 

secona case R Is equal to II. SO we see that Ihe optimal or"erlng derl...eo from our 

second criterion also satlslies our first. and moreover II makes the lOb af detecting 

redundant parameters particularly simple. 

Lei us return 10 the example 01 el and compile It once mOre. el Is C!efined by 

el - Y O .. eHn),s. IF (- n 1) (hd B) (el (- n 1) (tl s)) 

The Innermosl ),-expression tlas 1.....0 mf9s UF (. n 1» and (el 1- n 1)). Make 

ttlese Into parameters p and q. BOlh lhese m'es have the same nallve ),-expresslon. 

50 Itlelr order is Immaterial. II can now be de'lne" by 

a p q s -+ P (hd B) (q (tl B» 

and ao 

a1 - Y ('BUn. a (IF (- n 1» (al (- n 1))) 
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Now. tl'le next ),,-expresslon has only one mIa, e1. So P can be defined by 

IJ e1 n -to a (IF (- n 1» (el (- n III 

milking 

e1 - Y O.e1. Il el) 

., woulc1 be ttellnel1 by 

., e1 -to fJ 81 

anct so as ., Is equal to fJ II will not be generateet. The final result Is 

e1 - Y IJ 

A ,Compilation Algor11hm which Orders Parameters OptImally 

The nell:( step Is 10 design a compilation algorithm to areter combinator parameters 

optimally. The algorithm will neect 10 know the native ),,-expression of each maxImal 

free expression to select Ihls order. But note that the ).-expresslons enClosIng any 

point can be Identlflect by the number of ),,-expresslons enclosing them. Thus the 

outermost ),,-express1on Is Identified by zero. the next outermost by one. etc. Let us 

represent the ),,-expressions enClosing each point by these numbers. 

The compiler must compute the IdenUtying number of the native ).-expression of each 

expression in me program. In the case of variables. this is easy: the native ).-expression 

01 a variable is the ).-expresslon binding iI. Conslanl expressions have no nalive 

).-exoresslon. but can be assigned the number -1 to signify an all-encompassing 

).-expresslon which encloses the whole program and binds all constanlS. Now. consider 

the apofication of a luncllon to an argument. each of whose nalive >..-expresSion number 

is known. Because the lunClion and argument appear al (he same point. one native 

),,-exoresslon encloses the other. Both lunclion and argument are free expressions 01 

any ),,-ellpression enclosed by both native ones. and so the whole application is too. 

One or the other of the function and argument Is not free In the Innermost nalive 

),,-expresslon. though. so nor Is the application. This means that the native ),,-expresslon 

of an application Is the Innermost of U'te native ),,-expresslons of lhe functlon and 

argument. In terms ot U'te letentltylng numbers. the number 01 an application Is the 

ma1f/mllm 01 the numbers of the function anct argument. Taking advantage of these 

lacts a complier can easily compute these numbers for every expreSSion In the program 

In a single pass. 
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Funhermore. those expressIons which are maximal free expressions 01 any 1,-expresslon 

can tle Identified at Ihe same Ume. They are the expressions whose naUve l,-expression 

encloses tha native l.-expresslon of the next larger expression. SUCh 8J'pressions ere 

m8Jllmal tree expressions 0' the nalive ). -expression or Ihe nexi larger expression. They 

are certainly tree In It. because any expression Is free In all i-expressions enclosed 

In Its natl~e one Dy definltlon. But the next larger expression Is not free In It. beCause 

an 8Jlpresslon Is not free In Its native l.-elfpresslon. Hence Ihe flrst 8)presslon Is 

m8Jllmai tree. In terms of numbers. Ihe maxImal free expressions can be Identlfieet 

8S those whose numbers differ from the number of the next larger ellprttsslon. 

So. during one pess over 'he program the complier can IdenUfy all maximal free 

ellpresslons and decide which 1. -expression each one Is an mfe of. During the same 

pass it might as wall replace mfes by parameter names. Now. aher the bOdy of a 

l.-expressJon has been completely scanned. all mfes of thai l.-exprasslon have been 

IdenUfled and replaced by parameter names. The complier can now generate the optimal 

combInator provided It can arrange the parameters In the right order. To do this It 

must decide which native l.-expressions of mfe.s enclose .hlch others. But Ihe nesling 

depth 01 eaCh naUve l.-expresslon Is being used to Idenllfy It anet has already been 

computed. so 10 decide whether one native l.-expressloh encloses another 1he complier 

neeet only compe ra these numbers. Using Ihls the optimal c~mblnator can easily be 

generated. Finally the appllcatlve form to replace the l.-etepresslon can be constructed 

anet lhe natIve l.-ellpresslon of each pan 01 II computeet at the same Ume. The complier 

can then conlinue to scan the rest of the program. 

This algorithm was 5uggesteet by tne concepl of noll live ).-expresslon and the observation 

thai the l.-expressions enclosing any expression can be letenllfled by nesllng depth. 

11 generales optimal combinalors according 10 Ihe criteria we developed. NOl Only 1hat. 

il accomOli!.he:. this in a .single pass over Ihe program. someltling no other Compilation 

algoriltlm above was able 10 do. This makes il Ine Mslesl algorllhm In this paper. 

oliO ttle cOmpi1a1l0n lime is roughly linear In the size of the program. 
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Ellperimental Results 

The prool of the puaaing. though. Is In the eallng. To test these hieas In practice 

a compiler was written which complied a high-level functional language InlO the 

).,-notalion. and then could translate the result either Into Turner's comblnatOrs or Into 

super-comblnators 8s requlrea. Turner's combinators were selected lor the comparison 

because he had alreaay found them to be superior (0 direct )., -reduction. A graph 

red'uctlo~ program was written which contained dellnltlons of all Turner's combInators. 

and' was able to load and use I1eflnltlons of super-comblnators wrItten In SepL. The 

complier prOduced Its lieflnltlons of super-combinator, In Sept 80 thai they could be 

comptlea by the SePL complier and usett by the reducer. Ten test programs were 

written. ranging In length Irom a few tines to a page and In purpose from the 

computalton of e to twenty places to unification. They were each compilea (0 both 

kind's Or COde and run by the reducer. Measurements were made aurlng compilation 

and' elCecullon ana the results were as lollows. The expected Improvement In compilation 

t\~e aid not manliest l[self for the smaller programs. some of which were compiled 

50% more slowly into super-combinators. The larger programs were compiled more 

quiCkly. with the largest gaining 40%. Doubtless this advantage would be stili more 

for even larger programs. The storage requirements at run-time were measured both 

as the total number of cells allocatea aurlng execution. and as the maximum number 

of cells requlrea at one Ume. They seemea to be approximately the same In both 

implementations. except In the case of the program for computing e which consumed 

almost twice as many cells when run using Turner's comblnators as when using 

super-combinators. The suoer-combinalOr coae showed a. consistent speea advantage. 

ranging trom un measurably small tor some of the smaller programs to 45% for the 

large~t. So if seems thai super-combinators have a moderate, but not phenomenal. 

adv,Jn/<Ige over Turner's comblnators on efllciency groundS. 

Graphical Combinators and Olher Improvements 

ImOlemenlatlon has nOt progressed beyond Ihis point. but two avenues lor Improvement 

are being contemplated. The firsl and simplest is to order Ihe parameters' 01 

commulative operators In the same way as the parameters 01 combinators. The same 

benelils should accrue. In lact. It mlghl be worthwhile to have several versions 01 each 

non-commutetive operalor so that parameters of these can be ordered optimally too. 
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The second Is suggesled by the observation that appliesl/on 01 a combinator Involves 

conSlrucling a tree Incorporating (he parameler values. There Is no reason why a more 

general graph 6houilt not be conslrucled Insteaet. The dilference between a graph and 

8 tree Is that some parts may be shared between several branches. and some pointers 

may be circular. SuCh graphS may be described on paper by nOla lion 01 the form 

let I - E1 1n £2 

meaning the graph obtained from E 2 by substltullng 8 polnler to E 1 all'0' 
occurrences 01 I In Eland E For exemple.2, 

let x - hd y In cone x x 

denotes the graph 

(eons U(hd Y) 

and the nOlatlon 

let x - cone 1 x 1n x 

denotes the graph 

rcone 1 P 

As an EllI:smple 01 a combinator wlf/'l a Qraph as its body. recall that Ct f) reduces 

10 the graph 

~) 

Therefore 

r f - let x • t x In x 
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01 course. this syntax resembles the deClarations 01 funcllonal programming languages 

very strongly. Indeed. any style of programming language declaration can be transl81eC 

easily Into thIs lorm. SO. declarations. whiCh were previously Interpreted by a translation 

Into the l-not8tion. can be reinterpreted as graph-structured' programs. Such prOQrams 

will comain rewer. but larger. l-e)(pressions 10 be converted InlO comblnators. Provided 

that the algorithms In this paper are extended 10 d8al with graphs Instead of trees. 

comblnators with graphs as boOtes can now be generated. Fewer and larger 

comblnalOrs will be prOliuced. This .111 reduce the overhead's of linking one combinator 

to the next stili further. The extension or the compllaUon algorithms to graphIcal 

programs shoula presen! no malor problems. 

COnclusion 

TO summarise, the Jr.-notation was laken as the canonical functional programming 

language. ana 1he language of constant appllcaclve forms was chosen as a 

graph-red'uctlon machlne-coGe. A translation Of the Jr.-notation to cs.f3 was elChlblted 

c;urner's comblnators) and It was shown that the cat code was fully lazy While the 

orIgInal l-nota1l0n was not. Turner's comblnators achlevea lull laziness by breaking 

the computa1ion down In10 very small, Indepenaent steps. which was not conaucive 

to efflclen.cy or clarIty. A scheme was desirea which would achieve lull laziness more 

aireclIy. In a clear and elUcient way. Such a s<;:heme was louna ana examined In some 

depth. The QuestIon arises Of whether a Jr.-reaucer cOuld be moailled to achieve full 

laziness more direCtly sllli. 

It has been shown that full laziness Is achievea provlaed the malCimal Iree expressions 

of a ~-elDresslon are nOl COpied when the ~-expression Is appUed'. This was arrangea 

in lhe super-comOinator approach by exporting them as paramelers. so that they were 

no 10nQer a pan 01 Ine comOinator bOdy and so could not be coplea. U. in a ~-reducer. 

the maximal hee expressions 01 each ~-expressjon were markea in some way. ana 

Ihe subslituilon Of a value for the bOund varia ole did not copy them. then the 

~-reductlon WOuld be done in a fully lazy way This proviaes yet another way of 

aChieving IUlly lazy evaJualion. 

Now the relationship between th9 different schemes is clear. Orainary ~-reduction is 

nOI fUlly lazy. but can be maae so in a lairly simple way. This Is really an Interpretive 

Implemen.lation. because r:n'9 markers must be present at run-lime and Interpretea 

during substitution. Super-combinators proviae a compilea implementation 01 the same 

scheme. because m/e.s have been recognisea al compile-time and have no significance 

81 run-1Ime. Super-combinator code can be run on a ca' reduction machine. Turner's 

comblnalore e_ecute the program In the same way as super-comblnalOrs. but perform 

each super-combinator as a sequence 01 simple comblnators. Turner's combinators 

can be run on a cs' reduclion machine with a fixed number of operators. 
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Appenc:tb: 

This appendix contains Ihe experimentsl resulls 5ummarlsec:t above. Ten small programs 

were comparec:t and measurements made of the compile Ume. program size. number 

01 reductions. storage use and run time. The super-combinator Implementation appeared 

10 be more efficIent for larger programs. As rBsl programs would be 1er lerger than 

those tested here the super-combInator Implementation melhoc:t ehouh1 work atlll better 

for them. 

Table I.	 Purpose and size of program 80urce 
in list cells. 

Program	 Purpose Size 

1 call -twice- (defined in 

(Turner) 26
 

2 ackerman's function (curried) 36
 

3 towerB of hanoi 49
 

4 ackermanlB function
 

(non-curr ied) 51
 
5 factorial 75
 
6 test append 93
 
7 compute 20 primes 106
 
8 eratosthenes' sieve 115
 
9 unification algorithm 307
 

10 comput~ e to 20 places 317
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Table II. Compile-time in seconds. 

Program She Old New , Gain 

1 26 124 177 -43 
2 36 166 206 -24 
3 49 225 261 -16 
4 51 199 243 -22 
5 75 230 342 -49 
6 93 321 372 -16 
7 106 422 429 -2 
8 115 463 468 -1 
9 307 1591 1341 +16 

10 317 2216 1265 +43 

Table 1I I. Code size in cella. 

program Size Old New , Gain 

1 26 22 30 -36 
2 36 48 43 +10 
3 49 70 70 0 

4 51 76 62 +5 

5 75 91 99 -9 
6 93 130 118 +9 

7 106 160 145 +9 
8 115 176 153 +13 
9 307 479 445 +7 

10 317 639 435 +31 
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Table IV. Number of reductions. 

Program Size Old New , Gain 

1 26 120 104 +13 
2 36 782 410 +48 
l 49 2430 1423 +42 
4 51 1566 913 +47 
5 75 1145 692 +36 
6 93 215 126 +42 
1 106 7463 5429 +23 
8 115 11919 8707 +30 

9 307 2713 1675 +39 

10 317 257590 103151 +60 
-~.!._---

Table V. Total cells claimed. 

Program Size Old New , Gain 

1 26 65 90 -39 

2 36 851 1235 -46 
3 49 3300 3626 -10 

4 51 1446 1897 -32 

5 75 887 967 -9 

6 93 199 168 +16 
1 106 7463 6108 +19 

8 115 8337 7728 +8 

9 307 2787 3363 -21 
10 317 272208 177712 +35 
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Table VI. Run time in seconds. 

Program Size Old Ne.. , Gain 

1 26 0 0 0
 
2 36 2 2 0
 
3 49 8 7 +12
 
4 51 2 2 0
 
5 75 3 3 +3
 

6 93 1 1 0
 
7 U6 14 11 +21
 

8 115 18 16 +11
 

9 307 6 5 +17
 
10 317 544 299 +45
 



OXFORD UNIYERSrJY CXJNPUIlNG LABClRATDRT
 
PROGRAWUING RESEARat GROUP TEa--.1CAL I«lNOGRAPHS
 

JULY 1982 
lh(~ IS II series or technical monographl on topica In the field 0' ~mpuloltion. Coplas may be obtained from 

the f>rogrllmmlOg RasHrcll Group, (Technical lAonograpllsl, 4$ e..nbury Road, Oxfor<1, OX2 6f'E, England. 

PRG·, 

PRG-J 

PRG~ 

PRO. 

PRG-7 

PAG-e 

PRG-9 

PRG-l0 

PRG·n 

PRG-12 

PRG-1J 

PA'H4 

PRG-l~ 

PAG·16 

PRG·1T 

PRG-le 

PAG-'~ 

PRG-20
 

PRG-l1
 

PRG-U
 

PRG·2J
 

PRG-2<II
 

PRG-25
 

PRG-215
 

PRG-27
 

PRG-211
 

PRG-29
 

PRG-30
 

O"nl Scott 
Ovtfiftfl Of I MithemollicaJ ThfKKY 01 Computllllion 

Dana Scott 
(he LetUce 01 FI01If¥ Di,,;r4rrlol 

Dana Scott 
DMe TyP"ls oIS !Alticel 

Oanl SCott IUld Chri~oph.r Slucl'1ey 
fowtud 1 MllhemaJiu} S,,",~I/CI for Computer Latl~IQIM 

Dana Scott 
CM/mucus lIlt/CN 

Josepl'1 Stoy "nd Ctlnstopl'1er Strlchey 
0$6 . ~ EICP'H,menlaJ O~ltlng SyUfHTt for I SfNll Computer 

Chnltopher Straclley Il1d Joseph sto!J' 
The Telrl or OSPW 

Chn.topher strlCl'1ey 
fhft Vir/elI" of Pr09"lIJTImlflg Langul\iM 

Cl'1mltopher Stracl'1ey lind Chrlltopher P. W"ds\Il'Qrth 
C«Iti/lU"tion4: A M,,'hem.r,cel ~emlJtJ(lce for Handfing Fun Jumps 

Peter t.4oues 
fhfl Mtlthwnalical ~l1m.nl,cl of Ngol 60 

Robert MIlne 
(he FOf'maJ Sem~llca or Computer !Angull18s oIl1d their Impfementations 

Silan S. !<vo, t.llcllael H. Lind< and Sohrab Saadat 
A &Jide to Communic"tm; Sequ9IIfiaJ PrOCfJS~!I 

Josepl'1 Stoy 
{he CDngruencft of Two Progrsmmmg (enguage Deflfl.1lona 

C.	 A. R. Hoare, So O. Brookes and A. W. Roecoe 
A ThfoO'V 01 CommulllCoIlin; SequfffltiaJ Proceaael 

Andrew P, Black 
AepDn !XI the Programming NDtalion 3R 

ElIzabeth Fielding 
fM Sp«i!icetion 01 Abtltract Mappinga ~d their imp/amelltation 

Oa,.. Scott 
lMtu'" on I Melh_tical Theory or Comput4JiOll 

Zhou Chao Chen and C. A. R. Hoare 
Pll1ial ConKtlleu of Communicelirtg Procell" and Pro4ocoltl 

Betllerd Sutrrn 
rotmlJl SpeciflClriOll of a Diap/ay EdrlrK 

C.	 A. R. Hoare 
A Mod~ for ComtrlUnlcafin; Sequentl. PrCX;"fl!~ 

C.	 A. A. Hoare 
A ClIkIJlus or TolaJ CoI"r«tne:sa for CMlfI1CIflieefing Proc;"~ftlJ 

Bernard Surnn 
R.4dmg FOf'mal Specificationa 

C. a Jo/lU 

es S+·tr..s 

f)weIoprnenf Methode for Computer P,o,,~~ mr;Judlng I No(ion 01 IIrIerlerIlllCe 

Zhou Chao Chen 
fhfl ConmstellCY of the C.curue of To4-' CrKrectnNI ror CcmmunJc.ing PrOCHaeIJ 

C.	 A. A. Hoare 
PIOf1T~g Ie art Ertgirreel'mg ProfNllion 

John	 Hugnel 
GIapII RrH1lx:t10ll with Super..(;cmb;ntltrKi 

C. A. R. Hoare 
sp.cirir;eUon~. Progl'lma ~d Impl"",.,.".ionl 

A1ela"Ctro reruftl 
Clift Studiea 1/1 Sp«itlcallon: Four Gam" 


