GRAPH REDUCTION
WITH

SUPER-COMBINATORS

8 Y

JAOHN HUGHES

Jechmeal Monograph PRG-28
June 1982

Oxford Univeralty Computing Laboratory
Programming Resparch Group

45 Banbury Roag

Ouforg OX2 6PE

© 1982 Joha Hughes

Oxford University Computing Laboratory
Frogramming Research Group

45 Banbury Aoad

Oxforg OX2 GPE

Abstract

This paper expilains the principles of graph reduction and develops a new graph
reduction method based on supar-combinators. An optmality critarion for the new
method Is derlved and a simple method of generating cptimal code presented. The
rosults of an experimental comparison are raported, showlng the super-combinator
method to he more efficient than previous ones.

Contents

Page

1 Introduction

1 Graph Reduction

3 Implementing Conditlonals

4 Implementing Functions

[Implementing Declarations and Recurslon

7 Translating to Combinators

9 Turner's Optimigations

12 Infroducing Super-combinators

1§ A .Fully Lazy Supar-combinator Implementation
18 Ordering Super-combinator Parameters

22 A Compltation Algorithm which Crders Parameters Optimally
24 Experimental Results

24 Graphical Combinators ang Other Improvements
26 Conclusion

27 Refgrences

28 Appendix

Acknowledgementsa

| wish to thank Chris Dollin. Peter Henderson. Tony Hoarg. Geraint Jones. and Bernard
Sufrin for their helpful comments on this work. and the Science and Englneering
Hesearch GCouncll of Great Britaln for their support.

Introduction

There is a growing inlerest nowadays in functional programming languages ang systems.
and in special hardware for executing lhem on. Many funclionsl language
Implemeniations are based on a system celled graph reduction. This paper glves an
Introduction to graph reduction |n general. describes some pariicular schemes used
In the past, and then introduces a new scheme which {s potentlally more efficient.
Consideralion of the new scheme clarifies the relationships batween all the wvarlous
schames,

Graph Reduction

A graph reduclion (GR) computer does not rur a program I[n the conventional sense.
Instead. it operates on an expression. contlnually simplifylag it untll It is In the simplest
possible form. This process of simplification Is called reduction. I the expresslon given
to the maching Is a program In a fenctional language. then the final resuit wlli be
the v':alue ol the program.

In tact the language in which the expressions within the maching are represented Is
unlikely to be useabie as a lunctional language, because these should be designed
for the convenience ol people. not machines. The design of a sultable machine
language and the transiation Inlo It of user progrems Is the wpic of this paper.

The simplest machine language 10 be considered is the language of constan applicative
forms (cals). The syntax of this language 1%

E ::= € | (E.I. Ezl

€ is a set of constants such as integers. characlers and boolteans. There is a class
ol constanl monache funclions called operatars. (,E;ll E:' represents the applicatian
ol the funciion Ex 10 the argument E:. The funclion may be an operator or a
compoungd expression. Expressions in this language arg simplified by epplyng oparators
10 arguments. For exampie. NEG is the integer negation operator then (INEG 2) is
a constant applicative torm. end may be simplified to the Integer ~2.

Within the GR machine. constant applicative forms cen be representad by palrs linked
together in the manner of L/5P list celfs. The head of the palr represents the function
end the tarl of the pair represents the argument. An expression can thus be representad
by a single pointer. which Is Importent because I enables expressions 1o be substluted
in others efficlently.

The symiax for apphcauon oniy atlows a funcuon fto be appled to a single argument.
It might be lhought that ¢perators of more than one argument could not be fitted into
tne scneme. Fortunaloly this is not 50, Operalors of several arguments may be curried,
meaning that an operator requiring n arguments. when applied to one argument.
becomes an gperator requiring n-1 argumenis with the value of the first argument
bound into il For example. + 15 an operator requiring two arguments which adds them
together, and (+ 1) Is an operator requiring one argument which adds one 1o it
((+ 1) 2) represents (+ 1) applled w 2 and can be simpliied to 3. The GAR
machine implements the currying ol operators by not applying an operator until all
ils ergumenis are present,

" The syntax given becomes very unwieldy when operalors with several arguments are
vsed Irequently. To amellorate this it Is convenlent to assume that epplication Is
left-assoclatve and omlit breckets that serve only o force associatlon to the left. For
example, this allows us to write {(+ 1) 2) as {(+ 1 2), dropping the inner brackets.
In tuture this exended syntax will be used {0 denole expressions within the machine.
It is wmporiant 10 realise 1thal when this is done. no exiension of the represeniation
language used within the real machine Is implied. It is simply a more convenlenl way
ot writing W (Those used 10 LISP should take nole thal this is the opposite convention
to that used In LISP.)

The GAR machine simplilies cafs by localing the leftmost operator and applylng It If
lthe operalar can only be applied 10 operands In thair simplest form then the machine
simplifies the arguments before applylng the operator. In the example.

(= (+ 1 27 (+ 3 4))

the macthine first (ocates the = operalor. = requirgs simple infegers. 30 the machine
goes on o simplity tne arguments This converts the expression iNto

(= 3 7)
Now,. the multiplication can be performed and the whole expression becomes
21

This Is In ils simplest possible form and the machine halls.

How efficient can such a reduction machine be? Let us consider each siep of the
reduciion process with \he proposed representation In mind. The lellmosi operator can
be located by foltowing function pointers untl an opsrator Is found. The arguments
of an operator are near It in the expression and can be noted at the seme time as
the oparator is being found. Replacing & sub—expression by a simplitied version involves
only updaling a gpainter to point o the new version. None of these coperations Is
inherently expensive and so the potentlal for an etficient GR machine ssams good.

implemeniing Conditlonals

So far we have shown how cafs can be used to represent arithmetic expressions. They
will be useless as a mechlne-code, though. unless they cen encods condlionals. One
might consiger extending the language with the production

, E ::= if E, then E, elss E,

but. In fact, this Is not necessary. A new operator, /F, can be Introduced and deflned
by raduction rules:

IF true n:u_a_ — 2._“
iF falne E E — !._

thes ~alse
The meaning of thess rules is that when the machine encounters an sxpression of
the form of the |eft-hang side. it replaces It by the expression on the right. iF requires
s first argument to be stmplified. then selects one of its other two arguments according
10 the value of the first. So ior example,

iF (¢ E0) [NEG E) E

simplifies 10 the absoluie value of E. Congitional expressions In the source languege
can be implemenied by the translation

if El then E: elme Ea = |F El Ez E’
Here and elsawhars the double errow (=>} means that 1he equation I3 & ransforrnailon

rule that a compilsr would apply, replacing expressions of the form of lhe left-hang
sige with the corresponding expression on the right

Implementng Functions

Even with conditlonal expressions, cafs still seem inedequate as @ rnachine language
because there is nothing to correspond to functions In the source language. A new
piece of syntex brings them very much closer: the h-expression [Curry ang Feys]. Let
us exend the language wiin the productions

E ::= V | W.E

V is & class of variables. A\V. E represents a monadic functlon. which when applled
to an argument returns E with the argument substituted for all occurences of ¥V within
It. Qccurrences of variables in expressions must be bound by an enclosing
A-exprassion. Expressions Involving no As are called applicative forma. A new reduction
rule Is necessary it the machline Is to simplify i-expressions. The rule Is to treat
r-expressions as operalors with one argument. The result of applylng e i-expression
1o an argumant is obtalned by substituting the argument for the bound Yarlable In
its body. olherwise called binding the argument io the bound varlable. For example.

(Ax. + x 2) 3

may be reduced 1o

and thence 10

Less Irivially,

Oy. +y ((xz. x 22) (=¥ Y¥))) 4

may be simplilied in the lollowing stages:

(hy. +y ((hz. » 2 Z) (x¥Y Y¥))) 4
+ 4 ((Az. xz Z) (» 4 4))
+ 4 (= (= 4 4) (x4 4))
+ 4 (= 16 16)
+ 4 256
260

There are two Important polnis 1o note about this regduction rule. Flrstly, the argument
of a h-exprassion does pot have 10 be simpllified before subslitutlon —— Indeed. If the
A-expression does not use the value of s parame!er [n delivering I1s own value. then
the argument will rever be simpiltied. Secondly. even though substtuting an argument
may cause It to appear more than once In the result, this does not cavse it to be
copled or reduced more than once, This ls because it Is & pointgr to the argument
that Is actually substituled. Also. whanaver an exprassion Is simplified, the old
gxpression s overwritten with the new version. This ensures that sll polnters to the
olgd expression now point to the simplified version. To show

(x. + x x) (+ 2 3)
belng reduced to
+ (+ 2 3) (+23)

is slightty misieading. Rather It Is reduced to

+
l_Lp+23

Now It Is clear that when {+ 2 3) is simplified for the first operand of + the

expression bacames
+
L,

and no second evaluation of (+ 2 3) wil be required. This scheme for reducing
each expression af most once gives rise 10 /azy avaluation [Henderson & Morrish,

implemeniing Declarations and Recurston
The X-nolation allows us 10 writa non-recursiva functlons. but our language Is still
apparenily not very rich. In fact, any functional programming languege Construct can
be translaied Into the A-notation. Declarations, both racursive and non-recursive, are
the only Impartant constructs that are missing. We shall show how {0 express these
in the X-nolation.
Non-recursive declarations can be lmplementeg by the translation

let V = El in E = (AV. Ezj E‘l

2
As the fgrmer should be evaluated by substituting E, for V in E, it Is clear that
ihls translation Is corract. Recursive declarations are a linle harder. requiring 8 naw
basic opearetor, Y. Y must ba applled to a function. and computes its laast flxed polnt.
Y is defined by the reduction rule
YE — £ (Y1)

Now, It we translate

letrec V = El in !:z
which binds Ex 10 V within both E:l and E? into

(W, E} (Y (AV. E.)
then V acquires the value. within !:2 of

¥ (WV. El)
But. by the rule for Y this is the same as

(AV. El) (Y (A, El))

which is El wilh ¥V taking the same value as In Ez. S0 as V takes tha sama valye
n E1 and E’ the translatien s correct.

Notice that tha righi-hand side of the ruls tor Y contains cnother application ot Y.
If this applicailon s later reduced the expression becomes £ (£ (¥ £)), which can
be reduced again to £ (f (f (v £))), and so on. The original expression Is claarly
equivalent to the Infinlte application £ (f (f (f ...)}). A real GR machine would
1ake advantage of the fact that (¥ £) appears on the right hand side of the rule
for ¥ 10 bulg a clrcular structure. So

(r £

Is actually recduced 1o

C(f])

1

which has the deslred effect

Since we can transiate lunctions and declarations which are the meat of functlonal
languages into the k-notation. It Is unnecessary to extend the machine language any
{urther.

Translating to Combinators

However. there are good reasons for belleving that the machine language has already
been extended too far. Introducing new syntax with a new reduction rule must Inevitably
complicate the machine executing the language. For example. the Inked pair
represemation described above is inadequate for the extended language. Also. bécause
L-reduciion may subsfituleé inside the body of a nested k-expresslon. the Internat
siruclure i lhese pseudo-operators is important — they are not “pure code®. This makes
it ditficull 10 use wunorthodox representalions for k-expresslons. such as microcode.
Maregver, there Is a danger of Inefficiency in substituting Into very large L-expressions,
because substitution must visit every leal ol the body. For these reasons, it would
be nice to retain the language of constant appilcative forms U at ail possible.

It should be mentloned that the problems described in the paragraph ebove can be
approached by a scheme of delayed substitution [Landin]. In this approach expressions
are accompanled by a list of substiutions to be apptled to them C(ihe environmenl).
The subslwtions are only actually performed when simplifying a variable. While this
approach s apparently more efficient, Turner has shown that the overheag of
manipulating and searching environments may cancel out any gains made elsewhers.
Another disadvantage s that. as an expressfon Is no longer complete in liself, but
tequires an environment for lts Interpretation. a simplified expresslon cannot be
overwritien with the new version as was described above for cafs.

Fortunately, the language of cafs can be given ihe same power as the i-natation
simply by agding a few new primitive operators known as combinatora (Curry and Feysl.
The combinators required are §, K, ang I, defined by the rules

Sxyz — {xz) (y 7)
KxY - X
I x - x

To show that the inclusion of these combinators gives the power of the A-notation
I i3 necessary to define a iranslation scheme between the two. It Is only necessary
to deflne the transtation of a h-expression whose body Is already an applicative torm.
J3cause as the translation produces an applicative form from a iA-expression one may
work outwargs irom the Innermost l-expression eliminating each & In turn. The
translatlon rules are Qfven by cases of the syntax. If the body is a constant, then
AW, C = KC
because ol the reduction rule
K CE — C
For the same reason. it the body is a variable different from the X-variable then
AV, 'd'2 = K V'.'

It the body is the bound variable then

AV. V. = |
because

tE —- E

Comparlson with the reducllon rules shows that each translation rule presarves the
meaning of the expression. The only case remaining Is that of a A-expression whose
body Is an applicatlon,

AV, (E:1 Ez)
But considar the exprassion

8 (aV. E) (aw. E:)
When applied to a&n exprassion E_ this reduces 1o

$ (\V. B;) (AWV. E;) E, - ((AV. E;) E) ((AV. E,) E))

thdt 1s. E, with V replaced by E_ applied 1o E, with V replaced by E . But this Is
exacily the same as (E, E) with V replaced by E. S0

AV, E, EI = § WV, B.I.) (\V. Ez)

As this rule produces smalier k-expressions then the original, repsated application
of all four rules must eventually terminate gving an applicative form. Since a program
can contain no free varlables. It will stll contain no free wvarlables after repeated
appilcation of the rules. and hence no variables at all. So a program may be translated
Into & constan! applicatlva form. Hence the language of cafs aiready has all \he power
of the k-notation.

Turner’'s Optimisations

This does nol mean that there are no further problems Involved in using tomblnators
lo implement funcltional languages. In fact. using the translation scheme described
above causes programs 10 grow enormausly when they are translated. The reason may

be seen by consldering ithe expression

(E, E;)

10

Suppose s expression Is enclosed In a h-expression dinding V. Then at some stage
It will be franslaled Into

((S (\WV. ED)} (W, E,))

which requires iwo cells for lis representation. gouble the number raquired by the
Initial version. 1 1t ls also contalnegd In a k-expression binding W, then If will later
be translaed into

({8 ((§ (K SN (AWAV. E))) (AWAV. E.))

which requires four cells. In general, an expréssion contained within n nested
k-gxpressions will expand by a facior of 2" durlng this translation.

This would be a prohibitive Imbemmenl to using combinators in a real Implementaticn
had Turner not shown that the problem may be avolded by latroducing & few new
combinators and some optimisation rules [Turner). The simptest and most important
of his optimisatlon rules is the following:

§ (K X) (KYy = K (XTY)
|lustiied because

S (KXY (XKY)yz — (KXZ) (KY 1)
- XX
- K (X Y) 2

Note that his rule replaces an expression requiring four cells for its representation
by one requiring only wo. Because of the large multiplying factor described above.
this small reduction may lead to a targe reduction In the size of the flnal program.
Ngie that ks are “floated® up through the eéxpression as lar as poasible by this rule.
Turner goes on to make use of this by defining new combinators to abbroviate
commonly occurring forms. For example. two new combinators 8 and C are Introduced
S0 that

F(KX)Y = BXY
§X(KY) == C XY

These may be used as defining propertles {o deduce reduction rules for B and C,
namely

8XYZ —+ S((KX)YZ — KXZ(YZ) — X Ii¥z)
CXYZ = SX(KY¥)IT = X2 (KYZ) — X1Y

With a few mors comblnators angd reduction rules defined In the same styls [Turnerl,
one can prove that translation lo combinators does nol more than squers the slze
of . an exprassion. and In practise will be considerably betier. indeed¢. Turner found

that the combinator varsion was ofien smaller than the original.

These optimisation rules aiso glve an unexpeciad additlonal advaniage. Because of the
first rule. applications of K always float out of constant expresslons. For example.

(+ 1 2)
Inglde a function will be iransiated Into

K (+12)
in which the constant expression Is still intact. Because It is present In the program
from ihe stari of the executlon. not bulit each time the function containing it Is called.
the expression wlll be evaluated only once. It wlll then be overwrilenn with the wvajue

3 which will be used thareafier. So "constant folding™ happens automatically under this
implementation.

Moreover. any sub—expression of a k-expression Ingdependent of the bound variabie
benefits similarly. Consider for example

am. + m (x 2 n}
Using tha optimisation rules given above. this is translated Intp

C (B + Il (« 2 n)

MNotice that, just as In the case of the conslant expression above. the expression (=
2 n) iIs preserved intact in the transfation. If n Is bound to the value 4, for example.
then when (» 2 n) s regucad on the flrst call of the function. WUs value, 8, wil
overwrite |he original expression. so that the funcilon ectually becomes

cC(8+0 8

In effect. when n is bound 10 a value the subexpression (x 2 n) becomes a constant
exprossion ang 30 beneflts from the aulomatic constant folding. This property plves
moveout from functions, and hence mgoveout from loops because a loop Is |ust a
recursive fractlon. This kind of evaluation scheme is callad a fully laxry evaluation,
because It ansures that each expression Is evaluated only once. In c¢ontrast. ordinary
lazy evaluaion ensures that each expression bound to a variable Is evalvated only
once.
.

With 1hese optimisations graph reduction becomes a practical Implemantation technlque.
with the Important advantiage of ful laziness, The disadvantages of Turner’'s combinator
scheme though, are firstly 1hat the machine code form of a program Is far removed
from the source form. This makes Interpretation of Intarmedlate wvalues Qifficult. for
oxampte during debugging. Secondly. compliation ls slow. Thls is partly because ¢!
the number of optimisation rules that must be applied. More serlously. the compilation
algorithm | have describgd makes as many passes over each expression as there are
s encigsing 1. so compile time IS not near in program size. Thirgly, execution |Is
broken dgwn inlo very small steps. making the overheag of linking one step to the
ngxt considerable. The remainder ot this paper describes an approach that overcomes
these disadvanlages to some extent

Introgucing Super-combinators

The key w0 :he new approach i1s o generalise the class ol combinatprs. Referring back
10 1heé detnitions of 8, K, | ew. we see that each one could have been dehned as
& A-expression:

§ = axiyrz. (x 2) (y)
K = axAy. X
I = ax. x

13

These -expressions have two special properties ithat make them sultable for use as
operators. Firstly, they have no frcc wvariables ancg so are "pure code”. hence their
Internal structure Is of no consequence and any suitable representalion may be used
for them. Secondly. thelr bodies are applicative forms. This means that when cafs are
substituted for their bound variables. the resuit is a cal. If they are 10 be used as
operalors in a caf reduction machine this property Is vital. Any A-axpression with these
two proparlies is a sombinator, 2nd henceforth It Is assumed that any comblnaetor Is
a sultable operstor for a ca! raductlon machine. Where !t Is necessary to distingulsh
generallsad combinators from Turner's. they are called super—combinators.

As there are Infinitely many possible combinators, the GA mechine will not contain
definitions of them all at once. A compilér must generate definltions for the combinators
it uses In the program graph. These definitions will be presented In thls paper es
r—exprossions or as aquatlons, but In practice wouid probably be compiled Inio
something else. for example microcode. Once agaln. a translation scheme from general
r-expressions Into applicative forms must be provided. This can be done very simply.
Take any i-expression,

\V_ E
First the body Is converted into an applicative torm by Invoking the compiler recursivety,
v, E'

Then the free variables of the \-expression are identifie¢. Suppose they ere P, @,
R. The)-expression is prefixed by a » binding each free variable. glving

AP XQ ... R W, E'
The L-expression resulling is a combinator, because E' is an applicaliva form ang
all its tree variables P. @, ... R are bound. Call this combinator a. Its gefinng equatign
Is

« PQ... RV — B

Then the original k-expression is equivalenl to. and can be replaced by

When this form Is applied to an expression E, the application of @ can be reduced.
E Is bound to V., and each free varlable lakes its own valve In E', so the applicative
form Is wuly equlvalent to the original x-expression.

14

As an llustratlon. consider the source language deflnition
elns = {fn=-1then hd » else 8l (n - 1) (tl s} fi

This deflnes the tunction el, which selecis the nth elemant from the sequence e.
In the X-notation i s

el = ¥ (kelinis. IF (= n 1) (hd 8) (81l (- n 1) (tl1l 8)))

Conslider first tha Innermost k-expression.

A8. F (= n 1) (hd 8) (el (- n 1) (tl 8))
its free verisblas are n and el, so the combinator @ Is Infroduced with the deifinlion
anels = (F (-nl) (hd) (el (~n 1) (tl a))
Now the whole A-expression can be replaced by

anel
and so

el = ¥ (deldn. a n el)
Repeating the process. cémbinalors A and ¥ are Imrodt.;ced dgeflined by

Aeln —» anel
¥ el - 2 el

and so fnalty

el =Y vy
it Is clear by inspection thal this choice of combinalors is not gpumal. The most serious
problem. though. Is not obvious. In fact, this compilation algorithm does not give a
fully lazy Implemeniation, To see this. consider the partial applicaion (el 2). ie the

function hat returns the second element of 8 sequenca.

el 2 = 8. IF (= 1 2) (hd 8) (el (- 2 1) (t1 =))

This IS equivalant 10
el 2 = 1s. IF-FALSE (hd 8) (el 1 (tl s))
where IF-FALSE 1s delined by

IF-FALSE B, B . — B
Of course. In a fuly lazy Implemeniation, this Is what (el 2) would become atier
one appilcation. This would ensure that the expressions UF (= 1 2)) and (el (-
2 1)) are evaluated only once. Howaver. applying the combinators derlved above we
fing

Yoy 2
Yy el 2
A el 2
a2 el

el 2

IR R

t

ant no further reductlon Is possible until 8 I3 supplied. A separate copy of the
expressions mentloned above Is created each timeé a Is apptled. and so they must
be evaluated more than once. Thia la not a fully lazy implementation.

A Fully Lazy Super-combinator tmplementstion

Fortunately lthe expresslons sublect 10 such repeated evaluation are easly Identlfied.
Any sub-expression of a k-expression which does not depend on ihe bound varlable
risks {t. Such expressions are calied the free expressions of the i-expression by
analogy with free variables. Free expressions which are nol part of any larger free
axpression are called maximal free expressions of the l—expression.

The translation scheme given above converts the minimal free expressions of each
L-expression inlo parameters ot ithe corresponding combinator. Consigder a scheme
which conver!s the maximal free expressions into parameters instead. First we must
astabhsh thar this 15 a valid translalion scheme. ie that genuine ¢comlinAtaors arg
produced and thal each l-expression Is replaced by an applicative form. Let us
conslder the application ol Ihe new scheme 10 & single l-expression whose Body |s
already an applicalve form. The combinator produced must satlsfy the definition. le
Its body must be an applicalive form and it must have no free varlables. its body
will certainly be an applicalive form. because It Is ¢erived from an applicative form
(ithe body of the orlginal i-gxpression) Dy substituling new parameter names lor certain
axpraasions. It can hava no free varlables because any frége variable must be part

16

of some maximal free expression. and so wiil be removed &5 parl of a parameter.
So a genvine combinator is produced. The final result which replaces the origina!
i-expression s |ust the new comblnator spplled 1o the maximal free eapressions. each
ol which was already an applicative form, So the k-expression Is replaced by an
applicative form. Therefore this new translallon scheme Is valid.

Appiylng 1t to the el exampis.
xe. IF (= n 1) (hd 8) (el (- n 1) (tl e))

has mexmal free exprassions UF (= n 1)) and (el (- n 1}). So the new
comblnater a is defined by

apge — p (hd 8) (g (tl 8))
enld the tefinition ol el becomes
el = Y (relxn. a (/F (= n 1)} (el (- n 1)))

Continuing thg process. A and ¥ are daflned by

Beln — a (IF (~n 1)) (el (- n 1))
r el — A el

ang el is given by
el =« Y ¥
as before
Now. reconsiger the partial application (el 23. Wilh Ihe new combinators

el 2 Yv 2

¥y el 2
g el 2
a (IF (= 2 1)) (el (- 2 1))

I AR

Now whenever (el 2) Is used, the same coples of the free expressions are used
and hence they are evalvated only once. In fact,

el 2 — a IF-FALSE {a IF-TRUE (el (- 1 1}))

end it wiil be reduced to this on the first call. in this example the new scheme gave
fully lazy evaluation. In fact 1 does so In genegral

A slight modification Is advisable In & real compller 10 Improve the treatment sl constant
exprassions. Accordng 1o the description above., constant expressions are free
expresstons ang¢ so will be exported as paremeters. it Is an unnecessany overhead
10 pass constants from one piace 10 another In this way. it the application of a
combinator is redetined so that constant sub-expressions of the body are nol recreated
on each call. but a pointer 10 & single version used insteagd. then it Is unecessary
to expor! such sub-expressions. From now on it Is assumed that combinator application
In deflned In such & manner.

This compilation scheme can be Implemented by a recursive iree walk. The body of
each)-expression is scanned, and each expression classilied as constanl, free, or
variable ltie depeadent on the bound varlaple). The maximal free expressions arp easlly
identified during the tree walk. and. unless they are constant, the compilar exports
tham as follows. The newly found mfe (maximal free expresslon) is comparet with each
praviously found one. If It Is the same as any of them then It Is repiaced by the
corrgsponging parameter name. Otharwise a8 new parameter nama I3 allocsled and the
mfe replaced by It. The compller records the cofrespondence batween parameter namas
and mifes. When the whole body has been scanned the compiler can generale code
for the new combinator it has found. and use the combinalor g construct the
repiacement applicalive form as described above,

This scheme is the most advantagedus one so far described. Evaluation s (ully lazy,
4z 1n Turner's method. Compilation is fasier. paryly because the algosithm is simpler,
and partly because the exprassions replacing »-expresswons are in general ¢considerably
smaligr then ine original x-expression, whereas using Turner's combinators they are
aoout the same size. This is because the part of the expression that becomes the
new combinator aefinition is thereby removed from further consideration. Parts of the
program may stitl be scanned many times., but because they shrink on each scan
this is not nearly so serlous as In Turner's scheme. The code generaed Is close
to the program source because each combinator corresponds directly 0 & source
L-gxpression. Thls makes the Interpretation of Intermediate states easier. Finally.
execution steps are large ang so the overheads of {Inking each step to he next are
less significant. Experiments show lhat this melhod does Indeed glve fasier exacution
than Turner’s. which |n turn Is faster than the pther methods.

Ordering Super—comblinator Parameters

Even this scheme generates sub-optimal combinators though. Recall that ¥ was deflnec
above by

ryel — f el

Clearly, ¥ and 8 have exacily lhe same sffect and there Is no need¢ for a sseparete
comblnalor ¥ at ell. It Is reasonabie 10 expecl a compiler i¢c detect such regundant
combinalors ang eliminate them. Fewer comblnators maans fewer reductions i¢ be
performad. and hance more spead.

Even had ¥ been delined by. say.
ynel — £ (xnl) el

it woulg be reasonable to expect a compller to simpitfy ¥ by dropplng the redundant
parameter el, so that ¥ would be delined by '

*yn — S8 (nn2)

The etffect of this change Is to allow ¥ 10 be appiled earller. when fewer parameters
are availeble. and hence for Hs result to be shared more widely. Sharing the result
more widely means that y itself will ba called less often. and hence saves time. I
will be assumed that the compiler getlects such redundant 'parameiers and combinators
and optimses them out. but without taking any further Interest in how it does it

Recat! twp more deéfinlians thal appeared above.

8 eln —+ ¢ n el

anels — __.

in this case no parameters appear 10 be redundant. Howgver. n and el were introduced
as paramglers ol @ by the compiler itsell, beceuse they ware maximal irae expressions.
The order in which these paramelers occur has so far been left completely arbitrary.
Had the compilter arranged them In the other order the dellnitions would appear as

B el n — aeln
aelna — ...

and now B Is the same combinator as « and can be eliminated. 1t follows thalt some
orders o! parameters permi more optimlsation than otbers &nd the compiler should
choose an order allowing maximum gplimisation.

The orger chosen for combinator parameters also aflecis the compllation ¢f enclosing
A—expressions. The applicative torm replacing each X-axprasslon may well contain free
expressions of the next enclosing k-expression. The order of the comblnalor parameters
will atfect the size snd number of these free expressions, and shouid be chosen to
make tham as large and few as possible. The larger tree expressions are. the earller
large expresgions are creaited and so Ihe more widely they are shared. The tewer
free expressions are. lhe fewer paramelers their enclosing combinaiors have, and the
more efficient those combinators are.

For example, consider the applicallve form

a (hd 8] n (tl 8)
In which the parameters of & can be arranged in any order. Il the Immedlately enclosing
A—expression binds n then the maximal free éxpressions of the form as It stands are
ta (hd 8)) and (tl a). However, I! it were rearranged &8s

¢ (hd 8) (tl a) n

then the gnly maximal free expression would be (@ (hd s8) (tl a)).

It. on the other hand., the immegialely enclosing A-expression bound s then the opumai
ardering ol the parameters would be

an (hd 8) (t1 8)

making i@ n) the only maximal iree expression. S0, t0 maximise 1he size and minimise
the number of mifes ol 1he nexi enclosing l-expression. all the mles of ne
L-expression being compiled which are aiso free expressions of the nent enclosing
A-expression must appear before those which are not

20

Suppose a A-expression is belng replaced by

then thers should be some | such that for all i less than or equal to |. E' Is a
free expression of the next enclosing A-expression. endg no El with | greeter than |
Is. This guarantees thai

will aiso be a frea ewpression ot the next enclosing A-expression. Now conslder the
A-expresston enclosing that. To maximise the size of fts mfes In the same mannar
ail the E which ere mfes of It should eppear bafore the E, which are not. and so
on and so fonh. In general, the optimal orgering of the parameters unger this critarion
can be eslablished as follows. Evary EI 13 a free expression of the A-expression belng
complied. but It may also be a frae axpression of one, or more enclosing k-expressions.
Call the innermost h—expression of which E Is not 8 lree expression lts native
k-expression. I the natlva A-expression of parametar Bl encloses tha native
A-exprasiion of EI then E, precedes EI in the optimal ordering. This dogs not
nacessarlly define the optimal crdering uniquely. because expressions with tha same
native A-gxprassion may occur In any orger. However, any orgering satisfying this
condllion is as optimal as any oOther.

Notice that an expression has no meaning ouislde its native A-expression. because,
by definiton. the bound variable of its native L-expression occurs In it somewhere.
Nolice also that constant expressions have no native A-expression. because they are
free in al! k-expressions. For the sake ol unilormily they are assumed 10 be nalive
1o s0rme notional h-expression enclosing the whole program &nd binding the names
¢l all constants.

Now. having deduced an optimal ordering from our second criterion, let us return to
our lirst the compiler should arrange the parameters so as {10 allow maximum
eliminalion of redundant parameters. The compiler only has any cholce in the matter
in the case of one combinator gelined directly as a call of another. For axample,
consider

Apgqrs — a... 8 ...

No parameter is redundant unless the last one Is. but the last parameter of a
comblnator must always be the bound verlable of the l-expression It was derived from.
This means that. In the example. 5 was the bound variable of the i-expression
immediately enclosing a. If the parameters ol @ hava been orderad optimally as defined
above. then all parameters Invoiving 8 come at the end of lts parameter (st. If there
Is only one such parameter. and it is e Itseil. then 8 Is & redundant perameter of
8 and can be allminated. Now, the call of g must have taken the form

aEl Ens

whare 8 did not ©ccur In any of the E., This means that each E‘ Is fres in 8. and
hence so Is 8l of (@ E:1 - B} S0 In fact. If there are any Ei then £ must have
been gefined by

Apa —+ pes

where p corresponds to {a El En). M a had only 8 as a parameter then B must
nhave been deflned by :

BB ~—~+ as
In the first case B8 IS equal 1o /. The A-expression 8 Is baing generated from will
be replaced by (B (a '.:".'l En)) ie by ¢ (a El « EN. # might a5 well be
eliminated entirely &nd the k-expresslon replaced by (a E1 En) directly, In the
sgcond case £ 15 equal to @ So we see that the optimal ordering derlved from our
second criterlon also satisfies our first, ang moreover I makes the |ob of detecting
radundant parameters particularly simple.
Lel us return to the example of el angd complle it once more. el is defined by

el = ¥ (Xelknks. IF (= n 1) (hd 8} (el (- n 1) (tl 8)))

The Inngrmost A-expression has two mfes (F (= n 1)) and (el (- n 1)). Make
these Into parameters p and ¢. Both these mfes heve the same nallve k-expression,
50 thelr order is Immaterial. @ ¢en now be defined by

apgs — p (hds) (q {td 8))

and 8o

el = Y {elkn. & (IF (= n 1)) (el (- n 1}))

22

Now. the next k-expresslon has only one mfe, el. So A can be delined by
geln -— a (IF (=nl)) (el (- n 1)}
making
el = Y (rel. 8 el)
v would be delinec by
el -« § el
and so as ¥ Js equal 10 § It will not be generated. The final result Is
el = Y §
A .Complitton Algorithm which Orders Parameters Optimally

The nex! atep is to design a compliation algorithm o order combinator parameters
optimally. The algorithmt will need 10 know: the native x-expression of each maximal
free expression to select this order. But note that the i-expressions encloslng any
point can be identified by the number of A-expressions enciosing them. Thus the
outermost A—-expression Is Identified by zero, the next outermost by one, etc. Let us
raprasent the k-expressions enclosing each pgint by these numbers.

The compler must compute the identifying number of the native :—expression of each
exprassian in e program, In the case of variables, this is easy: the native h-expression
ol a varsbie is the A-expression binding it. Constant expressions have no nalive
L-oxgresson. but can be assigned the number -1 10 signify an all-encompassing
A-expression which encloses the whole program and binds all consiants. Now, consider
the apolication of a funcuon 1o an argumeni, each af whose nalive A —-expression number
is known. Bacause the funclion and argument appear at lhe same pegint. one native
A-exgresson encloses the other. Both function ang argument are Iree expressions of
any k-expression enclosed by both native ones. and so the whole application is too.
One or the other of the tunclion and argument Is no! free In the innermost nalive
A—expression. though. so nor s the application. This means that the native A-expression
of an appication Is the Innermost o the native l-expressions of the function and
argument In tarms of the identltying numbers, the number of an application is the
maximum of the numbers of the function and argument. Taking advantage of i1hese
facts a compller can easlly compute these numbers for every expression in the program
in & singla pass.

23

Furihermore, those expressions which are maximal free expresslons o! any i-expression
can be idenitied atihe same 1me. They are the expressions whose native k-expression
encloses the native A-expression of the next larger expression. Such expressions ere
maximal free expressions of tha native y-expression ol the next larger expression. They
are certainly ifree in Il because any expresslon is free itn all h-expressions enclosed
in 13 native one Dby definition. But the next larger exprassion Is not free in It. because
an expression 1s not free in its native k-expression. Hence the first expression is
maximal frea. In terms of numbers, the maximal free expréssions can be Identlfied
as those whose numbers differ from the number of the nexl ilarger expression.

S0, durlng one pass over the program the compiter c¢an Identity all maximal free
expresslons and decide which A-expression each one Is an mfe of. Ouring the same
pass it might as wall replace mfes by parameter names. Now. after the body of a
L-expression has been complelely scanned, all mfes of that k-exprassion have been
identifisd and replaced by parameter names. The compller can now generale the optimal
combinator provided It can arrange the parameters In the right order. To do this i
musi decide which native h-gxpressions of mfes enclose which others. But the nesling
depth of each native k-expression is belng used to Identity it and has already been
computed, so 1o decide whether one native k—expressioh encloses another the compiier
need only compare these numbers. Using this the oplimal comblnator can easfly be
generated. Finally the applicative form to replace the l-olpreéslon can be constructea
ang the natlve h—exprassion of each part of It computed at the same time. The compler
can then continue t0 scan the rest of the program.

This algorithm was suggested by {he concept of native r-expression and iha observation
that the A-expressions enclosing any expression can be Identified by nesting depih.
it generates oplimal combinators according 1o the criteria we developed. Not only that.
it accomplishes 1his in a singlfe pass over the program, something no other compitation
algorithm above was able to dc. This makes il (ha fasiest algorithm in lhis paper.
as the comgpilauon time is roughly linear In the size of the program.

24

Expearimental Resulls

The prool of the pudding. though. Is In the eating. To test these ldeas In practice
a comjpiler was written which complled a high-level functional language Into the
A -notation. ang then could translate the result sither Into Turner’s combinators or Into
super-comblnators as required. Turner’'s combinators were selected for the comperison
because he had alrgagdy found them to be superlor to direct A-reguction. A graph
reduction program was wrliten which contalned definitions of all Turner's combinators,
ang was able to load and use definitions of super-comblinators written In BCPL. The
compller produced lis definitions of super-combinetors In BCPL so that they could be
compllet by the BCPL comepller and vused by the reducer. Ten test programs were
written. ranging In length irom a few lines to a page and In purpose from the
computation of e t0 twenty places to unification. They were each compiled to both
kinds of code ang run by the reducer. Measurements were made during compllation
ang executlon ang the results were as lollows. The expected improvement in compliation
time dit not manlfest itseil for the smaller programs. some of which were complled
50% mere slowly into super-combinaters. The larger programs were complled more
qulickly. with the largest galning 40%. Doubtless this advantage would be st more
for even larger programs. The storage requirements at run—tlma were measured both
as the tiotal number of cells aliocated during execution, and as the maximum number
of cells required at one time. They seemed 10 be approximately the same In both
implementations, except In the case ol the program for computing e which consumed
almost wice as many cells when run using Turner's combinators as when using
super—combinators. The super-combinaior code showed a.consistent speed advantage.
ranQing from unmeasurably small tor some of the smaMer programs to 45% for the
largest. 50 it seems that super-combinators have a moderate, but not phenomenal,
advanage over Turner’'s combinators on elfficiency grounds.

Graphical Combinators ang Qlher Improvements

implementation has not progressed beyond lhis poinl. but two avenues for improvement
are beng contemplated. The [irst and simpiest is to order Lhe parameters " of
commulative operators In the same way as the parameters of combinators. The same
benetits should accrue. in 1act, It might be worthwhile to have several versions ol each
non-commutstive operalor so that parameters ol these can be ordered optimally too.

The secand is swyggesled by the observation that application of a combinaior Involves
constructing a tree Incorporating lhe parameler values. There Is no reason why a more
general graph shoult not be consiructed Instead. The difarence between a graph and
a tree Is that some parts may be shared beiween several branches. and some paintaers
may be clrcuiar. Such graphs may be wtescribed on paper by notalion of the form

let I - E, in E,

meaning the graph obtained from E, by substiuiing & pointer 1o E, for all
occurrences of I In B, and E,. For exemple.

let x = hd y in cone x x

denotes the graph

(cons)
l_l.p(hd Y)

and the notation
let x = cons 1 x in x

denotes the graph

[:(cona 1])

As an example of 2 combinator with a graph as its body, recalk that (¥) reduces
1o the qraph

¢y

Therefore

Yf = let x=f x in x

26

Of course. this syntax resembles the declarations of functional programming languages
very strongly. Indeed. any style of programming language declaration can be translated
easily 1alo thts torm. S0. declarations, which were previously interpreted by a translation
Into the A-notation, can de reinterpreted as graph-structured programs. Such programs
will conain lewer, put larger. k-expressions to be converted into comblinators. Provided
ihat the algorithms In this paper are extended 1o deal with graphs Insiead of trees,
comblnaiors with graphs as bodies can aow be generated. Fewer ang larger
combinalors will be produced. This will reduce the ovarheads of llaking one combinator
10 the naxt stli! turther. The extenslon of the compllation algorithms to graphlcal
programs should present no malor problems.

Conclusion

To summarise. the A-notation was taken as the canonical functional programming
language. and the language of constanl applicative forms was chosen as
praph-retuction machine-code, A translation of the A-notatlon to cafs was exhibited
f'"l’urner's combinators) and it was shown that the caf code was fully lazy while the
ariginal i-ngtation was not. Turner's combinators achleved full laziness by breaking
the computalion own Into very small, independent steps. which was not gonducive
to efficlency or clarity. A scheme was desired which would achleve full lazinass more
directly. n & clear and efiicient way. Such a scheme was found angd examined In some
depth. The questton arises of whether a L-reducer could be mocified to achleve full
laziness more directly siill.

It has bean showr that full laziness Is achieved provided the maximal free expressions
of a h-oxpression are not copied when the k—expression l.s sppled. This was arranged
in the super-combvinator approach by exporting them as parameiers. so (hat lhey were
no longer a part of Ine combinator body and 50 couitt not be copied. Y. in a h-regucer.
the maximal free expressions ol each l-expre-ssion werg marked in some way., and
the subsitunon of a value for the Dbound wvarlavle did not copy them. then the
A=raducton would de done in a fully lazy way This provides yet another way of
achieving lully lazy evaluanon.

Now the relationship belween the dilferant schemes is clear. Qrdinary A-reduction is
not fully lazy. but can be made so in a fairly simple way. This {3 really an interprotive
Implemenation. because mfe markers must de prasant at run-time and Imerpreled
during substitution. Super-combinailors provide a compilegd implementation of the same
scheme. because mies have been récognised at compile-time and have no significance
at run-timg. Super-combinator code can be run on 8 caf reduction machine. Turner’'s
combinators execule the program In the same way as super-combinators, but pertorm
sach super-combinalor as a sequence of simple comblnators. Turner's combinators
can be rnyn on a cal reduction machine with a fixed number of operaiors.

Referances

{Curry & Fays)H.B.Curry & R.Feys: *Combinatory Loglc®. North-Holland
Publishing Company. Amsterdam, 1858.

[Henderson & MorrisiP.Hendarson & J.H.Morrls; *A Lazy Evaluator®. Proc 3rd annuai
ACM SIQACT-SIGPLAN Sympeslum on Principles of Programming
tanguages, Atlanta, 1976 pp95-103.

{tandin] P.J.LandIn: "The Mechanical Evatuation of Expressions®.
Computer Journal, January, 13964,

Murper] O.A.Turner. "A Naw Implementation Technique for Applicative
tanguages’. Sofiware. Praclice and Experlence, Vol 9. 1978.
D.A.Turnear: “Another Algorithm for Bracketl Abstraction”.

The Journsl of Symbolic Loglc, vol. 44, No. 2, June, 1976.

27

28

This agpendix contalns Ihe experimental results summarlsed above. Ten small programs
ware compared and measurements made of the complle time. program slze, number
o1 reductions, storage use and run time. The supsr-combinator implemeniation appeared
to be more efficlent for larger programs. As real progrems would be tfar larger than
those tested here the super-combinator Implementation mathod should work still better

{for them.

Table I.

v ® ~J O WU

Appendix

Purpose and size of program aource

in list cells. :

Purpose

Size

call "twice® (defined in
[Turner])
ackerman's function {curried)
towers of hanoi
ackerman's function
(non-curried)
factorial
test append
compute 20 primes
eratosthenes' sieve
unification algorithm
compute e to 20 places

26
36
49

51
75
93
106
115
307
317

Table I1I. Complle-time in seconds.

Program Size ola New $ Gain
1 26 124 177 -43
2 36 166 206 -24
3 49 225 261 ~-16
4 51 199 243 -22
5 75 230 342 -49
6 93 32l 372 -16
7 1la6 422 429 -2
8 115 463 468 -1
9 307 1591 1341 +16
10 317 2216 1265 +43

Table I11. Code size in cells.

Program Size 0ld New % Gain
1 26 22 30 -36
4 36 48 43 +10
3 49 70 70 1]
4 51 76 62 +5
5 75 91 99 -9
) 93 130 118 +9
7 106 160 145 +9
8 115 176 153 +13
9 307 479 445 +7

10 317 639 435 +31

Table IV, Number of reductions.

Program Size old New % Gain
1 26 120 104 +13
2 36 782 410 +48
3 419 2430 1423 +42
1 51 1566 913 +47
5 75 1145 692 +36
b 93 215 126 +42
? 106 7463 5429 +23
& 115 11919 8707 +30
8 307 2713 1675 +39
'10 317 257590 103151 +60
Table V. Total cells claimed.
Program Size Qld Wew - § Gain
1 26 65 90 -39
2 36 851 1235 -46
3 49 3300 3626 -10
4 51 1346 1897 -12
] "~ 75 887 967 -9
b 93 155 168 +16
7 106 7463 65108 +19
8 115 8337 7728 +8
9 307 2787 3363 ~21

10 317 272208 177712 +35

Table VI. Run time i{n seconds.

Program 51ze old New % Gain
1 26 4] 0 1]
2 36 2 2 V)
3 49 8 7 +12
4 51 2 2 a
5 15 3 3 +3
6 " 93 1 1 0
7 106 14 11 +21
8 115 18 16 +11
9 307 6 5 +17

1o 317 544 299 +45

OXFORD UNIVERSITY COMPUTING LABORATDRY
RAMMING RESEARCH GROUP TECHNICAL MONOGRAPHS
JULY 1582

Thia 5 & garies of technical monographs on topica in the hald of computation. Coples may be cobtained from
the Piogramming Research Group, (Technical Monegraphs), 4% Banbury Road, Oxford, OX2 6PE, England

PRG-?

PAG-)

PAG-5

PRG-

PRG-7

PAG-E

PRG-§

PRG-10

PRG-11

PAG-12

PRG-13

PRG-13

PAG-16

PRG-1T

PRG-1E

PRG-22

PRG-3

PRG-4

PRG-25

PRG-2%

PRG-27

PAG-2

PAG-2

PRG-30

Dana Scott
Qutlime of a Mathemalical Theory of Computation

Dana Scott
Ihe Latiice of Flow Diagrama

[Dana Scofl
Data Types as Lalices

Dana Scott and Christophaer Strachey
Toward a Malhemalical Semaniica for Computer Languagus

Dana Scoil
Confinuous Laffrcen

Joseph Stoy and Christopher Strachey
OS6 - an Experimenial Opwrehng Sysiem for a2 Smalt Computer

Christopher Sirachey and Joreph Stoy
The Text of OSPub

Christopher Sirachey
The varielres of Progremming Langusge

(:hnunpher 51rachzy and Chrlalopher P. Wadsworth
AN hcal Semanlica for Handling Full Jumps

Peter Mosses
The Mathematical Semantica of Agol 69

Rebart Milne
The Formal Semantica of Camputer Languapes and their Impiementations

Shan 3. Kyo, Michael H. Linck and Sohrab Saadat
A Guide lo Cammunicaling Sequeniial Processes

Joieph Stoy
fhe Congruence of Two Frogramming language Defindions

C. A R, Hosera, & D. Brookes and A W. Roacoe
A Theary of Commymcaling Sequeniial Proceszes

Andrew P. Black
Heport o the Frogramming Nolalion 38

Ehzabeth Fialding
IThe Speciticetion of Abatrsct Mappinge and their implamentation a3 B*-trees

Oar Scatt
Lectures on a Malnematlical Theory of Computation

Zhov Chao Chen end C. A. R Hoare
Partial Correcinena of C iceting Pr and Protocof

Bernard Sutrin
Formal Specitication of a Display Edior

C. A R, Hoare
A Model for Commumcating Sequentisl Proceqses
C. A R. Hoare
A Cakeulys of Tolal Carrecineas for Gt icaling Pri ses

Bernard Sulrin
Reading Formal Specificationa

C. B Jones
Development Methoda for Computer Programa including & Nolion of intertetance

Zhou Chao Chen
fhe Conaist

y of the Calcuiua of Tolal Correctn far C cating Pr

€. A R. Hoare
Programming i an Enginesring Profession

John Hughes
Graph Reduction wih Super-Combinstors

C. A R Hoare
Speciticationa, Programa and impigmentations

Alejandro Teruel
Cate Sludiea in Specificalio Four

