
((5] '(

•
The Rigorous Development of a System Version Control Database

by

Ian D. Cottam

Oxford University
Computing Laboratory
Programming Research Group-library
8-11 Keble Road
Oxford OX1 3QD
Oxford (0865) 54141

Technical Monograph PRG-31

October 1982

Oxford University Computing Laboratory,

Programming Research Group,

45, Banbury Road,

OXFORD, OX2 6PE

ABSTRACT

The "Rigorous Approach" to software development espoused by C.B.

Jones in [1] is followed in developing a special-purpose database

designed to control the various versions of a system. The version

control program developed is firmly based upon the Gandalf [~]

System Version Control Environment [3] in use at Carnegie-Mellon

University.

Most projects involve the production of more than one ~ource

•document. The documents (after processing) may be combined in

various ways to compose systems. As systems evolve through

different versions it becomes increasingly difficult to keep track

of the source documents and their interdependencies; the consistency

of systems put together from collections of documents is

consequently hard to verify. The program developed supports the

most common forms of document interdependency relations, and methods

of system evolution. The entire top-level specifiqatipn is

presented. Crucial design decisions taken during a prototype

development are also included and justified. The paper documents

the author's experiences with the method on a small r yet

non-trivial, problem.

-~-

7

Index Terms:

Formal specification, correctness, program proving,

version-control, special-purpose database •

•

•

INTRODUCTION

Many people in the computing community believe that to transform

programming into a professional engineering discipline requires the

mastery and application (by programmers) of development methods

which are rooted in the formality of mathematics and logic. This

paper attempts to demonstrate the power of formal methods via an

example case-study development of a System Version Control Database

(SVCD). The "rigorous approach" to software development [1]

promulgated by C.B. Jones is the method employed. Our version •

control system is a variant of the Gandalf System Version Control

Environment [3] produced by A.N. Habermann and co-workers at

Carnegie- Mellon University.

Below we briefly introduce both the development method and our

philosophy regarding the control of system versions. The paper

continues with, firstly, the formal functional specification of SVCD

(together with informal commentary); then we present successive

refinement stages of our specification until executable (Pascal)

code is reached; finally, problems encountered during the

•development are presented and their consequences assessed,

The rigorous approach is also known as the Vienna Development

Method (VDM [4]) ,and was first used by Jones and co-workers 81;, thll

IBM Laboratory in Vienna. It is based on a denotational semant~cs

[5] framework. The focal point is a specification notation

("Meta-IV") oriented towards the philosophy of modelling abstract

data types. Abstract functional specifications are reified ("made

more concrete") by successive refinement steps, resulting in a

traditional program in some desired programming language, Each

stage is shown to be correct with respect to the previous stage,

Since a notation change occurs between the penultimate refinement

-4

and the implementation (say, from Meta-IV to Pascal), assertions may

be added at appropriate points in the program code (as comments) for

verification purposes. The rigorous approach may be thought of as

following a formal method but, often, the correctness of theorems is

shown via informal arguments. Such arguments are, however,

developed hand-in-hand with the specification and design. If a

dispute regarding the correctness of a development arises, the

appropriate theorems may be subjected to formal proof. In this

•	 case-study we concentrate on data type refinement concerns at the

expense of operation de-composition (or code proofs).

The customer's statement of requirements was:

"Many projects involve the cooperation of several people and

the production of more than one 'source' document. The

documents (after processing) may be combined in various ways to

compose 'systems'. As systems evolve through different

versions it becomes increasingly difficult to keep track of the

source documents and their interdependencies; the consistency

• of systems put together from collections of documents is

conseyuently hard to verify.

Specify a database (and operations on it) to support the most

common forms of document interdependency relations, and methods

of 'system evolution'. The relationships between components

should be specified in a language-independent fashion. The

database must be able to describe (software) systems written in

a variety of (programming) languages. Specified components

must be 'implementable' either as (atomic) modules or as

(composed) {sub)systems. The main purpose of the database

would be to keep track of source documents etc. Implement (in

Pascal) enough of the specified system to enable a jUdgement to

be made about the utility of a complete implementation.

The 'systems' may not necessarily be software systems,

need all the documents be 'program texts'."

nor

The proposed solution to our customer's requirements is based on

facilities provided by the Gandalf 'Integrated Software Development

Environment'. The Gandalf project is a development of the Computer

Science Department at Carnegie-Mellon University (CMU); implemented

as modif ications and extensions to the Unix (Tm.) operating system

[61. It consists of three major components: (a) an Integrated

Program Construction Facility, (b) a System Composition and

Generation Facility, and (c) a Project Management Facility. Only

(b), and only the composition part, is considered further. For

brevity it is (at CMU and herein) referred to as SVCE (for System

Version Control Environment).

•

The central philosophy is the belief that a system component

descriptive approach is more suitable for handling version control

activities than the more common imperative or procedural approach.

To quote from [31: •

"System component descriptions provide a means of representing

functional specifications that convey sufficient information to

potential users of those components. These descriptions

include compositions and implementations to delineate specific

versions, to guarantee that versions are consistent, and to

automatically generate particular system versions."

SVCE is essentially a practical realisation of the ideas presented

in two recent CMU Doctoral theses [7] [81, complemented by a theory

of 'well-formed systems' [91. Again, we quote from [31:

-6

"SVCE provides a simple Ada-like language that enables the

system desiyner to describe the various system components,

their versions, and their interconnections. The form of the

system component descriptions is based on the structure of the

Ada Package; there is a specification part and an

implementation part. The contents of the two parts. however,

are related to system version control instead of matters of

• general programming.

There are two type of components from which to constr~ct

systems: modules and systems. The visible part of a module

displays the facilities provided by the module (the provide

list is essentially the contents of the visible part of an Ada

module) and the various implementations of the module. The

visible part of a system displays the facilities provided by

the system and the various compositions of the system. A

module body describes how its implementations are derived. A

systems body lists all of its components and how its

compositions are constructed."•

Habermann and Perry go on to describe several basic properties of

correct (well-formed) system descriptions. Since these properties

all have counterparts in our SVCD we delay discussion of them until

they are formally introduced. Clearly, with minor exceptions, the

SVCE model satisfies our requirements.

Figure I is an example of SVCD input which, hopefully, will

provide the reader with a feeling for system description.

spec DiscScheduler provides schedule, service;
FCFS;

std SSTF
end {spec DiscSchedulerl

spec ds provides schedule, service;
FCFS requires rcb, dequeue, queue, enqueue;

std SSTF requires rcb, list, remove, inspect, insert
end {spec dsl

spec rcbqueue provides dequeue, queue, enqueue;
std staticq requires rcb;

dynamicq requires rcb
end {spec rcbqueuel

spec rcblist provides list, remove, inspect, insert, position;
std slist requires rcb

end {spec rcblistl

{ MODULES I

mod ds;
FCFS impl "/usr/ian/svcd/fcfs.ada.make";
SSTF impl "/usr/ian/svcd/sstf.ada.make"

end {mod dsl

mod rcbqueue;
staticq impl "/usr/ian/svcd/sq.ada.make";
dynamicq impl "/usr/ian/svcd/dq.ada.make"

end {mod rcbqueuel

mod rcblist;
slist impl "/usr/ian/svcd/sl.ada.make" •end {mod rcblistl

{ SYSTEMS I

sys DiscScheduler
use ds, rcbqueue, rcblist;

FCFS = ds.FCFS, rcbqueue;

SSTF = ds, rcblist

end {sys DiscSchedulerl

Fig. 1. An Example Version Control Description for a Disc Scheduler
Subsystem (based on the Gandalf example given in [3]).

THE FORMAL SPECIFICATION

The specification philosophy of VDM is constructive or

model-oriented. The notion of a state is explicitly recognized and

the specification primitives are the well-understood mathematical

objects: sets, lists (often called sequences or tuples), maps,

abstract syntax, and (recursive) functions.

The specification is divided into three sections: the state with

associated invariant, the operations which 'change the database'

(state transformers), and the operations which return values but

have no effect on the database (state interrogators). Extensive

commentary follow each of the three sections. The dialect of the

specification notation (Meta-IV) is influenced by that used in

[101. Minor changes (notably in the area of exception conditions)

are explained as and whenever necessary. For example, we use the

conditional logical conjunction (&) and disjunction (\/)

connectives. The 'standard' Meta-IV operators and functions are

defined in [11 •

•

/* SVCD STATE SPECIFICATION */

..1.0 Db ..

•1 pro v Cn -m-) Fae-set

.2 req Cn -m-) (Vn -m1-) Fae-set)

.3 std Cn -m-) Vn

.4 mod Cn -m-) (Vn -m1-) Imp)

.5 sys Cn -m-) (Vn -m1-) (Cn -m1-) Vn))

1.6 uses Cn -m-) Cn-set

/* ABSTRACT INVARIANT ON Db */

2.0 inv dom prov = dom req : dom	 std &

.1 (Ve e dom req; (Vv e dom req (e);

.2 isdisj (prov(e) , req(e) (v» &

.3 std(c) e dom req(e) » &

.4 (dorn mod U dorn sys) ~ dorn prov &

.5 isdisj(dom lOod, dom sys) &

•

.6 (\Ie e dorn mod; dom mod(e)	 : dom req(e)) &

:
.7 (\Ie e dom sys; dom sys (e) dom req(e» &

.8 dom uses: dom sys &

.9 union ~ uses ~ dom prov &

.10 iseomp1ete(db) &

.11 -iseireu1ar(db) &

.13 where db ~ mk-Db(prov, req,	 std, mod, sys, uses)

.14 and

.15 iseomp1ete(db):

.16 (Vs e dom sys;

.17 proves) ~ union(prov(e) Ie e uses(s)})

.18 and

.19 iseireular (db) -

.20 (3s e dom sys; iseomp(s, s, db))

.21 where

.22 iseomp(sl, s2, db) -

.23 s2 e dom sys &

.24 sl e uses(s2) \I
•

.25 (J en e uses(s2) ; iseomp(sl, en, db))

.26 and

.27 is min_well_formed(db) ~

.28 (Vs e dom sys;

.29 (Vv e dom sys (s);

.30 (Vel,e2 e dom sys(s) (v);

.31 -isdisj(prov(el), proves) U r) &

•
.32 el~e2 => isdisj(prov(cl), prov(c2» [,

.33 el e uses(s) & sys(s) (v) (el) e dom req(el)&

.34 prov(s)CP&

.35 (r-rs) (;; p)))

.36 where

.37 p - union(prov(e) Ie e dom sys(s) (v)}

.38 and

.39 r a

.40 union(needs(e, sys(s) (v) (e)) Ie e dom sys(s) (v)}

.41

.42 and

.43 rs .fl:

-11

.44 union{needs(c, v) Ic e uses(s) & v e dom req(c)}

.45

.46 where

.47 needs C:Cn x V:Vn --> Fac-set

.48 ~ c e dom prov & v e dom req(c)

.49 needs(c,v) ~

.5~ if c f/! dom sys then req (c) (v)

.51 else

2.52	 union{needs(cx, sys(c) (v) (cx)) I cx e dom sys(c) (v)}

3.~	 init prov=req=std=mod=sys=uses=l]

Annotation

l.~	 Four sets used in the state definition are not explicitly

defined: Cn - a set of component names; Vn - a set of variant

(or version) names; Pac a set of abstract facility (or

resource) names; and, Imp - a set of 'implementations'. The

specification may be thought of as being gereric over these

sets. The Db state is defined by six maps (-m-» from

component names to the ranges explained below.

1.1	 The prov map takes a component name and maps it to the set of

facility names which it provides or 'exports' for (potential)

use by other database components.

1.2	 Each component has one or more versions, each of which may

require any number of facilities (from other components).

This is specified by the req map.

1.3	 One particular version of a component is distinguished as the

standard version. This is the intent of the std map.

-12

1.4	 A component may be implemented as a module. Each version of

such a component must have an implementation. The mod map

fulfills this requirement.

1.5	 Similarly, a component may be defined as a system. Each

version of such a component must have its composition (of

modules and other systelo cOlOponents) defined. This is

specified by the sys map. Note how the set of

component/version pairs which constitute the composition for a

particular system version is also defined by a map (from

component names to version names).

1.6	 The uses map defines which components each system may choose

from for forming particular compositions.

Before going on to discuss our database invariant (2.0 - 2.52) I

some justification of the chosen abstraction is called for. Maps

are a common and powerful abstraction for information retrieval.

They capture exactly the properties that are of interest. (Note:

maps which exclude the empty map are denoted by -ml->.) Questions of

database size and the structures and media needed for storage and

access are of no concern at this level. The most debatable decision

concerning the abstraction is the use of six separate maps (ignoring

the nested maps) where one is sufficient. The domains of the maps

are either equal (i.e. prov, req, std) or are subsets of the domain

of prov (i.e. mod, sys, uses). There are (at least) two important

heuristics which may be used to guide the Choice of an abstract

model. The more important of the two is that the specification

should be free from implementation bias (see page 261 of [1]). A

model-oriented abstract data type specification is said to be biased

towards certain implementations if equality of the underlying

objects cannot be tested using operators of the data type. In other

words, the abstraction should not contain any irrelevant

information. We state, without giving a proof, that our

specification is without bias. It is often said that reality is too

ragged to be totally mirrored by neat mathematical models. Hence

the necessity that the set of all possible states, defined by Db, be

restricted by a data type invariant. The second heuristic is that

the trade-off between state and invariant should be made so as to

minimize the invariant. In this case the heuristic has not been

followed since, clearly, the aforementioned relationships between

the domains of the maps must be included in our invariant. The

trade-off made here is one of readability for mathematical

elegance. The single-map abstraction requires an extremely

complicated range definition. The notation required to specify the

operations on such a type would tend to be obscuring. This is, of

course, a very subjective view. (Students at Manchester have

re-written the specification with a minimal invariant and, whilst

concluding that their version is better, agree tllat several

auxiliary functions are required in order to manipulate the revised

state.) In the description of the invariant, below, much of the

nomenclature and concepts are taken from [3] and [9].

2.0	 The prov, req, and std maps always return information on the

same set of component names.

2.1-2	 A component version may not require a facility that the

component is specified to provide. This fundamental property

simplifies the rules for well-formed system composition.

2.1-3	 Each component has a standard (default) version.

2.4	 This rule states that components which have been defined as

either (a family of) modules or (a family of) systems must

also be specified. By specified is meant that the component

must have its provisions and version requirements present in

the database.

-1~_

2.5	 A component may be defined either by implementation of its

versions as modules, or as system compositions, but not

both.

2.6-7	 These two rules simply state that the versions of defined

components must be the same as the names of the versions

specified in the reg map.

2.8	 The uses and sys maps always return information on the same

set of component names.

2.9	 All components that may be used in system compositions must be

present in the database.

2.10	 This is the basic sufficiency rule for system descriptions.

Systems are' complete' in that their advertised provisions are

satisfiable by other database components. The definition of

the iscomplete predicate is given on lines 2.15-17.

2.11	 The 'not circular' rule for system compositions prevents a

system version from including itself, directly or indirectly,

in its own composition. The definition of the iscircular

predicate is given on lines 2.19-25.

2.12	 System compositions must be minimally well-formed. The

properties of valid compositions are grouped together under

the predicate is min well formed. They are named and,

briefly, described below.

2.31	 We insist that well-formed compositions are also minimal.

That is, no component in a composition is superfluous to

requirements. A component is superfluous if it neither

provides facilities which the system advertises nor provides

facilities required by other cOlnponents of the composition.

In the definition, 'r' is the set of requirements of a given

composition.

2.32	 Components in a composition must not conflict, i.e. provide

the same facility. This is similar to the situation in

programming languages where declarations in the same scope

must be unique.

2.33	 This term is referred to as the self-supporting property of

valid system compositions. A self-supporting composition is

made from component versions which are already specified in

the database. (N.B. They need not be defined as modules or

systems.)

2.34	 Valid compositions must be self-sufficient. A self-sufficient

composition provides, at least, those facilities advertistd as

being provided by the system. I pi is the set of facilities

provided by a composition.

2.35	 Finally, valid system compositions must be self-contained. A

self-contained composition has no outstanding requirements

that could be satisfied by, one or more, (useable) components

not included in the composition. Note that the uses map

defines which subset of database components may be used in

each	 system definition. is the set of outstanding

re4uirements of a system.

Observe that system composition requirements are not stored in the

database. They are derived whenever necessary by the function

I needs' (2.47-52).

To end this section line 3.~ specifies the initial state of the

abstract type Db. As might be expected the database is initially

empty (the maps are all equated to the empty map [l).

Db Transformers

Ten state transformers are specified implicitly by relating

-16

their input and output conditions. In other words, the required

properties of an operation are defined without dictating exactly how

they are to be computed. Operations are, in general, specified by

four clauses according to the following schema:

1. OP(Al:Typel, A2:Type2, ••• / An:Typen)Result:Type

Both the arguments and result fields may be empty. They are known

types other than the class of states over which the operations are

defined. Such states are given in a second clause

2. globals Gl: (rdl~)Typel,.•• ,Gn: (££lwr)Typen

State components which the operation may access are listed in the

globals clause. It defines a minimal environment that the operation

may be invoked in. State components labelledrd are read-only. It

is illegal for the operation to specify a change to such objects.

Components labelled wr may be updated. The effect of the operation

on such variables must be defined (see 4. below). If a group of

operations all have the same globals the clause may be factored out

and appears before any of the operations.

3. ~ pred

Pred is a predicate over the state and arguments. The pre-condition

characterises the standard domain of an operation. Should an

operation be invoked in a state where the predicate, given by the

~ clause, is false then the effect of the operation is undefined.

An alternative is to define the exceptional domain of an operation.

The convention is adopted that the result of an operation invoked in

its exceptional domain is an identity on the state. Additionally,

an exception signal is raised in some implementation dependent

manner. This is often exactly what is required for 'user-level'

17

operations where robustness and well-defined error handling are

paramount. For a comprehensive introduction to the area of robust

data types the reader should consult [11]. An exception domain may

be conveniently partitioned to permit precise error reporting.

ex-Exl predl

eX-Ex2 -Exl & pred2

ex-Exn predn

Any of the predicates Exl to Exn which are true cause the

corresponding exception to be raised. No ordering is defined over

the partitioned exception domains. However, in practice (i.e. an

implementation) it will be sensible to check some exceptions before

others. This is hinted at above where Ex2 has the negation of Exl

guarding pred2 from being undefined. The pre-condition of an

operation is equivalent to

...

4. post pred

Pred is a predicate of the initial state, the final state, and any

arguments and results of the operation. The post-condition defines

the required relationship between the state prior to invocation of

the operation and immediately following invocation. Values of the

final state are indicated by priming. For example, assume x is a

global integer which may be updated (wr) then

post x'-l = x

specifies that (in some entirely unspecified way) x is to be

incremented.

-18

;* SVCD TRANSFORMER OPERATION SPECIFICATIONS *;

globals D wr Db

4.0 ADD-SPEC(C:Cn, P:Fac-set, A:Vn -ml-> Fac-set, STAND:Vn)

.1 ex-AlreadySpec c e do~ d.prov

.2 ex-NotUnique -isdisj(p, union .E.!!..9. a)

.3 ~-CantBeStd stand ¢ dam a

.4 post d' = mk-Db(d.prov U [c->p], d.req U [c->a],

4.5 d.std U [c->stand], d.mod, d.sys, d.uses)

5.0 ADD-MOD(C:Cn, I:Vn -ml-> Imp)

.1 ~-NoSuchComp c ¢ dam d.prov

.2 ex-Vers ionsDiffe r -NoSuchComp & dam i I dam d. req (c)

.J ~-AlreadyDef c e (dam d.mod U dam d.sys)

5.4 post d' = mk-Db(d.proc, d.req, d.std, d.mod U [c->i], d.sys, d.uses)

6.0 ADD-SYS(C:Cn, USE:Cn-set,

.1 COMPOS:Vn -ml-> (Cn -ml-> [Vn]»

.2 eX-NoSuchComp c ¢ dam d.prov

.3 ex-VersionsDiffer -NoSuchComp & dam compos I dam d.req(c)

.4 ~-CantBeSys -NoSuchComp & union .E.!!..9. d.req(c) I ()

.5 ex-AlreadyDef c e (dam d.mod U dam d.sys)

.6 ex-UnknownComps use E dam d. prov

.7 eX-Incomplete -iscomplete(dd)

.8 ~-Circular iscircular(dd)

.9 ex-rllformed -is_min_well formed(dd)

-19

.10 post d' = dd

.11 where dd a mk-Db(d.prov, d.req, d.std, d.mod,

.12 d.sys U [c->findstd(compos, d)],

6.13 d.uses U [c->usel)

7.0 DEL-SPEC(C:Cn)

.1 ex-NoSuchComp c f! dom d.prov

.2 ~-InUse c e union rng d.uses

.3 post d' = mk-Db(d.prov\{c), d.req\{c), d.std\{c),

7.4 d.mod\{c}, d.sys\{c), d.uses\{c))

8.0 DEL-MOD(C:Cn)

.1 ~-NoSuchMod c f! dom d.mod

8.2 post d' = mk-Db(d.prov, d.req, d.std, d.mod\{c), d.sys, d.uses)

9.0 DEL-SYS(C:Cn)

.1 ~-NoSuchSys c f! dom d.sys

9.2 post d' = mk-Db(d.prov, d.reg, d.std, d.mod, d.sys\{c), d.uses\{c))

10.0 ADD-MODVAR(C:Cn, V:Vn, R:Fac-set, I: Imp)

.1 ~-NoSuchMod c f! dom d.mod

.2 ex-AlreadyExists -NoSuchMod 6< v e dom d.req(c)

.3 ~~-NotUnique -NoSuchMod 6< -isdisj(r, d.prov(c»

.4 post d' = mk-Db(d.prov, d.reqT[c->d.req(c) U [v->rll, d.std,

10.5 d.modT[c->d.mod(c) U [v->ill, d.sys, d.uses)

-20

11.~ ADD-SYSVAR(C:Cn, V:Vn, CMPS:Cn -ml-) [Vn])

.1 eX-NoSuchSys c ~ dom d.sys

.2 eX-Already Exists -NoSuchSys & v e dom d.req(c)

.3 ex-Ci rcular iscircular (dd)

.4 ~-lllformed -is_min_well formed(dd)

.5 post d' = dd

.6 where dd ~ mk-Db(d.prov, d.reqT[c-)d.req(c) U [v-){}]],

.7 d.std, d.mod,

.8 d.sysT[c->findstd(d.sys(c) U [v->cmps], d)},

11.9 d.uses)

12.~ DEL-MODVAR(C:Cn, V:Vn)

.1 ex-NoSuchMod c ~ dom d.mod

.2 ex-NoSuchVersion -NoSuchMod & v ~ dom d.req(c)

.3 eX-CantDelStd -NoSuchMod & v = d.std(c)

.4 ex-InUse [c-)v] ~ union applys (!.!!..9. d.sys, !.!!..9.)

.5 post d' = mk-Db(d.prov, d.reqT[c->d.req(c)\{v}], d.std,

12.6 d.modT[c->d.mod(c)\{v}], d.sys, d.uses)

13.~ DEL-SYSVAR(C:Cn, V: Vn)

.1 eX-NoSuchSys c ~ dom d.sys

.2 ex-NoSuchVersion -NoSuchSys & v ~ dom d.req(c)

.3 ~-CantDelStd -NoSuchSys & v = d.std(c)

.4 ex-InUse (c->v] c: union a ppl ys (!.!!..9. d.sys, !.!!..9.)

.5 post d' = mk-Db(d.prov, d.reqT[c-)d.req(c)\{v}], d.std, d.mod,

13.6 d.sysT[c->d.sys(c)\{v}], d.uses)

14.0 where f indstd Vn -ml-> Cn -ml-> [Vn] x Db

• 1	 --) Vn -m-> Cn -m-> Vn

.2 find s td (m, d) a

.3 [v->[c->lf m(v) (c)=NIL then std (c) else m(v) (c)

.4 c e dom m(v)]

14.5	 I v e dom m]

Annotation

4.0	 Add, or insert, a component specification to the database.

Arguments are the component name, the names of facilities

which it provides, the names of versions together with their

respective requirements, and the name of the version which is

to be regarded as the default or standard (in some sense)

version. The pre-condition guarantees that the operation does

not override any eXisting component with the same name. The

Db invariant is safeguarded by predicates which assert that

the standard version is present and that provisions and

requirements are disjoint.

5.0	 Add a module definition to the database. The component name

must be specified but not already defined. All the version

names must have a corresponding implementation and the names

must match those in their specification.

6.0	 Add a system definition to the database. Arguments are a

(previously specified) component name, the set of components

which may be used in the compositions, and the version

compositions. The pre-condition of ADD-MOD applies plus the

following extra constraints. The versions must have been

specified as having no requirements. (Module requirements are

-22

given, and assumed correct by SVCD; system requirements are

computed when necessary.) The Db invariant is protected by

predicates which assert that the composable components exist,

and the completeness, non-circularity, and minimal

well-formedness of system compositions are maintained.

7.~	 Delete a component specification (and definition, if present)

from the database. The pre-condition prevents the deletion of

components which are used in system compositions.

8.~	 Delete a module definition.

9.~ Delete a system definition.

l~.~ Add a new module version definition to the database.

11. ~	 Add a new system version definition.

l2.~	 Delete a version from a module component definition. The

pre-condition prevents both the deletion of the standard

version and the deletion of a version which is used in a

system composition.

l3.~	 As per l2.~, but for a system version.

l4.~	 The auxiliary function, findstd. The user may om i t the

version names in system compositions. Findstd 'looks-up' the

standard versions.

Correctness

The next step is to document the validity conditions of the

initialization and transformer operations. For initialization to be

valid	 the invariant must be true for the 'empty' database.

i nvDb (mk - Db ([J, [], [], [J, [], [])

This is immediately obvious by inspection of the constituent terms

of the invariant. Remember that predicates universally quantified

-23

over the empty set are trivially true. The general 'preservation of

validity' rule is

(Vd€Db;

invDb(d) & pre-OP(d,args) & post-OP(d,args,d')

=> invDb(d'»

The correctness of the ten transformer operations with respect to

the above rule must be demonstrated. Here we reproduce the

correctness argument for the ADD-MODVAR operation to illustrate the

level of rigorous documentation typically produced for validity

preservation proofs. The instance of the rule for ADD-MODVAR is

(Vd€DB, c€Cn, v€Vn, r €Fac-set, i €Imp;

invDb(d) &

pre-ADD-MODVAR(d,c,v,r,i) &

post-ADD-MODVAR(d,c,v,r,i,d') => invDb(d'»

Substituting for the pre/post conditions

invDb(d) &

(cedom d.mod&(v~dom d.req(c) & isdisj(r,d.prov(c»»

=> invDb(mk-Db(d.prov,

d.reqt[c->d.req(c)U[v->r]] ,

d. std,

d.modt[c->d.mod(c)U[v->i]] ,

d.sys,

d.uses))

The proof is broken down into a series of sub-arguments or lemmas.

Lemma (Ai): d.reqid' .req and d.modid' .mod, and the remaining four

maps are identities across ADD-MODVAR. [P roof: obv ious by

inspection of post-condition, pre-condition term (vl!d. req(c» , and

-24

term (2.6) of invariant.]

Lemma (Aii): the terms of invDB concerned with system composition

correctness (2.8, 2.9, 2.1~, 2.11, 2.12) are preserved. [Proof:

follows from lemma (Ai), and the 'self-supporting' term (2.33) of

the invariant.]

Lemma (Aiii): dom d.req=dom d' .req and dom d.mod=dom d' .mod.

[Proof: obvious by inspection of post-condition, pre-condition term

(cedom d.mod), and terms (2.~, 2.4) of the invariant.]

Lemma (Aiv): the database well-formedness conditions (2.~, 2.3, 2.4,

2.5, 2.7) are preserved. [Proof: follows immediately from lemmas

(Ai) and (Aiii).J

Lemma (Av): the database well-formedness conditions (2.2, 2.6) are

preserved. [proof: obvious by inspection of post-condition, and

pre-condition term (isdisj(r, d.prov(c»».J

It is conjectured that the above five lemmas are sufficient to

demonstrate the validity of the ADD-MODVAR operation.

Db Interrogators

The SVCD user wi 11 naturally require to interrogate the database in

order to answer such queries as "what components are present?",

"which components provide at least facilities x, Y, and Z1", and

·where is component C used?". A fairly minimal set of such query

ope ra tions is specified below.

-25

/* SVCD INTERROGATION OPERATION SPECIFICATIONS */

globa1s D rd Db

15.0 SUPPLIES(C:Cn)Faci1ities:Fac-set

.1 ~-NoSuchComp c ~ dom d. prov

15.2 post facilities' = d.prov(c)

16.0 NEEDS(C:Cn, V:Vn)Faci1ities:Fac-set

.1 ~-NoSuchComp c ~ dom d.prov

.2 ex-NoSuchVersion -NoSuchComp & v ~ dom d.req(c)

16.3 post facilities' = needs(d, c, v)

17.0 CHOICE(F:Fac-set)Cmps: (Cn, Vn)-set

.1 post cmps' =

17.2 [(crv) Ic e dom d.prov& v e dom d.req(c)& f ~ d.prov(c)}

18.0 STANDARD(C:Cn)Version:Vn

.1 ex-NoSuchComp c ~ dom d.prov

18.2 post version' = d.std(c)

19.0 UNDEFINED()Sc:Cn-set

19.1 post sc' = dom d.prov - (dom d.mod U dom d.sys)

20.0 UNUSED()Sc:Cn-~

-26

20.1 post sc' = dom d.mod - union ~ d.uses

21.0 WHEREUSED(C:Cn)Sc:Cn-set

.1 ex-NoSuchComp c ¢ dom d.prov

• 2 po s t sc' = pa r t ({c) - {c)

.3 where part Cn-set --) Cn-set

.4 part(cs) ~

.5 if cs={) then {)

21.6 else cs U part({s e dom d.sys I -isdisj(cs, d.uses(s»))

Annotation

15.0 SUPPLIES returns the set of facility names provided by the

database component C.

16.0 NEEDS takes a component and one of its versions and returns

the names of facilities which it requires. For brevity the

needs function defined in the invariant is used with the

obvious extension to a third argument (a particular

database) •

17.0 CHOICE returns the set of component-version pairs which

provide at least the argument facilities. The user may list

all the components, and their versions, present in the

database by invoking CHOICE with the empty set as argument.

18.0 STANDARD identifies the default version for a given

component.

19.0 The set of components in the database which have still to be

defined (Le. as modules or systems).

20.0 The set of module components which are not available for use

in system compositions.

-27

21.0 WHEREUSED returns the set of system components which include

the argument in one or more of their compositions.

-26

FIRST-LEVEL REFINEMENT

In this section the specification of SVCD is refined to a less

abstract or 'more concrete' representation. This involves moving

from pure specification to the world of design specification. In

other words, the remaining specifications will all be biased towards

the implementation of choice. Abstract maps cannot be implemented

directly in our given programming language (Pascal). In this first

refinement step we model the maps of the Db state with mathematical

lists. Sets of complex objects are still used freely even though

Pascal has no direct equivalent (cf. the Pascal type constructor set

of) •

/* SVCD FIRST-LEVEL REFINEMENT OF STATE */

22.0 Dbl:: c: Cn-list h : Def-list

.1 Def :: prov Fac-set vns : Vn-listl reg Fac-set-listl

.2 std Vn defn [Module ISystem)

.3 Module = Imp-lis~

.4 System :: uses Cn-set sys Compo-listl-listl

22.5 Compo :: sc Cn sv : Vn

23 • 0 invis un i g ue 1 (c) &

.1 len c = len h &

.2 (Y i e inds h;

.3 isuniquel(h(i) .vns) &

.4 len h(i) .vns = len h(i) .reg &

.5 cases h(i) .defn:

.6 mk-Module(m) -) len m = len h(i) .vns

.7 mk-System(s) -) len sys(s) = len h(i) .vns &

-29

·8 (V j e inds s.sys;

.9 isuniquel(applyl(s.sys(j), sci »
• HI	 NIL -) TRUE) &

23.11 invDb (retrDb (mk-Dbl (c, h)))

ini t C = h = <>

Annotation

22.0 The outer-level Db maps are now represented by the two lists

'c' and 'h'. The c list of component names corresponds to

the, union of the, domains of the maps. The h list of Defs

corresponds to the ranges of the maps.

22.1 A 'Def' object defines a set of provisions (prov), a non-empty

list of version names (vns), a non-empty list of sets of

requirements (req) , a standard version (std), and the

implementation definition (defn) for a component.

22.3 The Db map from versions to implementations is modelled by a

1 ist.

22.4	 As per 22.3 but for system compositions.

23.0	 To understand formally the relationships between the objects

of the Dbl state we need to examine the invariant. Observe

that it is split into two parts. One part being 'refinement'

predicates (Le. modelling the Db maps), and the other (23.11)

the original Db invariant formed by viewing the Dbl state

through a function which 'retrieves the abstraction' (see

below). Consider the former: the first predicate asserts

that all the elements of the c list are unique. Secondly, the

two lists are always of equal length. The idea of the

representation is that the specification part of a component

(cn), present in c, may be accessed by indexing the h list by

cn's index in c. The index may be obtained in a pleasingly

abstract manner via the inverse of c. How this look-up

function is achieved (operationally) is left to a further

refinement stage. Finally (22.2-10), we specify the

invariant which holds for each Def object. The list of

version names (vns) for each component is also defined to be

unique. Each version name has a corresponding set of

requirements and, therefore, the lengths of req and vns are

invariantly equal. The two implications assert that for

modules (resp. systems) there exists a corresponding

implementation (composition), and that system composition

names are unique. A few words concerning the

inherited (Db) invariant are called for. As is pointed out in

[10), this technique may aid the correctness proof but has the

disadvantage that a design cannot be understood at a single

level. This is particularly important when several people are

involved in the different stages of development. During the

actual refinement the inherited invariant was expanded (i.e.

re-formulated to operate on the ObI state). Only the

inherited form is used here for brevity.

Correctness of obI

The key to demonstrating refinement correctness is in showing

the existence of a total function from values in the refinement

s~ate to their corresponding abstract values. Such an object is

known as a retrieve function.

-31

/* SVCD DB RETRIEVE FUNCTION */

25.0 retrDb : Dbl --> Db

• 1 retrDb (mk-Dbl (e, h») •

.2 mk-Db([en->prov(h(i) I en e elems e],

.3

.4 [e->[vns(h(i)) (j)->req(h(i» (j) I] e inds vns(h(i»]

.5 I en e e 1 ems e],

.6

.7 (en->std (h(i» I en e elems e],

.8

.9 (en->[vns(h(i» (j)->defn(h(i») (j) I j e inds vns(h(i»]

.10 I en e elems e & is-Module(defn(h(i»))] I

.11

.12 [en->[vns(h(i» (j)->[se(x)->sv(x)

.13 I x e elerns sys(defn(h(i)) (j)]

.14 j e inds vns(h(i»)]

.15 I en e elerns e & is-Systern(defn(h(i)))],

.16

.17 [en->uses(defn(h(i»)) (j)

.18 j e inds vns(h(i» &

.19 en e elems e & is-Systern(defn(h(i)))]

.20

.21 where i ~ inverse (c) (en)

.22 where inverse L:Cn-list --> (Cn --> Nat)

.23 ~ isuniquel(l)

25.24 inverse(l) ~ [c->i lie inds 1 & l(i)=c]

Retrieve functions greatly aid our intuitive feeling for the

-32

adequacy of representations. The conjecture is that all objects in

the abstract state Db have at least one representation in the

refinemellt state Dbl.

(lJaeDb; invDb(a)=>(treDbl; invDbl(r) & a=retrDb(r)))

The rule that the function must be total may be stated:

(VreDbl; invDbl(r)=>(taeDb; invDb(retrDb(r))) & a=retrDb(r)))

11 (reasonably formal) proof of the above rules is long and tedious.

In practice the adequacy of a representation can be seen or

justified using informal arguments.

Consider the (Db) prov, req, and std maps. These maps are

adequately represented as their domain is the set of elements of the

'c' list (by the ObI invariant, all the elements of the list are

unique), and their ranges are taken from the corresponding positions

in the 'h' list (Le. at index inverse(c) (cn), for any element cn in

c). Observe that h is invariantly the same length as c; thus

h(inverse(c) (cn) is ahlays defined. In the case of the req map,

a range element (also a map) is well-defined by a similar argument.

That is, that the elements of vns are unique and that h(i) .vns and

h(i) .req are invariantly of equal length for any i in the indices of

h. for the remaining maps the only modification to the previous

argument is that the disjoint domains, of mod and sys!uses, are

restricted to those elements of c whose corresponding h elements are

defined to be Modules and Systems respect'vely.

Cast-effectiveness dictates that many rules must be used as

check-lists, and only subject to formal proof if and when an error

is ~uspected in the design.

-33

Two _SaH~.E~ Dbl Transformer Operations

The specification of the state transformer operations is fairly

simple following closely their Db equivalents. Update and delete

o~"rations are now, largely, in terms of lists rather than sets.

Only a couple of operations ace included here to give the reader a

ie21in" tor what Dbl operations look like. Note tha t "" .. is the

list concatenation operator.

/- ~VCD FIRST-LEVEL REFINEMENT OF TRANSFORMER OPERATIONS */

wr Dbl

26.(1 ADD--SPECI (CN:Cn, PR:Fac-set, VERS:Vn-listl, RS:Fac-set-listl, STAND:Vn)

.1 5~lS_-Al readySpec cn € elems d.c

.2 .'::2-NotUnique -isdisj(pr, union elems rs)

.3 ex-IllStand stand i! elems vers

4 _ex-DupVers ions -isuniquel(vers)

a ~J ~ex-Inconsistent len vers 'f len rs

26.6 ~t d' = mk-Dbl(d.c-<cn>, d.h-<mk-Def(pr, vers, rs, stand, NIL»)

27.~ A'ill-MODlICN:Cn, VERS:Vn-listl, IMPLS:Imp-listl)

. .[."x-NoSuchComp

.;'. :':~-Al readyDef -NoSuchComp & defnld.h(i))=NIL

.3 ex-VersionsDiffer -NoSuchComp & vers 'f vns(d.h(i)

.J ex-Inconsistent len vers 'f len impls

.6 1Ok.-Dbl(d.c, modl(d.h, i, mk-Def(d.h(i) .prov, d.h(i) .vns, d.h(i) .reqs,

.7 d.h(i).std, impls)))

whe~_~ i-inverse (d.c) (cn)

-34

· r~ •The yuestion now 1 ". do the new operations successfully model the

corresponding abstract operations? By model is meant that each

operation has a sufficiently wide domain and yields appropriate

results. This is stated formally below.

For all Db operations OP, and Dbl operations OPI:

(Vr€Dbl; invDlb(r) &

pre-OP(retrDb(r), args) =) pre-OpI(r, args)

(Vr€Dbl; invDlb(r) &

pre-OP(retrDb(r), args) & post-OPI(r, args, r', result)

=)

post-OP(retrDb(r), args, retrDB(r'), result))

Formal proofs, of the above were not performed d ur ing the

development. Instead, appropriate instatiations were included in

the documentation labelled Assumed. Additionally, as with the

original Db transformer operations, the 'preservation of validity'

rule is also applicable to the Db2 transformers.

-35

SECOND-LEVEL REFINEMENT

We now refine the ObI state, and associated operators, in order

to arrive at even more implementation-oriented types and objects.

The primary objective of this refinement stage is to replace the

sets of complex objects by some combination of data types directly

(or almost directly) available to us in Pascal. Firstly, however,

let us look at the expected relative frequency of use of the various

types of database operators that we have defined. In our given

application area we expect the database to be interrogated

frequently, and also added to fairly often; deletions should be much

rarer. The important design decision is therefore taken not to

delete information physically. Instead, information to be deleted

is marked as being no longer valid. This makes implementation of

the delete operations trivial. The small penalty is that the other

operations must check an objects 'liveness' flag.

Below we present the new state to demonstrate how

machine-oriented the design has become. Of course during the actual

development a Db2 data type invariant was documented, a retrieve

function formulated, and the operations re-specified in terms of

Db2. At this stage the operations are complex and require numerous

aUXiliary functions.

/* SVCD SECOND-LEVEL REFINEMENT OF STATE */

28.0 002 .. c Cn-list

.1 h Def-list

.2 v Vn-list

.3 f Fac-list

.4 m Imp-l is!:

-36

.5 S : Compo-listl-list

.6 u Nat-set-list

...7 Def .. live Baal

.8 type (UNDEF, MOD, SYS }

.9 prov Nat-set

.10 std Nat

.11 vns Nat-listl

.12 vlive Bool-listl

.13 req Nat-set-l istl

.14 defn Nat-list

28.15 Compo ., sc Nat sv Nat

Annotation

All members of the generic sets are replaced by positive integers

which index an appropriate list of the original type. For example,

the list of version names per component is refined into a list of

integers per component plus a list of all version names in use.

Similarly, the sets of facility names become sets of integers

indexing a list of all facility names in use. Note how each 'Def'

has a type field (28.8). The interpretation of a component's

definition (28.14) depends on the value of type. If type is MOD the

elements of defn index the list of implementations (28.4). If type

is SYS the elements index the list of system compositions (28.5).

Finally, if type is UNDEF the defn list is undefined.

-37

THIRD-LEVEL REFINEMENT

This is the final refinement, and consists of a program written in

Pascal. Critical areas of the code contain assertions which relate

to the second-level refinement. The vast majority of program

annotation is, however, the usual informal commentary. In this

section final implementation decisions and constraints are defined.

A concrete syntax is also given.

The unbounded lists of the second-level refinement are replaced

by fixed length arrays (the prototype allows, for example, a maximum

of 53 component names). The Pascal set type is used to implement

the mathematical sets in a very direct manner. In an actual

production implementation, with a large number of components, this

would be either impossible or extremely expensive in terms of store

depending upon the particular Pascal system. This is because the

usual method for implementing Pascal sets is via bit-strings (i.e.

one bit per possible set member). The invariant predicate asserting

non-circularity of system compositions is implemented via S.

Warshall's transitive closure algorthm [12]. Component, version,

and facility name look-up is performed by the method known as 'Open

hash with quadratic retry'. This routine was taken almost verbatim

from [13].

Figure 2 is a concrete syntax for SVCD. The syntax is the

familiar multi-character keyword type. Input is free-format with

'white space' used to separate basic tokens. This input method was

chosen over a special single key per operator, or a template

approach, for two reasons. Firstly, the program code to recognise

such input is derivable in a mechanistic way directly from the

Extended Backus-Naur Form of syntax. This was done, followed by the

stepwise enrichment of the syntax skeleton in the fashion familiar

-38

from compiler development [13]. Secondly, for simplicity it was

decided to hold the database on disk in source format; thereby

allowing input to be prepared off-line via a standard editor, and,

indeed, allowing the disk-based database to be manipulated as an

ordinary text file.

-39

SVCD-OP =	 add-spec I add-mod I add-sys
del-spec I del-mod I del-sys
add-modvar I add-sysvar
del-modvar I del-sysvar
"supplies" cn I I'needs" cn"."vn I
"choice" [facs] "end" I "standard· cn
"undefined· I ·unused" I "whereused"
"in" string I "out" string ·quit".

add-spec =	 "spec· cn "provides" facs ";"
["std"]vn["requires" ("all-of" cns)
("I" ["std"]vn [·requires"("all-of·
"end".

II. "add-mod =	 "mod" cn •
Vll "impJ."	 imp {";" vn "impl" imp]
• end".

II • ..add-sys =	 "sys" cn ·use'l cns • vn .~. compos {"in vn 11=" compos}
Mend".

del-spec =	 "delspec" cn.

del-mod =	 "delmod" cn.

del-sys =	 "delsys· cn.

add-modvar	 = "modvar" cn"."vn
["requires"("all-of" cns) Ifacs]
• impl· imp.

add-sysvar	 = ·sysvar· cn... ·vn "=" compos ·end".

del-modvar	 = ·delmodvar· cn"."vn.

del-sysvar	 = ·delsysvar" cn vn.

facs = fac	 { •• " fac}.

cns = cn	 { cn}.

compos = cnn."vo {"," cn"."vo}.

fac = ident.

cn = ident.

vn = ident.

imp = string.

ident = (letter!digit){letter!digitl"-"I"_·).

string = ···"{character} "·.

Fig. 2. SVCD Concrete Syntax.

I
cn

I facs]
cns) I facs] }

Component, version, and facility names are written as letters ~nd

digits possibly with embedded underscores and hyphens.

Implementations are written as quoted character strings. Although

their semantics are not defined, in this paper, typically they would

identify a disk file containing the information on how to regenerate

a component. Comments are allowed in the SVCD input. They are

enclosed in the braces "I" and "'", may be placed between any two

input tokens, and are completely ignored. Two methods of

indicating requirements are allowed. The facilities may be listed

explicitly, or the "requires all-of" option may be used. In the

latter case, a list of previously specified component n~mes is

given. The requirements are then taken as being the union of the

provisions of the stated components.

Three extra commands, not formally specified, are included for

initialising and saving the (in-store) database. To initialise from

a disk file the user enters:

in "<file-spec>"

The input file should end with the parameterless command "quit". If

quit is typed at the keyboard control is returned to the top-level

command interpreter. Before a quit, the current in-store database

may be saved on disk by entering:

out "<file-spec>"

Exceptions in the formal specification are translated into explicit

error checks in the prototype SVCD. Upon discovering an error in

the input SVCD issues an appropriate message and abandons the

current operation. This is rather poor man/machine interaction, but

suffices for our prototype implementation.

CONCLUSIONS AND EVALUATION

A simple, yet useful, system version control database was developed

in a pleasingly rigorous fashion. The majority of the development

was performed whilst the author was a student at the programming

Research Group of OXford University. Recently, at Manchester

University, the specification language was changed to the presented

dialect of Meta-IV, and a couple of features extended or improved.

This was the author's first experience with a rigorous development

method. It may, therefore, be of interest to note the estimated

versus actual time taken for specification and imple~entation.

Eight weeks were originally sCheduled for specification and data

type refinement. In reality about ten weeks were spent on this

activity. Numerous abstractions were tried and discarded over this

period (mainly in the interests of simplicity). The choice of the

various development stages was crucial and changed several times.

Four weeks were scheduled for coding in Pascal and implementation on

a Digital Equipment LSI-II/2 single-user workstation. The actual

time spent on implementation was two weeks.

During the implementation stage six errors were discovered in

the specification and/or refinements. Of these, five were trivial,

and were corrected quickly. The sixth was more worrying. In the

original specification it was possible for the ADD-SPEC operator to

break the self-containment invariant of existing system

compositions. When the Gandalf system was studied it was deemed a

simplification to remove the scope-restricting feature from system

definitions. This was a mistake. An even bigger mistake was the

decision to postpone proving the validity rule for ADD-SP~C. and

ADD-SYS. Two important lessons can be learnt from this experience.

-42

Firstly, that attempting to simplify a system before it is fully

comprehended is foolhardy. Secondly, that operation validity should

only be assumed for trivial cases (not those with complex

pre-conditions) •

Sixteen final-year undergraduate students at Manchester, working

in four groups of four, have studied and extended the SVCD

specification. For example, one group added the specification of

project management facilities. During this period only one

additional error was shown to exist in the SVCD specification.

Under certain, obsure, conditions the NEEDS interrogation operation

produced erroneous output. The correction of this problem actually

simplified the specification.

Perhaps the most important lesson learnt during this development

was the need for machine support of formal specifications and their

refinements. Frequently, pages and pages of handwritten formulae

were discarded and re-drafted, often to effect only trivial

modifications. The majority of the simple, but annoying, errors

could have been detected by a syntax and type checker. Decisions to

change, or invent new, notation were not taken lightly because of

the amount of paper work involved. The repeated instantiation of

verification conditions was tedious. It is worth stressing that the

aforementioned examples of the sort of tools desired by the author

are, in many ways, typical. Automatic theorem provers, proof

checkers, or program verifiers were missed far less.

-43

ACKNOWLEDGEMENTS

I am indebted to many people at the Oxford Programming Research

Group and also my present colleagues at Manchester. In particular,

I am especially grateful to Jean-Raymond Abrial, A. Nico Habermann,

Tony Hoare, Cliff Jones, Bernard Sufrin, and the University of

Manchester students in the 1982 CS301 project class.

•

-44

REFERENCES

[1]	 C.B. Jones, "Software Development: A Rigorous Approach",

Prentice-Hall International, 1980.

[2]	 A.N. Habermann, "The Gandalf Research Project", Dept. of

Computer Science, Carnegie-Mellon University, Research Review

1978-1979, 1980.

[3]	 A.N. Habermann and D.E. Perry, "System Composition and Version

Control for Ada", in Software Engineering Environments, ed. H.

Huenke, North-Holland, 1981.

[4] D. Bjorner and C.B. Jones, "The Vienna Definition Method: The

Meta-Language", Lecture Notes in Computer Science, vol. 61,

Springer-Verlag, 1978.

[5]	 J.E. Stoy, "Denotational Semantics the Scott-Strachey

Approach to Programming Language Theory", MIT Press, 1977.

[6] D.M. Ritchie and K. Thompson, "The Unix Time-Sharing System",

Bell System Technical Journal, pp 1905-1930, July-August,

1978.

[7J	 L.W. Cooprider, "The Representation of Families of Software

Systems", Ph.D Thesis, Dept. of Computer Science, Carnegie

Mellon University, 1979.

[8J	 W.F. Tichy, "Software Development Control Based on System

Structure Description", Ph.D Thesis, Dept. of Computer Science,

Carnegie-Mellon University, 1980.

[9] A.N. Habermann and D.E. Perry, "Well-formed System

Compositions", Technical Report CMU-CS-80-117, Dept. of

-45

Computer Science, Carnegie-Mellon

[10] C.B. J "D Iones, eve oprnent Methods for Computer Programs

Including a Notion of Interference", Oxford University

Computing Laboratory, Technical Monograph PRG-25, June 1981.

[11] F. Cristian, "Robust Data Types", in Program Specification,

Proceedings of a Workshop, Aarhus, Denmark, August 1981,

Lecture Notes in Computer Science, Vol. 134, Springer-Verlag,

1982.

[12]	 S. Warshall, "A Theorem on 8001ean Matrices", J.ACM, Vol. 9,

No. I, pp 11-12, 1962.

[13]	 N. Wirth, "Algorithms + Data structures programs",

Prentice-Hall, 1976.

Affiliation of Author

This work was performed at the University of Oxford Programming

Research Group and the University of Manchester Department of

Computer Science. At Oxford the author was supported by a U.K.

Science and Engineering Research Council Advanced Course

Studentship.

I.D. Cottam is with the University of Manchester Department

of Computer Science, Manchester, England.

OXFORD UNIVERSITY COWPLmNG l.A8OR.I.TORY

PROGRAMMING RESEARCH GROUP TECHNtCAl ..ONOOAAPHS

JUlY 19S2

TI'II, Ie 8 ..riel of '&CMlc.r mo"ographs on toplca In the field 01 computation.
Coplea may be obt~lned from 'tIe Progremmlng Renate" Group, ITechnlcal
Monogr.phs), 45 Banbury Ra.d. Oxford. OX2 6PE. England.

PRG-2 0.,.. SCoh
OIlNln. 01 • Me,hem.Ucaf Theory 01 Comptl,.tion

PAG-3 Dan. SCott
Th. urtlc. 01 Flow D'aQrams

PRO-5 Den. Scot!
Del. T,~, u Lartices

PFIO-& Din. SCon ertd Chrl!IODher Strachey
To"ard • M.ttlematical Semantics lor Compur.r Lan"uaQes

PR(l-7 Din. Beoh
COIttlnuou, un/c.s

PRO-& Jotlph SIOy .nd Chrlal0pher Strachey
OS6 - .n &per/menf.l OperatlnQ S.,st.m
lor 8 Sm,1I Computet

PRo-a Chrlstophar Slrechey and Joseph Sloy
Th. T.n 01 O$Pub

PRO-10 CI'lrlstopPler Slrachey
The Var/eff.3 of PrOQr.mmlnQ LanQuaQe

PRO-l1 Cht1I'op"er Str.c"ey 8nd C"rI!topher P. Wadsworth
Contl"uetlon3: A Mathematical SemMffes
lor HandllnQ Full Jump&

PAO- 1:2 Peter Moase!
The Mathem.tlc,' Samentles of AfQOI ~O

PRO-13 Robert Mlln.
The Form,1 SetnanrlC3 or Computer LanQu.Qfls
end rne{r' Impl.m.nrar/ons

PAO-u 5".n S I<uo. A,llchael H LInck and Son rat seadal
A GuIde :0 Commul'llclJrI:'Q SequefJr!,: ProceHflJ

PFIO-' 5 JOI.p" SIOy
The COfJ~ru.nce 01 TIIIO Profvammlng LanQII,ge D.fJnlrionj

PRO-16 C. A. R. Hoare. S. D. Brookee and A. W. Rascoe
A ",eol}' of Cotnmunlcalln, $equenrt.' Pr~u.,

PAO-17 Andrew P. Black
""port on .. I'roQremmlttQ Notation !R

PRG-18 Elizabeth Fielding
The Speclflc."on ot Abslr8ct ""epplnQs
end ntelr Impl.menf.r/on aa S't-rreea

PAG-19 Dana Scot!

Lectures on • Mathem,lIcat Theory 01 Computlltlon

PAG-20 Z"ou Chao Chen 8nd C. A. R. Hoare
~rrI.f Correctnes3 01 Communlc.tlnQ Proce"ses
anc1 Protocol3

PRG-21 Bernard Sut,ln

Formal Speclt!catlon 01 e DI.pl., Edlror

PRG-22 C. A. A. Hoare

A Model lor Communicating S~lIentlll' ProclIs:Je"

PRG-23 C. A. A. Hoare

A C./cultl3 01 Total Corr.crneu

lor CommunJc.tfng />rocesse"

PRG-~4 Bernard Sufrln

Reeding Form., Specltlc.Oona

PAO-25 C. B. Jones
De~lopm.nr "'4.'h0113 lor Computer "roQr8m~
Including • NOrlon 01 Inl.r1.,ence

PRG-26 ZhOU CPlao Chen
The ConsIstency 01 the C.lcullJ~ 01 Totll' Correcrne.ss
lor CommunlC.Ung />rocesus

PRG-:27 C. A. A. Hoara
Pr~~rammln~ Is .n EnQlne.r1ng ProteUlon

PRG-28 John Hugha3
Gr.plJ Redvctlor? "I'" $uper--Comblnllror:J

PRG-29 C. A. R. Hoare
Speclflc.tlon". Pr-ogr.",3 .nd 'mp{ementll,ion3

PRG-30 Alejandro Teroel
C.Sfl Studl." In S/HKmc.flon. FOlJr Game.,.

