
Abstract Machine Support for Purely Functional Operating Systems

Project Report

By

Slmon B. Jones

Technlcal Monograph PRG-34

August 1'383

Oxford Unlversity computing Laboratory,

Progra!IlIlung Research Group,

8-11 Keble Road,

Oxford OXI 3QD

tf) 1983 S~mon B. Jones

ProgriUMling Research Group,

Oxford UniversJ.ty CompUt1ng Laboratory,

8-11 Kehle Road,

OXFORD OXI 3QD

J':ngland

Address from october 1983:

DepartmEnt of Comput1ng Sc 1ence,

University of St~rl1ng,

Br idge of Allan,

;STIRLING FK9 4LA

Scotland

Contents

Chapter One: IntroductIon

Chapter Two: Lazy evaluatlon 5

Chapter Three: Inte ractlve lnput and output 11

Chi:tpter Four: Non-determlnism and pseudo-parallelIsm 16

Chapter Flve: MuJti-!;tream l-nput and output 23

Ch~?ter :::l.~: Summar', of re~Hdual pro:t.Jems "..1 th the SEeD mach1ne 31

Re:ere:lce!; 33

Appendl~: Multl--stream machIne lnput and output rev1s1ted 34

Foreword

ThlS document 1S one of a pa1r reporting the results of the Funct.lonal
Operatlng Systems proJect commenced at OJCfDrd ln February 1982.

The repDrt lS div1ded intD two parts: The development of an abstract
maCh1ne to Support a purely functlonal systems programming language (this
document), and the exploration of <1 spectrum of functional, distrl.buted
operating systems (to appear later).

TIle two aspects of the work progressed together, dr 11'1-0g and Supporting
each (:,ther. 50 a Cert.'lln amount of the narrat1ve text is common to both
report<; (In partlcular the Introductl0n), and the the reports may be read
1ndepenrlently, Nevertheless, the reportD must be taken together to provide a
full record (If the proJect, as thp. technical deta1ls are complementary.

I Io'ould 11ke to acJt:nowlecge the flnanclal support of the Distributed
CCl1T1put.1ng Systems Panel of the SClence and Eng1neer1ng Research Counc1-l.

ThankS are due to Peter Henderson and Geraint Jones for valuable ideas
and feedback dur 1ng the project.

Chapter One: Introductlon

MotlvatlQn;

The project lS mot1vated by three general ob!1ervat1ons of contemporary
hardware and sDft....are developments:

I) As has often been p01ntcd out by manUfacturers and researchers, the
cost of computer hardare has been falling rap1dly in recent years, and may
Con~lnue to do so for some years yet. ThlS has been due to 1mprov1ng
lntegrated C1rcu1t technology. For example, the He....lett PacXard HP9000
series of ml-croprocessors pack nearly half a ml-Ill-on s ltchlng elements
onto a Slllcon ChlP approxunately 6mm square. Thus, not only costs but also
Slzes have been decreaslng. These developments make it looX sensl-ble to
attempl to harness the potentlal of many processorsorklng in cooperation
lt1 ordl"r ! 0 construct more po....erful computers. In addlt1on, hard....are
experts ~ssert that improvements 1n Ch1p technology (greater dens1ty of
S.... llcl,lng ("dements, reductl,on 1n power consumpt1on, etc) are approach1flg
thelr (or::;eeahle limlts. Th1Z lends even greater urgency to the
investlgat10n of n\ultiple processor computer arch1tectures as a medns of
achiev1ng grcwter comput1ng po....er.

2) In the f1eld of programrnlng there 1S lncreasing lnterest 1n the role
of purely functional programming languages as a maJoreapon 1n the suft are
engineer'S armoury aga1nst the problem of complex1ty. Although the fust
Purely funct1<Jnal programmJ.ng language was 1nventcd in about 1960
[HcCarthy], the funct10nal style of programrnlng has rema1ned slmply an
1nudl(~ct.ual curl.Oslty for most of the l-ntervening perl-ad. More recently,
.... :th gro..... lng malurit.y of functlonal prograll\llllng (fp), and partly as a result
of 10:"'earch or1 novel computer arch1tectures (e.g. data flo ... machines [3,9],
reduclion machines (2, a]), fp is bClng more ldely accepted as one directlon
to....arns advanced programmlng tools. In Br1tain IeL and GEe are both
exarn1n1ng how fp relates to their needs for systems and appllcations
progra.I1\lTll-ng.

J) On€ 0 f the natural roles for fp seems to be ltS use 1n desccbing
uno 1mplerr.enting computer programs or systems conceIved as collectlons of
c0ncurrenlly executlng 1ndependent processes. (Note that there lS no
1~pl1callon here that Jndependcnt processes must be executed on 1ndependent
pror."r,,:;orCl.) The proce~Cle-s communlcate V1a flxed channels and are thus
(~O"fl'J;J!cd 2.S a statlr:: llet.ork determ::ned by the channel connect1ons. This
ilpproacll leads /"0 very clear program::; 1n many rather sophlst1cated toy
p::c~lel:l::; (f'. g. the ~ leve of Eratosthenes [4 J), and loIell modular1sed programs
1n l~rger, practlc~l appl1cations.

T2","n together, the,~e three observat:lons suggest a rather excltlng
pro,:;ramrne of research; To use some functl0nal programming language as the
Systcms progranlilung langu,]ge for lmplement1ng appllcat10nshlCh are to be
executed as ~ netork of processes d1str1buted over a netork of proceSSors.
The result.~ pf such an 1nvestlgat1onould be to extend our understanding of
the potentIal of funct1or1al prograrnrrung as a systems programrn1ng tocl, to
realls~ thlS potential In the form of an lmplementat1on, and to exhlb1t the
practical vdlu~ of such an approach by bU1ldlng useful mult1processor
Systems. WFiould hope to demonstrate that In large practical applicatIons
tnc tFlcllnique leads to eas1ly managed, eas1ly reconfIgured,ell modularlsed
lmplement.at1ons.

Prograrr.tne of research:

The starting pol.nt for the ::tnvest~gat::ton had to be a small,
uncompll~ated implementat::ton of a small, uncomplicated functi.onal
programmlng language (fpl). ThlS s~mplicity was desirable since extend::tng
the language, and its lmplementation, would be easier, and toe fundamental
propertles of the extensiOnsould not be obscured. Extend~ng a
sophistlcated fpl ::tth a complex (and probably cumbersome) i.mplementation
....ould be neither easy nor illum~nating. Thus we chose the Lispkit Lisp fpl,
and its implement<l.tion as a high level abstr-act SEeD rnach1ne[4]. L::tspkit
Lisp 111 henceforth be referred to as s~mply L~spkit.

Ll.Sp~it and lts implementation have been modif::ted and extended to
provl_de a full systems prograrnrnng environment When executing on a single
processor. ThlS extended system wlll ultimately enable a Lispkit program to
run interact::tvely, to recelve input from the keyboard and serlal llnes, to
produce output on the screen and ser-ial l::tnes, and to interact w:tth a disk
based f11l' store. Let us call such extended systems "funct~onal progranuning
computers" (fpcs).

A Small collection of L1Spk::tt fpcsill be connected via their serial
lifie ports to glve Some particulal; net....ork. A slngle Lispkit program,
compr::tslng a collection of concurrent processes, ill then be dlstrl.buted
stat1cally over the network to execute ln a true multiprocessing fashion. A
single processor in the net....ork may support one or more processes, as may be
conVenle~t for the particular appllcation. Communication between processes
running on the same processor ill occur w1thln the mach1ne rather than via
external serial 11nes. The physlcal net....ork of serial I1neS will be
determu.ed by the appl1catlon, and111 be reconflgured qUl te easlly for
different applicat lons.

A ty;;:acal appl::tcatlon would be a small operating system providing a
single userorkstation. For example, one processor can be running an
intell::tgent flle se.r-v::tce, anothe.r- can be handl::tng the te.r-m::tnal, interpreting
commands and edltlng, and a third can be executlng background jobs
requested by the user. By explcnting the net....ork of processors ::tn this way
such a s}'stf'm could be expected to susta::tn a cons~derableorkload from the
user.

Alternat~vely, glven a collectlon of fpcs, a progr-alTL'ner could construct
a stand-~lone L1Spklt program for some appl~cation, and C0U~G connect the
fpcs ::tn il net....ork apprQprlate to that part~cular appl~catlon. In this way
t.he ext~need L1Spk~t fpc c ...~uld provlde better performance for particular
appl1cat.:.ons, as well as a powerful Component ln a general purpose ork­
statlon.

Punct ::tonal operating systems:

-------~---------------------

The progress of the proJect is largely dr~ven by the requLrements of
the different des~gns of operat~ng systemshicheish to tryout. As
extensions to Lispkit and lts implementation become neces3a~, they are
mod~f::ted, after some deliberation, by as l~ttle as possible to mainta~n

simpllclty and cleanliness.

Many styles of operating systems may be devlsed wlthln the functional
framework - imaglnation, as usual, is the Ilm1ting factor I We have teied
several dlst1nct varietles of systems so far, but other lmportant approaches
are belng lnvestlgated elsewhere [1,6).

One approach is to simply try to code a falrly conventional
unlpJ::ocessing operatlng system (e,g. in the style of CP/M or Unlx) as a
!nngle monollthic program to be run on a single fpc. Thls would not exploit
concueeency at all. Nevertheless, experiments have shown that extremely
powerful operating systems can be prov1ded in this way.

The flrst step to explolt1ng concurrency is to devise systems
comprislng several stream processing functions connected in a network., An
input stream 1S received {com the keyboard (the user's commands) and a
result stJ::eam 1S sent to the screen (the system's responses). Unfortunately
the components of such systems tend to work in synchronlsat ion, and there is
no large scale C(1ncu r rent activ 1ty,

The potential for large scale concurrpnt act1vlty is COnvenlently
lntroduced by uSlng a stream merglng (lnterleavlng) operator [5), The output
of such a merg1ng operator is some unpredictable (non-determlnistic) mlxlng
of the elements of the two streams, Th1.S suggests an lmplementation In "hlCh
the producers of the streams to be merged beaver away cont1nuously (and
concurrently), presentlng stream elements to the merge operator for
selectlon.

The use of the non-deternllnistic chOlce operator 1n thlS work, and lts
lmplementat10n 1n the L1Spkit machlne, are quite straightforward, but the
mechan1sm has a controverslal baCkground from the theoeetlcal pOlnt of
view[lb] "

Although non-determ1nism (In the gU1.se of meege) permits the the
consteuction of systems exhlbitlng useful concurrency, lt lS by no means
ObV10US ho.... to explolt th1S potentlal on the user's behalf in the best way.
We have started exploring deSlgns for more SOphlstlcated operatlng systems
whlCh could assist a productlve usee ln explolt1ng the power avallable ln
the collection of processors at hlS d1.sposal.

The Lispklt language and SECD machlne archltecture"

As mentloned above, L1Spklt L1SP and lts SECD mach1ne 1mplementatlon
...ere chosen as the starting pOlnt for the lnvestlgatlon. ThlS lS a clean and
slmple base from which to work. The language and 1mplementatlon as dl}scrlbed
In (4] provlde a meChanlSw. for executlng "one shot" programs WhlCh rece1.ve
all the lnput data, perform some computatlon, and produce the result, In
thre€) strlctly sequent13l steps. The outllne of a mechanlsm for" lazy
evaluatlor." ("demanc dr~ven computatlon") is also [hscussed.

'n\US the base language and SECD machine fall short of the requi:ements
of the 0fp.~~~:ng systems research in a number of ways:

1) A. detalled mechanlsm for laz;y evaluat10n lS the fi.rst essential
addltlon. The machine must be ertended. The L1Spk1t language lS not altered
syntact1cally, but the range of progeams Wh1Ch can be expressed In the
language lS conSlderably wldened.

2) The- rest rlct ion to "one shot" program e-xe-cut ion must be re-move-d, and
a program must be allowed to work lnteractlvely be-tween its input and
output streams (typlcally the ke-yboard and scree-n).

J) An ope-rat or for non-dete-rministlc cholce must be lntroduce-d lnto the­
language and lmpleme-ntatlon. ThlS involves the pseudo-parallel e-xecut ion of
concurrent processes on a single SECD machlne-.

4) Finally, in order to e-nable the programmer to access a range of
input anll output devices, the SECD machine must ~ extended to provide a
mechanism for multiple input and multiple output streams. Most of the
apparatus required is already available from the previous extension~.

The development of the extended SECD machine is closely related to
similar'lork by Abramsky at QMC[la].

Hardware,

Detailed arguments about the hardware to ~ used for running
distributed systems are not a maJor concern of the project. However that is
no excuse for not considering the matter at all.

We Iflsh to attempt to exploit concurrency at a macroscopic level in a
system. That 1S, substantial subsystems will be allocated statically to each
processor in the network. This lS ln contrast to the exploltation of
concurrency at a mlcroscopic level, where there lS dynamic allocation of
simple tasks to processors. Examples of the latter approach are data flow
machines (3,3], and reduction machlnes, Alice [2], 'lAPP [8].

Thus we requlre a small collectlon of reasonably po'Werful processors
(e.g. half a dozen Perqs) Connected in Some simple, easily reconfigured way.
The distribution of parallelism at the lllicroscop1.C level necessltates a
large collection of small processors (e.g. lOs, 100s or 1000s of
transputers) connected by a complex, general purpose communicatlons network.

There are many groups attempting Vallantly to develop and assess the
latter a?proach in varlOUS ways, and wlth varylng results. We have decided
to opt for the former, more lmmed1ate approach.

HOIO<;>ver, beyond the intentlon to use a small number o~ powerful
processors, the preclse hardware techn1.ques are not under conslderation. For
exper1.mental purposes we use "off the shelf" microcomputers, such as RHL
380Z, SuperBra1n, Sirius, Perq and so on, as avallable. These machines have
either one or two serlal lines. We also have a custom bU1lt Mostek Z80
based computer wlth half a dozen serlal ports which w1ll enable more
lnteresting networks to be constructed.

A future optlon could be to support all the processors and memory on a
slngle bus. The abstraction of a collectlon of processors conununicating via
flxed channels could be provided on such hardware w1thout the expense of
bulk data transfers along serlal l~nes. That lS, perhaps, a task for someone
else 1.n the future.

Chapter Two: Lazy evaluation.

Call-by-value versus delayed evaluat~on:

The simplest way to e~ecute a functional program is to adopt the call­
by-value strategy used in the early chapters of (4]. The call-by-value
strategy is to evaluate completely all the arguments of a function
application, before proceeding to apply the function and to evaluate ~ts

body with the given arguments. In call-by-value Lispk.it this extends to all
prim~tive operations, such as arithmetic and cons, and also to let and
letrec express~ons, in which the local defin~t~ons are all evaluated before
the main expression. Th~s ~s sometimes call an "~nnermost.. evaluation
strategy, since the innermost components of an expression are evaluated
befon~ attention ~s turned to the e~press~on ~tself.

An extremely powerful alternative is delayed, or lazy, evaluation. This
is closely related to call-by-name ~n languages of the Algol family, in
whlch a procedure (or funct~on) argument is not evaluated unt~l its value
is requu:ed by the body of the procedure. (This may cause repeated
evaluat~on of the same argument several t~mes - reSulting ~n confusion if
any side-effects occur.) In L~spk~t Jargon, the argument ~s pack.aged into a
"rec~pe",hich notes the argument expression and the values of any global
identifiers which it requires, Recipes are "forced"hen thelr value is
needed. In lazy evaluat.lon an argument is not evaluated until required, but,
once evaluated, the rec~pe ~s thrown away, and is replaced by the computed
value. Thus no recipe~ll be forced more than once - avo~ding repeated
evaluation.

In lazy Lispkit the delayed evaluation strategy is appl~ed to the
arguments of function calls, to the arguments of each cons operation, and to
the local defln~t~ons ~n let and letrec expresslons. Delay~ng the arguments
of cons is particularly ~mportant, as large (possLbly infinite) data
structures may be only partially constructed. The rest of the structur~ is
represented by rec ipes, and as the structure is explored by a program the
reclpes are replaced by explicit structure (possibly contain~ng embedded
recipes). Thus data values are computed only as requ~red - hence "lazy"
evaluation.

La7.Y evaluation i.s discussed at greater length in Chapter 8 of [4],
where the strategy is also referred to suggest~vely as "call-by-need".

stream processing functions and lazy evaluat~on:

A stream ~s slmply a delayed list of s-express~ons, though possibly one
of unbounded length. We use the term stream to ind~cate that we usually
thInk of the list as a sequence of communications from one process to
another. Each process ~s a stream processlng funct~on - the producer of a
stream has the l~st of messages as its result, and the consumer of the
stream receives the l~st of messages as an argument. In the lazy evaluation

strategy a stream will usually be represented, at any pa.r:ticular moment :tn
the comp'Jtation, by a cOl1lpletely evaluated initial l:tst of elements, and a
recipe describ:tng how the stream w:tll continue. The producer, or at least
some l~nk to the producer, will be embedded in the continuation recipe. The
consumer drj.ves the evaluatl0n of the stream as ~t demands the value of each
message in turn,

The lazy evaluat:ton of potentially infinite streams is of crucial
:tmportance to our research on distributed functional operating systems.

As a simple introduction to stream processing funct:tons consider the
following defin:ttions:

integersfrom(n) ~ cons(n,integersfrorn(n+l»)

double{s) ~ cons(z-heaa(s),double(tail(s»))

inc(s) '" cons(1 +head(s), :tnc(tail(s)))

integersfrom(n) "'ill generate a stream of the integers n, n+l, n+2 and
so on. In particular ~ntegersfrOm(O) is the stream of natural nUlllbers.

double(s) "'ill produce a new stream whose elements are double the
corresp.~nding elements of s. In particular double(integersfrom(O») 19 the
stream of even numbers (start:tng "'ith 0).

in~(s) "'ill produce a new stream whose elements are one more than the
correspcnd~ng elements of s. In part1cular inc(double(integersfrom(0»)) 19
the stream of odd numbers (start:tng with 1),

Th~ stream defin:tt:tons can be collected together

nats ~ integersfrom(O)

evens: double(nats)

odds ~ inc(evens)

and repesented p~ctorially as a network of channels connect:tng stream
process:ng functions:

o lntegersfrom double

nats

:tncl) odds

evens

A more advanced example, taken from [4J, ~s the generat:ton of all
nUmbers wh~ch are products of powers of 2, 3 and 5. The products must be
generated in ascend1ng sequence, ",ithout dupl~cates. The solut~on presented
in [4] lS:

m" I 'I
e ,

'3 I 'I
~ 191~ .,	 ~ ~~ ~ ...""

.....here "'2, *3 and "'5 mUltiply e~ch element of their inputs by the appropnate
factor, and merge combines two ascending input streams to produce an
ascendlng output stream '.nth no dupl~cates:

merge(x,y) ..	 U head(x)=head(Y) 'tb..!lll merge(tal1(x),YJ ~

if head(x)(he~d(Y)

t.he.n. cons(head(x), merge(tail(x), y))
els~ cons(head(y),merge(x,tal1(y)))

Extendlng the	 sEeD machlne for lazy evaluat lon,

We start from the SEeD abstract machlne arch~tecture and compiler
descnbed in Chapter 6 of [4 J. The notatlonal conventlons establlshed
ther:e for abstract machlne transitions and compiler rules will be retained
in what fo110"5.

First, some notes on changes of conventlon in the use of Lispkit
ke~ords:

1) ~ll L1Spkit concrete syntax ke}"<fords111 be written in lower case,
e.g. let, letrec, lambda, etc.

2) The operation names car and cdr have been re~ected in favour of head
and tall In hath the abstract and concrete syntaxes. They have the same
respective meanlngs. The corresponding SEeD machlne lnstructlons becone HEAD
and TAIL.

To lmplement lazy evaluation three ne.... lnstructlons are added to the
SECQ m~chine, and the complIer lS modlfled in a fev places. The
lnstructlonS are LOE ("load expresslon")hlCh constructs a recipe, NO
("apply to no arguments") Io'hich forces a reclpe to evaluate, and UFD
("updrl.te") which over.....rltes a reclpe lth ltS value. The complIer changes
are not e;o;:tenslve, and no newell fanned expresslons are lntroduced to the
language.

The la;;-;y evaluatlon strategy adopted here differs a little from that
described In [qJ, but the general prloclple remainS the same. To be
precise, everyell formed expresSlon 111 be complIed ~~d executed in such
aay that lt does not force any of its s,!bexpresslons unnecessarily. but J.t
is certaln to leave a value on the stack (l.e. an atom or cons), and not a
recipe. T;.ro advantages accrue from this: Flrstly, each expresslon "looks
after itself", and so ocurrences of 1\PO are not scattered throughout the
complIer. Secondly, 1\PO does not need to be a "repeatedly forcing"
operatlOn.

1\ dlstingulshable structure type lS added to the machine to represent
recipes. Thls vill be represented in the machlne transltion rules b}' a

dotted palr enclosed in square brackets (c.e]. A recipe is rather llke a
closure,hlCh is bUllt using a cons. An important attribute of a reclpe is
that it may be phy!Hca.l1y ovc-r.... rltten by a copy of any other cell (atom or
cons). 'I'hl.S lS the mechiln1sm by WhlCh the updilte ln place ""ill be achieved.

The LDE m~ch1ne lnstruct10n 1S used to delay evaluation of an
expression by parcell1ng 1t up 1nto a recipe lth the current enVlronment:

, e (LOEc.c')d «c.e] s) e c' d

....here C 15 the codf' of the expreSSlon to be delayed (endlng ith UPO).

'!'he APO 1nstruct1.on lS used to force the top 1tem of the stack lf lt
happens to be a reClpf!. Thus there are two possible act 10n5:

(x.s) e (lIFO.c) d (x.s)ecd lf x 15 not a reclpe

([c'.e'].s) e (APO.c) d NIL e' c' (([c'.e').s) e c.d)

The UPD lnstructlon occurs as the last lnstructlon 1n the body of a
recipe. It updates the reclpelth the current head of the stack (..,tach will
never be a reclpe) and returns to the caillng evaluatlon:

(x) e (UPO) (([c'.e'].s·) e" c".d) (x.s') e" c" d

and the reclpe [c' .e' J 1.S over.... rltten with (a copy of the top cell of) x.

TIle complIer must be chilnged so that arguments to calls of user def1ned
funct1or.s are delayed, arguments to cons are delayed, and definitions ln
let ilnd letrec are delayed. forclng operatlons must be inserted for
expreSSlonshlCll mlght other lse return a reclpe - forclng is requlred
after acc:es.":lng ,1 V"3rlilj,le, and after head and tall operations.

The delil.ylng operatlons:

Funct lon appllcat lon:

(e el ek)~ n (LOC NIL LOE ek~nl(UPO) CONS

LOE el~nl(UPO) CONS

e ~n AP)

Cons:

(CcnS el e2)·n (LOE e2·nl(UPO) LOE ePnl(UPD) CCNS)

Let:

(let e (xl.el) (xJ<:.ek)}~n =

(LOC NIL LOE ek~lll(UPO) CONS
LOE el~nl(UPD) CONS

LOf em I (RTN)
AP)

....here m ((Xl xk).n)

(letrec e (xl. e I) ... (xk. ek))"-n =

(DUH LOC NIL I.DE ek ll mI (UFO) CONS

LDE el"-ml(uPD) CONS

LOF e*ml(RTN)

RAP)

where m = (xl •.. xk).n)

The forcing operat~ons,

variable access,

x"-n '" (LD ~ APO) where i location(x, n)

Head	 and ta~l,

(head e)·n e·n[(HEAD APO)

(tail e)lln e"nl(TAIL APO)

One more add~tion must be made to the compiled lazy code before ~t will
execute successfully on the extended SECD machine. The old compiler produces
code of the form:

'" code to load closure for prograJT1 function ... AP STOP}

At tennination of the program, the value on top of the stack (winch
should be the only value on the stack) w~ll be displayed, and therefore
should not contain any recipes. Unfortunately, when the code for the
prograJT1 ~s lazy, the result on the stack may contain rec~pes.

To overcome this, an extra funct~on application is ~nserted which
explores the Whole result structure, thus forcinq out any rec1pes. The code
produc~d then 'haS the form:

code	 to load closure for program function ... AP

l<XXX
code to load closure for explore function ... AP

STOP)

where :o::xx 1S a speclal instruction that makes a singleton argument list,

(x,s) e (XX:X:X.c) d «x).s) e c d

and the explore funct~on, 1n abstract synt~ is:

),(x) U f~nite(x) then x else UNDEFINED

whererec f~nite(x) ~ ~ atom{x) ~ T else
~ f~nite(head(x) ~ f~n~te(ta~l(x))

else	 UNDEFINED

which 1tself must be compiled as laz.y code (it is the APO instructions in
the explore funct ion Which are important).

The need for the XXXX lnstruction is a slight untidiness:. Its funC'tlon
C'annot bE a"hieved by other SECD instructlons as the main arguments for the
program are loaded onto the stack before any code lS executed, andhate
WQuld llke to do lS LDC NIL before that occurs. This untidiness disappears
in later extenslons to the SECD machine.

This completes the extensions to the SEeD machine anj compiler for lazy
evaluation.

other	 consequences of lazy evaluatlon:

Vanous restrlC't ions on LlSplclt programs may be relaxed as a
consequence of lazy evaluatlOn. These t'elaxatlons often lead to programs
.... ith slmpler structure.

The local definitIons ln a letreC' expression may no.... define any type of
value. Freviously only functlon deflnitionsere valid. In addition, mutual
reference and recurSlon may be used in the definltlon of data structures.
11115 is lilustrated by the evens and odds example from earlier:

... whererec	 nats E lntegersfrom(0)

evens ~ double(nats)

odds ~ inc(evens)

lntegersfrom(n) =

doublet s) =- ...

lnc(s) .s

Also lists may be deflned by reference to themselves:

nats' ~ cons(O,lnc(nats'»

ones = cons(l,ones)

As (l consequence of this relaxation of letrec expressi.ons, let
expresslons are effectlvely a redundant feature of the language.

Arguments to funC'tlon appll"ations need not have defined values,
provided that the body of the function ill never force a bad argument. This
is not so important as its corollary,hlch lS that lc::::al deflnitlons ln let
and letrec expressic:~s may have undef.:..ned values provlded that they are
never forced by i"'valuatlon of the mal:l eXpresslon. For e:xample, the maln
compiler functiDn coul.~ be re....rltten to "preselect" the fields of the
various expresslon types:

cor.tp(e,:l,c) :: 1.1 atom(e) then locatlon(ldentlfler, n)
else l.i rator="quote" then ... constant
else
else II rator=-"add" then randl .. rand2
else

....here	 ldentlfler ~ e
rator .. head(e)
constant a head(tall(e)
randl ~ head(tail(e)
rand2 =- head(tail(tall(e)))

Chapter Three: Inte ractl.ve input and output

Sl.ngle-shot computatl.on versus interactl.ve working:

Extending the SEeD machine for lazy evaluatlon, as descr~ed l.n tt.e
prevlous chapter, does nothing to alleviate the "Sl.ngle-shot" nature of the
computation, The compiled code expects to fl.nd a ll.st of arguments on the
stack when it starts executing. The program functl.on l.S appll.ed to these
arguments. The result LS explored to ellmlnate all recl.pes, and the
explored structure is left on the stack to be output when the machine
executes the STOP instruction. Not only l.S this a sHlgle-shot executl.on, but
also the r.esult must be a flnlte and acycllc structure Slnce it must be
explored before be l.ng output.

Thus thl' lazy programs WhlCh we can execute on such a machl.ne may use
lnfl.nl.te data structures as intermediate values, provided that the result is
Clnite and that it can be computed frOm the l.nitla1 data. A tr:J..vial eumple
will compute a list of the flrst n even numbers (startlng Wl.th 0), where n
is the l.nput datum:

),.(n) first(n,evens)
whererec evens ~ double(l.ntegersfrom(o»)

doublets) =.
integersfrom(n) 2
flrst(n,s) = i! n=O then NIL

else cons(head(s),flrst(n~l,tail(s)))

However, It is temptlng to ask for an extended l..mplementation which
will print ascending lntegers, starting from the input value, as requested
by the following program:

A(n) lntegersfrom(n)

whererec l.ntegersfrom(n)

Weould expect this program to continue printing numbers for ever (poSSl.b1y
separated by sllort bursts of computation), or at least until exhaustlOn of
memory. or maybe arl.thmetl.c overflow.

Even more exc.itl.ng l.S the prospect of uSlng the fo110wl.ng program to
accept a number, dotilile lt and add one, prl.nt the result, accept another
n;Jmber, double l.t and add O;Je and pn.nt It, and so on for ever:

NJ<-.b) inc(double(j<--.b))

whererec l.nc(s) ,:;

double(s) =:

The dU~y ldentl.fler kb lS used Slmply to suggest that numbers dre
entered from a keyboard. The numbers (or any other s-expressl.ons) entered at
the Iceyboard are assembled, l.n strict sequence, lnto a stream WhlCh LS
glven to the program as l.ts sl.ngle input argument. The keyboard l.S only
l.nspected for input when the program forces the delayed tall of the mput

stream. The result of the program ~s a stream, and the output driving
mechan~sm will force a.nd print each ~tem of this stream in turn. Thus input
and output ~ll be lnter!;persed, and the program will execute ~nteractively,

although rema1nIng purely functional. The program is no.... a stream process~ng

funct~on itself.

Althollgh the L~splClt language and ~ts 1mplementation arguably require
other extens~ons 1n ordlCr to provIde great utility, the provis~on of
1nteractjve Input and output as outlIned above immed~ately gives us a
sy"tems prOgraJtllTllng language of great po er. Par example, USIng no more
than 1nteractlve Lisplc1t as descrIbed, e have implemented an s-express1on
sr.ructure editor which is in contInual use for program development. In
addIt1one have an ~nl:p.ractive IdSpklt interpreter, a logic language
1nterpretp.r, experImental operatIng sy~tem5. a program source 11brarian, and
so all.

Extend~ng the SECD machIne for lnteractlve I/O:

The SECD machine and complIer are extended to implement the "program as
a stream processing funct~on" pol~cy as descr~bed above. Single-shot
programs 111 stIll be executable, but they must be embedded in a skeleton
program hJ.r::h ta);:p.s Some fIxed number of 1tems from the Input stredJU,
applH'!3 ~he desired program functIon to them, and bu~lds an output stredJU
wIt.h ttle SIngle result value. This brIngs out an ~mportant point: The ~nput

S~r8am~ll alays be potentIally Infln~te (any program slmply reads as
much as it nf'eds), but t.he output stream may be a f1n~te list (~f the
pn"'~rilm lermirlates ~t lth NIl,), 1ntllCtl case the execut10n of ttle SECD
maclune ~ll termlnJ.I." (:leanly.

With some effort it mIght be possible to redesign the s-express~on

readIng C1ndriting rout~nes to perform theIr tasks interact~vely, but they
are outside the SECD abstract machlne, ande prefer to retain slmplic~ty in
the underlying lmplem\"ntat~on. Instead the SECD mach~ne IS g~ven a mlnimal
~nterface to thp s-('xpressiQn reilders andrlters, 1n the form of to ne....
instru~hon INPUT and OUTPtrr, and th~ lnteract~ve i/o is ha.ndled ~n LlSpJdt
itspIf. In fact th\" I/O handlIng is not qU1te pure L~spklt, S:Lnce the
readlng andrlt-lng ~nterface is cl~arly not appl1cative, but th~s

lnterfClC'e 15 only u!1ed ln C"onstruct1ng i/o drlvers, and 1S not made
av<:ular.jp to t:-te \J!':er through the comp~ler.

TIle only C1dd1tIon<; to the SEeD maCh1ne are the to new ~nstructions

Irn:'[YT' a~~l OUTPUT. INPlrr ::-e.'l.ds one s-t?xpress1on from the Input devlce and
l<2av(>!> lt ,-it the llf'ad of tr.e- stack. OUTPlJT rltes ttle s-expresslon at the
heild of the stack to the out-put dev:ce and thE'n dlscards it OtrrPtrr simply
calls tl-.e underly1ng s-e:(prt?ss~on r~tt?r and so the value at the head of the
st.ack m~st n01 contil~n any reCIpes; 1t m"st have berm explored already.

The tran~at10I\ f'H INPUT 15:

Sf (INFU'I'.c) d (x.slecd

where x IS a ne.... ly read s-expresslon.

The transltion for OUTPUT is:

(x.s) e (OUTPUT.c) d sec d

The STOP lnstruction must be changed, but this lS slmply resldual
un~ldiness (like ~, which now dlsappears), and 15 reslmplified in a later
chapter. The modlfied verSlon of STOP is not central to the ne", strategy,
and "'ill be describ~d last.

The general st rategy ",e are now adoptlng lS reflected ln the complIed
program structure:

(LDC NIL
LDC NIL

code for delayed input stream expresSlon .
CONS

Code for program function ..
AP

CONS
code for output stream explOIlng and printlng function

1\P STOP)

The sEeD mach~ne is 1nitlalUled by loadlng the code lnto the control
register and settlng the stack to NIL. No data 1S read durlng
inltlalisatlon. The compiled code bUllds an argulllent list for the program
functlon (2nd, 3rd and 4th Ilnes above), and applies that functlon (5th and
6th Ilne8). There 15 a slngle argument. 10fhlch lS a delayed express10n
contalning Jm'UT instructlons. The result of the application is bUllt lnto
a slngleLon argumer\t 11St for the output drlver (1st and 7th llnes), WhlCh
is tnpn applled (8th and 9th 11nes). ~ll output is perfOrmed by OUTPUT
1I1St.ructlons ln the th.lrd code obJect of the compiled pror;ram.

The special input and output code does not vary from one program
functlon to another. and may be built lnto the compiler. The code may be
generated from the pseudo-Lispklt glven belo", by the maln lazy complling
functlon des~rlbed in the previous chapter, ekcept 10fhere INPUT and OUTPUT
instructions are requlred. The maln program may be compiled ln the saroe 10fay
- it 15 normal lazy cod~.

The lnput expression can be represented ln pseudo-Lispklt:

ro'!ad()

\<Ihen'r""~ rE',ld() =: scons(INPUT. read()

"'her" INPUT stand$ for an occurrence of that lnstruction in the code, and
Scans. (,·strl.ct cons" or "sequence cons") lS like cons but t.he head argument
.1 s no!. de laYf'd. Th i s expre~s i.on must 1 t!le 1 f be delayed (1 t 15 an argument).
so lt ",-,11 appe.'ll" as:

LDE (Conl:' for 1 npul express10n . UPO)

When lnspected, thlS reClpe wlll INPUT one s-expresslon and make 1t the next
item of tht' stream, \<11th the tall a delayed call of the read funct10n.

Tho'! output drlvlng functlon can be represented 1n pseudo-Llspklt

output
",hererec output(s) =: lf s~NrL then NIL else

!i finite(head(S»)
then OUTPUT(head(s) output(tail(s))
~ UNDEFINED

f1n~te(x) _

....nere OUTPUT(head(s» ; output(tail{s) ~ndicates that the code

LD "s" APO HEAD APO OUTPUT

snculd ~ pref~xed to the comp~led code for output(tail(s}}. Thus the
sem~colo~ 1ndlcates expllcit sequencing.

The output function scans along the output strea~, printing each item
in turn. If the stream terminates, the function returns NIL,hich will be
ignored by STOP.

Unfortunately output calls ~tself recurs1vely, but the sEeD machine
does not do tail recursion optimisation. So, as output scans further and
further along the output stream it will consume more and more memory by
pushing act1vation records onto the dump to no useful purpose. If ~t were
not for this problem, the program wh~ch doubles, increments and prints each
number I!ntered could literally execute for ever in bounded memory.

One solution to this problem would be to modify the maChlne and
comp~ler for general tall recurS10n optim1sat~on. That, ~ybe, is a
t1eveloprr:ent fOr the future, since th1s is the only place in which it 1S
necessary (and thl-s requirement will dlsappear ln the next chapter I). In
the shorter term, the output funct10n and the STOP instruction can be made
toor)(together to give the required optimisat~on: Instead of calling
itself recursively, output can return a package representing the recursive
call. The package w111 contain the closure for output, and the argument
list cons(tail(s),NIL). The activat10n record wl11 have been popped from
tne dump when output returned the package. STOP detects the package (rather
tnan NIL for termlnation) and performs the recursive call.

The pseudo-Lispkit for the output driVing function lS "then:

output

whererec output(s} = if s=NIL then NIL else

if fln~te(head(s»)

then OUTPUT(head(5) ;

cons(output, cons(tal1(s), NIL))
else UNDEFINED

finite(x) s

and the corresponding trans~t10n for STOP is:

(N:L.s) e (STOP.c) d Term~nate cleanly

(((C' .e').args).s) e (STOP.c) d NIL (args.e') c· (s e (STOP.c).d)

Note that STOP is now rather 11ke AP,hlCh expects the stack "to have the
structure:

((c' .e') args.s)

Other approaches to SECD machlne lnitiallsation and constructing i/o drlVers:

We are experlmentHlg lth L1Spklt programshlch behave as loaders of
programshich are to be executed on the SECD machine. The loaders
incorporate the pseudo-L].spklt lnput and output driving mechanisms, and may
be complled using only the main lazy complling functlon. A leader lS read
lnto the SEeD machllle at inltlalisatlon. and expects the flrst ltem on the
input stream to be a prolJram to be executed. This program may be complled
using little more than the main lazy complling functlon, since the i/o
drlVp.rs are embecide-d J n the loader.

The pseudo-L1Spklt i/o dt:ivers glven on prevlous pages are the clearest,
most conCl-se-e have deVlsed for dOlng thelr Jobs. Nevertheless, It 105
posslble to l:@placc- some of thf' pseudo-Li~pJut ith real Lispkit, and this
is done ll1 the loader programs outllned above.

The loader pLogr~~ technlque lS provlng to be an excellentay of
m.-:lnaglng the user program' 5 1/0 lnteriace.

A collec't:ioJl of loaders and other utllity programs has been
constrllcted by Geralnt Jones[lO] to execute on the lazy lnteractlve SECD
machine.

Chapter Poue-; Non-determinism and pseudo-parallelJ.sm

Interleaving streams and non-determinism:

In our research on purely functJ.onal operating systems we need to
express the intention that a st.ream is obtained by merging two or more other
stre~. The input sequences of elements have been arbitrarily interleaved,
but the ordering of elements from each input stream is not altered. For
example, if we wished, for some reason, to generate a jumbled stream of the
natural numbers In whJ.ch the evp.n numbers and the odd numbers retain t.heir
own orderlngs, we could use the followJ.ng network of stream processing
functlons :

o integersJ;rom

~L8 :1 ~ ~ "'ult

This network can be represented by the followH'Ig program:

result
whererec nats =J.ntegersfrom(O)

evens ~ double(nats)
odds ~ inc(evens}
result ~ merge(evens,odds)
J.ntegersfrom(n) ~

double(s) '" . . .
J.nc(s) .= .•
merge(sl,s2) ~ ? ?

J.n which we have no way of programming merge yet.

One possible way to implement merge is to use a simple function whJ.ch
alternates elements from the input streams:

merger sl, s2) .= cons(head(sl), merge(s2, tail(sl)})

This certainly satJ.sfies the critenon that the output should be some
interleaving of the lnput streams. However, J.n the above example inc might
be replaced by some complex function which glves a consJ.derable delay
between output elements. In the pauses It seems deSirable that the stream of
even nUJ:'bers may continue to be processed, thus glvJ.ng an unequal mixture of
even and other numbers J.n t.he output stream. In our operati..ng systems t.his
Consideration is even more important. EJ.ther J.nput stream may be arriVing
from SOIC external devlce, and whJ.lst the devJ.ce is inactive J.t J.S
unreasonable to prevent the transmission of messages arrivi..ng on the other
channel. Thus, alt.hough the solution for merge gJ.ven above J.S adequate in
some sense, it would be nice to J.mplement merge in some nore lenJ.ent
fashion.

1\n alternatJ.ve solution uses "oracle" 9ignals to direct the merge
functJ.on:

merge(s1,s2,oracle) =­
!f head(oracle)=1
then cons(head(sl}. merge(tail(sl). s2, taJ.I(oracle)))
else
i'f""head(oracle)~2
then cons{head{ s2) ,merge(51, tail(s2), tail{ oracle»))
else UNDEFINED

However, in general it is very difficult to generate the appropriate
oracle messages, especially when the streams are dependent on input frolll.
external devices.

The solution to be adopted is to introduce a new expression J.nto
Lispkit which makes a non-dete~inJ.stic choice between two values, The
expression J.9:

el .£!: e2

and may take the value of el or e2 arbitrarJ.ly. It is intended that the
expression will be evaluated by evaluatJ.ng both subexpressions el and e2 J.n
parallel, and selecting whJ.chever result is available first. The
implementation of 0 r is not allowed to ignore either el or e2 deliberately
(for example by on I y evaluatJ.ng el).

Thus merge may be programmed by selecting arbitrarily between two
pOSSJ.ble result streams:

merge(sl,s2) == alt1 or alt2
~""""'iltl =. cons(head(sl),merge(tail(sl),s2»)

aH2 =. cons(head(s2),merge(Sl,tail(S2)})

This J.mplementatJ.on of merge is more lenient than the alternating solution.
It might ignore eJ.ther input stream for ever, but that would be an unusual
accident and not a de!lJ.gn fault,

In fact there is still a technJ.cal problem wJ.th merge, whJ.ch J.S a
consequence of lazy evaluatJ.on rather than non-determJ.nism. We would like
merge to select between the alternative output streams on the basis of the
"availabJ.lity" of the J.nput stream element9, However, the definJ.tion of
merge gJ.ven above selects between streams by the avaJ.labJ.l.l.ty of the cons
cells which blJJ.ld the alternatlve output streams. The components of these
conses are delayed, and so there is no guarantee that either head(sl) or
head(s2) J.S avaJ.lable. Thus thJ.s merge mJ.ght cause deadlock by selecting an
output stream whose J.nltJ.al element never becomes available.

The general solutJ.on to thJ.s type of problem is to apply some forcing
functlon (e.g, finJ.te) to the data structure component whose availabllity is
to be guaranteed, For example:

merge(sl,sZ) =. altl£! altZ
where altl :: if finite(head(sl»

then cons(head(sl), merge(tail(sl), s2»
else UNDEFINED

alt2 =. if finite(head(s2»
then con9(head(S2).merge(S1,tall(S2»))
else tJNDEFINED

In part~cular cases the forcing fUnCt10n may be slmpler, For example,

~f the ava~lab1l1ty ot "somethlng" rather than "everyth lr,g " is requ~red:

merge(sl,~2) = altl or alt2
where~ltl = if here(head(sl)

then cons(head(sl), ,)
else UNDEFINED

alt2 =. if here(head(S2»
then cons(head(S2). ,)
else UNDEFINED

here(x) ;:" ~ atom(x) ~ T else T

Extendug the SEeD mach~ne fer non-detennlnism:

As described above, non-determinism 15 to be introduced into L1Splt1t
through the or operator. TlllS clearly requ1res the addition of a new
lnstruction, OR, to the S~CD mach1ne. However, the alteratlons to the
abstract machine must be far more extensive as the non-determinist1c choice
requlres that the altcrnat1ve eJCpress~onS be evaluated ~n parallel. The
st ratl'gy to bC' implemented ~s that all evaluat lons of rec~pes will occur as
paralle:' processes Wh1Ch "share time" on a Slngle SECD machine. The new
abstrac! mach~ne w111 be a pseudo-parallel SECD machlne. Each APO
lnst:::uctlon 1..::.: .:.;~:..L;.'t:.-(o oJ. new process lf It needs to force a rec1pe, Each
UFD instrUCtlon wlll term~nate a process. Each OR w~ll slIDultaneously force
two rec:pes, one fcr edch alternat1ve subexpresslon.

Tlle modlfled SEeD mach~ne is potentially far morll' powerful, as
eVl'ntually pseudo--parallelism could be replaced by true parallel~sm (for
example, on a mult1processor machine such as Al1ce[2]). The the mechanism
could be extended, qUlte naturally, to evaluate the sube:l':pressions of
arithmetlc ope~ators slmultaneously, and so on. We shall not pursue th1S
llne of development here.

Fl.r3t we must develop a ne.... , process orlented strategy for lazy
evalua;::lon, and then the non-determ1nistlc cholce mechan~sm w11l be a small
further 3tep.

The abstract mach1ne needs a new, d1st1ngu~shable structure type to
represent a process. When a rec1pe 1S forced, and 1tS evaluat~on becomes a
parallel process, thl'! rec1pe 1:'3 altered to be a process. A process cell has
no subf1elds; It l~ slmply a placeholdQr fer the value of the rec1p~. Th1S
value win e·JentuJ.lly b<? 1nstalled by an lIFD Lnstruction. A process cell
will be :epl':eso?nted hy a pall': of cl<rlv bra<;k,cts (}, Tlle new type is
neCll'ssa!! ln order to 1c!entlfy I':ec::.pes Wh1Ch are already evaluat~ng, so
that the reclpe 1S not forced a second (01': further) tlme by APO
instruct1cns in other parallel processes.

Si~ce we are now deal1ng wlth a multlpropramrning abstract mach1ne there
must be apparatus for process schedullng:

The process wh~ch ~s execut1ng ~s held in the mach~ne reglsters S, E, C
and D. Processes WhlCh are 1dle are kept 1,n one of two n~ registers READY
and DONE, Processes 1n READY have not yet rece1ved a tlme sl~ce in the
current round of schedul1ng. A process 1S executed by transferring l-t frolll
READY to S, E, C and D, and at the end of 1tS t1me shce to DONE. Iolhen READY
is empty, the contents of DONE 15 transferred to READY, and DONE ~s

cleared. T1me slices are term1na'ted by eltr,er an lTPD 1nstruct1on (when the

process dies), or by an APO 1nstruction which does not f1nd a value on the
stack. Thus Processes volUn'tar1ly rel1nqu1sh the CPU. This mechanism could
eas1ly be replaced by 1nstructlon counting to enforce fair t1me slicing.
but the former ~Iethod has a lower overhead per 1nstrUCt1on executed, and In
l<1.:ry evaluat10n APO and UFD lnsttur.l1ons are executed qUlte frequently.

SlnC(' REJ\DY 'lnd DON"E are bUllt as s-expresslon stacks the scheduling
mechilnlsm 1.S rather unusual, but very slmple and adequately falr, An
lmpOrtant con,adera t; 1. or, 15 that ne.. processes are added to DONE and not to
RFADY, so Lhat the reproductive descendants of a reproduct1.ve parent
process do n,}t preITent oth~r processes from progresslng.

Th~re 1S no special treatment requlred for processes WhlCh are wdltlng,
CiS all proressef: wa1-t buslly. Bus}-' waltlng occurs when APO forces a reCipe
"lll'~ 17IUSt l.ial t for Lhe pl oces~ ce 11 (tile rec Ipe) to recel ve 1 ts value. To
have 1I..£'Os l.ia1tlng bU~11y In thlS w,~y ~ounds rather extravagant: Nested
fQrclngs l.i1-ll 'Jlve spvel"al blJ';;J.l}-' ..ait1ng processes for a single usefully
act1ve pn1ce,;".. (at the end of thf: chain), and In a pseudo-parallel system
;.everal Aros m.:lY be wa1t.lng b1/Sl1y for the same process to term1nate.
HO'-'eV0X, ~n aT: exr,erlmp.n'l WhlCh kept a queue of waltlng processes In a
S\lb[;leld ()f f?il.ch proc~sf;; cell, expcut~on speed Increased by only about 10
per Cf'nt. T},0 former ~et.hod W;\S adopted because 1t IS s~mpler, and also
beC:<l:.:s(· lr.e ~;np~p.menlallun of OR cannot make use of the optlm1satlon, and
It 1S hetLel to have one mechanlsm for the Job than two.

In crdc'r to dCSCtib," lhe new transltl0ns for APO and UFD (and later
OR), and ~t the same tlme the process swapPlng operat1on, we shall add READY

and DONI: ~Q the SEeD gUildrup.le, and also make use of a speclal Instructlon
DISPATCH. DI~PATCH dops not dppear in the SF,CD 1mplementatlon, although
th~re lS :-10 rf'ason why 1t !>hould not; here lt ~s Sl-mply a descr1ptive
devlce. When the next process IS to b,! executed the DISPATCH 1nstructlon is
1nstalled ln the control reg1stor. Transltlons wl11 be given for DISPATCH as
lf lt. ..·p.r8 a o; abst.ract machlne 1r,struc"tlon; these transit10ns describe the
sch..,du llng mo?chanism.

The new tranS1tlon for AP0 Jr.u<;t har.d~l' three cases: When the value 1S
re;j,~y, \.ihpn a reelpe IllU"L be forr-:ed, and when a process 1" still evaluat1ng:
(Nolp: A hypht;r. JI' placf' o(S,E or :J me':>n:;; that the actual contents are
un:ur;po~ Latlt" ;.

(x.~;) (: (APo.c)

where
j

x
Toady done -> (x,s) e c ready done
lS not a rec1pe or pro,~ess

(r.:,s) e (APO.c) d ready done -,

- - (DISPATC~) - re21dy (NIL e' c' x
(x.s) e (APO c) d
.done

where x 1S a reclpe (c·.e·],
x IS al~e~ed to be a process cell,
·1 1S the new process,

and w2 ~s the susper.ced current pro~ess

~l

'2

(x, s) e I APO, c) d ready done -)

- - (DISPATCH) - ready ((x.s) e (APO,c) d
.done

where x IS a process {J,
and wI ~s the suspended currer:t precess

'I

TM trans1t10n for UPD is still quite simple:

(J:) e (UPD) d ready done -) - - (DISPATCH) - ready done
where d will be a process {} wh1ch 1S overwritten

by (a copy at the top cell of) x

Nete that the initial dump of a newly created process is the
recipe/process wh1ch is eventually overwritten by UPD.

The transition rules	 for DISPATCH are also simple:

(DISPATCH)	 - NIL NIL -, BaIt the mach1ne

(DISPATCH)	 - NIL done -) - - (DISPATCH) - done NIL
where done is not NIL

- - (DISPATCH) (5 e	 c d.ready) done -) Sec d ready done

It is now easy to implement the non-deterministic choice operator using
the above apparatus. The following rule is added to the compiler:

(or el ~2)·n ~ (LOE el-nl(UPD) LDE e2-nl(UPO) OR)

and the OR instruct10n 1S added to the SECD mach1ne w1th the following
transitions:

(~y.s) e (OR.c) d ready done -) (z.s) e c ready done
where either x or y is d value (neither recipe nor process),

and z is that value (x or y as appropr iate)

(~y.s) e (OR.c) d ready done -,

(DISPATCH) - ready ("xprocess"
"yprocess"
(x y.s) e (OR.c) d
. done)

where ne1ther x nor y is a value,
and	 "xprocess" and "yprocess" are present it the

corre9pond1ng x or y 19 a rec1pe (which must be forced),
and absent lf it is a process. If x 1S a recipe [c'. e']
then "xprocess" is the new reg1ster set

NIL e' c' x
and x 1S altered to be a process.
51m1larly for y and "yprocess".

SO:Jle words	 of explanat10n are appropr1ate. To make the non­
detetllJirllstic ch01ce el or e2, el and e2 are submitted as to new processes
by OR. The process WhlCh executes OR then has two processes at the head of
its stack, and wa1ts busily, re-execut1ng OR, unt1l one of the two processes
on the stack is found to have been updated to a value. That value 1S then
retained on the stack, the other (prob~ly still a process) is d1scarded,
and the choice has been made on the basis of availability.

Although d1scarded, the process comput1ng the rejected alternative is
still Known to the schedu11ng mechanism, and so will continue executing. It
is well known that 1t is extremely d1fficult to kill the unwanted process ­
it may 1tself have started new processes, some of wh1ch may be forcing

globally known recipes and must eithf'r be allowed to terminate or be reset
carefully to the~r unforced state. Fortunately, when executing laz:ily it is
reasonably econom~c, though not perfectly so, to leave the processes
execut~ng. As a consequence of lazy evaluation the process will term~nate

"fa~rly soon", usually having computed an atomic or part~ally constructed
result. T'ne dlscarded process cell (st~ll, and only, known to the
evaluating process) ill be updated and the process will k~ll itself. Any
globally known recipes wh~ch are inc~dentally forced by the process will
appear to other proc~sses to be properly updated values. Thus in a purely
functional system the side effects of concurrent processes are entirely
benevolent, which .i-~ not true of the potentiallY chaotic behaviour of
programs ~n I:rad~tional languages f'ndoW"ed W"ith parallel tasking
"facilit,ic>s" .

TIle non-determJ-n~stlC, pseudo-parallel SECD abstract mach~ne is
entLrely COll:pat~ble w~th code produced by the compiler frOm the previous
ch2plC'r. Only the rule for crJmp~J..ing or must be added.

Rewritl1'lg the outpllt drivlng function:
---- ------ - - -----_._------- - --­

With the new SECD mach~ne descn.bed above it is possl..ble to solve the
ta~l recursJ-on optimisatlon problem ~n the output driv~ng function in a
dlfferent way, In the neW" scheme no "o'l.pplication package" needs to be
constructed, and the STOP lnstruction slmply term~nates the current process.

Herc is lhe nf'! oulput driver, ~n pseudo-L~spkit:

outPllt.
u}wrerec output(s) = if s=NIL then NIL else

~f f~n1te(head(s)) then
OUTPUT(head(s») (NIL or output(ta~l(s»)

eLse UNDEFINED

f~nlte(x) ~

and the corresponding transltion for STOP ~s:

S Ii> (:>TOP) d ready done -, - - (DISPATCH) - ready done

The expression (NIL or output(ta~l(S») 15 the cruc~al feature of thlS
output dr~vAr. ~he €XpreSSlon returns NIL immediately and the current call
of output returns; ll, thus pOP,L'l.llg th.~ A.ct~VA.tlon record from the dUl:lp.
Mea.n...·hlle, rr.e nl.s(";3:,~e;~ rel'U:"SlV(" cilll conLlnue~ 1ndependently It ',1111
print an 1tem, <lno then r,~lurn NIL to update the dlscarded process cell a.nd
dle. But 1t w111 'hcl:VC crf!dtp.d a ..other lndependent recursJ"ve call, and so on.

The sche(1'1E' ~s st~ll not ent1rely sat1sfY1ng, as it relies on to
propert~es of the Implementat10n of or. F1rstly, that OR does not KIll the
dl~Ctlrded process, and secondly that the dump of the process e~ecut1ng OR is
not. donatf'd to the child proct'~ses. In this respect OR lS belng used to
slmulate an 0xpllC1t parallel process generator el ~ e2,hich returns the
v<11ue of ('1, but incidentally starts a no?"" process for eZ and then forgets
1t wiUout klllln'J it. A PAR instructlon could eventually be added to the
machln" to glVf' e:Kpl~c1t eX1stence to th;Ls tool for construct~ng output
drlVet~. Thp complIer rule ilnd machIne trans1tionould be:

(pn: el e2)"'n "" (LDE eZTnl(uPD) PAR)lel'"n

([r' P.',.s) e (PAR,c) d ready done

sec d ready (NIL e' c· () ,done)

------------------------------ -------------

- - - - -

Chapter F~ve: HultL-stream ~nput and output
------- -- - --- ---------------------,--------­

Extending InteractLve i/o to other dev~ces:

The ~nteractive SEeD machine developed in the preced~ng chapters 1S
able to execute programs which receive a single input stream and generate a
single output stream. Usually these streams are from the keyboard, and to
th(' screen, respectively, but we have u~ed dev~ous means at a very low level
in the implementation to s J..tch these streams to and from disk files. In
thiS way It is poss ible, for example, to use the Lispkit s-expressJ..on editor
to modify LISpkJ..t progrtims kept in disk files.

How~ver It ~s clearly des:trable, for genlOral systems prograrnming, to
enable a Lispk~t program to control its own input and output, to dnd from
troe termcnal and file store, explicitly and cleanly, In addition our
research on distributed operatlng systems demands that LISpkit programs
should be able to perform Input and output of s-express~ons via the
hardware serlal ports,

Two quite Slmple Solutlons present themselves:

FLrstly, we could retaln the s~ngle i/o stream interface between a
Lispklt program and the i/o drlvers, but tag each arrlving s-expresslo~ With
som€ identlflcatlon of its origin, and each departing s-expresslon wlth some
identiflcatlon of ltS intended destination (the latter would be the
responsibillty of the LISpkit program). ~ typical program to execute on such
a system woulo have the followlng network of stream processlng functlons:

1----------

Iuntag('kb') ~ kb screen-t-11tag{ 'scr')

,, ,
, I

I I
io untag('fi Ie') flleln fileout~tag('flle~) H r !--------\.out

9
e
3

untag('port')~portln portout-1 , ,
in J..ll be a stream of Items from the Iteyboard, flle store, and serlal port
tagged (by thp Input drJ..ver) wlth '](.b', 'scr' and 'port' respectlvely The
dotted hox contains some applJ..catlon prQgrum net.... orlt computing the o~tput

str~ams from the Input streili~S, rr.ergp] 1$ a three way non-determlnistlc
merge, bUilt qUltP. eaSily from two way merges. The tagged stream out Will be
decooed by the output drlver and low level s-expression output soft.... a~e.

untC'.g q,,"c·:,c2.tes a slrearn proccsslng functlon which fllters and removes tags
from It" Input o:;tream. tag generates a. stream processing functton WhlCh tags
each It<"'iT' (If ltS lnput streill'T1. The overall progrilm could have t),e fo~lowlng

structure:

~ (in). merge3(tag('scr')(screen).

tag('file' H fileout),

tag(•port')(portout))

whererec	 kb .=. untag('kb')(in)
filein =. untag('file')(in)
porti n =. untag(. port')(~n)
screen .=. f(kb,filein,port~n)

f~leout ~ g(kb,filein,portin)
portout :a h(kb, filein,portin)

....hererec	 merge3(sl,S2,S3) =..
untag(id)(s) .=.	 if head(head(s)=id

then cons(tail(head(s)), untag(id)(tail(s)))
~ untag(id)(tail(s»)

tag(id)(s) =. Cons(cons(id,head(s».tag(id)(tail{s))}

f(sl,s2,s3) ::;

g(sl,s2,s3) ;:

h(sl, 52, s3) :::

The alternative solution ~s to absorb the untagging, tagging and
merging operations into the ilo drivers (and thereby poss~ly not do them at
all). The programould then correspond roughly to the dotted box in the
diagram above. A simple interface bet....een the ~/o drivers is for the input
driver to supply the programith a single argumenth~ch is a short h.st
of streams, one from each ~nput dev~ce, and for Lhe program to produce a
list of streams to be decoded by the output driver. The position of the
stream 10 the 1 ist WIll determine the i/o dev~ce used - thereill be no
tagging Thus on a machineith a terminal, a f~le store and one serial l~ne

a typical program could have the structure:

~(1O) .	 conS(screen,cons(fileout,cons(portout,NIL»)}

....hererec	 kb ~ head(in)
fl1eln =.. head(tail(in»
portln =. head(tail(tail(in»))
SCreen::: f(kb,filein,portln)
fl1eout =.. g(kb,filein,portln)
portout ~ h(kb,flleln,portln)

....hererec	 f(sl,S2,s3) =

'1(51,52,53) .=.

h(sl,s2,s3) '"

The latter scheme has been lmplemented. It lS rather slmpler since, in
the fOrJIJer scheme, the messages dlrected to each deVIce must be separated
from ea~h other at some level In the output system (either In the pseudo­
Lispkit output drlver or ln the underlyJ.ng s-expresslon output routlnes},
and so the effect of the merglng IS undone. In the latter scheme there lS no
merglng and no unr.lerg2-ng.

The next matter to be declded 15 the nature of the communlcatl0ns along
each i/o stream. Debate on the precise properties of this ~nterface is
continulng, but the following Slmple scheme has been implemented to test
the feaSIbIlity and utility of some form of multl-stream i/o. The adopted
scheme 1S suffJ.clently powerful to permit an lnterestlng range of
eXperlments on dIstributed operatIng systems.

Input from the keyboard and output to the screen remain as they have
been previously in the interactive SECD machine. s-expressions entered at
th~ ~eyboard arrive as the input stream, and the s-express~ons of the result
stream are displayed on the screen.

Input and output v~a the ser~al ports is treated in the same way as i/o
via the terminal - :s-expr-ess~ons are sent and rece~ved. Each serial port is
assoc1ated with one ~nput and one output stream.

However, the file store :l.S, by necessity, rather different. Each file
will contain exa.ct~y one s-expression. Clearly then, 1tems in the file store
output stream which are to be written to files must carry a file name with
them to 1d~ntify their destination on the backing store. But the output
stream must also conta~n requests for files which are to be input - the
contp.nts of those files w111 be the items appearing on the file store lnput
stream. Thus the output stream consists of commands to the file ~tore, the
most important of which wl11 be "(get f~lename)" and "(put filename
filecQntent:;)". The former will cause the contents of the named f11e to be
added to the lnput stream. The latter will create (or ovel"'o'rite) the named
f11p. with the g1ven contents, with no response appearing on the input
stream. Clearly the little command language could be extended with delete,
rename, du"ectory request, and so on. It ~s important that the f~le store
actions are carr~ed out in precisely the order in which they appear ~n the
output stream. A convenlent format for file names 1S to allow them to be
either an atom or a consed pair of atoms (in which case the underlylng
software can form a s1ngle name suitable for the given external file store).

Note that th~s interface to the file store is very similar to the
interface to the simple databases descrLbed in [5]. There HenderSon shows
how a f11e store can be implemented ~n oJ. purely functional way, and so we
have not brought something essentially non-applicat1ve into Lispklt by the
use of such a store - although lt wl11 usually be implemented in a non­
appl1cative way by oven.'riting areas of disk.

The example program below uses this interface to send files named at
the keyboard out along the serial line, and to enter files arriv1ng along
the ser:l.al line into the f~le store. Each message pass~ng along the serial
line is a 2-11st "(f~lename contents)". This could be used as the basis for
a more ~Qphisticated mach:l.ne to mach1ne f~le transfer system:

•
kb ~ makegets I)1	 •

r ~ f~leout

g

f~le~n

~~

port1n ~ maJ<ePUtS) portout

A(ln). (cons(NIL,Cons(f~leout,cOn$(portout,NIL))

~hererec kb ~ head(in}
f~lein ~ head{tail(in))
portin ~ head{tail(ta~l(in))

f~leQut =. merger lI'lakegets(kb), makepl.Jts(port in))
portout ~ Jo~n(kb,filein))

~nererec makegets(s) =. map(Nx).cons('get',cons(x,NIL)},5)
makeputs(s) s map(~(x).con5('put',x),s)
jo~n(s1, s2) .:0. cons(cons(head(51), cons(head(.s 2), NIL)),

Jo~n(tail(sl), ta~l(s2}))
map(f,s) =. .
merger Sl, s2) .;;;;

G,'Jen a collectlon of computers each supportlng a multl-stream L~spkit

system, any program previously conce~ved as netvork of communicating
processes may now be phys.lcally dlstributed. This 15 ach~eved simply by
partltDning the network lnto groups of stream process~ng funct~ons

(preferably connected groups), and ass~gn~ng the commUnication channels
connectIng the groups to hard.,.,are sen.al lines. The single Lispkit prograJn
descrLblng the or1.g1nal network ~s sLmilarly transformed by nam~ng each of
the channels ""hich are to correspond to serial lines, partition~ng the
statem€nts into the approprlate subnetvorks, and vr~t~ng down each
SUbnet~~rk as a separat~ program. The separate programs are executed on the
collection of <::'omputers whlCh have been connected by ser~al l~nes

correspJoding to the group connectlons requlred.

For example, the network which solves the paverS of 2, 3 and 5 problem,
discussed Ln Chapter T\oIo, can easl1y be rhstn..buted over a group of, :;ay,
three processors. The network could be part1.t~oned as followS;,--------- 1---- - -- ­

I :ompu ter 1 :-c:m;u~e-; ;1 computer 3

I ,
I

I

I
I
I

,-I

'2 I I

,
m'>I

I

I

,

e

,
,

J

'3 I I

"I'

L

r

'I ~:e, ,
" 91
el

'>I

------, '>i

_

. I con~ screen,

Computer I wlll use one serlal llne for lnput, and three serial llnes
for output; lt needs three serlal llnes altogether, Slnce the lnput from and
output to compllter 3 can share the same llne. Computer 2 .nll use two
serial line!; for lnput, and one for output; lt needs three llnes altogether.
Computer 3ill u::-.e two serIal llncs for input, one llne for output, and
also gC?nerates a sr.Ip.am for the screen; lt needs two serlal Ilnes
altogether, Slnce lh0 t~o channels to computer 1 can share the same llne.
The program r.O be executed on computer 1 would look llke thlS:

},,(In). can A (NIL, cons(NIL, Cons(portlout,
cons(port2out, cons(port30ut ,NIL)))))

....here ree	 portJin =. head(tad(tall(tail(tall(In)))))
portlQut = times2(port31n)
port2out = tlm~s3(port31n)

port30ut ~ times5(port3In)

whererec	 t Imf's2 (s) .;=.

tImes3(s) =.

tImcs5(s) ~

where serIal port 3 has t-een used as the chanr:el tQ computer 3.

Extensions	 to the SECD r.Jachlne and compll€r:

The abstrilct machlne lts€lf ne€ds to be changed very llttle to enwle
multl-stream liD as descrlbed above - most oC the requlred apparatus has
already bppn prov1ded. Tile greatest cl-'.anges ;]ccur 1n the input and output
drlver£; SUp?lled hy t.he ~ompilet" (or loader system), and In the low level
s-exp!:C:SS1l)n lit) routlnes whirl] llHl:;;t no•.- handle each devlce accordlng to
ltS neec!s.

J~ the m,'J1(11~d m.'lct1J.ne the INPUT and OUTPUT ln5tructlons w111 expect
to (l~.d ,1 nUr:l8:'"lC a!·L~rr. on top of tr,e st<lclo': WhlCh ldentlfles the device to
he lJs€<l tlL~ c()nVent1o:; "lctoflted lS: Q=tenr.ln,Jl, l"'flle store, Z,3,etc are
spr.:.al ports. If'..:;.ddJtu)n to tll':'S, e,'l';::~ rNpl"T a<1d OU':'PL'T operat~on mtlst walt
bll';11y ~f th€- reqL:i TP,J CE'V~ce i.:: not yet ~ead,/ to eTlgag~.' ~n the
cnmrrwll(:.:ltlcn; UllS LS to "."l~'1r'" th,lt other proeesse::; ;Ltl 1:he machlne ::lay
CGI;' ,-r.~.t-' I.,~ ",xecl~te ... h li:' t-I:c F<l~t;.c:ul<H· ;.nput 13 not avallable. For
"x<l'Tl?l,. tl~p. ::wr8er.):'" 3.1w,r,,,; U::"ldy to accept output, but the keyboard ~s

nnt ""·"~L.l.-·~",d t<J b(' t..,,,.dy "'::1t.ll t;:-J .• <Jscr ha" tlped, say, one useful
C~,H.1C~ l?::- c:r :"1.1ybe .". c('I:lp:el.e IlTlE' (If tE'y-t. Th~ propertles of the other
d('vl,~e"' J.n ::.hlS ('cnl ext 00'111 be dlSCU"S",ct later-.

T)," t·'3W',l.tl,)n [(,r IN(!!..!T anJ Ol!TPL'T are thus;

(!".s) C (INPUT. (') d r",.o:':y done
- - (OI5PATCHl ready ((n.s) e (INPUT.c) d.done)

~ f dev~ce n lS not: reaJy f<or Inpt.;t

(n.s)	 e (INPUT.c) d -> (x.s) e c d

If dev1ce n lS ready for lnput,

and the next s-expresslon ;LS x

(t x.s) e (OUTPUT.c) d ready done -)
- _ (DISPATCH) - ready ((n x.s) e (OUTPUT.c) d.done)

If device n lS not ready for output

(fi x.s) e (OUTPUT.c) d -) 5 e c d

if devlce n lS ready, x is output

Tre input expression which lS supplied to a program must evaluate to a
list of delayed stredIl1 input expressions of the lCl.nd used In the preViOUS
chapter. It lS quite simple:

uput(0)

~ lnput(n) ~ cons(instream(n),lnput(n+l))

lnstream(l) ~ scons(INPU?(l),ln~tream(l»)

""here ~cons, as before, does not delay ltS flrst argument, and INPUT(l)
complhs <IS follo""~:

";NP<IT(1.)"*n i"-nl(INPUT)

Note that thls input driver ill only attempt to read from devlces
""hose ~treams are actually accessed by the program.

Tr.e output d!:ive:r must generate a process to follow each output stream
from He H>SlJlt of the program. The result of tho? program 111 be a short
list 0: ~tre~ms, and so there ~lll be a small nu~er number of such
processes, Each pror.ess ""ill force 1tS own stream independently, and ""ill
d1sappear from the maChine If It encounter!l the end of a fin1te stream. We
Can \lSe the s"mo trick to generate the separate processes as we do to scan
and pr;nt ea,h ~t ream:

Alout). output(O,out)

,,",~,ererec output(n,l) ~ ~ l=NIL then NIL

else (outstream(n,head(l))

£! output(n+l,tall(1»)

Qutstreilln(n,s) ~	 If s=NIL the~ NIL else
hf finlte(head(s))
then Ol'1'PUT(n, head(5))

(NIL or outstream(n, tall(s»)
else lTNDEFINED

!init_e(x) _

~here)l11'f'U1'(n,ta1l(s») complle~:

"OlJTI'UT(n,tail(s»)""'m'" s*mliTAIL APO)ln'ml(OUTPUT)

NQt~ that both of these drlvers have been constructed toork Correctly
on any hardl.'are - they are lndependent of the presence of any partlcular
devlce,. H~nce the s~e compllpr can be used for any machine. The LlSpkit
progr<l~ rrusL l~f coursE' he con~:l",·.Cntltr. the machlne on whlch it 1S
execut.~g - It must only attempt to ccm:;ll.:nlcdtc wlth devices recogn1sed by
trle ra~t~r..:uldr l.mpl€'me~tiltion.

I\part from the input and output drlvers there lS no other change to the
complhr.

Loer level device control;
--- ---------------- - ~ -----­

It only remal-nS to dl-sCUSS a useful scheme for handling the varl-OUS i/o
devices belo.... the ~evel of the SECD abstract machl.ne. In practl-ce thl-s means
decidlng when to perform s-expression input and output, and when the devl.ces
are ready or not ready for the transactl.on. GUl.ded by the general prl.nclple
of lazl.nes!>, we ill attempt to ensure that no s-expressions are l.nput untll
they havp. been requested by an INPUT instruction, and that no OUTPUT
l.nstructl-on may proceed untl-l the s-expresslonhl.ch l.t provides has been
accepted hy the au tput devi<::e. Thl.s mear,s that on each output stream the
driver is alays preparing the next l-tem for output; this does not qUl-te
earl form to the laziness we ml.ght expect, l-nhlCh an OUTPUT instructl.On is
not allo....ed to proceed to prepare the next l-tem untl.l the devl-ce has become
ready for output, but 1t is it llseful strategy.

AS mcnt10ned aubovc, Lhe screen is always ready for output and the
OlltpUt. Item lll be dl-splayed. The keyboard l-11 be ready for l.nputhen
some useful quantity of text has been typed (for example, a complete hne of
text eontal.nl.ng at least the start of an s-eXpressl-on). Once an s-exp.::essl.on
has sldrLcd, a!.ter.t10~ 18 devoted to the keyboard unt1l the expression l-S
comple\.e. Th1.5 1.5 a ~imple schemehl-ch enablti's the keyboard to be l-nspected
nnly on d€"mand from the program.

The serial lines are a ll.ttle n\ore compll.cated. To maintal-n the demand
tlr-l-ve pollCy, and to economise on buffer space (l-n the ll-st cell heap), we
.....ould ll.k€" to delay transferr1ng an s-e:<preS3l-0n frOm thti' producer's machl.ne
to the consumer's mac]une unt11 the COn3uml.ng pr-ogram has requ€"sted the next
stream l-!.cm hy 8xecutJ.n() (In INPUT l-nstructl.on. Th1S effect l-S achl-eved l-f an
TNrl,"r lllSt.r-uc!.l-on Cd-USCS a control slqnal to be transmltted along the serial
Il-ne request1ng ;j,n s-expressl.on to be sent by the producer. INPUT thena1 ts
bu~aly untl.l an s-exprf'lss.1on has been rece1ved, l-.e. untl.l the serl-al port's
recel.ve buffet becomes ready. Conversely, an OUTPUT l-nstruction for a serial
ll.lle mustal-t busl-ly untl-l a request has been recel-ved from the consumer.
This l.S the outll.ne of a demand driven s-eXpressl-on tra.nsfer protocolhich
could prohilbly be lmplemented l.n several ways. Of course, this protocol l-ll
bl' bt.:1.lt on a lower If'vel, rell-able, full dupJex protocol ot seme)o:.l-nd
(whl.ch a.llo.... !; t.hC' same t:r.ansfer strategy to be used l-n both dl-rectl-ons). At
tlw)o'.o'er- level the S~tl-a] Jlne could be dXl.ven el-ther by l-nterrupts or, for
e.'{.)mp~e, b}'" reg:.!l'lr F'()~llng bct ':'en each SECD 1nstruction or at each process
SWii.p.

The se:r.lal linG l-nrut cuntr,)llGr cycl'?s through thr'(>e states:

"ot ce.,dy \'NPUT (1) r'\ INPUT (2)

INPUT (3) not ready _'" J
.. requeststransm1~

) --exp,e'Owo/ recel.ve"
ready

....here INPUT (1), (2) and (3) are r-e-exti'cutl.ons of the same INPUT
l-nstruct10n. (1) star!.s transmlSSl-On of request sl-gnals. (2) l-S the busy
....al-tl.ng phase. (3) fl.nally accepts the s-expressl.onhl-ch has been recel.ved.

Tile ~£'I .:al lUll" output cor-troller- has only tlo'O :::;tates:

OUTPUT (1)

C)

OUTPUT (2) recei VI" requ£'~t~:.:::'~
where OUTPUT (1) ~s the busy wa~t~ng phase and OUTPUT (2) 1S the same
~nstruc:lon, and provldes the requested output.

Th~ fll~ ~tor-e ~s Sllghtly dlfferent again, Slnce the ~nput and Ol<tput
strea:n~ are coupll?d. We must sat~sfy two cor.stra~nts here. F~rstly that the
act~ons appe.1.rlng ~n the flle store output ~tredm are performed strlctly 1n
sequf'nr.~, and ~econdly ttlat f"les reque~;ted for lnput by a "get" command are
not le<l1 from the flll? s1.on' until the tlext ltem on the file store lnput
STr-f':irn I" dr>mandp.d by the program Trw £ollowlng strategy sCl.tlsfles these
requl1 ..~ellts: The fi.le store lS ln~tlally not ready for input, and ready for
outP'J~ Wl-r.:l ready (,·)t output. a "pul" COll'ID<lr.G creates (or overwrltes) 'the
nilmoo f.'.£'. a:l'J tho process proceeds. Slmllarly ,("delete" or "rename" could
occu,:- lnr.,pr]lately, and leave r.he flle store ready for output. A "get"
r.amman(] Wl 11 alll)"" the DI.!tput pr:occs.<;; tL") contlnue, but the flle store
beC,lnl(:,"; not rea<:.!y for output, r.?ady for lnput, and the f~le name 15 noted.
When reaoy for lnpl:t an INPUT ~n[)tructlon recelves the contents of the flle
whos~ n~me has br.en noted, and cause~ the file store to become not ready for
lnput, '-no ready for- out~ut aga~n.

Tho flle store pa~ses round a small cycle;

PCn"te.
1npu't root reasy
octpuc cea'y

INPUT "get")
(

lnpu,: ready
output not ready

where "put" "delete" and "get" are speClf1c ~nstances of commands output
by OUTl'l)T,

Chapter SlX, Summary of (some of the) resH~ual problems _nth the SECD mach1ne

Th~ alteratIons to the ~ECD mach1ne that have been descrlbed In the
preVlOUS chapters of t!113 report. <lre important for several reasons: With
only modest, and reasonably easlly understood, changes to the abstract
maChlne the po...er of the machlne to support general progranun~ng has been
Increased considerably. Th1S establIshes a directlon in WhICh the maohH\e
Itself could be further lmproved wIthout substantIally alterIng the
programm1ng interface to the system. The new abstract machine lS
sU[[lciently po...erful to test out many InterestIng ldeas concernIng the use
of p'.H:~ly functIonal programm1ng for systems programlTllng - ideas which are
e,~c;{"!nt1iLll.y Lo do wIth the language and progril.IllJJl1ng style rather than any
part1cuJilT l.mplementat1on.

However, th~re arc aspects of the abstract mach1ne and 1ts use Wh1Ch
le':;"Jp. SO~I'2~::J',lng to be des1Ted, although the consequences are only dlre [or
r~lh0.r patho]oglr:al progrilms. Seven problenls are llstcd below. The flrst is
.i prob~!':11 W1:':~ Ihc sJr.:F'2-e ,mplementat10n of lazIness. The second 1S an
1r.C:"Jltabl!:' consnGI,pn,c o[the universal applIcatIon of the lazy evaluatlon
st.:::atl'~y (ll' ..-hJchever way the laZlnes,":: is ilctually Ht1pl~mented). The thIrd
and [,.,ur+-h pr-oblems concern the rat~)e.::: sLmple LmplementatLon of non­
r]p-tf'rrnlnJ:;m. The [lfth and slxth p.:::oblems a~e not faults wlth the
Imp}(,-~'·:lt..~:~(,~" b'.Jt ral.her places where a re-desLgn mIght yl€ld a better,
C)~ '!If'T~' 'Jpneral, ~y.stem!:' progTammlng envlronment. The sf'venth problem
1~'.:';J~f"~s ,1n lnr>fficH?fiCY Wh1Ch lends Itself to J. Solut1on 1n speclal
purpose hilr;iw,lrc.

1) The inst.:::uct1~ns Wh1Ch bU1ld functIon closures and reClpes, APO and
J,DE, bind Ulf> €nll-re C'.Jrrent p-nvirGnment Into the new obJect. Thus ncthlng
In th", erW1(()n:n£;llt IT.<lY be collected as garbag~ unt1l the closure or rec1pe
it.sp}f It, r:.)l.lecta.blf' ([or example potentlally lengthy Inp:.lt or output
streams). It ;,,,o\ll,~ be ,'tttractlve, though [or small programs posslbli' less
efflc1ent, 10 blnd into closures and reclpes only those varIables currently
ln scopn which may p.; referenced by th~ body of the closure or reclpe (L.e.
the free Vi'lr 13."hles of the express1on).

;') ':"l',,' nc·:".~ l:'----~ use lIttle seG..J",~ce en::orc1ng constructs, as 1n r.'.erge
and tlw Hl?l!t ;J.nu ,~u'.pul crlvr=rs, 1S ra-ther unt1dy. Int,eractLve L1Spj.~Lt

p,ogrJJt::::; [;ll.'St occa::;lona})y res,)rt tl' such cQflstr·ucT;s to ens\~re that ~l~tS o[
q'IC'lleo-; ","."~ to Lll~ sc-rroep ilns re-"J=','nc;,>:-; l>?ilC fr-oll1 the keyboard are
1Tll0Lleol'l"'d ("nrrer-tJy - f"T exan,!=,le, t)~1"' r.!:'xt output car be delayed ty
~';li\"I':r ~~ .:'~p»r,; '11 a': :';-::=~:~~".~';-: ,~:: ~l;;lt-e ~o the prevlous Input.

j) "h" :F;::-('l,~t"<C::_;·.:..rl~s7_IC Ins~ructLcr. 0f- -':ces not termlnate the process
("r lis ,;(,~,re:H::a"t~~) ...~~rh 1" C().1lp'.it~ng th", d1scarded alternatlve. In many
cases thJS "'011 not m.lltl"r, It ...·111 sl:t.ply lead to temporary IneffIc1ency as
the rtcc<'ssps cont1;~'~~ !.,) u'-'''' tl~.:, r.la.::!,'.~" ~f'[l'r(' ternllnat1ng themselw:s.
However, 1n the cas", .-.[an f'rtrf'me1y t"x!='f'n3IVe, or even non-term1natHlq,
dlSCa.:::C,~r:l a) terr.a.t" 1"; ~ ~f> c.~."1'"f''-:;',,~.'\ce~ c:::'-llc be drsastlous.

'I) '::'hl' streaiP meT'-Fng f'lnCt;C:::::l ""~IC)'j ca,l be Hi1plemi'!nted USlng C"
pro\';~,,~. n·) '~'~J.':::3.ntee o~ ::a.:.rne!;s - rt mrq)lt aCC'"ldent2.11y 19nore one 1nput
strC'i'l.m \ndet·lnllely. The solutlon to th1.'; wO'.Jld probably 1n,,-olve replaclnq
the OR 11"1"tructlon wll;h il stre.3.::l merSlng lr.~-:::ruction as the prJ,m1tlve source
o[non-deter::nnism.

5) Thereould probably be advantages in handl~ng ~nput and output
streams as sequences of single characters rather than sequences of
8-expr-ess1ons. TInsould open up the poss1bil1ty of process1ng general
text, and controll1ng dev1ces 1n more deta1l. The program, or maybe the
1nput ~nd output dr1vers,ould then be responsible for pars1ng input text,
and [on,lttlng output. text.

G} The dlfferences bet..een the term1nal, serlal l~ne and file store
interfaces to L1Spk1t programs could be simpl~f1ed and made more unifonn by
treating the keYboard, screen and serial line ports as spec~al flles with
d1stingu~shable names. For example, in order to obtain the stre-am of inputs
from th~ kr>yboard a program might Qutput the reque-st "(get ltb:)".

7) There are to lnadequaclec 1n the use of serial li.nes for
intl.'tpncessGr C'OmIllunlcatlon, F~rstly, the transm~SSlon of s-expressions
bctwCUfi processors v~a ser1al l~nes lS ted~ously s 10"'" , and unfortunately
tl.meShOillng on the SEeD machine comes to a halt ..hl1e such transmiss10n 1S
ocCurrlng, Less pedestr1an 10..... level protocols, or use o[parallel lines,
.....ould i,~crease speeLl - but not appreciably if the s-express ion syntax
routlnes used for input and output are the 11mit~ng factor:. (AdoptiOn of
ChCl;rac-l'r 1/0 :;treams, as in 5) above, ..auld enable tlmeshar~ng to contlnue
dur.ing s-CXpr,,!;~;ion t.ransrn1ss10n.) Secondly, onlyacycllc, reC1pe free
strUCTures may bf'! trans1711tted via the serial 11nes, Slnce they are
txansmilted 1n exte1'nal s-expreSSlon syntax (note that this essent~ally

Yules flLt t,ransm1S",lon of. closurE!s, ""hlCh are usually recurslve). A
;Jo<;sibh :iolutjoT' to both of th€se problems is to des1gn a spec1al purpose
C<:>mpute: .. lth several processors on a slngle bus and access1ng a COJT\Jnon
largo. l:st store Thus transm~ss10n of any L1Spkit value or rec1pe 1S then
pOSSible slmply by pxChanging a pOlnter to the 1tem.

Th"Sf> problem are<1S, and others, ""ill be consldered durlng the
c""nt~n\l:ng developm{~nt of L1Sp}ut and the SEeD machine as systems
program.~ing tools.

References

(la J S. A.bramsk.y: SECD-H: A v Irtual machIne for applicati ve multIprogrammIng.
Queen Mary College. Computer systems Laboratory, 1982.

(lb] S.A.bramsk.y: A SImple proof theory for non-determInIstIC recursive
prog rams.
Queen Mary College, Computer Systems Laboratory, 1982.

(2)	 J.Darllngton and M.Reeve: Alice, a multIprocessor reductIon machine for
the parallel evaluatIon of applicative languages.
Internal report, Dept of Computing, ImperIal College, 198L

[3; J.B.Denn~,,:	 VarietIes of r.ata flo.... computers.
'PruC' of 1st Int. Conf. on DIstrIbuted COmputer Systems,
pp430-'tJ9, October 1979.

[4]	 P.HendersQn: FunctIonal programmIng: Application and ImplementatIon.
prentICf>-HalL London, 1980.

[5J P.Hcnderson: purely functional operatIng systems.

In FunctIonal programming and Its applIcationS,

Eds D3.rllngton, Henderson and Turner, ClJl' ;1.982.

[6J](.KarlsGon:	 Nebula: 1\ functIonal operatIng system.

Int0rnal report, Laboratory for Programming Methodology,

Chalmers UnIversity of Technology and UnIversity of

Goteborg, 1981.

(7) J.HcCarlhy et al: The L:tsp 1.5 Programmer'S Manual. MIT Press, 1962.

[8) F.W.Burton and M.R.Sl(lep; Executlng f'~nctlonal programs on a VIrtual
tree ot: processors.
Proc. ACM Conf. on FunctIonal ProgrammIng Languages and
Comput(lT ArchItecture, October 1981.

['='J I.Watson and J.GuI'd: A prototype dataflow Computer WIth token labelllng.
Proc. Nat. Compo Conf. Vol 48, pp62)-f>28, ;1.979.

[lnJ I'.H-o'n,jeI'SQn, G.1\.,:r;n'2::', .';.n.J<J!I~s: The LISpkIt Manual.

Fr<:1'~r.1.nun: nq Research Group TechnIcal Mon0graph PRG-32.

OXf0Pj (Jrll\iers.,-ty, ;1.983.

AppendlK: Mult1-stream m~ch1ne input and output reVI-51ted

Tnl.';; note 15 2. !;hort account of .:llteratlons to th~ behaviour of the
INPUT 2'ld CU':'P[J'I' lr1slruCllo~S, and to the output drI-ver glven 1n Cha.pter 5.
The alt",rat10:LS solve two problems assocLated ..lth mechanlsms descrlbed in
that ch,lptcr. F1r:;tly, It was not posslble to de5cr1be the ItRUT and
OUTPUT translt10ns Im1ependently of the detalls of dev1ce readl.n~ss and
devlc€ conLrol. secondly, the output drlver d1d not prepare output values
only ..hen required, but in advance, 1n antlcipatlon of the requirement for
output. Th1S was sat1"factoryhen dr1vlng a tenninal (..here the screen
alays ~"'cor'1es reaoiy ('ventually), but, for ex:ample. the serial llne may

never ~0quest t~e neKt output.

S,,)v1n<J lr.~ flrs1... problem essentlally meilnS t1dylng up the abstr2.ct
SECD m"c.h.i.ne and "Lts dCSCrlpt.10n. 50l'Jlr1,:! the second problem ..111 ensure
that H,,- (jf'mand propagatIon strategy betweerl maChln('s 1S correctly
:ltnpJement€d.

Ne...., mf><;'J.n1s:n5:

F.ach dev1ce 1S glven a collect1on of buffers and flags. For 1nput the
aevl.ce has an s-ex:presslon J::uffer reglstel':" IBUF, and t ..o flags lREQ ~nd

IBUFRDY. FeH' output the d ... vice h~s an s-ex:preSSIOn buffer reg1ster OBW,
ar.d t..,[. fL1gs ClRFQ ~nJ OBUFFDY, The SEeD mach.i.ne r~g.:-ster set n::. lncllldes
short '."<;,c1.-o;::-,; f)f IfIlJF, IR:EQ, IBUFRDY, OBUF, OREQ and OBUFRDY regIsters ­
one "'}'rt!<>nt of eacll vector per devl('e. These are the only interface bet..eer,
thp C1.b:·tri\cl .sEeD n,<:!.ch1ne and the dC'Vlces. Low lev""l soft""'are, ""h.1ch need
nut b(' C'>['."l,j[.r",d 11"1 det,111 her"" J:3 resp0nS1bll" for performing devh~e

Control 1.1: dccordanrr: wjth the reqlster- vectors and dev1ce statuses. ThlS
coul,j tr> oione in a (!:a:ff1ciently) frequently actlvated polllng rout.1ne. or
a c.o:lc,rre:.tly o::1;·;('cut lng fTocess.

For InrL1!. (for each dev1ce n),

F:ags lREQ(n) and IBUFRDY(n) are 1n1tlally false,

A~ INPUT 1nstruct1on for deV1ce n sets lREQ1n) true to request input.
and t.t,rn walts bU<;~Jy untl1 bot~ IR£Q(n) anc IDUFR:JY(n) are true. INPUT
th~':l l,':;',,:-; Ell.:'?([,) "r.~o the st.,,:;::).:, (')c.'n::3 I'<EQi") al'.d r;:OUFRDY(n), and
cc'n~1n.'--'S program exer;utlon.

M<.<Hlwhl](·, th" puillng rO'-"l.ll1l? does nothIng ""1r!, devlce n unt1l
IT-:E'2(n [¥\,e, IRI}TT.J'Y(n) 1.'3 fal>;'!, and devl,~e 11 has lnput aV<:!.ll<lb~e. It
tb?n t'il,jS an s-exprCSSl0.1\ fl"C)m thfo dev1CC', depOS1t3 1t ~n IBUF(n) 2.nc sets
IJ3UFR!)":, n).

Trans::.tlons for INPUT:

(n.:;) e (INT'UT.c) d ready cone llREQ(n) ,IBUFRDY(n)

- (OIS?....TCH) - ready «n.s) e (INPUT.c) d done)

IREQ(n) ,IBlJFRDY(n)

(n.s) e (INPUT.c) d	 reddy done IREQ(n) ,IBlJFRDY(n)

-	 (DISP....TCH) - ready «(n.s) e (INPUT.c) d.done)

lREQ(n) ,IBUFRDY(n)

(n.s) e (INPUT.C) d lREQ(n) IBl}FRDY(n) IBlJF(n):ox

(x.s) e e d ,IREQ(n) ,IBUFRDY(n)

cycle for polllng routlllf_':

Start

L

Walt untll lREQ(n \ and IBUFRDY(n) a.nd devlce n

has lnput: aV'lllable

t
Read s-expresSlon l.-nto IBur(n) ar,d set I BlJYRDY(n)

FOl: output (for each	 devl.-ce n);

The OUTPUT l.-nstl:Uctlon expects to fl.-nd on the stack a devl.-ce number
and a reel-pe, process or fully evalu~ted s-expre"SlQn representl-ng the next

ltem to be output.

Flags OREQI,,) Fino OEUF;;:~Y(n) arE' lnlually falSI?

An OUTP\jT l.n 0 tTL'<:t1on for devl.-ce n walts bllSl.-ly untl:C OREQ(n) is t:-ue
il.:1d OBl'TRDY(~') 1$ ~al:;;e. It :::hel1 forces a reClplo! or walts for a process to

eomplej'(: If neces,~.lry. wtlen the s-expres::;~cn 15 fully evaluatoi'd 1t is
l;.;;.ced :~:G' (~g::~(;, ';::.L':""CY: r;: 15 sS't il.-.d pr'::'gram ex~clltlo" Con'.: 111Ulo!~

~(:'JI'",,:':;.[>, t:--.I? pc;ll::'I:; ~o:Jtlne "a.~ts unt1l OREQ(n) 1S false and devlce
~ .13 reguestlTl\j (or otheI'w'lSe needlng) output. ORLQ(n) l.-S set and the

~c,.:t.~~<? W2.,;.t~; I;ntll ~()-tn ~"EQ(:1:' 2.;".<: QBUFRDY(n) are true. The content:, of
OBtJF,~."l) ilre sen':: lo de ... ~e,~ n. and both OREQ(n) and OBUFRDY(n) are cleat:ed.

Transitlons for mrrpUT (compare APO):

(II x.s) e (OUTPUT.C) d ready done ,OREQ(n) -,OBUFRDY(n)

- - (DISPATCH) - ready (n x.s) e (OUTPUT.c> d.done)

-'OREQ(n) -'OBlIFRDY(n)

(n x.s) e (OUTPUT.C) d ready aone OREQ(n) OBUFRDY(n)

- - (DrSPATCH) - reaay (n x.s) e (OUTPUT.c) d.aone)
OREQ(n) OBUFRDY(n)

(r	 x.s) eo (OUTPUT.C) a ready done OREQ(n) -,OBUFRDY(n) -)

Depending on X:

X is a rec~pe (c' .e' J

- - (DISPATCH) - ready (NIL e' C' x
(n)C,S) e (OUTPUT. c) d .done)

OREQ(n) -,OBlIFRDY(n)
and x is altered to be a process cell

X IS a proc~s9 [I

- - (DISP~TCH) - ready ((n x.s) e (OUTPUT. c) d.done)

OREQ(n) ""OBUFRDY(n)

X is a value

sec d ready done OREQ(n) OBUFRDY(n) OBlIF(n)=x

cycle fa! polllng routine:

start

1
~al~ until deviCe n ready for output

J
Set OREQ(n)

L
Walt untIl OREQ(ll) ana OBUFFDY(n) both true

t
Output contents of OBlIF(n), and clear OREQ(n)

and OBlIFRDY(n)

The new output dr~ver passes OUTPUT a delayed exploration of the next
stream ~tem to be output:

).rout). Qutput(O,out)

whererec output (n, l) .:: ~f l=NIL then NIL

;Ise (outstream(n,head(l»

~ output(n+l,tail(l))

outstrearo(n, s) .=.. !I. s=NIL ~ NIL

else OUTPUT(n,explore(head(s))

(NIL £E outstream(n,ta~lis»))

explore(x) .=.. il f~n~te(x) then x else UNDEFINED
finit.e(x) .=..

....here OUTPUT(n, x) compi les:

"OUTPUT(n,x)"*m = (L~E x*ml(UPO)) I n*m I (OUTPUT)

OXFORD UNIVERSITY COMPUTING LABORATORY

PROGRAMMING RESEARCH GROUP TECHNICAL MONOGRAPHS

SEPTEMBER 1983

TillS is 3. serle.', 01 lechnlCClI monographs on IOPICS In Ihe fiell::! Of compulatlon
C.DPH~" mal' be lJtllained [rcm the Programming Research Group. (Technical
M0nClUlCiphSJ 8) 1 keble Road (Jxl0rd OXl 300. England

P~\~l- • Dclnd :JeOII
Our/lnl?! 01 a Marhemallcal Theory 01 Computation

Pr1C,- 3 Dana Scott
The La/lice of Flow Diagrams

f'RG- Dana ScOtt
Oala Types as Lattices

PRG- [Ji1nCl SCOtl and Christopher Sirachey
T(Jward a Mathematical Semantics far Computer Languages

pnc, i Dana SCOll
C(Jntlnuous Lattices

PF-IG-8 Joseph Stay and Chrislopher S1raC!ley
OS5 - an Ex.penmental Operating System
for a Small Computel

PRG-9 crHlstopher Strachey and Joseph Stay
Thp Text 01 OSPub

PFlG-L' Chrlc;!opher Slrachey
1tie Vanefles of Programming Language

pn(,- 11 Christopher Strachey and Christopher P Wadswor1h
Conlinuallons. A Mafhematical Semantics
for Handling Full Jumps

PF1G-12 Peler Mosses
The Mathemarlca/ Semanrrcs 01 Algol 50

PF\C,-~3 Robert Milne
The F(Jrmal SemantiCS of Computer Languages
,md rhelr implementations

pnG-H Sh3n S KuO M,chaei H L,ncll and Sohrab Saadat
A GUJOi;i to CommunJcaUf7g Sequential Processes

PF-i(3-i~ Joseph Slay
The Conarup-nce of Two Programming Lang('age Definitions

F'~lG-1S c /1, H Hoare S D Brookes and A W Roscoe
A Theory 01 Communicating Sequential Processes

PRC,- 17 And'ew P Black
Report on the Programming Nora/'on 3R

PFlr~ i3 EI'l3Detn Fielding
The SpeClf,C8lJan of Abstracr Mappings
In(J their Implementaflon as B+-Irees

pno 19

PRG-20

PRG-21

PR(~ 22

F'RG-23

PRG-24

PRG-25

PRG-26

PRG-27

PRG-28

PRG·-28

PAG· 30

PRG-31

PRG-32

PAG-33

PRG-34

PRG-35

PRG-36

Dana Scoll
Lectures on a Ma[hemat,cal Theory of Computa/lon

Zhou Ch ao Chen and C A A Hoare
Par/lal Correcrness of Communicating Processes
and Protocols

Bernare Sufrln
Fcrmaf Specdlcallon of a Display Editor

CAR. Hoare
A	 Model for CommUnicating SequentIal

C.	 A. A. Hoare
A Calculus ot Toral Correctness
for Communicating Processes

Bernard Sulr1n
ReadIng Formal SpecificatIOns

C 8 Jone~

Processes

Development Methods for Com purer Programs
including a Notion

Zhou Chao Chen
The Consisrency of
for Communicating

CAR. Hoare
Programming IS an

John Hughes

of Interference

[he Calculus of Total Correctness
Processes

Engineering Prolession

Graph Reduction With Super-COmbinators

C A A. Hoare
SpeclficafJons, Programs and ImplementatIOns

Alelandro Teruel
Case Studies in Specification Four Gamas

Ian D Col1am
The Rigorous Development of a System VarSlon Control Da/abase

Peter Henderson. Ger81nt A. Jones ane Simon B. Jones
The Lispklt Manual

CAR Hoare
Nares on Communlcaling Sequential Processes

Simon B Jones
Abstract Machine Support lor Purely Functional Operating Systems

S D Broolo::es
A	 Non-deterministic Model for
Communicating Sequential Processes

T Clement
The Formal Specification of a Conference OrganlZJng Systern

