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Foreword

This document 15 one ¢f a pair reporting the results of the Funct:ional
Operating Systems project commenced at Oxford in February 1982.

The report is divided into two parts: The development of an abstract
machine te support a purely functional systems programming language (this
decument), and the exploration of a spectrum of functional, distributed
operating systems (to appear later).

The two aspects of the work progressed together, driving and supporting
each other. S0 a certain amount of the narrative text is common to both
reports (1n particular the Introduction), and the the reports may be read
independently, Wevertheless, the reports must he taken together to provide a
full record of the project, as the technical details are complementary,

I would like to acknowledge the financial suppert of the Distridbuted
Computing Systems Panel of the Science and Engineering Research Ceuncil,

Thanks are due to Peter Henderson and Geraint Jones for valuable ideas
and feedback durairng the preject.



Chapter One: Introduction

Motivation:

The project 15 motivated by three general observations of contemperary
hardware and software developments:

1) as has often been pointed out by manufacturers and researchers, the
cost of computer hardware has been falling rapidly in recent years, and may
cont.inue to do so for some years yet. This has been due to i1mproving
integrated circuit technelogy. For example, the Hewlett Packard HPI0Q0QQ
series of microprocesSsors pack nearly half a million switching elements
onto a silicon chip approximately 6mm square. Thus, not only costs but also
si1zes have been decreasing. These developments make it look sensible to
attempt to harness the potential of many precessors worklng ln cooperation
in order to construct more powerful computers. In addition, hardware
experts assert that improvements in chap technoleqgy (greater densiaty of
switching clements, reduction 1n power consumption, etc) are approaching
their forseeable limits. This lends even greater urgency to the
investigation of multiple processor computer architectures as a means of
achieving greater computing power.

2) In the field of programming there 1s increasing interest in the role
of purely functional programming language$ as a major weapon 1in the scftware
engineer’s armoury against the problem of complexaty. Although the first
Purely functinnal programming language was invented in about 1960
[H4crarthy], the functional style of programming has remained samply an
intellectual curiosity for most of the intervening period. More recently,
with growing malurity of functional programming {fp), ard partly as a result
ef research on novel cemputer architectures (e.qg. data flow machines [3,3],
reduction machines [2,8]), fp is being more widely accepted as one direction
towards advanced pragramming tools. In Bratain ICL and GEC are both
examining how fp relates to their needs for systems and applications
pProgramming,

3} One of the natural reles for fp seems to be 1ts use 1n describing
and amplementing computer programs or systems conceived as collections of
concurrently executing independent processes. (Note that there 15 no
implicalicn here that independent processes must be executed on independent
processors. 3 The processes communicate via fixed charnnels and are thus
configured ag a static network determ:zned by the channel connections. This
approach leads ro vYery clear programs in many rather sophisticated toy
preblems {(¢.g. the sieve of Eratosthenes[4]), and well modularised programs
in larger, practical applicatiens,

Teren together, these three chservations suggest a rather exciting
programme of research: Te use some functional programming langquage 28 the
systems programming language for implementing applications which are to be
executed as a4 network of processes distraibuted cver a network of precessors.
The results of such an investligation would be to extend our understanding of
the potenrial of functicnal Programming as a sysStems programming toel, to
realise this petential in the form of an implementation, and to exhibit the
practical wvalue of such an approach by building useful multiprocessor
rystems. We would hope to demonstrate that in large practical applications
the technique leads to easily managed, easily reconfigured, well madularised
1mplementations.



Programme of research:

The starting point for the investagation had to be a small,
uncomplicated implementation of a swall, uncomplicated functional
programmirg language (fpl). This simplicity was desirable since extending
the language, and its implementation, would be easier, and the fundamental
properties of the extensions would not be pbscured, Extending a
scphisticated £pl with a complex {and probably cumbeérscme) implementation
would be neither easy nor illuminating. Thus we chose the Lispkit Lisp fpl,
and its implementation as a high level abstract SECD machine[4]. Lispkit
Lisp will henceforth be referred to as samply Lispkit.

Lispkit and 1ts implementation have been modified and extended to
provide a full systems programming environment when executing on a single
precessor. This extended system will ultimately enable a lispkit program to
run interactively, to receive input from the keybecard and serial lines, to
produce ogutput on the screen and serial lines, and to interact wath a disk
based file store. Let us call such extended systems "functional programming
computers” (fpcs).

B small collection of Lispkit fpcs will be connected via their serial
line ports to give some particular retwork. A single Lispkit program,
comprising a collection of concurrent precesses, will then be distrabuted
statically over the network to execute 1n a true multiprocessing fashion. a
single processor in the network may support cone or more pProcesses, as may be
convenlent for the particular applicatiepn. Communication between processes
running on the same processor will occur within the machire rather than via
external serial lines. The physical network of serial lines will be
determired by the applicat:ion, and will be reconfigured quite easily for
different applications.

A typical application would be a small operating system providing a
single user workstation, For example, one processor can be running an
intelligent file service, another can be handling the terminal, interpreting
commands and editing, and a third can be executing backgreund jobs
requested by the user. By exploliting the network of processors in this way
suech a system could be expected to sustain a ceonsiderable workload from the
user.

Alternataively, given a c¢ollecticn of £pcs, a programier could construct
a stand-alene Lispklt program for some applacation, and ceuld connect the
fpcs 1n a network appropriate to that particular applacation, In this way
tt:e extended Lispkit E£pc ceuld provide better performance for particular
applicat:ons, as well as a powerful component 1n a general purpose work-
station.

Puncticnal operating systems:

The progress of the preoject is largely driven by the requirements of
the different designs of ogperating systems which we wish to try out. As
extensions to Lispkit and i1ts implementation become recessary, they are
modified, after some deliberation, by as little as possible +to maintain
simplacity and cleanliness.



Many styles of operating systems may be devised within the functioral
framework — imagaination, as usual, is the limiting factorl We have tried
several dastinct varieties of systems so far, but other impertant approaches
are being anvestigated elsewhere [2,6].

One approach is to simply try to code a fairly conventional
uniprocessing operating system (e.g. in the style of CP/M or Unix) as a
single moncllthic program to be run on a single fp¢. This would not exploit
concurrency at all. Nevertheless, experiments have shown that extremely
pawerful gperating systems can be provided in this way.

The first step to exploiting concurrency is to devise systems
comprising several stream processing functions connected in a network. An
input stream 1z received from the keyboard (the user's commands} and a
result stream 15 sent te the screen (the system's responses). Unfortunately
the components of such systems tend to work in synchreonisation, and there is
no large scale concurrent activity.

The potential for large scale concurrent actavity is conveniently
introduced by using a stream merging (anterleavaing) coperator [(5]). The output
of such a merging operator is some unpredictable (non-deterministic) mxing
of the elements of the two streams. This suggests an implementation in which
the producers of the streams to be merged heaver away continucusly (and
concurrently), presenting stream elements to the merge operator for
selection.

The use of the non-deterministic choice operator in this work, and its
implementation 1n the Lispkit machine, are gquite straightforward, but the
mechanism has a controversial background from the theoretical point of
view[1lh].

Although non-determinism {ip the guise of merge) permits the the
construction of systems exhibiting useful concurrency, 1t 15 by no means
obvious how to explolt this potential on the user's behalf in the best way.
We have started exploring designs for more sophiasticated pperating systems
which could assist a producktive user in exploiting the power available in
the collection of processors at his disposal.

The Lispkit lanquage and SECD machine architecture:

as mentioned above, Lispkit Lisp and 1ts SECD machine implementation
were chosen as the starting point for the investigation. Thas 1s a clean and
simple bhase from which te work., The lanquage and implementation as described
1n [4] provide a mechanism for executing "one shot" programs which recerve
all the input data, perform some computation, and produce the result, in
three strictly sequential steps. The outline of a mechanism for “lazy
evaluation" ("demand dr:ven computation") is also discussed,

Thus the base language and SECD machine fall short of the requirements
of the cperating systems research in a number of ways:

1) A detairled mechanism for azy evaluation 1s the first essential
addition. The machine must be extended. The Lispkit language 1s not altered
syntactically, but the range of pregrams which can be expressed in the
language 15 considerably widened,



2) The restriction to "one Shot" program execution must be removed, and
a program must be allowed to work interactively between its input and
output streams (typically the keyboard and screen).

3) An operator for non-deterministic choice must be introduced into the
language and implementation. This involves the pseudo-parallel execution of
concurrent processes on a single SECD machine,

43 Pinally, in order to enable the programmer to access a range of
input and putput devices, the SECD machine must be extended to provide a
mechanism for multiple input and multiple output streams. Most of the
apparatus required is already available from the previous extensions.

The development of the extended SECD machine is closely related to
similar work by Abramsky at QMC[la].

Hardware:

Detailed arguments about the hardware to be used for running
distributed systems are not a major concern of the project. However that is
ne excuse for not considering the matter at all.

We vish to attempt to exploit concurrency at a macrosgopic level in a
system, That 1s, substantial subsystems will be allocated statically to each
processor in the network, This 15 in contrast to the exploltation of
concurrency at a microscopic level, where there is dynamic allocation of
simple tasks to processors, Examples of the latter appreach are data flow
machines {3,9], and reduction machines, Alice [2]. ZAPP [B].

Thus we require a small collection of reasonably power ful pracessors
{e.g. half a dozen Pergs) connected in some simple, easily reconfigured way.
The distribution of parallelism at the microscopic level necessitates a
large colilection of small processors {e.g. 10s, 100s or looos of
transputers) connected by a complex, general purpose communications network.

There are many groups attempting valiantly to develep and assess the
latter approach in various ways, and with varying results. We have decided
to opt for the former, more immediate approach.

However, beyond the intention te use a small number of powerful
processors, the precise hardware techniques are not under consideration. For
experimental purposes we use "off the shelf” microcomputers, such as RML
31802, SuperBrain, Sirius, Perg and so on, as available. These machines have
either one or two serial lines., We also have a custom built Mostek 280
based computer with half a dozen Serial ports which will enable more
1nteresting networks to be constructed.

A future option could be to suppert all the processors and memory on a
single bus. The abstraction of a collection of processors communicating wvia
fixed channels could be provided on such hardware withcut the expense of
bulk data transfers along serial lines. That 1s, perhaps, a task for someone
else 1n the future,



Chapter Two: Lazy evaluation.

call-by-value versus delayed evaluation:

The simplest way to execute a functional program is to adopt the call-
by-value strategy used in the early chapters of [4]. The call-by-value
strateqy is to evaluate completely all the arguments of a function
application, before proceeding to apply the function and to evaluate 1ts
body with the given arguments. In call-by-value Lispkit this extends to all
primitive operations, such as arithmetic and cons, and also to let and
letrec expressions, in which the local definitions are all evaluated before
the main expressicn, This 15 sometimes call an “innermost” evaluation
strategy, since the innermost components of an expression are evaluated
before attention 1s turned to the expression 1itself.

An extremely powerful alternative is delayed, or lazy, evaluation. This
is closely related to call-by-name in languages of the Algol family, in
which a procedure (or function) argument is not evaluated until its valee
is required by the body of the procedure. (This may cause repeated
evaluation of the same argument several times — resulting in confusion if
any side-effects occur.)} In Lispkit jargon, the argument 1s packaged into a
"recipe”, which notes the argument expression and the values of any global
identifiers which it requires, Recipes are "forced" when their value is
needed. In lazy evaluation an argument is not evaluated until required, but,
cnce evaluated, the recipe 1s thrown away, and is replaced by the computed
value. Thus no recipe will be forced more than once - avoiding repeated
evaluation.

In lazy Lispkit the delayed evaluation strategy is applied to the
arguments of function calls, to the arguments of each cons operation, and to
the local definitions an let and letrec expressicns. Delaying the arquments
of cons is particularly important, as large (possibly infinite) data
structures may be only partially conStructed., The rest of the structurze is
represented by recipes, and as the structure is explored by a program the
recipes are replaced by explicit structure {possibly containing embedded
recipes). Thus data walues are computed only as required - hence “lazy"
evaluation.

Lazy evaluation is discussed at greater length in Chapter 8 of [4],
where the strategy is also referred to suggestively as "call-by-need".

Stream processing functions and lazy evaluation:

A stream 1s simply a delayed list of s-expressions, though possibly one
of unbounded length. We use the term stream to indacate that we usually
think ¢f the list as a sequence of communications from one process teo
another. Each process 1s a stream processing function - the producer of a
stream has the list of messages as its result, and the consumer of the
stream receives the 1list of messages as an argument. In the lazy evaluation



strateqy a stream will usually be represented, at any particular moment ain
the compitation, by a completely evaluated initial list of elements, and a
recipe describing how the stream will continue. The producer, or at least
some link to the producer, will be embedded in the continuation recipe. The
consumer drives the evaluation of the stream as i1t demands the value of each
message in turn.

The lazy evaluation of potentially infinite streams is of crucial
importance to our research on distributed functicnal operating systems.

As 2 simple introduction to stream processing functions censider the
following definitions:

integersfrom{n) = cons{n,inteqersfrom{n+l)}
double{s) = cons{2*head(s),double({tail(s}))}
inc{s) = cons(1l+head(s},inc{tail({s)))

integersfrom{n) will generate a stream of the integers n, h+l, n+2 and
so on. In partirular integersfrom(0)} is the stream of natural numbers.

double(s) will produce a new stream whose elements are double the
corresponding elements of s. In particular double(integersfrom(0)}) 15 the
stream of even numbers (starting with 0).
inc{s) will produce a new stream whose elements are one more than the
correspending elements of s. In particular inc(double(integersfrom(C))) is
the stream of odd numbers (starting with 1},
The stream definitions can be collected together
nats = integersfrom{0)
evens = double(nats)

odds = 1nc{evens)

and represented pictorially as a network of channels connecting stream
process:ng functions:

O—SIiztegersfrom l———){ double inc odds

» nats evens

A more advanced example, taken from [4], 15 the generation of all
numbers which are products of powers of 2, 3 and 5. The products must be
generated in ascending sequence, without duplicates. The solution presented
in [4] 15:
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where =2, *3 and *5 multiply each element of their inputs by the appropriate
factor, and merge combines two ascending input streams to produce an
ascending output stream with no duplicates:

merge(x,y) & if head(x)=head(y) theg merge(tail{x),y) else
if head{x)chead(y)
then cons{head{x),merge(tail(x},y))
else cons(head{y).merge(x,tail(y})}

Extending the SECD machine for lazy evaluation:

We start from the SECD abstract machine archatecture and compiler
descrabed in Chapter 6 of [4]. The notational conventions established
there for abstract machine transitions and compiler rules will be retained
in what follows.

First, some notes on changes of convention in the use of Lispkit
keywords:

1) All Lispkit concrete syntax keywords will be written in lower case,
e.q. let, letrec, lambda, etc,

2) The operation names car and cdr have been rejected in favour of head
and tail ip both the abstract and concrete syntaxes. They have the same
respective meanings. The corresponding SECD machine inpstructions beCome HERD
and TAIL.

To implement lazy evaluation three new instructions are added to the
SECD machine, and the compiler is modified in a few places. The
1nstructions are LOE ("load expression" ] which constructs a recipe, APO
{("apply to no arguments" )} which forces a recipe to evaluate, and UPD
("update”} which overwrites a recipe with 1ts value. The compiler changes
are not extensive, and no new well formed expressicns are introduced to the
language.

The lazy evaluation strategy adopted here differs a little from that
described 1n (4], but the general prainciple remains the same. To be
precise, every well formed expression willl be compiled and executed in such
a way that 1t does not force ary of its subexpressions unnecessarily, but at
is certain to leave a value an the stack (1,e, an atom or cons), and not a
recipe, Two advantages accrue from this: Firstly, each expression "looks
after itself", and so ocurrences of APO are not scattered throughout the
compller. Secondly, APO does not need to be a "repeatedly forcing”
operation.

& distinguishable structure type 1s added to the machine to represent
recipes. This will be represented in the machine transition rules by a



dotted pair enclosed in sgquare brackets [c.e]. A recipe 15 rather like a

closure, whach is built wsing a cons. AN important attribute of a recipe is
that 1t may be physically overwritten by a copy of any other cell {atom or
consy, This 15 the mechanmism by which the update in place will be achieved,

The LDE machane instruction 18 used to delay evaluation of an
expression by parcelling 1t up intau a recipe with the current environment:
s e {LDE c.c" ) d -3 {[c.e]).5) e =N d
where ¢ 1s the code of the expression to be delayed (ending with UFD).

The APQ instruction 15 used to force the top item of the stack 1f 1t
happens to be a recipe, Thus there are two possibkle actiens:

(x.5) e {APO.Cc} d -3 (x.,5) e cd 1f x 18 not a recipe

{[c'.e'}.5) e (APO.C) d -3 NIL e' ¢*' ({{c’.e*'].s) & ¢.1d)

The UPD 1instruction occurs as the last instruction i1n the body of a
recipe. It updates the recipe with the current head of the stack {which will
never be a recipe) and returns to the calling evaluation:

(x) e {UPD} {{([c'.e'].5 ) e" c".d} -3 (x.s")ye" c” d
and the recipe [c'.e'] 15 overwritten with (a copy of the top cell of) x.

The compiler must be changed so that arguments to calls of user defined
functiors are delayed, arguments to cons are delayed, and definitions in
let and letrec are delayed. Fercing operations must be inserted for
expressions which might ntherwise return a recipe - forcing is requared
atter acces=ing a varaahble, and after head and tail operations.

The delaying operations:

Function application:

(eel ... ek)*n = (LDC NIL LDE ek<n|{UPD) CONS
LDE el*n|{UPD) CONS
e*n AP}
Cons:
{cens el e2) n = (LOE e2-n[(UPD) LOE el*n|(UPD} CONS )
Tet:
{let e (xl.el}) ..., (xk,ek))*n =

(LDC NIL LDE ek*n|{UPD) CONS
LDE el*n|(UPD) CONS

LDF e*m|(RTN)

AP)

where m = {({x1 ... xk}).n}



{letrec e (x1.€l) ... (xk.ek))*n =

(DUM LDC WIL LDE ek*m|(UPD) CONS
LDE el*m|(UPD) CONS

LDF e*m|(RTN)
RAP )

where m = {({xl ... xk).n)

The forcing operations:
variable access:

x*n = (LD 1 APO) where 1 = location{x,n)

Head and ta2al:

(head e}*™n = e*n|(HERD APO)

{tail e)*n = ern|(TAIL APO)

one more addition must be made to the compiled lazy code before it will
execute successfully on the extended SECD machine. The old compiler produces
code of the form:

{ ... code te lecad clesure for program function ... AP 5TOP)

At termination of the program, the value on top of the stack {which
ghould be the only value on the stack)} will be displayed, and therefore
should not contain any recipes. Unfortunately, when the code for the
program 1s lazy, the result on the stack may centain recipes,

To overcome this, an extra function application is i1nserted which

explores the whole result structure, thus forcing out any recipes, The code
preduced then has the form:

( ... code to lcad closure for program function ... AP
jeved

code to load closure for explore function .., AP
STOR)

where XO0OX 18 a special instruction that makes a singleton argurent list:
(x.,5) e (200(.c) 4 - {((x).s)ecd
and the explore function, in abstract syntax is:

A(x)y . of finite{x) then x else UNOEFINED

whereres finite(x) = if atom{x} theg T else
Lf finite{head(x)} then finite{tail{x))
else UNDEFINED

which 1tself must be compiled as lazy code (it is the APO instructions in
the explore function which are important}).



The need for the XXX i1nstruction is a slight untidipess. Its function
cannot be gachieved by other SECD instructions as the main arguments for the
program are loaded onto the stack before any code 15 executed, and what we
would like to do 1s LDC NIL before that occurs. This untidiness disappears
in later extensions to the SECD machine.

This completes the extensions te the SECD machine anl compiler for lazy
evaluation,

Other consequences of lazy evaluation:

Various restractions on Lispkit programs may be relaxed as a
consequence cof lazy evaluation. These velaxations coften lead to programs
with saimpler structure.

The local definitions 1n a letrec expression may now define any type of
value. Previously only functicon definiticons were valid. In addition, mutual
reference and recursion may be used in the definition of data structures,
Thas is 1llustrated by the evens and odds example from earlier:

whererec nats = lntegersfrom(0)
evens = double(nats)
odds = inc({evens)
integersfrom(n) =
double{s) =
inci{s) =

Also lists may be defined by reference to themselves:

nats' x cons(0,inc(nats'))
ones = cons{l,ocnes)

As a consequence of this relaxation of letrec expressions, let
expressions are effectavely a redundaat feature of the language.

Arguments to function applications need not have defined values,
Provided that the body of the function will never force a bad argument. This
is not so important as its corollary, which 1s that lcrzal definitions an let
and letrec expressiocns may have undefined values provided that they are
never forced by evaluation of the main expression. For example, the main
compiler functicn could be rewritten te "preselect™ the fields of the
various expressicn Lypes:

comp(e,n,c) = 1f atom{e) then ... lecation{identifier,n)
else 1f rator="guote" then ...constant ...
else ...
else 1f rator="add” then ... randl ... rand2
else

where 1dentifier 5 e
rator = head(e)
constant = head{tail{e})
randi = head{tail(e))
rand2 = head(tail{tail{e)}))



Chapter Three: Interactive input and output

Single-shot computation versus interactave working:

Extending the SECD machine for lazy evaluation, as described in the
Previous chapter, does nothing to alleviate the "single-shot" nature of the
computation. The compiled code expects to find a list of arguments on the
stack when 1t starts executing. The program functicen 15 applied to these
arguments. The result 1S5 explored to eliminate all recipes, and the
explored structure 1s leftr on the stack to be output when the machine
executes the STOP instruction. Not only 15 this a single-shot execution, but
alsc the result must be a finite and acyclic structure since it must be
explered before being output.

Thus the lazy programs which we can execute on such a machine may use
infinite data structures as intermediate values, provided that the result is
finite and that it can be computed from the 1nitial data. A traivial example
will compute a list of the first n even numbers {starting with 0), where n
is the input datum:

Xiny . first(n,evens)
whererec¢ évens = double(integersfrom(0)}
double(s) = .
integersfrom{n) = . . .
first(n,s5) = if n=0 then NIL
else cons{head(s), first{n-1,tail(s)))

However, 1t is tempting to ask for an extended implementation which
will print ascending integers, starting from the input value, as requested
by the Eollowing preogram:

A(n} . 1ntegersfrom{n}
whererec integersfrom{n) = . . .

wWe would expect this program to continue printing numbers for ever (possibly
separated by short bursts of computation), or at least until exhaustion of
memory, or maybe arithmetic overflow.

Even more exciting 1s the prospect of using the following pregran to
accept a number, double 1t and add one, print the result, accept another
number, double 11 and add cne and praint 1t, and so on for ever:

ANEbY . inc{double{kb})
whererec inc{s) s
douhle(s)

The dummy 1dentifier kb is used simply to sugqest that numbers are
entered from a keyboard. The numbers (or any orher s-expressicons) entered at
the Keyboard are assembled, 1n strict seguence, intc a stream which 1s
glven to the pregram as 1ts single ipput argument. The keyboard 1s only
inspected for input when the pregram forces the delayed tail of the input



Stream. The result of the program 1s a stream, and the ocutput driving
mechanisn will force and print each item of this stream in turn. Thus input
and outpyt will be interspersed, and the program will execute i1nteractively,
although remaining purely functicral, The program is now 2 stream processing
function itself.

Although the Lispkiat language and 1ts 1mplementation arguably require
other extensions 1h order to provide great utility, the provision of
Lnteractive input and output as outlined above immediately gives us a
systems programming language of great power. For example, usSing no more
than interactive Lispkit as described, we have implemented an s—-expression
structure editor which is in continual use for program development. In
addition we have an 1nteractive Lispkilt interpreter, a logic language
interpreter, experimental operating systéms, a program source librarian, and
SO an.

Extendiny the S5ECD machine for interactive 1/0:

The SECD machine and compiler are extended to implement the “"program as
a stream processing function” policy as described above. Single-shot
programs will still be exrcutable, but they must be embedded in a2 skeleton
program which takes seome fixed number of i1tems from the input stream,
appilies the desired program function to them, and builds an output stream
with the single result value. This brings out an amportant point: The input
stream will always be potentially infinite (any program simply reads 2s
much as it needs), but the output stream may be a finite list (1f the
Program Lterminates 1t with NIL), 1n which case the execution of the S5ECD
machine will terminale cleanly.

With some effort it might be possibkle to redesign the sS-expression
reading and writing routines to perform their tasks interactively, but they
are outside the SECD abstract machine, and we prefer to retain simplicity in
the underlying implementation. Instead the SECD machine 15 gaven a minimal
1nterface to the s—-expression readers and writers, in the form of two new
instruction INPUT apd OUTRUT, and the interactive ifo is handled 1n Lispkit
itself. In fact the 1/0 handling is not guite pure Lispkit, since the
reading and writing intecface is clearly not applicative, but this
1nterfare 1s only usad 1n constructing i/o drivers, and 15 not made
avalladble to the user threugh the compiler.

The only addit:ions to the SECD machine are the two new 1nstructions
IPUT and OUTPUT. INPUT reads ohe s-expression from the aput device and
leaves 1t at the head of the stack. OQUTPUT writes the s—expression at the
head of the stack to the cutput cdev:ice and then discards it . OUTPUT simply
calls the underlying s-expression writer and so the value at the head of the
stack mst nol contairn any recipes:; 1t muSt have been explored already.

The transition for INPUT 1s:

s ¢ { INPUT.c) d -3 (x.51 e cd
where x 1s a newly read s-expression.

The trans:ition for OUTPUT is:

{x.5) e (OUTPUT.C) d -5 secd



The STOP instructicn must be changed, but this 15 simply residual
unti1diness (like XXX, which now disappears), and 15 resimplified in a later
chapter. The modified version of STOP is not central to the new strategy,
and will be described last.

The general strategy weé are now adopting 1s reflected in the comp:iled
Program sStructure:

{LDC KIL
LDC NIL.
code for delayed input stream expression .
CONS
ccode for program function
AP
CONS

. code for output stream exploring and printing function
AP STOP}

The SECD machaine is initialised by locading the code 1into the control
register and setting the stack to NIL. Ko data as read during
initialisation. The compiled code builds an argument list for the program
function {2nd, 3rd and 4th lines above}, and applies that function {5th and
6th lines). There 15 a single argument, which is a delayed expression
contailning TNPUT instructions. The result of the application is bullt 1nto
a singleton argument 1list for the output draiver (1st and 7th lines), which
is then applied (8th and 9th lines). All output is performed by OUTPUT
instructions in the thiard code object of the compiled program.

The special input and output code dees not vary from one program
function to another, and may be built inte the compiler. The code may be
generated from the pseudo-Lispkit given below by the main lazy compiling
function described in the previous chapter. except where INPUT and OUTPUT
instructions are requireéd. The main proqram may be compiled 1n the same way
- it 15 narmal lazy code.

The input expression can be represented 1n pseudo-Lispkit:

read( )

wherere: read{) = Scons{1lRPUT.read( )}
where INPUT stand$ for an occurrencé of that instruction in the code, and
scons {"striclt cons" or "sequence cons')} 1s like cons but the head argument
1s not delayed, This expression must 1tself be delayed (1t 1s an argument),
S0 r1t will appear as:

LDE { . . . code for inpul expression ., . . UPD)

When i1nspected, this recipe will INPUT one S—expression and make 1t the next
item of the stream, with the tail a delayed call of the read functaon,

The output draiving function can be represented in pseudo-Lispkit:

output

whererec output(s; = 1f s=NIL then NIL else

1f finite(head(s))

then OUTPUT(head(s)} : output(tail(s})
UNDEFI1NED

1s.

o
1]

finite(x) = .



where OUTPUT(head(s)) ; output{tail{s)) indicates that the code
LD "s" APO HEAD APC OUTPUT

should be prefixed to the compiled code for output{tail(s}). Thus the
semicolon indicates explicit sequencing.

The output funetion scans along the output stream, printing each item
in turn. If the stream terminates, the function returns NIL, which will be
ignored by STOP.

Unfortunately output c¢alls 1tself recursively, but the SECD machine
does not do tail recursion optimisation. So, as output scans further and
further along the output stream it will consume more and more memory by
pushing activation records onto the dump to no useful purpose, If 1t were
nct for this problem, the program which doubles, increments and prints each
nurber entered could literally execute for ever in bounded memory.

Cne solution to this problem would be to modify the machine and
compiler for general tail recursion optimisation. That, maybe, is a
teveloprent for the future, since this is the only place in which it is
necessary {and this requirement will disappear in the next chapterl). In
the shorter term, the ocutput function and the STOP instructicon car be made
to work tegether to give the required optimisation: Instead of calling
itself recursively, output can return a package representing the recursive
call. The package will contain the closure for output, and the argument
list cons{tail{s),NIL}. The activation record will have been popped from
the dump when output returned the package. 5TOP detects the package (rather
than NIL for termination) and performs the recursive call.

The pseudo~Lispkit for the output driving function 1s then:

output
whererec cutput{s) = if s=NIL then NIL else
if fanite(head(s))
hen OUTPUT(head{a)} ;
cons(output,cons{ta1l(s),NIL})
else UNDEFINED

ot

finite(x)

u

and the corresponding transition for STOP is:
(NIL.s) e (STOP.c) 4 -3 Terminate cleanly
({{<'.e'},args).s) e (STOP.c) d - ¥IL {args.e') ' (8 e (STOP.c).d)

Note that STOP is now rather like AP, which expects the stack to have the
Structure:

((c'.e') args.s)



Other approaches to SECD machine initialisation and constructing i/o drivers:

we are experimenting with Lispkit programs which behave as lcaders of
programs which are to be executed on the SECD machine. The loaders
incorperate the pseudo-Lispkit anput and output driving mechanisms, and may
be compiled using only the main lazy compiling function, A lcader 1s read
into the SECD machine at initialisation, and expects the first i1tem on the
input stream to be a pregram tno be executed. This program may be compiled
using little more than the main lazy compiling function, since the i/fo
drivers are embedded 1n the leader.

The pseudo-Llspkit i/0 drivers given on previous pages are the clearest,
mest. concise we have devised for deing their jobs, Nevertheless, 1t 1s
possible to replace some of the pseudo-Lispkit with real Lispkit, and this
is deone 1n the loader programs ocutlined above,

The loader program technique 1s proving to be an excellent way of
mapaging the user program's 1/0 interface.

A collection of leoaders and other utility proqrams has been
constriicted by Gerainkt Jones[l0] to execute on the lazy interactive SECD
machine.



Chapter Four: Non—-determinism and pseudo-parallelism

Lanterleaving streams and non—determinism:

In our reéesearch on purely functional coperating systems we need to
express the intention that a stream is obtained bY werging two or mere other
streams., The input sequences of elements have been arbitrarily interleaved,
but the ordering of elements from each input Stream is not altered. For
example, if we wished, for some reason, to generate a jumbled stream of the
natural numbers in which the even numbers and the odd nunbers retain their
own orderings, we could use the following network of stream processing
functions:

o] —){_integersfrom I—){ dou.hlel

result

o o3

This network can be represented by the following program:

result

whererec nats = i1ntegersfrom{0)
evens = double{nats)
odds = inc{evens)
result = merge(evens,odds)
integersfrom{n) =
double{s) = . .
ine(s) = . .
merge{sl,s2) = ? ? ?

1in which we have ne way of programming merge yet.

One possible way to implement merge is to use a simple function which
alternates elements from the input streams:

merge(sl,s2) = cons{head(sl), merge{s2, tail({sl}})

This certainly satisfies the criterion that the output should be some
interleiving of the 1nput streams. However, in the ahove example inc might
be replaced by some complex function which gives a considevrable delay
between sutput elements. In the pauses 1t seems desirable that the stream of
even nuthers may continue to be processed, thus giving an unequal mixture of
even and other numbers 1in the output stream. In our operating systems this
consideration is even more important, Either input stream may be arriving
from sore external device, and whilst the device 15 inactiwve it 1s
unreagsonable to prevent the transmission of messages arriving on the other
channel. Thus, although the soluticn for merge given above 1s adequate in
some sense, 1t would be nice to implement merge 1n some more lenient
fashion.



An alternative sSolution uses "oracle” signals to direct the merge
functzon:

merge(sl,s2,oracle) =
1f head(oracle)=1
then cons{(head(sl}, merge(tail(sl),s2,tail(oracle)})
else
if head{oracle)=2
‘then cons{head(s2),merge(sl,tail{s2), tail{oracle})}
else UNDEFINED

However, in general it is very difficult to generate the appropriate
oracle messages, especially when the streams are dependent on input from
external devices.

The solution to be adopted is to intreduce a new expression into
Lispkit which makes a non-deterministic choice between two values. The
expression 19:

el or ez

and may take the value of el or o2 arbitrarily. It is intended that the
expression will be evaluated by evaluating both subexpressions el and ez in
parallel, and selecting whichever result is available first. The
implementation of or is not allowed to ignore either el or e2 deliberately
{ for example by only evaluating el).

Thus merge may be programmed by Selecting arbitrarily between two
possable result streams:

merge(sl,s2) = altl or altz
where altl
alt2

= cong(head(sl),merge(tail({sl),s2})

= cons(head{s2) merge{sl,tail(s2)))

This implementation of merge is more lenient than the alternating sclution,
It might ignore either input stream for ever, but that would be an unusual
accident and not a design fault.

In fact there is still a technical problem with merge, which 15 a
consequence of lazy evaluation rather than non-determinism. we would like
merge to select between the alternative output streams on the basis of the
"availability" of the 1nput stream elements. However, the definition of
merge given above selects between streams by the availability of the cons
cells which build the alternative output streams. The components of these
conses are delayed, and so there 1S no guarantee that either head(sl) or
head(s52) 1s available. Thus this merge might cause deadlock by selecting an
output Stream whose 1nitial element never becomes available.

The general solution te this type of problem is to apply some forcing
function (e.qg. finite)} to the data structure component whose availability is
to be guaranteed., For example:

merge(sl,sZ} = altl or alt2
where altl = if finite(head(sl))
then cons(head({sl),merge({tail({sl},s2}}
else UNDEFINED
= if finite(head{s2})
then cons(head(s2z), merge(sl,tail({sz2))}
else UNDEFINED

alt2




In particular cases the fcrcing function may be simpler, For example,
1f the avaalability of “something” rather than “"everything" is required:

merge(sl,s2) = altl or altz
where altl = if here(head(sl))
then cons{head(sl), . . . )}
else UNDEFINED
altz = if here(head(s2))
then cons(head{sz), . . . )
else UNDEFINED
here(x) = Il_f- atom{x} tie_n T else T

Extending the SECD machine fcr non-determinism:

As described above, non-determinism 15 to be introduced into Lispkat
through the or operator. This clearly requires the addition of a new
instruction, OR, teo the SECD machine. However, the alterations to the
ahstract machine must be far more extensive as the non-deterministic choice
requires that the alternative expressions be evaluated in parallel. The
strategy to be implemented 1s that all evaluations of recapes will occ¢ur as
paralle: processes which "share time" on a single SECD machine. The new
ahstract machine will be a pseudo-parallel SECD machine. Each APO
1nstruction will Znilsate 4 new process 1f 1t needs to force a recipe. Each
UPD instruction will terminate a process. Each OR wi1ll simultanecusly force
two rec:ipes, one for each alternative subexpression.

The medafied SECD machane is potentially far wmore powerful, as
eventually pseudo-parallelism could be replaced by true parallelism ( for
example, cn a multiprocessor machine such as Alice[2]). The the mechanism
could be extended, gquite naturally, teo evaluate the subexpressions of
arithmetic operaters samultanecusly, and so on. We shall not pursue this
line of development here.

Firzt we must develop a new, process oriented strategy for lazy
evaluation, and then the non-deterministic choice mechanism will be a small
further step.

The abstract machine needs a new, distinguishable structure type to
represent a process. When a recipe 15 forced, and 1ts evaluation becomes a
parallel process, the recilpe 135 altered to be a process. A process cell has
no Subfields; :t 15 simply a placeholder for the value of the recipe. This
value will ewerntually be 1nstalled by an UPD rnstructicn. A preocess ¢ell
will be represented by a pair of curly bhrackets {}. The new type is
necessary i1n order to identify recipes which are already evaluating, So
that the recipe 1s not forced a second {or further) time by APD
instructions in other parallel processes.

Sirce we are now dealing with a multipropramming abstract machine there
must be apparatus for process scheduling:

The process which 1s executing 1s held in the machine xregisters 5, E, C
and D, Processes which are 1dle are kept in one of two new registers READY
and DONF, Processes 1n READY have not yet received a taime gslace in the
current round of scheduling. B process 15 executed by transferring it from
READY toc 5, E, € and D, and at the end of 1ts time slice to DONE. When READY
is empty, the contents of DONE 15 transferred to READY, and DONE 1§
cleared. Time slices are terminated by either an UPD instructien (when the



process dies), or by an APO instruction which does not find a value on the
stack. Thus processes voluntarily relinquish the CPU. This mechanism could
eas1ly Le replaced by instruction counting to enforce fair time slicing,
but the former method has a lower coverhead per ingstruction executed, and in
lary evaluation AP0 and UPD 1nstructions are executed guate freguently.

Since READY and DONE are built as s—expression stacks the scheduling
mechanism 15 rather uwnusual, but very simple and adequately fair. An
1mpertant considerataen 15 that new processes are added teo DONE and net to
READY, sc that the repreductive descendants of a reproductive parent
process do not prevent cther processes from progressing,

There 15 ne special treatment requared for processes which are waiting,
as all proresses walt busily. Busy waiting occurs when APO forces a recipe
and must wait for the process cell (the recaipe) to receive 1ts value. Ta
have AFPOs wailting buSily an this way scounds rather extravagant: Nested
forcaings will guve several busily waitirg processes for a single usefully
active proceys {at the end of the chain), and 1n a pseudo-parallel system
several APOs may be walting busily for the same process to terminate.
However, :n an experament which kept a queue of walting processes 1n a
suhfield of sach process cell. executron speed increased by only about 10
per crnt . The former method was adopted because 1t 1s simpler, and also
because the implementalivn of QR cannot make use of the optimisation, and
it 1= hetlel to have one mechanism for the job than two.

In crdor to degsaribe Lhe new transitions for AP0 and UPD {and later
OR), and 4t the same time the process swapping operaticn, we shall add READY
and DONE to the SECD guadruple, and alsco make use of 2 special instruction
DISPATCH. DIGPATCH does not appear in the SECD i1mplementation, althouch
there 1s nc reason why 1t should not; here it 15 samply a descraptive
device. When the next process 15 to boe executed the DISPATCH instruction is
1nstalled 1n the control] register. Transitions will be given for DISPATCH as
1f 11 were apn abstract machine instruction; these transitions describe the
scheduling mechanism.

The new transition for APD must handic three cases: When the value 1s
ready, when i recipe must be forced, and when a process 1s still evaluating;
(Note: A hyphern 1n place of £,E or O means that the actual contents are
unimpolant }

(x.5) ¢ {APD.,x} 4 ready dane ~» (x,5} & ¢ ready done
where x 15 not a recipe Or process

(%.3) e (APO.c d ready done -»

- - (DISPATCH) - ready ( NIL e' ©' x *1
{¥.5) e [APO.C) d *2
.dane )

where x 15 a recape (¢ .e’],
X 15 altered to be a process cell,

*l 15 the new process,
and *2 15 the susperded current protess

{x.5} @ [APUO.c) d ready done -»

- — (DISPATCH) - ready {( {X.s) e (APJ.c) d *1
.done 3
where x 15 a process {},
and *1 15§ the suspended current proccess



The transition for UPD is still quite simple:

{x) e (UPD) d ready done -» - - (DISPATCH)} - ready done
where d will be a process {)} which 1s overwritten
by (a copy of the top cell of) x

Nate that the initial dump of a newly created process is the
recipe/process which is eventually overwritten by UPD.

The transition rules for DISPATCH are also simple:
- - (DISPATCH) - NIL NIL -> Ealt the machine

- - {(DISPATCH) ~ NIL done -» — — (DISPATCH) - done NIL
where done is not NIL

— - (DISPATCE) - (5 e c d.ready) done —> 2 e ¢ d ready done

It i5 now easy to implement the non-deterministic choice operator using
the above apparatus. The following rule is added to the compiler:

{or el e2)*n = (LDE el*n|(UPD) LDE e2*n}{UPD) OR)

and the R instruction 15 added to the SECD machine with the following
transitions:

{xy.s) @ {OR.c) d ready done —» (z.5) e C ready dcne
where either x or ¥ is a value (neither recipe mnor process),
and z is that value (X or y as appropriate)

(xy.s} e (OR.c) d ready done -»

- - (DISPATCH) - ready ( "xprocess"
"yprocess"
(X y.5) e (OR.c) d
.done }
where neither x nor y is a value,
and "xprocess" and "yprocess" are present if the
corresponding X or ¥ 1s a recipe (which must be forced),
and absent zf it is a process. If x 18 a recipe [c'.e']
then "xprocess" is the new register set
NTL @' Cc' x
and x 15 altered to be a process,
Similarly for y and “yprocess".

Scme words of explanation are appropriate. To make the non-
deterwministic choice el or e2, €l and e2 are submitted as two new processes
by OR. The process which executes OR then has two processes at the head of
its stack, and waits busily, re-executaing GR, until one of the two processes
on the stack is found to have been updated to a value. That value 15 then
retained on the stack, the other (probably still a process ) is discarded,
and the cheoice has been made on the basis of availability.

Although discarded, the process computing the rejected alternative is
still known to the scheduling mechanism, and so will continue executing. It
is well known that it is extremely difficult to kill the unwanted process -
it may i1tself have started new processes, some of which may be forcing



globally known recipes and must either be allowed to terminate or bhe reset
carefully to their unforced state. Fortunately, when executing lazily it is
reasonably economic ., though not perfectly so, to leave the processes
executing. As a consequence of lazy evaluation the process will terminate
"fairly seon”, usually having computed an atemic or partially constructed
result. The discarded process cell (still, and only, known to the
evaluating process) will be updated and the process will kill itself, Any
glebally known recipes which are incidentally forced by the process will
appear to other processes to be properly updated values. Thus in a purely
functicnal system the side effects of concurrent processes are entirely
benevolent, which ig not true of the potentially chacotic behaviour of
programs in traditional languages endowed with parallel tasking
"facilities™.

The non-determanistic, pseudo-parallel SECD abstract machine is
entirely compatible with code produced by the compiler from the previous
chapter. Only the rule for compliing or must be added.

Rewriting the output driving function:

With the new SECD machine described above it is possible to solve the
tail recursaion gptimisation problem in the output driving function in a
different way, In the new scheme no "application package” needs to be
constructad, and the STOP instruction simply terminates the current process.

Rerc is the nnw outpuk driver, in pseudo-Lispkit:

outpuk
whererec output(s) = if s=NIL then NIL else
1f finite(head(s)) then
OUTPUT(head(s}) ; (NIL or cutput{tail(s)))
else UNDEFINED

finite(x)

n

and the corresponding transition for STOP 1s:

S e (STOP) d ready dore -»> — - (DISPATCH) - ready done

The expression (NIL or output(tazl{$))) 1s the crucial feature of thais
output draivar, The expression returns NIL immediately and the current call
of output returns 1t, thus popriLig the activation record from the dunp.
Meanwhile, the discarde? recursive call conlinues independently. It will
print an i1tem, and then relurn BIL to update the discarded process cell and
die. But 1t will have cregted another independent recursave call, and So an.



The scheme 15 still not entirely satisfying, as it relies on two
properi:es of the aimplementation of or, Firstly, that OR does net k11l the
d1s5carded process, and secondly that the dump of the process executlng OR isg
nat donated to the child processes. In this respect OR 15 being used to
Sirmulate an explicit parallel process generator el par ez, which returns the
value of el, but incidentally starts a new process for ez and then forgets
1t without killing it. A PAR instruction could eventually be added to the
machins to give explicit existence to this tool for constructing ouvtput
driverz, The compiler rule and machine transition would be:

(par el @2)"n = (LDE e2*n|(UPD) PAR)|el*n

{[r*.e").5) e {PAR,c} d ready done —»
s e c d ready (NIL e’ &' {).done)



Chapter Five: Multi—stream input and output

The interactive SECD machine developed in the preceding chapters is
able to execute programs which receive a single input stream and generate a
si1ngle output stream. Usually these streams are from the keyboard, and to
the screen, respectively, but we have used devious means at a very low level
in tbe implementation to switch these streams to and from disk files. In
this way 1t is possible, for example, to use the Lispkit s-expression editor
to modify Lispkit programs kept in disk files.

Howewver 1t 15 clearly desirable, for general systems programming, to
enable a Lispkit program to control its own input and output, teo and from
the terminal and file store, explicitly and cleanly. In addition our
research on distriluted operating systems demands that Lispkit programs
should pe ahle tg perform input and output of s—expressions via the
hardware serial ports.

Two guite simple solutions present themselves:

Firstly, we c¢could retain the single i/o stream interface between a
Lispkit preogram and the i/o dravers, but tag each arriving s-expression with
someé identification of its origin, and each departing s-expression with some
identification of 2ts intended destination {the latter would be the
responsibility of the Taspkit program). A typical program to execute on such
a system would have the following network of Stream processing functions:

kb screen

in tag{ "file-") out

untag{'file")

untag{ "poert’) tag( 'port’}

in w1ll be a stream of i1tems from the keyboard, file store, and seraal port
tagged (by the ainput driver) waith 'kb', 'scr* and °"port' respectavely The
dotted box contains some application program network computing the ovtput
strecams from the Llnput streams. merge3 15 a three way non-deterministic
merge, built quite easily from two way merges. The tagged stream cut will be
decoded Ly the cutput driver and low level s-expression cutput Software.
untag gerarates a stream processing function which filters and removes tags
from 1ts input stream. tag generates a stream precessing function which tags
each 1tem of 1ts 1nput stream. The overall program could have the following
structure:



A(in). ( merge3d(tag('scr’)(screen},
tag( 'file' ¥ fileout),
tag( 'port’ ){portout})

whererec Xh = untag('kb')(in)
filein = untag{'file'}){in)
portin untaq{ "port’' ){ in}
screen f{xb, filein,portin]
fileout = g(kb,filein,portin)
portout = h(kb, filein,portin) )

whererec merged(sl,s2,s3) = . . .
untag({id)(s) = if head(head(s))=id
then cons(tail{head(s)),untag(id)(tail(s)))
else untag(id)(tail(s})
tag{id}(s} = cons({cons{id,head(s)}).tag{id)(tail{s))}
f{s1,52,532)
g({sl,52,53}
h{sl,s52,53)

mow

The alternative solution 15 to absorb the untagging, tagging and
merging operations into the i/o drivers (and thereby possibly not do them at
all). The program would then correspond roughly to the dotted box in the
diagram above. A simple interface between the 1/0 drivers is for the input
driver to supply the program with a single argument which is a short list
of stremms, one from each input device, and for the program to produce a
list of streams to be deccded by the output driver. The positicn of the
stream in the list will determine the i/o device used - there will be no
tagging Thus on a machine with a terminal, a file store and one serial line
a typical program could have the structure:

A( in). [ cons{screen,cens{ fileout,cons{portout, NIL})}

whererec kb = head({in)

filein = head(tail{in)}}
portin = head{tail(tail(in}))
screen = f(kb, filein,pozrtin)

fileout = gikb,filein, portin}
portout = hi{kb,filein, portin) }

whererec f(s1,52,53)
g{sl,s2,s53)
h{sl,52,53)

Womom

The latter scheme has been i1mplemented. It 1s rather simpler since, in
the former scheme, the messages directed to each device must be separated
from earh other at some level 1n the cutput system (either 1in the pseudo-
Lispkit output driver or 1n the underly:ing s—expression output routines},
and so the effect of the merging 15 undone, In the latter scheme there is no
mérging and no unmerging,

The next matter to be decided 1s the nature of the communications alcng
each i/y stream. Debate on the precise properties of this interface is
continuing, but the following simple scheme has been implemented to test
the feasibility and utility of some form of multi-stream i/¢. The adopted
scheme 15 sufficiently powerful to permit an interesting range of
experiments on distributed operating systems,



Input from the Xeyboard and output to the screen remain as they have
been previcusly in the interactive 5ECD machine. S-expressions entered at
the keyboard arrive as the input stream, and the s-expressions of the result
stream are displayed on the screen.

Input and output via the serial ports is treated in the same way as i/o
via the terminal - s—expressicns are sent and received. Each serial port is
associated with one 1nput and one output stream.

However, the £ile store 1s, by necessity, rather different. Each file
will contain exactly one s-expression. Clearly then, 1tems in the file store
cutput stream which are to be written to files must carry a file name with
them to identify their destination on the backing store. But the output
stream must also contain requests for files which are toc be input - the
contents of those £iles will be the items appearing cn the file store input
stream. Thus the output stream consists of commands to the file store, the
most important of which w11l be "(get filename}" and “(put filename
filerontents)". The former will cause the contents of the named file to be
added to the 1nput stream. The latter will create (or overwrite) the named
fi1le with the given contents, with no response appearing on the input
stream. Clearly the little command language could be extended with delete,
rename, directory request, and so on. It 1s important that the file store
actions are carried out in precisely the order in which they appear in the
output stream. A convenient format for file names 1s to allow them to be
either an atom or a consed pair of atoms (in which case the underlying
software can form a single name suitable for the given external file stored.

Note that this interface to the file store is very similar to the
interface to the simple databases described in [5]. There Henderscn shows
how a file store can be implemented in a purely functional way, and so we
have not brought something essentially non-applicative into Lispkit by the
use of such a store - although it will usually be implemented in a nonr-
applicative way by overwriting areas of disk.

The example program below uses this interface to send files named at
the keyboard cut along the serial line, and to enter files arriving along
the serial line intoc the file store. Each message passing along the serial
line is a 2z-list ”( filename contents)". This could be used as the basis for
a more sophisticated machine to machine file transfer system:

kb

fileout

filein

portain makeputs portout



/\(m). { cons{NIL,cons{fi1lecut,cons{portout,NIL)})

vhererec kb = head(in}
filein = head({tail(in))
portin = head{tail{tail{in)))
filecut = merge(makegets(kb),makeputs({portin})
portout = join{kb, filein} }

map( N x).cons{ "get',cons({x,NIL)},s)

map({A(x}.cons( 'put’,x),s)

cons(cons{head(sl), cons{head{ 52),NIL)),
Join{ tail{sl),ta1l{sz)})

whererec makegets(s)
makeputs(s)
join(sl,s2)

o

map{ £,8) = .
merge(sl,s2) =

Guren a cellection of computers each supporting a multi-stream Laspkit
system, any program previously conceived as network of communicating
Processes may now be physically distributed. This 1s achieved simply by
partitioning the network into groups of stream processing functions
(Ppreferably cannected groups), and assigning the communication channels
connecting the groups to hardware ser:al lines, The single Lispkit program
descrikring the criginal network 1S saimilarly transformed by naming each of
the channels which are to correspond to serial lines, partitioning the
statements into the appropriate subnetworks, and writing down each
Subnetwsrk 2s a separale program, The separate programs are executed on the
collection of computers which have been connected by serial lines
corresponding to the group connections required.,

For example, the network which solves the powers of 2, 3 and 5 prchlem,
discussed wn Chapter Two, can easily be distraibuted over a group of, say,
three processors. The network could be partitioned as follows:

!
computer 1 ) | computer 2 computer 3

[
!
[
lI
[
1

I

screen




Computer 1 will use onre serial line for input, and three serial lanes
for output; 1t need=s three serial lines altogether, since the input from and
output to computer 3 <an share the same line. Computer 2 will use two
serial lines for input, and one for output; 1t necds three lines altogether.
Computer 3 will use two serial lines for input, one line for output, and
also generates a stream for the screen; 1t needs two serial lines
altogether, since the two channels te computer 1 can share the same line.
The program to be executed on computer 1 would lock like this:

AN{an). { cons{MIL,cong({NIL,cons{portlout,
cons{ portzout,cons{ port3out ,NIL}})))

whererec port3in = head(tail(tail{tail(tail{in)))}}

portlout = times2{port3in)
portZout = times3(portiin)
pertisut = timesS({port3in) }

whererec timesZ(s)
times3(s)
times5(s) =

where serial port 3 has been used as the chanpel to computer 3.

Extensions to the SECD machine and compiler:

The akstract machine itself needs to be cthanged very little to enable
multi-stream 1/c as described above - most of the required apparatus has
already been provided. The greatest changes occur 1n the Input and output
dravers supplied by the compller (or loader system), and in the low level
s-exprassion 1/0 rautines which must now handle each device according to
1ts needs,

In the modified maching the INPUT and QUTPUT instructions will expect
to £ird & numeric atom on top of the stack which 1dentifies the device to
he used - the conventlon adopted 1s: O=terminal, 1=file store, Z,3,etc are
serial ports. In additian to this, cach TNFUT and QUTPUT operation must walt
busily +f the required device i3 not yel ready to engage an the
camrualcation; this 18 to ensure that other processes in the machine may
cant irte La execure wh-le the part:icular input 1s not available. For
example, tha Jcreen 1f always ready to accept output, but the keyboard is
aat consldered ta be ready uatll the uscr has typed, say, one useful
character or mavhe 2 complete line of text. The properties of the other
device~ 1n this ccntext will be discussed later.

Tho trancsition €or INPUT and OUTPUT are thus:

(r.5) @ (INFUT.) 3 ready done  —»
— = (DISPATCH) - ready { (n.s5) e (INPUT.c) d.done )
:f device n 15 not ready for input

(n.s) e (INPUT.c) d =-» (x.s5) e c d
1f device n 15 ready for input.
and the next s-expression 1s x



(r x.5) e {QUTPUT.c) d ready done —>
- - {DISPATCH) - ready ( (n Xx.5) e (OUTPUT.c) d.done )
1{f device n 1s not ready for output

(nx.s) e {QUTPUT.c}) & ~-> s ecd
1f device n 1S ready, x is output

The input expression which 15 supplied teo a program must evaluate to a
list of delayed stream input expressions of the kand used 1n the previous
chapter. Tt i1s quite simple:

irput{ Q)
wiererec input{n) = cons({instream{n}, input{ntl})
instream{ 1) = scons{INPUT(1),1nstream{1))

where rcons, ag before, does not delay 1its first argument, and INPUT{1}
compiles as follows:

"INPUT{1)"*n = i=n|{INPUT)

Note that this input driver will only attempt to read from devices
whose streams are actually accessed by the program.

The cutput driver must generate a process to follow each output stream
from tte result of the program. The result of the program will be 2 short
lisi of streams, and so there will be & small number numb»er of such
processes. Each process will force 1ts own stream independently, andg will
disappear from the machine 1f 1t encouhtérs the end of 2 £inite stream. We
can use the same trick to generate the separate processes as we do to scan
and print each otream:

Alout )}, output(0,cut)
wiererec output(n,l) = 1f 1=NIL then KIL
else (outstream(n,head(1})
or output({n+l,tail{1l)})
outstream(n,s} = 1f $=NIL then NIL else
if finite(head({s))
then CUTPUT(n,head(s)) ;
{NIL or outstream{n,tail(s}})
else UNJEFINED

finite{x) =
where JUTTUT(n,tai1l(s}) compiles:

“QUTPUT{ n,tazl(s))"*m = s*m]{TAIL APG)|n*m|{CUTPUT)

Note that both of these drivers have been constructed to work correctly
on any hardware - they are independernt of the presence of any particular
devices. Hence the same compiler can be used for any machine. The Lispkit
pragra- rust of course he consisient with the machine on which 1t 1s
execut.ng - 1t must only attempt to communicate with devices recognised by
the part:cular wmplementation.

Rpart from the input and output drivers there 15 no other change to the
compiler.



Lower level device control:

It only remains to discuss a useful scheme for handling the varicus isfo
devices below the level of the SECD abstract machine. In practice this means
deciding when to perform s-expression input and ocutput, and when the devices
are ready or not ready for the transaction. Guided by the general pranciple
of laziness, we will attempt to ensure that no s-expressions are input until
they have been requested by an INPUT instruction, and that no OUTPUT
instruction may proceed untlil the s-expression which i1t provides has been
accepted hy the oukbtput device. This means that on each output stream the
driver is always preparing the next item for cutput:; this does not quite
conform to the laziness we might expect, 1n which an OUTPUT instruction is
not allowed ko proceed to prepare the next ltem until the device has become
rcady for oulput, bul 1t is a useful strategy.

A5 mentioned above, Lhe screen is always ready for output and the
ontput. item will be displayed. The keyboard will be ready for input when
some useful quantity of text has been typed ( for example, a complete line of
text containing at least the start of an s-expression). Once an S-expiession
has starled, atterilior 15 devoted to the keyboard until the expression is
complele. This 18 a simple scheme which enables the keyboard to be inspected
only on demand from the program.

The serial lines are a little more complicated. To maintain the demand
drive policy, and to economise on buffer space {in the list cell heap), we
would like to delay transferring an s-expression from the producer's machine
to the consumer's machine until the consuming program has requested the next
stream 1lem hy executing an INPUT 1nstructien., This effect 1s achieved 1f an
TNPUT instructlon Caduses a control signal to be transmitted along the serial
line requesting an s-expression to be sent by the producer. INPUT then waits
busily until an s—expression has been received, 1.e. until the serial port's
receive buffe: becomes ready. Conversely, an QUTPUT instruction for a serial
line must wallb busily until a request has been received from the consumer.
This 15 the outline of a demand driven s-expression transfer protocol which
could probably be 1mplemented 1n several ways. Of course, this protocol will
b built on a lower level, reliable, full duplex protorel of scme kind
twhich allows the sane transfer strateqy to be used in both directions)., At
the lower level the serial line ceuld be driven either by interrupts or, for
example, by regular polling between each SECD instruction or at each process
SWap .

The serial line input controller cyeles through three states:

not ready
INPUT (1)

INPUT (3} not ready O INPUT (2)
transmit requests

receive s-expression
reacy

where INPUT (1}, (2) and (3) are re-executions of the same INPUT
instruction. (1) sStarts transmission of request signals. (2) is the busy
walting phase. (3) firally accepts the s-expression which has been received.



The ser:al line oulput controller has only two states:

QUTEUT (1)

not ready
QUTPUT {2) receive request

ready

where OUTEUT (1) 1s the busy waiting phase and QUTPUT (2} 1s the same
1nstruciion, and provides the requested output.

The file store 15 slightly different again, since the input and output
stream: are coupled. We must satlsfy two constraints here, Firstly that the
actions appearing in the file store output stream are performed strictly in
seguenre, and sSecondly that files reguested for input by a “"get" ¢ommand are
not read from the file store until the next 1tem on the file store input
stream 15 demanded by the program. The following strategy satisfies these
requirerents: The file store 1s initially not ready for input, and ready for
output Wren ready for output a “pul" command creates (or overwrites) the
nzmed e, and the process proceeds. Similarly o« “delete® or “repame” could
ocour ameedlately, and leave the file store ready for cutput. A “get”
command will allow the oulput process te continue, but the file steore
becomes not ready for output, ready for i1nput, and the file name 1s noted.
When ready for inpwt an INPUT 1nstructlon receives the contents of the file
whoso nime has bren noted, and causes the file store to become not ready for
input, :nd ready for output aga:n.

The fi1le store passes round a small cycle:

"put”, "delete”

1nput not ready
=7 output ready

INPUT "get”

rnpus ready €
output not ready

where "put”, "delste”, and “get" are specific instances of commands output
by OUTHNT,



Chapter Six; Summary of (some of the) residual problems with the SECD machine

The alterations to the SECD machine that have been described in the
previous chaplers of this repert are important for several reasons: With
only modest, and reasconably easily understood, changes to the abstract
machine the power of the machine to support general programmaing has been
increased considerably. This establishes a direction in which the machine
1tself could@ be further improved without substantially alterang the
programming interface to the system. The new abstract machine 1s
sufficiently powerful to test out many interesting ideas concerning the use
of purely functional pregramming for systems programming - ideas which are
eusentially Lo do with the language and programming sStyle rather than any
particular implementation.

However, there arc aspects of the absrtract machine ard 1ts use which
lezve something to be desired, although the consequences are only dire for
rathar patholegical preograms, Seven preblems are listed below. The first is
4 problem with the simple implementat:on of laziness. The second 15 an
1reviiable consoguence of the universal application of the lazy evaluation
stratogy (1in whichewver way the lazinese is actually implemented). The thard
and fourth problems concern the rather simple implementation of non-
determinism. The f£1fth and sixth problems are not faults wath the
1mplerméntation, but rather places where a re-design might yield a better,
mere geperal, syStems programming envarenment. The seventh problem
12ertifies an inefficiency which lends itself to a selution an specaal
pUrpose hardwarc.

1) The instructinns which build fupnctien closures and recipes, APO and
LDE, bind the enLire current envircnment 1nte the new object. Thus nocthing
1n the eavironment may be cellected as garbage until the closure or recipe
itself 15 nollectable ( for example petentially lengthy input or output
streams ). It would be attractive, though for small programs pessably less
efficient, o bind into closures and recipes only theose variable$ currently
1n scopt which may ba referencced by the bedy of the closure pr réecipe {1.e.
the free variahles o<f the expression).

MYy The need Lo ouse little sequence enforcing constructs, as in mérge
and the input and cuiput éraivers, 15 rather untidy. Interactive Lispkit
programs must occasiconally resort to such cohftructs to ensure that ‘1sts of

queriles sert to the screer and respenses read from the keyboard are
nterleavad correctly — For exanple, the noxt output car be delayed by
rAXKTtg tr depend omoan applisirien of fimite to the previous input.

3) The —deterriniet

{eer 1l descencantz) whicrh

¢ :nstructicn £F dees not terminate the process
5 computing the discarded alternataive. In many
cases this wi:ll not matter, 1t will simply lead to temporary inefficiency as
the fFrofesses cont 1iun Lo uge tho machine before terminating themselves.
However, 1n the <¢ase <f an extremely eéxpensive, or even non-terminating,
discazded alternatile the crasAquances could be disastious.

4 The streair merging fuancticn which can be ipplemented using CR
prov.des irantee of farrness - 1t might accidentally ignore one input
stroam indetfinitely. The solution to this would probably involve replacing
the OR lpstruction with a stream merglng instruction as the primitive source
aof non—-determinism.

maoau




5) There would probably be advantages in handling 1nput and output
streams as sequences of single characters rather than sequences of
s—expressions, This would open up the possibilaty of processing general
text, and contrelling devices i1n more detall. The program, or maybe the
input and output drivers, would then be responsible for parsing input text,
and [orratting cutpul text.

6} The differences between the terminal, serial line and file store
interfares to Lispkit programs could be simplified and made more uniform by
treating the keyboard, sc¢reen and serial line perts as specilal files with
distinguishable names. For example, in order to obtain the stream of inputs
from the keyboard a program might output the reguest "{get kb:})".

7} There are iwo 1nadequacies i1n the use of serial lines for
intevpricesser communication: Firstly, the transmissicn of s-expressions
between processors via serial lines 1s tediously slow, and unfortunately
timesharing on the SECD machine comes to a halt while such transmission 1s
occurring. Less pedestrlan low level protocols, or use of parallel lines,
would ircrease speed - but not appreciably if the s-expression syntax
routanes used for input and output are the limiting factor, {(Adoption of
characitr 1/0 streams, as in 5) above, would enable timesharing te continue
during s—expregsion transmission. ) Secondly, only acyclic, recipe free
structures may be transmitted via the serial lines, since they are
transmitted in exterpal s—expressieon syntax { note that this essentially
rules mt transmission of closures, which are usually recursive). A
Poss5ible solution te both of these problems is to design a special purpose
computer with several processors on a single bus and accessing a common
large 1.5t store. Thus transmission of any Lispkit value or recipe 15 then
possible cimply by exchanging a poilnter to the item.

These preblem areas, and others, will be considered duraing the
continuing development of Lispkit and the SECD machine as systems
programiing tools.
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Appendix: Multi-stream machine input and cutput revisited

Thic note 1§ 2 chort account of alterations to the behaviour of the
INPUT and CUTPHT 1nstruclions, and to the output driver gaiven in Chapter 5.
The altzrations solve two problems assecrated with mechanisms described in
that chapter. Fairstly., 1t was not poss:ible to describe the INPUT and
CUTPUT transitions 1ndependentiy of the detalls of device readipness and
device control., Secondly, the output driver did not prepare output values
only when required, but in advance, 1n anticipation of the requirement for
output. This was satisfactory when draivaing a terminal (where the screen
aluays becomes ready eventually), but, for example, the serial line may
never raquest the next output.

Solving the first problem essentially means tidying up the abstract
SECD mathine and 1ts description, Salving the second problem will ensure
that the demand propagation strategy between machines 18 correctly
amplemented.

New mecianlems:

Fach dewvice 18 gaven a collection of buffers and flags., For Lhput the
device has an s-expression buffer reqister IBUF, and two flags IREQ) and
IBUFRDY. Fnr output the device has an s—expressicn buffer register OBUF,
and twe flags ORFQ and CBUTRDY. The SECD machine reg:ster set now 1ncludes
short weciors of IBUF, IREQ, IBUFRDY, OBUF, OREQ and OBUFRDY registers -
one eliment of each vector per device, These are the only interface betweern
the aletracl SECD machine and the devices. Low level software, which need
nout be considered 1n detall here. 13 responsible for performing device
conirol 1n accordance with the reqgister vectors and device statuses. This
could te done in a (suffaciently) frequently activated polling routine, or
a concurrently execuling process.

For ainput { for each device n):
F.ags IREQ(n) and IBUFRDY(n) are 1initially false,

an INPUT 1mstruction for device n sets IREQIn} true to request input,
and then waits buszly until both IREQ(n) and IQUFRDY(n) are true. INFUT
then Lads IWUF(n) onra the stack, ¢lears IREQn} ard IRUFRDY(n), and
coerlinugs program exeouilon,

Muanwhile, the poliing routine does nething wirh devace n until
IFTEZ(n 16 truwe, IRUFRDY(n) 1s false, and device n has input available. It
then t.ads an s—expressienh from the device, deposits 1t 1n IBUF{n) and zets
IBUFRDY ).



Transitions for INPUT:
{n,5) e (INPUT.c ) d ready done “IREQ{N ) " IBUFRDY{n) -»

(DISPATCH) - ready ({n.s) e (INPUT.c) d done)
IREQ{ n) —IBUFRDY(n)

fn.s) e {INPUT.c) & ready done IREQ(n) ~—IBUFRDY!{n) —>»

- (DISPATCH) - ready {((n.s} e (INPUT.c) d.done)
IREQ{n) T1IBUFRCY(nN)

{n.s) e (INPUT.<} 4 IREQ(Nn} IBUFRDY(nNn) IBUF{n)=x ->

(x.s)y e cd = IREQ(n) TIBUFRDY{n}

Cycle for polling routine;

Start

’

Wait until IREQ(n} and IBUFRDY(n} and device n
has input avallable

Read s-express:on i1nto IBUF(n) and set IBUTRDY(n)

For output {for each device n):

The QUTPUT 1nstruction expecis to find on the stack a device number

and a recipe, process or fully evaluated s-expression representing the next
1tem to he cutput.

Tlags QREQ( s} Aand CBYFRDY(n) ars 1nitially false.

An QUTPUT wrstruction for device p walts busily unt:il OREQ(n} is true
and OBUFRDY(n~) a5 {alse. It then forces a recipe or waits for a process to
complete :f necessary. When the s-expressicn 1s fully evaluated it is
izaded inig OBUT

Yy

RDYin! 15 8¢t and program execution continuers.
Mearwhile, the palling routine waits until OREQ(n) 15 false and device
n 13 reguasting {or otherwise nesding) output. OREQ(n) 15 set and the
Toutine waitys until both OREQInY and OBUFRDY(n) are true. The contents of
ORUF{nY are sent to devace n, and poth CREQ(n) and QBUFRDY(n} are cleared.



Transitions for OUTPUT {compare APO):
fn x.s) € {OUTPUT.c} d ready done —OREQ(n) —JCBUFRDY(n) ->

- - {DISPATCH) - ready ((n x.S5) e {(OUTPUT,c) d.done)
“OREQ{h) TVOBUFRDY(n)

(n %x.,8) @ (CUTPUT.c} d ready done OREQ( 1) CBUFRDY(h) -—>

- — {DISPATCH) - ready ({(n x.s) e (OUTEUT.c) d.done}
OREQ{ n}) COBUFRDY( n)

(r Xx.5) © {OUTPUT.C) d ready done CREQ(n) —OBUFRDY(n) -»
Depending on %:
X 15 a recipe [c'.e']
— — (DISPATCH)} -~ ready {NIL e' c¢' x
{h X.s) e {OUTPUT.c} d.done}
OREQ(n) TlO0BUFRDY(n)

and x is altered to be a process cell

X 1§ a procoss

()

- - {(DISPATCH} - ready (!n x.5) e {OUTRPUT.c ) d.done}
OREQ(n) TIOBUFRDY({n)

X is a value

5 ¢ ¢ d ready done OREQ(n) OBUFRDY{n) OBUF(n)=x

Cycle for peolling routine:

Start

}

wWait unt1l device n ready for output

Set OREQ(n}

Walt untll QREQ(n) and OBUFEDY(n) both true

Output contents of OBUF(n), and clear CREQ(N)
and QBUFRDY(h)



The new output dAriver passes OUTFUT a delayed exploration of the next
stream 1tem to be cutput:

Afout). output(O,out)
whererec output(n,l) = 1f 1=NIL thep NIL
else (outstream{n,head(l))
or output(n+l,tail{l)})
outstream(n,s} = 1f s=NIL then NIL
else OUTPUT(n,explore{head(s))) :
(NIL or outstream(n,tayil{s)))
explore(x) = if fimite(x) then x glse UNDEFINED
finite(x) = .

where OUTPUT(n,Xx) compiles:

“OUTPUT( 0, % )" *m = (LIE x*mw|[{UPD}) | n*m | (OUTPUT)
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