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ABSTRACT

This thesis describes the construction and mathematical properties of a model for
communicating sequential processes. We define a semantic model for processes based on
failures, which encapsulate certain finite aspects of process behaviour and allow an elegant
treatment of nondeterminism. We define a set of process operations, including nondeter-
ministic choice, conditional composition, and various forms of parallel composition. These
process operations enjoy many interesting mathematical properties, which allow us to prove
many process identities. The failures model is well suited to reasoning about deadlock
properties of processes, and some examples are given to illustrate this.

The failures model does not treat in a reasonable way the phenomenon of divergence,
which occurs when a process performs a potentially infinite sequence of internal actions
and never interacts with its environment. We offer an extension of the model in Chapter
5, which treats divergence more satisfactorily. We also give a complete proof system for
proving semantic equivalence of terms.

The thesis also contains some results on the relationship of these models to other
models of processes in the literature, specifically relating to the work of Milner, Kennaway,
Hennessy and de Nicola. Chapter 3 gives an alternative formulation of the failures model,
allowing comparison with Kennaway’s work. Chapter 4 uses Milner’s synchronisation trees
as the basis for representing processes. In Chapter 6 we show how links can be established
between Kennaway’s model, the work of Hennessy and de Nicola, and our failures model;
this chapter focusses on modal assertions of various kinds about process behaviour. We
show that by varying the class of assertions we can characterise different semantic models.






Contents

Introduction . . . . . . . . . . . . . . .. . . ... ... Pagel
Acknowledgements . . . . . . . . . . . . . .. ... ... . ..5H
Chapter 1: A Domain of Processes . . . . . . . . . . . .. ... .6
Chapter 2: Process operations . . . . . . . . . . . . . . . . . . 18
Chapter 3: Implementations . . . . . . . . . .. ... ... .. 75

Chapter 4: Relationship with Milner’s CCS . . . . . . . . . . . . 90

Chapter b: A proof systemfor 8P . « « « + o v o 5 & % & « » » « 108
Chapter 6: Testing processes . . . . . . . . . .. .. . ... .. 129
Chapter 7: Some examples . . . . . . . . . . . . . . . ... . . 153
Chapter 8; Operational semanties . . . . . . . . .. . ... . . 165
Conelugions . « & v & % @ & ¥ 3 w % ¥ 4 5 4@ ¥ 5 5 % ¥ & % 3 w 173
Appendix A: A technicallemma . . . . . . . . . . .. ... . . 176
BELefBitos « wow & v % moue ¢ % 5 Wow % 8 % Wow ¥ 8 8 & ¥ 8 % v B8






Introduction

The decreasing cost and diminishing size of powerful computers, and
the opportunities offered in speed and efficiency by distributed computer
systems are encouraging the use of programming languages in which the
programmer can make use of concurrency. By allowing a program’s task
to be distributed when it is not logically necessary for a single processor to
perform it, significant gains can be made in efficiency. A job shared by several
concurrent processors can be a job halved in execution time. Accordingly,
many new programming languages have been proposed over the last few years,
each involving a form of parallel construct.

One of the most widely known of these languages is C.A.R.Hoare’s CSP
[H1], first published in 1978. In this language input and output, i.e., com-
munication between concurrently active processes, was taken as a primi-
tive, much in the way that conventional sequential imperative languages take
assignment and sequencing as primitives. The most important feature of
.CSP was that it emphasised programmer-specified communication between
processes and used synchronization as the mechanism for communication.
The language, based on Dijkstra’s guarded commands, allowed input requests
to be used in guards, so that communications could direct the process’s be-
haviour in a very elegant way. Moreover, a process in CSP can exhibit non-
deterministic behaviour, notably when attempting to perform a guarded com-
mand in which more than one guard is satisfied. Depending on which guard
is chosen in such circumstances the future behaviour of the process and its
communication capabilities with other concurrent processes may vary. This
was all evident in Hoare’s paper. Nondeterminacy is often a feature in parallel
execution of programs, because one usually wishes to abstract away from the
relative speeds of concurrently executing processors.

It is well known that programs written in parallel programming languages
can sometimes exhibit pathological behaviour. One of the most important
examples of undesirable behaviour is called deadlock. A system of processes
is said to be deadlocked if none of the processes in the system (assumed to be
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INTRODUCTION

operating in parallel) is capable of communicating with any other: nothing can
happen, typically because no process is able to make a communication until
another has done so. This situation can arise in practice when many processes
are competing to share some scarce resource. When writing a program it is
often vital to guarantee freedom from deadlock.

When using any programming language it is important to know what
the syntactic constructs are intended to denote. One cannot understand a
program properly and be able to reason effectively about its execution unless
one has some sound ideas about the semantics of the language. For conven-
tional sequential programming languages such as PASCAL, and the ALGOL
family, there is a well-established body of work dealing with semantics. In
general, programs here can be taken to denote input-output functions or state
transformations, and logical proof systems can be built using Hoare-style
assertions or Dijkstra’s weakest preconditions. Partial and total correctness
arguments or proofs can be given for programs in such languages in a reason-
ably straightforward way.

In the case of a parallel programming language the situation is not nearly
so satisfactory. There is, for a start, no general agreement on what class
of mathematical entities is suitable for modelling the meaning of programs
written in a concurrent language. Even for one language, it is conceivable
that more than cne reasonable model exists. As remarked above, parallel
programming can lead to pathological behaviour, of a kind not occurring
with sequential programs. It is important to know to what extent any model
for parallel processes satisfactorily captures behavioural properties, such as
deadlock. Different semantic models often seem to focus on particular classes
of properties. For example, an early semantics for CSP, the so-called trace
semantics of Hoare, was ideally suited to reasoning about potential com-
munication sequences but was insensitive to the possibility of deadlock.

This thesis is primarily concerned with the construction of a mathe-
matical model of communicating processes and a collection of process opera-
tions. The model enjoys a number of interesting and elegant mathematical
properties, and seems adequate to serve as a semantic model for languages
such as CSP. We investigate in some detail the properties of our model,
proving many process identities and other relations between processes; these
results enable us to specify and prove a class of semantic properties of in-
dividual processes. Roscoe’s thesis [R] contains a detailed account of some
general proof techniques applicable to this model; Roscoe has made significant
contributions during the development of the model.

In Chapter 1 we begin with the definition of a semantic domain for
processes over an alphabet X. The elements of X, termed events can be thought
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INTRODUCTION

of as communications or other atomic actions. Instead of representing a CSP
process as a set of traces, as in the trace model, we use a set of failures. A
failure is a generalisation of a trace to include an indication of the potential
for deadlock at the next step in execution. There is a natural ordering on
failure sets corresponding to the fact that the nondeterminacy of a process
is mirrored in its failure set: if one process is more nondeterministic than
another, then its failure set should be larger. This order turns the set of
processes (identified with failure sets) into a complete semi-lattice.

In Chapter 2 we give a denotational semantics to an abstract version
of CSP, using the semantic domain just described. As usual in denotational
semantics, the meaning of a combination of processes is defined from the
meanings of the component processes. In effect, we define a set of opera-
tions on processes, each corresponding to a syntactic operation on terms in
an abstract language derived from CSP. With one notable exception, these
process operations are continuous with respect to the nondeterminism order-

ing.

Chapter 3 contains an alternative construction of the domain of processes,
in which a nondeterministic process is modelled as a set of deterministic
processes. The basic idea is to identify a process with its set of possible im-
plementations, each implementation being a deterministic process to which
the original process is an approximation. All of the process operations of
Chapter 2 can be defined in this new formulation. They all possess an intui-
tively appealing property termed implementability. This work points the way
to some later remarks about the relationship between our model for CSP and
Kennaway’s model [K1,2], which also modelled nondeterminism with sets of
deterministic processes.

In Chapter 4 we introduce for comparison the semantic model used by
Milner for his language CCS (Calculus of Cemmunicating Systems) [M1]. This
language, also widely used in theoretical investigations, involves a different
form of parallel composition from that used in CSP. Milner’s semantics, based
on synchronisation trees and an observational equivalence relation, is able to
express more subtle behavioural properties than the failures model. We define
a failure equivalence relation on synchronisation trees and show how it can
be axiomatized in a similar way to Milner’s equivalence. We also show how
the CSP operations of Chapter 2 can be defined on synchronisation trees
so that they preserve failure equivalence: thus we obtain a faithful semantic
representation of a process as a synchronisation tree.

Chapter 5 extends the failures model to allow a more pleasing treatment
of the phenomenon of divergence. This leads to a semantics for processes
based on failure sets and divergence sets, from which we can recover the earlier
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INTRODUCTION

failure semantics by ignoring divergence. The main results of this chapter
concern a complete and consistent proof system for semantic equivalence of
terms. Again, by restricting attention to divergence-free terms we obtain a
complete proof system for the failure semantics.

Chapter 6 discusses in some detail the connections between our model and
the work of Hennessy and de Nicola [HN], as well as Kennaway. It appears
that, by beginning with synchronisation trees and certain types of modal
assertions which, when interpreted, state necessary or possible attributes of
process executions, we can obtain various different models: notably, our model
and Kennaway’s. This work shows very elegantly the subtle differences in
the characterizations of these models: by varying the class of assertions and
identifying processes which satisfy precisely the same set of assertions we
obtain some interesting results.

By now we will have listed an enormous number of process properties
and proof rules. Chapter 7 is an attempt to consolidate a little, by illustrat-
ing a treatment of some classical concurrent programming problems in our
framework. We discuss briefly the Dining Philosophers probiem of Dijkstra,
the well known mutual exclusion problem, and give some examples involving
networks of processes which communicate along named channels.

In Chapter 8, we indicate briefly how an operational semantics for our
language can be given, following the general lines of Plotkin [P1,2] and the
particular examples of Hennessy and Milner [HM,HP].

The final section contains some conclusions, and suggestions for future
research.
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Chapter 1

A Doma;n Or PI‘OCGSSGS

0. Introduction

This chapter introduces a mathematical model of communicating sequen-
tial processes. This model will be used throughout the thesis as the basis for
a semantics for an abstract version of CSP. In the model we abstract from the
details of inter-process communication by assuming that we may adequately
represent behaviour using the primitive notion of event. Moreover, although
we will use the model exclusively for CSP the work in this chapter uses the
term processin an abstract sense, without specifying any intended interpreta-
tion of processes and events. Several fairly well known possible interpreta-
tions come to mind, and may be helpful in motivating the ideas. For instance,
an event might stand for the acceptance of a symbol by a non-deterministic
automaton; or an event could represent a synchronized exchange of values by
two concurrently active components in a communicating network.

For the purposes of this chapter, it suffices to think of an event as an
instantaneous, atomic action; we make no assumptions about the structure
of an event other than this. We will describe an abstract process in terms of
its ability to perform or refuse to perform events.

1. Processes

To begin, let a set ¥ of events be given; this set will be called the
(universal) alphabet. In all examples of this thesis, ¥ will be countable,
since it seems reasonable to insist that any conceivable process be capable
of performing only finitely many distinct events in any finite time. Let P(X)
be the powerset of 2, and pX be the set of finite subsets of £. We use a, b, ¢
to range over £ and X,Y,Z to range over pli.
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1.1 PROCESSES

A trace is an element of £*, the set of finite sequences of events. The
empty trace, of length 0, is denoted (), and in general a trace of length n will
have the form

(clr sis 'rcn)!

where each ¢; € ¥. Where no confusion can arise, we may omit the braces
and write ¢y...c, for such a trace. We use s,t,u to range over ¥*. The
concatenation of traces s and ¢ is denoted st, and we say that s is a prefiz
of u, written s < w, if u = st for some ¢. Thus, the empty trace is a prefix
of any other trace, and any trace is a prefix of itself. In the case of a proper
prefix we write s < u, when s < u & s 7% u.

The behaviour of a process may be described by giving the set of events
which it may perform initially, and for each of these events describing the
subsequent behaviour. This is, of course, a recursive definition of behaviour.
In any case, when the process exhibits non-deterministic behaviour, this is
not an adequate description. The ability of a non-deterministic process to
perform events may depend on the outcome of a non-deterministic choice.
We adopt the simple view that the effect of each such choice is to remove a
finite set of events from the set of events which the process might otherwise
have performed next. This means that a non-deterministic decision amounts
to, or can be modelled by, the choice of a refusal set, which must be a finite set
of events; we are supposing that a process is only able to refuse finitely many
events in a finite amount of time. If a process P can perform the sequence of
actions s and then refuse all events in the set X, we say that the pair (s, X) is
a failure of the process. Thus, a failure captures some finite aspect of process
behaviour. For us, the behaviour of a process will be characterized by its
set of possible failures. The following properties of failure sets capture the
intuition behind our notion of process.

Definition 1.1.1: A process is a subset P of £* X pX such that the following
conditions hold:

(P0) - (hoer

(P1) ' (st,0) e P=(s,0) € P

(P2) (5, X)EP&EY C X =(s,Y)EP

(P3) (5,X) € P& (s(c),0) P = (s, XU{c})EP. 1

Definition 1.1.2: Let P C PROC.
(1) traces(P) = {¢t | 3IX.(t, X)E P}
(2) initials(P) = { ¢ | (c) € traces(P) }
(3)  refusals(P)={X |((),X)EP}. 1

We explain conditions (P0)—(P3) as follows. The domain of the relation
P consists of the set of all conceivable sequences of actions by the process.
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k.1 PROCESSES

Since the empty trace () corresponds to the state of affairs before P has yet
performed any action, the empty trace should be included in this set; this
is the content of (P0). For (P1) we merely observe that when a process has
performed a sequence u it must be the case that each prefix of u was performed
earlier. Thus the first two conditions state that the set of traces of a process
is non-empty and prefix-closed. Such a set of traces will be called a tree.
Now suppose that, after performing a sequence s, P can (as the result of a
non-deterministic choice) refuse all events in the set X . Then it is evident that
the same decision results in the refusal of any subset ¥ C X; this explains
(P3). Finally, if at some stage an event ¢ is tmposstble it is reasonable to allow
that event to be included in any refusal set, as in (P4).

Several elementary properties of processes are derived easily from this
definition. For instance, an immediate corollary of Definition 1.1.1 is:

traces(P) = {s | (s,0) € P},

since if s is a possible trace for P then P can at least refuse the empty set of
events after performing this sequence of events. Similarly, by finitely many
applications of (P4) we can show:

(s,X) € P&sY Ntraces(P) =0 = (s, XUY)EP,

where sY = {sz | z € Y }. Thus, finite sets of impossible events can always
be included in a refusal set.

Notation: The variables P,Q, R range over processes; S,T,U range over
trees. The trivial tree { ()} will be denoted NIL.

The following definition shows the existence of a wide variety of processes.
In particular, we see that for any tree T there is a largest and a smallest set
of failures having trace set T' and satisfying conditions (P0)-(P3). Of course,
in general there will be many other processes with this trace set, but these
special processes will be important later.

Theorem 1.1.8: For any tree T, the following definitions give processes with
trace set T":

(1) chaos(T) =

(2) det(T) =

{(t,X)|teT&X €pZ}
{B,X)|teT&X€pn &tXNT =0}

Proof. Trivial. 1

Notice that chaos(T") includes all possible failures in which the trace
belongs to T', and is therefore the largest failure set with traces T'. In contrast,
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11 PROCESSES

det(T") contains only those failures which must belong to any process with
trace set T, by condition (P3); it is thus the smallest such process.

Next we show that processes “persist” in the sense that the future be-
haviour of a process P after it has first performed a trace s is still represented
by a process (denoted P after s).

Definition 1.1.4: Let T be a tree, P a process and s a trace of P.
(i) Tafters={t|stcP}
(ii) Pafters= {(t,X) | (st,X)€E P}

Then T after s is a tree and P after s is a process.

Proof. Trivial. 1

Theorem 1.1.5: TFor all processes P and traces s,t,
(1)  traces(P after s) = traces(P) after s
(2) P after() = P
(3) (P afters)aftert = P after st
(4) refusals(P after s) = P(s).

Proof. Trivial. @

We end this section with examples to illustrate our ideas on processes. It
is hoped that these examples will serve to clarify the concepts introduced so
far.

Examples.
Example 1. The process STOP has the following specification:

STOP = det(NIL)
traces(STOP) = {()}
refusals(STOP) = pX
STOP after () = STOP.

This is the only process with trace set consisting only of the empty trace. It
must refuse any event, since there is no event in the initials of STOP. Indeed,
STOP represents deadlock, because it cannot participate in any action.

Example 2. RUN is the process satisfying:

RUN = det(X*)
traces(RUN) = £*
refusals(RUN) = {0}
RUN after s = RUN for all s.
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11 PROCESSES

This process cannot ever refuse to perform an event. At each stage it is
possible for RUN to perform any event in X, and the only refusal set is the
trivial one.

Example 3. The process CHAOS has the following definition:

CHAOS = chaos(X*)
traces(CHAOS) = ©*
refusals(CHAOS) = pZ
CHAOS after s = CHAOS for all s.

Although CHAOS has the same traces as RUN, it also has the ability to refuse
any set of events at any stage. Thus CHAOS is more non-deterministic than
RUN.

Example 4. The process CHOOSE is given by

CHOOSE = {(5,X)|s€5* & X A%}
traces(CHOOSE) = &*
refusals(CHOOSE) = pZ—{ X}
CHOOSE after s = CHOOSE for all s.

This process can refuse any finite set of events except %, so it must perform
some event at each stage in its execution; every time it performs an event
it can choose arbitrarily which event to perform next. If £ is infinite, this
process has the same failures as CHAOS.
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1.2 NON-DETERMINISM

2. Non-determinism

So far we have introduced processes as sets of failures built from traces
and refusal sets. Each failure (s, X) of a process P represents a possible result
of a non-deterministic choice which the process may make; the effect of this
choice is to render the events in X impossible on the next step after s has
been performed. It makes sense to speak of P as being more non-deterministic
than another process @ if every non-deterministic decision available to @ 1is
also possible for P. In this section we investigate the order induced on the
space of processes by this idea.

Definition 1.2.1: The order C on PROC is the superset relation:

PLQeP2Q.

By definition, every process is a subset of PROC. This means that CHAOS
is the most non-deterministic process of all, as befits its name. In addition,
the set of all processes is obviously partially ordered by [ . These facts are
recorded in the following lemma:

Lemma 1.2.2: The space (PROC, C ) is a partial order with least element
CHAQS, i.e., for all processes P,Q, R

() PCQ&QLP=P=Q
(2) PCQ&QLCR=PLR
(3) CHAOS C P.

Proof. Trivial. 1

‘Of particular interest are the processes det(T"), chaos(T') introduced in the
previous section. For the mazimal processes with respect to the ordering turn
out to be those of the form det(T'), and we will call these the deterministic
processes; by contrast, chaos(T") is the most non-deterministic of all the
processes with trace set T.

Lemma 1.2.3: For any process P with trace set T
chaos(T) C P C det(T).

Proof. By elementary set-theoretic properties, using the definitions of
Theorem 1.1.3. g

Definition 1.2.4: A process P is mazimal if, for all processes Q,
PLO@=P=0.
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1.2 NON-DETERMINISM

Lemma 1.2.5: P is maximal iff P = det(traces(P)).

Proof. Suppose P = det(traces(P)) and let T = traces(P). Let @ be any
process such that P T @. We must show that @ = det(T"). This is achieved
by establishing that traces(Q) = T and invoking Lemma 1.2.3.

By hypothesis,
Q C dey(T),

and so the traces of @ are contained in T :
traces(Q) C T.

If this inclusion is proper, there must be a trace t € T — traces(Q). Without
loss of generality we may assume that ¢ is the shortest such trace, so that all
proper prefixes of ¢ belong to traces(Q). Since the empty trace is known to be
a trace of @ there must be a trace s and event ¢ such that t = s(c). But then
s must be a trace of @, and s{c) is not. This implies

(s {cheQ.
But @ C det(7T) now gives us that (s,{c}) € det(T"). This contradicts the
definition of det(T'), since s(c) € T. Hence traces(T) = @. Now by Lemma
1.2.3, we have
Q C det(T) = P,
which, together with P T @ gives the desired result, i.e., P = Q. That
completes the proof. 1

Next we consider some structural properties of PROC and its partial
order C . We show that PROC is closed under arbitrary non-empty untons,
and under directed intersections. This means that every non-empty subset of
PROC has a greatest lower bound (infimum) and that every directed subset
has a least upper bound (supremum). Technically, this means that the space of
processes forms a complete semi-lattice. Moreover, we show that each process
is uniquely characterized as the infimum of a set of deterministic processes.
Finally, each process is the supremum of a naturally defined directed sequence
of approximating processes.

Theorem 1.2.6: Let D be a non-empty set of processes. Then | JD is a process.

Proof. Let P = |JD. We check conditions (P0)-(P3). By definition,
(s, X)EP=23QcD(s,X)EQ.
Hence, the trace set of P is a tree, being simply

traces(P) = U{traces(Q) |QeD}.
Condition (P2) is similarly verified. Finally, suppose

(5,X) € P & s(c) Ltraces(P).
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1.2 NON-DETERMINISM

There must be some @ € D such that (s, X) € Q; but clearly s(c) &'traces(Q),
since traces(Q) C traces(P). Hence, using (P3) for the process & we find
s(c) & traces(P), which in turn implies that (s, X U{c}) € P, as required.
This completes the proof. 1§

Theorem 1.2.7: Every process is the infimum of a set of deterministic processes.

Proof. Let P be a process and define a set of deterministic processes,
D ={det(T) | P C det(T)}.
By Theorem 1.2.3,
det(traces(P)) € D.
Thus, D £ 0 and so |JD is a process, by Theorem 1.2.6. Clearly, by definition,
P C UD.

To establish the converse, i.e., | JD T P, we let (s,X) be a failure of P. Let
T be the tree obtained by removing from traces(P) all proper extensions of
5. Formally, what is required can be defined as follows:

sXT'={s{c)t |ceX &t}
T = traces(P)—sXX".

It is trivial to check that T is a tree; and, by construction, (s,X) € det(T).
Moreover, for all ¢t £ s € T' we see that

initials(P aftert) = {c € £ | t{c) €T },
and '
initials(P afters) — X = {c € & | s(c) € T }.
Hence, forall Y €pXand t €T
(t,Y) € det(T) = (¢,Y) € P.
Thus, (5, X) € det[T),I as required.

Definition 1.2.8: A set of processes D is directed iff it is non-empty and for
all P, € D thereisan R€ Dsuchthat PL R&Q L R. .

Theorem 1.2.9: Let D be a directed set of processes. Then [ D is a process;
this is the least upper bound of D.

Proof. Let P = (| D. We must verify conditions (P0)-(P3), but we give
details only for (P3); the other proofs are similar. Observe firstly that by
definition of P, ' .
traces(P) = ﬂ {traces(Q) | @ € D }.
Assume that
(5,X) € P & s(c) traces(P).
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1.2 NON-DETERMINISM

We want to establish that (s, XU{ ¢ }) € P. If not, there would be some @ € D

with

(s, XU{c}) Z@.
But (5,X) € P = (s,X) € @, by definition of P. So s(c) must be a trace of
@, by (P3). Since s(c) is not a trace of P, there must be a process ' € D
with '

s{c) & traces(Q').
Again, we have

(s, X) € Q.

Hence, using (P3), we must have

(s, XU{c}) Q"
By directedness, there is an R € D with

QCRZQ CR.

But then (s,X) € R, by hypothesis. Since s(c) & traces(Q’) and @ C R,
s(c) cannot be a trace of R. This implies that (s, X U{c}) € R; however,
this contradicts the fact that @ T R and (s,XU{c}) & @. We therefore
conclude that no such @ can exist, and that (s, X U{c}) € P, as required.
This completes the proof. &

Corollary 1.2.10: Let { P, |n > 0} be a chain of processes, i.e.,
Vn 2 0 P'n. E Pﬂ+i-
Then [ P, is a process.

Proof. A chain is a simple form of directed set. 1

‘A chain is simply a sequence of increasingly deterministic processes, and
the supremum is the limit of the sequence. For any process P there is an
obvious way to construct a sequence of approximations { P(") | n > 0}, by
making the nt? process behave like P for its first n steps and thereafter like
a restricted form of CHAQS, restricted to have the same traces as P.

Definition 1.2.11: Let P be a process. Define for n > 0

P(™ = {(s,X) | length(s) < n & (s,X) € P}
U{(s,X) | length(s) > n& (s,0) c P& X € pX}

It is easy to check that each P(™ is a process, and that

P C p~+D C p,
[P =4,
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1.2 NON-DETERMINISM Page 15

The following conditions characterise P(™) for each n :

(1) traces(P(™) = traces(P),
(i) refusals(P(™) after s) = refusals(P afters), (length(s) < n)
(i) refusals(P(™) after s) = pZ, (length(s) > n).

Thus each P{®) is an n-step approximation to P, and these approximations
form a chain converging to P. If P itself is a finite set of failures then the terms
in the sequence P(™) will eventually be equal to P. Thus, the approximating
processes used in this construction include the finite failure sets, as well as
the processes whose behaviour is well-defined for finitely many steps and
thereafter wholly arbitrary. It is convenient to refer to such processes as
finite. Finite processes will be used in later sections in proving properties
of processes: we have shown that the failure set of any process is uniquely
determined as the limit of finite processes.

Summary.

The ordering T is a measure of non-determinacy, and it makes PROC
into a complete semi-lattice: least upper bounds exist for directed sets, and
greatest lower bounds exist for non-empty sets. The maximal processes are
termed deterministic and every process is the greatest lower bound of a set
of deterministic processes. Each process P is also definable as the limit of a
chain of finite processes {P(") |ln>0}.



1.3 FUNCTIONS ON PROCESSES

3. Functions on processes

Suppose now that we wish to construct new processes from old; in other
words, we have a function F' : PROC — PROC which allows us to build
the process F(P) from P. There are several constraints on the nature of F
which it might be reasonable to impose if the construction is to be reasonable.
For instance, when the argument P is made more deterministic we could
reasonably expect the result F'(P) to become more deterministic (at least, no
less deterministic.) This amounts to the monotonicity of F. If, in addition, F
preserves the limits of chains, F is said to be continuous. A function which
preserves infima of non-empty sets of processes is called distributive.

Definition 1.8.1: Let F : PROC — PROC be a function. F'is monotone if,
for all processes P and @,

P T Q=F(P)C F(Q)

Definition 1.3.2: F is continuous iff, for all chains {P, |n >0}

F((Pn) = F(Pu).

Definition 1.8.8: F is distributive iff, for all non-empty sets D of processes
FUD)=J{F(P)| PED}.
Note that a continuous function is necessarily monotone, and that dis-
tributivity also implies monotonicity.
Examples.

Example 1.
- X\P.chaos(traces(P))

This function is continuous and distributive.

Example 2.
AP .det(traces(P))

This function is not monotone, and hence not continuous or distributive.

Example 3. Any function f: TREE — TREE can be used to define a
function F' : PROC — PROC as in

F(P) = U{det(f(T)) | P £ det(T) }

This function will be monotone.
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The second and third examples above are functions which preserve deter-
minism in the sense that they yield deterministic results when applied to
deterministic arguments. Such a function will be called deterministic.

Definition 1.8.4: F is deterministic if F(P) is deterministic whenever P is
deterministic.

It is a well known result that a monotone function on a complete semi-
lattice has a least fixpoint. This fact is so well established that it is achieving
the status of a “folk theorem” [LNS], to which paper the reader is referred
for more details: there is disagreement on exactly who proved this result first.
Since PROC is a complete semi-lattice, this result is applicable to the space
of processes; it enables us to use recursive definitions of processes provided
the constructions involved are monotone. Moreover, for continuous functions,
the least fixpoint has an explicit formulation as the limit of a chain.

Theorem 1.3.5: Let (D, C ) be a complete semi-lattice with least element
1, and let F : D — D be a monotone function. Then F has a least
fixpoint, i.e., there is an element uF' € D such that

(i) F(uF) = pF
(i) F(z)=z=uFC =z
If F is continuous, the least fixpoint is given by:

pF = LI F™(L).
|

In our domain of processes, the bottom element is CHAOS and the
ordering is reverse inclusion. In the next chapter we introduce a collection
of functions on processes; with one notable exception, all these functions are
continuous. We can use this Theorem to assert that for such a function F' the
least fixpoint exists and is the intersection of the chain of processes obtained
by iterating the application of F' to CHAOS.
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Chapter 2

Process operations

0. Introduction

In the previous chapter we introduced a domain PROC of processes over
a universal alphabet ¥ of events. These processes are intended to repre-
sent the possible behaviours of a class of non-deterministic communicating
agents, and the events are taken to represent indivisible atomic actions of
processes. In general a particular process only uses a subset of ¥ in its
traces. Correspondingly, we say that a subset A C ¥ is an alphabet for
P if traces(P) C A*. If we refer to the alphabet of P we intend the smallest
such set.

Now we define a collection of operations on processes, motivated by in-
tuitively reasonable methods of combining communicating agents; our choice
of operators, while not claimed to be universally ideal, is based on those used
by Hoare [H1]| in his original paper on Communicating Sequential Processes,
and in subsequent developments [H2|,[HBR|. We will see that many interest-
ing derived operators can be constructed, and that our process operations are
powerful enough to allow expression of many parallel programming problems
and examples.

We now introduce an abstract version of CSP based on a set of operations
on our domain of processes. These operations will be referred to as CSP
operations. If we wanted to separate semantic issues from syntax, we could
begin with an abstract syntax for our version of the CSP language and define
a semantic function mapping each term to its denotation as a failure set. We
see no need to do so in this chapter, as the notation used to describe process
operations is itself very suggestive of the abstract syntax we have in mind.

In an effort to stay faithful to Hoare’s system we use a notation very
similar to that of CSP. Each operation will be introduced with an informal
explanation of the way the constructed process is intended to behave, as a
function of the behaviours of the arguments.
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2.1 . PREFIXING

0. Inaction

As we saw in Chapter 1, the process STOP is incapable of performing
any event, and refuses every finite set of events. It has the failure set:

STOP = {((),X) | X € pX }.

We regard STOP as representing deadlock, the inability to participate in any
action.

1. Prefixing

Let P be a process and ¢ be an event. The process (¢ — P) is first to
perform event ¢ and thereafter to behave like P; this operation is “prefixing”
action ¢ to the process P. Another interpretation is that the event ¢ is a guard
which must be passed before the process can begin to behave like P. We may
refer to a process of this form as a guarded process. The first event in any
non-empty trace of (¢ — P) must be c itself; and at the initial stage (¢ — P)
cannot refuse to perform c¢. The construction has a simple formal definition
and several obvious properties.

Definition 2.1.1:
(c=>P)={(()X) | cgX}U{({e)t, X)|(t, X)EP}.

Theorem 2.1.2: For all précesses P and events ¢, (¢ — P) is a process; it has
the following properties:
(1) traces(c — P) = { ()} U {{c)t | t € traces(P)}
(2) refusals(c > P) ={X |c&X}
(3) (¢ — P)after (c)t = P aftert.

Proof. 1If P is a process, it is straightforward to verify that (¢ — P) satisfies
conditions (P0)-(P3), and is therefore a process. The properties (1)-(3) are
immediate, from Definition 2.1.1. 8

Theorem 2.1.8: AP.(c — P)is monotone, continuous, distributive and deter-
ministic.

Proof. We give details only for continuity; the other properties are just as
easy to establish. Let { P, | n > 0} be a chain of processes, so that

Pﬂ;Pﬂ+1J (nEU)
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2.1 PRETFIXING

Let P = ﬂnPn be the limit of this chain. Assuming monotonicity, we know
that the processes (¢ — Pp) also form a chain. We must show that the limit
of this chain is the process (¢ — P) : we need to establish the identity

[ fer=s P,) = (c— ﬂnPn).

This is done by proving that these two processes have the same failures, by
induction on the length of traces. The base step is easy:

() X)E(ce—=>P)cgX
& Vn. ((), X) € (¢ = Pn)
& () X)eN,(c = Pn).

For the inductive step, it is clear from Theorem 2.1.2 that any non-empty
trace of either process begins with the prefixed event c. It is enough, therefore,
to consider a trace of the form (c)t :

(), X)eE(c—>P)e=(t,X)eP
e Vn. (4, X) € P,
& Vn. ((e)t, X) € (c — Pn)
& ((€)4,X) € (e — Pa),

as required. That completes the proof of continuity. a

Notice that the prefixing operation generalizes naturally to the case when
a finite sequence of events is prefixed onto the behaviour of a process. We
will use the notation (s — P) for the result of prefixing the trace s to P. The
process (s — P) first must perform the sequence s and thereafter behaves like
P;

Definition 2.1.4: For all processes P and traces s, the process (s — P) is
defined by induction on the length of s :

(1) (1= P) =P
2) (et —P)=(c—(—P)

As a trivial consequence of this definition, we have the simple identity

(s = (t > P)) = (st — P).

Examples.

Example 1. The process (a — STOP) performs a and then deadlocks,
unable to perform any further action.

Page 20



2.2 NON-DETERMINISTIC CHOICE

Example 2. Since the function A\P.(la — P) is continuous, it has least
fixpoint ) Pn, where:
Py, = CHAOS,
Ppyy = (a— P.)

An inductive proof shows that P, = (a™ — CHAOS). Notice that this recur-
sion has only one fixpoint, since the least fixpoint turns out to be deterministic.
This fact about fixpoints will be very useful.

2. Non-deterministic choice

Let P and @ be processes. We wish to construct a process which can
behave either like P or like @, the choice being arbitrary. The greatest lower
bound of P and @, denoted P 1Q), has this ability. We call this combination
“P or @.” This process should be able to behave like either of P and @, and
decides autonomously which one; thus, it can perform any sequence of events
possible for either process, but similarly it may refuse any set of events that
either process could have refused at the same stage.

Definition 2.2.1:
Priee=PUQ.

Corollary 2.2.2:
(1)  traces(P Q) = traces(P) U traces(Q)
(2) refusals(P 1 Q) = refusals(P) U refusals(Q)
(3) (PN Q)after s = (P after s) M (Q afters).

Note that the term P after s denotes the empty set when s is not a
possible trace for P; thus, when c is an initial event of only one of the two
constituent processes and s = ct, only one of the terms in the right-hand
side of (3) contributes. It is convenient to adopt this as a general notational
abbreviation, when strictly speaking we should have written out (3) in full as:

(P M Q)after s = P afters, if s € traces(P)—traces(Q).
= @ afters, if s € traces(Q@)—traces(P).
— (Pafters) [ (Qafters), if s € traces(P) N traces(Q).

The following result states that nondeterministic choice is idempotent, sym-
metric, associative, and has CHAOS as a zero element; it also gives the ob-
vious connection between nondeterministic choice and the nondeterminism
ordering. The proofs are straightforward and omitted. ‘
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2.2 NON-DETERMINISTIC CHOICE

Corollary 2.2.3:

(1) PP =P

(2) PNe=QnNP°rP

38) Pr@nR=(ProQjnk
(4) P CHAOS = CHAOS

(5) PNQ=PoPLC Q.

Theorem 2.2.4: XP,Q.P[1(Q is monotone, continuous and distributive.

Proof. Elementary properties of intersection and union. g

Examples.

Example 1. Let a,b € ¥ be distinct events. The processes (a — STOP)
and (b — STOP) are deterministic. Define the process P, as follows:

P,y = (a — STOP) M (b — STOP).

This process is not deterministic, since on the first step each of the events a, b
are possible but either one or the other can be refused.

traces(Pas) = {(), (a), (b) }
initials(Pgp) = { a,b}
refusals(Pp) = {X |a X Vb ZX }.

Example 2. The function F(P) = (a — P) (b — P) is continuous,
being built by composition from the continuous operations of prefixing and
non-deterministic choice. The least fixpoint is the limit of the following chain:

Py = CHAOS
Ppy1={(a — Pp)M (b — Py),
and the limit process P clearly has the following properties:
traces(P) = {a,b}"
refusals(P) ={X |a X Vb X }
P afters = P for all s € traces(P).

Indeed, these conditions characterise any fixpoint of F. Since they deter-
mine completely the traces and refusals at each stage of the behaviour, we see
that F' has a unique fixpoint. Note also that P is able to choose at each stage
to refuse either a or b, but not both. This makes P more non-deterministic
than det(a*), which always refuses b; similarly for det(b*), which always refuses
a; more non-deterministic than det({a,b}"), which refuses neither a nor b;
but less so than chaos({a,b}"), which can refuse both a and b.
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3. Controllable choice

The operation P [1 @ formed a non-deterministic choice between alter-
natives. Next we introduce a form of conditional composition, for which we
use the notation P[]Q. The intention is that P[ 1@ should behave either like
P or like @, but the decision can be affected by its environment on the first
step; whereas P[] Q could initially refuse a set X if either P refused it or
@ refused it, we insist that P[] @ refuse a set if and only if both P and @
can refuse it. This means that P[]Q cannot commit itself in favour of (say)
P. If the environment offers an initial event ¢ which is acceptable only by P
then P[] Q@ performs it and thereafter behaves like P; similarly the process
behaves like @ if the environment offers an event initial only for @. In the
case where the environment’s offer is possible for both P and €, the choice is
made non-deterministically.

Definition 2.8.1:
PUR={({()X)[(1X)ePNQ}
U{(sX)|s#()&(s,X)€EPUR}

Theorem 2.3.2: If P and @ are processes, then so is P[]Q. It has the
following properties:

(1) traces(P [ Q) = traces(P) U traces(Q)
(2) refusals(P [] Q) = refusals(P) N refusals(Q).
(3) (POQ)afters = (Pafters) M (Qafters), for s 7~ ().

Proof. Straightforward, using standard set-theoretic properties of union and
intersection. 1§

Like the other form of choice operator, this operation is idempotent,
symmetric and associative. However, STOP is a unit for [], since a combina-
tion P[JSTOP only refuses a set if P refuses it and only performs an event if
P performs it: this process is identical to P. As we might expect, nondeter-
ministic choice is in general more nondeterministic than controllable choice.
These results are summarised below; we omit the proofs.

Theorem 2.8.8: _
(i) POP=P
(i) PQ=d[]P
(i) PL(UR)=(PUQUER
(iv) B0 =
(v) Pnec PLQ.
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We should also note some facts about [ ] applied to guarded processes.
If B is a finite set of events, and if P, is a process for each b € B, then the
combination

(hen(b — Pb)

denotes a process which initially accepts any event in B (and cannot refuse
any of these events) and thereafter behaves like the corresponding component
process. Note the structural similarity with the form of guarded command in
Hoare’s original CSP. We will refer to this conditional combination of guarded
processes also as a guarded process. If the environment of a guarded process
of this form wants to pass a particular guard it can do so because the process
cannot refuse this event. If, however, we form a combination

(@ = P)U(e — @)

in which the two alternatives start with the same event, although the initial
event cannot be refused it is nondeterministic which component performs it;
this process is identical to the process

- (a—= P)MNe— Q).

There is an obvious connection here with Hoare’s guarded construction in

CSP.

Lemma 2.8.4: For all processes P, @ and all events a,

(e > P)e—Q@)=(e—P)MNea—Q)=(a— PNQ).

Next we establish that conditional choice enjoys the same continuity and
distributivity properties as nondeterministic choice.

Theorem 2.3.5: Z\P,Q.P[]Q is monotone, continuous and distributive.

Proof. As an example, we show distributivity. Let D be a non-empty set of
processes. We will show that, for any P, the identity

POUP=U{POQ|QeD}
holds. As usual, since the definition of this process operation has two clauses,
we split the proof into two parts. For the empty trace, we have

(LX)ePUUD & (), X)e P & ((),X) e UD
e3QeD. (LX)eP&(()X)eRQ
=3QeD. (), X)erPQ
e((hX)eU{rle|QeD}

as required. A similar argument establishes that for all nonempty traces s,
(s, X) e PUUD <= 3Q.(5,X) e PUIQ,

from which the result follows. @
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Examples.

Example 1. The process @4, has the same traces as P,; above; however,
Qaqp cannot refuse any of its initial events. Indeed, this process is determinis-

tic.
Qab = (e — STOP)[1(b — STOP)

traces(Qap) = {(),(a), (b) }
refusals(Qq) = {X |a X &b X }.

Example 2. The function G(P) = (a — P)[J(b — P) is continuous, since
prefixing and [] are both continuous and composition preserves continuity.
Its least fixpoint is the limit of the chain:

Qo = CHAOS
Qn+1 = (a — Q) 1(b — Q).

!

This limit, @, has the following properties:

traces(@) = {a,b}"
refusals(Q) = {X |a &X &b F X } -
Qafters =@, forallsec{a,b}".

Clearly, @ = det({e,b}").

-

Example 3. Despite Example 1, it is not always the case that [] preserves
determinism; obviously the introduction of a non-deterministic choice takes
place when the initials of the two processes have a non-empty intersection
and when there is an event common to the initials after which each process
would have different behaviour. An example of this type was mentioned in
the above discussion of guarded processes. For another example, consider the

process: _
R = (a — STOP)[J(a — (b — STOP)).

A simple calculation shows that

R after (a) = STOP 1 (b — STOP).

This reflects the fact that, once the initial event a has occurred the process
has made a nondeterministic choice between two alternatives, either of which
could have started with the a event.

The next result shows that the two forms of choice operation distribute
over each other.
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Theorem 2.3.6:
PN(QUOR)= (PN O(PNR)

PL(@QNE)=(PUQIN(PUR).
Proof. Elementary properties of intersection and union. §

Although conditional choice is not a deterministic operation, it does
preserve determinism in cases where the alternative processes have disjoint
initials.

Theorem 2.3.7: Provided S NT = NIL,
det(S) [ det(T) = det(SUT).

Proof. Trivial. 1

We end this section by stating an identity for conditional composition of
two guarded processes; it is easily proved from Lemma 2.3.4.

Lemma 2.8.8: For the guarded processes
P =[lep(b — P),
Q = Lkec(c — Qc),
the conditional composition P[]Q is
PLQ = EE&EBUC(G ke Ra)r
where R, = P,, if a € B—C,
=t if a € C—B,
=P, M@, fag€BNC.
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4. Parallel composition

The process P || @ represents a form of parallel activity of P and Q.
It performs an event only if both P and @ components agree to perform it;
dually, it refuses an event if either component chooses to refuse it. Thus,
the traces of the parallel combination are the common traces of the two
components, while each refusal of P || @ is a union of a refusal of P with
a refusal of @. Once an event ¢ has been performed, each component has
performed it; the subsequent behaviour is that of P after (c) running in parallel
with @ after(c). More generally, once P || @ has performed the sequence s
its subsequent behaviour is that of the parallel composition of P afters and
Q afters.

Definition 2.4.1:
Pl@={(ssXUY)|(X)EP&(sY)€Q}.

Theorem 2.4.2: Whenever P and @ are processes, P||Q is a process and:

(1) traces(P || @) = traces(P) N traces(Q)
(i) refusals(P|| Q) = {X UY | X € refusals(P) &Y € refusals(Q) }
(i) (PI|Q)atier s — (P afier s) | (@ aer ).

Proof. Elementary. 1

Parallel composition is symmetric, associative and STOP is a zero. In
general, parallel composition is not, however, idempotent; a process of the
form P|| P can generally refuse more sets than can P alone.

Theorem 2.4.8:

(1) P|PCP
(2) Pll@=@Q|P
6 Pl@IR=(PlQ)IR
(4  P|STOP = STOP
Proof. These results follow immediately from the definition of ||. 1

Theorem 2.4.4: XP,Q.P| @ is monotone, continuous, distributive and deter-
ministic.

Proof. We give details only for continuity and determinism, the other
properties being straightforward.

Continuity. Let { P, | m > 0} be a chain of processes with limit P. We
must show that, for any process @, the processes {(P,||Q)|n > 0} form a
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chain with limit P|| Q. Monotonicity of || implies the chain property. Also,
P.CP=PQLCP|Q Vn>o.
Hence, we get one half of the equation:
Nrlec Ple.
For the converse relation, suppose (s, Z) € [} Pn||Q. We want to show that
(s,Z) € P||Q. For each n > 0 we know there are sets X,,Y,, of events with
Z =X, 0% (8 Xa) =By (s, Yn) € Q.

Since Z is a finite set, in the list of pairs {(X,,Y,) | n > 0} some pair, say
(Xm, Ym), must appear infinitely often. But this implies that (s,Yn) € @,
and that (s, X,,) € P, for infinitely many n. By the chain condition this gives
(s,Xm) € P. Putting
X =Xy ¥ = Yy
we have
X ¥ =2, (s, X) € P, (s,Y)EQ
and hence
(s,2) € P Q.

Thus parallel composition is continuous.

Determinism. To show that ||is deterministic, we prove that
det(S) || det(T") = det(S NT).
" This is easy:
(5, Z) € det(S)||det(T) & 3X,Y .(5,X) € det(S) & (5,Y) € det(T)
EXUY =2

SsCS&seET&Vece Z(s(c) &SV s(c) ZT)
SsceSNT&Vee Z.s(c)ZSNT
& (s, Z2)edet(SNT).

That completes the proof of Theorem 2.4.4. 1

The following results show how a parallel composition of guarded processes
behaves:

Lemma 2.4.5: Let Pg and Q¢ be the processes
Pp = [hen(b — B),
Qc = Lkec(c — Q.).
Then the parallel composition Pg|| Q¢ is:
Pall@c = Clesnole — Pa|Qa).

Proof. Trivial. 1§
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Corollary: For all processes P and @, and all events a,b
(a— P)|(b—@)=(a— PllQ), ifazb
= STOP, ifd=
|

Examples.

Example 1. For any process P, the following equations hold:
P||STOP = STOP
P||RUN =P
P||CHAOS = chaos(traces(P)).

Example 2. Let a and b be distinct events. Define processes P, and

Qa.b :
P,» = (a — STOP) M (b — STOP)

Qab = (a > STOP)J (b — STOP).
Using distributivity and the result of Theorem 2.4.5,
P ||(a — STOP) = ((a — STOP)||(a — STOP))
M ((6 = STOP)||(a — STOP))
= (a — STOP) M1 STOP.
Similarly,
P.y||(b — STOP) = (b — STOP) 1 STOP.

It follows that
P || Par= (a — STOP) M [b — STOP) N STOP

= Pl 13TOF,

This is an example where P || P £ P. Thus parallel composition is not
generally idempotent; of course, the proof of Theorem 2.4.4 shows that deter-
ministic processes do have this property. Since Q,; is deterministic, we have

Qab || Qab = Qap. Moreover,
Qas||(a — STOP) = (a — STOP)
Qasl(b — STOP) = (b — STOP).
Thus, by distributivity, '
Qab || Pap = (a — STOP) (b — STOP) = P,
These processes also show that || does not distribute over [, because
Pas||((a — STOP) ] (b~ STOP) = Pay | Qas
= Fab,
(Pas || (@ — STOP)) [I(Pas || (b6 = STOP)) = Pop 1 STOP
= Pt
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Failures and parallel composition.

There is a simple connection between failure sets and parallel composi-
tion. Let s be any finite sequence of events and X be any finite set of events.
The tree sX defines a very simple kind of deterministic process: one which
can perform the sequence s and then perform any of the events in X bcfore
stopping. Intuitively, we can see that if P is a process for which (s,X) is
a possible failure, then running P in parallel with the deterministic process
det(sX) can result in deadlock after s has occurred. The converse is also
true. More formally, this is reflected in the following fact, the proof of which
is trivial:

Lemma 2.4.6: For all processes P and all failures (s, X),
(s,X)€ P & (P|ldet(sX)) C (s - STOP).

Restriction: a derived operation.

Let B be any set of events, and P be any process. The combination
P || det(B")

behaves like a restricted version of P; it can only perform events in the set
B. This form of parallel composition merits a special notation, as it is very
useful. We write

P[B = P||dst(B*),

and call this process “P restricted to B.” If all events appearing in the trace
set of P are already in B, restriction has no effect, and P[B = P in this case.
Since det(0*) = STOP, we have already seen that P[) = STOP, as we would
expect. Some elementary properties of restriction follow from our previous
results:

(P[B)[C = (P | det(B"))||det(C")
= P||(det(B") || det(C"))
= P||det(B*NC")
— P||det((B N C)").
— P[(BNC)
A special case is when we wish to prevent an event b, or more generally all

events in a set B, from occurring. This can be achieved by restricting to the
complement of B. Writing P—B for the result of forbidding B in P,

P—-B = P[(Z-B),
the following laws are obvious:

(P-B)~C = (P—C)~B = P~(BUC).
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5. Interleaving

Another form of parallel composition allows arbitrary interleaving of the
actions of the two component processes P and ). We denote this combination
P|||Q. Its traces are obtained by merging a trace of P with a trace from Q.
At each stage we specify that an event can occur if either of the component
processes can perform it; this means that P|||@ can refuse a set X of events if
both P and @ choose to refuse X. When an event occurs which was permissible
for both components, the choice as to which component performs it is to be
made non-deterministically. Of course, a given trace of P|||@ may arise in
many distinct ways as merges of traces of P and @. The following definition
makes precise the notion of merging two traces; induction on lengths of traces
can be used to show that the definition is well-founded.

Definition 2.5.1: The function merge : £* X £* — pX” is given by:
(i) merge((), s) = merge(s,()) = {s}

(i) merge((a)s, (b)t) = {(a)u | u € merge(s, (b)t }
U {(b)u | u € merge((a)s,t) }.

For example, merge((a), (b)) = {(a,b),(b,a)}. If u € merge(s,t) we say
that s and ¢ merge to u, or that u is a merge of s and ¢. Note that there are
only a finite number of merges for any two traces. Some elementary properties
of the merge function are now stated for reference. Proofs are omitted.

Corollary 2.5.2: ;
(i) merge(s,t) = merge(t, s)

(if) u € merge(s,t) & u € merge(s,t’) =t =1
(iii) u € merge(s,t) = length(u) = length(s) + length(t)
(iv) u € merge(s,t) & u' < u=3s' <, < t.u' € merge(s',t').

Definition 2.5.83: For any sets S and T of traces, S|||T denotes the set of all
merges of a trace from S with a trace from T :

S|||T = |J{ merge(s,t) | s€ S &t T}.

Lemma 2.5.4:
(1) S|||T=T|||8
(2) (SHDIIT = S[I(T]IIV)
(3) NIL|||T =T
(4) )

Proof. Trivial 1
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Definition 2.5.5: For any subsets P, @ of £* X pX, let P|||@ be the set
Pll|lQ@ = {(u,X)| 3s,t.(s,X) € P& (t,X) € Q & u € merge(s, t) }.

Theorem 2.5.6: If P and @ are processes, so is P|||@. This process is
characterised uniquely by the following conditions:

(1) traces(P|||Q) = traces(P)|||traces(Q)
(2) refusals(P||| Q) = refusals(P) N refusals(Q)
() (Pl@)atteru = U{ (P after )|||(Qaftert) | u € merge(s, )}

Proof. Let P and @ be processes. First we see immediately from the above
definition that condition (P2) holds: .

(v, X)EP||Q&Y C X = 3s,t.(s,X) EP & (t,X) € Q & u € merge(s, t)
&Y C X
= u € merge(s,t) & (s,Y)EP&(t,Y)EQ
= () € P|[1@.
In particular this allows us to deduce that the traces of P|||Q are indeed
obtained by merging:
traces(P||@) = {u | 3X (u, X) € P|[|Q}
={ul|(w,0)ePllQ}
= {u € merge(s,t) | (5,0) eP & (¢,0) € Q}
= |J{ merge(s, t) | s € traces(P) & t € traces(Q) }
= traces(P)|||traces(Q).

But traces(P) and traces(Q) are trees, since P and @ are processes. It is clear
from Lemma 2.5.2 that merging two trees produces another tree; so we have
established condition (P1), and also (1) above.

The refusals clearly satisfy (2), by Definition 2.5.5.

Finally, suppose (u,X) € P|||@, but u{c) &traces(P|||Q.) We must prove
that (u,XU{c}) € P|||Q. Let s,t be traces such that
(s, X)EP, (t,X)€EQR, wu€E merge(s,t).
Then s(c) cannot be a trace of P, because u(c) is not a trace of P|||Q. Similarly,

t(c) cannot be a trace of @. Hence, we can use (P3) for the processes P and
@ to deduce that

(s, XU{c}) e P, (t,XU{c})ER, wuEmerge(s,t).
But this gives us the fact that (u,XU{c}) € P|||@, as required. That
completes the proof that P|||@ is a process. 1§

Some elementary properties of interleaving are stated next. The opera-
tion is symmetric, associative, and has STOP as a unit and RUN as a zero.
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Theorem 2.5.7:

(1) Pl|Q =Q]||P

(2) (PllQ)lIE = Pll[(QI[|R)
(3) STOP|[|@ =@

(4 RUNJ[|@ =RUN

Proof. Trivial. 1

The next results show how interleaving of two guarded processes behaves.

Theorem 2.5.8: Let Pg = [len(b — P») and Q¢ :Dcec(c — @Q.). Then
interleaving these processes gives

Pg|l|Qc =Lhen(b — (Bs|Qc)) Ulec(c = (Pal|Q:))-

Proof. Trivial. 1

For all processes P and @,
(a = P)l|(6— @) = (a — P||(6 » @) (6 — (a — P)[[| Q).

Corollary:

Next we establish the important properties of monotonicity, distributivity
and continuity.

Theorem 2.5.9: \P, @.P|||Q is monotone, continuous and distributive.

Proof. It is enough to consider one variable at a time, because|||is symmetric.
Since distributivity implies monotonicity, we consider this case first.

Distributivity. Let D be a non-empty set of processes, let P be any process
and let @ be the supremum of D :

Q@=UD.

We want to show that P|||@ is the supremum of the collection of interleaved
processes: '

PllQ=U(PI|R|RED}.
This is straightforward:
(u,X) € P|||Q & 3s5,t.(s5,X) € P &(t,X) € Q & u € merge(s, t)
= 3R D3s,t(s,X) € P,(t,X) € R, u € merge(s, )
= 3Re D(u,X)E P|||R
& (u,X) € U{PIl|R| R€ D)

as required. So interleaving is a distributive operation.

Continuity. For continuity of interleaving, let { @, | » > 0} be a chain
of processes with limit ¢, and let P be any process. We know by monotonicity
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that { P|||@n | » > 0} is a chain; we want to prove that the limit of this
chain is P|||@. As usual, monotonicity provides one half of the result:

NPlle. E PllQ.

For the reverse inequality, suppose (u,X) €[] P|||@n. This means that for
each n > 0 there are traces s,,t, such that

(sn:X) EP: (tn:X) EQn: uEmerge(smtn)-

But there are only finitely many pairs of traces which merge to u, since u
has finite length. This means that some pair must appear infinitely often in
the list {(sn,tn) | m > 0}. Let (s,t) be such a pair. Then (t,X) € @, for
infinitely many values of n, which gives (t,X) € @, by the chain property.
Since we already have (s,X) € P and u € merge(s,t), this completes the
proof. &

Theorem 2.5.10:
: det(S)|||det(T) C det(S|||T).

Proof. By Theorem 2.5.6, these two processes have the same traces:
traces(det(S)|||det(T)) = S|||T.

By Lemma 1.2.3,
P C det(traces(P),

for all processes P. The result follows on putting P = det(S)|||det(T). a

This inequality cannot in general be strengthened, as ||| is not a deter-
ministic operation. Some examples will illustrate this point.

Examples.

Example 1. For the simple processes (a — STOP) and (b — STOP), we

have:

(i) (a — STOP)|||(a = STOP) = (a — (a — STOP))
(ii) (a — STOP)|||(b = STOP) = (a — (b — STOP))[I(b — (a — STOP)).

Thus the two events can occur in either order, and the interleaved process
stops only when both components can continue no further.

Example 2. Let B and C be sets of events. Note that interleaving a trace
from B* with a trace from C* always produces a trace in (B U C)*, and that
every trace in (B U C)* can be produced in at least one such way. In other
words, B*|||C* = (BUC)*. Let P and @ be the processes: -

P = det(B")|||det(C*)
@ = det(B")|C").
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We now show that P = @. First consider the traces.

traces(P) = traces(det(B")|||det(C*))
= traces(det(B"))||| traces(det(C™))
= B*|||C*
= traces(det(B*|||C"))
= traces(Q).

Next the refusals.

refusals(P) = refusals(det(B™*)) N refusals(det(C™))
={X|XNB=0&XNC=0}
={X | Xn(BLUC)=10}
= refusals(det(B U C))
= refusals(@).

Finally, since for all s € B*,t € C'*,
B* after s = B”

C* aftert = C*
we have, for all u € (B U C)*,
Pafteru = | J{det(B*) after s|||det(C") after ¢ | u € merge(s,t)}

= det(B*)|||det(C")
=P.

Similarly, @ afteru = Q. It follows that P =0Q. &

A derived operation.

To end this section on interleaving let us introduce a useful derived
operation. Let B be a set of events and P be a process which cannot ever
perform any of the events in B. To be precise, we are assuming that the
alphabet of P is disjoint from B :

traces(P) C B.

In the composition P|||det(B*), therefore, the P component performs the
events from B and ignores events in B. We will refer to this form of com-
position as P ignoring B, and use a special notation P|B.
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Definition 2.5.11: Process P ignores a set B of events if traces(P) C B

Definition 2.5.12: For any process P and any set of events B,
P|B = P|||det(B*).

When P ignores B, this combination performs a sequence of events s
when the P component performs s[B, all other events in s occurring for the
other component. We will normally restrict use of this operation to the case
when P does ignore B.

As immediate corollaries of earlier results, we have
(P1B)]IC = (P|||det(B"))]||det(C")
= P||[(det(B")|[|det(C™))
— P||det{(BUC)")
= P|(B 1 C).
Indeed, t}}is equality holds even when P does not ignore B U C.

By its definition, P[B ignores B. Finally, in the special case when B = 0,
we have P|0 = P, since det(0*) = STOP.
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6. A derived parallel combinator

The previous two sections concerned extreme forms of parallel composi-
tion. We may think of P ||@Q as a purely synchronous composition, in which
each action requires the simultaneous participation of the two component
processes and a set of events can be refused if P can refuse part of the set and
@ can refuse the rest. Similarly, P|||@ is like an asynchronous composition in
which each action requires participation by just one of the components, and
a set is refused only if both components can refuse it.

Suppose that P and @ are processes such that

traces(P) C B*
traces(@) C C~.

In other words, B and C are alphabets for P and @ respectively. Suppose we
wish P and @ to operate concurrently, but to synchronise on events common
to their alphabets. This would typically be the case when events in both
alphabets represent communications between P and @, in a system where
communication is achieved by “handshakes,” so that a communication can
occur only when the sender and receiver are ready to perform it together. So
events in BN C are to require participation of both processes, while events
in B—C require only P and events in C—B need ¢ alone. This is a mized
form of parallel composition, rather like the well known “shuflie” operator.
Roughly speaking, we want a form of composition that is more constraining
than the pure interleaving operation but not as restricting as pure parallel
composition. We can defined a suitable derived operation in terms of the two
pure operations. Before giving the formal definition, let us consider what
properties the constructed process, which we will denote Pg ||¢ @, should
have. We are certainly requiring that the traces of this process are built up
from traces of P and @, so that

traces(Pg|lc @) C (BUC)".

Moreover, such a trace should yield a trace of P when viewed through the
alphabet of P, and a trace of @ when viewed through the alphabet of . This
requirement is stated thus:

s € traces(Pg|lc @) = s[B € traces(P) & s[C € traces(Q).

As for refusals, an event in B can be refused if P chooses to refuse it, and an
event in C can be refused if @ refuses it. This has the consequence that an
event belonging to BN C can be ruled out by either of the two component
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processes, since it can occur if and only if they both allow it. Events outside
B U C are always impossible and can always be included in a refusal set:

refusals(Pgllc @) ={XUYUZ | X CBY CC,ZC BUC,
X € refusals(P) &Y € refusals(Q) }.
Finally, once Pg|/c @ has performed a sequence of events s it must be the
case that the P component has engaged so far in the sequence s[B, while the

@ component has performed the sequence s[C; the future behaviour should
therefore be that of P after (s[B) running in parallel with @ after (s[C),

(P |lc @) after s = (P after s[B)s[|c (@ after s[C).

We will verify that the following definition is satisfactory.

Definition 2.6.1: For any sets B, C of events, and processes P,
Psllc@={(s,XUYUZ)|X CBYCCZCBUC,
seE(BUC) & (s[B,X)eP&(s[C,Y)EQ}.

Theorem 2.6.2: Tor all processes P, Q and all sets of events B,C Pgl/c @ is
a process.

Proof. Tt is a straightforward task to verify conditions (P0)-(P3). We give
details for the most interesting of these, (P3):

Suppose . '
(s,W) € Pgllc @ & sa &traces(Pg||c Q).

We must show that (s, WU {a}) € Pgllc@.

By assumption there are sets X,Y, Z such that

W=XUYUZ, XCBYCC,ZC(BUO), (s[BX)EP,(s[C,Y)EQ.

There are four possible reasons why sa fails to be a valid trace, by inspection
of Definition 2.6.1.

(i) If a g(BUC), then we can simply include it in Z.

(ii) If a € B—C, then sa[B = (s[B)a and sa[C = s|C. Thus, (s[B)a
cannot be a trace of P, so a is impossible for P after s/ B and we can include
ain X.

(iii) A similar argumént. shows that if a € C—B we can include a in Y.
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(iv) Finally, if a € BN C we have sa{B = (s[B)a and sa[C = (s[C)a.
Since we are assuming that sa is not a trace of the compound process, one of
the clauses in Definition 2.6.1 fails to hold: we must have

(s[B)a ¢ traces(P) V (s[C)a & traces(Q).
Thus we can include a in either X or Y.

In each case we have shown that (s, W U {a}) is a failure, as required.
: |

Theorem 2.6.8: Provided P ignores B and @ ignores C, the above definition
can be characterised as:

Pgllc@ = (P1B||Q]C)[(BU Q).

Proof. Introduce the abbreviation R = (P]B| Q]C), so that we are trying
to prove that
Pgllc@ = R[(BUC).
By definition of [ and ||, and by assumption that traces(P) C B*,
P]B = P|||det(B")

= {(s,X) | (s|B,X) e P& (s[B,X) € det(B")}

= {(5,X)|(5,X)eP&X C B}.
By a similar argument,

RIC={(sY)|(s[C,Y)eQ&Y C C}.

Hence,

R={(s5,XUY)|(s[B,X)eP&(s]C,Y)ER
&X CB&Y CC}.
Now restricting to BU C we get
R[(BUC) = R||det((BUC)")
= {(s,XUY UZ)|(s[B,X) € P,(s[]C,Y) ER,
XCBYCC,se(BUC),ZCBUC}
The result follows from Definition 2.6.1. That completes the proof. 1§

It is clear from Definition 2.6.1 that, the traces and refusals of the
composition Pg|c @ do indeed have the properties suggested earlier. It only
remains to verify that once an event has occurred the composition continues
to behave like a parallel product.

Theorem 2.6.4: For all processes P, @ and all sets of events B, C, whenever
u is a valid trace we have

(Psllc @)afteru = (P after (u[ B))s |c (Q after (u[C)).
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Proof. We calculate as follows, using Definition 2.6.1:
(Pellc @) afteru={(v, Z) | (w, Z) € Psllc@}
= ('UXUYUZ)EXCBYQ 0 C
(w)[B,X) € P &((w)[C,Y) R}
CC zC

-

Uj

|

{(U,XUYUZ)IXCB Y
(u[ B)(v[B), X) € P & ((u |
={(v,XUYUZ)|XCB,YCC,ZCBUC,
(v[B, X)EPafter( |-B) & (v[C,Y) € Qafter (u[C)}
= (Pafter (u[B))s [l (@

The mixed parallel combinator has been defined as a composition of
pure parallel product and interleaving. Since both of these operations are
monotone, continuous and distributive, it is clear that the mixed combinator
also has these properties. We state this fact here for future reference.

Theorem 2.6.5: The mixed parallel combinator g ||¢ is monotone, continuous
and distributive:

(1) Q@ C R= Pg|lcQL Pg|cR
(2) Pslle(N, @) =N (Psllc@n)
(3) PB”C(QHR) (PB lc @)1 (Psllc R).

Proof. By the correspondmg properties of parallel composition and inter-
leaving. 13

This operator also enjoys an associativity property, as expressed in the
following theorem.

Theorem 2.6.6:
Pallsuc(@sllc R) = (Pallz @laur!|c R.

Proof. It suffices to show that each side of the equation can be rewritten as
follows:

{(5,XUYUZUW)|I X CAYCB,ZCC,WCAUBUC,
sE(AUBUC), (s[A,X)€EP,(s[B,Y)€Q,(s[C,Z)e R}.
Indeed, since this expression is symmetric in P, @, B and A, B, C, we need only
reduce one of the terms to this form. We omit the details, as the calculation
is straightforward. In the case when the alphabets of P, (), R are contained
in A, B, C respectively, we could prove instead that the process each side of
the equation is expressible as
(P1A[|QIB| RIC)[(AUBU C).

We omit details. 3
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Examples.
Example 1.

Let P and @ be the recursively defined processes

P=(a—>c— P)
)

Equivalently, P = det((ac)*) and @ = det((bc)*). The alphabets of these
processes are A = {a,c} and B = {b,c} respectively. If we form the
parallel product P4 || g @ the only synchronizing event is ¢. Initially, neither
component process is ready to synchronize, but each is willing to progress
autonomously. Once they have each performed their first step, the next action
must be a synchronization. After that we are again in the initial configuration.
More formally,

Pall@=(a—b—c— Pal|p@)(b—a—c— Ps|[Q).

The alphabet of this product process is {a,b,¢ }.
Example 2.

Let P = (a —» b — STOP) and @ = (b — a — STOP). Both processes
have alphabet A = {a,b}. If we form the parallel product in which both
processes are required to synchronize on their entire alphabet, no action can
occur; the initials of the two processes are disjoint. In this case, we have

Pa||4@ = STOP.
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7. Hiding

The events performed by a process can be thought of as actions visible
to and possibly requiring participation by the environment of the process.
Events represent externally visible actions. It may be the case that, when P is
a composite process built from a set of interacting component processes, some
of the events are used only for communication between the components. In
such a situation, we might feel it unrealistic to assume that all details of these
essentially internal actions be observable by the environment of the process.
We now introduce an operation which conceals all occurrences of a particular
event from the environment of a process. The process formed by hiding all
occurrences of b in P will be denoted P\b, and the trace obtained from s by
deleting all occurrences of b is denoted s\b. Informally, the behaviour of P\b
can be specified as follows. For each trace s of P, it should be possible for
P\b to perform the trace s\b. But whenever P had the ability to perform
the internal action after doing the sequence s, P\b can decide autonomously
whether to do the hidden action, once it has performed s\b." Of course, the
ability of P to perform the hidden event depends on P’ choice of refusal
set. Thus, if P can refuse X after s and b € X, we will require that P\b
be able to refuse X after s\b. These two conditions are almost enough to
define a process. However, there is one further possibility to consider. In the
case where P can engage in an arbitrarily long sequence of internal actions
at some stage, so that there is a trace s with sb™ & traces(P) for all n, then
the process P\b may never interact with its environment. We will call this
phenomenon infinite internal chatter, or divergence. There are two fairly
reasonable interpretations of this behaviour in terms of failure sets. One
is to identify such behaviour (or lack of behaviour) with deadlock, and to
allow P\b to behave like STOP in such circumstances. The other identifies
this behaviour with CHAOS, since the environment of a process engaging in
infinite chatter cannot rule out the possibility that the process may, at some
future point, stop chattering and start performing visible events again. We
give, correspondingly, two alternative definitions of hiding; first let us consider
the version in which infinite internal actions lead to deadlock. Afterwards we
will discuss the “chaotic” version. In Chapter 5 we will extend the failures
model to obtain a perhaps more satisfying treatment of infinite chatter.

Definition 2.7.1: The hiding function \b on traces is defined byv induction on

length:
(\o={)
(s(z))\b = (s\b)(z) * (z #b),
(s{(z))\b =s\b (z = b).

It is easy to see from the definition that the following identities hold:
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Lemma 2.7.2:
(i)  (s\b)\b=s\b
(i)  (s\b)\ec = (s\c)\b
(iii)  (st)\b = (s\b)(t\b).

Similarly, any prefix u of s\b must be obtained by hiding from a prefix
of u,

I

u < s\b=3t < s.u=1t\h.

Finally, if b does not occur in s then s\b=s.

Definition 2.7.3: For a set S of traces we define
S\b={s\b|se S}

It is clear, from the above properties of hiding on traces, that when S is
a tree so is S\b.

Definition 2.7.4: For a pl;ocess P we define
P\b = {(s\b,X) (s, X U{b})€ P}
U {(s\0,X) | X € pZ & Vn.sb™ € traces(P) }.

This version of hiding represents infinite chatter by STOP, thus identify-
ing deadlock with infinite internal activity.

Theorem 2.7.5: If P is a process so is P\b, and
(1)  traces(P\b) = traces(P)\b
(2) refusals(P\b) = {X | X U{b} € refusals(P)}
U{X | X € pZ & Vn.b™ € traces(P) }
(3) (P\b)afteru = J{(Pafters)\b|s\b =u}.

Proof. The fact that hiding maps processes to processes will follow from (1)-
(3), which can easily be used to establish the required properties (P0)-(P3).
First let us establish (1). It is clear from the definition that

traces(P\b) C traces(P)\b.

If s € traces(P) and also sb™ € traces(P) for all n > 0, then again by definition
we have s\b € traces(P\b).

If s € traces(P) but there is an integer n such that sb™ &traces(P), then
(choosing the smallest such n) we can use property (P4) of the process P to get
(sb™, {b}) € P. But this gives (s\b,0) € P\b, so that again s\b € traces(P\b).
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This shows that
traces(P)\b C traces(P\b)

and completes the proof of (1).
The identity (2) is obvious, from Definition 2.7.4.

Finally, for (3), let u be a trace of P\b. Let (v,X) be a failure of
(P\b) after u, so that (uv,X) is a failure of P\b. There are two possibilities:

(i) Fs.s\b=uwv&(s, XU{b})EP
(i) Js.s\b = uv & Vn.sb™ € traces(P).

In both cases s can be written in the form s = tw, where
t\b=u & w\b=v.
It is then clear that we have, respectively,

(i) FHwib=u & w\b=v & (w,XU{b}) € Paftert,
(ii) 3t,w.t\b=u & w\b=v & Vn.(wb™,0) € P aftert.

Thus, we have one half of the condition:

P\bafteru C U{ (P aftert)\b|t\b=1u}.

The argument can be reversed to show the converse, from which the result
follows. &

Next we show what the effect of hiding is on a guarded process. We will
see that nondeterminism is introduced when one of the guards is hidden; in
this case, hiding a guard removes control over the passing of that guard from
the environment, and allows the process to decide autonomously whether to
pass it.

Lemma 2.7.6: Let Pg be a guarded process:

Pg = [hen(b — Ps).
Then
Pg\a = Lhen(b — P\a) if a &B,
= P,\aN(P\aUPc\a) f B=CU{a},a&C.

Proof. Elementary. 1

Corollary:
(i) STOP\b = STOP
(i) (a—PN\b=(a— P\b) (a50b)
(iii) (b — P)\b = P\b.
|

Some examples will he.lp to illustrate the properties of hiding.
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Examples. Throughout these examples we assume that a and b are
distinct events.

Example 1.

(e — (b = STOP))\a = (b — STOP).
Example 2.

(a = (b = STOP))\b = (a — STOP).
Example 3.

((a — STOP) (b — STOP))\b = (a — STOP) [1STOP.

In the third example, the original process was initially able to perform
either the hidden event or the visible event a, and the environment of the
process could control this choice. Hiding b allows the process to decide
autonomously to perform it, a decision which would remove the possibility
of performing a. Thus the resulting process has an initial non-deterministic
choice between the hidden and the visible action. In the other two cases no
such choice was necessary, because the event to be hidden was never possible
at the same time as a visible event.

Example 4. Define a chain of processes P, as follows:

Py = chaos(a*b)
P‘n+1 — (a — Pn)

The limit of this chain is P = [ P, = det(a"). Since each P, can perform
arbitrarily many hidden actions, we have

Py\a = STOP (b — STOP)
Pn+i\(1 == Pﬂ\a.

But the limit process P cannot perform a visible action, and
P\a = det(a")\a = STOP.
This shows that this version of hiding is not a continuous operation.

Example 5. Define the processes @, by:

Cp = (b — STOP)
Qﬂ+1 = (a = Qﬂ.)
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Let @ = UnQn be the greatest lower bound of these processes. Then a™ is a
possible trace of @, for each n. It is clear that
Q@n = (a"b — STOP)
Q»\a = (b — STOP).

But
@\a = STOP 1 (b — STOP).

Here is an example where

(URQn)\a C g@n\a)'

T

Hiding is not, therefore, generally distributive; it is, however distributive over
finite unions.

Theorem 2.7.7: Hiding is finitely distributive and monotone.

Proof. Distributivity impliés monotonicity, so we need only prove that hiding
distributes over finite unions. It is enough to show that

(PM1Q)\b = P\6T Q\b,

for all processes P and Q. Let P and @ be processes with trace sets S and T
respectively, so that the trace set of P1Q is SUT. Since (SUT)\b = S\bUT\b,
we see that (P 1Q)\b and P\bMQ\b have the same traces. According to the
definition of hiding,

(u,X) € (PMQ)\b<« either u=w\b&(w, XU{b})EPMNQ
: or u=w\b&wb® € SUT for all n.

But if for each n we have wb™ € S U T, then one of S and T must have
infinitely many traces of the form wb™. By prefix-closure, this means that one
of S and T contains all of these traces: either every wb™ is a trace of P or
every wb™ is a trace of Q. Hence, rewriting the above,

(u,X) € (PN Q)\b& either u=w\b& (w,XU{b})EP

or u=w\b&(w,XU{b})ER
or u = w\b& wb™ € traces(P) for all n
or u = w\b & wb™ € traces(Q) for all n.

But this is clearly equivalent to

(u, X) € (PMQ\be (u,X) € P\bor (u,X)c Q\b
& (u,X) € (P\b) 1 (Q\b).
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That completes the proof. g

The above examples also showed that hiding is not in general a deter-
ministic operation. Hiding an event allows the process to decide autonomously
whether or not to perform it, without letting the environment sce it. In cases
where the process was able to perform either a visible action or the hidden ac-
tion, hiding could introduce non-determinism. Nevertheless, there is a special
case when hiding does preserve determinism: when the action to be hidden is
unavoidable or ezclusive in the sense that, whenever it is possible it is the only
possible action; there is never any other visible event which the process could
perform instead of it, and the possibility of performing this event excludes all
other events.

Definition 2.7.8: Let T be a tree and b be an event. Then b is unavoidable
inTif, forallt€T,c €%,

t) ET &tlc) eT = b=c.

Lemma 2.7.9: If b is unavoidable in T then for each trace u € T'\b there is
a unique minimal trace t € T such that t\b = u.

Proof. Let u € T\b. If u = () then t = () is the required trace. In the
general case, let u = (c1,...,¢n) with ¢; 5% b for « = 1...n. By hypothesis
there is a trace w € T such that w\b = u. This trace can be written in the
form

w = wiy{c1).. Wn_1(Cn)Wn,

for some traces w; € b*. The trace
t = wi(cy).. . Wn—1{Cn)

is also in T, by prefix-closure. By definition, t\b = u and ¢ is minimal
with respect to this property. Finally, any other trace v in T satisfying this
property must have the form

v =v1{(c1).. .Vn-1(Cn)Vn

for some v; € b*. It is easy to prove, from the definition of unavoidability,
that
Vi = Wy,

for : = 1...n — 1. That shows that the minimal trace ¢ is unique. 1

Theorem 2.7.10: If b is unavoidable in T then det(T)\b = det(T'\b).
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Proof. By Lemma 1.2.3, and the fact that traces(P\b) = traces(P)\b, we
have

det(T)\b C det(T\b).

For the converse, we need to establish that every failure of det(T")\b is also a
failure of det(T'\b). Let (u, X) € det(T")\b. By Lemma 2.7.9, there is a unique
minimal trace ¢ € T such that t\b = u. Moreover, any trace s € T such that
s\b = u must have the form ¢b™ for some integer n. There are two cases to
consider:

(a) tb" €T forallm >0,
(b) tb™ € T,tb™+t! &T for some n > 0.

In case(a), u must be a maximal trace of T'\b, because if there were an event
¢ such that u(c) € T'\b there would be a trace w € T with w\b = u(c). There
would then be a prefix v < w with v\b = u and v(c) € T. But v must have
the form ¢b™ for some n, and by hypothesis we also have tb™"! = v(b) € T
This contradicts the assumption that b is unavoidable. So u is maximal in

T'\b, and no event is possible for det(7"\b) after u. By (P3), therefore, det(7"\b)
can refuse any set X after u. Thus, (u,X) € det(T'\b) as required.

In case(b), let s = tb™, so that s € T but s(b) &T'. In this case, the traces
of T" which produce u on hiding b are ¢, t(b),...,tb™. By definition of det(T’),

we have _
(tb*,{b}) &det(T), (=0...n—1)
(t6™, {b }) € det(T).

It follows that the only trace contributing to the refusals of det(7")\balteru
is 5. Since we are assuming that

(u, X) € det(T)\b,

we must have

(s, X U{b}) € det(T).

This means that
VeeX. s(c)ZT.

We want to show that
Ve € X. wulc) ZT\b.

If there were an event ¢ € X such that u(c) € T'\b, there would also be a trace
w € T with w\b = u(c). But then w would have a prefix v with v\b = u and
v{c) € T. Thus v must be of the form tb*,s < n. But by unavoidability of
b, this forces v to be s; now we have a contradiction, since we are assuming
s(c) &T. Thus we must have u(c) &T\b. That completes the proof. g

Page 48



2.8 ANOTHER VERSION OF HIDING

8. Amnother version of hiding

As remarked in the previous section, hiding an event which may occur an
unbounded number of times effectively allows a process to perform arbitrarily

many hidden actions, without participating in any visible action. Previously

we examined the consequences of identifying such behaviour with deadlock,
arguing that a process forever engaging in internal actions appears deadlocked
to its environment. However, another interpretation of infinite internal ac-
tivity is possible. It can be argued that the future behaviour of a process
engaging in internal actions is unpredictable until it stops performing hidden
actions. As far as its environment is concerned, a process forever perform-
ing hidden events is totally unpredictable: there is no way of telling whether
or not the process might at some future moment stop its internal activity
and allow some visible action. It is consistent with this interpretation to
identify infinite internal activity with CHAOS, the most nondeterministic of
all processes. In this section we consider an alternative definition of a hiding
operation; it differs from the earlier operation only in the treatment of infinite
chatter. Most of its properties are analogous to those of the other operation,
but this version of hiding is continuous, unlike the other version. We omit
most of the proofs, in cases where they are comparable to the proofs given in
the previous section. We include a proof of continuity.

Definition 2.8.1:
Plb={(s\6,X) | (s,X U{b}) € P)
U {((s\b)t, X) | Vn.sb™ € traces(P) & (t,X) € CHAOS }.

Recall that the previous version of hiding was defined:

P\b={(s\b,X) | (s, X U{b}) € P}
U{((s\b)t, X) | ¥n.sb™ € traces(P) & (t,X) € STOP }.

Theorem 2.8.2: 1If P is a process so is P/b. In the absence of infinite internal
chatter, P\b = P/b.

Proof. When there is no possibility of internal chatter, both definitions of
hiding reduce to:

P\b=P/b= {(s\b,X) | (s X U{b}) € P}.
|
Lemma 2.8.3: Let Pp be a guarded process: Pg = [hep(b — P,). Then

Pg/a = [bep(b — Py/a) if a & B,
= P,/an(P./adPc/a) if B=CU{a},a&C.
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Corollary:
(i) STOP/b = STOP
(i) (a—P)/b=(a—P/b) (a7}
(iii) (b — P)/b= P/b.
Examples.
Example 1.
(a — (b — STOP))/a = (b — STOP).
Example 2.
(a — (b — STOP))/b = (a — STOP).
Example 3.

((a — STOP) (b — STOP))/b = (a — STOP) [ STOP.

Example 4. The processes P, are defined as in Example 4 of the previous
section:

Py = chaos(a*b)
Pn+1 :(ﬂ'_ﬂ'Pn)-

The limit process is P = det(a*). Since each P, can perform arbitrarily many
hidden actions when we hide a, for each n

P,/a = CHAOS.

The limit process can also indulge in infinite internal action, so that
P/a = CHAOS.

This example is no longer a counterexample to continuity.

Example 5. The processes (), are defined as in Example 5 of the previous

section:
Qo = (b — STOP)

Qn+1 = (a — Qn).
Again let @ = |J_@n». Now we have

@~ = (a"b — STOP)
Qn/a = (b — STOP)
'Q/a = CHAOS.
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Again this example shows that this version of hiding is not generally distribu-
tive.

Theorem 2.8.4: XP.P/bis monotone and finitely distributive.

Theorem 2.8.5: 1If b is unavoidable in T and T is free from internal chatter,
then
det(T)/b = det(T\b).

Next we prove that this formulation of the hiding operator defines a
continuous function on processes. Roscoe [R] contains an alternative proof.
First, we need a lemma; its proof has been relegated to the Appendix, as
it is somewhat technical. The proof given in the appendix is for a slightly
generalised version. Here we state only the particular form necessary for the
continuity proof.

Lemma A: If {sn | n > 0} is a sequence of traces such that for the event b

the traces s, \b are uniformly bounded, i.e., there is a trace u such that
sn\b < u, for all n,

then either infinitely many s, are identical or there is a trace s such that

Vk.3n.sb® < sp.

Theorem 2.8.6: X\P.P/b is continuous.

Proof. Let {P, | n > 0} be a chain of processes with limit P. We must
show that hiding b in each term of this chain produces another chain, whose
limit is P/b. By monotonicity, the chain property is obvious, and we have one

half of the identity:
P/b C ()(Pa/b).

For the converse, suppose (u,X) € [ (Pr/b). We need to prove that (u,X) is
also a failure of P/b. For this, we require one of the two following conditions

to hold:
either (1) 3Js.s\o=u & (s, X U{b})EP

or (2) 3Fs.s\b < u & Vn.(sb",0) € P.

But we are assuming for each n that (u,X) is a failure of P, /b, so we have,
for each n,

either (1') Jsp.3,\b=1u & (8o, X U {b}) E Pa

or (2") Jsn.s2\b < u & VYm.(s,0™,0) € P,.
One of these alternatives must hold for infinitely many n, and therefore for
all n, using the chain condition. Without loss of generality, therefore, we can
assume the existence of a sequence of traces s, such that either (1’) holds for
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all n or (2’) holds for all n. In both cases the traces s, all satisfy the condition
sa vk £ u,

Now we can use Lemma A. This guarantees either that the s, are uniformly

bounded in length, or that they contain arbitrarily long sequences of the event

to be hidden, in the following sense:
either (i) length(s,) < NN, for some integer IV,
or (ii) infinitely many s, have a prefix sbk(»),
for some integer k(n) and a fixed trace s. In the first case, the sequence s,

must contain a constant subsequence, i.e., there is an increasing sequence of
indices ny and a trace s such that

Sn, = 8, for all k.

In the second case, there is an increasing sequence of indices n; and a trace
s such that
sbF < sn,, forall k.

Recall that either (1) or (2') must hold. Now it is easy to see that the first
alternative implies (1) if (1’) holds, and (2) if (2') holds, by the chain condition;
and the second alternative implies (1’) always. That completes the proof. &

The two hiding operations described so far enjoy, as we have seen many.

common properties: a notable exception is continuity, which only holds for the
second version of hiding, where infinite chatter was identified with CHAOS.
From now on, we will concentrate exclusively on this second, preferred version
of hiding.
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Compositions of hiding operations.

So far we have seen that hiding an event is a (finitely) distributive
operation, and hence monotonic with respect to the ordering; and hiding, in
the preferred version, is also continuous. In addition, hiding an event does not
preserve determinism unless the event being hidden was unavoidable. Next
we consider what happens if more than one event is hidden. We will see that
the order of hiding does not matter.

When deleting a set of events from a trace, the order in which those
events are deleted is irrelevant:

(s\0)\e = (s\c)\b.
Also, once an event has been deleted a fur;cher deletion of the same event has

no effect:
(s\b)\b = s\b.

We may, therefore, introduce the notation s\B for the result of hiding all
occurrences of the events in the set B. When B is a finite set { b1,...,bn },

£\B == (o [8\b1 )sss\Din)s
It will also be convenient to adopt the convention that
s\l = 3
An obvious corollary is that, for all finite sets B and C,

(s\B)\C = s\(BUC).

Next we show that these results can be extended to yield similar results
about the hiding operation on processes. First we will need a lemma con-
cerning the hiding operation on traces. We use a slight generalisation of the
Lemma used in the continuity proof (where the case B = { b} was used).

Lemma A: If {s, | n > 0} is a sequence of traces and B is a finite set of
events such that each of the traces s,\B is uniformly bounded, i.e., there
is a trace u such that

sn\B < u, for alln,

then either infinitely many s, are identical or there is an infinite sequence
t € B and a trace s such that

Yk Idn.stp < 8y,
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where for each k tj is the prefix of ¢ having length k.
Proof. See Appendix. 1

If we hide first b then ¢, there will be a possibility of internal chatter if
and only if the original process was able to perform arbitrarily long sequences
of actions drawn from the set { b, ¢ }. The traces will be obtained by removing
all occurrences of b and ¢, and the process (P/b)/c will be able to refuse a
set X if P could have refused at the corresponding stage the set X along
with the events to be hidden. These informal comments serve to explain the
following result.

Theorem 2.8.7: Let b and ¢ be events and P be a process.

(P/b)/ec = {((s\b)\e, X) | (s, X U{bc})EP}
U {(((s\b)\e)w, X) | ¥n.3t € {b,c }". st € traces(P) }.

Proof. By definition, a pair (u,X) is a failure of (P/b)/c if and only if
either (1) Jt.t\e=1u & (t,X U{c})€P/b
or (2) dt.t\c < u&kVn.(tc™,0) € P/b.
In case (1) we have (¢, X U {c}) € P/b, or, equivalently:
either (i) Js.s\b=1t & (s, XU {b,c})EP
or (i) Js.s\b <t & Vk.(sb*,0) € P.
In case (2) we have, for each n,
either (i) Zsn.s,\b=1tc" & (s5,{b})EP
or (iv) F8p.s,\b < te® & Ym.(s.0™,0) € P.
One of these alternatives must hold for infinitely many n, and hence for all n.

It cannot be the case that infinitely many of the s, are equal traces, because
(iii) guarantees that

length(s,) > length(¢) +n, for all n.
By Lemma A (putting B = {b,c}) we know there is an infinite subsequence
of the s, consisting of longer and longer extensions of a common trace by
events to be hidden. More precisely, we know that there is a subsequence s,

having prefixes of the form st;, where each t; is a sequence over {b,c} and
where the ¢ form an increasing sequence:

ty €{b,c}" & tr < tg+1, for allk.
We lose no generality if we replace the original sequence by the subsequence
satisfying this property. It follows that the condition for (u, X) to be a failure
of (P/b)/c is equivalent to the following: :
either (i) Is.(s\b)\e=u & (5, XU{bc})EP
or (i) 3s.(s\b)\c < u &Vk.(sb*,0) € P
or (iif) Fs.(s\b)\c < u &VEk3t, € Bf &t < tpy1 & (stk,0) € P.
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Since (ii) is clearly a special case of (iii), this is the required condition. 1

Corollary 2.8.8:

(i) (P/b)/c=(P[c)/b
(i) (P/b)/b= P/b.

Now we can extend the notation used for traces; if B is any finite set of
events { by,..., bn }, we will write

P/B = (..(P/b1).../bn).

In the special case where B is a singleton, we have P/{b} = P/b, and when
B is empty we take P/0 = P.

The following properties are immediate.

Corollary 2.8.9:

P/B={(s\B,X)|(s,XUB)EP}
U{((s\B)w,X) | ¥n.3t € B™. st € traces(P) }.

Corollary 2.8.10:

() (P/B)/C=(P/C)/B=P/(BUC).
(i) (P/B)/B=P/B.

Since hiding a single event is a monotone and finitely distributive opera-
tion, the generalised hiding operation /B is also monotone and finitely dis-
tributive. Similarly, the generalised operation is continuous. Many of the
identities already established for the single event hiding operation can be
restated for /B.

The following result states a condition on trace sets under which hiding
a set B preserves determinism.

Theorem 2.8.11: If each event in the set B is unavoidable in 7, then
det(T)/B = det(T\B).

Proof. By induction on the size of B. The base case is Theorem 2.7.10.
For the inductive step, one merely shows that if all events in BU {b} are
unavoidable in T, then b is unavoidable in the tree 7'\ B. Details are omitted.
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Examples.

Example 1. For any pair of processes P and @,
R=(a— P)U(b— Q)

is a process which allows its environment to select either P or @ on the first
step, by performing the appropriate initial event. If we hide first event a, we
get

Rja = P/ar((P/a) (b @/a).

In this process, the environment cannot be sure that its attempt to perform b
will succeed. Finally, if we hide b now, all control of the first step is removed,
and we get:

R/{a,b6}=P/{a,b}1Q/{a,b}.

Notice that here the events being hidden were not unavoidable, and nondeter-
minism was introduced on the first step.
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9. Sequential composition

Now we introduce a sequencing operation. Suppose the distinguished
event vV (pronounced “tick”) represents successful termination of a process.
We will say that a process has terminated when it has performed V. Similarly,
if the set { '\/} is a possible refusal of P we say that P can refuse to terminate.
The sequential composition of two processes P and ¢, which we denote P;Q),
is intended to behave like P until P terminates, after which it should behave
like @. The termination of the first component process, however, is regarded
as an internal event hidden from the environment. As in the definition of
hiding, therefore, it is reasonable to allow the constructed process P;Q to
refuse a set X, at a stage when the first component process is still running,
only when the first process can refuse X and refuse to terminate, i.e., when
the first process can refuse the set X U {\/}

Definition 2.9.1: A trace s is tick-free if v does not appear in s. For any
tick-free trace s and any trace ¢ we define:
(1) sit=gs
2) sVust = st.
This defines the sequencing operation on all traces, and extends to sets
of traces in the obvious way:

ST ={st|s€S&tet}.

Some obvious properties of sequence composition of traces are sum-
marised in the following result.

Corollary 2.9.2:

)
(2) s\/;t = st (if s is tick-free)
3) (sh)uw==wj(tu)

Definition 2.9.3: _
PiQ = [s..X} [[8, X4 \/}) € P & s tick-free }
U {(st, X) |s\/ € traces(P) & s tick-free & (¢, X) € Q }.

Theorem 2.9.4: If P and @ are processes so is P;Q, and
traces(P;Q) = traces(P);traces(Q).

Proof. By definition, every trace of P;@ is a sequential composition of traces
of P and @ :

traces(P;@) C traces(P);traces(Q).
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Conversely, if u € traces(P);traces(@), there are two cases to consider. Either
u is a tick-free trace of P, or there are traces s € traces(P), and ¢ € traces(Q),
with st = u and sV € traces(P). In the first case we have (u,0) € P, and
we want to deduce that (u,0) € P;Q. This will follow from Definition 2.9.3
if uv/ ¢ traces(P), because we will then have (u, { \/}) € P. When uV € P,
it follows from the second clause of Definition 2.9.3, because ((),0) € @. The
second case also follows immediately from the definition. Thus we have shown
that
traces(P);traces(Q) = traces(P;Q).
To complete the proof, we must verify conditions (P0)—(P3). Of these, the
first two are trivial. We give details only for (P3). Suppose (u,X) € P;Q
and u(c) &traces(P;Q). We want to prove that (u, XU{c}) € P;Q. As usual,
there are two cases. The first possibility is that u is a tick-free trace of P,
and (u, X U {\/}) e.P e = Vv there is nothing to prove. Otherwise, we
know that
u{c) & traces(P);traces(@), u € traces(P).
This means that u(c) cannot be a trace of P, because this would again be a
tick-free trace and hence be a trace of P;Q. Since P is a process, it follows
by (P3) that
(u, X U {c,\/}) € P,
and hence that
(u, XU{c}) € P;Q,
as required. The second possibility is that u = st, for some tick-free trace s
of P, and
sV € traces(P) & (¢,X) € Q.
In this case, t(c) cannot be a trace of @, because this would imply that st(c)
is a trace of P;@, in contradiction to our assumption. By (P3) for the process
Q, we get
tXU{c})e@,
from which it follows that (u, X U {c}) € P;Q. That completes the proof.
|

Exémples.

Example 1.
SKIP = (v — STOP)

This process terminates immediately, without performing any other action.
It has the property that, for all processes @,

SKIP;Q = Q.
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Example 2.
STOP:Q = 5TOP

STOP never performs any action, and hence cannot terminate. More generally,
P;Q = P, whenever all traces of P are tick-free.

Example 3.
(a — SKIP);(b — SKIP) = (a — (b — SKIP))

Here the first process initially performs a and terminates, whereupon the
second process performs b and terminates. The event signifying termination of
the first process is concealed from the environment, and is used only internally.

Example 4. Let P and @ be the processes
P = (a — SKIP)[JSKIP,
@ = (e — SKIP) M SKIP.

They both have the same traces but only @ can initially refuse to terminate.
Although P is deterministic, the sequential composition of P with another
deterministic process need not be deterministic. This is because V is not an
avoidable event for P. For example, a simple calculation shows that

P;(b — SKIP) = ((a — (b — SKIP))[J (b — SKIP)) 11 (b — SKIP).

The important fact here is that P;(b6 — SKIP) can initially refuse {a} but
cannot refuse {b}. By way of contrast, @;(b — SKIP) can initially refuse
either of these sets, and

Q:(b — SKIP) = (a — (b — SKIP)) (b — SKIP).

Properties of sequential composition.

It should be clear from the definition of sequential composition that, for
any tick-free trace u of P, once P;@ has performed u it is possible for the
first process P to have progressed:

P;Q afteru T (P after u);@.

Similarly, if u = st, and sV e traces(P), t € traces(Q), then the first process
may have terminated and the second may now be running:

P;Q afteru T @ after?t.
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In fact, a particular trace u of P;() may arise in more than one way from
traces of P and @), and in general P;Q alteru is the union of the several
processes corresponding to the various cases. The following Theorem states
this precisely.

Theorem 2.9.5: For all processes P and €, and all traces u,
(P;Q) afteru = |J{ (P after u);Q | u € traces(P) & u tick-free }
UU{ Qaftert | 3s. sV € traces(P) & st =u}.

Proof. Elementary. 1

Although Example 4 showed that sequential composition is not generally
a deterministic operation, it does preserve determinism in cases where ter-
mination is unavoidable; this is not surprising, since there is a close analogy
with the hiding operation.

Theorem 2.9.6: If V is unavoidable in S, then
det(S);det(T) = det(S;T).

Theorem 2.9.7: For any set B of events, not containing \/,

DbeB(b = Pb)?Q — DbeB(b = PbiQ)-

Corollary: 1If a 3£ \/, then for all processes P, Q
(a = P);Q = (a — P;Q).

The next results establish the important properties of monotonicity,
distributivity and continuity. Since sequential composition is not a symmetric
operation, it is most convenient to deal with both arguments at once. As
usual, monotonicity follows from distributivity.

Theorem 2.9.8: Sequential composition is distributive.

Proof. Let D and &£ be non-empty sets of processes and let P and @ be their
suprema. We need to show that

P=|J{PQ |PeD&Q et}
As usual we need to establish two inclusions. Let (u,X) € P;Q. We want to
show that there are processes P’ € D and @' € £ such that (u,X) € P;Q’.

There are two cases. The first case is when u is a tick-free trace of P and
(u, X U {\/}) € P. By definition of P this means there is a process P’ € D

with (u, X U{ \/}) € P’. Then it is easy to see that (u, X)) is a failure of P';Q’,
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for all processes @' € £. The other case is when there are traces s and t with
u = st, sV € traces(P), (t, X) € @.

But then there are processes P’ € D and @’ € £ such that
=gt sV e traces(P’), (t, X)€@,

and hence (u, X ) € P';Q’', as required.

The reverse inclusion is similar. ]

Theorem 2.9.9: Sequential composition is continuous.

Proof. Let {P, | n > 0} and {Q, | » > 0} be chains with limits P
and @. We show that the processes P,;Q, form a chain with limit P;@. The
continuity of sequential composition in both arguments follows if we replace
one of these chains by a constant.

By monotonicity, the processes { P,;@n | n > 0} form a chain and
N(PA;@x) T Pi@.

For the converse, let (u, X) be a failure of the left-hand side; we must prove
that (u, X) € P;Q@. By hypothesis, for each n we have

either (1) wu is tick-free and (u, X U {\/}) € P,

or (2) Bsnta suln="tid sn\/ € traces(Pp) & (tn, X) € @n.
One of these alternatives must hold for infinitely many values of n. In the
first case we get immediately (u, X U {\/}) € P, by the chain property; this
gives (u, X ) € P;Q as required. In the second case we use the fact that u has
only finitely many prefixes to find a pair of traces s and ¢ with

& = i, sV € traces(Pr), (t,X)E @n,

for infinitely many n. The result again follows by the chain property. That
completes the proof. g

Theorem 2.9.10: Sequential composition is associative,
Pj(@;R) = (P;Q);R.

Proof. We already know that sequential composition of traces is associative.
An elementary expansion of the definition shows that the failures (v, X) of
P;(Q;R) fall into three categories characterised as follows:

(i) v tick-free, (v, X U{ \/}) eP _
(i) v = st, s and ¢t tick-free, sV € traces(P) and (¢, X) € @

(ii1) v = stu, s and t tick-free, sV e traces(P),t\/ € traces(Q) and (u,X) € R.

The same is true of (P;Q);R. &
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Examples.

Example 1. The recursively defined process
P = (a — P;(a — SKIP)) [ (b — SKIP)

is deterministic and can terminate successfully after any trace of the form
a™ba™. This process can be thought of as “recognising” the formal language
{a™ba™ |n > 0}.

Example 2. The recursion
P = SKIP[J(a — SKIP)J(b6 — SKIP)J(a — P;(a — SKIP))[](b — P;(b — SKIP))

defines a process which recognises palindromes in the letters a and b.

These examples and others in similar vein (see, for example, [H1,2]) show
that unrestrained use of the sequential composition operation in recursive
process definitions can produce processes with highly non-regular trace sets.
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10. Iteration

There is a derived operation which corresponds informally to the idea of
repeated sequential composition (or iteration) of a process with itself. Since
sequential composition is continuous we know that, for any process P the
function A\@Q.P;() has a least fixed point. We denote this fixed point process
by xP. It is the limit of the sequence:

Py, = CHAOS,
Pﬂ+1 _ P;Pn,
and the fixed point equation is
PixP = xP.

Writing P™ for the n-fold iterate of P, i.e.,
Pl=P,
Pﬂ.+1 — P,Pn (n 2 1]’

it follows that P, = P™;CHAOQOS for all n > 1. This notation will be used
throughout the section.

Examples.

Example 1. The equation P = (a — P) has a unique solution det(a*).
Using the fixed point equation for iteration, we have

#(a — SKIP) = (a — SKIP);(x(a — SKIP))
= (a — *(a — SKIP)),

and hence ¥(a — SKIP) = det(a*).

Example 2.
#23TOP = 8§TOP

More generally, whenever all traces of P are tick-free, *xP = P.

Example 3. Define two processes P and @ by:

I

P = (a — SKIP) 1 (b — SKIP),
@ = (a — SKIP)[](b — SKIP).
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Then, by analogy with Example 1, *@ = det({ a,b}"). However, the iterate
of P is the limit of the chain:

P, = CHAOS,
Pyt = ((a — SKIP) 1 (b — SKIP)); P,
I(a-—)Pn)ﬂ(b“—)Pn)o

This is a chain which we have met before, so we have:

traces(xP) = {a,b}"
refusals(xP after s) = {0,{a},{b0}} (s € {a,b}).

Notice that iteration is not distributive, because

#(a — SKIP) = det(a"),
#(b — SKIP) = det(b"),
P — (a — SKIP) M (b — SKIP),
*P 5~ det(a™) M det(b").

The reason for this lack of distributivity is simple: in forming *P more than
one copy of P is used, and if P is nondeterministic there is no reason to
_ suppose that each copy will behave identically. In this example, P can decide
between a and b, and *P can decide at each stage which of these events to
allow next, regardless of past choices.

Example 4.
' *SKIP = CHAOS

The reason for this result is that *SKIP is the limit of the chain:

Py, = CHAOS,
Pny1 = SKIP; Py,
= Pn.:

all of whose terms are equal to CHAOS. It can be argued that this does
not really capture the intuitive behaviour of this process: surely *SKIP is
analogous to a non-terminating loop or a divergent process, since it is in effect
engaging in an infinite sequence of invisible actions. In the extended model
of processes of Chapter 5, where we take into account divergent behaviour
explicitly, this identity will no longer hold. '

Lemma 2.10.1: Iteration is monotone, i.e., P L @ = =P L xQ.
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Proof. Using the obvious notation, *P = [ Py, and *@Q =[] @n, where
P, = CHAOS, Qo = CHAQOS,
Pry1 = PPy, Qn+1 = Q;Qn.
Using monotonicity of sequential composition we can prove, by induction on

n that, for all n > 0,
PLQ = P, L Qn.

It follows easily that *P L Q. 1

Lemma 2.10.2: Iteration is continuous.

Proof. Let { P, |n > 0} be a chain with limit P. Define a doubly indexed
sequence of processes P;; for 4,7 > 1 by

P;; = P7;CHAOS.
Then for each 7 the set { P;; | 7 > 1} is a chain with limit

mP«;j = xP;.

Since sequential composition is monotone and the P; form a chain, the set
{P;; |1 > 1} is also a chain for each j. Moreover, the limit of this chain is

(P:; = [}P:?;CHAOS = P7;CHAOS.
But ﬂJ.P’- = P, by definition. Thus,
P mP’;CHAOS
e m P
- E}EP"

as required. 1§
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11. Alphabet transformation

A total function f : ¥ — ¥ can be used to rename events. We will use
the notation f[P] for the process which can perform the event f(c) whenever
P could have performed ¢, and which can refuse an event b just in case P can
refuse all events which are renamed to b. In other words, the traces of f[P)]
are obtained by renaming the traces of P, and f[P] can refuse a set X when
P can refuse the inverse image f-}(X).

When f is injective f[P] behaves exactly like a copy of P. However, in
general f may identify one or more events which were previously distinguish-
able. In the case where events c¢q,...,c, are identified,

flery=---= flea) = b,

the behaviour of f[P] after performing b could be that of any of the processes
f[P afterc;], for © = 1...n. In other words, when f[P] performs an event
corresponding to several different original events, the environment cannot tell
which of the original events actually occurred.

We will be interested in the case when f only makes finitely many
identifications; this condition guarantees that the inverse image of any event
in the range of f is a finite set. For our purposes, then, the following definition
is in order.

Definition 2.11.1: An alphabet transformation f is a total function
f: ¥ =X
such that for any event b, the set f~1(b) is finite.

Notation: The following conventional notation will be used, extending the
function f to sets and sequences of events in the usual way:

X)) ={veZ|flw)eX}
f(X)={f(=)|z€X}

f((cl,- cn)) = (fle1)s -+ flcn))
fAT)={s€Z" | f(s)ET}
fT)={f(s)|s€T}

1 s()=0)

(i) J(st)= F(s)f(2)-

Note that

|

Definition 2.11.2:
fIPI={(f(s), X) | (s, (X)) EP}.
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Theorem 2.11.8: If P is a process so is f[P] and it is uniquely characterised
by the following conditions:
(i) traces(f[P]) = f(traces(P))
(ii) refusals(f[P]) = { X | f1(X) € refusals(P)}
(iii) f[P] aftert = | J{ f[P after s| | f(s) =1t}.

Proof. By elementary properties of alphabet transformations. To verify that
f[P] is a process we check conditions (P0)—(P3). Property (P0O) follows from
the facts that f({)) = () and that s < u always implies f(s) < f(u). For (P1)
we use the fact that

Y CX = f(Y) C fiX).
Finally, for (P3), suppose (¢, X) is a failure of f[P], but that ta is not a trace.

We wish to show that (¢, X U {a}) is a failure of f[P]. By assumption there
is a trace s of P with
(s, I X)) EP & f(s)=t.

Let A = f!(a). Then f} (X U{a}) = f}(X)UA. If for any event b€ A
the trace sb was possible for P, it would also be possible for f[P] to perform
f(sb) = ta. By assumption, therefore, all events in the set A are impossible
for P after s. Since f is an alphabet transformation it has the finite pre-image
property, so A is finite. By finitely many applications of (P3) for the process
P we get

(s, fH(X)UA)eP
and hence

(t, X U{a}) € f[P]
as required. This argument still holds even if a is not in the range of f, when
Ais empty. 1

Several properties of the renaming operation are immediate.

Theorem 2.11.4: The identity function ¢ : ¥ — X is a renaming, and the
composition fog of two renamings f and g is itself a renaming. Moreover,
for all processes P,
(1) JP] =P
(i) (fog)lP] = flg[P]]-

Theorem 2.11.5:
()  f[STOP] = STOP
(i)  fle— Pl =(f(c) = f[P])
(ii1) f[chaos(T)] = chaos(f(T)) _
(iv) fldet(T)] C det(f(T)), with equality when f is injective.
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Theorem 2.11.6: Renaming is a monotone, distributive and continuous opera-

tom: () PC@Q@= flP|C f[Q
() 0D =U{f[P|| PeD}

(i) fIN,Pn] = N, f[Fn]
for all nonempty sets D and chains {P, |n > 0}.

The next result shows that hiding an event after a renaming has the same
effect as hiding all events which map to the hidden event before the renaming.
The proof can be easily adapted for the second version of the hiding operator.

Theorem 2.11.7: Let b be an event in the range of an alphabet transforma-
tion f, and let B = f'{b}. Then f[P\B] = f[P]\b.

Proof. An elementary calculation shows that (¢,X) is a failure of f[P\B] iff
one of the following conditions holds:
(1) 3st= f(s\B)& (s, [ (X)UB)€P
(2) 3s.t = f(s\B) & Vn3iw € B".sw € traces(P).
Similarly, (¢,X) is a failure of f[P]\b iff either of the following hold:
(1) 3st=f(s)\b& (s, f[HXU{b})EP
(2') Zsit = f(s)\b & Vn.f(s)b™ € traces(P).
But B= f1{b}, so
f(s)\b = f(s\B),
- x Uy =X UB).
Hence we see that (1) & (1'). Since w € B™ = f(sw) = f(s)b™, we also have
(2) & (2). Finally, by asssumption that f only identifies finitely many events,
for any trace u there can only be finitely many s such that f(s) = u. Hence,
if ub™ € traces(P) for all n, there must be some trace s with f(s) = u and
¥Yn3w € B™.sw € traces(P). This shows that (2') = (2), completing the proof.
1

Theorem 2.11.8: _
) flrOQ| = flPILfQ]
(i) fIPlllQ]= P[]
(i) f[PiQ) = f[Pf[Q] (provided f1(V) ={V})
(iv)  f[P||@Q]= f[P]||fIQ] (provided f is injective.)

Proof. We give details for (iv), the other cases being similar. Suppose f is
injective. It is clear that the extended function f : ¥* — £* is also injective.
Let (¢, X) € f[P||@]. There is a unique trace s of P || @ such that f(s) = ¢,

and for this trace we know that

(s, (X)) EP| Q.
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This means that there are sets Y’ and Z’ such that
(s, YNeP, (5,2)€Q, Y'uZ =/ (X)
Let Y = f(Y') and Z = f(Z’), so that
o =f-l(Y)! A :f-l(z)'

Then we have

(s, Y') € P = (f(s),Y) € f[P]
(s,2") €Q = (£(s), Z2) € f[@Q]
= (f(s), Y U 2) € f[P]]| f[Q]-

But f(s) =t and
YUZ=fYUfZ)=fY'UuZ)=Fff'X)=X
(note that this holds by hypothesis that f is injective.) Hence,
(t,X) € f[P]]| fQ]-
This shows that every failure of f[P || Q| is also a failure of f[P]| f[Q]; the

argument can be reversed to establish the converse. i

Putting together the results of Theorems 2.11.5 and 2.11.8, we can deduce
the effect of a renaming on a guarded process:

Corollary: For the process P = [hep(b — B),
fIP] = Lhen(f(b) — f[Ps)).

Examples. Assuming throughout that a and b are distinct events, define
the alphabet transformation f by:

fla) =0

Fo) =¢b

flg) =z (27 a,b).
Example 1. Let P and @ be the processes

P = (a — (¢ — STOP)),
Q = (b — STOP),
and let R = P[]@; then R is deterministic and has initials {a,b}. Applying
the alphabet transformation f, we have
f[P] = fla— (¢ — STOP)]
= b— f[c — STOP]
= b — (¢ — f[STOP])
= b— (c — STOP),
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and similarly

71Q] = f[6 — STOP|

=b— STOP.
But, using Theorem 2.11.8,
7B = sPOEQ)]
= flP| 0 (@]

= (b— (c — STOP))[J (b — STOP)
— b — ((c - STOP)1STOP),

so that, although R is deterministic, f[R] is not. Indeed, once f[R] has
performed b either of the component processes may have progressed:

f[R) after (b) = f[P after (a)] M f[Q after (b)]
= (¢ — STOP) M1 STOP.

Finally, putting B = f‘l(b) = {a,b}, we have

f[R]\b = (b — (c — STOP))\b1 STOP\b
= (¢ — STOP) 1 STOP
R\B = (¢ — STOP) M STOP.

This illustrates the identity of Theorem 2.11.7.
Example 2. Let R be the recursively defined process
R=(a— R)I1(b— R).
Then for the alphabet transformation f defined above, we have

f[R] = fla— R]M f[b — R]
= (b~ f[R)M (b~ fIR)
= (b f[R).

This equation for f[R] has a unique solution, the deterministic process
det(b*). Although R could decide autonomously between executing a or b at
each stage, the renaming identifies these two events; f[R| cannot refuse to
perform the renamed event. -
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12. Inverse image

For an alphabet transformation f, the process f[P] can be thought of as
a direct image of P. Now we introduce a kind of tnverse tmage, which we will
denote f~1[P]. This is to be a process which can perform event ¢ whenever P
could have performed f(c). In addition, f~}(P) can refuse an event ¢ only if
P could have refused the image f(c) of ¢ : in general f~1[P] will be able to
refuse a set X just in case P can refuse the image set f(X).

Definition 2.12.1:
Pl =A{(s,X) | (f(s) f(X)) EP}.

Theorem 2.12.2: If Pis a process so is f"'[P], and it is uniquely characterised
by the conditions:

(i) traces(f1[P]) = f(traces(P))
(i) refusals(f1[P]) = { X | f(X) € refusals(P) }
()  /[Platiers = / [Pafter f(5).

Proof. Straightforward. 1§

Theorem 2.12.8: Let ¢ be the identity transformation and f,g be any al-
phabet transformations. Then for all processes P,

(i) ;P =P
(i) (fogy'[P]=g'lf'[P].

Theorem 2.12.4:

(1) fe— Pl=[1{(b— f[P])| f(}) =c}
(i)  f[det(T)] = det(f(T))

(iii) f[chaos(T)] = chaos(f1(T))

(iv) f[STOP] = STOP.

Theorem 2.12.5: The inverse image operation is monotone, distributive and

continuous: 0 PCO= f'l{P] - f'l[Q]
@ ULl =U{f'[P]|PED}
(i) N, Pal =N, [Pal,

for all nonempty sets D and chains { P, |n > 0}.

Theorem 2.12.6: Let f be an alphabet transformation and let b € range(f).
Let B = f-!(b). Then for all processes P,

fH[P\b] = f[P]\B.
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Proof. As in the proof of Theorem 2.11.7, we see that (s, X) is failure of
f1[P]\B iff one of the following conditions holds:

(1) Ju.s=u\B & (u, X UB) € fl[P]
(2) Ju.s = u\B & V¥n3w € B™.uw € traces(f![P)).
Similarly, (s,X) is a failure of f'[P\b] iff

either(1') 3Jtt\b= f(s) &t f(X)UB)EP
or (2') 3t.t\b= f(s) & Vn tb™ € traces(P).

But f(X UB) = f(X)U {b}, since b is in the range of f. Since w € B™ =
fluw) = f(u)b™, it follows that (1) < (1') and (2) & (2'). That completes the
proof. 1#

The proof of this result on hiding can again be adapted to the alternate
hiding operator.

Theorem 2.12.7:
(i) 1[PDQ] PO Q)
(i) [PI:.@J —f 1P| £ Q]
Gi)  f1PQ = fPLSQ) (f (V)= {V}).
(iv) FlPlQ] = I[P]Hf"[@]- .

Again, as with direct alphabet transformations, we deduce the effect of
an inverse transformation on a guarded process:

Corollary: For a process [ hep(b — P)
Pl =Leesr (e~ 7 Pre))
=0{(c— f'B))[bEB & f(c) =b}.

Proof. By Theorem 2.12.7(i) and 2.12.4(i). &

Examples. Revisit the examples of the previous section. Let f be the
alphabet transformation used there:

fla)=1b
) = b
flz)==z (z5a,b)

Example 1. The process P performs first a then c.

P =a—(c—STOP)
£P]| = 8TOP;
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because f!(a) = 0. The inverse image of P is unable to perform any event,
because no event initially possible for P is in the range of f. Notice that this
example shows that the condition on the hidden event in Theorem 2.12.6 is
necessary: here a is not in the range of f, and we have

F1[P\a] = flle - STOP]
= (¢ — STOP)
# £ PN\f(a)
= 71(P]
— STOP.

The process  can initially perform an event which is associated to two
previously distinct events by f:

Q = b — STOP
@] = (a — STOP)[J(b — STOP),

because f1(b) = {a,b}. For combinations of P and Q we get:

fFirOe = pPar Q)

= (a — STOP)[J(b — STOP),
FiPngl=fprin e

= ((a — STOP)[J (b — STOP)) 1 STOP.

Unlike P[] @, the process P [ Q can refuse the set {6} = f({a,b}). Hence,
f PN Q)] can refuse { a,b} whereas f}[P[]Q)] cannot.

Notice also that we have
flf*[P]] = f[STOP] = STOP,
fHfQN = £7(Q] = (a — STOP) (b — STOP).
Thus in general P and f[f![P]] are incomparable and so are @ and f'[f[Q)]].

Inverse and direct renamings.

Finally in this section let us consider the relationship between direct and
inverse image operations. For any function f : £ — X, and any set X, we

know that
(i) X C fY(fX))
(i) f(f(X)CX.

Moreover, these inclusions are identities when the function is, respectively,
injective and surjective. Indeed, when f is a bijection, the inverse function
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f!: X — T will also be an alphabet transformation. The next result states
that, for a bijective alphabet transformation f the inverse image of P under f
is the same process as the direct image under f~!. It also gives the analogous
results to (i) and (ii) above.

Theorem 2.12.8:
(i) When f is injective, f*1[f[P]] = P.
(i) When f is surjective, f[f'[P]] = P.
(iii) When f is bijective and g : & — X is its inverse function, g[P] = Pl

Proof. Elementary properties of functions and their inverses. 3



Chapter 3

Implementations

0. Introduction

So far we have presented a domain of processes, equipped with a partial
order which corresponds in a precise way to a measure of nondeterminism.
Processes were specified as sets of failures, in terms of the actions they could
perform and refuse to perform. Each failure of a process represents part of
a possible behaviour of that process: a sequence of actions which the process
may engage in, and a set of events which the process may refuse to perform
on the next step. We saw that it was possible to define a wide variety of
processes and functions on processes. In each case we explained the behaviour
of a constructed process in terms of the behaviours of its constituents.

This chapter considers an alternative, but equivalent, formulation of the
notion of process. This formulation has strong similarities with the work
of Kennaway [K1,2], which will be explored more fully in Chapter 6. We
introduce a simple abstract notion of implementation. Our attitude is that,
in order to implement a process P, one must resolve the nondeterministic
decisions of the process. This abstract view of implementation amounts to
saying that an implementation of a process is just a possible deterministic
behaviour of that process. Each process will be characterised by its set of
possible implementations. It turns out that implementation sets have some
elegant properties. The idea extends to process operations: an implementation
of a function on processes should be a function which maps implementations
of argument processes to implementations of results.
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1. Implementing processes

The task of implementing a process P is understood to involve making a
set of decisions to resolve the nondeterminism inherent in P. Implementations
of a process will therefore represent possible deterministic behaviours of that
process. Since a deterministic process is uniquely represented by its trace set,
and this set always forms a tree, we will identify an implementation with the
corresponding tree. A particular tree T is a valid implementation of P if and
only if it is possible for P or its implementor to decide to allow all traces in
T'. This situation is possible if and only if P is at least as nondeterministic
as the deterministic process with trace set T, 7.e.,, if P T det(T). Informally
we may think of implementing a process by making a sequence of choices of
refusal set, at each stage remaining consistent with the failures of the process.
It will be convenient to introduce a simple notation for trees. A tree can be
described by giving its initial arcs and the subtrees rooted at these arcs. We
write

(z: B— T(z))
for the tree with initial arcs labelled by the events in B and with subtrees
T(c) hanging from the arc labelled ¢, for each ¢ € B. In this notation, z is a
bound variable; we are free to use any other bound variable without loss of

generality. We also use the abbreviation S for initials(S). Thus the general
tree T can be expressed in the form

T = (z: T° — T after (z)).

We will understand a term of the form (z : § — T'(z)) to represent the trivial
tree NIL, as this tree has empty initial set.

The map
imp : PROC — P(TREE)

maps a process to its implementation set. The map
proc : P(TREE) — PROC

produces the most nondeterministic process having a given implementation
set.

Definition 8.1.1: Let P be a process and T be a set of trees.
() imp(P)={T|P C det(T)}
(1) proc(T)=U{det(T) | T € T }.

Notice that the tree T'= (z : B — T'(z)) is a possible implementation of

P just in case P can refuse every finite subset of the complement B and for
each ¢ € B the tree T(c) implements P after (c).
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Lemma 3.1.2:
(i) traces(P) € imp(P)
(ii) imp(det =
(iii) proc(imp
(iv) imp(proc(

—

Proof. These are restatements of earlier results in the new notation. 1§

Corollary 8.1.8:
PCQ ¢ imp(P)2 imp(Q).

The last result shows that no information is lost when identifying a
process with its implementation set. Indeed, the superset ordering on im-
plementation sets coincides with the ordering on processes. The notion of
a process as a set of implementations could therefore have been used as an
alternative basis for construction of the domain of processes. It is clear that
the sets of trees which serve as implementation sets of processes satisfy a
simple condition. If T = imp{P), then we have

proc(T) =
=  imp(proc(T)) = imp(P)
= imp(proc(T)) =T
This implies that any implementation set T of trees satisfies the condition

imp(proc(T)) = T. It is obvious that any set of trees satisfying this condition
is an implementation set. Let us call such sets of processes closed.

Definition 8.1.4: A set T of trees is closed if and only if
T = imp(proc(T)).

We will refer to imp(proc(T)) as the closure of T. Arguing from the

definitions above, we see that a tree U belongs to the closure imp(proc(T))

just in case
proc(T) C det(U),

and this holds if and only if for each u € U and each finite set of events X
such that (u,X) € det(U) there is a tree T in T such that (u,X) € det(T).
Equivalently, using the definition of det(:), U € imp(proc(T)) if and only if
for all u € U and X € pZ%,

uXNU=0=3TecT.ueT &uXNT =0

This can again be rewritten: U € imp(proc(T)) iff for all u € U there does
not exist a finite set X such that

uXNU=0& VTET.v €T = vuXNT#0).
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Finally, if we define a cross—section of a collection of sets to be a set which
has a nontrivial intersection with every member of the collection, we see that
the above condition on U is equivalent to requiring that for each u € U the
collection of sets

{(Ta.fteru)otuET &TeT}

has no finite cross-section drawn from the set (U after u)9. Notice that if the
set {T° | T € T} has itself no finite cross-sections then the trivial tree
NIL must be included in the closure of T. A similar result was proved by
Kennaway (K|, except that in his formulation of processes as sets of trees any
set T containing NIL becomes identified with all other such sets: whenever T
contains NIL Kennaway takes the closure of T to be the entire set TREE of all
trees. This fact will reappear in Chapter 6, where a more detailed discussion
of Kennaway’s work and its connections with this work will be given.

Recall that the alphabet of a process is the smallest set of events A such
that the events in all traces of P are drawn from A. By analogy, we define the
alphabet of a set of trees Tto be the alphabet of the process proc(T). The
following result gives an alternative characterization of closed sets of trees in
the case when their alphabet is finite. First some definitions.

Definition 3.1.5: The convez hull conv(T) of a set T of trees is the set of
all trees T such that, for all ¢,

teT =35 € T.tE S &initials(S aftert) C initials(T after t).

We say that T is convez if T = conv(T).

By definition, T C conv(T), and conv(T) is closed under arbitrary non-
empty unions. In particular, the tree | J T is the largest member of conv(T).
This explains our use of the term convez hull where it might have seemed
more natural from the given definition to use upward closure. Putting U for
the union of the trees in T, we see that for all T € conv(T) and all t €T

1S € T.t € SNU &initials(S aftert) C initials(T aftert) C initials(U after t).

This version corresponds more closely to the normal formulation of convex
closure.

Lemma 8.1.6:
(i) conv(conv(T)) = conv(T)
(ii) conv(T) C imp(proc(T)).

Proof. Elementary. 1
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Lemma 8.1.7: If the alphabet of T is finite ,
imp(proc(T)) C conv(T).

Proof. Elementary. §

Corollary: If the alphabet of T is finite, then
T is convex & T = imp(proc(T)).

Examples.
Example 1. STOP has a single implementation, the trivial tree:

imp(STOP) = { NIL }
proc({ NIL }) = STOP.

Example 2. CHAOS can be implemented by any tree whatsoever:

imp(CHAOS) = TREE(X)
proc(TREE(XZ)) = CHAOS.

.

Example 3. Let P = (a — STOP) and @ = (b — STOP).

imp(P) = {aNIL }
imp(Q) = {6NIL }
imp(P M @) = { aNIL, bNIL, aNIL + bNIL }.

Putting T = { aNIL, bNIL } we have proc(T) = P Q. In this example, T
is not convex and imp(proc(T)) = conv(T) # T.

Example 4.. Let P = (a — STOP)[](b — STOP) and @ = STOP. Let
T = {NIL, aNIL +bNIL }, so that proc(T) = P Q. By a simple calculation

we have
conv(T) = { NIL, aNIL, bNIL, aNIL + bNIL },_

imp(P M Q) = { NIL, aNIL, bNIL, aNIL + bNIL }.

Indeed, using distributivity of [] over [ and vice versa, we have the identity
P @ =STOP(a — STOP) (b — STOP)M(z: {a,b} — STOP).

In this example again T is not closed.
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Example 5. Assume that each natural number n denotes an event, so
that the alphabet ¥ is infinite. Let P be the process

P = M{(n — STOP) | n > 0}.

Let T = {nNIL | n > 0}, so that P = proc(T).

Notice that T has no finite cross—section. The convex hull of T consists
of those trees which can initially accept any of a non-empty set of natural
numbers and then deadlock. This means that the tree NIL, which cannot
perform any event, does not belong to conv(7T ). However, P can refuse any
finite set of events, by choosing to behave like (n — STOP) for a sufficiently
large integer n. Thus the process STOP is a possible implementation of P. In
fact, we have:

conv(T) 54 imp(proc(T)) = conv(T) U { NIL }.

This example illustrates the characterization of closure discussed above when
the alphabet is not finite.
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2. Implementing functions

A function F' : PROC™ — PROC represents a method of construct-
ing processes. Given argument processes Py,..., P,, applying the function
produces the result process F(Py,..., Pn). Extending the ideas of the previous
section, it seems natural to define an implementation of I to be an opera-
tion f on implementations of processes which is consistent with F: when
applied to implementations T4, ...,7, of 'P;,...P,, f should always produce
an implementation of F(Py,..., P,). Thus, an implementation of ' will be a
function f : TREE™ — TREE such that

F(TiouTa) € imp(F(Ps+: o Bal);

whenever T; € imp(P;) for ¢ = 1...n. Equivalently, f is an implementation
of F' iff, for all trees Ty,...,Th,

f(Ty, ..., Ty) € imp(F(det(TY), - . ., det(Th))).

This means that the various implementations of F' are determined by the
effects of I’ on deterministic processes. Just as any set of trees T determines
a process proc(T), any set 7 of functions on trees determines a function
fun(7) on processes. For simplicity we consider the case when the functions
are unary; the generalisation to functions of several variables should be clear.

Definition 8.2.1: Let F be a function on PROC and let 7 be a non-empty
set of functions on trees.
() imp(F) = { f | VT.f(T) € imp(F(det(T))) }
(i) fan(F)(P) = U{det(f(T)) | f € 7 &T € imp(P) }.

Recall that the traces of any process form a tree, and that this tree
is a possible implementation of that process. Correspondingly, a generally
applicable method of implementing a process operation F' is to take traces:
for any process operation F', there is an implementation F' defined by

-~

F(T) = traces(F(det(T))).

‘When F is a deterministic operation, F will be the only possible implemen-
tation; for this reason we will call /' the deterministic implementation of F.

Lemma 8.2.2: Let F be a process operation.

(i) Fe imp(F)
(ii) imp(F) = { F}, if F is deterministic.
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Proof. By Lemma 3.1.2. 3§

By definition, the process operations F and [un(imp(F’)) agree on all
deterministic arguments. This agreement will extend to all arguments only if
F' is determined uniquely by its effect on deterministic processes alone in the
following way:

F(P) = | J{F(dey(T)) | T € imp(P) }

In view of the identity

P = | J{det(T) | T € imp(P) },

the above condition amounts to a weak form of distributivity. Not every
process operation satisfies this condition. We will call functions which are
uniquely determined by their action on deterministic processes implementable.

Definition 8.2.3: A process operation F' is implementable iff for all processes

P:
F(P)= (J{ F(det(T)) | T € imp(P) }.

Lemma 8:2.4: The following three conditions on a process operation F' are

equivalent:
(i) F is implementable
(ii) - F = fun(imp(F))

(iii) F(P) = proc({ /(T) | f € imp(F) & T € imp(P)}).

Proof. Straightforward. 8

Examples.
Example 1. The function F : PROC — PROC defined by:

F(P) =P, if P is deterministic,
=CHAOS, otherwise,

is not implementable. The only possible implementation of F' is the identity
function on trees, and fun(imp(F')) is the identity function on processes, and
not equal to F.

Example 2. Any fully distributive operation is implementable, but not
every implementable operation is fully distributive.
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3. Implementing CSP operations

In this section we show how all of the CSP operations defined earlier could
have been given in terms of implementations. The first fact to note is that
all these operations are indeed implementable; this is hardly surprising, since
most of them were shown to be fully distributive. In the only non-distributive
case, that of hiding, we state the fact which renders the hiding operations
implementable. Although neither hiding operation is fully distributive they
do distribute through implementation sets in the required way. To facilitate
comparison with the earlier definitions, we consider the CSP operations in
the same order as before.

0. Inaction.

STOP is a deterministic process. It has a single implementation NIL, its
trace set.

1. Prefixing.

Prefixing is a deterministic operation. If we want to construct an im-
plementation for (¢ — P) from an implementation T of P, we simply prefix
the event c to T', producing the tree (¢ — T'). The earlier definition of prefixing
was:

(e = P)={({()X)egXIU{(c)s;,X) [ (s, X) € P}

The new definition is simple.

(c=>T)={(}u{{t|teT}
imp(c > P)={(c = T) | T € imp(P) }.

It is easy to see that the two definitions agree.

2. Nondeterministic choice.

The process P [1Q can behave either like P or like @. It can be imple-
mented by selecting either an implementation of P or an implementation of
Q. In other words, the two projection functions Il;, ITs from TREE? to TREE
are implementations of the nondeterministic choice operation. The earlier
definition was simply: '

Pr@ =P1Q.

In terms of implementations, the required definition is:

P 1@ = proc(imp(P) U imp(Q))
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or, equivalently,
PN @ = fun{Il,II }(P, Q).

Again it is left to the reader to verify that the definitions agree. The deter-
ministic implementation of this operation is just union of trees, because

traces(P [ Q) = traces(P) U traces(Q).

3. Conditional choice.

Let S and T be implementations of P and @ respectively. We wish to
build an implementation of P []Q. If there is no event initially possible for
both S and T, we may simply choose the union SUT to implement P[]Q); this
allows the choice between behaving like P and behaving like @ to be made
on the first step. When S9N T° = 0 this choice can be made unambiguously
because any potential first event will be possible for at most one of the two
trees. In the general case, when the initials of S and T have some event in
common, we are permitted to implement P []Q by giving priority to one
tree rather than the other on the common initial events. This amounts to
forming a biased union of the two trees. When the trees have disjoint initials,
of course, the biased union is simply the usual union. We use the notation
SelseT for the union biased in favour of S. Firstly we restate the earlier
definition of ], for comparison with the following implementation version.

POR={()X)1()»X)ePNQ}tU{(s,X)|s#()&(s,X)EPUR}
SelseT = S U(z: T°-S° — T(z))
P[]Q =proc{SelseT,TelseS | S € imp(P) & T € imp(Q) }.

The most elegant way to establish this fact from the earlier definition of []
is to begin from the easy identity

det(S) [l det(T) = det(S else T) M det(T else S),

which is easily deducible from Lemma 2.3.8.

4. Parallel composition.

This is a deterministic dperation. The only implementation of a parallel
composition of two deterministic processes det(S)||det(T") is SNT, obtained by
intersecting the implementation of det(S) with the implementation of det(T’).
The earlier definition was:

PlQ@={(5,XUY)|(s5,X)eP&(5,Y)EQ}.
In terms of implementations we merely require:
P||Q@=rproc{SNT|S €imp(P)&T € imp(Q) }.
This identity is easily verified.
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5. Interleaving.

P|||Q is a process whose traces are obtained from those of P and @
by interleaving. Given two implementations S and T of P and @, the
deterministic implementation of P|||Q would be the tree S|||T. However,
in this form of interleaving a nondeterministic choice is allowed whenever an
event is possible for both constituent processes. Indeed, when the processes
being interleaved are

P = (z:B— P(z))
Q=(z:C— Q(z))

we have

P|||Q = (z: B — (P(2)|[|@)) U(= : € — (P[[|Q(2)))-

It is easy to see that this identity suffices to define interleaving on determinis-
tic processes, by recursion using the definition of []. This suggests a recur-
sive definition of the set of possible implementations of det(S)|||det(T). The
following set of trees is what is required:

Definition 8.8.5.1: For any trees S and T the set ndmerge(S,T) of all
nondeterministic merges is defined by
U € ndmerge(S,T) & either U = (z:S5° — U(z))else(z: T° — V(z))
or U= (z:T°— V(z)else(z: S® — U(z))
where Vz € S°. U(z) € ndmerge(S(z), T)
and Vze€T° V(z)€& ndmerge(S,T(z)).

This definition is symmetric in S and T'. In the special case when S is
trivial, we interpret the definition as reducing to {7} :

ndmerge(NIL,T) = {T'}.

In order to check whether or not a finite tree belongs to ndmerge(S,T) this
recursive definition provides us with a terminating algorithm. For infinite
trees we are required to check that the initial set at every node of the tree
is consistent with the definition; the nodes at each level in the tree can be
checked off successively, since the definition of ndmerge uses recursion on
lower levels of trees. This informal idea could be made rigorous in the obvious
way. :

The following results are easy to prove, giving a characterisation of the
interleaving operation in terms of implementations.

det(S)|||det(T) = proc(ndmerge(S, T'))
P|||Q = proc(|J{ ndmerge(S,T) | S € imp(P) & T € imp(Q) }).
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6. Hiding.

Suppose we begin with an implementation S of P and we wish to con-
struct an implementation of P\b. The effect of hiding the event b is to allow
occurrences of b to take place invisibly, without the knowledge or participa-
tion of the environment. At each stage where the old process could have
performed either a visible action or the hidden action, a nondeterministic
choice is introduced. In implementing P\b we must take these decisions into
account. Suppose first that S cannot initially perform a hidden action, be-
cause b & SO In this case the initials of our implementation must be the
same as those of S; and once an event ¢ has taken place we must continue
by implementing det(S after (c))\b. Next suppose that S can initially perform
b, and let S® = C U {b}. If C is empty, this hidden action is unavoidable
and we must implement det(S after (b))\b. Otherwise, when C is nonempty,
there is initially a possibility of both hidden and visible action. We may
implement det(S)\b in such a case either by forcing the initial hidden action
or by avoiding it. The following two identities capture precisely these ideas:

(i) (z:C — P(z))\b = (z: C — P(z)\b)
(i) (z:CU{b} — P(z))\b= PO)\oM(PG)\bO(z: C — P(z)\b))
when b &C.

In the special case when C is empty, when the initial occurrence of b is
unavoidable, the second identity reduces to

(iii) (b — P(b))\b = P(b)\b.

Since we already know how to implement prefixing, nondeterministic
choice and conditional choice, we can define a recursive algorithm for generat-
ing implementations of P\b from implementations of P.

Definition 8.8.6.1: For any tree S let hide(b)(.S) be the set of trees given by:
(i) hide(d)(S) = {(z: S° — T'(z)) | Vz € S°.T'(z) € hide()(S(z))}
if bS89,
(i) hide(d)(S) = {U,UelseV,Velse U | U € hide(b)(S(b))
& V € hide(b)(vis(S)) }
if b€ SO, where vis(S) = (z : S°—{b} — S(z)).

Here we have used vis(S) to represent the tree obtained from S by
removing any initial arc and its corresponding subtree in which the label on
the arc is to be hidden.

It should be clear that one can use this definition of hide(b)(S) to generate
the successive layers of all implementations of det(S)\b, at least unless the
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possibility of internal chatter arises; this will be the case when 6 C S, or
more generally when there is a trace s such that sb* C S. In fact, the above
“definition” gives no information at all about implementations of the process
det(b*)\b, since it reduces to the vacuous:

hide(b)(b*) = {U | U € hide(5)(b*) }.

In this situation, there are two alternatives. If we assume that we are to use
the algorithm to establish that a tree is an implementation by considering
its successive finite depth cross-sections, and that we cannot assume that a
particular tree is a valid implementation unless each of its cross-sections can
be shown to be consistent with the above definition, then only the trivial tree
NIL can safely be assumed to belong to hide(b)(5*). On the other hand, if we
regard the algorithm as a method of eliminating a tree from the reckoning
whenever one of its finite depth cross-sections fails to match the definition,
we can never rule out any particular tree as a potential member of hide(b)(b*).
The first approach amounts to identifying internal chatter with STOP, while
the second identifies it with CHAOS. We must modify the above definition of
hide(b)(S) with one of the following extra clauses. The first corresponds to
our first definition of hiding, and the second to our later version.

(iii) NIL € hide(5)(S)  if b* C S,
(iii’) hide(b)(S)= TREE  ifb* C S.

Using the notation of the previous chapter for the two versions of hiding, we
can summarise as follows. We write hide(b) and hide(5)’ for the two versions of
Definition 3.3.6.1 obtained by using respectively clauses (i),(ii),(iii) and clauses
(i),(ii),(iii’). The following identities show that these alternatives correspond
to our two forms of hiding: one identifies infinite chatter with deadlock, the
other with CHAOS.

det(.S)\b = proc(hide(5)(S))
P\b = proc(|J{ hide()(S) | S € imp(P)}).

det(S)/b = proc(hide(5)'(S))
P/b = proc(|J{ hide()'(S) | S € imp(P)}).
In order to prove these identities, which is tantamount to proving that both
versions of hiding are implementable, one needs to show that

P\b = J{det(S)\b | S € imp(P) },
P/b=J{det(S)/b| S € imp(P) }.
This is straightforward, once one has shown that P can indulge in infinite

internal chatter if and only if one of its implementations also has this pos-

sibility.
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7. Sequential composition.

Recall that we use the distinguished event v to denote successful ter-
mination. When we implement the sequential composition P;@ we want to
run an implementation S of P until it terminates, and then run an implemen-
tation T of Q. However, termination of the first process is allowed to take
place invisibly, without the participation of the environment (or implemen-
tor). If at some stage during the activity of P it is possible for the next step
to be either termination or another event, the environment or implementor
may be allowed a conditional choice between starting up the second process
and continuing the first. These ideas are captured precisely in the following
identities.

(i) (z: B— P(2));Q = (z: B — P(z);Q)
() (z:BU{V}—- P)Q=@n(Q0(z: B— P(2),Q))
if v &B.

Again these identities enable us to define the effects of sequential composition
on deterministic processes, as follows. We will write seq(S,T) for the set of
implementations of det(S);det(T").

Definition 8.8.7.1: Let S and T be trees.
seq(S,T) = {(z : S® — U(=z)) | ¥z € S°. U(z) € seq(S(=),T) }
when V ¢ S°,
= {T,TelseU,UelseT | U €seq(S’,T)}
when V € S° and §' = (z: S°—{V } — S(2)).

Theorem 38.3.7.2: .
(i) det(S);det(T) = proc(seq(S, T))
() P;Q = proc(U{ seq(S,T) | S € imp(P) & T € imp(Q) }).

When termination is an unavoidable event in S, the definition of seq(S,T)
reduces to

seq(S,T) = {S;T }.

Hence, when v is unavoidable for P, we get

P;Q = proc{S;T | S € imp(P) & T € imp(Q) }.
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8. Inverse image.

For any alphabet transformation f the inverse image operation is deter-
ministic. Since we have the identity

! [det(T)] = det(f(T)),

it follows that the implementations of f-![P] are simply the inverse images of
implementations of P.

fP] = proe{ f(T) | T €imp(P) }.

9. Direct image.

Unless the alphabet transformation f is injective, the direct image opera-
tion is not deterministic. Intuitively speaking, whenever f[P] performs an
event ¢ we can choose to implement this action as any event b € f1(c). Of
course, when f is injective there is no choice here. We can give a recursive
characterisation of the implementations of f[det(7")| as follows. The initials
of any implementation S must be the set f(7°). For every event ¢ in this
set, there must be an event b € f 1(c) such that S(c) implements the process
_ fdet(T) atter (b)]. If we let apply(f)(T) be the set of trees satisying this con-
dition, we can characterise this set as follows:

apply(7)(T) = (S | 80 = f(TO)&ve € 59,36 € 14(c).5(c) € apply(FNT(E) }.
“When f is injective the definition of apply(f)(T) reduces to { f(T') }.

Summary.

This chapter shows that an equivalent formulation of the domain of
processes can be given in terms of sets of trees, or sets of deterministic
processes. The functions defined on processes in Chapter 2 are all tmplement-
able as functions on sets of trees.
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Cl’lapter 4

Re]ations}lip with Milner’s CCS

0. Introduction

In this chapter we consider the relationship between the failures model
of CSP and Milner’s synchronization tree model for his language CCS. Milner
bases his model on a simple event-labelled tree structure, in which branches
represent possible sequences of actions and subtrees represent possible future
behaviours. He introduces a notion of observation equivalence between trees,
to capture precisely the conditions under which two trees can be said to
represent the same behaviour. We will show that there is a natural way to
use synchronization trees to represent CSP processes, and that there is an
equivalence relation on trees which faithfully mirrors the failure set semantics.
We will be able to define tree operations which correspond to the CSP process
operations. The relationship between Milner’s equivalence relation and ours
will be investigated. This will reveal interesting differences between the two
systems, reflecting the fact that the underlying philosophies of the two models
of concurrency differ.

1. Milner’s synchronization trees

We now present a slightly simplified version of Milner’s model of concur-
rency. The notation has been adapted to aid the comparison.
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a

Synchronisation trees.

Milner’s model is again based on the concept of an event as an indivisible
atomic action performed by a process. Again behaviour is characterised
in a step-by-step manner. In [M] Milner motivates his model by consider-
ing nondeterministic machines accepting strings over an alphabet. We may
paraphrase his description as follows. A nondeterministic acceptor over al-
phabet I is a black box whose behaviour can be tested by asking it to accept
symbols one at a time. The box has a button for each event in the alphabet.
If one attempts to press the button labelled b there are two possible outcomes:

(1) Failure — the button is locked;

(i) Success - the button goes down (and a state transition occurs).
An ezperiment consists of trying to press a sequence of buttons and it succeeds
if the buttons go down in the correct order. Of course, if the black box
~exhibits nondeterministic behaviour then its behaviour will not necessarily be
discernable from observing its successful experiments alone. Indeed, under
the conventional definition, a nondeterministic acceptor may have some of its
transitions labelled by the empty string. An empty transition indicates the
possibility that the machine can, without being observed, change its internal
state. Such a state change will not be detectable by the experimenter, since it
is not accompanied by any visible action. Milner uses the symbol  to stand for
an empty transition, treating it in effect as an extra event. A synchronisation
tree (ST) is then a rooted, unordered, finitely branching tree each of whose
arcs is labelled by a member of U {7 }. A rigid ST is just an ST with no arcs
labelled by 7; it represents the behaviour of a machine which cannot make
silent (empty) transitions.

Milner uses an elementary algebra over STs, whose operations are:

NIL (nullary operation)
NIL is the tree ®

+ (binary opera.tmn)

is the tree (identify roots)
AA AN

(unary operation, for each a € XU {7})

a( A ) is the tree @
/\

Thus, the general synchronisation tree can be expressed in the form

n

S=> a:Si+ f: 75/,

i=1 j=1
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In the case S = NIL we have n = m = 0.

Using variables S, T, U to range over STs, the following laws hold:

(A1) Associativity S+(T+U)=(S+T)+U
(A2) Commutativity S+T=T+S8

(A3) Nullity S+NIL =5

(A4) Idempotence S+8=2_20,

Observation equivalence.

Next we introduce binary relations — on trees (ceZU{7}). We will
use b, c to range over £ U {7}, and a to range over L.

a 5 <
S—2%8" means “S can transform to S’ by an a-action”
S—8’" means “S can transform to S’ by an invisible action”

For instance, the transitions of the tree S = Z?zl ¢;S;. are:

S-%8; (i=1,...,n).

We will write S—>S’, for s = (c1,...,¢n), to mean that for some
SO:'”JSn 5 5
S = So—8;-- - —>8, = §'.

Thus, S—>8’ if and only if S has a path from its root on which the sequence
of labels is s and the subtree remaining is S'.

The result of performing any sequence (ay,...,a,) of visible actions on
S may be any S’ for which there is a sequence t with

g-t,5!

and ¢ has the form

k1

b= 'rk“ayr as.. .anrk".

That is, any number of invisible transitions may occur, before, among or after
the a;. Recall that t\7 denotes the sequence obtained from ¢ by omitting all
occurrences of 7. The above condition on t is clearly equivalent to requiring
that t\7 = s. Following Milner, we introduce the relations == on trees for
sE X", '

S=25S5" means “S can transform to S’ by an s-experiment.”
S===8" iff, for some t such that t\r =3, RN
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Milner’s definition of observation equivalence is in terms of a sequence
{=2,|n > 0}, of finer and finer equivalence relations:

Definition 4.1.1: (Observation equivalence)
(1) S=oT is always true;

(2) S T & Vsek™. _
(i) §=29"implies IT'.T=T" & 8" =5, T"';
(ii) T==T'implies 35’.5=5"& S’ =~ T".

B)S=T & VE>0.S=.T.

It is easy to see that =23 makes no distinctions between trees, and that
two trees are related by =~; iff they have the same possible sequences of
visible actions. The successive relations make more and more distinctions.
The observation equivalence relation == is thus obtained as a limit. If we
define an s-derivative of S to be any S’ such that S==S5’, we can rephrase
the definition of ~; in terms of == as follows:

Fol 41 T iS4 Vs € Z*,
S and T have the same s-derivatives, up to == equivalence.

For finite trees, it turns out that the observation equivalence relation “satisfies”
its own definition, in that the following recursive formulation defines the same
relation:

Theorem 4.1.2: For finite trees,
S=T & Vsek’.
@ 8=8'=337 7789 &
() T=T'=39'.8=8"&9 =T.

Thus, two finite trees S and T are observation equivalent iff for every pos-
sible sequence of visible actions they have observationally equivalent deriva-
tives.

Milner also shows that his observation equivalence satisfies a simple set of
axioms. The following three axioms, together with the earlier axioms (Al)-
(A4) and the following inference rule, are all valid.

Theorem 4.1.3: Observation equivalence satisfies the following system of
axioms and rules:
(M1) a8
(M2) S+78+T=1S+T
M3) aS+a(rS+T)+U=a(rS+T)+U
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S=9
aS+T =aS'+T

(R)

Proof. We must establish that the axioms and inference rule are sound; a
simple inductive argument serves to show that for each n the left-hand and
richt-hand side of each axiom are n-equivalent. Similarly we use induction to
show that if the premise in an instance of rule (R) is valid then the consequent
is also valid. The details are omitted; see [M1]. &

Milner’s tree operations.

CCS, a Calculus for Communicating Systems, described in full in [M1],
is based on a set of operations including the ones already introduced (NIL,
+ and a -) and a binary composition |, a relabelling operation [a \ b| and a
restriction operation which Milner denotes \a (not to be confused with our
hiding operation). We will write instead S—a as restriction is anyway very
similar in intent to our derived operation of the same name.

We assume, as does Milner, that the alphabet & is composed of two
disjoint sets A and A, and that there is a bijection between these two sets
such that for all @ € £ we have @ = a. In Milner’s terminology, events a and
a are complementary. The special event 7 has no complement.

Following Milner, we define “expansion rules” for these new operations.
For the synchronisation trees S and T of form

n N
S=>) aSi+ ) 5/,

i=1 =1
m M

T = Z bjTj + Z TTj’,
j=1 j=1

we have
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n N

a;=b;
m M

+ D b(SITy) + D n(SIT)
j=1 =1

Sla\ b = Z 6;S:[a \ ] + Z 7S [a \ b).

N
S—a = Z ai(Si—a) + Z 7(S;'—a).

a;7a,a =1

Here we have used the notation ¢, for the alphabet transformation with the
effect:

¢ =ua,a if c = b,b respectively

= otherwise.

This alphabet transformation respects complementary events.

Observation congruence.

Milner is primarily concerned with the congruence generated by obser-
vation equivalence. This is characterized as the largest relation contained in
the observation equivalence relation but which also respects all of the CCS
operations. Milner shows that all CCS operations except + already preserve
observation equivalence, but that + does not: for example, although the law

~ 15 holds generally, it is not the case that S +71 ~ 75 + T for all §
and 7'. Milner proves that the congruence relation, which he denotes =°¢, ia
axiomatizable (at least, when restricted to finite trees). For later reference,
we state his definition and result. :

Definition 4.1.4: The equivalence relation ==° on trees is:

S=*T e VW.S+U=T+U.

This relation is a full congruence with respect to all CCS contexts. See
[Milner| for details. The following set of laws, together with (A1)-(A4) and
the expansion rules, are complete for finite trees. We have already seen that
they are valid, by Theorem 4.1.3 and the fact that observation congruence
implies observation equivalence.
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Theorem 4.1.5: ( 7 laws)
(T1) arS ==°¢ aS
(T2) S+rS+T=tS+T
(T3) aS+a(rS+T)+ U= a(rS+T)+U
S =¢ 8’
(R aS+T =~°¢aS" +T

The proof system containing axioms (Al)-(A4), (T1)-(T3) and rule (R)
is complete for observation congruence of finite trees.

Proof. See M1]. 1

2.  Failure equivalence

A synchronisation tree T without any 7 arcs, 1.e., a rigid synchronisation
tree, clearly represents a deterministic process. Since 7 arcs correspond to
nondeterministic choices, in general a synchronisation tree represents a non-
deterministic process. We will see that it is possible to make this relationship
precise. First we define the failure set of a synchronisation tree. Then we
exhibit a mapping from CSP notation to synchronisation trees which behaves
properly with respect to failure sets. We also define an equivalence relation
on trees that identifies two trees if and only if they have the same failure sets.
This equivalence relation turns out to be axiomatizable in the same way as
Milner’s observation equivalence, and the axiom system differs from Milner’s
in several interesting ways. [Finally, we define synchronisation tree operations
corresponding to the process operations.

Failure sets.

The initials of a synchronisation tree are those visible events appearing
first on the branches of the tree. The traces of a tree are the sequences of
visible actions appearing on the branches. Equivalently, the traces of T are
the sequences s for which T" has at least one s-derivative. It is natural to say
that a tree can refuse a set of events X if it can make a silent transition to
a subtree none of whose initials is a member of X . Finally, the failures of
a tree are the pairs (s, X)) such that the tree has an s-derivative which can
refuse X. The following formal definition makes this precise.

Definition 4.2.1: Let T be a synchronisation tree.
(i)  initials(T) = {a € = | 3IT".T=25T1}
(i1) Lrased(T) =44 | IT.T=5T"}
(ii) refusals(T) = {X | 3T".T=5T" & X N initials(T") = 0 }
(iv) failures(T) = {(s,X) | 3T".T=2T" & X N initials(T") = 0 }.
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Definition 4.2.2: The failure equivalence relation = on synchronisation trees
is defined as follows:

S=T <& failures(S) = failures(T).

We can now make a simple connection between Milner’s equivalence and
the failure equivalence. For two trees are identified by Milner’s ==; relation
if and only if they have the same trace set, and equality of failure sets clearly
implies equality of trace sets. Moreover, Milner’s second equivalence relation
~=9 identifies two trees when their respective derivatives can be paired up to
have the same trace sets, while the failure equivalence only looks at that the
initials of the derivatives. This means that =, makes fewer identifications
than failure equivalence. Hence the following result:

Theorem 4.2.8: The failure equivalence relation lies between Milner’s first
and second relations, in the sense that, for all synchronisation trees S
and T,

ezl = S=T = §sT.

Moreover, these implications are strict; as relations we have the following
strict inclusions:
) DO = D ==3.

It is important to notice that = cannot be defined in an analogous way
to the above alternative definitions of Milner’s first two relations, simply by
replacing the condition that the traces of the derivatives be the same by the
condition that their initizals be the same. That is to say, the relation =~
defined by

S~T& Vs € &*.
() S=28" = IT".T=2T" & initials(T") = initials(S")
(i) T=T' = 39'.§==95’' & initials(T") = initials(5’),

is not the same as failure equivalence. Indeed, there is a strict inclusion:

S=T O §=T.

Failure equivalence can be axiomatized in much the same way that we
had axioms for observation equivalence. Indeed, since observation equivalence
implies failure equivalence, all of the axioms for observation equivalence are
still valid for the failure relation. However, the two relations differ; the
differences are made apparent by the choice of axioms to characterise failure
equivalence.
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Theorem 4.2.4: Failure equivalence is the relation on trees characterised by
the following axioms and inference rule (together with the basic axioms

(A1)-(A4)):
(B1) tS=S
(B2) S+ T+U=r(S+T)+T+U
(B3) aS+al +U =qa(rS+1T)+U
(B4) r(aS+T)+7(aS'+T")=r(aS+aS" +T)+7(aS +aS' +T')

S=9 '
aS+T =aS"+T

The proof of this theorem relies on some lemmas. Firstly we should
show that the axioms are valid in the failures model, by checking that in
each axiom the failures of the left-hand and right-hand side coincide, and we
should show that the inference rule is sound. This is straightforward, and the
details are left to the reader. Thus we know that every equivalence derivable
from the proof system is valid; to complete the proof we must show that the
system is complete: for finite trees S and T, if the failures are identical then
the equivalence S = T is provable. The proof is based on reduction of a
tree to normal form. We show that any tree can be proved equivalent to a
unique tree in normal form, and that equivalent normal forms are identical
(and hence provably equivalent.)

(R)

Lemma 4.2.5: The following laws are derivable from axioms (B1)-(B4) and
rule (R), foralln > 1:

(D1) oD rS)+T = iaS;-i—T

i=1 i=1

(D2) & ' i T = i (S + T;) + Z 775

=1 o1 j=1
™" n

(D3) ZTS;—O—UETZTS,-JrU

i=1 i=1
n

(D4) Z r(aS; +T3) = Z (a8 + T3),

i=1 i=1
n

where S = Z Ty,

i=1

Proof. By induction on the number of terms in the sums. The base case is
an instance of an axiom, in each case. We omit details. 1

Lemma 4.2.6: The following laws are derivable:
(C1) S+ T=rS+tT+7(S+7T)
(C2) 71S+7(S+T+U)=7rS+r(S+T)+r(S+T+U).
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Proof. For (C1):

S+ T=1(rS+T)+T by (B2)
=r(rS+7(S+T))+rT by (B2) and (R)
=7rS+7(S+T)+T by (B3).

For (C2): '
rS+1(S+T+U)=r(rS+S+T+U)+r(S+T+U) by (B2)
=r(rS+T+U)+r(S+T+U) by (B2), (Ad) and (R)
=r(rS+r(S+T)+U)+(S+T+U) by (B2) and (R)

il

=718 +7(S+T)+ (S +T+U))+(S+T+U)

' by (B2) and (R)
S +7(S+T)+r(S+T+U)+7{(S+T+U) by (D3)
8 +7(S+T)+ (S +T+U) by (A4)

Lemma 4.2.7: The following rule is a derived rule in the above system:

drSi= > 1Ty

i=1 j=1

(T) n ™ '
Z:TS,:-!—UE ZTTJ'+U
i=1 j=1

Proof. By (D3) and rule (R). 8

Definition 4.2.8: Let B be a set of sets of events. Say B is convez if and only
if it is non-empty, and for all A and C in B,

(i) AUC € B,
ii) ACBCC= BeSB.

There is a connection between this notion of convexity and the definition
of convex closure in Chapter 3. Quite simply, a set T of trees over X is convex
closed if and only if for all traces t € |JT, the sets of events

{initials(T aftert) |t €T € T }

form a convex set. The proof is elementary, and is only mentioned in passing;
this fact will not be used in this chapter.

Definition 4.2.9: The tree T is a normal form iff it has the structure:

T3 7y b,

BeB beB
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for some convex set B, and where each T} is also a normal form.

Note that when a tree is in normal form there is a unique tree correspond-
ing to each trace of the tree; a particular trace may correspond to more than
one path in the tree, but in each case the subtree rooted at the end of the
path is the same.

Theorem 4.2.10:
Any tree T is provably equivalent to some tree 7" in normal form.

Proof. We outline a method for reducing an arbitrary (finite) tree to normal
form. Derived laws (D1)-(D4) and the derived rule (T) can be used to induce
uniformity: at each node of the tree either all outgoing arcs are labelled
or none of them are. Then multiple occurrences of a visible label at a node
can be combined into a single arc leading to a uniform 7 node, using (D3).
Convexity can be achieved by using (C1) and (C2). Finally, the uniqueness
property is obtained by applying (D4). 1

Theorem 4.2.11: If two normal forms S and T are failure equivalent, then
S = T is deducible from the axiom system.

Proof. Let the two normal forms be

=23 "1 bS

BeB beB
T = Z T Z clls,
CeC ceC

We are assuming that failures(S) = failures(T). We want to show that the
formula S = T is derivable. The proof uses induction on the depth of the
trees. The base case, when both normal forms are NIL, is trivial. For the
inductive step, first we show that

Q)  B=c
(ii) failures(S,) = failures(T,), for all b.

For (i) it is enough to establish an inclusion B C C, because we may then
interchange S and T and repeat the argument for the converse. If B Z C, let
B be a set in B not in C. Let X be the complement of B in initials(T),

X = initials(T")—B.
Then we know that ({), X) is a failure of S, because

s=th 3" b5,

beB
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By hypothesis, ({), X) is also a failure of T', so there must be a set C € C such
that '

T4 N T, & CNX =0.

ceC
But this can hold only if C is a subset of B. We also have assumed that C
is a subset of initials(S); since we are supposing that S and T have the same
failures, and hence the same traces, C is also a subset of initials(T"). But this
set is just | JC, so we have
afiom Foms {8

This implies that B € C, because both C and [JC belong to the convex set C.
Thus we have reached a contradiction, so our assumption that 8 Z C must
have been wrong. It follows that B C C; the converse is similar, and we have
shown (i). )

For (ii), merely observe that for all a € initials(S), a pair (at,X) is a
failure of S if and only if (¢, X) is a failure of S,, because S has a unique
a-derivative. The same holds for T'.

To complete the proof we use induction. Since each S and T}, has smaller
depth than S and T and are also in normal form, we may use the inductive
hypothesis: for each b, the formula S, = T, is derivable. Hence, using rule
(R) we can derive the equivalences

> bS = > b,

beB beB

for all B € B = (. The result follows by another application of (R) and from
(A1)-(A4). 1

Corollary: ‘Two normal forms are equivalent iff they are identical up to
order of terms. The proof of equivalence uses only the associativity and
symmetry of + and can be derived using axioms (Al)-(A4) and rule (R).

Because of this last result, it is clear that any equivalence on trees which
is at least strong enough to satisfy the laws of symmetry and associativity
will agree with failure equivalence on normal forms; in particular, Milner’s
observation equivalence and our failure equivalence are identical relations
when restricted to normal forms.
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The failures preorder.

The failure set model of processes was based on a partial order which
related two processes P T @ iff the failures of @ are also possible failures of
P. Since we have also defined a notion of failures on trees, it is not surprising
that there is a corresponding order on trees; strictly speaking, there is a
preorder, as defined below.

Definition 4.2.12: The failures preorder T on trees is defined
SCT & failures(S) D failures(T).

Corollary: For all trees S and T'
S=T & SLT&TLS.

There is a simple relationship between C and =, which will allow us to
use the above complete axiom system for equivalence to construct a complete
system for the preorder. The relevant result is:

Lemma 4.2.18: For all trees S and T
SCT & 1S+1T=S8S.

Proof. From the definition, it is easy to see that
failures(rS + 7T") = failures(S) U failures(T).
The result follows. &

As a corollary, we obtain a complete axiom system for C on finite trees
by adding the following axioms and inference rules to the above system:

_' S=T
(o) SCT&TLCS
SLT&TPL S
9 L =
22) S=T '
S+1T=S8
(03) —SET
(04) S;T&TEU.

FC O
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3. Mapping processes to synchronisation trees

Now we define a mapping [-] from processes to trees which may be
thought of as a representation map. It will be the case that, for all processes
P, the tree [P] has the same failure set as P. The representation map is
defined by structural induction on the CSP syntax.

Definition 4.83.1: The mapping [-] : PROC — TREE is given by:
[STOP] = NIL
[(a — P)] = a[P]
[PNQ] = r[P] +]Q]
[POQ] = [P]LI[Q]
[Pll] = [P] ]
[Pl Q] = [P]II[<]
[P\6] = [P][r \ §]
[P;Q] = [P[;[<]

[[f Pl = f([P])
[Pl = FH([P])
where the tree operations [, ||, |||, ;,f(*), f1(-) are given by
o= Za;Si-i-ZTS;f
z;l 3?
T = Z b_ij'}- ZTTJ‘!
2 ;'_1
SOT = Za,s +Zb T +Z (s/OT) + E (sOTy")
i=1 j=1 i=1 =1
M
SIT= > alS: ||T)+Z (S IT)+ D (ST
a;=b; i=1 =
N M
S|||T = Zﬂa(s 11T) + E b;(SIIT3) + Y, =(SI1T) + > +(SIITY)
1=1 J—l i=1 1=1
ST = > aSsT)+ Zfs,-’;T+ ST
a.“;;é\/ i=1 a..-=\/
f08) =3 fla)f(Si)+ D _ 7f(S/
i=1 i=1

n

FUSY= D" D ef 'S+ DS

i=1c€f1(a;) i=1
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and where S[r \ b] denotes the tree obtained by renaming the b-arcs of
S tor.

Note that nondeterministic choice is represented by r-branching, hiding
by renaming the hidden event to 7, and alphabet transformations and their
inverses are again represented by relabelling events in the appropriate way.
The definition of S;T ensures that termination of S is hidden from the
environment.

Theorem 4.8.2: For all processes P, failures([P]]) = P.

Proof. By structural induction. The result holds clearly for the case P =
STOP. We treat in detail only two cases.

(i) Nondeterministic choice. When P = P;[P2, we may use the inductive
hypothesis to assume that :
failures([[P;]) = P; (p==1,2)
By definition,
[P] = r[P1] + 7[Pe],
so that every derivative of [P] is also a derivative either of [P;] or of [Pa],
with the exception of the derivation

9]
[Pl==[F].
However, it is clear that the initials of [[P] are initials either of [P;] or of
[Ps], and hence that any set X satisfying
X N initials([P]) = 0
also satisfies the condition
X N initials([P;]) = 0 (f=1,2).
This means that this extra derivation does not add to the failures of [P].
Since all other derivations are also derivations of HPlﬂ or [Pz], we have:
failures(ﬂpﬂ) = failures([P;]) U faiiures([[Pg]])

=P P (by hypothesis)

= 1.0 (by definition)

=2,

(ii) Interleaving. When P = P ||| P2, we have to show that.
failures([ Py ||| Pz]]) = P ||| P2 _
= {(u,X) | Is,t.u € merge(s,t) & (5,X)E P & (t,X)E Py}
We use induction on the length of traces. The base case is for a failure of the
form ((), X). Such a pair belongs to the failure set of [P] iff there is a tree
U such that
[P]I=5U & X N initials(U) = 0.
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Let S = [P;]] and T = [P:], and suppose they have the form

B = Za;Sg 'f*Z‘rS,'lr (a.,;;éf)

i=1 =1
m M

7 — E b;T; + Z Ty (b; 5 ).
=1 j=i

Then the tree [P] has the form
N

ST =" aS:IIT) + D bi(SIITy) + Y (S |||T)+Z (ST
i=1 i=1 fe=l g4
Thus we see that
SITLLU =

either 357.5=5S' & U= 9'|||T
or ITTLT & U= S|||T.
Since it is clear that initials(S|||T) = initials(S) U initials(T'), this gives
refusals(S|||T) = { X | 3U.S|||T£>U & X Ninitials(U) =0}
—{x |35".52Ls" T)=0}
U{X | 3. T25T & X N initials(S|||T") = 0}
= {Xx |35, 7.5255 & T2LT & X N initials(S'|||T) = 0}
={X |38, 1.54Ls & TLT &
X Ninitials(S’) = X N initials(T") = 0}
= { X | X € refusals(S) & X € refusals(T') }
= refusals(S) N refusals(T).

Since any traces which mei‘ge to the empty trace are also empty, this estab-
lishes the result for the case u = ().

Now suppose that u = (c)w and that (u, X)) € failures(S|||T). Let U be
a tree such that

S|||T==U & X N initials(U ) 0.
Then it is easy to see that one of the following two conditions holds:

either 35',T'.5=%L5" & T=>T" & S| T'=U
or 39,T'.52hs & TZLT & || T'=5U.
In the first case, since w has shorter length than u, we may assume that there
are traces s and t, and trees S” and T" such that

w € merge(s,t) & S'==5" & T'==T" & U = §"|||T".
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But then we get

s 5/ Ly 5"

7L LT

X N initials(S”) = 0

X Ninitials(T") =0
and hence, since (c)s and t merge to u, this gives (u, X) € failures(S|||T), as
required. The converse is similar. g

Corollary 4.8.3: For all processes P and @,

P=@Q & [P]l=]Q]

Theorem 4.8.4: Each of the tree operations in Definition 4.3.1 respects failure
equivalence: whenever S = S',T = T", we also have

aS = a8’
S+ 1T =78"+1T
SOr=s'41
S||T = 5"||T"
sliT=s'jjiT
S[r\ b= S'[r\ b]
ST =81
f(8) = f(5')

) =HEY
Proof. Similar to Theorem 4.3.2. 1

This result shows that, with respect to this set of tree operations, failure
equivalence is a congruence. It also shows that + as a tree operation is not
definable in terms of the set of CSP operations, since + does not respect
failure equivalence.

4.,  Failures and CCS operations

We have seen already that Milner’s prefixing, renaming and restriction
all preserve failure equivalence, and that + does not. Now let us consider the
behaviour of Milner’s composition operation | with respect to failures. Recall
that the alphabet ¥ is assumed to be partitioned into disjoint sets A and A,
and the function a — @ is a bijection between these sets so that @ = a for all
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a € A. The composition S|T of two trees

Hoe== ia;&-

i=1
T=> bT; (aybjeTU{r})
j=1
is given by
SIT = Y. alSiT) + 3 b(SIT) + 3 A(SiTy)
=1 =1 ai=b_j
where we do not include any terms in the last summation with a; = 7 or

b; = 7, because 7 is assumed to have no complementary event.

The traces of S|T are obtained by composing traces of S and T, in the
following sense:

Definition 4.3.5: The set of all compositions of two traces s and ¢ is defined
by induction on the length of the traces:

(i)  comp((),t) = comp(t, () = {¢}
(ii) * comp(as, bt) = {au | u € comp(s, bt) } U { u | u € comp(as, t) }
U{u € comp(s,t) | a =05}

Lemma 4.8.6: The traces of a composition S|T are obtained by composition:
traces(S|T) = |J{ comp(s, t) | s € traces(S) & t € traces(T) }.

Thus we see that the initials of a composition S|T are given by the
formula

initials($|T) = | J{ initials(S"), initials(T") | 35.S=5" & T=5T"},
since an event c is initial for S|T if and only if there is a trace s such that sc
is a trace of S and 3c is a trace of T'. Similarly, the refusals of S|T" are:

X € refusals(S|T) & 3s.(s, X) € failures(S) & (5, X) € failures(T),
and in general (u,X) is a failure of S|T iff there are traces s and ¢ such that

(s, X) € failures(S) & (t,X) € failures(T) & u € comp(s, t).

This formula gives a way of determining the failures of S|T" from the
failures of S and T. Since the failures of a composite tree are therefore
uniquely determined by the failures of the component trees, it follows that
Milner’s composition respects failure equivalence:

S=5,T=T = S|T=9T.
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C}lapter 5

A proof system for CSP

1. Introduction

In this chapter we introduce a proof system which is sound and complete
for failure equivalence of processes. First we consider a simple sub-language,
whose terms are built from STOP, prefixing, conditional and unconditional
choice. Obviously terms in this language will denote processes with only a
finite number of possible traces. The logical language will contain assertions
of the form P C @ or P = Q. We give a set of axioms and inference rules for
proving such assertions, and show that the system is both sound and complete;
under the obvious interpretation of assertions, every provable assertion is true
and every true assertion is provable. ’ ‘

Next we make the transition to a more general language, by allowing
recursive terms. Now terms may denote infinite processes. We show how to
modify the previous proof system to obtain a new system complete and sound
for the larger language. Essentially, we use the well known ideas of syntactic
approzimation of terms, and use the fact that the failure semantics of an
infinite process is uniquely determined by its finite syntactic approximants.
A new inference rule is added which states this fact and basically allows us
to reason about infinite terms by manipulating their finite approximations.
Crucial to this work is the fact that all of the process operations in the
language are continuous with respect to the nondeterminism ordering. Similar

techniques were used by Hennessy and de Nicola [HN] to give a proof system
for CCS.

Bearing in mind our earlier problems with the notion of divergence,
we have made the proof system sufficiently general to cope with divergent
processes, by adding to the language a term | (representing divergence) and
augmenting the failure set model with a divergence set component. A similar
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augmentation of the failures model was suggested by Roscoe [R]. The special
case of well-behaved (divergence-free) processes turns out to correspond to
the sublanguage of all terms in which no recursive subterm has an unguarded
occurrence of its bound variable, and in which there is no sub-term 1. As a
corollary, the proof system is also complete for the old failures ordering on
well-behaved processes.

Throughout this chapter we will use P, ), R to stand for terms in the
variant of CSP currently under consideration. We are not necessarily assum-
ing that the universal alphabet X is finite, but every term will only use a
finite set of events. As usual, refusal sets are finite. In order to distinguish
clearly between a term and the failure set it denotes, we will define a semantic
function on terms.

2. A simple subset of CSP

Let FCSP (Finite CSP) be the language generated by the following syn-

tax:

P ;= STOP | (a — P) | PDP | PMP,

where a ranges over . The semantic function 7 maps terms to failure
sets, and is defined by structural induction as usual:

FISTOP] = {((),X) | X C =}
Fla — P] = {((1,X) | a @X }U{(as, X) | (5, X) € FIP] }

FlpLel = {((),X) | (), X) € F[PIn 7@l }
U{(s, X) [s7#() & (s, X) € 7[P]UF[Q] }

FlPnQ] = 7FlPJ U F[Q]-

We will use ® to stand for a failure set. Recall that a failure set is a
subset of £* X pX such that

(i) dom(®) is non-empty and prefix-closed,
(i) (5,X)€E®,YCX =(5Y)€ S,
(ii) (5,X)€ P, (5a,0) P = (5,XU{a}) € D.
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The order on failure sets is
@12@2 — @12@2.

We will write P T @ to mean 7[P]] C F[Q], where no confusion can arise;
this convention merely corresponds to our earlier usage, when we were not
concerned to keep terms and their denotations separate. So far we have
merely recast the definitions of earlier sections. Now we introduce the proof
system.

The logical language is built from FCSP terms and two binary relation
symbols C and = . Each formula in the language has the form P C @ or
P = @. We include axioms on idempotence, symmetry, associativity of [ and
[, distribution of these two operators over each other, and some interactions
with prefixing. The inference rules assert monotonicity of the operators with
respect to [, and state that C is a partial order and = the associated
equivalence. The following table lists the axioms:
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PnP=P
PlP=P
PN@=QnNP°r
pe=Q0P

PN(QMR)=(PMNQ)NR
POQOR) =(POQOR
Pn(QUR)=(PnUPNR)
PO@NR)=(POQ)N(PUR)
PSTOP =P
PNQLCP
(= P)N(a—Q)=(a—>PNQ)

(e = P)0(e—Q)=

—
]

- PQ)

Y
e,

o
SICT I Mol
SIS Ol
=Vl

o Ol o |

PL Q
(6= P)C (a— Q)
P C Q& B, L Qo
PP L Q1MKQe
PPECQ &P T Qe
PP, C Q:1Q:
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Soundness.

Each axiom has already appeared in a previous chapter, where proofs of
validity were given; similarly all of the operators were shown to be monotonic,
so the inference rules (M1)-(M3) are valid. This means that every provable
formula is true. We write — P T @ when the formula P £ @ is provable.
The following theorem states that the proof system is sound.

Theorem 5.2.1: For all terms P,Q
FPLC Q@ = F[P] 2 F[Q]-

Derived laws.

The following laws are derivable, and hence valid. They will be useful
in establishing completeness. The first states the connection between non-
deterministic choice and the ordering. The second says that nondeterministic
choice allows more failures in general than conditional choice, in accordance
with our intuition and earlier results on these operators. The third law will be
heavily used in establishing the existence of normal forms; it can be thought
of as a convezity law.

Lemma 5.2.2:

The following formulae can be derived in the above proof system:

(D1) PNQ=PoPLQ
(D2) P E POQ
(D3) PN(QUR)E POR.

Proof. For (D1) we have
= PAOQLC P

by (A10). And if we assume P C Q is provable, we have:
PLQ+PNPL PNEQ,
by (M2). The result follows by (A1) and (O1).
For (D2):

Pnenrle)=((Pne)nP)L((PNQ)Ne) by (A7)
=(Pn)UPrNQ) by (A1)
=PNe by (A2)
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The result follows from (D1).
For (D3) we have

PR@OR) =(Pn@OFPMR) by (A7)
CrUe)r by (M3), (A10) and (D2)
=(rPOPIQ by (AS6)
=PlQ by (A2)

That completes the proof. 1§

Completeness.

We will show that whenever the failures of P include the failures of @ the
formula P T @ is provable. For the proof we use a normal form theorem. We
define a class of normal forms and show that every term is provably equivalent
to a unique term in normal form. Moreover, we show that whenever the
failures of one normal form include the failures of another, the corresponding
formula is provable.

Essentially, a normal form will be a term with a uniform structure, rather
like a nondeterministic composition of a collection of guarded terms. In order
to get uniqueness of normal forms we will require certain closure conditions
on the sets of guards appearing at each position in the term; these conditions
amount to a convezity requirement. In addition, we will require that in a
normal form every subterm guarded by a particular event be identical and
also in normal form. This means that every normal form is itself built up
from normal forms in a simple way that facilitates proofs. Formally, these
constraints are defined as follows.

Normal forms.

Definition 5.2.8: A subset B is convez iff it is non-empty and
(i) A BeEB=AUBESB,
(ii) ACeB & ACBC C= BegB.

We will write con(8) for the smallest convex set containing 8, and refer
to the conver closure of B. There will be clear connections between this form
of convexity on sets of sets of events and the convexity of Chapter 3 (on sets
of trees).

Example 1. The set A = {0,{ a,b}} is not convex, because
0C{a}C {ab}
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but {a} is not in A.

Example 2. The set 8 = {0,{a},{b}} is not convex, because it does
not contain {a,b}.

Example 3. The smallest convex set containing A and B is the set

C={0,{a},{b},{ab}}.
We have con(A) = con(8) = C.
Example 4. For any set B C ¥ the powerset of B is convex.

Now we can define normal form:

Definition 5.2.4: A term P is in normal form iff it has the structure
either P = STOP
or P =Mges DbEB(b_”Pb)

for some convex set B, and each P, is also in normal form.

Note that although a normal form P may have “disjuncts ” Pg and P¢
with some initials in common, say

Pp = hen(b = B)
Po =[lec(c — P)

the definition forces these two processes to have identical derivatives P, for
all a € BN C. Some examples will help.

Example 1. P = STOP 1 (a — STOP) is in normal form: here B is the
convex set {0,{a}} and P, = STOP.

Example 2. P = (a — (b — STOP)) M ((a — STOP) (b — STOP)) is
not in normal form, because the two subterms guarded by a are distinct.

The next result is the basis of our completeness theorem.

Lemma 5.2.5: Any term P can be transformed using the proof system into
a normal form.

Proof. By induction on the length of the term.

The base case, when P = STOP, is trivial; the case when P = (a — Q)
is also straightforward. In the remaining two cases, we must show that if P
and @ are normal forms then P and P[]Q can be put into normal form.
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To this end, suppose the two normal forms are:
P =Mgeslhen(b — Ps)
@ = Meecllec(c = Q).
Write Pg = [ hep(b — Py) and Q¢ = [ Lcc(c — Q.), so that
P =T1BesPn
Q@ =Tcecloc.
Then it is easily provable that
PrQ =TgesMNcecPsMNQc.
Let A = B U, and define the terms R, for a € A by:
Ba=PF, if a € B—C,
=iy if a € C—B,
=P, M6 ifae BNC.
Using the obvious notation, it is clear that the statements
PgMQc =RpMEc
are provable, and hence that
— PMNQ =MNaecsRa.

To complete the proof in this case we use the convexity laws to replace A by
its convex closure.

Finally we must reduce P[]Q to normal form. Again it is easy to show
that
~ PUQ =MpesMeecPs R0,

and (using the same notation as above) that
~ PpllQc = Rpuc.
It follows that
— PUQ = Nacallca(a = Ra),
where A =con({BUC |B€ B,CcC(C}).

The following result states that every true statement about normal forms
is provable.

Lemma 5.2.6: Given two normal forms P* and @,

F[P*] 2 Q'] =+ P* C @°.

Proof. Let the two normal forms be
P* = Mpeslles(b — Ps)
Q" =Ncecllkec(c — Qc)-
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Write Pg and Q¢ for the subterms:
Pg =[hep(b — F),
Qc = Lec(c — Q.).
Then P* = [gesPp and Q" = Moec@c-

By definition of normal form, the sets B and C are convex, and each Py
and Q. is also in normal form. We will use an induction on the length of the
normal forms. The base case, when both P and @ have zero length, is trivial;
both terms are STOP. For the inductive step, we argue as follows. First we
show that

FIP' D F[Q]) = CC B & VeeCel. F[P] 2 7] (1)
To this end, assume that 7[P*] O 7[Q*]. Let By = |JB and Cy = [JC be
the initials of P* and @*. Then we know that
By O Ch.

Since P* and @* have unique c-derivatives P, and Q. respectively, for all
¢ € By N Cp, we must have

F[P] 2 7[Qc]
for all such c. All we need to show now is that C C B. If this does not hold,
let X = Bo—C. Then ((),X) must be a failure of P*. By hypothesis, this is
also a failure of @*. But this happens only if there is a B € B with
BNX —:Bﬂ(Bo—C) = 0.

Equivalently, B C C. But C C Cy C By, and the sets B and By belong
to B (B by assumption and By by convexity). Thus we find that C € B,
contradicting our assumption. It must therefore be the case that C C B, as
required. The truth of (1) has now been established.

Now the inductive hypothesis applied to the terms P, and Q. gives

P C @,
for all ¢ € |J C. This implies that, for each C € C,
..+ Po E Qeg.
Then, since C C B, we may use (A10) and (M2) to show
=P L@

as required. That completes the proof. &

Corollary 5.2.7: For all terms P and Q,
#[P] 2 7lQ] =+ PC Q.

Proof. By Lemmas 5.2.5 and 5.2.6. 1
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3. Extending to infinite processes

In this section we modify the language FCSP, adding process variables,
recursion and a new constant |, which is intended to denote a process whose
only capability is to diverge. Such a pathological process will turn out to
correspond precisely to the terms in which a badly constructed recursion
appears. We will be mainly interested in terms without free process variables,
so-called closed terms. The semantics we use for this language is based on
failure sets but has an extra component called a divergence set in order to
allow us to distinguish between deadlock and divergence.

Let RCSP (Recursive CSP) be the language generated by the following
syntax:

P := STOP | (a— P) | PUOP | PMP | L | x| uz.P
where a € ¥ and z ranges over a set of process variables or identifiers.

Let F be the domain of failure sets, ordered by 2 . Now we introduce
D, the domain of divergence sets, which is just p(X*), ordered also by O .
The semantics of terms in RCSP will be given via two semantic functions,
one for failures and one for divergence. Since terms may contain occurrences
of identifiers we will use an enwvironment in the semantics, which binds each
identifier to the failure set and divergence set it is intended to denote. Let
Ide be the set of identifiers. Then the domain of environments is

U = Ide — (F X D).

For an environment u which maps identifiers to pairs, we will use the conven-
tional notation (u]z]; and (u[z])2 to refer to the components of pairs.

The semantic function D maps terms to divergence sets, relative to an
environment. It is defined in the usual way, by structural induction:

Definition 5.8.1: The divergence semantic function is:
D :RCSP—-U—D

D[STOPu = 0
Dla — PJlu={as|s € D[P]u}
P[POQJu = D[PJuU P[Q]u
P[P QJu = P[PJluuU P[Q]u
D[L]u=Xx"
Pl = (ul]):
D(pz.Plu = fix(N6.P[P](u + [z — 6]))
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It is easy to see that all of the operations induced on divergence sets
by the above definitions are continuous with respect to the superset ordering
and hence that the fixed point used in the semantics of recursion will always
exists. The usual fixpoint characterisation as a limit is expressed in:

Duz.Plu = ﬂ .
n=0

where &g = X" = D[ L],
and bnp+1 = D[P](u+ [z — 6n]) forn > 0.

Notice also that the only terms with a non-trivial divergence set are those with
a subterm | or with an unguarded recursion, i.e., a subterm of the form pz.P
in which there is an occurrence of z appearing in P without a guard. This fact
could be proved by a structural induction, once we have defined rigorously the
notion of well-guardedness. Finally, our definition guarantees that whenever
a particular trace s belongs to a divergence set then all extensions of that
trace are also included:

s € D[PJu = st € D[P]u, for all ¢.

Example 1. The recursion uz.(a — z) is guarded. Applying the previous
definition, we have

Plua(a — 2w = NT_obn,
where &g = X7,

and, for each n, 6,1 = {as|s €6, }.

Thus §, = a™Z*, for each n, and the intersection of these sets is empty:
D[uz.(a — z)]u is the empty set.

Example 2. The recursion uz.z is obviously not well-guarded.

Dpz.z]u = Z*.

Example 3. The term uz.((a — z)[](uny.y)) is not well-guarded, because
of the subterm uy.y. '

The semantic function for failures is also given by structural induction,
and it makes use of D. For the most part, the definition is along the lines of
the previous chapters, but extended to make it consistent with the notion that
divergence is catastrophic: when a process is diverging we can guarantee no
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aspect of its behaviour; thus we make the operations strict, so that a process
constructed from divergent components can diverge too.

Definition 5.8.2: The failures semantic function is:

F :RCSP>U - F
F[STOPJu = {((),X) | X € T}
FlLlu=%* X pT
Fla = Plu={((},X) [ag X }U{(as, X) | (s,X) € 7[P]u}

FIPOQJu=ZT* X p%, if () € P[POQ]u,
FIPUORQJu = {({()X) | () X) € F[Plun F[Q[u}
U{(s,X) | s7#() & (5,X) € 7F[Pluu 7[Qu}

otherwise
F[P M Qu = F[PluU F[Q]

Flelu = (ula]);

Fpz.Plu = fix(Ag. F[P[|(u + [z — ¢]))

Again we can prove that all operations on failure sets used here are
continuous, and therefore the least fixed point of any construction exists and
is given by the limit:

Flpz.Plu = ﬁ b,

n=0

where &g =X X pi,
and @, = F[P](u+ [z — ®.]).

We say that P may diverge on s if s is a trace in the divergence set of
P. Notice that we have defined the semantics of terms in such a way that the
following conditions hold:

(i) s € D[PJu= Vi, X.(st,X)€ F[P]u.
(i) s € D[PJu= Vt.st € D[P]u.
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Intuitively, (i) says that a divergent process is totally unpredictable: we cannot
be sure that it will or will not ever stop diverging and allow some sequence
of actions. Condition (ii) says that once a process starts to diverge it cannot
“recover” by performing a visible action: divergence continues forever. Thus,

a pair (®, ) is a reasonable model for a process iff the following conditions
hold:

(1) dom(®) is non-empty and prefix-closed
(2) (5, X)ed, Y CX =(s5Y)E?

(B) (5,X)ED, (50,0) P =(5,XU{a})c®

(4) s€é = steé, forallt

(5) s€Ed = (st,X)e®, foralltX.

This more general model of processes is thus seen to be derived from the old
failures model by adding divergence sets and requiring a kind of consistency
between failures and divergences. Indeed, the processes with empty divergence
sets form a space isomorphic to the failures model. Notice that the limit of a
directed set of pairs (®;,6;) is the intersection and the greatest lower bound
of a non-empty set of pairs is again the union. As with the set of failures,
the new model forms a complete semi-lattice with respect to the (pairwise)
superset ordering. We will write P C @ to mean that the failures of P contain
those of @ and the divergence set of P contains the divergence set of Q. All of
the operations considered in this section are continuous with respect to this
ordering. This fact justifies our use of fixpoints in the semantics of recursively
defined processes.

Syntactie apprbximation.

Before we introduce a complete axiom system for the new model, we
will need some important results which allow us to reason about a (possibly)
infinite process in terms of its (finite) approximations. Beginning with the
standard definition of syntactic approrimation on terms, we define the set of
finite approximants of an arbitrary term and show that the semantics of any
term is uniquely determined from the semantics of its finite approximants.

The notion of syntactic approzimation on terms is well known (see, for
example, [Gu]). The following presentation is typical of the general style.

Definition 5.8.83: The relation < on terms is the smallest relation satisfying:
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) L=<P

if) P<P

iii) P<@Q<R=P<R

iv) P<@=(@—>P)<(a—Q)
v) P <@y, Po<Q=P [P <@,1Q
vi) Py <@, Po<Qa=PiNMQ1 < PlQ2
(vii) P[(uz.P) \ z] < pz.P

We have used the notation P[@\ z] to denote the result of replacing every
free occurrence of z in P by @, taking care to avoid name clashes.

e e Lt e Lt i)
—
=

If P < @ we say that P approzimates ¢). An easy structural induc-
tion shows that for all P and @ syntactic approximation implies semantic
approximation:

P<Q = PLCQ.

A term P is finite iff it does not contain any subterm of the form uz.Q.
For any term P, the set of finite approximants is

FIN{P)z {Q|Q < P & Qis finite }.

It should be noted that FIN(P) is directed with respect to <.

The common notion of unrolling or unwinding a recursive term is in-
timately connected with finite approximation. The result of unrolling the
term P n times will be denoted P(™). The formal definition is:

i) PO = |
ii sTOP("*1) — STOP
iii) (a — P)(**t1) = (a — Pn+1))
) (p[jQ)(nH} :p(n+1}DQ(n+1J
v) (PN Q){n+1] — pln+1) q glnt+1)
i) z(rtl) = g
vii) (uz.P)**+1) = P[(uz.P)™) \ z].

Every finite approximation to a term P is also a finite approximation to some
unrolling of that term:

Lemma 5.8.4: If @ € FIN(P) then there is an n such that @ < P,

Proof. See [Gu]. 1

Corollary: For all P, FIN(P) = [J2°_, FIN(P(®).
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Lemma 5.8.5:
(i) FIN(L) ={L1}
(i) FIN(STOP) =+{ .1, 8TOP}
(i) FINPUOQ)={L}U{P' Q| P €FIN(P) & @ €FIN(Q)}
(iv) FIN(PN@)={1}u{PNQ|FP cFINP) &Q IN(Q)}
(v) FIN(ea - P)={ L }U{(a—rP') | P" € FIN(P )}
(vi) FIN(z) ={ L1,z }.

Proof. Elementary. 8

In a sense, a term P is the “syntactic limit” of its finite approximation set
FIN(P). Recall that this set is directed with respect to the syntactic relation
<, and therefore the semantic images of the finite approximations to P form
a directed set with respect to the semantic order L . The following results
show that the semantics of a term is uniquely determined by the semantics
of its finite approximations, and allow us to deduce that the semantics of a
term P is in fact the limit of the semantics of its finite approximations. We
omit proofs, as they follow standard lines. The reader might remember that
in Chapter 1 the failure set of an arbitrary process was shown to be derivable
as a limit of failure sets of finite processes. Here we are obtaining analogous
results for the extended model.

Lemma 5.3.6: If P is finite and P L @), then there is a finite approximation
R of @ such that P C R.

Theorem 5.8.7: For all P and u,
D[PJu=[){2[Q]|Q € FIN(P)}.

Proof. By structural induction on P. 1

Theorem 5.8.8: For all P.and u,
FIPlu = [){ 7@l | @ € FIN(P)}.

Proof. By structural induction. 3

Proof system.

Let L be the proof system containing all axioms and rules of the earlier
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system together with the following additions:

(B1) P =l
(B2) Pil=l
(B3) L E P
(B4)  Pl(uz.P)\1| C pz.P
(R) VQ € F}DN(EP)I.EQ CR

The new axioms state that the two conditional combinators are strict, and
that | is the bottom element with respect to L . The new inference rule
essentially says that any property of a term is deducible from the properties
of its finite approximations. This is an infinitary rule, because a term may
have an infinite set of syntactic approximants; in such a case one would need
an infinite number of premises in order to use rule (R). It seems unlikely that
a finitary proof system cculd be found which was still complete, although
some interesting sublanguages (in which use of recursion is constrained) will
presumably have decidable proof systems. This remains a topic for future
work. Now we are concerned with the soundness-and completeness of our
enlarged proof system.

Soundness.

Under the interpretation that for closed terms P and @, P = ¢ means
F[PJu 2 7[Q[u & D[Pu 2 D[Q]u

for all environments u, the proof system L is sound. We need merely to check
that the axioms are valid and the proof rules sound. Since the semantics was
defined to make the conditional operators strict, the new axioms are clearly
valid. Soundness of rule (R) follows from Theorems 5.3.7 and 5.3.8. It is easy
to check validity of the old axioms and rules. Thus we have:

Theorem 5.8.9: For all closed terms P and @, and all u,
e PCQ =5 PCQ:

Completeness.

In order to establish that the new proof system is complete, we must first
modify the definition of normal form. Essentially, we just allow | as well as
STOP in building up normal forms.
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Definition 5.8.10: A term P in RCSP is in normal form iff it has the strue-

ture:
gither. P=dl0OP,
or Pe= 1,
or P =gesllen(b — P)

where B is convex and each P, is in normal form.

It is easy to modify the proof of Lemmas 5.2.5 and 5.2.6 to show that
any finite term can be reduced to normal form using the axioms and rules,
and that whenever P and @ are normal forms

PCLQ =+ PL Q.

The completeness theorem relies on Lemma 5.3.6, which states that whenever

P is finite and P C @ there is a finite term R € FIN(Q) such that P C R.

Theorem 5.3.11: For all terms P and @,
PCQ =+ PCQ

Proof. Let P’ be a finite apprdximation to P and suppose P C @. Then
PPEPLCQ.
By Lemma 5.3.6 there is a finite approximation @’ to @ such that P’ C Q’.
But then
~P C Q.
Since for every @' € FIN(Q) the formula @' C @ is provable, we have
P C Q.
The result follows by an application of rule (R). 1@
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4. Adding more CSP operations

We may extend the proof system to encompass other CSP operations
provided we add enough axioms and rules to allow normal form reductions.

To stay within the framework of this chapter, we must introduce failure
sets and divergence sets for the new forms of processes, by extending the
definition of D and ¥ accordingly. We must also add axioms and inference
rules corresponding to these definitions, in such a way that Theorems 5.3.7
and 5.3.8 still hold. This will keep the proof system complete and consistent.

In keeping with the notion that a divergent process is totally unpredict-
able, and that divergence of a component process should also give rise to
divergence of the compound process (so that a process built from divergent
components diverges) we stipulate that all operations should be strict, in that
they map | to |. The only exception to this rule is the prefixing operation,
for obvious reasons. Now we consider extending the proof system and the
semantic definitions to include parallel composition, interleaving, and hiding.
It should be clear how to include the other operations of Chapter 2, with
these examples as illustration of the general method. Essentially, we make
each operation strict, and include axioms for strictness and for distribution
over [] and guarded terms.

Parallel composition.

For the parallel composition P || @, for example, we require divergence
when either P or @ diverges, and thus we specify:

i) D[P||QJu={st|s € (P[PJuuU D[Q]u)N (traces(P) N traces(Q)) }

(i) FIPIQlu={(s,XUY)|(s,X)E F[PJu & (5,Y) € 7[Qu}
U{(st,X) | s € P[P Qfu}-

Extending the syntactic approximation relation in the obvious way, we add
the clause

Py < Py, @1 < Q2 = P1||Q1 < P2|| @2

to Definition 5.3.3. Then the finite approximations of P || @ are built up as
parallel compositions of finite approximations of P and @ :

FIN(P||Q) = { L}U{P'| @ | P €FIN(P) & @ €FIN(Q)}.

It is clear from this that Theorems 5.3.7 and 5.3.8 still hold.
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We add axioms for strictness and manipulation of normal forms. In each
case the axiom is either a restatement of an earlier result which clearly still
holds in the extended model, or is self-evident. In the axioms we adopt the
convention that a term Ppg stands for

Chen(b — P).
(PAR 0) CPli=1

(PAR 1)  P[(QNR)=(P|Q)N(P|R)
(PAR 2) Pp||Qc = LkeBnc(a — Pal|Qa).

In the special case when B is empty the last of these axioms should be
interpreted STOP || Q¢ = STOP. It is easy to check that these axioms enable
any parallel composition of normal forms to be reduced to normal form.

Interleaving. For the interleaving operation P|||Q we add:

(i) P[P|||Q]u = merge(P[P]u, P[Q]w)

(i) F[P)|QJu= {(u,X)|3s,t.(5,X) € F[PJu & (t,X) € F[Q]u & u € merge(s,t)}
U{(st,X) [ s € P[P[|Q]u}.
For syntactic approximation we add to Definition 5.3.3:

P <P, @ < Q2 = Pi|]|@Q1 < P2||| Q2.

Again the finite approximations of an interleaved process are formed by
interleaving finite approximations to the components:

FIN(P|||Q) ={L}U{P'|[|Q | P' € FIN(P) & Q" € FIN(Q) }.
Again Theorems 5.3.7 and 5.3.8 are still true.

Our definition yields a strict operation, since D[ 1|||@]u = Z*. Otherwise
it has similar properties to our earlier interleaving operation. We add axioms:

(INT 0) PllL=1

(INT 1) P|||STOP = P

(INT2)  Pl|(@NE)=(PNQ)||(PNE)

(INT 3) Pgll|Qc = (hen(b — (B l|Qc)) U (Chec(c — (Pall1Q:)))-

Again it is easy to check the validity of these axioms, and to verify that an
interleaving of two normal forms can be reduced to normal form.
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Hiding. For the hiding operator, we will take the view that hiding a
potentially infinite sequence of actions produces divergence: we will identify
the phenomenon of infinite internal chatter with divergence. This version of
hiding is closely related to the second form of hiding introduced in Chapter
2, where infinite chatter was identified with CHAOS; here a process which is
chattering has the same failure set as CHAOS, but (unlike CHAOS) can also
diverge. It is simple to alter the proofs given earlier for the chaotic version of
hiding, to show that this form enjoys similar properties, such as continuity.

(i) D[P/b]Ju={(s\b)t]|s € D[PJu} U{(s\b)t|Vn.sb™ € traces(P) }.

(i) F[P/b]u={(s\6,X) | (s, X U{b}) € F[PJu}U{(st, X) | s € D[P/b]u }.

For finite approximations, we again add to Definition 5.3.3:
P <P = P'/b< PJ/b.
The finite approximations to a process formed by hiding are again formed by
hiding:
FIN(P/b) ={L}U{P'/b| P' € FIN(P)}.
Our new hiding operator is strict. We add axioms:
(HIDEO) - 1/b=1
(HIDE 1) (PNQ)/b=(P/b)r(Q/b)

(HIDE2) (b— P)je=(b— P/c) ifbse
= P/c if b=c.

(HIDE 3) Ps/c =hes((b = Po)/c), ifc&B,
= (P./¢) Nhes((b — Py)/c) i bEC.

Again the validity of these axioms is easy to check, and one can use the axioms
to produce normal forms.

Examples.

Example 1. The term P = uz.(a — z) has finite approximations

o= [ar=» 1], for all n,
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using the obvious abbreviations. Thus, the term P/a has finite approxima-
tions

1, and P,/a = (a" — 1)/a,
for all n. Using (HIDE 2) we see that, for each n,
-(a" — 1)/a= 1/a,

and so, by (HIDE 1) every finite approximation to P/a is provably equivalent
to 1. By rule (R), it follows that P/a is equivalent to L, as expected because
P/a diverges.
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C]‘lapter b

Testlng processes

0. Introduection

This chapter relates the failures model of processes with other work,
notably by Hennessy and de Nicola [HN] and by Kennaway [K1,2]. These
authors have suggested various notions of testing a process. The basic idea is
that a program or process can be investigated by applying a series of tests.
The general situation can be expressed as follows. There is a set of processes
and a set of relevant tests. Two processes are equivalent if they pass exactly
the same tests. Different choices of the appropriate set of tests, and what
it means for a process to satisfy or pass a test, lead to different notions of
process equivalence. We will describe the work of Hennessy and de Nicola,
and then show how their ideas can be related to ours. It turns out that there
is a very close connection; this is especially interesting, since their motivation
for constructing tests and their notions of passing tests were independent of
ours, and might not appear related at first glance. Similar results are then
given relating our work to the work of Kennaway.

It will simplify the comparison considerably if we work entirely in CCS.
In view of the results of Chapter 4, this can be done without loss of generality.
We will, therefore, identify processes with synchronisation trees throughout
this chapter. Initially we will only consider divergence-free trees, since this
makes it easier to see the relationship between failure equivalence and the
various equivalences based on tests. The notion of divergence first arose
in Chapter 2, when we defined two versions of a hiding operator. We saw
that hiding an action which can be performed arbitrarily many times gives
rise to an undesirable phenomenon in which the process may not be able to
respond to its environment because it is engaging in so-called infinite internal
chatter. In our synchronisation tree representation of processes this situation
corresponds to the presence of an infinite path, all of whose labels are 7.
A synchronisation tree will be divergence-free iff none of its subtrees has a
divergent path. '
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1. Divergence-free terms

We begin by defining the divergence-free terms of the version of CCS to

be used in this chapter. As usual, we use S,T, and U as meta-variables to

range over terms. Recall that the CCS terms are given by the grammar:
Su=NIL | aS | S1+S2 | z | pz.S

where z ranges over a set of identifiers and a ranges over the extended
alphabet ¥ U {7}. A term is closed if it has no free identifier occurrences.
A recursive term uz.S is well-guarded iff every free occurrence of z in the
body S is guarded by (at least) one visible label. Intuitively, a term diverges
if it has an unguarded recursion. We make this notion precise by defining
a syntactic condition of well-formedness. A closed term is well-formed iff all
of its recursive subterms are well-guarded. In formalising these notions, we
begin with guarding.

Definition 6.1.1: The identifier z is guarded by s in term 7 if and only if
one of the following conditions holds:

(1) s={) #iid T=#
(i) s=uat,T =aS and =zisguarded bytin S

(iii) T=2S;+Sy and =z is guarded by sin S; or S
(

iv) T = uy.S, 2%y and «zis guarded by sin S

For example, z occurs guarded by () in (aNIL + z) and by a and 7 in
(az + T2).

Say an occurrence of z in T is properly guarded iff all of its guards contain
at least one visible action. Thus there is an improperly guarded occurrence
of z in the term (az + 7z).

Definition 6.1.2:

(1) A term T is well-guarded for z iff every free occurrences of z in T is
properly guarded.

(2) A term is well-formed iff it is closed and in every subterm of the
form uz.S S is well-guarded for z.

For example, the term uz.az + bz is well-formed but uz.az + z and
pz.(az + 7z) are not.

The synchronisation tree formed by unrolling a well-formed term will be
finitely branching and have no infinite paths of 7-arcs; proof of this is left to
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the reader. From now until further notice, we will be dealing with well-formed
terms and the trees they denote. We may refer to such trees and terms as
divergence-free.

We refer the reader to Chapter 4 for definition of the traces, failures and
derivations of a synchronisation tree. The notation introduced there will be
used heavily throughout this chapter.

2. Testing processes

Hennessy and de Nicola set up a general framework for discussing processes
and tests upon them. Beginning with a predefined set of states, a computation
is defined to be a non-empty sequence of states. Given a set of processes and
a set of tests, they formalise the effect of performing a test on a process by
associating a set of computations with every process and test: the result of
testing a process will then be one of these computations. To indicate that
a process passes a test a subset of successful states is distinguished. A com-
putation is successful if and only if it contains a successful state; otherwise,
the computation is unsuccessful. To cope with partially defined processes
they allow partial states, states whose properties are, in a sense, incompletely
specified. They assume the existence of a unary predicate T on states, which
distinguishes the partial states from the complete states. They then define
divergence, a unary predicate on computations, denoted by T : a computation
diverges if either it is unsuccessful or it contains a partial state which is not
preceded by a successful state. The converse predicate, convergence will be
denoted ||. Our divergence-free terms never give rise to divergent computa-
tions, in their definition.

Hennessy and de Nicola choose their tests in a natural way; an observer
may test a process by attempting to communicate with it. Since CCS was
designed to express communication, it seems reasonable to use the same
language in describing tests. Moreover, an observer can only be expected to be
capable of a finite number of communication attempts in any finite amount
of time. This is tantamount to requiring a test to be of finite depth and
finitely branching. In addition, however, one needs some way of indicating
the success or failure of a test; their method, which we adopt, is to use a
special, distinguished action w which is interpreted as “reporting success”.
Thus, an observer or test will be a term described by the following simple
grammar. We will use the meta-variable O to range over observers.

O :=NIL | a0 | O1 + Oy
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where a ranges over ¥ U {w,7 }. For convenience, we will assume that the
event w has no complement. Example . The term @bwNIL is an observer
for testing whether or not a process can perform an a-action followed by a
b-action.

Intuitively, a process S passes a test O if when S and O are composed in
parallel success can eventually be reported. In this model the states are simply
CCS terms obtained by the parallel composition of a process and a test. A
change of state comes about when a r-transition occurs, and a computation is
a sequence of terms T}, (possibly infinite) such that for each pair of successive
terms T, and Ty we have T,,—T, .1, and such that if T, is not defined
then 7', has no 7-transitions. A successful state is one in which an w-action
is possible.

A reasonable formal definition of passing a test is the following; this was
Hennessy and de Nicola’s original attempt.

Déﬁnicion B.9.1:
(i) SmayO & 3JU.(S|0)==U & (U—).

(i) SmustO & YU.(S|0)=U & ~(U—5) = (U—2)
& (S|0)L.

In the absence of divergence the clause (S|O)/l makes no contribution.
The finiteness of tests and our insistence that processes be divergence-free
means that the possibility of divergent computations never arises when testing
a process.

According to this definition, a process may pass a test if and only if at
least one computation arising from the test succeeds; and a process must pass
a test if and only if every computation arising from the test terminates in a
successful state. Note the requirement that all computations must terminate.
As we will see later, there are variants of these definitions which allow more
freedom in testing; in particular, it might be considered appropriate to allow
an observer to detect success without requiring that the process halt.

These definitions can be conveniently reformulated in terms of failures.
We omit the proof, which is obvious.

Lemma 6.2.2: :
i) SmayO & w € traces(S|O)
<& ((w),0) € failures(S|O)

(ii) S must O & {w} refusals(S|O)
& ((),{w}) &failures(S|0).
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Thus, a process S may pass a test O iff a possible trace of S|O records
success; and S must pass O iff S|O cannot refuse w. No matter how the process
makes its nondeterministic choices of refusals, it cannot avoid success.

Following Hennessy and de Nicola, we define three preorders on terms:

Definition 6.2.3: The preorders C; on terms, (1 = 1,2, 3) are defined by:
(a) SLC3T & VO.SmayO = T mayO

(b) SCoT & VO.S must O = T must O
(c) S;lT = SEQT&SEQ,T
They also single out for investigation the preorders corresponding to

restriction of the tests to some particular class of observer. If § is a set of
observers, then the preorders generated by 0 are defined to be:

(a) SCIT & YOE€6.SmayO = T may O
(b) SCIT & VOE€0O.Smust O = T mustO
) SC!T & SCI{T& SCAT.

Putting © for the set of all observers, as defined by the above grammar, we
have

SC:T & SC?2T, fori=1,23.

Several interesting sets of observers are natural candidates for special
consideration. We will use D for the set of deterministic observers, in which
no 7 labels appear and the arcs at each node have distinct labels; § will
denote the class of sequential observers, deterministic trees with a unique
branch; and K will denote the set of all deterministic observers in which the
w event only appears alone, in that if a node has an w arc then it has no other
arcs. This condition is equivalent to the unavotdability or ezclusiveness of w.
This last set of observers regards termination as unambiguously possible or
impossible: there is never any other action which could by-pass a possibility
of success. These classes of test will figure prominently in the results which
follow.

In investigating the relationship between these various preorders, it will
be convenient to distinguish some special tests. We therefore introduce some
notation.
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Notation: For any sequence s € £*, the test do(s) is SwNIL:
do({)) = wNIL
do(at) = ado(t)

Notice that the do(s) tests are precisely the sequential tests.

For any sequence s € £* and any finite set X of events, the test not(s, X)
is given by the rules:

not((),X) = > ZwNIL
zEX
not(at, X ) = wNIL + @not(t, X).

In particular, the test not((),0) is sirnpljr NIL. And the test not(a,{b}) is
wNIL + @bwNIL. Notice that these tests are deterministic but do not belong
to K.

The importance of these observers is that the do(s) tests are sufficient
to investigate the possible traces of a process, while the not(s, X) tests will
provide information about the failures of a process.

Lemma 6.2.4: For all processes S and tests O,
S may O & Is.s € traces(S) & sw € traces(O).

Proof. By definition,
S may O & 3U. (S|I0)==U & (U-).
But, by definition of Milner’s composition,
(SI0)2LU & S=55' & 0=50' & U = §'|0'
for some s,S’,0’. Since w is not in the alphabet of any process, only a test
can perform it:

(8'0")-% & 0'—%.

Hence, since S=25" iff s € traces(S), and 0=50"—% iff 5w € traces(O), we
have:
S may O & Js.s € traces(S) & 3w € traces(O)

That completes the proof. 1§

Lemma 6.2.5: Tor all processes S and all s € X%,
S may do(s) & s € traces(S).

Proof. Use Lemma 6.2.4. - 1
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Corollary:
SC3T & traces(S) C traces(T).

Proof. By Lemmas 6.2.4. and 6.2.5. 1

Hennessy and de Nicola asked the question: what is the smallest set of
observers © which generates each [ ;? This result shows that the observers
do(s) suffice for C 3. Thus the preorder C 3 generated by the sequential tests
S coincides with the preorder generated by all tests in ©.

Lemma 6.2.6: TFor all S and T
SCST & SCiT.

Now let us consider the tests of the form not(s, X). We will see that the
test not(s, X) investigates whether or not a process can perform the sequence
s and then be unable to perform any of the events in X; in other words,
whether or not (s, X) is a possible failure of S. To give some idea of what this
type of test characterises, consider the following example:

Example . The test not(a, {b}) is wNIL+@bwNIL. Any tree whose initials
do not contain a must pass this test, since the only possible computation is the
trivial one. However, if a is initially possible, then the process must pass the
test only if every a-action leads to a place where a b-action is then possible.
For example, the process abNIL must pass the test, whereas aNIL has an
unsuccessful computation and fails the test.

Lemma 6.2.7: For all S,5, X
S must not(s,X) & (s, X) ¢ failures(S).

Proof. By induction on length(s).

Base case. We want to prove that S must not({), X) iff ((),X) is not a
failure of S. If X is empty, we have not({),0) = NIL. But no process has a
successful computation with a test that cannot succeed. And NIL is such a
test, since NIL cannot perform an w-action. Thus S pfust NIL; since the pair
((),0) is always a failure of S, the result holds.

Otherwise, when X is non-empty,
not((),X) = »_ ZwNIL.
zeX
It is easy to check that

Smust ) ZwNIL & VI.S=5T = initials(T) N X 7# 0.
zeX
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This is because the composition S| 3 5 ZwNIL cannot make a transition to
a term which can succeed unless the S side is able to make an z-action for
some z € X . But this condition is precisely that (({), X) & failures(S). Again
the result holds.

Inductive step Assume, for all T, X
T must not(t,X) & (t,X) & Tailures(T).
We must show that, for all S,
S must not(at, X) & (at, X) &failures(S).
But, by definition,
not(at, X) = wNIL + anot(t, X).
It is easy to see that
S must not(at, X) < either a &initials(S)
or a € initials(S) & VT'. S==T = T must not(t, X)
and hence that
S must not(at, X) & VT.S=5T = T must not(t, X).
By the inductive hypothesis this gives
S must not(at, X) & VI'. S==T = (t,X) ¢Tailures(T).
If (at, X) were a possible failure of S, there would be a U such that
S=24U & initials(U) N X = 0.
But then there would also be a T such that
S=%T=5U & (t,X) € failures(T).
This contradicts our assumption. Hence, (at,X) cannot be a failure of S.
That completes the proof. g

Recall that the failures preorder on synchronisation trees was defined by
S C T & failures(S) 2D failures(T).

We are now able to prove a connection between this preorder and the must
preorder.

Lemma 6.2.8: For all S and T,
ST = 8La7T.
Proof:

Let S C T and suppose S Zo T. Then
(1) failures(S) D failures(T),
(2) S must O
(3) —T must O
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for some test O. Since T is divergence-free and O is finite, the reason for (3)
must be some pair of derivations
T==T' of T,
0==0" of O
such that (T7|0') /% and (T"|0'") /. Let X = initials(O’). Then we have
T=5T" & initials(T")N X = 0,
because otherwise T'|O’ would have a r-transition. Thus, (s, X) is a failure
of T; but by (1) this gives (s,X) as a failure of S. Therefore, there must be
an S’ such that
S==S" & initials(S')NX = 0.
Since S is divergence-free, we can assume without loss of generality that S’
has no 7-transitions: replacing S’ by a r-derivative does not affect its ability
to refuse X, and there are only finitely many r-derivatives of S’'. Then we
have '
(S]0)=(5"|0") .
Since O’ has no w-transition, this is a failing computation of S|O, in con-
tradiction to (2). Supposing that S o T was false has produced a contradic-
tion, so it must be the case that S Co T. That completes the proof. 1§

Lemma 6.2.9: For all S and T,

Proof. Suppose S Co T. Then for all (s,X) if S must satisfy the test
not(s, X) so must 7. Thus, by Lemma 6.2.7, for all (s, X) we have

(s, X) &failures(S) = (s, X) &Tfailures(T).
Hence, failures(S) D failures(T'), or equivalently S C T as required. 1

Corollary: For all S and T,
SCT & SLC.T.

There is, therefore, an extremely close relationship between failures and
necessary properties of trees. As long as we are allowed to apply tests of the
form not(s, X), the must preorder [ 3 coincides with the failures order.

It is also clear from these results that the observers of the form not(s, X)
are sufficient to generate the preorder 3. Since they all belong to the set
D of deterministic tests, we also see that deterministic tests are enough to
generate this preorder. Let N be the set of all tests not(s, X'). Then

Corollary: For all S and T,
SCYT & SCET & SLC,T.
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Since the sequential observers are also deterministic tests, and the se-
quential tests suffice to generate the may preorder, we have secen that the
subsets § and N of D generate T3 and o respectively. The deterministic
observers therefore generate all three of the preorders:

SC?’T o SC; T, i=1,23.

Using our characterisations of [_y and L 3, we can give a characterisation
of C; in terms of failures and traces. Since this relation is simply the
intersection of the other two, we have:

Corollary: For all S and T,
SC,T <& failures(S) D failures(T) & traces(S) = traces(T).

Hennessy and de Nicola are also concerned with the equivalences generated
by their preorders. They define equivalences =; and = by:

Definition 6.2.10: For 1 = 1, 2,3 and 0 any set of tests,
S=;T & SE;T&TE;S,
S=lT » SLCIT&TLC]S.

Our results show that, on divergence-free terms, using deterministic
tests at least, =3 is simply trace-equivalence and =, is failure-equivalence.
Moreover, in these circumstances =; is identical to =3 .

Corollary: For all S and T,
' S=3T & traces(S)= traces(T)
S=;T < (failures(S)= failures(T)
S=1T & (failures(S) = failures(T).

We end this section by remarking that our results here show that the
three preorders are generated by simple classes of observers. Indeed, all of the
observers used in proving the properties of processes have been deterministic,
in that at each node in a test tree the arcs possess distinct, visible labels;
no test ever has a T-action or distinct possible derivatives on any particular
action. Although we did not state this initially, we could have restricted at-
tention to deterministic tests throughout, without changing the final outcome:
the equivalence relations and preorders generated by the class of deterministic
tests coincide with the standard ones. Note, however, the role played by w in
our tests: we allowed tests such as

not(a, { b}) = wNIL + @wNIL,
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in which w appears at a node with other possible actions. We will see that this
type of test is crucial if we are to be able to investigate failures of processes.
If we insist that termination, whenever it is a possible action, is always the
only possibility, the not(s, X) tests are no longer available. This restricted
class K of tests was used by Kennaway, and we will investigate this later.

Alternative forms of testing.

We mentioned earlier that there are alternative plausible methods for
treating tests. In particular, Hennessy and de Nicola discuss another formula-
tion of must. In the version described above, a process must pass a test if
every computation arising from the test terminates in a successful state; when
the computation can progress no further, the remainder of the test must be
able to signal success. An additional requirement, that the test applied to
the process cannot succumb to divergence, is irrelevant here, as we are only
considering convergent processes and finite tests.

In Hennessy and de Nicola’s alternative formulation, a process must pass
a test if every computation arising from the test must reach a successful
state, and if in every such computation success occurs before any divergent
state is reached. Note that this allows infinite, non-terminating computations
provided the test reaches a successful state at some (finite) stage during the
computation. The essential difference between this and the earlier formulation
is that here a computation may proceed past a successful state without
invaiidating the success of the test.

Notice that, since we are using only finite tests, any divergence arises
because of the process alone. The formal definition, reflecting these ideas, is
as follows:

Definition 6.2.11: For all processes S and tests O,
S must’ O < for all computations (S|O) = Sp|0g)—(51|01)—>+--
(2) k.O—>,
(12) Spt = Ox—>, for some k < n.
In the absence of divergence, this says that every computation must pass
through or reach a successful state, although we do not insist that the final

state is successful. It is obvious from the definition that a must test is at least
as strong as a must’ test: for all § and O, '

Smust O = S must’ O.

The reverse implication does not, in general, hold. If tests can perform 7
actions, the new formulation is not the same as the old: for example, we have
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for all S,
S must’ wNIL + 7NIL

—S must wNIL + 7NIL.

Even if we only consider deterministic tests, the results of testing will differ:
for all a € X, all non-empty X, and all processes S, we have

S must’ wNIL + aO
for all O.

It follows that the tests not(s, X) yield no useful results about failures when
we use them this way. Moreover, a simple argument shows that any deter-
ministic test O is equivalent as far as must’ is concerned to the test O’ formed
by pruning away all other branches from every node of O at which a suc-
cessful action appears, leaving just the w arc there. This operation converts
any deterministic test into a test in K. Every (non-trivial) test not(s, X) is
identified in this way with wNIL. In other words, it makes no difference if
we use the full set of deterministic tests or restrict to the cases when w al-
ways excludes other actions. The must preorder corresponding to the new
formulation of must’ is therefore generated by K. Let us give this version of
the ordering a name.

Definttion 6.2.12: For processes S and T,
SC'T & VO.(S must' O = T must’ O.)

We have indicated that the must’ order is generated by the class K of
tests. Indeed, the must’ order and the must order agree when restricted to
this class of observer.

Theorem 6.2.18: For all processes S and T,
SC'T & SCKT.

This class K of tests is suggested by the work of Kennaway, which we
will now outline.

3. Kennaway’s tests

In Kennaway’s general model of nondeterminism [K2] we begin with a set
M of (deterministic) machines, with typical member m, and a set T of tests,
ranged over by t. We assume a predefined relation sat on machines and tests,
specifying which machines pass which tests. A nondeterministic machine is
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a certain kind of set of deterministic machines; we use M to range over sets
of deterministic machines. The idea is that a nondeterministic machine can
behave like any member of a set of deterministic machines, but the choice of
which one cannot be influenced by the machine’s environment; nor is it known
in advance. If we are to be sure that a nondeterministic machine passes a test,
then it must be the case that all possible choices of deterministic machine will
satisfy the test. Thus, the satisfaction relation extends to sets of machines in
the obvious way:
Msatt & Vme&E M.msatt.

Two sets M and M’ are indistinguishable if they pass exactly the same set of
tests. We may define an equivalence relation on nondeterministic machines
accordingly:

M= M & VteT.(Msatt & M satt).

Clearly there is a largest nondeterministic machine equivalent to any M : it is
simply the set of all deterministic machines which satisfy precisely the same
tests as M does. This distinguished member of the equivalence class of M
will be denoted ¢(M); its definition is

(M)={m|Vt. msatt & M&tt}.

Of course, it is always the case that

M C (M)
c(e(M)) = c(M).

We will refer to ¢(M) as the closure of M. Kennaway chooses these closed sets
for his nondeterministic machines. The superset order on nondeterministic
machines clearly corresponds to the notion of “being more nondeterministic,”
and '

M2DM
will be the case if and only if M’ passes every test that M passes.

Kennaway applies his ideas to nondeterministic communicating processes
in [K1]. For a deterministic machine he takes a tree over X, that is, a
deterministic synchronisation tree. A test is again a finite deterministic
synchronisation tree, but with the leaves partitioned into two disjoint sets:
the successful leaves and the unsuccessful leaves. We can again represent this
by using a special label w to indicate success, if we allow w labels only on
terminal arcs and insist that such arcs, whenever they appear at a node, do
so alone (so that success is unambiguous whenever it is possible), then we

Page 141



6.3 KENNAWAY’'S TESTS

can clearly translate a tree with partitioned leaves into a tree with an w arc
replacing every successful leaf. Thus we are not losing any generality by doing
this. This class of observer was called K earlier. We will continue to use O
to range over this set of observers.

Kennaway defines a notion of safeness on trees. A tree is safe if and
only if every terminal arc is an w-arc. This clearly captures the idea that a
tree can only be guaranteed to succeed eventually if every path from its root
leads to a successful action. We write safe(T’) to indicate that T is safe. Since
Kennaway regards a test and a process as executing in parallel, each action
requiring cooperation by both process and test, a test applied to a process
must succeed if and only if this parallel composition is safe. Thus we define,
following Kennaway,

Ssat O & safe(S]0),

where the parallel composition S || O of synchronisation trees is as defined
earlier. '

‘ We can rephrase this definition in more familiar terms. Since there are
no 7 actions here, the above definition of satisfaction is equivalent to the
following:

SsatO & YseT* (S]0)==(5"||0) =NIL = 0'—%.

For deterministic synchronisation trees this is precisely Kennaway’s notion of
satisfaction; we have given a version also applicable to general synchronisation
trees.

For tests in K, this satisfaction relation coincides with our two versions of
must. The reason for this is simple. For any test O let O be the test obtained
by replacing every visible label in O by its complement (leaving 7 and w arcs
unchanged). Every computation of S || O corresponds to a computation of
S|O0, and vice versa. The following result makes this precise.

Lemma 6.3.1: For all S and for all O € K,
Ja.(S]|0)-5(5"|0") & (S|0)-(8'0").

Proof. By definition,

(S||0)—=(S'||0") & (i) a £ 1, S-S5, 0—=0'
or (iija=r1, S-S5, 0 =0
or'(iii}a=7r; ' =8, 0-50'.
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But these are precisely the conditions which guarantee a 7 action of S|5 to

S'O'. g
Corollary: TFor all S and for all O € K, S ||O = NIL iff S|O has no 7 actions.

Corollary:  Every computation of S || O corresponds to a computation of
S|0, and vice versa:

3s € B°.(5]|0)==(5"]|0") & (S|0O)=L(s'|0).

It is also evident from these results that the successful computations also
correspond in the two models. Hence we see that, for tests O € K

35.(S||0)==(5"]|0') = NIL & O'—% & (S|0)=L(5'|0") A= & O'—%.

In other words, Kennaway’s satisfaction relation is identical with the must
relation, when restricted to tests in K.

Lemma 6.8.2: For all synchronisation trees S and all tests O € K
S sat O & S must O.
|

The only way for a process S to fail a test O is by executing a sequence
of actions s which does not take O to a successful node, and then being able
to refuse all of the events in which the test is then capable of participating.

Ezamples.

1. The test wNIL is passed by every deterministic machine, because every
machine can at least do nothing. If the test is prepared to ask no questions
about the process’s behaviour, it is trivial to satisfy.

2. The process NIL passes no non-trivial test. Any test other than wNIL
requires at least one visible action to take place before success, and NIL is
incapable of any visible action. Put another way, a deadlocked process passes
no non-trivial test.

3. The process aNIL + bNIL passes the tests awNIL and bwNIL, as well
as awNIL + bwNIL. Of these tests, the process aNIL only satisfies the first
and third, while the process bNIL passes the second and third.

4. The satisfaction relation extends to sets of deterministic processes. A
nondeterministic machine M is a set of deterministic machines, and M sat ¢
if and only if every member of M satisfies ¢{. Using the above examples to
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guide us, we see that every nondeterministic machine passes the trivial test,
and every M which contains NIL passes no other test.

5. Let M and M’ be the following machines:

M = {aNIL + bNIL },
M’ = { aNIL, bNIL }.

Then M satisfies precisely the same tests as the deterministic process aNIL +
bNIL, as above. And M’ satisfies a test if and only if both aNIL and bNIL
pass it. Hence, we have

M sat awNIL + bwNIL, awNIL, bwNIL
M’ sat GwNIL + bwNIL.

In Kennaway’s model for communicating machines, we identify every
set M of deterministic machines with its closure c¢(M), defined to be the
largest set of machines which passes exactly the same tests as M does. Since
deterministic machines are trees over L, and as such are uniquely determined
as non-empty, prefix closed sets of traces, there is a connection, as noted
earlier, between the sets of trees used here for modelling processes and the
implementation sets of Chapter 3. Recall that we defined, for a CSP process
P, a set of trees imp(P), its implementation set:

imp(P) = {T | P C det(T) }.

For a finite alphabet X, the sets occurring as implementation sets of processes
turned out to be precisely the convez-closed sets. Indeed, if the alphabet
is finite, Kennaway’s closed sets are exactly the convex sets. Thus two in-
dependently motivated models of communicating processes have arrived at
the same basic model of processes. However, Kennaway’s view of nondeter-
ministic processes does not coincide entirely with ours. For him, any process
which may deadlock (but may also have other actions) is equivalent to any
other process which can deadlock; all such processes are represented by sets
of trees M containing NIL, and we have seen that these sets pass precisely
the same tests (only the trivial test).

Kennaway’s model of nondeterministic processes can be obtained from
ours by applying a filtering operation K, which identifies two processes iff
they have the same behaviour up to deadlock: K is a function on failures

sets, defined by

K(P)y=H(s,X) ]| [a,X) e P}L{(at, X) | (8, Z)eP}.
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Thus, for example, K (STOP) = K(CHAOS). For any of our CSP processes
P, the nondeterministic machine corresponding to it will be the closure of the
set imp(P). But since Kennaway’s model makes more identifications, this will
also be the closure of the set imp(K (P)). The partial order on our domain of
processes is the superset order; this is also the case for Kennaway’s model.
Thus, Kennaway’s nondeterministic machines form a space tsomorphic to the
subspace of CSP processes formed by applying the K operation. If we define
KPROC to be the range of K, again ordered by superset, then the mappings:

imp : KPROC — M
proc : M — KPROC

are an isomorphism pair.

Although Kennaway was not concerned to extend his satisfaction relation
to arbitrary synchronisation trees, as his formulation employed only deter-
ministic trees and sets of them, it is quite easy to do so. In the definition given
earlier of S sat t we were only considering deterministic processes. The ver-
sion we gave was also applicable to arbitrary synchronisation trees: we need
merely to take 7 actions into consideration. This is a perfectly reasonable
extension of sat. It is not quite in the spirit of Kennaway’s work, however,
because it does not explicitly define satisfaction for nondeterministic processes
in terms of satisfaction for deterministic processes. We already have a method
of associating a set of deterministic trees with an arbitrary synchronisation
tree: map the synchronisation tree to a failure set and take the implementa-
tion set. This allows us to define an implementation set for a synchronisation
tree T', by the definition:

imp(7T") = imp(failures(T)).

If our version of sat for synchronisation trees is to agree with Kennaway’s,
then the following should hold:

S sat t & YU € imp(S). U sat t.

This is indeed true, because of the following fact about implementation sets:

failures(S) = U{failures(T) | T € imp(S) }.

Theorem 6.8.8 : For all S and all O € K,
Ssat O & VT € imp(S). T sat O.

Page 145



6.3 KENNAWAY'S TESTS

Proof. Define acc(0) = {(s, X) | 050" & initials(0') = X & O’ /.}
Clearly, by definition of sat there is only one reason why a process S might
not pass a test O : if some set (s, X) in acc(O) is also a failure of S. But,
by the above property of imp(.S), this happens iff there is a tree T in imp(S)
such that (s, X) is also a failure of T'. Since this condition means that T also
fails to satisfy O, the result follows. 1@

We can define an ordering on trees which reflects Kennaway’s notion of
passing tests:

Definition 6.8.4: For all processes S and T,
SCxT & VYOe K.Ssat O= T sat O.

Putting together the result of Lemma 6.3.2 and this definition, we see
that Kennaway’s order C x on synchronisation trees satisfies:

SCkgT & K(failures(S)) 2 K(failures(T)),

and that it coincides with the order C4 and with must’ .

A more concrete method of proving this result is suggested by trying to
find a set of observers in K which test for failures, in a similar way to the
properties of the not(s, X') tests. We have seen that these particular tests are
useless here. However, we can define a variant, which we call acc(s, X). For
simplicity, assume the alphabet is finite. Since every term in our language
only uses finitely many labels, this is not restrictive. Define the tests acc(s, X)
by induction on the length of s:

acc((),X) = Z ZwNIL
zeX
acc(at, X) = gacc(t, X) + E bwNIL.
bs£a

For example, if the alpha.bét ¥ is just {a,@,b,b}, then

ace((}, {4 }) = BuNIL,
acc(a, {a}) = @awNIL + bwNIL

and we can see that
aNIL sat ace((), {a})

but aNIL does not satisfy the test acc(a,{a}). These results are deducible
from the following general property of these tests, which we call acceptance
tests. Notice that, by construction, these tests belong to K.
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Theorem 6.8.5: For all 5, X, and all processes S,
S sat ace(s, X) & (5,X) & K(failures(S)).

Proof. By induction on the length of s.

Base case. If X is empty there is nothing to prove, because the pair (( ), 0)
is always a failure of any tree and the test NIL is not satisfiable. When X is
non-empty, S sat ) TwNIL if and only if every T in imp(.S) has an initial
event in X, and this happens if and only if NIL is not an implementation of
S and X is not a refusal; thus,

S sat ace((),X) & ((),X) &K (failures(S)),

as required.

Inductive step. Assume that for ¢ we have
_ T sat acc(t, X) & (t,X) & K (failures(T")),
for all T and X. The test acc(at, X) is Tace(t, X) + X4, bwNIL. A tree S
satisfies this test if
(i) s=hs o initials(S’) = 0
(i) S=2T = T sat acc(t, X).
By the inductive hypothesis, these conditions can be rewritten:
(i) S=LS" = initials(S’) 54 0
(i) S==T = (t,X) & K(failures(T)).
But by definition of K, we see that the pair (at, X) is a K-failure of S if and
only if either ({),X) is a failure of S or there is a tree T such that

S=5T & (t,X) € K (failures(T)).
The first possibility arises if and only if there is an S’ such that
§=43" & initials(S') = 0.
Thus we have shown that
S sat acc(at, X) & (at,X) & K (failures(S)).
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4. Treating divergence

Now let us examine what happens when we try to extend the orders
of the previous section to trees which may have the ability to diverge. In
Hennessy and de Nicola’s work, divergence corresponds (more or less) to the
presence of an improperly guarded recursion, by which we mean a recursive
term pz.S in which S has a free occurrence of z guarded only by some number
(possibly zero) of 7s. Their language of terms allows, for example, the term
pz.(aNIL+z), which diverges because there is an unguarded occurrence of z in
the body. Similarly, the term pz.(aNIL +7z) diverges, because the occurrence
of z is guarded only by 7. The first of these trees “unrolls” to give an infinitely
branching tree, all of whose branches are aNIL; the divergence is reflected in
the fact that this tree has infinite branching. In the second case, the term
unrolls to give an infinitely deep but finitely branching tree; divergence here
corresponds to the presence of an infinite path of 7 arcs, and agrees with
our version of divergence. For us, divergence corresponds to infinite internal
chatter, and we are identifying 7 with internal activity.

In Milner’s original conception, synchronisation trees were finitely branch-
ing. If we take the view that a synchronisation tree should only be finitely
branching, we must rule out recursions where the bound variable appears
completely unguarded; but this does not rule out 7 as a guard. In this sec-
tion, then, we will consider trees which may have branches of the form 7°°.
By restricting attention to finitely branching trees of this type, we find some
interesting relationships between the treatment of divergence in [HN] and our
methods. From now on, we refer to our notion of divergence as infinite chat-
ter, the presence of an infinite path of r arcs. By Konig’s Lemma, a finite
synchronisation tree has an infinite 7 branch if and only if it has arbitrarily
long finite 7 branches.

A

Definition 6.4.1: The unary predicate 1 on trees is:

st & 85I

If St we say S diverges, and otherwise we write S| (S converges).

It is also useful to generalise the notion of (immediate) divergence. We
write S1s, and say that S diverges after s, if there is a prefix ¢ of s and a
tree T such that S==T & T'1. The converse of this is written S|s. Read S1s
as saying that S may be diverging once it has performed s, and S|s that S
converges all the way to s. Notice that S7() & ST, and S[() & S|.

In order to extend the failure set semantics to cover divergent trees,
we must introduce divergence sets as well; this treatment is consistent with
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that of Chapter 5, where infinite chatter was failure-equivalent to CHAOS.
There is an obvious connection between the divergence sets of trees and our
earlier divergence set definitions for processes, since we can map processes to
synchronisation trees as in Chapter 5. All the same, the treatment given here

is self-contained.

Definition 6.4.2: For any tree S,
(i) failures(S)={(s,X) | 3T.S==T & initials(S)NX =0}
U{(st,X)|STs}

(ii) div(S)={s| Sts}.
We still define the trace set of a tree to be:

traces(S) = { s | (s,0) € failures(S) }.

In this section, we will write S = T to mean that the failures of S contain
the failures of 7" and S can diverge whenever T can:

SCT & Cfailures(S) D failures(T") & div(S) 2 div(T).

This is the natural extension of the failures order to divergent processes.

In the presence of divergence, the definitions of the previous section
become:

Definition 6.4.8: For any term S and test O,
(i) SmayO & 3U.(S|0)==U & (U—).

(i) SmustO ¢ (S|O) &
YU.(S|0)=U & (U /%) = (U-2).

Notice that, with the new definition of failures(S) these definitions can
again be reformulated in terms of failure sets, exactly as in Lemma 6.1.4.

In addition to the special classes of observers used earlier, do(s) and
not(s, X), we will use a new set of tests designed to look for divergence. For
any sequence s the observer cnv(s) is given by the rules:

cnv(()) = wNIL
cnv(at) = wNIL + aenv(t).
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For each s, env(s) is a test which is prepared to succeed after performing any
prefix of . It fails if and only if a computation can diverge before completing
a prefix of 5.

Attempting to find results analogous to those of the previous section, we
proceed as follows. The proofs are straightforward modifications of earlier
proofs.

Lemma 6.4.4: For all processes S and tests O,
Smay O & either Js. s € traces(S) & sw € traces(O)
or 35 € traces(0). Sts.

Lemma 6.4.5: For all processes S and all s € 2%,
S may do(s) & s € traces(S).

Lemma 6.4.6: For all processes S and all s € £*,
S must env(s) & Sls.

Lemma 6.4.7: For all S and (s, X),
S must not(s, X) & (s,X) Tailures(S) & Vz € X.S|sz.

The importance of this result, which differs from the corresponding lemma
on divergence-free trees, is that a test can only yield positive results when no
divergence has occurred during the test. It is impossible to distinguish, in
this framework, between a process which can refuse an event and a process
which can diverge after first performing that event. For example, the trees S
and 7 corresponding to the terms

a(pz.7z) + b(uz.T)

a(pz.7z)
are
8 ==iar® 4 br>
T o™
Clearly, T can refuse b but S cannot. However, any attempt to test for refusal

of b, such as the test not(({),{ b}) fails to obtain an answer from S : indeed,
(S|bwNIL)T and S71b. The tests O which S must satisfy are characterised by

the conditions:
() () {w}) &tailures(O)
(ii) a & traces(O)
(iii) b & traces(O)
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Clearly T must satisfy any test having these properties, so we have § Co T.
But the failures of S and T are incomparable.

In the light of this example it cannot be the case (as in Lemma 6.2.9)
that § Lo T always tmphes S T T. Nevertheless, the converse implication
still holds.

Lemma 6.4.8: For all trees S and T,
SCT = 8SLCsT.

Proof. Suppose S C T and § ZoT. Then

(1) failures(S) D failures(T)
(2) div(S) D div(T)
(3) S must O
(4) =T must O

for some test O. If the reason for (4) is divergence, then there is a trace s
of O such that T'ts. But this would imply divergence of S|O, by (2). This

contradicts (3). Hence, the reason for (4) must be a pair of derivations

T==T'

0===0'
for which T"|O’ has no further r-derivatives and has no w-action. Put

X = initials(0’).
Then (as in the proof of Lemma 6.2.8) the pair (3, X) is a failure of T'. By (1),
(s, X) is also a failure of S. Thus, there is a tree S’ such that
S=55" & initials(S')NX = 0.
The derivation (S|0) == (S’|0’) is a failing computation, contradicting (3).
That completes the proof. 1§

Now let us consider the must relation, extended to divergent trees. Recall
that S must’ O iff every computation of this parallel composition passes
through a successful state, and if the process reaches a divergent state during
the computation the test must already have reached a successful state at some
earlier stage.

Definition 6.4.9: For a process S and test o,
S must’ O & whenever (S|0)—>(S;|0;)—"- - is a computation
then (z) 3k.0O—>
(12) Spt = bk < n. Or— -

Under this definition, a divergent process passes just the trivial tests
which are prepared to succeed without waiting for any response. For_ example,
puz.7z must’ wNIL.
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The analogous extension of the sat relation to divergent trees is simply:
S sat O & whenever (S]] 0)-25(S1||01)—>---is a computation
then (z) 3k.0x—> &
(22) Sp1 = Jk < n.O—>.

It is easy to check that again the tests in K suffice to generate the must’
ordering, and that the sat relation is identical with this version of must.
Moreover, since the failures model identifies divergence with CHAOS, we still
have
S Ck T & K(failures(S)) D K(failures(T).

Summary.

We have discussed various attempts to define the properties of processes
which can reasonably be observed by testing. Several alternative notions of
passing a test were covered. In each case we were able to make connections
with the failures model of processes, and it appears that although the alter-
native testing ideas were originally motivated by different concerns, they have
a common link with our approach. This is very interesting; it is important to
discover and understand the inter-relationships between the various proposed
models for concurrency in the literature. Here we have shown that there
are some results to be obtained by classifying models using assertions such
as must and may, and that different choices of the class of cbservers yield
different models. This type of classification may be a step on the way to a
more comprehensive grasp of the essential differences between the models for
CCS and CSP discussed in this thesis, and may lead to future work encom-
passing yet other models for concurrency.
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Some examples

1. Dining Philosophers

One of the classic problems in the literature of concurrency is the problem
of the five dining philosophers [Dil,H1]. Five independently active philosophers
share access to a common dining table, in the centre of which is a bowl of
food. Each philosopher has his own place at the table, and between each pair
of adjacent places there is a fork; in order to partake of the food a philosopher
must sit at his place and pick up both adjacent forks, since it is supposed that
the food is sufliciently messy to require more than a single fork. Here is a
situation in which there is a possibility of deadlock, since it is conceivable
that all five philosophers grow hungry and assume their seats, and that each
then picks up the fork to his left (say), whereupon there are no free forks
and no-one can eat because none of the philosophers has two forks. This
is a typical instance of the dangers of sharing resources amongst competing
concurrent processes.

We can give an elegant formulation of the dining philosophers in our
language of processes, by representing each philosopher and each fork as a
process. As a template for a prototypical philosopher, we use the recursively
defined process:

PHIL = (enter — pickleft — pickright — eat —
putleft — putright — leave — PHIL).

We have represented the actions of a philosopher as events: pickleft, for ex-
ample, represents the act of picking up the fork to the left of the philosopher’s
place.

We make copies from this template for each philosopher, relabelling the
events so as to distinguish between the different philosophers. For 2 = 0.. .4
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let f; be the alphabet transformation which relabels events as follows, and
otherwise leaves events unchanged:

fi(enter) = i.enter
fi(leave) = i.leave
fi(pickleft) = i.pickup.i
fi(pickright) = i.pickup.i+1
fi(putleft) = i.putdown.i
fi(putright) = i.putdown.i+1
fi(eat) = i.eat.

These transformations relabel the events to conform with a standard num-
bering of forks: the ¢** fork is on the left of the 2** philosopher’s place, and
philosopher i+1 sits to the right of the ¢t* philosopher.

The 7" philosopher is represented by the process PHIL; :
PHIL; = f;(PHIL).

Note that the alphabets A; of the PHIL; are mutually disjoint, corresponding
to our assumption that the philosophers act independently of each other. The
event i.pickup.i represents the 7** philosopher picking up the fork to his left,
and the other events are interpreted in a similar way.

We can represent a prototype fork by the recursive process
FORK = (pickleft — putleft — FORK)[](pickright — putright — FORK).

Using the relabellings g; for 2 = 0.. .4, which leave events unchanged except

for the clauses:
g:(pickleft

gi(pickright
g:(putleft

= i-1.pickup.i
= i.pickup.i

= i-1.putdown.i

R N

g:(putright) = i.putdown.i,

the ¢** fork is represented by the process FORK; :
FORK; = ¢;(FORK).

Again the alphabets B; of individual forks are mutually disjoint, but each
fork event requires participation by a philosopher, since B; is contained in

A UA;.
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We represent the independently executing philosophers as an interleaving,
and similarly for the forks:

PHILS = PHILg|||...|||PHIL4
FORKS = FORKy|||...||| FORKj,.

Let A be the alphabet of the philosophers and B the alphabet of the forks:

A= U?:DAir
B=J 5B

Then B is a subset of A, corresponding to the fact that every fork action
needs cooperation by a philosopher. We may represent the whole system as a
parallel composition in which the philosophers use alphabet A and the forks
use alphabet B :

PHILS, || s FORKS.

A sequence of actions possible for the system and leading to deadlock is
s = (0.enter, ..., 4.enter, 0.pickup.0, . .., 4.pickup.4).
One can establish this formally, by showing that
(PHILS4 || FORKS) after s = STOP.

We have a large collection of theorems on process equivalence which can be
used in such a proof; the identity

(Palls @)after s = (P after s[A)a || 5 (@ after s[ B)

will be useful here. The reader is invited to find a proof.

Alternatively, one can prove that for any process @, the equality
(PHILS4 || s FORKS)||(s — @) = (s — STOP)

holds, indicating that the sequence s of events always leads to deadlock.

Avoiding deadlock.

We can produce a deadlock-free version of the dining philosophers prob-
lem, by adding to the system a scheduling process to guarantee that no more
than four philosophers can ever be simultaneously at the table. This solution,
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due to Dijkstra, prevents deadlock, because five forks shared between four
philosophers will always guarantee that some philosopher gets two forks.

A scheduling process suitable for this task is the “butler” defined as
follows. The process ADMIT performs a loop, each cycle of which allows
one philosopher to enter and subsequently to leave. The BUTLER process
is obtained by interleaving the actions of four independent copies of the
admitting process, and thus allows up to four philosophers to be in the dining
room at any time:

ADMIT = [J;_,(i.enter — i.leave — ADMIT)
BUTLER = ADMIT, ||| ..|||ADMIT,,

where each ADMIT; is a copy of the ADMIT process. Letting C be the
alphabet of the butler process, if we run the system in parallel with the butler
we get

(PHILS, || s FORKS)4 ||c BUTLER.

The trace s which led to deadlock in the previous system is no longer possible,
since it is not a possible trace for the butler: more formally, we can show that

initials(BUTLER after (0.enter, ..., 3.enter)) = {i.leave | 1 = 0...3 },

so that the last philosopher will not be allowed into the room. This rules
out the bad trace s. More importantly, one can prove that for any trace ¢
of this system of processes, the number of philosophers in the dining room,
as recorded by the difference between the numbers of “enter” events and

“leave” events in t, never exceeds 4. This property will guarantee freedom
from deadlock.

As is well known, this solution to the dining philosophers problem is still
not entirely satisfactory. It is still possible for a particular philosopher to
starve, because the other philosophers could “conspire” to exclude him from
the forks. It is quite conceivable for the sequence of actions

t = (L.enter, ..., 3.enter, 1.pickup.1, . .., 3.pickup.3)
to occur, setting up the table with three philosophers, each having picked up
one fork. Now the fourth philosopher can enter, take his place, eat and leave,
since there are two free forks, one each side of his place. This happens when

the system performs the sequence

u = (4.enter, 4.pickup.4, 4.pickup.0, 4.eat, 4.putdown.4, 4.putdown.0, 4.leave).
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There is nothing now stopping this philosopher from repeating this cycle
ad infinitum, if (perhaps) he always grows hungry before any of the seated
philosophers has managed to grab a vacant fork. Thus, one philosopher can be
kept out of the room unless the butler is fair in distributing his entry favours;
this is not possible in our language of processes, as we did not stipulate that
we were using a fair nondeterministic choice operator. IFairness is an issue that
we are unable to treat adequately in this framework. The major disadvantage
to this solution is that even though a philosopher has gained access to the
table, and holds one fork, there is no guarantee that the other fork will ever
become free for him to pick up; for example, philosopher 3 suffers this fate in
the above scenario.

Other, more complicated, solutions to the philosophers problem have
been found which do not suffer from the starvation problem. The interested
reader is referred to [Dil] and [BA] for more details. [BA| contains a survey
of solutions to this and other problems in the literature.
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2. The mutual exclusion problem

In the mutual exclusion problem (see, for example, [Dil]) each of a group
of processes is continually trying to execute its critical section, an area of
code in which access is made to a shared resource. Because of the properties
of the resource, no two processes should ever be allowed to enter their critical
sections together, since only one process should access the resource at any
time. A classical solution to this problem uses semaphores [Dil] to ensure
that at any time at most one process is executing its critical section.

We may model a typical process using events to stand for the beginning
and end of the critical sections, and (for simplicity) a single event for the
noncritical sections; we introduce “p” and “v” events corresponding to the
semaphore operations of the same name, and we also model the semaphore
as a process. Consider the case when there are n processes, for n > 2.
Suppose the 7" process P; gains access to its critical section by executing
the semaphore operation p; and releases the semaphore with a v; event: P;
alternates between executing its noncritical section and its critical section,

punctuated by requests to the semaphore:
P; = (noncrit; — p; — berit; — ecrit; — v; — F;).

The semaphore simply allows a process to increment it by a p event and then
waits for the process to release it with a v event:

SEI\/[ - D?=l(pi -+ UV = SEM)

The system of processes, each acting independently of the others, is modelled
by the interleaving
P = Pill|[cee||| B

This system, communicating with the semaphore, can be represented as:
@ = Pa||5SEM,

where A and B are the alphabets of the collection of processes and the
semaphore, respectively. We may wish to hide the interactions with the
semaphore, obtaining

Q\B.

The traces of this process are built from the events berit;, ecrit; and noncrit;,
and the mutual exclusion condition will be satisfied if and only if in every
such trace every no bcrit; event occurs after a bcrit; event but before the
first following ecrit; event; in other words, once a critical section is entered
by one of the processes, no other process should be allowed to enter its critical
section until the first one has exited. This condition can easily be formalised.
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3. Networks of communicating processes

Suppose we wish to model and reason about a network of named processes,
linked by channels. Work along these lines has been done by many authors,
notably Chandy and Misra [CM]|, and Iloare and Zhou [Z,ZH1]. Each node
in the network is a process, and each process communicates with its neigh-
bours or with the environment by sending messages along the channels. Thus,
an arc or channel linking two nodes represents a communication channel be-
tween two internal nodes of the network, while a channel with an unattached
end represents a communication link to the environment of the network.
We assume that channels intended for interaction with the environment are
named, with channel names ranging over some set Chan. The internal chan-
nels are unnamed, since we regard an internal communication as invisible to
the environment. For simplicity we suppose that each internal channel links
precisely two nodes, but there may be more than one link between any two
nodes or between any node and the environment.

If we wish to distinguish the direction of message passing, to model
output and input, we will represent a communication by a process with its
environment as an event incorporating the name of the channel, the value
of the message, and the direction of the message. An event c!v represents
output by the process of message v along the channel named c. An event c?v
represents input by the process of the message v along channel ¢. Transmission
of a message along an internal channel is regarded as an action invisible to the
environment; the subsequent behaviour of the network may, of course, depend
on the value of the message, so we will use an event of the form v to represent
such an action. There is no need to record the direction of message passing
here, as the environment is not required to participate in these actions. We
assume that message passing is a synchronized activity, so that an event clv
can occur only when the sending process and its environment are both ready,
the environment accepting the message from the process; similarly for an
input event. Internal events are uncontrollable as far as the environment is
concerned, so we will consider them to be hidden from the environment.

A simple language for describing networks of processes contains output
and input commands, choice, renaming channels, hiding channels and linking
channels. Assuming that the message values range over the finite set V', and
the channel names range over Chan, the universal alphabet can be taken to
be the set

ET=VU{c,c?v|ceEChan & vEV }.

For the syntax of our language, we take
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P :=STOP | (clv —» P) | (?z— P(z)) | POP | PNP
| Ple\d] | P|o|P,

where @ is a channel linking function, a partial function from channel names
to channel names.

The channel set of P, chan(P) is defined by structural induction:

chan(STOP) = 0
chan(c!lv — P) = { ¢} U chan(P)
chan(c?z — P(z)) = {c} UU{chan(P(z)) |z € V' }
chan(P 7 @) = chan(P) U chan(Q)
chan(P _ Q) = chan(P) U chan(Q)
chan(P ®|Q) = (chan(P) U chan(Q))—chans(®),

where chans(®) = dom(®) U range(®) is the set of channel names affected by
®. Similarly, we may define the input channel set inputs(P) and the output
channel set outputs(P) of a term P. We impose a syntactic constraint that
no channel is used by a process for both input and output, that is, the sets
inputs(P) and outputs(P) are disjoint. |

Each term in this language can be considered as representing a process
whose events denote communications, either input or output, with its en-
vironment.

Most of the syntactic constructs are familiar from earlier sections. In
this setting, the intuitions behind the various constructs are as follows. We
explain each operation in terms of previously defined operations.

Inaction. STOP is the process which is incapable of performing any
action.

Output. A process of the form
(clv — P)

wishes first to output the message v on channel ¢; this is a simple prefixing
operation.

Input. A process
(c?z — P(z))
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is initially willing to input any message at all (ranging over the set V') on
channel ¢, and its behaviour thereafter is dependent on the value input. In
this syntactic construction z is understood to be a bound variable ranging over
V', the set of all possible message values. The terms P(z) denote a process
for each z € V, and if the value input initially is v the process continues by
behaving like P(v). We regard this input process as having a conditional choice
between the various inputs on the channel ¢, the choice being determined by
the environment in which the process is placed. We therefore set

(c?z — P(z)) = Uyev(c?v — P(v)).

Choice. The two forms of choice, nondeterministic and conditional, are
again the [ and ] operations: for example, the process

(a?z — P(z)) M (b?z — Q(z))

can choose arbitrarily to wait for input on one of its two channels, and if the
environment can only send along the a channel (say), there is a possibility of
deadlock. On the other hand, the process

(a?z — P(z) (67 — Q(x))

must initially accept input from the environment on either channel, and
cannot commit itself to listening along only one of these channels.

Renaming. The renaming operation P|c\ d|, where ¢,d € Chan, simply
changes channel names: all events of the form c¢!v and c¢?v become d!v and
d?v respectively; all other events are unaffected. This is an example of an
alphabet transformation: the appropriate transformation is f¢, defined by

ff(v) =%,
filelv) = dlv, ife=c¢,
= elv, otherwise
fietw) =dM, ife=c,

= e?v, otherwise,

for all v € V. We define
Plc\ d] = f¢[P).
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Linking. A linking operation ® is a partial injective function on channel
names. We use the notation

lei & dir B idal,
where the ¢; and d; are assumed distinct, for the function mapping ¢; to d;
(i = 1,...n). This particular linking function joins the channels named ¢; in
one process to the corresponding d; in another. We will only allow use of a
linking operation when the processes involved have disjoint channel sets, and
when the linkage will pair input channels of one with outputs of the other: in
any combination P[® @ we require that ® be injective, chan(P) and chan(Q)
be disjoint, and for all ¢, d,
¢ € inputs(P) & ®(c) = d = d € outputs(Q),
¢ € outputs(P) & ®(c) = d = d € inputs(Q).
The trivial linking operation, which makes no connections between channels,
can be modelled by interleaving, since we are assuming that the processes
involved have disjoint channel sets. In order to link two channels, say input
channel ¢ of P and output channel d of @, we first rename all pairs of events
which should be synchronized, by applying the alphabet transformation
g{c?v) =,
g(dlv) = v,
gle) = e, otherwise.
Then we form the parallel composition

PallB @,
where A and B are the sets of events:
A=coP)UYV,
B=a(Q)UYV.
This allows P and @ to progress independently on their individual external
channels, but forces them to synchronize on their internal communications.
Finally, we hide all internal actions: thus, we set

Ple & d|Q = (Palls@\V,
in this case. In general, P[®|Q@ is obtained by a composition of renamings,

followed by a restricted parallel composition and hiding. Define for a linking
function ® an alphabet transformation h by:

h(c?v) = v, if ¢ € chans(®),
h(clv) = v, if ¢ € chans(®),
h(e) =e, otherwise.

Applying h to P renames all events along the channels to be linked; similarly
for Q. Letting A and B be the appropriate alphabets, we define

P[2]Q = (h[Pla|ls h[@D\V
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Examples.

Example 1. A simple process which repeats a cycle of inputting a message
on channel “in” and then outputting the same message on channel “a” can
be defined by recursion:

P = up.(in?z — alz — p).
This defines a deterministic process satisfying the equation
P = (in?z — alz — P).

It can be thought of as a simple “buffer” process with capacity 1, since it
can store at most one value before outputting it: the process is initially able
to input any value whatsoever, whereupon its only possible next action is to
output that value.

Example 2. Let P be the buffer process above, and let @ be another
buffer process which repeatedly inputs on channel “b” and outputs on channel
“out”:

Q = uq.(b?z — outlz — g).

If we form a link, joining output channel a of P to input channel b of @,
we get

R = Pla & b|Q.

Intuitively, we are chaining together two buffers, each of capacity 1; it should
not be surprising that the result behaves like a buffer with capacity 2. R can
store two values before refusing further input. Using the fixed point properties
of P and €, and the fact that all operations involved are continuous, we get:

R =[lev(in?v — R,),
where for each v € V the process R, satisfies:

R, =[yev (in?w — outlv — Ry)
J(out!v — R).

This set of mutually recursive equations can be taken as defining the processes
R and R,, for v €V, or as theorems provable from the fixed point equations.
Intuitively, R, represents the behaviour of R after it has input the value v.
From the equation for R, we see that at this stage the process can either
output v immediately (and then become the empty buffer) or else input a
further value w; the behaviour of a full buffer, containing values v and w, is
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simply specified: no further input is permitted until after output of the value
v, when the buffer will only contain the value w.

Essentially the same example was discussed in [HBR|, where the notation
(P> Q)

was used for the result of forcing everything output by P to be simultaneously
input by @ (and hiding these internal communications). Roscoe has devel-
oped useful proof techniques for establishing properties of recursively defined
processes, using recursion induction rules. These buffer processes provide
many interesting examples. For example, one can formalise the condition for
a process to be a buffer of length n, (parameterised on n) and prove that
the result of chaining together n copies of a single length buffer is a buffer
of length n. In the notation of [IIBR|, if B1 is a buffer of length 1 then the
process B; given in the sequence of definitions

By — Bl
Bn+l - (Bn > B]-):

is a buffer of length . A proof can be based on the collection of process
identities built up in Chapter 2, or perhaps by adapting the proof system
of Chapter 5. Many other interesting properties can be established, such as
the fact that chaining together a buffer of length n and a buffer of length m
produces a buffer of length n +m :

(Bn. > Bm) = Bn+m-l

The proofs rely on the associativity of the > operator, which only holds in
the failure set model in the absence of divergence. Applying the chaining
operation can only produce divergence if the two processes could indulge in
infinite chatter along the channels being linked. This would imply the ability
of the first process to produce arbitrarily long sequences of output after only
a finite amount of input had been consumed; this problem cannot, therefore,

arise when chaining buffer processes of finite capacity, as here. For more
details, see [HBR| and [R].
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Operatlonal semantics

0. Introduction

The semantics for processes presented in this thesis has been continually
motivated by appealing to intuitions about how parallel execution of com-
municating processes can be modelled. We have ‘been arguing in terms of
sequences of actions and their consequences. This is an operationally oriented
approach; it is not surprising, therefore, that we can give a formal operational
semantics, in the style of Plotkin [P1] or Hennessy and Milner [HM], to the
terms in our language. Since the language has not involved any imperative
constructs (such as assignment) there is no need to model machine states;
the language is “applicative.” We may give an operational semantics by
defining an appropriate set Conf of configurations, representing the partial
results or stages in a computation, and a set of transttion relatizons between
configurations, specifying how configurations can alter during execution of
a process. Since we are dealing with an event-based model, it is natural to
follow Plotkin and use a labelled transition system, in which transitions are
associated with event labels.

1. Operational semantics

The presentation which follows is a variant on the semantics given in
(HBR|, where the failure set semantics of our language was introduced using
operational style definitions. Here we extend these ideas to cover the full
language of this thesis, including recursion and divergence. To be precise, we
will consider the language of processes defined by the grammar:

P:=STOP | SKIP | L | a—P) | PMP | POP | P||P
P||P| PP | [P | fIP) | Pla|p | up.P,
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where, as usual, a ranges over ¥ and p ranges over a set of process identifiers.
For the set of configurations we take the closed terms in this language, that
is, the terms in which no identifier occurs free. Let

Conf = { P | P is a closed term }.
Transitions will have one of two forms: a transition labelled with an event a,
P-5Q

can be interpreted “P can transform to process @ by performing an a-action”;
this will be called a wvisible transition. An tnvisible or silent transition has the
form

P—Q

and indicates that P can decide autonomously to behave like @; the labels
on transitions represent single atomic actions, either visible or invisible, so
that we can think of a transition as occurring because of a single atomic
action or nondeterministic decision. Formally, we are working with a labelled
transition system

(Conf, {—>|a€ X}, —).

In the usual way, following Milner and [HBR|, we also define the transi-
tion relations == for s € I*.
P==Q

will mean that it is possible for P to transform to @ by performing the
sequence s of visible actions, possibly with invisible actions on the way. We
set, for s = (a1,...,an),

P%Q & P—'Py- 5P —* P25 —* ... 3P, —* Q,
for some sequence of terms P;. In particular,
()
P==5()

means that P can transform itself invisibly to Q.

The transition system in [HBR] was given in terms of these == relations,
but with different notation. Here we prefer to begin by giving axioms and
rules for the single step behaviour of terms. We will see that the axioms and

rules of the [HBR| transition system are derivable.
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We will also need a predicate 7 on terms to distinguish the divergent
configurations: roughly,

P1

means that P contains an unguarded recursion or unguarded occurrence of
the subterm .

The transition relations and divergence predicate are generated from
the following formal system. More precisely, the valid transitions are those
derivable within this formal system, so the transition relations are defined
to be the smallest relations in which all provable transitions hold; similarly,
the divergence predicate is the smallest predicate consistent with the set
of provable divergences. The axioms and inference rules are intended to
correspond closely to the operational ideas behind the syntactic constructs.
In each case except for recursion we state a “one step” version of an axiom or
rule given in [HBR|. For recursive terms we add rules allowing the transitions
of up.P to be deduced from the transitions of P.

Page 167



8.1 OPERATIONAL SEMANTICS Page 168

Transition system.

We give a set of transition axioms and inference rules for each syntactic
construct.

(SKIP) SKIP_Y.STOP
(PRE) (a —» P)-5P
(OR;) (PMQ)— P (PNQ)— @
(ORy) —P_a’}:: Qi}%’
(PM1Q)—F (PNQ)—e
(COND,) P—P,Q—¢
(PUQ) — (PUQ)
(COND) _PSP _e—e
(PUQ)—P (PLURQ)>Q
(PAR,) ek : 20
(PllQ) — (P'1@) (PllQ) — (P|l@)
— P—»P"; Q—Q
(Pll@)—(P'[|Q")
(INT) b ol R, i 1
(PllIQ) — (P'[I|Q) (Plll@) — (P|llQ)
(INT,) it Q-5

(PlIQ-=(P'[I|Q) (PIIQ-=(PII@)



8.1

(SEQ,)

(SEQ2)

(SEQ3)

(ALPHl]

(ALPH,)

(INVy)

(INV3)

(p1)

(u2)

where Q[R \ p] denotes as usual the term obtained by substituting R for all
free occurrences of p in @. As usual a and b range over ¥ and f ranges over

alphabet transformations.

OPERATIONAL SEMANTICS

P— P
(P;Q) — (P;Q)
a%V, P-%P
(P;Q)—(P@)

A

I

(PiQ) — @
P— P

7P — 7P

P—5Q, fla)=1b

1P| =-£1Q)

P—Q
1Pl — 11(Q)]
P-5Q, f(b)=

P11

a

P—Q
(P/a) — (Q/a)
P5Q
(P/a) — (Q/a)
P-%Q, bs#a
(P/a)—(Q/a)

P—Q
(up.P) — (Q|(1up-P)\ p])
P5Q
(up.P)—+(Q|(up.P) \ p])
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The divergence predicate is generated from the following rules and axioms:

(D1) i)

(D2) pt

(D3) Pt = f[P]1

(D4) Pt = [P

(D5) Pt = (P/a)t

(D6) Pt = (up.P)?

(D7) Pt = (P;Q)t

(DT) Pt = (POPQ)T} (QOPP)T (0P=F_1,D,||,H|)
(DS8) P = (P/a)t

(D9) P=—0Q & Qt = Pt

oo
a . . -
where P—= - is an abbreviation for:

Vn.3P,.P=%P,.

Clause (D8) reflects our decision that a term which can engage in ar-
bitrarily long a-actions can diverge when a is hidden. Because this divergent
property is not deducible form one—step behaviour alone, we have introduced
this infinitary rule into the transition system. The final clause (D9) says
that a term which can make a silent transition to a divergent term can itself
diverge.

Examples.

‘Example 1. STOP has no transitions.

Example 2. The term P given below has the following transitions:

P = pp.((a — p)[J(b — STOP))
P-4 P by (u2)
P-4.8TOP - by (u2)

Thus, the term P/a can diverge and also has the transitions:

(P/a)? by (D8)
(P/a) — (P/a) by (HIDE,)
(P/a)—-(STOP/a) by (HIDE;)

The term STOP/a has no transitions, because the transitions of a term of the
form @ /a are defined from the transitions of @, and STOP has no transitions.
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Derived rules and axioms.

The following transition rules, essentially those given in [HBR], are easily
seen to be derivable in the above system.

piLp
P=5Q=5R = P=34R

P=30
(a = P)=5Q

P==p R==Q’
(P Q)==P’ (PMNQ)=—=Q"
s £ (), P==P s# (), @Q==Q
(POQ)==P (PLUQ)==¢

Py pr 0o
(POQ=LPOe)
P=5P Q=5¢@'
(PllQ)==(r"]|Q")
u € merge(s,t), P==P', Q=‘>Q'
(P|l|@)==(P"]||Q")
P=5Q

(P/a)=23(Q/a)
P=Q, f(s) =t

f[PI==fQ]
P=2Q, f(s) =t
fHP==f1Q]
P=5Q, s tick-free

P;Q==P";Q

P==., s tick-free
PiR==Q




8.1 ' OPERATIONAL SEMANTICS Page 172

A derived rule for recursive terms is:
P=Q
(up.P)==Q[(up.P) \ P]

One can regard these laws and rules as defining a transition system
(Conf, {==|s€X"})

in the sense that each =% reclation is taken to be the smallest relation
consistent with the axioms and rules of the formal system.

Extracting failures.

Now that we have defined a transition system on terms, we can filter out
the failures and divergence sets of a term (defined now on the set of transitions
involving that term). We claim that precisely the same failure and divergence
semantics is cbtained as the version given in Chapter 5.

Definition 8.1.1: For a closed term P,
(i) failures(P) = {(5,X) | 3Q.P==Q & Vz € X.~(Q==")}
A (s, X) | 3Q.P=5Q & Q1}
(i) div(P) = {st | 3Q | P==Q & Q1}

For example, we see that
failures(L) = {(s,X) | s€X* & X € pX },
div(1) = X%,
because by (D1) Lt.

Recall the semantic functions 7 and D used in Chapter 5. I have de-
signed the transition system above with the intention that the failures and
divergences defined on the transition set of all closed terms P should agree
with the semantics given to the term in Chapter 5. It should be possible
to prove that, for all closed terms P and all environments u, the following
equations hold: -

(1) F[PJu = failures(P)
@) D[PJu= div(P).

Future work will tackle this problem, which seems to require a combina-
tion of structural induction on P and induction on the length of traces. Notice
though that if we only consider finite terms (i.e., not containing any recursive
subterm) then (1) and (2) hold: all divergence sets will be empty, and all finite
terms have only finitely many transitions. A simple proof based on the length
of the proof within the formal transition system that P===@Q should suffice,
together with a structural induction on P. Similar results are stated in [HBR].
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In conclusion let us summarise briefly the contents of this thesis, pointing
out the places where future work might be profitable, and making some
remarks on relevant work reported elsewhere.

Beginning in Chapter 1 with a construction of a domain of failure sets,
partially ordered by a nondeterminism ordering, we were able to use this as
the basis for a semantics of an abstract version of CSP. Identifying a process
with its failure set, we defined a collection of process operations in Chapter
2, including prefixing, two forms of alternative construct, various parallel
compositions, hiding, alphabet transformatien and sequential composition.
These operations are similar to those described by Hoare in his work on
CSP. In each case we proved process identities showing how various forms
of process composition can be related. The hiding operation introduced a
phenomenon called internal chatter or divergence, which can occur typically
when a process is capable of performing arbitrarily long sequences of internal
actions without responding to the communication requests of its environment.
The treatment of divergence in Chapter 2 was not entirely satisfactory, be-
cause it identified divergent processes with certain non-divergent processes.
The extended semantic model of Chapter 5 gives a more intuitively pleasing
treatment of divergence, in which such identifications are no longer made.
More work needs to be done here in order to complete this investigation.
That this is a promising model is shown by the complete proof system (also
in Chapter 5) for the extended nondeterminism relation on processes.

Chapter 3 contains a different formulation of the failures model, based
on sets of trees. Since trees represent trace sets of deterministic processes,
this approach models a nondeterministic process as a set of deterministic
processes. We show that each process operation of Chapter 2 is uniquely
determined by its effect on deterministic processes, a condition we called
implementability. This formulation of the failures model is closely related to
the process model of Kennaway [K1,2], as we show in Chapter 6.
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Chapter 4 uses Milner’s synchronisation trees to provide yet another
representation for processes, based on a failure equivalence relation on trees.
Milner used synchronisation trees and an observational equivalence relation
to give a semantics to his CCS in [M1]. He showed that the congruence
relation generated by observation equivalence and his CCS tree operations
was axiomatizable, at least on finite synchronisation trees. We defined a set
of CSP operations on trees which respect failure equivalence and faithfully
mirror the CSP process operations. Thus, the failure equivalence relation is
already a congruence with respect to the CSP operations. We also gave a
complete proof system for failure equivalence on finite trees. Other relevant
work along these lines is contained in [D]. The differences between these two
axiomatic systems illustrate the different characteristics of the CSP failures
equivalence and the CCS observation equivalence. Much of the content of this
chapter also appears in [B]. More work is suggested by our results. We should
consider whether or not we can extend these results to infinite synchronisation
trees (i.e., by considering recursion). It might also be possible to extract some
results on translating CSP into CCS, by mapping the original CSP notation
into our abstract version of the language. Some effort in this area, although
not using this line of attack, was reported in [HLP]. It would also be of
interest to consider how the more recent work o Miiner, for example [M2,3],
involving finite delay operators, fits into this framework. In [RB2] we report
some connections between programming logics and behavioural equivalence
relations.

The complete proof system of Chapter 5 for assertions of the form
P C @, interpreted to mean that the semantic value of P approximates that
of @, seems capable of deriving many useful process properties. We have yet
to investigate its effectiveness when applied to large processes, although there
is hope that it will turn out to be useful. As we noted, the proof system is
infinitary: it seems likely that in general one needs to prove a property of
all finite syntactic approximations of a recursive process in order to deduce
properties of the recursive process. Nevertheless, some interesting subsystems
should have decidable theories, and future investigation here is necessary. We
conjecture that restricting to allow only properly guarded recursions would
produce a decidable subsystem. A proof system for a version of CCS is
contained in [HN], where again the system is infinitary.

Other authors have reported several proof systems for CSP-like lan-
guages. Apt, Francez and de Roever [AFR] gave a Hoare-style assertion sys-
tem for the full imperative CSP as described by Hoare in his original paper.
Chandy and Misra [CM]| have published proofs for networks of communicat-
ing processes. Qur model is most closely related to the proof systems of Hoare
[H3] and Zhou [Z,ZH1,2]. Zhou gives a partial correctness proof for the HDLC
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protocol in [ZH2].

Chapter 6 began from an investigation by the author into the work of
Hennessy and de Nicola [HN]. It shows that some elegant characterizations
can be given of the various equivalence relations on synchronisation trees un-
derlying the various models: failure equivalence, observation equivalence, and
Kennaway’s equivalence. This is a very interesting result, because 1t illustrates
how subtle the distinctions between these models are. It is not yet clear how
far we can extend these ideas to cover still more semantic models for concur-
rency in the literature. In cases such as the possible futures model [RB1],
where sequentiality and the representation of concurrency by nondeterminis-
tic interleaving are still assumed, we might expect further connections to ex-
ist. In addition, we would like to investigate the relationship of Winskel’s
event structure models [W1,2] and our models; perhaps some useful results
may be obtained by attaching modal assertions to elements of these more
general models in the same way that modal assertions were used to reason
about synchronisation trees in Chapter 6. Much remains to be done in this
area.

Chapter 7 applies the process identities established in Chapter 2 to some
reasonably sized problems well known in concurrency. More examples can be
found in [R].

The final chapter sketches an operational semantics for our abstract CSP,
basically derived {rom that of [HBR] by adding laws for recursion. There is
an obvious definition of failure sets and divergence sets in this operational
framework, and we conjecture that precisely the same semantics would be
obtained as in Chapter 5. Again there is further work to be done here.
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A technical ]emma

This Appendix contains the proof of a lemma used in proving properties
of the hiding operators in Chapter 2. This lemma concerns application of
‘a hiding operation to a sequence of traces. When each resulting trace is a
prefix of some fixed trace, we show that one of two alternative conclusions
can be drawn: either the sequence has a constant subsequence, or there is a
subsequence consisting of arbitrarily long extensions of some fixed trace. This
result was used in the proof of continuity for the hiding operation /.

Lemma A: If {s, |n > 0} is a set of traces and B is a finite set of events
such that the traces s,\B are all prefixes of some trace u, i.e., ,

sn\B < u, for alln,

then either infinitely many s,, are identical or there is an infinite sequence
t € B* and a trace s such that

Vk.3n. st < sq,
where for each k t; is the prefix of ¢t having length k.

Proof. Let {sn, | n > 0} and B satisfy the conditions above. Let u be a
trace such that for all n
sa\B < u.

Since u has finite length, it has only a finite number of distinct prefixes; at
least one of these prefixes must be equal to infinitely many s,\B, i.e., there
is an infinite subsequence {s,, | K > 0} and a prefix v < u such that

Yk. 85, \B = .

Using such a subsequence and prefix to replace the given ones if necessary,
we can therefore assume without loss of generality that

V. 8,\B = u,
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Also without loss of generality u contains no events in B, say
U = (ali"'!a‘r>s

where each a; € ¥—B. Each s, must be obtained from u by adding sequences
of events in B, and must therefore have the form

AR 1) 1 r—1 r
Sp = U GjU,. .l dpuy (1),

where each ul, € B*.

Now there are two possibilities to consider, depending on whether or not
the s, are of uniformly bounded length.

Case 1 If the s, are uniformly bounded in length, we argue as follows.
Since B is a finite set and the events a,, ..., a, are fixed, there are only finitely
many distinct traces with bounded length of the form (1) above. So some
trace s must appear infinitely often in the list { s, | n > 0} and we have that
infinitely many s, must be identical.

Case 21If the s, are not uniformly bounded in length, then there must be
some position ¢ such that the traces u}, 'are unbounded in length. Taking the
smallest such 7, the argument for Case 1 applies to the sequence of truncated
traces

T 0 i—1

§p, — U,01...U, 44,

so that there is an infinite subsequence of the s, all of whose truncations sf
are identical. Replacing the original sequence by this subsequence, we may
suppose that there is a trace s such that each s, has form

Sp = SULWn,

r

where w, = a;uitl.. 7

Since the u! are assumed to be of unbounded length, B is a finite set,
and each u! € B*, we may app‘ly Konig’s Lemma to deduce the existence of
an increasing subsequence of u} : there is a subsequence indexed by &k such
that

1

i
Uy, < Up, 1o

for all k. This sequence of finite traces has as limit an infinite trace t, which
has the property required:

Vk3n. sty < sp-

That completes the proof. 1§
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