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Abstract

VLS! (Very Large Scale inlggration) sliows us 1o 14 circulls of enormous
complexity onio one chip. f we ara o0 design successful circulis, wa must
find design methods which allow vs {0 comain this complexity. One of the
most vilsl components of such s dasign meilhod Is e language In which

we cen express our ideas end our design dacislons.

In this thesis, we propose an IC dasign lenguage, aFP. which can descrba
both the semanlics tor baheviour) of & circult ang s layout. uFP I3 & varani
of tha Functionel Programming languaga, FP. 1t Is designed 10 allow he
designer 1o reeson about his circuil dascriptions. by marlputeting Ihe

__descriptions themselvas. The descriptions are jusi exprassions, meds fiom

a smell number of primitive functions and combining torms (lunctlonals hat

map functions intc functions). Thesa functions and combining forms wre

chocen becsuse they have nice algebralc propertlas. Also, each combiring
—lorm haz & simple geomerric interpreietion. 3o thal avery pFP_sxpresson

has an associated floor-plen.

We glve » formal samantics of uFP and wa show how algabralc identiies
may be proved in the language. Wa Illusirate tha use of uFF In sovwael

examples, ranging from a combinatorial talty circull 10 a sysiolic correispor.
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Chaptsr 1. Introduction

¥YLSI (vary Large Scals Integration) alows us 10 I circults of enormous
complexity onto one chip. In order to design successlul clrcuits. we must
tind design methods which aliow us to contain thls complexity. One of the
most vial components of any such design method (whather or not it Is
tormal} it @ language in which we ¢an exprass dur Ideas and our desipn
declalont. Without an adequate design language. it Is difficult for the designar
to communicate his ideas 1o others. end especially to people who are not
expert in diglal design. It Is alsp ditficult lor the “Cusiomer™ 10 speciy what
he wanls the chip 10 do and for the designer 1o check that his design
actyelly does what he thinks i does. The analogy with the problems of
designing camputer programs Is clear. Formal methods are now beginning
10 come 10 the rascue in the “software crisis”. Il we ara to avald the *ViSi
ceisls”™, we musi also be willing to use formal, or at least semi-formal

melhods.

In  software. the usefulness of high level languages has long been
appréciatad, In VLS| design. however. mosi of the avallanie tools tackle the
—————problem-—onaly-al-the lowss!i level ol the.-design hiersrchy. layoul This Is n
spite of the lact that the need lor hierarchical design merhods Is. in general.
accepied. Many ol the benefits ol such design melhods are lost by the use
of low fevel 100ls. We advocale 1he use of high level descripiion languages,
————=— which allow the raguired- bshaviour of a circult 10 be precisely specilied.
Designs can then be reasoned about and any proposed Implamantation can
be proved correct. Simulalion as a means ol “veriication® will become less
feasible as circuits Increase in complexity. We wilt have lo use mathemalical
methods, Once we have a formal design language. we can begin 10 think
of “compiling™ circuil descriplions direcily onto sllicon. *Shicon complliatien®
promises io reguce design Ume and cost by relieving |he designer of the
need 0 conslder irrelevant deteils. leaving him free to make the Imporiant

decizlons,



in this thests, we propose an IC design langusge. uFP, which can describe
the samaniics {(or behaviour) of a circuil and which can also capture detalls
of s Noor-plan (or layout). This oual power makes the language a good
candidate for use in a sliicon compliar. Most IC design languages describe
sither tha semaniics or ths layout. but not both. This means thal designars
have 1o make & large (and Anificial) Jump trom doing “sementic dasign®
t0 doing “layout’. Howover. tha two are closely Intertwined. Il Is important
for the designer 10 be able ta consider the effect on the final layoul ol
a particular dezign decision. H8 must aiso be able to manipulaie the layoul,

while kasping the semantics constent. uFP Is designed 1o allow him io do

boththess—things. — - _
AFP is & variam ol FP, the Funclional Programming language Introduced
by Backus In {Bachus 78). Thare Is a growing Interast In functional
programming languages because they aliow us 10 wrlle programs easlly ang
quickly, The programs are wrltien vsing “mathemetical® functlons, and sg
are easlar 1o reason aboul. We don’t have to worry about Irrelevant detaks
such as the order in which the perameters of a functlon are avaluaied. We
have based uFP on & funcilonal language In the hope of bringing some
of thesa benelita 10 IC daesign. Obviously. en IC design fanguage must aliow
the, dasigner o reason sboul his clhrcults. uFP allows the programmer to
resson about his programs by manipulsiing the programs themselves. The
programs {or circull descriplions! ere just expressions "made” Irom 8 small
number of primitive functions apgd combining lorms (unctlonals that map
functions nlo functions). These functions and combining torms (CFs) were
chosen becauss Ihey have anice elgebralc properlies. Thus. clircult
descriplions can be easily manipulated. vesing the algebraic laws of the
language. Also, asch CF has a simple geomelric Interpretation, so that every

aFP expression has an assoclated floor-plan.



gFP (s designed to describe synchronous sysiems. using & discrete lime
model. It IS not specilic 10 a particular lechnology. Swilching between
tachnologles Involves changing the primitive funcllons corresponding 1o
circull elements. Qur aim s 10 support & struciured hlerarchical desipn
method by allowing the designer 10 determine (by reasoning) whether 8 given

combinallon of precisely specilied companenis has (he required behaviour,

Thiz thezis includes a gFP manual. 1 also Inclvdes a siudy af the applicalon
of uFP and a discussion of our requiremenis for a VLSI desipn tanguage.
Chapter 2 I nﬁ Introduction 1o tha basic form aof gFP, The [lrst par of
the chapter gives a relatively Informal description of the language. The
sscond part gives the forma! semeniics. We show how algebraic ldentlies
\n pFP are proved and we demonstrale some iransformations of iFP
programs. In chapter 3. we give some examples of the use of gFP. We
motlvate the addition ol some new comblning forms which are apprgprlne
1o sysiolic arrays. Chapler 4 contains further exampies of the use of the
language. one of which Is SADcell. the basic cell In a chip which we have
designed. In chapler 5. we present our maln example. We give a step by
step derivation of a systolic correlator circult. We iniroduce some technigues

for the analysis of circults In which 50% of the procassors are active al

any ttme. Chapters 7rﬁescrl;;how BFP 7ma-y be_ “run’ 16 plve a slm_uialor.
We also describe a program which produces the floor-plan of a piven zFP
axpression, The first part of chapter 7 Is a review ol design lools. ranging
from “aviomaled Qraph paper” sysiems to sllicon compilers. In the second
pairVI of 1hlﬁchapler-._ we lum—-our Glle:l-lon lo?e:ign 1a_ngunge:_ Wwe corr\isiuer
the Important properties of a high level V151 design language and we
compars our approach 10 that of others who have applled lormal techniques
to the problems of VLSI design. In chapler 8. we present our conclusins

and our ptans jor future work.



Chapter 2: Simple uFP

lntroduction

uFP Is a variant ol FP, the Funcilonal Progremming language Introduced
in [Backus 76}. We will not give & dotailed description of FP obutl will Include
only such dotails as are nocessary lo the undorslanding of 'P. In the first
parl of this chapier. wa whl glvo a reiatlvgly Informal descriplion al aFP.
placing tha emphasis on the geomelric Interprotation In the sercocnd part
ol the chapter, we will glve tha formal semantics of aFP. Weg wlll prove
thalt some FP axlams hold In ufFP and we wlll demonstrale transformations

of uFP programs

A brlet iniroduclion 1o FP

A program in FP is simply an expression representing a function thal maps
objecls Into cobjec's |Backus 78: Williams 81). For example, + Is an TP
program represeniing a8 funciton which maps a pair of numbers onto Lheir
sum. The objects on which our programs operate can be undeilned (1).
atoms Or saqueonces of objects. Note that this Is e recursive delinition We
shalt 1ake the sel of atoms 1o be the Inlegers. with & “don’t cere” valuo.
*?. S0ome possible objecls are

1 42 o (tha emptly sequence) 4, €1, ), 1>,

<. . . denglgs a sequence. We will represent "don‘t care™ sequences by
"7 also, although we should. stricilly. have a dHierenl symbol lor every

possible shape

Nex. we nced a4 set of pnmibve lunctions 10 operale an our objec!s These

divide into thrce main calegones { denoles function application)

1} Functions for mapipulaiing sequcnces
8. selector functions 1.2.. {alx2.xn* = xi it adl, L otherwlse,
append 1o the lefl. spndl ed. apndliQd «4.56» = 1.4 560
apoend to tho right eg. apndrcel 2.3 = 1,23,
mairix lransposition, zip rip = {al. a2. . . an] whera n Is Ihe

length of each of the subswquences ol the matrix 1o be iransposed.



2)  Aritnmanic funclions

eg. +. -.* 41> = 3 sl = 1 4D = L,

3) FPredicales {we denole true by 1. false by O

e.g. grealer than gl Wx = 1 (rve) not 1 1 =0

Finaliy. we need s set ol comblning forms (CFs). Crs map funciions into
tunctions and so altow us 10 build up the funcilgns (or programs) 1hal we

require. We use the following CFs :-

Compotion (¢ *grx=1:1g . =

Conswuchion . . . inkx = odlx f2x, . . 000

Apply to all atx = dxl txd bxar I =) x2, xmy, L oOtherwise
Condilionai {p—rigix = 1:x i pxe). gx If pix=0, 1 otherwise
Constant Toy=r Wy # 1 L1 otherwise

Insert ielt AD:x1> = x1, (ADaY, . xn = LdAD ], xn=1 xm

Insart right (MADoal = V. (Ml xn = Col, (R w2, xner

We can use the CFs and primitive tunctions to write now luncilions or
programs. To edd 1 1o each of the elemenis of & sequence, we& simply
writg aatl. wnkra 87 [s Wid “edd ono” Tunclion. To add aW the elements T
of a sgquance. we wrilg M+ tor A+ A wypical FP program Is that which
compuleés the lengih of a sequence - .

length = Mm¢ * a7,

This resmarkably shon program treats each element ol the sequence Ar a
1 {a’i} and than (®) adds them up (MR+}. N is Importenl lo nole tha *

“does” 1ha Junction on the right “lirst™,

Tha combining lorms ol FP obey e saries ol algebraic iaws. some of which
are lsted lsler in this chapier. These identities follow from the daolinitions

-
of the' CFs and require no proot in the algebra.



The basic building blocks ol gxFP

Alt FP tunctions 1eke one Input and produce one oulpul. In gFH. however,
funclions lake a sequence o inpuls (over ime) and produce a sequence
of outputs, For example, 1the + funcdon In xFP [firs) takos a pair of numbaoers
ang produces thelr sum. It than jakcs another pair ol numbers and produces
their sum. and so0 on. So. lor an Input siream 1hat looks like
1,22, 3 4 5.6, <780, the oulpul sirpem looks like 3.7.11.15,..%. This
Is an impartant dillerence beilween pFP and FP, ang 11 is rellected In the
formal samantice of uFP, which are glven later in this chaptar. This transition
10 operatlons on sireams ol Inpyts 10 produce sireams o! outputs s
__mecessttaleg by the fact thal we would Uke (aventuallyl lo he ahle 10 geal
whh staie. We already have the rudiments ot & chlp deslgn language and
we need & sel ol combining forms. We will adopl the CFs ol tho original
FP and wo will tormally define their new semantics In the second parl of
this chaptor. Here. wo give their geomorric interpreiations. This will show

thé simple relationshlp beiween the somentics and the layoul (or floor-plan}.

clafcle

FI3 2.1 (3 Composition g b Construction ii.g} (&) Apply 1o all ah

FIG 2.1 shows the first thzae CFs of uFP, Nplg that data ~“1ipws” from righi

10 lelt bacause of the definltion of *.

it we want a circull (or program) which ropestodly takas a palr of numbers,
& snd b. &and Qives us -(a+b), we would write -*+. 1! wg wanied bath the
sum and the product ot each pair of numbers. wa would wrile |+, *1. A
clraull which, on esach cycle. lakes a sequance of pairs o©f numbers ang

produces the sequence of their sums is given by ar.



Belore considering tho other CFs, let us describe a haili-adder. ha, which
repealedly) lakes two bits and produces a sum bl and a carry bi. The
sum bit is Iho exclusive or (xor) of the Itwo tnput blis, while the carry bl
is the and of the two bits. Thus. our hali-adder Is simply

ha = {wor, and] whaora

xor = and * [or. not * andl

This deflinilion uses live "gates” and can be reprosented as follows :-

YOR |

[ [

6ot | @
<o |

L_‘ﬂRRY

AND

FIG 2.2 A hali-adder with 5 “gates’”

Oy applying \he aigebraic laws of uFP In 3 v-i:ry leple way (as shown wier

In whis chapler). we can transform our delinltion inlo
ha = [and * ). not * 2]. 2) * Jor. andl.

which has only lour “gales’,

- /m?___
Aud o] N

CARRY
. Aty

FIG 2.3 A hali-adder with 4 ‘“gates”

Noie that bolh definitions of \he hali-agder have the same semaniics. but

dillarent layouts,



We now Introduce lour more CFs. A. and M can be used to “spread” inpuls

along 8 row of ldenlical cells, as shown In FIQ 2.4.
J:u Ju J:r.'.l L1
]
.-.f..-—nf._f-_fnﬁ{ T ¢
X1 |:1 El. s

FIG 24 Ml o). x2 x3, x4, x5 Al - ), x2. x3. x4, x5

This form s commonly used In circuits Combined with the concepl of state.

it witl altow us to describe the tincar systolic arrays which are often used

“in mgnal-processing.

Tha Interprotation of the conditionalr CF is shown In FIG 2 5

2
6 3
w
: .
< £
H
£t h
FIG 2.5 Condgitionai { = g h

The swilch chooses betwaen inpuls a and c, according 10 the vajue of b,

S0. a funcuon which C(epealedly) aelects Lhe larger of Iwo numbers s
gt-—1:2.

Finally, the constant funclion, v, Is just 3 source ol rs, representod by

.

in tha following seclion. we Inlrgguce a Wew CF. x. which allows us to deal
witlke the concept of siate.



Dealing wiin Swte

Jhe baszic functions end combining lorms introduced In the previous sectlion
can only be used o represent "combinatorial® funciions. There is no wiy
of representing the concep! of statle. which Is central 10 gighal design. Since
mosi oighal clrcuits. from shift registers 1o microprocessors, have some
*memory”, wo arp forced 10 add anglher combining form., px. u takes a
function and produces & “tunclion™ which has lmgrnu state. FIG 26 shows

tha peomelric Interprelation ol u.

FIG 2.6 1 ut

We use a ‘letch® 10 hold the siale. Thus. the current stale is supplled to

the function as hs second Inpul snd the second outpul of 1ha Turclon

relreshos tha siate. The initial veiue In the Iaich Iz gssumod to ba "1, he
‘don’t care” siate. So.

Lea), >, 281>, 3 s, . . > = «pl3lr, w252, w0, .

then uf ol, x2. x3. . o < <Y 02 0% .. > = = - =
A lormal delinition ol £ Is gwen In the pscond part of this chapler. A simple
example of s use should make s operation more clear. We would ke
10 describe a shifi-register cell. SR1. Tha oulput of an SR1 I3 IIs curem
slete. and its new state is Lha Inpul. Wa write
SAY = af2. 1)

The ouvtpul lunction Is 2, which splects 1ha slata. The nexst stefe Tunclion
Is 1, which selects the Input. FIQ 2.7 shows how wi have vsed the Internal

latch 1o gilve us & shifl~register cail



FIg 27 2. 1 wi2. 1]

The uFP tuncllgn, 12, 1] opereles on a sequence of pairs. So, for input
«l, B, 0, b, A, 0. <, 0, .. 0,

Its outpul woutd be

«@, 1, <1, O, @ V>, @ 1, ., 0o,
&i2, 1] opersies on & sequence of Inputs, The Internal state Is hidden and
thg Initlal state I8 aasumed to be the “don’t care” state, “7°. lls behaviour

is best understood by considering the following transition lable.

input atale oviput next stalg
0 7 7 0

1 1] o 1

0 t 1 [+]

0 4] 0 "]

1 0 0 1

0 1 ] 0

For Input
@ 1 0 0 Y} O ...

the output from xi2. | would be
.01, 0.0 1 0 .. >,

as ong would expect lrom & shiti-registar cell.



Whenever we write gf. the function t should be reducible to tho torm Inyl.
where x Is the oufput Tunclion and y is 1the next stete lunction | wa wanled
to be sirictly 1or:1'|a1. w8 would have 10 Subscript every u wilh the shape
of s stale. There e actually a difierent u CF for avery possible state shepeg.
In the inlerests of legibllity. we give all theso combining forms the ssme

name, u.

Now that we know how 10 represenl a One bli shilt register cell, we can,
of course. make a wo bit shift reqister by composing Itwo one bit shift
ragistors

sn2 - SAP * SAY

.t is nice nol to have 1o name or renamo channeis. Tho “joining” Is taken

care al by the definltion ol composition.

We can even represenl a shift regisier of arbitrary lengih by

§A? = um[ * 2. apndr T {11 * 2. 110
Thia caplures the assence of any shift register. its siate Is jusl a4 sequonce
of bils. Its oulput Is always the first element of 1hat sequence (ouviput funcion
= 1=2). s new siale ts calculated by laking the rost of the sequenca and
sticking the new Inpul bit on |ho end (nexf state {unclion = apadr*[tI®*2.1].

This is an example of a clrcult whare the shapa of tha staig Impliclt in

the u “C'F_g?ems ihe behavigur. In TRIS cass. The E Toaty needs—to be—

subscripied with \he shape of the state. f SR? has a state of length n bils.

then Jt behaves a&s an n blt shin segisier,

'kl clock
AnotRer simplo eXxample +s 1he O flip—Hep. — DL - _
1+ datu

D=2, =1 2 * 1. 21
This has inputs In the farm of pars contsintag clock {1*1) and daa 2°1)
signals. Our program represgnis 1ho fact that

nexi output = Cutrent slate

next slate = data. it ctock Is high

current stale otharwise.
Thus,

D: w0 O, A0, «L. 1, . > =2 <2 7 1.0 1 ..
Wo have represenied very conclsely the fact that data s “moved” Inb the
flip-flop only when ths explichi clock is high. (Note lhat we are using the
usual convention that 1 on a data ting Is equivalent o trua. 50, woe abbveviate

eo "1 =1, 70} =+ 2 " ' 13 (V. " ¢t 5 2 * )y 2y



Allhough we can now represenit varipus cliculs in gur language, we cannol
yet ind out more aboul these clrculls by manipulaiing thelr represenialions.
Wae need 1o find {(and prove) soma theorems or aigebraic Idenllties ebout
tha language. We can then use thoae laws to fransform clrcult descriptlions,

10 extract from them the Infarmatlon that we roquire.

Mot ol the laws of FP stil hold In gFP. They must. of course. be proved.
Some of the necessary prools are glven In the nexi section We wlll. however,

IMysirata some of tho uwseful ldentiies. using the geomctric imerpretalion

of the CFs.
— a — a c
L]
c — ——
] b . b C
— N
FIG 2.8 a. B! * ¢ - 2 = c b * ¢
Sk
1 s
v L
! = P h
« L5
h H
|| 3 My
Fia 29 p - L g *h = p*h —» t"h, g*h
R —
FIG 2.10 mt * g - ’E = (g=1, 2pn



13

I ( h
FIG 2.1 1 = ulg. = #it=g. hl

One ol tho most uselul Jlaws s Cu, which allows us 0 collapse the
composition ol two funcilons wilh staie in1o one function whh ({arger) sime.
We combing the two old stales into & palr,

ulf.Ql*uINp = gli=[h=[1.2°2).1°2]. (g*th=[),2°21.1°2). |~[1.2*2]]) Cn

Altnough Ca looka qulio complicaled. lts derivation Is simpie. It is shown

in the nem secilon. The application of Cx #a just & question ol mechanical
substiiution. In the nex! saction, we show how Cu I3 vsed to tranalerm

&[2. 1) " ml2. 1) = SAY " SR1 Into uit * 2, 12 T 2. W] = SAZ

R witght b0 useitF 1o constasr the Qeomertric interpreistions of both—sHes
o! this idenity.

9 @

FiIg 2.12 mi2, 11 ¢ aut2, N wl} * 2,12 2 W



By loHowing the arrows. we can asee thal both circults Dehave in exaclly
tha same way. The circull on the righl. though It seems to have a more
complicaiod diagram. has only one i and s0 H can oaslly be understood
In erms of s next oufput and nexf aiale functions. Remembering that.
beciuse of the definlilon of composllion, data “llows” from right 1o lell. our
state is of the lorm defistate, righistater. The output is always Ihe Jefisiate
(1*2y and tho new 5telo is always «ightsiata, inputr ([12%2,1])). giving us the

axpected behaviour of a iwo bit shilt register.

For mast circults, the oripinal high level specification will be In Ihe form

#ixyl, & finite stala machine typo doscripiion, However. such a description

is npt, In general, suitable for implementatton on sHicon, because ol the
complexity of tho paxt stale function. In order to make a reasonable layoul.
w8 musl decompose the staie Inlo smait easlly lmplomentable blocks. We
know, lor example, how ta implemani g(2. V] as a shift regisier cell or latich
on sllicon, So, the process of lransistion from speciilcation 10 Implementation
can be viewed as one of pushing the us luriner and lurthor down “into”

the uFP oxpression. umil they can go no further,

Whethér wa are Irylng 1o push dowh lha g3 (o give 8 good layoul, or lo
check that two aubsections of our clrcuit bshava carrectly when put together,
R & vital to have at our Oisposal a wide array of uselul algebralc laws
In the following seclion, we will give the lormal somantica of pFP. We win
prova somo  algobraic  identlties and  we will  domonstrale  some

transtormations ol uFP programs.



Semantics. proofs and transformations

We iniroduce a “meaning® lunction, M. which gives the semantics of yFP
In terms of FP.

| siateless = MI1) = of }
Equation | s our base case. The meaning of a functlon which contalns none
of the combining forms (besides the constanl funclion) Is just at {in FP).
So. white the function 2. in FP, lakes a sequsnce and produces iis second
slemant. tha function 2. in i£FP, takes & sequence of sequencas ind
groduces the tequence ol their second elements. This glves us funcllong
which work in & repelllive manner on & sequence of Inputls. ghing &
caquence of outputs

MEt * g = Mt} * MEgT "
Equation H says that tha meaning of two composed (uncllons Is the

compotlion of the meenings of the funcilons, as one might expect.

ML 12, . tn]Y = zip * IMEOTY. MEI2E. . M)} 1]
For the construction CF, we use 2ip. our matrix transpose functian, to keep
\he types right. H the 2ip wasn't there. then the oulpul ol the righ hind

cide, for m Inpuis. would be n m-elemeni sequences, insiead of m n-glemani

Lequences.

We can now use equation 1M to derlve Mfarl].

ul = 1. 1°2, . t*n]
MIai] = MElI*t 12, . . 1*n}}
=zip * M[(F a1 MEt]*a2, . . M[t]*an)

= zip * MELYCal). m[I) a2, . M{1]®an]l * zp * zIp
teince rlp * zip = id. Ihe Identhty functlon)
= zip = MU al*zp. . . ML) *an*zip] * zip
Axlom 5, FP)
= zp * MO wigc2. . . ME)enl ¢ zip
{ad ® zlp = 1
= ztp * aM[t] * zip .
Mfat]) = zip * aMt] * up v



(Now: Anylhing appaaring tnside M[..1 Is pFP. The rast Is FP.) The equalion
lor ihe conditional is qulie stralghiforward. M{p -+ g: h T must take a
saquence of Inpuls and producs & sequence ol boolesns, which decige

whether & pariicular output is given by Mgl or Mh]Q.

Mlp — g Al = a2 -zp*MEp). MEgl. MEnT! Y
For A and /M. we sgain use zip 10 keep lthe lypes right.

MIMmY = AT *“ zp) * 2ip B Vi

MAATE = At * zipp * zip Vit

Thas equalion for g musl iaxe account of the facl that we are hiding the

stata

M=) = out(M KIB

where ot g i = o

where «.2> = zip " g * zip ° 47> Vi
O, s and | are tequences | Is iniix “append o the left". The meaning of
ut is delined In l1erms of the meaning of L. The funclional out can be
considerad 1o ba a new combining torm which we have added to FP I
“hides” the sisle 30 that whils MJI]] maps a sequence of Input-siate pairs
to a sequencs ol output-siste palrs. out M{{] just maps a sequence of
Inputs to a sequence ol outpuls The initial siate |s assumed to be '?’, the

‘don‘t care” Stale.

Thase eight seémanlic aquations deflne cur design language. AFP. The
definlions wera ¢haten so that the truth of many of the theorems of FP

Ic prozerved in zFP.
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Some algebraic laws of FP

(A1) h~tp—=1ge=p—h=1{h"*g

(A2} p —~f. @ “"h=p*"h-—=1"hg"h

A Al = 0gY, . . gn+dl = % (AL * ig). . . gnl. gn+)
tAR) AT gl = g

(A5 {a. D) * c = a " c¢c. b * ¢l

(AB) 1 * fa. bl = A In the domain of gellnilion of b
AT) 2 * {a. bl = b, In the domain ol deflnition of a
tAB) 4 ~ 18 — b € d v a = bhd

(AQ) ul ® apndl * [a bl = apndl = I " &, al * b}

(AT M * apnagt * [a, b)) = % (s Ml T B]

AT T® b= T in the domain of gelinitton of b

For Instance, we would like 0 check that

tp — £: Q0 * h=etp *h 1{*"h g"*nN
holds in uFP. To do this, we ¢heck thsl the *meanings” of both sides are
squal. as 10llows -

We abbreviate M{h]} 1o H. M[p] to P etc.

MEtp — . g " h) = MEop — . @21 * H 1]

s afl -» 2: 33 * 2ip " P. F. Q) * H _ . 2
= gl = 2:3 *z2ip *IP"H F*H QG *H AS
= () — 2.3 * np = MFp°n]). MEt*n]. MIg*nh]) [}
«MI[p "h — " h g " h} a:o.

It is even simpter 10 show that, in gFP,

2. 81 * c =1la "c. b " ¢l

MIla. b} * ¢} = 2p * (A B) * C nan
wzp *A*C B*C AS
* M{la " c. b * ¢l] 11}

QED.



To show.

at ® apnd! ° (a. bl = apndl " [t * a af * b}

{Lammal zip * aapndl * zip ®* [A Bl = apndl * {A. iip * Bl Iin FP
prasl: 1 * LHS = al * gapndl * zlp * (A, B}
= a1l * zip " [A, Bl = A = 1 * RHS
11 * LHS = 1l * zip * aapndl * zlp * [A B!
= np * al * aapnal * zip * [A. Bl
= zlp " a2 " zip " |A. Bl = 2p * 2 * |A B}
= zlp = B = 1l * RHE
RHS = LM5)
Proal: zip * MJat * spnd) * Ja. BI}
= aF * 2p * aspndl * zip ° [A. B
= aF * apnd * JA. rip * B) lemmal
= apndt * IF * A aF * z2lp * B) A9
= apndl * [F * A zlp * zlp * aF * zip * Bl ip®zlp=id)

= zip * aspndl * zlp * (F * A, zip * aF * zip * 8] lemmal

= zlp * M[apndi * [t "3 af * b1}

We can use the same lemma to prove 1hai

MMt " apndl * la, b) = f * la. Rt " DL

M[ Mmi*spnal®ls. bl] = /MF zipr*rip*aapndi=zip =(A. B)

= M(F * zip) * apndt " [A. zip * Bl
* F * zip " [A, M(F * zip) " zip " B
= MEf * [a, M " DIR

To prove At * Igl. . . gn+1) = * [A1 * {gl. . . gni
MIAT * [pl. . . gn+1)}
= A(F*zipt*zip*zip®(G1.. Gn+ 1l
= F * pip * LA(F*zip}~zlp®zIp~I1Q1..Gnl.Gn+1]
= M{t = AL ° (9. . . pnh gn#ll])

gn+l)

LI HLIY
Q.ED

[NIRIIRY]
lemmal

AlD
QED

[RITRY]
A3

L HLVH
QED.



A= an example of a lesc lormal prootl. let us show Ihat

a — (a — b ch.d=a — b4

temma2 a(1—2:3)"zip*1A.B.C}

all—2:D*[(1*A,1*B.1*C].[2"A.2*B.2"C...)
t [(0*A-1"B1°CrLI2*A—2°B:2"C). .. ]

Prool: Mffa — (a — b c¥ d]

all=+2:3) = zip " (A, a(1—2:3} * 2lp * |A. B, ClL DI
a(l—~2.‘3)'zip.'£A.[(1"A—~1'B.l‘C’.l2'A—~2‘B.2'C),...].DI

19

v

temma?

(A (1°A—1"B: 101 D). (2°A—(Z"A—2°B:2°C):2°D)....} lamna2

n~*A — 1*8; 1*D). (2*A — 2°B; 2°*0r. .. |
a(l — 2 3) * 2ip * (A, B. O
Mfa — b; d]}

i we try to prove (hat

h *p -0 =p—h"0h*aqg

AR

feamma2

v
0E.D.

wa find 1h3! we musi have an addilional consiraint = h musi be slaialess.

This

it because the output of a funclion with stsie depends nol only on

e current Inpuwl. bul on ak ol lts previous inputs,

Wa have derivad some useful Iidentilias concerning g -

pt g = pt * {g * 1 2p

t " zig. bl = z[t ° g, h

BULQIEin g = 2l *InT(Y 2°211°2), Ig"(h=[1.2°20°2). [*[1.2*2]))

apllt. gl hl s el dg bl ® (12, 1°2), 221

To prove thess. we use a slighlly dilierem method.

Cu



To prave gt ® g = gl * (g*1. 211

Mgt * gBidi = ot F 1 G 11 = p
where 0.5 = zip * F * zlp : G, e 1.viH

MEatt = Ig * 1. 2DP: = ot (F * zlp * [G ® al. a2l = o
where <«@.s* = 2ip * F * zip * IG * a1, a21 * zip : d. ?s
_ _E _np® F* zip " (G al*xip. a2*zlpl : <1, ?is>

= np Y F T zip * (G * 1. 21 4 s

= zip * F * ztp : Gl s>

= g * g= g T Qg i, 20

To prova 1 * ulg. nl = uff “ g. hi

MAT * zigmDd = F * tout zip = IG, Hh LILVIN

= FiIo where <«.s> = zlp ™ zlp * [G, H] * zip:<d. 718>

= F:Gizip'ci. Ns> where s = Hzip'<. ?I>

MIzH * g. hi]:b = fout zip * IF * G. Hh ILILVHI

= 0 where «w.® = tip * pp * [F * G H| * zip:<dt. ?s>

= F:Gnp o, 7is where s = Hizip <. ?s



To prove apilf. g@l. hl = adlf lg. by = {1, 1°2), 2°2p

MAauitt. gl. MR

tout foul 2ip * lzlp * [(F. B). HIL

o where <o.5> = zipiout zip * 121p * [F. Q). Hikzip:d.71s>
2ipiol where w01.st> = lzip = (F. Q). Hlgip:aip:<, 7isr. 28V
[F. Grzip:aip:<i. s>, s where s} = Hazip zipid tisr.?Ns)
F:zip arip'<t. Pisx. tsD» where s = Qizipieip:d. ?is 2l

& where st = Hzip:<zip:<.?132.71s )

MJaur fg. b TNy T2y 2T2p

out 2ip*{F, 2ip=iG. HI] * zip*lzip=lal. at1*2)). a2z 24

6 where @ = [F_ zip®[G. HN*zlp®lzlp*ia). af) ®2}) a(2*2} zip: <, ?s)
F.zip:2ip:<.?1s1> 7132 where s = zip:as).s2> (75 = zIp:<7131.71s2»)
zip = 1G. Hizip:qip:d, 781 7182

Fzipaip:d.?71s1> Ms2>» whers s1 = Q:2ipi<ipd.?Is)>, TIs2>

& where 82 = H:zip:alp:d,Ns1r, 7s2

gzl gl hl = adf, 19, AR * [}, 1%2), 2*2p QED.




Cg 1o by 'ar the most Important atgebraic law cancerning & The following

diagram Jllustrates s derivaiion.

{‘ [l'\ 'I")Z*ﬂ)_l'ﬂ h'[:’)l'ﬂ I
sutput { h

nsbat  ge Lhelr,242], 142 nstaka e [1,242]

FIG 2. 13 Derivation ol Cx uil.gl®alngl » plouiput.instatet.nsiate2n
glgl®ulnjl « cif*(n={1.2*21.1721. g*lh*[1.2°211"2]. j*n.2*21n Cu
Prool: MIzllgl * zin il

out zip * [F. Gh.{out zip * (H, JDi

= o where <g.5» = [F. G] " z2ipwout zip = H, JFL 718>

F.opcH npa. 718>, s
where £ = G2ipHapa ?lsh, 7ip

& whore ) = Jnpa, ?lsh

MatTint eT2bi®e) (@TIn(1,2%21.12), j*n.2=2my.i
2 taut zip=iF*2ip [M*Zip®lx1 a(2* 2. a(1*2)].
nip*lGTzip*H*[2) (2 * D). a1 *D). J*zip*{al.a(2 D]
* Fzip:eH rip:d. ?ts1r, i3

where s = zipies2.sb> (Vs = zip:<7Is2.71s12)

& where s2 Qzip H:zip:g, N2y, ?st>

& wherg s) = Jziped, 782 QE.D.



As & first example of the use of Ci. let vs compule

pl2.1 = pi2, 1] (= SA1 ¥ SAMN.

t = h =2 g =)=

wl2, N*p(2.1) = pU2°12°0.2°21.1*21, [(Y=2°11.2°21.1%21 1*{1.2=27)
Well. 2°[1,2°2) = 32*2. 2°[2"2.1*2) = 1*2
1e[2%2,1%2] = 22, 17(1.2°2] = 1

So. wa get 2(1°2. (272 1)) = {ARY

A clightly more compheased transformation is thal which transforms a

hat-aader wih 5 “gates’ nto one wilh & “gales”

ha = [angd " lor, nt * andl. and)

= {and * lor. not ™ andl. 2 * (or, andl} A7
« fand®()*[or.and). not®2"[or.and]l). 2°{cr.and]) A8.A7
* [and " (1. not = 2] = for, and]l, 2 * lor. andi] AS
= land * (1. not * 2). 21 * lor. and) AS

Another useful algebraic law Is 1hat which aflows us to change from using
A to using M. The law, In FP i
M1y A ® rev) " cev = Ml

irav s the list raverse funcillon

rev:e = o ravial x2,..xn = gpndridravi<a?, and x1)

Wr must prove 1t in gFP

MIAU * revi * ren) ]
= AF T arev T ozip) * zip * arev

2 _.'\T(F *mp * ra; - iv '_zfp T -

Isince xip T arev " Iip = rav

= Mm(F * =p) * zip A2
= M{ M) QE.D.



Ot course,

AU ® rev * rev) * rev * rev = MU * rev) * rev = Al

FIG 214 illusiratec A12.

xy

FiG 2 14 /R Al * ravi = rav
If wa wieh 10_find a good Tiayout” for e circull. lews such as Al12 are
obvipusly useful, particularly since we sre nol very keen on having “crossed

wires” on sliicon.

In the following chepter. we will glve soms examples ol the use of uFP,

ang we wlll demonstrate the nepd for some new combining larms



Chapter 3. Somve exsmples. Extensions lo allow us to desl with more

complicated daws flow

Some examples
In order 10 help ws 1o become lamillar with uFP. let us lry to descnbe
some& simple clrcuits, We will first conslder some of the diflerent types ol
shilt reglsier. We have already séen how 10 denote a serial in/ serial put
(SISO shift register ol arbitrary length (-

CISO? = p[1°2. apndr * (1*2 1)L
A serial in/ paraliel out (SIPQ} shih regisier Is very similar, excepl that il
output Is the whoie of the state. not jusi ls leftmos! elemant. So.

SIPO? = pl2. apndr * N2 1]
H we want 0 have a CLEAR facilily,. we writa

CSIPO? = ul2. 2*1 —-» 37072, apndr * [Hi"2. 171l
The Input Is ngw In the form tseriat tnpul. clear. if CLEAR (2°1) ts hgh,

we sel all of the Dbits of the siale 1o be zéro. using a6°2.

A slightly more complicaled axample is & parallel in/ seriai oul (PISOY il
i
reglster which haa paralisl Inputs and ¢ shft/ioad switch, and which accipis
serlal daa when 3t s shilung. -
shitt/ Iood

R

Pm-u\ltl ||\Pdl_

FIG 3.1 A parallel in/ serial out shiit register. with serial data

The input s In the form «shifi/load. seria! dala. parallel inpuis>. i shiting
Is enabled. the circuit behaves like a SISO shiit register. Oiherwise, the
parallel Inpuis overwrile the siate. So. the cFP descripiion I

PISO? = p[1°2. 1°1 — apndsr * [1%2, 2*1]; 3*1)
With & CLEAR. we get

CPISO? = al1°2, 4°) — a* ‘1 — aprgr * {U*2. 2°1); 3*1)
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At an evén more abstracl level. lel vs conslder very simple multiplexer and
demultiplexer circults. A MUX has as Inputs a “switch™ valute and a pair of
dala Inputs ¢swilch.<d1.d2>>. Il the swilch is high, the MUX passes the firsl
das input ihrough. Otherwise, I passes tho second dawm  Input. Thus.
MUX = 1 — 1%2; 2°2

A demullipiexor has a awiich. 8 single data input and Iwo daia ouiputs I
ihe swich is hgn. DEMUX passes s lapul through on  the first oulpul
“channet” and sets the other opulpul to zero |f the switch Is low. DEMUX
passes ihe Inpul throuph on Ihe second output channci and sels the first

io zero 5o0.

OEMAIX—i—1} i
MR -

31
—t

1

-
We would like 1o check thal the circuit shown in FIG 3 2 is the idenlily

on the data tnput. 2.

snich

i nw DEMUX dota

FIG 3.2 MUX " [1. DEMUX]

MUX * 1. DEMUX)
=00 — 172 2*2» * 1. 0 - [270): [0.2D

21 —= 1"00 — (2.0) [9.2D: 2°Q0 —» |2.70): (9.2D A2 AB.AT
=] e (1 = 2 0 U B D AlT(Y slaleloss) AB.AT
=1 — 2 2 AB
=2

This means 1hat our MUX and DEMUX circuils "maich® ¢ach olher correcily.



Another lamiliar oxample is the bullding of a full-adder from hall~adders.

e [ ke
h e

Set +— a Cin

FIQ 3.3 A fuli-adder made lrom 2 hall-adders

A half-agder which produces a <carry-bit. sum-bil» pair Is
ha =+ (and. xor]
The circuil shown in FIG 3.3 is
fa = [xor * (1. 1%2). 2*2) * "), bha%iz®), 2)) * (ha®1 2o
When we expand oul the half-adders. we lind ihal
fa = Ixor = [and®1, and*ixor®1. 2N. xor®(xor®1. 2.
whera tha Inpuis are in the form cain.bin>.cln> and tha oulpuls are <oul,

souly pairs.

In order 1o add two M-bit numbers. we nced 2 cascade ol M full-adders,

a3 shown In FIG 34

ST

{a fa

;(.li ;‘5" ) lSu-a Sm-p IS‘

FIO 34 An M-bil adder
Although we can describe (his circuil. It DOSes us some problems bacause

the simple version of gFP which we have described Is suitod oniv 10

describing circults o the torm shown in FIG 3.5

FIG A5 A “typical” gFP clrcul



That is. the data Is Input 10 the righimost ‘bipck® of the clrcuil it lhen
pasias through and is processed by iha varlous blocks In the clrewil and
tho oulputs emerga from lhe lafimost biock. This doesn’t seem 10 be 100
much ' of 8 constraint until we try to pul our M-bit addcr im0 this form

Tha result is shown in FIG 36,

an
by
1 LT
bn-l
Qng
br-a
——a,
b,
c“"—‘J e=- - - - o]
54 o fo fa fo fa
Sn-y
Sna* -
S —

FIG 36 The adder in “uFP form"

Wo can describe this clrcuit «n uFP by dividing il vp Into blocks which not
only act as lull-adders bul which also pass on thal pan of the sum which
has been calcuiated by the previous [ull-adders in the chain. Thus, each
block accepls inputs of the form <<ai.bb <) si-1.81-2,..31>>, Obviously, for
the rightmost blpck, the iist of previous sum-blls is emplty So. our exiended
full-adder Is
efa = concat * [fa * [1, 1*2). HI"2}

For \he ith block. wa work out the carry/sum pair «isi> and we cancalenale
i with the list ol previous sum-bits <si-1.si-2..3P. which gives us

" tcigia-bsl-2..sb. This i3 the second Inpul 10 the i+1h  DloCk.



It wo assumo that cach Inpul 10 the addor is a pair <A.B>. whare A and
B are the Iwo M-Dit numbers. then the circult of FIG 3.6 is given by

adder = [1. 1] * Mmlela) * apndr * [zip. (G

We usg the mairix transposs function. zip. to transtorm sach palr ol M-bit
numbers into a list of M caibb pairs. which can then be passed lo lhe
lull-adders. We apply [1.tl} to tha output of Miefa} because we want qur

outpuls 10 ba carry/sum pairs.

Although we w¢ have managed to describe gur cascade ol full-adders, the
description Is not as simple as wo might have hopod. This is because Ihe
gata-flow (n lhe clrcuit of FIG 3.4 does nat correspond 10 our slmple
standard typoe of dala-flow. The problem is made more aculo because wo
aro speking 10 capilura information about circult layouts. as well as aboul
their semaniics. Onco we have translormed our original chtrcuit specificaton
mio Hs Hnat torm, we wilt wani 10 lay i1 oul automatically Whon we compare
FIGs 3.4 and 3.6. It is immediately clear that FIG 36 is not a salisfaciocy
layout of the circuil It has too meny unnecessary long wires Ye) |t is the
circult layout that would be generated by ouwr uFP descripllon of the adder)
LFP MUsSt b exterded-to-desl-with-clrculls In which the data doas not Aimply
“Now* from one slda of the circull to the othes, Belore we doscribe the
axtenslons which we have made 10 uFP. wa will glve one more example

of the vsc ol the original uFP.

We would like to describe a patiern maicher (Fosler. Kunp BDl. Lel us
suppose ihat our pattern. al a2, .an_is lixed and that we want 10 Combarg
it 10 & series of n-tuples. We uvse n celis. each of which has one of al. an

*hard-wired”™ into i

Ih l\u Iu bn
EJ ai s ... nso"

a1 a3’

-

FIG 3.7 An n cel _pauern matcher

Yo



N S PMI = ang * {1, eq * (12 27°2]}

30

The action ol cach cell is 10 compule

and " 1, eq * [ai. 2]

The lelimosl cell receives a 1 (or true) as (s lirst Input and tho resuit
is then chased all the way down the array, emerging al the right hend end
as & 1 if «<al) a2, anr=<«1.b2. b

When describing the circuit in uFP. 1 Is easigst 1o give each cell s
"harg-wired® relgrenca value as & consiant inpul. The aciban ol aach call

Is lhen given by

Thy whole circuit is

maicher = APM1 * apadi * {1, zip * lid. (a). 22, . . %]l

Each Inpul 1o tho APMY i3 a N3l whoso lirst element is the Initiallsing Inpui

u
(1), ano whoso 181 Is a Jist of Input charcier/ refarance characier paira,

Now, Jol us suppose thal wo have a lon) sequence ol tnput characiers and
1thal wo wan o compare cach sub-sosusnce of leagth n with 1thg panern
«a).a2,.an. To Oo Whis. we can put ihe Input ithrough an n bil serlal in/
paraliet out shih registor (SIPO) betore passing B 10 the maicher This gives

us the circul shown n FIG J &

F oey T i
[} [}
i ;h.'r.l
) - —
. !
i i
NS IR (SO WP U SN
lE lt'ﬁ t"‘.\ liﬁ
troe result
T PA) PRl [~ PAL 0 1 PRy
L

FIG 3.8, pattern maicher = APM]sapndI®ll. zip®(SIP0.[7a1.%2.. anll
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Although our ctrcull behaves correcily as a8 paittern maichor, it has a perlod
of Otn) because, In each cycie. the resvl vafue musi pass through ali n
PMY cells before Beoing duiput. Our alm 8 10 have a period of O(1} In a
later chapter, we will analyse & very simllar circull (the systolic correlator)
ang we wilf show how pipelning can bo infroduced 10 improve Ihe

pariormanco of the clrcuil.

An interesling feaiure of our patern maicher is that we have managed. by
the “teick™ of using B secrisl in/ parallel out shift reqister. 10 achleve aquite
a compticaled pattern of data fiow The circuil is. in facl. a series of cells
through which |he fext flows in gne direchion and the patorn in the oter,

as shown in FIG 3.9

S
2]
N
=
=]
w!
Sl

— | . | tat

- - o e

FIG 3.9 A qillerent view of Gur pAIGIM marcher—  — -- —

The ol;ly kind of COmposilion which” ING™ COFTORT vorsion of aFP alaws s
one in which all the dala Niow s in onQ direction, This meoans thal we are
nol “allowed® 10 divido our Circolts uwp into cells which comrmunicate ia both
directions This I8 8 grave restriclion since many sysiolic arrays have dala
siepping thrngh the array In ono direction and a resull stream moving
through in tho other direction. Interacting with the dala stream s 1he
processors One ol the new combining forms which we will add 10 sFP is
ong which wil allow us 0 specily bl 1wo adjacent cells communicale In

both, direclians.



The extensions 1o uFP detalled In the loflowing seclion allow |he user 1o
doscribe clrcuils in which tho data flaw Is more complicaled than a simple
unldrectivnal flow, whhout having 1a resorl to wicks. For such clrcults, a
gescription using the new extenslons 12 llkely 0 be simpler and oasier 1o
read than one written In the original paFP, This Is bocsuse some of lhe
rouing of data, which would have 10 be specilied explicity In slmple uFP,
Is 1ken care of by the new combining forms The new CF s also give the
user more conirol gver the layouls assoclated with his circuit descriphons
sincy he can usa “celis” which have veriical ipputs and outpuls. insiead
o! having 1o lorce all ol s dala to flow horizonlally Many systolic arrays

consist of either a linear array or a grid of processing elemenis In which

data fronta move bolh hotizonially ang vertlically The new combining forms

arg useful lor describing such circulls.
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Extensions to allow wus 00 deal with more complicaled dawa fllow
Our firsl extension iniroduces veriical data flow. We move to blocks of the

form shown In FIG 2.10.

Ly

FIG 310

That Iz, path the 1npuiz and the duiputs Ara palrs. The firsi slemeant of the
wnpul forme (he varlical inpul. The second is horizonial, as thown. For tha
ouipul, the firct elemem iz horizontal and the second vertical. The blhck
16 sull just a functon from & sequence of inpuls 10 a sequence Q! Quiputs.
We hawve merely pul a consirainl on the shape ol the Inpuls and outputs

0 there iz no need make any extensions 1o cur fgrmal semanbics,

Fiutl,_wo iniraduce twe ngw combining forms which ailow us lo campose

Iwn fuch blecks ggether  edher horizonlally ar vartically




Ths Iwe new CFs, «— and i. can be celined in uFP.
f« g=M0"1 (%121 * 1 * 0D 72 2*21 * O1"1. g " (2°1. 2N
tog =00, 1%2), 2°2) * Oy gt2vy. 20 v T 1+2]. 2°2) )4

FIC 3.12 llustrates these definitions.

I 1=1
f

pae | '_L /1-1

22+ 5 i

f o+~ g = [0, (2*1, 20 * [t * [1. 1°2). 2*21 * {1*1, g * [2°1. 211 I¥

I=t | I
{

z-l.—L ._/_
i=2
3
1+ 2+1
s = (1. 1*2). 221 * {1*1. g*(2*1. 21 * ¢ * (1. 1=2} 2°2) ¥.
9 g

FIG 3.12 An Ibusiration of the delinitions ot ~— and 1}
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The reader Is invited 10 compare FiQs 3.11 and 3.12. The tmportant thing
aboul { «— g and { | g Is that the blocks which they produce are of the
sama form as ihe original | and g blocks. Thus, lor 1 +~— g. each lput
iz of the lorm <«a.t».c* and zach ouviput cf the form «d.<a B> (cf. FIQ 3111,
Similarty. tor [ 1| g, each Input Is of the form «a,cb.c>r and each ouput
of the form «d.@>.b. In each case. the resulling Block s in our standard
configuralton t¢f. FIG 2.10). This allows us to use the two combining forms
fromly. without having to worty aboul the “types® of the clrtuits which we
compose. Any circuil (or program) whoso Inpuls and Culputs are pairs |s
of the nght type 10 be used wilh these combining ftorms  For circuits of
thit type. there is an easy lranslition between 4 layoul appropriale 10 simple
=FP ang pne apgroprnalg o this new vertion (and vice versal. as shown

o FIG 313,

becomey —
] |
] l btc.ornts
M 9
- ‘_J e

FlG 313 Transiaing belween the two ctandard configuraiions
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We will now derivo an alpebraic law which retaies «— and I, FIG 3.14 shows

two circuils which are semantically squivalent

8
f !
f
FIG 3.14 (rev"21]%(1 — p lrev*2,1] = {rev"p rev) t (rev*I®rev) B
Proof: (rav Is reverse)
rey®2.1) = 1 — g} * lrev*2,1)
= rev*2, 1% [1°1,12%3. 207 (1°().1%2).2°2)*[1 * 1 .9"12°1.2})*[rev 2.1} b4
= {22710 * prnaf212%2) * T2 AS.rev

= [(2,2*1).71) * H{el2.1%1),2°0) < [ge(1*2,1).2°2)

" [1,2721.1°2] * [2*1.4*12.1°1) = (g={1=2.1).2*2)

= {[1.1°2).2°2] * " lgev"{®rev“[2°1.2] * [reveg®rev®[l.1"2].2"2|

= rgv"g~revl 1 (rev®{®rev) QED.
The algebraic law. BY. Is potentially useful In 1he search for an efficient
layout of a Qlven circuil. Although both circults In FIG 314 appear to have
many “croseed wiree® it may be thal (rev g®rev) ang (rev*t®rev) are clrcults
which w8 “know"™ how 10 lay owl. For inslance. | we know 1he layoul for
¢. and If al the inpuls are one wire Inpuls, then we can oblain 8 layout
for trev=g®rev) simply by flipping the cell about the diagonal which siarie
In the tower lelt corner. t may also be i1hail veriical rather than horizonial
starking (or vice verca) In one cection of the citcull may ellow us 1o lay

oul the whale circull more efficiently,



By replacing 1 by rev®iTrev, and g by rev*g®rev in BY. we can derive a
simllar l1aw which gives 1 In terms of +—.

frev*2 V)" tirav i®revl +«— (rev g revh*frev=2.11 = g 1 | thy 8N

12.rev*11 * Hrev®2,1) = (rav*2.1] * 12.rev*)) = Id

{2.rev*1] * g!f " (2ravT1]) = (rev*i*rev) «— (rev®g®rev 82
Nexi. wa introduce & combining ftorm. \, which aliows us 0 form a

two-dimensional grid of arthogonally connected ceMs, as shown In FIQ 3 '5,

M for tnputs of the form <a.b.c*.«d. e

outputs are of the form g h>, <) k>

—] n p—_— -

FIG 3.15
The ! and +~ combining forms have exacily the sams definitions In FF
ac they have In 2FP Thus. we can consider tha) ¢ and «— are new (Fs

in FP. Their delinitionz are given in FIG 3.12. This allows us to defins \

In_EP in jerms of the FP versions of | and +~—., We could define \ directly

in gFP @n terms of A and /M but, In this case. we have tound it saier
10 add a new CF to FP and to add one equation to the lis1 of equatkne
which deline gFP in lerms of FP We define \ by case analysis

L] I T T I R _3___:idf.<x,y)

4] AMooaxd, xnd gyl ymn =
lt.concat®2l * (M+\D * (Imst®).last®¥).21:<x) . xn> syl _ymnr
Grm 2 A
([concat*1.2] = QLD [1.[[ho*20L0t° 20k cax) . xm gy 1. ymes
it a 3 m)
fconcal is list concatenation, concatcx]l.x2> o x> = )l x2 23245,

mst = reav * Il * rav)



We wlll llustrate the second delinition.

2 WL wn-t

1 1 . l B ixny
Y1
8
0O, X0 O, Gy \f ¢ :
— Jum
b ]

T

oncal 12, (V) (o x-Sy, -y mid

FIG 3.16 Wl . xm <yl . ymor  (in lerms of «— for n * m}

kL]

T
‘J N I Ty

oot 1 (VNP
(O, -uny, ((gl)' (!1‘.. Bm»)

F— y1

— — ys
A :

— — bu

2: (NI COu Ly, (Y3, - am"»

FIG 3.17 Aex) xn> ty), ym»>  (in terms of !, for m > n)



An Intarecting law about \ I8 Hiusirsted in

a

|
ht_j{
i

' ¥ Y .

ih

Fitl 318 rev = agrav = M * arev * rev =  \lev
To prove rev " arev * M * arev ® rev = \rev

1 LHS:soe. a3 = ravaild).iox

RHs:up_zy)) 2 aglidirev g = ravalid):f oo
2y fgra2 m

LHS wxl, xn> «p], ym>

FIG 318,

t

39

a
15

= { ® rev) FB3

= [ * rev) (In P}

= (rev®conc 817t rav " 11* (e AN} *[(ms1® 1. [last= 1)1, 2): <y, . g, Gkn,. X1}

= |concat*reviarev®2.rev® 1)° (M ttym y2 ¢yl an,. x>

since rev®concal = concat®rev®arev

= (concal®rav®2 1} (rav 1 arev=2)*0de—\N"{arev=1.rev 2}

T 2 ymy g1y ol X0

z [concal"rev®? 1" Harev "\ *arev)—larev*\f*arev)} “lrev®2.1}

caxt o xny syl p2, ymid>

Heav* V. arev 21" (h—q) *larev = V.rev*2)=(arev® | "urev)s—(arev g arev))

= {concal*2. M " Arev®i®rav) INrev® 1T revid il wn> (y D> 2, ymes»

by inguctive hypothests and B Gin FP)

» AHS: (], ka3 ). ym»

QED.
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The proof tor m > n is as sbove, but backwards. We mus! now give the
semanlic equation which defines v In uFP.

MEYY = zip * anp ® szip * MI[I] ® 2p) * azlp * zip X1
Thit Is the most complicated semantic equation so far. and It requires soma
axplanailon. We musi remember ihal the right hend side of the equation
it an FP program. The program takes a sftream ol Inpuits. each of the form
cext.ane, ty ). ymss. Howaver. Mzip*M{ 1] *zipr expects Uls entire Input io be
In he form <ewl wrr <2l . 2mdy. So. as belogre, we must use the mairix
transpose function. zip. to kcep the typas right. azip®zip changes an N-list

ol n-Hsi/m-list pairs Iinto a pair whose lirst element Is an n-lisl of N-lists

ol tha Input stream. Lel u: take a simple esample -
w2lp®2ip c<a.b.cr.ed.e D g b ¢ kD3
= gzipi<ca.b.er . «g.h > <d.a.b ¢ k2>
F3 tua,g:,(b_h)-:c,l)).ud,p_ce‘k)‘d,ln)
On 1he output side of \fzip*M{{] “zip). we perform the same procedure in
reverse. t0 ensture 1hat the outpuls of the program ere in the same lorm
as the Inpuls. We must now use equation Xl to prove {hat
rav * arev * M * agrev * rev = \Mrev " | * rev) Ba
holde In gFP.
Proof: tet F = M}
MILHS §
= alrev®arev) *zip*anp *\ip*F *z2ip) "azip*zip“a(arrev=rev}
= ripTrevtaarevTaip \Wzip®F "zip} "azip®aarevirev®zip
since zipTaarev = aarev*zip end arev®iip = zip“rev
= gipTazip®rev arev iizip*F g “arev revtazip " zip
since arav®zip = tip®rev and rev®ezip = azip“rev
= zip®azip®\rev*zip=F “zip*rev)"azip®zip by FB3
= ripTazip*\zipTarev®F *qrevtzip)*azip®zip

= MERHS] QE.D.



Another law concerning \ Is
aarey ™ M " aarev = \arev * [ ° arev) B4

We will nol prove B4 as the prool is simliar 1o Iha) for 83. However. HG

3.19 lHustraies the equallly.
¥ et W
o+ pod ol H o
R

FIG 3.19 \larev®1~arev) = aarav*\*aarav
In fact. B4 generalises to
p*p = Id == gap * M * gap = Map " I * ap) :EN

Laws such as theze are polentially useful tn the search lor “gaoad” layons

For {nstance. the firansformation from aarev®\larevy*!"arev)*aarev 0 \f

eliminates many unwanied ‘reverses”.

In the following section. we will introduce some further extensions 10 (FP.

which allow us to compose cells 10gether so that they communicate in both

direcions



Exwnsions o allow bidireciional data flow

We now move 1o blocks ot i1ha form shown In FIG 3.20.

| pra— — 2
5

33— — 2.
s
FIG 3.20

That is, both the Inputs and the oulpuls are Irtples. The first element ol
#ach inpul is variical. and the 3second two are horliontel. In opposhe
directions. For the oulput. the first two elements are horzonial in ppposiie
directians. and the third ¢ vertical. This schemea is obviously lop-sided In
ihat \he bldirectional flow is all horizontal. A scheme In which each edge
of the block had both inputs and outputs would have a pl@asing symmeiry.
However. we have chosen. ea a first step. 1o invesilgete the schame thown
in FIG 3 20. becauce it i simpler and because we have no1 yst encouniered
a circun whose dala low foliows the more general scheme. We Intend. later
tbul Aot in this thesrs). to move to the more general scheme and 1o

invanngate some relevent systolic algorithms.

~



Next. we inlroduce two new CFs. which allow us to compose 1wo ol our

blocks together, elther vertically of horizontally.
la
h | b la b
f
d—-a _;l w, | u <
| d__| fle 9 | =

Jt— fe— 1!

t [

FIG 3.21 = ! tg (b} f = ¢
I t g con be expressed In ufP. as { and g communicale in only cone
direction. The important point 15 thal thal the resulting clrcull should heve

tha same lorm as | ano ¢

ftg = [{1.1°31.[2,2°3).3°31"11°1,2°1.p"[3°1.2.3°"(1.172.1731.2°2,2°3] XN

m— [l e No e

FIG 322

So. for an Inpul ol the lorm ca.<b.c?,«d.@>, \he corresponding output Is ol

the form «h k. .b.mr (ot FIG 321, =



The horlzontai composiion. ~s_ cannotl be expressed In AFP. We are lorced
t0 describe the twa way communication between the cells using a recursive
squation. So, In FP,
t — g = Lcabr .
lotrec ‘ux.» = g | b.Cc.¥.
wyy = | qud

N wx, y 2> . (ct. FIG 321)

We can think ol the outputs of 1 ~+ g as being calculated by a method
of successive approximalions. However, § we create a loop of dependencies.

whire u Ig absolulely dependant on v and v Is absolulely dependent on

u. then there is no route 1o lhe soiution and we have deadiock. This
mechanism (¢ a possible model of the way In which clicults which
communicate In both directions come to “agreemeni’ aboul their common
tignals end so ceitie, 10 give siable oulputs. Circults too can deadlock or

betomo unstable if we create an unresolved 100p of dependencles.

We must now write a semantic equation defining +—» In uFP.
Mle—g] = 2ip"1).2.2ip°31°(QIp*F “2ip)s—(2ip =G “2ip¥) *{2lp *1.2.3)"z2lp
where F = M[1}. G = Mg} X
AgQain, we yse our matrix Iranspase funclion to ansure that each subprogram
recalves input Ol the appropriate shape. This dellnition Is writien In lerms
of the FP version af . and £0. we musi avoid creating deadiock when
we causs cells 10 communicale In both directions In many systolic arrays,
a data siream llows n one direclion. while a result stream llows In the
opposite direction. In thal caseé. sinca the dala never depends on the resull
there is no danger ol deadlock. For Instance. the syslolic correlator which
Is 1akon es the example Iin chapter 5. ls of this form. O0ne can conceive, ’
hovgver. of more complicated “handshaking® mechanisms which, while being

dgoidlock free, require several “Heratlons® lp calculate the resulls of fe—g



The algebdraic law. B5, describes the effect of *flipping™ 1«—+g aboul a veriical

axls, as shown in FIG 323
Lo Lo

< |
i_Jf S'_.i gﬂe 1

'—D

FIG 3.23
(2.3, rev"3| “teag) *[rav=1.3,2)=([2.1,3) "9 "[1.3.2D«([2.1.3]"("[1,3.2] 85

H we use recrev. & recursive raversé. which no! only reverses a lisl. but
calls lisell recursively on all the elements of the sl which are lisis, [hen
wo can rewritea BS as

MHpE* e @) *Hipr = (HIpI*g *{lipr) e— (HIpI "1 flipe)

where flipl = 12.1.recrev®3], flipr « [recrev™1,3.2) BS:

Thistaw—row s8ys-ihal tlipping f++g over 8 the same as lipping f and
g over saparstely and composing them properly. Ancther law about f—g
Allows us 1o move “detachable” circull segments irom the | part 10 the g

parl, or vice versa.

FIG 324 1.v*231°0e—(u").231°9 = *[1u*2.3D+>¢g*{1.2.v*3) BB
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Such a transformation may altow us to simplity the circulis on either side

of the «—=. Qur tinal CF. \\. forms s grid of cells. as shown In FIG 3.25

[ S

o g L] e
’—I { — { e { ,—b‘
"._. ' —e l--—.'
" ¥ t f L
— ’—1 —

I Fl —
1"! ln 10
for inputs of the form «a.b.c>. .« .e> <g.h>»,

outpuis ara af the form <<t b 4D, cm.n.p>>

FIG 325 I

Az with \, we will add \\ first 10 FP, and then to uFP. We have already
defined «— In FP, and t is delined in FP exaclly as I Is In gFP. Then,
D \Wheoo op, 0 = glidlf:wy.2
2) \MEdanlxmroey) o yme ) zmds =

lconcat®1.concat®2.31 * O WG "IN LH * 2.1 H] = 3):

<xl o and oY, ym> 21, zm>>

W m2n
(1.2.concat®3]® O\ fe—a\\D) *(Imet. [lastl] = 1. 2.3 cax 1 xrr ¢y 1. ym>, €21, zms>

Ifn2>m



The secand definition uses a recursive “divide and conquer® lechnique. 3%
IHusirated In FIG 3.26.

= XL =n

|

-— L)) Hox3 e $7.
o—] Wi 2 [ 11 | '
[[ [ = 9 =
woncal .P-: — 43
— — 42 .
3 — . S M
Wi e yn
——] —ym b
"-—h — .
FIG 326 \\ in terms of ¢ W on 1erms of =
The semantlc equation defining \\ in uFP s
MEVM]D = zip * azip ® \\Gip * M{1] * ztp) * arip * zip Xiv

This has exaclly the same lorm as the equation for M As vsvat, we use
zlp 10 ensure that each subprogram geis Inpyt of the correct type. The
aigetraic law B?, for \\, Is anslagous 1o B4 for \

agrey * W * garev = \\arev * | * arev) a7
Dur final algebraic law reletes \ and \v. 1t is |llustrated In FH5 327

- et g e 2R LRI BN 1 20 L ) a4 gd 2 (1.{2.310 Y1 L2 I3)IBR

i 1 |

{ { {

D s B

s s [T aEAnElpk
— b

Fig 3.27
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By eliminating the two revarses, wa havs iniroduced bldrectonal dals liow.
it s a question o! whether we “divide™ the circult up horirontally or verlically.
in the systotlc correlator ¢ircull of chapler 5, wa Hing that It is paslest 1o
consider the two horizontal siices of the circu:l separalely at firsi. This allows
us fo inlroduce two dimensional daia flow In a relaiively painless way.
However. In |he second stage of ithe design, it Is uselul 10 consider the
circuit as a row ol ldentical cells. This freedom 1o decompose the clrouit
in a number of diflerenl way:s is a useful tealure of the new combining
forms. tn the following wo chaplers. we Qive some ssamples ol the use

of simpie uFP and of ihe new combining forms.
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Chapier 4. Cases Studles: Soms Small Examples

Tha Tally Circult

The lally function has n inputs and n+) outpuls. Tha kih outpu! (starting
from 0} s 10 be high. and alt other oulpuis low, H X o! the inputs ame
high [Mead. Conway 80]

109 ' ¢ o 0

?’ :

Ta3 Ta3

I Q1 [ -

FIG 4.1 Two examples of 1the behaviour of a 3 Inpul 1ally

We can sea that the 1 in the puipul divides the resl of the outpul Inlo
iwo groups of 95, The number ol 03 in the lefthand group is the aame
at the number of Jow inpuls 10 Lhe tally, The number ol 0s in tha righthand
group is the same as the number of high Inpuis o the tally. The outputs

-—arg numherod from right 10 left. Naturally, the total number of 0s Is n

Thae basic cell uced in the tally circuit s TA

FIG 42 TA = 2 — 31
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TA is a ctalelgss funchon. Lel us uwse twa TA cells 1o construct 2 one Input

tally.

ouf outo

el
wl

Iny = ld —

z
Tal = [TA®[®.1,751]). TA=[1.1.%h

54 71 [5]

PR L B

FIG 43 A 1 bit tally circuit

The Inputl ts & list conlaining one bil. The seleclor function 1 {s used to
pess that bit 10 the two TA cells. The telthand TA produces a 1  the bt
15 1, and & 0 otherwise. That Is. Il passes the bt lthrough. The righihand

tally Inveris the bit.

A twp Inpul 1ally i mare Interesiing. We add three TA cels to Tal 10 make

it

| S
Tu'| [Ta | |Ta |
‘J§]T2I ) !J

Tal

I
FIQ 44 A 2 ot 1qllv circult



TaZ = [TA * [B.2.171. TA * [1+*1,2.2*1, TA * [2*1.2 90" (Tal®(1).2)
x 2 — 1 G2 s invy * 1), 2 — 0 Iy * )

This teems rgasonable. The funcilona calculaied are

oul? = 1A2 outl = (1A°2) v (T1a2) ould = (T1AT2)

where » s logical and. v is logical of and Is negation.

i1

Finalty. we can make a 3 Inpui tally as shown in FIG 4.5 and the piclire

begins 1o bacome claar

| I | I

Ta ' Ta TGJ Ta
I gyl gl
Tal

| A

FIG 4.5 A 3 Input tally circult

Tajd = ITASE.2.1°1. TA*(1"1.2,2"1],

TA®[2*1.2.3*1], TA%(3"1.2.31"(Ta2*(1.21.3]

= [A=A (2= 1 TN, 3~ (2 —iny "1 130218,

3—~<gf_ﬁzlnv' NA2—inv™1:1), 38 2—T inv* 1))

So.
outh = 1 A 2 A3 (the lattmost puipul}
outz = (1 A 2 A "B vilA24a3v(()azadm
outl = {1 A "2 A4 "3 v "1 A2 A0 v ("l A2A"D:
outd = "1 A "2 A "3,

as we might expact.



Wt would like io describe the generic form of ihis clrcult. Let us Iry a

recursive description (¢l FIG 4.6).

ouln oT ™~ oul1 outo

l
Ta Ta*' Ta Ta
BT ITC Tl

——

FIO 46 An n input tally constructed from an n-} Inpurt tally

We explained abpve that the oulpul of a tally can be considered 10 be iwo
groups of Os separatad by the single high oulpul. The number of zeros on
the right glves tha numbar of high lnpuls. the number on Ihe left the number
of low Inputs. We would like 10 build an n Input tally rom an n-1 Input
tally. 1 the nth input s high. we must add a 0 to lhe right of 1he output
of the n-1 inpul tally, as we have increased |he number ol high Inputs by
ont I Ihe exira input Is low, the 0 must ba added lo the telt ot the output
of ihe =malier tally The tally Circuil construcis the \wg poscible oulputs and
uses the tinal inpul 10 telec! belween them. A series on n+l1 TA cells is
used 1 make the =zelection Each TA has the final wnput as its middle (or
selecting} nput The list conlaining O foilowed by the ouipui of the smaller
lally 1z spread along Ihe lelthand inpuis of the TA cells. The righlhand Inputs
receive |he oulput of the n-1 bll aily lotlowed by O. Thus. the row at TA

cels salects belween 1he two possible outputs, giving us an n Inpul 1ally.



From the dlagram., we can see the!
Ta(n) = aTA*zlp*lapndI*{T.Talin-1 "most),

(n.n._..nl,

apndr®(Tatn-1*mos, 0]l

where most = reverse*ti*raveran
We uvse zip 10 form the liat of 3 elemeant Inputs and then we epply TA
each of 1hese 3-ilsis 10 giva the result. The basis of this racursive definiiion
e very simple.

Taidy = (7]

The list has no 0Os since there &rs no Inpuls.

The recursive delinition i3 Interesting. but | would be nice 10 give & more
FP-Itke description. A may be used 10 slimingte the recursive call. We cn
view the circult a3 shown in FIG 4.7. In which case. e ially circult of any
size (n 3 M would be Qiven by

Al * apnal * {I1) o)

JHI
— £
UT

{

'n

FIG 4.7 The ially clrcull as Al ° spad * {3, Wl
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We naed 10 {ind & funclion which describes 1tha aperalion of the boxes In
the disgram. One possibillly |s
f = afTA®{1*1. 2. 2*1) *distr*(zip*lapngi“{®.1]), apndr®*|1.70]). 21
This may seam rather complicated. but I Is cliosely related 1o the recursive
definition glvan above. | takes as input the last of the bits being 1ailied
ard the resull of fallying the rest of the bits. i then “calculates® the
appropriate inpuis 1o the exua siring of TA cells necessialed by lhe last
bil. just as in the ;acursive case ;ﬁown in FIG 46 As as example. lel us
Iry working oul a 2 b fally

At * Il 121 =

=t L N 2 =

= [atTA * {1%1.2.2"1) * ¢gistr * (M, 7LIT. TN 2) =

t* HTA = (T. 1, 1L TA = (8. 1, %l 2] =

I ® {1 Inv®1). 21 =

a(TA * {171.2.2* D distr *[I(C. 1.1 ne" 1){Inv"1.T3]). 2) =

ITA = 12. 2. 1. TA * 1. 2. Inv®*)). TA * [Inv"®1, 2. B)] =

2 - 1 e 2 s dnv®): 1. 2 — TR vt
which s the two Input tally thel we had before. S0, we have given a
nen-recursive descripiion of a 1ally circuit of arbitrary size. The circull |s,
of course. sialgless and could just as easily be Oescribed in the orlginal
FF tanguage. In the nexl section. we will describe the Muller C elemem,

which Is = simple circuit wilh c1ale.



The MuHer C elament - a rendervoul, lon or last—of circull

The outputl of a8 C element becomes 1 only afier all of s Inputs have becomse
1. 1t becomes 0 only alier ail of s inputs are 0. Tha C element acis as
a latch, respanding 10 the “lasi of* a8 set of signals which change In the

same girection. FIQQ 4.8 Qives an example of the behaviour of a C elemen

in1 poo0O1TY0D1TYO0OYOOOTTY YOO
In2 o01!1700%Y001Y100Y 11101
oul 000110311011 1T0071T1 100D
time

FiG 4.8 Example behaviour ol a C element
C eismenis are uvsed In sell-timed circulta, We describe a 2 input C element

Cr= pleq * 1 — 1 * 1; 2), teq " 1 — 1 = 1; 2}

= gfiid. idl * teg = 1 = 1 * ) 2 —
In this circuil., the gutpu! funclign & the same as the nexl siate lunction.
Wea wanl the oulput 1o respond lmmaedialely to the inpule, and lhe more

_usual form. g2 would iniroduce unwanied delay into tha clrcuil The

¥
1

congitional leg * — 1 * 1: 2) axpresses the fact thal the slale ind

the ovtpul can change only when the inpuls (1} are equal.



¥e can connect several C eiements logether as shown in FIG 4.9 merely

by wiiing A C.

FIG 4.9 Connecting C elemenis together

The number ol C elemenis ts delermined by the number of inpuls. The circuil
acts as &4 C wslement {lor any number of Inputs} provided thal s Inputs
‘Iransit anly 1o the condiion complementary 10 he culput” [(Mead, Conway
80 p. 24]. W the conduion Is nol obeyed. the circult does not behave as
a C element. Conslder, jor example, & thrae Inpul clrcuit made af wo C
semenis, Lat us siarl with mnputs ang staies all zerg. Il we now change
the two inpuis 1o the liust C element 10 1. both lls state and its oulpul
bscome 1. That outpul Is led Into the second C element. with the third input.
Since the 1hirg Inpul ls siil 0. the siale and output of the second C element
remain at 0 Now, Il we change one ol the first two inputs back 1o 0 and
tha third inpuwl to 1. both Ihe state and the oulput of the second C elemant
fip to 1. This means that the oulput of the whole circuit Is 1 despile the
fact that all ihree inpuis have never been high at the same time It was
the fact thar we changed one ol the inpuls back to O while the oulpul was

0 1har cauced the problem.
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Lel us wrlle out In il the description of our 3 input ¢lrcuil.
AC ™ L2 N=C *1(C * (1 21 2
= opll, 10 latf. 1% 11, 21 3
(where | = (eq * [V * 1, 2 * 1] — 1 * 1. 20
e gl 10" uf, 3 ¢ 11
(slnce (gle. gl. hl = gfla. h * 1], gl lar h slateless}
gt Ue,3*(1.2°21.142), ({13111, 2%2). 072111, 2° 2111
by Cu)
= uiteq=lleq*11*1.2°1]—1°1:2°2},3°1]—=3°1;1*2},
(teq*[(eq®I1°1.2°11—=1°1:2°2).2*1]=3"1:1° 22,
eq=l1*1, 2*1)—1"1; 2421
= oplg. Ig. eq 1 * Y, 2 * Y — ) ° 1:2*2)
(whare @ = ((1*1e2"1x3™)) v (1*1¢2°1A2°2=3* 1) —=3*1;1*2))
Wwe have swihiched 10 Inlix nolation for legiblily. Tha exprassion has. as one
might éxpecl. a \wo bil stale. Howaver, our congditlon, 1hat inputs iranail Only
10 the compiemeni ol the oulpul. tell us that if 1the first iwo Inputs are 0ot
aqual, then boith staies must squal the output. Hance.
1 *1 ¢ 2*1 = 1 *2a=2*2

where 1 Is the Input and 2 is the state. S0, we can reduce the funciion

— @ iwhich appears inside a u) 10

(1%1=2"1e3"1) — 3*); 1*2
S0. our expression becomes

REI®1=2%1=3"1—%2"11"2, NN1*1=2"1=3"123"7:1"°2. 1*1=2°1=1°1;2*2]

It Is clear fhat the second bit of stale Is superfluous. since the outpul does
not depend on it in any way. This allows us to reduce our expression 10
RII®1=2%}=3%1 — 3*1; 2, 1*1=2"1=3°} — 23°1; 2}

= ullld, id}l * (*¥=2°1=3*1 — 3*1; 2.

which is a three inpul C elemeni.

In Ihe next section. we move 10 » lewer lavel, 10 describe pass iransisiors

and inverters in 1the manner of Gerdon [Gordon 81, &2).



Pass iransistors and inverlers
As In {Gordon 81). we use a third “boolean® value, 8. which indiceles a
value that Is “figsting” belween 0 and 1. Then, e pass transistor. PT, is
givin by

PT = pftor * {1°1. and * [eq = [V*).B128 — 2°1 8. 1*1]

tontrel (1o

_

outpd | | (201

inpu“.’

Thet 1s, il the control Inpul Is high, or ¥ control is iloating and the siale
Is bigh. the output of ihe pass transistor Is 115 Input. Oiharwise. Hs outpul
i lloating. The naw siale is siways the Inpul. This Is & vary simple model
of a pass frangisior. but it is sufficient for our purposes. Mare complex

maodels of circuil behavigur could also be embodied in wFP.

A jullup transistor Is pulled low only when the Input Is low. it is glven by
PU = gq * Iid. 3 — B 1.

Ground 15 just 8 source of 2eroes.
GND = 1

We can describe 'he mverter shown in FIG 4 10 by combining our Ihree

definitions

——Y0D

paivp

- RO
V:_l‘ E priidewa

AT

FIG 4.10 Making an inverter irom a pullup and a pass transisior
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INV = PU " PT * [id. GNDJ]

PU " PT »

teq®ld. o1 — B Y * u[tor‘l'l'l.and'qu'll'l.?l.‘a]] - 2% B 1t)
= gliaq*lid. ol — 78, Fr*or*(1*1.and"leq"1*1.BL21} — 2*1 B), 1*1
tsince 1 * glg. b} = il * p. hD

= plor*(1*l.and *{eq*(1°1. 8121 — (eq~i2*1.79) — &, 1) 1. 1°1]
=

PU * PT * (id, GND] =
pttor*it=1.and"(eq=(1*1. 012 —{faq*{2° 1. 51— 8,111, 11110120
(since pg! * g = g * Ilg * 1. 2

= pltor * (1, and * teq * 1. B) 211 — T§: I 1) = INV

It we exiend our boolean operalor nol. such that nol : 8 = 1, we can see

that
INV = ujeq * [0, B — npt ® 2. not * 1, 1)

This t2 the invertar with “me@mory” which is much used In [Mead. Conway

8q].
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A two-dimensional shift register

We have become mae famBiar with the precess of crout design by designing and laying
out & very simple integrated chcul. Fo ar frst effal at IC design. we thoughl it wise
fo chass a very simple problem. but one which wodd bhtrodice us fo some of the
probleims which have lo be faced In designng more complcated chips. Sa we wanted to
design somsthing which was sightly mo@  Cupliceled thaa the Mead and Conway shift
register cel. and which was in the tam of a two-denensional systolic array. The cbviws
chalce was a two-dmensional shilt register. thal is. cne which cadd Shift a bit Across o

Down accarding lo a contrd signal. The basic cel is cafled SADcel. SADcels can be

placn&__i; an array. as shown n FIG 41

T 1
T

L
1

L+
’.__

FIG 4.3 A 3 by 4 array ol SADcells



Lal us first describe SADcell In uFP. Each cell must sccept (and pass on
the wo conirol signals, SA and EN. When EN (ENable) Is high. shHiing Is
snabled. Whan it Is low. sach celt Is to retain lis datum by refreshing [tsel
When SA (Shift from Abcve) and EN are both high. alt cells reed from above,
and shifting Is from 10p to botiom. When SA Is lpw, and EN high. all cells
read from the right. and shifling Is from right ta leil. Each cell has two

data Inputs and two daia oylputs, as shown In FIG 4.12

EN SA DTis
|

u-ﬁf SAD p— DR;-

Ll

EN SA DBost

FIG 4.12 SaDceil

So. the inpuls w0 SADceli are in Ihe form «<«<EN, SA)>, DTim», DRI and
the outpuls are In the form Diout. <««EMNout, SAgutr, DBouny. The cell musl
hava ona bhh of si1a1a. Hence,
SADcelt = mfl2 1111211, (V= 1"1* = (2" 171" )1=2"1"2:2" 1.0

= ——in—ths—next output lunclion, both daia bla (Diout end DBout) came from

the state, and ihe conirol blis are Just \he approprimie part 0',7““ Inpul.

The next state luncllon Indicales that, if ENable (s low ., the stale remting

the same. and H EN is hy1, the siata I3 set eithar 1o DTIn or 190 CRin,
- depending on tha value_ ol 5A _

it we use DTin. EN. eic. 1o represent the appropriale selsclion funciions,

and il we consider only the data oulpuls. SADcell becomes

all2. 2), EN — (SA — DTin: DRIn); 2]
This mawes its funcilon more clear. FIQ 4.12 shows our implementalion of

SADcell In 1arms of pass transiators and Inveriers.
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Dl IRF ks RR

i L PRe

Y

| B
... \DBat T g2

Fla 4.13 An implementation of SADcell using pass transislors

h vses a Iwo phase clock (g1 and ¢g2).

The logic equetlons for the control signals are as follows —

RF = "EN A #1 refresh
RA = EN A SA a £ reead Irom above
RR = EN A "SA A gl vead Irom right

The fourlh pass transisior Is conwrolled by g2. It Is clear that only one of
the four conirol signals is high ai any time. This allows us L0 undersiand
the c¢lrcuit by analysing the four cases. Using the very simple swilch model

ol pass transictors, the lour circuils are as shown In FIG 4.14.



63

DTi-] B‘I’i.{
m.:.,. | 'I)E- DLea R
Zr\ % | v
DBy DBod
DTa | DT |
Dot —E'Tli- Dlwd .D—R;n
SV
|
DBt PBout

FIG 4.14 The 4 possible “conligureiions” ol SADcelt

“All of these chculls have two-Bil §14l6, ONe GV TOr each tnverter. Al-of the —.
owipuls are of the lorm (1 © 21, that is. the Inverse of the lefthand siate
b, (We store Information on theé input gale capachence ol Inverters) The
four clrcuits diffar. howaver. in thair next stete lunctions When RF Is high.
we CAN 38a Ihal the nexl sipfe IGRCIGN 1511725 not™1°2t singe the righihand _
inverier ls refiteshed by the lefihand one. When RA s high, the next sate
function s [1*2. DTIn] since a data bit s “read” Inlo the Input ol the
righthand inverter. Similarly. when RR i3 high, the nex! stafe Is [1°2. DRinL
Finally. when #2 I8 high. the next stete ks Ino1"2°2, 2%2]. Foliowing lhis
analysis, we write SADcell es
gllnot*1%2. no1™1°2).
#2—[001*2°2 2°21,AF —=[1*2,not* 1 *21:RA—[1*2.DTIn):{1 *2.DRAIN]I
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Obrously. wa would llke 10 check that owr two phase clock version is an
accepiabla implemeantation of the original 8ADcell. One clock cycle consists
al gt golng high (with g2 Iow). foliowsd by #2 going high f{with g1 low).
Since we know thal ¥1 and ¢2 always have this paltern, we can modily
out aquation for SAQcel accordingly. We make #1 our ‘masler” clock and
w@ Assuma Ihal each Uma #)1 goes high. #2 goes high Immedialely
aferwards. Thus, we make #2 “invisible® and since we had ihe conditicna)
(F2—lno1*2°2.2°2). we compose [not * 2. 2] with each of the remaining
Ihree possibilities. ¢(Tha 2 which has been dropped just stands for the siate)
SADcell then becomes

allno1"1°2, not*1+2).

not*EN—(not*2.2)*[1"2.not*1*2]);.and *[EN.SA]—[not*2.2] *(1°2.0Tin}k

not*SA—[not*2.21°(1*2.DRInj.2)
.
uailhot®1°2, not*1*2],

not*EN—{1"2.npt*1°21.SA—[nol*DTIn.OTin}:

not*SA—inol*DRin.DRIN]:2)
which reduces to

ulf2, 2. EN — {SA — DTin. DRim; 2}

This is owr orlginal SADcell and we have shown that our Implementalion
using a two phase clock Is a salisfactory ona. The model ol the pass
fransistor as a simple swilch is. of course. lar from the physical reaiily
However, the meihod which we have ust used could bs applied o many
Cirtuile which are cimple combinalions of Inverlers and pass transistors,

pivng us a new way ol under:standing their operation.

It wo wish 10 make a @rid of SADcells. a3 shown in FIG 4.1, we simply
wrile \SADcell.

This concludes our chapier of small axamples. In the lollowing chapter. we

wil presenl a larger ca8se study. the systolic corralator.



Chapter 5. Case Swdies: The Main Example

The Sysiclic Correlator

ntroduciion

In this chapler. we wlill give a step by siep oarsivalion of a systolic correlator
circult. Tha final circuit s an orthogonally connaciad sysiolic srray of simple
processing slements. White the processing elamenis themsalves are simpla.
the behaviour of the circul as a whols Is {ar from obwvious. because ol
tha complex nature ol ithe daila fiow. Our formal darivation ot the circull

can be considared 1o be & proof of s correciness.

Befora wa procesd to the example itself, we will Introduce an imporiani idea

which wa usa in \ha derivation.

The imponiance of “triangles ol shift register cells®
in VLSI elrcults. it s common for ona or more of the dala sireams 1o “llow*®
through Ihe ¢lrcult uvnchanged. The data items move from processar 190

procestor. Interacting with olther data (tams which cross their pathg.

T

FIQ 5.1 A circult In which a data siream llows through a series of SFcells
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FIG 5.1 is a simple example ol such a circull. The daa stream, D. fows
through & serles ol shilt regisier cells (SRcelis). it also inteéracls with
slements of the verlical data stream (provided by T Ir the processors. 10
glv the results. The cell F cen be wrllten as

lzl2, 2 * 1. 0.

The circuit shown is just -— - -

2 ® Afpg[2. 2 ), M [T, ldlh
We asayme. for simplicity. hat | Is & sialeless function. We would ke 10
invesiigate the effect on ihis circult of the addition of a “iriangle of SRcels”

—Fii— 52 -shows—the Aew clicul.

Bl

e
—E - SR SR SR D
i i
i f) { { G
iF_ T
SR SR 5R
SR SR
SR

FIG 52 Nrang * 2 * \qei2, 2 * 1L M * [T Udl



We call ihe wiangle of SRAceits liriang whera

ftrlang * {1, 2, _ . N} = [SAN-1 * 1, SAN-2 * 2, . . SA1 * (N-)). N!
(SAN = SA " SAN-} SA (e= SAN} = u(2. 1
Let us assume thatl our Inpul Is the siream o1, %2, %3, . . 2. Then. FIG

53 s & “ireeze iframe” of the circult In acton., with Ihe arrows labellsd

with values.

ra

""""" B R " "

i : -
___j‘_ spitan! iep l,lmz Xne3 SR Xt D

i

i

[}

i t G
T

I
!
!
!

iF
________ {Z"r. RITH] flry dnr) f{ry, xnr3) L Hn xnry)
SR SR SR
e, x0) I{(r;,’x.nfn F(r-h'imﬂ
SR oR

£(r, . 1n-) £(r3, %n)
Lgﬁ4 I— . — = . - P

l fir, xn-2)

FIG 5.3 Snap-shol of the circuit In action

While the original circuit. 2 * F * [+ [id])]. glves as iis outpu:

dirl, xn+1} HMr2, xn+2). Hr3d. xn+3) {ird. xn+d),
the new clrcultl glves

dirl. wn-=-2Y. Mr2. wn). (3. an+2). (rd, xn+4dr.
The interesling point 1o note is 1hat this ocuiput depends on ellernale Inpuls.
This Is because. for every element ol ihis Qulpul, we heve doubled the
number ol SARcells through which the relevani dale must pass. For example,
ihe ¥ input 0 the lehimost processor passes lhrough 3 SRcells. and ihe

addition of lrlang iforces the output through 3 more SRcelis.
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Il we again freeze our clrcull afier one more clock cycle, we find that the
relevant Quipuls are

dirt. xn+2). Hr2. xn+3), Nr3, xn+d). {trd, xn+5» and

airl, xn-1), Hr2, xn+1). Hr3, xn+3), {(rd, xn+5»
So, It can be seen thal the circull with lirlang Is not Just lgnoring every
second Input. i1 “takes account of* all the inpuls. bul. for & given output,
the relevant Inpuis are “two 8part” in 1he Input siream. In the next section.

we will formalise these Ideac.

Slowmodels: a predicale about clicults

_ _The Muaction gv2 takes every second elemenl ©f a sequence or list. le.

it gives the {lrs1. third. finh, seventh. | | | elements. We say that

1 slowmodels g It
e2(F @ alylx2.y2.xnyn.0) = G @ ev2{al.ylx2 y2.xnyn...2)

where F = KE[[t]. G = MIg]. M {s our *meaning function™.

Knowing that I slowmodels g lells us that, If we are trying lo Implement
g. f “will do’ provided we are willlng Yo Inlerpose a “don‘t care” beilween
eich of our Inpuis and 10 have a “don’\ care” inlerposed beiween each

of our oulputs. Some theorems about slowmodels &re :-

f staleless = { slowmodels [ 51
SAZN slowmodeis SRN 82

Since this seems almosl counter-inluitive, let us lake an examgple,
1y

MESRZM] : &1, y). . . an, ym = €2 7. 7. . . T al, yi. . . xn, yn?
L

KISAN] @ &l xl. . . anqww = a1 N T o, k2. .. e, am
So. ev2MISA2N] : alyl.znym = MISAN] : evZ{alyl..xnym}
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! slowmadels g A h slowmodels | = [ * h slgwmodels g * | ]
Proat:
Assums ev2(F : &l1. . . xn, . M= G : ev2{al, . ., xn. . )
a.nd ev2iH © wl, . . xn, . B = J ev2(x), . xn, . )
Then, G * J : avZ2(uwl, . . xn. . >} =
G ev2H : wl. . oxn. . 3) = wv2(F I H D @), . . oxm, . )
I slowmodels g A h stowmodels | = [ h} slowmodels (g. )] 54
I slowmodels g == /[ slowmodels /g flor both A and M) 85

Finalty, raturning to the exampie of the previous section, we 1ind 1hat

Ariang*2*\(ul2.2*1).11 * [r.lidl) siowmodels 2*\u[2.2°1L0 * (T.llal.

Prooi: let T = [T, T2, . . TN]
Rriang * 2 * \u(2. 2 * 1, 1 * [T. ligh =
{SAN-1°f * (r1.SRN-1). SAN-2°1 * [T2.5AN-2L..1 * (+N. Q{1d))] =

ISAN-2 * { * (T1, (10)). SA2N-4 = [v2. Nlal. . . .1 * [WN. [dll]
T Mpte2 * W A T lou = o
I * Y, SAN-TL 1 ° T2, BAN-2). . . 1 " [*N. Nidll) =

{SAN-Y * 1 * [/, fian. SAN-2 * t * (72, d)). . . .0 ® {"N. [loW)

T Psiateless == f 2[5, didl} stowmodels (_* (7, Lidll for any |

SR2N-2 slowmpdels SAN-)

So. SA2N-2 * { * [T1. ld)) slowmodels SAN-1 " f = [7. (K1)
Similarly.

SA2N-4 *  * 72, [ig)] slowmodels SAN-2 * t * (¥2. [i0l) and 80 on.
Thus.

Itrlang "2*\(u(2.2*1).00 * [T.0d]] slowmodels 2="\[u(2.2*1].0 = (¥.[id].

This result concerning the addilen of “left triangles of SReells™ 1o circults

ol 8 panicuisr form will be surprisingly useful in the exampiea which follows.
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The Sysiolic Correlator
Wa wanl 1o compule

N-1

cthk + N = T (D . otk

1 =90
That 15, we wish 10 calculate the scalar product of r with each of the N
shmont subsecilions of the-dala siraam d. If we think of the reference Inputs
as baing singte bihis. then we are checking each subsection of the dala
10 544 whathar i is of a particular form, Only numbers In the columns which

intarasl uvs wiH contribule 10 the final sum. This form of correlation Is used

in_slgnal _processing. i 5 { IR

ceriain typa. We are assuming. for simplicily. thal lhe relerence Inpuls are

constant. Qur first atleampt (3 the clircult shown In FIG 5.4

F

FIG 54 A clrcult which compules A+ * 2 * ‘Xcell * [7. [id))

In this circuit, sach of the Xcelis is ol lhe form

L '—]SR
b

= fgef2. 2 * 1L M
where ™ Is siaisless mulliplication. We use N such cells 1o shift the dala,
0. across he clrcult and to do the necessary multipliications (rd) . dik+D
in the equation). The A+ adds up the N resulls of these multiplications,

The N bil wide relerence data are constantly fed in at the top as shown,
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This circult. although I fuilils our specification. Is not sultable lor
Implementation on silicon because It uses & large stateless edder lo giw
the result. This means thal. In sach clock cycie. some signals have 10 traval
all the way acrossa the chip. We would Ilke 10 use two Inpul adders wih
siale 30 thal. in each clock cycie. a given signal nesd onty iravel ths
short dlstance between agjaceni cells. This would allow us 1o operala the

circull al a higher ciock rata. These +cells are of the form

SR * +

Now. we must fInd a way o introduce these cells Into the circult withou!
upseting s semantics. Obvlously.

A = A+ " apndl " [0, Ml

since 0 + x = x
S0, we can Iniroduce an “inilslizing zero™ without ditficully. However, tha
Introduction ol the SRcells Is more complicaied. In FIG 5.5, we ghow the
sffoct on A+ of the addmon ol Sorvessive SAcelie_
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| JW I
SR l SR SR
= +

-+
l
4
%
1
1
-
1
1
-+
1

—

SR SR

P
-

FIG 5.5 Transforming a slaiglass adder into one with state



The transiormations are based on lhe facli that having an SReedl on he
outpul of a siateless funcilgn has tha same afiecl as having SRAcels on
all of Its Inputs. Surprisingly, we find that a “right triangle® of shifi regisiere
Is introduced.

ririang * (1.2..M) = [V, SR ® 2. . . §AN-2 * (N-1), SAN-1 = N]

SAN * A+ * apnol * [o. |01 = A(SA * +) * apndl * [T. ririang)
Proof:

{ cinteless =

SAN-1 * Af * [1.2. Nl = SR*SRAN-2 * Al * [1.2. Nl «

SR * f * (SAN--2 * At * .2, N-11. SAN-2 * N]| =

SA*f * [SA* = [SAN-3°Al * [1.2..N-2). SAN-3 * N-1. SAN-2 * N| =

ASR = 0 * (1. 2. SR * 3. . . 5AN-3 * N-1, SAN-2 * N]

Thareiora,

SAN " A+ * apndi®(%.id) * A(SR®+} * apndl*lT.ririangl

S0. we now know that

SAN * A+ * apndl * [T. 20 * \Xcelt * (T, lid]) =
USSR+ * apndi®{7v.ririang“2) * \Xcell * [V.iid}]

~and The Tircutt- shown—in- FiG—6-6does the required correfation, Il we are

willing 1o accept the fact tha the circuit takes N cycles longer 10 produce

the first reésult.
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FIG 58 OQur second alempl a circuit In which ail cells have siate

The telangle of shilt regisiers iy, however. an smbarrassmant. Let ua remove

it. From an earller section. we know thel

Hriang * 2 * Xcell * [T.[ig]) slowmodsts 2 = Xcel * (r.lid]l and
SR2N * A+ " apndl*{T.id] slowmodels SAN * A+ * apndi®[7.1d].

Thus,

SRAN* A{SR®+) "apndl *[T rirlangl slowmadels A(SA®+)"apndl®[U.rtriangl,
SRAN * A(SA*4 * gpnd*(T.rirlang] = hriang*2*\Xcell * [(v.{igll
slowmaodels

ABAT+r * apndi®(T.rtriang} * 2 * \Xcell * (T. lidl ang

SAN * ASR"+) * apndl*{u.SAN-1] * 2 * ‘Xcell * [7.lid)] slowmodais
SAN * A+ * apndi®(9.2] * Xcall * [r.0dll . FIG 57
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L 1 I
SR SR = SR SR SR
L [ )
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[T 1 I l
+ r—J T + >—-‘ + -{ SRu | 1ty |t

FIG 5.7 (a) slowmodels (b)

The circuit on the left has the kind of regutar layoul that we were looking

____ tor and we can improve Il further by *moving® the bank of shiil registers

-

ASA®+) * apndi®*(3.SAN-1] = SAN-1 * A(SR*+) * apndl~|D. id]

SR * A(SR*+) * apndi*[E.2] * Xcell * [r.id]l siowmodels
SR * A+ * apnd™ " 1T 21 ™ Ceel *-(7-id} -
This equation telis us thai the circyil shown In FIG 58 can be used 1o
implement the required correlation fyncllon provided that we are wiliing to
Imarpose a “don’l care” betweea each input and to have a ‘don’t care

interposed between each oulpul
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FIG 58 A systolc correlalor

__In most applications of correlelion. the relerence inpuls are one bil wigde

bui 1he daia stream (and hence the resull stream) may be severel bits wide.
Wa would llke 10 refine the cells used In FIG 58 down to ihe bH level

The circull s just a siring of cells of he form shown In FIG 5.9

L T, reference

dedt,_ X - din dote

portia m':',';—- + Post = [p[2.°1]. SR*+*[**[71.11.21}

FIG 58 The correlator cell

Since the reference Inputs are only one hit wide. the funclion of lhe cell
shown reduces to

2. 1 * 1) SR * + = [7 — 1 % 2])
That is. because ihe releérence input Is always either 1 or 0. we no tonger
nesd the muhiplier. The new funclion ol the cell Is clearer Il we iransiorm
the uFP expression slightiy. lo give

2. 1 * . SR * (A — + * (), 21; ).
MNaw. It can be sesen that the cedl's main task Is 1o perform the galed addition

of the data word 1o the parusi result.



H would be nice 10 reduce this cell to a varlical array of simpler cells,
each ol which deals with pne bit o! the gata ward and one bit of the partial
resull, We already know how to add two M bit numbers, using a cascade

of tull adders (cf. FIG 5.10)

unry in

Sum a:
bi

€arvy out

ia = [xor*(Y.xor*2), xor*land®2.xor®land*(1.1*2].and"[1.2°21N}

sum = 1 ° \fa * [[E), zip * 0. 21

FIQ 510 Adding wo M bit numbers Gslng W Toff Edders— — - -

in our cell. we muel periorm the gaied addition ol twdo numbers, 30 we
musl pass 'he reference input down through our verlical array, and do a
gated full-sddilion &1 aach atage. Alss. we musi pass the-dais word {and
hence each bi1 through a laich to the next cell. This leads us 10 the rertical
array of primtive cellt shown in FIG 5.11. The number gl Scells musi ba

blg entugh tO hold the largesi possible result.
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FIO 5.11 implementing the correiator call of FIG 59 using more primutive

celly

fa? = {1 * ) — {8 " (2 ° )V [2 3 [2 3. ¥V * 1)
Sceil = ISR " 2, SA * 1 " 1 * a2, (2. 2 = 1 * fa?)}
=[SA = 2. 9 "1 " 1 " {a?, (171, 2"1"1a7])

Ccell = \WScell * ({1, "wll Id}
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fa? pertorms gated full addilon for Inputs of the form c«rin, cin, din, piw.
It also passes the relerence Input through. [1, 2] * Ccell has the same
funcion as our original correlator cell (cf. FIG 5.8). However. the clicull
suffers trom the same problem as pur lirst atempt av the systolic correlator
as a whots, Wa have connecled logether a series of siateless pgated Mull
adders and so. some of cur signais musl cover long dislances In one tlock
cycla. ideally, we would Jike all of our signals to be laiched. as shown in

FIG 5.12.

Tin Cia
deut - I | - F
Pin @ Pout
SR | SR
T
Toud Cout

FIG 512 Fceall = [SR*2. SA1"1*1*{a?, [SAR*1*1. SR*2°1*{a?l}

In a previous seclion, we analysed the affect of replacing t by 8RB * f In
At where { is stateless el FIG 55, In this case. we are concerned with
\ rainer than with A. FIG 5.13 lllustrates an imporiant equivalence and Fifs
514 Indicales how R may-be- proved fy tnducton. The results from our
analysis of the \ case are sulticienl for our purposes, as they can easily

te exiended to the \\ case.
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FId 513 Irriang®1.SAN*2] * \g * [{D).2) = W(1.SR*2]"g} * [[1).rirlang*2]
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FIG 514 A “proof” py induclion ol the property llluswrated in FIG 313

QED




In this case. we wanl 10 replace the Scells of FIG 511 by the Fceits of
FIG $.12. By anelogy whh the axample shown In FIG 5.13, we find thal we

musl Inser1 triangles of shift registera, as shown In FIG 5.35.

L P

S

—_—

—{sesl ¢ (se){58) -

—As{si= o

F
— 077 mﬁ@
F

R,
1]

FIG 515 An illusiration of tha eilfect of changing from Scell 10 Fcell

This rathar dauniing diagram meraly Ind'cales thal. I we want 10 use cells
tn which all the signals are latched. we must be wllling 10 presem the dala
and parilal resull inpuis to the vertical erray ol cells in time-skew format.
That Is. the bils of the daia and result words must. In some sénsa. be
peised through ririangs. This causes the bits of sach word [0 be presented
In successive clock periods (starting with the least signiticant bil). This

mathod of presenting inpuls 10 a circuit is commonly used in aystolic arrays

The diagram also indicates (by the presence of the ririangs on the lefthand
slde) that. #t we insert the extra laiches, we must expect the outpuls of
the vertical arrey of ceflls 10 be lime-skawad. Neilher of these resuits is
very surprising. and nelther presents any difficully when we combine several

columns of Fcells 10 make our final corralator circuit,
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FIG 5 16 The systollc Correlator ctircult

if we Input our data words In time-skewed formal. lhen the skewed dala
front thus craated moves steadily across the clrcut lrom right 1o lelt N
Interacts with the partial resvil gaia front, which Is travelling In the opposite
directlon, and which s ais0 skewed. Thus, our results are produced in
time-skewed jormat.

" We must alsa remember ThaT The Tircutt—which we-have_delined can be used
1o tmplement the required correlation function only  we are willing 1o
Interpase a "don’t care” belween each input., and lo have a “don’l care”

interposed helweean each output Thus. ouwr clreull produces resyits at hal

the circull clock raie. IT should D& nited IMM, throughoul this analysis. we
have assumed the existence ol an implicil masier-clock. In a real chcull.

8 single clock would Be used 1o conirol all lhe cells.
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Conclusion

in Ihls chapter, wa have introduced two related concepis which are uselut
in Ihe design and analyzis of digltal circults. The concept ol “triangies of
shit raglsier cetls® Is a remarkably poweriul 100l for the analysis of (he
behaviaur ol raegular arrays ol Idenilical cells. The predicale slowmodels
allpws us to analyse cliculls In which only 50% of the processors are “activa”
at any given tme. Such clrcuits are common in VLS| and we now have a
means of showing that a circult of this type is “sullicient” 10 fullil a given
speciiication. proviged thal we are wiiing 10 have the necessary “don’l cares”

In the inpul ang ouvipul streams.

We have used both (hese lechniques lo derive & simple systolic array which
implamenis our correlation funclion. Sysiolic arrays can be used (0 implement
muny useful functions such as matrix myliplicatlon, paitern-maiching end

miny signal processing lunclions. We have shown that uFP can easliy be

- ussd not only lo describe such circuits but 1o reason aboul thelr behaviour.
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Chapwr 8. The simuistion and layoul programs

Tha aFP Simulator

Introduciion

The denotational semantics of zFP  given in chapter 2, can be considered
0 be a funclional program. We simply code up the meaning function, M
considering the eight cases given by equalions | - vV This gives us a
recurswve funclicrs whose base case Or ecscape rlause s efjuapon )

ie 1 slaetess = M [I] = al

In &l pther cases. the lunclion calls ilsell recursively. The meaning lunciion
s & nigher arger funclion becausd | l1akes a uFP piogram ang produces
an FP program. which is itsell a lunclion. M we gilve this FP functlon pur
input siream. it will calculate the corresponding culput stream, giving us
a simuawor A colleague. John Hughes has writen a aFP Interpreter in a

purely funcilonal tanguage. Uspkit Lisp {Henderson, Jones, Jones B3}

We have. however. chosen 10 implement the operational semanucs of gFP,

) " TIn “PdtTat” using—a—smainly lunctional style We hopeo that considering the

nperational rather ithan 1the genctational semantics Ol the language would
increase our wngersianding of il Also. we wanted 10 combine the simulaior
with a layout program whicr was wrrien in Pascal to lake advantage al the

only availahle Fenctional Geomeinry implementation.
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The Pascal Imhlementatlon ol uFP, SIMUFP

The firsl inpul to SIMUFP |s the uFP description of the system which we
wish 10 simulate The description ts Inpul In absiract syntax form and i
sncodes A iree structure. For example. It * g. h — | k) is represenied

by Ihe iree shown In FIG 6.1,

consfrucl
./
- - ———€ompose cond —
i'/ \\ v l\-
f 3 ho oy K

FIG 6.1 The absiract syntax tree lor [{ * g. h — | K

For sach combining torm, ihere is a Pascal funchon whose only lask s
10 construct the corresponding abatract syntax tree. For example. 1the funclon

for composition {*) Ic

function compose(pl.p? * Muprog) * Muprog:
var p . muprog
begin
new(p}:
with p* do begin
f;i=pt: Ir:=p2; lag:=\lcompose end:
composa:=p

end:
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This funciion 1ake= twp absiracl syntax trees (or muprogs) and relurns the
rae repr@seniing 1heir composihon. When using . 1he user must propvide
the initial siate and lhis Is encoded in the appropriate node of ihe wues
This is because the shape of the slaie of a u cannol always be deduced

from the context,

The abstract syntax iree construcled In 1his way ts then iransformed. using
the wiormation Conlained n the brsl npul 10 the 2FP program. lo eliminale
all as and /s A uFP program conlaining as or /s cannol be "sohiaifiea”
inta ks final form unitl we knaw (he shape of Its inpuis Thus, al represents
H*Y, 1°2. 1°3) tor 3-element inpuls, and [1*1. 1*2] lor Inpuls which arg
palts. Al represents 1*[f*11.2].3] for 3-element inpuls. and { lor pairs The
funclion trans takes a tree and an Inpul and replaces atl s and /s by
the appropriale combinalions 0f construclion and composition Let us 1ake

some examples o show how trans works T represents trans

TREE \NPUT TRANSFORMED  TReE
,,,,, constract

alpha o —— T =
| <a,i1, 00y THo TED 7 T o
f

(ompose T e cdmpose

/\ ST

f 3 T(f, applyo (T(ﬂ,'t)ll))
eonstruct consiruct

7\ ¢ PN
f 9 T4 Tl

FIG 6.2 The efiect of rans on absiract syntax trees for a. = and (]
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For a. the Iransformation reflects the fact that al=11"LI"2..i"n] Ilor
n-glement inpuis. We must caill lrans recursively on each ol the elemeris
ol mis new construction as { might. lisell, contein as and /s. Tranaforming
compose(l.p) with inputl 1 Iz slghtly more complicaled. The result Iz a
composition whose right branch Is trens [g.I. The ieft branch must be frans
of | with some inpul. To calculale Ihal Input. we compute the oulput which
tram (.0 gives Jor input i. _using lhe function apply0. Apply0 takes a
transtormed wee (or xFP program? and an Input and compules the
cormeponding outpul. I witl be described below. So, the left branch ol Iha
conposition is irans (f. sppty0 (rans (g. 11, ), as shown In FIG 6 2.

In » construction, éach of the elemants receives the same Input and so

we jranslorm each of them with that input. Similarly lor the conditional.
irans tcondtp. 1. gh = cond (lrens (p. i), Irans (. 1), Irans {(g. D).
Fot basic functions {e.g. and. or. +). the selection lunclions and constant

functions. wans M = 1. FiG 63 Hlustreies how trees for u and M are

tramsformed.
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TREE WNPUT TRANSFORMED TREE
mu mu -
/S intal sTak . il skl
f T(f ¢ t,inthal state)

(selection (ur‘;h'onj

alashr <0 !
]
f
T e
ACLRREY P VARRN
£ conshruct o
VRN '(ul.-m)
| Compase
SN
slashe i
|

f

FIG 63 The eMeci of irans on absiract synlax Trees for g—and M -

For ul. we (ransioym { not oply with the input i, but wih the inpunitial
ciate pair The iranstormation for /A rehes on the FP delinition -
Moo = ox, L IR T xr = | o, MM xy, . . xM),

A iz treated anslogously.
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Once we hava transformed the absiract syniax tree 1o eliminale alf as and
/8. v@ can "appiy” \he irae 10 tha inpul stream 10 produce the output stream.
givirg us our simulator. Tha funciion apply lakes & iransformed iree and
an tlemant of the Inpul stream and compyles the corresponding element
of the oulput siraam. Il also updaias the Inlernal states of the “clrcult”. which
are cantainad in the g nodes of the tree. (The apply0 functlon used by
the lunctlon irans above is exactly tha same axcepl that i makeas no changes
10 tha sisis of the iree.) Apply does a case analysiys on the lypes of Iree
whith it might ancoumnier. FIO 8.4 shows how the outpul and the new lrge

(wilh vpdated statez) are caiculated. A rapresenis apply.
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TREE QUTPYT NEW TREE
(.MPOM (.DI'I\PO!:Q.
/7 A\ AC(f, Alg, i) 7N
£ 9 newtee (§, Alg, ) nevtreely,
construck consirod
/ A\ <CALED, Alg, (D> 7N
£ 9q newtree (£,1)  newtre (g1
2 (A1) — AL Al 4
/ I\ Alp, i) — W, Al L on
P f g TN T~
ot (p, i) nu‘hzd('t) newtreedy, 1)
constant wonstont
\ x ]
T - *
3 A( (L, it +Q\)) -
/m"\shh IS T /mlf_z:m{,d,sin}o}
f adree (§, (1, 5%k

FIG 64 How apply calculales the culpul and the newtree for Input |



For selection tunclions and basic Tunctions. apply L. is just 1G). These,
togehsr with the constant funciions, form the leaves of our tree. Apply calls
Hseil racursively. as shown., unil ali ol the leaves of tha tree havée been
reached. and the outpui Is known. The iree Is updated only at the' u nodes,

whem tha new stala, 2 @ A, d, old siate’), overwrlies lhe ofd siate.

We have. in ellecl, consiructed & very simple daja flow machine. through
which we& push Our Inputs. one at 8 lime. An input can change the machine
in nar it can cause lhe siale swored al u nodes 10 be changed This

contnudusly changing machine simylates the circull represented by our uFP

- sxpipssion. _

Thw. wFP can esasily be Interpreted In either a tunctional or an Imperative
Ianguage (with records) 16 glve a simple logic level simuiator. The simulator
can be usslul when writing the originat high level specificalion or when
designing circuil sub-blocks. it should be used as an ald to farmal reasoning.

raihar than as an ahernative 10 It

In ihe following seclion, we will describe a program which takes a uFP
expassion and a sample Input. and plols the assgciaied “floor-plan. using

the geometric Interpretation of the combining lorms
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The gFP floor—-plan drawing program

Introduction

In chapler 2. we gave a geometric interpretation for each of our comblning
forms. Thus. every uFP expression not! only encodas a particular semantics
but also has a particular lloor-plan or layou! assoctated wilh it This very
simple relalionship between the semanuc and geomelric inlerprelalions of
a uFP expression Is an Important (sature of the tanguage. Many inlegraied
ctrcuil design languages capture information aboul either 18ygul or semanics,
but pFF attempls 10 tntegrate Ihe Iwo. Two pFP expressions with exactly
the same semanlics may have very dillerent tloor-plans The half-adder ol
chapter 2 is 8 very simple exampie of this. The systolic carrelator descriplion
of chaptar 5 contalns some more compiicaled examples of clrculls which
have different layouts bul the same behavigur. The simulator described in
the previous section “implemernis” the semantics of a uFP expreasion. The
program described In lhis section piols the geomairic Interprelation of a
uFP expression (on a HP plotier). The program wuses Functional Geomelry,
which Is a very simple way of describing piclures. We will Tirst give a bried
Introduction 10 Functional Geometry and then we will describe the program

A briel description gf Funcilonal Geomatry
Functional Gegmeuy |Henderson B2, Sheeran B1), which was first proposed

in {Hendersgn 80)]. allows us to describe pictures easily and readably. using

a small set ol gegmetric funcions. We constfucl our piclures using these
funcuans and so aur funclions take pictures as arguments and produce
pictures as resulls The available lunctions are sbove. beside. rotlate). flip
and pverlay. FIQ 6.5 shows some examples of how piclures are combined
1o make more complicaled piciures. The numerical arguments io above and
beside Qive the ralios ol the picture heights and widins respeclively. So.

in above (3,7.p3.p2). the pd part is three Umes as tall as the p2 part
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I X

4] 2] P3

I )
|

‘ !

Py = rot (p2) PS5 = besidets 2, pr, pa) Pe = overiay(P1,p3)

R T

P? - abow(i 3 pr) PB=> obove(3,,P3,P)  PY= aboye (. 1,1, P, rotirol{ YY)
r Pt = flig(Pe)
i

Po = beside (1,2, above(z, i P? ) onrloy(P2, 7o)

FIG 85 Examples of the use of Funcionat Geomeiry
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The basic plciuwres. which we use as bullding blocks. are created using the
tunction grid, Grid allows us 1o specily & plcivre by giving two Integers,
m and n, and a lisl of lines which are 10 be placed on an m by n grid.
Each line Is represenied by a list ol the form 1 yl x2 y2). whare |he

coordinates of the eno points of the lines are (x1 yl1) and (x2 y2).

Once we have consirucled our picture with these geometric funclions, we
cen give il its final shape and size, using three vectors, as shown in FIG

6.6.

e (ﬂ'\)' (_) /i-—d-—!—n

Pe(dye, ()

FIG 6.6 Giving piclures their {inel shape and size

QOur Pascal implamentalion of Funcilonal Geometry has baen used 1ic lay
put an aciual integraied circul, as described In Appendix A. Qur floor-plan

drawing program uses lhe same Functional Geomelry Impleméntation, and

80 is wrilten n Pascal
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The Roor-plan drawing program, GEQMUFP

In chapler 2. we gave a simple geometric Interpreialion for each ol ihe
combining forms. The aim of GEOMUFP is 10 use Ihis Imerpretation 1o
protuce a logr-pian far a given pFP expression. Eariler In this c¢hapler.
w@ showed how any uFP expression can be represenled by an abstract syntax
tree Wo also showed thal. when we givea a sample input for the circuh
repeseniad by the exprassion, we can transform the abstracl syntax tree
to je1 rig of all as and /s. We use exactly the same lechnique for the layout
projram, What we wish 10 “plot” is the transiormed absiract symar tree.
Thus, we are plotting the uFP expression for 8 particular Input We cannot.
in_jeneral. draw 3 floor-pian of a circull unless we know Ihe lype of jis
inpits. The lloor-ptan program deats orly with simple uFP (aa described
in chapier 2) and so the comblnlng forms in queslion ere composilion,

corstrucilon, condillonal, constant and mu.

Renrning 10 Funciional Geamelry. Ut |a interesiing 1o note Ihat a piclure
can be represanied as an ahbhsiract tree, with 1he basic piclures created
ushg grid et the isaves. For example. the piclure p)0 of FIG 6.5 has the
aburact synlax tree shown In FIG 6.7,

beaide
12
above overlay
/ 21 \
above Pt P2 rolale
/ il \ l
P3 Pl FL

Fia 67 The absiract synlax iree for the piciure pl0 (cf FIG 65
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The absiract syntax tree of 8 uFP eapression can be ihought of as
representing a piciure In a similar way. The leaves of the tree. which are
constanl lunclipns or basic functions, are represented by boxes with the
funclion name inside and with “wires" attached lo represeni the Inpuls and
outputs. One wire carries one alom, which could be e boolean value or
a large inlager. depending on the types used In the uFP expression. Selettor
functions. which are aisa laaves, correspond 10 wires. The ftoor-plan Is
maant 10 be abstract and wires are reprasented by single lines. However,
users are asked 1o give width and height 10 their basic lunction boxes. where
the unit of measurement is 1he wiglh needed by a single wire. A °1 by

2" AND gate is drawn as shown in FIG 68.

FIQ 6.8 A ) by 2 AND gate

A 1 by 1 AND pale wouid nol be allowed as lhere would not be engugh
“room” lor both the inpuls. All our basic piclurés have an associaled width
/ noight pair and, in any plol ot a circuil, a pariicular basic funclion always

has the sama shape and size. This ailows the user 10 gain some information

apout the eveniual shape and size of the clrcuil. It I8 more realistic (han
the atlarnatva approach in which the circuit s made 19 fill all the available
space, sometmes causing the same function to be represented by boxes

of widely diflerenl sizes
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Nor that we know how to répresenti the leaves of our iree. we can consider
the combining forms at the nodes 10 be geamatric funclions which take a
nunber of pictures and produca a new piclure. The analogy with functional
gewmelry coniinues when we consider lunctlon composition. To ptat § * g
whh Input | we plol g with Input | and f with Inpul @il and we place 1he

wo pictures beside each other. oining up the lines in the middle Icf. FIG

6.9
] X
dfl T8 i i
plot (£, () plot {9, D plot (fog, ()

FIG 6.9 Function composiion - piciures are placad beslde each ather

On the other hand. construcilion causes pictures lo be placed above each

olhsr, as shown In FIG 6.10,

£
_f'— ) 3
H - C .
plot(f, ) plot(y, > plot( If, g3 D

FIG 6.10 Consiruction causes piciures 1o be placed above each other
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The inpuis must be passad io ali the elements of the construclion For Ihe
conditional, {p —»> I g). we make a consiruclion of the piclures tor 1 p
and § And wa use 2 swiich “hox® to represent the choice beiween Lthe outputs

of 1 and g. depending on (ha outpul of p.

r f
AN

FiG 6.11 The plol tor (p — I @

The last remaining combining form Is g To plol uf. we piot {1 and then
pass the second elemem of the oulpul Ihrough a “laich® ol the appropriaie

size., Inlo the secong stemenl of the Inpul

1 0

[

plot {f, <o, )

plot { uf | 01)

FIG 6.12 The haar-plan for pf
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Tha selection funciions are represented in the obvious way. FIG 613 gives

sOom3 examples.

— p— 1Y —

— :}tl p—

r3 hd a

FIG 6.13 The selecuon functions pass on the appropriate wiras

So, a pgFP expression can reprosent & piciure. The leaves of Ihe absiract
symax (r@e are known piclures whose widihs and heighta are known. We
conrbine these piclures. using the geomelric Interprelation of the combining

forns, to bulld up & picture of e final circull.

To facilitate lhe connecling ol wires. every clrcuit plot is represented by
threa Funcilonal Geometry pictures. two edge plictures showing the inpuis
and putputs ang @ main picture showing lhe circult itself. The adge pictures
haw associated with them informaiton about the type of the Inpul or output
an: they ‘remomber” the edge piclures from which they have been
corstructed This informalion 13 used when we |0in edge piclures and when
we zelect parucular parls of an edge picture For selection lunclions, Lhe
oupul edge piclure is easdy ogbtained irom the input edge picture and there
it N0 need lor a man picture (cl. FIG 6.13). FIG 6.14 shows how our
conpound piclures are combined both horizontally ang vertically. We place

Nii pictures as required.
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FIQ 8.14 Combining compound piciures horizonially and vertlcally

This melhod allows us 10 implement {he geomelric interpretation ol the

combining lorms 2s ilusirated in FIGs 6.9 - 6.13. Thus, we can piot any

simple kFP axpressiaon far a particular Inpul type. Il the user doesn’t wish
10 ptot the whole circuit in detasl, he can supply a piclure for any subseclion
of lhe circuit. overwriting what would olhérwise have been plotied. This allows

nim to draw the floorplan 10 Lthe required level of detail

The program which we have jusl described drives a Hewlett Packard picher.

FIGs 6.15 - 6.37 are some examples ol the oulputl which It produces
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Chapler 7. Related Work and Discussion

Introducilon

In this chapler. we review recent developmenis in the fleid of VLS| design
which are relavent to this thesls. Unill a lew years ago. VLS was siricily
the domain of microeleciranic engineers and tralned circult desighars The
revolution came with the publiceiion of |Mead. Conway BJl. The =zimpie
siructured dasign meihodology presented In [Mead. Conway 80] allowed
"ouisiders™ (particularly computer sclentisis) 1o “discover™ VLS The
realisalion (hat hierarchical design methods are viial Io the manapement
of complexity In VLS| sysiems came ef a lime when the older ad hoc
methods were floundering. Although the VLSI communiy hes. In general.
accepted the need for hierarchical design methods. mosi work In the area
of VLS| design i3 conceniraied at the lowest end of the hlerarchy. the layout
leval. In the {irst seclion., we give a brief survey of the avalieble desgn
fools, ranging from “automaled graph paper* sysitems for cell layout 1o sllicon

comptilers.

Atthgugh a greet daal has been writtean aboul VLS| deslgn. only a tiny fraclion

ot the liigralwre Is concerned In any way whh the use ol formal melhods.

In the second secfion. we furn gur atiention to design languages es oisinct
traom design 100ls. We discuss the impartant properties of a good VLS| design
language and we compare our aproach to thal ol other workers in the lield.

We argue Lhe need lor a mathematcal approach The sollware indusiry is

slowly accepling fhe need for lormal methods and we conteng (hai only by
the use of such meihods will integraled circuil designers avald a ‘vLS!

crisls”.

The reader seeking a good inlraduction 1o VLS| design in general is referred

to {Mead, Conway 80] and to IClark BO).
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Design Tools

Myst of the design 100l currently Avaliable concentrate on the lowest end
of the design hlerarchy. layoutl. LAyDut systems remove much of the tedium
of the traditional “graph paper and coloured penclls” method. Many systermns
use an inleractive graphics display 30 thal the user Is slways aware ol the
‘thape” o! the design. Graphic design languages lend 10 be popular with
crcult gesipners. who are more used 10 drawlng shapes 1han lo writing
piograms. Tamual dasign (or layoul) languages. on ihe pther hand. may be
mare powerful (han their graphical equivalents. They allow he use of
pirameierization. which ts very Important, since the aim ol siruclured design

_mathodologles Is 1o produce highly regular struciures.

Early design aysiems were lexiusl, snd described \he peomelry rather than
tha topology of iha circut tfor example CIF [Mead. Conway BO: Hon. Sequin
8t]. ICL iAyres 79] and LAP [Locamhi 78]). GAELIC [Boyd 79]. the simple
simbolic layoul languags which is (he standard Input to SERC mask-making
lclihies, can be produced using elther an ordinary text edllor or an
ineractive graphics editor. The ICARUS system is geometry based, bul has

A& graphics interface, using a °“mouse”.

Bichanan and Gray IBuchanan, Gray 79] have devploped a SIMULA-bpased
sistem whara & design s dellneo In 1erms of blocks. Blocks have physical.
sruciural and Dehavioural descripilons, which must be consisteni A block
it a colieclion of connecied componenis. which may be other blocks oOr
primitive componenis such as Iransisiors or wires. CoOmponenis  are
cinnected together by nodes. Since these nodes have bolh physical and
sructural signiicance. they have been named coordinodes. Blocks may be
paramaterized. allowing the deformailon of cells and the conditional Inclysion
o clrcult elemenis. The system provides faclitles for logic ard timing

smulalion and for elecirical and dimenslonal design rule checking.
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More recenily. Buchanan [Buchanan 82| has proposed SCALE. which is a
range of VLS! design languages. LARGE SCALE Is an explicll description
of beth the siructural and physical aitribules of the clrcult. SMALL SCALE
concentrates on the siructural features. The range irom LARGE to SMALL
SCALE gives a set of languages requiring varying degrees of avtomaled
layout. The system makes vse af (he Idea of coordinodes developed In the

earlier work.

Suck diagrams. which were lirs| proposed iIn (Williams 77] and which ae
described in (Mead. Canway B0]. can be used Lo express lhe lopology or
conngcilivity of a circuil STICKS [|wiltiams 78) Is a graphical compiler for
high level VLSI design. REST {Mocteller 81] Is the prototypical leaf cell design
syslem, using the connecivily approach. The input to REST Is just a simpte
colour skeich or rough shck diagram of the leal cell. Tha sketching Is done
on & graphics werminal. The REST process then produces a compacted sicks
representallon. which has a unique physical representalion The leal cels
thus designed are then composed lexiualy. using the SPAM language |Sepal
B80). The composition celis which are used to combine olher cells conlaln
behavioural as well as struciural data and & multi-valued funclional simulalor

T T I usedto-check—the luncllonal carreciness of the chip.

The Daedalus/DPL design environmenl [Shrobe 831 combines both texi and
graphics. The DPL tayoul language [(Batall. Mayle. Shrobe. Sussman. Weise
=B81] uses parameiric_ cell delininons _and symbolic, descriplions and k
maniputaies a hierarchical object-griented dala base The whole sysiem is
embedded in LISP. aliowing the user to define his own lunctions Daedalus
It & graphics editor which altgws one 10 edil graphics objects. but which
outpuls DPL code. The whaole system was used in the design of the Scheme

chip al MIT. ISteele. Sussman B0l
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Stitks & Stones [Cargelli. Ploikin B1) Is & language which is designed to
exgress Lhe hierarchical siructure and topatogical properties of VLSI circults,
Thi language can be used té specily and communicate stick dlagrams |n
texual lorm. A more concrete form, which includes the necessary geomelric
denlls. has besn implemenied [Cardelll 81}l The absiracl data 'ype “picture”
ant the algebraic operalors on it have been embedded in a general purpose
sppicatve programming language-—giving a powerful chip assembly tool. (We

wll ratwrn to the work of Cardelli In (he nex1 sectipn)

Poxh (Whitnay. Mead B3] Is a symbolic “sticks-like” represeniation lor clrcult

iewi designs and a sel of algorithms which operaie oh Vhis represenfaiion.
Tne Poch sysiem maintains conneclivity, circult schematic and port
placement information. It defines an automatically checked représenlation
for clrcuit level designs and |t allows mask geomelry 10 be automatically
geseraied. The user inlerface may be elther graphical or language based.
individual swuciures are “forced™ to obey the layoul rules by consiruction.
Sone analysls Is needed lo ensure lhe correct spacing ano angles belween
adacern structureés. The Pooh language system has been embedded In the
prigramming language Mainsail (TM), The system has Deen used as the
base-level representation In the Siclops silicon compiler project |Hedges.
Slaer. Clow. Whiliney 82}

The ASTRA CAD sysiem [Reveinl. Ivey B3) being developed by British Telecom
ains to suppori the design of high-complexity Integrated circuits. W
encourages and supposts a struciured approach 10 design. wilth the aim
of managing interconnection ethcienily from the earliest stages of the design
Tre system uses floor-plans 10 dehne the lopology of ihe layout and the
higrarchical siruciure of the design. A form of symbolic iayout Is used io
design low level cells and geomelric layout Is aulomatically generated. The
floor-plans have 1he role of composiion-cells when (he leat-cells are finatly
phiced. When the chip is belng assembled. leal-cells are eutomalically
sireiched 1o ensure 1hal pilch matching is mainained. The experimenial

syitem is currenily being apptied 10 a reallslic design example.
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The Berkeley Bulilding-Block sysiem (BBB) [Chen. Hsu, HKuh £3] Is a
hierarchical auviomated layoul system for IC design which s designed o
interface 1o othar design aids through a general purpose dala base. The
Sllicon Assembler LUBRICK lSchoetikop! 83) has been developed &t Grenoble
as part of a slticon complier project. It allows the hierarchical design ol
functional cella wusing basic Inmerconnection struclures. The CHIPMASON
automatic layout program (Wu, Parker, Conner B3] operales recursively on
a lroe-like struclure which represents |he design floor-plan including

implemeniailon aHlernalives. The oulput i$ mask dala.

Two systemns which combine lextual and graphical represenlations wilh |he
use of boih connectlvity and geometry ére Eleciric {Rubin B3] and MULGA
IWeste, Acklang Bi: Ackland, Weste B3]. MULGA Is a symbolic design aysiem
which uses the notlon of a virtual or lopologlcal grid on which symbolic
circult camponenis are placed. Tha grld delines & relalive Jaysut 1opotogy
withoul specllying the aclual distances belween Componenis. Alter some
checking lor circull inconsisiencies, the cell ls compacled by "moving” Ihe
virtual grig {ines. A delalled symbolic lloor plan is used 1o give a swuctural

definition of tha chip. This floor-plan. together with a number of struclural

____design rules. determines how the leaf cells are assembied 1o make the final

—_—

tel the slandard By which olher aystems are |udged.

There are many CAD syslems for integrated circull design which we have

not menuoned Those we have menlioned do. we leel. dive ihe fiavour of

the king of conventional lool which Is avallable.

The introduction of a regular struciured design methodology IMead. Conway
801 and of powerfui CAD topls hes had a greal e_'lem on IC design In general.
in 1979. Dighal Equipment Corporation set up a small group 1o Inveslgate
the use of a struclured design methodology In an industrial setting. The
result was a remarkable len-lold decrease In design me for VLSI clrculls

IMudge, Herrick. Walker 801
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In fact, Ihe idea of a hierarchical design melhad [Rowson BO]l has been
widely accepled in lhe VLS communhy. as evidenced by Ihe numbe: of
menulaclurers who are keen to point oul 1hal thelr pariicular CAD ool
swpports slruclured design. However, most of the design 1ools currently
aailable concentrate on Ihe layoul of circulls which have. In a sense.
aleady been designed. Because lhey operale at such e low level. many
oi these tools spend much of Lhelr time trying 10 recover siruclure which
his been lost (or foigolien). For example, many sysiems use circult or node
etractors 10 try 10 recover the original Intent of the designer. This would
nol be necessary M the designer could describe the circull in a structured

_way, At a higher level. One loses much ol the benelit of a higrarchical deslpgn

method H one presents one’s design system only with a ‘“flallened”
représenialion of the final circuit, while denying #1 inlormation about the olher
sages of \he design A sysiem which represenis a clrcull as 2 “meaningless”
olection of coiowres reclangles I3 boung to need complex electrical and
feyout deslgn rule checkers which Iry 1o “Interprel” lhe clrcull an & way
which allows them to check the Cdeslgn rules. Sysiems which operaile al a
hgher level can ansure ihat circults obey the design rules by consiruclion.
A design sysiém which opérates al tgg low & lavel obsirucls the use of
mystraciion as & desigh lechnique angd forces design alds to work al an

Inappropriata level ol detall.

Anolher consequence of working al the layout level ts the heavy rellance
o1 simulation as a means ol verilylng circull correciness. It one's c¢lrcult
is represented as a collection of rectangles placed on wvarlous layers, then
;e has Jiltle choice but 10 “exiract” the lransisiors ang/or gates and run
& simulator. In some cases. however, the simylalor ends up checking
popertlies which should have been checked “synlacltically™ al a higher level
A present. the VLSI communily relies almosr entirely on simulation 1o delec!
erors. However. Ihe leasiblitty of this approach decreases es the complexily

o the chips Increases. When we have million transistor chips. I wilt take
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If it coutd be done. the resulls may be Insulliclent 1o ensura thal the chip
Itaslt is correcl. One approach is to have a funclional specification of the
chlp which 1ells us how il should behave in ail clrcumslances. ¥ we hava
guch a hing. why can wa not complle H (in a provably correct manner)

direcily onto silicon?

This brings us 1O 4 whole new area ol VLSI research. bul one which Is
sadly underpopulated Many of the theoretical computer scleniisis who have
been siracted 10 VLS! in recenl years have concentraied their elforis In
complexity theory. This is, undoutiedly. a very Inieresling and Important field.
Much imparianl work has been done (Thompson 80 Preperala, VuHiemin
B0, 81; Lelserson B1; Brenl, Kung B1: Chazelle. Momer B1: Baudei 82 and
many more). and much remains 10 be done. {t would be nice, however, il
more compuler aclenlisis applied thelr knowledge and experience in lhe
areas of complier \echniques. specliication methods and language design
10 the complex problems of “silicon complation®. Some are daunled by the
enormlily of the problem. Others are merely prejudiced against warking wihh

sngineers. In any case, a unique opporiunity for fruitlul collaboration betwsen

——eomputer—scleniists and sngineers seems o be belng missed.

The ploneering work in sificon compllalion was done by Johannsen wilh his
Bristte Blocks SHicon Compiler llohannsen 791 The Brislle Blocks system
=aims 1o allow Ahe_ysec 1o design an integrated circull, with as lille concern
as possible for the mechanics Involved. Tha tundamental unit Is a celi. which
may conlain geomerric primitives such as lines. boxes and polygons. as weil
as relerences 1o Other cells A cell has ‘bristites” around the edges, and
these conneclion points lorm iis inlerlace with the oulalde woarld. The lowest
tavel cells are dellned by a description of their aciual fayout, In a standard
cell deslgn language. Brislle Blocks cells wre procedural. They are. in lacl,
small programa which can, among other things. draw themselves. Cells may.
for example. sireich themselves. to allgow power lines 1o expand As power
demands increase. A parlicular Bristle Blocks system is designed 10 compile

a parlicuiar class ol chip architecture.
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MACPITTS [Siskind. Southarg. Crouch 82a. 82b] provides en alernative 1o
ihe °“hand-craited® melhod for designs which 1t into the framework of
mkroprogram sequenced dala path operalions. The syslem uses a
sixe-oriented register wranster language which has multiple way branching.
neslad conditions, subroutines and parallel processes. The language s
conpiled directlly 1o mask-level specilications, with 2 finile stele mechine
for each parailal process and & data path unit. The data path unit conlains
oparators, as well as ragisters. The compilation proceeds In w0 stages.
First, a technology Independent inlermediate description is produced. This

can be used 10 drive a funclional simulator. removing the need for a node

to produce lechnology dependent mask layouts in CIF. These layguls are
correct by synihesis. Thus, |he designer describes an IC In erms ol lhe
slgorithm it Is 10 perlorm, rather than the geomelry or 1opatogy oOf iis layoul.
Ths sysiem is particularly sullable lor signal processing applications and
the expliclt specification of paralleiism alds the design ©f high 1hroughpul

cirtults.

Another successiul silicon compiler which aillows the rapid implememalion
of LS| ang VLS) signal processors Is reported in [Denyer. Renshaw, Bargmann
82. FIRST is based on the methodology for bit serlal architectures of [Lyan
81 and so it warks within specilic archileciural. topological. timing. clrcuit
ani iayoul conventions. I uses a fxed floor-plan lgrmat. wilh ranks of bit
se'lal processors atiached 10 a central communicatian channe!l The sysiem
ng only gives good compact layouls bul it alsa gwes massive cosl and

ting reducllons over convennonal (Sl design techniques.

{Rupp 81) describes DEA, an experimenial silicon compiier system which
ains 1o allow the designer to axplore allernalive architectures lor e design.
to achleve the required performance, size and power consumption. (It also
alns 10 genarate the geomalric dascription ol the circult for fabrication wih
a quality comparable 10 hand-drawn dasigns. The systerm draws on known

soltware complialion techniques and. as # consequence, the DEA language
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iz subset of the C programming language. The languaga allows the user
to spectly memory arrays. comblnatorial elements and cyclic reletionships
which dellne discrele memory componanis. Once the designer is satisiled
with the behavioural descripiion of 1he circull. he adds geomeiric informeillon
by ordering iha behavioural equations and adding Intermediate “slicing”
ievels. This allows the system 10 produce “soft” cells, which are reciangular.
but are arblirarlly flexible. Finally, the soft cells are composed and

“hardened” 10 produce mask geometry.

Some systems have cuslomised PLAs (wilh fleedback} as |heir 1targel
architectura. For axample. (Forrest, Edwards 83) describes a system in which
a taxival language which specilles the behavicur of a linite state machine

Is complied auviomatically into 8 near-optimum PLA siruclura.

iFleyo. Ullman B2) considers the design of integraled clrculls to implamant
arbiirary reguiar expressions. Regular explusl-.lons can be used to spacily
any finlte siate process (though nel necessarity succincily). A regular
expréssion with n pperands can be converied Inio a nondetarministic finlle
automaton. with al mosl n siates and n wransiiiens. This finlle slale automaion
—wan beimplementedusing an n by 2n PLA. Allernalively. & hiararchicel IGLGUI
can be produced. raflecling the hierarchical nature of the aulomaton. Regular
exprassions are prasenied as a possible uselul componant of a ganeral

purpose language ior silicon compllation.

Siticon compiler projecis such as ihese represen! a great step lorward. The
designer gives a behavioural or algorithmic specificalion ol the circuit and
the emphasis is on correctness by syrihesis. The designer can concentrate
on the archileclural or logical design by abstracting away from the delails

of the physical layoul,



Hewever. tha sysieams which we have described rely eilher on the correciness
of tha lnpul or on simulation as lheir means of verllylng the correctness
of the finai circull. in some casas. for example In signal processing
applications. this is reasonable because the algorithms being implemenied
ar well known and have been mathemalically verilied. However. VLS! design.
in ganeral, clamouts far A mathematical approach. As circulls become more
conmplea, simulslion becomes less and less feaslble a3 a4 means ol
verificetion. Marlin Rem puis the Case more strongly when he says that “there
is no future for simulalors™ {Rem B1). We should learn from the software
argineers. who are beginning 1o apply formal methods to the odesipn ol

_compilex sysiems. with considerable success. The software engineers have

letrnl the valve ol using a powerful nolation and the majorhly of programs
ar now writlen In high level languages. Funclional languages. in particuiar.
mika programs easier and quicker to wrile because Ihe programmer Is able
1o absivacl aAwdy from such machine-dependent noflons as order ol
swlyvalion. in the next saction, we will conslder the desired properiles ol
» high level VLS| design language. We will compare our approach to that

ol othars who hava applied formal lechnlques to the problams of VLSI design.
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Deslgn Languages

One ol the most Imporiant components of any deslgn method Is a languape
or nolation in which (0 express our Ideas and our design decisions. Iverson,
In his Turing awargd lecture on “Nolation as a Tool of Though!® (lverson

B0). uses ihree waell-chosen quotallons -

*That language Is an instrumeni o human regson, and notl
merely a medium lor the expression ol thaught. Is & 1ruth

generally agdmined.” George Boole

“By relieving the brain ol ail unnecessary work., a good
notatlon sets Il free 10 concenirate on more advanced
problems, and in ellect Increases the mental power of the

race.” A N. Whitenead

“The quaniity of meaning compressed Iinta small space by
slgepralc signs Is another cilrcumstance that {acilhales the
reasonings we are accustomed lo carry on by i1helr ald.”

Chariaes Babbage.

We will {oltow these greal scienlisis in stressing the imporiance ol choosing
a design language which Is appropriate 10 the 1ask In hand. In the follewing
subsections. we list and discuss |he properties which we consider 1o be

=vitak 10 A& good MAS| -gesign language. __



Simplicity

We place simplicity before all olher properiles because we leel (hat a
lanjuage which Is ovar-complicated has lhtle hape of fullilling our other
requirements. A simpte language is easier to learn, aasier 10 use and easler
1o read. Thess lacinrs are imponant tn &an industrial environment where
dedgnera’ time is an expensive and scarce resource. Deslgners have long
ustd the simple expressive nolauons of biock. loglc and cCireult diagrams.
Thise diagrams can be made Io canlain exacilly lhe required information.
They are concise, yet they are easy io read. A nolation which is over

conplicated will nol compele againsi the lechnigques ailready In use.

A imple language gives soma hope ol mathematical ractabiilty. uFP is made
vp of & amall numbar ol primltive funcillions and combining lorms. Each
conbining form has a simple geometric Imerprelation. This i3 lmportent as
our ultimate goal is to produce chp fayaul from a behaviourel description,
As explained tn the previous chapler. |he block diagram corresponding to
8 JFP expressian is calculated in a “hierarchical™ manner. The biock dlegram
of an axprassion is some simple combination of the block diagrams of its
sulexpressions. We are. In some sense, “libng the plane™ with block
diggrams. The basic tiles ere those for wires and those for primitive
furctions. These are the laaves of the Iree corresponding 1o Lhe uFP
exgresslon. Tha combining forms at the nodes ol the iree Leil how the liles
are 1o be lald oul. If we assume that primitive lunctions have flxed size.
then we will need entra "wire” and "blank space” tiles to ensure that adjcent
blocks are property joined up 1l has been suggesled thal one of the reasons
whr silicon compilahon 1s shll in ils infancy 18 that « is gifficull 1o express
& tircwil. which is a two-dimensional object. in a one-dimensjonal language.
Ou sotution 10 1his is to consider usetul ways of constructing circults by
tiihg the plane with recltangular subblocks. This approach r@siricls our choice

of combining forms 10 those which are appropriate to our final goal! - layoul.
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Anothar reason 1or choosing 8 simple languaga Is that i i3 more likely 1o
have a formal semaniics. Il wa ara (0 eschew simulatlon far rigaraus praof
techniquas, our design language must have & complete formal semantics.
To dbe usaful, a formal semantics must be comprehensible. Because we have
8 very resiricied notion of siate, the operational semantics of uFP are simple.
A uFP expression can be thoughi of as a simple data-llow machine, thrgugh
which wa push gur Inpuils. one al a 1ime. in one cycle. daia “rippies” through
the machine from input 10 oulpul. The machine may change during a cycle,
as ihe stored stale may be wvpdaled. The denolalicnal semantics of ufp
is Qiven in terms of FP. This allows us lo describg funclions which (ake
a stream of Inputs 10 2 stream of outpuls in lerms of simpler functions
which take an Inpul 10 8n outlput. The mairix transpose funclion. zip. Is used
to keep ihe types nghl. This approach allows vus 10 prove new algebraic

Iaws In uFP using the known laws of FP.

An obvious and grass stmplification which we have made I3 10 abslrabi away
Irom dejails of timing. £FP describes synchronous systems in which all paris
of the circult operate in lock-siep. There is no noticn of & ¢ycle tasting

8 particular length of lime. Wa are concernad with Ihe ordering of evenls.

~——-nol with_iheir gurslion. Wa realise that liming Is Important, bul we feel Ihat

iming details should only be ‘added” to a circult which Is knawn ta be
functionally corr@ct al a more apsiract level. The task of proving a clrcut
correct in the presence ¢l Nming delails is enormously complicaled. The
circuit may be Incorract because Inere fs an error in the design or becfuse

n -
thera Is & 1iming error agd so. one should be doing two separale prools

Some VL5! descriplion languages include timing details For example. Noon‘s

Design Speclfication tanguage [Noon TT] has basic stalements of the lorm

WHEN 0 IF 0 MAKE 0 WITHIN 0 UNLESS 0,



e

S0 possible sialement would be

WHEN A RISES OR B FALLS OR C CHANGES
IF D=1 AFTER 20ns
MAKE E c (F & G) AND H=0
WITHIN 50ns TO 75ns
UNLESS B RISES OR J CHANGES:.

The language 3. ol course. not dasigned 10 be reasoned &boul using
mithematical techniques. I ts designed jor use with a {unctlonal stmulator.

Tha design is simulated with ceriain stimull and the designer compares the

ouiput wilth whet he ‘“expects” and iracks down bugs. HOow |he designer
caculales what 10 expec! Is not sapecified. Languages of this lype are very
popular, bul they ars not sultable 1or use wilh formal techniques. Temporal
Lojic promises 1o he wuselul lor rpasoning about clircult timing [Bochmann
82 Moszkowski B3). but the use of an over-complicated language will prevent
us from exploiling s power. Many of the researchers whos8 work wa wiil
reisr to In ihs following sectlions have delibersiely chaosen small simple

larguages, to facliitate lormal reasoning.

In Ihe next section. wa consider our second requiramenl for & good VLSI

deitign language. expressive power.



Expressive Power

QObvigusly, i1 is nol enpugh to demand that a language be simple. clear
and easy 10 read and uze. Il musi be able to express any system thai the
designer migh! wish 1o descrlbe. We wish 10 enhance the skills wnd
techniques of the designer, nol 1o consirain them. We feel thal a good desgn
language should not impose a pariicular low level design technigue on the

user

There ara obviouws irade-olfs belween exprecsive power and some of onr
other reguirements. for example 5|mg'.icuy and mathematical traclabiity
Cloarly, there Is no point in using a language which curbs the crealive atents
of the designer Dby resiricling him 10 a smaller design space. On Ihe oher
hand. a languvagQe wnich is 100 pawerlul can cause problems We must bear
in ming our asms - 0 venly lormally the correciness ol a circul and to
proguce a layout ol that circwt Both ol these aims place constraints on
the ewprecctive power of lhe design language As Cardellr (Cardell 82] panis
out, the aclivues of formal decscription and formal verilicallon ere oilen
Inversely proportional. in thar a very precise and delailed odescription o 2

syslem can bhind one 10 it general properties. 50. the desired expressive

-—power_al nur language is consirained ‘lrom both ends”

In #FP. we have chosen 10 represent slalg using the simple notion of a
feedback lalch. Using the a comkining form. we can place those signals
which we wish to remember in a_laich ol the required size. The signals
are 1then available 10 the funcuon on the nexi clock Cycle This Is a resiricied
way ol introducing ciate since the signals are remembered only lor one
clock Cycle We are not prowided with variables inlo which we can place
valves for cale-keeping. until they are needed later Ir the compuiallgn. Such
a langquage might be able to express some compulations more naturally ang
concisely. bul the Increate In expressive power wouid he far ouviwelghed
by the increase in complexily ol the formal semantics, with Jis consequent
decreaze n our ablity o reaspn about the tanguage. In uFP. a circull with
stalg is expressed as a jinlle slate machine, with next culpul and neaxt state
funclions  Thus. we can express any funclion which Is suitable for
implamentalion on silicon, while retaining most of the atgebralc properiies

ol the original applicatwe language. FP



Otker workers have {lor similar reasons) placed restriclions on thelr notlons
of stale. [Babiker. Ftaming. MHne @3], In iheir language LTS. Clayout and
Timing for Struclures’), use 3 non-procedural style of description, with a
backward-looking saynchronous treatmani of time. The behavioural descriplion
of a circult Is given Iin a lunctional language. with a signal being viewed
as & mathemailcal funclicn faking times 1o values. They Introduce slale by
ueing lact a luencUon—iram signalc 10 signals. LAsItx) la--& signal which, at
any insiant, has the value thar 2 had al the previous Inslanl. The i1grmail
senantics of LTS has nol yet been published buvt we expect that (as in pFP)

the combination of an applicative language and a resirnicted notion ol stawe

will.gwe -3 simple plegant semanlice -

Gogon [Gorgon B2] uset a similarty restricted notion of siale and he
cheoses 1o work with sequential behavigyrs, rathar than with machines, The
donains ComiX: Y] sng SeqiX: Y| rerasenl combinalorial and sequential
behaviours respectively. The combinatorial behavigur ol a dévice, whose sel
of nput lines Is X and whose set of oulput lines Is Y. Is a funcilon from

Bigixl 1o Siglyl. Members of SigiXl tand Sigly)) are catled signals.

Conmix: ¥l = SigiXx] — SigiY] Is 1he domain of comblnaiorial bahaviours from
X n 7. Seq(X: Y.L \ho domain of sequenilal behaviours from X to Y. Is the
syt soluilon of the domaln equallon

SeqiX: Yl = (SigIX] — (SiglY] = Seq(x. Y

(with I . D—(D"x8). 151"l : (D—D) and snd®"f : (D—B).

Informally. a device wilh semantics [ in SeqlX; Y| behaves like a8 combinalorial
desce with behaviour

ds1 = n : SiglXl -~ Sigiri
unil it is clocked whh Input signal s ¢ SigiX]. It then changes behavigur
to

{(snd(N} s ¢ SeqiX: Y]

to glve ys a °“new” sequenlial behavicur.



Cigarly. there are parasilels between this definilon of the semantics of
sequentisl behaviaurs and ouwr definition of the semantics of lhe comblining
form .
MEuiB = out MT1
where out g I =0

where ¢0.50 = zip * g * zip ! .75

Qur samanucs awfomatically maps funcilons 8long a sequence of inputs to
give 8 sequence ol Quiputs. and $o we dO ndl recurse expliclily. Gordon
shows how sequential machings are relsled 1o the domaln ol sequenhat
behaviours. For @ maching M. with oulput function CUTM. nex! slale Junclon
NEXTM and sel of siates SM. the sequenlial behawouwr of M In clale x is
given by

BiM)x = ks (OUTMIs. ¥, BIM] (NEXTMIs, «On

(B[M] : SM — SeqglX, YD.

This equawon is refaled (o equation | above Qur equation refers to the whrle
requence ol slales. rather than 16 & particular slale. in the Jast part ot
equation |, 1he facl that we have 8 oh Ihe lefthand side and ?Ils on the

right has tha same efleci as lthe tecutsive call o B wilh the next silate.

In a given cycle. boih equallons invotve Ihe produclion ol 8n outpul 4nd’

& new siale which Is |hen used ih the calculallgn ol the nesxt cutpul.

Gorgon works with behavwours rather than machines because., when wring

tpecilicauons, ne wiches just 1o _QTT_Uesired behaviour. nol a machne
reansing 1ha! behaviour. Also he wishes to avoid having 10 express whai
il means for an implemaniing machine 10 meet a specilicallon His choice
15 motivated by Yhe 1aci lhat he is primarily concernaed with vérilicalion. His
aim is 10 show hat the expression corfesponding 1o the struciure of Ihe

cysiérn being veriléd has the desired behaviour.
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Cur aims are shghtly diflerent We wish 10 transform an  initiat description
ol the required circuit (normally in the form glx, ¥y Into one which is svilable
for layout on silicon The final circu must have the same semantics as
thy original one and so0 we mus! usa only “semaniics-praserving®
trinsformations. We aim 10 produce a maching and s0 we slart with one.
in both cases. lhe choice betweon behaviours snd machines was made on
tha grounds of elegance and manipulalive ease. The f1act 1hal the iwo
laaguagas were required 10 encapsulale shghily dilerant types ol infarmaiion

ciuzed us 10 make differenl chowces

_In the nem section. we exlain why notions ot elegance and manipulative

eise arg vaild crileria in the dosign of languages for WLSI description

Mathemalical Traciabilivy

One of the main problems in VLS| sysiems design is the management of
complexity, The Inroducion ol reguiar hierarchical design melthods. such as
those advocated in [Mead., Conway 80l. has been a greal breakthrovgh in
ths area. However, as systems become mare and more complex. siruclured
design methodologies musl be combined with formal methods lor clreull
verification. if we are 10 produce coOrrect clrculls in reasonable timescales.
Ore qf the teawres which VLSI design shares whh sottware design Is that,
as the design of a sysiem proceeds. the cost of repatring errors Qrows
epanentiaily. Also. Ithe later an error s found. the more likely It I3 10 have
odqiginaied early io the design procedure. 50, It Is important 10 see verfication
not as someihing which happens aller the circuii has been designed. bul

a: an impartanl part ol 1he design process itseil.

In puFF. we use iransformauons based on lhe axioms of Ihe language 1o
pire this kind of continuous verilication. The lunctlons and combining forms
ot FP were chosen because they have nice algebralc proerties. The language
wis designed 10 ailow he programmer o reason about his programs by

manipulating the programs Ihemseives. We were persuaded 1o use FP as



the basic ol pur language, because it has an associaled algebra ol fungtions
A good VLS! design fanguage mus! allow us 0 show that two circuits have
J1he same "meaning’ or behaviour. As explained In the previous seclion. we
use a restricted notion ol stale 10 ensure thal UFP relains most of lhe
algebraic properties of FP. We glve the semantics ol gFP in lerms ol FP
so that we can draw an the reservolr ol known algebralc laws ln FP 1o
prove new laws In pFP. We are. Ia general. concerned with proving iwo
clrcult descriptons equivalenm and this {5 done by applylng a sequence of
ransformations based on aigebraic Idenlies 1o one gl the descniplions 10
produce the other. Based on the ideas developaed In this disseriahion. Simon
Finn |Finn 83) has implemented a transiormation syslem lor gFP in the puretly
funchonal tanguage. Lispkit Lisp [Henderson, Jones, Jones B3). The system
allows one 1o lransform a uFP expression Onlo a semanticaily equivaent
one) by e’;’:lylng taclics. which may be axloms or combinauons of tfacics
Finn concluged thai @ more reatistiic and vsable sysiem might adop! the
Ideas of (Faather 78] where one could set goals lor the sysiem lo‘lrv lo
achieve. Such & aysiem would rellect more cilosely the manner In which
design is aclually done The use of transformalions relies heavily on lhe
fact hat gFP is a I1ractable nolation because of Ms aigebraic properies

A language which s nal traclable will not only be difficult to use bul dlso

difficult 10 "auiomale™ Il we are lo formally verily complex syslems. we need
languages which are suilable for use wilh sopflware tools such as
Iranslormation systerns and proot checkers.

Our translormalions are. ol necessily. semantics-preserving and so Lhe laws

of 4FP which concern us are algebsaic idenulies In chapler 5. however.
we inifoduce the predicale slowmodels which allows us to analyse circuits
in which 50% of the processors are active at any piven time. Slowmolels
allows us 10 show that a circuit ol this type 1s “sullicient™ to {ulfil a gven
speciicalion G0 1erms of an “ordinary” circuil} provided we are willing 10
have {he necessary “don’t cares” ln the input and oulput streams. uFp
proved 10 be useful In reasoning aboul sych circuits. We hape 1o generihise
this tlechnique to deal with such lhings as micro-cycles in micro-coded

machine Implemeniations.



Cardeli. in ms thesls (Cardellr B2). shows how algebraic lechniques ca.n
be applied 10 many aspecis of VLS! descripiion and verilication. He Introduces
a simple and unilorm nolatign for the descriplion of nelworks of hardware
comporenis. A nelwork s a struclured graph with an  iInterlace and the
ngiatlon  tor  structured graphs s desigrnes lo be “formally Iractable.
expressive engugh 10 be used as a programming language. and easily
converlibie Inlo uselul dald siryclures’. He uses an absiracl data Ilype of
neworks gver which certaln  pperations, such as 1he compaosition of
subnelworks, can be performed. He formaliseés hese ideas in an algebraic

framework and he gives some examples of how nelworks may be programmed

i ol algebras.- The main example Is the sysinlic pauern smatches of (Foster,

Kung 78] which s very similar 10 the sysiolic correlaior which Is our main
eample. His exampies arg¢ desgned 10 shaw that the approach can be
applied 10 various levels of descriplion, n 1he range from absiract
behavioural speciticavons 1o acival clrcults. A formal semantics for the
wpmost level of descriplion, Clocked Transition Adgebra. Is glven in ferms
of Milner's Synchrongus CCS [Milner 82} CTA deals wiith the behavipural
specificalion ol synchronous sysiems Cardelli points oul thal formal proofs
aboul such systems are good candidates for mechanisalion. He also lackles
the formailsallon of real-lime sysiems. wusing balh denolattoral and
operational semantics lechniques He considers the problems of (ransiating
Detween Ihe varipus tevels ol description and shows how 1o iranslale pwely
lopological ptanar stck diagrams into grid struclures, which can be used
to gencrate layout He gives an eilicient algarithm for streiching grid
stuctures 1o ensure port-matching Finally. he describes the implementation
ol an exparimental ¥vLS! design sysiem. in which |he gerametric details ol

lajputs are hidden Irom ine user by e use ol algebralc operauons

Cardeli's thesis dempnsiraies that aigebraic fechniques can ellecliveiy be
applied to severat aspects of VLS| design. He places emphasis on casling
the problems Involved in a simple Iramework, invoiving a small number of

pnmilive concepts. In comparison. Qur the@sls ts both Jess format and iess



wide-ranQing Ye consider only synchronous syslems. using a disCretle time
model. Qur nolaiion Is nol designed 10r use whh asynchronous or real-iime
syslems. Thi® simplilicalion afiows us 10 use a small number of combining
forme to describ@ the varlous comblnatlons af subclrcults. In parilcular, we
are lree 1o use a very simple form of composition. which. In turn allows
lo use & variable free language. This makes Il easy for us lo perform proos
showing thal a given combination of circuit elemenis has a cerlain behaviour
Cardeil uses o wmore general lorm ol composition, and so. proofs of
equivalence between circoils are more difticull. Cardelli uses formal algebraic
technigques and provides his own malthematcal basis We rely on olhers 1o
provide our formal basis, Jn that we rely on the eéxistence oOf \he @&lgebra
¢! tuncuons of FP. Wral the lheses do have In common Is an attempt to

hind simple solutions 1o the complex problems of VLS design

Other workers who apply algebraic technigues 1o the problems of VLS| design
are Gordon [Gordon B2l, whose work was mentlioned earlier in this chapier,

Miine IMilne B2a. 82b) and Subrahmanyam [Subrahmanyam 83}

Gordon models ragister Iransier systems using sequeniial behavigurs. He

uses algebrac lechniques lo express and reason about specificalions and

Impiemeniations at several dillerent tevels of abslracnhon. His verllication of
nMOS devices Inspired our allempls 10 do the same The third example of
chapter 4 is a repeal of oane of his examples. Gordon also proves correcl

a micro-coded implemenlation of a small general purpose compuler He Is

currently investigating methods of aulomaung his progfs of correciness He
has also extended s model 1o cope with bidwrechonal devices sSuch as piss

trancisiors.

Mine works on the developmenl of calcuh or languages which can be used
to design circuits functtonally and 1o verily iheir correciness whh respecl
1o specilications. He has developed a calculus for the description gl circuil
behaviour, CIRCAL. The calculus is event-driven and a CIRCAL expression

describes how a computing agent reacts to the exchange of slimull with
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s environmeni. A compuling agent has named ports and the composition
oparaior links simitarly named ports belonglng to difterent agents The agenis
exhange intormation over the lnes thus created. CIRCAL has a set of laws
which lacilitate reasoning about circults by the algebraic manipulalion of
CRCAL expressions. In IMilne B82b]. the correciness ol a simple sllicon
complier is demonstrated. A “high™ level language ol MNor Eapressions |s
cempiled inio a laygul Janguage with a single primitive. the NOR gate.
Semanlic functions are given, which map both the high level Nor Expressions
ard the circuit level Layour Expressions Inio CIRCAL. The silican complier
1s proved correci by showing lhal both the Nor Expression and s

cerresponding  chrcuit layout produce equivalent CIACAL expressions  The

lechnique is applicable 10 more complicaled silicon compilers. though an
automatic Iransformaiion sysiem lor CIRCAL would probably be required. 10

asmist In the proofl.

(Subrahmanyam B3] Is concerned with the synthesls of VLS clrculls from
high leval behaviourat descriptione. The formaiism Introduced s designed
10 provide a rigorous basis for the consiruction ol transformation systems
ard a Wramework for proving correciness. The same sel of algebraic
primilves is used to model the three leveis of aosirachon - funclional,
archilaciural and elecirical. The paper describes Ihe trensformation of high
lerai  behavigural descriptions tnio lower level archiiectural gescripuions,
Ttese low level descriptions are expressed in 8 bhigh level progremming
language with some speclal consttucts lor hardware description. The nexi
siep is to iransform these structural descriptions Into colleclions al siate
michines which control the llow of dala beilween hardware representalions
ol the required data siruclwres, The siate machine descriptions are franslated

Inlo symbohc circunt layouts. and heace inlo mask geomelry.

Many of the researchars menlioned above have been greaily influenced by
Miner's work on CCS (Milner 80]. Moare recently. Milner has Introduced
Sinchronous CCS. [Milner 821 which cen model boith synchronous and

asynchronous computelions. He lirst considers synchronous sysiems and then




shows thal asynchronous syslems can be charactlerized as a subclass. He
shows lha! CCS5 ts precisely derivable from SCCS. SCCS conlains onty four
combinators ant @ consirucl lor recursion bul it is remarkably expressive.
The calculus is approprisie 1o the description ol disiributed programs and
I may 8lso be wuselul in hardware description. One of the examples piven
Is a proo! thal the tamiliar combinaugn ¢of two NOR pales 1o make an RS

filp-flop behaves as gne might expecl

Although much work in the areas ol VLS) description languages and design
tools lakes ng account of the need for formal verificaton, the success of
those who uy 10 provide simple sglulions to compiex problems by the wuse

of algebraic methoads gives some hope for the fulure.




Constrained Communication

Constralneg communication Is an impertant requirement ol a VLSI design
tanguage. but one which Is olien Ignored. It Is widely agreed thal one of
the fundamental properties of VLSl Is that complex computallons can be
realised by a large number of processes, operaling concurrently. The
challenge of VLS) Is 10 find ways of harnessing this colfurrency, without beling
ovarwhelmed by il. Merely 10 Implement blgger lasier sequeniial machines
is 1o fail 10 take full advaniage ol the potenilal. New archllectures must be
gicovered. Aesearch Inte systolic archileclures, which are designed 10 make
optimal use of pipobning and parallelism 10 give high perlormance. Is
pabably ihe mosl advanced work ln this area {Kung 79 RAranl. Kung 82:
Foslar, Kung 79; Leiserson B1: Kramer. van Leeuwen B83: Evans, McWhirter,
Wood. McCanny, McCabe B3: McCabe. McCabe. Arambepola. Robinsan. Corry
82.

Motivaled by the importance of concurrency. mosl researchers choose 1o
characierize the circults themseives as colieclions of sequential processes.
which communicale with each other along named lines or channels or
ihrough named poris. This ts an unconsirained form of communication. The
network oOf processes can Jorm  an  arbitrarily compiex praph. with
sgaghetti-tiko communication lines. This causes problems. First. the layout,
in two dimenslans. of an arbitvary graph is a hopelessly difficull task. Second.
this approach ignores an exiremely Imporiant property of VLSI. the facl that
while local communicanon is cheap, g@lobal communication Is enormously
expenswe. A tystem n which communicanon s through named ports fails

lo__mstingtnsh  global  and  local communications. Thirvd. unconstrained

commumication greailty complicales the proofs which must be done when

reasoning about Circuits which are composed of subclrcuils.



Wwhen reasoning about cirCuil behaviours. the most common larm of Identily
which we& need to prove Is that “Ine compoasitlon of A and B has the same
pehaviour as C°. In a design language, the way In which the composiiion
p!  subblocks s delined (which dewermines the allowed forms of
communication) has a great bearing on the ease with which prools aboul
the language can be perlormed. One ol our requirements for uFP wes that
it should alow the designer Ip reason aboul his circuits. using simple
algebralc iaws Another reguirement was that h shouwld caplure detlalls o!
layout. Unconstrained communication makes boih reasoning and layout
dithcull and so  we restnicl communicalion by allowing subblocks 10 Dde
cambined only in simple ways. We consider only reciangular subblocks and
usefut ways of tilrng (he plane with them. In (he simplesi lorm ol ufP,
commumcation Only lakes place across the verlical “tile” boundaries. in he
extended form, there Is communicalion across lhe horizonial boundaries. In
ehher case, Only adjacent svbblocks communicale. The resull Is that |he
circuilt Is easy 10 lay oul. We usa a simple recursive technique, as expialn‘ecl

in chapter 6.

Allnpugh we use a simple notlon of compaositlon. we can siill express systems

In which there ts global communicatton (10 examplé, a wire which "bypesses®

several subblocks! The difference Is thal such wires are regarded as
funclions, and mus! be represenied explicitly. The designer may. It he wishes,
iransform his gfF P expressions (0 minimise such global communications The

far:t 1hat only tocal communicaticns are implied by the use of combining

forms facititales proois about circuils. by ailowing the problem 1o be

subdivided cleanty



wo fee! Ihat our use of consirained communication distinguishes our work
from that ol olhers In ihe lield. {(Aupp 81} ideniifles a problem which arises
when performing hardware compilation wsing a c¢ompletely general
composiilon scheme. The “side assignment” problem occurs when attempting
lo wira up a set ol componenms in a bollom up manner. The components
sra divided hierarchically inio one-dimensional slices. A slice In one
direciion contains an ordered lisl of slices In Ihe orthogonal direction. Thus,
» \wo-dimensional arrangement can be specllieg A circular problem arises
when one tries 10 orient the componenis of a shice and 10 assign lagical
signals 1o |he sides of the slice. To perlorm either operation, one would

ke 1o have already performed the plher! This Is the king ol problem that

arises when one tries to lay out an arbirary graph. Rupp points out thal
tha ullimale qualily of a siicon compilar appears 10 be limlied by hs sofullon
1o tha ‘eaf-cell side assignment problem. We avoid 1he problem by
uemandlriﬁ hat globat communication be represented explicilly. The amouni
ot global communication In & circuit desAcription could be used as a measure
of the quality of the corresponding layoul. We hope. In the coming year.

1o investigate heuristics lor linding “optimal™ Jayouls.



Function Level Reasaning

An impariant property of tha FP programming language IBackus 78. 81} s
that 1 has an assoclaled algebra of juactlons. rather than an algebra of
compuled oblects. The “ceills* an inlegrated circults correspond 1o functions.
Even the wires can be thought of as Idenllly juncilons Objects such as
signals “appear” Irom ouiside the chip and are manipulaled by these
funclions. Slnce we wanled lo reason aboul circeit behaviours and lo
ranslorm circunt descriplions (o invesiigale olfferent layouls, we were drawn
1o FP. which allows the programmer to reasgn about his programs py

manlpulatng \hem

The work of Kleburiz and Shultis [Klerbulz, Shultis B1) Is relaled to ours
in 1hal they wransform FP program schemes to lmprove efficlency. They have
found that, in earller work on iransiormalion. the use of variables In Lisp-llke
languages has inierfered wilh the idenitication of superticially dissimilar
programs as instances of a common scheme The variatie free notation
ol FP seems to be easier 10 work wilh. We find that it greally faclilaes
reasoning aboul Circyils Dby alowing wus 1o avold 1he wvnacontroled
communication which complicales proofs of correctness. I Is the absence
——olsubexpressions which gdenote dala_ values which permits the embedding

ot layoul informalion In our behavioural descriptions. Our descriptions consist

onty ol combinations of (unctions. and each funcion can be assoclaled with

a “hlock® in Ihe Crrcunl layout in an unambiguous way.

A circuil gxpression is ailher a primitive lunction or a combination ol clrcuit
expressions and s0, a Crcurl  can be described In a clearly higrarchicai
manner. A very general composition scheme may blur lhe edges of Lthe levels

ol hicrarchy.



Sime researchers use Imperanuve languages for circult description {Barbaccl
74, Desmarals. Shaw. Wihicox 82; Rolh 81: Lewke, Rammiting 83). However,
the oesiruclive assignment of |mperatlve languages nol only complicales
reasoning aboul programs but it also "loses” valuable structural Infgrmation
liwe are iree to assign 10 a variable anywhere In the program. lt.becomes
dijicult o assoclale a simple circuil siructure with that program. For Lhese
reasons. we have chosen 1o vse an applicative language as our basls. Many
hwe made the same decision [Dabiker, Fleming. Milne 83: Cardeil 81:
Gordon 81: Johnson B1). Johnson describes how recursive systems of
ewalions can be used 10 express circwl behaviour. As in uFP. he uses

stgams, which are Infinite sequences of linlle elements tor Input and output

Ting 75 ‘encooed in Ihese sireams and he uses an outpul driven list
pracessing system. with lazy evaluauon, 1w run his programs. As In our
senanlic equations. he musl lace the problem of keeping ithe types rignt
by \ransforming streams of sequences inlo sequences ol streams and vice
veras. He uses a fgrm of lunclion application which automatically transposes
the input and a funclion wire which repeatedly applies the Identity function

lo perform 1he iwo required 1ranspositions.

Ow conclusion has been 1hat it 8 descriplion language Is to be used for
ressoning about clicults. it rmust be free irom side eflects. Reasoning at
the function level allows us [0 associale a Ifoor-plan wiih each uFP
expession in a hlerarchical manner, since each combining form has a

sirpie Qeometnic Interpretation



Abstraction and Hilerarchical Siruclure

Hierarchical decomposilion Is an important way of managing complexity In
VLSI design. ISuzuki. Burstall 82] sescribes a VLSl Modeliing Language and
syslem in which user—delined absiraclion {or the ability 10 partition a system

inle arbitrary subparts) I8 an important fealure.

[Masvzawa, Nakauchl, Wada, Hagihara, Tokura 83) describes a Sysiolc
Algorithm Descriplion Language. SADL. The languaga is designed for use
with a CAD system which supporis the algorithmic design phase. It Aligws
VLSI atgorithms 1o be designed hlerarchically. An algorihm is Iimplemenied
by & network of inerconnected cells, A cell has an exiernal speclication,
which gives Oetalls ¢! how the cel! behaves againsi Inpul dala it also has
a realizallon definition, which describes how the external specificalion is
implemeniad. using a natwork of lowar level cells. The cell also has
inlormatlon on lis parlgrmance, lor example, delay limeé. power consumplon
and area, These may ba esiimateg or actval measurements. This sysiem
makes a dalinite atiempt 10 saparale concarns In a hlerarchical way. The
system |Is currently used with simuialors. However, 1he authors hope
eventvally 1 use some formal descriplive method for the exiernal

specilicatlon of cells. so that they can perform automatic or semi—aulomsllc

lormal verification of 1heir designs, I —— ——

Rem [Rem B1. 83; Rem, van de Snepscheul. Udding 83) argues eloquenity
the need f{or hierarchical sirucluring of designs. Ha argues that the
specibcalon of a componen! shou!d nol Téflect its interfial structure but
shouid detine only how the componeni looks Irom the ouiside. The
correciness ol a componen| is checked (mathematically} by comparing lhe
behaviour of the sel of subcomponenis feach of which has a8 precise
specilicalion) wih (he required specliicalion. Rem characterizes a component

by the sel of lraces of ils possible commenications with the outside werlg



He then describes ways of composing components. Communication Is the
elimination ol commaon atoms in lraces. He shows how lrace theory can
be used to reason about and prove properlles of hlerarchical compgnents
By using 8 compositlan aperaldr which expresses the delay belween the
sending  and receplion of signals. he formalizes the nollon  of
delsy-insensitivily. He gives some examples of the translation of hierarchlcal
components into seli-timed clrcults. [van de Snepscheut 83] extends the work
of Rem by uerlvin; circuits iram the programs describlng his hierarchical
components. First, lhe component |3 transformed so thal the composilion
of subcomponenis is sell-timed. The subcomponents are (hen Implemented

as Mealy- or Moore-ltke linite stale machings. with a communicalions

prriocol belween them. Trace theory has similarities 10 Hoare's CSP [Hoare
81 bui, al presenl, It lacks the expressive power of CSP. Reasoning al the
lewl of indimdual traces s dilllcuil it s hoped thal new theorems aboul

trace structures wlll be lound. to aliow reasoning aboul <ompanenis.

Alhough wa have laken a very different approach. we agree with Rem both
on the need 10 use lormal methods and on [he tmporfance of hierarchical
decomposhion. In gFP. the original circult, whese precise speclilicallon Is
krown, can be decomposed Into subclrculls. each of which has a precise
spacificallon. Using the specifications ol the subcircutts. we can check thai
tht chosen combination obeys the original specification of the circult. Only
wten thls3 has been done need we consider how the subcircuils are
implemented. Thus. at any level. the designer need only consider odelails
whch are appropriate ¢ the design decisions which must be made at lhat
level. This ability 10 absiract away Irom irretevant delails is vital If we are

10 design large systems rehably.



Chapler 8. Conclusion and Fulure Work

We have presanted ufFP which has many of the properiles which we have
suggested Qo 10 make a good VLS| design language. It Is simple, being
made up of primiilive Junclions and a small number ol combining forms.
Because 1he combining forms have geametric as well as semantic
mlerpretations. the language can be used 10 describe both the behaviour
and tha layoul of circunts 1t 15 concise and mathemalically tractable The
concisenest €an Mdke the language dillicull 10 read at lirst. bul we have
tound thal gne becomes lluent with praclice. We give the tormal semanlics
of wFP in termes ol FP and the fac! that we use only a resiricted nolion
of stale allows us to retain many ol lhe nice algebraic properties of FP.
Thus. the designer can raason aboul his circult descriplions by manipulaling
the descriplions themselves A proofl thal iwo Circuit descriptions have the
tame cemantics Is done by transiorming one of the descriplions Into the

ather. using the algebraic laws,

LFP 1t & variaple (ree language In which we reasorn about functions ralner
us
than about objects. Tne varlable free notalion aliows, o use B consirained

faorm ol communication which t{acilitaies proois about combinations ol

subcirculs It is difficull to perorm such proofs In a8 syslem where
communtcation Is through named porits or along named lines or channels.
Unconstrained communication also complicates iayout. Qur definitions of
composition are such thal they imply only local communigalion. We consider
only rectingular subblocks and uselul ways of tiling lthe plane with them
Tne result is tNat \he circuit corresponding lo any pFP expression can be

1218 ow) wsing a sSimple recursive technique

The vuse of funclion level reasoning Is appropriate to 1he struclured
higrarchical design methodologles which are vital to the management of
complexity. #FF aliows circuits o be described In a clearly hlerarchnical
manngr. A circuil exprassion Is either a primitive lunctiom or a combinaillon
of circuit expressions The designer can decnrmpose his originel circun

lwhose precise specilication is knowm) intg subcirculs, each ol which has



a precise specitication. Uslng the algebraic laws ol uFP_ he can determine
whather the combination of subcircults obeys the ogriginal specificalion. To
do this, he need consider only the specilications of the subclrculls. not thelr
Implementations. This abillly 10 abstracl away from Irrelevant details is an

important part of the hierarchical design method.

We have demonstraled the flextbility of the language by using H 10 describe
clrculls of varigus Iy_pes. rgﬁglng VTrom u- comb?nalorlal tally clrcull 10 Qur
man example, 1the systolic correfalor In 1hat example. we introduced some
simple but powerlul lechniques for analysing Systolic circuits Cur derivalion

of the circut can be considered W0 be a proof of ils correciness

We envisage uFP Deing vsed In the tollowing way The required behaviour
of 'he chip wi) first be specHied. Our mosat absiract lorm of circuil description
is ona which has & singta g on the gulermgst level. This lorm specilies
8 tombinalorial cCircull and a register bank through which signals are fed
back. The designer will yse his skill o discover a mare elegant and efflcient
impermamation of this behaviour gn silicon. He will narmally proceed through
sewvaral  gesign lieralions in this process. maving Irorm the abstract
tpecilication 10 a roal Implememiatian. He can. at any stage. simulate his
desgn o chechk thal his refinements have baen made correclly. We stress.
however, thal simulalion should be used as an aid 10 formal réeasoning, not
as a substitvie lor . Al each stage. the designer shauld prove (or at least
satnly himseld thal the design sihll obeys (ne specificanon This can be
dong with the ad ol a franslormabon sysiem which “implements® the
algebraic laws As he pioceeds through ine design. the combinalorial and
the memory elements will become more and more “mixed up'. Eventually.
he hopec to reach a satisfactory layoul in which memory elemenis have
been pleced as noar as possible 10 where they are “needed”. S0. the process
of ransiating from speciﬂcalion. 1o Iimplementalion can be viewed as one
of pushing the uc further end lurther down Inlo the xFP expression, until
they can go no further. When the design is finished. the uFP description
ol the Implemeniation can be passed 10 the layoul program, which will do

Ihe ledicus work ol aying out the chip.



Tha work jusl described opens many Interesling avenues of research. The
following seclions contaln brial descripfions of six areas of research which

particularly inler@st us.

): Tackie a wider range of exsmples and refing the language based on
the experience gained

h would be usetul to tackle some complete designs (not just specllications)
in gFP and in sOome other tarmalisms. This would allow us to compare the
expressive power and ease ol manipulaion ¢f the languages being
considered We would like 10 refine pFP inlo 4 small but powerful languape
whose combining forms are exactly those which we need 10 describe general
Integrated circuits. As my supervisor has suggesled. there may be a smaller,

more elggant language in thare wailing to be released

2: Investigata the usefulnass ol temporsl loglc and of othar ceicull lor
reasoning about saqueniial Iniagraled circulla

Temporal lpgic seems weil sullad 1o reasoning aboul inlegraled circuhs as
they change over ume. Convenllonal logic c¢an be used lo reason about
combinalorial circuits angd 1emporal loglc has the necessary estenstons \o

allow us to raasan ebout circulls with state. We woulg (ke 10 Investigate

“tha relationship between tempora! logic and uFP,

we hope 1o investigale the uselulness of various other c¢asliculi lar reasoning
aboul integrated ceucuits. The lunctional models of CSP developed at Onferd
by Reinecke may ﬁrov'de an appropriate formal stTs An aiternalive would
be 1o use a subset of 7, the formal specitication language devefoped al
Oxford by Abnial, Sufrin et al (Absiat 82. Sulrin B2). Milner's Synchronous
CCS alzo seems In have the required combination ol expressive power and

manmputative fluency.



i: Invesligate (he extension ol uFP to deal wilh asynchronous clrculls

JFP. as It slands. Is suitable for describing synchronous circuils
{ynchranous circubts, especiatly those using a two phase ciock. are very
tommon. However, in some applicatlons. there are problems wilh the
gsiribulion of a clock. and Il is necessary to use asynchronous clrcuits,
In & sell-timed sysitem. there Is no masier clock and iemporal conlrol is
dgelegated 10 the elemenis ol lhe system. A sell-limed sysiem lIs eilher a
teli-limed elemen! or 2 legal interconnection ol self-timed systems. The
design of scli-imed elements s difhicult. However. the sysiem designer,
ejuipped with these elemenls, Is free 10 absiract away Irom many ¢f the
physical detaile of the sysiem. We hope 1o extend gFP to deal with seli-limed
sistoms and. o lnveshgate the useisiness—of terporat TOQIc W rgasoriing

aboul such systems.

4: Wrlte a prolotype comphler Irom uFFP lp “gale-array”

The buliding of a general silicon compiler Is obvicusly an enormous lask,
A "gale-array compilesr” is a tess ambitious project. An Uncommilled Logic
Array (ULAY or gale-array is a chip laid out as 2 regular array o! identical
cells. The cells are usually \wo-inpu! Ipgic gates. 1or example NAND or NOR
gales. The chip is cusiomized by wiring up the gates 10 perform the required
function. There are two wiring layers. one for horizonial segmenis. the pther
for vertical ones. At the VLS| 83 conlerence, M. Bursiein presented an
elegam hierarchical routing algornhm lor gate-arrays |Burstewn. Hong B3}

We inteng lo use that algorithm in @ simple compiler.

5: Make the pFP transformalion syslem tmplemented by Simon Finn “smarler”.
Use the system 10 Invesligate useful strategies lor procaeding from a high
level uFP descriplion 10 one which Is suviiable for layoul on silicon

We would like 1o increase the uselulness ol the pFP transformalion syslam
by Incorporaling some form ol “goal directed® transigrmation. The system
woild then refllect more closely the way tn which design Is normally done.
We would like to use 1he syslem I Invesligale strategies for transtorming
a4 iFP expression inlo one which gives an “eflicienl” Jayout. There will be

a dose conneclion beiween this work and thal on the gate-array compiler



6. Investigate syswlic archliecturaes

VLSl glves us the possibility of performing enormous numbers ol
computangns concurrenlly.  We must  fing ways ol harnessing lhls
vlira-concurrency. Syslolic archieciures, in which a large number of Identical
cells operate rhythmically on the data. cen be vused 1o Implement some
elgorithms very elliclentlly. We hope (0 Invesligate ways of Iransiorming

non-systolic implemenmations ol algorithms Inlo sysiolic ones.
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