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Summary 

A process P satisfies a specification S, abbreviated P sat S. 

if every observation we can make about the behaviour of P is allowed 

by S. We use this idea of process correctness as a starting point 

for developing a specific form of denotational semantics for 

processes, called here specification - oriented semantics. This 

approach serves as a uniform framework for generating and relating 

a series of increasingly sophisticated denotational models for 

Communicating Processes. 

These models differ in the underlying structure of their obser­

vations which influences both the number of representable language 

operators and the notion of correctness expressed by P sat S. 

Safety properties are treated by all models; the more sophisticated 

models also permit proofs of liveness properties. An important 

feature of the models is a special hiding operator which abstracts 

from internal process actiVity. This allows large processes to be 

composed hierarchically from networks of smaller ones in such a way 

that proofs of the whole are constructed from proofs of its compo­

nents. We also show consistency of the denotational modeh w.r.t. 

a simple operational semantics based on transitions which make 

internal process actiVity explicit. 
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1. Introduction 

For concurrent programs - even when restricted to a particular style 

like Communicating Processes - a variety of seman tical models have 

been proposed (e.g. [4,22, 27J). Each of these different models 

can be viewed as describing certain aspects of a complex behaviour 

of programs. It seems desirable to bring some order into these seman­

tical models so that one will be able to recommend each model for 

the purposes and applications for which it 1s best suited. 

This leads us to pursue the following aims 1n our paper: 

(1)	 The semantiCS' of concurrent programs should lead to a simple 

correctness criterion, and simple proofs of correctness. 

(2)	 The semantics should abstract from the internal actiVity of con­

current programs in order to allow large programs to be composed 

hierarchically as networks of smaller ones. 

(3)	 Systematic methods should be developed for generating sound seman­

tical models for different purposes and application~. 

(4)	 Existing semantic models should related to each other in a clear 

system of classification. 

We concentrate here on an application to Communicating Processes and 

develop a general framework in which we pursue the aims (1)-(4). In 

different settings, steps towards some of these aims can also be 

found in.recent work by [4, 5, 8, 9, 29, 30, 33]. Let us now outline 

the approach of our paper. 

The Language. Informally, Communicating Processes isaprogramming 

language for describing networks of processes which work in parallel 

and communicate with each other in a synchronised way ~8]. But the 

emphasis is here on studying the fundamental concepts involved 

rather than presenting a full programming notation such as [34J 

Our version of Communicating Processes includes the concepts of dead­

lock, divergence, communication, internal and external nondeterminism, 

parallel composition with synchronisation, hiding of communications, 

and recursion (Section 3). 
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(1) Correctness. A process P satisfies a specification S, abbre­

viated P sat 5, if every observation we can make about the behaviour 

of P is allowed by S. We use this idea of process correctness as a 

starting point for developing a specific form of denotational 

semantics for processes, called here specification-oriented semantics. 

We begin with a set Cbs of observations together with a simple 

algebraic structure and define specifications S as certain subsets 

of Dbs reflecting this structure (Section 4). The idea is that a 

specification S describes a set of nondeterministic possibilities 

of observations. Th1s suggests the following ordering ~ among speci­

fications: 

s,;; 52 iff S1 2 52' 

This is the Smyth-order originallY introduced in the context of non­

deterministic state transformers [41J : 5, ~ 52 means that 52 is 

more deterministic than 5,. 
A specification-oriented semantics assigns denotationally to every 

process P a soecification M[ p] such that P sat S is expressed by 

S 5 .M[p] , Le. M[ p] is within the range of nondeterminism per­

mitted by S. (Section 5). A process P is therefore identified by the 

strongest specification which it satisfies. To this end, the set Spec 

of strongest specifications over Obs forms a complete partial order 

under ~ and the semantics ",4ot [.] maps every syntactic constructor 

of the progrMlming language onto a ~ -continuous operator on speci­

fications. This enables us to treat recursion_in the usual way. 

(2) Abstraction. Abstraction is realised in. two ways. 

Firstly, the hiding operator of Communicating Proces ses turns the 

concept of abstraction into an explicit language construct. Informally, 

hiding localises all communications on internal network.channels. 

This allows us to construct a larger process by first constructing 

its components, then connecting them as desired and finally hiding 

those connections which are regarded as internal. A sLmple example 

will illustrate this point (Section 6). 

Secondly, observations themselves are disallowed to mention in­

ternal process activity. This idea is formalised by imposing ­

in addition to the algebraic structure already mentioned - also a 

certain logical structure on observations (Section '3). 
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(3) Generality. The algebraic structure of observations is used 

to derive two general constructions for ~ -continuous operators on 

specifications which are typical for Communicating Processes (Section Sl. 

The simplest way of defining such an operator is by pointwise appli­

cation of a relationship 9 between observations, i.e. to consider 

O"g(Sl:{Y I 3x€ S: x g Y} 

But this operator can be proved continuous only for a restricted class 

of relations g. It turns out that most of the operators in Communica­

ting Processes satisfy this restriction, but the crucial hiding 

operators do not. ,These are more complicated because the possibility 

of infinitely many hidden communications has to be considered. We 

present an abstract analysis of such hiding relations g and show 

that the defini~ion 

C
g 

(5):::: O'g(5) u O~(S) 

yields a continuous operator. Here is an auxiliary operator0-; (5) 

dealing with the possibility of divergence. 

(4) Classification. In the main par~ of our paper we apply this 

specification-oriented approach to semantics to systematically gene­

rate and relate a series of increasingly sophisticated denotational 

models for Communicating Processes (Sections 6-11). These models 

differ in the underlying structure of their observations; and this 

influences both the number of representable language operators and 

the notion of process correctness expressed by P sat 5, This sugges~s 

that for each particular application the simplest adequate model 

should be chosen. 

The simplest model is the Counter Model ~ which reflects the idea 

of separate channel histories [20, 21]. We show that '( can deal ade­

quately only with acyclic or tree-like networks of prOCesses. Arbitrary 

networks require the Trace Model T instead [19, 30]. However. both ce 
and T are unable to deal satisfactory with diverging processes. 

This requires a further refinement of our observations leading to 

the Divergence Model :lJ. 

In 'e , T and 1) only safety properties can be described by P sat S. 

Also the concept of external nondeterminism is not yet available. Dea­
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11ng with the full language of Communicating Processes and with s~ple 

I1veness properties calls for the more sophisticated Readiness 

Hodel R. [12, 20]. We characterise the kind of liveness properties 

which are expressible in :R.. By studying the algebraic laws of ~'R.. 

we find that there are finite, i.e. non-recursive· processes which 

are not reducible to simple nondeterministic ones. This shortcomming 
of R. 1s avoided 1n the Refusal or Failure Hodel ?F [22, 7, 39] 

which makes slightly more identifications among processes than ~ ­

without affecting the expressibility of its liveness properties. 

In all these models a continuous hiding operator 1s available 1n full 

generality. The relationships between the models is established by 

(weak) homomorphisms. 

The denotational models are related with a simple operational 

semantics based on transitions representing both external and 

internal process activity (Sections 12 and 13). We sho~ that the 

models 3:J, R. and "F' are fully consistent with the operational seman­

tics, whereas -e a-nd J are consistent only for divergence free pro­

cesses. These results are obtained as an application of a general 

consistency theorem which relies only on the logical structUre of 

observations. 

Finally, we assess our approach and indicate further directions 

of research (Section 14). 



- s ­

2. Preliminaries 

ThlS sectlon descrl.bes the general format of our programming 

language and denotational semantlCS (cf. [13,14,43]). 

A slqnature L conslsts of a set (s E ) Id{L) of idennfiers 

and a set (f E.) Of) (L) of operator symbols each one with a certain 

arity n >,.. O. Every sl.gnature L determines a simple programming 

language, namely the set (P,Q e) Rec(L) of (recursive) terms over 

L as deflned by the £0110w1ng BNF-like syntax: 

P ::= f{P1, .. ·,P ) where f has arlty n I! 1"ur.pn 

r 
The recurSl.ve CO[1struct ~!._ [3] defines a binding occurrence of 

and l.nduces the usual notlons of free and bound identlfiers. By 
CRee (L) ....e denote the set of all closed recursive terms, i.e. without 

free identifl.ers. FRee CL. 1 denotes the set of all finite, i.e. closed 
r---­

terms P€CRec(L) withouc any occurrence of a recusive construct 
A 

r! _ l.ns1.de P. 

For ).A-!.P' QECReC(!) let p[Q/!] denote the result of substi ­

tuting Q for every free occurrence of I 1.n P. Since r is cle4r 

from the context "l.Io!. P, we also wr1.te P (Q) instead of p[O/I] 

This notat10n extends to n-fold substitut10n by defininq pOlO) = 0 
1!tnd pn+l(Q) =- P(pn(Q)). 

Let XJ be a partl.al order w.r.t. '= . A subset X ~J) 1.S directed 

if every finite subset of :x: has an upper bound in X. rJ is a £E..Q 

(complete partl.al order) 1f it has a least element ...L and if every 

directed subset :x: .s:: JJ has a limlt (least upper bound) U X in J:J • 
If 1) is a cpo, so l.S jJn = j) x ... '1(.1) (n times) I witll cornponent­

wise ordering. 

An operator ¢: j) ~ ~ from one cpo 1) 1.nto another cpo l'! is 

called strict if It preserves the least element, monotonic if it 

preserves the partl.al order £ and COntinuouS if it preservesI 

limits of directed sets, i.e. if if> <UX) '" U <p<X) holds for every 

directed X S J). Of course contlnulty l.nI.plles monotonicity. We re­

mark that an n-place operator ¢: 3J n~ iJ is continuous iff it is 

contl.nuous in every place. 

By Knaster-TarSKl'S fixed pOl.nt theorem every monotonic operator
 

¢:.J) ~ jJ has a least fl.xed pOl.nt f1.x ¢ In £J. If <p is also
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continuous, fix ~ can be represented as 

fix ¢ U{<jln[.l.I! n~ o} 

where <pO (d) d and 4>n+, (d) <p(¢n(d») holds for all de.l> . 

A (denotationall model .M.. for CRec(L) conS1.sts of a cpo XJ.).t. and 

a set {f...u.. I f E Op (I: )} of continuous operators 

f"M.: tJoM.. 1Il )( JJ),A. ~ J).).t.. J,A.. induces a straightforward denotatio­

nal semantics .JA.(·I for CRec(L), in fact for Rec(I:). Let (Ve) 

Val be the set of valuations, i.e. mapp1.ngs V: Id (L) ------+ ..D.M,. • 
Then 

M[ ,] Rec (.L ) ------+ (Val ~ .D...~) 

is given by 

Iii .M [fIP" ... ,P )] (VI = f .... I).lfp,] (Vi .... , .M[Pnll IVII n

(ii) .M.[(i (V) = vq) 

Iii i) .M. [ ,.....! .P] I V) = f>x I >.. d. .'vI [ P II I V [ d/ ! ] )) 

where V[d/r) is the valuat1.on identical with \J except at l' 
where its value 1.S de: 1)....... For closed terms pe CRec(~) we wr1.te 

.M.[p] instead of M[pn IVI . 

In the following we assume that there eX1.sts 50me O-ary symbol 

f E OpeL) with fA ==..L. For simpll.c1.t.y let..L itself denGte this 

symbol. For P e CRec(I:) let P..L be t.hat f1.nite term which results 

from P by replacing every occurrence of t.he form fJ" . R in P by .L. 

For P,O E CRec(L") we write PI--Q if Q results from P by replacing 

one occurrence of the form fJ' J.R by R( fJ' J .R). Terms Q.L with 

P~ 0 (reflexive, transitive closure) are called finite (syntactic) 

approximations of P. Note that P~ 0 implies M[ p] = M[ 0 D and 

M[ o,d \;; ,-\[p!. The family {.M.[oJ,ll I Pf-!---O} is directed, 

and the continuity of the operators 1.n ~ implies 

I·) M['ll = U {M[O!.] P~O } 

Thus every P ~s semantically the lim1.t of its f1.nite syntact1.c 

approximations. Thl.s representation is sometimes helpful when proving 

properties about denotational models ~. 

An (algebraic) law in Jvt is an equat1.on 

P = 0 
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with P,O E CReC(L) such that M[p] "" M[QHholdS. For signa­

tures L:l and 2:2 we write.L:' s: L:2 if op(Ll) £ Op(~2) holds. 

Let M. be a mode~ for CRec{~2) and Zl s: Z2. Then the ~l-reduct 

M r .E 1 is that model for CRee (L') which consists of the cpo X).M,. 

of ..Nt and the subset {E,.AA l f E Op ( E 1)} of operators. 

Let M, JI be models for CRee (L)' A (weak) homomorph.l.sllI from .At\. 

to .}{ is an operator <p: .1J.M., ~ J:J,j{ such that 

¢lfM.ld, •...• dn)) ~ I,,) f N 1q,ld,) •.••• ¢ld ))n

holds for all feOp(L:l and dl,o .. ,d E J)..,M.'n 

PrOposlt.l.On 2.1 Let..NI..,,N~ be as above and ¢ be a striCt and 

continuous (weak) homomorphism from ...M. to N. Then 

epIM[P] 1'= I.N"[ p] 

holds for every P € CRee (E) • 

Proof. As above we may assume .J.. E Op (I:). Continuity of ¢ leads 

to 

¢IM[p ~ I ~ U {¢I .... t[O-L] ) I p~O} 

for every P E CRee (4") due to ("'J. Strictness and the (weak) homo­

morphism property of q, yields 

¢IM[0-L]) ~ IS) N[0.c] 

for every Q with p ~ Q by structural induction (a.nd the monotoni­

city of. the operators in .}{). II 

Finally, we recall some set-theoretic notations. If A is a. set, 

Y (A) denotes the powerset P (A) "< {X I X SA} of A and IA I the 

cardinality of A. Bes~des the usual cartesian product Ax B of sets 

A and B we conSider the follwJ..ng inner product ..4181 B for families 

.A and :B of sets: 

A ~ 13 ~ [A x B I A €oil and B E :s } 

Note that A 0 13 :I< .A >( .B For relations g!; AX B and Subsets X SA,
 

Y~B let glX) ~ [b 13aEx, agb} andg-'IY) ~[aI3bEY,agb}.
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Por singleton sets .....e ..... rite g(x) and g-1 (y) instead of g( {x}) 

and g-1(fY}). We call g!;A""B doma~n fin1.te if g-' (y) is finite 

for every yEo 8, and image finite if g(x) is finite for every x EA. 

The product go h of relations 9 ~ AX B and h ~ B x C is defined by 

a (g~h) c iff 3 b E B: a 9 b ..... b he. 

A relation ~ s: AX A is called .....ell-founded if there is no infinite 

chain 

••• ~a3~a2-...+a1 

of elements a in A. The reflex1.ve, tranS1.tlve closure of a relation
" ~ 

~ £" A x A 1.5 denoted by ~ 

The notation V [d/!] used earlier is generalised to arbitrary 

mappings f: A_B and elements aEA, bE B by defining feb/a]: A---.,loB 

as follows: 

1.£ x "" a 
f[b/a]lx) f~X){ otherw-ise 

For sets X,Y,Z £: A we define the ternary major1.ty operator .(.]. by 

X[Y]z = (Xr,Y}u{YAZ)U (X('\Z). 

Thus an element is in X [y J z 1ff ~t ~s l.n the majorl.ty (Le. 1n at 

least two) of the sets X,Y,Z. This operator enJoys a number of 

algebraic properties. We state here only 

xIYTZ = X lYl z 

where denotes the complement in A. 
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3. Communicat1nq Processes 

A process can engage in certain observable commun~cations and 

internal actions. We are interested in networks of such processes 

which work in parallel and communicate with each other in a syn­

chronised way. This section defines Communicating Processes as a 

language CRec(L) which describes how such networks can be con­

structed. The emphasis is here on analysing the fundamental con­

cepts of communication and parallelism rather than on presenting 

a full programming notation as done for CSP [18J or OC~ [34]. 

Formally, .....e start from a finite set or alphabet (a,bEl Comm 

of communications. In OCCAM e.g. Carom is structured as Carom = 

Cha It .Iv1. .....here Cha is a set of channel names and .loA.. is a set of 

messages. But for simplicity we shall not exploit such a structure 

here. The sl.gnature L of Cornmunl.catl.ng Processes consists of a 

set Id (L) of identl.fiers ! and the set 

Op(Z) = {stop, div}	 u {o---> I o E Comm } u f 2.!:, 0 } 

u filA I A S Comm ] u {\b I b € Comm } 

of operator symbols. To fix the arities and some notational con­

ventions we exhl.bit Rec(~): 

P ,,= stop I div I o->pl P or 01 P 0 01 
PIiAOlp'bl! I PI·P 

The closed terms in CRec (E) are also called processes. 

The intuitive meaning of processes is as follows: stop denotes 

a deadlocked process which neither engages in a communication nor 

in an internal action. div models the diverging process which 

pursues an infinite sequence of internal actions. a -+ P first 

communicates a and then behaves like P. This concept of prefixing 

is a restricted form of sequential composition. P ~ 0 models 

internal or local nondeterml.nism [11]: it behaves like P or like 

O. but the choice between them is nondeterministic and not control­

lable from outside. In contrast PDQ models external or global 

nondetermini~ [11]: the environment can control whether PDQ 

behaves like P or like Q by choosing in its first step either to 
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communicate wlth P or with O. Compared with the or~ginal CSP [18] 

P or Q reflects the concept of a guarded COr.lffiand wi th true guards 

[~~ p 0 ~ ----+0 J and pDQ corresponds to a guarded command 

Wl.th communlcation guards. 

P II A Q introduces parallelism: it behaves as if P and Q are·· 

working independently (asynchronously) except that all communi­

cations in the set A have to be synchronised. By varying its 

synchronisation set A parallel compOSl.tlon II A reaches from 

arbitrary asynchrony ( 111'1) to full synchrony ( U )' We remark cornm 
that semantically asynchronous parallelism will be moaelled by 

interleaving. While this simplifies the presentation of all our 

denotational models and the operational semantics, there is no 

inherent dlfficulty to cOnslder also non-interleaving semantics 

lef. e.g. [29]). 

P,\ b behaves like P, but with all communications b hidden or 

unobservable from outside. Hidl.ng brl.ngs the concept of ~bstrac­

tion into Communicating ProcesSes. For simpll.city we have oml.tted 

full sequential campos i tion P;O. There is, however, no dif f iculty 

1n modelling this concept [19,22J. Also - if Q does not diverge ­

the effect of P:O can be simulated by parallel composition plus 

hiding, i.e. we can define 

P;O' IP II[.I}I'/--->Oll\-/ 

where the spec1al 

of P [19J. 
commun1cation .,/ repOrts successful term1nation 

Besides the full language CRec (~) 

CRec(E"l) and CRec{L:2) with .:Ll.fL.2 

we 

f:2:. 
consider two sub languages 

- 1:2 is Obtained from E by rernovl.ng 0 from·OplL"J. 

- L: 1 is obtained from ~2 by restricting parallel cornposi tion 

II A E Op ( L 1) to the case of 1A I ~ ] . 
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4. Observations and Specifications 

It is quite easy to express the intuitive understanding of processes 

operationally in terms of transitions (see Section 12). But this 

formalisation has one severe disadvantage: it does not abstract 

from internal actions. Such an abstraction is essential if we want 

to compose large processes hierarchically as neeworks of saaller ones 

and prove that these networks meet a given specification [30]. 

We develop therefore a different approach to the semantics of 

processes, called here specification-oriented semantics, which is 

based on the concepts of observation and spec~ficat~on. Our moti­

vation is to express process correctness in the following uniform 

way: a process P satisf~es a specification S, written as 

P sat S , 

if every observation we can make about P is allowed by S. To realise 

this aim, we develop both a logical and an algebraic structure for 

observations. The logical structure tells us how we make an obser­

vation about a process and thus determines the notion of process 

correctness; and the algebra~c structure provides a basis for deno­

tational domains with continuous operators on sets of observations. 

These structures w~ll be presented stepwise in several stages. Here 

we explain the simplest algebraic structure common to the refine­

ments later on. 

We are interested in observations we can make about ilie behaviour 

of a process P during ~ts operation. This intuition leads us to pos­

tulate a relation --P between observations which reflects their 

possible ordering in time: x ~ y means that observatlon y can be 

made immediately after x, without intervening observation. 

Definition 4.1 A s1.lTlple observat~on space is a structure (Obs, ~ 

where (x,ye.) Obs ~s a non-empty set of observations and ~ is a 

relation ----01)- ~ ObsxObswith: 

(01) ----i> 1.S well-founded. 

(02) ----i> is domain and image fin~te. 

Condition (02) simplifies the development of the theory (cf. 

Definitions 4.3 and 8.2). Let 
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ltin. {x E Obs I ..., 3 y E Obs: y --I> x } 

Note that Kin. 0 because of condition (01) and Obs '* 0. By a 

grounded chain of length n). 0 for x we mean a chain 

x ----00 .,. ---{» x "" x with xoe Min. Due to (01) we can assign !l 
o n 

level H x II to every observation x: 

II x II • min [ n 3 grounded chain of length n for x} . 

Informally n x II measures the minimal progress a process has made 

up to observation x. Note that x ----0- y implies Uyl ~ "x \I + 1. 

Example 4.2 COnsider as observations the set 

•(s, t E) Obs T = Corom 

of words or traces over the finite communication alphabet Comm 

with E denoting the empty trace. Define the relation ----{> S; 

ObS r )( ObS 7 as follows: 

s -i> tiff 3 a E Comm: s· a = t . 

•Then (Obs r ,..........(> ) is a simple observation space. And s ~ t. holds 

iff s is a prefix of t, abbreviated s~ t. Note that here every 

trace s has exactly one grounded cha~n 

c ----{>... --P s . 

The assumption of a finite alphabet Comm (see Section ) allows 

us to work with image finite relations throughout this paper, a 

substantial simplification of the theory. II 

Given a simple observation space (Obs, ----t> l we can now talk about 

specifications over (Obs,----t»: these are by definition simply sets 

5 £ Obs of observations. We say 5 allows every observa t ion xe S. 

The idea is that 5 describes a set of nondeterministic possibil~ties 

of observations. This suggests the following Smyth-like order~ng 

among specifications [41]: 

51 ~ 52 iff 51 2 52 . 

51 f; 52 means that 52 is stronger or more deterministic than 51 
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or equivalently that S1 is weaker than 52. In particular Obs 

itself is the weakest specification allowing every observation. 

We are aiming at denotational models ,,\A.. for CRec (r:) which 

assign to every process P E CRec (L') a specification .M.[ p] using 

ordering!,;;;;. But to do so the M[ p] must be special Sets of ob­

servations, called here process specifications, ~hich reflect the 

algebraic structure of Obs. 

Definition 4.3 A process specification over (Obs,--c-) is a subset 

5 SObs with: 

(51) S includes Min: Min ~ S. 

(52) 5 is generable: V x E 5 - M~n 3 YES: y....-...(> x . 

A specification space over (Obs, ---i» is a family (5,T E) 5pec S;; 

P(Obs) of process specifications such that 5pec forms a cpo w.r.t. 

ordering ;:1 

Since ~ is domain finite, the set of all process s~cifica­

tions over (Obs,~ ) forms a spec~fication space, called the full 

specification space. 

Example 4.4 Take (Obs r ,-;> ) of Example 4.2. A subset S ~ Corom" 

is called prefix-closed if t e Sand s ~ t al~ays imply s e 5. Then 

the set Spec r of all pref~x-closed subsets 5 S Comm· with £ e S 

is the full specification space over (Obs r , ---flo) [19J. II 

If spec and Spec are specification spaces over (Obsl'~1)1 2 
and (Obs , --{lo2) then the cartesian product Spec 1)( spec is of2 2 
course a cpo ~ith componentwise ordering .2 (cf. Section 2). 

Additionally, the sets sx T E. Spec, ~ Spec (inner product) are2 
process specifications over the product observation space 

(ObS, )( Obs2'~ '2) 

where ~'2 is the following "interleaving relation" on Obs,x Obs : 

{X"X2 )----(>12 (Y"Y2) ~f either x,-Oo, y, and x 2 • Y2 

or x, == y, and x2~2 Y2 

i.e. the pair makes a step ~hen e~ther component makes a step. 

2 
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Since the natural ordering? On Spec, ® Spec is isomorph~c wl.th
2 

the componentwise ordering on Spec, and spec in the sense that
2 

S,XS 2 ;2 T,)(T 2 iff S,:'T, and S2:=!T 2 

holds for all S"T,€SpeC 1 and S2,T 6Spec it follows that the
2

,
2 

inner product Spec, ~ spec is indeed a spec~fication space over
2 

(Obs 1)( Obs ' ---9 ),
z 12 
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5. Specification-or~entedSemantics 

We can now be precise about the desired form of semantics. 

Definition 5.1 Let EO S L. A specification-oriented model 

for CRec (LO) over (Obs I -{> ) consists of a specification space 

Spec over (Obs,-----(> ) and a set {f".'o4" \ f € Op{ EO)} of 2 -con­

tinuous operators on process spec~fications S E Spec. 

A specification-oriented semantics for CRec (EO) is a denotational 

semantics ,.,\.1.[.] induced by a spec~f~cat~on-oriented model ,.,vt. for 

CRec(LO) . 

Correctness of. processes P E CRec( LO) w.r.t. a specifJ.cation 

S e Spec is expressed by correctness "formulas" P ~ S interpreted 

as fa 1 lo..... s : 

.M.P= P sat S ,ff M[p] S; 5 . 

This is of course an ~nvariance pr~nc~ple: every observatlon as­

signed to P by ....V\. should be allowed by S. However, as we shall see 

later on, by vary~ng the structure of observations both safety and 

(certain) liveness propert~es of Cornmun~catlng Processes can be ex­

pressed ~n terms of sat. 

Th~s clar~fies the domains of our semat~cal models ~and the 

notion of process correctness. Next we exploit the s~mple algebraic 

structure of observations and process specifications to derive some 

results for constructing 2 -continuous operators on specificat~ons. 

Let spec, and spec always denote specification spaces over2
 
(Obs, ,----f>1 ) and (Obs 2 ,---i>2)' We wish to construct :2 -continuous
 

operators 

C : Spec, -7 P (ObS )
g 2 

working on process spec~f~cations by starting from relations 

9 ~ ObS, x Obs 2 

.....hich describe the desired effect of C "pointwise" for single ob­
9 

servat~ons. 
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The simplest way of ach~eving this is to take the pointwise 

extension ~g: 5pec,~ PtObs 2 ) defined by 

O',ISI { Y E Obs 2 I 3. E S, x g y } = glS) 

Clearly, O"g is 2 -monotonic, but not every relationship 9 induces 

a 2 -continuous 0' . 
g 

Propos i tion 5.2 If 9 is domain finite, the operator C' is 
g 

2 -continuous. 

Proof. Since C7 is monotonic, it. suf f ices to show tha.t for every 
-- g 
directed family {S, I iEI} of 5 i €: 5pec 1 

n" IS) C C7 InS)
ig~- gi~ 

holds. Consider some y ~ 0 (n 5 ). Then n S f"\ g-1 (y) = \21. Since
i9 i i ~ 

g-1(y) is finite and 1Si l iEI} ~s d~rect.ed, t.here exists some 

jeI withS.n g-1(y) = \21. Thus also y f ncr (5). II 
Jig ~ 

As we shall see in the following sections, most operators for 

Communicating Processes are induced by domain fin~te relations g. 

But the lmport.ant h~ding operat.ors are not. 

Example 5.) Take 5pec T of Example 4.4. For observa t ions t i. e. 

traces) s,t e Corom""" we define 

sgtiffs\.b=t. 

where S \. b is obtained from s by delet~ng or hiding all occurrences 

of b in s. Then 9 is not domain finite; and indeed 

0"g: 5pec T ~:P (Comm'*) is not. 2 -continuous as soon as ICornrn I? 2 

holds. Take e.g. 

S f €,b •.•• ,bn } u {bns seCornm"'}
n 

for n~O. These S form a chain S 2 ... 2 S 2 ... , but 
non 

n OgiS n) , Icomm-[b})" • [€j = C7glnSnl 
n n 

II 
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We present now an abstract analys1.s of such hiding operators 

based on the relation -----l> between observations. First we intro­

duce a new operator 0;: spec1~:P(ObS2) by 

r ~ ~} 
0;(5) "" l y'l 3 Y E:ObS 2 3 xES: (x 9 y'" y----(> 2 y') 

~ 

where.3 means "there exist infinitely many". Informally speaking, 
~ 

C'Jg(S) diverges from y onwards if there are infinitely many xES 

related to y by g. Instead of 0' we W1.11 use the augmented opera­
9 

tor C : spec,----;"P(Obs ) defined by
g 2

C lSI • 0 lSI u C7~ISI. 
9 9 9 

Continu1.ty of C can be shown for certa1.n well-behaved relations g.
9 

Defin1.tion 5.4 A relation 9 ~ Obs,)(ObS is called level tinite
2 

if for every y E Obs and l~ 0 there eX1.st only finitely many
2 

x E 9 
-1 

(y) W1.th level II x H "" 1. A relat1.on g f ObS,x Obs is called2 
* -'commutat1.ve l.f -----l> 1 ~ 9 ::: go ~ 2 holds. 

i:'late: l.f the set Min 1 ~Obs, of "m1.nimal" observations in Obs 
1 

loS finite, every relat1.on g~ Obs, >( ObS loS level fin1.te. This
2 

w1.l1 be the case l.n all our applicat1.ons to Cornmunicat1.~q Pro­

cesses. 

Theorem 5.5 If 9 is level finite and comrnutat1.ve, the operator 

C • O"g u CJe; is 2 -continuous. g 

Proof. Since C is monoton1.C, lot suffices again to show that for 
-- 9
 
every d~rected fanll.ly {Si! i E I J of Si E spec,
 

n eglSil S CglnSil 
1. 1. 

holds. Define S "" (\ S and consider some y' f C (S). Let 
. 1. 9 

,. 1. 

y:z {y I Y-----{)2 y' 1· Then Y loS f1.nite because.!!..;>2 is well-foun­

ded and doma1.n fin1.te. Thus by the definition of C : 
g 

-1
Iii 5 "g ly'I'~'
 

-1

(ii) S r"I 9 (Y) is fin1.te. 
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Define 1 = max {k I 3xE Srl g-1 (y), II x II = k } . Note that 1 E !No 

exists due to (ii). Since g is level finite, there are only finite­
1

ly many XE.g- (y) with II x II ~ 1. Since {Si I iE I} is directed, 

there exists some Sj such that for all x with Il x \I ~ 1+1: 

(iii)	 xtS. n g-1 (y').
 
] - 1 - 1


(iv) XESjl"'g (Y) iffx€Sl"'g (Y). 

Suppose no,",	 that y' E C (S.) holds. 
_ 1 g	 ] 

Case 1. S.n g (y') 4= ¢ 

By (iiil\here is some x ES (1g-1(y'j with Ilxll>l+1. 
J 

Case 2. S.n g-1 (y') = ¢ 

Then S~(', g-1 (Y) is infinite by the definition of C . Thus 
J _1 -1 g

there is some x € S.f"'I g (y) with x ~ Sf"'I g (Y). By (iv) we
 
J
 

conclude ~x II> 1+1. 

Hence in both cases there is some xES.ng
-1 

{Y)w~th II x II > 1+1. 
J 

Consider some y E Y w~th x 9 y. Since Sj is generable, there is a 

grounded chain 

x o ----(>1···4, xm = x 

in S .. Then there ex~st5 some i w~ th a ~ i-' m and JI x. II = 1+1.J , 
Clear ly 

•
xi (----t> 1° g) y 

holds. Commutat~vity of 9 implies 

•xi (g c ------t>2) y 

and thus also x. 
, 

E S.
J 

('l g-l (Y). By (iv) also xi E S (1 g 
-1 

(Y). But 

then II xi II ~ 1 by the def in~ tion of 1.
 

Contradiction.
 

Hence (S.), which is what had to be proved. II
y'" n c
i g ~ 

We remark that the proof of Theorem 5.5 does not use the general 

assumption t.hat the relations ----(>1 and ----(>2 are image finite. 



II 
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Example 5.6 The hiding relat10n g of the previous Example 5.3 is 

level finite and commutative. Thus C 1s continuous: for the chain g 
So 2 ... :2 S ;, .........e get

n 

nCgISn) = Carnm'" = Cg Ins 
n 

)
 
n n
 

Above ......e considered only operators of one argument, but dealing 

w1th several arguments is easy: ...... e just take the inner product ® of 

the argument specification spaces according to Section 4. Note that 

neither Proposition 5.2 nor Theorem 5.5 claim that erg or Cg y.lelds 

a process specif~cation in spec ......hen applied to a process speci­
2 

fication S € spec . This question ...... ill be treated separately 1n the
1 

individual cases. 
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6. The Counter Hodel If! 

In the following sections we study a series of increasingly so­

phisticated specification-oriented models for Communicating Pro­

cesses. These models vary in their choice of observations, and 

this will influence both the number of representable l.anguage 

operators and the induced notion of correctness. 

Here we start with a very simple ~odel for the sub~anguage 

CRec (L 1) of Conanunicating Processes where parallel composition 

is restricted to the case of I A I~ 1. We imagine that the only 

thing we can observe about a process P is how many tilnes each 

communication a E Comm has occurred up to a given moment [21J. 

Formally, we define the set of observations by 

(hE) Obs Camm ~ INre o 

i.e. for each communication a there ~s a separate counter. Obs'f! 

is a s~mple observation space wi th the follow~ng relat ion --{>: 

h-{r h' iff 3a E Corom: h' = h[h(a)-+1/a] 

i.e. h' differs from h in that exactly one counter is incremented 

by 1. Then h~ h' means that h(a)$ h'(a) holds for every a€Comm 

(h ~ h' for short). Let ZERO denote the constant mapping h with 

heal = 0 for every aeComrn. As process specifications we ta.ke the 

full specification space Spec~ consisting of all generable sub­

sets S f" Obs<e with ZERO € S. 

The Counter Model re is now given by Spec~ and the following 

set [foe I f E Op (E 1)} of opera tors on process speci f ications 

S which formalise the intuitions about processes explained in 

Section J (since e rerua~ns constant throughout this section, we 

drop all indices 'e at operators f-e ) : 

III stop = {ZERO} 

(2) div = Obs't' 

Th~s definition reveals a general strategy of specification­

oriented semantics, namely to ~dentify all "undesirable parts" 
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of processes P with 5 =. Obs, the weakest specification In the 

2: -ordering. By a "part" of P ...e mean the subsequent behaviour 

of P after some initial observations have been made. In this 

paper we will consl.der as "undesirable" all parts of prDcesses 

which can diverge right from the beginning, i.e. engage in an 

infinite sequence of internal (hidden) actions. The simplest 

example of such a part is the process div itself. In general 

a divergence can be introduced l.nto a process either e~plicitly 

via div or explicitly via recursion or hiding (see below). These 

ideas will be discussed again in Section 8 and made precise 

later in Sections 12 and 1]. 

IJI a--->5 = {ZERO} U [h[hlal+,/a] h E 5 } 

To ensure tha t this operator is 2 -continuous we check the 

relation 9 with 

hgh'iffh' ZERO or h' h[hlal+'/a] 

Clearly a---+ 5 =. &g (5). Since g is domal.n finite, Proposition 

5.2 implie s the 2. -continul.ty of Ctg. Also it is easy to see 

that cr preserves the generabill.ty of 5. 
9 

(41 5, or 52 = 5,u 52 

Thl.s definition exhibits another typical point about specifi ­

catiOn-oriented semantics: due to our Smyth-like ordering ~ 

among specifications (internal) nondeterminism is modelled by 

set-theoretic union. Then 

5, r= S2 iff 5, :2 S2 iff 5, :::: 5, or 52 

which accords with the idea that 5, is more nondeterministic 

than 52 (cf. Section 4). 

IS) 5,II A 52 ~ {h /3h,E5, 3h 2E5 2 , (h"h21 9 h} = C7 15,,5 21 g 

where g relates the product Obs~ x Obs~ with Obs~ by: 

(h"h2 ) g h iff VaE.A: h(a) :::: h,(a) = h 2 (a)
 

and
 

Va~A, hlal = h, (al + h 2 1al
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This formalises the intuition that 51 and 52 work independent­

ly except for communications mentioned in A. Clearly g is 

domain finite, and thus C7'g .2 -continuous by proposition 5.2. 

But G preserverves generability of specifications 5, and S2 
g
 

only thanks to the restriction I Al ~, in ~ 1 .
 

For IA 1). 2 our simple definition of II A does not necess­

arily ensure generability. For example, 5, = a~ b~ stop 

and 52 '" b~a~stop denote generable specifications in 

5pec<t ' but 

5, lI{a,b} 52 = [ZERO}u{h Ih(a) = h(b) = 1 } 

'" Yc :f a,b: h(c) = 0 

does nat. Informally this is because we cannot observe 

relative timing between different commun~cations in the 

Counter Madel r.e . A similar problem, known as the merge 

anomaly, can arise ~n loosely coupled nondeterministic 

dataflow networks [6,9]. As we shall see now, generability 

of process specifications ~s v~tal for proving the continu­

ty of the hiding operator '\ b. 

(6) 5'b: we consider the relation g ~ Obsr.e)tO Obsr.e with: 

(.. ) h g h' iff h'(b) o and Va *' b: h(a) = h'(a). 

Intuitively, g hides all communicat~ons b in h. Note that g 

is nat domain finite any more. And indeed, CT is not 
g 

2 -continuous as can be shawn analogously to Examp le 5.3. 

But g is level finite and commutative. Thus Theorem 5.5 

implies the 2 -continuity of the operator 

Cg = C'g u Og 
~ 

....hich leads us to define S '\. b as follows: 

5'b= {hi h(b) = ° ~ 3n:>-0' h[n/b]" 5 1 
v [ h' t 3 h" h' '3 n:>- 0' h[n/b] E 5 } 

The infin~ty clause of this definition accords with the 

princ~ple of specification-oriented semantics to identify 

"undesirable parts" of S'\.b where infin~tely many hidden b's 

are poss~ble wi th the full set Obs,€ . We remark that 5' b 
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preserves the generability of 5 e Spec~ . 

It is interesting to note that S'b = c::r vOoois not 
g g 

~ - c~nt~uous for arbitrary s~ecifioations 5 ~ Obs~, 

Look e.g. at 

Sn < {ZERO} v {h I hlb)~ n} 

for n ~ O. of course 

So~···2Sn2 ... 

holds with n S = [ZERO} . But 
n n 

n IS n" b)· < Obs'e * {z ERO } <lnSI\b 
n nn 

Thus generability of specifications is essential for the 

cont~nu~ty of the above hiding operator S,\ b. 

This fin~shes the defin~tion of the Counter Model , €. It induces 

a specificat~on-orJ.ented semantics , €[.] for CRec (2:1) accord­

1.ng to Sections 3 and 5. If we p1.cture processes P"""P work­n 
ing in parallel as networks with P l , ... 'P as nodes and synchron­

n 
ised communications between P. and P. as arcs, the restriction, ] 

)AI.:f 1 1.n L1 means that we can construct only acyclic or ~ 

like networks. For example, we cannot construct the cyclic net­

work 

a 

b c
 

R
 

We can at best construct a tree-like subnet of 1.t, e.g, by 

IP "ia} OJ II [b} R we get 

a
 
p) I o
 

b 

R 

~~th arc c mlss~ng between Q and R. Next we will study a typical 

example for tree-like networKS: a cha~n of buffers. 
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Example 6.1 Consider for n ~ 1 and a,b E Corom the following 

specification: 

BUFFn(a,bl { h h(b)~ h(al"- h(b)+n }
 

A Yd • a,b: h (d) "'0
 

Then BUFFn(a,b) specifies a process which engages in communi­

cations a and b such that the number of b' s never exceeds the 

number of a's and addi t10nally the number of a's never exceeds 

the number of b's by more than n. This process can be visualised 

as an n-place buffer 

~BUFFnla'bl I b 

which "inputs" a stream of a's and "outputs" a corresponding 

stream of b's in a buffered manner. Note that BUFFn(a,b) ESpec,€ 

It is easy to express l-place buffers in CRec( L:l): indeed with 

Pea ,bl I'!.(a--->b->!I 

we get 

"e [ P(a,b) ] = BUFF, la,b) 

To construct larger n-place buffers hierarchically from simple 

l-place buffers we use parallel composition and hiding. Let us 

demonstrate this for the case "n :=: 2". To built BUFF (a,bl we2 
first construct a "chain" Q of two l-place buffers: 

Q = P la,cl II [cj Pic ,b) 

or in graphical terms 

H I
a I P{c,blQ=~ b 

The resulting process behaves like a 2-place buffer except for 

the intermediate communications c: 
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'era] { h	 h(b)~ h(c}~ h(a)S' h(c)+l~ h(h)+2 } 

A Vd *' a,b,c: h(d) '" 0 

To obtain the desired result we therefore internalise or hide 

all comrnunicatins c: 

a,e = (p(a,e) II	 } P(e,bl),e
le 

or in graphical terms 

a,e = ~p(a,el e 1P(e,bl ~ 

This constructiOn	 yields indeed 

'e [(p(a,e) I\{e}	 p(e,b))\e] BUFF
2 

(a,b) 

A "direct" construction of a 2-place buffer is given by 

R "" a---io r!.«(a~b -lot) or (b ~a~!) 

"'ith ~[R]' BUFF (a,b). II2 

In the ex~ple we dealt with semantic equality, e.g. ~e showed 

that P(a,bJ behaves exactly like a l-place buffer, and a,c exact­

ly like a 2-place buffer. Let us now consider the notion of process 

correctness induced by sat. Clearly 

-e .... p(a,b} sat BUFF, (a,b) and
 

'e .... Q' c sat BUFF (a,b)

2 

But since BUFFn (a,b) S BUrrn+1 (a,b), we also have 

'eF= P(a,b) sat BUFF
n

+
1

(a,b) and 

'flo=" Q'c sat BUFF +2 (a,b)n 

for all n ~ o. This means that we cannot use correctness reasoning 

based on,€:l-P(a,bl.!.!! BUFFn(a,bl to ensure that a buffer has a 

capacity of at least n. 
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What is worse, since 

'ef-. stop sat BUFF (a,b)n 

we cannot even ensure that a buffer does anything at all. But 1;he 

concept of "doing someth~ng" is already a liveness oroperty of a 

process; this will be treated fUlly in Sections 9 et seq. First 

let Us refine the Counter Model ~ to a model which can deal with 

cyclic networks. 



7. The Trace Mode 1 T 

To treat CRec (l:" 2) allowing cyclic networks of processes, ve 

must be able to observe also the relative order of communications. 

This leads to the more informative observation set 

"­(s,t E) Obs T ': Corom 

of trace~ over Corom [19, ]OJ. Obs T induces the simple observation 

space (Obs'J",---t> ) and the full spec~fication space Specy ex­

plained in Examples 4.2 and 4.4. 

The Trace Mode 1 T consists of Spec 1" and a set 

{ f y I fE opt 2:2')} of operatDrs defined as follows (again we 

drop indices T at f T ): 

(1) stop ::= IE} 

(2) div '" Obs y 

( ] I a-..:,5'" (c} Ci {as I sE 5} 

(4) 51 or 52 '" S 1 U S Z 

(5 ) 5, II A 5, = {s 13t,E5 1 , t,"5,' s E It, II A t,J } 

Here t
1 

II A t z denotes the set of all successful interleavings 

of t, and t with synchronising comrnun~cations ~n ~. Usingz 
the notation a·S = {a·s I sE s} we can define t 

1 
II 

A
t ~n-

z 
ductively as follows: 

( i) = [E}" II A E 

( ii) as II A E = c II A as 

1
 p if a E A.
 

a· (s II, E J if a of: A. 

(ii~) as II A bt = bt ItA as 
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a.(s II 
A 

t) if a beA 

III if a" bl'\ a,bEA 

{ a" (s II A btl if a4A ..... bEA 

a" (5 II 
A 

btl u b" (as i A t) if a~A"b.A 

(6) S \ b {s\blsES} 

l.i f<s'\b)t I tE:Comm*,t\ ':"n>.-O: sbneS } 

where S \b results from s by removing all occurrences of b in s. 

This completes the definition of the Trace Model J. As with the 

previous model If all operator definitions of J can be derived 

systematically from appropriate relations g on traces and thus 

shown to be 2 -continuous (for 5\b see also Example 5.3). 

To relate the models r and ~ we consider the po in twise exten­

sion C7 g of the following relation g S Obs )( Obs re :r 

s g h iff Y a" A: h (a) = a* s 

where a* s denotes the number of occurrences of a in s. Clear ly 

C! g (5) E Spec-e holds for every S E Spec T. 

Proposition 7.1 For every process Pis CRec(Elj the equation 

0-g ( :r [ p] ) • 'e [ p] holds" 

Proof. By Proposition 2.1 it suffices to show that 0 is a strict 
-- g 
and? -continuous homomorphism from the reduct. Jll.: 1 to e.e. 
Since g 1s domain finite, t.he 2 -cont~nuity of l7 follows from 

Proposition 5.2. The homomorphism property of l7 
g 

(which implies
g 

here strictness) is easy to ver~fy; only the parallel composit~on 

needs some care: 

ergl S , II~ T S2) ~ 6' IS,) IIA'e erg lS 2 )g 

depends on the restriction 11'..1..::: 1 in L 1. Not.e: here we use the 

full notation II A. 'j and 1I 1'..'e to dist~nguish between operators 

in T and 'e. / / 

If we assume a channel struct.ure Comm .=. Cha xJvt of communicat~ons, 

an interest~ng combination -e & T of the two models -e and T is 

possible, viz. when we post.ulate that the relat~ve order between 



cornmun~cations can be observed if and only if they are sent along 

the same channe l. We then talk of channel histories. e.e & j is 

able to describe networks of processes acyclically connected via 

channels. Possible applicat~ons for e.e & T are buffers and proto­

cols as demonstrated ~n [10J. 
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B. The Divergence Model IJ 

In the Trace Model T of the previous st:!ction l.t can be proveci 

that 

d i v 11 P ~ di v
0 

holds for every process P. This law accords perfectly with OlJ,r 

intuition that an arbitrary interleaving of a process P with the 

diverging process div can itself pursue an infinite sequence of 

internal actions and thus be l.dentified with div, On the other 

hand, we find that 

div II P == P 
cormn 

holds in T, i.e. a fUll synchronisation of P with div ignores 

the possibi-hty of dl.verge=-.ce completely. This law seems unreal­

istic because the synchronisation set A ~ Corom should only re­

strl.ct the observable behaviour of dl.v n Carom P, not the internal 

actions (see also Section 13). Thus we would expect that on the 

contrary 

C*) div If A p .: div 

holds for all synchronisation sets A and processes P. Similar 

problems arise in the sl.mpler Counter Model ~ . 

What is the reason for thl.s weakness of the models re and T? 

In both models we identify undesirable, .Le. divergl.ng parts of 

processes with the weakest specification S == Obs. But in "e and 

:r this specification just models the concept'of arbitrary ob­

servable nondeterminism, Thus we identl.fy diverging parts of 

processes with (non-diverging) parts wh.lch exhibit arbitrary 

nondeterminism. For example, with Corom ~ {a,b) 

div : rf' ((a---..!) or (b ---"r )) 
holds in r. This identifl.cation explains the unrealistic law 

div llcomm p .: P in T. 



In this section we improve the Trace Model r into a Diverqence 

Model 1J where the law (.... ) is valid without qualification. The idea 

is to separate arbitrary observable nondeterminism wlthout internal 

divergence from the wholly unpredlctable behaviour which includes 

the possibility of divergence. In 3) only the wholly unpredlctable 

behaviour will be modelled by the weakest specification 5 '" ObsLl 
(see also Definition 8.3). 

To realise this idea we first extend the set of observations to 

Obs n Comm* u {st I s E. comm*} 

where 1 is a ne ...... symbol. Comm which is never used explicitly 

as a cornrnunicat ion in a process, but which can appear in a trace. 

XJ will be constructed in such a way that t appears only in a 

trace st of a process which can diverge from s onwards. 1hus t 
may be thought of as an observation of divergence. (Of course, 

basic incomputability results tell us that we cannot expect to 

effectively observe a divergence; our reason for introducing t 
here is to prove later on its absence in particular processes.) 

Let s,t range over Comm". As ---I> we take the smallest relation
 

over Obs.%) such that
 

s ----b- sa s~ s1
 

st --i> sa st --t> sat
 
..

holds for all s€ Corron and a € Comm. Then (Obs:i) , ---0-) is a Si...mple 

observation space. 

Our second refinement is more substantial. We don't want to
 

take as specification space the set of all generable s~cifica­


tions 5 s: Obs,f) with e: E Obs2> . Instead we wish to restrict our­


selves to those 5 € Obs~ which additionally satisfy:
 

(**) st E 5 implies sa, sa'te. 5 

for every a E Comm, i. e. with sf also all successors of sf under 

~ should be present in S. This condition makes expliclt the 

principle of specification-oriented semantics to identify "unde­

sl.rable", i.e. diverging parts of a process with the full set of 

all possible successor observations, l..e. the weakest possible 
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specification (cf. Section 6). Informally, once a process is 

broken, its behavious is wholly unpredictable; and it remal~s so 

even after further observations have been made. 

The idea to require also a sort of converse (JJ'It) of the qen..­

erability condition for specifications is not only useful for the 

Divergence Kodel XJ but also fundamental in the following sections. 

We therefore incorporate this idea into the general framework of 

observation and specification spaces, and call it the extensibility 

condition. The simplest definition of such a condition would be the 

literal converse of generability: 

YXE S-Max 3 y_ s: x----tlo y 

where Max ={x[,3y: x---oy}. But this definition is too weak if 

we wish to express as 1.n (**J that more than one successor of .x­

is to be present in S. 

We therefore need to extend the algebraic structure of obser­

vation spaces by a second relation ---«> between single observations 

x and sets Y of successor observat~ons of x. Informally ~ and 

---«> reflect the amount of information we can retrieve from 

observa tions. 

Def:'nition 8.1 An observatl.on space ~s a structure (Obs,-{>,--...C(» 

where (Obs,~) is a simple observation space with ~ satisfying 

conditions (01) and (02) of Definition 4.1, and where --oc> is a 

relation --t:(> == Obs x P (Obs) such that 

(03) x ~ Y implies x ~ y 

for all y E 't, Le. Y is some subset of possible successors of x 

under the fa..lD.1liar relation ~ . 

Note that ---i» is image finite since ~ itself is image finite. 

As notations we introduce: 

MJU( ~ {x E abs I -,3 y £ abs, x _ Y } 

x ---t» Y abbreviates x ---«> {y J 

Simple obserVation spaces (Obs,~) will from now on be ident~fied 

with observation spaces (Obs, ~ , ----i») where the relation ---i» is 

empty and thus MAX = Obs. If -{> and ----{» are understood, we 



refer to Obs itself as the observation space. Next we adjust the 

notions of process specification and specification space. 

Definition 8.2 A process specification over Obs is a subset 

S ~ Obs with: 

(Sl) S includes Min: Min ~ S 

(52) S is generable: 'YxeS-Min 3yeS: y----t"x 

(53) S is extensible: YxeS-.MAX 3y!: S: x~ Y 

A specification space over Obs is a family Spec 5 P(Obs) of 

process specif~cations which forms a cpo under ~ . 

Note the symmetry between (S2) and (S3). Since ~ is domain 

finite and----i» is image finite, the set of all process specifi­

cations over Obs forms again a specification space: the full 

specification space. If ~ ~s empty, Definition 8.2 reduces to 

Definition 4.3. In particular, every specification space over 

(Obs, ----I> , ~) is also a specification space over (Obs, -;> ) • 

Thus our results about continuity in Section 5 remain valid as 

they rely only on the underlying structure (Obs,---b-). Analogously 

to Definition 5.1 we define specification-oriented models ~ 

over (Obs,---i> , --(:>(> ) • 

Let us now continue with the Divergence Model 1:) • We take ----i» 

to be the smallest re lation tletween Obs:tJ and :P (Obs..!) ) such that 

s1'-* {sa, sa1' I aEComm} 

holds for all s € Commtt-. As process specifications we take the full 

specification space Specr; over (Obs,----t",~). Then every SESpecZ> 

satisfies (*-It) as an instance of the general extensibility condi­

tion (S3) for Sunder --t:(> Note that "ordinary" traces SE S don't 

require any successors to be included in S. 1) is then determined 

by SpecJj and the following set {f~ I feOp(:L2)} of operators 

on process spec~fications S (we drop indices 1) and state only 

those defin~tions which differ from T): 

(2) div = Obs!> 
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(S)S,IIAs, { s !3t,E:S 1• t z E 52: sEt, II A t, } 

tu {SU uE. Obs!) A 3t 1 E. 5" t 2 E.S 2 : 

z	 
}

(setlllA t A {t,'t E 51 v t2i'E 52)) 

The second clause in the definitl.on states that S 1 II A 52 

diverges as Soon as either of its components diverge. Note 

that S1 II A 52 l.5 a proper proces·s specification and that the 

defining relation 9 with 51 lI A 52 ~ lJg(S,,5 Z) is domain 

finite. This guarantees 2 -continuity by Proposition 5.2. 

(6)	 S'.b - £ s\b I sE S } 

u f (s\b)u I u€Obs.!)" \In)..O: sbn E S } 

This is literally the defl.nition of 5\. b from model T 
except that u ranges over Obs J) rather than Obs r Comm*. 

S \. b is a proper process specif ication and can be proved 

2 -continuous with help of Theorem 5.5. 

J) induces a specification-oriented semantics .:D[.] for 

CRee ( I: 2) in which the laws 

(i) di v or P = P or div = div 

(ii) divllAP = P II A div = div 

(iii) div \ b = div 

are true for all p e. CRec ( '2::2), A 0;: Comm and be COrnm. (In the 

previous Trace Model J only (i) and (iii) hold.) 

Next we wlsh to relate the models .fJ and :r. As explained 

earlier, the reason for achl.eving the law (il.) l.n :JJ is the 

careful distlnction between arbitrary observable nondeterml.nl.sm 

without l.nternal divergence and the wholly unpredictable behav­

iour including dl.vergence. Thl.s distinction can be Made precise 

by considerl.ng the specificatl.on 

S = ObS y = Comrn 
... 

£. Obs Xl 



ins.lde IJ. S .lS a proper process specl.f.lcat.lon over Obs.2) ; .It .lS 

the weakest specificat.lon of a process wit.!l.out "diverg.lng traces" 

st . Thus ""hereve!: 

1JF= P ~ Obs J 

holds, P is allowed to exhib.lt arbitrary observable nondeterminism 

but may nct. diverge. Th.ls mot.lvates the follow.lng definitlOn. 

Definition 8.3 A process P E CRec('L 2) is called divergence free 

if ..nF= P sat Obs T holds. 

Note that wheQ.ever f (P, , •.. ,P n) 6 CRec ( L"2) is di ...·ergence free, 

all P1""'P are divergence free as well. n 

Theorem 8.4 For every process P € CRec( :L2) the inclusiorl 

T[ P ]" ~ j)[ p] holds; for divergence free P the semantics 

~ and T coincide: 1>[ p] = j[ p ] 

Proo f . Ii) T [ p] <; 1) [ P ] ,
 

The operator <p: Spec.n ~ Specr w.lth cP{SJ .= Sf'l Camm*" is a strict
 

and continuOus weak homomorph.lsm (w.r.t. ~ ) from :J) to J. (Weak­


ness .lS due to II A') Thus propos.l tion 2.1. yields
 

¢1.tJ[p])=T[pli 

for every PE CRec(:L:2). By.D[ p]' 2 ep(.!l[ p]J, the claim follows. 

(ii) 1)[ p]=T[ p] for di·..-ergence free P:
 

We use f1ni te syntactic approximations of P as defined in Section 2.
 

Note that the general symbol J.. of Section 2 is no..... div: thus ..... e
 

write P instead of P.L' First compare the operator definitions
div 
in 1) -- and r to real.lse that 

1"1 .'Il[ fIP, •...• PnJ] < L r (2)[ p,] ..... 1)[ P
n 
]) 

holds for all divergence free f{P" •.. ,Pnl E CRec(L2). 

Consl.der now a divergence free P E CRec( L"2) and an arbitrary 

o ..... l.th P ~ Q. Note t:J.at Q can be written as 

Q ~ Q' [ /'"! 1 • R, I f" ...• f'! n' Rnl In] 



- 36 ­

....here Q"" is a p. -free term with free identifiers !, .... ,! n 

for ....hich the recursive subtenns fA f l· R' .... , P.I n· R of Qn 
have been sllbstituted. The follo.... ing argument .... ill us e two 

valuat~ons V2) and 'VT .... ith 

V~ I! i) 1)[ fA I i .R i ] 

VrlLI JT div ] 

for i 1, ... ,n. Note that 

I-I 1)[ I'L.Ri D S; T[div J1 

holds because with P also all ? Ji .R i are divergence free. 

Thus ....e get 

J:)[p] = ,v[0] = ,v[O*[I"!,.R,/f,.···,r!n·Rn/!nH 

J:)[ O*J I V:o ) = T[ o· J1 I VJ) Iby 1"1) 

,; T[ O·~ I V r I (by (**) 

T[ O'[diV/ f ,'" .. diV/! n]] = T [OdivJ1 

Since Q was arbitrary with P ~ Q. we finally obtain 

.fl[ p] = II {.l) [ 0.D I p ~ O} 

s n {T [ 0div] I p ~ O} = T [ p ] 

due to Section 2. II 



9. Safety and Liveness Properties 

What is the notion of process correctness ~nduced by the previous 

Divergence Model? For processes P E CRec (,E2l and specifications 

S € Spec b we have 

(.) :lJ F= P sat S iff .I) [ p ] <; S . 

Hence there ~s a particular process P which satisfies every spec­

ification S ~n :JJ , namely 

P = stop 

This indicates that (*) expresses only safety properties [36J of 

P in the sense that P does nothing that is forbidden by S. For 

('*) this means that we can prove: 

(a) absence of dLsallowed traces 

(b) absence of divergence. 

(The s~mpler models T and 'e deal properly only with aspect la) 

due to Theorem 8.4 and propos~tion 7.1.) The situation has its 

analogue in the theory of part~al correctness for sequential pro­

grams where the diverg~ng program d~v plays the role of stop by 

sat~sfying every partial correctness formula {p} dLV to} . In j) 

the process div satisfLes of course only the weakest specification 

Obs:f) . 

Let us now turn to the question of liveness properties. Intu­

itively, liveness means that a process is under all circumstances, 

L.e. independently of ~ts internal activity, able to perform a 

certain predefined task[23J. In the following we propose an ab­

stract framework for discussing this idea. 

A sLmple liveness property ~s a pair 

(T,L) 

of specificatLons T,L E Spec T (i.e. non-empty, prefix-closed sets 

T,L S Conun*of traces) with L~T. Informally a process 

(~JIt) P sat~sfies (T,L) 

~f the following holds: 
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(1) P is divergence free. 

(2) P engages only 1.n traces ment ioned in T. 

(3) P is able to engage in every trace of L ­

independently of its internal activity.
 

(Thus L is the "task" mentioned above.)
 

Conditions (') and (2) are well-understood from the Divergence 

Model rJ . Condition (3) will be explqined in the subsequent sec­

tion by translating every simple liveness property (T,L) into a 

proper process specification S(T,L) such that (**) 1.5 defined by 

P sat 5(T,Ll 

in the sense of specification-oriented semant1.CS. But at the 

moment the lnformal notion C**) should be suffic1.ent for under­

standing the following examples. 

Example 9.1 We wl.sh to specify a process P whl.ch exactly sends 

an infinite stream of commun1.catl.ons c: 

u- E. , C I cc , ccc , 

We do this wlth the simple liveness property (T,L) '....here 

T = L = {cn In>.... o} . Then 

P satisfies (T,L) 

if firstly P does not engage l.n other communi~ations than c due 

to T, and secondly P indeed engages in all traces 

E c, cc , ccc 

due to L. / / 

Example 9.2 we are now able to recOns1.der Example 6.1 and express 

as a sl.mple liveness property (Tn,L ) the l.dea that a process P n n 
is a buffer of capaCity exactly n. Instead of a,b E Comm we use 

here the suggestive names in,out E Comm for the communications 

of p 
n 



~ Pn lout 

Take 

T =L =fs I SE[in,OUt}"'AOut*S6:in:#:S,"(Out~S)+n} 
n n 

.....here in#5 (out~s) denotes the number of in's (out's) 1n 5 

(cf. Section 7). Then 

P satisfies (Tn,L )
n n 

If accordlng to Tn the process P engages only in communlcations n 
in(put) and out (put) such that the nwmber of outputs never exceeds 

the number of inputs and the number of inputs never exceeds the 

number of outputs by more than n. This is the safety requirement 

for an n-place buffer known from Example 6.1. 

But here we requlre more: P should also satlsfy the liveness 
n 

reqUirements descrlbed by L , VlZ. n 

(1) If the buffer P is "not full", i.e. if 1.n:#"5 < (out;f:s)+n,
n
 

it should accept another input.
 

(il) If the buffer P is "not empty", Le. 1.£ out#=s < in:i:s,
n
 

it should be ready for another output.
 

Clearly, these requirements are not satisfied by the deadlocked 

process stop any more (cf. Section 6). II 

We generalise th1s concept of a simple liveness property as 

follows: a (general) liveness proper tv is a pair 

IT.£ ) 

wi th T E Spec J and a non-empty :t... So Spec:r such that L ~ T holds 

for every L e: t:.. {Simple liveness propert1es are identified with 

pairs (T, iL) '.....here 1;£ I = '.) We define: 

P satisf1es (T,L) if :3 L e.£ : P sat1sfies (T,L). 

Intuitively, P satisfies (T,x:,) if P is able to engage 1n every 
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trace of at least one L E£'. Thus a simple liveness property 

fixes one ~articular process behav~our whereas a general live­

ness property describes only a general pattern of a desired 

behaviour. 

Example 9.3 Surprisingly, we can view the concept of deadlock 

freedom (which is often classified as a safety property [36]) 

as a general liveness property (T,:t:.) with 

T = Comrn· and ;£, = {L E Spec:r VsEL 3tEL: s<:t} 

Then P satlsfies (T, ~) iff P is always able to extend its 

present communication trace s by some further communication. 

(Since T ::: Comrn" there is no restrict10n in which communications 

P may partlcipate.) II 

Example 9.4 We wish to spec1fy a process P which can engage in 

commun1catlOns a and b in arb~trary order, but which is certain 

to communicate b eventually: 

, anb ,I ~E"""p 

We express this behaviour as a general liveness property (T,,£) 

w~th T = {a,b}· and 

'£.. ::: { L In)... o} where L {E ,', ... ,.n,.nb } • 
n n 

Then P satisfies (T,?L) if there is some n ~ 0 such that P com­

municates b after n communicat1ons ai but it js not known in 

advance which n applies. II 

Example 9.5 Similarly, we can express the concept of a bounded 

buffer as a general liveness property (T,;;e) with 

T = {s I s E {in,out}'" /\ out.:#=s ~ 1n#s} and 

£ ~ {L I n <- 0 } n 

where L 1S ~aken from Example 9.2. ~ow P sat~sfles (T,:t:.) if n 
there exists some "bound" n such ~ha'C P behaves like an n-place 

buffer. Agai~ 1t 1S not known which n appl1es. II 



10. The Readiness Model R 

This section improves the Divergence Model 1) ~nto a new model 

which can deal with simple (and a certain type of general) live­

ness properties: the Readiness Model R.. Moreover, R allOW's us 

to treat now the full language CRec(L) of Communicating Processes 

by distinguishing between external nondeternun~sm 0 and internal
•

nondeterminism ~. The idea of R is as follows: we assume that 

not only the "past" of a process CiSn be observed via traces 

also a part of the II future" via so-called exoectation [12] or 

ready sets X [20.16] indicating which cOCM1unicat~ons bE X can 

happen next. How~ver, a ready set X can be observed only when 

the process has reached a "stable state" where all internal 

activity has ceased (see also SectLon 13). 

Our observations have the form: 

s trace of successful cornmunLcations, 

sol!.': ready set .x presented by the process after s, 

sf possibility of divergence. 

Thus we get 

Obs~ [ s , sX , 51' s € Cornrn -14 A X ~ Com.:n } . 

Let s,t range over Comm~, X, Y over :P (Corom) and 6. over 

Y (Comrn)u {T"} The successor relatLon -{lo is the smallest 

relation on Obs:R. satiSfying 

s -----b- sX, s --{> sa, s -4 sf 

sX ----0- sb for all b € X 

sf ---b- sX, sf ---b- sa. st--c> sat 

for all sEComro·, XSCornm and a€Comm. Relation --i> describes 

the behavious of a process as follows: after a trace s the pro­

cess can enter a stable state and display a ready set X, or it 

can (be Lng in an unstable state) engage in some further COmmuni­

cation a or it may diverge completely. Once Ln a stable state sX 

the process can engage only in the communications in the ready 

set X. Divergence s t LS (as in the Divergence Model 1)) identi­

fied with every possible subsequent behavLour. 
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As extensibility relation ---00 we take the smallest relation 

between Obsjt and P(ObsA,.) such thar:. 

s -«> sX
 

sX --'>l> {sb [ bE xl
 
sl" -» {sx, sa, sat x £" Corom 1\ a E Corom }
 

holds for all s € corom'" and X.; Conun. The ?rocess specifications 0:1 

J( are given by the full specification space Spec R over 

(ObsR. ,----t>,----t>(». Then every 5E5peck reahses a local liveness 

principle: every SES and sXE5 wl.th X'f.!?J :requ~res certa~n im­

mediate successor observations to be present ~n 5 due to --PP . 

Only observations 

si<J 

have no Suc:essors and thus express stoooage or deadlock. The 

Lffipact of t~l.S liveness pr~nc~ple w~ll be studied later. First 

let us cornp~ete the defin~tion of the Readiness Model R by the 

following set [fk I fEOp(LJ} of operators (presented w~thout 

l.ndex R) on process specificat.lons S E 5pecR. : 

(1) stop ~ [E, i:i<J} 

(2) div = ObsR 

(3) a~ 5 {E d a}} u f as, as 6 s6 ES} 

( 4) 51 or 52 = 5, u 52 

15 ) 5, 0 5, < {E E(Xu Y) I EXES, /I EYES,} 

U { ,-6 I C:! €: S j V S 2 } 
u { s, s6 I s 'f. E /\ sD E 51 v S2 } 

The first clause states that 51 0 52 1S inltially ready for 

any commu~ication in t~e ~nlon of ~he re~QY sets for ~ts 

components 51 and 52' This enables us to model external 

nondetermlnl.srn, E.g. 

la --+ P) 0 Ib ->0) 

will have an initial ready set {a,b} ~ndicating that the 



environment can choose whether the process behaves like 

a~ P or like b~ Q by first communicating either a or b. 

In contrast 

(a---Jo P) or (b---JoQl 

has two initial ready sets {a} and {b}, and it depends on 

the process itself which one 1S presented to the environment. 

16} 5, II A 52' {s • sX I 3 t 1 X, E 51' t 2 X2 E. 52: 

s Et ItA t 2 /\ X = X1['A]X2I J	
} 

u {st.st"'l 3 t 1 E 51' t 2 " 52' } 

sEt, itA t 2 "(t,t,, 5,vt2t"S2) 

The first clause of the def1ntion uses the maJority operator 

of Section 2 for A Corum '\ A: 

X [A]X = (X (1 A)v (X ..... Al v (X {\ X )
J 2 1 2 1 2

formalises the idea that communications in A require the 

readiness of both 51 and S2 whereas for all other communica­

tions the readiness of 51 or 52 is suff1cient. 

(7)	 5'..b: we first 1ntroduce the hiding relat10n gS:Obs,1<;( ObsR. 

which descr1bes how observations about 5 are related to 

those about S \ b: 

Ii) s 9 s \ b 

(i1) sX 9 (s \ b) X provided b ~ X 

(iii) sX 9 s \. b provided b € X 

(lV) stgs'\b 

for all s,t,X,6. Clause (iii) may require a conunent: since 

commun1cation b has become internal in S \ b, the stable state 

sX of S with bE X has become unstable in 5' b in the sense 

that b may occur autonomously, after Wh1Ch the process is no 

lcnger ready for any of the other communicat1ons of X. 

Therefore we cannot deduce any new ready set Y in this case 

and define 
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sX g s '\ b provided be X. 

This definition agrees with the decisions taken in [12J and [20]. 

Slnce g is level finite and commutative, the operator 
a> 

C = O"gV O'g is ~-continuous by Theorem 5.5. This yields.g 
(after a slight simplification) as explicit defintion; 

S'b = {s'b,(S'b)X I sxes /I bofX } 

U {Is' bJt, Is'bJt.:'> I Yh~O, sbne S} 

which is a proper process specification in SpeeR. 

This completes the definition of the Readiness Model 1(. which 

induces a specification-oriented semantics R[ .] for the full 

language CRec(L") of Communicating Processes. 

Let us now investigate how this model can express liveness. 

For a simple liveness property (T,L) let SR. (T,L) be the follow­

ing process specification in SpecR. ; 

SR.l'I',L)=TV{SX[SE:T/l.S.Xf T } 

/I. (if s e L then succL (s) ~ X) 

As abbreviations we use here s·x "" {sa 1 aex} and succL(s) 

{a I saEL}for sE:Cornm'-', XS;Comm and LESpec T . 

We define now 

P satisfies (T,L) iff 1< f= P sat S k (T,L) 

This definition formalises the intuitive correctness criteria 

(1) - (3) given in Section 9. This is clear f~r (1) and (2). 

Condition ()) is expressed by the clause 

if s e L then succ (s) s;: XL 

by which the ready set X of a trace s e L always inc I udes the 

required successor communications a e succL (s). Because of !. e L 

we can in particular start with all initial communicatlons in L. 

And these communications are independent of internal activities 

of P since the"readies"sX all refer to "stable states". 



Example 10.1 To specify a process P which sends an infinite 

stream of communications c, we express the simple liveness pro­

perty (T,L) of Example 9.1 1n 1<. This yields the following 

specification SEND = SR [T,L): 

SEND = {en, en [ c) I where n ~ 0 } • 

SEND says, no rna tter how many c' s have already been sent, the 

process P should always be ready to send another c: 

("I £ , e , ee , eee ,G-
Then the extens~bility condition of process specifications in 

SpecR. forces every process P with 

1<. F= p sat SEND 

to behave exactly like r*l. A possible solution is 

p: I"f .(C--->II 

In particular, the deadlockin~ process stop does not satisfy 

SEND. II 

Example 10.2 To sp~cify a buffer Gf capacity n we translate the 

simple liveness property (Tn,L ) of Example 9.2 into the follow-n
ing specification BUFFn '= S R (Tn,L ):n 

BUrE' { s ,sX s E {in,out}"'", out*s~in*s~(out#=s}+n) 

A (if in=tt=s< [out"t=-s)+n then inEX) 

A (if out=iFs < in=#=s then outE X) 

n 

As in Example 6.1 we can construct buffers of capacity n ~ier­

archically from buffers of capac~ty 1. Take 

P 1 (in, au tJ '= ~! . (in --;)0 au t ~ r ) 
and define inductively 

P 1 (in,out) = (P, (in,wire) 1I{. } P (wire,out)) \ wiren+ W1re n 
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Then we ca.n show 

1< ~ P (in,out) sat BUFF 
n -- n 

Note that differently from Example 6.1 

BUFF $. BUFF +, .n n

Thus e.g. P, (in,out) sat BUFF 
2 

is false in :R.. Also note that 

direct constructions of buffers of capacity n involve e~ternal 

nondeterminism 0 rather than internal nondetenninism ££= 

e.g. only with 

R 2 '" in -----)0 fA-! . ( in ---+ out ~! 

o out-+in~I 

we get J(F R sat BUFF (cf. E~ample 6.]). II
2 2 

Next we investigate general liveness properties (T,~). Recall 

from Section 9 that we define: 

P sat~sfies (T,:t!.) if 3LE£ P satisfies (T,Ll. 

We extend this defintion to sets 50 of processes by 

50 satisfies (T,:£.) if 'VpeP: P satisfies (T,:£). 

Now we introduce the following concept of expressiveness. 

Definition 10.3 A liveness property (T,::t!.) is expressible in a 

specification-oriented model ~ if there is a specification 

S E Spec.M. sllch that 

P satisfies (T,£) iff ..AA.F=" P sat S 

holds for every process P E CRec (,L). We also say that S e~presses 

(T,:e) 1n M. 

By definltion, all simple liveness properties (T,L) are e~press­

ible in the ~eadiness Model R.. But wh~t about general liveness 

properties (T, i:..) ? 



Example 10.4 The introduction of observations s0 enable us to 

state and prove that a given process does not stop: con.sider the 

specl.fication: 

LIVE = {s, sX ) where X :f' 0} . 

Then a process P with 

1\ F= P sat LIVE 

will after every trace s be ready to engage in some further 

communications, and thus never deadlock. Note that in fact LIVE 

expresses the general livness property (T, £.) of Example 9.3. II 

The following proposition Characterises the (limitations in) 

expressiveness of the Readiness Model 1<.. 

Proposition 10.5 (T,;f) is e.xpressl.ble in :R l.ff the followl.ng 

holds for all ? ~ CRec (L) and Q E CRec (L): whenever 

P satisfies (T,;£) and 

R[o] S U R[p] 
P€ :P 

then also Q satisfies (T / £). 

Proof. "only l.f"; by the definition of~.
 

"if": let P "" {p I P satisfies (T,;;e)} .
 

Case 1: P =~. Then there is no L e.;£ and no process P such that
 

P satisfies (T,L). Thus for arbitrary L €£ the specification 

S = S:R. (T,L) expresses (T,£). 

Case 2: 'P 't= ¢. Then S = U .:R.[ p] expresses (T ,£ ). Note 
p~p 

that 5 E Spec.:R . 

II 

Examole lO.6 (i) The liveness property (T,t!..) of Example 9.4 

modelling the concept of "eventually b" is !lot expressible in :R 
lndeed conSider the processes 

o = !"!. (a ->! ) and Pn a~ ••• --J>a----?-b 

~ 
n 
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for n~O. Then P satisfies (T,;£.) and R.[ Q ] SO U R [ Pn] , but 
n n 

Q does no:. satlsfy (T,£.). Thus (T,;i) ~s not express~ble in :R.. 
by Proposltion 10.5. This lim~tation in expressiveness ~s typi­

cal for any kind of finitary observat~on (see Section 13), not 

only for ~ead~es sX. Informally, 'fle can say that the concept of 

eventuality is not finitely observable. 

(ii) Similarly, we cannot express '.:he concept of a bounded 

buffer mod.elled by the liveness prope!rty (T,:t.) of Example 9.5. 

Clearly 

Pn(in,out) sat~sfies (T,;;e) 

by the previous Example 10.2. Now cons~der 

PCQ = jA! . (in -)0 (f II 0 out-l-stop)) 

P expresses an ~nfinite buffer:oo 

:R [ p",] " { s, sX s E {in,out}" 1'\ out#s~ in#=s 

A ~n EX 

A (.!! OUt*s< in#=s then outE J 
Thus .R.[ p~] S U ~[ Pn(in,outJ] but Pro does not sat~sf! 

n 
(T,a:). Hence IT,:.e) ~s not express~ble ~n R. Agal.n this lim~-

tation is :rue for any kl.nd of fin~tary observat~on; thus the 

concept of boundedness ~s not finl.tely observable. 

(il. i) Even much simpler liveness rropert~es are not express1cle 

in :R. Take e.g. (T,£) ',o11th T = Corom""'" and 

;;e =
 fbr'Cr }
 

(Here we use an eqUivalent tree notation for prefix-closed sets 

of trees.) The idea of £. is that b (or c) is possible after a 

only if it 'flas also possible earlier as an alternative to a. 



Cons ider now 

. (a---ilb~stop) 0 b--"tstopP, 

P : (a---ilC ~stop) 0 c~~top
2
 

0
 - (a---1>c ~stop) 0 b~ stop 

Then P, and P
2 

satisfy [T,£J and 1<.[0] <o.1I.[p,]u:R[ P2 ], 

but Q does not satisfy (T,,,t) as required by Proposition 10.5. 

This limitation in expressiveness is typical for trace-like 

obServations like readies sX. It could be overcome - if so 

desired - by using tree-like observations instead, but we decided 

here not to consi.der "what m~ght have been" in our models for 

Commun~cating Processes. II 

Next we relate the models R. and 1). Let g s: Obs.R.)( Obsl) be 

the projection 

sX 9 t ~ff s -"= t 

for observat~ons sX and the ~dentity otherwise. Then the ?Oint­

wise extension O"g satisfies O'g(S) € Spec£) for every 5 ESpecjt 

Proposition 10.7 For every process P E CRec(L:2) the equation 

o [1<[p] ) =.D[ p] holds. 
g 

Proof. By Propos~t~ons 2.1 and 5.2. II 

We conclude with some comments on related work. As already 

~ndicated, the idea of ready sets ~s taken from [72,16,20], but 

the details of the Readiness Model R are new. In particular [12J 

does not abstract from internal activities: little d's denoting 

internal progress remain in their traces. It is interesting to 

note that the model 1<. is well sUl.ted as a bas~s for implemen­

ting processes in a functional style [38J. 

A restricted verSl.on of a Readiness Model forms also a basis 

of [31J. Essent~ally [31J use only aliveness princl.ple of the form 

v x E Obs - ,'1ax :::l yES: x ---b- y 



- so -

whereas in R ready sets can require more than one successor of 

an observation (trace) to be present (cf. the introduction of 

~ in Section 8). Consequently [31J cannot deal ~ith external 

nondetermmism. 



11. The Failure Model F 

In a specification-oriented model ..M. every process P € CRec (~J 

can be semantically approximated as a limit of finite, i.e. 

non-recursive processes 0d' € FRec (.z) via 
---l.:: 

M[P] : n {.M.[ QdiV] I P~Q} 

(cf. Section 2). Therefore finite processes can be considered 

as an l.mportant tool for reasoning about general processes (cf. 

e.g.	 the proof of Theorem 8.4.). 

This reasoning is Simplified very much if further on every 

finite process can be reduced to a so-called primitive finite 

process P £ FRec (L"p) .....here .Lp s: L with 

OplLpJ = {stop,diV}u {a---> a Ecornm} uf~,O} 

do~s not involve pardll~lism II A or hiding \ b. Therefore we 

would like to have models ~ whl.ch admit reduction In the follow­

ing sense: 

Definition 11.J A model.M. for CRec(E) adml.ts reductl.on from 

FRec (:L.) to FRec ( .:[ pJ if for every f ini te FE FRec (L) there 

exists some pr.iml.tive finite Pe FRec(Lp) such that the la..... 

F	 = P 

is true in M. An operator fEOp(~) is calle:d reducible to 

FRec (L pJ in M. if for all P J ' ... , P n E FRec (;L"p) there exists 

aPE FRec ( L p) such that 

f(Pl,· .. ,P ) = P n 

is	 true in ).1. 

Clearly .irt admits reduction from FRec{L") to FRec{I:p) iff 

every operator feOp{~) is reducible to FRec(!:.p) in M. 
Unfortunately, our preVious Readiness Model ~ does not adml.t 

reduction to FRec (L p). The troublesome operator in 1<. is hiding 

'" b. To see this let us study an example .....here 



(PDc),b 

cannot be expressed w~thout ,b. 

E::.>ample 11.2 First note that in :R. primitive finite processes 

P E FRee (Z p) satisfy the follow~ng property for all 5 E Carom"" and 

a E Camm: 

(1) sa E 1([p] implies 3X s: CO.lMl: aE X I\sX E R[ P ] 

i.e. every communication a that can occur while the process is 

running can also occur after the process has reached stability. 

Consider nOW' 

p = a~ stop and Q b ----+ c ~ stop . 

Then we get 

R [ (P 0 0) '- b] = {e , a, a~, e {e), e, e~ } 

which does not satisfy (1). Thus (P 0 Q)" b is not re presentable 

in FRee ( LpJ . 

What would be a good candidate in FRee (Ep) to represent this 

process? ~ suggest 

Pl = (a---io stop 0 c-+stop) 2.E (c-+stopl 

with 1<[P1] = ;t([(POOI,-bJ!v {Ela,e}} because P1 and 

(P 0 Q) '\. b iatisfy in 'R.. exactly the same simple liveness spec­

ifications S:R (T,L). Indeed for T,L as in Section 9 

:Rp (PDOI\ b sat 5:R IT,Ll 

iff T:2 { €, a, c} and L S {e: I c} . But these are exactly the 

sets T,L with 

:Rp p1 sat 51/. (T,L) . 

Thus identifying 

(2) IPOO)\b = P' 

does not affect the expressive power of our model in terms of 

simple livE:'les;s propertH~S (see also Theorem 11.81. / / 



We no..... explain a model which admi ts reduction to FRec ( I: p) 

essentially since the suggested law (2) is true: the Refusal or 

Failure Mode 1 3=' based on [22,39,7]. The ini tial idea of 'F looks 

quite different from 1l. We imagine the following interactions to 

take place between a process P and its environment E: at any 

moment E can offer certain sets X of communications to P. The 

process has then three options to react to such an offer: 

(~)	 either accept some communication aeX 

or refuse to accept any cornmunicat1on in X 

or diverge completely. 

Our observati9ns record these interactions only until the 

first refusal of X has occurred: 

sX trace of accepted communications together with 

a set X of commun1cations which have been refused 

after s 

s1' ?OSs ibility of divergence 

Thus ..... e have 

ObS { sX , sf s e Comm.... 1'\ X £ Comrn } . F 

Observations sX are called failures and the 5ets X refusal sets 

[22J. As in Section 10 we let Sit range over Comrn , X,Y over 

:P (Comm) and ~ over P(Comrol v {1'} . As successor relation ---{> 

we take the smallest relatiOn on Obs F satisfy1ng 

sliS ---t> sa0 , sliS ---l> sX s~ ---P sf
 

51' -I> sX , 51' ---l> saliS st--t> sa
 

for all s ecomm*, aEComm and X S COITUT\ with X *' 0. Here failures 

s0 represent interactions where no communication has been refused 

so far. As in the prev10us models J) and :R divergence s1' is 

identified with s follo.....ed by every possible subsequent behaViour. 

The dynamic aspect of (*) is captured by the following &xten­

sib11ity relation -----* between ObS3= and P (Obs'F): 
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s0 ----t(> SUCC iff VX £Cornrn: ;ja eX: saG' ESUCC 

v VY~ X with Y ,., 0: sY t SUCCl 

si-----w {sx, sa0, sar J XSCornm with Xl> 0 A aEcomm} 

Let us explam the more complex clause s0 ---i>i> SUCC. Whenever 

s0 E S holds :or some process specification S, a whole set SUCC 

of successors of 50 must be present In S. This set SUCC looks 

as follows: for every gl.ven set X £ (;:01T1ffi of communications either 

some aeX is accepted, i.e. sa0eS holds, or the whole set X 

together wit.'l. every non-empty subset Y S X is refused, i.e. sX E S 

and sYe S for 0 * Y £ X (Y '1= \21 guarantess s0 ----{) sY). Note that 

this definltion reflects the informal descrlption (.... ) above. 

As process specifications of F we take the full specificatlon 

space Spec F over (Obs T'---P , ---i>i». 

Remark 11. ] A subset. S £ Obs3=" is a ~rocess specl.fica tion in 

5pec~ iff the following holds: 

(i) £ 0 E S 

( ilJ st\21 ES Hlplles 50 E S 

(iil) sX E 5 A Y£; X i..mplies sYe 5 

(iV) sX-=S A sa0~ S implies s(Xu{a})eS 

(v) si E S implies st6 E S for all t, b.. 

The Fail-lre Model 3= conslsts of Spec ~ and the followl.ng set 

{fj:" I f EOp(~ )} of operators (again we drop the index ~): 

(1 ) s top ~ {€ X I X S Corom ) 

The deadlocking process can refuse any set X. 

(2) div = Obs'F 

( 3 ) a ~ S = {€ X I a <Ie X } u {as L'> Is£' E 5 } 

In its fl.rst step a -+ 5 can refuse any communicatl.on 

except a. 

(4) 51 £E.S2 = 5,vS2 
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1515,0 5 2 f EX I eX ~Slf"'\ 52} 

v{a'l d€5,V 52 1 
v f s61 s +: oE A SAES,US 2 } 

In its first step S1 0 52 can refuse only communications 

that both 5, and 52 can refuse. Afterwards 5, 0 S, behaves 

like 5, or like 52 depending on whether the first accepted 

camrr~nication belongs to S, or 52' 

161 5, II A 52 = { sX 3t,x, es" t 2X2 €S2: }s €' t 1 UA t z 1\ X "" Xl (A] X2 

v l sUI :3 t ,0ES,. t 21ii' €S2: 

se.t,llp" t z A (t,l'ES, v t 2tE 5 2 1 } 

where the majority operator 

X,[A]X =' (X,f"'IA) v (X I"lA) v (X,n X2 )2 2 

represents the idea that refusal of communications outside 

A requires refusal of both S, and 52 whereas communications 

inside A call already be refused if 5, or 52 refuse them. 

171 5 '\ ~ = [ls'\bIXI s IX v {b}) € 5 } 

v { Is '\ b) tt>. I Yn.>,.O; sbn\Zl e s } 

Note that 5 '\. b can refuse a set X only if 5 \ b has beCome 

stable, i.e. internal communications b of S are also refused. 

As with the preVious models these operator defin~t~ons yield 

proper process specifications. and they can be shown :2 -continuous 

by the methods of Section 5. 

Let us first establish the relat~onship between the new model 

~ and the previous Readiness Macal :R... This is done very sunply 

by the following relation g S ObSj!: )C Ob;:)F with 

sX g sZ if £ Z.£ X
 

sf g sf
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which interprets sets Z as the downward closures of the comple­

ments X =' COl17ll'\.X of ready sets X. By Remark 11.3 the point.. ise 

extension 0:: maps every S E Spec-R into a process specification 

CT (5) E spec:"
9 r 

Proposition :1.4 For every process P e: CEec(L} the equation 

0' 9 I :R. [ p ] ) ~ F [ p] holds. 

Proof. To a::lply Proposition 2.] ..e nave to sho.. that 0' is a -- , 9 
(strict and) a -continuous homomorphism from R. to 'F. Domain 

finiteness of g i.mplies the 2 -contl.nuity of O'g by Proposition 5.2. 

Checking the homomorphism property of cr boils down to a simple
9 

calculation ~ith down..ard closures of complements. For example the 

crucial arg'ument to show 

0' gl$, liAR $,) ~ O'gl$,) II A l' &gl$,) 

for all S"S2E 5pec'R. is as follows: 

Z S X,[A)X 2 iff 3 z1 0; Xl 3 z2f x2 : z ',CA]', 
II 

Clearly t.here is also a direct homomorphism ¢ from the reduct 

3= r !: 2 to tne Divergence Model TJ analogous ly to Proposi tion 10.7. 

By PrOposition 11.4 every la.. P = Q of :R holds also in 1=. But 

what are the additional identifications induced in .R by the 

homomorphis:n O'g? 

Definition 11.5 A process specification S€ Spec~ of the Readi­

ness Model 'R is called convex closed [8,33J if the following holds: 

(i) sX, sZ E S implies 5 (X U Z) E S 

(iiJ sX. sZeS and X~Y~Z imply sYES. 

For SESpec~ let con(S) denote ".r.t. ~ strongest convex 

closed specification ..... ith Ss; con(S). Clearly con(5) E SpecR. holds. 

Lemma 11.6 For S],S2 ESpcCR. the follo..ing holds: 

O'g(S,) S. "'g(S2) iff con(S,) f con(S2)' 

Proof. By the properties of do..n..... ard closures of ready sets. II 



Thus the Failure Model 1= can be considered as identifying 

every process specification S of the Readiness Model R with its 

convex closure con (S). This characterisation of 3:" in terms of 1< 
allows us now to show that all 11veness properties expressible 

in :R can also be expressed in 'F. First we state: 

Proposition 11.7 In general 1t is more expressive than'F in 

the following sense: 

(i) For every SJ=" E Spec r there exists some SJl.. e. SpecR: with 

(*) :Rr= PsatSJ? iff3'r=psatS F 

for every P € CRec (~ ) . 

(i1)	 There exists some SR. E SpecR. such that there is no
 

corresponding SF E Spec J= with (.).
 

(lii)	 However, ~f SR.. E SpecR. is convex closed, there is some
 

SJ: E Spec r: wi th (iIr).
 

Proof. (i) Take S:R. :::>{s; sX I s0esj:" A V'a€X: s{aJ~s1'}' 

Then SR. E SpeeR' S:R. is convex clos;ed and t3'g(SR) := s~. Thus 

F[p]£ S1' i£f C7 IR[ pj)" ergIS,,-) iff 1I.[p] ~ S:R Ibyg 
Proposition 11.4 and Lemma ]].6). Hence (.) holds. 

(ii) Consider P =: a~ stop, Q == b-+stop, and SR.. = 1<[ p or Q]. 
Suppose (*l holds for some S~ e. Spec;:. Because '3='[ pO 0] f. 

:1'[ P ££ oj we get Fp PO 0 sat S1" But 1<1=POO sa'S", 

is false. Contradict~on. 

(iii) Take SF := 0"g (S;R. J. Then (*) follows as in (1) from 

proposition 1].4 and Lemma ]].6. II 

Theorem ]'].8 A J.iveness p.r;operty (T,£) is expressible in 1<. 
iff (T,£) is expressible in J:. 

Proof. "if": by Proposition 11.7, (il. 

"only if": Let (T,;K.) be expressible in R. Due to Proposihon 

11.7, (iii) it suffices to show that (T,£l is also expressible 

by a convex clOsed specification S € SpecR.' To see this we re­

examine the proof of Propos~tion ]0.5. Consider 

l' =	 {p I P satisfies IT,£.)} . 
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Case 1: P=¢. Then by Proposition 10.5 S.R.(T,L) with an arbit ­

rary L€;£ expresses (T,£.). Since every 5r«T,L) is convex 

closed, we can take 5 = SR..(T,L). 

Ca5€ 2: P • ¢. Then 5 U R. [p] expresses (T, £) due to 
p~p 

Proposition 10.5. We show that 5 is convex closed. 

Let sX, sZ € 5 and X s: y ~ Z. By the defintion of 5, there 

exist P/Q € F with sX E R[p] and 52 E R[Q]. Proposition 10.5 

imp)'ies P ~ Q e P _ Thus there i& some L co;:£. with 

R F= P or Q ~ SF.. (T,L), Le. w~th R.[ P or Q] £ SR. (T,L). 

Since S:R. (T,Ll is convex closed. also 

coni R[ P g£ 0 Jl 1 ~ 51<. IT,Ll. 

Clearlys(XuZ), sY€con(R[P or 0]). Note that there is some 

p:o:ocess R wi th 

5IX"Z), 5Y ERI[R] '= conlR[P or 01 J. 

Because of R.[ R] £. S 1< (T,L) we get REF. Thus s (X .... Z), sY€ S. 

This proves the convex closure of S. 

// 

Next we :urn to the or~g~nal question of reducing finite pro­

cesses to primitive ones. The crucial advantage of F over J< is 

the followJ.ng algebraic law of F: 

1+1 IP 0 b->O), b IP 0 Ol,b or O,b . 

Note that equation (2) in Example 11.2 is just an instance of (+). 

To show that T admi ts reduction from FRec (L J to FRec ( Lp) we 

state some aUXiliary laws which hold already in R <and thus in 

F by proposition ]1.4). 

(J.)	 0 is commutative and assocJ.ativei it has a unit stop
 

and a zero div, i.e.
 

PO stop = P and pO div = div
 

{l-ij II A :5 commutative and has a zero div:
 

P II dl-v := div
A 



(i~i) \ b has divas a zero: 

d~v \b = div 

{iv)	 or is commutative and assoc~at~ve; it admits distribution
 

by a ~ , 0 , 'b and nA ' i. e .
 

a----+(P or Q) " (a~PJ or (a~Q) 

(P or Q) 0 R = [P 0 RI [0 0 RI2E
 

(P £E Q),::> P" b or 0'\ b
" 

(P or QJ liAR = [P II" R I ~ [0 II" R) 

By these laws ~t suffices to restrict ourselves to prirn~tive 

f~n~te processes' involv~ng only 

stop, a---+ and 0 

I¥hen	 provinq reducib~l~tl of II 
A 

and '\b. 

PrCDOSiuon 11 .q Parallel composit~on Il ~s reducible to FRec( 2::p)
A 

in R and thus in F. 

Proof. Consider two restricted ~rlmitive processes P and Q. We 

proceed by structural induction. If P = Q = ~ ho:ds, reduclbility 

of II A follol¥s from the law 

stop	 ,l/A stop = stop 

in R. Otherwise P and Q can be wr~tten as 

P = 0 b---tP and 0" 0 c->P
 
bE 8 b ceC C
 

with	 S,C ~ Comm. If P or Q is stop, I¥e choose B or C to be empty. 

Reducibllity of I) A follows from the inductlon hypothesis and 

the	 law 

P II A	 0 ( 0 b -> [Pb II A 0) I 0 ( 0 c -> IP II A 0cl I 
bEB"-A	 cEC,\A 

o [ 0 b->(Pb II" 0c» 
b=cEAnB<'1C 

in R. / / 
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Proposition 11.10 Hiding \b is reducible to FRec(~p) l.n F. 

Proof. By structural induction. For P = stop reducl.bility of 'b 

follows from the law 

stop \b '= stop 

in ( R andl :F. Othennse P is of the form 

p = 0 a~Pa
 
ae A
 

with A ';COrnr.l. Reducibility of "b follows then from the induction 

hypothesis and the following case analysl.s. If b $: A then 

P'b o a-,>(P \ bl 
a E A a 

holds in (w~ and) 1=. If bE A we apply law (+) above which 1.S 

valid only in 'F. / / 

The previous propositions are summar1.sed 1.n: 

Corollary 11.11 The Failure Model F admits reduction fror,) 

FRec ( ~) to FRec ( L p) . 

The Failure Model originally proposed in [22] has recently 

attracted much attention l.n the literature. Whereas our Fal.lure 

Model r can be considered as a refinement of the Divergence Model 

IJ, the ongl.nal model l.n [22] is a refinement of the Trace Model 

:r discussed in Section 7. Consequently the problems concernl.ng 

divergence sl.gnalled in Section 8 are also present in the or1.g­

inal model [22]. This was first realised l.ndependently in work 

of [39,7,32]. 

Our present model 1= is closest to the one proposed in [39] 

and isomorphl.c to the one developed in [7] where also a complete 

proof system for semantic equality of finite processes is gl.ven. 

This proof system uses some additional algebral.c laws to the ones 

needed here to prove reducibility of r. Closely related to the 

Failure Medel F are also the models produced 1.n [33] by starting 

from a general notl.on of testing related to l.deas of [25J. Models 



combining aspects of Rand :F have been investigated in [40J. 

The main difference between our approach to F and the pre­

vious research just cited is that we have presented F here as 

a special example in the general setting of specification-orien­

ted semant.ics. Together with the series of models ,€, T , 1) and 

1<. we hope this gives a better insight into the structure of 'F 
and its relationship to the other models. 
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12.	 Operational Semantics 

In the previous sections we studied a series of denotational 

models for Communicating Processes. But every now and then we 

appealed to some "operational" in tui tions about processes in 

order to motivate particular design decisions (cf. e.g. the 

idea of a "shble staten in Section 9). It seems therefore 

appropriate to make these operational intuitions precise and 

relate them ....ith our models_ 

To do so ....e follow Milner and use the concept of transitions 

[24,27,37J. The advantage of trans~tions is that an explicit 

symbol r denoting an internal action allows simple def ini tions. 

The drawback is of course that we lose abstraction from internal 

activity - the main concern in our specification-oriented 

approach. We thus start from a set 

(.\.	 e) Act == COIlUTl v [1:} 

of	 actions . .\n action.\. is e1ther an observable cornmun1cation 

a € Comrn or t.,e internal action 7;. Transitions or rewr1ting rules 
A 

are	 binary relations ~ over CRec(!:) w1th A€ Act. Informally 

;\. 
P ----> Q 

means that F can first do action.\. and then behave like Q. In 

particular P ~ Q means that P can transform itself into Q w1th­

out communl:atlon to its environment. 

;\. 
For A. e Act let ~ be the smallest relat~on over CRecn::::) 

with: 

(1)	 ~ has no transition. 

(2) div ~ div 

a 
(3) (a~p)~p 

(4 ) {P or QJ ~ P and (P £!: Q) ~ Q 

d a a 
(5)	 If P ~ Pl then (P 0 Q) ~ Pl and (Q 0 Pl ------+ Pl. 

If P~Pl then (P 0 OJ ~ (Pl 00) and (0 0 P)~ (Q 0 Pl). 



Only the first observable communication a decides 

whether? 0 Q behaves like P or like Q. As long as One of 

its components P or Q pursUes internal actions 1:", the pro­

cess PDQ does not wi thdraw the option of selecting the 

other component. This Lmplicit abstraction from internal 

actions ?::: LS the essent~al difference between 0 and Milner's 

operator + which satisfies for all A E Act: 

).. ).. ).. 
If P ~ P1 then (P + 0) ----'> p1 and (0 + p) --i> p, [27]. 

The reason for choos~ng 0 rather than + is that 0 avoids a 

number of complications encountered w~th + (see e.g. 

[27. Chap _ 7J). 

a a a 
(61 If aEA and P~Pl, Q~Q' then p II A Q ~ p, II, 01. 

If >-fA and p~ Pl then P I1 
A 
Q~?l II 

A 
Q and 

)..
 
Q I'A P -----..+ Q JJ P1.
A 

b r 
17} If p~ Q then P'b ~Q'b. 

I~ A * D and P ~ Q then P \. b ~ Q' b. 

(81 I"'!.P 2..... p[1"' l'P/ ~ ] . 

Recursion ~s modelled by the copy rule known from pro­

cedural languages such as ALGOL. Copying ~s done here as 

an internal action. 

It is somet~mes helpful to visualise the poss~ble transitions 

of a process by so-called sYnchronisation trees [27]. These are 

rooted, unordered trees whose arcs are labelled with actions 

\. E Act. We shOW some typica 1 cases. 

Example 12. 1 

( i) div ~ 

~ 
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(i i) (a---+P) .Q..!: (b..---7Q) t"" 
a b 

(i i i) (a----HI 0 (b~Q) 
a~b 

B~ 
(iv)	 Hiding b in a synchronisation tree P simply means
 

relabelling all arcs b into 1:"";
 

P\' b - "",,-rY 
b'·1'0c	 

(~
b 't" 

rbl 

>.
Transitions ~ are extended in two ways. For words 

"'I = A, ... AnE Act* let ~ be the relational prodLlct 

~ >-, An-----. ••• Q ----"4~Cl 

A 
of the indiVidual transitions ~ , and for traces s eCormn* 

we write 

P =-Q 

~ 

if there exists some we Act* with P ~ Q and s = w'\ -r where 

"'I '\ 1:"" denctes the result of removing all occurrences of 'C in­

side w. 



We can noW' def ine the important concept of divergence in an 

operational setting. A process P diverges at s if 

• ",n 

30 'Vn)"O 3R: p~o /\ 0 ) R 

P is divergence free if there is no s at ·....hich P diverges. (As 

we shall see in the next section, this operational definition 

agrees with the earlier Definition 6.3.) 

Example 12.2 (i) a.-,. div diverges at a. 

(ii) diy, rt . J and (r§ .b-+j )'-.b all diverge at e· II 

Finally, we introduce a modification of Milner's observational 

~uivalence ~ [17,27,28] .....hich takes the notion of divergence 

into account. ~ is defined by the follo.... ing series of equivalence 

relations ~ 1 1 ~ 0, over CRee (X ) : 

p ~o a 1f either both P and a diverge at £ 

or both P and Q don't diverge ~t £ . 

p Q 1f 'I s Eo Cornm• .... i th I s I ~ 1:~ 1+1 
5 5 

(iJ P~Pl unplies 3 Ql' Q~Ql/\Pl ~ 1 Ql 
5	 5 

( i1) Q~Ql implIes 3 Pl: P~l?l A 01 ~l Ql 

P ~ Q if P ~ 1 0 holds for all 1:). o. 

:ntuit1vely, checking P "':;; 1 0 medns invest1gating the synehron­

isatlon trees of P and Q along all branches 

w= A, .•. An 

.... ith at most 1 observable communlcations Ai E CommA Since this 

does not exclude branches wlth arbitrarlly many lnternal actions 

L, it is in general unposslble to establish P ~ 1 Q effectively. 

Exarnole 12.3 (i) (b-+P)\ b ~ P,b 

(ii) ((b __ PI\' b) 0 Q "" (P,bl 0 Q 

(iii)	 d1v ~)A~.!, but div '*J stop ~ dl.v. 

(ivj a--io (P £!: QJ 9::: 2 (a---tP) or (a~O) 
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This example exibits differences between the algebraic laws ~n 

the previous denotational models and the operationally defined 

observational equivalence: in contrast to (iii) and (iv) the laws 

div "" stop or div and
 

a--+(P.?!.O) = (a---+P) or (a~O)
 

hold in all models 'f,T,1J,R.. and F (cf. Sections 8 and 11). 

The precise relationship between our ,denotational models and the 

operational semantics will be discussed in the next section. 



13. Cons is te ncy 

To relate our specificat~on-orientedmodels with the operational 

trans1 tion semantics we now add a log ical structure It- to obser­

vations which expla~ns how we actually make observations about 

processes. It- is defined as a relation between processes P and 

observations x. We write 

P If- x 

and say that x ~s a possible observation about P. We require that 

It- agrees with the observational equiva2.ence ~ introduced in 

the previous sect~on: 

Definition 13.1 A logical structure for Obs is a relation Ir- ~ 

CRec (E ) ;>( Obs such that for any l? 0, any observa t.l.on x E Obs ... i th 

level II x II 1 and any two processes P,Q E CReC(L) w~th P ~l Q 

P If- x if f Q If- x 

holds. 

Informally, this defintion says that observations are f~n~tary 

and abstract. Finitary .l.n the sense that an observation x ~nves­

tigates a process P only '.lp to the equivalence ~ 1 where 1 = II xli. 

(By the defintion of ::=::::: 1 thlS does not imply the effectlveness 

of II-- .J And abstract in the sense that due to ~ finite linear 

brancr,es of internal actions 1: in synchron~sation trees of pro­

cesses P are not detectable by observations: cf. Example 12.3, 

(i) and (i 1.). 

We can now be precise about the desired relationship between 

models ~ and the transition semantics. 

Definition 13.2 Let I:O S 1: and M. be a specification-onented 

model for CRec ( EO) over (Obs, --I> , --tb ). Then M is called (weakly) 

consistent if there exists a logical structure It- for Obs such that 

.M[ P ] { x E Dbs I p If- x} 

holds for every (divergence free) process P e. CRec{L'O). More 

precis ely we say that JA 1.S (weakly) consistent w. r. t. I~ . 
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Informally, M exactly computes the set of observations we 

can make about P. If J~ is known, we abbreviate 

Dbs [ P J { x E Dbs I P If- x} . 

Next we state a general theorem which simplifies the task of 

checking the consistency of a model ..M. • 

Theorem 13. J Let Eo s z: , ..M be a specification-or iented 

model for CReC(LO) over (ObS,----f>,----l»), and I~ be a logical 

structure for Obs. Suppose that for all processes 

f (P l' .•. , P nJ E CRee (L 0) the following holds: 

(1) Dbs[fIP ... ,P l] > f",,(QbS[P , ] , .. "DbS[ Pn]n
 
"
 (2) Obs [ P j = Obs whenever P diverges at E. • 

Then ./Itt J.S cons is ten t w. r. t. U-

Proof. Clearly M[ p] = Obs[ p] holds for all finite, Le. 

non-recursi'/e processes P due to (1). But some care is needed 

to show that the copy rule defintion of recursions )-41'.F agrees 

with the fixed point defint~on in ,.,'IIl. To this end, we consider 

three types of assertions: 

Am' ,""tip] > Dbs!P] 

holds for every P ECRec( LO) with at most m occurrences ofr. 

B , DbS[ p(Q)] ,; DbS! P (R) j
m 

holds for every P E RecCE") with at most m occurrences of fA 
and at most r free identifiers ~ for which listsr" ... , J 
Q = 0l'··· ,Or and R = R" ... ,R of processes in CRec (~O) r 
with Obs[Oi] £ Obs[ R ] for i = l, ... ,r are substituted.i 

c , Dbs[ f'! .P(QI] > n Dbs! (p(Q»n(diVI]m 
n:> D 

holds for every P E Rec (L) with at most m occurrences of?­

and at most r+l free identifiers l' l'···' I rand f for 

which a list Q =. 0" ... ,Or of processes in CRee (:E" 0) is 

substItuted to yield p(Q)w~th at most t as free identifier. 

To I an n-fold substitution starting w~th div is applied 

to yield (p(Q»)n(divl. 



We wish to shoW' that Am holds for every m >.... O. But to do this we 

will use the Bm'S and Cm's as well. 

Clearly A and B are true because (1) and the monoton1c1ty
O O 

of the operators in ~. Using (1) and the continuity of the 

operators in ~ it is easy to see that 

C implies B ' m m+ 1
 

C and Am together imply A + 1
m m

Thus to show Am' B , C for every m#O, it suffices to provem m
 

B implies'C

m m 

So choose some m ~ 0 and assume B . Le t P a.bbrevia te P (0).
m 

,Case 1 , fA! .P d~verges at 

T:"en pn(d~v) diverges at E for every n ~ o. Thus C follows 
m 

from (2) • 

Case 2: fA! . i? does not diverge at E . 

Since P{,u! .PJ is the only initial transition that....... ,.P ~
 

)Jo- J .P can perform, we get "u.! . P ~ P ()"" l .P) and thus 

Obs ifr! .p] == Obs[ P(?~ .Pl] B implies that in fact m 

(~) Dbs I[ I"" ( . P JI = Dbs [ pn ( I"! .P) JI 

holds for every n). O. For S SObs and 1 ~ 0 we define 

1,S = {XES I ~her€ II xli = 1}. 

We show that 

(~~ ) 1: Obs [ pn (R 1] l'Dbs[ pO(R,)JI1 

holds for every n ~ 1+1 and all R ,R E CRec(.r ):
i 2 

Take some R e CRec(r) and consider an observat~on 

)( E l:Obs [ pn(R)] . S~nce "u.~ .P does not diverge at E , there is 

no trans~t~on chain 

A1 A k ~ R
P(R) 
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.... ith all .A. " i: [and the R on the RH5 denotes that occurrence, 
of R ....h~ch was substituted for I in P on the LHS). Thus at least 

one >.. i is an observable communication, say>... i :::: a € Comm. 

In other ....ords: )-Af.P is an instance of a guarded recursion. 

Consequently, every transit~on chain 

n >< 1 .•• A k
 
p (R) ) R
 

needs at least n observable >.... E Corom to reach R. Hence, 
pn(R ) ~ I ?n(R ) holds. This implies (.,..).

1 2 

We can no.... verify C : 
m 

oObs[f'~.P] " U 1 ,Obs [ f' ! P ] (defini tion I: 5) 
l~O 

nU 1, In Obs [ p I f' ~ .? I ] (by (~J) 

1-1: 0 r. ~ 1 + i 

U In 1,ObS[pnll'\oPI] (definition 1 :S)
 
1 ~ 0 n.>,. 1+1
 

U In l'Obs[P"(di'lI] (by (*""))
 

1 ~ 0 :1 .} 1+1
 

U 1,( n ObS[pnldiVI] (definitl.on 1:8) 
l~O n~I+1 

U 1, (n Obs [pn ldi'l )] (by Bmand (2)) 
1>.- 0 n>-.O 

nOb' [ pn IdiVI] (definl.tion 1:5) 
n~O 

This finishes our proof. II 

We apply now Theorem 13.3 to relate our most detailed model, 

the Readiness Model R, w~th the trans~t~on semantl.cs. First we 

need two auxiliary notions for processes P based on the transi­

tion structure: 

A
 
nextlPI " {A 130' p -->O}
 

P is stable iff r ~ next (P) 

This explains the notion of stab1.1ity used earll.er in Section 10. 



Now we can define a logical structure for Obs.:RIf-R 

p If-J'. tt iff 3s",t:	 P diverges at s.
 

t
 
p If-J< t iff 3 0' p ~ 0 v p If-J< tt 

P If-J'. tX iff (30: p~O A 0 stable 1'\ next (0) = Xl 

v (P If- R. tfl 

Proposition 13.4 The Readiness Model .R is consistent w.r.t. IJ--,k 

Proof. Condition (2) of Theorem '3.3 holds by the definition of 

II-,R For condi tion (1) let us present the crucial facts for two 

of the more in teres ting cases: 0 and '" b. 

(a) Crucial for proving 

ObS" [ P 0 0 ] Obs R. [ p] 0" Obs..[O]
 

are the following two assertions:
 

(i) pDQ diverges at s iff P diverges at s or 0 diverges ats. 

(~i) PO 0 ~ R /\ R stable ....... ne.xt(R) = X 

i E
iff 3R1 ,R2 ,X J ,X2 : P~Rl A 0 ~R2/\ R"R2 stable 

/\ next(R ) = X1 /\ next(R ) = X /\ R = R,D R "X=X,vX 21 2	 2 2 

(b) For establishing 

ObsJ< [ P" b] ~ Obs" [ p] \J< b
 

we need the follow ing:
 

(i) P '\.b diverges at	 t 
s
 

iff 3 s 30: s '\b = t /\ P======>O
 
nb
 

,,(0 diverges at e v Vn.>O 3R: O~R)
 
t
 

(iil P\b~RI\ R stable 1'\ next(R) X
 
s
 

iff 3s .30: s"'b=tAO\b=R ....... P~O
 

'"" 0 stable /\ b ~ next (O) ....... next (0) = X.
 



- 72 ­

Then we get 

Obs;<[P\b] lS\b,(s'\bIX SXEObs:K [P]Ab,* X } 

{ (S'\blt"'l v S t E Obs:R. [ p ] 

V n ~ 0: sb
n e Obs R [ pn} 

The dl.sjmct "st E. Obs R [p]" can be removed since it 

implies Obs R [ p] = Obs'R. (by condition (2)) and thus 

also \;;In~O: SbneObs:R.[ p]. Hence (b) follows. 

The remaining operators require similar arg~~ents. II 

(Weak) consistency of the more abstract models can be stated 

as corollarles of Proposl.tion 13.4. 

Corollary 13.5 The Failure Model :F and the Divergence Model JJ 
are both consistent. 

Proof. Pro?osi tions 11.4 and 10. S explal.n how to modify It- F­

to obtain c·:Jnsistent logical structures !r--F and Ir- XI for 

Fand::;.!! 

The Trace Model T, however, is not fully consistent with the 

transl.tion semantics. Already when l.ntroducing the Divergence 

Model 1) In Sectl.on a we argued that the law 

(.~) dl v II Corom P "" P 

of T looks unrealistic. Indeed (lil') is the reason for T's 

l.nconsistency. To see this look at the example P "" stop. Since 

t; 
eiv II Comrn stop ~ div lI stopcomrn 

is the on~y transl.tion of dl.v H stop, no logical structure 
camrn
 

It- can dlstingul.sh between div II Co.mro stop and div. Thus in
 

every consistent model ~ the law 

div U stop = div comm 

holds. But in T this law is false due to (.... ). (An analogous 

argument applies for the Counter Model , €.) 

j
 



Nevertheless we can state: 

Corollary , 3.6 The Trace Model T and the Counter Hodel 'e 
are weakly consistent. 

Proof. By Theorem B. 4 we can choose for T the followinq 

logical structure n-.... T : 

• 
P If-Ts iff 30' p===,,"o. 

The logical structure II--'t' for 'e is then clear from 

Proposition 7.1. II 
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, 4. Cone Ius ion 

Starting freo a s~ple idea of process correctness we developed 

a specific farm of denotational seroatics for processes, called 

9pecificatia~-orientedsemantics. This approach provided a uni~ 

form framework for discussing a series of increasingly sophisti­

cated models 

Our results are 

denote (weak) 

for 

ho

Communicating 

suromarised in Diagram 

momorphisms. 

Processes 

1 where 

in a step-by-step manner. 

arrows ~ (­ - +) 

Diagram j 

consistent 

w.r.t. transitions 

'F 

liveness 

11properties 

safety :f) 
properties I 
only r 

" 

finite processes reducible 

external nondeterminism 

representable 

dl.vergence representable 

cyclic networksT 

1 
-e tree-like networks 

weakly consistent 

w.r.t. transitl.ons 



Diagram 1 explains the purposes and applications for ~hich 

these models are best suited. For example, if we wish to reason 

about safety in divergence free cyclic lJetworks of processes, we 

don't need the complex Failure Model r; it suffices to choose 

the Trace Model T. Also the models can be combined to new Ones. 

For example, for reasoning about liveness properties in acyclic 

networks a simplified Readlness M.odel R- '€ with cOTruUunication 

counters instead of traces would do. 

A notable omission in our programming language is the notion 

of state. This would allow to add assignment and explicit value 

passing betw~en·processes, thus combining sequential programs 

with Communicating Processes. We have not yet investi9ated all 

the consequences of such an addition to our formal framework. 

Bu~ it is clear that some care is needed sinCe the set of states 

is usually infinite. For example, we would have to consider ob­

servation spaces where the successor relation ~ is not image 

finlte any more. fortunately, such a change does not invalidate 

our continulty results in Section 5, but the extensibility con­

dition for process speCifications tn Section 8 would reqUire a 

clause ensurlng bounded nondeterminism. 

In general, it would be interesting to establlsh some formal 

relationship between our idea of observations and the more basic 

concept of events in computatlon [44]. 

Also an explicit syntax for speclfications and direct proof 

systems for the relation P sa~ S should be developed. This could 

well be done along the llnes of [10,20,31,45]. An advantage of 

starting from one of the models "e to r would be that the ques­

tion of completeness of the resulting proof system could be 

answered more transparantly (1,2,26,42]. 

Perhaps even more L~portant, we hope that our investigations 

of semantical models for Communicating Processes will prOVide a 

firm basis for a mathematical style of prograrnmlng which allows 

a free mixture of conventional programming constructs and spec­

ifications expressed as predicates [151. This style is expected 

to support a systematlc development of concurrent programs from 

their speclflcatlons. 
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