
(('I'y'1<f,7(",

SPECIFICATION-ORIENTED SEMANTICS

FOR COMMUNICATING PROCESSES

by

E.-R. Olderog

and

C.A.R. Beare

Oxford University
Computing Laboratory
Programming Research Group-Library
8-11 Keble Road
Oxford OX, 3QD
Oxford (0865) 54141

Technical Monograph PRG-37

February 1984

Oxford University Computing Laboratory,

Programming Research Group,

8-11 Keble Road,

Oxford OX] 3QD

©	 1 2by E.-a. Olderog and C.A.R. Hoare

Institut fUr Informatik und Praktische Mathematik.
Christian-Albrechts-Universit~tKiel, 2300 Kiel 1.
Fed. Rep. Germany

2	 Oxford University computing Laboratory,
Progra=minq Research Group, Oxford OX, 300,
Uni ted Kingdom

A preliminary version of this paper appeared in [35J.

Summary

A process P satisfies a specification S, abbreviated P sat S.

if every observation we can make about the behaviour of P is allowed

by S. We use this idea of process correctness as a starting point

for developing a specific form of denotational semantics for

processes, called here specification - oriented semantics. This

approach serves as a uniform framework for generating and relating

a series of increasingly sophisticated denotational models for

Communicating Processes.

These models differ in the underlying structure of their obser

vations which influences both the number of representable language

operators and the notion of correctness expressed by P sat S.

Safety properties are treated by all models; the more sophisticated

models also permit proofs of liveness properties. An important

feature of the models is a special hiding operator which abstracts

from internal process actiVity. This allows large processes to be

composed hierarchically from networks of smaller ones in such a way

that proofs of the whole are constructed from proofs of its compo

nents. We also show consistency of the denotational modeh w.r.t.

a simple operational semantics based on transitions which make

internal process actiVity explicit.

Contents

1. Introduction

52. Prel i.roinaries

3. Communicating PrOcesses 9

4. Observations and Specifications 11

5. Specification-oriented Semantics 15

6. The Counter Model re 20

7. The Trace Model T 27

8. The Divergence Model D 30

9. Safety and Liveness Properties 37

10. The Readiness Model 1<. 41

11. The Failure Model 'F 51

12. Operational Semantics 62

13. Consistency 67

14. Conclusion 74

Acknowledgements 76

References 77

- ,

1. Introduction

For concurrent programs - even when restricted to a particular style

like Communicating Processes - a variety of seman tical models have

been proposed (e.g. [4,22, 27J). Each of these different models

can be viewed as describing certain aspects of a complex behaviour

of programs. It seems desirable to bring some order into these seman

tical models so that one will be able to recommend each model for

the purposes and applications for which it 1s best suited.

This leads us to pursue the following aims 1n our paper:

(1)	 The semantiCS' of concurrent programs should lead to a simple

correctness criterion, and simple proofs of correctness.

(2)	 The semantics should abstract from the internal actiVity of con

current programs in order to allow large programs to be composed

hierarchically as networks of smaller ones.

(3)	 Systematic methods should be developed for generating sound seman

tical models for different purposes and application~.

(4)	 Existing semantic models should related to each other in a clear

system of classification.

We concentrate here on an application to Communicating Processes and

develop a general framework in which we pursue the aims (1)-(4). In

different settings, steps towards some of these aims can also be

found in.recent work by [4, 5, 8, 9, 29, 30, 33]. Let us now outline

the approach of our paper.

The Language. Informally, Communicating Processes isaprogramming

language for describing networks of processes which work in parallel

and communicate with each other in a synchronised way ~8]. But the

emphasis is here on studying the fundamental concepts involved

rather than presenting a full programming notation such as [34J

Our version of Communicating Processes includes the concepts of dead

lock, divergence, communication, internal and external nondeterminism,

parallel composition with synchronisation, hiding of communications,

and recursion (Section 3).

- 2

(1) Correctness. A process P satisfies a specification S, abbre

viated P sat 5, if every observation we can make about the behaviour

of P is allowed by S. We use this idea of process correctness as a

starting point for developing a specific form of denotational

semantics for processes, called here specification-oriented semantics.

We begin with a set Cbs of observations together with a simple

algebraic structure and define specifications S as certain subsets

of Dbs reflecting this structure (Section 4). The idea is that a

specification S describes a set of nondeterministic possibilities

of observations. Th1s suggests the following ordering ~ among speci

fications:

s,;; 52 iff S1 2 52'

This is the Smyth-order originallY introduced in the context of non

deterministic state transformers [41J : 5, ~ 52 means that 52 is

more deterministic than 5,.
A specification-oriented semantics assigns denotationally to every

process P a soecification M[p] such that P sat S is expressed by

S 5 .M[p] , Le. M[p] is within the range of nondeterminism per

mitted by S. (Section 5). A process P is therefore identified by the

strongest specification which it satisfies. To this end, the set Spec

of strongest specifications over Obs forms a complete partial order

under ~ and the semantics ",4ot [.] maps every syntactic constructor

of the progrMlming language onto a ~ -continuous operator on speci

fications. This enables us to treat recursion_in the usual way.

(2) Abstraction. Abstraction is realised in. two ways.

Firstly, the hiding operator of Communicating Proces ses turns the

concept of abstraction into an explicit language construct. Informally,

hiding localises all communications on internal network.channels.

This allows us to construct a larger process by first constructing

its components, then connecting them as desired and finally hiding

those connections which are regarded as internal. A sLmple example

will illustrate this point (Section 6).

Secondly, observations themselves are disallowed to mention in

ternal process activity. This idea is formalised by imposing

in addition to the algebraic structure already mentioned - also a

certain logical structure on observations (Section '3).

-)

(3) Generality. The algebraic structure of observations is used

to derive two general constructions for ~ -continuous operators on

specifications which are typical for Communicating Processes (Section Sl.

The simplest way of defining such an operator is by pointwise appli

cation of a relationship 9 between observations, i.e. to consider

O"g(Sl:{Y I 3x€ S: x g Y}

But this operator can be proved continuous only for a restricted class

of relations g. It turns out that most of the operators in Communica

ting Processes satisfy this restriction, but the crucial hiding

operators do not. ,These are more complicated because the possibility

of infinitely many hidden communications has to be considered. We

present an abstract analysis of such hiding relations g and show

that the defini~ion

C
g

(5):::: O'g(5) u O~(S)

yields a continuous operator. Here is an auxiliary operator0-; (5)

dealing with the possibility of divergence.

(4) Classification. In the main par~ of our paper we apply this

specification-oriented approach to semantics to systematically gene

rate and relate a series of increasingly sophisticated denotational

models for Communicating Processes (Sections 6-11). These models

differ in the underlying structure of their observations; and this

influences both the number of representable language operators and

the notion of process correctness expressed by P sat 5, This sugges~s

that for each particular application the simplest adequate model

should be chosen.

The simplest model is the Counter Model ~ which reflects the idea

of separate channel histories [20, 21]. We show that '(can deal ade

quately only with acyclic or tree-like networks of prOCesses. Arbitrary

networks require the Trace Model T instead [19, 30]. However. both ce
and T are unable to deal satisfactory with diverging processes.

This requires a further refinement of our observations leading to

the Divergence Model :lJ.

In 'e , T and 1) only safety properties can be described by P sat S.

Also the concept of external nondeterminism is not yet available. Dea

- 4

11ng with the full language of Communicating Processes and with s~ple

I1veness properties calls for the more sophisticated Readiness

Hodel R. [12, 20]. We characterise the kind of liveness properties

which are expressible in :R.. By studying the algebraic laws of ~'R..

we find that there are finite, i.e. non-recursive· processes which

are not reducible to simple nondeterministic ones. This shortcomming
of R. 1s avoided 1n the Refusal or Failure Hodel ?F [22, 7, 39]

which makes slightly more identifications among processes than ~

without affecting the expressibility of its liveness properties.

In all these models a continuous hiding operator 1s available 1n full

generality. The relationships between the models is established by

(weak) homomorphisms.

The denotational models are related with a simple operational

semantics based on transitions representing both external and

internal process activity (Sections 12 and 13). We sho~ that the

models 3:J, R. and "F' are fully consistent with the operational seman

tics, whereas -e a-nd J are consistent only for divergence free pro

cesses. These results are obtained as an application of a general

consistency theorem which relies only on the logical structUre of

observations.

Finally, we assess our approach and indicate further directions

of research (Section 14).

- s

2. Preliminaries

ThlS sectlon descrl.bes the general format of our programming

language and denotational semantlCS (cf. [13,14,43]).

A slqnature L conslsts of a set (s E) Id{L) of idennfiers

and a set (f E.) Of) (L) of operator symbols each one with a certain

arity n >,.. O. Every sl.gnature L determines a simple programming

language, namely the set (P,Q e) Rec(L) of (recursive) terms over

L as deflned by the £0110w1ng BNF-like syntax:

P ::= f{P1, .. ·,P) where f has arlty n I! 1"ur.pn

r
The recurSl.ve CO[1struct ~!._ [3] defines a binding occurrence of

and l.nduces the usual notlons of free and bound identlfiers. By
CRee (L)e denote the set of all closed recursive terms, i.e. without

free identifl.ers. FRee CL. 1 denotes the set of all finite, i.e. closed
r---

terms P€CRec(L) withouc any occurrence of a recusive construct
A

r! _ l.ns1.de P.

For).A-!.P' QECReC(!) let p[Q/!] denote the result of substi

tuting Q for every free occurrence of I 1.n P. Since r is cle4r

from the context "l.Io!. P, we also wr1.te P (Q) instead of p[O/I]

This notat10n extends to n-fold substitut10n by defininq pOlO) = 0
1!tnd pn+l(Q) =- P(pn(Q)).

Let XJ be a partl.al order w.r.t. '= . A subset X ~J) 1.S directed

if every finite subset of :x: has an upper bound in X. rJ is a £E..Q

(complete partl.al order) 1f it has a least element ...L and if every

directed subset :x: .s:: JJ has a limlt (least upper bound) U X in J:J •
If 1) is a cpo, so l.S jJn = j) x ... '1(.1) (n times) I witll cornponent

wise ordering.

An operator ¢: j) ~ ~ from one cpo 1) 1.nto another cpo l'! is

called strict if It preserves the least element, monotonic if it

preserves the partl.al order £ and COntinuouS if it preservesI

limits of directed sets, i.e. if if> <UX) '" U <p<X) holds for every

directed X S J). Of course contlnulty l.nI.plles monotonicity. We re

mark that an n-place operator ¢: 3J n~ iJ is continuous iff it is

contl.nuous in every place.

By Knaster-TarSKl'S fixed pOl.nt theorem every monotonic operator

¢:.J) ~ jJ has a least fl.xed pOl.nt f1.x ¢ In £J. If <p is also

•••

- 6

continuous, fix ~ can be represented as

fix ¢ U{<jln[.l.I! n~ o}

where <pO (d) d and 4>n+, (d) <p(¢n(d») holds for all de.l> .

A (denotationall model .M.. for CRec(L) conS1.sts of a cpo XJ.).t. and

a set {f...u.. I f E Op (I:)} of continuous operators

f"M.: tJoM.. 1Il)(JJ),A. ~ J).).t.. J,A.. induces a straightforward denotatio

nal semantics .JA.(·I for CRec(L), in fact for Rec(I:). Let (Ve)

Val be the set of valuations, i.e. mapp1.ngs V: Id (L) ------+ ..D.M,. •
Then

M[,] Rec (.L) ------+ (Val ~ .D...~)

is given by

Iii .M [fIP" ... ,P)] (VI = f I).lfp,] (Vi , .M[Pnll IVII n

(ii) .M.[(i (V) = vq)

Iii i) .M. [,.....! .P] I V) = f>x I >.. d. .'vI [P II I V [d/ !]))

where V[d/r) is the valuat1.on identical with \J except at l'
where its value 1.S de: 1)....... For closed terms pe CRec(~) we wr1.te

.M.[p] instead of M[pn IVI .

In the following we assume that there eX1.sts 50me O-ary symbol

f E OpeL) with fA ==..L. For simpll.c1.t.y let..L itself denGte this

symbol. For P e CRec(I:) let P..L be t.hat f1.nite term which results

from P by replacing every occurrence of t.he form fJ" . R in P by .L.

For P,O E CRec(L") we write PI--Q if Q results from P by replacing

one occurrence of the form fJ' J.R by R(fJ' J .R). Terms Q.L with

P~ 0 (reflexive, transitive closure) are called finite (syntactic)

approximations of P. Note that P~ 0 implies M[p] = M[0 D and

M[o,d \;; ,-\[p!. The family {.M.[oJ,ll I Pf-!---O} is directed,

and the continuity of the operators 1.n ~ implies

I·) M['ll = U {M[O!.] P~O }

Thus every P ~s semantically the lim1.t of its f1.nite syntact1.c

approximations. Thl.s representation is sometimes helpful when proving

properties about denotational models ~.

An (algebraic) law in Jvt is an equat1.on

P = 0

- 7

with P,O E CReC(L) such that M[p] "" M[QHholdS. For signa

tures L:l and 2:2 we write.L:' s: L:2 if op(Ll) £ Op(~2) holds.

Let M. be a mode~ for CRec{~2) and Zl s: Z2. Then the ~l-reduct

M r .E 1 is that model for CRee (L') which consists of the cpo X).M,.

of ..Nt and the subset {E,.AA l f E Op (E 1)} of operators.

Let M, JI be models for CRee (L)' A (weak) homomorph.l.sllI from .At\.

to .}{ is an operator <p: .1J.M., ~ J:J,j{ such that

¢lfM.ld, •...• dn)) ~ I,,) f N 1q,ld,) •.••• ¢ld))n

holds for all feOp(L:l and dl,o .. ,d E J)..,M.'n

PrOposlt.l.On 2.1 Let..NI..,,N~ be as above and ¢ be a striCt and

continuous (weak) homomorphism from ...M. to N. Then

epIM[P] 1'= I.N"[p]

holds for every P € CRee (E) •

Proof. As above we may assume .J.. E Op (I:). Continuity of ¢ leads

to

¢IM[p ~ I ~ U {¢I t[O-L]) I p~O}

for every P E CRee (4") due to ("'J. Strictness and the (weak) homo

morphism property of q, yields

¢IM[0-L]) ~ IS) N[0.c]

for every Q with p ~ Q by structural induction (a.nd the monotoni

city of. the operators in .}{). II

Finally, we recall some set-theoretic notations. If A is a. set,

Y (A) denotes the powerset P (A) "< {X I X SA} of A and IA I the

cardinality of A. Bes~des the usual cartesian product Ax B of sets

A and B we conSider the follwJ..ng inner product ..4181 B for families

.A and :B of sets:

A ~ 13 ~ [A x B I A €oil and B E :s }

Note that A 0 13 :I< .A >(.B For relations g!; AX B and Subsets X SA,

Y~B let glX) ~ [b 13aEx, agb} andg-'IY) ~[aI3bEY,agb}.

- B -

Por singleton setse rite g(x) and g-1 (y) instead of g({x})

and g-1(fY}). We call g!;A""B doma~n fin1.te if g-' (y) is finite

for every yEo 8, and image finite if g(x) is finite for every x EA.

The product go h of relations 9 ~ AX B and h ~ B x C is defined by

a (g~h) c iff 3 b E B: a 9 b b he.

A relation ~ s: AX A is calledell-founded if there is no infinite

chain

••• ~a3~a2-...+a1

of elements a in A. The reflex1.ve, tranS1.tlve closure of a relation
" ~

~ £" A x A 1.5 denoted by ~

The notation V [d/!] used earlier is generalised to arbitrary

mappings f: A_B and elements aEA, bE B by defining feb/a]: A---.,loB

as follows:

1.£ x "" a
f[b/a]lx) f~X){ otherw-ise

For sets X,Y,Z £: A we define the ternary major1.ty operator .(.]. by

X[Y]z = (Xr,Y}u{YAZ)U (X('\Z).

Thus an element is in X [y J z 1ff ~t ~s l.n the majorl.ty (Le. 1n at

least two) of the sets X,Y,Z. This operator enJoys a number of

algebraic properties. We state here only

xIYTZ = X lYl z

where denotes the complement in A.

- 9

3. Communicat1nq Processes

A process can engage in certain observable commun~cations and

internal actions. We are interested in networks of such processes

which work in parallel and communicate with each other in a syn

chronised way. This section defines Communicating Processes as a

language CRec(L) which describes how such networks can be con

structed. The emphasis is here on analysing the fundamental con

cepts of communication and parallelism rather than on presenting

a full programming notation as done for CSP [18J or OC~ [34].

Formally,e start from a finite set or alphabet (a,bEl Comm

of communications. In OCCAM e.g. Carom is structured as Carom =

Cha It .Iv1.here Cha is a set of channel names and .loA.. is a set of

messages. But for simplicity we shall not exploit such a structure

here. The sl.gnature L of Cornmunl.catl.ng Processes consists of a

set Id (L) of identl.fiers ! and the set

Op(Z) = {stop, div}	 u {o---> I o E Comm } u f 2.!:, 0 }

u filA I A S Comm] u {\b I b € Comm }

of operator symbols. To fix the arities and some notational con

ventions we exhl.bit Rec(~):

P ,,= stop I div I o->pl P or 01 P 0 01
PIiAOlp'bl! I PI·P

The closed terms in CRec (E) are also called processes.

The intuitive meaning of processes is as follows: stop denotes

a deadlocked process which neither engages in a communication nor

in an internal action. div models the diverging process which

pursues an infinite sequence of internal actions. a -+ P first

communicates a and then behaves like P. This concept of prefixing

is a restricted form of sequential composition. P ~ 0 models

internal or local nondeterml.nism [11]: it behaves like P or like

O. but the choice between them is nondeterministic and not control

lable from outside. In contrast PDQ models external or global

nondetermini~ [11]: the environment can control whether PDQ

behaves like P or like Q by choosing in its first step either to

- 10

communicate wlth P or with O. Compared with the or~ginal CSP [18]

P or Q reflects the concept of a guarded COr.lffiand wi th true guards

[~~ p 0 ~ ----+0 J and pDQ corresponds to a guarded command

Wl.th communlcation guards.

P II A Q introduces parallelism: it behaves as if P and Q are··

working independently (asynchronously) except that all communi

cations in the set A have to be synchronised. By varying its

synchronisation set A parallel compOSl.tlon II A reaches from

arbitrary asynchrony (111'1) to full synchrony (U)' We remark cornm
that semantically asynchronous parallelism will be moaelled by

interleaving. While this simplifies the presentation of all our

denotational models and the operational semantics, there is no

inherent dlfficulty to cOnslder also non-interleaving semantics

lef. e.g. [29]).

P,\ b behaves like P, but with all communications b hidden or

unobservable from outside. Hidl.ng brl.ngs the concept of ~bstrac

tion into Communicating ProcesSes. For simpll.city we have oml.tted

full sequential campos i tion P;O. There is, however, no dif f iculty

1n modelling this concept [19,22J. Also - if Q does not diverge

the effect of P:O can be simulated by parallel composition plus

hiding, i.e. we can define

P;O' IP II[.I}I'/--->Oll\-/

where the spec1al

of P [19J.
commun1cation .,/ repOrts successful term1nation

Besides the full language CRec (~)

CRec(E"l) and CRec{L:2) with .:Ll.fL.2

we

f:2:.
consider two sub languages

- 1:2 is Obtained from E by rernovl.ng 0 from·OplL"J.

- L: 1 is obtained from ~2 by restricting parallel cornposi tion

II A E Op (L 1) to the case of 1A I ~] .

- 11

4. Observations and Specifications

It is quite easy to express the intuitive understanding of processes

operationally in terms of transitions (see Section 12). But this

formalisation has one severe disadvantage: it does not abstract

from internal actions. Such an abstraction is essential if we want

to compose large processes hierarchically as neeworks of saaller ones

and prove that these networks meet a given specification [30].

We develop therefore a different approach to the semantics of

processes, called here specification-oriented semantics, which is

based on the concepts of observation and spec~ficat~on. Our moti

vation is to express process correctness in the following uniform

way: a process P satisf~es a specification S, written as

P sat S ,

if every observation we can make about P is allowed by S. To realise

this aim, we develop both a logical and an algebraic structure for

observations. The logical structure tells us how we make an obser

vation about a process and thus determines the notion of process

correctness; and the algebra~c structure provides a basis for deno

tational domains with continuous operators on sets of observations.

These structures w~ll be presented stepwise in several stages. Here

we explain the simplest algebraic structure common to the refine

ments later on.

We are interested in observations we can make about ilie behaviour

of a process P during ~ts operation. This intuition leads us to pos

tulate a relation --P between observations which reflects their

possible ordering in time: x ~ y means that observatlon y can be

made immediately after x, without intervening observation.

Definition 4.1 A s1.lTlple observat~on space is a structure (Obs, ~

where (x,ye.) Obs ~s a non-empty set of observations and ~ is a

relation ----01)- ~ ObsxObswith:

(01) ----i> 1.S well-founded.

(02) ----i> is domain and image fin~te.

Condition (02) simplifies the development of the theory (cf.

Definitions 4.3 and 8.2). Let

- 12

ltin. {x E Obs I ..., 3 y E Obs: y --I> x }

Note that Kin. 0 because of condition (01) and Obs '* 0. By a

grounded chain of length n). 0 for x we mean a chain

x ----00 .,. ---{» x "" x with xoe Min. Due to (01) we can assign !l
o n

level H x II to every observation x:

II x II • min [n 3 grounded chain of length n for x} .

Informally n x II measures the minimal progress a process has made

up to observation x. Note that x ----0- y implies Uyl ~ "x \I + 1.

Example 4.2 COnsider as observations the set

•(s, t E) Obs T = Corom

of words or traces over the finite communication alphabet Comm

with E denoting the empty trace. Define the relation ----{> S;

ObS r)(ObS 7 as follows:

s -i> tiff 3 a E Comm: s· a = t .

•Then (Obs r ,..........(>) is a simple observation space. And s ~ t. holds

iff s is a prefix of t, abbreviated s~ t. Note that here every

trace s has exactly one grounded cha~n

c ----{>... --P s .

The assumption of a finite alphabet Comm (see Section) allows

us to work with image finite relations throughout this paper, a

substantial simplification of the theory. II

Given a simple observation space (Obs, ----t> l we can now talk about

specifications over (Obs,----t»: these are by definition simply sets

5 £ Obs of observations. We say 5 allows every observa t ion xe S.

The idea is that 5 describes a set of nondeterministic possibil~ties

of observations. This suggests the following Smyth-like order~ng

among specifications [41]:

51 ~ 52 iff 51 2 52 .

51 f; 52 means that 52 is stronger or more deterministic than 51

- 13

or equivalently that S1 is weaker than 52. In particular Obs

itself is the weakest specification allowing every observation.

We are aiming at denotational models ,,\A.. for CRec (r:) which

assign to every process P E CRec (L') a specification .M.[p] using

ordering!,;;;;. But to do so the M[p] must be special Sets of ob

servations, called here process specifications, ~hich reflect the

algebraic structure of Obs.

Definition 4.3 A process specification over (Obs,--c-) is a subset

5 SObs with:

(51) S includes Min: Min ~ S.

(52) 5 is generable: V x E 5 - M~n 3 YES: y....-...(> x .

A specification space over (Obs, ---i» is a family (5,T E) 5pec S;;

P(Obs) of process specifications such that 5pec forms a cpo w.r.t.

ordering ;:1

Since ~ is domain finite, the set of all process s~cifica

tions over (Obs,~) forms a spec~fication space, called the full

specification space.

Example 4.4 Take (Obs r ,-;>) of Example 4.2. A subset S ~ Corom"

is called prefix-closed if t e Sand s ~ t al~ays imply s e 5. Then

the set Spec r of all pref~x-closed subsets 5 S Comm· with £ e S

is the full specification space over (Obs r , ---flo) [19J. II

If spec and Spec are specification spaces over (Obsl'~1)1 2
and (Obs , --{lo2) then the cartesian product Spec 1)(spec is of2 2
course a cpo ~ith componentwise ordering .2 (cf. Section 2).

Additionally, the sets sx T E. Spec, ~ Spec (inner product) are2
process specifications over the product observation space

(ObS,)(Obs2'~ '2)

where ~'2 is the following "interleaving relation" on Obs,x Obs :

{X"X2)----(>12 (Y"Y2) ~f either x,-Oo, y, and x 2 • Y2

or x, == y, and x2~2 Y2

i.e. the pair makes a step ~hen e~ther component makes a step.

2

- H -

Since the natural ordering? On Spec, ® Spec is isomorph~c wl.th
2

the componentwise ordering on Spec, and spec in the sense that
2

S,XS 2 ;2 T,)(T 2 iff S,:'T, and S2:=!T 2

holds for all S"T,€SpeC 1 and S2,T 6Spec it follows that the
2

,
2

inner product Spec, ~ spec is indeed a spec~fication space over
2

(Obs 1)(Obs ' ---9),
z 12

- '5

5. Specification-or~entedSemantics

We can now be precise about the desired form of semantics.

Definition 5.1 Let EO S L. A specification-oriented model

for CRec (LO) over (Obs I -{>) consists of a specification space

Spec over (Obs,-----(>) and a set {f".'o4" \ f € Op{ EO)} of 2 -con

tinuous operators on process spec~fications S E Spec.

A specification-oriented semantics for CRec (EO) is a denotational

semantics ,.,\.1.[.] induced by a spec~f~cat~on-oriented model ,.,vt. for

CRec(LO) .

Correctness of. processes P E CRec(LO) w.r.t. a specifJ.cation

S e Spec is expressed by correctness "formulas" P ~ S interpreted

as fa 1 lo..... s :

.M.P= P sat S ,ff M[p] S; 5 .

This is of course an ~nvariance pr~nc~ple: every observatlon as

signed to P byV\. should be allowed by S. However, as we shall see

later on, by vary~ng the structure of observations both safety and

(certain) liveness propert~es of Cornmun~catlng Processes can be ex

pressed ~n terms of sat.

Th~s clar~fies the domains of our semat~cal models ~and the

notion of process correctness. Next we exploit the s~mple algebraic

structure of observations and process specifications to derive some

results for constructing 2 -continuous operators on specificat~ons.

Let spec, and spec always denote specification spaces over2

(Obs, ,----f>1) and (Obs 2 ,---i>2)' We wish to construct :2 -continuous

operators

C : Spec, -7 P (ObS)
g 2

working on process spec~f~cations by starting from relations

9 ~ ObS, x Obs 2

.....hich describe the desired effect of C "pointwise" for single ob
9

servat~ons.

- 16

The simplest way of ach~eving this is to take the pointwise

extension ~g: 5pec,~ PtObs 2) defined by

O',ISI { Y E Obs 2 I 3. E S, x g y } = glS)

Clearly, O"g is 2 -monotonic, but not every relationship 9 induces

a 2 -continuous 0' .
g

Propos i tion 5.2 If 9 is domain finite, the operator C' is
g

2 -continuous.

Proof. Since C7 is monotonic, it. suf f ices to show tha.t for every
-- g
directed family {S, I iEI} of 5 i €: 5pec 1

n" IS) C C7 InS)
ig~- gi~

holds. Consider some y ~ 0 (n 5). Then n S f"\ g-1 (y) = \21. Since
i9 i i ~

g-1(y) is finite and 1Si l iEI} ~s d~rect.ed, t.here exists some

jeI withS.n g-1(y) = \21. Thus also y f ncr (5). II
Jig ~

As we shall see in the following sections, most operators for

Communicating Processes are induced by domain fin~te relations g.

But the lmport.ant h~ding operat.ors are not.

Example 5.) Take 5pec T of Example 4.4. For observa t ions t i. e.

traces) s,t e Corom""" we define

sgtiffs\.b=t.

where S \. b is obtained from s by delet~ng or hiding all occurrences

of b in s. Then 9 is not domain finite; and indeed

0"g: 5pec T ~:P (Comm'*) is not. 2 -continuous as soon as ICornrn I? 2

holds. Take e.g.

S f €,b •.•• ,bn } u {bns seCornm"'}
n

for n~O. These S form a chain S 2 ... 2 S 2 ... , but
non

n OgiS n) , Icomm-[b})" • [€j = C7glnSnl
n n

II

- 17

We present now an abstract analys1.s of such hiding operators

based on the relation -----l> between observations. First we intro

duce a new operator 0;: spec1~:P(ObS2) by

r ~ ~}
0;(5) "" l y'l 3 Y E:ObS 2 3 xES: (x 9 y'" y----(> 2 y')

~

where.3 means "there exist infinitely many". Informally speaking,
~

C'Jg(S) diverges from y onwards if there are infinitely many xES

related to y by g. Instead of 0' we W1.11 use the augmented opera
9

tor C : spec,----;"P(Obs) defined by
g 2

C lSI • 0 lSI u C7~ISI.
9 9 9

Continu1.ty of C can be shown for certa1.n well-behaved relations g.
9

Defin1.tion 5.4 A relation 9 ~ Obs,)(ObS is called level tinite
2

if for every y E Obs and l~ 0 there eX1.st only finitely many
2

x E 9
-1

(y) W1.th level II x H "" 1. A relat1.on g f ObS,x Obs is called2
* -'commutat1.ve l.f -----l> 1 ~ 9 ::: go ~ 2 holds.

i:'late: l.f the set Min 1 ~Obs, of "m1.nimal" observations in Obs
1

loS finite, every relat1.on g~ Obs, >(ObS loS level fin1.te. This
2

w1.l1 be the case l.n all our applicat1.ons to Cornmunicat1.~q Pro

cesses.

Theorem 5.5 If 9 is level finite and comrnutat1.ve, the operator

C • O"g u CJe; is 2 -continuous. g

Proof. Since C is monoton1.C, lot suffices again to show that for
-- 9

every d~rected fanll.ly {Si! i E I J of Si E spec,

n eglSil S CglnSil
1. 1.

holds. Define S "" (\ S and consider some y' f C (S). Let
. 1. 9

,. 1.

y:z {y I Y-----{)2 y' 1· Then Y loS f1.nite because.!!..;>2 is well-foun

ded and doma1.n fin1.te. Thus by the definition of C :
g

-1
Iii 5 "g ly'I'~'

-1

(ii) S r"I 9 (Y) is fin1.te.

- 18

Define 1 = max {k I 3xE Srl g-1 (y), II x II = k } . Note that 1 E !No

exists due to (ii). Since g is level finite, there are only finite
1

ly many XE.g- (y) with II x II ~ 1. Since {Si I iE I} is directed,

there exists some Sj such that for all x with Il x \I ~ 1+1:

(iii)	 xtS. n g-1 (y').

] - 1 - 1

(iv) XESjl"'g (Y) iffx€Sl"'g (Y).

Suppose no,",	 that y' E C (S.) holds.
_ 1 g]

Case 1. S.n g (y') 4= ¢

By (iiil\here is some x ES (1g-1(y'j with Ilxll>l+1.
J

Case 2. S.n g-1 (y') = ¢

Then S~(', g-1 (Y) is infinite by the definition of C . Thus
J _1 -1 g

there is some x € S.f"'I g (y) with x ~ Sf"'I g (Y). By (iv) we

J

conclude ~x II> 1+1.

Hence in both cases there is some xES.ng
-1

{Y)w~th II x II > 1+1.
J

Consider some y E Y w~th x 9 y. Since Sj is generable, there is a

grounded chain

x o ----(>1···4, xm = x

in S .. Then there ex~st5 some i w~ th a ~ i-' m and JI x. II = 1+1.J ,
Clear ly

•
xi (----t> 1° g) y

holds. Commutat~vity of 9 implies

•xi (g c ------t>2) y

and thus also x.
,

E S.
J

('l g-l (Y). By (iv) also xi E S (1 g
-1

(Y). But

then II xi II ~ 1 by the def in~ tion of 1.

Contradiction.

Hence (S.), which is what had to be proved. II
y'" n c
i g ~

We remark that the proof of Theorem 5.5 does not use the general

assumption t.hat the relations ----(>1 and ----(>2 are image finite.

II

- 19

Example 5.6 The hiding relat10n g of the previous Example 5.3 is

level finite and commutative. Thus C 1s continuous: for the chain g
So 2 ... :2 S ;,e get

n

nCgISn) = Carnm'" = Cg Ins
n

)

n n

Abovee considered only operators of one argument, but dealing

w1th several arguments is easy: e just take the inner product ® of

the argument specification spaces according to Section 4. Note that

neither Proposition 5.2 nor Theorem 5.5 claim that erg or Cg y.lelds

a process specif~cation in spechen applied to a process speci
2

fication S € spec . This question ill be treated separately 1n the
1

individual cases.

- 20

6. The Counter Hodel If!

In the following sections we study a series of increasingly so

phisticated specification-oriented models for Communicating Pro

cesses. These models vary in their choice of observations, and

this will influence both the number of representable l.anguage

operators and the induced notion of correctness.

Here we start with a very simple ~odel for the sub~anguage

CRec (L 1) of Conanunicating Processes where parallel composition

is restricted to the case of I A I~ 1. We imagine that the only

thing we can observe about a process P is how many tilnes each

communication a E Comm has occurred up to a given moment [21J.

Formally, we define the set of observations by

(hE) Obs Camm ~ INre o

i.e. for each communication a there ~s a separate counter. Obs'f!

is a s~mple observation space wi th the follow~ng relat ion --{>:

h-{r h' iff 3a E Corom: h' = h[h(a)-+1/a]

i.e. h' differs from h in that exactly one counter is incremented

by 1. Then h~ h' means that h(a)$ h'(a) holds for every a€Comm

(h ~ h' for short). Let ZERO denote the constant mapping h with

heal = 0 for every aeComrn. As process specifications we ta.ke the

full specification space Spec~ consisting of all generable sub

sets S f" Obs<e with ZERO € S.

The Counter Model re is now given by Spec~ and the following

set [foe I f E Op (E 1)} of opera tors on process speci f ications

S which formalise the intuitions about processes explained in

Section J (since e rerua~ns constant throughout this section, we

drop all indices 'e at operators f-e) :

III stop = {ZERO}

(2) div = Obs't'

Th~s definition reveals a general strategy of specification

oriented semantics, namely to ~dentify all "undesirable parts"

- 21

of processes P with 5 =. Obs, the weakest specification In the

2: -ordering. By a "part" of P ...e mean the subsequent behaviour

of P after some initial observations have been made. In this

paper we will consl.der as "undesirable" all parts of prDcesses

which can diverge right from the beginning, i.e. engage in an

infinite sequence of internal (hidden) actions. The simplest

example of such a part is the process div itself. In general

a divergence can be introduced l.nto a process either e~plicitly

via div or explicitly via recursion or hiding (see below). These

ideas will be discussed again in Section 8 and made precise

later in Sections 12 and 1].

IJI a--->5 = {ZERO} U [h[hlal+,/a] h E 5 }

To ensure tha t this operator is 2 -continuous we check the

relation 9 with

hgh'iffh' ZERO or h' h[hlal+'/a]

Clearly a---+ 5 =. &g (5). Since g is domal.n finite, Proposition

5.2 implie s the 2. -continul.ty of Ctg. Also it is easy to see

that cr preserves the generabill.ty of 5.
9

(41 5, or 52 = 5,u 52

Thl.s definition exhibits another typical point about specifi

catiOn-oriented semantics: due to our Smyth-like ordering ~

among specifications (internal) nondeterminism is modelled by

set-theoretic union. Then

5, r= S2 iff 5, :2 S2 iff 5, :::: 5, or 52

which accords with the idea that 5, is more nondeterministic

than 52 (cf. Section 4).

IS) 5,II A 52 ~ {h /3h,E5, 3h 2E5 2 , (h"h21 9 h} = C7 15,,5 21 g

where g relates the product Obs~ x Obs~ with Obs~ by:

(h"h2) g h iff VaE.A: h(a) :::: h,(a) = h 2 (a)

and

Va~A, hlal = h, (al + h 2 1al

- 22

This formalises the intuition that 51 and 52 work independent

ly except for communications mentioned in A. Clearly g is

domain finite, and thus C7'g .2 -continuous by proposition 5.2.

But G preserverves generability of specifications 5, and S2
g

only thanks to the restriction I Al ~, in ~ 1 .

For IA 1). 2 our simple definition of II A does not necess

arily ensure generability. For example, 5, = a~ b~ stop

and 52 '" b~a~stop denote generable specifications in

5pec<t ' but

5, lI{a,b} 52 = [ZERO}u{h Ih(a) = h(b) = 1 }

'" Yc :f a,b: h(c) = 0

does nat. Informally this is because we cannot observe

relative timing between different commun~cations in the

Counter Madel r.e . A similar problem, known as the merge

anomaly, can arise ~n loosely coupled nondeterministic

dataflow networks [6,9]. As we shall see now, generability

of process specifications ~s v~tal for proving the continu

ty of the hiding operator '\ b.

(6) 5'b: we consider the relation g ~ Obsr.e)tO Obsr.e with:

(..) h g h' iff h'(b) o and Va *' b: h(a) = h'(a).

Intuitively, g hides all communicat~ons b in h. Note that g

is nat domain finite any more. And indeed, CT is not
g

2 -continuous as can be shawn analogously to Examp le 5.3.

But g is level finite and commutative. Thus Theorem 5.5

implies the 2 -continuity of the operator

Cg = C'g u Og
~

....hich leads us to define S '\. b as follows:

5'b= {hi h(b) = ° ~ 3n:>-0' h[n/b]" 5 1
v [h' t 3 h" h' '3 n:>- 0' h[n/b] E 5 }

The infin~ty clause of this definition accords with the

princ~ple of specification-oriented semantics to identify

"undesirable parts" of S'\.b where infin~tely many hidden b's

are poss~ble wi th the full set Obs,€ . We remark that 5' b

- 23

preserves the generability of 5 e Spec~ .

It is interesting to note that S'b = c::r vOoois not
g g

~ - c~nt~uous for arbitrary s~ecifioations 5 ~ Obs~,

Look e.g. at

Sn < {ZERO} v {h I hlb)~ n}

for n ~ O. of course

So~···2Sn2 ...

holds with n S = [ZERO} . But
n n

n IS n" b)· < Obs'e * {z ERO } <lnSI\b
n nn

Thus generability of specifications is essential for the

cont~nu~ty of the above hiding operator S,\ b.

This fin~shes the defin~tion of the Counter Model , €. It induces

a specificat~on-orJ.ented semantics , €[.] for CRec (2:1) accord

1.ng to Sections 3 and 5. If we p1.cture processes P"""P workn
ing in parallel as networks with P l , ... 'P as nodes and synchron

n
ised communications between P. and P. as arcs, the restriction,]

)AI.:f 1 1.n L1 means that we can construct only acyclic or ~

like networks. For example, we cannot construct the cyclic net

work

a

b c

R

We can at best construct a tree-like subnet of 1.t, e.g, by

IP "ia} OJ II [b} R we get

a

p) I o

b

R

~~th arc c mlss~ng between Q and R. Next we will study a typical

example for tree-like networKS: a cha~n of buffers.

- 24

Example 6.1 Consider for n ~ 1 and a,b E Corom the following

specification:

BUFFn(a,bl { h h(b)~ h(al"- h(b)+n }

A Yd • a,b: h (d) "'0

Then BUFFn(a,b) specifies a process which engages in communi

cations a and b such that the number of b' s never exceeds the

number of a's and addi t10nally the number of a's never exceeds

the number of b's by more than n. This process can be visualised

as an n-place buffer

~BUFFnla'bl I b

which "inputs" a stream of a's and "outputs" a corresponding

stream of b's in a buffered manner. Note that BUFFn(a,b) ESpec,€

It is easy to express l-place buffers in CRec(L:l): indeed with

Pea ,bl I'!.(a--->b->!I

we get

"e [P(a,b)] = BUFF, la,b)

To construct larger n-place buffers hierarchically from simple

l-place buffers we use parallel composition and hiding. Let us

demonstrate this for the case "n :=: 2". To built BUFF (a,bl we2
first construct a "chain" Q of two l-place buffers:

Q = P la,cl II [cj Pic ,b)

or in graphical terms

H I
a I P{c,blQ=~ b

The resulting process behaves like a 2-place buffer except for

the intermediate communications c:

- 25

'era] { h	 h(b)~ h(c}~ h(a)S' h(c)+l~ h(h)+2 }

A Vd *' a,b,c: h(d) '" 0

To obtain the desired result we therefore internalise or hide

all comrnunicatins c:

a,e = (p(a,e) II	 } P(e,bl),e
le

or in graphical terms

a,e = ~p(a,el e 1P(e,bl ~

This constructiOn	 yields indeed

'e [(p(a,e) I\{e}	 p(e,b))\e] BUFF
2

(a,b)

A "direct" construction of a 2-place buffer is given by

R "" a---io r!.«(a~b -lot) or (b ~a~!)

"'ith ~[R]' BUFF (a,b). II2

In the ex~ple we dealt with semantic equality, e.g. ~e showed

that P(a,bJ behaves exactly like a l-place buffer, and a,c exact

ly like a 2-place buffer. Let us now consider the notion of process

correctness induced by sat. Clearly

-e p(a,b} sat BUFF, (a,b) and

'e Q' c sat BUFF (a,b)

2

But since BUFFn (a,b) S BUrrn+1 (a,b), we also have

'eF= P(a,b) sat BUFF
n

+
1

(a,b) and

'flo=" Q'c sat BUFF +2 (a,b)n

for all n ~ o. This means that we cannot use correctness reasoning

based on,€:l-P(a,bl.!.!! BUFFn(a,bl to ensure that a buffer has a

capacity of at least n.

- 26

What is worse, since

'ef-. stop sat BUFF (a,b)n

we cannot even ensure that a buffer does anything at all. But 1;he

concept of "doing someth~ng" is already a liveness oroperty of a

process; this will be treated fUlly in Sections 9 et seq. First

let Us refine the Counter Model ~ to a model which can deal with

cyclic networks.

7. The Trace Mode 1 T

To treat CRec (l:" 2) allowing cyclic networks of processes, ve

must be able to observe also the relative order of communications.

This leads to the more informative observation set

"(s,t E) Obs T ': Corom

of trace~ over Corom [19,]OJ. Obs T induces the simple observation

space (Obs'J",---t>) and the full spec~fication space Specy ex

plained in Examples 4.2 and 4.4.

The Trace Mode 1 T consists of Spec 1" and a set

{ f y I fE opt 2:2')} of operatDrs defined as follows (again we

drop indices T at f T):

(1) stop ::= IE}

(2) div '" Obs y

(] I a-..:,5'" (c} Ci {as I sE 5}

(4) 51 or 52 '" S 1 U S Z

(5) 5, II A 5, = {s 13t,E5 1 , t,"5,' s E It, II A t,J }

Here t
1

II A t z denotes the set of all successful interleavings

of t, and t with synchronising comrnun~cations ~n ~. Usingz
the notation a·S = {a·s I sE s} we can define t

1
II

A
t ~n-

z
ductively as follows:

(i) = [E}" II A E

(ii) as II A E = c II A as

1
 p if a E A.

a· (s II, E J if a of: A.

(ii~) as II A bt = bt ItA as

- 28

a.(s II
A

t) if a beA

III if a" bl'\ a,bEA

{ a" (s II A btl if a4A bEA

a" (5 II
A

btl u b" (as i A t) if a~A"b.A

(6) S \ b {s\blsES}

l.i f<s'\b)t I tE:Comm*,t\ ':"n>.-O: sbneS }

where S \b results from s by removing all occurrences of b in s.

This completes the definition of the Trace Model J. As with the

previous model If all operator definitions of J can be derived

systematically from appropriate relations g on traces and thus

shown to be 2 -continuous (for 5\b see also Example 5.3).

To relate the models r and ~ we consider the po in twise exten

sion C7 g of the following relation g S Obs)(Obs re :r

s g h iff Y a" A: h (a) = a* s

where a* s denotes the number of occurrences of a in s. Clear ly

C! g (5) E Spec-e holds for every S E Spec T.

Proposition 7.1 For every process Pis CRec(Elj the equation

0-g (:r [p]) • 'e [p] holds"

Proof. By Proposition 2.1 it suffices to show that 0 is a strict
-- g
and? -continuous homomorphism from the reduct. Jll.: 1 to e.e.
Since g 1s domain finite, t.he 2 -cont~nuity of l7 follows from

Proposition 5.2. The homomorphism property of l7
g

(which implies
g

here strictness) is easy to ver~fy; only the parallel composit~on

needs some care:

ergl S , II~ T S2) ~ 6' IS,) IIA'e erg lS 2)g

depends on the restriction 11'..1..::: 1 in L 1. Not.e: here we use the

full notation II A. 'j and 1I 1'..'e to dist~nguish between operators

in T and 'e. / /

If we assume a channel struct.ure Comm .=. Cha xJvt of communicat~ons,

an interest~ng combination -e & T of the two models -e and T is

possible, viz. when we post.ulate that the relat~ve order between

cornmun~cations can be observed if and only if they are sent along

the same channe l. We then talk of channel histories. e.e & j is

able to describe networks of processes acyclically connected via

channels. Possible applicat~ons for e.e & T are buffers and proto

cols as demonstrated ~n [10J.

- 30

B. The Divergence Model IJ

In the Trace Model T of the previous st:!ction l.t can be proveci

that

d i v 11 P ~ di v
0

holds for every process P. This law accords perfectly with OlJ,r

intuition that an arbitrary interleaving of a process P with the

diverging process div can itself pursue an infinite sequence of

internal actions and thus be l.dentified with div, On the other

hand, we find that

div II P == P
cormn

holds in T, i.e. a fUll synchronisation of P with div ignores

the possibi-hty of dl.verge=-.ce completely. This law seems unreal

istic because the synchronisation set A ~ Corom should only re

strl.ct the observable behaviour of dl.v n Carom P, not the internal

actions (see also Section 13). Thus we would expect that on the

contrary

C*) div If A p .: div

holds for all synchronisation sets A and processes P. Similar

problems arise in the sl.mpler Counter Model ~ .

What is the reason for thl.s weakness of the models re and T?

In both models we identify undesirable, .Le. divergl.ng parts of

processes with the weakest specification S == Obs. But in "e and

:r this specification just models the concept'of arbitrary ob

servable nondeterminism, Thus we identl.fy diverging parts of

processes with (non-diverging) parts wh.lch exhibit arbitrary

nondeterminism. For example, with Corom ~ {a,b)

div : rf' ((a---..!) or (b ---"r))
holds in r. This identifl.cation explains the unrealistic law

div llcomm p .: P in T.

In this section we improve the Trace Model r into a Diverqence

Model 1J where the law (....) is valid without qualification. The idea

is to separate arbitrary observable nondeterminism wlthout internal

divergence from the wholly unpredlctable behaviour which includes

the possibility of divergence. In 3) only the wholly unpredlctable

behaviour will be modelled by the weakest specification 5 '" ObsLl
(see also Definition 8.3).

To realise this idea we first extend the set of observations to

Obs n Comm* u {st I s E. comm*}

where 1 is a ne symbol. Comm which is never used explicitly

as a cornrnunicat ion in a process, but which can appear in a trace.

XJ will be constructed in such a way that t appears only in a

trace st of a process which can diverge from s onwards. 1hus t
may be thought of as an observation of divergence. (Of course,

basic incomputability results tell us that we cannot expect to

effectively observe a divergence; our reason for introducing t
here is to prove later on its absence in particular processes.)

Let s,t range over Comm". As ---I> we take the smallest relation

over Obs.%) such that

s ----b- sa s~ s1

st --i> sa st --t> sat

..

holds for all s€ Corron and a € Comm. Then (Obs:i) , ---0-) is a Si...mple

observation space.

Our second refinement is more substantial. We don't want to

take as specification space the set of all generable s~cifica

tions 5 s: Obs,f) with e: E Obs2> . Instead we wish to restrict our

selves to those 5 € Obs~ which additionally satisfy:

(**) st E 5 implies sa, sa'te. 5

for every a E Comm, i. e. with sf also all successors of sf under

~ should be present in S. This condition makes expliclt the

principle of specification-oriented semantics to identify "unde

sl.rable", i.e. diverging parts of a process with the full set of

all possible successor observations, l..e. the weakest possible

- 32

specification (cf. Section 6). Informally, once a process is

broken, its behavious is wholly unpredictable; and it remal~s so

even after further observations have been made.

The idea to require also a sort of converse (JJ'It) of the qen..

erability condition for specifications is not only useful for the

Divergence Kodel XJ but also fundamental in the following sections.

We therefore incorporate this idea into the general framework of

observation and specification spaces, and call it the extensibility

condition. The simplest definition of such a condition would be the

literal converse of generability:

YXE S-Max 3 y_ s: x----tlo y

where Max ={x[,3y: x---oy}. But this definition is too weak if

we wish to express as 1.n (**J that more than one successor of .x

is to be present in S.

We therefore need to extend the algebraic structure of obser

vation spaces by a second relation ---«> between single observations

x and sets Y of successor observat~ons of x. Informally ~ and

---«> reflect the amount of information we can retrieve from

observa tions.

Def:'nition 8.1 An observatl.on space ~s a structure (Obs,-{>,--...C(»

where (Obs,~) is a simple observation space with ~ satisfying

conditions (01) and (02) of Definition 4.1, and where --oc> is a

relation --t:(> == Obs x P (Obs) such that

(03) x ~ Y implies x ~ y

for all y E 't, Le. Y is some subset of possible successors of x

under the fa..lD.1liar relation ~ .

Note that ---i» is image finite since ~ itself is image finite.

As notations we introduce:

MJU(~ {x E abs I -,3 y £ abs, x _ Y }

x ---t» Y abbreviates x ---«> {y J

Simple obserVation spaces (Obs,~) will from now on be ident~fied

with observation spaces (Obs, ~ , ----i») where the relation ---i» is

empty and thus MAX = Obs. If -{> and ----{» are understood, we

refer to Obs itself as the observation space. Next we adjust the

notions of process specification and specification space.

Definition 8.2 A process specification over Obs is a subset

S ~ Obs with:

(Sl) S includes Min: Min ~ S

(52) S is generable: 'YxeS-Min 3yeS: y----t"x

(53) S is extensible: YxeS-.MAX 3y!: S: x~ Y

A specification space over Obs is a family Spec 5 P(Obs) of

process specif~cations which forms a cpo under ~ .

Note the symmetry between (S2) and (S3). Since ~ is domain

finite and----i» is image finite, the set of all process specifi

cations over Obs forms again a specification space: the full

specification space. If ~ ~s empty, Definition 8.2 reduces to

Definition 4.3. In particular, every specification space over

(Obs, ----I> , ~) is also a specification space over (Obs, -;>) •

Thus our results about continuity in Section 5 remain valid as

they rely only on the underlying structure (Obs,---b-). Analogously

to Definition 5.1 we define specification-oriented models ~

over (Obs,---i> , --(:>(>) •

Let us now continue with the Divergence Model 1:) • We take ----i»

to be the smallest re lation tletween Obs:tJ and :P (Obs..!)) such that

s1'-* {sa, sa1' I aEComm}

holds for all s € Commtt-. As process specifications we take the full

specification space Specr; over (Obs,----t",~). Then every SESpecZ>

satisfies (*-It) as an instance of the general extensibility condi

tion (S3) for Sunder --t:(> Note that "ordinary" traces SE S don't

require any successors to be included in S. 1) is then determined

by SpecJj and the following set {f~ I feOp(:L2)} of operators

on process spec~fications S (we drop indices 1) and state only

those defin~tions which differ from T):

(2) div = Obs!>

- 34

(S)S,IIAs, { s !3t,E:S 1• t z E 52: sEt, II A t, }

tu {SU uE. Obs!) A 3t 1 E. 5" t 2 E.S 2 :

z	
}

(setlllA t A {t,'t E 51 v t2i'E 52))

The second clause in the definitl.on states that S 1 II A 52

diverges as Soon as either of its components diverge. Note

that S1 II A 52 l.5 a proper proces·s specification and that the

defining relation 9 with 51 lI A 52 ~ lJg(S,,5 Z) is domain

finite. This guarantees 2 -continuity by Proposition 5.2.

(6)	 S'.b - £ s\b I sE S }

u f (s\b)u I u€Obs.!)" \In)..O: sbn E S }

This is literally the defl.nition of 5\. b from model T
except that u ranges over Obs J) rather than Obs r Comm*.

S \. b is a proper process specif ication and can be proved

2 -continuous with help of Theorem 5.5.

J) induces a specification-oriented semantics .:D[.] for

CRee (I: 2) in which the laws

(i) di v or P = P or div = div

(ii) divllAP = P II A div = div

(iii) div \ b = div

are true for all p e. CRec ('2::2), A 0;: Comm and be COrnm. (In the

previous Trace Model J only (i) and (iii) hold.)

Next we wlsh to relate the models .fJ and :r. As explained

earlier, the reason for achl.eving the law (il.) l.n :JJ is the

careful distlnction between arbitrary observable nondeterml.nl.sm

without l.nternal divergence and the wholly unpredictable behav

iour including dl.vergence. Thl.s distinction can be Made precise

by considerl.ng the specificatl.on

S = ObS y = Comrn
...

£. Obs Xl

ins.lde IJ. S .lS a proper process specl.f.lcat.lon over Obs.2) ; .It .lS

the weakest specificat.lon of a process wit.!l.out "diverg.lng traces"

st . Thus ""hereve!:

1JF= P ~ Obs J

holds, P is allowed to exhib.lt arbitrary observable nondeterminism

but may nct. diverge. Th.ls mot.lvates the follow.lng definitlOn.

Definition 8.3 A process P E CRec('L 2) is called divergence free

if ..nF= P sat Obs T holds.

Note that wheQ.ever f (P, , •.. ,P n) 6 CRec (L"2) is di ...·ergence free,

all P1""'P are divergence free as well. n

Theorem 8.4 For every process P € CRec(:L2) the inclusiorl

T[P]" ~ j)[p] holds; for divergence free P the semantics

~ and T coincide: 1>[p] = j[p]

Proo f . Ii) T [p] <; 1) [P] ,

The operator <p: Spec.n ~ Specr w.lth cP{SJ .= Sf'l Camm*" is a strict

and continuOus weak homomorph.lsm (w.r.t. ~) from :J) to J. (Weak

ness .lS due to II A') Thus propos.l tion 2.1. yields

¢1.tJ[p])=T[pli

for every PE CRec(:L:2). By.D[p]' 2 ep(.!l[p]J, the claim follows.

(ii) 1)[p]=T[p] for di·..-ergence free P:

We use f1ni te syntactic approximations of P as defined in Section 2.

Note that the general symbol J.. of Section 2 is no..... div: thus e

write P instead of P.L' First compare the operator definitions
div
in 1) -- and r to real.lse that

1"1 .'Il[fIP, •...• PnJ] < L r (2)[p,] 1)[P
n
])

holds for all divergence free f{P" •.. ,Pnl E CRec(L2).

Consl.der now a divergence free P E CRec(L"2) and an arbitrary

o l.th P ~ Q. Note t:J.at Q can be written as

Q ~ Q' [/'"! 1 • R, I f" ...• f'! n' Rnl In]

- 36

....here Q"" is a p. -free term with free identifiers !, ,! n

forhich the recursive subtenns fA f l· R' , P.I n· R of Qn
have been sllbstituted. The follo.... ing argument ill us e two

valuat~ons V2) and 'VT ith

V~ I! i) 1)[fA I i .R i]

VrlLI JT div]

for i 1, ... ,n. Note that

I-I 1)[I'L.Ri D S; T[div J1

holds because with P also all ? Ji .R i are divergence free.

Thuse get

J:)[p] = ,v[0] = ,v[O*[I"!,.R,/f,.···,r!n·Rn/!nH

J:)[O*J I V:o) = T[o· J1 I VJ) Iby 1"1)

,; T[O·~ I V r I (by (**)

T[O'[diV/ f ,'" .. diV/! n]] = T [OdivJ1

Since Q was arbitrary with P ~ Q. we finally obtain

.fl[p] = II {.l) [0.D I p ~ O}

s n {T [0div] I p ~ O} = T [p]

due to Section 2. II

9. Safety and Liveness Properties

What is the notion of process correctness ~nduced by the previous

Divergence Model? For processes P E CRec (,E2l and specifications

S € Spec b we have

(.) :lJ F= P sat S iff .I) [p] <; S .

Hence there ~s a particular process P which satisfies every spec

ification S ~n :JJ , namely

P = stop

This indicates that (*) expresses only safety properties [36J of

P in the sense that P does nothing that is forbidden by S. For

('*) this means that we can prove:

(a) absence of dLsallowed traces

(b) absence of divergence.

(The s~mpler models T and 'e deal properly only with aspect la)

due to Theorem 8.4 and propos~tion 7.1.) The situation has its

analogue in the theory of part~al correctness for sequential pro

grams where the diverg~ng program d~v plays the role of stop by

sat~sfying every partial correctness formula {p} dLV to} . In j)

the process div satisfLes of course only the weakest specification

Obs:f) .

Let us now turn to the question of liveness properties. Intu

itively, liveness means that a process is under all circumstances,

L.e. independently of ~ts internal activity, able to perform a

certain predefined task[23J. In the following we propose an ab

stract framework for discussing this idea.

A sLmple liveness property ~s a pair

(T,L)

of specificatLons T,L E Spec T (i.e. non-empty, prefix-closed sets

T,L S Conun*of traces) with L~T. Informally a process

(~JIt) P sat~sfies (T,L)

~f the following holds:

- 38

(1) P is divergence free.

(2) P engages only 1.n traces ment ioned in T.

(3) P is able to engage in every trace of L

independently of its internal activity.

(Thus L is the "task" mentioned above.)

Conditions (') and (2) are well-understood from the Divergence

Model rJ . Condition (3) will be explqined in the subsequent sec

tion by translating every simple liveness property (T,L) into a

proper process specification S(T,L) such that (**) 1.5 defined by

P sat 5(T,Ll

in the sense of specification-oriented semant1.CS. But at the

moment the lnformal notion C**) should be suffic1.ent for under

standing the following examples.

Example 9.1 We wl.sh to specify a process P whl.ch exactly sends

an infinite stream of commun1.catl.ons c:

u- E. , C I cc , ccc ,

We do this wlth the simple liveness property (T,L) '....here

T = L = {cn In>.... o} . Then

P satisfies (T,L)

if firstly P does not engage l.n other communi~ations than c due

to T, and secondly P indeed engages in all traces

E c, cc , ccc

due to L. / /

Example 9.2 we are now able to recOns1.der Example 6.1 and express

as a sl.mple liveness property (Tn,L) the l.dea that a process P n n
is a buffer of capaCity exactly n. Instead of a,b E Comm we use

here the suggestive names in,out E Comm for the communications

of p
n

~ Pn lout

Take

T =L =fs I SE[in,OUt}"'AOut*S6:in:#:S,"(Out~S)+n}
n n

.....here in#5 (out~s) denotes the number of in's (out's) 1n 5

(cf. Section 7). Then

P satisfies (Tn,L)
n n

If accordlng to Tn the process P engages only in communlcations n
in(put) and out (put) such that the nwmber of outputs never exceeds

the number of inputs and the number of inputs never exceeds the

number of outputs by more than n. This is the safety requirement

for an n-place buffer known from Example 6.1.

But here we requlre more: P should also satlsfy the liveness
n

reqUirements descrlbed by L , VlZ. n

(1) If the buffer P is "not full", i.e. if 1.n:#"5 < (out;f:s)+n,
n

it should accept another input.

(il) If the buffer P is "not empty", Le. 1.£ out#=s < in:i:s,
n

it should be ready for another output.

Clearly, these requirements are not satisfied by the deadlocked

process stop any more (cf. Section 6). II

We generalise th1s concept of a simple liveness property as

follows: a (general) liveness proper tv is a pair

IT.£)

wi th T E Spec J and a non-empty :t... So Spec:r such that L ~ T holds

for every L e: t:.. {Simple liveness propert1es are identified with

pairs (T, iL) '.....here 1;£ I = '.) We define:

P satisf1es (T,L) if :3 L e.£ : P sat1sfies (T,L).

Intuitively, P satisfies (T,x:,) if P is able to engage 1n every

- 40

trace of at least one L E£'. Thus a simple liveness property

fixes one ~articular process behav~our whereas a general live

ness property describes only a general pattern of a desired

behaviour.

Example 9.3 Surprisingly, we can view the concept of deadlock

freedom (which is often classified as a safety property [36])

as a general liveness property (T,:t:.) with

T = Comrn· and ;£, = {L E Spec:r VsEL 3tEL: s<:t}

Then P satlsfies (T, ~) iff P is always able to extend its

present communication trace s by some further communication.

(Since T ::: Comrn" there is no restrict10n in which communications

P may partlcipate.) II

Example 9.4 We wish to spec1fy a process P which can engage in

commun1catlOns a and b in arb~trary order, but which is certain

to communicate b eventually:

, anb ,I ~E"""p

We express this behaviour as a general liveness property (T,,£)

w~th T = {a,b}· and

'£.. ::: { L In)... o} where L {E ,', ... ,.n,.nb } •
n n

Then P satisfies (T,?L) if there is some n ~ 0 such that P com

municates b after n communicat1ons ai but it js not known in

advance which n applies. II

Example 9.5 Similarly, we can express the concept of a bounded

buffer as a general liveness property (T,;;e) with

T = {s I s E {in,out}'" /\ out.:#=s ~ 1n#s} and

£ ~ {L I n <- 0 } n

where L 1S ~aken from Example 9.2. ~ow P sat~sfles (T,:t:.) if n
there exists some "bound" n such ~ha'C P behaves like an n-place

buffer. Agai~ 1t 1S not known which n appl1es. II

10. The Readiness Model R

This section improves the Divergence Model 1) ~nto a new model

which can deal with simple (and a certain type of general) live

ness properties: the Readiness Model R.. Moreover, R allOW's us

to treat now the full language CRec(L) of Communicating Processes

by distinguishing between external nondeternun~sm 0 and internal
•

nondeterminism ~. The idea of R is as follows: we assume that

not only the "past" of a process CiSn be observed via traces

also a part of the II future" via so-called exoectation [12] or

ready sets X [20.16] indicating which cOCM1unicat~ons bE X can

happen next. How~ver, a ready set X can be observed only when

the process has reached a "stable state" where all internal

activity has ceased (see also SectLon 13).

Our observations have the form:

s trace of successful cornmunLcations,

sol!.': ready set .x presented by the process after s,

sf possibility of divergence.

Thus we get

Obs~ [s , sX , 51' s € Cornrn -14 A X ~ Com.:n } .

Let s,t range over Comm~, X, Y over :P (Corom) and 6. over

Y (Comrn)u {T"} The successor relatLon -{lo is the smallest

relation on Obs:R. satiSfying

s -----b- sX, s --{> sa, s -4 sf

sX ----0- sb for all b € X

sf ---b- sX, sf ---b- sa. st--c> sat

for all sEComro·, XSCornm and a€Comm. Relation --i> describes

the behavious of a process as follows: after a trace s the pro

cess can enter a stable state and display a ready set X, or it

can (be Lng in an unstable state) engage in some further COmmuni

cation a or it may diverge completely. Once Ln a stable state sX

the process can engage only in the communications in the ready

set X. Divergence s t LS (as in the Divergence Model 1)) identi

fied with every possible subsequent behavLour.

- 42

As extensibility relation ---00 we take the smallest relation

between Obsjt and P(ObsA,.) such thar:.

s -«> sX

sX --'>l> {sb [bE xl

sl" -» {sx, sa, sat x £" Corom 1\ a E Corom }

holds for all s € corom'" and X.; Conun. The ?rocess specifications 0:1

J(are given by the full specification space Spec R over

(ObsR. ,----t>,----t>(». Then every 5E5peck reahses a local liveness

principle: every SES and sXE5 wl.th X'f.!?J :requ~res certa~n im

mediate successor observations to be present ~n 5 due to --PP .

Only observations

si<J

have no Suc:essors and thus express stoooage or deadlock. The

Lffipact of t~l.S liveness pr~nc~ple w~ll be studied later. First

let us cornp~ete the defin~tion of the Readiness Model R by the

following set [fk I fEOp(LJ} of operators (presented w~thout

l.ndex R) on process specificat.lons S E 5pecR. :

(1) stop ~ [E, i:i<J}

(2) div = ObsR

(3) a~ 5 {E d a}} u f as, as 6 s6 ES}

(4) 51 or 52 = 5, u 52

15) 5, 0 5, < {E E(Xu Y) I EXES, /I EYES,}

U { ,-6 I C:! €: S j V S 2 }
u { s, s6 I s 'f. E /\ sD E 51 v S2 }

The first clause states that 51 0 52 1S inltially ready for

any commu~ication in t~e ~nlon of ~he re~QY sets for ~ts

components 51 and 52' This enables us to model external

nondetermlnl.srn, E.g.

la --+ P) 0 Ib ->0)

will have an initial ready set {a,b} ~ndicating that the

environment can choose whether the process behaves like

a~ P or like b~ Q by first communicating either a or b.

In contrast

(a---Jo P) or (b---JoQl

has two initial ready sets {a} and {b}, and it depends on

the process itself which one 1S presented to the environment.

16} 5, II A 52' {s • sX I 3 t 1 X, E 51' t 2 X2 E. 52:

s Et ItA t 2 /\ X = X1['A]X2I J	
}

u {st.st"'l 3 t 1 E 51' t 2 " 52' }

sEt, itA t 2 "(t,t,, 5,vt2t"S2)

The first clause of the def1ntion uses the maJority operator

of Section 2 for A Corum '\ A:

X [A]X = (X (1 A)v (X Al v (X {\ X)
J 2 1 2 1 2

formalises the idea that communications in A require the

readiness of both 51 and S2 whereas for all other communica

tions the readiness of 51 or 52 is suff1cient.

(7)	 5'..b: we first 1ntroduce the hiding relat10n gS:Obs,1<;(ObsR.

which descr1bes how observations about 5 are related to

those about S \ b:

Ii) s 9 s \ b

(i1) sX 9 (s \ b) X provided b ~ X

(iii) sX 9 s \. b provided b € X

(lV) stgs'\b

for all s,t,X,6. Clause (iii) may require a conunent: since

commun1cation b has become internal in S \ b, the stable state

sX of S with bE X has become unstable in 5' b in the sense

that b may occur autonomously, after Wh1Ch the process is no

lcnger ready for any of the other communicat1ons of X.

Therefore we cannot deduce any new ready set Y in this case

and define

- 44

sX g s '\ b provided be X.

This definition agrees with the decisions taken in [12J and [20].

Slnce g is level finite and commutative, the operator
a>

C = O"gV O'g is ~-continuous by Theorem 5.5. This yields.g
(after a slight simplification) as explicit defintion;

S'b = {s'b,(S'b)X I sxes /I bofX }

U {Is' bJt, Is'bJt.:'> I Yh~O, sbne S}

which is a proper process specification in SpeeR.

This completes the definition of the Readiness Model 1(. which

induces a specification-oriented semantics R[.] for the full

language CRec(L") of Communicating Processes.

Let us now investigate how this model can express liveness.

For a simple liveness property (T,L) let SR. (T,L) be the follow

ing process specification in SpecR. ;

SR.l'I',L)=TV{SX[SE:T/l.S.Xf T }

/I. (if s e L then succL (s) ~ X)

As abbreviations we use here s·x "" {sa 1 aex} and succL(s)

{a I saEL}for sE:Cornm'-', XS;Comm and LESpec T .

We define now

P satisfies (T,L) iff 1< f= P sat S k (T,L)

This definition formalises the intuitive correctness criteria

(1) - (3) given in Section 9. This is clear f~r (1) and (2).

Condition ()) is expressed by the clause

if s e L then succ (s) s;: XL

by which the ready set X of a trace s e L always inc I udes the

required successor communications a e succL (s). Because of !. e L

we can in particular start with all initial communicatlons in L.

And these communications are independent of internal activities

of P since the"readies"sX all refer to "stable states".

Example 10.1 To specify a process P which sends an infinite

stream of communications c, we express the simple liveness pro

perty (T,L) of Example 9.1 1n 1<. This yields the following

specification SEND = SR [T,L):

SEND = {en, en [c) I where n ~ 0 } •

SEND says, no rna tter how many c' s have already been sent, the

process P should always be ready to send another c:

("I £ , e , ee , eee ,G-
Then the extens~bility condition of process specifications in

SpecR. forces every process P with

1<. F= p sat SEND

to behave exactly like r*l. A possible solution is

p: I"f .(C--->II

In particular, the deadlockin~ process stop does not satisfy

SEND. II

Example 10.2 To sp~cify a buffer Gf capacity n we translate the

simple liveness property (Tn,L) of Example 9.2 into the follow-n
ing specification BUFFn '= S R (Tn,L):n

BUrE' { s ,sX s E {in,out}"'", out*s~in*s~(out#=s}+n)

A (if in=tt=s< [out"t=-s)+n then inEX)

A (if out=iFs < in=#=s then outE X)

n

As in Example 6.1 we can construct buffers of capacity n ~ier

archically from buffers of capac~ty 1. Take

P 1 (in, au tJ '= ~! . (in --;)0 au t ~ r)
and define inductively

P 1 (in,out) = (P, (in,wire) 1I{. } P (wire,out)) \ wiren+ W1re n

- 46

Then we ca.n show

1< ~ P (in,out) sat BUFF
n -- n

Note that differently from Example 6.1

BUFF $. BUFF +, .n n

Thus e.g. P, (in,out) sat BUFF
2

is false in :R.. Also note that

direct constructions of buffers of capacity n involve e~ternal

nondeterminism 0 rather than internal nondetenninism ££=

e.g. only with

R 2 '" in -----)0 fA-! . (in ---+ out ~!

o out-+in~I

we get J(F R sat BUFF (cf. E~ample 6.]). II
2 2

Next we investigate general liveness properties (T,~). Recall

from Section 9 that we define:

P sat~sfies (T,:t!.) if 3LE£ P satisfies (T,Ll.

We extend this defintion to sets 50 of processes by

50 satisfies (T,:£.) if 'VpeP: P satisfies (T,:£).

Now we introduce the following concept of expressiveness.

Definition 10.3 A liveness property (T,::t!.) is expressible in a

specification-oriented model ~ if there is a specification

S E Spec.M. sllch that

P satisfies (T,£) iff ..AA.F=" P sat S

holds for every process P E CRec (,L). We also say that S e~presses

(T,:e) 1n M.

By definltion, all simple liveness properties (T,L) are e~press

ible in the ~eadiness Model R.. But wh~t about general liveness

properties (T, i:..) ?

Example 10.4 The introduction of observations s0 enable us to

state and prove that a given process does not stop: con.sider the

specl.fication:

LIVE = {s, sX) where X :f' 0} .

Then a process P with

1\ F= P sat LIVE

will after every trace s be ready to engage in some further

communications, and thus never deadlock. Note that in fact LIVE

expresses the general livness property (T, £.) of Example 9.3. II

The following proposition Characterises the (limitations in)

expressiveness of the Readiness Model 1<..

Proposition 10.5 (T,;f) is e.xpressl.ble in :R l.ff the followl.ng

holds for all ? ~ CRec (L) and Q E CRec (L): whenever

P satisfies (T,;£) and

R[o] S U R[p]
P€ :P

then also Q satisfies (T / £).

Proof. "only l.f"; by the definition of~.

"if": let P "" {p I P satisfies (T,;;e)} .

Case 1: P =~. Then there is no L e.;£ and no process P such that

P satisfies (T,L). Thus for arbitrary L €£ the specification

S = S:R. (T,L) expresses (T,£).

Case 2: 'P 't= ¢. Then S = U .:R.[p] expresses (T ,£). Note
p~p

that 5 E Spec.:R .

II

Examole lO.6 (i) The liveness property (T,t!..) of Example 9.4

modelling the concept of "eventually b" is !lot expressible in :R
lndeed conSider the processes

o = !"!. (a ->!) and Pn a~ ••• --J>a----?-b

~
n

- 48

for n~O. Then P satisfies (T,;£.) and R.[Q] SO U R [Pn] , but
n n

Q does no:. satlsfy (T,£.). Thus (T,;i) ~s not express~ble in :R..
by Proposltion 10.5. This lim~tation in expressiveness ~s typi

cal for any kind of finitary observat~on (see Section 13), not

only for ~ead~es sX. Informally, 'fle can say that the concept of

eventuality is not finitely observable.

(ii) Similarly, we cannot express '.:he concept of a bounded

buffer mod.elled by the liveness prope!rty (T,:t.) of Example 9.5.

Clearly

Pn(in,out) sat~sfies (T,;;e)

by the previous Example 10.2. Now cons~der

PCQ = jA! . (in -)0 (f II 0 out-l-stop))

P expresses an ~nfinite buffer:oo

:R [p",] " { s, sX s E {in,out}" 1'\ out#s~ in#=s

A ~n EX

A (.!! OUt*s< in#=s then outE J
Thus .R.[p~] S U ~[Pn(in,outJ] but Pro does not sat~sf!

n
(T,a:). Hence IT,:.e) ~s not express~ble ~n R. Agal.n this lim~-

tation is :rue for any kl.nd of fin~tary observat~on; thus the

concept of boundedness ~s not finl.tely observable.

(il. i) Even much simpler liveness rropert~es are not express1cle

in :R. Take e.g. (T,£) ',o11th T = Corom""'" and

;;e =
 fbr'Cr }

(Here we use an eqUivalent tree notation for prefix-closed sets

of trees.) The idea of £. is that b (or c) is possible after a

only if it 'flas also possible earlier as an alternative to a.

Cons ider now

. (a---ilb~stop) 0 b--"tstopP,

P : (a---ilC ~stop) 0 c~~top
2

0
 - (a---1>c ~stop) 0 b~ stop

Then P, and P
2

satisfy [T,£J and 1<.[0] <o.1I.[p,]u:R[P2],

but Q does not satisfy (T,,,t) as required by Proposition 10.5.

This limitation in expressiveness is typical for trace-like

obServations like readies sX. It could be overcome - if so

desired - by using tree-like observations instead, but we decided

here not to consi.der "what m~ght have been" in our models for

Commun~cating Processes. II

Next we relate the models R. and 1). Let g s: Obs.R.)(Obsl) be

the projection

sX 9 t ~ff s -"= t

for observat~ons sX and the ~dentity otherwise. Then the ?Oint

wise extension O"g satisfies O'g(S) € Spec£) for every 5 ESpecjt

Proposition 10.7 For every process P E CRec(L:2) the equation

o [1<[p]) =.D[p] holds.
g

Proof. By Propos~t~ons 2.1 and 5.2. II

We conclude with some comments on related work. As already

~ndicated, the idea of ready sets ~s taken from [72,16,20], but

the details of the Readiness Model R are new. In particular [12J

does not abstract from internal activities: little d's denoting

internal progress remain in their traces. It is interesting to

note that the model 1<. is well sUl.ted as a bas~s for implemen

ting processes in a functional style [38J.

A restricted verSl.on of a Readiness Model forms also a basis

of [31J. Essent~ally [31J use only aliveness princl.ple of the form

v x E Obs - ,'1ax :::l yES: x ---b- y

- so -

whereas in R ready sets can require more than one successor of

an observation (trace) to be present (cf. the introduction of

~ in Section 8). Consequently [31J cannot deal ~ith external

nondetermmism.

11. The Failure Model F

In a specification-oriented model ..M. every process P € CRec (~J

can be semantically approximated as a limit of finite, i.e.

non-recursive processes 0d' € FRec (.z) via
---l.::

M[P] : n {.M.[QdiV] I P~Q}

(cf. Section 2). Therefore finite processes can be considered

as an l.mportant tool for reasoning about general processes (cf.

e.g.	 the proof of Theorem 8.4.).

This reasoning is Simplified very much if further on every

finite process can be reduced to a so-called primitive finite

process P £ FRec (L"p)here .Lp s: L with

OplLpJ = {stop,diV}u {a---> a Ecornm} uf~,O}

do~s not involve pardll~lism II A or hiding \ b. Therefore we

would like to have models ~ whl.ch admit reduction In the follow

ing sense:

Definition 11.J A model.M. for CRec(E) adml.ts reductl.on from

FRec (:L.) to FRec (.:[pJ if for every f ini te FE FRec (L) there

exists some pr.iml.tive finite Pe FRec(Lp) such that the la.....

F	 = P

is true in M. An operator fEOp(~) is calle:d reducible to

FRec (L pJ in M. if for all P J ' ... , P n E FRec (;L"p) there exists

aPE FRec (L p) such that

f(Pl,· .. ,P) = P n

is	 true in).1.

Clearly .irt admits reduction from FRec{L") to FRec{I:p) iff

every operator feOp{~) is reducible to FRec(!:.p) in M.
Unfortunately, our preVious Readiness Model ~ does not adml.t

reduction to FRec (L p). The troublesome operator in 1<. is hiding

'" b. To see this let us study an examplehere

(PDc),b

cannot be expressed w~thout ,b.

E::.>ample 11.2 First note that in :R. primitive finite processes

P E FRee (Z p) satisfy the follow~ng property for all 5 E Carom"" and

a E Camm:

(1) sa E 1([p] implies 3X s: CO.lMl: aE X I\sX E R[P]

i.e. every communication a that can occur while the process is

running can also occur after the process has reached stability.

Consider nOW'

p = a~ stop and Q b ----+ c ~ stop .

Then we get

R [(P 0 0) '- b] = {e , a, a~, e {e), e, e~ }

which does not satisfy (1). Thus (P 0 Q)" b is not re presentable

in FRee (LpJ .

What would be a good candidate in FRee (Ep) to represent this

process? ~ suggest

Pl = (a---io stop 0 c-+stop) 2.E (c-+stopl

with 1<[P1] = ;t([(POOI,-bJ!v {Ela,e}} because P1 and

(P 0 Q) '\. b iatisfy in 'R.. exactly the same simple liveness spec

ifications S:R (T,L). Indeed for T,L as in Section 9

:Rp (PDOI\ b sat 5:R IT,Ll

iff T:2 { €, a, c} and L S {e: I c} . But these are exactly the

sets T,L with

:Rp p1 sat 51/. (T,L) .

Thus identifying

(2) IPOO)\b = P'

does not affect the expressive power of our model in terms of

simple livE:'les;s propertH~S (see also Theorem 11.81. / /

We no..... explain a model which admi ts reduction to FRec (I: p)

essentially since the suggested law (2) is true: the Refusal or

Failure Mode 1 3=' based on [22,39,7]. The ini tial idea of 'F looks

quite different from 1l. We imagine the following interactions to

take place between a process P and its environment E: at any

moment E can offer certain sets X of communications to P. The

process has then three options to react to such an offer:

(~)	 either accept some communication aeX

or refuse to accept any cornmunicat1on in X

or diverge completely.

Our observati9ns record these interactions only until the

first refusal of X has occurred:

sX trace of accepted communications together with

a set X of commun1cations which have been refused

after s

s1' ?OSs ibility of divergence

Thus e have

ObS { sX , sf s e Comm.... 1'\ X £ Comrn } . F

Observations sX are called failures and the 5ets X refusal sets

[22J. As in Section 10 we let Sit range over Comrn , X,Y over

:P (Comm) and ~ over P(Comrol v {1'} . As successor relation ---{>

we take the smallest relatiOn on Obs F satisfy1ng

sliS ---t> sa0 , sliS ---l> sX s~ ---P sf

51' -I> sX , 51' ---l> saliS st--t> sa

for all s ecomm*, aEComm and X S COITUT\ with X *' 0. Here failures

s0 represent interactions where no communication has been refused

so far. As in the prev10us models J) and :R divergence s1' is

identified with s follo.....ed by every possible subsequent behaViour.

The dynamic aspect of (*) is captured by the following &xten

sib11ity relation -----* between ObS3= and P (Obs'F):

- 54

s0 ----t(> SUCC iff VX £Cornrn: ;ja eX: saG' ESUCC

v VY~ X with Y ,., 0: sY t SUCCl

si-----w {sx, sa0, sar J XSCornm with Xl> 0 A aEcomm}

Let us explam the more complex clause s0 ---i>i> SUCC. Whenever

s0 E S holds :or some process specification S, a whole set SUCC

of successors of 50 must be present In S. This set SUCC looks

as follows: for every gl.ven set X £ (;:01T1ffi of communications either

some aeX is accepted, i.e. sa0eS holds, or the whole set X

together wit.'l. every non-empty subset Y S X is refused, i.e. sX E S

and sYe S for 0 * Y £ X (Y '1= \21 guarantess s0 ----{) sY). Note that

this definltion reflects the informal descrlption (....) above.

As process specifications of F we take the full specificatlon

space Spec F over (Obs T'---P , ---i>i».

Remark 11.] A subset. S £ Obs3=" is a ~rocess specl.fica tion in

5pec~ iff the following holds:

(i) £ 0 E S

(ilJ st\21 ES Hlplles 50 E S

(iil) sX E 5 A Y£; X i..mplies sYe 5

(iV) sX-=S A sa0~ S implies s(Xu{a})eS

(v) si E S implies st6 E S for all t, b..

The Fail-lre Model 3= conslsts of Spec ~ and the followl.ng set

{fj:" I f EOp(~)} of operators (again we drop the index ~):

(1) s top ~ {€ X I X S Corom)

The deadlocking process can refuse any set X.

(2) div = Obs'F

(3) a ~ S = {€ X I a <Ie X } u {as L'> Is£' E 5 }

In its fl.rst step a -+ 5 can refuse any communicatl.on

except a.

(4) 51 £E.S2 = 5,vS2

- 55

1515,0 5 2 f EX I eX ~Slf"'\ 52}

v{a'l d€5,V 52 1
v f s61 s +: oE A SAES,US 2 }

In its first step S1 0 52 can refuse only communications

that both 5, and 52 can refuse. Afterwards 5, 0 S, behaves

like 5, or like 52 depending on whether the first accepted

camrr~nication belongs to S, or 52'

161 5, II A 52 = { sX 3t,x, es" t 2X2 €S2: }s €' t 1 UA t z 1\ X "" Xl (A] X2

v l sUI :3 t ,0ES,. t 21ii' €S2:

se.t,llp" t z A (t,l'ES, v t 2tE 5 2 1 }

where the majority operator

X,[A]X =' (X,f"'IA) v (X I"lA) v (X,n X2)2 2

represents the idea that refusal of communications outside

A requires refusal of both S, and 52 whereas communications

inside A call already be refused if 5, or 52 refuse them.

171 5 '\ ~ = [ls'\bIXI s IX v {b}) € 5 }

v { Is '\ b) tt>. I Yn.>,.O; sbn\Zl e s }

Note that 5 '\. b can refuse a set X only if 5 \ b has beCome

stable, i.e. internal communications b of S are also refused.

As with the preVious models these operator defin~t~ons yield

proper process specifications. and they can be shown :2 -continuous

by the methods of Section 5.

Let us first establish the relat~onship between the new model

~ and the previous Readiness Macal :R... This is done very sunply

by the following relation g S ObSj!:)C Ob;:)F with

sX g sZ if £ Z.£ X

sf g sf

- 56

which interprets sets Z as the downward closures of the comple

ments X =' COl17ll'\.X of ready sets X. By Remark 11.3 the point.. ise

extension 0:: maps every S E Spec-R into a process specification

CT (5) E spec:"
9 r

Proposition :1.4 For every process P e: CEec(L} the equation

0' 9 I :R. [p]) ~ F [p] holds.

Proof. To a::lply Proposition 2.] ..e nave to sho.. that 0' is a -- , 9
(strict and) a -continuous homomorphism from R. to 'F. Domain

finiteness of g i.mplies the 2 -contl.nuity of O'g by Proposition 5.2.

Checking the homomorphism property of cr boils down to a simple
9

calculation ~ith down..ard closures of complements. For example the

crucial arg'ument to show

0' gl$, liAR $,) ~ O'gl$,) II A l' &gl$,)

for all S"S2E 5pec'R. is as follows:

Z S X,[A)X 2 iff 3 z1 0; Xl 3 z2f x2 : z ',CA]',
II

Clearly t.here is also a direct homomorphism ¢ from the reduct

3= r !: 2 to tne Divergence Model TJ analogous ly to Proposi tion 10.7.

By PrOposition 11.4 every la.. P = Q of :R holds also in 1=. But

what are the additional identifications induced in .R by the

homomorphis:n O'g?

Definition 11.5 A process specification S€ Spec~ of the Readi

ness Model 'R is called convex closed [8,33J if the following holds:

(i) sX, sZ E S implies 5 (X U Z) E S

(iiJ sX. sZeS and X~Y~Z imply sYES.

For SESpec~ let con(S) denote ".r.t. ~ strongest convex

closed specification ith Ss; con(S). Clearly con(5) E SpecR. holds.

Lemma 11.6 For S],S2 ESpcCR. the follo..ing holds:

O'g(S,) S. "'g(S2) iff con(S,) f con(S2)'

Proof. By the properties of do..n..... ard closures of ready sets. II

Thus the Failure Model 1= can be considered as identifying

every process specification S of the Readiness Model R with its

convex closure con (S). This characterisation of 3:" in terms of 1<
allows us now to show that all 11veness properties expressible

in :R can also be expressed in 'F. First we state:

Proposition 11.7 In general 1t is more expressive than'F in

the following sense:

(i) For every SJ=" E Spec r there exists some SJl.. e. SpecR: with

(*) :Rr= PsatSJ? iff3'r=psatS F

for every P € CRec (~) .

(i1)	 There exists some SR. E SpecR. such that there is no

corresponding SF E Spec J= with (.).

(lii)	 However, ~f SR.. E SpecR. is convex closed, there is some

SJ: E Spec r: wi th (iIr).

Proof. (i) Take S:R. :::>{s; sX I s0esj:" A V'a€X: s{aJ~s1'}'

Then SR. E SpeeR' S:R. is convex clos;ed and t3'g(SR) := s~. Thus

F[p]£ S1' i£f C7 IR[pj)" ergIS,,-) iff 1I.[p] ~ S:R Ibyg
Proposition 11.4 and Lemma]].6). Hence (.) holds.

(ii) Consider P =: a~ stop, Q == b-+stop, and SR.. = 1<[p or Q].
Suppose (*l holds for some S~ e. Spec;:. Because '3='[pO 0] f.

:1'[P ££ oj we get Fp PO 0 sat S1" But 1<1=POO sa'S",

is false. Contradict~on.

(iii) Take SF := 0"g (S;R. J. Then (*) follows as in (1) from

proposition 1].4 and Lemma]].6. II

Theorem]'].8 A J.iveness p.r;operty (T,£) is expressible in 1<.
iff (T,£) is expressible in J:.

Proof. "if": by Proposition 11.7, (il.

"only if": Let (T,;K.) be expressible in R. Due to Proposihon

11.7, (iii) it suffices to show that (T,£l is also expressible

by a convex clOsed specification S € SpecR.' To see this we re

examine the proof of Propos~tion]0.5. Consider

l' =	 {p I P satisfies IT,£.)} .

- 58

Case 1: P=¢. Then by Proposition 10.5 S.R.(T,L) with an arbit

rary L€;£ expresses (T,£.). Since every 5r«T,L) is convex

closed, we can take 5 = SR..(T,L).

Ca5€ 2: P • ¢. Then 5 U R. [p] expresses (T, £) due to
p~p

Proposition 10.5. We show that 5 is convex closed.

Let sX, sZ € 5 and X s: y ~ Z. By the defintion of 5, there

exist P/Q € F with sX E R[p] and 52 E R[Q]. Proposition 10.5

imp)'ies P ~ Q e P _ Thus there i& some L co;:£. with

R F= P or Q ~ SF.. (T,L), Le. w~th R.[P or Q] £ SR. (T,L).

Since S:R. (T,Ll is convex closed. also

coni R[P g£ 0 Jl 1 ~ 51<. IT,Ll.

Clearlys(XuZ), sY€con(R[P or 0]). Note that there is some

p:o:ocess R wi th

5IX"Z), 5Y ERI[R] '= conlR[P or 01 J.

Because of R.[R] £. S 1< (T,L) we get REF. Thus s (X Z), sY€ S.

This proves the convex closure of S.

//

Next we :urn to the or~g~nal question of reducing finite pro

cesses to primitive ones. The crucial advantage of F over J< is

the followJ.ng algebraic law of F:

1+1 IP 0 b->O), b IP 0 Ol,b or O,b .

Note that equation (2) in Example 11.2 is just an instance of (+).

To show that T admi ts reduction from FRec (L J to FRec (Lp) we

state some aUXiliary laws which hold already in R <and thus in

F by proposition]1.4).

(J.)	 0 is commutative and assocJ.ativei it has a unit stop

and a zero div, i.e.

PO stop = P and pO div = div

{l-ij II A :5 commutative and has a zero div:

P II dl-v := div
A

(i~i) \ b has divas a zero:

d~v \b = div

{iv)	 or is commutative and assoc~at~ve; it admits distribution

by a ~ , 0 , 'b and nA ' i. e .

a----+(P or Q) " (a~PJ or (a~Q)

(P or Q) 0 R = [P 0 RI [0 0 RI2E

(P £E Q),::> P" b or 0'\ b
"

(P or QJ liAR = [P II" R I ~ [0 II" R)

By these laws ~t suffices to restrict ourselves to prirn~tive

f~n~te processes' involv~ng only

stop, a---+ and 0

I¥hen	 provinq reducib~l~tl of II
A

and '\b.

PrCDOSiuon 11 .q Parallel composit~on Il ~s reducible to FRec(2::p)
A

in R and thus in F.

Proof. Consider two restricted ~rlmitive processes P and Q. We

proceed by structural induction. If P = Q = ~ ho:ds, reduclbility

of II A follol¥s from the law

stop	 ,l/A stop = stop

in R. Otherwise P and Q can be wr~tten as

P = 0 b---tP and 0" 0 c->P

bE 8 b ceC C

with	 S,C ~ Comm. If P or Q is stop, I¥e choose B or C to be empty.

Reducibllity of I) A follows from the inductlon hypothesis and

the	 law

P II A	 0 (0 b -> [Pb II A 0) I 0 (0 c -> IP II A 0cl I
bEB"-A	 cEC,\A

o [0 b->(Pb II" 0c»
b=cEAnB<'1C

in R. / /

- 60

Proposition 11.10 Hiding \b is reducible to FRec(~p) l.n F.

Proof. By structural induction. For P = stop reducl.bility of 'b

follows from the law

stop \b '= stop

in (R andl :F. Othennse P is of the form

p = 0 a~Pa

ae A

with A ';COrnr.l. Reducibility of "b follows then from the induction

hypothesis and the following case analysl.s. If b $: A then

P'b o a-,>(P \ bl
a E A a

holds in (w~ and) 1=. If bE A we apply law (+) above which 1.S

valid only in 'F. / /

The previous propositions are summar1.sed 1.n:

Corollary 11.11 The Failure Model F admits reduction fror,)

FRec (~) to FRec (L p) .

The Failure Model originally proposed in [22] has recently

attracted much attention l.n the literature. Whereas our Fal.lure

Model r can be considered as a refinement of the Divergence Model

IJ, the ongl.nal model l.n [22] is a refinement of the Trace Model

:r discussed in Section 7. Consequently the problems concernl.ng

divergence sl.gnalled in Section 8 are also present in the or1.g

inal model [22]. This was first realised l.ndependently in work

of [39,7,32].

Our present model 1= is closest to the one proposed in [39]

and isomorphl.c to the one developed in [7] where also a complete

proof system for semantic equality of finite processes is gl.ven.

This proof system uses some additional algebral.c laws to the ones

needed here to prove reducibility of r. Closely related to the

Failure Medel F are also the models produced 1.n [33] by starting

from a general notl.on of testing related to l.deas of [25J. Models

combining aspects of Rand :F have been investigated in [40J.

The main difference between our approach to F and the pre

vious research just cited is that we have presented F here as

a special example in the general setting of specification-orien

ted semant.ics. Together with the series of models ,€, T , 1) and

1<. we hope this gives a better insight into the structure of 'F
and its relationship to the other models.

- 62

12.	 Operational Semantics

In the previous sections we studied a series of denotational

models for Communicating Processes. But every now and then we

appealed to some "operational" in tui tions about processes in

order to motivate particular design decisions (cf. e.g. the

idea of a "shble staten in Section 9). It seems therefore

appropriate to make these operational intuitions precise and

relate themith our models_

To do soe follow Milner and use the concept of transitions

[24,27,37J. The advantage of trans~tions is that an explicit

symbol r denoting an internal action allows simple def ini tions.

The drawback is of course that we lose abstraction from internal

activity - the main concern in our specification-oriented

approach. We thus start from a set

(.\.	 e) Act == COIlUTl v [1:}

of	 actions . .\n action.\. is e1ther an observable cornmun1cation

a € Comrn or t.,e internal action 7;. Transitions or rewr1ting rules
A

are	 binary relations ~ over CRec(!:) w1th A€ Act. Informally

;\.
P ----> Q

means that F can first do action.\. and then behave like Q. In

particular P ~ Q means that P can transform itself into Q w1th

out communl:atlon to its environment.

;\.
For A. e Act let ~ be the smallest relat~on over CRecn::::)

with:

(1)	 ~ has no transition.

(2) div ~ div

a
(3) (a~p)~p

(4) {P or QJ ~ P and (P £!: Q) ~ Q

d a a
(5)	 If P ~ Pl then (P 0 Q) ~ Pl and (Q 0 Pl ------+ Pl.

If P~Pl then (P 0 OJ ~ (Pl 00) and (0 0 P)~ (Q 0 Pl).

Only the first observable communication a decides

whether? 0 Q behaves like P or like Q. As long as One of

its components P or Q pursUes internal actions 1:", the pro

cess PDQ does not wi thdraw the option of selecting the

other component. This Lmplicit abstraction from internal

actions ?::: LS the essent~al difference between 0 and Milner's

operator + which satisfies for all A E Act:

)..)..)..
If P ~ P1 then (P + 0) ----'> p1 and (0 + p) --i> p, [27].

The reason for choos~ng 0 rather than + is that 0 avoids a

number of complications encountered w~th + (see e.g.

[27. Chap _ 7J).

a a a
(61 If aEA and P~Pl, Q~Q' then p II A Q ~ p, II, 01.

If >-fA and p~ Pl then P I1
A
Q~?l II

A
Q and

)..

Q I'A P -----..+ Q JJ P1.
A

b r
17} If p~ Q then P'b ~Q'b.

I~ A * D and P ~ Q then P \. b ~ Q' b.

(81 I"'!.P 2..... p[1"' l'P/ ~] .

Recursion ~s modelled by the copy rule known from pro

cedural languages such as ALGOL. Copying ~s done here as

an internal action.

It is somet~mes helpful to visualise the poss~ble transitions

of a process by so-called sYnchronisation trees [27]. These are

rooted, unordered trees whose arcs are labelled with actions

\. E Act. We shOW some typica 1 cases.

Example 12. 1

(i) div ~

~

- 64

(i i) (a---+P) .Q..!: (b..---7Q) t""
a b

(i i i) (a----HI 0 (b~Q)
a~b

B~
(iv)	 Hiding b in a synchronisation tree P simply means

relabelling all arcs b into 1:"";

P\' b - "",,-rY
b'·1'0c	

(~
b 't"

rbl

>.
Transitions ~ are extended in two ways. For words

"'I = A, ... AnE Act* let ~ be the relational prodLlct

~ >-, An-----. ••• Q ----"4~Cl

A
of the indiVidual transitions ~ , and for traces s eCormn*

we write

P =-Q

~

if there exists some we Act* with P ~ Q and s = w'\ -r where

"'I '\ 1:"" denctes the result of removing all occurrences of 'C in

side w.

We can noW' def ine the important concept of divergence in an

operational setting. A process P diverges at s if

• ",n

30 'Vn)"O 3R: p~o /\ 0) R

P is divergence free if there is no s at ·....hich P diverges. (As

we shall see in the next section, this operational definition

agrees with the earlier Definition 6.3.)

Example 12.2 (i) a.-,. div diverges at a.

(ii) diy, rt . J and (r§ .b-+j)'-.b all diverge at e· II

Finally, we introduce a modification of Milner's observational

~uivalence ~ [17,27,28]hich takes the notion of divergence

into account. ~ is defined by the follo.... ing series of equivalence

relations ~ 1 1 ~ 0, over CRee (X) :

p ~o a 1f either both P and a diverge at £

or both P and Q don't diverge ~t £ .

p Q 1f 'I s Eo Cornm• i th I s I ~ 1:~ 1+1
5 5

(iJ P~Pl unplies 3 Ql' Q~Ql/\Pl ~ 1 Ql
5	 5

(i1) Q~Ql implIes 3 Pl: P~l?l A 01 ~l Ql

P ~ Q if P ~ 1 0 holds for all 1:). o.

:ntuit1vely, checking P "':;; 1 0 medns invest1gating the synehron

isatlon trees of P and Q along all branches

w= A, .•. An

.... ith at most 1 observable communlcations Ai E CommA Since this

does not exclude branches wlth arbitrarlly many lnternal actions

L, it is in general unposslble to establish P ~ 1 Q effectively.

Exarnole 12.3 (i) (b-+P)\ b ~ P,b

(ii) ((b __ PI\' b) 0 Q "" (P,bl 0 Q

(iii)	 d1v ~)A~.!, but div '*J stop ~ dl.v.

(ivj a--io (P £!: QJ 9::: 2 (a---tP) or (a~O)

- 66

This example exibits differences between the algebraic laws ~n

the previous denotational models and the operationally defined

observational equivalence: in contrast to (iii) and (iv) the laws

div "" stop or div and

a--+(P.?!.O) = (a---+P) or (a~O)

hold in all models 'f,T,1J,R.. and F (cf. Sections 8 and 11).

The precise relationship between our ,denotational models and the

operational semantics will be discussed in the next section.

13. Cons is te ncy

To relate our specificat~on-orientedmodels with the operational

trans1 tion semantics we now add a log ical structure It- to obser

vations which expla~ns how we actually make observations about

processes. It- is defined as a relation between processes P and

observations x. We write

P If- x

and say that x ~s a possible observation about P. We require that

It- agrees with the observational equiva2.ence ~ introduced in

the previous sect~on:

Definition 13.1 A logical structure for Obs is a relation Ir- ~

CRec (E) ;>(Obs such that for any l? 0, any observa t.l.on x E Obs ... i th

level II x II 1 and any two processes P,Q E CReC(L) w~th P ~l Q

P If- x if f Q If- x

holds.

Informally, this defintion says that observations are f~n~tary

and abstract. Finitary .l.n the sense that an observation x ~nves

tigates a process P only '.lp to the equivalence ~ 1 where 1 = II xli.

(By the defintion of ::=::::: 1 thlS does not imply the effectlveness

of II-- .J And abstract in the sense that due to ~ finite linear

brancr,es of internal actions 1: in synchron~sation trees of pro

cesses P are not detectable by observations: cf. Example 12.3,

(i) and (i 1.).

We can now be precise about the desired relationship between

models ~ and the transition semantics.

Definition 13.2 Let I:O S 1: and M. be a specification-onented

model for CRec (EO) over (Obs, --I> , --tb). Then M is called (weakly)

consistent if there exists a logical structure It- for Obs such that

.M[P] { x E Dbs I p If- x}

holds for every (divergence free) process P e. CRec{L'O). More

precis ely we say that JA 1.S (weakly) consistent w. r. t. I~ .

- 66

Informally, M exactly computes the set of observations we

can make about P. If J~ is known, we abbreviate

Dbs [P J { x E Dbs I P If- x} .

Next we state a general theorem which simplifies the task of

checking the consistency of a model ..M. •

Theorem 13. J Let Eo s z: , ..M be a specification-or iented

model for CReC(LO) over (ObS,----f>,----l»), and I~ be a logical

structure for Obs. Suppose that for all processes

f (P l' .•. , P nJ E CRee (L 0) the following holds:

(1) Dbs[fIP ... ,P l] > f",,(QbS[P ,] , .. "DbS[Pn]n

"
 (2) Obs [P j = Obs whenever P diverges at E. •

Then ./Itt J.S cons is ten t w. r. t. U-

Proof. Clearly M[p] = Obs[p] holds for all finite, Le.

non-recursi'/e processes P due to (1). But some care is needed

to show that the copy rule defintion of recursions)-41'.F agrees

with the fixed point defint~on in ,.,'IIl. To this end, we consider

three types of assertions:

Am' ,""tip] > Dbs!P]

holds for every P ECRec(LO) with at most m occurrences ofr.

B , DbS[p(Q)] ,; DbS! P (R) j
m

holds for every P E RecCE") with at most m occurrences of fA
and at most r free identifiers ~ for which listsr" ... , J
Q = 0l'··· ,Or and R = R" ... ,R of processes in CRec (~O) r
with Obs[Oi] £ Obs[R] for i = l, ... ,r are substituted.i

c , Dbs[f'! .P(QI] > n Dbs! (p(Q»n(diVI]m
n:> D

holds for every P E Rec (L) with at most m occurrences of?

and at most r+l free identifiers l' l'···' I rand f for

which a list Q =. 0" ... ,Or of processes in CRee (:E" 0) is

substItuted to yield p(Q)w~th at most t as free identifier.

To I an n-fold substitution starting w~th div is applied

to yield (p(Q»)n(divl.

We wish to shoW' that Am holds for every m >.... O. But to do this we

will use the Bm'S and Cm's as well.

Clearly A and B are true because (1) and the monoton1c1ty
O O

of the operators in ~. Using (1) and the continuity of the

operators in ~ it is easy to see that

C implies B ' m m+ 1

C and Am together imply A + 1
m m

Thus to show Am' B , C for every m#O, it suffices to provem m

B implies'C

m m

So choose some m ~ 0 and assume B . Le t P a.bbrevia te P (0).
m

,Case 1 , fA! .P d~verges at

T:"en pn(d~v) diverges at E for every n ~ o. Thus C follows
m

from (2) •

Case 2: fA! . i? does not diverge at E .

Since P{,u! .PJ is the only initial transition that....... ,.P ~

)Jo- J .P can perform, we get "u.! . P ~ P ()"" l .P) and thus

Obs ifr! .p] == Obs[P(?~ .Pl] B implies that in fact m

(~) Dbs I[I"" (. P JI = Dbs [pn (I"! .P) JI

holds for every n). O. For S SObs and 1 ~ 0 we define

1,S = {XES I ~her€ II xli = 1}.

We show that

(~~) 1: Obs [pn (R 1] l'Dbs[pO(R,)JI1

holds for every n ~ 1+1 and all R ,R E CRec(.r):
i 2

Take some R e CRec(r) and consider an observat~on

)(E l:Obs [pn(R)] . S~nce "u.~ .P does not diverge at E , there is

no trans~t~on chain

A1 A k ~ R
P(R)

- 70

.... ith all .A. " i: [and the R on the RH5 denotes that occurrence,
of Rh~ch was substituted for I in P on the LHS). Thus at least

one >.. i is an observable communication, say>... i :::: a € Comm.

In otherords:)-Af.P is an instance of a guarded recursion.

Consequently, every transit~on chain

n >< 1 .•• A k

p (R)) R

needs at least n observable >.... E Corom to reach R. Hence,
pn(R) ~ I ?n(R) holds. This implies (.,..).

1 2

We can no.... verify C :
m

oObs[f'~.P] " U 1 ,Obs [f' ! P] (defini tion I: 5)
l~O

nU 1, In Obs [p I f' ~ .? I] (by (~J)

1-1: 0 r. ~ 1 + i

U In 1,ObS[pnll'\oPI] (definition 1 :S)

1 ~ 0 n.>,. 1+1

U In l'Obs[P"(di'lI] (by (*""))

1 ~ 0 :1 .} 1+1

U 1,(n ObS[pnldiVI] (definitl.on 1:8)
l~O n~I+1

U 1, (n Obs [pn ldi'l)] (by Bmand (2))
1>.- 0 n>-.O

nOb' [pn IdiVI] (definl.tion 1:5)
n~O

This finishes our proof. II

We apply now Theorem 13.3 to relate our most detailed model,

the Readiness Model R, w~th the trans~t~on semantl.cs. First we

need two auxiliary notions for processes P based on the transi

tion structure:

A

nextlPI " {A 130' p -->O}

P is stable iff r ~ next (P)

This explains the notion of stab1.1ity used earll.er in Section 10.

Now we can define a logical structure for Obs.:RIf-R

p If-J'. tt iff 3s",t:	 P diverges at s.

t

p If-J< t iff 3 0' p ~ 0 v p If-J< tt

P If-J'. tX iff (30: p~O A 0 stable 1'\ next (0) = Xl

v (P If- R. tfl

Proposition 13.4 The Readiness Model .R is consistent w.r.t. IJ--,k

Proof. Condition (2) of Theorem '3.3 holds by the definition of

II-,R For condi tion (1) let us present the crucial facts for two

of the more in teres ting cases: 0 and '" b.

(a) Crucial for proving

ObS" [P 0 0] Obs R. [p] 0" Obs..[O]

are the following two assertions:

(i) pDQ diverges at s iff P diverges at s or 0 diverges ats.

(~i) PO 0 ~ R /\ R stable ne.xt(R) = X

i E
iff 3R1 ,R2 ,X J ,X2 : P~Rl A 0 ~R2/\ R"R2 stable

/\ next(R) = X1 /\ next(R) = X /\ R = R,D R "X=X,vX 21 2	 2 2

(b) For establishing

ObsJ< [P" b] ~ Obs" [p] \J< b

we need the follow ing:

(i) P '\.b diverges at	 t
s

iff 3 s 30: s '\b = t /\ P======>O

nb

,,(0 diverges at e v Vn.>O 3R: O~R)

t

(iil P\b~RI\ R stable 1'\ next(R) X

s

iff 3s .30: s"'b=tAO\b=R P~O

'"" 0 stable /\ b ~ next (O) next (0) = X.

- 72

Then we get

Obs;<[P\b] lS\b,(s'\bIX SXEObs:K [P]Ab,* X }

{ (S'\blt"'l v S t E Obs:R. [p]

V n ~ 0: sb
n e Obs R [pn}

The dl.sjmct "st E. Obs R [p]" can be removed since it

implies Obs R [p] = Obs'R. (by condition (2)) and thus

also \;;In~O: SbneObs:R.[p]. Hence (b) follows.

The remaining operators require similar arg~~ents. II

(Weak) consistency of the more abstract models can be stated

as corollarles of Proposl.tion 13.4.

Corollary 13.5 The Failure Model :F and the Divergence Model JJ
are both consistent.

Proof. Pro?osi tions 11.4 and 10. S explal.n how to modify It- F

to obtain c·:Jnsistent logical structures !r--F and Ir- XI for

Fand::;.!!

The Trace Model T, however, is not fully consistent with the

transl.tion semantics. Already when l.ntroducing the Divergence

Model 1) In Sectl.on a we argued that the law

(.~) dl v II Corom P "" P

of T looks unrealistic. Indeed (lil') is the reason for T's

l.nconsistency. To see this look at the example P "" stop. Since

t;
eiv II Comrn stop ~ div lI stopcomrn

is the on~y transl.tion of dl.v H stop, no logical structure
camrn

It- can dlstingul.sh between div II Co.mro stop and div. Thus in

every consistent model ~ the law

div U stop = div comm

holds. But in T this law is false due to (....). (An analogous

argument applies for the Counter Model , €.)

j

Nevertheless we can state:

Corollary , 3.6 The Trace Model T and the Counter Hodel 'e
are weakly consistent.

Proof. By Theorem B. 4 we can choose for T the followinq

logical structure n-.... T :

•
P If-Ts iff 30' p===,,"o.

The logical structure II--'t' for 'e is then clear from

Proposition 7.1. II

- 74

, 4. Cone Ius ion

Starting freo a s~ple idea of process correctness we developed

a specific farm of denotational seroatics for processes, called

9pecificatia~-orientedsemantics. This approach provided a uni~

form framework for discussing a series of increasingly sophisti

cated models

Our results are

denote (weak)

for

ho

Communicating

suromarised in Diagram

momorphisms.

Processes

1 where

in a step-by-step manner.

arrows ~ (- +)

Diagram j

consistent

w.r.t. transitions

'F

liveness

11properties

safety :f)
properties I
only r

"

finite processes reducible

external nondeterminism

representable

dl.vergence representable

cyclic networksT

1
-e tree-like networks

weakly consistent

w.r.t. transitl.ons

Diagram 1 explains the purposes and applications for ~hich

these models are best suited. For example, if we wish to reason

about safety in divergence free cyclic lJetworks of processes, we

don't need the complex Failure Model r; it suffices to choose

the Trace Model T. Also the models can be combined to new Ones.

For example, for reasoning about liveness properties in acyclic

networks a simplified Readlness M.odel R- '€ with cOTruUunication

counters instead of traces would do.

A notable omission in our programming language is the notion

of state. This would allow to add assignment and explicit value

passing betw~en·processes, thus combining sequential programs

with Communicating Processes. We have not yet investi9ated all

the consequences of such an addition to our formal framework.

Bu~ it is clear that some care is needed sinCe the set of states

is usually infinite. For example, we would have to consider ob

servation spaces where the successor relation ~ is not image

finlte any more. fortunately, such a change does not invalidate

our continulty results in Section 5, but the extensibility con

dition for process speCifications tn Section 8 would reqUire a

clause ensurlng bounded nondeterminism.

In general, it would be interesting to establlsh some formal

relationship between our idea of observations and the more basic

concept of events in computatlon [44].

Also an explicit syntax for speclfications and direct proof

systems for the relation P sa~ S should be developed. This could

well be done along the llnes of [10,20,31,45]. An advantage of

starting from one of the models "e to r would be that the ques

tion of completeness of the resulting proof system could be

answered more transparantly (1,2,26,42].

Perhaps even more L~portant, we hope that our investigations

of semantical models for Communicating Processes will prOVide a

firm basis for a mathematical style of prograrnmlng which allows

a free mixture of conventional programming constructs and spec

ifications expressed as predicates [151. This style is expected

to support a systematlc development of concurrent programs from

their speclflcatlons.

- 76

Acknow ledgerlents

Preliminary versions of this paper were presented at informal

seminars in Oxford, Leeds, Altenahr, Bad Honnef, Edinburgh and

Yorktown Heights, at a meeting of the IFIP Working Group 2.2

in Venice, and at the ICALP '83 conference in Barcelona [35J.

Comments, criticism and suggestions at these meetings helped

very much to br1ng the paper into its present form. In particu

lar, we wish to thank M. Bray, C. Crasemann, L. Czaja, M.

Hennessy, G. Jones and A.W. Roscoe. The first author was more

over supported by the German Research Council (DFG) under grant

No. La 426/3-1, by the University of Kiel in granting him leave

of absence to join the Programming Research Group at Oxford, by

Oxford Univers1ty 1n providing further support, and by Wolfson

College at Oxford 1n providing a most enjoyable atmosphere for

meet1ng new friends.

References

[1] K.R. Apt" N. Francez, W.P. de Roever, A proof

system for communication sequential processes,

ACM TOPLAS 2 (1980) 359-385.

[21 K.R. Apt, Formal justification of a proof system

for communicating sequential processes,

J.ACM 30 (1983) 197-216.

[3J J.W. de Bakker, Mathematical theory of program

correctness (Prentice Hall, London, 1980) .

[4] J.W. de Bakker, J.T. Zucker, Processes and

denotational semantics of concurrency,

Information and Control ~ (1982) 70-120.

the

[5) J.A. Bergstra, J.W. Klop, An

for process algebras, Report

Centrum, Amsterdam (1983).

abstraction mechanism

IW 231/83, Mathematisch

[6] J.D. Brock. Ii.B. Ackermann, Scenarios; a model for

nondeterminate computations, in: J. Diaz, I. Ramos

(Eds.), Formalisation of Progranrning ConcE7'pts,

Lecture Notes in computer Science ~ (Springer,

Berlin-Heidelberg-New York, 1981) 252-267.

[7] S.D. Brookes, A model for communicating sequential

processes, D. Phil. Thes~s, OXford Unlv. (1983).

~BJ S.D. Brookes, On the relationship of CCS and esp,

in: J. Diaz (Ed.), Proc. 10th Call. Automata, Languages

and programming, Lecture Notes in Computer Science ~

(Springer, Berlin-Heidelberg-New-York, 1983) 83-96.

[9} M. Broy, F:~ed point theory for communication and

concurrency, in: O.Bj¢rner (Ed.), Formal Description

of Programming Concepts 11

(North Holland, Amsterdam, 1983) 125-146.

[10) Zhou Chaoc~en, C.A.R. Hoare, Partial correctness of

communicating processes, in: Proc. 2nd International

Conference on Distributed Computing Systems, Paris (1981).

- 78 -

[11] N. Francez, C.A.R. Hoare, D.J. Lehmann, W.P.de Roever,

Semantics of nondeterminism, concurrency and communication,

Jess.!.1 (1979) 290-308.

[12] N. France2, D. Lehmann, A. Pnueli, A linear history'

semantics for languages for distributed programming,

in: Proc. 21st IEEE Symp. on Foundations of Computer

Science, Syracuse, N.Y. (1980).

(13] J.A. Goguen, J.\i. Thatcher, E.G. Wagner, J.B. Wright,

Initial algebra semantics and continuous algebras,

J.ACM ~ (1977) 68-95.

[14J I. Guessarian, Algebraic semantics, Lecture Notes

in Computer Science 99 (Springer, Berlin-Heidelberg-New

York, 1981).

[15J E.C.R. Hehner, predicative programming, Part I and II,

Carom. ACM ~7 (1984) 134-151.

[16] E.C.R. Hehner, C.A.R. Hoare, A more complete model

of communicating processes, TCS ~ (1983) 105-120.

[17] M. Hennessy, R. !''Iilner, On observing nondeterminism

and concurrency, in: J. W. de Bakker, J. van Leeuwen

(Eds.) Proc. 7th Coli. Automata, Languages and

Programming, Lecture Notes in Computer SCience 85

(Springer, Berlin-Heidelberg-New York, 1980) 299-309.

[18] C.A.R. Hoare, Commun~cating sequential processes,

Corom. ACM 21 (1978) 666-677.

[1 9] C.A.R. Hoare, A model for communicating sequential

processes, in: R. M. Mc Keag, A.M. Mc Naghton (Eds.),

On the Construct~on of Programs (Carnbrigde University

Press, 1980) 229-243.

[20] C.A.R. Hoare, A c3.1culus of total correctness for

communicating processes, Science of Computer Programming

(1981) 49-72 .

• 21 I C.A.~. Hoare, Specifications, programs and implementations,

Tech. Monograph PRG-29, Oxford Univ, Progr. Research Group,

(1982) .

[22]	 C.A.R. Hoare, S.D. Brookes, A.W. Roscoe,

A theory of communicating sequential processes,

Tech. Monograph PRG-16, Oxford Univ., Progr.

Research Group, Oxford (1981); to appear in J.ACM.

[23]	 Ph. Jorrand, Specification of communicating processes and

process implementation correctness, in: M. Dezani

Ciancaglini, U. Montanari (Eds.), Proc. 5th Intern. Symp.

on Programming, Lecture Notes in Computer Science ~

(Springer, Berlin-Heidelberg-New York, 1983) 242-256.

[24]	 R. Keller, rormal verification of parallel programs,

Comm. ACM ~ (1976) 371-384.

[25]	 J.R. Kennaway, C.A.R. Hoare, A theory of

nondeterminism, in: J.W. de Bakker, J. van Leeuwen

(Eds.) ProC. 7th ColI. Automata, Languages and

Programming, Lecture Notes in Computer Science 85

(Springer, Berlin-Heidelberg-New York. 1980) 338-350.

[26J	 G.M. Levin. D. Gries, A proof technique for

communicating sequential processes, Acta Inform. 15

(1981) 281-302.

[27]	 R. Milner, A calculus of communicating systems,

Lecture Notes in Computer Science ~ (S~ringer.

Berlin-Heidelberg-New-York, 1980).

[28]	 R. Milner. A modal characterisation of observable

machine-behaviour, in: E. Astesiano, C. B~hm (Eds.)

Proc. 6th ColI. Trees in Algebra and Programming,

Lecture Notes in Computer Science ~ (Springer,

Berlin-HeideLberg-New York, 1981) 25-34.

[29]	 R. ~ilner, Four oombinators for concurrency, in:

Proc. 1st ACM SIGACT-SIGQPS Symp. on Principles

of Distributed Computing, Ottawa (1982).

[30]	 J. Misra, R.M. Chandy, Proofs of networks of processes,

IEEE Transact~ons on Software Engineering 7 (1981)

417-426.

- 80

[31]	 J. Mlsra, K.M. Chandy, T. Smith, Proving safety

and :iveness of communicating processes with

examples, in: Proc. 1st ACM SIGA.CT-SIGOPS

SyTt'l"~" on Principles of Distributed Computing,

Otta"Ja (1982) 201-208.

[32]	 R. de Nicola, A complete set of axioms for a theory

of ccmmunicating sequential processes, in:

Proc. Intern. Conf. on FOundations of Computation

Theory, Sweden (1983) j to appear in Lecture Notes

of Computer Science.

[33]	 R. de Nicola, M. Hennessy, Testing equivalences for

processes, in: J. Diaz (Ed.), Froc. 10th Call. Automata,

Languages and Programming, Lecture Notes in Computer

Sc~en::e 22i (Springer, Berlin-Heidelberg-New York, 1983)

548-560.

[34]	 OCCAM, The OCCAM programming manual (INMOS, Bristol, 1982).

(35)	 E.-R.Olderog, C.A.R. Hoare, Specification-oriented

seman:ics for communicating processes (preliminary

version), in: J. Diaz (Ed.), Proc. 10th Call. Automata,

Languages and Programming, Lecture Notes in computer

Science _~ (Springer, Berlin-Heidelberg-New York, 1983)

561-5r2.

[36 i	 S. OW1cki, L. Lamport, Proving liveness properties of

concurrent programs, ACM TOPLAS 4 (1982) 455-495.

[37]	 G.D. ~lotkin, An operational semantics for CSP,

in: D. Bj¢rner (Ed.), Formal Description of Programming

Concepts II (North Holland, Amsterdam, 1983) 199-223.

[38]	 R. Reinecke, Networks of communicating processes:

a functional implementation, Manuscript, Dept. of

Compo Sci., Univ. of Kaiserslautern (1983).

[39]	 A.W. ~scoe, A mathematical theory of communicating

processes, D. Phil. Thesis, Oxford Univ. (1982).

/401	 W.C. R~unds, S.D. Brookes, possible futures, acceptances,

refusals and communicating processes, in: Proc.

22nd I~EE Symp. on Foundations of Computer Science,

Nashvil!e, Tennessee (1981).

[41J	 M.B. Smyth, Power domains, JCSS ~ (1978) 23-26.

[42]	 N. Soundararajan, O.-J. Dahl, Partial correctness

semantics of communicating sequential processes,

Research Rep. No. 66, Inst. of Informatics, Univ. of

Oslo (1982).

[43]	 J.E. Stay, Denotational semantics: the Scott-Strachey

approach to programming language theory (MIT Press,

Cambridge, Mass., 1977).

[44]	 G. Winskel, Events in computation, Ph. D. Thesis,

Dept ..of Compo Sci., Univ. of Edinburgh (1980).

(45]	 J. Zwiers, A.de Bruin, w.P. de Roever, A formal

proof system for dynamically changing networks

(Extended Abstract), in: D. Kozen, E.rL Clarke

(Eds.l, Proc. Logics of Programs, CMU, Pittsburgh

(1983); to appear in Lecture Notes of Computer Science.

