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Summary

A process P satisfies a specification 5, abbreviated P sat S,
1f every observation we can make about the behaviour of P 13 allowed
by S. We use this idea of process correctness as a starting peint
for developing a specific form of denotational semantics for
processes, called here specification - oriented semantics. This
approach serves as a uniform framework for generating and relating
a series of increasingly sophlsticated denotational models for

Communicating Processes.

These models differ in the underlying structure of thelir obser-
vations which influences both the number of representable language
operators and thé notion of correctness expressed by P sat S.
Safety properties are treated by all models; the more sophisticated
models also permit proofs of liveness properties. An impertant
feature of the models is a special hiding operator which abstracts
from internal process activity. This allows large processes to be
composed hierarchically from networks of smaller ones in such a way
that proofs of the whole are constructed from proofs of its compo-
nents. We also show consistency of the denotatlonal models w.r.t.

a simple operaticnal semantics based on transitions which make
internal process activity explicit.
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1. Introduction

For concurrent programs - even when restricted to a particular style
like Communicating Processes - a varlety of semantical models have
heen proposed {e.g. [4, 22, 27]). Each of these different models

can be viewed as describing certain aspects of a complex behaviour

of programs. It seems desirable to bring some order intc these seman-
tical models so that one will be able to recommend each model for

the purposes and applications for which it is best suited.

This leads us to pursue the following aims in our paper:

{1) The semantics of concurrent programs should lead to 2 simple
correctness criterion, and simple proofs of correctness.

{2} The semantics should abstract from the internal activity of con-

current programs in order to allow large programs to be composed

hierarchically as networks of smaller cnes.

(3) Systematic metheds should be develcoped for generating sound geman-

tical models for different purposes and applications.

(4) Existing semantic models should related tc each cther in a clear

system of classification.

We conhcentrate here on an application to Communicating Processes and
develop a general framework in which we pursue the aims (1)-{4). In
different settings, steps towards some of these aims can also be
found in recent work by [4, 5, 8, 9, 29, 30, 33]. Let us now outline
the approach of our paper.

The Language. Informally, Communicating Processes isa pProgramming
language for describing networks of processes which work in parallel
and communicate with each other in a synchronised way [18]. But the
emphasis is here on studying the fundamental concepts involved
rather than presenting a full programming notation such as [34] .

Our version of Communicating Processes includes the concepts of dead-
lock, divergence, communication, internal and external nondeterminism,

parallel composition with synchronisation, hiding of communications,
and recursion (Section 3).



{1) Correctness. A process P satisfies a specification S, abbre-

viated P sat S, if every observation we can make about the behavicour

of P is allowed by S. We use this idea of process correctness as a

starting point for developing a specific form of denotaticnal

semantics for processes, called here specification-oriented semantics.
We begin with a set Obs cof observations together with a simple

algebraic structure and define specifications 5 as certain subsets

of Obs reflecting this structure (Section 4). The idea is that a

specification 5 describes a set of nondeterministlc possibilities

of observations. This suggests the following ordering C among Speci-

fications:

S, & 8

1 2 iff 5

This is the Smyth-order originally introduced in the context of non-
deterministic state transformers [41] : §;, & S, means that S, is
more deterministic than Sﬂ‘

A specification-oriented semantics assigns denotationally to every
process P a specification M P ] such that P sat 5 is expressed by
Sz M[P) , i.e. MI P] is within the range of nondeterminism per-
mitted by §. [Section 5). A process P is therefore identified by the
strongest specification which it satisfies. To this end, the set Spec
of strongest specifications over Obs forms a complete partial order
under & and the semantics M0I-] maps every syntactic constructor
of the programming language onto a & -continuous operator oh speci-
fications. This enables us to treat recursion in the usual way.

(2} Abstraction. Abstraction is realised in two ways.

Firstly, the hiding operator of Communicating Processes turns the
concept of abstraction into an explicit language conastruct. Informally,
hiding localises all communications on internal network .channels.
This allows us to construct a larger process by flrst constructing
its components, then connecting them as desired and finally hiding
those connections which are regarded as internal. A simple example
will illustrate this point (Section 6).

Secondly, observations themselves are disallowed to mention in-
ternal process activity. This idea is formalised by imposing -
in addition to the algebraic structure already menticned - also a
certain logical structure on observations {Section 13).



{3} Generality. The algebraic structure of observations is used

to derive two general constructions for € ~continuous operators on
specifications which are typical for Communicating Processes (Section 5).
The simplest way of defining such an coperator is by polntwise appli-
cation of a relationship g between observations, l.e. to cohsider

q*m={y|3xes:xgy}.

But this operator can be proved continugus only for a restricted class
of relations g. It turns out that most of the operators in Communica-
ting Processes satisfy this restriction, but the c¢rucial hiding
operators do not.‘These are more complicated because the possibility

of infintitely many hidden communications has to be considered., We

present an abstract analysis of such hiding relaticns g and show
that the definition

Cg(S)= OE(S) u Og(S)

yields a continuous ogperator. Here Cf;(S) is an auxiliary aperator
dealing with the possibility of divergence.
(4) Classification. In the main part of ocur paper we apply this

specification-oriented appreoach tc semantics to systematically gene-
rate and relate a series of increasingly sophisticated denotational
models for Communicating Processes (Sections 6-11). These models
differ in the underlying structure of their observations; and this
influences both the number of representable language coperators and
the notion of process correctness expressed by P sat S. This suggests
that for each particular application the simplest adequate model
should be chosen.

The simplest model is the Counter Model ¢ which reflects the idea
of separate channel histories [20, 21]. We show that ¥ can deal ade-
guately only with acyclic or tree-like networks of processes. Arbitrary
networks require the Trace Model T instead [19, 30) . However, both ¥
and 7 are unable to deal satisfactory with diverging processes.

This requires a further refinement of our observations leading to
the Divergence Model J.
In €, 7 and 0 only safety properties can be described by P sat s.

Also the concept of external nondeterminism is not yet available. Dea-
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ling with the full language of Communicating Processes and with simple
liveness properties calls for the more sophisticated Readiness

Model R [12, 20]. We characterise the kind of liveness properties
which are expreasible in R . By studying the algebraic laws of R

we find that there are finite, i.e. non-recursive processes which
are not reducible to simple nondeterministic ones. This shortcomming
of R 1is avoided in the Refusal or Pailure Model ¥ [22, 7, 39]

which makes slightly more identifications among processas than R -
without affecting the expressibility of its liveness properties.

In all these models a continuous hiding operator i3 available in full
generality. The relationships between the models is established by
(weak) homomorphisms,

The denotational models are related with a simﬁ)le operational
semantics based on transitions representing both external and
internal process activity (Sections 12 and 13). We show that the
models &, R and F are fully consistent with the operational seman-
tics, whereas ¥ and T are consistent only for divergence free pro-
cesses. These results are obtained as an application of a general

consistency theorem which relies only on the logical structure of
observations.
Finally, we assess our approach and indicate further directions

of research (Section 14}.



2. Preliminaries

This section describes the general format of our programming

language and dencotational semantics (cf. [13,14,43]).

A sigpature 2 consists of a set (g e ) Id{¥ ) of identifiers
and a set (fe) Op(X) of operator symbaols each one with 2 certain

arity n» 0. Every signature X determines a simple programming

language, namely the set (P,Q e} Rec(Z ) of (recursive) terms over

Z as defined by the following BNF-like syntax:
P = f(P],...,Pn) where £ has arity n ] § I /ug.P

The recursive copstruct /u.f - [3] defines a bin@ing occurrence of

¥ 2rd induces the usual notions of free and bound identifiers. By
CRec (2 ) we dencte the set of all closed recursive terms,i.e. without
free identifiers. FRec{Z ) denotes the set of all finite, i.e. closed
terms P € CRec{ X ) withour any occurrence of a recu}.ive construct

M inside P.

For MY¥.P. QeCRec(Z) let P[Q/¥] denote the result of substi-
tuting Q for every free occurrence of [ 1in P. Since § is clear
from the context ME .P, we also write P(Q) instead of P[Q/';] .
This notation extends to n-fold substitution by defining PolQ) = Q

and ™ @) = pP"(Q)).

Let & be a partial order w.r.t. € . A subset X €0 15 directed
if every finite subset of X has an upper bound in X. D is a epo
{complete partial order) 1f it has a least element L and if every
directed subset X £ D has a limit (least upper bound) UX in D .

If D is a cpo, so 1s A" = Dx ...xD (n times), with component-

wise ordering.

An operater 9 : £ — £ from one cpo £ into anather cpo ¥ is
called strict if 1t preserves the least element, monotonic if it
preserves the partial order £ , and continugus if it preserves
limits of directed sets, i.e. if @ (LIX) = Ll QI{X) holds for every
directed X ¢ . Of course continuity 1mplies monotonicity. We re-—
mark that an n-place operator §: D "—> D is continuous iff it is

continuous in every place.

By Knaster-Tarski's fixed point theorem every monotonic dperatcr
¢): LD —r D has a least fixed point fucd) in £ . If @ is also



continuous, £ix ¢ can be represented as

fix® = WU{d 11|20}

where $°(d) = d ana O™ '(a) = P(P"(d)) holds for all ded .

A (denotaticnal) model M for CRec(2 ) consists of a cpo 3_.“ and

a set {f_’,,,L | £ eo0plX )} of continuous operators

Lt Du=»...x -DA — Dy . M induces a straightforward denctatio—
nal semantics J[-] for CRec(Z ), in fact for Rec{} ). Let (e}
Val be the set of wvaluations, i.e. mappings Vi IA(Z) — D, -
Then

ME -1 RectIZ ) —(val—s D)

is given by

(1) ML, ....e 3] vy = £u (MIR ] vy, MIR ] (U
{(iiy MOE] (v = VviE)
(111} ML g 2] (V) = fax (Xd. M 2] vidsg] )

where V[d/f] is the valuation identical with U except at ¥
where its wvalue 1s d € D . For closed terms P€ CRec(X ) we write
MIUIP] instead of M[PY (V) .

In the following we assume that there exists some O—ary sympgol
f € op(Z) with £, =L . For simplicity let | itself dencte this
symbol. For P € CRec(X) let P; be that finite term which results
from P by replacing every occurrence of the form ME-R in P by L.
For P,Q € CRec(z ) we write P}—Q if QO results from P by replacing
one occurrence of the form /ug.R by RI( /.LE.RJ. Terms Q  with
PI—*—Q (reflexive, transitive closure) are called finite (syntactic)
approximations of P. Note that PF— Q implies MIP] = ME Q] and
Mla, )} & m{er]. the family { Mo ] | e } is directed,
and the continuity of the operators in M implies

(#) MIel = L {MIo T | eta}

Thus every P 1s semantically the limit of its finite syntactic
approximations, Thls representaticon is sometimes helpful when proving
properties about denotational models M.

An {algebraic) law in AL is an equation

P =20



with P,Q & CRec(E ) such that M[P ] = M[0] holds. For signa-
tures L1 and T2 we write 31 € X2 if Op(Z1) € Opl(ZX2) holds.
Let M be a model for CRec{%¥2) and £ 1 & ¥ 2. Then the 2 l-reduct
MT 51 is that model for CRec!( 3 1) which consists of the cpo D
of M and the subset {f, | £€0p(Z1)} of operators.

let M, NN be models for CRec(¥ ). A (weak) homomorphism from AL
to W is an operator (D: Dy — Dy such that

Pep@,--an = (53 £ P@p, ... P

holds for all feOpl(X) andd,,...,d. € D, .

1 I

Proposition 2.1 Let 4, N be as above and ¢ be a strict and

continuous{weak} homomorphism from A to AN . Then
$emflely =2y ¥ P]
holds for every P € CRec{(Z ).

Proof. As above we may assume | € Qp({X ). Continuity of (‘p leads

to

Qimiz]y = L{Qcalay] v | pHa}

for every P& CRec(3 ) due to (x}. Strictness and the (weak) homo-
morphism property of  yields

Qitmla, Jr=t8) Wa, ]

for every Q with PILQ by structural induction (and the monotoni-
city of the cperators in N ). //

Finally, we recall some set-theoretic notations, If A is a set,
P (M) denotes the powerset P(A) = {X | X € A} of A and |A] the
cardinality of A, Besides the usual cartesian product Ax B of sets
A and B we consider the follwing inner product 4 ®& B for families
A and B of sets:

A®B = {AxB | AeA andBeBR} .

Note that A@ B % AxB . For relations g¢ Ax B and subsets X< A,
YEB let a(X) = {b | Jaex: agb} and g ' (¥) ={a|idevr:a g b} .



For singleten sets we write g(x} and gb1 (y) instead of g{{x1})
and 9-1( {v}). Wwe call g5 A= B domain finite if q-1 {(y) is finite
for every y€ B, and image finite if g(x) is finite fOr every x €A.
The praduct ge h of relations g« AxB and he B=C is defined by

a (geh) ¢ iff IbeB: agbabhecec.

A relation — £ A= A is called well-focunded if there is no infinite

chain

te =3 A, = A, ~3a

3 2 1

of elements a, in A. The reflexive, transitive closure of a relation
L.
-~ S Ax A 1s denoted by —

The notation V [d/f] wused earlier is generalised to arbitrary
mappings f: A — B and elements a€A, beB by defining f[b/al: A—B

as follows:

b 1f x = a
flb/a)(x) =

fi{x) otherwise

For sets X,Y,Z € A we define the ternary majority operator -(.]- by

X[Y¥]12 = (XAaY)ui{YnZlu (XnZ)

Thus an element is in X [Y¥] Z 1ff 1t 1s 1n the majarity (i.e. 1n at
least two) of the sets X,Y¥,2. This operator enjoys a number of
algebraic properties. We state here only

X[Y¥71z=X[Y]7%

where ~ denotes the complement in A.



3. Communicatlng Processes

A process can engage in certain chservable communications and

internal actions. We are interested in networks cof such processes
which work in parallel and communicate with each other in a syn-
chronised way. This section defines Communicating Processes as a

langyage CRec (X } which describes how such networks can be con-
structed. The emphasis is here on analysing the fundamental con-
cepts of communication and parallelism rather than on presenting
a full programming notation as done for CSP [187] or occaM [24].

Formally, we start from a finite set or alphabet {a,bé&) Comm
of communications. In OCCAM e.g. Comm is structured as Comm =

Cha = M where Cha is a set of channel names and M is a set of
messages. But for simplicity we shall not exploit such a structure
here. The signature X of Communicating Processes consists of a
set Id(X) of identifiers ¥ and the set

op(Z) = {stop, divlu {a— | a € Comm } u{gg,ﬂ}

v {l]A | Ac comm | ui\b] hEComrn}
of operator symbols. Teo fix the arities and some notational con-
ventions we exhlbit Rec (X ):

P ::= stop| divja—P|Porq|P0o]
Pll, 0le~p| & ) mg.p
The closed terms in CRec{ZX ) are also called processes.

The intuitive meaning of processes is as follows: stop denctes
a deadlocked process which neither engages in a cammunication nor

in an internal action. div models the diverging process which

pursues an infinite sequence of internal actions. a =P first
communicates a and then behaves like P. This concept of prefixing
is a restricted form of sequential composition. P or Q models
internal or local nondeterminism [11]: it behaves like P or like

Q. but the choice between them is nondeterministic and not control-
lable from outside. In contrast P [] Q models external or global
nondeterminism [11): the environment can control whether P ] Q
behaves like P or like Q by choosing in its first step either to
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communicate with P or with Q. Compared with the original CSP [18]
P or Q reflects the concept of a guarded command with true guards
[true—>P 0 true —»¢ ] and PO Q corresponds to a guarded command

wlith communication guards.

P "A Q introduces parallelism: it behaves as if P and @ are-
working independently (asynchroncusly) except that all communi=-
cations in the set A have to be synchronised., By varying its
synchronisation set A parallel composition IIA reaches from
arbitrary asynchrony ! Ilg) to full synchrony ( "Comm)' We remark
that semantically asynchronous parallelism will be modelled by
interleaving. While this simplifies the presentation of all our
denotational models and the operaticonal semantics, there is no
inherent difficulty to consider also non-interleaving semantics
(cf. e.g. [29]).

P\ b behaves like P, but with all communications b hidden or
unocbservable from outside. Hiding brings the concept of abstrac=
tion into Communicating Processes. For simplicity we have omitted
full segqguential composition P;Q. There is, however, no difficulty
in modelling this concept [19,22]. Alse ~ 1f Q does not diverge -
the effect of P:Q can be simulated by parallel composition plus

hiding, i.e. we can define
P:q = (P il[‘/}(\/—} QHINV

where the special communication / reports successful termination
of P [19].

Besides the full language CRec(X ) we consider two sublanguages
CRec(2.1) and CRec({X 2) with Z i€ X2¢ X .

- X2 is obtained from 5 by removing U from OplZ}.

- Z1 is obtained from X2 by restricting parallel composition
i A€ Op{Z1} to the case of |A|€ 1.




4. Observations and Specifications

It is quite easy tc express the intuitive understanding of processes
cperationally in terms of transitions (see Section 12}. But this
formalisation has one severe disadvantage: it does not abstract
from internal actions. Such an abstraction is essential if we want
to compose large processes hierarchically as networks of saaller ones
and prove that these networks meet a given specification [10].

We develop therefore a different appreoach to the semantics of
processes, called here specification-oriented semantics, which is
based on the concepts of observation and specification. Qur moti-
vation is to express process correctness in the following uniform

way: a process P satisfies a specification §, written as

if every chservation we can make about P is allowed by S. To realise
this aim, we develop both a logical and an algebraic structure for
cbhservations. The logical structure tells us how we make an obser-
vation about a process and thus determines the notion of process
correctness; and the algebraic structure provides a basis for deno-—
tational domains with continucus operators on sets of pbservations.
These structures will be presented stepwise in several stages. Here
we explain the simplest algebraic structure common to the refine-
ments later on.

We are interested in observations we can make about the behavigur
of a process P during 1ts operation. This intuition leads us to pos-
tulate a relation —p between observations which reflects their
possible ordering in time: x —p y means that observation y can be
made immediately after x, without intervening observation.

Definition 4.1 A simple observation space is a structure (Obs, — )

where (x,y € ) Obs 15 a non-empty set of cbservations and —p is a
relatjon — < Obs x Obs with:

(01) —p is well-founded.

(02} — is domain and image finite.

Conditicn (02) simplifies the development of the theory (ef.
Definitions 4.3 and 8.2). Let



Min= { xe€obs | - 3yeobs: y—bx } .

Note that Min * ¢ because of condition (01) and Obs * @. By a
grounded chain of length n) O for x we mean a chailn
X,—b ...—P x_ = x with x € Min. Due to (01} we can assign a

level § x| to every observation x:
Ix} = min { n I J grounded chain of length n for x} .

Informally f{ x | measures the minimal progress a process has made
up to observation x. Note that x—py implies Jyd & IIxli+1.

Example 4.2 Consider as observations the set
-
(3,t€) ObST = Comm

of words or traces over the finite communication alphabet Comm

with £ denoting the empty trace. Define the relation —& <

Obsrl ObsT as follows:

s—p t iff FaeComm: s:a =+t
Then (ObsT,——D ) is a simple observation space. And s X5 ¢ holas

iff 5 is a prefix of t, abbreviated sg t. Note that here every
trace s has exactly one grounded chain

E —...—P s

The assumpticn of a finite alphabet Comm (see Section 3) allows
us to work with image finite relations throughout this paper, a
substantial simplification of the theory. //

Given a simple observation space (Obs,—) we can now talk about
specifications over {Obs,— ): these are by definition simply sets

S € Obs of observations. We say 5 allows every observation xe S.
The idea is that 5 describes a set of nondeterministic possibilities
of observations. This suggests the following Smyth-like ordering
among specifications [41]:

S, & 5, iff 5, 2 5, .

S.I = .‘:-‘.2 means that 52 is stronger or more deterministic than ST
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or equivalently that S5, is weaker than 52. In particular Obs

itself is the weakest specification allowing every observaction.

We are aiming at denotational models M for CRec(X } which
assign to every process Pe&CRec(Z) a specification M{P] using
ordering E. But to do so the vM[P] must be special sets of ob-
servations, called here process specifications, which reflect the
algebraic structure of Obs.

Definition 4.3 A process specification over (Obs,—) 18 a subset
5 & Obs with:

(S§1) S includes Min: Min € 5.
(82) S is generable: VYx€S5-—Min Jye€sS: y —b X

A specification space over (Obs, —P ) is a family (5,T ¢) Spec &

P (Obs) of process specifications such that Spec forms a cpo w.r.t.
ordering 2 .

Since —P is domain finite, the set of all process specifica-
tions over (QObs,—0 ) forms a specification space, called the full
specification space.

Example 4.4 Take (Obsj.,—-D )} of Example 4.2. A subset § C Comm™*
is called prefix-closed if t€5 and s £ t always imply s€5. Then
the set Spec; of all prefix-closed subsets S g Comm™ with €€ s

is the full specification space aver (Obs , —D ) [19]. ¢/

If Sp.vec1 and Spec2 are specification spaces aver (Obsi'—'b1)
and (Obsz.—-bzl then the cartesian product Spec, > Spec, is of
course a cpo with componentwise ordering 2 (cf. Section 2).
Additiof\ally, the sets SxT € Spec.l 2] Spec;> (inner product) are
process specifications over the product observation Space

(Obs.l x Obsz,-—b.lz)

» Obs . :

where -—912 is the following “interleaving relation" on Oba.l 2

(xl,sz—D12 (Y‘I’YZ) 1f either x1—91 Y, and X, "y,
or x; =y, and xz‘—Pz Yy

i.e. the pair makes a step when either component makes a2 step.



Since the natural ordering 2 on Sper_'.I [>2+] Spec2 is isomorphic with

the componentwise ordering on Spec, and Spec., in the sense that

1 2

S,l)cS2 @ TTxT iff S.|ET and S.2 7T

2 1 2 2

holds for all S1,T1eSpec.l and Sz,Tza‘Specz, it follows that the
inner product Spec ® Spec
(Obs.l, x Obsz, —. ).

2 i5 indeed a specification space over

12




5. specificatign—criented Semantics

We can now be precise about the desired form of semantics.

Definiticn 5.1 Let S0 € £ . A specification-oriented model

for CRec (X 0) over (Cbs,—P ) consists of a specification space
Spec over {Obs, — ) and a set { £, | f € Op{Z0)} of 2 -con-
tinuocus operators on process specifications 3 € Spec.

A specificaticon-oriented semantics for CRec(Z 0} is a denctational

semantics [ -] induced by a specification-oriented model W for
CRec{Z Q).

Correctness of processes P € CRec( Z0Q) w.r.t. a specification
S e Spec Ls expressed by correctness "formulas" P sat S interpreted
as follows:

M= P sat s 1£f M[P] & s

This is of course an lnvariance principle: every oObservation as-

signed to P by .V should be allowed by 5. However, as we shall see
later ¢n, by varying the structure cf cbservations both safety and
{certain) liveness properties of Communicating Processes can be ex-
pressed in terms of sat.

This clarifies the domains of our sematical models A and the
notion of process correctness. Next we exploit the simple algebraic
structure of observations and process specifications to derive some

results for constructing 2 -continuocus operators an specifications,

Let Spec1 and Spec2 always denote specification spaces over
(Obs1,—b1 } and (Obsz,—bz). We wish to construct 2 -continuous
operators

C_: Spec

g —> P(Obsz)

3
working on process specifications by starting from relations

g & Obs, x Obs,

which describe the desired effect of Cg "pointwise" for single ob-
servatcions.
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The simplest way of achieving this is to take the pointwise
extension Og: Spec,—> p(Obsz) defined by

O’g(S) = {yeObs2 | Ixes: xg v} = g(5) .,

Clearly, ¢_ is 2 ~monotonie, but not every relationship g induces

a 2 -continuous O’g.

Proposition 5.2 If g is domain finite, the operator O’g is

2 ~continuous.

Proof. Since O’g is monotonic, it suffices to show that for every
directed family {s | ie I} of s € Spec,

Q O4t5y) € O'q(osi)

holds. Consider some y & @g(m S,). Then M $,n g"‘ {y) = @. Since
i i
g-T(y) is finite and {Si 1 ie I} 18 directed, there exists some

jeI with s n g 'ty) = "@. Thus also y ¢ ﬂc}g(sl)- /7
i

As we shall see in the following sections, most operators for
Communicating Processes are induced by domain finite relations g.
But the important hiding coperators are not.

Example 5.} Take Spec, of Example 4.4. For observations (i.e.

»*

traces} 5,t € Comm we define

s gt iff s\b =¢

where s\ b is obtained from s by deleting or hiding all occurrences
cf b in s. Then g is not domain finite; and indeed

O’g: SpecT-—b_'P(Com*) is not 2 -continucus as socon as fComm[; 2
holds. Take e.qg.

Sn = ‘[é,b,...,bn}u {bnsl seComm*}

for n2» Q0. These Sn form a chain SOD ...25_2

2 " «.s 4, but

N Ogisy = am—{p})" ¢ {e} = O,(Nsy .
n

n

74
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We present now an abstract analysis of such hiding operators
based on the relation —f» between observations. First we intro-
duce a new operator O’;’: Spec, — P(Obsz) by

{ =2 "
O:(S) = 1 y‘l 3y&0b52 Jxes: (X gyaay—P 2 Y'J}
L -]
where 3 means “there exist infinitely many". Informally speaking,

(j;(S) diverges from y onwards if there are infinitely many X €S
related to y by g. Instead of & _ we will use the augmented opera-
tor Cg: Spec,—* P (0Obs;} defined by

@
C = s .
g,(5) O’g( v @'q(Sl

Continuity of Cg'can be shown for certain well-behaved relations g.

Definiticn 5.4 A relation g € Obs, = Obs_ is called level finite

1 2
if for every y60b52 and 1> C there exist only finitely many
X € g-1(y) with level | x|} = 1, A relation g £0bs,x Obs, is callea

commutative 1f —p 1° 49 S ge N 2 holds.

Note: 1f the set Min,i g(‘)k:as1 of "minimal"” observations in Obs.l
15 finite, every relation g(_:0b51x0b52 15 level finite. This
will be the case i1n all ocur applications to Communicating Pro-

cesses.,

Theorem 5.5 If g is level finite and commutatlve, the oOperator
(= -]

C = is 2 -continuous,

g% v g

Proof. Since C_ is monotonic, 3t suffices again to show that for
every directed family {Si[ ier} of S, € Spec,

ch(si) < cg(('i\ s

holds. Definme S = () S, and consider some y' § C,($). Let

1
Y= {y| YLDZ y'} . Then Y 1s finite because ibz is well-foun-

ded and domain finite. Thus by the definition of Cg:
: -1

(i) Sn g (y'y = @.

(1) S~ g '(¥) is finite.
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Define 1 = max {k | Ixesng (vy: [ x || =k } . Note that 1€ N_
exists due to (ii). Since g is level finite, there are only finite-
ly many xe g‘1(Y) with | x | £ 1. Since {Sj_ | L€ I} is directed,
there exists some Sj such that for all x with [ x| € 1+1:

. =1

{ii1i) x¢sjng y'}.

(iv)  x€s)n g7 (¥} iff x € S g L (¥).
Suppose now that y' e Cg(sj) holds.
Case 1. Sjn gd1(y') ¥ @

By {(iii) there is some x € S]n q-w(y') with f| x || > 1+1.

Case 2. s.ng '{y') = p
Then S.n g '{(¥) is infinite by the definition of C_. Thus
there j.s]some x € 5.n gF1(Y} with x € SA g ' (Y). By (iv) we
conclude | x || > 1+1.

Hence in both cases there is some X €850 g'_1 (¥y with {l x> 1+1.
Consider some y€Y with x g y. Since Sj is generable, there is a
grounded chain

xc_°1"'_‘>1 X, o= x

in $.. Then there exists some i with 0<i€ m and | X, Il = 1+1.

Clearly

*+
X, (—,°9) vy

holds. Commutativity of g implies
x. (geo—2p
;9 2 Y

and thus also x, €5.n q-1 (¥). By {(iv} also xj‘_ € Sn g-1 {Y). But
then | xy Il €1 by the definition of 1.

Contradiction,

Hence y' & ch(si) , which is what had to be proved. //

We remark that the proof of Theorem 5.5 does not use the general

assumption that the relations —, and —b , are image finite.
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Example 5.6 The hiding relation g of the previocus Example 5.3 is
level finite and commutative. Thus Cg 1s continucus: for the chain

5 2 ...25_ 2 ... we get
o n

1/

Above we considered only operators of one argument, but dealing

with several arguments is easy: we just take the inner product & of
the argument specification spaces according to Section 4. Note that
neither Propcsition 5.2 nor Thecrem 5.5 claim that Crg cr Cq yields
a process sPECification in Spec2 when applied to a process speci-

fication 5 € 5pec1. This guestion will be treated separately in the
individual cases.
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6. The Counter Model ¥

In the followirg sections we study a series of increasingly so-
phisticated specification-oriented models for Communicating Pro-
cesses. These models vary in their choice of observations, and
this will influence both the number of representable language
operators and the induced notion of correctness.

Here we start with a very simple model for the sublanguage
CRec{ X 1) of Communicating Processes where parallel composition
is reatricted to the case of {A|£ 1. We imagine that the only
thing we can observe about a process P is how many times each
communication a € Comm has occurred up to a given moment [ 21].
Formally, we define the set of gbservations by

(he) Ohs,e = Comm — NN
o)

i.e. for each communication a there 1s a separate counter. Obs.,

is a simple observation space with the following relation —d
h—p h' iff Ja € Comm: h' = h{h{a)+1/a]

i.e. h' differs from h in that exactly one counter is incremented
by 1. Then n=2p n' means that h{a)$ h'(a) holds for every a €Comnm
(h £ h' for short). Let ZERO denote the constant mapping h with

h{a) = 0 for every a € Comm. As process specifications we take the

full specification space Spec¢y consisting of all generable sub-
sets S ¢ Obsy, with ZERDES.

The Counter Model € is now given by Spece and the following
set {fe | fe Op(ZH} of operators on process specifications
S which formalise the intultions about processes explained in
Section 3 (sSince € remains constant throughout this section, we

drop all indices € at operators £, ):

{1) stop = { ZERO }
(2) div = Obsy

This definition reveals a general strategy of specification-

oriented semantics, namely to identify all "undesirable parts”



of processes P with S = Obs, the weakest specification in the

> -prdering. By a "part" of P we mean the subseguent behaviour
of P after some initial observations have been made. In this
paper we will consider as "“undesirable"” all parts of processes
which can diverge right from the beginning, i.e. engage in an
infinite segquence of internal (hidden) actions. The simplest
example of such a part is the process div itself. In general

a divergence can be introduced 1nto a process either explicitly
via div or explicitly via recursion or hiding {see below). These
ideas will be discussed again in Section 8 and made precise

later in Sections 12 and 13,

a—s = {2ERO} u {h[h(a)+1/a] | nes}

To ensure that this operator is 2 -continuous we cheCck the

relation g with
h g h" iff h' = ZERO or h' = h[h(a)+1/a]

Clearly a—S5 = C?g(S). Since g is demain finite, Proposition
5.2 implies the 2 -continuity of C?g. Also it iIs easy to see
that C?g preserves the generability of 5.

S, 0r 5, = 5,u5,

This definitjon exhibits another typical point about specifi-
cation-oriented semantics: due to our Smyth-like ordering &
among specifications (internal) nondeterminism is modelled by
set-theoretic union. Then

8, 5, iff 5,2 5, iff 5, = S, or S5,

which accords with the idea that S, is more nondetemministic

1
than 52 (cf. Section 4).

s,0,5,={n|3nes, In€s,: (n,,hy) gh} = Oy ts,,8,)
where g relates the product Obsy, x Obse wWwith Obsg by:

“’1’*‘2’ g h iff Yagha: hia) = h1(a) = hz(a)
and
Vad¢ha: hia) = h,(a) + h,(a)



This formalises the intuition that 51 and S, work independent-
ly except for communications mentioned in A. Clearly g is

domain finite, and thus 3‘; 2 -continuous by Proposition 5.2.
But Gg preserverves generability of specifications S.I and S2

anly thanks to the restriction |Al£ 1 in Z 1.

For |[A|»> 2 our simple definition of "A does Not necess-—

arily ensure generability. For example, 5.| = a— b-—» stap
and 52 = b-3a-—s5tgp denote generable specifications in

SPEC'C , but

Sy lia,p} 2 = (zEROlu{n | nia) = him) =1 }
A N¥c # a,h: hic} =0

does not. Informally this is because we cannot observe

relative timing between different communications in the

Counter Mcdel € . A similar problem, known as the merge
anomaly, can arise 1n lecosely coupled nondeterministic
dataflow networks [6,9]. As we shall see now, generability
of process specifications 1s vital for proving the continu-

ty of the hiding operator \b.
{(6) S\ b: we consider the relation g ¢ Obs‘e = Obsy with:
(o) hgh' iff h'(b) = @ and Ya %# b: hla) = h'(a}.

Intuitively, g hides all communications b in h. Note that g
is not domain finite any more. And indeed, O'g is not

2 —continuous as can be shown analogously to Example 5.3,
But g is level finite and commutative. Thgs Theorem 5.5
implies the 2 -continuity of the operator

c. = o
g = Ogv Oy
which leads us to define S\ b as follows:
s\b= {bh ! hib}) =0 Fny0: hin/mw] c 5}
o=
v{h'{ 3nsh' Inyo: aln/ple s }

The infimty clause of this definition accords with the
principle of specification-oriented semantics to identify
"undesirable parts" of S\ b where infinitely many hidden b's
are possible with the full set Obs, . We remark that 5\b



preserves the generability of 5 € Spece

I+ is interesting to note that S\b = G‘gu O; is net

€ - contiuaus for arbitrary specifications 5 £ Obsg .

Look e.qg. at

s = {zero} v {n |
for ny 0. Of course

S 2...28_2...
o n

hip)y n}

holds with (s = {ZERO} . But
n

M {S_\b) = Obsy *

n

{2ERO} = (Q s )\b .

Thus generability of specifications is essential for the

continuity of the above hiding operator S\ b.

This finishes the definiticon of the Counter Model ¥ . It induces

a specification-oriented semantics €[ -] for CRec{X1) accord-

1ng t¢ Sections 3 and 5. If
ing in parallel as netwcrks
ised communications between
A€ 1 10 £1 means that we
like networks. For example,

work

we plcture processes P1""'Pn work-
with PT""’Pn as nodes and synchron-
Pi and Pj as arcs, the restricticn

can construct only acyclic er tree-

we cannot construct the cyclic net-

We can at best construct a tree-~like subnet of 1t, e.g. by

(P ”{a} Q) "[b} R we get

wlth arc c missing between Q and R. Next we will study a typical

example for tree-like networxs: a chaln of buffers.
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Example 6.1 Consider for n» ! and a,b € Comm the follaowing

specification:

BUFF (a,b) = {h | hib)sn(al€ h(b)+n }

A Y4 % a,b: h(d} =0

Then BUFFn(a,b) specifies a process which engages in communi-
catlons a and b such that the number of h's never exceeds the
number of a's and additionally the number of a's never exceeds
the number of b's by more than n. This process can be visualised

as an n-place buffer

BUFFn{a,b)

which "inputs" a stream of a's and "outputs" a corresponding
stream of b's in a buffered manner. Note that BUFF (a.b) € Spece .

It is easy to express 1-place buffers in CRec( 2 1) : indeed with
P(a,b) = /-Ag.(a—rb—ﬂyg)
we get
€[ pa,b) ] = BUFF, (a,b)

To construct larger n-place buffers hierarchically from simple
1-place buffers we use parallel composition and hiding. Let us
demonstrate this for the case "n = 2". To built BUFFz(a,b) we
first construct a "chain" Q of two l-place buffers:

Q = Pla,c) "{c} P{c,b}

or in graphical terms

a c b
Q = — Pla,c} !— P({c,b) ———

The resulting process behaves like a 2-place buffer except for

the intermediate communications C:



efal= {n | nblghniergh(a)s hic)+1& hib)+2 }

A ¥d ¥ a,b,c: h(d) = 0©

To obtain the desired result we therefore internalise or hide
all ccommunicatins c:

Q\c = (Pla,c) || {c} P{c,b))\¢c

or in graphical terms

a c b
QN\Nc = Pla,c) P(c,b}

This construction yields indeed

€[ eiare) feoy peebNe ] = BurE, (a,m)

4 "direct” construction of a 2-place bhuffer is given by
R=a-— ut.{la—=b —g) or (b —=a— g}

with €[r] = BUE‘FZ(a.b)- /7

In the example we dealt with semantic egualitz. e.g. we showed
that P(a,b) behaves exactly like a 1-place buffer, and 0\ c exact-
ly like a 2-place buffer. Let us now consider the notion of process
correctness lnduced by sat. Clearly

€= Pla,b} sat BUFF, (a,b) and

= QN\Nc sat BUFF, (a,h)
But since BUE‘Fn(a.b} = BUFFnH(a.b), we alsoc have

Y= P{a,b} sat BUFF (a,b) and

n+1
@ b= QNc sat BUE‘E‘n+2(a,b)

for all n» 0. This means that we cannct use correctness reasoning
based on €m=P(a,b)sat BUFE‘n(a,b) to ensure that a buffer has a
capacity of at least n.



What is worse, since
ffg stop sat BUFFn[a,b) .
we cannct even ensure that a buffer does anything at all. But the

concept of "doing something" is already a liveness property of a
process;

this will be treated fully in Sections 3 et seqg. First

let us refine the Counter Model ¥ to a model which can deal with
cyclic networks.



7. The Trace Model T

To treat CRec (X 2) allowing cyclic networks of processes, we
must be able to observe also the relative order of communications.

This leads to the more informative observation set
P
(s, €) Obs, = Comm

of traces over Comm [19,30]. Obs 4 induces the simple observation
space (Obs ., ,—® ) and the full specification space Spec, ex-
plained in Examples 4.2 and 4.4.

The Trace Model T consists of Spec p» and a set
{ £y | £€0p(32)} of operators defined as follows (agiain we
drop indices T at £, ):

(1) stop = {&}
(2) M = ObST
(33 a—»s = {&} v {as | ses}

{4} S, or 5, = 5, U 5

1 2

w
1]

1”1-\ 5 {sl;‘:‘r_1es1,tzes:se(t1f|At2J}

Here l:1 ”A t2 denotes the set of all successful interleavings
of t, and t, with synchronising communlcatiocons in A. Using
the notation a-s = {a's | ses5} we can define t (|, t, 1n-

ductively as follows:

{e}

iy ell,e =
(ii) as HAE = €||Aas=
[v.] if ae n
a-is il £ ) if ad A

(ii3) as ||, bt = bt ||, as =



a-(s[lAt) if a=ben
@ if a ¥ bAa a,bea
a-(s "Abt) if agAaabeA

a-i{s "A bt) u b-(aslA t) if a€AAbEA

(6) s\b = { s\b | ses}
vits\b)t | tecom™ A Wnyo: sbhes }

whera s\b results from s by removing all occurrences of b in s.

This c<ompletes the definition of the Trace Model 7. As with the
previous model '€ all operator definitions of T can be derived
systematically from appropriate relations g on traces and thus
shown to be 7 -continucus (for S\ b see alsg Example 5.3).

To relate the models J and ¥ we consider the pointwise exten-

sicn O’g of the following relation g € Obs,__ x Obs,e:

T
5 g h iff YachA: h(a) = a# s
where a#Fs denotes the number of cccurrences of a in s. Clearly

Og(SJE Specy holds for every S € Spec .

Proposition 7.1 For every process P € CRec (3 1) the eqguation

Og(T[P_‘I]) = €[ ?] nolas.

Proof. By Propasition 2.1 it suffices to show that J_ is a strict
and 2 -continuous homomorphism from the reduct T[T 1 to €.
Since g is domain finite, the 2 -continuity of (¢ follows from
Proposition 5.2. The homomorphism property of O’g (which implies
here strictness) is easy to verify; only the parallel composition
needs some care:

O glsy iy - 8y) = 09(51) H_Me @'g(s2)
depends on the restriction |A|l£ 1 in 2 1. Note: here we use the
full notation |} Ao and ] A to distinguish between operators
in I and €. //

If we asgsume a channel structure Comm = Chax M of communicaticns,
an interesting combination € & 7T of the two models ¥ and T is
possible, viz. when we postulate that the relative order between



communications can be observed if and only if they are sent along

the same channel. We then talk of channel histories. ¥& 7 is

able to describe networks of processes acyclically ceonnected via

channels. Possible applications for ‘¢ & ] are buffers and proto-
cols as demonstrated in [10].



8. The Divergence Model D

In the Trace Model T of the previous section 1t can ke proved
that

div y P = div

holds for every process P. This law accords perfectly with our
intuition that an arbitrary interleaving of a process P with the
diverging process div can itself pursue an infinite sequence of
internal actions and thus be 1identified with div. On the other
hand, we find that

div IIComm P =P

holds in T, i.e. a full synchronisation of P with div ignores
the passibility of divergence completely. This law seems unreal-
istic because the synchronisation set A = Comm should only re-
strict the observable behaviour of div [, P. not the internal
actions (see alsc Section 13). Thus we would expect that on the
contrary

{*) div |, P = div

holds for all synchronisation sets A and processes P. Similar

problems arise in the simpler Counter Model € .

What is the reason for this weakness of the models ¥ and T ?
In both models we identify undesirable, i.e. diverging parts of
processes with the weakest specification § = Obs. But in ¥ and
T this specification just models the concept'of arbitxrary ob-
servahle nondeterminism. Thus we identify diverging parts of
processes with (non-diverging) parts which exhibit arbitrary

nondeterminism. For example, with Comm = {a,b}
div = HE .(la—>¢) or (b—>¥))

holds in J7. This identification explains the unrealistic law

div || P =P in T .

CZomm



In this section we improve the Trace Model T into a Divergence
Model B where the law (#) is valid without qualification. The idea
is to separate arbitrary observable nondeterminism without internal
divergence from the wholly unpredictable behaviour which includes
the possibility of divergence. In £ only the wholly unpredictable
behaviour will be modelled by the weakest specification 5 = Obsg
(see also Definition 8.3).

To realise this idea we first extend the set of observations to

Ohs_D = Comm* o {sT I s € Comm'}

where T is a new symbol ¢ Camm which is never used explicitly
as a communication in a process, but which can appear in a trace.
D will be constructeé in such a way that 1 appears only in a
trace st of a process which can diverge from s onwards. Thus ¥
may be thought of as an observation of divergence. (Of course,
basic incomputability results tell us that we cannot expect to
effectively observe a divergence; our reason for introducing +

here is to prove later on its absence in particular processes.)

"
Let s,t range cover Comm . As —D we take the smallest relation
over Obsy such that

s—p sa , s —D sT

sT——p sa , sT_-.D saT

holds for all s€ Comm" and a€ Comm. Then (Obsg ,—b ) is a simple

observation space.

Our second refinement is more substantial. We don't want to
take as specification space the set of all generable specifica-
tions § € Obsgyy with £ € Obsg . Instead we wish to restrict our-
selves to those S € Obsg which additionally satisfy:

(¥} ste s implies sa, sates

for every ag Comm, i.e. with st alsoc all successors of s under
—> should be present in 5. This conditlon makes explicit the
principle of specification-oriented semantics to identify “"unde-
sirable”, i.e. diverging parts of a process with the full set of
all possible successor observations, 1.e. the weakest possible



specification (cf. Section 6). Informally, once a process is
broken, its behavious is wholly unpredictable; and it remains s0

even after further observations have been made.

The idea to require alsoc a sort of converse (#»x} of the gen-
erability condition for specifications is not cnly usefu]l for the
Divergence Model D) but alsc fundamental in the following sections.
We therefore incorporate this idea inte the general framework of
observation and specification spaces, and call it the extensibility
conditien. The simplest definitienof such a condition would be the
literal converse of generability:

Yxesi—Max TyesS: x—p y

where Max ={x[-Jy: x—oy} . But this definition is too weak if
we wish to express as in (¥%) that more than one successor of x
is to be present in 5.

We therefore need to extend the algebraic structure of obser-
vation spaces by a second relation — between single observations

x and sets Y of successor cbservations of x. Informally —p and

— reflect the amount ¢f infeormation we can retrieve from

observations.

Definition 8.1 An observation space 1s a structure {(Obs,—p , —p )

where (Obs,— ) is a simple cbservation space with — satisfying
conditions (01) and {02) of Definition 4.1, and where —P is a
relation —$P € Obs x P (Obs) such that

(03) x —bb Y implies x —> ¥
for all yeY, i.e. ¥ is some subset of possible successors of x

under the familiar relation — .

Note that PP is image finite since — itself is image finite.
As notations we introduce:
MAX = {xeObs | 1 J¥EObs: x —bb ¥ }
x —Db y abbreviates x — {v}
Simple cbservation spaces (Obs,—0 ) will from now on be identified

with observation spaces (Obs,—D ,—Db ) where the relation —Pb is
empty and thus MAX = Obs. If —p and —Pp are understood, we



refer to Obs itself as the observation space. Next we adjust the

notions of process specification and specification space.

Definition 8.2 A process specification over Obs is a subset
S ¢ Obs with:

{81} & includes Min: Min § S

(§2) S is generable: YWx&€s5—Min JyeS: y— x
(53) S is extensible: Wxe S—MAX Y E€ S5: x —{b ¥

A specification space over Obs is a family Spec ¢ P(Obs) of

process specifications which forms a cpo under 2 .

Mote the symmetry between (52) and (53}. Since — is domain
finite and — is image finite, the set of all process specifi-
cations over Obs forms again a specification space: the full
specification space. If —pD 15 empty, Definition 8.2 reduces to
Definition 4.3. In particular, every specification space over
(Obs,—p ,—PD> )} is alsc a specification space over (Obs,— ).

Thus our results about continuity in Section 5 remain valid as

they rely only on the underlying structure (Obs,— }. Analogously
to Definition 5.1 we define specification-oriented models A
over (Obs,— ,—PD ).

Let us now continue with the Divergence Model D . We take —db
to be the smallest relation between Obsp and P (0bsg ) such that

st~ {sa, sa? | a € Comm }

holds for all se€ Comm™. As process specifications we take the full
specification space Specg over (Ohs,— ,—P> ). Then every S € Specgy
satisfies (%®) as an instance of the general extensibility condi-
tion {53) for $ under —P . Note that "ordinary” traces s€ S don't
require any successors to bhe included in S. 0 is then determined
by Specp and the following set { £y [ feOp(ZZ)} of operators

on process specifications S (we drop indices J} and state only
those definitions which differ from 77 ):

(2) div = Obs‘D



(5) 5,08, = { s l Jt €5, t,e5,: set ]I, ¢, ¢

v .
{su u€obs gy A Ht]e Sy, t, €5,

setyll, t, Al T es; v, Te s,

The secend clause in the definition states that S, HA S,
diverges as soon as either of its components diverge. Note
that 5, || , 5, 15 a proper process specification and that the
defining relation g with Sy j, S, = Og(swsz) is domain
finite. This guarantees 2 —continuity by Proposition 5.2,

(6) sS\b = { s\b | ses }

vis\bu lueObs_B A Y¥nyo: soes F

This 1s literally the definition of S\ b from mode]l J
except that u ranges over Obs py rather than Obsy = Cornm*
S5N\Db is a proper process specification and can be proved
2 =-continuous with help of Theorem 5.5.

D induces a specification-oriented semantics 3{]: - ] for
CRec{ 2.2) in which the laws

(i) divo P = P or div = div
(1i) divi, p = P llA div = div
(iidi) div\b = div

are true for all P € CRec{ 22), A € Comm and b € Comm. (In the
previous Trace Model T only (i) and (iii) hold.)

Next we wish to relate the models £ and J°. As explained
earlier, the reason for achieving the law (ii) in & is the
careful distinction between arbitrary observable nonde terminism
without i1nternal divergence and the whplly unpredictable hehav-
iour including divergence. This distinction can be made precise

by considering the specification

S = Obs,. = Comrn* £ Obsy
T



inside I . S 1s a proper process specification over Obsg ; 1t 1S
the weakest specification of a process without "diverging traces”

st . Thus wherever

DE= P sat Obs

helds, P is allowed to exhibit arbitrary cbservable nondeterminism

but may nct diverge. This motivates the following definition.

Definition 8.3 A process P € CRec(X 2) is called divergesce free
if D= P sat Obss holds.

Note that whenever f (P ..,Pn) € CRec(Z2) is divergence free,

17
all Pl""'Pn are divergence free as well.

Thecrem §.4 For every process P € CRec{ ¥ 2) the inclusion
TILP JcDI pJholds; for divergence free P the semantics
D and 7 coincide: DT pJ = TIr].

Preaf. (i) T pJ €« DL e d:

The cperator (D : Specgp —» Specy wWith CP(S} = sncomm™ is a strict
and continuous weak homomorphism (w.r.t. 2 ) from 0 to T . (Weak-
ness 1s due to a+) Thus Proposition 2.1. yields

doferply=2 TTe]

for every P& CRec(X2). By D[ pJ 2 Q2] pJ;, the claim follows.

(ii) D[ p}=Tf 2] for divergence free P:
We use finite syntactic approximaticns cf P as defined im Section 2.

Note that the general symbol 1 of Section 2 is now div: thus we

write pdiv instead of P . First compare the cperator definitions
in B and T to realise that
(%) bal| f(P1,...,Pn)]=fr(.‘D[P]],...,.ﬁ[[Pn]I)

holds for all divergence free f{P.I,...,Pn) € CRec{ 3 2}.

Consider now a divergence free P € CRec(22) and an arbitrary
L
Q with P/— Q. Note that { can be written as

Q= 0 [ ME RyE g MERE L]
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* s :
where ¢ s a M-free term with free identifiers Fqv-ves En
for which the recursive subterms u§,.R,,..., #¥ .R, of Q
have been substituted. The following argument will use two

valuations Vzp and Uy with

Vg (£ = DEpmg ;8]

Vr(g) = Tlaiv ]y
for i = 1,...,n. Note that
() DL mg, Ry ] € Tlaw]

holds because with P alsg all ME, Ry are divergence free.
Thus we get

bDEr] = DIQl = DEQ™[ Mg -Ry/Eq0-ve0 ME -RL7E,TT
DEC*T (Vp 1y = TLQ*] (Vg (by (%))

THo™ (Ve by ww))

TCa™div/g oo .vaiv/ g 1] = T[QMJ}

L2l

Since Q was arbitrary with P]*— Q, we finally obtain

Brel=N{s0 o] | p=— o}
€ MV {Tloy,I|?F o} =T[®]

due to Section 2. //




9. Safety and Liveness Properties

What is the notion of process correctness induced by the previcus
Divergence Model ? For processes Pe CRec{ > 2) and specifications

S € Specy we have
%) D= P sat s iff He ] < s .

Hence there 1s a particular process P which satisfies every spec-

ification S i1n & , namely

P = stop -

This indicates that (») expresses only safety properties [35] of

P in the sense that P does nothing that is forbidden by S. For
(%) this means that we can prove:

ta) absence of disallowed traces

(b? absence of divergence.

(The simpler models T and € deal properly only with aspect (a)

due to Thecrem 8.4 and Proposition 7.1.) The situation has its

analogue in the theory of partial correctness for sequential pro-

grams where the diverging program div plays the role of stop by
sat1sfying every partial correctness formula {P} div {Q} . In D
the process div satisfies of course only the weakest specification
Obs g .

Let us now turn to the question of liveness properties, Intu-
itively, liveness means that a process is under all circumstances,
1.e. independently cf 1ts internal actiwvity, able to perform a
cartain predefined task[(23]. In the following we propose an ab-

stract framework for discussing this idea.

A simple liveness property 1s a pair
(T, L}

of specifications T,L £ Spec (i.e. non-empty, prefix-closed sets

L
T,L £ Comm of traces) with LET. Informalily a process
(en) P satisfies (T,L)

1f the following holds:



(1) P is divergence free.
{2} P engages only 1n traces mentioned in T.
{3) P is able to engage in every trace of L -

independently of its internal activity.
(Thus [ is the "task" mentioned above.)

Conditions (V) and (2) are well-understood from the Divergence

Model D . Condition {3) will be explained in the subseguent sec-
tion by translating every simple liveness property {(T,L) into a
proper process specification S(T,L) such that (»#) 15 defined by

P sat 5(T,L)

in the sense of specificatiocn-oriented semantics. But at the
moment the informal notion (#«%#) should be sufficient for under-

standing the fcllowing examples.

Example 3.1 We wish to specify a process P which exactly sends

an infinite stream of communications c:

p f— £ , ¢, cc, ccc .,

We do this with the simple liveness property (T,L) where
T=L= {c"ln>0}. Then

P satisfies (T,L)

if firstly P does not engage in other communigations than c due

tc T, and seccndly P indeed engages in all traces
£ ¢ © ¢+ CC , CCC
due to L. //

Example 9.2 We are now able to reconsider Example 6.1 and express
as a simple liveness property (Tn,Ln) the idea that a process Pn

is a buffer of capacity exactly n. Instead of a,b € Comm we use

here the suggestive names in,out € Comm for the communications
of P_: .
n



in out

Take

Tn = Ln = {s | s € {in,out}*,« out¥ s < inds < (out:ﬁ:s)+n}

where in4ks (cutdks) denotes the number of in's (out's) in s
(cf. Section 7). Then

Pn satisfies (Tn, Ln)

If according te "I‘n the process Pn engages only in communications
in(put) and out {put) such that the number of outputs never exceeds
the number of inputs and the number of inputs never exceeds the
number of outputs by more than n. This is the safety requirement

for an n-place buffer known from Example 6.1.

But here we require more: Pn should also satisfy the liveness

requirements described by Ln, vig.

(i) If the buffer Pn is "not full”, i.e., if in#s < (outfs)+n,
it should accept another input.

(ii) If the buffer Pn is "not empty”, i.e. 1f outfs Cings,

it should be ready for another output,

Clearly, these reguirements are not satisfied by the deadlocked
process stop any more (cf. Section 6). //

We generalise this concept of a simple liveness property as

follows: a (general)} liveness propertv is a pair

(T, L)

with T € Specy and a non-empty X S 5pec p such that L ©T holds

for every L g £ . (Simple liveness properties are identified with

pairs (T,% ) where |£ | = 1.) We define:
P satisfies [T,#) if JL €& : P satisfies (T,L).

intuitively, P satisfies (T,Z) if P is able to engage 1n every
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trace of at least cne L &€ £ . Thus a simple liveness property
fixes one particular process behaviour whereas a general live-
ness property describes only a general pattern of a desired

behaviour.

Example 9.3 Surprisingly, we can view the concept of deadlock
freedom (which is often classified as a safety property [36])

as a general liveness property (T,£)} with
E 3
T = Comm and &£ = {LESpec:r l VYsel 3t€L:s<t}.

Then P satisfies (T, ) iff P is always able to extend its
present communicaticn trace s by some further communication.
(Since T = Comm™ there iS no restriction in which communications

P may participate.) //

Example 3.4 We wish to specify a process P which can engage in
ccmmunications a and b in arbitrary order, but which is certain

to communicate b eventually:

We express this behavicur as a general liveness property (T,&)
with T = {a,b}" and

£ ={Ln|n>10} where Ln={£,a,...,an,anb}.

Then P satisfies (T,s) if there is some n 20 such that P com-—
municates b after n communications a; but it is not known in

advance which n applies. //

Example 9.5 simjilarly, we can express the concept of a bounded
buffer as a general liveness property (T,& ) with

T = {5 [ sE{in,out}* A out:H:sS:.n#-s} and

£= {1 | nyo)
where Ln 15 -aken from Example 9.2. Now P satisfies (T,X ) if

there exists some "bound"” n such <hat P behaves like an n-place

buffer. Agair it 15 not known wnich n applies. //



10. The Readiness Model R

This section improves the Divergence Model I into a new model
which can deal with simple (and a certain type of general) live-
ness properties: the Readiness Model R . Moreover, R allows us

to treat now the full language CRec(¥ ) of Communicating Processes
by d.istinquishing between external nondeterminism [] and internal
nondeterminism or. The idea of R is as follows: we assume that
not only the "past" of a process can be observed via traces

alsc a part of the "future" via so-called excectation [12] or

ready sets X [20, 16] indicating which communications beg X can
happen next. However, a ready set X can be observed only vwhen
the process has reached a “"stable state” where all internal
activity has ceased (see also Section 13}.

Qur cobservations have the form:

& trace of successful communications,
sX ready set X presented by the process after s,
sT possibility of divergence.

Thus we get
ObSR = {s,sX,sT | 5€C0mm*z\ Xf_:Comm}.

Let s,t range over Conun*, X, ¥ over P (Comm) and A over
Picomm)u { T} . The successor relation —p is the smallsst
relation on Obs g satisfying

s —> sX, 9—> sa, s —p sl
sX —p sb for all beX
st —p sX, sT —b s5a, sT-—D sa'T

for all seComm*, X&Comm and a € Comm. Relation —{P describes
the behavious of a process as follows: after a trace s the pro-
cess can enter a stable state and display a ready set X, or it
can {(being in an unstable state] engage in some further communi-
cation a or it may diverge completely. Once 1n a stable state sX
the precess can engage only in the communications in the ready
set X. Divergence s? is (as in the Divergence Model 5 ) identi-
fied with every possible subsegquent behaviour.
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A5 extensibility relation —Hp we take the smallest relation

between Obsy and p[ObER) such thac

s —p sX
sX - {sb| bex}
51‘—»{5}(, 5a, saTl ngom.m;\aEComm}

* c e .
holds for all s€ Comm and X& Comm. The orocess specifications o#
R are given by the full specification space Specp over
{Obsg ,—P ., —PP> ). Then every 5 €Specp realises a local liveness

principle: every s€ S and sX€ S with X # § reguires certain im-
mediate successor observations to be present in S due to —PP .

Only observations
s@

have no sucrcessors and thus express stoppage or deadlock. The

impact of this liveness prainciple will be studied later. First
let us complete the definition of the Readiness Model R by the
following ser { fp | feop(Z )} of operators (presented without
index R ) on process specifications S Specy :

(1) stop = {¢, @}
(2) div = Obsg
{(3) a—> S = {E , é{a}} ] {as,asﬂ | SAES}

(4) S, or s, = S,u s

1 27 51v 5
(5) 5,05, = {&, €(Koy) | sXes, Acves, }
v i eA | &tes,us, $
U{s s8 | s+ensbdes us,)

The first clause states that 3, 0 $, 1s initially ready for
any commuiication in the union cf the reaay sets for 1its

components S. and 52. This enables us to model external

1
nondeterminism. E.qg.

ta—P)[Jb—>Q

will have an initial ready set {a,b} indicating that the



(6)

(7)

environment <an choose whether the process behaves like
a— P cor like b—Q by first communicating either a or b.

In contrast
fa— P) or (b—Q)

has two initial ready sets {a} and {b}, and it depends on
the process itself which one 1s presented to the environment.
s,y 8, - { 5,5% 1 Jt X, e85, t,X,g5,:
| set, b, t, ~ X = x,[3]x,
K tze 52:
sety I, t, Aietes,vetes,)

U {st.stA Btwes

The first clause of the defintion uses the majority operator
of Section 2 for A = Comm \ A:

— _ — — )

¥ [alx, = (XN A)u (XN AU (X N X))

1 1

formalises the idea that communications in A require the
readiness of both S] and 52 whereas for all ather communica-
tions the readiness of S1 or S2 is sufficient.

SN\b: we first introduce the hiding relation g€ ObsRA ObsR
which describes how observations about S are related to
those about S\ b:

(i} s g s\b

{i1) sXx g (s\b)X provided b ¢ X
(iii) sX g s\ b provided be X
fivy st g s\ b

for all s,t,X,A . Clause (iil) may reguire a comment: since
communication b has become internal in S\ b, the stable state
sX of 8 with b€ X has became unstable in S\ b in the sense
that b may occur autonomously, after which the process is no
lenger ready for any of the other communications of X.
Therefore we cannct deduce any new ready set Y in this case

and define



sX g s\b provided be X.

This definition agrees with the decisions taken in[12] and [20].

Since g is level finite and commutative, the operator
c_ = O’gu Oc; is 2 -continuous by Theorem 5.53. This yields-

g
(after a slight simplification } as explicit defintion:

s\b= { s\b,(s\b)X | sX€S A béx }
u{(s\b)t,(s\bitA | Yhao: sbles }

which is a proper process specification in Specp .

This completes the definition of the Readiness Model R which
induces a specification-oriented semantics R[[ ]] for the full
language CRec(3 ) of Communicating Processes.

Let us now investigate how this model can express liveness.
For a simple liveness property (T,L) let Sp (T,L) be the follow-

ing process specification in Specyp :

SpiT,L} =Tu {sX | s€T A s-XgT
A (if s€L then succ, (s5) £ X}

As abbreviations we uUse here s.X = {sa ]aex} and such(s) =

{a|saerL}for s€Comm™, X ¢ Comm and L& Specy .

We define now
P saiisfies (T,L) iff R}= P sat 55 (T,L) .

This definition formalises the intuitive correctness criteria
(1) - (3) given in Section 9. This is clear for (1} and (2).
Condition (3) is expressed by the clause

if s€L then succy (s)e X

by which the ready set X of a trace se€L always includes the

required su¢cesscor communications ag such(s) . Because of £ €L
we can in particular start with all initial communications in L.
And these communications are independent of internal activities

of P since the"readies" sX all refer to “stahle states".



Example 10.! To specify a process P which sends an infipite
stream of communications c, we express the simple liveness pro-
perty (T,L) of Example 9.1 in R . This yields the following
specification SEND = Sp {T,L}:

SEND = {cn, cn{c} l where n,},o}.

SEND says, no matter how many ¢'s have already been sent, the

process P should always be ready to send another c:

(*) P ——— &€ , © , ¢ , CcCc ,

Then the extensibility condition of process specificaticrs in

Specp forces every process P with
RFE= P sat SEND
to behave exactly like (#). A possible golution is

/ug (c—) ).

In particular, the deadlockina process stop does not satisfy
SEND. //

Example 10.2 To specify a buffer of capacity n we translate the
simple liveness property (Tn,Ln) of Example 9.2 inte the follow-
ing specification BUE‘Fn = SR (Tn,Ln):

BUFE = {s,sx 5 € {in,out}*/\ outs £in¥s £ (outds)+n
A (if indFs < lout4s)+n then in €X)

A (if ocut¥s< infks then cute X)

As in Example 6.7 we can construct buffers of capacity n iier-
archically fram buffers of capacity 1. Take

P, {in,out) = /u§ .(in-—-—.vout—n»?]
and define inductively

PnH(in,out) = (P, (in,wire) ”{wire} Pn(uire,out)]\vire
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Then we can show
RE ?_(in,out) sat BUFF_

Note that differently from Example 6.1
BUFF, § BUFF__, .

Thus e.g. P, {in,out) sat BUFF, is false in R . Also note that
direct comstructions of buffers of capacity n involve external
nondeterminism [] rather than internal nondeterminism or:

e.g. only with

R2=in—)/u.§.( in —>out ¥
0 cut —in—§ )

we get RE= R, sat BUFF, (cf. Example 6.1). /7

Next we investigate general liveness properties (T, ). Recall
from Sectien 9 that we define:

P satisfies (T,X ) if JLeX : P satisfies (T,L).

We extend this defintion to sets P of praocesses by
P satisfies (T,£ ) if WVvpreP : P satisfies (T,£).

Now we introduce the following concept of expressiveness,

Definition !0.3 A liveness property (T,X ) is expressible in a

specification-priented model M if there is a specification

S € Spec g4 such that
P satisfies (T,£} iff Mp= P sat §

holds for every process P € CRec(Z ). We alsa say that S expresses
(T,%£) in M.

By definiticn, all simple liveness properties (T,L) are express-—
ible in the Readiness Model R . But what about general liveness
properties (T, £) ?



Example 10.4 The introduction of ghservations s@ enable us to
state and prove that a given process does not stop: consider the
specification:

LivE = { s, sX ] where X #Q}.
Then a process P with

R}E= P sat LIVE

will after every trace s he ready to engage in some further
communications, and thus never deadlock. Note that in fact LIVE
expresses the general livness property (T,&f) of Example 5.3. //

The following proposition Characterises the (limitations in)

expressiveness Of the Readiness Madel R.

Proposition 10.5 (T,X )} is expressible in R 1ff the following
holds for all P £ CRec(Z )} and Q € CRec(Y ): whenever

P satisfies (T,L )} and
RIe]e U R[=]
peP
then alsoc Q satisfies (T,£).

Proof. "only 1f": by the definition of sat.

"1f": lee P = {P | P satisfies (T,¥)} .

Case 1: P = @. Then there is no L € & and no process P such that
P satisfies (T,L). Thus for arbitrary L €X the specification
S = Sp {T,L) expresses (T,Z£ ).

case 2: P ¥ g. Then s = \_) R[ P]expresses (T,£). vote
that 5 € Specq . peP

/i

Example 10.6 (i) The liveness property (T,:X ) of Example 9.4
modelling the concept of “eventually b"“ is not expressible in R .
Indeed consider the processes

Q= /ug.(a—st) and Pn =a-—*,..—~r»a—»b

—

n
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for n» 0. Then P_ satisfies (T,%) and RfQJ<c U R e T, but
n

Q does no: satisfy {(T,¥ ). Thus (T,¥ ) 15 not expressible in R
by Propositticon 10.%. This limitation in expressiveness 1s typi-
cal for any kind of finitary observation (see Secticn 13), not
only for readies sX. Informally, we can say that the concept of

eventuality is not finitely observable.

{ii) Similarly, we cannot express the concept of a bounded
buffer modelled by the liveness property (T,X ) of Example 9.5.
Clearly

Pn(ln,outj satisfies (T,¥)
by the previous Example 10.Z. Now consider
P = mg-lin—>(F ] g Sut—stop))

Py expresses an infinite buifer:

. E
R[IPm:ﬂ = {5, sx s € {in,out} A outds< ins
A 1ne ¥

A (1f outdfs < infs then oute X} |

Thus RI rp ] (U RE B (in,out) ] but p, does not satisfv
n

(T, &£ ). Hence (T,¥ ) 15 not expressible in R . Again this lima-
tation is true for any kind of finitary observation: thus the

concept of boundedness 15 not finitely observahble.

{ir1i) Even much simpler liveness properties are not expressikble
in R . Take e.g. (T,&£) with T = comm™ and
£ ={ a b PE: | c }
b c

(Here we use an equivalent tree notation for prefix—closed sets
of trees.) The idea of &£ is that b {(or ¢) is possible after a

only if it was also possible earlier as an alternative to a,



Consider now

-]
]

1 (a—b—stop} [] b—>stop

]
]

5 {a—>»c —»stop} J ¢c—stop

o
]

{a— ¢ —>atop) 0 b—»stop

Then P, and P, satisfy (T,£) and RIEa] E-’RII%]U RI PZ] .
but O does not satisfy (T,& } as required by Propositicn 10.5.

This limitation in expressiveness is typical for tracs-like
observations like readies sX. It could be overcome - if so
desired - by using tree-like observations instead, but we decided
here not to consider "what might have been" in our models for
Commun:cating Processes. //

Next we relate the models R and [, Let g € Obs p X Obsy be
the projection

sX g t 1ff s = ¢t

for observations sX and the 1dentity otherwise. Then the point-—
wise extension O’q satisfies @'g(S) € Specgy for every SeSpecy .

Proposition 10.7 For every process P € CRec(3 2) the equation

@g(RIIP]]) = D[ P ] holds.

Proof. By Propositions 2.1 and 5.2. //

We conclude with some comments on related work. As already
indicated, the idea of ready sets 1s taken from [12,16,20], but
the details of the Readiness Model R are new. In particular [12]
does not abstract from internal activities: Llittle d's denoting
internal progress remain in their traces. It is interesting to
note that the model R is well suited as a basis for implemen-
ting processes in a functional style [38].

A restricted version of a Readiness Model forms alsc a basis

of [31]. Essentzally [31] use only a liveness principle of the form

VxeObs—Max JyesS: x—Py



whereas in R ready sets can require meore than one successor of

an cbservaticn (trace} to be present (cf. the introduction of

—p in Secticn B). Consequently {31] cannot deal with external
nendeterminism.



11. The Failure Model F

In a specification-oriented model M every process P € CRec (X))
can be semantically approximated as a limit of finite, i.e.

nen-recursive processes Qdiv € FRec(Z ) via

M2l = (V{MLay, b | e-a}

(cf. Section 2). Therefore finite processes can be considered
as an 1mportant tool feor reascning about general processes (cf.

e.g. the proef of Theorem 8.4.).

This reasoning is simplified very much if further on every
finite process can be reduced to a sc-called primitive finite
process PE FRec(Zp) where Zp © Z  with

Op(Ep) = {stog,gj}u {a—-—>| aeComm}u{E,D}

does not involve parallelism (|, or hiding \b. Therefore we

A
would like to have models M which admit reduction in the follow-

ing sense:

Definition 11.17 A model W for CRec(3 ) admits reduction from
FRec {3 ) to FRec(JI p) if for every finite FeFRec(X ) there
exists some primitive finite Pg FRec(Z p) such that the law

F = P

is true in M. An operator f€0p(X¥) is called reducible to
FRec{Z p) in M if for all Pysov /P € FRec(Z p) there exists
a P € FRec(X p) such that

f(P],...

is true in M.

Clearly M. admits reduction from FRec{X ) to FRec{Xp) iff
every operator f€O0p{X ) is reducible to FRec(Xp) in M.
Unfortunately, our previous Readiness Mcdel R does not admit
reduction to FRec (¥ p}. The troublesome cperator in R is hiding
Nb. Te see this letv us study an example where



{pOCIND
cannot be expressed wilthout “b.

Example 11.2 First note that in R primitive finite processes
PeFRec(Fp) satisfy the following property for all s cComm™ and

a € Comm:
(1 sa € R[p] implies 3IX S Comm: acXasXe R[P ]

i.e. every communication a that can ogcur while the process is
running can also occur after the process has reached stability.

Consider now
P = a—>stop and Q = b— c —>stop
Then we get
RILEPIONDL]D = {.g , a, a@g, & {c}, <, c@}

which deoes not satisfy (1). Thus (P [J Q)\ b is not representable
in FRec( ZXpl.

What would be a good candidate in FRec!|Zp) to represent this

process ? We suggest
P1 = {a— stop [J] c—stop) or (c—3stop)

with REp1] = REPOaND] U {5 {a,c}} because P1 and
(P 0 Q)N bsatisfy in R exactly the same simple liveness spec-
ifications Sn (T,L). Indeed for T,L as in Section 3

RE= (POQI\ b sat Sg (T,L)

iffr2{¢e., a, c} and L € {€ . c} . But these are exactly the
sets T,L with

R p1 sat S5 (T,L) .
Thus identifying
(2) (rFJdQiNDb = P1

dces not affect the expressive power of our model in terms of

simple liwveness properties (see also Thecrem 11.8}. //



We now explain a model which admits reduction to FRec( I p)
essentially since the suggested law (2) is true: the Refusal or
Failure Model ¥ based on [22,39,7]. The initial idea of F locoks
quite different from R . We imagine the fcllowing interactions to
take place between a process P and its environment E: at any
moment E can offer certain sets X of communications to P. The
process has then three options to react to such an offer:

(%) either accept some communication ae€X
or refuse to accept any communication in X
or diverge completely,

Qur observations record these (nteractions only until the
first refusal of X has occurred:

sX trace of accepted communications together with
a set X of communications which have been refused

after s

st possibility of divergence
Thus we have
Obs, = {sx,st | secom™ A X ¢ccomm }.

Observations sX are called failures and the sets X refusal sets
[22]. As in Section 10 we let s,t range over Comm , X,Y over

P (Comm) ard A over P(Commiu {17} . As successor relation —p
we take the smallest relation on Obs iy satisfying

s¢g —p sa@ , s¢g—P sx , sp—b st
st sx , sP—p sag , s —b sa
-
for all s€Comm , a€Comm and X € Comm with X # ¥. Here failures
s@ represent interactions where no communication has been refused

so far. As in the previous models &£ and R divergence s7T is
identified with s followed by every possible subsequent behavicur.

The dynamic aspect of (#) is captured by the following exten-
sibility relation — between Obsgy and P (Obsg):



s@ —bp SUCC iff WX cComm: { Jaex: sag € SUCC

v YYSEX with Y # @: sY € SUCC)
sT— {sx, sap, sa? | XcComm with X = & A a€ Comm }

Let us expla:n the more complex clause s@ —Pp SUCC. Whenever

sP@ €5 holds for some process specification 5, a whole set SUCC
of successors of s@ must be present 1n 5. This set SUCC locks

as follows: for every given set X ¢Comm of communicatiens either
some a € X is accepted, i.e. sa@ €5 holds, or the whole set X
together with every non-empty subset YE X is refused, i.e. sXxe&S
and sYe€S for @ # Y &€ X (Y * @ guarantess s@ — sY). Note that
this definition reflects the informal description (%) above.

As process specifications of F we take the full specification

space Spec p over (Obs g ,—b,—P).

Remark 11.3 A subset S<Obsy is a process specification in
Specg iff the following holds:

(1} gPes
(i1} stPeS implies s@Pc S
{ii1) sXes5 A Yc X implies sY& 5

{iv) sXeS A sap € 5 implies s(Xu{al)es
(v} sles implies stA €5 for all £, A.

The Failare Model F consists of Spec ¢ and the E£gllowing set
{f; )} feoplE )} of operators (again we drop the index #):
{1) stop = { &% | X< Comm }

The deadlocking preocess can refuse any set X.
(2) div = Cbsy
(3) a— 3 = {&X ( adx}u {asd I SAGS}

In its first step a—3 5 can refuse any communication
axcept a.

(4) Sy or s, = 5,08,
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(5) 5,0 s, = {ex | gXES.]r'\Sz}
viea| eles,vs,t

visA|s ¥eg A sA&S US, 1

In its first step SI il s2 can refuse only communications
that both 5. and §, can refuse. Afterwards 5, O S2 behaves

1
like 51 or like 5, depending on whether the first accepted
cammunication belongs to S1 or 52.

(8) s S, = { sX Jt X, €5, t,X,€8,:

sEet t

‘ 1 HA A X = x1[A]x2

2
v { stA| 3t Pes,, t,@ES5,:

setc, I

; b, Attt es) vetesy)

A

where the majority operator

x1{A]X2 = (K.Ir\AJu (in A) w (X1n x2J

represents the idea that refusal of communications outside
A requires refusal of both 5, and 52 whereas communications

inside A can already be refused if 5, or 52 refuse them.
(7) s\b = {(s\D)X | stXuiphes }

u {(s\bjta| Vn»0: sb’ges }

Note that S \b can refuse a set X conly if 5\ b has become

stable, i.e. internal communications b of $ are also refused.

As with the previous models these operator definitions yield
proper process specifications, and they can be shown 2 -continuous
by the methods of Section 5.

Let us first establish the relationship between the new model
F and the previous Readiness Mocel R . This is done very simply

by the following relation g EObSR x Obs? with
sX g 32 iff 2¢X

st g st
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which interprets sets Z as the downward closures of the comple-

ments X = Com N\ X% of ready sets X. By Remark 11.3 the pointwise
extension (}c maps every 3 € Specg into a process specification

O'g(s) € Spec. .

Proposition (1.4 For every process P € CRec(Z )} the equatisn

Og(Rl[ Pl = Fl ?J holds.

Procf. To apply Proposition 2.1 we have to show that O’g is a
{strict and) 2 -continuous homomorphism from R to F . Domain
finiteness of g implies the =2 -continuity of O’g by Propocsition 5.2.
Checking the hcmomorphism property of Gg boils down to a simple
calculation #ith downward closures of complements. For example the
crucial argument to show

Cgls, H},\R S,) = O'g[s1) HA; O‘g(sz)

for all 5,/5,€ Specp 1s as follows:

2

C A i Y X_: =
Z < xwlalxz iff Hzts X, 5’229 Xt 2 21[1\]22

//

Clearly there is also a direct homomorphism ¢ from the reduct
FIZ2 to the Divergence Mcdel @ analogously to Proposition 10.7.
By Proposition 11.4 every law P = Q of R holds also in ¥ . But
what are the additional identifications induced in R by the

homomorphisn C?g ?

Definition 11.5 A process specification S¢ Specg of the Readi-
ness Model R is called convex closed [8,33] if the following holds:

(i} sX, s2€S implies s(Xul)e s
(ii) sX, sZe€S and Xg Y& 2 imply sY€ES,

For S € Spec g let con(S} denote w.r.t. 2 strongest convex
closed specification with S§¢ con(S). Clearly con(s) e SpecR holds.

Lemma 11.6 For 5,,5, €Specp the following holds:
Ogtsy) £ J*g(sz) iff con($,) ¢ con(s,).

Proof. By the properties of downward closures of ready sets. //



Thus the Failure Model F can be considered as identifying
every process specification § of the Readiness Model R with its
convex closure con{S). This characterisation of ¥ in terms of R
allows us now to show that all liveness properties expressible
in R can also be expressed in F . First we state:

Proposition 11.7 In general R is more expressive than F in

the following sense:
{i} For every 5;. € Specy there exists some Sy_ [3 S[:w:c:J12 with
(%) RF= P sat S, iff Fl=P sat 54
for every P € CRec(Z).

(i1) There exists some Sp € Specp such that there 1is no
corresponding Sy € Spec g with (%) .

(1ii) However, 1f Sp € Spec g is convex closed, there is some
S¢ € Spec g with {*) .

Proof. (i) Take Sz ={s, sX | sPESy A VaeX: s{a}¢s;}.

Then Sg € Spec . S is convex closed and ®_(Sx) = Sg. Thus
FLrplc sg iff @g(RI ] ¢ Oy5n) 1if R{eD ¢ sg (by
Proposition 11.4 and Lemma 11.6). Hence {») holds.

(1i) Consider P = a—3stop, ¢ = b—>stop, and S = R ? or QJ.
Suppose (%] holds for some Sg € Specy . Because FL[P[J @] ¢
Flrporg] we get Fl= PO Q sat sp . But RE=pPQ satSp
is false. Contradiction.

{iii) Take S = @'g(SR). Then (#) follows as in (i} from
Proposition 1!'1.4 and Lemma 171.6. //

Theorem 11.8 A liveness property (T,£ ) is expressible in R
iff (T,%£) is expressible in F.

Proof. "if": by Propeosition 11.7, (i).

“"only 1if": Let (T,)¥ ) be expressible in R . Due to Proposition
11.7, (iii) it suffices to show that (T,2) is also expressible
by a convex closed specification S€S5pecq . To see this we re-
examine the proof of Proposition 10.5. Consider

P = {p| P satisfies (T,£}} .



Case 1: P =¢. Then by Proposition 10.5 Sg iT/L) with an arbit-
rary L € £ expresses (T,Z ). Since every Sg (T,L) is convex

closed, we can take § = Sgp (T,L).

Case 2: P #@. Then § = ./ R [») expresses (T,¥) due to
Proposition 10.5. We shoiefhat S is convex closed.

Let sX, sZ2€5 and X € Y € 2. By the defintion of 5, there
exist P,Q ¢ P with sXx € RJP] and sz € R[QJ. Proposition 10.35
implies P or Q € P. Thus there is some L && with
RF= P orQsat $g (T,L), i.e. with R P or 0Jg sS4 (T.L).
Since SR(I‘,L) is convex closed, also

contR[ P or 0] c sqy(T.L).

Clearly s(Xuvi}, ste€con(RE P or 0] ). Note that there is some

proccess R with
s(xv2), sY e R[RJ = con{ R[PorQ]).

Because of R[ r ] ¢ Sp (T,L) we get Re€P. Thus s(Xw Z), sY€ S.
This proves the convex closure of S.
iy

Next we -“urn to the original question of reducing finite pro-
cesses to primitive ones. The crucial advantage of F over R 1s

the following algebraic law of F:
(+) (0 b~—Q)\b = (P Q) \b or oN\b

Note that equation (2) in Example 11.2 1s just an instance of {+!}.
To show that F admits reduction from FRec(ZX ) to FRec(Zp) we
state some auxiliary laws which hold already in R {(and thus in

¥ by Propeosition 11.4).
(1) O is commutative and associative; it has a unit stop
and a2 zero div, i.e.
P[] stop = P and P[] div = div
(11} I 5 5 commutative and has a zero div:

P ”A div = div



{(i1i) \ b has div as a zerc:
dav \b = div

{iv) or is commutative and associative; it admits distribution

by a— , [0 ,\b and | i.e.

A r
(a—F) or {a—0Q)

It

a— (P or Q)

(P or QR

(e 0 R or (& OR)

(P or INb = P\b or QC\b

(P or @) R = (P, R) or (Qfl, R)

By these laws 1t suffices to restrict curselves to primitive

finite preocesses involving only
stop, a— and []

when proving reducibility of I}, and “b.

A

Preposttion 11.9 Parallel composition §
in R and thus in F.

15 reducible to FRec{ Zp)

A

Proof. Consider two restricted primitive processes P and Q. We
proceed by structural induction. If P = Q = stop nolds, reducibility
of | 5 follows from the law

stop "'IA stop = stop
in R . Otherwise P and Q can be written as

p = [J b—P, and 0= [ c—>

be 8 cec ¢

with B,CcComm. If P or Q is stop, we choose B or C to be empty.
Reducibility of | A follows from the induction hypothesis and
the law

pll,o=¢ O bo l,ondD¢ 0 c—=wel, on
A b€ BN A b A CECNA A Yc

e 0 oI, 0.1}
b=c € An B C b A e

in R . //



Proposition 11.10 Hiding \ b is reducible to FRec(Xp) in ¥F.

Proof. By structural induction. For P = stop reducibility of \b

follows from the law
stop\b = stop
in ( R and) ¥ . Otherwise P is of the form

p= 0 a—Pp,
2EA

with A €Comn. Reducibility of N\ Db follows then from the induction
hypothesis and the following case analysis. If b¢ A then

Pyb= [0 a—(P_\ b)
aen a

holds in (R and) F. If be A we apply law (+) above which 1s
valid only in F. //

The previous propcsitions are summarised in:

Corollary 11.11 The Failure Model ¥ admits reduction from
FRec (X ) to FRec(Zp).

The Failure Model origimally proposed in [22] has recently
attracted much attention i1n the literature. Whereas our Failure
Model F can be considered as a refinement of the Divergence Model
2, the original model in [22] is a refinement of the Trace Model
T discussed in Section 7., Consequently the problems concerbing
divergence signalled in Section 8 are also present in the crig-
inal model [22]. This was first realised independently in work
of [39,7,12].

Our present model F is closest to the one proposed in [39]
and isomorphic to the cne developed in [7] where alsc a complete
proof system for semantic eguality of finite processes is given.
This proof system uses some additional algebraic laws to the ones
needed here to prove reducibility of F. Closely related to the
Failure Model ¥F are also the models produced 1n ['_33] by starting
from a general notion of testing related to ideas of [25]. Models



combining aspects of R and ¥ have been investigated in [40].

The main difference between our approach to ¥ and the pre-
vicus research just cited is that we have presented F here as
a special example in the geperal setting of specification-orien-
ted semantics. Together with the series of models € ,7T , £ and
R we hope this gives a better insight intoc the structure of F
and its relaticnship toc the cther models.



12. Operational Semantics

In the previous sections we studied a series of denotaticnal
models for Communicating Processes. But every now and then we
appealed to some "operational™ intuitions about processes in
order to motivate particular design decisions (cf., e.g. the
idea of a "stable state” in Section 9). It seems therefore
appropriate to make these operational intuitions precise and

relate them with our models.

To do so we follow Milner and usSe the concept of transitions
[24,27,37]. The advantage of transiticns is that an explicit
symbol 7 denoting an internal action allows simple definitions.
The drawback is of course that we lose abstraction from internal
activity — the main concern in cur specification-oriented

approach. We thus start from a set
(X &) Act = Comm v {T}

of actions. an action A is either an observable communication

a € Comm or tie internal action T . Transitions or rewriting rules

A
are binary relations —>» over CRec(X ) with A& Act. Informally

X
P—qQ

means that F can first do action A and then behave like Q. In
particular P—E+ Q means that P can transform itself intec Q with-

out communication to its environment.

pN
For X € Act let ——> be the smallest relation over CRec(X )
witht

{1) stop has no transition.
(2} div =5 div
a
(3) (a—PF)— P
r T
(4) (P or J—— P and (P or Q) — Q
a a

a
{(5) I£f P—>P1 then (P JQy —> P1 and (Q[J P) — P1.

If P—>P1 then (P 0 Q —— (10 Q) and (Q 3 P)——> (@O 1.



Only the first observable communication a decides
whether 2 [0 Q behaves like P or like Q. As long as one of
its components P Oor O pursues internal actions T, the pro-
cess P[] Q does not withdraw the option of selecting the
other component. This implicit abstraction from internal
actions 7 18 the essential difference bhetween f1 and Milner's

operator + which satisfies for all A € Act:
X » N
If P —> P1 then {(P+Q)—> P1 and (Q+P) ——> 1 [27].

The reason for choosing [J rather than + is that § avoids a
number of complications encountered with + (see e.q.
[27, chap- 7]).

a a a
(6) If agA and P—>Pl, Q —>Q1 then P ||, ¢ — 21 IIA Q1.

X

If A¢ A and PL) Pl then P nA Q—> 21 ||A Q and
X

Qit, P—>01l, P1.

b T
(7) If p—> Q then PNh —>QN\b.

N
It X\ #bp and P> Q then P\b——> Q\ b.

(8) /u.g.Pis»P[/u;.Pfgj.

Recursion 1s modelled hy the copy rule known from pro-
cedural languages such as ALGOL. Copying 1s done here as

an internal action.

It is sometimes helpful to visualise the possible transitions
of a process by so-called synchronisation trees [27]. These are

rooted, unordered trees whose arcs are labelled with actions

X € Act. We show some typical cases.

Example 12.1

(i) div = t



{ii) fa—P) or (b—Q) =

(iii) ta—P) [ (b—Q) =

(iv) Hiding b in a synchronisation tree P simply means
relabelling all arcs b into T

A .
Transitions ——— are extended in two ways. For words

wo= AL, A € act™ let —" 3 be the relational product
hd A‘I >‘n
—_ = —o.,.0 ———>

of the individual transitions ————£9 , and for traces s ECOmm*
we write
5
P = Q

w
if there exists some we Act" with P —> Q and s = w\ T where

w \ T denc¢tes the result of removing all occurrences of T in-
side w.



We can now define the important concept of divergence in an

operational setting. A process P diverges at s if

s n
30 ¥nx»0 JR: P=—=—=0 A Q—>R

P is divergence free if there is no s at which P diverges. (As

we shall see in the next section, this cperational definition
agrees with the earlier Definition 8.3.)

Example 12.2 (i) a—>div diverges at a.
(ii) div, /“f - ¥ and (/AE .b—-r} )N\ b all diverqe at £ . //

Finally, we introduce a modification of Milner's observational
equivalence = ]_-17,2?,28} which takes the notion of divergence
into account. =F is defined by the following series of equivalence
relations "n‘.-:l , 120, over Chec (X ):

P A, Q 1f either both P and Q diverge at g
or both P and Q don't diverge at g .

p %l+1 Q 1f Vs eComm* with |s|g 1:

] s

(i) P===P1 umplies JQ1: Q===>Q1 A P1 ’;\“:Cl Q1
3 5

{i1) Q===0Q1 implies FP1: P== F1 A QI ,“V"l Q1

P A= Q@ if P’;\“JIQ holds for all 13 0.

ntuitively, checking P “ﬁ‘:’rl Q means investigating the synchron-—

isation trees of P and Q along all branches
1 ) n

with at Rlost 1 observable communications Aie Comm. Since this
does not exclude branches with arbitrarily many internal actions

T, it is in general impossible to establish P == 1 Q effectively.

Example 12.3 (i) (b—=>»P)\ b ™ P\b

{iit] ((b->Pi\ b) 0 Q = (P\b) QO qQ

(Lii) dav A Mg .€, but div A, stop or dav.
(iv) a— (P 9r Q) A, (a—P) or (a—0Q)



This example exibits differences between the algebraic laws in
the previous denotational models and the operationally defined

observational equivalence: in contrast to (iii) and (iv) the laws

div = stop or div and

a—(Por Q) = {a—F) or (a—Q)

hold in all models € ,J,D,R and F (cf. Sections 8 and 11).
The precise relationship between our denotational models and the

operational semantics will be discussed in the next section.



13. Consistency

To relate our specification-criented models with the operational
transition semantics we now add a logical structure f— to obser-
vations which explains how we actually make observations about
processes. [}— 1is defined as a relation between processes P and

aobservations x. We write

Pl x

and say that %X 1s a possible observation about P. We require that

|l—= agrees with the observational egquivalence =y introduced in

the previous Section:

Definition 13.1 A logical structure for Obs is a relation |~ <

CRec{X )% Qbs such that for any 1% 0, any observation x€0bs with

level || x| = 1 and any two processes P,Q € CRec(Z ) with P ';sl Q

Pi— x 1ff Q|— x
holds.

Informally, this defintion says that observations are finitary
and abstract. Finitary in the sense that an observation x inves-
tigates a process P only up to the equivalence &,’l where 1 =| x|.
(By the defintion of %l this does not imply the effectiveness
of f— .} And abstract in the sense that due to = finite linear
branchres of internal actions T in synchronisation trees of pro-
cesses P are not detectable by observations: cf. Example 12.3,

(i} and (iir}.

We can now be precise about the desired relationship between

models M and the transition semantics.

Definition 13.2 Let F0 £ X and M be a specification-oriented
model for CRec{ Z0) over (Obs,—p , —pb ). Then M is called (weakly)
consistent if there exists a logical structure [— for Obs such that

MIP]Y = {xeobs) Pl x}

holds for every (divergence free) process P € CRec{X 0). More

precisely we say that M 1s (weakly) consistent w.r.t. [~



Informally, W exactly computes the set of cobservations we
can make about P. If ||— is knpown, we abbreviate

obsf pP] = {xe0bs | PI- x}.

Next we state a general theorem which simplifies the task of
checking the consistency of a model M.

Theprem 13.3 Let ¥0& ¥ , M be a specification-oriented
model for CRec{X* 0} over (Obs,— ,—bb ), and - be a logical
structure for Obs. Suppose that for all processes
£(Py,-..,P ) € CRec (X 0) the following holds:

(1) Obs[f(PT,...,Pn)J]' = fM(Obsﬂ:P1_'|] ,...,Obs[pn]])

(2) Obs[[P}] = Obs whenever P diverges at £

Then M 1s consistent w.r.t. j—

Proof. Clearly MIP] = Obsf[ PJ] holds for all finite, i.e.
non-recursive processes P due to (1). But some care is needed
te show that the copy rule defintion of recursions ¢ .P agrees
with the fixed point defintion in M. To this end, we consider
three types of assertions:

A : M[e] =obs[ P}
holds for every P € CRec(Z0) with at most m occurrences of/u.
B : obs[ P(@] € obs[ P(R) ]

holds for every P€ Rec{X ) with at most m occurrences of/u
and at most r free identifiers f areens fr for which lists
Q = Q---,Q, and R = Ry,..
with obsﬁoijj < Obsf[ Ri]] for i = 1,...,r are substituted.

-+R_ of processes in CRec({Z0)

c_: obs[ wg -p@] = f\o obs [ (P(T))™Mdiv) ]
n)»

holds for every P€ Rec{ X ) with at most m occurrences of/..t
and at most r+1 free identifiers ¢ EREY §r and f for

which a list Q = Q'I"'
substituted to yield P(Q}with at most g as free identifier.

- /G, of processes in CRec (2 0) is

To ¥ an n-fold substitution starting with div is applied
to yield (P(D))"M(divi.



We wish to show that Am holds for every m> 0. But to do this we
will use the Bm‘s and Cm’s as well.

Clearly AD and BO

of the operators in M. Using {7} and the continuity of the

are true because (1) and the monotonlcity
operators in A it is easy to see that

C implies Bm

m +1 7

C_ and Arn together imply A

m m+ 1

Thus to show A _, B , C  for every m» O, it suffices to prove

m m

Bm melleS-Cm
§o choose some m3 0 and assume B . Let P abbreviate P ().
Case 1: /u.~§ .P diverges at ¢ .

Then P& (div) diverges at g for every n3 O. Thus Cm follows
from (2}.

Case 2: /u§ .2 does nat diverge at ¢

Since af.P —> P(,ug.P) is the only initial transition that
M E P ocan perform, we get ME P = P(Mf .P) and thus
Obs [ﬁg .P] = obsf Plumg -B}] . B implies that in fact

(*) obs g PJ =obs[ Pt ug . P17

holds for ewvery n3 C. For S<Obs and 12O we define
1:5 = {xes | wherellxfi=1}.

We show that

{n% ) 1:obs] PT(R,1] = l:0bs[ " (R,)]

: ; 1 : 2

holds for every n ) l+! and all R, (R, € CRec(Z ):

2z
Take some R € CRec(¥ ) and consider an observation
xel:obs[ PP{RIT . Since M3 P does not diverge at ¢, there is

no transition chain

b P W
pir) —— "Xy g




with all )\i = 7 tand the R on the RHS denotes that occurrence
of R which was substituted for 1§ in P on the LHS). Thus at least
one .\i is an observable communication, say )\i = a g Comm.

In other wards: u§ .P is an instance of a guarded recursion.

Conseguently, every transiticn chain

) P
Phry — " Tk, g

needs at least n observable )\i I Comm to reach R. Hence

PR = L " (R,) holds. This implies (w#).

We can now verify Cm:

Obs[/ug.l’ll = |\ 1:0bs [/uf .p] {(definition 1:5)
130

= U 10N ObslIPn(/UE.P)]) (Dy (%))
1»0 Ly l+1

= U (M 1: obs " ug .») ] ) (definition 1:8)
120 ny l+1

= U (M 1: obs[ 2" (div) ] ) {by (%))
10 ne l+1

= U 120N obs[rh@w]) (definition 1:S)
120 ny l+1

= U 10 obsfe™idivy ] oy B_ and (2))
10 nx 0

= M obs{ " div) ] (definition 1:§)
nx»0

This finishes our proof. //

We apply now Theorem 13.3 to relate our most detailed model,
the Readiness Model R , with the transiltion semantics. First we
need two auxiliary notions for processes P based on the transi-
tion structure:

A
next(P) = {A13Q: P—>qQ}

P is stable iff T ¢ next(P)

This explains the notion of stability used earlier in Section 10.



Now we can define a logical structure I}—_.R for Cbsyg :

Pll—g tt iff Is<t: P diverges at s.
t
Pll—g t iff 3Q: P==Q v Pll—p t?

Pll—g tX iff (3Q: P===»Q A Q stable A next(Q) = X)
V(PH—R tT)

Proposition 13.4 The Readiness Model R is consistent w.r.t. fl—p .

Proof. Condition (2} of Theorem 13.3 holds by the definition of
l-x . For copdition {1) let us present the crucial facts for two
of the more interesting cases: [0 and “\b.

{a) Crucial for proving
oos, [ POQT =obsy [ pJ Oy obs,[o]
are the following two assertions:
(i) P 0 Q diverges at s iff P diverges at s or Q diverges at s.

(11) P[] @ == R A R stable A next(R) = X

A Q==R_ A R,,R

£
. . .
1ff 3 R,,R,, X, X1 P =R, 2 7Ry stable

A next{R, ) = X, A next{Rz) = X2/\ R = R.ID RzA}(:x]ux

1 1 2

(b) For establishing
ObsR[ p\b] =obsp, I ] \p b

we need the following:

(i) PN\Db diverges at t

s
iff 35 3 Q: s\b =t A P=Q n
b
A {0 diverges at € v ¥n30 JR: Q=—R)
t
{ii) Py b —=R A R stable A next(R}] = X

5
iff s 3Q: s\b =t A Q\b = R A P=—0Q

A Q stable A b§ next(Q} A next{(Q) = X.
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Then we get

obsx [PADB] = {s\b,(s\b)X | sxeobsp[ Plabéx ]
{ s\mta steobsp [ P ]
v¥n»0: sbleobspl Rl

The disjinct "st e Obsg Tepl"” can be removed since it
implies 0bsg T P J = Obsg (by condition (2)) and thus
also ¥ n»0: sbe Obs 5 T rp]. Hence (b} follows.

The remaining operators require similar arguments. //

{Weak) consistency of the more abstract models can be stated

as corollaries of Proposition 13.4.

Corollary 13.5 The Failure Model ¥ and the Divergence Model .U

are both consistent.

Proof. Prepositions 11.4 and 10.5 explain how to modify i—gx
to obtain consistent logical structures k- and |l-g for
F and O . //

The Trace Model T° , however, is not fully consistent with the
transition semantics. Already when intrcducing the Divergence

Model & 1n Section 8 we argued that the law

(%) MHCDmP= P

of T looks unrealistic. Indeed (#) is the reason for JT's
inconsistency. To see this lock at the example P = stop. Since

L. 13 :
div || comm S59R —> div |l stop

is the on.y transition of div "C Stop, no logical structure
b— can distinguish between div ”C stop and div. Thus in
every consistent model M the law

div ”Comm stop = div

holds. But in J this law is false due to (»). (An analogous
argument applies for the Counter Model € .)



Nevertheless we can state:

Corollary 13.6 The Trace Model J and the Counter Model ¥

are weakly consistent.

Proof. By Theorem B.4 we can choose for T the following

logical structure |4 :

s
P s iff 3Q: P==0.

The logical structure |—, for € is then clear frem
Proposition 7.1. //




14. Conclusion

Starting from 2 simple idea of process correctness we developed

a specific form of denotational sematics for processes, called
specification-oriented semantics. This approach provided a uni-~-
form framework for discussing a series of increasingly sophilsti-
cated models for Communicating Processes in a step-by-step manner.
Our results are summarised in Diagram 1 where arrows —— [(—--23)

denote (weak) homomorphisms.

Diagram 1}
-
7 ™
consistent
w.r.t. transitions
£ finite processes reducible

liveness /////z external nondeterminism

properties representable
P

safety divergence representable

only

cyclic networks

tree-like networks

R

9 L

properties |
!

R

T

€

weakly consistent

w.r.t. transitiocns

.




Diagram 7 explains the purpcses and applications for which
these models are best suited. For example, if we wish to reason
about safety in divergence free cyclic petworks of prccesses, we
don't need the complex Failure Model F ; it suffices to choose
the Trace Model T . Also the models <an be combined to new ones.
For example, for reasoning about liveness properties in acyclic
networks a simplified Readiness Mcdel R - ‘€ with communication

counters instead of traces would do.

A notable omission in our programming language is the noticn
of state. This wculd allow to add assignment and explicit value
passing betwgen'processes, thus combining sequential programs
with Ccmmunicating Processes. We have not yet investigated all
the consegquences of such an addition to our formal framework.
But it is c¢lear that same care is needed since the set of states
is usually infinite. For example, we would have to consider cb-
servation spaces where the successor relaticn —p 1is not image
finite any more. Fortunately, such a change does not invalidate
cur continuilty results in Section 5, but the extenstbility con-
dition for process specifications 1n Section 8 would require a

clause ensuring bounded nondeterminism.

Irn general, it would be interesting tc establish some formal
relationship between our idea of observations and the more basic

concept of events in computation [44].

Also an explicit syntax for specifications and direct proof
systems for the relation P sat S should be developed. This could
well be done along the lines of {10,20,31,45]. An advantage of
starting from one of the models £ to F would be that the gues-
tion of completeness cf the resulting proof system could be
answered more transparantly {1,2,26,42].

Perhaps even more important, we hope that our investigations
of semantical models for Communicating Processes will provide a
firm basis for a mathematrical style of programming which allgws
a free mixture of ccnventional prcgramming constructs and spec-
ifications expressed as predicates [15). This style is expected
to support a systematic development of concurrent programs from
their specifications.
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