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Formal Semantics of Z 

1. Introduction. 

The Z notation [Sufrin 84, Morgan 84] is a language for expressing 
formal specifications of computing systems. It is based on a typed 
set theory. and the notion of a "schema"' is one of its centra) 
features. A schema consists of a collection of named objects 
specified by some axioms, and Z provides a system of notation for 
com bining schemas which conveniently allows large specifications to 
be built up in stages. 

The first part of this paper surveys approaches to the semantics of 
programming languages and their relevance to specification 
languages, then gives a sketch of a denotational semantia for Z 
based on the notion of a "variety·. In this semantics, the meaning 
of a specification i' taken to be the collection of all its models. 
The second part lists some of the benefit' resulting from a study 
of the formal semantics of specification languages. An appendix 
describes the view of set theory which underlies the semantics. 

This paper is based on a talk given at the Programming llesearch 
Group in May. 1984. I should like to thank Bernard Sufrin and 
Kavi Arya for their helpful comments. The financial support of 
the Science and Engineering Research Council of Great Britain is 
acknowledged. 
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2. Towards a Formal Semantics. 

This section begins with a brief look at the approaches which have 
been taken to describing the semantics of programming languages 
and an assessment of their relevance to the semantics of 
specification languages. One of these techniques, denotational 
semantics, is then applied to the semantics of Z: we first show how 
suitable semantic domains can be constructed using the notion of a 
«variety", then as examples show how some operations on schemas 
can be descri bed in the model. 

2.1. Programming Languages and Specification 
Languages. 

Most work on formal semantics by computer scientists has dealt 
with programming languages, but many of the techniques can be 
applied to specification languages with a few modifications. 
Approaches to the the formal semantics of programming languages 
can be classified into three broad groups: 

Denotational Semantics [Stoy 77]. This starts with some semantic 
dam ains - spaces of -abstract meaoiogs" - on which operations are 
defined corresponding to the construct. of the language. The 
structure of program. is reflected by "abstract syntax-, and this is 
related to the semantic space by semantic equations. The meaning 
of each class of syntactic objects • expressions, statem cnts and so 
on - is given by defining a semantic function to map program 
fragments onto their abstract meanings. 

For programming languages, appropriate semantic domains may be 
constructed using the theory of Scott domains and approximable 
mappings [Scott 76, 81, 82]. For specification languages, the 
semantic space may be taken as either the world of -theories" 
[Burstall & Goguen SO, 82] - the meaning of a specification being 
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the collection of all the propositions it entails • or the world of 
"varieties" - the meaning of a specification being the collection of 
all its models. We shall see later how the Z notation may be given 
a semantics based on varieties. 

Axiomatic semantics. Here, the semantics of a programming 
language is defined by giving rules for deducing properties of 
programs. An example of this approach is the well-known 
'partial-correctness formulae" due to Tony Hoare [Hoare 69]: the 
form ula P { S } Q is valid exactly if program S, when started in 
a state satisfying predicate P~ cannot terminate in a state which 
fails to satisfy the predicate Q. The semantics of a programming 
language can be characterized - well enough at least for program 
development - by giving a set of rules for deducing correctness 
form ulae. 

For specification languages, an axiomatic semantics might involve 
rules for reasoning about specifications. Such rules might be used 
for proving that one specification refines another. or for deducing 
consequences of design decisions. 

Operational semantics. The semantics of a programming language 
may also be given by describing an abstract machine whicb enacts 
the computation encoded by a program. This approach is the 
foundation for the Vienna Definition Language [Lucas & Walk 69]. 
which was used to give a formal semantics for PL/L An 
operational definition of a programming language is particularly 
well-suited to proving the correctness of implementations of the 
language, but does little to facilitate reasoning about programs. 

Some specification languages can be regarded as very high-level 
programming languages, and these have a natural operational 
semantics - indeed, in logic programming [Kowalski 79] one tries 
to give an operational semantics to the predicate calculus itself. 
Specifications written in such specification languages may be 
executed by a machine and thus used to create "rapid prototypes". 
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Not all specification languages can be executed, however. In 
particular, som e can describe functions which are not errectively 
computable, and an operational semantics for these can be at best 
partial: the Z notation is sucb a specification language. It migbt 
perhaps be argued tbat specifications are "for reasoninl about" in 
the same sense that programs are "for executing". and tbat in 
consequence tbe natural counterpart for specification languages of 
tbe operational semantics of programming languages is to be found 
in axiomatic semantics. 

Tbe rest of tbis section introduces a semantic tbeory which can be 
used to give a denotational semantics to tbe Z notation. 

2.2. Signatures. 

Consider tbe following example of a simple scbema: 

x, Y 
A 

p: X 
q: X • Y 

3 y: Y • q = (p, y) 

This contu"" some declarative information above tbe borizontal 
dividin, line, and some furtber information conveyed by tbe 
axioms below iL The declarative part of tbe scbema introduces tbe 
following information: 

o The liven-set ~ X and Y. 

o The variable !!.!!!!M p and q. 

o Some ~ information: p bas type X. and q bas type X • Y. 
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This information forms the signature of the schema A. Formally. 
the notion of signature i. defined a. follows: 

SIG 
given: P GNAIIE 
vars: P VNAJ1E 

type: VNAIIE -H TYPE 

type e (vars ~ Type(qiven) 

A signature contains an alphabet of given-set names~ drawn from 
the set GNAIIE. an alphabet of variable names. drawn from lhe set 
VNAIIE. and a function which assigns a type to each variable name. 
The types must be formed from given-set names in the alphabet: 
the function Type yield. the set of such types given the alphabet. 
The .ignature of the schema A is 

~ SIG I 
given = { lOX·. "V" }
 

yare = { "p•• "q" }
 
type	 = { .p. ~ ·X·, .q. ~ ·X x Y· J. 

There are several advantages of separating this declarative 
information from the information conveyed by the axiom~ 

o	 The signature of a schema may be regarded as an interface by 
means of which it may be assembled with other schemas to 
form a larger specification. 

o	 The theory of signatures is decidable. This means that the 
well-formedness of specifications in terms of the rules for 
signatures i. particularly .uited to mechanical checking. 

o	 The type information contained in signatures hu a pragmatic 
value in preventing errors in specifications. 
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2.3. Varieties: Meanings for Schemas. 

As well as this declarative information. the schema A also contains 
information conveyed by tbe axiom below the horizontal line. Thi. 
information can be captured by regarding A as characterizing a 
class of "structures-. For eJ[ample~ the structure 

·X" 1--+ N 
"y" 1--+ { a, b, C } 

"p" 1--+ 3 
"q. 1--+ (3, b) 

satisfies the axiom. but the structure 

"X' ...... £. g. h ) 
"y" 1--+ a, b, C ) 

.p. 1--+ h 

"q. 1--+ (g, b). 

although it also accord. with the signature, fails to satisfy the 
axiom, because the value of p is not the same as the first 
com ponent of the value of q. 

A structure takes certain given-set names and variables and gives 
them values in the "world" of sets. If we assume a set V which 
models a universe of sets, and a binary relation E which models the 
mem bership relation between sets. we can characterize structures as 
pairs of functions from GNAME and VNAME into V: 

[ STRUCT I 
gaet: GNAME -++ V 
val: VNAME ..... V 
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The universe II can be described formally by giving the axioms of 
set theory as a specification: further details are given in the 
appendix. 

The first requirement on the structures for a schema is that they 
be consistent with the signature of the schema: the domains of the 
geet and val mappings should he the alphabets of the signature, 
and tbe value given to each variable must be in the -carrier- for 
the corresponding type. We define the function Struct to give the 
set of structures consistent with a signature: 

Struct' SIG -+ P STRUCT 

Struct = 

A SIG
 
{ STRUCT
 

dom gset = given 
dom val = vanEi 
'rf v: yare 

val v E Carrier gset (type v) } 

The function Carrier gives the set of elements of a type by 
interpreting type-constructors as operations in the world of sets. 

Now a variety - the meaning of a schema - can be defined as a 
signature together with a set of structures for the signature: 

VARIETY 
I 

eig' SIG 
modele' P STRUCT 

models ~ Struct(sig) 



g Formal Semantics of Z 

The set models will typically be smaller than Struct (Big) because 
some structures will fail to satisfy the axioms of the schema. For 
example, the schema A characterizes a variety with the signature 
given above. The modele component is 

m.odele = 

STRUCT 

dom gset = { .. X" J "Y" } 

dom val { lOp". "'q" } 

val lOp. E gset "X" 

val "q" E product(geet "X", geet "Y") 

3 yy: W yy E gBet "yo 

val "q" = opair(val lOp", yy) 

Here product denotes the Cartesian product operation in the world 
of sets, and opair denotes the operation of ordered-pair formation. 
To be a model for A, a structure must give values to the given-set 
names X and Y and the variables p and q. The value of p must be 
in X, and the value of q must be in X x Y. Finally, the axiom of 
A must be satisfled. 

2.4. Some operations on schemas. 

These concepts can be used to build semantic domains for a 
denotational semantics of the Z notation. As examples, we give the 
semantics of some of the operation. of the schema-calculus. These 
operations may be used to build up "schema-expressions"; we .how 
the operations of schema-conjunction and di.junction, and the 
projection of one .chema on the variables of another: 

SEXPR ::= 

I SEXPR A SEXPR SEXPR v SEXPR 

I SEXPR t SEXPR 
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Consider the operation of schema-conjunction. Given two schemas 
A and B, the signature of their conjunction A A B is formed by 
joining their signatures with identification of common variables: the 
conjunction can only be formed if the common variables have the 
same types in A and B. The models of A A B are those which 
satisfy~ in a certain sense, both the axioms of A and the axioms of 
B. 

The meaning of a schema-expression is defined by a semantic 
function sexpr which. given an environment of schema-definitions. 
maps schema-expressions to varieties: 

sexpr' ENV -+ SEXPR ~ VARIETY 

sexpr p [ 51 A S2 ] == 

combine(Bexpr 0 [ 51 l, sexpr p [ 52 ]) 

The operation combine puts together the varieties corresponding to 
the arguments of a schema-conjunction in the way described 
informally above. The signatures are joined using an auxiliary 
function join. and the class of models is defined in terms of the 
function restrict. which recovers a structure for a smaller 
signature from one for a larger signature in which it is included. 
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combine' VARIETY x VARIETY ~ VARIETY 

combine(SVARIETY., SVARIETY.J == 

~ VARIETY' I 
Big' == join(sig" siga) 

models' = 

II: Struct(siq') I 
restrict sig, tI E 

restrict sig:a tI E 

models i 

models:a 

8r 

} 

Tbis definition bears a striking resemblance to the definition of 
parallel composition in CSP [Hoare 83] if we relard signatures and 
models as analogous to alphabets and traces respectively: 

a(P II OJ o:P U aQ 

traces(P II Ol
 
I t E .(P II Ol* I
 

traP E traces{P) " 
t r .0 E traces(ol l. 

Tbe disjunction of two schemas A and B is defined similarly: the 
signatures are still joined in the same way. but the models are 
tbose which satisfy either tbe axioms of A or those of B: 

sexpr p [ 5, V S2 ] ==
 

disjoin(sexpr- p [ 5, l, sexpr p [ Sa ])
 

Tbe operation disjoin is defined exactly like combine, except the 
model.. component of the result i. liven by 
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models' = 

/1, StructC Bi.g') I 
restrict aig l M e 
restrict aig, M e 

models, v 

models, }. 

The semantics 
project: 

of schema-projection is defined of an operation 

sexpr p [ SI t S, ] ==
 

project(sexpr p [ S, l, sexpr p [ S, ])
 

The standard definition of A t B hides those components of A 

which are not in the signature of B. It is required that the 
signature of A includes the signature of B. and the axioms of Bare 
ignored. The models in the result are those structures for the 
signature of B which can be obtained by restriction from a model 
of A. 

project: VARIETY x VARIETY ~ VARIETY 

project(8VARIETY., eVARIETY.) - ­
u VARIETY' I 

aig, BUbsiQ aig 1 

Big' ::; aig,
 
models' = (restrict sig,)( ~ode19t )
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An alt,rnati.e definition might require the models in the result to 
be models for B .. well: this effect would be obtain'd by setting 

models' = 
models2 n (restrict sig2 ) ( models t ). 

These examples show how the theory of .arieties can be applied to 
the semantics of some sim pie Z constructs. Of course, for a full 
semantics of Z it is necessary to describe the environments which 
record definitions of schem as and the process by which generic 
schem.. can be instantiated with particular types, as well as the 
mathematical sublangualc in which the ax.iom parts of schemas are 
expressed. 

The next section goes on to examine some of the benefits which 
might be expected from a formal semantics of Z. 
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3. The Benefits of a Formal Semantics. 

Several benefits can be derived from a study of the formal 
semantics of the Z notation. Such a study can help in the 
understanding of the specification process by clarifying certain 
desirable properties of specifications. It can also help in the design 
of better sp""ification languages by allowing a critical comparison 
of specification techniques and notations. Finally, a formal 
semantics of tbe specification language is a necessary prerequisite 
for rigorous development of software tools to assist in the task of 
specification and program development. 

3.1. Understanding the Specification Process. 

The formal semantics of Z helps us to understand the issues 
involved in writing Z specifications. Firstly, the semantics can 
provide a foundation for a logical calculus for reasoning about 
specifications. Such a calculus may be regarded as an axiomatic 
semantics of Z, and can be derived from the denotational semantics 
in the same way that the soundness of Hoare-style proof rules for 
a programming language can be proved from the denotational 
semantics of the language. The semantics of schema-conjunction 
given above justifies a proof-rule for deriving theorems about 
schemas built up using the operations from theorems about their 
component schemas. 

A semantics based on varieties helps to support our intuition about 
composite specifications better than one based entirely on a textual 
view of specifications. For example, if we say 

FILE SYS 

[ SIORAGE_SYS I 

CHANNEL_SYS 



14 Formal Semantics of Z 

we intend that models of the file-system should contain aspects 
which constitute models of STDRAGE_SYS and CHANNEL_SYS. and 
not merely that a text describing FILE_SYS may be obtained by 
joining texts describing the two components. 

The denotational semantics also allows the rigorous formulation of 
notions essential to program development. For example,. it allows 
us to say exactly what it means for one specification to refine 
another, or for a specification to be consistent or complete, and 
allows techniques to be developed for proving that specifications 
enjoy these desirable properties. A simple example of the notions 
of consistency and com pleteness is the problem of characterizing 
tbe natmal numbers. 

Most specifications use the symbol t~ - but what does it mean? We 
might decide that N will always denote a particular object in the 
world of sets: in this case. N must be "built-in'" to the notation. 
But this is unnecessary. since everything we require of N may be 
captured by a small specification of a ·Peano system": there must 
be a set X. together with a "zero" z and a "successor function" s. 
and these must have certain characteristic properties. including an 
induction principle. 

x 
PS 
z: X 
s:X>--+X 

z ~ ran B 

V A: P X • 

Z E A & ( V x: A . B X e A ) 

- A = X 
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Now	 there are two questions to settle: 

o	 Have we really captured all we need to know about N - is 
the specification complete? 

o	 Is the specification free from contradictions ... is it consistent? 

We can prove completeness by an inductive argument within the 
framework of Z - we show that any two models are uniquely 
isomorphic, that is, there is a unique bijection between them which 
preserves the zero and suc:cessor function: 

[X, Yl
 
PS[X], PS' [Y] f ­


3! h' X ,.. Y
 

h z	 = z· 8r 
( V x' X h (s xl = s' (h xl ). 

To prove consistency, we must step outside the context of Z and 
explicitly construct a model of the specification in the world of 
sets. 

These methods can also be applied to establish the consistency and 
completeness of other specifications, for example those arising from 
abstract syntax nolation: 

BT ,,= leaf «N» I node «BT x BT » 

means the sam e as 
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BT -- Binary trees. 

leaf: N >-> BT 
node: BT x BT ~ BT 

ran leaf n ran node = 0 

A: P BT .I V 
( V n: N leaf n E A ) & 
( 'V bp ba : A . nodeCb p b2 ) E A ) 

- A = BT 

3.2. Studying Specification Languages. 

Formal semantics has proved to be a powerful technique for 
studying programming languages: it allows the subtle nuances of 
meaning in, for example, the Algol 60 f.!2.l: statement to be brought 
out and discussed. The indispensable advantage offered by formal 
semanti" is the possibility of being perfectly precise about tbe 
concepts involved, and we can expect tbis advantage to apply to 
specification languages just as much as programming languages. 

Denotational semantia provides a view of programs and 
specifications wbicb abstracts away from inessential details of 
syntax and presentation: in tbe semantic theory described in 
section 2, for example, two schem... whose axioms have the same 
content will be modelled by the same variety, even if the axioms 
are vastly different in form. This view makes it ....y to investigate 
new language constructs: for example, a simple semantics can be 
given to the use of a schema ... a predicate, and this notion proves 
quite useful in certain kinch of specification problem. During data 
refinement of a specification, it is neccessary to show that each 
operation preserves the invariant relation I between abstract and 
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concrete states. This requirement can be expressed by the theorem 

I ~ ADP ~ COP f- I' 

where AOP specifies the abstract operation and COP specifies its 
realisation. and the schema I' on the right-band side is used as a 
predicate. 

A study of the formal semantics of a notation allows a critical 
examination of the rigour of the notation .. - indeed, such a critical 
exam ination is a necessary part of the study. If any construct in 
the notation is ambiguous or ill-founded, it will be impossible to 
write down the semantics, and this will encourage a closer 
examination of the construct in question. An example of this 
phenomenon in the Z notation is the facility for global generic 
definitions. 

We often want to make definitions generic in some given sets, for 
example, the concatenation operator on sequences. which is defined 
for every possible type of element: 

x 
I I 

I ~ ~ ~ : Beq[X] x seq[X) ...... seqlX] 

It turns out to be difficult to describe this sort of definition using 
the theory. Whilst such definitions make obvious sense in simple 
cases, mare complex cases seem to cause problems. For example, 
suppose {ooIX] is defined to be a member of the set X. and 
consider the schema B: 
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x 

I foo' X I 

t:' , I 

P = foo[N] 

How many models does the schema B have? Is there just one 
model, corresponding to a single possible value of p? If so, what 
reason is there to prefer one value over any other? 

Or does B have many different models, each with a different value 
for p? In this case, the composite scbema B A B' will have models 
in which p takes one value and p' takes a different value. This 
seems to contradict the argument which deduces p = p' from the 
axioms p = foo[N] and p' = foolNI, together with the transitive 
property of equality. 

3.3. Implementing Support Tools. 

Since formal specifications are formal texts, they are amenable to 
manipulation by machine. Several kinds of software tool can assist 
in the process of program development: checking programs of 
various kinds can be used to detect simple errors in specifications, 
and machine assistance with the proof of theorems about 
specifications may make formal verification of designs feasible. 
Many of the proofs needed during the development process are 
very shaUow, but contain a mass of detail: this is just the kind of 
proof for which mechanical assistance is most valuable. 
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These software tools, if they are to be effective, must be designed 
in the same rigorous way as any other program. and this mean, 
that tbe development must start with a formal specification. For 
the simplest kinds of analysis, a formal syntax for the specification 
language is all tbe information needed, but a program to chec~ for 
violations of the type rules, for example, will require these rules to 
be formulated rigorously. A mechanised proof assistant will need a 
collection of inference rules for reasoning about specifications. 
Whilst these collections of rules might all be put together in an 
arbitrary way, it is clear that greater confidence can be placed in 
their consistency if they are all derived from a formal semantics 
for the specification language. 
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4. Summary. 

The paper began by sketching a sem antic theory which can be used 
as the basis for a semantics of the Z notation. First the notion of 
a signature was introduced as representing the declarative 
information in a schema, then the notion of a variety, which 
consists of a signature together with a class of structures. Varieties 
can be taken as a model for the meaning of schemas. and this leads 
to a denotational semantics for Z. As an example., the semantics of 
schema-conjunction was given by introducing a corresponding 
operation on varieties. 

The seoond part of the paper surveyed the likely applications 
arising from a study of the formal semantics of Z. Firstly. a 
formal semantics can help in understanding the process of writing 
formal specifications. It can provide rules for reasoning about 
specifications, and a rigorous formulation of ideas. such as 
consistency. completeness and refinement, which are essential to 
program development. 

Formal semantics also provides an indispensible tool for studying 
specification languages. The meaning of new language constructs 
and tho rigour of established ones can both be discussed 
conveniently at the level of abstraction made possible by 
denotational semantie& 

Finally. a formal semantics for the specification language is a 
necessary part of the specification of software tools to support 
program development. 
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Appendix. The World of Sets. 

The formal semantics sketched in section 2 depends on a 
formulation of the axioms of set theory as a Z specification. This 
specification begins by introducinC a given-set name W to denote 
tbe "world'" of sets. and a binary relation E on 'rl to denote the 
mem bership relation. The first requirement is that mem bership be 
extensional. i.e. that any two sets with the same mem bers are equal: 

\I -- World of sets. 

E "4--t't( 

v X. y: \I . 

( V z: W . Z E X +* Z E Y ) -. x = y 

The axioms corresponding to set-theoretic constructions give rise to 
functions on V: for example,. the power-set axiom gives rise to the 
function power: 

po'Wer: V -t V 

'" X. y: Il . 
X E power y ... ( V z: W • Z EX .... Z E Y ) 

For the axiom of separation, properties of sets are represented by 
subsets of W. A subset S of \I may be a ·proper class· in the sense 
that there may be no -set- in Wwhose -mem bers- under E coincide 
with the members of S. The axiom of separation gives rise to a 
function f i 1ter: 
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filter: W x P w ~ w 

~ x, y' W, s, P w 
X E filter(y, S) ~ x E Y & XES 

By omitting the axiom of replacement~ we obtain a version of set 
theory with standard models within ordinary Z-F set theory: for 
exampl~ it is well-known that VA, for A a limit ordinal larger 
than omega. satisfies all the Z-Faxioms except replacement 
[Enderton 77]. 
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