
Towards a Formal Semantics for
the Z Notation

by

Mike Spivey

> ~ ."

," rr
\ \ ,,;'!'" ~ , I

o~'~~·
, .

, \ J f l ',:>'Jl~
\Jl'-\V\\) - .'

Technical Monograph PRG-41
October 1984

Oxford University Computing Laboratory
Programmin& Research Group
8-U Keble Road
OXford OXI 3QD

Copyright (C) 1984, J.M. Spivey

Oxford University Computing Laboratory
Programming Research Group
8-11 Keble Road
Oxford OXI 3QD

Contents.

J. Introduction.

2. Towards a formal semantics.
2.1.	 Programming languages and specification

languages.
2.2.	 Signatures.
23.	 Varieties: meanings for schemas.
2.4.	 Some operations on schemas.

3. The benefits of a formal semantics.
3.1.	 Understanding the specification process.
3.2.	 Studying specification languages.
3.1	 Implementing support tools.

4. Summary.

Appendix. The World of Sets.

References.

Formal Semantics of Z

1. Introduction.

The Z notation [Sufrin 84, Morgan 84] is a language for expressing
formal specifications of computing systems. It is based on a typed
set theory. and the notion of a "schema"' is one of its centra)
features. A schema consists of a collection of named objects
specified by some axioms, and Z provides a system of notation for
com bining schemas which conveniently allows large specifications to
be built up in stages.

The first part of this paper surveys approaches to the semantics of
programming languages and their relevance to specification
languages, then gives a sketch of a denotational semantia for Z
based on the notion of a "variety·. In this semantics, the meaning
of a specification i' taken to be the collection of all its models.
The second part lists some of the benefit' resulting from a study
of the formal semantics of specification languages. An appendix
describes the view of set theory which underlies the semantics.

This paper is based on a talk given at the Programming llesearch
Group in May. 1984. I should like to thank Bernard Sufrin and
Kavi Arya for their helpful comments. The financial support of
the Science and Engineering Research Council of Great Britain is
acknowledged.

2 Formal Semantics of Z

2. Towards a Formal Semantics.

This section begins with a brief look at the approaches which have
been taken to describing the semantics of programming languages
and an assessment of their relevance to the semantics of
specification languages. One of these techniques, denotational
semantics, is then applied to the semantics of Z: we first show how
suitable semantic domains can be constructed using the notion of a
«variety", then as examples show how some operations on schemas
can be descri bed in the model.

2.1. Programming Languages and Specification
Languages.

Most work on formal semantics by computer scientists has dealt
with programming languages, but many of the techniques can be
applied to specification languages with a few modifications.
Approaches to the the formal semantics of programming languages
can be classified into three broad groups:

Denotational Semantics [Stoy 77]. This starts with some semantic
dam ains - spaces of -abstract meaoiogs" - on which operations are
defined corresponding to the construct. of the language. The
structure of program. is reflected by "abstract syntax-, and this is
related to the semantic space by semantic equations. The meaning
of each class of syntactic objects • expressions, statem cnts and so
on - is given by defining a semantic function to map program
fragments onto their abstract meanings.

For programming languages, appropriate semantic domains may be
constructed using the theory of Scott domains and approximable
mappings [Scott 76, 81, 82]. For specification languages, the
semantic space may be taken as either the world of -theories"
[Burstall & Goguen SO, 82] - the meaning of a specification being

3 Formal Semantics of Z

the collection of all the propositions it entails • or the world of
"varieties" - the meaning of a specification being the collection of
all its models. We shall see later how the Z notation may be given
a semantics based on varieties.

Axiomatic semantics. Here, the semantics of a programming
language is defined by giving rules for deducing properties of
programs. An example of this approach is the well-known
'partial-correctness formulae" due to Tony Hoare [Hoare 69]: the
form ula P { S } Q is valid exactly if program S, when started in
a state satisfying predicate P~ cannot terminate in a state which
fails to satisfy the predicate Q. The semantics of a programming
language can be characterized - well enough at least for program
development - by giving a set of rules for deducing correctness
form ulae.

For specification languages, an axiomatic semantics might involve
rules for reasoning about specifications. Such rules might be used
for proving that one specification refines another. or for deducing
consequences of design decisions.

Operational semantics. The semantics of a programming language
may also be given by describing an abstract machine whicb enacts
the computation encoded by a program. This approach is the
foundation for the Vienna Definition Language [Lucas & Walk 69].
which was used to give a formal semantics for PL/L An
operational definition of a programming language is particularly
well-suited to proving the correctness of implementations of the
language, but does little to facilitate reasoning about programs.

Some specification languages can be regarded as very high-level
programming languages, and these have a natural operational
semantics - indeed, in logic programming [Kowalski 79] one tries
to give an operational semantics to the predicate calculus itself.
Specifications written in such specification languages may be
executed by a machine and thus used to create "rapid prototypes".

4 Form al Sem antics of Z

Not all specification languages can be executed, however. In
particular, som e can describe functions which are not errectively
computable, and an operational semantics for these can be at best
partial: the Z notation is sucb a specification language. It migbt
perhaps be argued tbat specifications are "for reasoninl about" in
the same sense that programs are "for executing". and tbat in
consequence tbe natural counterpart for specification languages of
tbe operational semantics of programming languages is to be found
in axiomatic semantics.

Tbe rest of tbis section introduces a semantic tbeory which can be
used to give a denotational semantics to tbe Z notation.

2.2. Signatures.

Consider tbe following example of a simple scbema:

x, Y
A

p: X
q: X • Y

3 y: Y • q = (p, y)

This contu"" some declarative information above tbe borizontal
dividin, line, and some furtber information conveyed by tbe
axioms below iL The declarative part of tbe scbema introduces tbe
following information:

o The liven-set ~ X and Y.

o The variable !!.!!!!M p and q.

o Some ~ information: p bas type X. and q bas type X • Y.

5 Formal Semantics of Z

This information forms the signature of the schema A. Formally.
the notion of signature i. defined a. follows:

SIG
given: P GNAIIE
vars: P VNAJ1E

type: VNAIIE -H TYPE

type e (vars ~ Type(qiven)

A signature contains an alphabet of given-set names~ drawn from
the set GNAIIE. an alphabet of variable names. drawn from lhe set
VNAIIE. and a function which assigns a type to each variable name.
The types must be formed from given-set names in the alphabet:
the function Type yield. the set of such types given the alphabet.
The .ignature of the schema A is

~ SIG I
given = { lOX·. "V" }

yare = { "p•• "q" }

type	 = { .p. ~ ·X·, .q. ~ ·X x Y· J.

There are several advantages of separating this declarative
information from the information conveyed by the axiom~

o	 The signature of a schema may be regarded as an interface by
means of which it may be assembled with other schemas to
form a larger specification.

o	 The theory of signatures is decidable. This means that the
well-formedness of specifications in terms of the rules for
signatures i. particularly .uited to mechanical checking.

o	 The type information contained in signatures hu a pragmatic
value in preventing errors in specifications.

6 Formal Semantics of Z

2.3. Varieties: Meanings for Schemas.

As well as this declarative information. the schema A also contains
information conveyed by tbe axiom below the horizontal line. Thi.
information can be captured by regarding A as characterizing a
class of "structures-. For eJ[ample~ the structure

·X" 1--+ N
"y" 1--+ { a, b, C }

"p" 1--+ 3
"q. 1--+ (3, b)

satisfies the axiom. but the structure

"X' £. g. h)
"y" 1--+ a, b, C)

.p. 1--+ h

"q. 1--+ (g, b).

although it also accord. with the signature, fails to satisfy the
axiom, because the value of p is not the same as the first
com ponent of the value of q.

A structure takes certain given-set names and variables and gives
them values in the "world" of sets. If we assume a set V which
models a universe of sets, and a binary relation E which models the
mem bership relation between sets. we can characterize structures as
pairs of functions from GNAME and VNAME into V:

[STRUCT I
gaet: GNAME -++ V
val: VNAME V

7 Formal Semantics of Z

The universe II can be described formally by giving the axioms of
set theory as a specification: further details are given in the
appendix.

The first requirement on the structures for a schema is that they
be consistent with the signature of the schema: the domains of the
geet and val mappings should he the alphabets of the signature,
and tbe value given to each variable must be in the -carrier- for
the corresponding type. We define the function Struct to give the
set of structures consistent with a signature:

Struct' SIG -+ P STRUCT

Struct =

A SIG

{ STRUCT

dom gset = given
dom val = vanEi
'rf v: yare

val v E Carrier gset (type v) }

The function Carrier gives the set of elements of a type by
interpreting type-constructors as operations in the world of sets.

Now a variety - the meaning of a schema - can be defined as a
signature together with a set of structures for the signature:

VARIETY
I

eig' SIG
modele' P STRUCT

models ~ Struct(sig)

g Formal Semantics of Z

The set models will typically be smaller than Struct (Big) because
some structures will fail to satisfy the axioms of the schema. For
example, the schema A characterizes a variety with the signature
given above. The modele component is

m.odele =

STRUCT

dom gset = { .. X" J "Y" }

dom val { lOp". "'q" }

val lOp. E gset "X"

val "q" E product(geet "X", geet "Y")

3 yy: W yy E gBet "yo

val "q" = opair(val lOp", yy)

Here product denotes the Cartesian product operation in the world
of sets, and opair denotes the operation of ordered-pair formation.
To be a model for A, a structure must give values to the given-set
names X and Y and the variables p and q. The value of p must be
in X, and the value of q must be in X x Y. Finally, the axiom of
A must be satisfled.

2.4. Some operations on schemas.

These concepts can be used to build semantic domains for a
denotational semantics of the Z notation. As examples, we give the
semantics of some of the operation. of the schema-calculus. These
operations may be used to build up "schema-expressions"; we .how
the operations of schema-conjunction and di.junction, and the
projection of one .chema on the variables of another:

SEXPR ::=

I SEXPR A SEXPR SEXPR v SEXPR

I SEXPR t SEXPR

9 Formal Semantics of Z

Consider the operation of schema-conjunction. Given two schemas
A and B, the signature of their conjunction A A B is formed by
joining their signatures with identification of common variables: the
conjunction can only be formed if the common variables have the
same types in A and B. The models of A A B are those which
satisfy~ in a certain sense, both the axioms of A and the axioms of
B.

The meaning of a schema-expression is defined by a semantic
function sexpr which. given an environment of schema-definitions.
maps schema-expressions to varieties:

sexpr' ENV -+ SEXPR ~ VARIETY

sexpr p [51 A S2] ==

combine(Bexpr 0 [51 l, sexpr p [52])

The operation combine puts together the varieties corresponding to
the arguments of a schema-conjunction in the way described
informally above. The signatures are joined using an auxiliary
function join. and the class of models is defined in terms of the
function restrict. which recovers a structure for a smaller
signature from one for a larger signature in which it is included.

10 Formal Semantics of Z

combine' VARIETY x VARIETY ~ VARIETY

combine(SVARIETY., SVARIETY.J ==

~ VARIETY' I
Big' == join(sig" siga)

models' =

II: Struct(siq') I
restrict sig, tI E

restrict sig:a tI E

models i

models:a

8r

}

Tbis definition bears a striking resemblance to the definition of
parallel composition in CSP [Hoare 83] if we relard signatures and
models as analogous to alphabets and traces respectively:

a(P II OJ o:P U aQ

traces(P II Ol

I t E .(P II Ol* I

traP E traces{P) "
t r .0 E traces(ol l.

Tbe disjunction of two schemas A and B is defined similarly: the
signatures are still joined in the same way. but the models are
tbose which satisfy either tbe axioms of A or those of B:

sexpr p [5, V S2] ==

disjoin(sexpr- p [5, l, sexpr p [Sa])

Tbe operation disjoin is defined exactly like combine, except the
model.. component of the result i. liven by

Formal Semantics of Z 11

models' =

/1, StructC Bi.g') I
restrict aig l M e
restrict aig, M e

models, v

models, }.

The semantics
project:

of schema-projection is defined of an operation

sexpr p [SI t S,] ==

project(sexpr p [S, l, sexpr p [S,])

The standard definition of A t B hides those components of A

which are not in the signature of B. It is required that the
signature of A includes the signature of B. and the axioms of Bare
ignored. The models in the result are those structures for the
signature of B which can be obtained by restriction from a model
of A.

project: VARIETY x VARIETY ~ VARIETY

project(8VARIETY., eVARIETY.) - ­
u VARIETY' I

aig, BUbsiQ aig 1

Big' ::; aig,

models' = (restrict sig,)(~ode19t)

12 Formal Semantics of Z

An alt,rnati.e definition might require the models in the result to
be models for B .. well: this effect would be obtain'd by setting

models' =
models2 n (restrict sig2) (models t).

These examples show how the theory of .arieties can be applied to
the semantics of some sim pie Z constructs. Of course, for a full
semantics of Z it is necessary to describe the environments which
record definitions of schem as and the process by which generic
schem.. can be instantiated with particular types, as well as the
mathematical sublangualc in which the ax.iom parts of schemas are
expressed.

The next section goes on to examine some of the benefits which
might be expected from a formal semantics of Z.

13 Formal Semantics of Z

3. The Benefits of a Formal Semantics.

Several benefits can be derived from a study of the formal
semantics of the Z notation. Such a study can help in the
understanding of the specification process by clarifying certain
desirable properties of specifications. It can also help in the design
of better sp""ification languages by allowing a critical comparison
of specification techniques and notations. Finally, a formal
semantics of tbe specification language is a necessary prerequisite
for rigorous development of software tools to assist in the task of
specification and program development.

3.1. Understanding the Specification Process.

The formal semantics of Z helps us to understand the issues
involved in writing Z specifications. Firstly, the semantics can
provide a foundation for a logical calculus for reasoning about
specifications. Such a calculus may be regarded as an axiomatic
semantics of Z, and can be derived from the denotational semantics
in the same way that the soundness of Hoare-style proof rules for
a programming language can be proved from the denotational
semantics of the language. The semantics of schema-conjunction
given above justifies a proof-rule for deriving theorems about
schemas built up using the operations from theorems about their
component schemas.

A semantics based on varieties helps to support our intuition about
composite specifications better than one based entirely on a textual
view of specifications. For example, if we say

FILE SYS

[SIORAGE_SYS I

CHANNEL_SYS

14 Formal Semantics of Z

we intend that models of the file-system should contain aspects
which constitute models of STDRAGE_SYS and CHANNEL_SYS. and
not merely that a text describing FILE_SYS may be obtained by
joining texts describing the two components.

The denotational semantics also allows the rigorous formulation of
notions essential to program development. For example,. it allows
us to say exactly what it means for one specification to refine
another, or for a specification to be consistent or complete, and
allows techniques to be developed for proving that specifications
enjoy these desirable properties. A simple example of the notions
of consistency and com pleteness is the problem of characterizing
tbe natmal numbers.

Most specifications use the symbol t~ - but what does it mean? We
might decide that N will always denote a particular object in the
world of sets: in this case. N must be "built-in'" to the notation.
But this is unnecessary. since everything we require of N may be
captured by a small specification of a ·Peano system": there must
be a set X. together with a "zero" z and a "successor function" s.
and these must have certain characteristic properties. including an
induction principle.

x
PS
z: X
s:X>--+X

z ~ ran B

V A: P X •

Z E A & (V x: A . B X e A)

- A = X

15 Formal Semantics of Z

Now	 there are two questions to settle:

o	 Have we really captured all we need to know about N - is
the specification complete?

o	 Is the specification free from contradictions ... is it consistent?

We can prove completeness by an inductive argument within the
framework of Z - we show that any two models are uniquely
isomorphic, that is, there is a unique bijection between them which
preserves the zero and suc:cessor function:

[X, Yl

PS[X], PS' [Y] f ­

3! h' X ,.. Y

h z	 = z· 8r
(V x' X h (s xl = s' (h xl).

To prove consistency, we must step outside the context of Z and
explicitly construct a model of the specification in the world of
sets.

These methods can also be applied to establish the consistency and
completeness of other specifications, for example those arising from
abstract syntax nolation:

BT ,,= leaf «N» I node «BT x BT »

means the sam e as

16 Formal Semantics of Z

BT -- Binary trees.

leaf: N >-> BT
node: BT x BT ~ BT

ran leaf n ran node = 0

A: P BT .I V
(V n: N leaf n E A) &
('V bp ba : A . nodeCb p b2) E A)

- A = BT

3.2. Studying Specification Languages.

Formal semantics has proved to be a powerful technique for
studying programming languages: it allows the subtle nuances of
meaning in, for example, the Algol 60 f.!2.l: statement to be brought
out and discussed. The indispensable advantage offered by formal
semanti" is the possibility of being perfectly precise about tbe
concepts involved, and we can expect tbis advantage to apply to
specification languages just as much as programming languages.

Denotational semantia provides a view of programs and
specifications wbicb abstracts away from inessential details of
syntax and presentation: in tbe semantic theory described in
section 2, for example, two schem... whose axioms have the same
content will be modelled by the same variety, even if the axioms
are vastly different in form. This view makes ity to investigate
new language constructs: for example, a simple semantics can be
given to the use of a schema ... a predicate, and this notion proves
quite useful in certain kinch of specification problem. During data
refinement of a specification, it is neccessary to show that each
operation preserves the invariant relation I between abstract and

17 Formal Semantics of Z

concrete states. This requirement can be expressed by the theorem

I ~ ADP ~ COP f- I'

where AOP specifies the abstract operation and COP specifies its
realisation. and the schema I' on the right-band side is used as a
predicate.

A study of the formal semantics of a notation allows a critical
examination of the rigour of the notation .. - indeed, such a critical
exam ination is a necessary part of the study. If any construct in
the notation is ambiguous or ill-founded, it will be impossible to
write down the semantics, and this will encourage a closer
examination of the construct in question. An example of this
phenomenon in the Z notation is the facility for global generic
definitions.

We often want to make definitions generic in some given sets, for
example, the concatenation operator on sequences. which is defined
for every possible type of element:

x
I I

I ~ ~ ~ : Beq[X] x seq[X) seqlX]

It turns out to be difficult to describe this sort of definition using
the theory. Whilst such definitions make obvious sense in simple
cases, mare complex cases seem to cause problems. For example,
suppose {ooIX] is defined to be a member of the set X. and
consider the schema B:

IS Forma! Semantics of Z

x

I foo' X I

t:' , I

P = foo[N]

How many models does the schema B have? Is there just one
model, corresponding to a single possible value of p? If so, what
reason is there to prefer one value over any other?

Or does B have many different models, each with a different value
for p? In this case, the composite scbema B A B' will have models
in which p takes one value and p' takes a different value. This
seems to contradict the argument which deduces p = p' from the
axioms p = foo[N] and p' = foolNI, together with the transitive
property of equality.

3.3. Implementing Support Tools.

Since formal specifications are formal texts, they are amenable to
manipulation by machine. Several kinds of software tool can assist
in the process of program development: checking programs of
various kinds can be used to detect simple errors in specifications,
and machine assistance with the proof of theorems about
specifications may make formal verification of designs feasible.
Many of the proofs needed during the development process are
very shaUow, but contain a mass of detail: this is just the kind of
proof for which mechanical assistance is most valuable.

190 Formal Semantics of Z

These software tools, if they are to be effective, must be designed
in the same rigorous way as any other program. and this mean,
that tbe development must start with a formal specification. For
the simplest kinds of analysis, a formal syntax for the specification
language is all tbe information needed, but a program to chec~ for
violations of the type rules, for example, will require these rules to
be formulated rigorously. A mechanised proof assistant will need a
collection of inference rules for reasoning about specifications.
Whilst these collections of rules might all be put together in an
arbitrary way, it is clear that greater confidence can be placed in
their consistency if they are all derived from a formal semantics
for the specification language.

20 Formal Semantics of Z

4. Summary.

The paper began by sketching a sem antic theory which can be used
as the basis for a semantics of the Z notation. First the notion of
a signature was introduced as representing the declarative
information in a schema, then the notion of a variety, which
consists of a signature together with a class of structures. Varieties
can be taken as a model for the meaning of schemas. and this leads
to a denotational semantics for Z. As an example., the semantics of
schema-conjunction was given by introducing a corresponding
operation on varieties.

The seoond part of the paper surveyed the likely applications
arising from a study of the formal semantics of Z. Firstly. a
formal semantics can help in understanding the process of writing
formal specifications. It can provide rules for reasoning about
specifications, and a rigorous formulation of ideas. such as
consistency. completeness and refinement, which are essential to
program development.

Formal semantics also provides an indispensible tool for studying
specification languages. The meaning of new language constructs
and tho rigour of established ones can both be discussed
conveniently at the level of abstraction made possible by
denotational semantie&

Finally. a formal semantics for the specification language is a
necessary part of the specification of software tools to support
program development.

21 Form al Sem antics of Z

Appendix. The World of Sets.

The formal semantics sketched in section 2 depends on a
formulation of the axioms of set theory as a Z specification. This
specification begins by introducinC a given-set name W to denote
tbe "world'" of sets. and a binary relation E on 'rl to denote the
mem bership relation. The first requirement is that mem bership be
extensional. i.e. that any two sets with the same mem bers are equal:

\I -- World of sets.

E "4--t't(

v X. y: \I .

(V z: W . Z E X +* Z E Y) -. x = y

The axioms corresponding to set-theoretic constructions give rise to
functions on V: for example,. the power-set axiom gives rise to the
function power:

po'Wer: V -t V

'" X. y: Il .
X E power y ... (V z: W • Z EX Z E Y)

For the axiom of separation, properties of sets are represented by
subsets of W. A subset S of \I may be a ·proper class· in the sense
that there may be no -set- in Wwhose -mem bers- under E coincide
with the members of S. The axiom of separation gives rise to a
function f i 1ter:

22 Formal Semantics of Z

filter: W x P w ~ w

~ x, y' W, s, P w
X E filter(y, S) ~ x E Y & XES

By omitting the axiom of replacement~ we obtain a version of set
theory with standard models within ordinary Z-F set theory: for
exampl~ it is well-known that VA, for A a limit ordinal larger
than omega. satisfies all the Z-Faxioms except replacement
[Enderton 77].

Formal Semantics of Z 23.

References.

[Bur.tall &- Goguen 80]

Bur.tall, R.M., &- Goguen, J.A., "The Semantics of CLEAR,
a Specification Language", Internal Report CSR-6S-80,
Department of Computer Science. Univer.ity of Edinburgh,
1980.

[Bur.tall &- Goguen 82]

Burstall, R.M., &- Goguen, J.A., "Algebra., Theories and
Freeness: An Introduction for Computer Scientists", in
"Theoretical Foundation. of Programming Methodology",
M. Broy &- G. Schmidt (Ed•.), D. Reidel, 1982.

[Enderton 77]

Enderton, H., "Element. of Set Theory", Academic Pres.,
1977.

[Hoare 69]

Hoare, CA.R., "An Axiomatic Ba.i, for Computer
Programming", Comm. ACM 12 (1969) pp. 576-580, 583.

[Hoare 83]

Hoare, C.A.R., "Notes on Comm unicating Sequential
Processes", Technical Monograph PRG-33, Programming
Research Group, University of Oxford, 1983.

24 Formal Semantics of Z

[Kowalski 79]

K.owalski, R. "Logic for Problem Solving", North-Holland,
1979.

[Lucas & Walk 69]

Lucas, p. & Walk, K. "On the Formal Description of
PL/I", Annual Review in Automatic Programming, §.
(1969).

[Morgan &4]

Morgan, C.C. "Schemas in Z - A Preliminary Reference
Manual", Programming Research Group, University of
Oxford, 19&4.

[Scott 76J

Scott, D.S, "Data Types as Lattices", SIAM Journal of
Computing, ~ (1976) pp. 522-587.

[Scott 81]

Scott, DS., "Lectures on a Mathematical Theory of
Computation·, in "Theoretical Foundations of
Programming Methodology", M Broy & G. Schmidt
(Eds.), D. Reidel, 1982.

[Scott 82]

Scott. DS.. -Domains for Denotational Semantics",
presented at ICALP '82, Aarhus, Denmark, July 1982.

25 Formal Semantics of Z

[Stoy 77]

Stoy, J.E., "Denotational Semantics: The Scott-Strachell
Approach to Programming Language Theory", MIT Press,
1977.

[Sufrin 84]

Sufrin, B.A., "Notes for a Z Handbook: Part I - The
Matbamatical Language", Programming Research Group,
University of Oxford, 1984.

