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Programming in occam

Over the past twenty years, theoretical computer scientists have expended a great deal of effort
on the study of concurrency and synchronization. A great many mechanisms have been suggested
for the taming of concurrency, such as semaphores, data monitors, conditien queues, critical
regions, remote procedure calls and rendezvous, even the disciplined use of shared store. There
are, of course, at least as many programming language designs as there are programming
language designers.

At the same time, the problems needing solution have become more numerous and difficult.
The management of concurrency used to be a task to be undertaken on the large scale: the
creation of new processes, and the synchronization and scheduling of their actions were once
necessarily expensive in comparison te the real work done. These are conditions that seem to
persist in the construction of operating systems and continent-wide communication networks,
where processes are consequently long-lived, and interact as infrequently as can be contrived.
Such are not the conditions experienced by programmers of multi-processor computers, where it
becomes feasible to create large numbers of ephemeral processes, and desirable that they
communicate frequently.

The occam language inherits the tradition of theoretical study, being more than reminiscent of
recent work on the mathematics of synchronization. It is intended by its devisers as the
‘assembly code’ of the inmos transputer, a microprocessor designed to be used in relatively large
numbers to make a single machine, yet capable of managing a large number of concurrent tasks
within the one processor. The programmer is therefore encouraged to think of process creation,
and of synchronisation and scheduling operations, as being as cheap as any other ‘primitive’
actions. Even on a conventional processor, neither process creation nor scheduling need be any
more expensive than, say, procedure invocation. This startling scale of costs gives the
programmer much greater freedom of expression, and leads 10 an unaccustomed programming
style, which is the proper subject of this menograph.

It must be allowed that otcam does have some compensating disadvantages: it shares many of
the practical difficulties of other assembly level programming notations, and is certainly not the
ideal means of expression for the programmer. Anyone who has used a modern programming
language will miss the assistance of type-checking, and feel confined by the absence of implicitly
handled reecursion. The scope centrel in occam is no better than in any twenty year old
language, and the fixed format of occam source texts is disconcerting unless you are blessed
with a helpful text editor. Nevertheless, I know of no other programming notation that handles
concurrent execution of tasks with the facility of occam.

I begin with a Cook’s tour of occam which is sufficient to understand the examples that
follow. A number of program fragments are then coded in occam and discussed in sufficient
detail to give a flavour of the language in familiar and unfamiliar contexts. Finally, there are
examples of real programs; tbey are, of course, not large programs bul they were written as
genuine engineering solutions to problems.



An introduction to occam

As far as will concern us here, an occam program is simply a process, whith may have some
free identifiers that have specific meanings dependent on the computer on which the program is
to be run. A process describes some actions that are to be performed: that is, it is the
expression of an algorithm. Each process may be either a primitive process, or a composite
process consisting of a number of definitions and simpler component processes bound together
by process constructors. The structure of constructed processes is indicated by a fixed layout of
the source text, with each component appearing on a new line, slightly indented from the
keyword that introduced the whole construction.

Processes that de nothing

The simplest of the primitive processes is skip, which is the process that does nothing at all. In
many programming languages, you are obliged to write nothing (that is, not to write anything
at all) if you want ‘nothing’ done; you will see later that sRip serves as useful a purpese in
occam as that of zero in the decimal notation for numbers.

The process stop alse dees ‘nothing’, but unlike skip it fails to terminate. You can think of
it as being what happens when something goes wrong, like a deadlock, or some illegal machine
operation. Nothing can happen in a sequential process after it has stopped, but things can
happen in parallel with a stopped process. You might not expect to write the stop process
very often in your programs, but it is the rational thing to do when something unexpected
happens, because it ensures that the part of a network of processes that has failed is brought 1o
a standstill without affecting other processes, at least umtil they come to depend on broken
part.

It is also useful to have stop around so as to be able to describe the effect of compound
processes that ‘go wrong’, for example by becoming deadlocked. A process is said to be
deadlocked if there is nothing which it is able to do next, but it has not finished properly.
Typically, a parallel program becomes deadlocked because each of its processes is waitling for
one of the others to do something.

Sequential processes

In programs which execute sequentially, the work is done by assigning values to variables, and
subsequently basing decisions on the values of those variables. The ortcam assignment has the
form

variable (= expression

Each expression has a value, as explained later, which is just a bit pattern of the size of a
‘word’ on your computer, and every variable is capable of storing a word sized bit pattern. Of
course, there are operators which treat these bit patterns as if they represented numbers, or truth
values, or characters, but no type difference is enforced by the language or its compilers.

A sequence of operations is described by writing them one under the other, under and slightly
indented from the keyword seq. The sequence executes by execuling each of its components in
the order in which they are written. Of course, if there are no components at all, then the
sequence does nothing, and behaves just like skip. Thus

seq

X1= 3
Yy=X+z
X=X+ 6
Z=X+1
xe=(y+2)=+ea

has the overall effect of setling each of the variables x, y, z to 1, albeit in a somewhatl
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perverse way. first X 1s set lo three, then \ to seven more than X, then X is changed to nine, z
is set to one more than it, and finally x is set to the average of y and 2, which is of course
also ten.

Decisions based on the values of variables are made by a conditional process. This construction
consists of the keyword If written above a list of components, each slightly indented. Each
component is either another conditional nested within the firsi, or consists of an expression (the
condition) and, below the condition and a little further indented, a process. The whole
conditional executes by looking down the list of components, and the components of nested
conditionals, unti]l a condition is found whose value is true. If one is found then the
corresponding process and only that process is executed, and the whole conditional terminates. It
is an error for no condition to evaluate to true, for example if there are no components, so the
conditional stops. As an example

if
n<o
sign =
n=o
sign ¢
n>o
sign =

Il
©

sets the value of the variable sign to one of minus one, zero, or plus one, according as the
variable n contains a negative, zero, or positive value

Since it is defined that the textually first of the processes corresponding to a true condition is
selected, the process

if
n=o
sign = o
ngo
sign = —1
true
sIgn =1

describes exactly the same effect as the farmer, but is much less clear. In gemeral, it is good
style ta use constraints that describe precisely the conditions under which a process is to be
execuled.

Parallel processes

Just as a list of actions can be described as happening in a strict sequence, so in occam it is
possible to specify that each of a list of actions is te happen, without specifying an order in
which they must happen. Such a parallel composition is indicated by writing the actions one
under the other, under and slightly indented from the keyword par. The parallel composition
executes by executing each of its components, until each has terminated. Of course, if there are
ne components, the effect is the same as sRip, and if any of the components fails to terminate,
for example by stopping, then the composition cannot terminate. As an example

par
Xo=y -
z=y+1

sets the values of X and z to be one less than, and one more than, respectively, the value of .
There is, however, no guarantee that the assignments will not happen in the other order, or at
precisely the same moment. Because of this, for a parallel composition to be legal, none of its
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compenents may change any variable which is used in any of the other branches: it would be
wrong, for example, L& try to write

par
Xi=y -1
Z:=X+8

because X is used in the second component, but changed in the first component.
If such mutual interference is not allowed, how then are concurrent processes Lo communicale?
The answer is that they do so by input and output over channels. The output process

chanmnel 1 expression
sends the value of the expression over the channel Similarly, the input process
charne! 2 variable

receives a value from the charngl and stores it in the uarisble. Bach of these communications
waits for the other, so thal an outpul does not happen until the correspending input happens,
and vice versa.

There is an abbreviation which is useful when tomplex data are te be transmitted, for example
where many streams of data are multiplexed along one channel, and some idemtification must be
sent with each item. A sequence of inputs (or of outputs) along one channel may be written as a
single primitive process, separating the target variables {or expressions) by semicolons

channel 2 variables; variablea; ... variablen

This has precisely the same meaning as

seq
channel ? variables
channel 7 varlables

cha;wnel ? variabien

In combination, an input and an output behave just like an assignment, except that the
expression and variable are in different, concurrently executing processes. In partcular, the
assignment

variable = expression
is exactly the same as

par
chanrel | expression
channel ? variable

provided that it is legal to write the latter in the particular context. Just as there are rules
about the use of variables in concurrently executing processes, so also each end (that is the input
end and the output end) of a channel may be used only in one of the components of a par
construclion.

Decisions may also be distributed across several processes, using an alternative, which is similar
to a conditional except in that the choice can depend on whether another process is performing
an output. An alternative is written with the keyword alt above a list of components, each of
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which is either an alternative, or consists of a puard with below that a process which is
indented a little further. A guard may be an inpul process, or sRip, or cither of these simple
guards preceded by an expression and an ampersand sign, as for example

alt
redselected & red 7 x
out | x
greenselected & green ? x
out 1 X
not (redselected or greenselected) & skip
out | default.value

An alternative waits until there is a guard which is ‘ready’. An input guard becomes ready
when a corresponding output is possible; a skip guard is always ready; and a guard preceded by
an expression can only become ready if both the value of the expression is true, and the process
part of the guard is ready. When some guard has become ready, one of the ready guards is
selected and executed, followed by the corresponding process. After this the alternative
terminates. At most one of the branches of an alternative is selected; if no guard ever becomes
ready (for example, if there are no components in the alternative) then the whole alternative is
deadlocked, like stop.

The example alternative above will accept an input from either the red or the green channel,
provided that the valoe of the corresponding variable, redselected or greenselected, is true, and
having accepted that input into the variable X, it then re-outputs the value down the channel
out. In case neither variable is true, only the third guard is ready, so the alternative sends the
default.ualue and then terminates.

Data declarations

Each name used in an occam program must be declared before it can be used, There are

declarations which allew you to give names to constant values, to variables, and to channels.
Constant definitions do not introduce any new objects into the program, they serve merely to

give names to particular values. They are written with the keyword def followed by some
definitions of the form

name = canstant.expression

each definition separated from the next by a comma, and with a colon at the end. The effect is
to allow you to use the name in the process that follows, wherever you want to refer to the
value of the constantexpression As an example, the declarations

def red = o, redandamber = 1, green = 2, amber = 3 :
def first.state = red, laststate = amber :

might appear in a traffic light controller. It would then be possible to test, for example,
whether
currentstate = last.state

rather than comparing currentstate for equality with 3, which would be somewhat more
obscure.

Variables, as has already been indicated, are capable of storing bit paterns of some fixed size
They are declared by listing their names after the keyword var, above the process that will use
them. The names are separated by commas, and there is a colon at the end of the list. The
traffic light controller might well include, for example,

var currentstate, queuesiee :
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Initially, a variable has no defined value, but once it has been set by an assignment or an
input, its value is the last value that was stored into {t. The usual place to find variable
declarations is accordingly just before the keyword seq, Components of a sequence communicate
with each other by one component leaving a value in a variable, and a later component reading
that value. The traffic light controller might begin

def firststate = red, laststate = amber :
var currentstate, queuesize :
seq

currentstate == firststare

queuesize = o

4
H

Channels are declared in the same¢ way as variables, except that the keyword is chan.
Somewhere within the scope of each channel declaration there will be \wo concurrent processes,
one of which sends output to the channel, the other of which takes input from it. It is
therefore usual to find channel declarations immediately in front of par constructions.

Arrays
There is only one device for structuring data in occam: you may make one-dimensional arrays of

constants, variables or channels. An array of variables is declared by giving a constant
expression in brackets after the name.

name[count ]

This indicates that a number, equal to the value of the count, of variables are Lo be declared,
which can be referred to by indexing the name of the array with expressions whose values range
from zero up to count-1 For example, in the scope of the definition

var a7l :

there are declared 137 variables, called a[o], &1, 2], ... a[136]), each variable independent of the
others. Arrays of channels are similar.
An array of constants is called a table, and is denoted by an expression of the form

table [expressionzero, expressionone, expression.tws, ..., expressionn)

Table expressions can be used with def declarations, or can appear to the left of an index, se
that the value of

table [expressionzero, expressionone, expressionttwo, ...J (2]

is the same as the value of expressiontwo, for example

In case the values of the components are always going to be in the range zero to ass, as for
example when the values represent characters, occam allows you to specify that the values are to
be packed one to a byte in the stere of the machine. An array of byle variables is declared by
adding the keyword byte after the opening bracket of the declarations; a byte table is denoted
by including the keyword byte after the opening bracket of the denotation. A byte array of
constants or variables is indexed by putting the keyword byte after the opening bracket of the
index. For the present, the only reason for being concerned with byte arrays is that occam has
a convenient denotation for byte arrays of characters: a string, which is written as a sequence of
characters enclosed in double quotes,

“This is a string”
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is a byte array, the first (zeroth) byte of which contains the length, and the subsequent bytes
contain the characters in sequence. This string represents the same array of constants as does

tab]e [bgte 16; A-l-»’ -h»' -i.’ ‘S‘, :*snl -is. ‘S', ‘*S‘, ‘a', "S’, ‘S’, 't‘, ‘]", ‘i’, 'n', ng.]

A character denotes a constant bit-pattern like any other, corresponding to the ASCII code for
that character, and the sequences s’ represent the space character, that is 22 1 could have
written this as a space between quotes, ', but the asterisk form is clearer. There are
asterisk-sequences for space (®s), carriage-return (c), the newline character (%n), the quote
characters (*' and %), and of course for asterisk (#»}, which can be used either in character

(single) quotes, or as elements of a siring. In the scope of the declaration
def s = "Thisksisssamsstring” :

(which is the same byte array as before) the value of s[byte o] is 15, and the value of
s[byte 6] is 103, which is the ASCII code of the character ‘g’

Process declarations

Names may be given to whole processes by means of proc declarations. These are introduced by
a line of the form

proc name =

which is followed by the process to be called name, indented slightly, and termimated by a colon.
The effect is that anywhere in the process that follows the declaration you can write name to
mean the whole of the named process. (Of course, the named process is not in the scope of the
declaration, so it is not possible to invoke it from within itself)

A mnamed process may have a list of fomal parameters included after its name in the
declaration, The nature of each parameter is indicated by one of the keywords value, var, or
chan, meaning a value (run-time constant), variable, or channel. You may omit the keyword in

front of a second or subsequent parameter of a particular kind. Arrays should be indicated by
writing an empty pair of brackets after the pname of the array. The process is invoked by
putting a corresponding list of actual parameters after the name at the point of call. The effect
is the same as if the body of the named process had been written in place of the call, but with
the actual parameters substituted for the formal parameters. Thus, for example

proc assigncharacter{var x, value (], ) =
x = g[byte 1] :

var ch :

seq
assigncharacter(ch, “This is a string”, 12)

has the effect of assigning the code of r’, that is the 12th character of the string, to the variable
ch, exactly as though the program had been written

var ch :

seq
ch = “This is a string” [13]

Loops and arrays of processes
There are two kinds of loops in occarn: unbounded while loops, and indexed, bounded for loops.
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Unbounded loops are necessarily sequential in occam, but there are many forms of for loap
representing different forms of regular activity.

An unbounded leop is written with the keyword while, followed by an expression (the
condition), with a process (the body) below and slightly indented from it. It executes by testing
the value of the conditien and then, provided that i1s value is true, executing the body. When
the body has terminated, the condition is re-tested, so that the body is executed a number of
limes, in sequence, for as long as the condition remains true. The whole while loop terminates
when the condition is tested and found to be false. As an example, the process

seq
Xi1=a0
uln] == Rey
while U[x] # key
X=X + 1

sets X to be the index of the first variable in the array U which contains the value key, by first
posting a sentinel at un).

A bounded loop may be thought of as being an array of processes. Loops can be made from
each of the alt, if, par and seq constructions, by putting a replicator of the form

name = [base for count]

alter the keyword, and then writing a single component (of the kind appropriate to the
construction) below and slightly indented from the keyword. The base and count are
expressions, and the meaning of such a for loop is the same as that of a construction formed
from the same keyword followed by count copies of the component with the name taking on
the values base, base+1, ..., base+count—t in successive copies.
A for loop stands for a repetition of the constructor with which it is made. In the same way

that

1341

¥ Flyear)

year = 1280
stands for the addition of sixty-two values,
freo) + [le8) + ..o + [lizeD)
so too the seg-for loop

seq year = [wa0 for 6a]
celebratechristmas(year)

stands for the sequential composition of sixty-two processes

seq
celebrarechristmas(eso)
celebratechristmas(esl)

celebratechristmas(izet)

Thus, seq-for loops are just like for loops in languages like algol or pascal; bul that you ‘may
not assign to the loop index, and it is not declared outside the body of the loop. The bodies of
par-for leops are executed concurrently, so such loops behave like arrays of parallel processes.
The conditional loop, if-for, performs a bounded search, so for example the process
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seq

vin] == hey
fi=[oforn+1
J1] = key
X = |

has precisely the same effect as that of the while loop above. The same search can be done,
without the use of a sentinel, by writing

def otheruise = true, not.fourd = n :
tF
ifi=1{o forn]
uli] = key
X =1
otherwise
x = not.found

Here, x is set to notfound precisely when there is no occurrence of the value key in the array.
Now you should see the reason for allowing conditionals as components of conditionals, and
alternatives as components of alternatives!

Some dialects of occam allow you to construct for loops net only from constructed processes,
but also from the primitive assignments, inputs and outpuls. An expression of the form

name [base for count]

is called a slice, and denotes all of the variables {or values)

namebase], name[base+1], ... name[base+count-1]
Slices may be assighed ,

destination[destinationbase for count] := source{sourcebase for count]
or they may be communicated
par

channel ¢ destination[destinationbase For count]

chanrel § source[sourcebase for count]
In each case, both of the slices concerned must be of the same size, and the effect is 1o set each
of the count variables in destination, from destinationbase upwards, to the values of the count
variables in source, again, counting from sourcebase upwards. Do not confuse slice
communications with the semicolon abbreviation for a sequence of communications: single slice
operations must match with other slice operations; the semicolon denotes a sequence of unrelated

communications.
There are, of course, also byte slices which are denoted by

name [byte base for count]
and which may be assighed or communicated into other byte slices.

Expressions

Every simple expression in occam denotles a bit pattern the size of the word on the computer
which is executing the program. There is no defined precedence between the various operators,
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so parentheses are generally needed to disambiguate an expression with more than one operator.
The only exception to this rule is that associative operators do not need parentheses. All
expressions are built of operators, constants, variables, and indexed arrays, so that evalualing an
expression cannot possibly have a side-effect.

There are a number of operators that can best be explained by regarding each bit pattern as
the twos complement representation of an integer:

a+b is the sum of a and b

a-b is the difference of g and b

axb is the preduct of @ and b

a+b is the result of dividing a by b and rounding towards zere
amed b is the remainder on dividing a by b

- a is @ with its sign changed

The usuval six relational operators:
ab a¢hb a=b arb ayb a#b

compare their operands as though they represented signed integers, and return one of the values
true or false. There is one other relational operator intended for comparing the values of a
clock which counts cyclically through all possible word sized bit-patterns: the expression

a after b

it true or false according as a would be reached sooner by successively incrementing b, ignoring
overflow, than by decrementing it. (Almost half of all bit patterns are after any given
bit-pattern)

The Boolean values can be manipulated by the following logical eperators. Provided that each
of a and b is either true or false

aandb is true if both of & and b are true, and false otherwise
aorb is true if either of a and b is true, and false otherwise
aseb is true if exactly one of a and b is true, and false otherwise
not a is true if ais false, and vice versa

The ard and or operators evaluate their lef1 argument [irst, and then the right argument, should
it be needed o decide the result. This means that, for example, bounds checks should precede
array accesses, thus

(o ¢ 0 and (1 ¢ size) and (a[i] = x)

Finally, there are some operators whose effect is most easily described by thinking of the
operands as bit patterns

avb is the bit by bit or of a and b

anb is the bit by bit and of a and b

a@b is the bit by bit modulo two sum of a and b
not a is the ones (bit by bit) complement of a
ag€b is the pattern a shifted left by b bits

a»b is the pattern a shifted right by b bits

The shift operators displace the pattern a by b number of bits, so that this many bits are lost
from one end of the pattern, and the same number of zero bits are shifted in at the other end
of the pattern.

10 An introduction to occam



Some of the most useful applicalions of the bit-manipulation operators are in idioms which
achieve effects that in typed languages would use additional expression forms. Since the values
true and false are, respectively, a word of one-bits and a word of zero-bits

(x A true) = X
(x A false) = o
{(Xvo) = X

This means that you can write conditional expressions, such as

@rnp<ghvibap=glvicalpP>agd
the value of which is ene of a, b, or ¢ according as p is less than, equal to, or greater than q.

Again, there is nothing to stop you constructing bit patterns with the bit manipulators, and
then treating them as twos complement integers. The value of

(not o) » 1
is 2 word of one bits, excepting that the most significant bit, that is the sign bit, is zero; this
value is therefore the largest positive integer in the range thal can be represented on your
particular machine, represented in a way that is independent of the word length of the machine.

not (Mot o) » 1

is a word of zero bits, excepting for a one in the sign bit, so is the most negative integer that
can be represented. Another construction which T will often use is

not ((not o) € logarithm)

which is the bit pattern in which the least significant logarithm number of bils are set. This is
useful for making masks, so that, for example, in the scope of

def contrel = not ((not o) < s) ¢
the value of
control A G’

is seven, that is the character code normally known as ‘control-G’.
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The representation of occam programs

This section describes the liberties that I have taken with the concrete syntax of occam. You
will not necd to read it to understand any of the rest of the document.

First of ali, so as to making programs more readable, I have used a number of special symbols
not in [SO-7 character sets, In the standard language, these are writlen using the following
sequences of characters:

£ as < less sign, equal sign

. as > = greater sign, equal sign

#* as < > less sign, greater sign

& as > < greater sign, less sign

A as /N slash, backslash

] as \ / backslash, slash

€ as 4 < less sign, twice

» as > > greater sign, twice

—- as - minus sign, twice

= as : = colon, equal sign

X as * asterisk

+ as / slash

mod as \ backslash
both * and * as ” the double-quote character
both ¢ and ° as ' the single-quote character

I have written the keywords in bold face characters, whercas in the standard language they are
written using the same characters as are used for identifiers, and so are reserved words. In some
implementations of occam, the keywords are only reserved if written entirely in capitals, in
other implementations, case is not significant.

The layout of programs is as described here, where ‘slightly indented” is taken always to mean
‘indented by a further two spaces’. Each line begins with an even number of spaces, two spaces
indented from the line to which it is subordinate. Layout within the line is at your discretion,
except that spaces are needed Lo punctuate sequences of letters and digils which might otherwise
be misinterpreted, for example to distinguish

dlbyte o for 3] := s[byte o for 3]
which is a slice assignment, from

d[byteofora] :

Il

g[byteoforz]

which is a simple assignment. Additionally, long lines may be broken in any place where there
is a sufficiently strong indication that the break is deliberate, such as after a comma in a list of
declarations, or after an operator in an expression. Be warned that the language definition is
unlikely to agree with your idea of what constitutes a sufficiently strong indication! The
continuation line follows and must be indented at least as far as the first part of the line
Blank lines are ignored.

The Iirst authoritative reference on the occam notation and its representation is the

occam Programming Manual, (authors) inmos Limited
Prentice/Hall International, 1984

which defines a dialect called proto-occam. This has been variously modified, for example by

recent octam programming system manuals, which I have followed. There are substantial
differences between this language and the proposed occam 2.
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Programming structures

In the next few pages, the various pipes and joints of occam are demonstrated in some small
plumbing exercises. Although these examples may scem unrealistic or overly elaborate for their
size, they are intended to show some practical programming lechnigues.

Simple sequential processes

It is almost traditional that the first program anyone writes in a new programming language is
one that writes “Hello”, or some equally imaginative greeting, to the screen of their terminal, In
an otcam environment, the terminal screen is likely to be accessible as a channel: values output
to the channel being displayed on the screen as characters. A first, unexciling attempt at the
“Hello™ program is

seq|
terminalscreen | ‘H'
terminalscreen | ‘e
terminalscreen |71
terminalscreen | 1’
terrninalscreen | ‘o’

Looking [or ways to generalize the program, we would naturally write a loop that cutputs
each of the characters of an occam string. Recail that a string is a byte array, with the
number of characters being string[byte o] so that a program to write string should behave like

seq
output | stringlbyte 1]
output 1 stringlbyte )

output | string{byte string[byte o]]
This is patently a candidate for a seq-for toop, which can be written

seq characternumber = [ for stringlbyte oJ]
output | string[byte character.number]

This process can now be packaged up as a named process, which corresponds to a procedure
in a language such as pascal, for writing the characters of a string to a channel

proc writestring(chan output, vake stringl]) =
== Output the characters of the string along the chanrnel output
seq characternumber = [1 for string(byte o]l
output | stringlbyte characternumber]

The line with the hyphen on it is a comment: these can appear at the end of any line in an
occam program, even blank ones as here Writing comments summarising the behaviour of
named processes is probably a good habit to cultivate.

At the Programming Research Group, people have come to expect the computer to greet them
with the shibbeleth “Bootifrole™ This might be done by using writestring, as follows

prac writestring(chan output, value stringll) =
— Qutput the characters of the string along the channel output
seq characternumber = [1 for string(byte o]]
output | stringlbyte characternumber]
writestring(terminalscreen, “Bootifrolo™)
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Simple paralle]l processes

The simplest thing that you can usefully want a process to be doing, at the same time as
another process is deing something else, is 10 copy data from one channel to another. This is
just a matter of repeatedly taking input from one channel, storing it in a local variable, and
then sending the value of the variable along another channel

var local :

seq
source ? local
sink | local

Why you might possibly want this done should be apparent; the local variable acts as a buffer
in the data stream passing along the two channels. This copying process can be packaged up as
a named process that can be used to buffer any unbounded data stream passing along a channel
between two processes

proc buffer(chan source, sirk) =
while true
var local :
seq
source 7 local
sink 1 local

Now whereas the producer and the consumer process are tightly synchronized in a program
of the form

proc producer(chan output.stream) =
while true
var datum :
5eq
. calculate a new datum
ocutput.stream | datum

proc consumer(chan input.stream) =
while true
var datum :
seq
Input.stream ? datum
. calculate using the datum

chan datastream :

par
producer(datastream)
consurmer(datastream)

with neither able to get ahead of the other, by adding a buffer
chan datafromproducer, datatoconsumer :
par
producer(datafremproducer)
buffer(datafromproducer, data.to.consumer)

consumer(datato.consurmer)

the two are slightly decoupled. The producer is now able to run up Lo one item of data ahead
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of the consumer. (‘Magic buffers’ which would allow the consumer te run an item ahead of the
producer are a mite more difficult to implement, even in occam.)

More buffering is easily provided by inserting more buffers in the data path, in a structure
analogous to ‘fall-through’ first-in-first-out stores, where each item of data is passed along a
chain until it reaches the last unoccupied location in the chain. Several items can be in
independent “free fall’ at once if the buffer is fairly empty.

chan datastreamnumber.of buffers + 1] :
par
producer(datastreamo])
par index = [e for number.of.buffers]
buffer(datastream{index], datastream[index + 1)
corsumer (datastreamnumber.of buffers])

There is, of course, nothing to stop you programming a buffer with an array of variables
governed by one process, just as in any conventional programming language.

Synchronization by contral signals
You could try putting the buffer process into the stream that goes to the terminal screen from
the “Bootifrole” program

chan internalstream :

par
writestring(internalstream, “Bootifrelo™)
buFfer(internalstream, terminalscreen)

but this is not quite right. The buffer initially performs well, and copies all of the characters to
the screen. Eventually, however, all of the string has been sent, and the writestring process
terminates. This leaves the buffer in a somewhat undignified state, trying to perform an input
on Internalstream when there will never again be a corresponding output. The program is
deadlocked.

Some way 15 needed of telling the buffer thal it shouid not expect any more input alang its
source channel, and that it should accordingly terminate. The process

proc copycharacters(chan source, endofsource, sirk) =
— Copy characters from source to SiNR
— until there s a signal on endofsource
var morecharactersexpected :
seq
morecharactersexpected = true
while morecharacters.expected

var ch :
alt
source ? ch
sink | ch

erd.of.source 2 any
morecharactersexpected = false

behaves just like the buffer, copying from source to sirR, except that it may also take input
from the channel endofsource. The keyword any just means that the actual value received is
immaterial, so it need not be stored in a variable When an input sigpal is received on
endofsource, the variable morecharactersexpected is set false, so the while loop terminates.
The right way of buffering the output of writestring is therefore to send its output to a
copy.tharacters process, and to send a termination signal after the whole string has been sent.
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Since the value received as a termination signal is ignored, it does not malter what is senl
outputting any has the effect of sending something unspecified.

chan internalstream, end.of.internalstream :
par

proc writestring(chan output, value string(]) =

o Qutput the characters of the string along the channel output
seq

writestring(internalstream, “Bootifrolo”)

end.of.internalstream | any

proc copy.characters(chan source, endofsaurce, sink) =
... Copy characters from sodrce te sink until a signal on end.of.source
copycharacters(internalstream, endofinternalstream, terminalscreen)

The ... are not a part of the syntax of Occam: they are just meant to save you the trouble of
re-reading the code that they save me the trouble of re-writing!

In the case of the copycharacters process, thete is no need to use a sigmal on an extra
channel, because there is spare capacity on the source channel going in the right direction. You
could select some value, say

def endofstream = -1
which is not a possible character value, and send that after the last real character of the message

def endofstream = —1:
chan internalstream :
par

proc writestring(chan output, value string(d) =

... Output the characters of the sTring =slong the channel cutput
seq

writestring(internalstream, “Bootifrolo™

internalstream | end.of.strearn

proc copycharacters(chan scurce, sink) =
— Copy characters from source to sink until endofstreamn received
var morecharactersexpected :
seq
rorecharactersexpected = true
while morecharactersexpected
var ch :
seq
source ¢ ch
If
ch # end.of.stream
sink | ch
ch = endofstream
rorecharactersexpected == false

copucharacters(internalstream, terminalscreen)
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In this particular case, there is little 1o c¢hoose between the two styles: the latter program may
be marginally more efficient.

In many cases there will be no convenient data-stream going in the right direction. The
example of a circular buffer implemented using an array of variables is of this kind. Assume
that the array is declared by

var datum[size] :
and that the variables
var reader, writer :

have values in the range zero to size—3 so that the oldest value to leave the buffer will be
found at datum[reader], and the next to enter the buffer will be written 1o datum{writer] It
will be convenient to keep track of the number of unoccupied locations in the buffer by a
further variable

var count :

whose value ranges from zere, for a full buffer, to size for an empty one
There are two activities in which the buffer must be able te participate: provided that it is
not full, that is that count >, it must be possible to add another value to the buffer

seq
source ? datum[writer)
writer := (writer + ¥ mod size
count = count —1

and provided that count {size it must be possible for the oldest value to be read from the
buffer

seq
sink | datumireader]
reader := (reader + 1) mod size
count := count + 1

The buffer must allow the producing and consuming processes to control its activity, selecling
between writing and reading, provided only that there is room to write, of something to read,
respectively. It is templing to try writing

ale
count > e & source ? datum[writer)
seq
writer = (writer + 1) mod size
count = count — 1
count € size & sink | datum[reader]

seq
reader = (reader + 1) mod size
count = count + 1

but output processes cannot be used to guard alterpatives. The solution to this problem is to
have a control signal from the consuming process indicating that it is ready to accept an input
from sinR. There is no need for the corresponding request before a write to the buffer, because
the input along source serves perfectly well in place of a control signal.
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proc circdlar buffer(chan source, request, sink) =
—— Copy fram source ta sink, buffering up to size items.
— A signal is required on reguest before each item s read.
var reader, writer, count, datum(size] :
seq
reader :
writer
count
while true
alt
count > 8 &  source ? datumpuricer]
seq
writer = (writer + 1) mod size
count s= count — 1
count < size &  request ? any
seq
sink | datum(reader]
reader = (reader + 1) mod size
COUNt = count + 1

I

Q
v
slZe

il

1t is the responsibility of the consumer, whenever it reads from the buffer, to perform two
communications in sequence

seq
request | any
source ? ...

This burden can be removed by the consumer at the expense of an extra process, executing
concurrently with the circular buffer

proc multiplebuffer(chan source, sink) =
— Cepy from source to sink, buffering up to 5i12e + 1 atems.
chan request, data :
par
circular-buffer(source, request, data)

while true
var datum :
seq
request | any
data ? datum
sink | datum

The resulting multiplebuffer process has a behaviour which is indistinguishable from that of a
chain of size+1 single-item buffer processes acting in parallel,

Processes that evaluate expressions

Suppose now that you have a need to calculate the parity of the characters that are being sent
to the terminal. (The parity of a character is an indication of whether there is an even or an
odd number of ‘one’ bils in the bimary representation of its code) In a language like pascal,
you might write a function te calculate the parity of a character which was given to it as a
paramneter, but in occam (there being no ‘function’s) the natural construction is a named process

proc calculateparity(ualue ch, var parity)
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which returns the result by way of a var parameter. A representation will be necessary for
parity values: the natural thing to do is to choose the truth values

def even = true, odd = not euen :

In fact, the process will be independent of the actual bit pattern chosen to represent euen.

Calculating the parity of ch involves considering each bit of ch: the simplest thing to do is to
lake them one at a time in sequence. (Expert bit twiddlers may care to code an algorithm
logarithmic in the number of bits in the character.) The expression

ch A (1 € bit.number)

is either zero or not according as the bit.umber’th bit of ¢h, counting from zero at the least
significant end, is zero or not. The loop

seq bit.umber = [0 for number.of bits.ncharacter]
if
(ch A (t € bit.number)) = o
skip
(ch A (1 € bitnumber)) # ¢
parity = not parity

complements the value of parity as often as there are ‘one’ bits in ch. If parity is inialized
to euen, then its final value indicates the parity of ch.

seq
parity == euven
seq bit.number = [0 for number.ofbitsincharacter]
if
{ch A (1 € bitnumber)) = ¢
skip
(ch A (1 € hitnumber)Y) # o
parity = not parity

Since exclusive-or behaves like a conditional complement operation, the conditional process in
the middle of this seq-for loop can be abbreviated 1o a simple assignment which has the same
effect

parity = parity & ((ch A (1 € bitrumber)) # o)

and the whole can be packaged as a reasonable implementation of the named process
calculateparity

def even = true, odd = not euven :

proc calculateparicy(ualue ch, var parity) =
— Return the parity of ch in parity
def rumber.of bitsincharacter = 8 :
seq
parity = euen
seq bit.number = [o for number.of bits.ncharacter]
parity = parity & ({(ch A (1 € bit.number)) # o)
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Using parallelism as a tool for program modularity

Il for some reason you wanted te medify the writestring process so that it wrote only the
even parity characters from its argument, ignoring the rest, you could write

proc writeeuenparitystring(chan output, value string(]) =
seq character.number = [1 for string{byte o]] var parity :
seq
calculateparity(stringlbyte character.number], parity)
if
parity = euen
output | stringlbyte character.number]
parity = odd
skip

This process is perhaps a little specialized: it performs its task well encugh, buv there are no
recognizable separate components performing subtasks, which you might be able to use again in
other programs. The code for selecting characters according to their parity is mixed in with the
code for turning a string into a sequence of cutput processes. A more modular program might
use a process which splits a stream of characters into two streams according to their parities.

proc divideonparity(chan source, endaofsource, evensink, oddsink) =
— Copy the even parity characters from souUrce to evensink, odd
— parity characters to oddsink, until signalled on end.oF.sour‘ce
var morecharactersexpected :
seq
morecharacters.expacted == true
while morecharactersexpected
var ch :
alt
source ? ch
var parity :
seq
calculateparity(ch, parity)
if
parity = euven
evensink | any
parity = odd
oddsirnk 1 any
end.ofsource ? any
marecharactersexpected = false

This process is not specialized to the application in hand, but can be used to [liller out the odd
or even parity character codes from any data stream. The unwanted stream must be discarded

proc consume(chan scurce, end.ofsource) =
var morecharactersexpected :
seq
morecharactersexpected == true
while morecharacters.expected
alt
source ? any
skip
end.of source ¢ any
morecharactersexpected = false
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Using divideorparity the “Boatifrale” program might be written

proc writestring(chan output, value stringl]) =
oo Output the characters of string along the channel cutput
proc¢ divide.onparity(chan source, endef.scurce, evensink, oddsink)
... Copy characters from SOUNCE to euensink or oddsink
proc consumel(chan source, end.of scurce) =
... discard characters from source. until endofsecurce

If

chan both.parities, end.of both.parities, oddparity, endof.oddparity @
par
seq
writestring(bothparities, “Bocting from Floppy™)
end.ofborhparities | any
seq
divide.onparitylbothyparities, end.of bothyparities, terminalscreen, odd.parity)
end.of.oddparity | any
consume(odd.parity, endof.oddparity)

In this particular case, the gain in modularity may not seem adequale to justify the expense,
bath in programming effert and execution time. The advantage is clearer in cases where the
program must perform a number of tasks each of which divides its input data into chunks, and
where the boundaries of these components do not coincide

Using parallelism to resolve structure clash

A structure clash happens whenever a program must perform operations on data that must be
divided into mutually overlapping coemponents. In a text processing program, for example, it
may prove necessary to do something to every line of a decument, and something else to every
sentence. The natural way to code each of these tasks, individually, is to write programs whose
structure reflects the structure of the document. To perform an action on every line

whlle ... there are mare lines
seq
woread a line
... Process the line

and to perform an action on every sentence:

while ... there are more sentences
seq
.., read a sentence
... process the sentence

Since sentences do not need to contain only complete lines, ner lines complete sentences, it is
impossible to combine these two programs into a single sequential program. The somewhat
unsatisfactory best that can be done in a sequential program is to treat the document as a
sequence of words, these being the largest common sub-components of both lines and sentences.

while ... there are more words
seq
. read a word
vi. if this completes a line process the line
.. if this completes a sentence process the sentence
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In a parallel program, the structure of both component processes can be retained by
performing the two divisions of the document concurrently

chan lines, sentences :

par

. copy the document to lines and senterces
while ... there 1s mare document

seq

. read a line from lines
wve process the line

while ... there 1s mare document

seq

... read a sentence from sentences
. praocess the santence

The simplest case of a structure clash arises from attempting to pack data into fixed sized
blocks that will not accommedate an exact whole number of items. It might be necessary, for
example, to pack a stream of characiers into half-kilobyte blocks for transmission or storage on
a medium which accepts only such blocks. Consider first a case in which there Is ne structure
clash: the medium is represented as a channel that accepts only slice outputs of half a Kilobyte,
and characters are represented by codes in the range from ¢ to 255, so that a whole number of
characters exactly fill a block.

The way to perform actions sequentially on the components of an array of bytes declared by

var buffer{byte bytes.inablock] :

is 10 use a sequential ‘array’ of .processes created by the constructor

seq bytenumber = [o for bytes.inablock]

so this packing might be done by a process of the form

proc packbytesintablocks(chan bytesource, end.of source, blocksink) =
var morebytes.expected :
seq
morebyresexpected == true
whlle morebytesexpected
var buffer[byte bytes.irablock] :

seq
seq bytenumber = [o for bytes.inablock]
alt
morebytesexpected & bytesource ? buffer[byte bytenumber]
sRip

morebytes.expected & end.of.source ? any
morebytesexpected = false
not morebytesexpected & skip
sklp
blocksink | buffer{byte ¢ for bytes.inablock]

The branch of the alternative that does all the work is the first, that guarded by an input from

bytesource which inputs the next byte ime the particular component of the buffer which is
being considered. Since the guard does all the work, there is nothing left to be done in the
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guarded process, so this is sRip. Notice the use of a skip guard in the alternative inside this for
loop: the condition ensures that this guard is ready when and only when there are no more
bytes to be packed into the last block.

This process always sends a partly or completely empty block as its last output. The
sending of a completely empty block could be prevented by loocking ahead for the next byte

def bytesinablock = se :

proc packbytesintoblocks(chan bytesource, end.of source, blocksink) =
— Copy dsta from bytesource to blocRsink in complete blocks
— until there 1s a signal on endofsource
var nextbyte :
alt
bytesource ? next.byts — Read ahead the first byte
var morebytes.topack ;
seq
morebytes.topack = true
while morebytes.topack
var buffer[byte bytesinablock + 1] :
seq
buffer{byte o] = rextbyte
seq bytenumber = [1 for bytesinaklock]
alt
morebytes.to.pack & bytesource ? bufferbyte bytenumber]
ship
morebytes.topack & endof.source ? any
morebytes.topack = [alse
not morebytes.topack & skip
skip
blocksink | buffer{byte o for bytesinablock]
rextbyte := buffer[byte bytesir.ablack]

end.of source ? any — No bytes at all
skip :

Even so, in case the entire message does not exactly fill a whale number of blocks, it has to be
possible for a process that unpacks the characters from the blocks to deduce from those
characters that it has reached the actual end of the character stream before the end of the last
block.

Now consider the problem of trying to achieve a higher packing density, given that only
character codes less than 128 are going to be sent, so that seven bits will suffice rather than
eight. Seven bit values will not fit neatly into bytes, nor into half-kilobyte blocks. The problem
can, however, be decomposed into two simpler separate problems in which there is no structure
clash: turning seven bit character values into a sequence of bits, and packing a sequence of bits
inte blocks.

The packing of bits into blocks can be done in almost exactly the same way as thal suggested
for packing bytes into blocks. A byte can be considered to be an array of bits, indexed by
using the bit-pattern manipulating operations. The assignment

buFfer{byte bytenumber] = buffer{byte bytenumber] A (not (1 € bit.number))
sets the bitnumber’th bit of the bytenumber’th byte of buffer to zero, whilst

buffer[byte bytenumber] := buffer[byte bytenumber] v (1 € bit;number)
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sets that same bit to one, so the conditional

if
bit =0
buffer[byte bytenumber] = buffer[byte bytenumber] A (not (1 € bit.number))
bit =1

buffer{byte bytenumber] == buffer[byte bytenumberi v (1 € bitumber)

stores the given bit in the bitnumber’th bit of the bytenumber’th byte of the buffer. The
buffer is, in effect being treated as a two-dimensional array, and the protess that packs the
buffer is a two-dimensional seq-for array of processes.

def bitsinabyte = 8, bytesinablotk = 5@ :

proc¢ packbits.intoblocks(chan bit.source, endof.source, blocksirk) =
-— Capy data from bitsource tc blocRsinR in complete blocks
— until there 1s a signal on endofsource
var nextbit :
alt
bitsource 2 next.bit — Read shead the first bit
var morebits.topack :
seq
morebits.topack == true
while morebits.copack
var buffer[byte bytes.inablock] :
seq
seq bytenumber = [o for bitsinablock]
if
morebits.to.pack
seq bit.nurnber = [e for bitsinabyte]
i
F morebits.topack
seq
if
nexthit = o
buffer(byte bytenumber] :

buffer[byte bytenumber] A
(not (1 € bit.number))
nexchbic =1

buffer[byte bytenumber]

buffer[byte bytenumber] v
(1 € bit.number)
alt
bit.source ? nextbit
sRip
end.of.source ? any
morebitsropack = false
not marebits.topack
skip
not morebits.topack & sRlp
skip
blocksink | buffer{byte o for bytes.inablock]
end.of.source ? any — Ko bits at all
sRip .

Turning seven bit characters into a sequence of bits is also a simple task, since there is again
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no structure clash. The value of the expression
(character » bitrnumber) A 1

is zero or one according to the value of the bit.oumber’th bit of the value of character, so the
character code can be treated as though it were an array of seven bits. The following process
turns a Sstream of characters into a stream of the bits which make up their codes, least
significant bit of the character first.

def bitsinacharacter = 7.

proc unpackbits.fromcharacters(chan char.source, endofsource, bitsink) =
— Copy characters from charsource to hitsink, a bit at a time
— unti]l there is a signal on endofsource
var morecharacfersexpected :
seq
rmorecharactersexpected = true
while morecharacters.expected
var character :
alt
char.source ? character
seq bit.number = [o for bitsinacharacter]
bit.sink 1 (character » bitinumber) A 1
end.of.source 7 any
morecharacters.expected = false

The task of packing seven bit characters into half-kilobyte blocks is now easily done by
performing each of these subtasks in parallel

def bitsinacharacter = 3 bitsinabyte = §, bytesinablock = 51 :
proc packcharactersintoblocks(chan charsource, endofsource, blocksink) =

proc unpackbitsframcharacters(than char.source, endofsource, bitsink) =
... Send the bits of character codes from charsource along bit.sink

proc packbitsintoblocks{chan bit.source, end.ofsource, blachsink) =
««« Pack bits from bitsource into blocks sent aleng blocksink

chan bit.stream, endofbit.stream :
par
seq
unpack.bitsfromcharacters(char source, end.of.source, bit.stream)
endofbitstream | any

packbits.intoblocks(bit.stream, endof bit stream, blocksink)

Substantially the same program structure can clearly be used to turn the siream of blocks back
into a stream of seven bit character codes, since that is just another, similar packing problem.
The solution to each packing problem is of one of the three forms that 1 have shown here:
grouping small objects to make larger ones; dividing large objects to make small ones; or a
problem in which a structure clash requires that both the input data and the output data be
divided into common subcomponents.
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Local time

There are many applications of programmed deviees where it is necessary for the program to be
able to refer to, or to measure, the passage of lime: for example, in long-range communication,
the participants are usually prepared to wait for replies for a limited time only, before taking
aclion to recover from the loss of messages. To accommodate these needs, there are two
primitive processes by which occam programs may refer to the changing state of a local clock.
I mention them here to complete the presentation, but they will hardly be used in the programs
which follow: you may want to pass by this section on a first reading.
The clock reading process

tlme ? variable

sets the value of the variable to the current reading on the clock. This is a word-sized bit
pattern which changes at a uniform implementation-dependent rate with the passage of time It
counts up cyclically through a set of values distributed through the whole range of bit patterns,
the most negative reading following after the most positive gne. Notice that It is misleading for
this process to look like an input process: the sequence of characters time ? is indivisible,
time is not a channel, nor are clock reading processes governed by the rules that control the
legal uses of channels: many concurrent processes may legally read the time from the same clock.
The clock delay process

time ? after expression

is another process Lhat does nothing, like sRip, except that it suspends execution. It does not
terminate unmiil the reading on the clock has satisfied the condition

reading after expression

I bave been careful with the wording of that last sentence: notice that there can be no guarantee
about the value of yariable after the execution of

seq
time ? after expression
time 7 variable

As before, the seguence of characters time ?  after is atomic, a delay is not an input
process, but it is allowed to stand in the place of an input process as a guard of an alternative.
Such a guard becomes ready as soon as the delay process may terminate.

The operator after is intended for the comparison of readings taken from the clock. Provided
that two times are separated by less than half the time that it takes for the clock to count
around the complete cycle of its readings, one time is after the other if readings taken from the
clock at those times are similarly related by after. The cycle time of the clgck depends on the
word size, on the amount by which the reading is incrementied at each tick, and the frequency of
the clock ticks. Fach of these depends on the particular implementation, and I will assume that
you can supply a definition

def second = ...

in any program that needs it, indicating by how much the reading changes in one second. (This
assumption will be unjustified if the clock cycle time is two seconds or less, as will be the case
for some proposed transputer devices.)

Any two readings being compared, either directly, or by the delay process, should be taken
from the same clock: the language does not guarantee any relationship between readings taken in
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different branches of a par construct. Notionally, the clock is a register on a transputer, and
no conneclion is to be expecled between that register and the registers of any other transputers
participating in the execution of a program. There is no mechanism in the language which
maintains a global time, and it is the programmer’s responsibility to implement one if it is
needed. Similarly, if needed it is the programmer’s task to provide a mechanism, using the clock,
for timing long periods (those in excess of half a clock cycle time).

There are three idioms that, in combination, encompass almost all uses of the clock. First of
all, to suspend execution for a fixed time, say ten seconds

var started :
seq
time ? started
time ? after started + (10 x second)

This might happen as a once-only action in a program while starting or stopping some
mechanical peripheral device.
If an action is to be performed at regular intervals, say once every ten seconds, then

var next.deadline :
seq
time ? next.dead.line
while ..,
seq
next.deadlire = next.deadline + (1o x second)
time ? after rext.deadline
.. perform action

will do this (provided that the action can be completed in under ten seconds!) Notice that each
deadline is set relative to the previous deadline, so as to avoid slippage.

Finally, using delay guards allows a program to limit the time for which it is prepared 1o
wait for input.

var prompted, ch :
seq
writestring(terminalscreen, “Yer wat? ~)
time ? prompted
alt
terminalkeyboard ? ch
toprogram | ch
time ? after prompted + (30 x second)
toprogram | operator.asleep.or.dead

Provided that the input from the terminalkeyboard arrives within thirty seconds of the clock

being read, the alternative will select its first guard. After that time, the other guard is ready
and the process is no longer obliged to wait for its input.
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Formatted input and output

One of the things that you will probably miss in occam if you are used to programming in a
typed high level language is the support for text input and output. There are usually either
predefined routines, or language constructs, which take your program’s data, such as strings,
integers, floating point numbers, and translate them into sequences of characters for output lo
terminals and printers. Similarly, there are usually routines provided for reading sequences of
digits, and interpreting them as numbers, and so on. [l is almost always passible for you to
wrile your own inpul and output routines, but those provided for you will usually de.

Since occam programs are, at least notionally, to run as ‘stand alone’ programs, there is no
standard operating system or run-time library of such support routines, and the input and
output translations must be performed by the program. Moreover, since there is no Lype
information in the program, no standard routine can ‘know’ thalt you are interpreling a
particular bit-pattern as a characler code, or as a signed integer, or perhaps as a (loating point
number. This means that each program will need specific processes which translate those types
of value whose text representations are input and output by that program.

This section describes routines to be used by the programs described later.

Quiput routines

A process for outputting the characters of a siring appeared earlier, in the ‘Programming
structures’

proc writestring(chan output, value string(]) =
— Write the characters of the string(] to the autput
seq characternumber = [1 for stringlbyte o]]
output | stringlbyte character.number]

You will also probably need to output bit patterns as decimal numerals. If you have ever
wrilten this routine before, there ought to be no difficulty, except that an occam process cannot
use recursion.

First of all, if tens is a power of ten then

0+ ((n + tens) mod w©)

is the digit of thal weight in the numeral representing the posilive integer n Notice that ‘0 is
just the character code for zero: in the addition it is treated as any other bit-pattern, The resull
becomes a character again only if you choose to treat it as such by, for example, outpuiting it
0 a terminal.

To output the whale numeral for n the digit calculation must be performed in sequence for
each power of ten not exceeding n, in decreasing order.

var tens :
seq
tens =1
while (n + tens) » ©
tens := v X tens
while tens > o
seq
output | '0" + ({n + ters) med w©)
tens == ters + ®

The division of ters by ten always gives an exact anmswer, excepting the final occasion, when

ters is one, and the result of the divison is zero. That process works for all positive n and, as
a special case, for zero.
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It is tempting to lry outputting negative numbers by first changing the sign, but this is
wrong, because changing the sign of the most negalive number gives no defined result. Whatever
the effect, it cannot possibly give the right answer, since this is not a representable value. The
standard, if confusing, solution is to treat positive numbers as special cases which are best
output by making them negative, or equivalently, to change the sign of tens, so that the result
of dividing by tens is consistently negative.

proc writesigned(chan output, value n) =
-— Write a signed decimal representation of N to the output
var tens :
seq
if
nce
seq
output | -
tens == 1
n»o
tens = —
while (n + tens) € (—w)
terns = © X tens
while tens # o
seq
output 1 '0" ~ ((n + tens) mod )
Lens == Cens + ©

Notice that it is a matter of the definition of division and the mod operator in occam that
changing the sign either of Tens or of n just changes the sign of the expression

((n + tens) mod )

None of the expressions in the process have results outside the range of representable integers:
for example, the result of the multiplication

0 X tens

in the [irst loop is guaranteed, by the condition on the loop, to be no further [rom zere than is
r, so the multiplication gives the correct result. Similarly, the condition on thal loop has 1o be
written in that way, because calculating, say

(-(n+cteme)) > w

might involve negating the most negative number.

As a final sophistication to this process, you might want to send leading spaces so that the
numeral occupies a fixed number of character spaces. This would simplily the laying cut of
columns of numbers. The simplest way of doing this is to coumt the digits whilst caiculating the
value of tens

pro¢ writesigred(chan output, value n, fieldwidth) =
. Write a signed decimal representation of N to the output.

o right gustified to accupy fieldwidth character spaces

A coding of this process appears at the beginning of the appendix that contains the codes of
the programs.
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Input routines ‘
Constructing a data object from its textual representation is slightly more difficult because, in
general, not all sequences of characters will be legal representations. For example, a process to
read a numeral might expect some spaces, perbaps a sign and some more spaces, and then a
sequence of digits, followed by something else. If there are no digits, or if the number
represented is too large to be encoded as a bit-pattern, then an error has occurred, The
particular action to be taken to recaver from an error depends on the circumstances of the
conversion: for example, whether the digits are being read from a terminal keyboard, or a
magnetic tape, whether the process is running on a desk-top microcomputer or in aircraft
auto-pilot equipment. For a general purpose routine, I will settlte for returning a Boolean
indication of whether the conversion was successful. (Other indications might be possible, for
example, a signal on a special channel for indicating errors.)

Ignoring, for the present, the matter of the sign, and the possibility of error, a sequence of
digits can be converted into a bil-pattern representing the same number by

var ch ;
seq
n:s=a
input ? ch
while (0 € ch) and (ch € “9)
seq
ne=(oxn)+ (ch-"10)
input ? ch

where the arithmelic is essentially similar to that in the output routine. As in thal case, you
will have to be careful with the most negative integer: it will not do to read negative numerals
by reading the digits as if of a positive numeral and changing the sign of the result. The
simplest solution is to change the sign of cach digit before accumulation, keeping n negative
throughout,

8o as to check for overflow, the new value of n must be compared with either Lhe most
positive, or the most negative, bit-pattern, being careful to keep all the arithmetic in the
expressible range.

def min = not ((not o) » 1), max = (not o) D 1

if
(sign = +) and (n ¢ ((max - (ch - 07) + w)
n:=00xn+ (ch-"0)
(sign = =) and (((mir + (ch = '07) + ©) ¢ N
n= (o xr) - (ch - '0)
otherwise
ok = false — an error has occurred

A possible solution to the problem of errors would be to omit the third branch of the
conditional entirely, so that the routine would become deadlocked in case of an overflow. The
general solution postpones the decision, giving the caller of the process the option of ignoring
the error, or acting on it in any way he chooses, including the option of stopping.

The appendix contains a routine complementary 1o the writesigned which has this
specification.

proc readsigred(chan input, var n, ok) =
. Read an (optionally signed) decimal numeral from the input
. returning the correspanding value in N. and true or False n
. OR according as the conversion worked or not
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In many programming languages a routine like readsigned could only be used for conversion of
3 numeral being read from a peripheral device. In pascal, for example, such a routine would be
reading from a file, but an entirely different routine would be needed to convert a numeral
stored in an array of characters. In occam, there is nothing to stop you doing this by putting
input and output routines together in parallel. The process

chan internal :

par
writestring(internal, “-137=C")
read.signed(internal, n, ok)

sets n to —i37z This might not look very useful for constant strings, but the same can be done
with variable arrays of characters, This means, for example, that it is easy to separale the
business of line construction, editing and echoing, when reading from a terminal, from whatever
data conversion you might want 1o perform on the input.

For completeness, the appendix also contains a coding of a line construction process suitable
for input from a vdu

prot readhne(chan keyboard, screen, var s[]) =
«v« Coanstruct a string 1n s{] from the printable characters
«» read from Reyboard and echoed to screen. The string
... finishes at a carrigae return.

As it reads characters from the keyboard stream, this process packs Lhem imto the byte array 5[]
and echoes them to the screen stream, allowing the usual sort of line editing. For example,
typing backspace

seq
keyboard ? ch

if

(ch = backspace) and {s[byte nl > o)
seq
screen | backspace ; s’ ; backspace
gbyte o) == s[byte o] — 1

cancels the last character in the line, and removes its echo from the screen by writing a blank
space in its place.
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Where once were only interrupts

It used to be that programmers only met concurrently executing processes if they had to code
interrupt routines, or lo write code which shared store with interrupt routincs. An interrupt is
a2 mechanism designed to make small amounts of processing power available at short notice ta
handle urgent tasks, when it would be unreasonably expensive to make that processing capability
permanently available. To this extent, it separaies two concerns: an applications programmer
wanting to send characters to a lineprinter need only supply them to an interrupt handler; it is
the responsibility of the interrupt handler to transmit them to the printer at the precise times
that the printer indicates that it is ready for them. In this way, the programmer is relieved of
the burden of making frequent checks on Lhe state of the printer, and the structure of his
program can be unaffected by the timing constraints impesed by the printer.

Interrupt routines are notoriously difficult to code and to use 1In addition to assuming
responsibilities of meeting real-time deadlines, the interrupt routine must maintain the
programmer’s illusion that the application program has exclusive use of the processor and store
This imposes rigorous discipline on the use of registers, and of store locations, both to avoid
conflicts, and in the management of those shared variables by which program and interrupt
routine communicate. Moreover, the interrupt routine has usually to be programmed as a
‘subroutine’ (rather than a ‘corcutine’) invoked once by each interrupt, which means that any
state that is to persist from the handling of one interrupt to that of the next must be saved in
store and reconstructed at the next interrupt. To make matters worse, high level programming
languages are rarely able to offer convenient abstractions for coding interrupt handlers, which
are inherently machine-dependent, and it is usua! for interrupt routines to be written in machine
code.

It is tempting to claim that the concurrently executed processes of occam are the right tools
for writing interrupt routines. Tc do so would be misleading: concurrent processes are right for
a task for which interrupt routines have always been inadequate! The task is in two parts: that
of writing code to meet real~time deadlines; and that of isolating their effects, so as Lo keep the
rest of the program simpie.

In occam, sustaining the illusion that the application program has exclusive use of the
processor and store is easily done, since each and every process of every gccam program
operates under this very illusion. The illusion is sufficiently siwrong that a programmer need
never know whether or not any particular process is executed on its own dedicated processor.

Mecting real-time deadlines remains a problem that must be solved by ensuring that each
processor is fast enough, and that the code is short encugh. Apart from this conecern with
urgency, an interrupt handler coded in occam can be written in exactly the same way as any
other process, and communicates with the application program in the same way as any other
processes communicate with each other.

Managing terminal input
To take a concrete example, consider managing the traffic to and from a terminal. Every time a
key is struck at the keyboard, there will be a corresponding event (traditionally an interrupt) in
the computer, and some action must be taken to read information about the key before the next
key is struck, lest the information be lost. Quite often the action taken will be to store the
character corresponding to the key in a buffer, from which it will subsequently be read at the
leisure of the program which is consuming the termimal input. The capacity of the buffer
determines how many characters can be ‘typed ahead” of the demand from the program.

In occam, an ‘event in the computer’ is represented hy a communication on a special channel
Special channels are declared hy noting some implementation-dependent value (such as the store
address of the relevant peripheral controller} in the declaration,

chan keystrokein at 2850 -

Programs use special channels just as they would use other channels, except that they use each
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channel only for input, or only for output, with the other half of the communication being
performed by the peripheral controller.

In the case of the lerminal example, it would be possible, every time a key was struck, for the
program to perform an input

keystrekein ? ch
so a reasonable interrupt handler might be
circular buffer(Reystroke.in, request, reply)

using the circular buffer coded in the “Programming structures’ section. This process has the
disadvantage that, were the buffer to become full through the coincidence of a fast typist and a
slow program, the process would no longer be prepared to accept input from Reystrokein.
Since there is, fortunately, no mechanism built into current terminals to suspend the execution of
the typist while the computer is busy, this would mean that keystrokes made whilst the buffer
was full would be lost, without warning.

An improved scheme would be to code the interrupt handler in such a way that it was always
prepared to acknowledge the keystroke, and to take some remedial action in case there were no
room left in the buffer.

proc Reyboardhandler(chan request, sink, error) =
— Characters typed at the keyboard can be read from sink.
—— A signal s required on request before each item is read.
— If more than typedhesd are iyped-ahead. there is an error signal.
chan keystrokesin at ... :
var reader, writer, count :

seq
reader = a
writer := @

count = typeahead
var dacumltypeatead] :

while true
alr
count = o & Reystrokesin 7 any
error | any
count > o &  keystrokesin ? datum{writer)
seq
writer = (writer + 1) mod type.ahead
count = tount —1
count ¢ typeahead &  request ? any
seq

sink | datum(reader]
reader := [reader + 1) mod type.ahead
count  s= count + 1 :

This process signals on the error channel if an attempt is made to over{ill the type-ahead
buffer; later, I will use this signal to ring the bell on the terminal.
Notice that the Reyhoardhandler is written in such a way that, provided

x the outputs to error and Sink are never delayed for more than a fixed time

* this process executes at a known rate within a known short time of becoming ready
then it is possible to put a bound on the length of time before the process next becomes ready
to accept an input from heystrokein Bounds of this kind are what you would need to
demonstrate that no interrupts were lost.
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Managing terminal output

For the purpose of this example, suppose that the outgoing traffic to the lerminal screen
consists of a sequence of bytes passing along the special channel screenout to be displayed as
characters on a screen, or acted upon in some other way by the terminal. The terminal may then
become busy for some short time, before again being ready 1o accept output. The screen
handling process has to accept characters from the user’s program, and to pass them on;
addjtionally, it must accept urgent error signals from the process handling the type-ahead
buffer, and send a ‘bell’ character to the terminal when an error is flagged.

def control = not ((not o) € 5):

proc screenhandler(chan outgoing, error) =
def bellcharacter = control A ‘G’ :
chan screenout at ... :
while true
var ch :
alt
outgoing ? ch
screenolt | ch
error 7 any
screenout | bellcharacter

It might appear that there are no timing constraints on the behaviour of the screenhandler,
but recall that the performance of the keyboardhandler depends on its error signals not being
delayed unduly. As written, the error-guard in the screemhandier might indeed be delayed
indefinitely, even were it .guaranteed that the screenhandler was executed immediately either of
the guards became ready. It might be that the process that sends characters along the cutgoing
channel is able to send a new character in less time than it takes the screenhandler to execute
the bedy of its while loop once. In that case, the outgoing-guard would always be ready every
time the alterpative was executed, and since an alternative can choose any one of the ready
guards, it is possible that the error-guard might be ignored indefinitely, even were it ready.
Notice, particularly, that this behaviour is not caused by my having written the outgong-guard
first: the order of the components of an alternative is immaterial to its meaning.

For just this reason some dialects of occam have an additional constructor, pri alt, which
breaks the symmetry. (pri is to be read ‘prioritized”) The components of an asymmetric
alternative are the same as those of the symmetric construct, but the meaning differs in that
earlier components are treated more favourably than later ones. The alternative waits uniil one
of its guards is ready, then the earliest (nearest to the top of the paper) of the ready guards is
selected. Execution of the selected component is then the same as it would be in a symmetric
alternative. This means that if the screenhandler were re-written

proc screenthandler{chan outgoing, error) =
def belicharacter = control A ‘G’ :
chan screenout at .., :
while true
var ch:
pri alt
error ? any
screenout | bellcharacter
autgoing ? ch
screenout | ch

then an error sighal could not be delayed for langer that it takes 1o execute the body of the
while loop once. Discharging the responsibility to accept these signals in a fixed time reduces to
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showing that

* the outputls to SCreenouUC are never delayed for more than a fixed time

* this process executes at a known rate within a known short time of becoming ready
The first requirement is met by the terminal, by assumption; to the second I will return later.
Notice that there is no constraint on the timing of transactions on the outgeing channel; I am
building 2 firewall around the terminal, beyond which meeting real-time deadlines will no longer
be a concern.

A particular program that uses the terminal may contain a large number of processes, each
needing to send characters to the terminal screen. Since the outgcing channel is now the only
way out to the terminal, and since only one process is able to send along that channel, 2 process
must be written te interleave the many output streams, and send the interleaving along outgoing.

def release = -t :

proc outout.mulciplexer(chan from[] value width, chan outgoing) =
while true
var ch :
alt selectedprocess = [0 for width]
fromiselectedprocess] ? ch
while ¢ch # release
seq
outgeoing | ch
from[selectedprocess] ? ch

This process interleaves messages from each of the from[...] channels, in an arbitrary order,
each message being terminated by the release value. The most interesting property of this
process, for present purposes, is that it is outside the firewall: there are no constraints on the
speed with which it executes, nor on the times at which other processes communicate with it.

Managing echoing

The time-dependency firewall is not yet complete: there remains the problem of reading from the
type-ahead buffer. Recall that, having issued a request signal., the reader assumes a
responsibility to accept the reply from the sink channel within a fixed time. This means that the
reader must be within the Firewall. Here is a suitable process, which reads characters from the
type-ahead buffer, and to which 1 have given the job of ‘echoing’ the printable characters 1o the
terminal screen as they are read by the program using the keyboard input.

proc echohandler{chan request, reply, echo, inward) =
def enter = control A ‘M’ ;
while true
var ch :
seq
request | any
reply ? ch
inward | ch — Transmit character to user
i
(ms’ ¢ ch) and (ch ¢ )
echo | ch —— Send visible input back to terminal screen
ch = enter
echo | release — Release screen at end of line of input
true
skip

The only timing constraint on this process is that it execute sufficiently rapidly that the input
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from reply is accepted within a permissible time of the preceding request being accepted by the
Reyboardhandler. There being no constraints on communication on the eLo and inwarc
channels, these may cross the firewall: the echo channel is to be one of the array from[] going
to the screenmultiplexer, and the inward chapnel can be used directly by the process that
consumes keyboard input.

Notice that the screen sharing strategy is implemented by an ‘ordinary’ process not subject to
any timing constraints. Since each line of echoed characters from the type-ahead buffer is sent
as a message to the screen as an indivisible message, there is no problem about input characters
being mixed in with ocutput, but neither is there any need for the echohandler te be concerned
with screen allocation.

If the program that used the terminal were written as a named process, user, then the whole
could be put together with the terminal handler

def typeahead = ..., control = not ((not o) € 5), release = —:
proc keyboardhandler(chan request, sink, error} =

pr.c;é echohandler(chan request, reply, echo, inward) =

prlc;; output multiplexer(chan from(], value width, chan outgeing) =
pr;; screenhandler(chan outgeing, error) =

pr.o.r.: user{chan terminalkeyboard, terminalscreen) =

v

chan request, reply, error, outgoing, fromkeyboard :
def fromechohandler = o, fromuser = 3, number.ofoutputs = 2 :
chan toscreen[number.of.outputs] :

par
keyboardhandler (request, reply, error) — %
echo.handler(request, reply, toscreenfromechohandler), fromkeyboardy) — »
output.multiplexer(ta.screen, number.of.outputs, outgoing)
screenhandler{outgeing, error) — %

user(fromheyboard, toscreer{fromuser])

Configuration directives

Ignoring, for the moment, the timing constraints imposed by the proper handling of the terminal
interrupts, checking the correctness of this program can be done in two parts. First of all, there
are properties of individual processes that can be checked in isolation from Lhe other processes:
for example, that the echohandler performs a cycle of four communications in a fixed order,
behaviour that is unaffected by the other processes. Secondly, there are some properties that are
inherently global, notably freedom from deadlock, which may depend on the behaviour of every
one of the processes.

The same is the case with the timing constraints: the argument thus far has been about each of
the component processes, more or less in isolation. Had I settled on a particular implementation
of occam on a particular computer, and on a particular set of terminal characteristics, then I
could have calculated the ‘fixed times’ within which actions must occur as so many seconds of
processor lime, so much communication time, and so on. It remains, however, to be demonstrated
that there will always be sufficient processor time available when it is required.

One way of achieving this would be to dedicate a processor to the execution of each of the
five components of the program. Dialects of occam intended for writing such multi-processor
programs have a variant of the parallel constructer, placed par, for indicating such a division
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of labour, Were this used in place of the par in the present program, then the processor
occupancy times calculated for the three starred processes would be aclual elapsed times, each
independent of the processor loading of the other processes. In this particular case, such a
solution seems excessive, since the tasks are each fairly simple, and the traffic is light. It would
be a more reasonable way of dealing with, say, the traffic to and from a fast disk, where a
whole transputer might be aliocated to managing the large volumes of data, and the potentially
intricate calculations required to make efficient accesses to the disk.

More realistically, this particular program would probably be run on a single processor, say
one \ransputer. As it stands, in order o be able to guarantee sufficient speed of execution in
the starred processes, I must know delails of the behaviour of the unstarred processes: for
example, that the user process does nol require more than a known propertion of the
processor’s time. This being unsatisfaclory, there is another dialectal variant of par, one which
distinguishes more and less urgent lasks. As with asymmetric alternative the asymmetric parallel
construct, constructed with pri par, is made of the same components as the symmetric variant,
but differs in execution by favouring its earlier components. For example, the process

pri par
P

q
r

executes by the concurrent execution of its three components, but ¢ can only execute when p is
prevented from doing so because it is waiting for a communication or has already terminated.
Similarly, r can only execute when both p and ¢ are blocked, and execution of r will rapidly be
suspended should cither of the higher priority processes become ready.

The asymmelric parallel constructor, if used, must be the outermost constructor of a
uni-processor program, of the outermost constructor of one of the branches of a placed parallel
construct. In occam programs to be executed on currently proposed transputers, asymmetric
parallel construcls can have no more than two components, corresponding to the two
process-queues in the transputer. For that machine, the right way to organize the terminal
handier would be

pri par

par — High priority process
keyboardinandler(request, reply, error)
echohandler(request, reply, toscreenfrom.echohandler], fromkeyboard)
screenhandler(outgoing, error)

par — Low prigrity process
output.muitiplexer(to.screen, number.of outputs, cutgong)
user(from.keyboard, toscreerfromiser]

Now it cannot matter what the user or outputmultiplexer processes do: if any of the urgent
processes is able to execute, then one of them will do so within a very short time. This latency
will be determined and guaranteed by the implementation, so again if ] had a particular
implementation in mind, this would be known. The total waiting time, for any of the ‘interrupt’
processes, between becoming ready and beginning 1o execute, is bounded by the sum of one
lateney time and the sum of the longest execution time of each of the other interrupt processes.
That completes the analysis of the timing of the program. All that is needed in the case of a
particular implementation is to calculate the times, a matter of counting instructions, which task
could and should he delegated 1o the compiler. Substituting the figures for the waiting and
execution times allows a check to be made that the required response times are achieved.
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Parallel matrix multiplication

In systems which manipulate and display geometrical data, one of the common routine tasks is
the application of linear transformations to the data. A system copteining a representation of a
three-dimensional object may need to rotate or displace thal representation so as to select a
point of view from which to project a two-dimensional picture of the object onto a terminal
screen, or a plotter, If the positions of the parts of the object are represented by a sequence of
Cartesian co-ordinates, then these rotations and displacements can be achieved by matrix
multiplication. For each point, with co-ordinates <x{o], x[t], x[2]> it is necessary to calculate the
corresponding transformed co-ordinates <[al yl1, ylal> given by

-]
yil = X Caln jl x x{j1) + K0l

l [}

This requires nine multiplications and nine additions for each point in the representation of the
object.

If the transformation is being applied once to an object with a view to printing an image on
a slow, hard copy device such as a pen plotter, then the time taken to do the transformation is
probably not important, and it does not matter much how the matrix multiplication is
organized. On the other hand, if the image is being displayed on a cathode ray tube, and the
observer is allowed to change his point of view from the console, then speed is important.
Ideally, the transformation should be applied to every relevant point of the object as the
position of that point is required to refresh the display, so that observer sees the effect of a
change in the transformation as soon as possible.

If there are of the order of a thousand points in the representation of the image, then this
means something of the order of a hundred thousand matrix multiplications in a second. For
practical purposes, this requires that special hardware be dedicated to performing the matrix
multiplications on a stream of co-ordinales on its way to the display. In such an arrangement,
the time taken to perform the nine individual multiplications will dominate the time taken by all
of the communications and additions involved. There is Lherefore an advantage in arranging that
as many as possible of the multiplications can happen at once.

A natural configuration of processors Lo perform this task is a square array, mimicking the
matrix @ one processor being responsible for each element of the malrix, and performing the
multiplication by that element.
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Successive values of each x co-ordinate are poured imo the array from the top, passing down
along the north to south channels, and successive values of the transformed |y co-ordinates
emerge from the east to west channels at the left of the array. In this diagram, each processor
is labelled with the parameter for which it takes responsibility. For simplicity, the
transformation is assumed to be constant: a mechanism for changing the parameter values might
involve a further array of channels at right angles to the plane of the array of processes
connecting each relevant processor to a controlling process.

Each multiplier cell has three tasks to perform during each complete matrix multiplication:
getting the next co-ordinate, X[ ], from its northern neighbour and passing it on to its southern
neighbour; performing its own multiplication, getting a partial sum from its eastern neighbour,
adding its own contribution and passing the sum on to the west. These tasks can be performed
sequentially

var xj, aijtimesxj, ui:

while true
seq
seq
north ? xj
south | xj

aij.rimesxj = ai] X XJ

seq
east 7 yi
west | yi + aij.timesx)

Because the condition on the loop is a constant true, this process never terminates; it repeatedly
performs the three tasks in strict sequence. Since this is a design for highly parallel hardware, it
should be worth extracting a little more parallelism

proc multiplier(ualue alj, chan north, south, west, east) =
var xJ, ajtimesxj, u :
seq
north ? xj
while true
seq
par
south | xJ
aij.timesx] = aij X X]j
east ? i
par
west | Ui + ai).Llmesx
rorth ? xJ

Since different components of the multiplier would be used by each of the communications and
the arithmetic, the branches of the par constructs naturally execute simultaneously.

Notice that the multipller process does not need to know where it is in the array - it is
independent of i and j. This means that the hardware could use nine identical circuits.

In order to complele the multiplier, a source of the R[i] offset values is needed along the
eastern border

proc offset{value ki, chan west) =

while true
west | ki
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and 3 sink must be provided at the southern end of each column of multipliers 1o receive the
redundant x[j] from the southernmost multiplier processes

proc sink(chan north) =
while true
north ? any

Although the sink does nothing with the values received, its input actions are necessary so that
the corresponding output can happen in its neighbouring multiplier, A row of sink processes
yields a simpler solution than one which involves two kinds of multiplier process, one for the
north of the array, and another for the southernmost row.

Connecting these components to form the matrix multiplier is a matter of choosing an
enumeration for the channels, and using chan arrays, suitably indexed. One solution is
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50 the whole multiplier can be described by the program

def n = 3¢
var an x n], knj:
seq

— jnitialise a and R

chan northsouth[(n + v x n), eastiwest[n x (n + 1] :
par
par j = [o for n] — producer of co-ordinates X[j]
producex ¢ j, northsouth( j])

par — the matrix multiplier
par i = [o for n]
offset(R[1], east.west[(n x n) + i])
par i = [o for n]
par | = [o for n]
mulgiplier{ al(n x ) + j],
narthsouth[(n x i) + j] northsouth[(n x (i + 1) + J]
eastwest [+ (n x J)] eastiwest [i+ (nx (g + D)
par j = {e for n)]
sirhi(northsouth{(n x n) + J1

par i = [e for n} — coansumer of transformed co-ardinates
consumeyil, east.west(i]

It is the task of each producex] process to output successive values of the co-ordinale
corresponding to its first parameter, and that of each consumeyi process te input successive
values of the wransformed co-ordinate.

By devising suitable definitions for the producex| and consume.)yi processes, this program can
be used on any occam implementation as a simulation of the parallel matrix multiplier hardware.
Of course, if it is exccuted on a single processor computer, then it will be very much slower
than a simpler sequential program, because of the additional work in communicating and
scheduling. On the special hardware for which it is designed, however, it would be very much
faster. The longest data path from input to output is that traversed by x[z] on the way to
contributing to Yyle] This path involves six communications, three additions, and a single
multiplication, al} of which must happen in sequence. The program is designed on the
assumption that the time taken for the multiplication would dominate all others, under which
assumption it would be almost nine times faster than a sequential multiplier.

The matrix multiplier example appears in essentially this form in

Communicating Sequential Processes, CA.R. Hoare
in Communications of the ACM, 21 (B), August 1978, pp 666-677
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Paralle]l sorting

Sorting is a candidate problem for parallel solution because many algorithms have an element of
divide-and-conquer. That means the task is carried out by dividing it into some number of
smaller, simpler tasks each of which is repeatedly divided until only trivial tasks remain. Such a
strategy rapidly identifies independent parts of the original problem, which can be tackled
concurrently.

I make no claims for the sorting algorithm used here, beyond its simplicity. Although a
parallel sorting program is described, the subject is how to observe a parallel program in
operation. With small changes to the sorting program itself, its activity can be displayed on a
vdu screen, turning the program inte a simuilator of its own behaviour.

Sorting strategy

The program consists of a number of simple processes linked together in a tree shaped structure
As in the case of the matrix multiplier, no process need ever know where it is in the tree: there
will be only two types of process: leaves, and internal nodes. Again, each process is independent
of the size of the problem, and need never store more than two values and some flags, no
matter how many values are being sorted. A bigger problem demands a bigger tree, but the
components are unchanged.

The strategy is to distribute the numbers upwards from the root of the tree, until they are
spread out, one to each leaf. Each process is then responsible for sending back to its parent the
sequence of numbers which it has received, but sorted into ascending order. For a leaf, the task
is simple, since its one number already constitutes a sequence in ascending order. Fach internal
node, relying on the sorted subsequences that it will receive from its children, merges two
ascending sequences to generate its output sequence.

Each leaf process needs two-way communication with its parent,

proc leaf(chan up, down) =

and cach intermal node needs six channels, two to provide two-way communication with its
parent, and two each to and from each of its children.

proc fork(chan up, down, left.down, leftup, rightdown, mghtup) =

For simplicity, the root process is treated as an internal node, with a virtual root process acting
as the parent of the root

proc driver{chan up.totres, downfrom.tres) =
and acling as a driver to control the activity of the tree
To connect these process, they have to be indexed, so as 1o correspond to linear arrays of

channels. For simplicity, 1 have made the program a complete balanced tree

def depth.of.tree = 3 :

def number.ofleaves = 1 & depthoftree ,
number.of forks = number.of.leaves — 1,
number.of processes = number.of forks + number.of leaves ,
nurnber.of chanrels = number.of.processes :

then, numbering the processes breadth-first, upwards from the root
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def rost =0,
firstfork = root ,
Firstleaf = first.fork + number.of.forks :

the children of the internal node process | are indexed (axi)+1 and (exi)+2. If channels indexed |
are used to connect process i to its parent, these same formulae will give the indexes of the
channels to and from the children of internal node process i,

chan up[number.of.channels], dowrnumber.of.charnels] :
par
driver(up[root], dowr[root]
par i = [firstfork for number.offorks]
fFork(upll]), downi], dowr[(exi)+1), up{(ex+1], dowr{(exiy+a], upllaxi+al)
par i = [first.leaf for number.of leaues]

leaf(upli], dowr{i)

Components of the sorter

There are two phases of activity in the tree: first the sequence of numbers is distributed; then
sorted sequences are gathered and merged. Fach component process passes through the same two
phases.

proe fork(chan up, down, left.down, leftup, right.down, rightup) =
seq
forkdistribute(up, leftup, rightup)
ferkgather(down, left.down, right.down)

During the distribution phase, each internal node receives a sequence of numbers from its
parent. Notice that since a fork process knows netther where it is in the tree, nor how big the
iree is, it cannot know how many numbers to expect. Accordingly, the sequence is passed around
with each number preceded by a true value, and the last followed by a false value. Such a
sequence can be read by

var more :
seq
up ? more
while more
var next :
up ? next; maore

The simplest way of distributing the sequence amongst the children, without foreknowledge of
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its length, is to send one-for-left, one-for-right, alternately.

proc forkdistribute(chan up, leftup, mightup) =
def leftward = o, rightward = not leftward :
var more, inclination :

seq
inclination := leftward
up 2 more
while more
var number :
seq|
up 2 number
if
inclination = leftward
leftup | true; number
inclination = rightward
right.up | true; number
up ? more
inctinatlon := not inclination
par

leftup | false
rightup | false

Notice that this process passes the guarantee of correctly interpolated true and false values on
to its children,

Since I assumed that the component processes would serve in an arbitrarily large tree, they
should not count the nombers as they pass upwards This means that during the merging phase
there are again sequences of unknown length to be read, and 1 will use a similar protocol.

In order to do the merging, preserving ordering, numbers must be compared, and this requires
that each merging process have at least two registers holding numbers. Since each child sends its
sequence in ascending order, the head of each sequence is the minimum of those to come, so the
merging process compares the heads, passes on the smaller, and draws one more value from the
selected sequence, tontinuing until the sequences are exhausted.

proc forkgather(chan down, left.dowr, right.down) =
var left.more, left.minimum, right.more, right.minimum :
seq
par
left.down 2 lefr.more leftminimum
rightdown % right.more; rightminimum
while left.more or right.more
if
leftmore and ((not right.more) er (leftminimum € rightuminimam))
seq
down | true; leftminimum
left.down ¢ left.more; left.minimum
right.more and ((not leftmore) or (leftminimum » rightminimum))
seq
down | trug; rightrmimimum
right.down ¢ right.more rightminimum
down } false; any :

Notice 2 final any sent downwards at the end of the sequence, which accounts for the parent
process being able to receive a pair of wvalues, ...more, ... Mminmum, even when the first is
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False. This trick is simpler than making the parent’s behaviour conditional on the first value,
and there is very little penalty since after sending down its false value there is nothing left for
the child process to do.

The driver process must generate and absorb sequences of numbers, stuffing and stripping the
protocol.

proc driver(chan up, down) =

seq
seq i = [o for number.of leaves]
var number :
seq
o think of a number
up | true; number
up | false
seq | = [o for number.of.leaves]
var number :
seq

down ¢ any; number
.+, do something with the number
down ¢ any; any

The missing code controls the behaviour of the whole program. It might, for example, read
numbers from the terminal keyboard, and write them back, in ascending order, to the terminal
screen.

Finally the leaf process must be designed to simulate the behaviour of an internal node that
only handles a sequence of one number

prac leaf(chan up, down) =
var number :
s8q
up ? any; number; any
down | true; number; false; any :

Thal completes the sorling program which, whilst it may look overcomplex for a single
processor implementation, would look better on an array of numberofprocesses simple
processors. Notice, particularly, that once the numbers have started to emerge from the tree in
ascending order, each is available only one comparison time after its predecessor. The advantage
would be more obvious were the sorter managing more complex data, where the comparison time
might be very large

Monitoring strategy

The program as it stands may be run on a single processor to simulate the activity of the ideal
multiprocessor implementation. By wriling the missing code in the driver, you could observe
numbers going into and coming out of the tree, checking that the program sorts particular
scquences of numbers. That tells you nothing about what goes on inside the tree: just as in
spring, it might be edifying to be able to observe the activity up in the branches.

By analogy with the testing of electronic circuits, the idea is to probe the components of the
circuit, rather than just watching the signals that pass into and out of the terminals. There are
two techniques: breaking connections to measure the current flowing through them corresponds
to tapping the channels to watch the traffic; attaching probes 1o measure the potential at
various points corresponds to noting state changes in the processes.

In order to observe the traffic on a channel, a process must be added which duplicates the
traffic along a monitoring channel, something like
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proc duplicate(chan source, sirk, copy) =
while true
var datum :
seq
source ? datum
par
copy | datum
sink | datum

This process can be inserted into a data stream passing along a channel

chan channel :

par
producer(thannel)
consumer(channel)

allowing the data to be read by another process

chan chanrela, chanrelb, test.data :

par
producer(channela)
duplicate(chanrela, channelb, test.data)
consumer(chanrelb)

monitor(test.data)

Of course, the observation is not perfect: it may affect the behaviour of the program. First of
all, the duplicate process acts as an additional buffer in the data stream. In this example it
cannot matter, but were there some other communication, possibly through a third party,
between the producer and consumer, it might matter that the output from the producer could
proceed, despite the corresponding demand not being made in the consumer. Secondly, the
duplicate process, as written, does not terminale, so unless il is used Lo observe an infinile dala
stream, the program will eventually become deadlocked, even had it previously tlerminated
correctly.

In both of these ways you must be careful to design monitoring code that docs not interfere
excessively with the action being observed. In general, it is necessary for the behaviour of the
monitoring processes to depend on the data passing through them, and this in-stream technique
should be avoided if there are many data paths between pairs of processes in the program being
observed.

In order to make internal state visible, it is necessary to add code to the processes being
observed. Just as observing traffic involves adding new output processes in paralle]l with the
observed program, so observing state requires that new output processes be set in sequence with
the code being observed. In order to observe the changing value of a variable

proc p(...) =
var x:
seq
x = ¢
c'? X

each assignment to that variable should be followed by an output process signalling the change
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proc p(..., chan test.data) =
var x:
seq

seq
X =4
test.data } x

.
H
H

seq
C?x
test.data | x

on a channel which passes out to the monitoring code. Again, the observation is invasive: you
must be aware that the observed process may be delayed by executing the new culput processes.

In the example of the paraliel sorter, I will use both types of monitoring: the explanation of
the behaviour of the merging is in terms of the sequences of values passing along channels, so
the traffic along the channels will be watched; the leaves are used as storage locations, so it is
appropriate to observe their state.

The result of adding this monitoring code is a number of channels emerging from the tree,
each carrying signals indicating the presence or absence of a number. Each will be treated
similarly, either to write a number to or to remove it from a position on the screen which will
represent the place in the program which is being watched. Since changes 1o the screen must be
made in sequence, it is appropriate to multiplex the test data from the lree, and process each
new test signal in sequence.

These decisions lead 1o the following, changed, program structure

def number.of.probes = numbercfchannels + number.of.leaues :
chan up.alnumber.of channels], downalnumber.of channels],
upb{number.cf.channels], downblnumber.of channels],

probe[number.of probes], allprobes

par
driver(up.a root], downb[root])

par i = [first.fork for number.of forks]
Fork(upb[i], downd[i], downb[(exi)+], upal(exii], downb(ex)+e]. upd(axi)+a])

par | = [first.leaf For number.of.leaves]
leaf(up.b(i], down.ali], probe[number.cf.channels + (1 — first.leaf)])

par i = [root for number.of.channels)
monitor(up.a[i], downal] uphlil, downb[1], probe(i])

multiplex(probe, allprobes)

display(allprobes, terminalscreen)
Each monitor process copies data from its ,,,.a channels to its .,.b channels, duplicating the
activity along the cerresponding probe. Every leal is modified to indicate its state with similar

messages. All of these messages are multiplexed onto a single channel, and then translated into
sequences of instructions to display the changing stale of the program on the terminal screen.
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Component processes

There are three types of message to be sent along the probe channels: messages indicating the
presence of a number, messages indicating the absence of a number, and a final termination

message. Each of these will be indicated by starting it with one of three values

def display.number = 1, displayempty = 2, displaystop = 3 ¢

Sending an explicit termination signal means that the behaviour of the tree can be altered

without the monitoring code having Lo be changed.

To start with the leaf process, all that is needed is lo indicate the arrival and departure of the

stored number.

proc leaf(chan up, down, probe) =
var rumber ;
seq
up ? any; number
probe | display.number; number
up ? any
down | true; number
probe | display.empty
down | false; any
probe | display.stop

The monitor process must copy the sequences of numbers passing first up and then down the
treg using the correct protocol for each case. The necessary monitoring code is then just what

you would need to record changes of state in this buffering processes

proc monitor(chan up.a, downa, Upb, downb, probe) =

seq
var more :
seq
up.a 7 mare
while more
var number :
seq
up.a ? number
probe | display.number; number
up.b | more; number
probe 1 displayempty
up.a ? more
upb 1 more
var more, number :
seq
dowrwa ? mare number
while more
seq
probe | displaynumber; number
downb | more; number
probe | displayempty
down.a ? more; number
downb | false; any
probe | displaystop

The multlplex process simply gathers together all of the probe signals, tagging them with the
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corresponding index number for later identification,

proc multiplex(chan probe[], allprobes) =
var more, morefrom{number.of probes] :
seq
more = number.of probes
seq | = [0 for number.of.probes]
morefrom[i] == true
while more > o
var instriuction :
alt | = [o for number.of probes]
morefrom{i] & probe{i] ? instruction
if
mstruction = display.number
var number :
seq
probefi] ? number
allprobes 1 instruction; I; number
instruction = displayempty
allprobes { instruction; |
instruction = displaystop
seq
morefromi] := false
mare = mare — t
allprobes | displaystop

Once a display.stop is received from a particular probe, no more signals are read from it, and

the whole multiplexer terminates when all probes have been shut off.

Display management

It remains only to translate the stream of probe messages into a stream of terminal screen
control messages. The first thing to do is to translate the prebe numbers into positions on the
screen. This happens in two stages: first the numbers are translated into positions
terminal-independent space; then that space is mapped onto the terminal screen.

proc¢ display(chan source, sink) =
chan Internal :
par
independent(source, internal)
dependent(internal, sink)

The terminal independent space has right-handed co-ordinates, with the leaves evenly spread

across the top, and the root at the middle of the bottom line.

depthof.tree + 2 |
depthof.tree + v |
depthof.tree I
i |

R |

l

1 X

P P P P P PR P R R P L 8 PP P Pl Tt P P P P P P s Py P s =

123465 6 7 .. numberofleaues
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Messages from probes with index less than nurmberofchanrels are from probes within the tree,
and those with higher indices are from the leaves. The lop line, representing the states of the
Jeaves, is clearly not a part of the pattern in the rest of the tree, so is dealt with differently.
For the channel probes, the simplest solution is to count up from the root. There are
((r € Tine) — 1) probes represented on the bottom line lines of the display, so the right line for a
particular probe is the first for which its Index lies below this number. The right column is
calculated by discounting the ((1 € (line — 1)) — 1) probes displayed on the lower lines and
multiplying by a facter which accounts [or the exponential separation of nodes at different
depths

proc makecartesian(ualue index, var x, y) =
if
if lire = [1 for depthoftree + 1]
index < ((1 € line) — 1)

var c

seq
ci=1Index - (L € Qire - -1
x = ({2 x ¢) + 1) X (number.of leauves » (line — 1))
Y= line

index » rumber.of channels
seq
% = (2 x (index — number.of.channels)) + 1
\ == depthof.tree + 2

The makecartesian process translates a probe index into an x, \y pair
1¢ x ¢ (@ x numberoofchannels) — 1 and 1€ y € depthoftree + 1

The other terminal independent part of the translation is to turn the numbers into digits. All
the numbers are written in a fixed width field

proc independent(chan source, smk) =
var instructlon :
seq
source ¢ instruction
while Instruction « displaystop
seq
sink 1 true
var Index, x, y :
seq
source ? index
makecarteslan(index, x, y)
sink | %5 Y
If
instructlon = displayrumber
var number :
seq
socurce 2 number
writesigned(sink, number, fieldwidth)
Instruction = displayempty
seq 1 = [o for fieldwidth]
sink | ‘ws
source ? instruction
sink 1 false
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The output from this process consists of a sequence of packets, each beginning with an X, y
pair, followed by [ieldwidth number of characters to be displayed there, Fach packet is
preceded by a true value, and the whole sequence is terminated with a [alse

If the terminal has cursor addressing, then the task is almost complete. Here, for example, is
the necessary terminal dependent part of the display process for a digital YT52 terminal

def uirtualheight = depthoftree + 1, urtualwidth = (& x numberofleaves) - 1:

proc dependent(chan source, termiral) =
-—— terminal dependent cede for driving UTSZ

def screenheight = 2¢, screenwidth = 8o :
def control = not ((not o) € s), escape = control A T :

proc clearscreen(chan terminal) =
— clear screen sequence for a V152
terminal | escape ; 'H' ; escape ; T

proc gotoxy(chan terminal, value x, y) =
— lefthanded co-ordinates. origin 0, 0 at top left
terminal | escape ; Y ; s+ y ;w4 %

var more :
seq
clear.screen(terminal)
source ? more
while more
seq
var X, y :
seq
source ? % 4
gotoxy(rerminal, (x — 1) x (screenuwidth + virtualwidth),
(virtualheight ~ y) x (screenheght + virtualheight))
seq 1 = {1 for [leldundrh)
var ch :
seq
source 2 ch
termiral | ¢h
source ¢ more
gotoxy(terminal, 9, screenheight — 1)

The divison of work is such that, if it is at all reasonable to draw such pictures en a particular
terminal, the program can be modified to do sc simply by writing the appropriate dependent
process. Even should the terminal not have full cursor control, but only the ability to move the
cursor in small steps, dependent can be made to keep track of the position of the cursor.

For the purpose of the simulator, the simplest coding of the driver process invents a random
sequence of numbers for input te the tree. A common way of generating an unpredictable
sequence of numbers is to use a linear feedback shift register with an uncontrolled initial state

def mask = not ((not o) € g):
proc shift(var state) =

seq i =[1for g}
state = ((state € 1) A mask) v (((state » () @ (state » 8)) A 1)
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An arbitrary initial state may be obtained by reading the real-time clock. Since the shifi-register
will not change state if the initial state is all zeros, the time is v-ed with a one to puarantee a

non-zero intial state

This coding of the driver pauses after injecting each number into the tree, and after removing
each number from the tree, so as to give you time to see what is happening. There is nothing
scientific about the choice of a one second pause: I adjusted it to get a good display from the

particular implementation that I was using.

proc driver(chan up, down) =
seq
var euent, number :
seq
time ? event
number = (event A mask) v 1
seq I = [p for number.cfleaues)
seq
euent = euent + second
shift(nurmber)
up | true; number
time ? after event
up | false
var event :
seq
time 7 event
seq | = [0 for number.of.leaues]
seq
event = euent + second
down ? any; any
time ? after event
down ? any; any

The driver discards the result of the sort, because all the information has already been displayed,

as it passes out of the root process.
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Conway’s game of ‘Life’

Lest you be misled by the name, ‘Life’ is neither a competitive game between several players, nor
yet a solitaire game in which a player competes against the collusion between the rules and the
roll of the dice. The game is more a simulation, in which the evolution of a system is fully
determined by a set of rules.

To be precise, Life is played on an infinite square board: that means that there are a number
of squares, or ‘cell’s, each of which has four immediate neighbours and four diagonal neighbours,
in the fashion of a chess board. That the board is infinite means simply that every cell in which
you will be interested is one with a full complement of neighbours, so that you need never
worry about what happens at the edges. There will be only a finite number of interesting cells
to think about at any one time. Each cell may be in one of wwo states: occupied (alive) or
unoccupied (dead), and oniy finitely many will be alive at any time.

The rules describe the succession of states of each cell in terms of earlier states of that cell
and its eight near neighbours. Each cell passes through a sequence of generations, with the state
of the cell in the next generation being determined by its state in this generation, and by the
number of cells adjacent to it which are either alive or dead in this generation. If a cell is
currently alive, and if it has less than two live neighbours, it is deemed to die of loneliness, and
will be dead in the next generation. A live cell with two or three neighbours alive in the same
generalion survives into the next generation, but if it has four or more contemporaries, it will
be dead from overcrowding by the next generation. A dead cell with exactly three live
neighbours in this generation will give birth and be alive in the next generation, otherwise it
will remain barren.

Notice that the rules determine the state of the whole board in the next generation in terms
of its state in the present generation. Moreover, the rules are expressed in purely local terms,
and the property of Life that makes it interesting is that these local rules can control the
evolution of global structures. A number of patterns of live cells are known to pass through
cycles of growth and decline, some are known to grow without limit, whilst others die out.

Although the rules of evolution are simple, applying them to a pattern large enough to be
interesting, for more than one or two generations, is a tledious business. Machine assistance
makes it possible to watch the long term development of substantial colonies, and Life was once
a popular way of consuming otherwise unused machine cycles! More practically, a Life board is
a particularly simple and symmetrical example of a systolic cellular array. These are studied by
VLSI designers secking algorithms with fast but simple implementations in highly paraliel
hardware. A systolic array is characterized by the achievement of global co-operatlion through
many simultaneous calculations organized by local communications. Ideally, the components of
the array are, like the cells of a Life board, all of a few basic types, have a small finite amount
of state, and need never know where they are in the array.

The program described here is, as with the parallel sorter, a simulation in two parts: there is a
plane of parallel processes in which the cells of a Life board are represented, one cell to a
process; added to this is an essentially sequential mechanism for guiding and watching the
evolution of the colony. Perhaps it is worth pointing out at the outset that the resulting
program, run on a single processor, is far from the fastest way of playing Life. There are, for
example, a number of optimizations that require each process to have a more global view of the
state of the board, and naturally give rise to a sequential program. This program is here for
two reasons; firstly as an intricate example of the interconnection of processes, showing how to
separate this from the workings of the processes themselves; secondly, it is an example of a
general method of adding global synchronization to a loosely coupled system in order to observe
its behaviour.

The Life board

There is no problem in selecting a representation the board. Each cell of the board has a state,
so is represented by a process which administers the variable in which that state is stored. There
is no reason why each of these processes should not be identical. Each cell is distinguished only
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by the particular eight other cells which are close enough to influence its state in the next
generation. The neighbours of a cell process are connected Lo it, each by a pair of channels, one
in each direction.

The first problem that arises is one of representing an infinite board on what must necessarily
be a finite array of processes. As suggested earlier, the requirement of an infinite board is made
so that the behaviour of a cell will not be influenced by its being at an edge of the board.
Unless a colony grows without limit, or moves en masse in some direction, a finite board will
do, since the evolution of a colony is unaffected by any amount of dead space around it.

One solution, and the one that I have adopted here, is to take a finite sized board and wrap
it around a torus, so that the cells on the top edge have neighbours on the bottom edge, and
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those on the right have neighbours on the left. There are now no edges to worry about. You
may think of this toroidal board in either of two ways. Looking at it as a flat board with
tricky edges, it correctly implements the rules of healthy living until one or more of the edge
cells gives birth, from which point on it is possible for things to go wrong, with miraculous

conceptions and unexplained deaths happening in ways not predicted by the rules. Another way
of thinking about it is that the toroidal board is behaving as if it were a fragment of a truly

infinite flat board on which the real finite colony that you can see is repeated, in the fashion of
a wallpaper pattern, at regular intervals in the horizontal and vertical directions. The boundary
effects are now explicable, since they are the effects (predicted by the rules} of a neighbouring
copy of the colony coming close enough to influence the visible part of the board.

To be more definite about the program, it consists of a rectangular array of cell processes

def arragyuwidth = ..., arragheight = .., :
par x = [0 for arrayuwidch]
par Y = [ for arraygheight]
. process representing cell X, Y

The neighbours of cell x, y are those indexed

((x £ D + arraywidth) mod arraywidth
((y £ 9 + arrayheight) mod arrayheight

with the mod operator taking care of the proximity of cells at the edges of the beard. Notice
that the numerator of the mod operator has to be made positive, since in occam it is defined

that

(-9 mod w) = (=)
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The next thing to decide is the arrangement of the channels connecting these processes. As in
the matrix mulliplier example, it would be possible to allocale one channel array to account for
all of the dala flowing in each compass direction. The result would be that each cell process
would be connected to eight individually named channels carrying data inwards, and eight
individually named channels carrying data outwards. This is to ignere the symmetry with which
the rules of living treat the neighbours of a process. A cell does not distinguish between its
neighbours according to their compass direction, but treats them uniformly. The symmetry
should be represented by a for loop in the cell processes, the body being executed eight times,
once for each neighbour. That suggests that an array of eight channels is needed, indexed by the
eight directions.

Since there are, in occam, neither channel variables nor channel pointers, the only neat solution
to this problem is 1o allocate ail of the channels from a single large array. Each cell then needs
to be told which eight subscripts it should use to select its incoming channels, and which eight
to select its outgoing ones

def radius = 1, — of the ‘sphere of influence’
diameter = (2 x radius) + 1,
neighbours = (diameter x diameter) — 1:

def number.ofcells = arragheight x arragwidth ,
number.of inks = neighbours x number of ceils :

proc initialize(value x, y, var (], cut[]) =
.. imtialize i...] and out(.,.]

proc cellichan Wnk[], value w{], out{]) =
. cell using link[m{...1] and link[outl...]]

chan link[number.of links] :
par x = [a for arrag.width]
par U = [o for arrayheght]
var infreighbours], cut[naighbours] :
seq
initialize(x, Y, in, out)
cell(link, n, out)

Perhaps this is the place to note that I remain unsatisfied by this solution because of the
generality of the variable arrays in[...] and out{..,.] A mechanical checker, such as might be a
part of an occam compiler is unlikely to be able to verify that the cell makes only legal use of
the link channels, since the uses appear to be dynamically determined. A mechanically checkabie
program would most probably have to recompute the subscripts at the poimt of use. It is
because the effort of recomputing complex subscript expressions would dominate all of the other
activity in the program that I have adopted this solution. (Carrell Morgan first showed me the
application of this indirection strategy in a Life program on which mine is based.)

The remainder of the board configuration is in the initialization of the indirection array. To
do this, an enumeration of the processes and the channels must be chosen, 1 have chosen to
count the processes in the usual way: along the rows then down the colums, from zero at
process x zero, \ zero in the top left

thisprocess == x + (arrayuwdth x y)
and to allocate the first eight channels to carry data out of the first process, the next eight out

of the next process, and so on. This, of course, accounts for all of the channels, exactly once,
since every channel is outward bound from some process.
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To settle on a particular enumeration of channels, the eight ncighbours qf a process must be
put in some order. [ choose order of increasing direction as computed by the loop

seq deltax = [-radius for diameter]
seq deltay = [-radius for diameter)
var direction :
seq
direction = deitax + (diameter x deltay)
v consider neighbour x+deltax y+deltay

which is (except at the top and left edges) the order of increasing process number. The
direction of a neighbour characterizes it, and lies in the range

~ (neighbours + &) 4 direction < + (reighbours + 2)

with the zero value corresponding to the cell at x, y itself. To fill an array with the reighbour
consecutive subscripts of outward going channels the non-zero values of direction must be
mapped onto consecutive indices for out, and a group of eight consecutive channel numbers

if
direction # o
var this.index :
seq
thisindex = (neighbours + direction) mod (reighbours + 1)
out[thisindex] == thisindex + (neighbours x thisprocess)
direction = @
sRip

The value of thisindex sa constructed ranges from zero to neighbours—: taking on each value
exaclly once, in the course of a scan of the neighbours.

Now the question arises of which are the correct subscripts to use to select the incoming links.
Incoming links at thisprocess are, if looked at from the other end, the outgoing links from the

—N\-3) R

neighbours of thisprocess. The simplest, brute force, solution to the problem of enumerating
them is to put yourself in the position of the processes at the other end of each channel, and to
ask which link that process would be using to talk to thisprocess, as one of its neighbours. The
process at X, 4 is a neighbour of each of its own neighbours; in particular it is the neighbour
in the —direction direction of the process which is its neighbour in the direction direction. (You
can see this because direction is linear in deltax and in deltay) This means that the inward
channe! from the neighbour in the direction direction is the one that, at that other process
would be described as the outward channel in the —direction direction,
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var otherx, other.y, other process, otherindex :
seq
otherx = (x + deltax + arraywidch) mod array.uwidth
othery = (y + deltay + arrayhegnt) mod arrayheight
other pracess == otherx + (arragwidth x other.yy)
other.index := (neighbours - direction) mod (neighbaurs + 1)
motherndex] = other.index + (neighbours x other process)

These [ragments being gathered together, the configuration process is complete

proc initiahze(ualue x, y, var in[] out[}) =
— inttialize the link indirection arrays for the cell at X,y
seq deitax = [-radius for diameter]
seq deltay = [-radws for diameter]
var direction :
seq
direction == deltax + (diameter x deltay)
if
direction # o
var index, process :

seq
process = x + (arraywidth x y)
index = (neighbours + direction) mod (neghbours + 1)

outlindex] := index + (neighbours x process)
process :== ((x + deltax + arraywidth) mod arrayuwidth) +
(arraywidh x ((y + deltay + arrayheight) mod arragheight))
index == (neighbours — direction) mod (neighbours + ¥
mlindex] := index + (neignbours x pracess)
direction = ¢
skip

All of the tricky code being now dealt with, the code of the cell process is relatively simple.
It recards the state of the cell, that it is either dead or alive, and controls the evolution of the
state

def dead = e, alive = not dead :
proc cel(chan ink[], value n[1 oue(]) =

proc broadcast.present.state(chan link[}, value outf] stare) =
. tell neighbours about the state of this cell

proc calculatenext.state{chan nk[], value n[], state, var nextstate) =
. evolve in keeping with the rules

var state :
seq
state == ... — set en initial state
while true
var nextstate :
seq
par
broadcast present.state(link, out, state)
calculatenextstate(link, in, state, nextstate)
state = rextstate

Conway’s game of ‘Life’ 57



I postpone the matter of the initial state which determines the type of colony being watched.
In each generation, the cell must learn the siate of each of its neighbours, so as to count up
the number of adjacent occupted cells.

proc calculatenext.state(chan link[], value in[], state, var nextstate) =

var count : — number af living neighbours
5eq

var stateof.neighbour{neighbours] :

seq

par i = [0 for neighbours]
Ink{r{1]] 2 state.of.neighbour(i]
count := o
seq | = [0 for neighbours]
if
state.of.neighbour(i] = alive
count = count + 1
stateof.neighbour(i] = dead
skip

count € e
nexgstate -
count = @
next.state -
count = 3
next.state == alive — stable f alive, a birth if deed
count > 3
nextstate -

dead — death from isclation

state — this cell is stable

dead : — desth from overcrowding

Notice that although the inpul processes are written in a parallel for loop, the counting of live
neighbours has to be sequential, since the count variable may not be shared. Whilst the simplest
of mechanical checkers would be justified in drawing the programmer’s attention te the shared
array stateofneighbour[...], it is clear that no element of the array is shared.

There is a corresponding obligation on a cell to tell each of its neighbours about its own
current stale

proc broadcast.present.state{chan tink[], value out{] state) =
par i = [0 for naighbours]
lirk[oucli]] | state

Observation and control

As with the parallel sorter, having completed the highly parallel part of the program, I have
still to design a means for controlling and watching what happens. This task demands
substantially sequential code, since there is only one terminal keyboard and one terminal screen
involved, The observation will impose more synchronization on the array of cells: there is, so
far, nothing to prevent widely separated processes from working on as widely separated
generations, but the display should be capable of showing the state of one generation at a time,
across the whole of the board.

There are three intructions that the controlling process will need to issue 1o each cell on the
board: it may ask for the cell to assume a new state, so as lo initialize, and subsequently edit,
the state of the board; it may instruct the cell 1o evelve for one generation; and it may tell the
cell process to terminate.

def set.state = y askstare = @, terminate = 3 :
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In response to instructions to evolve, the cell should yield up its new state. To carry these
messages, a channel is needed into each cell, and one from each cell.

chan link[number.of.links], controllnumber.of cells], sense[number.of cells] :
par
controller(keyboard, screen, control, sense) — control process
par x = [e for arrayuudeh]
par y = [o for arrayheight]
var ir{neighbours], out{reighbours] :
seq
initialize(x, 4, in, out)
cell(link, in, out, controlx + (arraywidch x Yl senselx + (arraguidth x )]

The cell process must respect the instructions received on its control channel, thus

proc cell(chan link[], value in[], cut[], chan control, serse) =
var state, instruction :
seq
state = dead — the whole board starts off dead
control ¢ instruction
while instruction # terminate
seq
If
instructlon = setstate
control ¢ state
instruction = ashstate
var nexCstate :
seq
par
broadeast present.state(link, out, state)
seq
calculate.rext.state(iing, in, state, next.state)
serse | (state # nexCstate); next.state
state == nextstate
control ? instruction

At the end of each generation, the cell process sends nol only its new state, but an indication of
whether the state has changed in this generation. This makes the task of the controlling process
simpler.

The controlling process is essentially sequential. Under the contrel of input from the terminal
keyboard, it can either modify the state of cells on the board by issuing set.state instructions

proc edic(chan keybcard, screen, controll) =
.v» modify the colony on the board

or it is able to drive the whele board through the evolution of a single generation by scanning
the board, issuing ask.state instructions, and reading back the new states.

proc generatton(chan screen, control] sense[] var active) =
. cause the colony on the beard to move on 2 generation

The active parameter returns an indication of whether any changes have happened during the

generation: if a colony remains unchanged from one generalion to the next, then it is stable, and
will never change again.
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The normal activity of the controller, [reerunning, is to cause a sequence of invocations of
gereration so that the colony is continually evolving. If the colony becomes stable, then the
controller becomes idle. Between any two generations, the keyboard has an opportunity to change
the activity

def idle = ¢ editing = &, singlestepping = 3, freerunning = «, terminated = 5 :

proc controller(chan keyboard, screen, control[], sensel]) =
var activity :
seq
actwity = idie
initialize.display(screen)
while activity # terminated

seq
display.activity(screen, activity)
var ch :
pri alt
(activity # editing) & keyboard ? ch — provided not editing type ...
i
(ch = q) or (ch ='Q) — ... Q to fimish program
activity = terminated
(ch =) or (ch = ') — ,u S to hslt evolution
activity = ide
(ch =) or (ch ="E) — .. E to start editing
activity = editing
(ch =) or (ch =R") -— ... R to start evalution
activicy = freerunning
otherwise — ... or anything else to make
activity = singlestepping — Just one step of evolution
(activity = editing) & skip
seq
edit(keyboard, screen, control)
actiuity = Idle

(activity = freerunning) or (activity = singlestepping) & skip
var changing :
seq
generation{screen, control, sense, changing)
i
(activity = singlestepping) or (not changing)
actwity = idle
(activity = freerunning) and changing
skip
display.activity(screen, actwity)
seq cell = [o for rumber.of.cells]
controllcell] | terminate
cleanupdisplay(screen)

The alternative has to be asymmetric, becausc a sequence of calls 1o gereration might otherwise
go on indefinitely without ever allowing pending keyboard inpul to be accepted.

The singlestep activity, entered by iyping almost anything on the keyboard, causes an
evolution of precisely one generation. This makes it easier to follow the details of a history.
Notice that the code of the board is entirely unaffected by the detailed design of the single
stepping mechanism, or even the details of the editor.

Fach cell starts an evolutionary advance in response to an ashstate instruction, on its control
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channel. OfF course, it cannol complete the advance unless its neighbours are also on the move.

proc generation(chan screen, controll], sense(], var active) =
seq
seq cell = [o for rumber.cfcells]
controlfcell] | askstate
active = false
seq cell = (o for number.ofcells]
var changed, next.state :
seq
sense[cell] ? changed; next.state
t
changed
seq
display.stare(screen, cell mod arraywidth, cell + array.width, nextstate)
active = true
not changed
skip

One invocation of the process germeration scans the whole array once, inviting each cell to
proceed with a single evolution. The new states are gathered, and any changes are notified on
the display.

To settle on the details of the display, the process displaystate must be supplied. Assuming a
digital VTG2 type terminal, and a Life board some tens on a side, I have mapped cells onto
contiguous screen locations, with the first cell at the top left

def control = not ((not o) € s5), escape = contral A T' ¢

proc movecursor(chan screen, value x, Y) =
— move to column X of line Yy (of a VISZ screen)
screen lescape ;'Y s 4+ Yy M 4 X

proc displaystate(chan screen, value X, 4, state) =
seq
molecursor{scraen, X, Y)
If
state = alive
screen | ‘e
state = dead
screen | s’

A live cell shows as an asterisk, and a dead cell as a blank space.
To make the initial sereen consistent with the initial state of the board, which is emirely dead,

it suffices to clear the screen

proc initializedisplaythan screen) =
sereen | escape ; H ; escape 3 J': —— clear the screen (of & VUT52)

and to clean up ai the end of the program, the cursor is moved to the left of the line below
the image of the board

prot cleanupdisplag(chan screen) =
mouecursor{screen, o, arrayheight) :
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Assuming thal there is some spare room on the screen to the right of the image of the board,
the activity of the controller can be displayed there

proc display.activicy(chan screen, value activicy) =

seq
movecursar(screen, arrayusdth + 1 arragheight + 2)
if
activity = idle

writestring(screen, “Idle)
activity = editing
writestring(screen, “Edit™)
activity = singlestepping
writestring(screen, “Step™)
actwity = freerunning
writestring(screen, "Busy”)
actiity = terminated
writestring(screen, “Done™)

All that remains is to supply an editor. Here is a simple process that allows a cursor to be
moved around the board image, and allows the state of the cell under the cursor to be set

proc edit(chan kegboard, screen, controlll) =

Il
il

def leftkey ctrl A ‘H,  righthey =ctrl AL, upkey cerl A K,
downkey = ctrl AT,  uproothey= ‘x, planthey = ‘ww’

var x, y, editing, ch :

seq
X = arrayidth + 2
y = arrayheight + 2
editing = true
while editing
seq

mouecursor(screen, x, Y)
keyboard ? ch

it

(ch = lefthey) and (x > a)
X=X -1

(ch = rightkey) and (x < (arraywdth - 1))
X=X 41

(ch = upkey) and (y > o)
y=y-

{ch = downkey) and (y < (arrayhelght — 1))
Y=y

(ch = uprootkey) or (ch = plantkey)
var state :
seq

state = {dead A (ch = uprootkey)) v (alive A {ch = plantkey))
controllx + {arrayuwidth = )] | set.state; state
displaystare(screen, x, 4, sCate)
(ch = g) or (ch = 'Q)
editing = false
otherwise
skip
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Editing continues until a character ‘Q" is typed. The cursor conirol keys move the cursor
vertically and horizontally over the board, the space bar kills the occupant of a cell, and the
asterisk key plants a new occupant. For simplieity, any other character, or an attempt to pass
over the boundary of the board image is ignored wilhout complaint.

Life

A brief word seems to be in order about the game of Life itself. Life first became widely
known 1hrough Martin Gardner’s column ‘Mathematical Games’ in the Scientific American
magazine, in QOclober 1970 (prl20-123) and May 1971 (pPli2-117). The former article explains the
rules, and introduces some of the jargon of the subject: for example, the speed of light, which is
one cell width per generation, the greatest rate at which information can pass across the board;
and the glider, a small, fixed size, moving colony

*
* * ¥

The glider is one of the small, simple colonies whose evolution is fully known: it moves aeross
the board in the direction in which it appears to be peointing, at a quarter of the speed of light,
passing through a fixed sequence of four distinct forms.

The second article describes more complicated examples, drawn from the readers’ experience of
wasting both machine cycles and mathematical ingenuity. Here you will find the curiosities of
the subject: Garden of Eden colonies, which are ones that cannot possibly have come about as a
result of an evolutionary advance from a former state; the glider gun, a huge structure which
grows without limit, by firing an unending stream of gliders from one of its extremities; and a
glider-gobbler whieh, although stable in itself, can also swallow a stream of gliders such as that
given off by the gun, to no ill effect. There are viruses, which disrupt regular siructures, and
regular structures which can restore their symmetry after withstanding a virus attack.
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Huffman minimum redundancy coding

It has become usual to store data and transmit messages using fixed length codes such as ASCIL
The character set is represented by some number of codewords, each of the same length, which
in the case of ASCII is seven binary digits. The result is that it takes the same number of bils
to store, or the same bandwith to transmit, all messages with the same number of characters. Of
course, if you know in advance that your message is in, say, English, then you know that it is
much less likely to contain letter ‘2’s than letter ‘e’s. This means that if you use a shorter
codeword to represent ‘e’ than ‘2, you can expect to use less store, or bandwidth, for the
average message. |

In ASCII, the message ‘easily’ is encoded

€ a ] i 1 y
1198101 1188001 11100311 1181081 1101100 1111001

requiring forty-two bits, whereas hy using a code which included the following representations

1001
4]
10180
11881
11810
1011

d A D @
A

the same message may can be encoded

e a s i 1 y
® 1801 11018 1818 11001 181!

in only twenty-one bits. The codewords must be chosen in such a way that none is a prefix of
any of the others, so that there can be only one way of decoding a particular coded text.

In a classic paper, published in 1952, David Huffman described an algorithm for choosing a
code that would minimize the expected length of a message, given that the probability of each
character were known. Essentially, his method decides the lengths of codewords, giving the
longest to the least likely characters. It then remains only to create an arbitrary unambiguous
code with codewards of the right lengths.

The terminology of Huffman's paper is a little different from that in use today, as indicated
in the brackets. He uses he term ‘message’ to mean an individual character. First of all, the
ensemble [= character set] is sorted in decreasing order of probability:

[Tt is] necessary that the two least probable messages [= characters] have codes
[= codewords] of equal length .,, [and that] there be only two of the messages
with coded length 1(n) which are identical except for their last digitss The final
digits of these two codes will be one of the two binary digits, o and 1 It will
be necessary to assign these two message codes to the nth\nd {n—1)st messages
[= two least probable characters] since at this point it is not known whether or
not other codes of length ¥n) exist. Once this has been done, these two
messages are equivalent to a single composite message. Its code (as yet
undetermined) will be the common prefixes of order ¥n)-' of these iwo
messages. Its probability will be the sum of the probabilities of the two
messages from which it was created. The ensemble containing this composite
message in the place of its two component messages will be called the first
auxiliary message ensemble

This newly created ensemble contains one less message than the original. Its
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members should be rearranged if necessary so ihat the messages are again
ordered according to their probabilities. It may be considered exactly as the
original ensemble was. ...

This procedure is applied again and again until the number of messages in
the most recently formed auxiliary ensemble is reduced to two. One of each of
the binary digits is assigned to each of these Lwo composite messages. These
messages are then combined to form a single composite message with
probability unity, and the coding is complete. ..,

Having now decided proper lengths of code for each message, the problem of
specif ying the actual digits remains. Since the combining of messages into their
composites is similar to the successive confluences of trickles, rivulets, brooks,
and creeks into a final large river, the procedure thus far described might be
considered analogous to the placing of signs by a water-borne insect at each of
these junctions as he journeys downstream. .., the code we desire is that one

which the insect must remember in order to work his way back upstream.
A method for the construction of minimum-redundancy codes, David A Huf{man
in Proc LR.E, 40 (9), Seplember 1952, pp 1098-1101

Restated more prosaically, the final paragraph identifies the unambiguous set of codewords with
a (binary) tree. Each leaf of the tree corresponds to one of the characters. The depth of that
leaf, that is its distance from the root, is the length of that character’s codeword. The digits of
the codeword are the ‘address’ of the leaf, that is a sequenee of instructions for getting to the
leaf from the root, say o for ‘go to the left” and 1 for ‘go to the right”

Representing a coding tree

As usual, the task of representing a data structure in oOccam amounts to choosing an
enumeration for the component parts, so as to map the structure onto a linear array. The
structure in question this time is a binary tree similar to that in the sorting example, but this
tree may be severely imbalanced, and is of unpredictable depth. This means that the simple fixed
enumeration, with the children of node i being nodes (exi)+1 and (2xi)+2, would be unreasonably
wasteful of store, so is unsuitable. A better representation, in this case, uses an array children[]
o record the index of the offspring of a node, so that the children of node i are indexed
children[|] and children[1}+1
If the root of the tree is taken to be the node indexed by zero

def root = e
then, since the root is by definition not the child of any node,
childrer{node] = root

can be used to signify that node is a leaf of the tree In the case of the leaves, it will be
necessary to know to which character they correspond. This is most readily recorded in another
array of the same size as childrer[] in which the value of character[node] is the character
corresponding to the node, if it is a leaf.

The array children[] makes it easy to pass ‘upstream’ from the root of the tree to the leaves
In order to make the ‘downstream’ journey as efficient, it will be useful to record the inverse of
children], in an array parent[], such that

parentchildrenlnode]] = parentchildrennode]+] = node
for each non-leal node, and the inverse of character[] in an array representative[], which
records the index of the leaf corresponding to each character.
It remains to be decided how big these arrays must be. This, of course, depends on the size of

the character set being encoded. For the purposes of this example, the {unencoded) character set
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will be signed, eight-bit significant values,
—128 < th ¢ 128
This allows room for the normal seven-bit characters in the non-negative haif range, and room

for another, negative, character set which can be used for control information, indicating such
things as the end of a message.

def bits.ncharacter =8,
number.of characters = 1 € bitsincharacter,
riumber.of.codes = number.of characters,
character mask = not ((not o) € bitsincharacter) :

The characterimask censists of bitsincharacter number of ene bits, and is for mapping signed
characlers onto non-negative array indexes, so that, for example,

ch = character[ representative[ch A character.mask] ]

Now if there are numberofcodes leaves in a binary tree, then there will be one less than that
number of non-leaf nodes, so the total number of nodes is given by

def sizeof.tres = (2 X number.ofcodes) — 1:
and the declarations of the arrays for representing the tree are

var childrer{stzeof.tree), parent{sizeof.tree],
character[sizeof.tree], representative[numberof.characters] :

Constructing a coding tree

Huffman’s algorithm proceeds in two stapes. First the character set is sorted inte descending
order of probability of the character’s occurrence. Each of the characters will correspond to a
leal of the tree, so you can think of this stage of the process as constructing number.of.codes
number of leaves. These leaves will be sub-tress of the final coding tree. Since each is just a
leaf, they are disjoint, in the sense that they share no nodes with each other, and they are
maximal, in the sense that there is not yet any bigger tree of which any is a member.

The second stage of the algorithm repeatedly reduces the size of the collection of maximal
disjoint sub-trees, by combining the two lightest trees to make one new composite tree. By
lightest’ 1 mean of least weight where the weight of a leaf is the probability of the
corresponding character, and the weight of a larger tree is the sum of the weights of its leaves.
Notice that during this second stage, it is guaranteed that any pair of siblings - children of a
common parent - are already adjacent in descending order of weight.

This observation, which I take from to Robert Gallager

A prefix condilion code is a code with the property that no codeword is a
prefix of any other codeword. A binary tree has the sibling property if each
node (except the root) has a sibling, and if the nodes of the tree can be
arranged in order of non-increasing probability with each node being adjacent
to its sibling. A binary prefix condition code is a Huffman code iff the code

tree has the sibling property.
Variatlons on » Theme by Hulfman, Roberl G. Gallager
in TEEE Trapos. loformation Thbeory, IT-24(6) 1978, pp 668-674

is in fact a nomn-algorithmic characterization of Huffman codes. It also shows that in the

representation chosen for the coding tree, which allocates adjacent elements of the arrays to
siblings, it is possible o keep the arrays sorted in descending order of weight. Gallager’s proof
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that this property helds is, essentialiy, an informal proof of correctness of Huffman’s algorithm.
Keeping the arrays sorted by weight of node in this way simplifies the finding of the two
lightest sub-trees, and if the arrays are filled from the high-index, light, end towards the root,
then sub-trees once constructed need not be moved again.
I have divided the algorithm into three parts

proc construct.tree(value probability(]) =
var leftlimit, rightlimit, weight[size.of.tree] :

proc construct.leaues =
o build the leaves of the tree

proc construct.other.nodes =
. join pairs of subirees until only one tree remains

proc inuertrepresentation =
. set parent(] and representative(]

seq
lefr.limic sizecf.tree + 1
rightlimit == sizeof.tree + 1

— lefrlimit = {sizeof.tree + 1) and (right.imit — left.limit) = o
construct.leaues
— leftlimit = rumber.ofcodes and  (rightimit — leff.limit) = number of codes

construct.other nodes

— leftlimit = root and (rightlmit - left.limit)
Inuer t.representation

Throughout, the collection of maximal disjoint sub-trees consists of those trees rooted at nodes
for which

lefr.limit 4 node < rightlimit

The initalization of the limits makes this collection empty. The proocess construct.leaves
introduces a new sub-tree into the collection for each of the characters of the character set,
setting its weight according to the probabllity of the character, maintaining the arrangement of
the leaves in descending order, so that

leftlimit ¢} ¢ | ( slzeof.tree = weight(i] » weight{]]

The process constructothernodes combines the two lightest leaves, nearest to Tight.imit,
introducing a new node with the combined weight of these wwo, adjusting the limits of the
collection, and filling in the shape of the tree in childrer[] Finally, the process
Inuver t.representacion constructs the arrays parent[] and representativel).

Each of constructleaves and constructothernodes repeatedly creates a new node of some
given weight, and ipserts it into the right place between the limits te maintain the weight
ordering of the nodes. The determination of this right place, and the consequent adjustment of
the lighter nodes is done by
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proc insert.newnode( var new.node, value weight.of newnods,
var lefr.limit, value right.limit )=
var weightimit :
5eq
it
if node = [leftlimit for right.limit -~ leftlimit]
weight{node] ¢ weight.of new.node )
weight.limit = node
true
weight imit := right.limit
seq node = [left.limit for weightlimit — left.lirmit]
seq
character[node - 1] == character[nede]
children{node - 1] children{node]
weight[node — 1] = weight[node]
lefrdimit = leftlimit — 1
newnode = weightlimit -- 1
weightnew.node] == weight.of.rewnode

Recall that the collection of maximal disjoint sub-trees of the coding tree so far consiructed
consists of those rooted at nodes

left.limit < nade < right.imit

and that they are in descending order of weight. This means that the conditional sets the
weight.limit so tbat

leftlimit € node < welght.limit = weight[node] > weight.of new.node
weightlimit € node < rightlimit =  weight.ofnewnode » weight{node]

The sequential loop then displaces each of the heavier nodes one place to the left to make room
for the new.node. and the left.limlt of the collection is adjusted to compensate. This shifl does
not make it necessary to adjust any of the values in children[] because

node < weight.limit - node ¢ right.limit
and the tree is so constructed that

(children{node] = root) or (children[node] » rightimit)

so that none of the nodes being moved is yet a child.
Using this process, insert.new.node, the process that creates the leal nodes can be written

prot constructleaves =

def mintmumcharacter = - (number.ofcharacters « &) :
seq ch = [minimumcharacter for number.of.characters]
var newnode :
seq
Inser t.new.rode(new.node, probabiitylch A charactermask], leftdimit, rightlimit)
childdrer{newnode] := root
character[rew.node] := ch

This inserts a new leal into the collection, increasing the size of the collection by decreasing the
leftlimit. The process to combine the leaves into a tree
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proc construct.other.nodes =
while (rightimit — leftlimit) # 1

var newnode :

seq
rightlimit := rightmit - a
inser £ new.node(newnode, weight{rightlimit] + weight{right.dimit+,

lefedimie, mightlimic)

childrer{newnode] = right.limic :

first removes the two lightest sub-trees from the collection, by decreasing right.lirmt, then joins
them under a parent whose weight is the sum of their individual weights. Notice that the
assignment to children[new.node] maintains the property that there are no children to the left of
the rightlimit. The process is complete when only one tree remains.

Inveriing the representation of the trez is a simple task, which involves assigning to
represencative] the indexes of the jeaf nodes, and to parent(] the indexes of the nodes that are
not leaves, thus

proc invert reprasentation =
seq node = [root for sizeof.tree]
if

children[node] = root
representativecharacter[node] A character.mask] = node

children{node] # root
seq child = [children[node] for z]

parent{child] := node

Encoding and decoding using a coding tree
The encoding of any given character ch is \he sequence of “go left’ and ‘go right’ instructions
that Huffman’s insect must follow to pass upstream from the root node to the representative
node of that character. It is easy enough to construct this code backwards, since floating
downstream inveolved passing from node to parent[node] in succession from the representative
node until the root is reached. The process
seq
lengcth = o
node = representativelch A charactermash]
while node # raot
seq
ercadingllength] := nade — children[parentinode]]
length = length + 1
node == parent[node]

establishes the condition that

Vi oo <i<length = hode(i) = (childrer{node(i+)] + encoding(il)

where nade(e)
node(length)

representativelch A charactermask]
root

It

so that the enceding of ch can be transmitted in the right order by

seq i = [1 for length]
output | encodingllength - il

Huffman minimum redundancy coding €9



It remains only to decide how much room needs Lo be allocated to store the encoding[] whilst
it is being constructed. Assume thal you are decoding a Huffman encoded character. Before you
receive the first bit of the encoding, there are number.of.codes possible codes that you might be
about to receive. Fach hit that you receive divides the set of possible characters into two
non-empty sub-sets, those that are still possihle, those that are now precluded. This means that
at most number.ofcodes—1 bits will suffice. In fact, in the worst case, this limit is achieved: if
each character is twice as prohable as the next most prohahle, then the Huffman codes are, in
decreasing order of prohahility

g, 1¢ 110, 1110 11116, v

with the two least probable characters both having encodings numberof.codes—1 bits long. With
this knowledge, the encoding process is written

proc encodecharacter{chan output, value ch) =
— Transmit the encoding of ch along output
def sizeofencoding = rumber.of.codes ~ 1:
var encoding[size.of.encoding], length, node :

seq
length :=
node = representative[ch A character.mask]
while node # root
seq

encoding(length] = node — children[parent[node]}
length := length + 1
node := parent[node]
seq 1 = [1 for length]
output | encedingllength — il

Decoding a stream of bits to determine the character consists of following the ‘go left’ and
‘go right’ instructions as they arrive, passing ‘upstream’ from the root node until a leaf is
reached. That leafl indicates the decoded character

proc decodecharacter(chan input, var ch) =
var node :
seq
rode = root
while childrer[node] # root
var bit :
seq
input ? bit
node = children[node] + bit
ch = character{node]

I will assume that the probabilities of tbe characters are fixed in advance, say by considering
an average over many messages of the type o be sent,

def probability = tablel ... ]: — indexed by [0 for number.of characters]

In order to keep all the arithmetic in integers, the probabilities should be scaled and rounded so
that the total of the ‘probabilities®

2. probabilityfch]
ch
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is a large integer. If it is possible to read the message through before sending it, then yeu can
count actual character frequencies, and produce an optimal Huffman code for the message, but
of course, you will have to transmit a description of the code with your messagel

If one of the character codes is laid aside to indicate the end of the transmitted message, then

def endof.message = —1:

proc copyencoding(chan source, end.of.source, sink) =
-— Read characters from source, sending their encedings along
— sink, until a signal 1s received along end.ofsource.
var morecharacters.expected :
seq
construct.tree(probability)
morecharactersexpected == true
while morecharactersexpected
var ch :
alt
source ? ch
ercodecharacter(sirk, ch)
end.of.source ? any
morecharactersexpected := false
encode.character(sink, end.ofmessage)

will translate a stream of characters into a stream of bits representing their Huffman encodings,
and mark the end of the stream by sending the encoding of endofmessage. The corresponding
decoding process would be

prot copy.decoding{chan source, sirk) =
— Read a bit stream from source, decoding i1t into characters
— and send these along sink until endof.message is decoded
var morecharactersexpected :
seq
corstruct.tree(probability)
morecharactersexpected = true
while morecharactersexpected
var ch :
seq
decodecharacter(source, ch)
i
ch # end.of.message
sink | ch
th = end.of.message
morecharactersexpected = false

These processes can be used at the opposite ends of a serial communications medium

proc copy.ouerserialmedium{chan source, end.of.scurce, sink) =
— Copy characters from source to sink until end.ofsource
chan serlalmedium :
par
copy.encoding(source, end.of.source, serialmedium)
copy.decoding(serialmedium, sink)

or a blocked medium, such as a magnetic tape. Here is a process for encoding a message and
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packing it into blocks, using a component frem the ‘Programming structures’ section,

proc encodeintoblocks(chan source, end.ofsource, blocksink) =
chan bit.stream, end.ofbitstream :
par
seq
copy.encoding(source, endof.source, bitstream)
endof bitstream | any
pack bits.Intoblocks(bit stream, endofbitstream, blocksink)

Decoding the characters from the stream of blocks is a slightly trickier task, since the end of
the message is determined by the decoded data. The most elegant solution, as seems common In
parallel programs, involves a process that throws away unwanted information

proc discard(chan source, endof.scurce) =
var moregxpected :
seq
moreexpected = true
while moreexpected
alt
source ? any
skip
end.of.source ? any
moreexpected = false

This inputs successively frem source, ignoring the values that it receives, until a signal is sent 1o
it en endofsource. With this, the process for decoding the bits in a stream of blocks ecan be
written

proc decodefromblocks(chan blocksource, sink) =
than end.of.blocksource, hitstream, endofbit.stream :

par
seq
unpack bits.fromblocks(blocksource, end.of.block.source, bit.stream)
end.of bitstream | arny — ‘feed~forward’
seq
copy.decoding(bit.stream, sirk)
par
discard(bit.stream, end.of bitstream)
end.of blocksource 1 any :  — 'feed-back’

When copy.decoding decodes an end.ofmessage it terminates, causing a signal to be offered for
output on endofblockstream, which is a feed-back path te the block unpacking process. At the
same time, discard is absorbing any bits that were left in the last block of the message. When
all of the bits of the last block have gone, unpackbits.fromblocks accepts the end.of.blocksource
sighal, and terminates, causing an endofbitstream signal te be sent lo terminate the discard
process.

Adapting the code to the message

Se far, I have accepted Huffman’s assumption that the code is predetermined and remains fixed
throughout the transmissicn of a given message. This is reasonable in case the probability
distribution of the characters in the message is known in advance, or if the message can be read
through in advance. Gallager suggests an alternative encoding that tends in the long run towards
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the fixed Huffman encoding, but which starts with no knowledge of the probability distribution
of the characters, and adapts the code as the message is being sent.

Each character is encoded with a Huffman code that would be optimal for a message
consisting of ail those characters that have gone before it. This encoding technique has the
startling property that, since the decoder has already decoded the preceding characters, it can
deduce from the received message what code should be used o decode each character. There is
no longer a problem in communicating the code as well as the message!

As | have presented it, it might seem that Gallager’s adaptive Huffman coder requires that a
new coding tree be constructed for each character of the transmitted and received message.
Fortunately, this s not the case: the accumulated character frequencies change little, so the shape
of the tree tends lo seltle down; successive trees are sufficiently similar that it is fairly easy to
construct each from its predecessor.

The idea is to write a process increment.frequency(ch) which medifies the coding tree so as to
be consistent with a frequency distribution with one more occurrence of the character ch than
previously. The encoding process becomes

proc copyencoding(chan source, end.of source, snk) =
— Read characters fram Ssource. sending their encedings along
— sink, until a3 signal is received along endof.source.
var morecharacters.expected :
seq
construct.tree
morecharactersexpected = true
while morecharacters.expected
var ch ;
alt
source ? ch
seq
encodecharacter(sink, ch)
increment.frequencylch}

end.ofsource ? any
morecharactersexpected = false

encodecharacter(sink, end.cf.message)
and the corresponding decoding process would be

proc copy.decoding(chan source, sink) =
— Read a bit stream from source, decading 1t Into characters
— and send these aleng SNk until endofmessage 1s decoded
var morecharactersexpected :
seq
construct.tree
morecharactersexpected = true
while morecharacters.expected
var ch :
seq
decodecharacter(source, ch)
if
ch # endof.message
seq
sink | ch
increment . frequency(ch)
ch = end.of.message
morecharacters.expected = false
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To keep track of the accumulated frequencies, the weight{] must become a permanent part of
the representation of the tree

var welghtfsizeof.tree] :

In order to increment the recorded frequency of a character, it is necessary to increment the
weight of its representative leaf

var node :

seq
node = representativelch A charactermask]
weight[node] = weight[node] + 1

There are two ways in which this may have damaged the structure of the tree. First of all,
unless the tree has only the one node, the weight of the parent of node is no longer the sum of
the weights of its children: it will be necessary lo increment the weights of the parent of the
node, and all of its ancestors up to the root

var node :
seq
node := representative[ch A character.mask)
while node # root
seq
weight[node] = weight{node] + 1
node = parent{node)
weight[root] = weight{root] + 1

Secondly, each time the weight of a node, be that the original leal or one of its ancestors, is
increased there is a danger that the ordering of the weights may be upset. If this is the case
then it is time to reorganize the tree, and change the encoding.

Assuming that the tree is initially properly ordered, then the ordering will first fail when

weight{node—1] =  weight[node]

and the weight of node is about to be incremented. Now, the trees rooted at nodes of equal
weight must be disjoint trees, that is either the nodes are siblings, or they have ancestors which
are siblings. This follows from the fact that the weight of a node is always less than that of its
ancestors, and greater than that of its descendants, so another node with the same weight is
neither an ancestor nor a descendant.

To preserve the ordering on the nodes, you could try exchanging the trees rooted at node and
rnode—1, and then try to increment the weight of the light node in its new position. Since there
might be many nodes with the same weight, however, you would have to do this repeatedly,
shuffling the imminently overweight node leftwards in the tree.

whtle weight[node —1] = weight[node]
seq
swap.trees(ncde, node — 1)
node := node —

An alternative solution is to look for the leftmost node of the given weight, and exchange with
that node, directly. The same argument about the weight of a node being less than that of its

ancestors shows that there is always a sequence of nodes for which

weight[(node - 1) -] > weightlnode - 1] = v = weightnode]
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This leftmost node, indexed node — i, is identified, and the exchange performed, by

if 1 =[1 for (node — root) — 1]
weight[(node — 1) — 4 > weight[node]
5eq
swap.trees(node, node —
node = node — i

Having moved the node, it is possible to increment its weight, and that of each of its ancestors.

var node :
seq
node = representativelch A character.mask)
while node £ root
I
weight[node —1] » weight{node]
seq
weightinode] == weight[node] + 1
node = parent[node]
weight[rode—1] = weight{node]
if i = for {(node — root) - 1]
weight[(node — i} — 1] » weight{node)

seq
swap.trees(node, node — 1)
node == node — i

weight[root] := weight[root] + 1
The process for exchanging a pair of disjoint sub-trees is simply coded

proc swap.trees(ualue i, ) =

— Exchange disjoint sub-trees rooted at i and |

proc swaplords(var p, q) =
— Exchange values stored in p and g
var t
seq
t
P
q

i

p
q
t

proc adjust.offspringlualue i) =
— Restore downstream pointers to node !
if
childrer\] = root

representativelcharacter[\] A charactermask] := 1
childrer[i] # root

seq child = [children[i] for 2]
parent[child] = i

seq
swapwords(children[1], children[jT)
swap.swords(character[t], character[jD
ad just.offspring(id
ad just.offspring())

Huffman minimum redundancy coding 75



First, the ‘upstream’ pointers, childrer[] and character[], to the nodes are exchanged, then the
process adjust.offspring restores the ‘downstream’ pointers that are no longer correct. There is,
of course, no need to exchange the weights of the nodes, since they are known to be equal.

The only remaining problem is to decide the shape of the initial coding tree: what encoding
should be used to send the first character? The simplest solution would be to construct the
initial tree on the assumption that all characters are equally likely to turn up, that is

children[node] = root = welght[node] = 1

This means that, to begin with, the code is a fixed length one, each character being encoded by
bits.ncharacter number of bits.

An alternative technique is to keep in the coding tree only representations of characters that
have actualiy been sent and received. Whenever a character is to be sent for the first time in
the message, the code of a special escape character is sent, followed by some standard
representation of the new character, say its ASCII code. A new leaf must then be added to the
tree to represent the new character.

In order to accommodate the e¢scape character, the space allocated for the tree must be
enlarged

def number.of.codes = number.ofcharacters + 1:

and, since the tree grows, some way must be found of recording that size. As each escape is the
representation of a character that has never occurred at all (you may not yet know which
character, but you do know this), it should be given a very low weight. This means that it is
reasonable to represent it by the rightmost (least likely) leaf of the tree. Doing this means that
a single variable

var escape :
serves the purpose of recording which node represents the escape, and which is the rightmost
node of the tree
Since the value of escape changes, it will not do as an initial value for representative[]
Define, instead,

def not.anode = size.of.tree :

then creating the initial tree is just a matter of making the escape leaf, and initializing the array
of representatives

proc constriuct.tree

seq
escape == root
weight[escape] =1 — mimmum legal weight
childrer{escape] = root — 1t 15 3 leaf

seq ch = [0 for number.of.characters]
representative[ch] = not.anode

Encoding using the new tree is substantially unchanged, excepting in that some provision must
he made for sending escaped characters. First of all, the encoding is potentially larger by the
bitsincharacter number of bits in the unencoded representation, so

def sizeofencoding = bitsincharacter + (number.ofcodes — 1) :

The bits of the unencoded character representation can then be stored before the encoding of
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gscape, to be transmitted after it

proc encedecharacter(than output, value ch) =
— Transmit the encoding of ch zlong output
def size.ofercading = bitsincharacter + (number.ofcodes — 9 ¢
var enccdinglsizeof.encoding], length, node :
seq
if
representativelch A charactermmask] # not.anode
seq
length = o
node = representativelch A character.mask)
representative(ch A charactermask] = not.anode
seq
seq | = [e for bitsincharacter]
ercodingli] == (ch » ) A 1 — {'th bit of unenceded ch
fength == htsincharacter
node <= escape
while node # root
58q
encoding{length] := node — childrenparent{node]]
length = length + 1
node = parent[noade]
seq | = [1 for length)
output | encodingllength - 1]

The very firsi character to be sent will be escaped, and since the representative node for escape
is initially root the encoding of the escape will be the null sequence of bits. This means that
the first transmitted bit will be the first bit of the unencoded character representation.

Decoding is also as before, excepting that on receipt of the encoding of escape, the bits of the
unencoded escaped character must be read and the character reassembled

proc decodecharacter{chan input, var ch) =
— Receive an encoding slong INPUE and store the character in ch
var node :
seq
node = root
while children[node] # root
var bit :
seq
Input 2 bit
node = children{node] + bit
If
node ¢ escape
ch = character{node]
node = escape
var bit :
seq
input ? bit
ch == - bit
seq | = [2 for bitsincharacter — 1]
seq
Input 2 bit
ch = (ch € v v bit
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The first bit of an escaped sequence is the sign bit of the tharacter code, so the assignment

ch :== - bit
extends the sign bit to the left, and the loop shifts the subsequent bits in from the right.

In order to increment the frequency of a character not yet in the tree, it is necessary to be
able to construct a new leaf te be the representative of the new character. This process divides
the escape leaf into two leaves and their parent, thus

proc createleaf(uvar neusleaf, value ch) =

—— Extend the tree by fision of the escape leaf into tuo new leaves

var newescape :

seq
rew.leaf = escape + 1
new.escape == gscape + 2
childrer[escape] = new.leaf — escape is the new parent
weight[neurleaf] =p
childrer{neweaf] = root
parent[neuLleaf] = pscape
character[rewleaf] = ch

representativefth A

weight] newesape]

charactermask] := new.leaf

= 1

children{neusescape] = root
parent[rew.escape] := escape
escape = rew.escape

The new leaf has no weight when created, so does not affect the weights of its ancestors, Its
weight must be incremented just as for any other leaf

proc Increment.frequency(value ch) =
. var node :
seq
i
representative{ch A charactermask] # not.anode
nade = representatlue[ch A character.mask]
representativelch A character.mask] = not.anode
createleaf(node, ch)
while node # root
if
welght[node - 1] » welght{node]
seq
weight{node] := welght[node] + 1
node = parent[node]
welght[node —1] = welght[node]
Ifi=[for (node - root) — 1]
weight[(node — 1) - 1] > weight[node]

seq
swap.trees(node, node — 1)
node := node — 1

weight[root] = weight{root] + 1
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Notice that a brand new leaf having no weight, the data invariant - that no node has the same
weight as its parent - is breached by the escape node and its parent. In order to show that the
tree exchanging is correct, the statement of this invariant must be strengthened: no node,
excepting the escape node has the same weight as its parent. This is sufficient, because you will
never require to exchange with the degenerate tree rooted at escape.

That completes the adaptive coder. Notice that, since the processes copyencoding and
copydecoding have the same interfaces as the corresponding processes in the fixed-code coder,
they may be substituted into the example programs. There is no need to change the processes
that convey the bit stream from encoder to decoder.
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Loose ends

If you have tead what went before, then you may think that 1 have been trying to tell you
how to write concurrent programs. Be sure thal others will always have different ways. There
are some decisions which it is my weakness to need to justify before closing.

Sequential or parallel?

Excepting for the parallel matrix multiplier, these programs were all written for
execution on a single processor computer, This has affected the design, for example, in
places where either seq or par would have done, 1 have tended to wrile the former, in
the knowledge that it is ‘cheaper’ on such a machine.

Sequentially composed processes can rely on the state left behind by their predecessors,
and to wrile par weould be to imply that you were not relying on such residual state.
Concurrently composed processes can rely on being able to communicate with their
contemporaries, and to write seq would be to imply that you were not using such
commumeations. If you required neither sequencing nor guaranteed contemporancousness,
then the choice between seq and par could only be made on grounds of efficiency (or
whim).

By the skin of my conscience, 1 shall avoid making this into an argument for an
ambiguous constructor, which might be translated either into seq or into par as the
implementor would see fit - he being best able to judge relative efficiencies (and just as
capable of whimsey).

Folding

Experienced occam programmers who have used the tools provided by mmmos to
support occam programming, tools such as the occam programming system (ops), may
find my programs unexpectedly rich in proc declarations. The ops editor has a text
structuring capability called ‘Tolding” which, by rolling up a whole screenful of program
onto a single line of the terminal screen, allows you to consider the structure of a very
large piece of code a little at a time. (“What you see is what you are thinking about.”)

The tendency is, when writing programs with a folding editor, to write proc bodies
in-line at the point of call, and to fold the text to keep it in manageable chunks. Given
the support tools, this is as good a way, if not a better one, of modularizing the code.
My excuse for using proc declarations here is that the lechnology of hierarchical
folding, although described in terms of a paper metaphor, is altogether less successful on
paper, and makes binding the book rather difficult.

Typing

Finally, there is the matter of data typing. Few self-respecting authors of tutorial
papers on programming style would now choose an untyped language like bcpl as their
vehicle. Looking back over the descriptions of programs here, there seems to be a great
deal of argument given over to the basic data types, suck as arrays of bits, and trees.
Much, although not all, of this could be factored out by adopting some variable and
channel typing scheme from a sequential language, such as pascal My excuse for not
doing so is that the designers of occam, with laudable caution, have yet to make this
leap themselves, and 1 am loath to go before them. This matter is addressed in a
language christened, with originality, occam 2o, to which I trust you will be able in
due course to adapt any good ideas which you may have found here.

A number of people have contributed to this monograph beside myself, although they may not
all have been aware of doing so. 1 thank particularly: Tony Hoare for showing me the light,
Paul Fertig, Michae! Goldsmith, and Bernard Sufrin for drawing my attention to those of its
failings which 1 was prepared to admit.
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Codes of the programs

Input and outpui routines
Terminal interrupt management
Parallel matrix multiplier
Parallel sorter

Conway’s game of life

Simple Huffman coder
Adaptive Huffman coder
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Input and outputl routines

proc writestring(chan output, value string(l) =
— MWrite the characters of the string(] to the output
seq character.number = [» for string{byte o])
autput | stringlbyte character.number]

proc writesigned(chan output, value n, fieldundth) =
— HWrite & signed decimal representstion of N to the ocutpur,
~— right yustified to occupy fieldiwidth character spaces

var tens, width : — tens will be a signed power of ten
seq
if
no
seqq
Tens = -
width == 1 — count @ mimmum of one digit
nge
seq
Tens =
width = & — count a sign and 8 minimum of ore digit
while (n + tens) { (- ©) — eet tens ea that o ( (- (n = tens)) <
seq — or. if N =0 then tens =1
tens = ®© X tens

width = width + 1

while width ¢ fieldwidth — pad with spaces to feldwidth characters
seq
autput | ‘ss’

width == width +1

If — output a sign for negative N
npo
skip
n<e
output | -

while ters #+ o — output the digits of N, most sigmificant first
seq
autput 10" — ((n + tens) mod 1)
tens == tens + w0
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proc readsigred(chan Input, var n, ck) =
— Read an (optionally signed) decimal numeral from the input
— returning the carresponding value in N, and true or False n
— 0k according as the conversion worked or not

def min = not ((not 8) » 1), max = (ot o) » 1:
def otherwise = true :

var ch, sign :
seq

input ? ch
while ch = ‘ns' — skip leading spaces
input ¢ ch

if
(ch = +) or (sign = ") ~— read a possikle sign
seq
slign := ch
input ? ch
(ch # ) and (sign # -
sign ==+

while ch = s — skip any spaces after the sign
input ? ch

ni=ag
ok = ('0’ { ch) and (ch § '9) — check for the presence of digits

while (0" ¢ ch) and (ch { 9) — and read a sequence of them
seq
13
(sign = ¥) and (n € ((max - (ch - '07) + ©))
n:=(wxn)+ (ch -0}
(sign = =) and {(((min + (ch — '0)) + ©) { )
ns=(p x n) - {ch - 07
otherwise
OR = false — number out of representable range
input ? ch
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proc readline(chan keyboard, screen, var s[]) =

— Construct a string in S[] from the printable characters
— read from Reyboard and echoed to screen. The string

— finishes at a carriage return.

not ((not e) € s),

I

def control

otherwise = true,

backspace = control A "H',

betl = control A ‘G,
cancel = contral A ‘U,
delete = not ((not o) € ),

maxlength = not ((not o) € 8) :

seq

s(byte ] = o — byte zero contains the length of the string
while s[byte s[byte a]] # *C’

var ch :

Reyboard ? ch

if

(8" € ch) and (ch ¢ delete} and (s[byte o] < (maxlength - )
seq| — ‘printable’ characters are
screen | ch — echoed

slbyte o] == s(bute o] + 1
s[byte s[byte e]] := ch
ch = =C
seq
s{byte o] = g[byte a] + 1
s[byte s{byte o]] := ch
(ch = backspace) and (s[byte ¢] > o)
seq
screen | backspace ; %5 ; bachspace
s[byte o] = s[byte o] - 1
ch = cancel
whtle sfhyte o] > o
seq
screen | backspace ; 8 ; backspace
s[byte o] := s[byte a] - 1
otherwise
screen 1 bell
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and added to the string
carriage return
is added to the string

and terminates the loop

backspace

overwrites the last character echoed

and removes 1t from the string

cancel
back-spaces over the whole line

anything else s an error
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Terminal interrupt management

def typeahead = ..., contrel = not ((not o) € 5), release = -1

proc keybocardhandler{chan request, sink, error) =
— Characters typed at the keyboard can be read from sirk.
— A signal is required on request before esch item is read.
— If mare than typeahead are typed-ahead. there is an error signal.
chan keystrokesin at ... :
var reader, writer, count :

seq
reader =0 —- index of next item tpo be read from buffer
writer = — index of next free location n buffer
count = type.ahead —— number of spare locations n buffer
var datum[typeahead] :
while true
alt
count = o0 & hegstrohes.ln ? any — if something typed but no room
errar | any —_ then signal an error
count >e &  keystrokesin ? datumfwriter] — f scmething typed when room
5eq
writer := (writer + 1) mod typeahead — then store 1t in the buffer
count = count - 1
count ¢ typeahead & request 7 any — f something requested
seq
sirk | datumfreader] —  then read from the buffer
reader = (reader + 1) moed typeahead
count = count + H

proc echohardler(chan request, reply, echo, inward) =
def enter = control A ‘M’ :

while true
var ch :
seq
request | any
reply ? ch
inward | ch — Transmit character to user
if
(ws' { ch) and (ch § 9
echo 1 ch — Send visible input back to terminal screen
ch = enter
eche | release — Release screen at end of line of input
true
skip
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proc output.multiplexer(chan from(], value widch, chan outgoing) =
while true

var ch :
alt selectedprocess = [o for width)
from{selectedprocess] ? ch — take a message from any [rom channel
while ch # release — and copy it to completion
seq
ourgoing ! ch

from{selectedprocess] ¢ ch

pror screenhandler(chan outgomg, error) =
def bellcharacter = control A ‘G :
chan scregnout at ... :
while true
var ch :
pri alt
error 7 any — =eignal errors by ringing the bell
screenout | bellcharacter
outgoing ? ch — and send on outgoing characters
screenout ) ch :

proc user{chan terminalkeyboard, terminalscreen) =

def fromechohandler = e. fromuser = 1, number.of.outputs = a :
chan outgoing. fromkeyhoard, toscreerlrumber.of cutputs] :

pri par

chan reguest, reply, error : —— High prionity process

par
Reyboardhandler (request, reply, error)
echohandler(request, reply, to.screenfromechohandler], fromkeyboard)
screenthandler(outgoing, error)

par — Low prionity process
output.multiplexer{toscreen, number.of.outputs, cutgeing)
user{fromkeyboard, toscreerfromuser])
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Paralle! matrix multiplier

proc producexj(ualue J, chan south) = — north row: spurce of X values
while true
south 1 any

proc corsumeyi(value {, chan east) = —— uest column: sink for | values
while true
east ? any

proc offsec(vale ki, chan west) = —- east column: source of R offsets
while true
west | kI

proc multiplier{ualue ai), chan rorth, south, west, east) =
var xj, ai).Cimesx], ! : — middle: responsible for & values
seq
north ? xj
while true
s&q
par
south 1 X]
al).timesxj = aij X X
east ? yl
par
west 1 yi + aijtimesx
rorth ? xj

proc sink(chan north) = — soguth row: sink far unused outputs
while true
rorth ? any

def n=3:
var aln x n], k[nJ:
seq

-— initialise a and k

chan northsouth{n x (n + 1], eastiwest{n x (n + 1] :
par
par | = [e for n]
producex(j, northscuth{]]

par i = [0 for n]
of fset(R[1], eastiwest{(n x n) + (]
par i = [o for n]
par j = [e for n]
multiplier( al(n x 1) + j]
northsouth{(n x i) + jl mnorthsouth{(n x G + 9) + j,
eastwest [i + (nx J)], eastwest [i+(x(j+ M)
par J = [o for n]
sink{north.south[(n x n) + 1)

par \ = {e for n}
consume.Ji(i, eastiwest{i}
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Parallel sorter

proc forkdistrbute(chan up, leftup, right.up) =
— share cut a sequence of numbers as two seguences. to the left, to the right

def leftward = o, rightward = not leftward :
var more, inclination :

seq
Inclination = leftward
Up ? more
while more
var number :
seq
up ? number
if
inclinaticn = leftward
leftip | true number
tnclination = rightward
rightup | true; number
up ? more
inclination = not inclination
par

leftup | false
right.up 1 false

proc forhgather(chan down, left.down, rightdowr) =
— merge tuWo ascending sequerces. from left and right. into one sscending seguence

var leftmore, leftminimum, right.more, rightminimum :

seq
par
left.down 7 left.mare; left.minimum
right.down ? rightmore; right.minimum
while left.more or right.more
i
‘eft.more and ((not right.more) or (left.minimum ¢ right.minimum))
seq
down | true; leftminimum
left.down ? left.more; left.minimum
right.more and {{not leftmore) or (left.minimum » rightmminimum))
seq
down | true right.minimum
right.down ? right.more right.minimum

down | false, any

proc fork(chan up, down, leftdown, leftup, right.down, rightup) =
— actians for a medial node in the sorting tree
seq
forhdistributelup, leftup, rightup)
forkgather(down, left.down, right.down)
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def displaynumber = 4, displayempty = &, display.stop = 3 :

proc leaf{chan up, down, probe) =
— actions for a terminal node in the sorting tree

var number :

seq
up ? any; rumber — expect a segquence of one rumber
probe | displag.number; number — pass the number to the monitoring code
up ? any
down | trug number —— return 1t as an ascending sequence
probe | displayempty ~— indicating its departure

down | false; any
prote | displaystop

proc monitor{chan upa, downa, upb, downb, probe) =
— in—channel monitoring code. in the form of a buffer
seq
var more :
5eq — first watch an upward-bound seguence of values
upa ¢ more
while more
var number :
seq
up.a ? number
probe | display.number; number
upb | more number
prabe | displayempty
up.a ? more
upb § more
var mare, ndmber :
5eq -— then watch a downward-hound segquence
downa ? more; number
while more
seq
prabe | display.number; number
downb | meore; number
probe | display.empty
downa ? more number
downb ] more; rumber
probe | displagstop :
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def depthoftree = 4 :

It

def rumber of leaues 1 € depthoftree ,
rumber.of forks number.of leaves - 1,
number.of. processes = numberof.forks + number of leaves ,
number of charmels number.of processes |
number.ofprobes = number.of.channels + number.of Jeaues :

prot makecartesian{value index, var x, y) =
— turn a probe index into Cartesian co-ordinates in a terminal-independent space

If
if ine = [1 for depthof.tree + 1]
index ¢ ((1 € line) — 1) — then probe is from g charnel at this depth
var ¢ :
seq
c=1index — (€ (ine-= 1Y) -1
x = ((2 x ¢) + 1) x (number.ofleaves » (line — 1)
Y= lire
index » number.of channels -— then probe 1s from a leaf
seq
x = (& x (index — number.of.chanrels}) + 3
y = depth.of.tree + 2

def fieldwidch = 3 :

proc Independent(chan source, sink) =
var instructlon :
seq
source ? instruction
while instruction # display.stop

seq — turn every probe signal into ...
sink | true — ... 3@ true value
var index, x, y :
seq

source ¢ index
makecartesian(index, x, )

stk 1 y — ... a co-ordinate-pair
if — and fieldwidth number of characters:
Instruction = display.number
var number :
seq
source 7 number
writesigned(sink, number, field.width) — either a numersl

instruction = display.empty
seq | = [o for fieldwidth]
SiNR | ‘Mg — or that many blanks
source ? instruction
sink | false
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def virtuslheight = depthof.tree + 1 virtualwidth = (& x number.ofleaves) - 1:

proc dependent(chan source, terminal) =
— terminal dependent code for driving a VT52

def screenheight = 2, streenwidth = go :

def contral = not ((net o) € 5), escape = control A T':

proc clearscreen(chan terminal) =
— clear screen sequence for a VT52
terminal | escape ; 'H’ ; escape ; 'Y’ :

proc gotoxy(chan terminal, value x, ) =
— leftharded co-ordinates, origin 0, 0 at top left
terminal | escape ; Y’ Ms" 4+ Y S+ x

var more :
seq
clear-screen( terminal)
source ¢ more
while more
seq
var x y
seq
source 7 x Y

gotoxy(terminal, (x — 1) x (screenwidth + virtualwidth),

(uirtualheight — y) x (screenheight + virtualheight))

seq | = [1 for feldwidth]
var ch :

seq
source ? ch

terminal | ch
source ¢ more
gotaxy(terminal, a, screenheight — 1V
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proc display(chan source, sink) =
chan internal :
par
independent{source, internal)
dependent{internal, sirk)

proc multiplex(chan probel], aliprobes) =

— gather all probe signals onto a single channel

var more, morefrominumber.cf probes]
seq
more = number.of.probes
seq | = [e for number.of.probes]
morefromi] == true
while more > o —
var instructicn :
alt i = [o for number.of.probes]
morefrom[i] & probe(l] ? instruction  —
if
Instruction = display.number —
var rumber :
seq
probe(i] ¢ number
allprobes | instructior; §; number
instruction = display.empty —
allprobes | instruction; i
instruction = displaystop —
seq
morefrom(i] := false —
more = more — 1 —
allprobes | display.stop
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while not all probes are dead

take a probe instruction

if this is a number

— copy the number. and tag
— 1t Wth the proke number
if this 15 a blank instruction
— tag 1t with the probe number
if the probe 15 dead

then expect no mare signals from it
and decrease the count of warking ones
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proc driver(chan up, down) =
def mask = not ((not @) € g) :
proc shift(var state) =

seq | = [1 for g]
state == ((state € 1) A mask} v (({state » 4) @& (state ®» g A 0

seq
var event, number : — first fill the tree
seq
time ? euvent
number := (event A mask) v 1 — itialize the randam number
seq i = [p for number.ofleaves]
seq
guent = euent + second
shif t{number) — pick a new number
up | true; number ~— send 1t into the tree
time ? after euent —— and wait for @ second before the next
up | false
var event : — then empty the tree
seq
time ? event
seq | = [o for number.ofleaves]
seq
event = euent + second
down ? any; any — take a number from the tree
time ? after event —- once a second

down ? any. any

def root = o,
first.fork = root ,
firstleaf = First.fork + rumber.of.forhs :
chan up.anumber.of.channels), dowralramber.of channels],
upblnumber.of.channels], downb{number.of channels],
probel number.of probes], allprobes

par
driver(upalroot], downblroot])

par | = [firstfork for number.cfforks]
fork(upb[1], downali], downb{(exi}1], upa(exi)+], downb{(axi)+a], up.a(exi)+a])

par | = [firstleaf for number.of.leaues]
leaf(upb[1], downall], probefnumber.ofchanrels + (I - firstleaf}]}

par | = [root for number.of.channels]
monitor(up.a[i], downdi], upb{i], downb[1], probefiD

multiplex(probe, allprobes)

display(allprobes, terminalscreen)
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Conway’s game of ‘Life’

def dead = o, alive = not dead : — possible ststes of each cell

deF radius =1, — radus of the ‘sphere of influence’
diameter = (g x radius) + 1,
neighbours = (diameter x diameter) — 1: ~— consequent number of neighbours of

proc calculatenextstate(chan link[], value ir[], state, var nextstate) =

var count : — number of lLiving neighbours
seq
var stateofneighbaur{neighbours] :
seq
par | = [e for neighbours] — receive present state from each neighbour
ink[in[i]] ? state.of.neighbourfi]
count == @
seq | = [e for neighbours]
If
state.ofreighbourfi] = alive
tount = count + 1 — and count the rumber alive this generation
state.ofneighbour[1] = dead
skip
if
count € @ — if too few
nextstate = dead — this cell dies from isclation
count = @ — f exactly two
nextstate := state —_ this cell is stable
count = 2 — 1f exactly three
nextstate = alive —_— this cell 1s gives birth f dead
count > 3 — 1f too many
nextstate = dead : — this cell dies from ovarcrouding

proc broadcast present.state(chan hrk[], valde out[], state) =
— satisfy each neighbour's requirement to know this cell's state
par | = [o for neighbours]
Ink[out[i]] 1 state
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def setstate = 1, askstate = a, terminate = 3 :

proc cellichan nk[], value ti{], out[] chan contral, sense) =

—- galculate the state of a single cell an the board
var state, instruction
seq

state = dead —

control 2 instruction

while instruction # terminate

seq

the whole board starts off dead

if —- on instruction
instruction = setstate
control 7 state —
instruction = askstate
var nextstate :

2ccept a nen state

seq -— or calculate the next state
par
broadcast present.state(link, out, state)
seq

calculatenext.state(link, In, state, nextstate)
sense | (state # nextstate) nextstate

— announce this to the controller
state = nextstate —

and move on a generation
contral ? instruction

def arraywidth = s, arrayhelght = 29 :
def number.ofcells = arrayheight x arrayuwidth ,
number.of.links = neighbours X rumber of cells :

proc Initializelualue x, y. var in[] outl) =
~— intialize the link indirection arrays for the cell at x.y

seq deltax = [-radius for diameter] —— offset of neighbour
seq deltay = [-radius for diameter) — in two dimensions
var direction :
seq '
direction := deltax + (diameter x deltay) — —4, € direction € +4
IF

direction # o

var index, pracess :

seq
— select outgoing channel in this direction
process = x + (arrayundth X i
Index == (nelghbours + direction) med (neighbours + 1
out{index] = index + (nelghbours x process)
— and select the corresponding incoming channel
process == ((x + deltax + arraywidth) mod arraywidth) +

(arrayuidth x ((y + deltay + arrayheight) mod array.height))

index = (nelghbours — direction) mod (neighbours + 1)
in{index] = ‘ndex + (neighbours x process)

direction = @ — +this cell 1s not 1ts own neiahbour
sRip .
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def contral = not ((not 0) € 5), escape = control A T :

proc mouecursor(chan screen, value X, y)
— move to column X of line y (of a VT52)
screen | escape; Y5 s + y; s+ X o

proc initializedisplay(chan screen) =
— clear the screan (of a VYT52)
screen | escape; ‘H' 5 escape ; ‘T :

proc clearwpdisplay(chan screen) =
— move away from board
mouvecursor(screen, e, arrayheight) :

proc displaystate(chan screen, value X, y, state) =
— display the state of one cell

seq
maovecursor(screen, x, )
iF
stare = alive — hive cells show as an asterisk
sCreen | s
state = dead — dead ones as = blank space
screen | s’ 4

proc gereration{chan screen, control[], sense[], var active) =
— cause the colony on the board to mpve on one generation

seq
seq cell = [o for number.of.cells] —— invite each cell
controllcell] | askstate -— to make evolutionary progress
active = false
seq cell = [0 for number.of.cells] ~— for each cell on the board
var changed, rextstate :
seq
serse[cell] ? changed; nextstate — receive its ned state
if
changed — and cause 1t io be displayed
seq

display.state(screen, cell mod arragwidth, cell + arragwidth, nextstate)
active = true
not changed
skip
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proc edit{chan keyboard, screen, control(]) =
—— modify the colony on the board

def ctrl = not {(not o) € 5), otherwise = true ;

def leftkey = ctrl A ‘H, righthey = ctrl A 'L’,
upkey =ctrl A 'K, dowrikey = ctrl A 'Y,
uprootkey = s, planthey = "ww’ ;

var x, y, editing, ch :
seq
x = arraywidch + 2
\ = arragheight + 2
editing = true
while editing

-— set co—ordinates of cursor to centre of board

seq
move.cursor(screen, X, Y)
keyboard ? ch
if
(ch = leftkey) and (x > o)
X=X -1
(ch = rightkey) and (x ¢ (arragwidth - 1))
X=X 4+ 1

(ch = upkey) and (y > o)
y = -1
{ch = downkey) and (y < (arrayheight — O)
ys=y+1
(ch = uprcotkey) or (ch = plantkey)
var state : —— change state of the cell under the cuesor
seq
state := (dead A (ch = uprootkey)) v (allve A (ch = plantkey))
controllx + (arraywidth x y)] | set.state; state

display.state(screen, =, iy, state) — keeping the display n step
(ch ='q) or (ch ='Q)
editing = false
otherwlse

-— ignoring anything that s not understood
skip :
def idle = v editing = &, singlestepping = 3, freerunning = ¢, terminated = 5 :

proc display.activity(chan screen, valle activity) = — displey state of the controller

seq
movecursor(screen, arraduwidth + 1, arrayhelght + 2) — to the fight of the board
1
activity = idle

writestring(screen, "1dle™)
actlity = editing
writestring(screen, “Edit™)
activity = single.stepping
writestring(screen, “Step”)
activity = freerunning
writestring(screen, “Busy”)
ity = terminated
writestring(screen, “Done”)
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proc controller(chan keyboard, screen, cantral(], sense(]) =
— contral the activity of the ceclony on the board under direction from the keyboard
var activity :
seq
activity == idle
initialize.display(screen)
while activity # terminated

5eq
display.activity{screen, activicy)
var ch :
pri alt
(actiuitg # editing) & hegboard 2 ch -~— provided not editing, typing ...
if
(ch = ‘q7 or (ch = QY — ... Q stops the pragram
activity = terminated
(ch =1%) or (ch ='8) — ... S stops the evalutionary process
actwity = idle
(ch ="¢Y) or (ch = 'E) ~— ... E nvokes the editor
actiuity == editing
(ch =) or (ch = 'RY — ... R sets evolution n train
activity = Freerunning
otherwise — ... anything else causes evolution
acthity = single.stepping — for just one (more) generation
(activity = editing) & skip
seq
edit(keyboard, screen, contral)
activity = idle
(activity = freerunning) or
(activity = singlestepplng) & skip — f evolving but nothing typed
var changing :
seq
gereration(screen, control, sense, changing) ~— move on a generation
If
(activity = singlestepping) or (not changing)
actluity == idle
(activity = freerunning) and changing
sRip

display.activity(screen, actiulty)

seq cell = [o for number.ofcells]
contralfcell] | terminate

cleanup.display(screen)

chan Wink[number.of.links), controllmumber.of.cells], sense[number.of.cells] :

par
controller(keyboard, screen, control, sense) — cantrol process
par x = [e for arrayuwidth] — board

par y = [0 for arrayheight]
var ir[nelghbours], out[neighbours] :
seq
initialize(x, Y, in, out)
cell(link, in, out, contrallx + (arraguwidth x y)], sense[x + (arraguidth x Uil
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Simple Huffman coder

def bitsincharacter =8,
rumber.of. characters = 1 € bits.incharacter,
number.of.codes number of characters,
character.mashk not ((not o} € bits.incharacter) :

def root = o, sizeof.tree = (2 x number.of.codes) — 1 :

var children[sizeof.tree], parent[sizeof.tree]

character[size.of.tree), representative[number.of.characters] :

proc insertnewnode var newnode, value weight.ofrewnode,
var leftlimit, value rightlimit )=
var weight.limit :
seq
if
if node = (leftlimit for rightlimit — leftlimit]
weight{node] ¢ weight.of.newnode
welghtimit = node
true
weightimit = rightlimit
seq node = [leftlimit for weightlimit — left.limit]
se
qcharacter*[node — 1] = character[node]
childrer{rnode - 1] = children{node]
weight[node — 1] = welght{node]
leftimit = left.imit — 1
newnode = welghtlimlt — 1
weight{new.node] = welght.ofnew.node
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proc construct.tree(ualue probabilty]) =
var leftlimit, rightlimit, weight[sizeof.tree] :

prot construct.leaves =
— build the leaves of the tree
def minimumgcharacter = — (number.of.characters + 2) :
seq ch = [minimumcharacter for number.of.characters]
var new.ncde :

seq
insert.newnode(new.node, probability{ch A charactermask], left.limit, right limit)
children{newnode] := root

character[new.node] == ch

proc construct.othernodes =
— join pairs of subtrees until only one iree remains
while (rightlimit ~ leftlimit) # 1
var new.node :
seq
rightlimit = rightlimit - a
tnser t.newnede(mew.node, weight[rightlimit] + weight{rightlimit+1],
lefelimit, mght.imit)

chiidren{new.node] = right

proc invert.representation
— set parent[] and representative(]
seq nade = [reot for sizeof.tree]
if
children{node] = root

representatlue[character{node] A character.mask] = node
childrer{nede] # root

seq child = [children[node] for 2]
parent{child] = node

seq
left.limit sizeof.tree + 1
right.hmit := sizeof.tree + 1

— leftlimit = (sizeof.tree + 1) and (rightlimit — leftlimit) = o
canstruct leaves

— leftlimit = number.ofcode and (right.imit — leftlimit)

it

number of codes

construct.other nodes

— leftimit = root and (rightlimit — left.imit)

invert representation
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proc encodecharacter(chan output, valse ch) =
— Transmit the enceding of ch along output

def sizeofencoding = numberofcodes — 1:
var ercoding[sizeofencoding], lergth, node :
seq

length = o

node = representativelch A charactermask]

while node # root
seq

ercoding(length] = node — children(parent{node]]

fength += length + 1
node = parent[node)
seq | = [1 for length]
output | encadingllength — 1]

proc decodecharacter({chan input, var ch) =
var node :
seq
node = root
while children{node] # root
var bit :
seq
input ? bit
node = childrer{node] + bit
th = character{node]
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def probability = table[ ... ]: — indexed by [0 for number.of.characters]

def end.of.message = —1:

proc copy.encoding{chan source, end.of source, sink) =
— Read characters from source, sending thewr encedings aleng
— sifkR, wntil a signal is received aleng end.oF.source.

var morecharacters.expected :
seq
corstruct.tree(probability)
morecharactersexpected = true
while morecharactersexpected
var ch :
alc
source ? ch
encodecharacter(sirk, ch)
end.ofsource 7 any

morecharacters.expected = false
encode.character(sink, end.of.message}

proc copydecoding(chan source, sink) =
— Read a bit stream from source, decocding it inte characters
— and send these along sink until end.of.message 1s deceded

var morecharactersexpected :
seq
construct.tres(probability)
morecharacters.expected := true
while morecharacters.expected
var ch :
seq
decodecharacter(source, ch}
If
ch # end.of message
sink | ch
ch = endofmessage

morecharactersexpected = false

Codes: Simple Huffman coder

103



Adaptive Huffman code

def bits.ircharacter

8,

rumber ofcharacters = 1 € bitsincharacter,
number of.codes = number of characters + 1,
character.mask = not ((not o)  bitsincharacter) :

def root = o sizeof.tree = (2 X number.ofcodes) - 1, not.anode = sizeof.tree, :

var escape, weight{size.of.tree],
childrer{sizeof.tree]  parent[size.of.tree]
character[size.of.tree], representativelnumber.of.characters] :

proc construct.tree =
— Create a tree for the encoding in which every character 1s escaped
seq
escape = root
weightfescape] =1
childrer{escape] = root — it 15 3 leaf
seq ch = [e for number.ofcharacters)
representativech] := not.anode

proc createleaf(var new.leaf, value ch) =
— Extend the tree by fision of the escape leaf intc tWo new leaves
var new.escape :

seq
new. leaf = escape + 1
rew escape = estape + @
childrer{escape] = rew.leaf — escape is the new parent
welght{new.leaf} =
childrer{new.leaf] = root
parent{new.leaf] = psCape
tharacter[rewleaf] = cn

representative{ch A character.mask] = new.leaf

weight[newesape] =1

childrer{ rewgscapel = root
parent[new.escape] = escape

escape = neuigscape :
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proc swap.creesivalue |, =
— Exchange disjoint sub—trees rooted at | and |

proc swap.uords(uar p, @) =
—— Exchange values stored in p and g
var t:
seq
t o=
p =
q P

1.5 0

proc adjust offspring(ualue 1) =
— Restore downstream pointers to node |
if
childrer[i] = root

representativgcharacter]i] A characterimask] = |

childrenfi] # root
seq child = [childreri] for &)
parentichiid) == t

seq
swap.words(childrerlil. chitdren{jh
swan.words(character(i], character] |T)
adjust.offepring(id
ad just.of fspring(j)

proc increment frequency(ualue ch) =

— Acjust the weights of all relevant nodes to account for one more occurrence
—— of the character th. and adjust the shspe of the tree f necessary

var node :
seq
if
representativelch A character.mask] # not.anode
node == representativefch A character.mask]
representativelch A character.mask] = notanode
createleaf(node, ch)
while node # root
If
ueight{nede-1] > weight[node]
seq
weight[node] = weight[nodel + 1
node := parentlnode]
weaightlnode-1] = weight{node]
it = [t for (rode - root) — 1
weight{(node — 1) ~ 1] > weightnode]

seq
swap.trees(node, node - i)
node = node — i

weightlroot] = weight[root] + 1:
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proc encadecharacter(chan output, value ch) =
~— Transmit the encoding of ch along output
def sizeof encoding = bitsincharacter + (number of codes - 1)
var ercodingsizeof encoding], length, node :
seq
if
representativelch A charactermask] # not.anode
seq
length = o
node = pepresentativelch A character.mask]
representativelch A charactermash] # not.anode
seq
seq | = [o for bitsintharacter)
encoding[i] = (ch > D A1 — P'th bst of unencoded ch
length = bitsincharacter
node = escape
while node # root
seq
encodingllength] = node ~ childrer{parent[node]]
length = length + 1
node = parent[node]
seq i = [i for length]
output { encodingflength — ]

proc decodecharacter(chan input, var ch) =
~— Receive an encoding along iNput and stors the carresponding character in ch
var node :
seq
node := root
while childrer{node] # root
var bit :
seq )
input ? bit
node := childrer{node] + bit
if
node < escape
ch '= character{node]
node = escape
var bit :
seq
input 7 bit
ch = ~ bit
seq | = {2 for bitsincharacter — (]
seq
input ? bit
ch == (ch € 1} v bit
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def endofmessage = —1:

proc copyercoding(chan source, endof source, sink) =
— Read a stream of characters from source. until signalled on endof.source,
— and transmit thewr encodings in sequence along SiMR. fallowed by that of
—— erdof.message, mawntaining throughout the encoding tree for the encoding
— determined by the cumulative frequencies of the characters transmitted
var morecharactersexpected :
seq
construct.tree
morecharactersexpected = true
while morecharacters.expected
var ch :
alt
source ? ch
seq
encodecharacter(sink, ch)
increment.frequency(ch)
endof.source ? any
morecharacters.expected = false
encode.character(sink, endof.message)

proc copydecading(chan source, sink) =

—— Read the encodings of a stream of characters. up to and including the
— enceding of endof.message. from source and transmit the corresponding
— characters alona SiNR, maintaining the encoding tree for the encoding
—- determined by the cumulative frequencies of the characters received
var morecharacters.expected :
seq

constructLree

moretharactersexpected = true

while morecharacters.expected

var ch :
seq
decode.character(source, ch)
if
ch # end.of.message
seq
sink | ¢ch
increment. frequency(ch)
ch = end.of.message
morecharactersexpected := false :
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