$1490

ort o

LAWS OF PROGRAMMING

A TUTORIAL PAPER

by

C.A.R.Hoare, He Jifeng, [.J. Hayes,
C.C.Morgan, J. W.Sanders, I H.Sprensen,
J.M. Spivey, B. A.Sufrin, A. W.Roscoe

caelteily
. epulaG -nboratony)
seagamming Research Group-Library
.11 Yeble Aod
Oxfora OX: 3QD
vinrg [DRG5) 54141

Technical Monograph PRG-45
May 1085

Oxford University Computing Laboratory
Programming Research Group

8-11 Keble Road

Oxford OX13QD

England

Copyright (C) 1985 C.A.R.Hoare, He Jifeng, I.J.Hayes,
C.C.Morgan, J. W.Sanders, I. H.Sgrensen,
J.M.Spivey, B.A.Sufrin, A. W.Roscee

Oxford University Computing Laboratory
Programming Research Group

8-11 Keble Road

Oxford 0X13QD

England

LAJS CF FAGLRAMMING

A TUTCHIAL FAPCR

C.A,R, Hoare, he Zifeng, I.3J, Hayes, £,0. Morgan,

J. Senders, I.H, Sorensenm, J,M. Spivey, 9,a, Sufrim, 34.W. Roscoe

Summar y

4 complete set of algebraic laws is given For Uijkstra's non=-
deterministic sequential programming language. Iteration and recursion
are explained in terms of Scott's damain theory as Fixed points of
continuous functionals., A calculus analogous to weakast preconditions

is sucggested as an aio to deriving orograms from their specifications.

Warning

in many programming languages use of these
laws of programming may lead to error. You
are adwvised to consult your langquage
definition and implementation manuals to
determine the circumstances in which their
use is wvalid.

CONTENTS

Intreductien
The Language
Summary

Examples

Algebraic Laws
Nondeterminism
Conditional

Sequential Composition
Assignment

Undefined expressions

Normal form

Domain properties

The ordering relation
Least upper bounds
Limits

Iteration and recursion

Specifications
Weakest prespecification

General inverse

Conclusion

References

10

11

11

13

14

16

18

19

22

22

25

29

30

33

34

38

41

43

1. lntroduction

Here are some of the familiar laws of arithmetic, which apply to
multiplication of real numbers.
(1) mMultiplication is symmetric, or in symbols
ARY = Ya=X for all numbers x and y
It is conventional in quoting laws to omit the phrase "for all x and y
in the relevart set"
(2) mMultiplication is associatlwve, or in symbols
xx(yxrz2) = (xny)zz
1t is canventional to omlt brackets for associative operators, and
write simply xxyw Z
{3} mMultiplication by zerc always givas zero

Oxx = D

{a) Multiplication by 1 leaves a number uncnanged

T X = X

(5) Division is tha inverse of multipllcation
yx(x/y) = =x provided y # G

If multiplication were not symmetric, we would also need a left guotient

operator \ , satisfying the law
(V\x) x y = x provided vy # 0
Another law relating multiplication ang division is

f(xuy) = (z/x}/y provided y # 0 and x £ 0

2,
(8) multiplicatign gistributes through agdition
(x +y)rz = (xxz) + (yx2)

It is usual for brackets to be omitted on the right hand side of this
equation, on the convention that a distributive operator binds tighter

than the operator through which it distributes,
1f multiplication were not symmetric, w2 would distinguish

distribution to the left {descriped above) from distribution to the right

ze{x +y) = (zxx} + (22y)
An oparateor is distributive through another if it distributes both to
the left and to the right,
(7) rultiplication by a non-negstive number is monotonic, in the sense
that it preserves ordering in its othar operand, or in symbols

XLy =—==p Xx2Z £yrz provided z » 0
(8) Multiplicstion is continuous in tha sense that it preserves the
limit of any convergent seguence of numbers

(Iim x Y xy = 1lim (x_»xy) proviged x _eonverges.
nae " nas " n

{8) 1IfF we define

xny = the lesser of x and y

Xxuvy = thegreater of x and y
then we bave the following laws

Xy = yfix

(xay)az

xX:2Z AyR22

(xvy)gz xgz ~Ayxz

xnlyvz) (xny)u(xnz)

3.

Any mathematicilan or anginser will be intimately familiar with all
these laws (and many more)}; and he will use them frequently and almast
instinctively, without noticing he has done so. The appliad
mathematician, scientlist or enginmeer will also be familiar with many
relevant laws of nature, end will use them explicitly to fino solutiors
for otherwise intractable problems. Ignorance of such laws would be
regarcded as & gisqualification from professional practice. What then are
the laws of programming, which provide the formal basis for the profession
of softuare engineering? Many prograsmers may be unable to quota ever a
sirgle law. An unsympathetic observer might claim that programmers ars
such an undisciplined bunch that they would not obsy such laws, even Lf
they knew them, Some computer scientists have despaired of finding
rational laws to govern Conventional procedural programming, and recomrend

instead the use of Tunctional programming @ackug or logle programming

ZioualsKi7.

1n this papsr, we shall substantiate a eclaim that conventioral
procedural programs are mathematical expreasions, and that they are sJubject
to a sat of laws as rich and elegant as those of any other branch of

mathematics, engineering, or natural science,

4.

1.1 The language

In order to formulate mathematical laws, it is necessary to introduce
some notation for describing programs, I shall use a notatian {programming
lanquage) which is especially concise and suitable for its purpose, based
on the languaga introduted in /Tijkstra/. It has three kinds of primitive
commanc, and five mathods of composing commands into larger commands

{programs).

(1) skIp
The SKIP command is denoted [I; execution of this command terminates

successfully, leaving everything unchanged.

(2) ABORT

The ABORT command is danoted L+ ; it places no constralnt on the behaviour

or misbehaviour of the executing machine, which may do anything, or fail to
do anythlng; in particular, it may fail to terminate, Thus L Tepressnts
the behaviour of a broken machine, or & program that has run wild, This is
certeinly a repugnant program, but lt plays am importanmt rele in the theory
and lts application, A programmer has a duty not to write a program that
runs wildy in order to prove absence of this error, onre nceds a mathamatical

theory that includes its presence.

(3) Assignment
Let x be a list of distinct variables, and let £ be &8 list of the same
number of expresaslans, The assignment

*3=£
is executed by evaluating all the expressions of F {with all variables
taking their most recently assigned values} and then assigning the value

of egaen expression to the variable at the same position in the list x.

This ls known as multiple or simultareous assignment. UWe assume that

expressions are evaluated witkout side-effect, and stipulate that the
values of the variables in the list x do naot change until ell the

evalyations are complete. Ffor simplicity, we shall also essume that
all cperators in all expressjons are defiped for all values of their
arguments, so that the evaluation of an expression always terminates

syccessfully, This assumption will be relaxed in 2,5,

{4) Seguential Compositian
If P and 4 are programs, (PjQ) is o program which is executed by first
executing P, 1f P does not terminate, neither does (P;Q}., If end when

P terminates, J is startsd; and then [P30)terminates when @ does.

{5) Conditional

1f P and } ere programs, and b is a Boolean expression, then (P+b+D] is
a program. It is executed by first evaluating b, If b is true thentd

is executed, but if b is false then J 1s executed instead. The more usual

notation for a conditiomal is
if b then P else [

Je have chosen an infix notation, +b1— because it simplifies

expression of the relevant algebraic laws.

(6) Non-determinism

1f P and J are programs, then (PUG) Is a program which is executed by
executing either P or (. The choice between them is arbitrary. The
programmer has deliberately postponed the decision, possibly to e later
stage ir the development af the program, or possibly has even dslesgatsd

the decision to the machine which executes the program.

{7) I[taration

If £ is a program and b ls a Boolean expression, then (&#*P) is a program.
It is executed by first ewvaluvating by if b is false, execution
terminates successfully and nothing is changed., But if b 1s true, the
machine proceeds to exscute P3{(b*P)}. A more conwentional nmotation for

iteration is

ais bow f
{8) Recursion
Let X be the name of a recursively defined program, and let F(X)
(containing occurrences of the name X) be a program defining its behaviour.
Then FX.F{X) is the program which behaves llke F(PX.F(K));J'..E. all
recursive occurrences of the progrem name hava been replaced by the whole
recursive program. Of course, iteration is only a special case of
recursion

p*p = FK.(D;X)+b+ 11
Iteration is simpler and more familiar than general recursion, and so it is

worth treating seperately.

As an gxample of the use of these notations, here is a program which
computes the guotient g and remeinder r of division of nan-negative x

by positive y, [t offers a choice of methbods, one of which terminates
wheny = 0

QyC 2= 0,x § T 2y¥*g,r t= g+l ,0—y

Ula,r = x + y, x ren y)'{'-y # U.+ q:=0

This example illustrates a suggested order of precedence far program

combipators

» binds tightest

J binds loosest

karmal arithmetic operators bind tightsst of all., But for the benefit
of a readar it is kinder to insert at least some of the brackets, for

example

(aur 2= Dyx ;7 (r2y * (a,r a= g+, T-y)))

ul{qer 1= x =y, x rem y) +V#D$q== 0}

The notations of our language can be defined in terms of E,W, Dijkstra‘s

lanpguage of guarced commands

pug = Htrueﬁpﬂtrue-ﬁﬂ&
. = .
p4oda = if b—>p Q0 —30 i

where B is the negatien of b

brP = g9 b —>p gd

Convecsely guarded commands can be dafined in terms of the notations givan

above, for sxample

if s—=>p0e—>ar:
da b—>P [Jec—>0
e o

fl

((Pumrdeprrdod(adet +)

(ve)y* (if b —>pJc—>0 ri)

a
a
L

Thus our lapguage is effectively the same as Dijkstra's; the only
reasan for the slight change of notation is to replace the polyadic
notation of "guarded commancs"by binary inmfix notations, which greatly

simplify the fermulation of algebraic laws,

1.2 Summary

The laws to be given in this paper apply not only to concrete programs,
expressed in the notations of the programming language described in
section 1,73 most of them apply also to program specifications, which
can pe expressed in a considerably wider range of more powerful notations.
Additional laws are given to assist in the stepwise development of designs
from specifications and programs from designms, 1n fact, we shall study
a series of four classes of object, where each class includes its

predscessor in the series, and obeys all or almost all the same lauws.

{1) Ffinite programs are expressible in the notations of the
programming language, but excluding iteration and recursion. Laws for
Tinite programs are given in section 2. They are sufficiently powerful
to permit ewvery finite program to be recuced to a simple normal form.

The definition of sgquality between normal forms extends in this way to all

finite programs.

(2} Concrete preograms are expressible in the full programming

language, including recursion,

(3) nAbstract programs are exprzssad by means of programming
notations plus an additioral operator for denoting a limit of a convergent
set of consistent programs, The relevant concepts and laws are those of

domain theory, and they are explained in section 3.

Gbjects in the First three classes are called programs, and they

all satisfy all the laws of programming givem in sections 2 and 3,

(4) The remaining class is that of specificetions., This is the
most general class, because there is no restriction on the notations in
which they may be expressed. Any well-definad operator of mathematics
or logic may be freely used, including even negation, The laws which
apply to specifications are useful in the stepwise development of
designs and programs to meet their specifications, The price of the
greater notatipnal freedom of expression of specifications is that it :s
possible (and easy)to write specifications which cannot be satisfied by

eny program,

The distinction between these classes may seem complicatsd; but in
fact it is as gsimple as familiar distinctions made between diffarent

classes of numhber,

(1) Finite programs can be likened to rational numbers, 4leebraic
laws permit all arithmetic expressions to be reduced to a raticg of co=-prime

integers, whose eguality mey be easily established.

(2} Concrete programs are like algebraic real numbers, which are
definable within a restricted notastional framgwork (as aolytions of

polynomial eguations}. They constitute a denumerable set.

(3} Abstract programs are like real numbers; they enjoy the
property that convsrgent sequences have a limit, For mary purpoees (e.g.
calculus) real numbers are far more convenient to reason with than

algepraic rumbers, Trey form a non-denumerable set,

{4) Specifications may be likermed to complex mumbers, for which

more opperators (e.g. square root) are total functicns. The accaptance

10.

of imaginary numbers may be difflcult at first, because they cannat be
represented in the ane-dimensional real continuum; nevertheless it
pays to use them in definltion, calculation and proof, ewven when

the eventual answers must be real. In the same way, sSpecifications are
useful (even necessary) in reguirements gnalysis and program development,

even though they will never be executed by computer,

1,3 Exemples

This paper shows many examples of the practical use of the guoted

laws; these examples occur only in the proof of other laws,

It mlght seem preferable to report a case study im which the laws
had been used to assist in the dewelopment of a correckt program of
substantial slze. Unfortunately this is not possible: the task of writing
2 substantial program requires much deeper mathematics than the elementary
algebra presented in this paper, You would ot expect to illustrate the
laws of arithmetic by a case study in the design of a bridge. Like the
laws of arithmetic the laws of programming are broad amd shallow: like
the grammatical laws of a foreign language, laarn tham, learn to use them

witheut thinking, and then forget tnem,

2. Algebraic laws

In this section we shall give about thirty algebraic laws relating
to finite programs, i.e., programs that do not contain iterations or
recursions, which will be treated Im secticn 3, The laws are sufficiently
powerful to permit ewvery finite program to be reducep to a2 simple normel

farm, which can be used to test whether any two such programs are equal.
we shall adopt the following comventians for the range of variables

P,J,R stand for programs

b,c,d stanc for Boolean expressions

e,fyg stand for single expressions

£,f,G stand for lists of expressions

xs¥,2 stang for lists of variables, where no variable

appears more than once in the combimad list x,y,z

Furthermore, x is the same lergth as £, y the same length as f, and

z the same length as G,

2.1 HNordetecminism

The laws governing nondeterministic choice apply to all kinds of

choice.

(1) Clearly, it does not make any Oifference in what order such a

choice is affered: "milk or gream?" is tha same as "cream or milk?"

Pwy = Qup symmetry

12,

(2) A choice betwsen three alternatives (milk, cream, or brandy)
can be offered as fFirst a choice between ong alternative and the
other two, followed (if necessary) by a choice between the other two;

and it does nat matter inm which way the choices are grouped

PulGur) = (PuJd)unRr associativity

{3} A choice between one tning and itself {Hobson's choice) offers

no choice at all

PyP = P idempotence

(4) The abort commano already allows completely arbitrary

behaviour, so an offer of further choice mekes no difference to it

L UpP = 4 zero 4

This lew is somstimes known as Sod's lal.u;* the left hand side describes
a machine that can go wrong {or can bahave like P}; the right hand side
might be taken to describe a machine that will go wrong, But the true
maaning af the law is actually worse than this: the machine will not
always go wrong = only when it is most disastrous for it to do sol

Tha abundance of empirical evidence for law (4) suggests that it should

ba taken as tha first law of computer programming ﬁurphﬂ.

A choice betwueen n alternatives can be expressed more briefly

by ths indexed notation

U P, = PLUP, W eee v P
i€n

This is purely a convenient abbreviation, and is not needed in a

programming language.

L —

Sod's law states "If it can go wrong it will™.

2.2 Conditional

For each givem Boclean expression b the choice cperator *n+
specifies a choice betwean two alternatives writtam on each side of it.
The first two laws express most clearly the criterion for making this
choice, i.e., the truth or falsity cof &

(1) p +tru54—0 = P

(2) p*f‘alse*ﬂ = Q
Like J, the conditional is idempotent and associatiwve

(3) © %b:ivp = p

{a) p4h+(u+b$ﬂ) = (p*b+u)¢b$ﬂ
Furthermara, it satisfies the less familiar laws

(5) ogtpa = a4o}e
vhere B 1is the negation of b

(5) Pqctppodu = (F4c$a) 4ot (P4 apo)
where c«b>d is a conditional expression, giwving value c if b is trus

and d if b is false

(1) rgotadedr) = pdoyr

These laws may be checked by considering the two cases when b is trus
and when it is false. For example, law (7} states that the middle

oparand § is not selected in either case.

Suppose one of the operands of a conditional offers a nondeterministic
choice between P #nd O, Then it does not matter whether this choice is
made thefore evaluation of the conditional, or aftgrwards, since ths value

of the condition is nat affected by the choice

{8) (m:u)#b:{.ﬂ = (P4bpRIv(G4br)

From this can be deduced a similar law for the right operand of+b+

19,

{9) R+b+(PuJ) = (a.#b;f.n)u(ﬁérb*u)
Proof LHs = (F‘Ud)+—n|+ﬂ = (P4B}R) v (I484R) = ans
An operetor that distributes like this through U is saic ta be disjunctive,

Any operatiaom that does not change ths value of the Boolean
expression b will distribute through +D+. An example is nonoeterminstic
choice, It does not matter uhether the choice is exerciseo before ar

after evaluation of b

(10) (FfoF)uR = (Pur)dbd(Bur)

For the same reason, a cmnditional+c+ distributes through another

conditional with a possibly different candition {:b%.
(1) (P4p}a) febr = (Pdcta)4ob (2 4ep)
Using these laws we can prove the theorem
(12) (Pgetr) 4o} (udodr) = (P o3 i) de dodayn

Proaf RHS:((P*D+U)¢*c+R)*b#((D*D‘+d)+d#ﬂ) by (6)
(pdct) dor (4o rifoR(edatn) 4o (G4o4R)) by (11)

= LHS by (7) and (¢

2.3 Seguential Comgasition

(1) Sequential compositiom is assccistive; ta perform three actions in
arder, you can either perforrm the first action feollowed by the other twa

or the first two a2cticons followed oy the third

PelasR) = (Pjd)sR associativity

15,

{?) To precede or follow a program P by the command II which changes

nothing does not change the effect of the program P
(113e) = (P11} = ¥ unit 11
{3) To precede or follow & program P by the command L (which may do

anything whatsoever } results in 2 pregram that may do anything whatsosver -

it may even behauwe like P!
(rsp) = (P54 = L zero <

The lew Py L = 4 states that we are not able to observe anything
that P does tefore Pj4+ reaches 4, This law will not be true for a
language in which P can interact with its enuironment, for example by input

and output.

(¢) A machine which selects between P and @ and then performs R when the
selected alternative terminates cannpt be distinguished from one which

initially selects whether to perform P followed by R or } followed by R.
{(Pun)sR = (PiR)u(d;R)

Fer the same reason, composition distributes rightward through w
Ri{Pud) = {(R;PJuir;0)

{n summery, seguential composition is a disjunctive operetor.

(5) Evaluation of a condition is not affected by what bappens afterwards,

so j oistributes leftward through a corditional
(Pged s = (PiR)4od (4;R)

However ; does not cdistribute rightward through & conditional, so

in general it is not true that
R(Pdoba) = (AiF) dbb(R:a)

in the left hand side b is evaluated after executing R, whereas

16.

on tha right hand side it isevaluated beforeRr; and in genecral, prior

execution of R can change the value of b.

2.4 Assignment

1t is » law of mathematics that the valus of en expressian is
unchanged when the variables it contains are replaced by their values.
1f E(x) is a list of expressions, and F is a list aof the values cf the
variables x, than E{F) is a copy of L in which every occurrence of each
variable of x 1s replaced by a copy of the axpression occupying the

same position in the list F,

(1) This convention is used in the first law of assignment, which

permits merging of two successive assignments to the mame wvariatles

{2) The second law states that the sssignment of the walue of a variable

back to itself does not change anything

(x1=x)y = 1II
(3) 1n fact such & vacuous assignment can be added to any other
assignment without changing its effect (reczll x and v are cisjoint)

(xey 2= £,y) = (x 1=)

(4) Finally, the lists of variables and expressions may be suwjected

to the same permutation without changing the effect of the assignment

(xyyez 5= E,F,G) = (y,x,z 1= F,E,G)

n
™
-
-
—
"
—
3
x
n
-
m

corcllary: {x,y :

17

These four laws togethker are sufficient to reduce any sequenca of

assignmerts to 2 single assignment., For exampls

2y t= F G 7 yyz 1= Hixyyds J(x,y)

Xyyp2 8= F 4Gy2 § Xyys2 1= x,H{x,y), I(x,y) by (3] {4)

= Xyy,2 1= F4H(F,G)}, 3(F,C) by (1)

(5) nesignment distributes rightward through a conditional, changing

occurrences of the assigned yariables in the condition
xi=t § (P4olxby) = (xi=c ;P340(E) 3 (x 1= E ; 0)

{6} A conditional joining two assignments {to the same variables) may be
raplaced by a single assignment of a conditioral expression to the same

variables

x
"

1
rm
-
o3
By
x
v
1]
-
—
n

{x:= (L opF))

{7) The conditional distributes down to the individual compgnents of a

list of exprassions
(e) 4nd (fof) = (e 4o} f),(E40}F)

{8) Using these laws, we can eliminate conditionals from sequences of

assignments by criving them into the axpressions. For example

x 1= £ 3 (x := F[x)%h(x)*x 1= G(x))
= x 1= (F(£) $0(E)} 6(E))

The following theorem will also be useful in reduction to normal forms
(9) (x 1= £4034)5((x 1= F(x))del)d =) = (x 1= F(E))4e(E){os Falsed &

praof LHS =(x := Ejl(x := F(x)-{:c(x)*.l_))
0 (Li(x 2= F(x)*c{x)# 13 2,3(5)
(x 3= F{E)4c(E) P L) dob L (53, (13,2.3(3)

= RHS 2.2(5), 2.2{2)

18.

2,5 Unpefined expressions

If the notations of the programming language incluce expressicns
which may be undefined for some values of their aperands, then some
of the laws quoted above need to be slightly weakened. We assume that
the language is sufficiently powerful that it is always possible to test
in advance whether evaluation of an expression is going to fail, ang
that this test itself never fails, Thus for every list of expressions E
there is a Boolean expressien aﬁ*uhich gives the answer true in just
those circumstances that eveluation of £ would be successful, Thus, for
Bxample
;Dtrue = afalse = true
Die+r) = De ~ Dr
De/f) = DEadFas #0
Diedodr) = Doa(Dedoddr)
,m.DE = true

"

Now we stipulate that the effect of attempting to evaluate an

expression outside its domsin is uwholly arbitrary, so

(1) =x:=¢ =(x :=E%JJE*.L)
R
(3) Péo}a P#D*Qh+ralse+d.

1}

In view of this, the Following laws need alteration

(4} p*b*p = p+°'[]h;|. KN see 2.2(3}

{s) (P-*b}u) c+R = ((P+I:EILR)+D+(D*B*R))+cgb+{¢+c+ﬂ) see 2.2{11
(6) (x t= £ ; x 1= F(x)) = (» := F(E)*J)E+J.) see 2.4(1)
(?) x =€ 3 {x:= F{x)+b(x)*x 1= G(x))

= x 1= (r(c){m(a)}c{a))*ﬂz}; see 2.4 (8)

*
J) is not assumed to ba & notstlon of the programmlng language.

Reascning with wnoefinea expressions can pe complicated and needs
some carg, HBut there are slso some rewards. Ffor example, the fact
that the minimum of ar empty sst is und=firned permits axceptionally simplae

formulation of 0ijkstra's linear search theorem ﬁijkstra <8 1DS-1D§7.

(8} (i 3= 0; (Bfi)*#i :=i+1)) = (i 1= min {i]b(i),\i;[}})

2.6 MNormal form

Te illustrate the power of the laws givam so far, we can use then
to raduce every finite program of our lanquage to a simple normal form,
4 finite program is a program which does not contain itseration or recursion.

Tn normal form a pragram looks like

(Yro=epbod s

where b == ,@Ei for all i<n.
without loss of generelity, we can ensure that in this cantext
Do = true .

by raplacirg b if necessary by

*b +°Dt+ falsed {see 2,5(3}))

i natable feature of the normal form is that the seguential composition

operator does not appear in it.

To show how to reduce a program to normal form, it is sufficient to
show how each primitive commang can be written im narmal form and hou eagh
operator, when applied to cperands in nermel form, yields a result

expressibla in normal form. In section 2.4 we have shown how all

20,

assignments of a program can be adapted soc that they all hawve the sams
list of variables on the left; so we can assume this has alrgady bean

dors,

{1) skip

I1 =((x := x}+trua+ 1) 2,4(2) 2.2(1)

(2) Abort

4 o= (x 1= x *False* L) 2,2(2)

(3) Assignment
(x = £) = (x = € §Dep +) 2.5(1)

(4) Nondeterminism

(o) ua +c+4.)

= (Puladed 1)) {og (&L vlofctr) z.2(1)
- (DuU]+c+(P vy ot 4 2.2016) 2.1(4)
= ((Duu)+c;}.¢)+n$ 4 2,104}

= (Puu)+c+h*fa15e:|>-‘- 2.2(6), z.2(2)

Hers, P and Q stand for lists of assignments separatsd by W , so Pwl is
just the union af these two lists, The condition *c+b+f‘alse+ is
egquivalent to (c Ab), Since the operands are normal forms, this is
averyvhare defined and it implies that all expressions ir P uwid ara also

defined,

(5) ctonditioral

(P*c?.;.)‘f.h*(u+d:|:.n.)=(p+:n;}.u)4-c+t+d$.1. 2.2(12)

If p = \Jxize, and a= Uxi=F
ign jgm 3
then P+D#D = J.snjem(x =t #b*x 1= F) 2,2(9)
- X 1= (Ei#.b:tr) 2,4(5)

Since c== B ec d =}2)Fj , it Follows that
cfopd = Q(Ei 4b+Fj) For all { and j

Thus the AHS of (5) is reducible to normal Form.

(56} Seguertial Composition

CUx e qep 20 (O Um0 4e00 $4)

1gehn
can be reduced (by distribution through U) to

U U((x 1= Ei+b* L) (x := Fj(x)+c(x)+ 43)

len j&£m

= U U = (6,) ko(e,) db}ratsed o) by 2.4(9)

ign j&m

Now the methoo described in (4) sbave can be used to distribute the unions

into the conditicnal obtaining

U * = Fj(si))4<i/s\n o(g;)) §opratse)} -

ign ifm

where the conjunction notetion /\ car be defined by induction

c, = ¢
i/t_;\o i o
/\ g, = A c.)4;(: +False
ign+1 * 14n

That completes the proof that all firiii preograms are reducible,

The importance of normal Forms Is that they provide a complete test
whether two Finite programs are sgual or unequal. The two programs are
first redueed to normal form; ifF the normal forms are egual, so are the
programs; otherwise they are unegual,

Two normal Forms U X 1= E,)*b#; and (U 1= F'.)-Fc+.\.
ign i jEm]
are aqual if and only if
b=c

w

anu{{:b in.u_E} {** rj}

where these eguations must holg for all values of the varlables contained in

the axpressianms b, c, Ei and Fj'

3. Oomain properties
In this section we introduce iteration and tecursion, using the methads

Dflgcotg.

3.1 The rccering relation

As a prelimary we shell explore the properties of an ordering

relation 2 between programs.

Defipition, P20 & Pyl =P

This means that I is a more deterministic program than ., FEwverything

thet 9 can do, P may also doj and everything thet G can fail to do,

N may also fail to do. So 4 is in all respects a more predictable

program and more controllable thanm P, In any circumstance where P

reliably serves same useful purpose, P may be replaced by G, in the
certainty that it will serve the same purpose. 3ut not vice-versa:

there may ce some purposes for which 1] is adequate, but for which A,

owing to its greater nondeterminism, cannot be relied upon. Thus P20
means that For any purpose Q is better than P, or at lesst as good. 1IN
future, we will use the comparative "better" by itself, on the understanding

that it meams "better or at laast as goad"”.

The rzlation 2 1is not a total ordering cn programs, because it
is not trwe For all1 P and 4 that P 21 or GQ 2PF; 7P may be better than Q
for some purposes and] may be better than P For others, However, 2

is a partial order, in that it satisfies the following laws

(1) 3 2p (refFlexivity)
(2) PRUAJ2P =b 7 =4 {antisymmetry)
{3) P2UAUDR =2 PR {transitivity)

These laws can be proved directly from the definition, together with

the laws for w

Praaof (1) p=FypP {icempotence of)

(2} (Pull = PYAWUPR = JNj=>p =y {symmetry of o)
(3) (Pud = Pijalauytd = i {antecedent)
= FuR = {(Pvl)uR (First antecedent)
= Puwlsud) {associativity u)
= Pul (secend antecedent)
= P {first antecedent)

The 2cort command A is the most nondeterministic of all programs,
the least predictacle, the least controllable; and in short, for all

purposes, it is the worst
{4y aLz=2p
Proof 4 VP = 4
The machime that behaves either like P or like O is in gereral worse
than bath of them

(5) (Pwa) 2P ~ (Pwg)zd

Aroof (PuLjur = Pu(dub} {2ssociativity)
= Pu{pPul) (symmetry)
= (PuPR)uy {associativity)
= Pul (icerootenrce)

Irm fact Puv Uy is the best program thst has this property. Any program R

which is worse than both P and 4y Is also worse than PYQ, and vice=yersa

(6) R2(Pwi) = (2P A R2Y)
Froof LHS —p» A2P oy bransitivity fram (5)
LHS ==) Rau similarly
RHS —3(RuUP = Maltus = R) defirition of o
=3 (RUP}V(RWVS) = RUER adaing the equations
=R uw(Ffvu) = R properties of u

= LHS definitian of 2

24,

1f £ 24, this means that 4 is in all circumstances better than (or
at lesst as gooo as) P. 1t follows that wherever P appears within a
larger program, it can be replaced by Q, and the only consegquence will
be to improve the larger program {or at least to leave it unchangea}.

For example

{7y 1f P22 then PUHNH 2 GUR
A (FiR) = (45R)
A (R3P) 2(R30)
A(p*_n%ﬂ)a(a«i.b:}ﬂ)
A (Rgpp2) 2 (b})

alb * B2(n* Q)

W

In summary, the law quotsd above states that all tbe operators of our
small programming language are monotcnic, in the senmse that they preserve
the = ordering of their operands. 1n fact, every operation that

distributes through w is also monotonic.

Theorem. If F is any function from programs te programs,and for all

programs Fand @ F{Pu4) = F(P)UF(Z) then F is monotonic

Proaf 7D ==k Pug = P definition =
=3 Fipul) = F(r) property of =

= F(R)uF(Q) distrib F
=2 F{P}2F () definition 2

One important fact about monotonicity is that every fumction cefined
fFrom composition of monotonic furmctions is also monotonic. Since all the
operators of our programming language are monotonic, every program camposed
by means of these operators is monotonic in each of its components, Thus
if any comonent is replaced Dy a possibly better one, the effect can only
be to improve the program as a whole, If the new program is also more

efficient than the old, the berefits are increased.

3.2 Least upper tounds

we have sean that Pyud Is the best program worse than both & and g,
Suppose now that we want 2 program petter than botn A and 3. In general,

there will be no such program. Consider the two assignments

and x 1

These programs are incompatible, and there is no program better for all
purposes than both. If you want x to be 1, the second will be no good;
whereas if yoy want it to be 2, the first program will be totally

unsuitanle,

Let us now consider two nondeterministic programs

P = (x =1 wux =2 ux 1=71)
G:(x;:Zux::3ux:=4)

In this case there exists a program which is ostter than both, namely

In fact there exists a worst program that is better than them both; ang

we will denote this by PAY

PaQ

Two programs P and § are said to be compatible if they have a common

improvement and then their worst common improvement is denoted P ni),

This fact is summarised in the lau

(1) (P2R) ~ {i2R} = (Pnu)2F

Corallary P 2(Pn i) a 42(Pnuy)

The mcgrator N, wherever it is defirnec, is idempotent, symmetric
and associztive, and has unit ., foerthermore N and .{'.b + oistribute

through each other.

(2) Par = P

(3) Pn3 = unP

(4 PaliaR) = (Pad)nR

(5) L aF = P

(6) E\J(dﬂﬂuz) = (PUJ1}n(P UEJZ) provided that 4Q, and QZ are
competible

(7) (F'nﬂw)U(Pﬂ UZ) = ﬂn(u1u ﬁz) provided that P and J, are

compatible, and P and iy, are
L

are compatible

(8) {u;n "E)ani’ﬁ = (LJ1+D$q)n(J2*D:’>H) provided that @, and U, are
compatible

In the Following laws we abbreviate U x 5= Ej_ oy x:i& EEi | 1 g ng
Then we hawe
(9) x :=t and x := F are compatible iff

he o = c=r.

Furthermgre in this case we have
(x 1=2) A (x :=F) = (x i= E#_‘DE*X :=T)
(10) x:g {Eil isn} and xig {F__)j < m} are compatible iff
3

A, ~ A¥, = (frlre}n {Flo e} #00

145 Jem

Moreowver in this case

(xi€ [Ei)isn}) n (x:t{FJ\J‘&W}) - x:e({Ei[i sn}n {Fj[j smg)iﬁ‘/\ﬂc“jﬁ,ﬂrj%

1£0

el e Y BT e

E)+D*J_ an

Then (

and © = QF.

(11) assume that b => J¥
r*c;’..:.})

(x := F)* +.l. are compstible iff

tac) =3 (F}n {F14M
x t= E*D nc%()ﬂ:#-*(x

c%;.) =

ln this case
1= |:)+n;$'- e

((x
x g{[\1<]S)* %-.L ano w = {x e{r *<m < :!,_L.

(12) In general if p
they are campatible iff
afilieny 40

(bac) = ({E 1‘n
and ir this case
{)Jdm}))+bac{>((x=€{5i|i’-ﬁ})‘%b*
((x e{Fjljgm‘g)J:cij))

H lig
(x E(iEl\ = n}
operator generalises to any finite set of campatible programs

Tha n
(i oo 1}
Provided that there exists a prugram better than all of them, the laast
such program is denoteo s
N5 = Padn,,.nAT provided IR PF2R AUBR a«.. o T 2R
It follows that
(13) (¥ P es. F2R) = Ns2R provided (S is defined.
rom law (1) by induction on the size of the set S,

This may e provenp

28.

If F and , are compatible finite programs, then F A i can alsec be
expressed as a finite precram; Iindeed it can Le reduced ta narmal form

oy use of the rules given atiove.

It is important to recognise that A is not a combinator of our
pragrammirg languaye, ard that Fn. is not strictly a program, even
if © and 7 are compatible programs. For example, let P be a pragram
which assiang an arbitrary ascenging sequence of numbers to an array,
and let Yy be a preogram which subjects the array ta an arbitrary permu—
tation. Then P n g would be a program that satisfies bath these
specifications, and tormsequently it would sort the array into ascending
order. Unforturately, programming is not so easy. As in other branches
of engineering, it is rmot generally possible ta make many different
cesigns, each satisfying one reguirement of a specification, and then
just merge tham into a simple product satisfying all requirements.
Un the contrary, the enmgirmeer has to satisfy all reguirements in a
single design; anmd this is the main reason why designs and programs

get complicated,

But ro such problems arise with pure specifications, which may be
freely conmected by the humble conjunction "and", So Pad may be
regarded as an abstract program, or specification of a program, that
accomplishes whatever 0 accomplishes and whatever J accomplishes, and
doesn't fail except when both F and] would fail., Pa 3 (if it exists)

specifies & program wnich is for all purposes better thanm both B ang J.

3.3 Limits

Now suppose & is a non-empty (possibly infinite} set, and for Bvery pair of its
mempers § actually containe a member oetter tham both, Such a set

is saio to be directed.

cefinition, S Ls cirected nmeans

{s # H)« ¥r,ieS. JRes. RBR.yZR

Examples of directed sets are

{D} a set with anly one member
{p.puu} since Pul2F and Pul 2Py 0

{D,C].R} where P2 R A0 2R

[f § is Finite and directed, then clearly it conteins 2 member which is

better thar all the other members, and we haue

Ns is defined

ang S € §

If & is directed but infinite, then it does not necessarily contain
& best member. Neverthgless, the set has a limit Y § which as bafore
is the worst program better tham all mambers of §, The set $§ is like a
convergent seriss of numbers, which tends to a limit which is not a
member of the series. By selecting membars of the set it

is possible to approximate erbitrarily close to its limit,

Dne interesting property of the limit of a oirected set of programs
is that it is preserveo oy all trs operators of our grogramming language;

such operators are therefore said to be continuous.

(1) (Ns)ua = Nfpva|resy

(2) (Ns)epa = ﬂ{p*h*alpcs}
(3 (Nsya = Nfesa |pest

(4) as(ns) = Nfuse [Pes}

(5) b*(Ns) ﬂ{b*n]pes}

It is a fact about continuity that any composition of

continuous functions is also continuous. Let X stand for a program
and let F{X) be a program constructed solely by means of continuous
operators, and possibly containing occurrences of X, 1f § is directed,

it follows that

(6} F(Ms) = ﬂ{r(x) |xs_5}

344 Iteretion and recursion

Given a program P and a Boolean expression D we can defFine by

induction an infinite set

{Dn n 20}

uhere d = A

el (p;Qn)+b+ 11 for all nal

From thess definitions, it is clear that un is a program that behaves
like (b*F} up to n iterations of the body P, but on the nth iterstion

breaks, and €an do anything (L). Clearly therefore

24 for all n
“n T het

(wrich can be proved formally by induction)., Conseguently, the set

{Jnln aD} is directed; and by taking n large enough we can approximate

arbitrarily closaly to the behaviour of the loop(o*f)., The logp itself

can be dgefined as the limit of all its approximaticns

{1) b = ﬂ{anlnaD}

The same technique can be used to define a more gensral form of
recursion, Let X stand for the name of the recursive program which ue
wish to construct, and let F{X) define the intended hehaviour cf the
program, Within F{X), 2ach occurrence of X stands for e call on the
whole recursive program again. As before, we cen construct a series of

approximations to the behaviour of the recursive program

FO(IJ) = 4

Fn+1(d) = FEET(U)) for all nxD
Fn(.j.) behaves correctly provided that the recursion depth does not
exceed n, Because F is mcnotonic, and FD(L)2F1(-L), it follows that

Py 2 FM for all n

Consgquently {FH(J-) I naD} is » directed set, and we define the recursive

program {denoted by pk.F(X)) as its linmit

20}

In accordance with the explanation given ebove, iteration is a special

(2) perey = 07w

case of recursion
(3) o = px, (P;X)+D+II

The most important Fact about a recursively oefined program is
that each of the recursive calls is equal ta the whole progran again,

or more formally that }JX. F(Xx) is a sglution of the eguation

X = F(x)

3z.

This is stated in the law

(8) px. F{x) = Fpx. F(X))

Corallary

b*R = (P;(b*P))*b*II
Prasf BHS = F(nﬁ'n(d.)ln)_v.ﬂ})

= ﬂ[r(F”(L)){nao}

= ﬂ({r”“(*)ln:;tl}'u {+h
- ﬂ{f”(;) nZD}

= LHS

by definitian nF}J
by continuity af F

C s n+1
pefinition of F y 3.2(9
. 2
since F {a) = 4

dafinitien.

In general, there will be more than one solution of the equation

% = F(X). Indeed, for the equation X = X, absolutely every program is

2 solution, But of all the solutions, px.F(X) is the worst

{S) v =F(¥) = px.r(x)2Y

Praof. (y=F(Y}) = (L 2 ¥)alY = F(¥))
= (Fl)2F(M)) a (v = F{¥}))

7

=2 {F(4)2Y)

By induction it follows that for any n 30

Y= F(¥)

A

n

— F(”)(J.)

— (a2 y

as reguired,

F monotonic

— "y e e My 4y = Fiy

3,2(13)

4y Specifications

=& haye already in passing introouced two importsnt concepts

(1} A specification or abstract program describes the intended behaviour
of a program, but it is not itself & program beceuse it is expressed in

notations which are not permitted in the programming language

{2) A concrete program P may be better than en abstract program 53 sp
whenever you want a program that oehaves like S, the concrete program P
will serve your purpose, In this case, we cen say thet P setisfies the

speeification 54 or in symbols

52P

Tt is the duty of the programmer, when given @ specification 3, to fingd
a2 program P which satisfies §, anc to prove that it does sa. The practical

purpose of the laws in this paper is to help in this task,

In this sectiocn we shall introduce a calculus of specificetions tp
aid in the development of programs. Specifications do net have to be
executed by machime, so there is no reasor to confine ourselves to the
notations of a particulsr programming language. There is no resson to
insist gyen that all specifications must be satisfiable., fis an axtreme
example, we introduce the specification 7T , which cannot te satisfied

by @ny program whatsoever.

To accept the risk of asking the lmpossible has as its reward that
the n operator is defineg on all specifications: wherever A and 5 are
inconsistent, the result of (Rm5) is T , Furthermore, if S is any set

of specifications, then

34.

fIs is the specification which requires gll R in 5§ to be satisfied

US is the specification which requires some R in 3 to be satlsfied.

The fact that these are limits of the sets is expressed

(1) T2Us = VYRes. TA

(z)Ns 271 VRes m27T
Specifications opbey without gualification all the laws of 3,2,

1

The 2 ordering applies to specifications, just as it does to programs,
but it can be interpreted in a new sense. I[f 52T, this means that §
is a more general or weaker specification, and easier to meet than T: any
program that satisfies T will serve for 5, but maybe more programs will
satisfy 5, Thus & is the easiest specification, satisfied by any program,

and T is the most difficult (impossible, in Fact),

4.1 weakest prespecification

Abstract programs may be constructed in terms of all the operators
available {nor concrete programs, For example 53T is a specification
satisfied oy a program that behaves like S; and when that terminates
successfully, it behaves lika T, This fact is extremely useful in the
top—down dsvelopment of programs (slsa known as stepwise refinement).
Suppose, for sxample, that the criginal task is to construct a program
which meets the specification R. Perhbaps we can think of a way togecompose
this task into two simpler subtasks spacified by S and7.The correctness

of the decomposition can be proved by showing that
R25;T

Tris proaf should oe completed before embarking on cesign For the subtasks

S and T, Then similar methods can be used to finc programs F and } which

solve these subtasks, i,e,, such that

szp

and T2

1t follows immediately from monotonicity of seguential composition that

3y is @ program that will solve the original task A4, i.8.,
rR2Z(P;W)

Now suppose that in approaching the task R we can think of the
sacond of the two subtasks T, out we do not know the First subtask, It
would be useful simply to calculete S from T and R. UWe therefors define

the weakest prespecification TNR to be specification which rust be met by

the first subprogram 5 in order that the composition (5;T) will accomplisn

the origimal task A. This Fact is expressed in symbols

(1) ”R=2{TN\R)3T

(TN\\R) is a sort of left quotient of R by T§ the divisor T can be
cancelled by postmultiplication, and the result will be the same as R or

better.

Here are some examples of weakest prespecifications, where x is an

integer variable

(x t= 2 n x)\(x = dry) = (x = Z2xy)
because (x := 2xy; x 1= 2wx) = {(x 1= 4wy}
(x 1= ng)\(x 1= 3)

since 3 is odo, and carnot be the result of doubling an integer.

1}
_{

(% 1= 2x x)N\(x t= 3w ax:

"
j o8
—
n
—
x
.
i
[\S)
—

because (x 1= 3w x := 4) 2x =4

The lsw given above ocoes not uniquely define T™NR. FKut of all the

solutions For X in Lhe ineguality
R20%:;T)

the solution TN\R is the easiest to acrieve. Thus if you want to Find
such a solution, a necessary ang sufficient tongition ig that the

sglution should setisfy T\.—"c
(2) R=2057) = (T\\R}z2x

Thus in developing a sequential program to meet specification R,
there is ro loss of generality in taking T \R as the specification of
the left cperand of seguenti2l composition, given that T is the
specificstion of the right operand. That is why {t is called the

weekest prespecification.

The tpecificetion P\R, where P is & program, plays a role very
similar to 0ijkstra's weakest precondition. 1t satisfies the analogue

of several af his healthiness conditions.
1n the following three laws, P must be a program.

(3) IF you want to accomplish an impossible task, it is still impossible,

even with the help of P
P\t = T

{(4) IF you want to accomplish twc tasks with the help of P, you must

wrike a program that accomplishes ooth of them simulteneausly
PN A R2) = (PNR1) A (PNR2)

This distribubkive law extends to limits of arbitrary sets

hE_S}

PNy = N [D\R

37.

(3} Finally, ccnsider a set of specifications § = {Hi I igo} such
that

R,
Ri+'1 27

Than P\{Us5) = U[u\ni[i:;u}

The following laws are very similar to the corresponaing laws for

weakest preconcitions

6 The program I] changes nothing. Anything you want to achieve after I1
9 9

must be achieved befcre
ITNR = R

(7) 1IF you want to achieve R with the ai¢ of Pw @, you must achieve it

with either of them

(Fo@)NR = (PNR)A(a\R}

(8) If you want to achieve R with the ald af {Pju), you must achieve (iU \R}

with the aid of P
(P32)N\R = PN(U\R)

(9) Tre corresponding law for the conditicnal requires a new cperator an

specifications

(p4b+u)\ﬂ = (P\R) {5.{. (4N ")
where S%g * T specifies a program as follows: if b is true after
execution it has behaved in accerdance with specification S, and if b is
false afterwards, it has behaved in accordance with specification T,
P.f:t:+u is mot a program, even if P and J are; in fact it may not swven

be implementable: tonsider the example

X i= False+;:’rx i= true

38.

4,2 General inverse

The . operator has 2 dual /. LQ/S) is the weakest

specification of 2 preogram X sucr that
R 2(s5%)
Its properties ere very similar to thosa of / , for example
(1.aas;(R/3)
(z;r=(s3x) = (R/5)2x
(3‘,1'/p = T if ¢ is a program
(R aRISP = (R1/P)n{RZ/F)
(S}R/11 = R
Bir/(Puuy = (N/9)a(R/U)
(ma/ma)y = (R/AEY/ 4

The ueakest preapecification and the weakest postsveci fication are
in a sense the right and left inverses of seouential compasition. This
type of inverse can be given for any operater F which distributes through

arbitrary unions; it is defined as follous
-1
(g7 Ry = U {_p \ n?_r(;)}
This is not an exact Lnvarse of F, out it satisfies the law
=1
(9) AzF{F ("))

Proaof, =HS

F(U {F] Rgr(p)}) definition F-1

1

U{F(p)‘REF(P)} F distributes

S R sgt thecry

Since F-T(H) is the union of all solutions fpor X in the inequation
F2F(x), it must be the weskest {most general) solution
(10) R2F() = P2
The condition that F must distrioute throuzh U is essantial to
the existence of the inverse F'-‘I. To stou this, consicer the

counterexample

F(X) = x3x
P = X 1= x
i = X 1= =x

F is a function that may reguire wore than one execution of its sperand,
Jhen applied to the nom=deterministic cheice of two programs P or §, each
execution may make a different cheice, Consequently, F does not distribute,

as shown by the example

F{Pul) (Pul);{Pvl) definition F

(PeR) w (F3l) w(35P) w(533) disjunctive;

But F(E)uF(.)

H
—
b

n
x
b
-
1
X

—
[

—
x

i}

U
x
x
[0}

U
b3

—

Since P2F(P} anc P=F{4), it follows that

U {x IF zf(x)} 2 Fud by szt theory

=1
by (10} and the definitionm of F (P) wa could concluve
FRF[Fe3)
which is false, The contraoiction shows that F does not have an inverse,

pver in the weawx sense described by (10},

The i-uverse F_1(ﬂ) {wher it exists) could be of assistance in
the top=coyn development of a program to meet the specificatiom R,
Suppose it iz decicdeo that ths top-level structure of the program
is definec by F, Then it will be necessary ta celculate P {?) anc
use it as :te specification cf the component program X, in secure
knouwledze chat the final program F{x) will meet the original

specification R
R2F{X}
tnfortunatzly, the methno coes not generalise to a stoecture F owith

twa or more components; &ano so it would be necessary to Fix all but one

of the corponents before calculating the inverse.

5. Conclusian

The laws giver in this paper are Intended to assist srogravers
in reasoning eFffectively about their tasxs, including hoth the
development of progrsms that meet their specifications, and
optimisaticn whare necessary by algetraic trarmsformaticr. Tre czsic
insight is that programs themselves, as well as their specifications,
are mathemstical expressions, and can therefpre be used directly in
mathematical reascning in just the seme way as expressions cenoting
Familiar mathematical concepts such as numbers, sets, functions, groups,
categorias, etc. Tt is also very convenient that programs and
specifications are treated together in a homoseneaus framework; the
main cistinction between them is that programs are a subclass of
specification exprzssed im such severcly restrictec notations that they
can be input, translated, and executed by = general-purpase storeo—

program dipgital computer.

The expositlon of this paper 1s seriously incomplete In two
important respects, one theoretical and one practical, T7The theoretical
defect is that the laws are presented as self-evident axioms cr
postulates, intended to commanp assent From those who already uncerstang
what the laws are about. That is the way the lsws of arithmetic or
geometry are wsually taucht in schools., HNevertheless, as Russell points
out, "The method of postulation has many aovantages; trey are t-or same
as tha advantages af theft over homest toil" Eussall7. Russell toiled
hard to rive a definition of the concept of a number in terms cf nare
primitive concepts such 55 sets, and then to cefine tha gperatiors of
aritnmetic, and Finally to prove that these definiticns satisfy the laws

trat ue rever onubtecd Ir the First place.

1f vz were ta erpark cn similar toil in the case of secuential
prozrama a1d their soecifications, the relevant matheratical oefiniftions
can be faornylated within the slassical thaory of relations, This 1s
dane in a zempanion parcer i‘_';nare and F-g. Tre existence of such
oefinitiors, amo tneir uge to preove the laks eruymeratecd in this papsr,
yields & valuatle reassurance that the laws are consistent. Ffurtherrore,

it gives ziditicpal ins

ght into the mathematics of programming, and how
it msy be spplied in practice. 1n particular, it suucests additional

useful la

anc it astsblistes that & giver set of laws are complete
in the serse that soma wice and claarly cefirmed subset of all truths
about programming can be deduced cirectly Fronm the laws, wvithrout app=sl
to the possibly greater complexity of the ooFinitions, This could be =2
creat coefert to the practisimg pro_rarrer, wro does not have to know
the foundstions of the subject, any Tore t-en tne sciertist has to krow

aceut tne definition of real numpers in terts cf Oeoekicd cutbs.

Thr spcond serious deflioierecy of the psper is the practicol one,
Fuen aftar nearly cne hundres laws given in this peper, we are still a
long way “rom knowing now to arply the- cirectly to the gesicn of correct
anzg efficient procrans on the scele recuired Sy nocern tecrhrmoclogy. Tre
way aheaowill be to gain practical experience in the applicstion to
grogrammirg of the kind of mathematics introduced in this caper, ard to
continpue ‘he search feor c2eper anrg mate specific theeorems whick car he
used more simply on liriteo but mot tco narrew ranzas af groblen. That
is the way that applied matnematics, as well as pure mathematins, haue
made such gTeat procress in the last tuo tbrusang years., [f we follow
“rat exawle, perheps .8 may maks Fastsr progress, poth in thearstical

ressarch == 1r its oractical s-plicztion.

Aeferences

Bl

2. Yackus. Can Frogramming be liberated fram the won heuman style?
5 ¥

Comm ACF 21,8 (1578) pp. 613 - 641

f.w, 0ijkstra, A (iscipline of Frogramming, Frentice Hall (197¢},

C.4.R+ hoare amnd Fe, Jifeng. Jeakest Prespecifications.

Technical Monograph PRG-44 (1985)

R.A. Kowalski. The relation between logic programming and logic
specificat ion. Mathematical Lcgic ann Frogrammipg Languagyes.

Prentice Hall (1985) pp. 11-27.

X.X. Murphy. Prlvate Communication,

B. Russell. Introduction to Mathematical Philosophy. Allen and tnwin

(1913).

0.5, Scott, COutline of e Mathematical Theory of Computation,

Technical #onograph PRG-2 {19707,

