CopyTight (© 1985 lan Hayes

Oxford University Computing Laboratory
Programming Research Group

8-11 Keble Road

Oxford 0X13QD

England

Author’s address from September 1985:
Departiment of Computing Science
Queensland University

St. Lucia

Queensland 4067

Australia

o ~reshy Corouting LeDoratory
. o d
Qaloid OX71 5Q0

SPECIFICATION CASE STUDIES

lan Hayes
ACL il : | L*.:HT =
- g 22 FEB 200

R T S

R S
Lo d Fimcma ARy Tt

OXFoOl g

T

Technical Monograph P$G-4G 3033660054

July 1985

e o T S B Y i T o 3 . e v s

Oxford University Computing Laboratory
Programming Research Group

8-11 Keb
Oxford
England

le Road
0X13QD

It

The first paper is an elementary introduction to the basic ideas of using mathematics
to specify computing systems. It comsists of three specifications: a simple symbol
table, a file update, and a sort.

The second paper is a tutorial example which intreduces the schema language for
presenting specifications. The example is a symbol table for use in processing a block
structured language such as Algol 60.

The third paper is a specification of a sequential file system. It does not contain any
extra tutorial explanation of the sysiem being specified; it is an exampje of the siyle
of specification as would bhe written in practice.

The fourth paper comes from an industrial case study. It is interesting in that this
quite small specification contains the essential parts of a real system. It illustrates
some points about specifying real systems that are not covered in the more texthook
examples above.

The final paper outlines the basics of a diary system. It provides a quite abstract
basis of 2 diary system which could be developed into a more realistic system.

SPECIFICATION CASE STUDIES

Ian Hayes

Contents

Examples of Specification Using Mathematics
Block Structured Symbel Table Specification
Sequential File Specification

Flexitime Specification

Diary Specification

Z Reference Card: Mathematical Notation

Z Reference Card: Schema Notation

15

35

49

55

61

65

2 Specification Examples

A Symbol Table
The first example specifies a slmple symbol table. It demonstrates using 2
mathematical function to specify an abstract data type. We will specify a symbol

table with operations to update, Jookup and delete entries in the symbal table. We
will describe our table by a partial {unction from symbels (SYM) to values (VAL)

st : SYR -2 VAL

The arrow -» indicates a function from SYM to VAL that is not necessarily defined
for all elements of SYM {hence “partial”). The suhset of SYM {or which it is defined is
its domain of definition

dom(st }
If & symbol s is in the domain of deflinition of st (s € dom(st)) then st(s) is the
unique value associated with s (st(s) € VAL). The notation { s + v } describes
a function which is only defined for that particnlar s

dom{{ s — v }) ={5s}
and maps that s onto v

{sr— v i(s)=v
More generally we can use the notation

{xngl’ Xy PPy, L., X, Y, !}
where all the x_ s are distinct to define a function whose domain is

{ =y %20 .00, X,)

and whose value for each x, is the corresponding y,. For example, if we lel cur
symbels be names and values be ages we have the following mapping

st = { “John" = 23, “Mary” — 13 }

Specification Examples 3
which maps “John” onto 23 and “Mary” onto 19, then the domain of st is the set
dom(st} = { “John", “Mary” }
and

23
18

st{“John™}
st (“Mary™)

The range of st, rng(st}, is the set of values that are associzted with a symbol in
the table. For the example above

rng{st) = { 19, 23 }

The uotation {} is used to dencte the empty function whose domain of definition is
the empty set.

Initially the symbol table will be empty
st = {}

We are describing a symbol table by modelling it as a partial function. This use of a
function is quite different to the normnal use of functions in ¢omputiug where an
algorithm is given to compute the value of the function for a given argument. Here we
use it to describe a data structure. There may be many possible models that we can
use to describe the same object. Other models of a symbol table could be a list of
pairs of symbol and valne, or a binary tree containing a symbol and value in each
node. These cther models are not as abstract because many different lists (or trees)
cau represent the same fnnction. We would like two symbol tables to be equal if they
give the same values for the same symbols. However, it is possible to distinguish
betweeu two unordered list representations that as symbol tables are equal; on the
other haud, for the funciion representation different functious represent differeunt
symbol tables. The list and tree models of a symbel table tend to bias an
implemmentor working from the specification towards a particular implementation, In
fact, both lists and trees could be used to implement such a symbol table. However,
auy reascuing we wish to perform invelving symbol tables is far easier using the
partial function model than either the list or tree model.

4 Specification Examples

As some operations can change the symbol table we represeni the effect of an
operation by the relationship between the symbol table hefore the operation and the
symbol table after the operation. We use

st, st’ : SYH -» VAL
where by convention we use the undecorated symbol table {st} to represent the state

before the operation and the dashed symbol table (st /) the state after. The operation
to update an enbry in the table is described by the following schema

Update '
st, st’ : SYM -» VAL
s? : S5YH
v? @ WAL

st” = st @ { s? 4 v? }

A schema consists of two parts: the declarations (above the centre line) in which
variables to be used in the schema are declared, and a predicate (below the centre
line) containing predicates giving properties of and relating those variables. [u the
schema Update the secoud line daclares a variable with name “s?” which is the
symbol to be updated. The third line declares a variable with name “v?” to be the
value to be associated with s? in the symbol table. By convention names in the
declarations endiug io “?” are inputs and names ending in “!” will be outputs; the “?”
and “!” are otherwise just part of the name.

The predicate part of the schema states that it updates the symbol table (st} lo give a
new gymbel table (st) ju which the symbol s? is associated with the value v?. Any
previous value associaled with s7 (if there was one) is lost.

The operator @ (function overriding) combines two functions of the same type to give
a new function. The new function f @ g is defined al x if either f or g are defined

at x, and will have value g{x) if g iz defined at x, otherwise it will have value f(x)

dom{f @ g} = dom(f) U dom{g)

It

x € dom{g) = {f @ g)(x) = glx)

x € dom{g) ~ x € dom(f) = {f ® g)(x}

I

fi{x)

Specification Examples 5
For example

{ *Mary”—19, “John"—23 } @ { “John"+25, “George”—62 }
= { “Mary”—19, “John”+25, “George™—62 }

For the operation Update above the value of st “(x) is v? if x = 57, otherwise it is
st{x} provided x is in the domain of st. In our example we are only using ® to
override one value in our symbol table function; the operator @ is, however, more
general: its arguments may both be any functions of the same type.

The following schema describes the operation to lock up an identifier in the symbel
table

LooklUp |
st, st’ i SYH & VAL
s? : S5SYH
v! @ VAL

s? € dom{st) A
vl = st{s?) A
st’ = st

The second line of the signature declares a variable with name “s?” which is the
symbol to be looked up. The third line of the signature declares a variable with name
“v 1™ which is the value that is associated with s? in the symbol table.

The first line of the predicate states that the identifier being looked up should be in
the symbal table before the operation is performed; the above schema does not define
the effect of looking up an identifier which is not in the table. The second line states
that the output value i3 the value associated with s? in the symbol table st. The
final line states that the contents of the symbol table is not changed by a Looklp
aperation.

4 Specification Examples

The operation to delete an entry in the symbo! table is given by

Delete -
st, st’ : S5YM - VAL
s? . SYH

s? € dom(st) ~
st = { g7 } 4 st

To delete the entry for s? from the symhol table it must be in the table to start with
(s? € dom{st)). The resultant symhol table st’ is the symbol table st with =7
deleted from its domain. We use the domain sublraction operator 4 where

dom({s4f} = dom{f) - s
x € dom(s4f) = {(s4f){x) = f(x)

where f is a function and s is 5 set of elements of the same type as the domain of f.
Far example

{ "Mary”, “John" } 4 { “Mary”—19, "“John"+325, “George”H67 }
= { “Ceorge”62Z }

Exercise: In place of a single Update operation define two separate operations: Add,
to add a symboel and value if the symbol is not already in the table, and Replace, to
replace the value assoclated with a symhol already in the table.]

Specification Examples 7

File Update

The second example is a specification of a simple file update. It uses sets and
functions to model the file update operation.

Each record in the file is indexed by a particular key. We will model the file as a
partial function from keys to records

f : Key — Record

A traznsaction may either delete an existing record or provide 2 new recerd which
either replaces an existing recerd or is added to the file. The transactions for an
update of a file will be specified as a set of keys d? which are to be deleted {from the
file, and a partial function u? giving the keys to be updated and their corrssponding
new records. We add the further restriction that we cannot both delete a record with
a given key and provide a new record for that key. For example, if

f = { k1 - ri kZ - ra, kE = rs, k,} = rq }
d? = { ks kg }
u? = { kg g kg g}

then the resultant file f’ will be
f'= {k;Pr;, kP org ke & org)
Our specification is
File Update
f, £ : Key - Record

d? : P Key
u? : Key —» Record

d? € dom{f} »
d? n dom{u?) = {} »
f (d?4 f) @ u?

g Specification Examples

The original file f and the updated file f* are modelled by partial functions from
keys to records. The keys to be deleted (d?) are a subset of Key. Hence d? is an
element of the powerset of Key (the set of all subsets of Key), the notation P Key is
used te denoie the powerset of Key. The updates u? are specified as a partial
function from Key to Record.

We can only delete records already in the file f. Hence the set of keys to be deleted
d? must be a subset of the domain of the original file (d? € dom(f}). We are
precluded from trying to both delete a key and add a new record for the same key as
the intersection of the deletions with the domain of the updates must be empty
{d? n dom{u?) = {}). The resultant file f* is the original file f with all records
corresponding to keys in d? deleted (d74 f), overridden by the new records u?.

The last lineof File Update could have equivalenily been written
f’=d? 4 (f & u?)
Although it is not always the case that these two lines are equivalent, the extra
condiion that the intersection of d? and dom(u?)} is empty ensures their equivalence
io this case.
Lemma: Given d? N dom{u?) = {} the following identity holds
d? 4 (f @ u?) = (d? 4 f) & u?
Proof: Firstly we show the domains of the two sides are equal

dom{d?€4{ feu?)) dom{feu?} - d?

(dom{f) u dom{u?)} - 47

(dom{f) ~ d?} u {dom{u?} - d?}

il

(dom(f) - d?) u dom(u?)
as d? n dom{u?) = {}

Il

dom{d?4 f) u dom{u?)

U

dom{{d?4 f)eu?)

Speciflication Examples

Secondly, for any key k in the domain, the two sides are equal. We prave this for the

two cases: k € dom(u?) and k € dom{u?).
{a) Ifk € dom(u?) then
k € d?
(d?74(feu?)) (k) = (feu?){k}

= u?{k)}

and ({d?4f)eu?){k) = u?(k)

{b) Hk € dom(u?) then

(d74(feu?)) (k) = (fau?)(k)
= flk)

and ({d74f)eu?}(k) = (d?4f)(k)
= f(k)

as

as

as

as

as

as

as

dom(u?) n 47 = {}

k €& d?

=
]

dom{u?)

k € dom(u?)

k € dom{d?4(feu?))
k ¢ dom(u?}
k € dom(u?)

k € dom{d?q(feu?)) O

In the specification of File Update if we were not given the extra restriction then,

as specified in the last line, updated records would have precedence over deletions. I

the alternative specification were used then deletions would have precedence over

updates. It is sensible to include the extira restriction in the specification as it allows

the most freedom in implementation without any real loss of generality.

Exercise: Define an operation (File Add) to add a number of keys with 2ssociated
records to a file. T'he keys should not already be contained in the file.

10 Specification Examples
Sorting

The third example specifies sorting a sequence into nen-decreasing crder; it uses bags
(multi-sets) and sequences.
The input ard the output to Sort are sequences of items of 2 given type X which has
a total order “<,” defined on it. We model a sequence as a partial function from the
positive natural numbers (N*) to the base type X as follows

seq X & {5: NY - X 1 dom(5)=1..is| }
where [s] is the number of entries in the mapping s {which is also the length of the
sequence s). The potation of enclosing a list of items in angle brackets can be used te

comnstruct a sequence consisting of the list of items. For example

t=[a b, c]

{1 a 2+b 3+ c}

We can select an item in a sequence by indexing the sequeuce witk the position of the
item

s = [s(1), s(2), ..., s(ls!)]
The empty sequence is denoted by [].

The output of Sort must be in non-decreasing order. We define

Non-fecreasing
5 : seq X

¥ i,) : dom(s) -
(<)y = ={s() < s(1))

where “<," is the given total ordering on the base type X.

Specification Examples 11

The output of Sort must contain the same values as the input, with the same
{requency. We can state this property using bags. A bag is similar to a set except
that mltiple occurrences of an element in a bag are significant. We can model a bag
as a partial fungtion from the base type X of the bag to the positive inlegers (N*)
where for each element in the bag the value of the function is the number of times
that element occurs in the bag

bag X & X -» N
We use the notation [...] to construct a bag. For example
[,z 221 = {1—=1, 23}

The following gives scme examples of how sets, bags, and sequences (in this case, of
natural nonibers) are related

{1,2,2,2} = {1,2,2} = {2,1.2} = {1,2}

{z,1}

[1,2,2.2] # [1.2.2]

il

[z,1,2] # [1,2]

[z, 11
[1,2,2,2] # [1,2.2) # [2,1,2) £ [1,2] # [2,1)

In specifying Sort we would like to say that the bag formed from all the items in the
output sequence is the same as the bag of items in the input sequence. We introduce
the function items which forms the bag of all the elements in a sequence. Feor
example

items([]1) =[]
rtems([1]) = [1]
items([1,2,2]) = items([2.1,2]) = [1.2,2]
items{[1,2,3]) = rtems((2,1,3]) = [1,2, 3]

12 Specification Examples
More precisely
items : seqX — bag X
¥ s5: seq X ¢
items(s) = { x : rng(s) -

x = ({2 dom{s) | s(h) = x}|
1

Each elemepl x that occurs in the sequence is wapped onto its frequency of
occurrence in the sequence (i.e. the size of the set of positions in the seqnence that
have value x).

The specification of sorting is given by

Sort

n?,

wut! @ seq X

Non-Decreasinglout!/s] A
items(out!) = 1tems{1n?)

The output of the sort is non-decreasing (in the use of Non-Decreas ing ahove the
variable s has been renamed te out! so that the predicate of Non-Decreasing
applies to the output of the sort). The outpul sequence uiust contain the saine items
as the input, with the same frequency.

Sort jsan example of a non-algorithmic specification. It specifies what Sort should
achieve but not how to go about achieving it. The advantage of a non-algerithmic
specification is that its meaning may be more obvious than one which contains the
extra detail necessary to be algorithmic. The specification is given in terms of the
(defining) properties of the problem without biasing the mplementor towards a
particular form of algorithm, There are many possible sorting aigorithms. The
implementor should be allowed the freedom ta cheose the most appropriate.

Exeruse: Rewrite the sort specification {or the case of scrting a sequence with no
duplicates into strictly ascending order, [J

Specification Examples 13
References
1. J-R. Abrial, Programming as a mathematical exercise. In Mathematical Logijc
and Programming Languages (eds. C.A.R. Hoare and J.C. Shepherdson),
Prentice-Hall,»1985.
2. C. C. Morgan and B. A. Sofrin, Specification of the UNIX file system. IEEE
Transactions on Software Engineering, Vol. 10, No. 2, (March 1984),

pp. 128-142.

3. B. A Sufrin, Mathematics for system specification. University of Oxford
Programming Research Group lecture notes, 1983-84.

4. P. Haimos, Naive Set Theory. Springer-Verlag, 1974.

Solutions to Exercises

Symbol table

Add |
st,st " : SYH - VAl
s? = SYH
v? 1 VAL

s7 € dom{st) A

st’ = st U {s? P v?}
]
Replace .
st, st’ : SYH & VAL
s?7 + S'H
v? + VAL

5? € dom{st) A
st” = st & { 57— v? }

14 Specification Examples

File add
File Add .
f, f° + Key - Record
a? : Key — Record
‘ dom{a?) n dam{(f) = {} A
‘ f'=f U a?
i
Sorting

NoDupl 1 cates
s : seg X

¥, 5 ¢« dom(s) -
(v #) = (s{) # s(4))

Ascend) ng
s : seq X

¥ 1, 3 : dom(s) ¢
(o< jy = (st} <, s()))

Sart
in?, out! ¢ seq X

NoDuplicates[1n?/s] &
Ascending[out!/s] »
rng{in?) = rng{out!}

Block-Structured Symbol Table
Specification

Absatract

A specificalion of a symbol table for a block structured langnage is given. This
specification is intended to demonstrate how using the specification notation 2! 203 5

specification can be buillt from compoonents.

A simple symbol fable suitable for a single block is described first; it has operations to
look up, npdate and delete entries. This simple symbol table is the same as that given
in the section entitled “Exawnples of Specification Using Mathematics™ praceding this
section, The treatment given here differs from that in the earlier paper in that it
emphasises how such a specification can be built using the schema notation of Z° and
includes a treatmeunt of error conditions not given in the earlier paper. Readers not
familiar with the mathematics used in this specification should consult the earlier
paper for a more detailed explanation.

The second part of this paper specifies a block structured symbol table io terms of a
seqnence of simple symbol tables; one for each nested block, Operations are given to
search the environment for a symbol, and to start and finish nested blocks; the
operations on a simwple symbol table are upgraded to wark on the symbol tabie
corresponding to the smallest enclosing block.

Explanatious of notations in the paper are given in italics within the paper and a
sumnniary of the notations used is given in an appendix.

Copyright €& 1. J. Hayes 11 Jul 85 15

16 Block Structured Symbol Table
Symbol Table

A symbol table associates @ unique value {from the set VAL) with a symbol (from the
set SYM). The operations allowed on a symbol table are to:

= update the value associated with a symbol in the table; if the symbol is
not already in the table it will be added,

* look up the value associated with a symbol in the table, aud

« delele a symbol and its associated value from the table.
To specify an abstract data type for a symbol table we first give a model of
the state of a symbol fable and a description of the initial state, then we
specify each of the operations on a symbol table in terms of the relationship

between the state before an operation, the inputs to the operation, the outputs
from the operation, and the state after the operation.

The State

The state of a symbol table can be modelled by a partial function from symbols to

values
ST 2 SYM - VAL
Initially the symbol table is empty
sty & {1}
Operations

Each operation on a symbol table transforms a symbol table before (st} into a
symbel table after {st).

ST 2 [st, st” : ST]

The definition of each operation must include deciarations of the before and
after states of the operation; rather than write out these declarations in full in
each definition, we introduce a schema 45T that contains just these
declarations and include this schema in the definiticn of each operation as an

Block Structured Symbol Table 17

abbreviation for the declarations. The “A" (for “change”) in “A51" is just
parf of the name of the schema; we allow Greek letters in names. By
convention names beginning with “A” are used for schemas that contain before
and alter state components.

Error handling and the operation to look up a symbol do not modify the symbol table.
=5T 2 [AST | st” = st]

The schema =ST declares the before and after states (in 45T) and constrains
them to be equal; this schema describes the effect on the slate of inquiry-like
operations [such as loaking up a symbol in the symbol table) and error
handling; both of these do not modify the state. The “2” (for no change) in
“=8T” is again just part of the name. By convention names beginning with “=7
are used for schelnas which are written to express that there is no chinge.

An exira constraint may be added to the predicate part of a schema by
following the schema with a “|” followed by the predicate. The idditional
predicate is and’'ed with the existing predicate of the schema to form the
predicate of the resulting schema; in the case of 25T the existing predicate is
true (the default when no predicate is given as in 4&5T7). Expanding the
definition of =ST we get

=GT ¢

st, st : ST

st” = st

To look up the value v! associated with a symbol 57 we use

LookUp -
=5T
5?7 : SYM
vl o VAL

s? E dom{st) A
vl = st(s?)

18 Block Structured Symbol Table

The schema =5T is used in the definition of LookUp to declare the before and
after states {st and st’) and to constrain them to be equal. The convention of
using the =5T schema saves writing out all the state components and the

equality constraint explicitly.

A schema may be included in the declaration part of a schema; the declarations
of the included schema are merged with the other declarations and jts
predicates are and’ed with the predicates of the schema.

Looklp

—
sf, st’ : ST
s? 1 SYM
vl VAL
st’ = st A
s? € dom(st) A
v! = st{s?)

|

To update the value associated with a symbol we use

Update F
AST
s? :+ SYfH
v? + VAL
st = st @ { 57 4 v? }

This schema uses AST to include the declarations of the before and after states.

If the symbol was already in the table its old value is replaced by v7?;if it was not in
the tabie it is added.

Block Structured Symbol Table 19
To delete an entry @m the symbol table we use
Delete _

AST
s? : SYH

s? € dom{st) a
st’ = {s?} 4 st

Errors

LookUp and Delete are only defined if the symbol js present in the table. If the
symbol is not present an error is reported and the symbol table i3 not modified.

NeotPresent!

—
=ST
s7? : SYM
rep! : Report

57 & dom(st) A
rep! = “Symbol not present”

The schema =5T is included in the above schema to introduce the declaralions
of the before and after states and constrain them to be equal.

A conveation used within this specification is that schemas denoting errors

IR

have names ending in *'”; the is just part of the name,

Successful operations return a report of “0K".

Success 2 [rep! : Report | rep! = “OK” |

20 Block Structured Syinbol Table
The operations with error handling are

STLookUp 2 {Locklp » Success) ¥ NotPresent!

"

STUpdate Update ~ Success

I

STDelete 2 (Delete » Success) v NotPresent!

Either a Locklp operation can be successfully performed [if s7? € dom(st)),
in which case a report of “OK” is given, or the LookUp caprnot be performed
(if 87 & dom(st)), in which case an error report of “Symbol not present” js
given.

The cenjunction (») of two schemas is formed by merging tkeir declarations
(variables common to both declarations must have the same type) and and’ing
their predicates. Below we give expanded versions of the look up operation.
We do not normally find it necessary to expand such definitionps to understand
the specification but the expansions are intended tc help people who are not
familiar with the potation.

LookUp ~» Success

-~

=57

57? Y Y

v! : VAL
rep! : Report

s? € dom{st) A
vl = 5t{s?)
rep! = “OK"

In this example there are no common variables.

Bluck Structured Symbol Tzble 21

The disjuction (V) of two schemas is formed by merging their declarations
(variables common te both must have the same type) and or'ing their

predicate parts.

5TLookUp
‘ 1
=5T
57 : SYM
vl : YAL
rep! : Report

(s? € dom(st) ~

vl = st{s?) A
rep! = “OK”}
v
(s? € dom(st) A
rep! = “Symbol not present”)

In this example the declarations in 25T and the declarations of s? and rep!
are commaon and fave the same types, and hence can be merged. Note that no
constraint is placed on the value of v! returned in the error case.

Exercise 1: Give expanded forms of the schemas 5TUpdate and STDelete. []

22 Block Structured Symibel Table

Block-Structured Symbol Table

We will now describe a symbol table suilable for use in processing (e.g., compiling) a
block-structured language such as Algel 60. In such lapguages each variable
declaration i associated with a block and a variable may be referenced culy from
within the block with which it is associated. Blocks may be nested within other blocks
to an arbitrary level; each nested black must be completely euclosed by the block in
which it is included. For example, conaider the following fragment of Algol 60

begin A
integer x, y:

begin B
real y: integer z;

end A

The outer block A declares variables x and y of type integer. These variables may
be referenced anywhere within block A, except that the variable y of block A may not
be referenced within block B because there is a variable with the same name declared
in block B; within block B ihe outer (block A) declaration of y is “hidden™ hy the
declaration of y in block B. We refer to those parts of the program in which a
variahle may be referenced as being within the “scope” of that variable.

A symbol table suitable for sequential processing of a block-structured language
should support the scopiug rules of block-structured languages; it should have
operations for starting and {inishing blocks as well as operations to access, update and
delete entries jp the table.

Block Structured Symbol Table 23
The State

The simple symbol table described in the earlier part of this paper is suitable only for
keeping track of the variables of a single block. At a given peint in a program we
need to keep track of all the variables declared in all the blocks enclosing that point;
this can be done by assoclating a simple symbol table with each block enclosing the
point. To keep track of the order in which the blocks are nested we will arrange the
symbol tables into z sequence so that, if a block A encloses another block B, the
symbol table for A will precede the symbol table for B in the sequence. We can
model a block-structured symbol table by

BST 2 seq 5T
The first symbol table in the segueuce is for the outermost block enclosing a poiut.
In the example given above, the block-structnred symbol table within bleck A but
excluding block B (e.g., at the positions marked (1) and (3)) will be a sequence
contaiuing a single symbol table

[{ x = integer, y = integer }]

Witkin block B (e.g., at the position marked (2)) ile sequeuce contains twe symbol
tables

[{ x—integer, y—integer }, { y—real, z—integer }]

At auy point within a program at most one variable of a given name may be
referenced. We will refer to the variables that may be referenced at a given point,

u

along with their associated information, as the “environment” of that point. An

environmmuenl may be represented as a simple symbol table. In the example above, the
environment within block A but excluding block B {e.g., (1) and (2)) is

{ x = 1Integer, y ¥ integer }

and within block B it is equal to the symbol table for block A overridden by the
symbol table for block B

{ x » integer, y — integer } ® { y = real, z 2 Integer }

= { x = Integer, y — real, z — integer }

24 Block Structured Symbol Table
In general, if we have a biock-structured symbol table consisting of a sequence of
symbol tables the environmenlt is given by overriding the symbol tables in
sequence. Forexample, for the sequence

[sty, sty ..., st]
the environment is

st,; @ st; 88 ... & st..

We can define the distributed override operator @/ which extracts the environment
from a sequence of symbol tables by

8/ : seq ST — ST
e/[] = {}
8/ls 7 [t]) = (&/s) @t

Initially po blocks have been entered; heuce the block structured symbol table is the
empty sequence

bstyyr & 1)

Block Structured Symbel Table 25
Operations

The operations on a block-structured symbol table transforin a state before (bst)to a
state after (bst ").

8BST = [bst, bst’ : BST)
Some operations leave the state unchanged.
=AST 2 [&BST | bst’ = bst]

There are two operations which retrieve information about a symbel frem a
block-structured symbol table: BLockUp and BSearch. BLookUp lecks in the mosted
nested symbol table anly; it will be defined in terms of STLookUp. BSearch searches
for a symbol in the environment (i.e., the inost nested occurrence of the symbal in the
block structured symbol table).

BSearchg
=BST

s? : SYM
v+ VAL

s? € dom{@®/bst) A
vl = {(e/bst}{(s?}

When the start of a block is encountered a new (empty) symbol table is appended to

the sequence

BStart,
ABST

bst’ = bst ™ [styyr]

26 Block Structured Symbol Table

When the end of a block is encountered the last symbol table in the sequence is
deleted

BEnd, 1
ABST

bst # [] A
bst’ = front(bst)

We want to be able to perform the simple symbol table operations (STtooklp,
STUpdate and $TDelete) on the most nested (last) symbol table in the sequence.
These operations can only be performed provided the sequence is nom-empty, and
they only change the last symbol table in the sequence. The relationship between the
before and after values of the last symbol table in the sequence is determined by the
simple symbol table cperaticns.

The commen part of the three upgraded operations is given by

Upgrade

=
4BST
AST
bst # [] 4
front{bst’') = front{bst) A
st = last(bst) A
st = last{hst’) 1

The above description does not specify the relationship between the last
symbol table in the sequence before (st) and after {st’] an operation; we
have already described these relationships in cur definitions of the simple
symbol table operations. We can new define lhe upgraded symbol fable
operations in terms of the delinitions of the simple symbol table operations

given earlier.

Block Structured Symbol Table 27

The upgraded operations are given by

BLookUp 2 (STLockUp A Upgrade) \ AST
o]

>

BUpdateD‘ {STUpdate ~ Upgrade) \ AST

Bleletey; 2 (STDelete A Upgrade} \ AST

A schema may have a list of its components hidden by use of schema hiding
(“\"}. The declarations of the hidden variables are removed from the
declaration part of the schema and are existentially quantified in the predicate
part. If the second operand to “\" is a schema thern all the variables in the
declaration part of the second schema are hidden in the first schema.

The components of AST {st and st’) are hidden in the above definitions
because we wish to define the operations as working on before and after
states which are of type BST; the 4ST components are only used to make the
link between the specifications of the operations on the simple symbol table
and the part of the BST state that the simple operations are to be performed
en. The reason for introducing Upgrade is to allow the definitions of the
operations on simple symbol tables to he used directly in the definitions of the
operations on block structured symbol tables.

BUpdateg
_—
ABST
57 : SYM
v? 1 VAL
rep! : Report

(3 st, st’ : ST »
bst # [] A
fromt{bst’) = front{bst) »
st = last(bst) A
st =st & { 5?4 v?} A
rep! = “0R” A
st’ = last(bst’)

28 Block Structured Symbol Table

BUpdat ey may be simplified Lo

ABST
s? : 5YH
v? : VAL

rep! : Report

bst # [] A

front{bst’') = front{bst) A

last(bst’) = last(bst) @ { s? — v? } A
rep! = “OK”

Block Structured Symbol Table 20
Errors

The upgraded operations and BEnd will fail if the sequence iz emply

Empty! -
=BST
rep! : Report
bst =[] =~
rep! = “Not within any block”
1

The BSearch operation will fail if the symbol is not in the environment. If the
sequence is empty we give preference to the Empty! error, hence for this error we
require that the sequence is non-empty.

Notfound! |
=BST
s? : 5YH
rep! : Report
bst # []
5? € dom{®/bst) A
rep! = *Symbol not found”
]

The final definitions of the operations are

BSearch 2 (BSearch; A Success) v NotFound! v Empty’
BStart & BStartp; A Success

BEnd 2 (BEndg A Success) v Empty'

BLockUp 2 BlLookUpy v Empty’

BUpdate 2 BlUpdate; v Empty!

BDelete 2 BDeletey v Empty!

30 Block Structured Symbol Table

The expanded and simplified definition of BSearch is

=RST

s? : SYH

vl o VAL

rep! ! Report

{s? € dom{@/bst) A
v! = (@/bst){s?) A

rep! = “OK”}
v
{bst # [] »
5?7 & dam{®/bst) A
rep! = “Symbol not found”)
v
{bst = [] =~

rep! = “Not within any block™)

3

Exercise 2 Give an expansion of Blelete. [

Exercise 3: Define a search operation BlLocate that returns nol only the value
associated with a symbol but also the level of the innermost block in which it is

declared,]

Block Structured Symbol Table 31
References

. Abrial, J-R. The specification language Z: Basic library. Oxford University
Programming Research Group internal report, (April 1980).

. Morgan, C. C., and Sufrin, B. A, Specification of the UNIX file systtm. IEEFE
Transactions on Software Engineering, Vol. 10, No. 2, (March 1984),
pp. 128-142.

. Sufrin, B. A. Mathematics for systemn specification. University of Oxford
Programming Research Group lecture notes, 1983-84.

. Hayes, 1. J. Examples of specification using mathematics. Alvey Software
Engineering Newsletter, (January 1983),

. Morgan, C. C. Schemas in Z; A preliminary reference manual. Oxford
University Programming Research Group Distributed Computing Project
report, (March 1934,

32

Block Structured Symbol Table

Solations to Exercises

5TUpdate .
AST
s? 1 SYM
v? o YAL
rep! : Report

st = st ®{ s? = v?} A

rep! = “0K"
]
S5TDelete ,
AST
s? : SN

rep! : Report

{57 € dom(st) ~
st’ = {s? } 4dst A
rep! = “oK”)
v
(s? ¢ dom(st} A
st’ = st A
rep! = “Symbol not found”}

Block Structured Symbol Table

2. BDelate
ABST
s? + SYM
rep! : Report
-
(3 st, st’ : ST -
bst # [] »
frant{bst’) = front(bst) A
st = last(bst) A
{({s? € dom{st) A st’ = {s? } qdst A rep! = “OK")
v{s? € dom{st) A st’ = st A rep! = “Symbol not found™)
YA
st’ = last{bst’))
W
(bst = [] &
bst’ = bst A
rep! = “Not within any block™)

This is equivalent lo

BDelate

1
ABST

s? : SYM

rep! : Report

(bst # [] ~ s? € dom(last{bst)) A
front{bst’) = front{bst) A
last{bst’) = { s? } 4§ last(bst) A
rep! = “OK")

v

{bst # [] A~ s? ¢ dam{lest(bst)} A
bst’ = bst A
rep! = “Symbol not found”)

v

(bst = [] »
bst’ = bst A
rep! = "Not within any block”)

34

Block Structured Symbol Table

Blocate,
=857

57 : SYH
vl VAL
tevel’

: N

bst # {]

level! =

A

5?7 € dom{e/bst) A

max { 1 : dom{bst) | s? € dom(bst(:}) } A

vl = bst(leve! 1) (s™)

Blocate =

{BLocatey A Success) v NotfFound! v Empty!
a}

Sequential File Specification

Ian Hayes and Ib Holm Sgrensen

Abstract
This specification describes a file syslem with operations to
© gpen, close and abort access to a file,
o sequentially read and write an open file,

@ reposition, {ind out the current position, and find out the lenglh of an open
file, and

o delete an existing closed file.

The specification is organised as follows: the action of operations on an individual file
(Read, Urite, Reposition, Position, and Length) are described followed by the
related error conditions; these operations are then upgraded to specify their action on
the state of the whole file system (i.e. as operating on an Individual file in the larger
state); operations to open, clese and abort access to a file and to delete a file are
defined; error conditions for files being nonexistent, not open, or already oper are
defined and the final definitions of all the cperations, complete with error handling,

are giver.

Copyright © I. J. Hayes 11 Jul 85 35

36 Sequential File
Individual Files

We can represent the contentis of a file by a sequence of basic units

File 2 seq Unit
where Unit is the smallest addressable unit of information in a file {e.g., a byte).
Initially a fileis empty

Foleggr 2 I
When a file is in use {open) for sequential reading or writing we need to keep track of
how much of the file has been processed. We can model this by introducing two

sequences: the part already processed, and the remainder of the file.

OpenFile

contents,
processed,
remainder : File

contents = processed” rema:nder

The conlents of the file is the concalenation of the processed part and the remainder.
The current position in a file is the point between its two parts.

Operations

The operations transform a state before (OpenFile)into a state after (OpenFile”).
AdpenFile & OpenFile ~ OpenFile’

If the state of a fjle is unchanged by an operation we use

=0penFile 2 [AOpenfile | Openfile’ = OpenfFile |

Sequential File 37

A Read operation returns a sequence v! of up to n? ubits in length starting at the
current position in the file

Ready ,
AbpenF ile
n? : N
vl ¢ File
vl = (l..n?) { remainder A
processed’ = processed wv! A
contents’ = contents

1

The value returned is the initial part of the remainder of the file; if
Iremainder| > n? then the length of v! will be n?; if |remainder| < n? then
v! will be the whole of remainder. The current position moves to the ead of the
portion read. The contents of the file is unchanged.

The sequence read, concatenated with the final remainder, is equal to the initial
remainder

Read, = v! Tremaindec’ = remainder
A Urite operation changes a file by overwriting the initial part of the remainder of

the file with an input sequence v?. If necessary the file will be extended to
accomadate the extra information.

Hriteq .
A0penFile
v? - File
contents’ = processed” {remainder ® v?) A
processed’ = processed’ v?

The current position moves to the end of the sequence written. If the remainder is
empty before a Wr ite then the input sequence is appended to the end of thefile.

Hriteg | remainder = []
= contents’ = contents v?

38 Sequential File
Teo move to a particular position in the file we can use the Reposition operation
Repositiong

AlpenF 1 le
p? + N

p? € 0..jcontents| &
lorocessed’] = p? A
contents’ = contents

Provided p? refers to a valid position in the file, a Reposition will position the file
30 that the processed patt of the file is of length p?. The contents of the file is
unchanged.

To find out the current position in the file and the length of the file we use,

respectively
Pasitiong 2 [=OpenFile; p! : N | p! = |processed| }
Lengthp 2 [=0penFiie; nl + N | n' = |Jcontents|]

The corteuts and current position of the file are unchanged by both Position and
Length.

Exercise 1. Define an operation to truncate a file to the current processed part
leaving the file positioned at its end. [J

Errors

Sequential File

39

A Reposition can fail if the requested new position is outside the bounds of the file.

All other operations are total.

OutofBound
=0penF
p? : N

rep!

s
le

Report

rep! =

p? € 0..|contents| »

“Position out of bounds”

~

where Report 2 seq Char.

Successful operations return the report “OK”

Success £

[rep! : Report

The operations with error handling are

Read

Hrite

Repositian

Pesition

Length

n

[1b}

~

>

Read,

Hrite,
(Repasitiong

Positiony

Lengthy

A

A

A Success) v OutofBounds!

a2

| rep! = “0OK™]

Success

Success

Success

Success

40 Sequential File
Named Files

File names are sequences of characters.

A

Name 2 seq Char.

We will represent a file system by the currently open files (open) and a file store (fs)
which contaigs the contents of the closed files plus the contents of open files at the
time they were opened if they existed in the file store at that time; the latter are kept
so that a sequence of operations on a file tay be aborted and the file reverts to its
state prior to being opened. As we need to keep track of the current position of open
files each is represented hy an OpenFile; the files in the file store are just
represented by their contents.

FSys_ .
‘ spen : Name — OgenFile

i fs : Name -+ File

Initially a file system is empty
FSysiyir 2 [FSus | fs = {} A open = {}]
File system operations transform a state before (FSys) info a state after (FSys ‘).

AFSys & FSys A FSys’

Sequential File

41

The operations defined previously cn individual files may be used to operate on an

open file.
FSUpgrade
AFSys
fn? : Name
AlpenF 1 le

fn? € dom(open) A

OpenF 11e = open{fn?) A
apen’ = open & {fn? = CpenFile’} A
fs' = fs

The appropriate file, which must be open, is selected and updated by cne of the

operations on a file. The file store does not change.

The upgraded cperations follow

FRead,
Flriteg
FReposit iaong
FPositiong

FLengthg

(b

>

>

n

[+

(Read
(Hrite
(Reposition
(Position

{Length

A

A

FSUpgrade)
FSUpgrade)
FSUpgrade)
FSUpgrade)

FSUpgrade)

\ ADpenFile
\ AQpenFile
\ AOpenFile
\ ADpenFile
\ AOpenFile

42 Sequential File

The file operations defined so far are only permitted on open files. We need
operations to cpen a file, close a file (saving its contents in the file store), and ahort
use of an open file (uot saving its contents).

Open
AFays
fn? : Name

1 0penFile
fn? € dom{open} A
fn? € dom(fs} == contents = fs(fn?} A
fn? ¢ dom{fs) = contents = [] »
processed = [] A
open’ = open U { fn? ~— OpenFile } A
fs* = fs

The file mast not already be open. If the file exists the contents of the open file
become the contents of the file in the file store otherwise the open file is mitially
empty. The opened file is posiliozed at its beginning. The file store remains
unchanged.

Close
AFSys
fn? : Name
J fn? € dom(cpen} A

fs* = fs ® { fn? — open{fn?).contents } ~
’ open’ = { fn? } 4 open

The file must be open. The contents of the open file replaces any previous value {je.
the contents of the file at the time of the last open) in the {ile store. The file is deleted
from the open files.

Sequential File 43

Abort
AFSys
fn? : Name

fn? € dom({open) A
open’ ={ fn? } 4 open A
fs’ = fs

The file must be open. It is deleted {from the open files. The contents of the file store
remains unchanged. If the file existed in the file store before being cpened its
previous value remains in the file store; if it did not exist it still does not,.

If there is a system crash while the file system is iu use it is intended that the effect of
the crash should be the same as if an Abort operation was performed for each open
file.

Crash .
AFS
open = {} A
fs’ = fs
1

The final operation needed is that to delete an existing file.

Delete
AFSys
fn? : Name

fa? € {dom(fs) - dom{open)} ~
fs’ = {fn?} 4 fs »
open’ = open

The file to be deleted must exist in the file store and not currently be oper. The file
is deleted from: the {ile store. The open [iles do not change.

Exercise 2: Define operations to rename a file and to copy 2 file. Does the following
hold for your definitions? Rename = Copy 3 Deleteloldfn?/fn?] O

44 Sequential File
Errars
All errors leavehe {ile system unchanged
=FSysError 2 [AFSys: fn7:Name: rep!:Report | FSys’ = FSys]
If the file doesnot exist then Delete will fail.

FileNonExistent! \
zFSysError

fr? € dom(fs) A
rep! = fn?” “ does not exist.

If the file isopen Delete and Open will fail.

F:ieOpen!

=FSyskrror

fn? € dom(open) A
rep! = fn?7 * 15 open.”

If the file is nat open the operations on individual files and Close and Abort will
fail.

FileNotCpen!
‘ =FSysError

—
L fn? & dom{open) A

7]

rep! = fn? " “ not open.’

Sequential File

The operations with error handling are

FRead

FUrite

FReposit ion

FPosition

FLength

FOpen

FClose

FAbort

FDelete

A

1]

>

]

[

>

1]

n»

0

<

<

<

<

<

FRead,
FileNotOpen!

Flriteq
FileNotOpen!

FRepositiong
FileNotOpen!

FPositiong
FileNotOpen!

FLengthy
FileNotOpen!

(Open A Success)
FileOpen!

(Close A Success)
FileNotOpen!

(Abort A Success)
FrleNotOpen!

(Delete A Success)
Fi1leOpen!
FileNanExistent!

95

Note that for FDe lete, if the file did not exist and had been opened, the specification

allows either error message to be reported; this is an example of a non-delerministic

specification.

Exercise 3: Define the additional errors for Rename and Copy and give {inal

definitions of these two operations. [

46 Sequential File
Acknowledgementa

The above specification is based on a specification of an indexed file system written
by Ib Holmm Serensenfd]. That specification was itsell derived [rom an earlier
specification of a reliable file store written by Jean-Raymonde Abrial{l]. The above
specification has also been heavily influenced by the specification of the Unix file
systern written by Carroll Morgan and Bernard Sufrin|2].

References

1. Abrial, J-R. A Low Level File Handler Design. Oxford University
Programming Research Group working paper, (1680).

2. Morgan, C¢. C, and Sulrin, B. A, Specification of the UNIX file system. |[EEE
Transactions on Software FEngineering, Vol. 10, No. 2, (March 1684),
pp. 128-142.

3. Serensen, I. H. Specification and Design of a Filing System. Oxford University
Programming Research Group lecture notes, (1954).

Senuectial File

Solutions to Exercises

Truncat e
AlpenF i e

processed A

[l

processed’

rema I nder”’

Rename

AFSys
cldfn?, newfn? : Name

0ldfrn? € dom(fs) - dom(open} A
newfn? € dom(fs) U dom{open) A
fs® = {oldfn?} 4 fs U { nexfn?—>fs{oldfn?) } »

open’ = open

Copy
AFSys
oldfn?, newfn? : Name

oldfn? € dom{fs) - dom{open) ~
newfn? € dom{fs) U dom{open} A

fs' = fs U { newfn?—=fs(oldfn?) } A
open” = open

47

48

Sequential File

FileExists!
EFSyskrror

fn? ¢ dom(fs) »

rep! = fn? " “ already exists.”

FRename £ {Rename A Success)
FsleNonExistent {{oldfn?/fn?]
Filelpen' [eldfn?/fn?)
FileExists! [newfn?/fn?]
FileOpen! [newfn?/fn?]

< € < <

Ity

{Copy A Success)
FileNonExistent![oldfn?/fn?]
F:leOpen!|oldfn?/fn?]
FileExssts! [nenfn?/fn?]

v Filebpen! [newfn?/fn?]

FCopy

Flexitime Specification

Abgstract

This paper gives a simplified specification of an actual flexitime sysiem. It is
interesting far a mumber of reasons. 1i is quite brief and not all that complicated, and
gives some good examples of the power of using seb theory for specification. The
specification makes uze of a state which is far richer than that necessary for an
implementation; this approach has its rewards in an overall simplification of the
specification, The specification is also simplified by using an absolute lime frame
rather than one usiag times only within the current pay period.

Flexitime allows people o vary the hours they attend work (within certain bounds)
provided they work the required total number of hours within each pay period.
Keeping track of the time worked for each employee can be computerised by having
employeeg clock in when they begin work for the day and clock out when they leave.

Copyright © I. J. Hayes 11 Jul 85 49

50 Flexitime

State

We wilt only record workiug time to the nearest minnte.
Time 2 N - ju minutes

A period of tine can be represented by a set of (not necessarily contiguous) minutes.
Period 2 P Time

We can represent the standard working times for a pay period by a set containing all
the minutes between 9am and 5pm, excluding the lunch break from 12nocon to lpm,
for all the days in the pay period. In a similar way we can represent the range of
periissible lexitime working hours by a set of times. The function Standard_Hours
takes a time as argument and gives the set of standard working times for the pay
period emcomnpassing the time given as s argument. Similarly, the functien
Flexitime Hours gives the set of flexitinces in the period encompassiog the time
given as apargument.

Our model of the system will record the times worked for all tbe employees, plus the
time at which people currenily working clocked in. Each employee is assigned a
unique identifier from the set Id.

lexi
Standard_Hours,

Flexitime_Hours : Time — Period
worked : Id -+ Period

in : Id B Time

dom{in} & dom{worked)

Flexitime 51

Operations
Each operation transforms a state before (Flexi) to a state after (Flexi).

AFlex: 2 Flexi & Flex:’
Some operations do not change the state.

=Flex: & [AFlexi | Flexi” = Flex) |
Clocking in and out operations performed by employees involve them inserting their
unique (card) key into a special terminal which transinits the employees identifier and

the current time to the system. The system responds with an indicator of the
operation performed. The common part of the clocking operations is given by

__AClock ing |
AFlex
id? ¢ Id
t7? : Time
ind! : Response

id? € dom{worked} A
Standard_Hours’ = Standard_Hours A
Flexitime_Hours’ = Flexitime_Hours

A

where Response & { “ClockIn”, “ClockOut”, “ReadOut”, “Unknown™ 3}.
The identity of the employee must be known. Clocking operations do not effect
Standard_Hours or Flexitime_Hours,

52 Flexitime

An employee clocking in is given by

—LTockIng .
AClocking
1d7 € dom{in) A
1?7 € Flexitime_Hours(t?) A

in’ inu { 1d? = t? } A
worked” = worked A
ind! = “ClockIn”

The employee musé not have clocked in already and the current time must be in the
bonnds of the flexitime working hours for the current pay period. The employee is
clocked in 3 the given time.

An employee clocking out is given by

—ClockOutg ;
A&Clocking

1d? € dom{in) A
worked” = worked @
{ 1d7 = (worked(id?) u in(1d?).. (t?-1)) } A
in = {1d?} 4in A
ind! = “ClockedOut”

The employee must have clocked in. The minutes worked since clocking in are
credited to the employees time worked. Only the period that lies within flexitime
hours really counts towards flexitime but we have chosen to record the total working
time in this specification in order to simplify it and allow extensions to keep track of
overtime worked etc. The minutes worked are all thogse minutes from the time the
employee clocked in (although he may not have worked the whole of that minute)
upto but oot including the minute in which be clocks out (even though he has worked
part of that minnte). On average partial minutes not worked at clock in should cancel

out partial minutes worked at clock out.

Flexitime 53

On each transaction the system responds with the current credit or debit of time
worked by the employee within the current pay period, relative to the standard times.

_Horked |
AClocking
cr! : RelMinutes
cr! = Juworked’{id?} N Flexitime_Hours(t?)]
- |{ t : Standard_Hours(t?) | t < t? }|
i

where Relminutes 2 Z. The credit {cr!) is of type RelNinutes (relative minutes)
which is positive to indicate a credit and negative to indicate a debit. Only the period
of time worked that is within the flexitime hours for the current pay period counts.

The <locking operations in full are

ClockIn 2 ClockIng 4 Horked

>

ClockOut ClockOuty A Horked

If au employee not currently working inserts a card outside flexitime howrs they will
not be clocked in. However, they will receive an indication of the current time credit.

— ReadOut___
Wor ked

1d? € dom(in) A

t? € Flexitime_Hours(t?) A
ind! = “ReadOut” A

Flexi’ = Flexi

54 Flexitime

If an unknown key is inserted an error respouse is given

’fUﬂknown’ —
Flex)
d? 2 Id
ind! : Response

1d € dom{morked) a
ind! = “Unknown™

An adminisirative operation is required to add a new employee. The identily of new
employee ischosen from those not already in use.

tdd_Employee .
AFlex)
id! ¢ Id

id! € dom{worked) A

worked’ = worked U { id! = {} } A
n’ o= n A

Standard_Hours’ = Standard_Hours a

Flexitime_Hours’ = Flexitime_Hours
]

Acknowledpgement

This paper specifies a simplified version of a problem specified by Jolanta Imbert of
the GEC Research Laboratories, Marconi Research Centre.

Diary Specification

A diary records delails of events. It records when an event will take place and what
the event is. We will model an event by

Event s
when : Period
what : Information

where Period 2 P Time. A period is a, not necessarily contiguous, set of times. We
will not specify the structure of Informat ion here; it can be thought of as just text.

A diary consists of a set of events.

Diary 2 P Event

We will not put any constraints on the entries in a diary as we view a diary purely as
a mechanism for recording information about events.

Initialiy a diary is empty.

Draryryr & {2

Operations

Each operation on a diary transforms a state before (Drary) into a state after
Drary’).

dDiary & [entries, entries’ : Diary |

Soine operaticns leave the diary unchanged.

>

zDrary [ADhvary | entries’ = entries]

Copyright © I. J. Hayes 11 Jul 85 55

56 Diary
Two primitie operations on diaries are adding and deleting entries.
— Add,

Al ary
Event?

ertries’ = entries U { Event? }

— Deleter,
Ahary
Event?

ertries’ = entries - { Event? }

When querying a diary it is useful to extract all the events that overlap a given time
period.

— Query Period __

Hiary
at? : Perrod

entries! : Diary

entries! = { ev : entries | at? N ev.when # {} }

The above operation allows the input of any set of times as the period at?. In a
realistic diary system there would be a small language that is used for specifying time
periods; sich a language can be specified independently of the above and the time
period assiciated with an input strisg can be input to the Query_Per 1 od operation.

Diary 57

Another useful querying operation is to select all the events which match some

criterion.

— Query_Match

1
=Diary
match? : Event — Boolean
entries! : Drary
entries! = { ev : entries | match(ev) }
|

In a realistic diary system the function match?, which is az input to the above
cperation, would be specified accerding to a small input language which allowed such
cperations as pattern matching against the information field of an eveut and tests on
the time peried of an event.

Multiple Diaries
So far we have only a single diary. The system should be able to maintain mauy

diaries: cue for each person plus others for such entities as groups of people, rooms,
ete,

Diaries & Entity - Diary
where Ent 1ty is the set of all possible entity names.

Initially there are no diaries in the system.

Drariesyypr ¢ {3

58 Diary
The operations on individual diaries may be promoted to the multiple diary state by

—— Multiple -
AD.aries

e? : Entity

Aﬂlar‘g

e? € dom(diaries) »
entries = diaries{e?) A

diaries’ = diaries & { e?—entries’ }
I

where ADiaries 2 [diaries, diaries’ : Diarres }. The promoted

operationsare

[}

Add, (Multiple ~ Addg,) v ADrary

Deletey 2 (Multiple A Delete;,) \ &01ary
r 2

(Muitiple A Query_Period) N ADiary

i

Query_Per | ody
Query_Matchy 2 (Multiple A Query Match) \ ADiary

The diaries of a set of entities may be combined into a single diary.

— Comhine :
=Diaries
se? : P Entity
entries! : Diary

missing' : P Entity

missing' = se? - domi{d,aries) A
entries! = U { e: {se? n dom(diaries)) « diaries(e) }
|
where Z01aries ¢ [ADiaries | draries’ = diaries]. The diaries of all

those ectities In the set se? that exist are combined into a single diary. The entiljes in

se? that do not have diaries are reported in the set missing!.

Diary 59
Groups of Entities

So far we have a single diary assoclated with an entity. An entity would have its own
individual diary bul would also be interested in the diaries of all the groups it is a
member of. We can introduce a relation between entities representing group

membership.
Groups = Entity © Entity

Given a relation isingrp : Groups and an entity p, the groups of which p is a

member are these contained in the set

isingrpl{p}]-

Because the groups are themselves entities we can form supergroups froma number
of groups, etc. For example, the group of people employed in a division cozsist of the
groups of people in the departiments of the division.

An entity p will be interested in its own diary, the diaries of the groups it isa member
of, the diaries of the supergroups those groups are members of, and s0 on, In
mathematics we can use the (reflexive) transitive closure of the relation isingrp,
which we denaote by isingrp”, to provide a new relation: an entity is related to all
the entities whose diaries it is interested in.

__ Select_Entities
=Groups

e? : Entity

sel : [P Entity

se! |5ingrp'ﬂ{p}n |

where =Groups 2 [i1singrp, isingrp’ : Groups | 1singrp’ = 1singrp .

GO Diary
Note: if R is 2 relation of the form
R: X+ X

then its reflexive transitive closure R* is the smallest relation with the followiug
preperties for all x, y, z : X

x R" x
xRy = xRy)
xR'yayR 2z = xRz

To extract the combined diary that an entity is interested in we use

~

Combined_Diary 2 Select_Entities >> Combine

The set of entities selected by Select_Entities are input to the Combine
operation which combines the diaries of the entities that exist inte a single diary; any
of the entilies that do not have diaries are reported in the set missing!.

End note: The above specification only provides a basis for a diary system. Such
administrative operations as setting up new entities, removing entities, and setting up
and modifying the group membership relation are not covered.

Z Reference Card
Mathematical Notation
Version 2.1

Programming Reszearch Group
Oxford Uuiversity

1. Definitions and declarations.
Let x, %, be identifiers and T, T, sets.

LHS 2 RHS Definition of LHS as
syntactically equivalent to RHS.
x: T Declaration of x as type T.
)yt Ty oxpr Tor ow sox s T
List of declarations.
o Xgo .o, X, d T

2wy Ty =Ty o s ox T
2. Logic.

Let P, Q be predicates and D declarations.

1

P Negation: “not P?,

Pad Conjunction: “P and Q"

Pova Disjunction: “P or Q7.

P = Q0 Lmplication: “P implies 0" or

“if P then 0O

P < 0 Equivalence: 4P is logically
equivalent to0Q”,

¥x: TP
Uuiversal quantification:
“for all x of type T,P holds™,

Ix: T +«P

Existential quantification: “there

exists an x of type T such that P™,

' x T - P,
Unique existence: “there exists a
unique x of type T snch that P*.
23 x: TP A
~{3y: T | y#=x - PN}

Copyright © 1. J. Hayes 11 Jul 85

¥ "l:Tl: xthz; e xmlTn « P

“For all x of typeT,

xp of type T, . . . and
x, of type T_, P hulds.
3Ty % T o =T, « P
Similar to ¥,
A Ty % Tps o0 3 %27« P
Similar to ¥.
¥D|P«Q 2¢(vDh+P= 0}
30| P+«0 2(30+PFPnrQ).
t; = t; Equality between ters.

by # 2 oty = ty).

3. Sets.

Let 5, T and X be sets; t, t, terms; P a
predicate and D declarations.

t €5

t €5

cT

ScT

{}

{ty, tp
{x:T|
{(ty to

Ty x T x oL,
{xi Ty

- 61 -

Set membership: “4 is an element
of 5™,
2 -(t € 5).
Set inclusion:
2 (¥ x5+ xeTy,
Strict set inclusion:
2 ST A5 2T,
The empty set.
, by } The set
containingt,, 15, ... and t,.
P}
The set containing exactly those
= of type T for which P holds.
. t,) Ordered n-tuple
ofty.tz ... and 1.
x T, Caresian product;
the set of all n-tuples such that
the kth component is of type T,.

I TEN PR StR P I

The set of n-tuples]
(xy, %z, ... , %) with each
x, of type T, suchthat P holds.

{D I P «t)

The set of t’s such that given the

declarations 0, P holds.
{c.t }
g {01 true = t }.

F s Powerset: the set of all subsets
of 5.
F S Set of finite subsets of S:
2 {T: PSS | Tisfinite }.
snT Set intersection: given S, T: P X,
e {x:X | x€5axeT), .
SuT Set uaion: given 5, T: P X,
2 {x:X | xeSvxeT).
s -T Set difference: given 5, T: P X,
2 { X | x€5Axe€eT}.
n ss Distributed set inlersection:
given SS: P (P X),
2 {x:X | (¥5:55 » x € 5)}.
U 55 Distributed set union:
giver S5 P (P X),
& {x:X | (35:55 « x € 5}3.
i5] Size (number of distinct

elements) of a finite set,
4. Nuambers.

N The set of natural numbers

(non-negative integers).

N The set of strictly positive
nalural numbers:
2 - {0}
z The set of integers (positive, zero
and negative).
m. . The set of integers between m
and n inclusive:
2{ keZ | mgkak £n}.
mn S Mmimum of a set, S : F N.
mn S €5
{(fx : S « x 2 mn S).
max 5 Maximum of a set, S : F N.

max S € § A

(¥x : S » x € max S).

- G2-

5. Relations.
A relation is modelled by a set of ordered
pairs hence operators defined for sets can

be used on relations.

Let X, ¥, and Z be sets; x :+ X5 y + Y,

and R: X & Y,
X & ¥ The set of relations from X to Y:
2 P (X xY).
x Ry x is related by R to y:
2 {x, u) €R.
x oy 2 (x, y)
{ %7y, x2ys, x Y,)
The relation
IR CIPRUFD PR ¢ ST I
relating x; to yy, , and
x, toy,.
dom R The domain of a relation:
2 {x:X | (3y:¥Y = x R yl}.
rng R The range of a relation:
2 {y:¥ | (I:X = x R y}.
Ry, ¢ R, Forward relaticnal composition:
given Ry : X3Y; Ryi Y2,
2 { x:X; z:Z | (3y:¥ -
x Ry u ~yRyz)}
R, e R, Relational composition:
2R, ¢ Ry,
R Iuverse of relation R:
2 {y:¥; X | xRyl
1d X Identity function on the set X:
2 {x : X ¢+ x> x}.
R* The relation R composed with
itzelf k times: given R @ X < X,
R® 2 ,d X, R**! ¢ R* o R
R* Reflexive transitive closure:
22U {n: N+ R}
R" Non-reflexive transitive closure:
s U {n: W - R}
R{S) Image: given S : P X,
2 {ytY | (3Ix:S - x R oyl

S 4R Domain restriction to 5:
given 5: P X
2 {x:Xiy:Y | x€5 A x R y}.
S 4R Domain subtraction:
given S5: [P X,
2 (X -5) 4R,
RpPT Range restriction to T:
given T: P ¥,
2{x:X;yuzY | x Ry A yeT}.
RpT Range subtraction of T:
given T: [P Y,
R P (Y -T).
R; ® R, Overriding: given R, R, : XY,
2 {dom R, 4Ry} U R,

6. Functions.

A function is a relation with the property
that for each element in its domain there is
a uniqne element in its range related to it.
As functions are relations all the operators
defined above for relations alse apply to

fuactions.

X 2 Y The set of partial functions from

Xto¥:
2{f: X o VY|
{(¥x: dom f -

(Alys ¥« x £ y))).
X = Y The set of total functions from
XtoY:
g2 { f: X=»Y | dem f = X }.
X »» Y The set of one-to-one partial
furctions from X to Y:
2 {f: X » Y|
{(¥y: rng f -
(1 X v x fy)) }.
X = Y The set of one-to-one total
functions from X to ¥:
2{ f: X>vY | dom f = X }.
ft The function f applied to t.

{h x : X

(}\ Xqt Tl;

7. Orders.

LR -t)

Lambda-abstraction:

the function that given an
argument x of typeX such that P
holds the result is t.

2 {x: X | P +«xrt }

ioxg:r Ty I P+ t)
2 {xy: Ty oo it T, | P s
(g, .., %) =t}

partial _order X

total _order X

The set of partial orders on X.

2 { R: Xe3X) Vx,y,z: X -
x R x
XRgf\ng:ngA
xRyayRz= xRz

¥

The set of total orders on X.
2 { R: partial _order X |
¥x,y: X
x RyvuR x
1.

monotonic X <

- 63 -

The set of functions from X to X
that are monotonic with respect
to the order <, on X.
s {f X+ X|

x <y = f{x) < f{y}

I

8. Sequences.

seq X The =t of sequences whose
elelr aents are drawn from X:
= < A N0 |
dom A = 1..[A] }.
lAl The= lngth of sequence A.
[] The= mply sequence {}.
la), , cm]
2 { —=ay, , n—a)
[al, ’ anlg[bp B bm]
Coratenation:
= EE‘.’---: a,, by, ..., bl
(17 a=a"[] = A
head A 2 Adl).
last A 2 A{A]).
tarl [x] A oAl
front A7 [x 1 2 A.
rev [al, ay. , ah]
Re ~werse:
2 s, ..., 3, al,
. re~ 1) = 1.
FAA Di==stributed concatenation:
givren AA : seq{seq(X)),
i 2 AT TAA(TAAL),
ToA = 1
8/AR Da sributed relational
<o mposition:
gi=ven AR : seq (X & X),
2 AR(1) 5 ... 5 AR{IARI),

disjoint AS

3~7(] = 1d X.

Pairwize disjeint:

gi~wven AS: seq (P X),

] ¥ 1,4 ¢ dom AS « 1 #

= AS(1) N AS(y) = {}).

AS partiti «ons S

2 disjoint AS
& U ran AS = S.

|

Contiguous subsequence:
2 {(3AC,0: seg X -+
CTATD = B).

squash f Convert a function, f: N -+ X,

into a sequence by squashing its
domain.

squash {} = [],

andif f # {} then

squash f =
[f{1)] 7 squash({i1}4 f)
where | = min{dom f} eg.
squash {2+—A, 27+—=C, 4B}
= [A B, C]

Restrict the sequeuce A to those
items whose index is in the set 5:
2 squash(S 4 A)

Restrict the range of the
sequence A to the set T:

2 squash(A P T).

9. Bags.

bag X

[1
I[X1

Items s

The set of bags whose elements
are drawn from X;

2 X = N

A lag is tepresenied by a
fuuction that maps eack element
in the bag onto its frequency of
occurrence in the bag.

The empty bag {}.

x, 1 The bag

Xz, ... and x,

Xz, e '
containing x4,
with the frequency they occur in
the list.

The bag of itewms contained in
the sequence s:
e { x:irng s *

x| {1:dom s | s{1)=x}|

}

Z Reference Card
Schemna Notation

[For details see “Schemas in 27|

Programming Research Group

Oxford University

Schema definition: a scbema groups together

some

declarations of

variables and a

predicate relating these variables. There are

two ways of writing schemas: vertically, for

example

5 1
x : N
y : seq N
x < |yl
]

or horizontally, for the same example

Sa [x: N; y: seqg N | xgly| 1.

Use in signatures after ¥, %, {...},etc:
(¥S + y # [1) 2 (¥x:N; y: seq N |

tuple S

pred 5

Inclusion

u?[]).
The tuple formed of a schema's

xslyl -

variables.

The predicate part of a schema:
eg.pred S 18 x g jyl.

A schemz S may be included
within the declarations of a
schema T, in which case the
declarations of S are merged
with the other declarations of T
(variables declared in both S and
T must be the same type) and the
predicates of S and T are
conjoined. e.g.

T

S[ren/cld]

Decoration

-S

y : seq N

x € |yl ~z <x

1

The schema 5 withP conjoined to
its predicate part. eg.
(S | x>0} is
[x:N;y:seq N | xg|ylax>0].
The schema S with the
declarations D merged with the
declarations of 5. eg.
(5 ;2 :HN)is
[x,z:N; y:seq KB | xg|yl]
Renaming of components:
the schema S with the compenent
old renamed to new in its
declaration and every free use of
that old within the predicate.
eg.S[z/x] is
[z:M; yiseq i z < [y!]
and S[y/x, x/y] i
[y:N; xiseq N | y = |x|]
Decoration with subscript,
superscript, prime, etc.;
systematic renaming of the
variables declared in the schema.
e.g. 5" is
[:M; y:seq N[x'gly’l]
The schema S with its predicate
part negated. e.g. -5 is
[x:N; y:seg N | ~{x<lyl)]
The schema formed from
schemas S and T by merging
their declarations (see inclusion
above) aud and’ing their
predicates. Given
T2 {x: Ny z: PN | xe2],
5T is

S\ (Vl'

x N
g:seqN
z: PN

x€ lyl » x € 2

The schema formed from
schemas S and T by merging
their declarations and or’ing their
predicates. eg. S ¥ T is

x: N
y: seqg N
P M

x€ lyl vxez

The schema formed from
schemas S and T by merging
their declarations and taking
pred S = pred T as the
predicate.eg. S = T is similar
toS A Tand5S v T except the
predicate contains an “=” rather
than an “A” or an “v”.

The schema formed {rom
schemas S and T by merging
their declarations and taking
pred S & pred T asthe
predicate. eg. S ¢ T the same
as5 A T with “&” in place of
the “A”.

Voo e Vol

Hiding: the schema S with the
variables v, wv5, ..., and v,
hidden: the variables listed are
removed from the declarations
and are existentially guantified in
the predicate. e.g. S\ x is
fuiseg N | (3x:N « xzlyi)]

.66 -

A schema may be specified
instead of a list of variables; in
this case the variables declared in
that schema are hidden.

eg. {5~ T)Y\NS is

z: PN

(3 x: N; g seq N »
x € [yl A x € 2}

S P lvy, va o, v
Projection: The schema S with
any variables that do not occur
in the list vy, vy, ..., vy
hidden: the variables removed
{rom the declarations are

existenbially quantified in the

predicate.
eg. (S A T) P (x.y) is
-1
X o N
y : seq N
{3z : PN -
x g [yl » x € 2)
]

The list of variables may be
replaced by a schema as for
hiding; the variables declared in
the schema are used for the
projection.

The following convenptions are used for
variable name: in those schemas which

represent operations:

undashed state before the operution,
dashed state after the operation,
ending in “7" inpnts to the operation, and
ending in “V” ontputs {rom the operation.

The following schema operations only apply

to schemas following the above conventions.

pre S

post S

SaeT

Precondition: all the state after
componen ts (dashed) and the
ontpute (ending in “!7) are
hidden. e.g. given

S 1
x?, s, s°, y' N
s" =8 - x?Ayl =5
]
pre S is
L
x?, s : N
(s, y' :N-
s’ = s-x? Ayl = 5)
]

Postcondition: this is similar to
preccudition except all the state
before components (undashed)
and inputs {ending in “?”) are
hidden.

Overriding:

2 (S A —pre T) v T.

e.g. given S above and

The predicate can e simplified:

x?, s, s°, 4" :+ N

(s’ = 3—x? ay! = g
As 2z x7)

(s < x? A 5" = 3)

1

Schema compositica: if we
consider an internediate state
that is both the fim! state of the
operation 5 and the initial state
of the operation T then the
composition of S ind T is the
operation which relates the
initial state of S t¢ the final
state of T throughthe
intermediate state. To form the
composition of 5 ind T we take
the state after commponents of S
and the state before components
of T that have a basename” in
cominon, rename oth to new
variables, take theschema “and”
(#) of the resulting schemas, and
hide the new varibles.

eg. 5 3T is
1
x?, s, s,y N
(3 sg : N .
sg = s—x7 ty! =3 A
sg < x? A5’ = sg)

* . - .
basenaine is the name withany decoration

(#77, w17, “27 etc.) removed,

S>>T

Piping this schema operation is
similar to schema composition;
the difference is that rather than
identilying the state after
compenents of § with the state
before components of T, the
output compenents of § {ending
in “!M are identified with the
inputcomponents of T (ending
in “?") that have the same

baserame.

.68 -

