SPECIFYING THE CICS

APPLICATION PROGRAMMER’S INTERFACE

Ian Hayes

Technical Monograph PRG-47
July 1985

Oxford University Computing Laboratory
Programming Research Group

8-11 Keble Road

Oxford OX13QD

England

Copyright (€) 1985 IEEE for section entitled
Applying Formal Specification to Software Development in Industry

Copyright (©) 1985 lan Hayes

Oxford University Computing Laboratory
Programming Research Group

§-11 Keble Road

Oxford OX13QD

England

Author’s address from September 1983:
Department of Computing Science
Queensland University

St. Lucia

Queensland 4067

Austrafia

SPECIFYING THE CICS

APPLICATION PROGRAMMER’S INTERFACE

Ian Hayes

Contents

Applying Formal Specification to

Software Development in Industry . . . 1
CICS Temporary Storage. 31
CICS Interval Control 45
CICS Message System 67
Z Reference Card: Mathematical Notation . . 75

Z Reference Card: Schema Notation 79

Preface

This monograph contains papers produced as part of a joint project between IBM
(UK} Laboratories at Hursley, England and the Programming Research Group of
Oxford University into the application of formal software specification techriques to
industrial problems. The work documented comneists of specification of pars of the
IBM Customer Information Control System (CICS).

The first paper contains a description of the work carried ou}; this paper has been
published in the IEEE Transactions on Sofiware Engineering (February 1985).
A number of modules of the CICS command level application programmer’s interface
were epecified; these include the CICS Exception Handling which is documented in
the first paper and CICS Temporary Storage and Interval Control which are
described in separate papers. The paper on the CICS Message System was later work
not directly related to the other papers.

The work documented here was supported by research contract between IBM and
Oxford University and is published by kind permission of the Company.

i

APPLYING FORMAL SPECIFICATION

TO SOFTWARE DEVELOPMENT IN INDUSTRY"

ABSTRACT

This paper reports experience gained in applying formal specification techniques to an
existing transaction processing system. The system is the IBM Customer Information
Control System (CICS) and the work has concentrated on specifying a number of
modules of the CICS application programmer’s interface.

The uses of formal specification techmiques with particular reference to their
application to an existing piece of software are outlined. The specification process
iteelf is described ard a sample specification presented. The specificationa are written
in the specification notation Z, which is based on the notation of set theory from
mathematica.

One of the main benefits of applying specification techniques to existing software is
the questions that are raised about the system design and documentation during the
specification process. Some samples of the problems that were identified by these
questions-are discussed.

Problems with the specification techniques themselves, that were encountered in
applying the techniques to a comtnercial transaction processing system are outlined.

* This paper is a minor revision of the paper of the same title published in
tke IEEE Transactions on Software Engineering, volume 11, number 2
(February, 1985).

Copyright @) L. J. Hayes 1985, Copyright ©) IEEE 1985 1

2 Applying Formal Specification

INTRODUCTION

Oxford University and IBM United Kingdom Laboratories Limited are engaged in a
Joint project to evaluate the applicability of formal specification techniques to
industrial scale software. The project is attempting to scale up formal mathematical
methods 30 far used within a research environment to large scale software in an
industrial environment. This paper reports the experience gained so far in applying
these techniques to describe the application programmer’s interface of the 1BM
Customer Information Control System (CICS),

CICS is widely nsed to support online transaction processing applications such as
airline reservations, stock control, and banking. It can support applications involving
large numbers of terminals (thousands) and very large data bases (gigabytes). The
CICS Geueral Information manual (3} gives the following description.

CICS/VS provides (1) most of the standard functions required by
application programs for communication with remote and local terminals
and subsystems; (2) control for concurrently runring user application
Programs serving many online users; and {3) data base capabilities . . .

CICS is general purpose in the semse that it provides the primitives of transaction
processing, and an individual applicaticn is implemented by writing a program
invoking these primitives. The primitives are similar to operating system calls, but are
at a higher level: they also provide such facilities as security checking, logging and
€ITOT recovery.

CICS has been in use since 1968, and has undergone continuoua developrment during
its lifetime. In the original implementation, the application programmer’s interface
wag at the level of control blocks and assembler macro calls. This is referred to as the
macro level application programmer's interface. In 1976 a new interface, the
command level application programmer’s interface, was introduced. It provides a
cleaner interface which does not require the application programmer to have
knowledge of the costrol blocks used in the implementation of the system. The
command level interface is the subject of our work on specification.

CICES is supported on a number of [BM operating systems: DOB/VSE, MVS, and
MVS/XA, in such a way that application programs written using the application
Programmer’s interface may be transferred from one environment to another without
recoding. In addition, the command level interface supports a number of

Applying Formal Specification 3

programming |anguages: PL/I, Cobol, Assembler and RPG II. This is achieved by the
use of a preprocessor that translates programs containing CICS commands into the
appropriate statements in the language being used (usually a call on a CICS module).
Hence the application programmer’s interface provides a level of abstraction that
hides a number of significantly different implementations.

The command level interface is split up into a number of relatively independent
modules responsible for controlling various resources of the system. The formal
specification work has so far concentrated on specifying individual modules n relative
isolation. Of the sixteen modules comprising the command level interface three:
temporary storage, exceptional condition handling, and interval control, have been
specified. Temporary storage provides facililies for setting up named temporary
storage queues that may be used to communicate information between transactions or
as temporary storage by a single transaction. Exceptional condition handling provides
facilities to handle exceptions raised by calls on CICS commands in 2 manner similar
to PL/1 condition handling. Interval control provides facilities to et up time-outs and
delays, as well as to start a new transaction at a given time and pass data toit.

With the large number of CICS systems around the world, the usage of the CICS
command level application programmer’s interface is om a par with many
programming languages. As with programming languages, it is important that the
interface be clearly specified in a manner independent of a particular implementation.

USES OF FORMAL SPECIFICATION

The work reported in this paper deals with specification of parts of an already
existing system. Before considering the benefits of specification when applied to
existing software we will briefly review the benefits of specification in general. (For a
more detailed discussion gee [8])

In software development a fortnal specification can be used by
o designers ~ to formulate and experiment with the design of the system;

o implementors - as a precise description of the system being built, particularly if
there is more than one implementation;

4 Applying Formal Specification
© documentors - as ap unambiguous starting point for user manuals; and
© quality control - for the development of suitable testing strategies.

Using a specification, the designer of a system can reason about properties of the
system before development starts; and during development, formal verification that
an implementation meets ite speciication can be carried out.

When an existing system iz being specified there are both short and long term
benefita. In the short term perfortning the specification

1, uncovers those parts of the existing manuals that are either incomplete or
inconsistent, and

2. gives insights into the anomalies of the existing system and can suggest ways in
which the system could be improved.

In the longer term the specification can be used
1. for reimplementation of all or part of the system,

2. as a basis for discussing and developing specifications for changes or additions
to the system, and

3. to provide a model of the functional behaviour of the system suitable for
educating new staff.

Re-implementation may involve a new machire architecture, programming language,
or operating system, or a restructuring to take advabtage of multi-processor or
distributed systems. As the specification is implementation independent, it provides a
suitable starting point for each of the above alternatives.

When changes or additions to the system are to be made, new specifications can be
developed with reference to the previous specification. This process will give insights
into the effect of the changes and their interaction with existing parts of the sysiem.

As the specification is 2 formal document it provides a more precise description for
communicalion between the designers than natural language descriptions. This
should help to reduce misunderstandings between the people involved.

Applying Formal Specification [

Experimentation with specification provides a much quicker and cheaper method of
investigating a number of alternative changes to the system than implementing the
changes. On the other hand, hecause the specification is implementation independent,
it cannot provide direct answers to questions of how difficult the changes will be ta
implement, or their impact on the performance of the system. However, as it s at a
kigh level of abstraction it can give a better insight inte the interaction of changes
with other components of the system; it is just these high level interactions which get
lost in the detail of implementation.

While working predominantly at a more abstract level the specifier must be
experienced in implementation and should be aware of the implementation
consequences of his decisions. Those paris of the specification for which the
implementation consequences are unclear should be further investigated before
detailed implementation is begun.

THE SPECIFICATION PROCESS

The starting point for our specificatioti work was the CICS command level application
programmer’s reference manual [2]. The style of this manual is a combination of
formal notation describing the syntax of commands and informad English
explanations of the operation of the commands. We developed our initial specification
of a module of the system by reference to the corresponding eection of the manual.
The main goal was to come up with a mathematical model of the module that is
consistent with its description in the manual. This involves forming a crude initial
model of the module and extending it to cover operations (or facets of operations) not
initially dealt with, or refining or redesigning the specification as inconsistencies are
discovered between it and the manual.

In attempting the initial specification, questions arose that were not satisfactorily
answered by the manual. At this stage a list of questions was prepared and an expert
on that medule of the system (along with the source code) was consulted to answer
the questions according to the current implementation.

6 Applying Formal Specification
Questions can arise hecause
1. the manual is incomplete ar vague,

2. the mapual is not explicit as to whether possible special cases are treated
normally or not,

3. the marual is itself inconsistent, or

4. the chosen mathematical model is inconsistent with the manual in some small
way; either the model or the manual is incorrect.

As the system has been in use for some time the answers to the more straight{orward
questions about its operation have already found their way into the manual, Hence
most questions that arose in the specification process were rather subtle and required
reference to the source code of the module to be satisfactorily answered. Some of the
questions led to inconsistencies being discovered between the manual and the
implementation. These inconsistencies could either be errors in the manual or bugs in
the implementation. Which way they shonld be classified depends on the eriginal
intent of the designer.

The specification was also given to people experienced in formal specification who
gave comments on its internal consistency, style, and they suggested ways in which
the specification could be simplified or improved. They were also given a copy of the
relevant section of the manual to read after they have understood the specification,
and were asked to point out any inconsistencies they discovered between it and the
specification.

The apswers to questions and the review of the specification led to revision of the
specification which led to further questions and further review and so on.

Notation

The specification language Z [1, 6, 7] developed in the Programming Research Group
at Qxford University is the primary notation that has been used in this specification
work. The formal basis of the notation is elementary set theory. People familar with
set theory from mathematice should have little trouble understanding the
specifications. A summary of the notations used is given in appendix 2.

Applying Formal Specification 7

The style of the specification document is a mixture of formal Z and informal
explanatory English. The formal parts of the specification, given in Z, are surrounded
in the text by boxes so that they stand apart {from the explanatory surrcunds and
may be more easily found for reference purposes. To make a readable specification,
both formal and informal parts are necegsary; the formal text can be too terse for
easy reading and often its purpose needs to be explained, while the informal natural
language explanation can more easily be vague or ambiguous and needs the precision
of a formal language to make the intent clear. The informal text provides the link
between formality and reality without which the formal text would just be a piece of
mathematics. To create a good specification the structuring of the specification and
the composition and style of the informal prose are as important as the formal text.

The aim is to provide a specification at a high level of abstraction and thus avoid
implementation details. The specification should reveal the operation of the system a
small portion at a time. These portions can be progressively combined to give a
specification of the whole. This style of presentation is preferred to giving a
monolithic specification and trying to explain it; the latter can be rather
overwhelming and incomprehensible since there are too many different facets to
understand ar once. It is hoped that by giving the specification in 8mall porticns each
piece can be understocd and when the pieces are put together the understanding of
the parts that has already been gained can lead more easily to an understanding of
the whole.

For more complex specifications that are developed via numerous small steps
understanding the whale can be quite difficult, as one needs to remember the function
of all the parts and understand the way in which they are combined. In such cases it
can be useful to provide bath a portion by portion development of the specification
and an expanded monolithic specification as well. The latter is more assailable after
one has been through a piece by piece development and has an understanding of ita
various components.

8 Applying Formal Specification

A SAMPLE SPECIFICATION

Az a sample of the type of specification produced we will lock in detall at the
specification of exceptional condition handling within CICS. The exception check
mechanisms of CICS are similar to those provided by PL/1 [4) This module was
chosen for exposition because it is ome of the emaller modules in the system. The
manual entry on wkick the specification was injtially based is given in appendix 1 and
the notation used in this example i8 described in appendix 2. The specification given
here is a final product of a specification process deacribed in the previous section.

Exceptional Conditions Specification

Exceptional conditions may arise during the execution of a CICS command. A
transaction may either set np an action o be taken on a condition by using a Handle
Condition command, or it may specify that the condition is to be ignored by using
an Ignore Condition command. I{ a condition has been neither handled nor
ignored, then the default action for that condition will be used.

For example, to handle condition x with action y we can use
Hendie Condition{c=x, a=y)

where the keyword parameter “c=" gives the condition and “e=" gives the action.
To ignore condition z we use

Ignore Condition{csz)

We introduce the set CONDITION, which contains all the exceptional conditions that
may occur, and also containe two special conditions: success - the condition that
indicates that a command completed normally, and error - a catchall condition that
might be used if the exceptional conditioa that occurred is not kandled.

We also introduce the set ACTION which contains all actions that could be taken in
response to some exceptional condition. The exact pature of ACTION will not be
discussed in detail here. For each programming language supported by CICS it has a
elighily different meaning, but for all the languages an action is represented by a
labe] which is given control. There are five special actions used in this specification:
nil - jndicating a normal return (j.e., no action), akort - the action that abnormally
terminates a transaction, wait - indicating that the transaction is to wait until the

Applying Formal Specification je!
operation can be completed normally (e.g., wait until space becomes available), and
system - used to simplify the epecification of the Handle Condition command.

The State
The state of the exception controlling system can be defined by

Exceptions
Handler : CONDITION -+ ACTION

Handler {success) = nil

The mapping Handler gives the action to be taken for those conditions that have
been set up by either an Ignore Condition or Handle Condition command. The
handling action for condition success is always nif (i.e., return normally). The action
for other conditions i determined by some fixed function

Default : CONDITION — ACTION
We state two properties of Default:

Default{error) = abort
rng(Defeult) = { gil, abort, wait }

The default action for the special condition error is to abort and tbe only defaul
actions are nil, abort, and wait.

Thbe initial state of the exception handling system for a transaction is given by

_ Initieal
Except ions

Handler = { success nil}

Thbe initial state of the handler is to return normally if the operation completes
successfully.

10 Applying Formal Specification
Ag an example, if starting in the initial state the commands

Handle Condition{c=x, e=y)
Ignore Condition{c=z)

are executed, then the final state will satisfy

Handier = { x ~* y, z V¥ nil, success »* nil }
The Handle Condition sets up a mapping from condition x to action y and the
Ignore Condition maps condition z onto the nil action.
The Operstions
The two operations, Handle Condition and Ignore Condition, work directly on
the above state. We describe a state change using the following schema, which is

called “AExcept ions” (A for change).

Alxcept ions

Exceptions
Exceptions’

Exceptions represents the state of the exception handling system before an
operation and Except ions? the state after. (Appendix 2 contains an expansion of the
above schema.)

The operation Handle Condition is used to set up the actien, o, to be performed on
a particylar exceptional condition, c; it is defined as

Handle Condition
AExceptions
c : CONDITION
a : ACTION

¢ # success A e £ { nil, abort, wait } A
(a=system) — Handler’ = Handler @ { c — Defsault{c) },
Handler’ = Handler @ { ¢ m a }

Applying Formal Specification 1

The first predicate gives the pre-condition for the operation: the special condition
success cannot he handled, and the special actions nil, abort, and wait cannot be
given as handling actions. The second predicate describes the effect of the operation:
if the action to be set up is specified as system, then instead the default action for the
given condition will be set up as the handler for that condition; otherwise the supplied
action, a, will be set up. For example, if the following command is executed in the
initial state

Handle Condition{c=x, a=system)
where Dafault {x} = wait, the resulting state will satisfy

Handler = { x “* wajl, success ** nil }

The operation to specify that an exceptional eondition is to be ignored is given by

_— Ignore Condition

AExcept ions
c : COMDITION

c # success
Handler’ = Handler @ { ¢ =~ nj! }

The special coundition success cannot be specified in an Ignore Condition
command. The action to be taken on an igpored condition is to return normally (i.e.,

nil).

Exception Checking

Exception handling can take place on any CICS command except Handle
Condition and Ignore Condition themselves. We need to describe the exception
checking that takes place on all other commands. The exception checking process
determinea the action, a, ic be taken on completion of a command. The value of & is
dependent on the condition, ¢, returned by the command, and the current state of the
exception handling mechanism. In addition, any command may specify whether all
exceptions are to handled or not for just the execution of that command. In
describing the checking process we will include the Boolean variable handle to
indicate this. The following defines the (complex) exception checking mechanism

12 Applying Formal Specification

which is included in the definition of each operation {(other than Handle Condition
and Ignore Condition}.

—— Exception Check

1
Exceptions
handle : Boolean
c : CONDITION
a : ACTION
-handle — a = nil,
¢ € dom Handler — s = Handler{c),
Default{c) # abort — a = Default{c),
error € dom Handler — & = Handler{error},
e = abort
]

If exceptions are not being handled for the command {~handle) the action is to
return normally; otherwise the action is determined from the exception handler. If the
condition, c, has been ignored or handled (including the case where the handle action
was specified as system) then the corresponding handler action is used. Otherwise, if
the default action for the condition is not abort¢ the default is used, else if the special
condition error is hapdled its bandler action is used, otherwise the action will be
zbort.

QUESTIONS RAISED DURING SPECIFICATION

The questions raised about the system during the specification process are an
imporiant benefit of the process. They indicate problems either in the documentation
of the system or in its Jogical design, and provide the people responsible for
maintaining the system with immediate feedback on problem areas.

In writing a formal epecification one is creating a mathematical model of what is being
specified, and in creating such a model one is encouraged to be more precise than if
one were writing in a natural language. Because of the required precision, questions
are raised during the specification process that are not answered by reference to the
less formal manual. In fact, the task of formal specification is demanding enough to
raise most of the questions about the functional behaviour of the system that would

Applying Formal Specification 13

be ralsed by an attempt to implement it. The effort required for a specification,
bowever, is considerably less than that required for an implementation.

We will now discuss some of the questions that were raised during the apecification
work on CICS modules, It is interesting to note that most of the questions raised
required the expert on the module to refer to the source code lo give a conclusive
answer. We will begin with the questions about exceptional conditions, then a
question about interval control, and finally a question about the interaction between
ternporary storage and exceptional conditions.

Exceptional Conditions

We will first list some questions that were raised during the specification of
exceptional condition bandling and then examine one of the more interesting
questions in detail. All these questions were resclved in producing the specification
given in the previous section.

1. What is the range of possible default actions?

2, Is the default action for a particular condition the same for all commands that can
raise that condition?

3. Can the special condition error be ignored?

4. Is the action for condition error only used if the default system action on a
condition is abort ?

5. If executed from the initial state does the sequence
Hendle Condition(ec=x, s&=y)
il-liaa;dle Condition(c=x, a=system)
return the bandler to the initial state?
The reader is invited to try to answer these questions from the manual eniry given in
appendix 1 and then from the specification given in the previcus section. We will now

look in detail at question 5 above. It shows a subtle operation of the exceptional
conditions mechanism that is counter-intuitive.

14 Applying Formal Specification

In an earlier model of the Handle Condition coramand the following incorrect line
was used in the specification.

{a = system) = Handler’ = {c} ¢ Handler

That is, if the action is system then the entry for the condition ¢ is removed from the
handler {c € dom Handler’). The final model contains the line

(8 = system) = Handler’ = Handler @ { ¢ +* Default(c) }

In this version, if the action is system the entry in the handler for condition ¢ is set
up to be Default(c) (therefore c € dom Handler’).

To see the effect of the difference we need to look at the Exception Check
mechanism given in the previous section. If we use the second line above then the
action wher that exception c occurs will be Default (e} (assuming handle is true).
In the earlier moedel, however, the action also depends on whether a handler has been
set up for the special condition error: the action will be Default(c) unless
Default{c} is abort and error € dom Handler, in which case the action will be
Handler(error). The difference between the two versions is subtle and the reader is
encouraged to study the definitions of Hendle Condition and Exception Check
in order to underatand the difference.

The exception check mechanism is quite complex. None of the people experienced
with CICS who were questioned about exceptional condition handling were aware of
the preblem detailed above. It is interesting to conjecture why this ia so. The mesat
plausible explanation is that the operation of the exception check mechanism is
counterintuitive. For example, the sequence given in quesiion 5:

Hendle Condition(c=x, a=y)
Handle Condition{c=x, a=system)

does 1ot leave the exceptional condition handler in its initial state if the default action
for condilion x is abort and a handler has been set up for the gpecial condition
error; before the above sequence the error handler will be used on an occurrence of
condition x, buf after, the action Default{x} (i.e, abort) will be used on an
occurrence of x.

Applying Formal Specification 15

If the above sequence did restore the exception condition handler to its initial state,
then it could be used to temporarily handle condition x for the duration of the
statements between the Handle Condition commands. This form of operation is
more what people using the exceptional conditions module expect.

The Exception Check mechanism is so complex that most readers of either the
manual or the specification given in the previous section do not pick up the above
subtle operation unless it is explicitly pointed out in some form of warning. This is
probably a good argument in favour of revising exception handling to be more
intuitive.

The discussion aboul question 5 above also raises the point that a specification can be
incorrect. This case shows one advantage of getting a second opinion on the
gpecification and how it compares to the manual, from a person experienced in formal
specification. It is significant thal the reviewer reads the specification before reading
the manual. The reviewer's mental model of the system is thus based om the
mathematical model in the specification. When the reviewer reads the mannal looking
for inconsistencies with the specification, any questions that arise can be answered by
consulting the precise model given in the specification. This contrasts with the person
writing the specification who forma a model from the maoual and often has to consult
other sources to anawer questiong that arise. Getting a second opinion on the
speciication and how it compares lo the manual is an important iogredient for
increasing confidence in the accuracy and readability of the specification.

Interval Control

As another example we will consider one of the problems raised during the
specification of the CICS interval contrel module. Interval control is responeible for
operations that deal with the interval timer. The operations provided by interval
control can be split logically into two groups: those to do with starting new
transactions at specified times, and those to do with time-outs and delays.

In specifying a module of the system we define the state components of the module (in
the case of exceptional conditions there was only one state component, Handler).
The state components of interval control can be split inte fwo groups that are
concerned respectively with the two groups of interval control operations. For the
most part, operations only refer to or change components of the corresponding state.
One exception is the command Start (to start a new transacticn) which in some
circumstances changes the time-out state components. This can be congidered to be a
carefully documented anomaly of the current implementation. Both the

16 Applying Formal Specification

implementation and documentation could be simplified i the Stert command did
not destroy the current time-out. More importantly, removal of this interaction would
lead to a more useful time-out mechanism, as time-outs would not be affected by a
transaction start.

This anomaly is interesting as it pointa out an unwanted interaction between different
parte of a module. In attempting to write the specification this interaction stood out
because it iavolved the Stert operation using the time-out state. This form of
interaction between parts of modules tends to be pinpointed in the formal
specification process as the offending operations require access to state information
other thap that of the part to which they belong.

Twao further facts reinforce the view that the current operation of the Stert
command 5 not the most desirable: if the new transaction is to be started on a
different computer system to the one issuing the Start command, or if the start is
protected (from the point of view of recovery on system failure) then the start does
naot destroy the current time-out. Ideally we do not want to have to specify distributed
system and recovery effects individually with each operation. We would like to add
extra Jevels of abstraction to describe these effects for the whole syatem.

Intersaction Between Modules

Ae an example of an interaction between two CICS modules we will consider an
interaction between exceptional conditions and temporary storage. When temporary
storage runs out of space it can raise the exceptional condition nospace. This will be
processed in the normal way if it has been explicitly bandled; the default action,
however, is to wait unlil space becomes available.

Thus the specification of the temparary storage operations that can lead to 2 nospace
exception require access to the exceptional conditions state to determine whether or
not the nospace exception is handled; if it 18 handled it can occur, but if it is not, it
canaot. These operations would more simply be specified (and implemented) i they
had an extra parameter indicating whether or not to wait. It is interesting to note that
in the implementation such temporary storage commands are transformed into a call
with an additional parameter after the exception handling state has been consulted. It
ia also interesting that these commands were not correctly implemented if the
nospace exception were ignored.

Interactions between modules of the system are pinpointed during the formal
speciflication process (just as they would be in an implementation) a& an operation

Applying Formal Specification 17

from one module will need access to the state components of another. Any such
interactions discovered during the epecification process should be examined closely as
they indicate a breakdown in the modular structure of the system.

PROBLEMS WITH SPECIFICATION

This section will examine the problems encountered in applying the formal
specification techniques themselves - in contrast to the previous section, which
examined problems with the system being specified. The problems encouatered in
applying specification techniques can be split info communication problems between
the people involved, the general problem of achieving the “right” level of abstraction
in the specification, and more technical problems related to the particular
gpecification technique.

Communpication Problems

As specifiers from a university working with a commercial development laboratory we
faced a communications problem. Both parties have their own language: the specifiers
use the language of mathematics based on set theory, while the developera use
terminology and concepts apecific to the system which they are developing. The
communication problem is in both directions. This requires education of each party in
the language of the other.

In performing a formal specification the specifier needs to understand what is being
specified in order to be able to develop a mathematical model of it. To understand
the system he needs to read manuals and consult experts, both of which use IBM and
CICS terminology. Once a epecification is written the specifier would like to get
{eedback on its suitability from these same experts. This requires that they need to be
educated in mathematics to a level at which they can understand a specification. At
the current stage of the project the education has been more in the direction of the
specifiers learning about the system. In performing a specification of part of a system
the specifier of necessity becomes an expert on the functional behaviour of that part
(but not on the implementation of the part).

18 Applying Formal Specification
The “right” level of abatraction

In this context “right” means that a piece of aspecification conveys the primary
function of the part of the system it specifies and is not unduly cluttered with details.
Most importantly a specification should not be biased towards a particular
implemertation. However, getting the right specification also involves choosing the
most appropriate model and structuring the specification so that the minute details of
the component do not hide the primary fuaction.

We can use hierarchical structuring to achieve this. Details of some facet of a
component can be specified separately and then that specification can be referenced
by the higher level specification. Different cases of an operation {e.g. the normal case
and the erroneous case} can be epecified independently and combined to give a
specification of the whole.

The structure of a good specification may not correspond to the structure cne may
usge to provide an efficient implementation. In specification one is trying to provide a
clear logical separation of concerns, while in implementation one may take advantage
of the relationships between logically separate parts to provide an efficient
implementation of the combined entity. The intellectual ability required of a good
epecifier is roughly equivalent to that of a good programmer; however, the view taken
of the system must be different.

Technical Problems

The technical specification problems discovered in applying formal specification
techniques to CICS in particular were

1. putting together the module specifications to provide a specification of the
system as a whole,

2. specifying parallelism,
3. specifying recovery on system failures, and
4. specifying distributed systers.

We shall briefly discuss these in turn.

Applying Formal Specification 19

Putting modules together: Currently, three modules ocut of the sixteen modules
that form the application programmer’s interface have been specified and we now feel
we have enough insight into the system to consider the problem of putting the
gpecifications of modulea together. Each module has state components and a set of
operations that work on those atate components. Putting the modules together is
esgentially combining the states together to form the state of the system, and
extending the operations of the modules to operations on the whole system.

The problems enconntered in putting modules together were
1. avoiding name clashes when the modules are combined,

2. specifying the effect on the whole system state of an operation defined within a
module of the system, and

3. coping with situations in which an operation of one module refers to state
components of anotber module.

Parallelism: In our current specifications the operations are assumed to be atomic
operations acting on the state of the system. We have a sufficient underlying theory
to allow one to reason formally about a single sequential trapsaction. An area for
future research is to extend the theory to allow reasoning about the interactions
between parallel processes. The current specifications wil] still be nsed but they will
need to be augmented with additional specifications which constrain the way in which
the parallel processes interact.

Recovery: An important part of a transaction processing system is the mechanism
for recovery on failure of the system. The current specifications do not address the
problem of recovery. Againh we would like to augment the current specifications so
that recovery can be incorporated without requiring the existing part of the
specification to be rewritten.

Distributed Systema: A number of CICS systems may cooperate to provide services
to users. The main facility provided within CICS to achieve this is the ability to
execute certain operations or whole transactions on a remote system. While the
individual operation specifications could be augmented to reflect remote system
execution it was thought better to wait until we had a specification of the system and
extend that to a distributed system. To reason effectively about a distributed syatem
we need to be able to reason about parallelism.

20 Applying Formal Specification

CONCLUSIONS

Formal specification techniques have been successfully applied to modules of an
existing system and as an immediate benefit have uncovered a number of problems in
the current documentation as well as flaws in the current interface design. In the
longer term the formal specifications should provide a good starting point for
specifying proposed changes to the system, a more precise description for educating
new peraonbel, and a basis for improved documentation.

In part the reason we have been successful in applying our specification techniques
was that the modular atructure of CICS is quite good, and we have been able to take
advantage of this by concentrating on individual medules in relative isolation.

The questions raised during the epecification process are the main benefit in the short
term of applying formal specification techniques to existing software. They highlight
aspects of the system that are incompletely or ambiguously described in the manual,
as well as focusing attention on problems with its structure, for example, undesirable
interactions between modules.

In the longer term a formal specification provides a precise description which can be
uged to communicate between people involved with the system. The specification is
less prone to misunderstanding than less formal meane of communication, such as
natural language or diagrams. It can be used as a basis for a new specification
incorporating medifications to the original design, and it provides an excellent starting
point for people respousible for improving the documentation. (In another group at
Oxford work on incorporating formal specifications into user manuals is being done
by Roger Gimson and Carroll Morgan [5].)

The time required to specify a module of the system varied {rom about 4 weeks for
Exceptional Conditions to 12 weeks for Interval Control. The time required was
related Yo the size of the module (the number of operations, etc.) and also to the
number and severity of problems raised about the behaviour of the module. The sige
of a module epecification {in pages) turned out to be roughly comparable to the size of
the manual entry for the module. The specification sizes ranged from 4 pages
(handwritten) for Exceptional Conditions to 16 pagee for Interval Control.

The difficulties encountered with tbe epecification process itsell were the language
gap between unijversity and industry, and the problem of achieving the right level of
abstraction. There were also a number of more technical specification problems that

Applying Formal Specification 21

arose in applying the techniques: the problem of putting together module
specifications to provide a specification of the system as a whole, specilying
parallelism, specifying recovery on syatem failure, and specifying distributed systems.
These problems are areas for further research.

ACENOWLEDGEMENT

1 would like to thank IBM for their permission to publish this paper and reproduce
part of one of their manuals as appendix 1. Several members of the 1BM
Development Laboratory at Hursley, England assisted the author to understand some
parts of CICS; of special note are Peter Alderson, Peter Colling and Peter Lupton.

This work has benefited from consultations with Tony Hoare, CIiff Jones, and Rod
Burstall. Tim Clemeni was responsible for the initial specification of temporary
storage. Paul Fertig, Roger Gimsom, John Nicholls and Bernard Sufrin gave useful
comments on this paper. Finally,] would like to express my gratitude to Carroll
Morgan and Ib Holns Sgrensen for their help as reviewers of the specifications, and for
their instruction in specification techniques.

22 Applying Formal Specification
REFERENCES

{11 J-R. Abrial, “The specification language Z: Basic library”, Programming Research
Group, Oxford University, Oxford, England, Iaterna! Report, 1982,

[2] “CICS/0S/VS application programmer’s reference manual {Command level ", IBM
GCorp., 1980,

[3] “CICS/VS general information”, IBM Corp., 1980,

[4] “O8 PL/ checkout and optimising compilers: Language reference manual”, IBM
Corp., 1976.

[5] C. C. Morgan, “Using mathematics ip user manuals®, Programming Research
Group, Oxford University, Oxford, England, Distributed Computing Project
Technical Report, 1983,

[6] C. C. Morgan and B. A. Sufrin, “Specification of the Unix filing system™, IEEE
Trans. or Software Engineering, vol. 10, no. 2, pp. 128-142, March 1984.

{7] L H. Sgrensen, “A specification language”, in Program Specification (Lecture
Notes in Computer Science, Val. 134), Springer-Verlag, pp. 381-401, 1982.

(8] J. Staunstrup, Program Specification: Proceedings of a Workshop, Aarhus,
Denmark, August 1981 (Lecture Notes in Computer Science, Vol. 134),
Springer-Verlag, 1982.

Applying Formal Specification 23

APPENDIX 1

CICS/VS Version 1 Releaze 5
Application Programmer’s Reference Manual (Command Level)
Exceptional Conditions

Exceptional conditions may occur during the execution of a CICS/VS command and,
unless specified otherwise in the application program by an IGNORE CONDITION or
HANDLE CONDITION command or by the NOHANDLE option, a default action for each
condition will be taken by CICS/VS. Usually, this default action Is to terminate the
task abnormally.

However, to prevent abnorami termination, an exceptional condition can be dealt with
in the application program by a HANDLE CONDITION command. The command must
include the name of the condition and, optionally, a label to which control ie to be
passed if the condition occurs. The HANDLE CONDITION command raust be executed
before the command which may give rise to the associated condition.

The HANDLE CONDITION command for a given condition applies only to the program
in which it is specified, remaining active until the associated task is terminated, or
unti] another HANOLE. CONDITION command for the same condition is encountered, in
which case the new command overrides the previous one.

When control returns to a program from a program at a lower level, the HANDLE
CONDITION commands that were active in the higher-level program before control
was transferred from it are reactivated, and those in the lower-level program are
deactivated.

Some exceptional conditions can occur during the execution of any one of a number
of unrelated commands. For example, IOERR can occur during file-control
operations, interval-control operations, and others. If the same action is required for
all occurrences, a single HANDLE CONDITION IOERR command will suffice.

If different actions are required, HANDLE CONDITION commands specifying different
labels, at appropriate points in the program will suffice. The same label can be
specified for all caommands, and fields EIBFN and EIBRCODE f{in the EIB) can be
tested to find out which exceptional condition has occurred and in which command.

24 Applying Formal Specification

The IGNORE CONDITION command specifies that no action is to be taken if an
exceptional condition occurs. Execution of a command could reault in several
conditions being raised. CICS/VS checks thege in a predetermined order and ouly the
first one that is not ignored (by an ICNORE CONDTITION command) will be passed o
the application program.

The NOHANDLE cption may be used with any command to specify that no action is to
be taken for any condition resulting from the execution of that command. In this way
the scope of the IGNORE CONDITION command covers specified conditions for all
commands (until a HANDLE CONDITION for the condition is executed) and the scope
of the NOHANDLE opticn covers all conditions for specified commands.

The ERROR Exceptional Condition

Apart from the exceptional conditions associated with individual commanuds, there is a
general exceptional condition named ERROR whose defanlt action aleo is to terminate
the task abnormally. If no HANDLE CONDITION command is active for a condition,
but one is active for ERROR, control will be passed to the label specified for ERROR, A
HANDLE CONDITION command (with or without a label) for a condition overrides the
HANDLE CONDITION ERROR comwmand for ihat condition.

Commands should not be included in an error routine that may give rise to the same
condition that caused the branch to the routine; special care should be taken not to
cause a loop on the ERROR condition. A loop can be avoided by including a HANDLE
CONDITION ERROR command as the first command in the error routine. The original
error action phould be reinstated at the end of the error routine by including a second
HANDLE CONDITION ERROR command.

Handle Exceptional Conditions (HANDLE CONDITION)

HANDLE CONDITION condition [(lebel}]
[condition [(lebel}] 1]

This command is used to specify the label to which control is to be passed is an
exceptional condition occurs. It remains in effect until a subsequent IGNORE

Applying Formal Specification 25

CONDITION command for the condition encountered. No more than 12 conditions are
allowed in the same command; additional conditions must be specified in further
HANDLE CONDITION commands. The ERROR condition can also be used to specify
that other conditions are to cause control to be passed to the game label. if ‘label”
is omitted, the default action for the condition will be taken.

The following example shows the handling of exceptional conditions, such as DUPREC,
LENGERR, and so on, that can occur when a HRITE command is used to add a record
to a data set. DUPREC is to be handled as a special case; system default action (that
is, to terminate the task abnormally) is to be taken for LENGERR; and all other
conditions are to be handled by the generalized error routine ERRHANDL .

EXEC CICS HANDLE CONDITIONM
ERROR{ERRHANDL)
DUPREC{DUPRIN}
LENGERR

If the generalized error routine can handle all exceptions except I0ERR, for which the
default action (that is, to terminate the task abnormally) is required, I0ERR (without
a label) would be added to the above command.

In an assembler-language application program, a branch to a label cawsed by an
exceptional condition will restore the registers in the application program to their
values at the point where the EXEC interface program is invoked.

In a PL/1 application program, a branch to a label in an inactive procedure or in an
inactive begin block, caused by an exceptional condition, will produce unpredictable
results.

Handle Condition Command Option

condition [(Tabel) 1 f“condition™ specifies the name of the exceptional
condition, and “labe]” specifies the location within the program to be branched
to if the condition occurs. If this option is not specified, the default action for
the condition i8 taken, unless the default action 8 to terminate the task
abpnormally, in which case the ERROR condition occurs. I the option is specified
without a label, any HANDLE CONDITION command for the condition is
deactivated, and the default action taken if the condition occurs.

26 Applying Formal Specification

Ignore Exceptional Conditions (IGNORE CONDITION})

IGNORE CONDITION condition
[condition]

This command is used to specify that no action is to be taken if an exceptional
condition occurs. It remains in effect until a subsequent HANDLE CONDITION
command for the condition is encountered. No more than 12 conditions are allowed in
the same command; additional conditions must be specified in further IGNORE
CONDITION commands. The option “condition” specifies the name of the exceptional
condition that Is to be ignored.

Applying Formal Specification 27

APPENDIX 2
NOTATION

Schemas
A schema has the general form

— Name
Declarations

Predicetes

where the variable declarations are of the form
identifier : type
and the predicates give the properties of, and relationships between, the variables.

A schema may be used to describe either a state or an operation. To describe a state
the declared variables form the components of the state and the predicates give the
invariant properties of the atate, For an operation the declarations consist of the
initial state components, the final state components, and the inputs and cutputs of the
operation. As a convention the final state component names are dashed versions of
the initial state component names. For an operation the predicate part describes the
relation between the inputs, outputs, and initial and final states.

A schema 5 may be included within another schema T. This has the effect of
including all the variables declared in S in the declarations of T and of including all
the predicates of S in the predicates of T. A schema name may be decorated (eg.,
dashed). This has the effect of decorating in a similar way (e.g., dashing) all the
declared variables both in their declaration and their uses within the predicates. For
example, the schema AExceptions given in the sample specification in the body of
the paper is equivalent to

__ AExceptions
Handler : CONDITION -» ACTION
Hendler’ : CONDITION -» ACTION

nil

Handler{success)

Handler’ {success) nil

28 Applying Formal Specification
Logic

Within the predicate part we may use the operators

>
|

and

- or

- negation

implication

~ equal ity

~ imequality

¥>:T » P - for all x of type T, P halds

;T + P - there exists an x of type T such that P halds
€ = x,y - conditional expression

ﬂll“]

For the conditional expression if c is true the value of the conditional expression is x;
otherwise it s y.

Setas

We may construct a set by listing its elements within braces:
{xy z}

or by giving some property that only elements of the set have
{ x:T | P(x} }.

We may test the following
€ - membership, e.g., 1 € {1,2, 3}
€ - nan-memhership, e.g., 2 € {1,3,5)}
& - subset, e.g., {2,3} & {2, 3, 4}

and perform the following operations on sets, given A and B subsets of T
U - set union: A UB = {x: x € AV x € B}

T
n - get intersection: AN B = {x:T | x € A A w € B}
- - set difference: A - B = {x:T | x € A A x & B}

Applying Formal Specification 20
Punctions
We may declare a function f from aset A toaset B by
f: A—8B
For each element x € A, f(x) is the value of the functionf atx {f{x) € B).

I a function f is not defined for all elements of A (ie, f is a partial function) then
we Wwrite

f:A»B
The domain of definition of f
dom f
is that subset of A (dom f € A) for which the function f is defined.

The range of f is that subset of B {rng f © B) containing exactly those values
b € B such that there exista an x € dom f such that f(x) =b. Thatis

rngf={beB]| (I x: A+ fix)=D0b)}
The notation
{xg Py, x4, ..., %, 2y }

where each x, i distinct, defines a function whose domain of definition is the set of
x, '8

dom { x; V> yp, xz P up o, x, PPy b= X, X e Lx, }

and the value of the function at x| isy,:

{xg 2 oy 2y oo X, Py, M) E oy,

30 Applying Formal Specification
The notation

f e g
stands for function f overridden by function g (we assume functions f and g are of
the same type). The function f @ g is defined at 2 point if either f or g is defined at
that point:

dom (f @ g) = dom f U dom g

If g i defined at » then the value of f @ g is g{x); otherwise, f f is defined at x
the value of f ® g s f(x):

x € dom g = (f ® g){x)
x € domg A x € dom f = (f ® g}(x}

g(x)
fix)

‘The notation
s 4f
standa for the function f with all elements of its domain that are in the set s removed

dom (s 4 f) = (dom f} -~ s
x €dm (s §f) = (s ¢ f)x)=fix)

CICS TEMPORARY STORAGE

Abstract
Temporary storage provides facilities for storage of information in named “queues”,
The operations that can be performed con an individual queue are either the standard
queue-like operations (append to the end and remove from the beginning}, or
array-like randoim access read and write operations.
A Single Queue
An element of a queue is a sequence of bytes.

TSElem 2 seq Byte

A single queue may be defined by

75Q ,
ar : seq TSElem

p N

p g |ar!

The array ar contains the items in the queue. The size of the array is always equal to
the number of append operations that have been performed on the gueue since its
creation - independently of the number of cther (remove, read, or write) operations.
The pointer p keeps track of the position of the item which was last removed or read
from the queue.

The initial state of a queue is given by an empty array and a zerc pointer,

TSQ_Initial 2 {1 7SQ | (ar = []) » (p = Q)]

Copyright (&) 1.). Hayes 11 Jul 85 31

32 Temporary Storage

Operations

We will defline lour aperations on a single 7SQ. The definitions of these operations
will use the schema

ATSQ 2 TSQ A TSQ'
ATSQ (A for change) defines a before state TS0, with components ar and p

(satisfying o < lar!), and an after state TSQ’, with compeneuts ar’ and p’
(satisfying p* ¢ |ar’|). The definitions of the operations follow.

~ Appendg— .
ATS0
from? : TSElem
1item! : Z
ar’ = ar’ [from?] A
item! = lar'| A
p’ =p |

The new element from? (a “?" at the end of a name indicates an inpul) is
appended io the end of ar to give the new value of the array. The position of the
niew item is returned in (tem! (a “i” at the end of a name Indicates an oulput).
The pointer position is unchanged.

— Removeg
ATS0
into! : TSElem

p < |lar| A
p' =g+ 1~
inte! = ar{p’) A

PR

ar = ar

The pointer must not have already reached the end of the array. The pointer is
incremented to the next item in the queue and the value of that item is returped in
into'. The contents of the array is unchanged.

Tewmporary Storage 33

~ Hriteq
ATSQ
item? : Z
from? : TSElem

item? € 1..{ar| ~
ar’ =ar @ { 1tem? — from? } A

p’ = p

The position 1tem? must lie within the bounds of the current array. The item at that
position in ar is overridden by the value of from? to give the new value of the array.
The pointer position is unchanged.

~ Read,
4750
1tem? : Z

into! : TSElem

item? € 1, lar| A
into! = ar{item?) A

¢

p’ = item? A

;

ar’ = ar

The value of the jtem at position item?; which must lie within the bounds of the
array, is returned In into!. The painter position is updated to be item?. The array
is unchanged.

In the above, all the operations have been specified in terms of the array ar and
pointer p. While this is reasonable for the Read and Write operations it does not
show the gueue-like nature of the Append and Remove operations. Let us uow show
that the queue-like operations are the familiar cues. We can define a standard quene
by

Q@ 2 seq TSElem

34 Temporary Storage
The standard append to the end of a queue operation is given by
— Standard_Append

Al
from? : TSElem

‘

o = q [from?]

where AQ 2 [q, q" : Q].

The standard remove from the front of the queue operation is given by

_ Standard_Remove
AQ
into! : TSElem

’

qg=[inta'] Tq

The predicate in the above specification niay be unconventioral! to some
readers. It states thal the value of the queue before the operation is equal to
the value returned in into! calenated with the value of the queue after the
operatiop. This form of specification more closely reflects the symmetry
between Standard_Append and Standard_Remove than the more conventional

into! = head(q)
g’ = tail(q)

To see the relatiouship between slandard queues and temporary storage queues we
need to formulate the correspondence between the respective states.

_ QLike
g: Q
TSQ

q = tail¥{ar}

Temporary Storage 35

A standard q corresponds to the array ar with the first p elements removed. Given
this relationship between states we will now show the relationship between Append,
and Standard_Append. What we will show is that if we perform an Appendy with
initial state T5Q and final state TSQ" then the corresponding standard queue states Q
and Q" (as determined by QL ke and QLike’ respectively) are related by
Standard_Append. This can be formalised by the following theorem.

Theorem: Appendg A QLike A Qlike’ F Standard_Append

Proof:

1. g,q":seq TSElem; from?:TSElem from Qlike, QLike’ and Append,
2.9 = tail® {(ar’) from QL ke ”

3. = tailP{ar " [from?]) from Append,

a, = (tailP{ar)) " [from?] as p 5 |ar| from TSQ

5. = q [from?] from QL ke

6. Standard_Append from (1), (5} 0

We can now do the same for Remove.

Thecrem: Removey » QLike A QLike’ F Standard_Remove

Proof:

l. g,q":seq TSElem; into':TSETem from (Like, QUlLike’ and Remove,
2. p < |lar| from Removeg

3. g = tailF (ar) from QL ike

4. = [ar{p+1)] " (ta1 1™’ (ar)) from (2) and property of tail
5. = [into!] 7 (tail® {ar')) from Removep

6. = [into!'] " g’ from QL ke’

7. Standard_Remave from (1}, (B) 0

36 Temporary Storage
Errors

To allow for errors we can introduce a report to indicate success or failure of an
operation. If an error cccurs we would like the TSQ o remain unchanged. This can
be encapsulated by

— ERROR
ATSQ
report! : CONDITION

T5Q' = TSQ

where the set CONDITION contains all the errar reports plus the report Success. In
the operations described above there are three errors that can occur: trying to remove
an item from a TSQ with no items left to remove, trying to read or write at a position
outside the array, and running out of space to store an iten,

~ Noneleft!
ERROR

p = 15[’"' A
report! = ItemErr

~ Out of Bounds!
ERROR
item? : 2

item? & 1..|ar| A
report! = ItemErr

_ NoSpace!
ERROR

1

report! NoSpace

Temporary Storage 37
If the operations work correctly the report will indicate Success.
Successful 2 [report! : CONDITION | report! = Success]

The operations given previously can now be combined with the erroneous situations.
We will redefine the operations in terms of their previous definitions.

Append 2= (Appendy A Successful) v NoSpace!

Remove 2 (Removeg & Successful) v Noneleft!

Hrite 2 (Mriteg & Successful) v OutofBounds! v NoSpace!
Read 2 {(Ready; A Successful) v OutofBounds!

Note that NoSpace! does not specify under what conditions it occurs. The
specifications of Append and Hrite do not allow us to determine whether or not the
operation will be successful from the initial state and inpnis to an operation. This is
au example of a non-deterministic specification. It is left to the implementor to

determine when a NoSpace! report will be returned (we hope it will not be on every
call).

Named Queues

We now want to specify a system with more than one queue. A particular T5Q can be
specified by name and the above operations perfermmed on it. We will use a mapping
from queue names (TSQName) to queues. The state of our system of queues is given by

TS & TSQName —+ TS0
The iunitial state of the system of quenes is given by an empty mapping.
TS_Initial = {}
Our operations tequire updatiug of a particnlar named TSQ. We can introduce a

schema, Updatel, to encapsulate the common part of npdating for operations on
queues that already exist.

38 Tempaorary Storage

— Updat el
ATS
gueue? : TSQName
4750

queue? € dom{ts) »
TSQ = ts(queue?) A
ts’ = ts & { queue? +» TSQ’ }

where ATS 2 [ts,ts’ : TS]. Note that Updatel specifies that the named queue
{alone) is updated dut does not specify in what way it is updated. This is achieved by
combining it with the single queue operations to get the operation on named quenes.

In adding named queues we have added the possibility of a new error: trying to
perforim operations on non-existent queunes. This error is given by

HonExistent!
r ATS
queue? : T50Name
report! : CONDITION

queue? € dom(ts) »
ts’ = ts A
report! = QIdErr

Our operations, except AppendQ which is allowed on a noo-existent queue, can now

be redefined in terms of our previous definitions.

1>

Removel 2 {UpdateQ » Remove) \ ATSQ
v NonExistent!

Hritell 2 (Updatel » Hrite) \ ATSQ
¥ NonExistent!
ReadQd 2 (UpdateQ A Read) \ ATSO

v NonEx istent!

The temporary variables m ATSQ (ar, p, ar’, p’)ore hidden in the signatures of

Temporary Storage 39

the final operatioms and the operations inherit the errors from the eqnivalent single
queue operations.

A queue is created by performing an Appendl operation on a queue that does not
exist. The following schema describes the creation of a queue.

_ Createll |
ATS
queue? : TS5OName
TSQ_Initial
TSQ

queue? € dom(ts) A
ts’ = ts U { queue? — TSQ’ }

Again the relationship between T5Q_Inital (ar, p)} and TSQ' {ar’, p’} is not
defined within this schema. This is supplied by Append in the following definition

AppendQ £ ((UpdateQ v Createfl) A Append) \ ATSO

Note that for a non-existent queue, if an error occnrs (i.e. a NoSpace condition), then
an empty queue will be created.

In addition to these promoted operations on named queues we have an operation to
delete a named queue.

- Deletel,
ATS
queue? : TS50Name
report! : CONDITICN

aqueye? € dom(ts) A
ts’ = { queue? } 4 ts ~
report! = Success

An exception occurs if the quene to be deleted does not exist; Deletel] hecomes

Daletell 2 Deletell; v NonExistent!

40 Temporary Storage

A Network of Systema

Temporary storage quenes may be located on more than one system. Let us call the
set of all possible system identifiers SysId. We can represent tewporary storage
quenes on a network of systems by

NTS 2 Sysld -+ TS
For a network
nts : NTS

dom{nts) is the set of systems that share temiporary storage quenes and for a system
with identity sysid such that sysid € dom{nts), nts(sysid) is the temporary
storage state of that system. The operations on temporary storage queues may be
promoted to operate for a network of systerns by tbe following schema.

- Netuork
ANTS
sysid? : Sysld
ATS

sysid? € dom(nts) A
ts = nts{sysid?) »
nts’ = nts © { sys1d? M ts’ }

where ANTS & [nts,nts’: NTS]. As with promoting the operations to work on
named gueues the above schema only specifies which system is updated but not how it
is updated. This will be supplied when this schema is combined with the definitions of
the operations on a single system.

Temporary Storage 41

Network operation also introduces the possibility of an error if the given system does
not exist.

— NoSystem!
ANTS
sysid? : Sysld
report! : CONDITION

sysid? ¢ dom(nts) »
nts’ = nts A

report! = SysIdErr

The operations on a multiple system are given by

AppendONy 2 (AppendQ ~ Network} \ ATS
o]
v NoSystem!

RemovelN, 2 (Removel A Network) \ ATS
v NoSystem!

ReadQN, 2 (ReadQ & Network) \ ATS
v NoSystem!

i

UriteQNg (HriteQ & Network) \ ATS

v NoSystem!

The sysid? and gqueue? name supplied as inputs are not necessarily the ones on
which an operation takes place. A queue name on a given system may be marked as
actually being located on another (remote} system, possibly with a different name on
that remote system., We will model this by the following function which takes the
input pair of sysid® aud queue? name and gives the corresponding actual sysid!
and queue! name con which the operation will be performed.

remote : (Sysld x TS0Name) — (Sysld x TSQName)

42 Temporary Storage

In many cases the input sysid? and queue? name are the actual system and queue
name; in these cases remote will bebave as the identity.

We will use the foliowing schema to incorperate remote into the operations.

~. TSRemote |
sysid?, sysid! : Sysld
queue?, gueue! : TSUName

(sysid!, queue!) = remote{sysid?, queue?)

H

The outputs, sysid! and queue!, of TSRemote form the inputs to the operations. 1f
a sysid? parameter is supplied then the operations on temporary storage queues are
defined by

AppendlN; 2 TSRemote >> AppendiN,
RemovellN;, & TSRemote >> RemovelN,
ReadN; 2 TSRemote >> ReadON,

HriteQN; & TSRemote >> HritelN,

If no sysid? parameter is given then the operations are given by

AppenddN, & AppenddN, {cursysid?/sysid?)
RemovelN, £ RemovelN;[cursysid?/sysi1d?]
ReaddN, 2 ReadQN;[cursysid?/sysid?]

HriteQN, & HritelN,[cursysid?/sysid?]

That is, the sysid? parameter is replaced by a parameter giving the identity of the
current system (the system on which the operation was initiated).

Temporary Storage 43
A note on the current implementation

Each system keeps track of the names of queues that are located on other (remote)
systemis and for each remote queue the identity of the remote system and the name of
the queue on that system. It is possible that the referred request could be fora queue
name that is also remote to the referred system, in which case the request will he
referred on to yet another system. To find the system on which the queue actually
resides we need to follow through a chain of systems until we get te a system on
which the queue name is considered local. We can model the implementatien by the
{unction

rem : (SysId x TSQName) + (Sysld x TSUName)
which for a sysid and queue name gives the sysid and queue name of the next link in
the chain; if a sysid and quere name pair is not in the domain of rem then the chain
is finished. The correspondence between rem and remote is given by

remote = repeat rem

where repeat applies the function rem repeatedly until the parameter torem is no
longer in the domain of rem

(repeat f) y =y if y & dom(f)
= {repeat f) (f y) if y € dom(f)

That is
{s, q) if (s, q) € dom rem

remote(s, q)

remote {rem (s, q)) if {s, g) € dom rem

As remote is a total {noction the equality of remote and {repeat rem) requires
that no chain of rem’s contains any loop (so that (repeat rem) is also total).

44 Temporary Storage

Given the function rem i we teke the corresponding (curried} function with the
following shape

r : Sysld — {TSQMame ~» (SysId x TSOName))

so that

rem{s, g)
{ g : TSQName | (s, q) € dom rem }

r{s){q}
dam{ris)}

i}

The mapping that needs to be stored on a system s is given by r(s), and is of type

TSQName —+ (SysId x TSUName)

Acknowledgements

The wark reported in this paper was supported by a grant from IBM. The starting
point for this specification was an earlier specification done by Tim Clement. This
specification has benefited greatly {rom the detailed conuments of Carroll Mergan and
Ib Holm Sgrensen.

CICS INTERVAL CONTROL

Abstract

The specification of Interval Control has been split into the specification of a timeout
system, and a start/retrieve system, as these are logically different functions.

In specifying the timeout system, eveuts were initially included but it was later
discovered that they were logically redundant and should not be part of the Interval

Control interface. The version of the timeout system without events is presented here,

There are a number of differences (or omissions) between this specification aud the

actoal interface:
- Remote system aspects are not included.
- A more abstract time parameter is used.
- A more abstract data parameter is used.

- Function maragement headers were ignored as they are a detail internal to the
structure of the data (and not explained apywhere in the manual).

- The “nocheck”™ and “protect” options 1o Start have been ignored as they are to do
with recovery. It is hoped to upgrade the specification to include recovery aspects
at a later stage, again on a CHCS-wide basis.

- The “wait” option to Retrieve (and associated “dtinout™ mechanism were not

specified).

As the specification techniques used here are only suitable for speciflying seguential
operations, the parts of Interval Control involving concurrent processes are not
adequately specified in this document. Interval Control iz complicated, as is this

specification.

Copyright © I. J. Hayes 11 Jul 85 45

46 Interval Control
Time

The Interval Control operations are involved with (intervals of) time. We can
represent the efiect on time of the operations by the following change of tirme schema.

AT ime
clock, clock’ : Time

clock € clock’

where Time 2 N. We will assume $ime is measured in units of, say, seconds. Time

cannot decrease.

The operation to determine the current tine is given by

AskTime |
AT ime
time! : Time
report! : Condition
time! = clock A
report! = OK
]

Aside: The CICS AskTime operation has no explicit output parameters but rather
returns the time of day and the date in the Exec Interface Block (EIB) fields
EIBTIME and EIBDATE. A specification should avoid the implementation detail of
the EIB and hence an explicit output parameter has been used above. Furthermore,
only a single output time! incorporates both the date and time of day information.
Thiz is a little more absiract and allows conzistent use of time throughout the
speciication. [J

Tnterval Control 47
Timeouts

The following version of the timeout system is more abstract than the actual systemn.
This version avoids the need for eveuts to be passed to and {ro ou operations.

The state required for timeout operations is

TO

timeout : Time
setup,
cancelled : Boolean

The initial thineout state of a process is given by
Topgr 2 | 70 | —setup |
A state change on a timeout operation is given by
ATO 2 ATime A TO A TO'

The fallowing aperation is used to =&t up a timeout at t 1me?.

SetUpTO,
ATO
time? : Time

clock < time? A
timeaut’ = time? A

setup’ A —cancelled’

A timeoutb can only be setup provided the time has not already passed, The final state
records the timeout time and that a timeout has been setup and not yet caucelled.

Aside: The corresponding CICS operation (inappropriately called “Post”) has two
differences to the above. Firstly, it returns an event, and this specification avoids the
need for events. Secondly, the time parameter for the CICS operation may be either
relative Lo the current time or an absclute time in the day (well maybe in the
morrow - to quote: “CICS treats as expired a request for an absolute time that is

48 Interval Clontrol

equal to the current time or that precedes the current time by up to six hours. Tf the
specified absolute time precedes the curreut line by more than six hours, CICS adds
24 hours, thal is, the requested function is performed at the time specified but on the
next day.”) In the specification above we have used a time parameter that is consistent
with the time used Ly AskT ime aud heuce it is neither restricted to a 100 hour period
nor does it require the complicated deliition quoted above. {J

To determine if thie current thneout has expired we use

TestExpiryg

=10
hasexpired' : Boolean
“ setup A

| hasexpired! = {timeout g clock) v cancelled

where =T0 2 [ATO | 70’ = T0]. In order to test expiry a timeout must have
been previously setup. A timeout is considered to have expired either if the time has
possed or the timeout has been cancelled.

Asjde: This operalion is not currently provided explicitly by CICS, rather, to quote:
“When Lhe time specified has expired, the timer event control area is posted; that is,
its first byte is set to X'40” and its third byte to X‘BD*" Our TestExpiry operation is
an abstraction of a rather low level bit testing operation. Furthermore, the lack of ao
explicil test operation is a major reason for the introduction of events into the Interval
Control interface. I there were a TestExpiry operation lken there would be no
need for Post to return an event. [J]

To delay the current process until the previously setup timeout has expired we use

Haity
ATO

setup A
~setup”’ A

{timeout € clock’} v cancelled’

Aside: The equivalent CICS operation Wait Event has an inpul event parameter

Interval Control 49

“ecaddr”. This is not necessary in the zbove specification as it is assummed we are
waiting for the current timecut to expire. In practice, however, the Wait Event
operation Is also used for process synchronisaticn. To quote: *This command is used
to synchronise a task with the completion of an event injtiated by the same lask or by
another task”. However, the manual also states: “No other task should attempt to
wait on the event setup by a Post comumand. The timer event control area can he
relensed for a variety of reasous (e.g. task termination). If this happens, the result of
any other task issuing a Wait on the event setup by the Post is unpredictable.” In
suminary, events created by Interval Control are used for synchrouisation by some
applications but this must be used with great care.

The Wait Event coperation can also get an InvReq exception “If the specified event
control area address is above 16 megabytes for a program executing in 31-bit mede on
MVS/XA" By avoiding events we avoid this, but even with events I think we would
like to avoid it! (O

The operation to delay a process until a given tiwe is
Delayg

| ATO
time? : Time

clock < time? »
(time? £ cleck’) v cancelled’

For cancelling timeouts we need two different forms of caucel opertion: one,
CancelT0, when a process is cancelling its own timeout and the other, Cancel TOReq,
when a process issues a cancel with a request identifer (see later section for more
details) indicating which process’ timeout i3 to be cancelled.

CancelTOq— Cancel TORegg—
ATO ATO
setup A setug A
“setup”’ A setup’ A

cancelled’ cancelled’

In CancelT0, the timeont does not remain setup while in Cancel TOReqgg it does.

50 Interval Control

Aside: The different operation of Cancel depending on whether there is a request
identifier given or not is rather anomalous. It would appear to be a side effect of the
current implementation. [

Errors

Il the time has already expired on a setup timeout or delay an Expired exception can
occur.

Expired!
=TQ
time? : Time
report! : Condition

time? € clock A
1

report! = Expired

Aside: There is also an InvReq exception for the CICS operations due fo an invalid
format time parameter. The more alstract time used here avoids such an exception.

|

Il 2 TestExpiry, Wait or Cancel operation is performed when a timeouat has not
been setup we get a InvReq exception,

NotSetUp! .
=70
repor-t! : Condition
—setup A

‘ report! = [nvReg

If the operations do not get an exception then report ! will indicate success.

Success 2 [report! : Condition | report! = OK |}

Interval Contrel 51

The $otal timeout system operations are

SetUpTO, 2 (Success ~ SetUpTdp) v Expired!
TestExpiry, 2 (Success » TestExpiryy} v NotSetUp!
Wait, 2 (Success ~ Waity) v NotSetlUp!
Delay, 2 {Success & Delayg) v Expired!
Cancel TO, ¢ {Success a CancelT0,) v NotSetUp!

>

Cancel TOReqg; {Success a CancelTOReq,)v MNotSetUp!

Aside: There is currently no method provided by Interval Control for a process to

determine whether a timeout or delay has been cancelled or whether it expired. This
could he provided by a Cancelled exceptional condition. [

Multiple Processes
In the preceding we have only used the state information of a single pracess. In order
to include request identifiers which allow one process to cancel another’s timeout we
will extend our state to multiple processes.
PTO & Pld + T0

where PId is the set of process identifiers. Each process is associated with a unique
element of PId. Given a process identifier pid the timeout state associaled with the
corresponding process is given by pto{pid}.

The inilial state of the thneout systemn is given by

PTOpr 2 O

52 Interval Control

To promote cur timeout operations to equivalent ones in the multi-process state
actiog on a single process within that state we use the following pramiation schema.

HPTO
PTO

currentprd? : Pld
4TO

currentpid? € dom{pta) A
10 = ptolcurrentpid?) A
pto’ = pto @ { currentpid? = T0° }

3

where APTO 2 [pto, pto’ : PT0]. The variable currentpid? gives the
identity of the process actually performing the operation.

We can now give final specifications of TestExpiry aod Hait (as veither use
request identifiers) and updated specifications for the other operations.

estExpiry 2 (TestExpiry, A~ MPTO) \ ATO
Nart & (Uart, A MPTD) \ ATO
SetUpT0C, £ {SetUpT0, ~ MPTO) \ AYO
Delay, 2 {Delay, A MPTO) \ ATO
Cancel 70, 2 (CancelTQ, A MPTQ) \ ATO

CancelTOReq, 2 (CancelTOReqyA MPTC[pid/currentpid?]) \ ATC

For CancelTOReq, the idenlity of the process whose timeout is cancelled is
determined by a request identifier rather than being the current process (see below).

Interval Control

Process Activation

When a process s initiated the system sets up its time-out state.

Init El‘te-m
APTO
pid? : Pld

‘ pto’ = pte @ { pid? m 107 }

When a process terminates the system removes its timeout state,

Terminaterg
APTO
pi1d? : PId

pto’ = {pi1d?} 4 pto

53

54 Interval Control
Requeat Identifiers

To complete the time-out system we need to introduce request identifiers and a map
that associates a unique request identifier with a process.

REQ ¢ PId » Regld

For SetUpT0 and Delay we record the supplied request identifier reqi d? in req
for the current process.

SetUpReqld ,
AREQ
pid : PId

reqid? : Reqld

reqid? € ran{{ pid } 4 req) »
req’ = req @ { pid v reqid? }

where AREQ 2 [reg, req’ : REQ]. The request identifier supplied wust not
already be in use by any other process. The reqid? is recorded in req for the

currenf{ process.
On cancels we need to find the process assocjated with the request identifier.

FindRegld
AREQ
regid? : Reqld
pid : Pid

reqid? € ran(req) A
pid = req i {reqid?)

Interval Control 55
On cancels will also need to delete the entry for the request identifier.
DeleteRegld

AREQ
prd + PId

req’ = {pid} 4 req

With the introduction of request identifiers we have some additional errors. When
setting np a reqid?, if it is already in use by some other process, we get an InvReq
exception.

NonUnique’
=REQ
pid : Pld

reqid? : Reqld
report! : CONDITIGN

reqid? € ran{{pid} 4 reg) »
report! = InvRegq

where =REQ 2 [AREQ | req’ = req].
If the reqid? is not found in req we get a NotFnd exception.
NotFound!

=REQ
reqid? : Regld

reqid? € ran{req) »
report! = NotFnd

56 Interval Control
¥e can now complete our specification of operations involving request identifiers.

SetUpTo 2 (SetUpT0, A SetUpReqld{currentpid?/pid])

v (=PT0Q A NonUnique! [currentpid?/pid])
Delay 2 (Delay, » SetUpReqld[currentpid?/pid])
v {=PTQ A Nonlnigue! [currentpid?/pid])

134

CancelT0 Cance}T0, A DeleteRegld[currentpid?/pid]

(14

CancelTOReq (CancelTOReqg,» FindReqld » DaleteReqld)

v (NotFound! A =PT0)

On errors due to request identifiers, the timeout state is not modified. If a process
cancels its awn tiineout (Cance1T0) the request identifier for that process is deleted.

When the time for a timeout request expires the system removes all knowledge of the
correspending request identifier.

Expiry
AREQ
=PT0
p1d? : Pld

timeout{pto(pid)) < clack A
req’ = {p1d?} 4 req

where =PTC 2 [APTO | pto’ = pto].

Interval Control 57
Start and Retrieve

A Start command may be used to start a transaction at a given time. The
transaction runs a given transaction program. It may be associated with a terminal
and may have data passed to it. A started transaction may use a Retrieve
command to retrieve data passed to it by a Start command. We will represent a

transaction hy

Transacticn .
transid : Transld
starttime : Time
termid : Termld
retrdata : Data

where Transld is the set of names of transaction programs and Termld isthe set of
terminal identifiers. I a transaction is not associated with a terminal then its termid
will be ril (1e. nil € Termid). The type Data will not be further refined here but for
the moment we can think of it as a sequence of bytes. If there is no data for a
transactiou to retrieve then its retrdata will be nil (i.e. nil € Data).

Transaction and terminal identifiers supplied to a Start command must be in the set
of all trapsaction program names and the set of terminals known to the sysiem,
Tespectively.

programnames : P Transld
terminals : P Termld

We associate a unique identifier from the set PId with each transaction in the systemn.
This is sc we can distinguish two transactions with the same transid, starttime,

termid, and retrdata.

58 Interval Control

The state of the ransaction start/retrieve system is given by

TR ,
tr : PId + Transaction

active : P PId

retrreved : P PId

busy : P Termid

clock @ Time

acttve ¢ dom{tr) A

retrieved € active A

busy = (termid o tr)factive]) = { nil } A

(¥pid : artive + tr{pid).starttime € clock) »
active ¢ {termid o tr} b {nil} € PlIdbTermld »
ren{termid ¢ tr) - { nil } € terminals A
ran{transid © tr) £ programnames

The main component of the state is the map tr which gives the transaction
information for each transaction. The active {cr running) transactions are a subset of
those known {dom(tr)), and the processes whese data has been retrieved must have
been active. The bnsy terminals ate those currently associated with an active
transaction (excluding the special terminal identifier nil which signifies there is no
terminal attached). The starting time of every active transaction must have already
passed. Each actual terminal is associated with at most one active transaction. The
terminal and transaction identifiers of transactions mnst be jn the sets of those known

to the systein.

The initizl state of the transaction system is given by
TRygr & [TR | &0 = {3 1.

A state change is given by

ATR & TR A~ TR" A ATime

Interval Conirol 50

The Start command sets up a transaction.

Startg —
ATR
Transact ion?
pid PId

termid? € ferminals A

transid? € programnames A

pird ¢ dom(tr) A

tr’ = tr U { pid & Transaction? } &
active’ = active A

retrieved’ = retrieved

The termid and transid of the new transaction must be members of, respectively,
the set of known terminals and the set of known transaction program names. The new
transaction is added to the as yet unactivated transactions with a new unigue
identifier pi1d.

Aside 1: A Start on the local system causes the current timeout (see Interval
Control time-out specification) to be lost. T bave chosen not to miodel this aspect of
the operatiou as it would require adding the time-out state to the above schema. The
timeout and start /retrieve operations should be logically separate. [

Aside 2: We will not attempt to model tbe effect of the nocheck and protect options
lLiere. They are to do with the implementation of recovery mechanisms. [

A Start couwmand can cause an exception if the termid? is not one of the available

terminals.
TermIdErr! ,
=TR
termid? : Termld
report! : Condition

termid? € terminals A

report! = TermIdErr
]

where =TR 2 [ATR | tr’' = tr A active’ = active].

6]4] Interval Control

A Start can also cause an exception if the transid s not ocne of the kmown
transactlon program nanes.

TransldErr!
2R
transtd? : Transld

report! : Condition

trans1d? € programnames A
report! = TransldErr

Finally, a request identifier is setup on a Start; this may cause an error because it is
not unigue. The final definition of Start is

Start 2 (Starty » SetUpReqld A Success)
v (TermIdErr! A =REQ)
v (TransldErr}t A =REQ)
v (NonUnique! » =TR)

Aside: For Start/Retrieve the request identifier is also used as the Temporary Storage
quene name under which the data is stored. This implies Start and Retrieve
should also modify the Temporary Storage state.] have chosen not to model this as it
is an implementation mechanism that should not be visible. [

Interval Control 561
Activating Transactions

A transaction may be activated by the system if its starttime has passed and il its
associated terminal, if it has one, is free. The syslem action of activating of a
transaction is given by

Activater
ATR
pid? : PId

pid? € dom{tr) - active A

te{pid?).starttime < clack A

tr{pid?).termid € busy »

~(3p : active + tri{p).transid = tr{p1d?).transid) A
active’ = active U { pid? } &

tr’ = tr A

retrieved’ = retrieved

The transaction to be activated must be known to the system and nol already be
active. The transaction’s starting time must have passed and its termimal must be
free. Only one transaction with a given transid may be aclive at any one time. The
transaction is noted as active,

Deactivation of a process with respect to Interval Confrol is given by

Deactivatery
ATR
pid? : Pld

pid? € active A

tr’ = { pi1d? } dtr

active’ = active ~ { pid? } A
retrieved’ = retrieved - { pid? }

The process must have been active. All knowledge of it is removed,

62 Interval Control
Data Retrieval

An active process may retrieve the data associated with its initiating Start
command. After that data has been retrieved, data associated with other transactions,
whose starttimes bave expired and whick have the same termid and transid,
may be retrieved. The data {rom these other transactions is retrieved in startt ime
order. First we will give the common parts of the Retrieve operation and its

associated error actions.

ATRR .
ATR

currentpi1d? « Pld

Transaction

retrievable : P PId

Transaction = tr(currentpid?) A
let possible =
dom (tr D {Transaction; | termid; = termid A
transidy = transid
starttime; s clock}) In
retrievable = { p : possible | Yu : possible +
tri{p}.starttime ¢ tr{u).starttime } A

active’ = active

The state of the current transaction is represented by Transaction, that is,
transid, termid, starttime and retrdata. A transaction can conly possibly
retrieve data from a transaction with the same transaction identifier and terminal
identifier, whose starting time has expired. Of these it chooses one with a minimal

starting time.

Interval Control 63
The Retrieve operation is given by
Retrieveg

ATRR
data! : Data

retrdata # nil
A currentpid? € retrieved =

data! = retrdata A
retrieved’ = retrieved U { currentpid? } A
tr’ = tr

A currentpid? € retrieved =
(3p: retrieveble » data! = tr{p).retrdata A
tr' = {p} dtra
retrieved’ = retrieved)

A transaction will first attempt to retrieve its own data; there must have been some
supplied when it was started. If the transaction retrieves its own data it is marked as
kaving done so. I a transaction has already retrieved its own daia then it may
retrieve data from transactions in the set retrievable described above. The
transaction whose data was retrieved is deleted.

Aside 1: The current implementation of CICS returns data with equal startt imes in
the order in which tbe corresponding Start commands were issued. No doubt
applications may depend on this but the manual does not define the order (nor does it
explicitly say it is arbitrary). 00

Aside 2: The CICS Start and Retrieve commands have additional parameters:
RTransld, RTermld and Queue which are used to pass more data of a specific type.
For our specification we will assume that these parameters are passed as part of the
retrdata along with a sequence of bytes of normal data. These parameters are
really redundant as a structure containing them could be passed as data. []

Acside 3: We have not modelled the “wait” parameter to Retrieve or the lime-out on
a Retrieve with the “wait” option. [

G4 Interval Contrel

A Retrieve command can gel an exception if there is no data left to be retrieved.

EndData!
=TRR
report! : Condition

currentpid? € retrieved A
retrievable = {} a
report! = EndData

where =TRR 2 ATRR A =TR.
Aside: EndDala also occurs on systern shutdown. [

A Retrieve can get an exception if no data was supplied on its corresponding
Start or if the data of its Start has been retrieved and there is another transaction
retrievable by the current transaction for which there wag no data supplied.

NotFnd!
=TRR
report! : Condition

(retrdata = nil
v {currentpid? € retrieved A
dp: retrievable « tr(p).retrdata = gil)
y oA
report! = NotFad

The final definition of Retrieve is

~

Retrieve £ {Retrieveg A Success) v EndData! v NotFnd!

If there are retrievable transactions some of which have data and some of which da

not, the above allows the implementation Lo chose between retrieving data and giving
a NotFnd exception.

Aside: Exceptions cap also occur for the following reasons: input/output errors
(IOErr}, a dummy temporary storage module is installed in the system (InvTSReq),

the format of the data is incorrect (EnvDel{Err, LengErr) or there is an invalid
parameter (InvReq).

Interval Control 65
Cancel

A transaction set up by a Start command may be cancelled provided its startt ime
has not passed.

Cancel TRy
ATR
pid : PId

pid € dom(tr) a
tr{pid).starttime > clock
tr’ = {pid} 4 tr
active’ = active

The cancelled transaction is removed from the known transactions. The identity of
the transaction to be cancelled (pi1d) is determined by a request identilier; on
cancelling the request identifier is deleted.

Cance}TR 2 (CancelTRy » FindReqld A DeleteReqld A Success)
v (NotFound! A =TR)

The cancel operation either cancels a thmeout or a atart.
Cancel 2 CancelT0 v CancelTR

The domains of the two operations CancelT0 and Cancel TR are disjoint. The choice
between the two aliernatives depends on what operations have taken place previously.
For CancelTO, pid must be in the domain of pto. The only operation that achieves
this is the timeout Init (ateqq; therefore pid must correspond to an active process:
pid € active.

For CancelTR, pid must be in the domain of tr and furthermore its starting time
must uot have expired. When the Start command corresponding to pid was issued
it resulted with pid & active. The only way pid can become active is via a
transaction Act i vate;g, but for a transaction to be activated its starting time muat
have expired. Therefore, il Cancel TR is applicable, the ransaction has not been
activated. Hence the domains of Cancel!TO and CancelTR are disjoint.

CICS Message System

Abstract

The following message system is based on the message handling in CICS. The
specification itself is an interesting example: it combines states {of input and cutput
devices), and gives a number of examples of the use of the “>>” operator on schemas.

Message Output

We can represent a set of output devices by a mapping from a device name to a
sequence of messages that have been ontput to that device.

NOUT
nog : Neme -» seq Message

The operations on outpnt that we will discuss here neither create nor destroy devices.
ANOUT 2 [NOUT A NOUT* | dem nog’ = dom nog]

Sending a message to a device simply appends the message to the queue for that
device.

NSend,,
ANOUT

n? : Name

m? : Message

nog’ = nog @ { n? = pog(n?) [m?] }

Copyright @ I. J. Hayes 11 Jul 85 67

6B Message System

Multiple Destinations

A message may be sent to a set of destinations.

NSendr,
ANOUT
ns? : P Name
m? : Message

ns? © dom nog A
nog’ = mog ® { n : ns? = n = omogin) (m?] }

All the names in ns? must correspond to valid ontput devices, Each device in n? is
sent the message.

Theorem:
Given
ToSet & [n? : Name; ns! ¢ PName | ns! = {n? }}
the fcllowing equality bolds
NSend, = ToSet >> NSendMy,
The schema operator “>>" identifies the outputs (variables ending in “!7) of its left
operand with the inputs {variables ending in “?"] of its right operand; these variables

are hidden in the result. All other components are combiued together as per schema
conjunclicn (A).

Message System 69
Message Input
We can represent a set of input devices by a mappiung {rom a3 device name to a
sequence of messages yet to be input from that device.

NIN

nig : Name » seq Message

The operations on input described here will neither create nor destroy devices.
ANIN 2 [NIN A NIN* | dem mig” = dom miq]

Receiving a message from a device simply remeves it from the head of the input
queue Tor that device.

NReceiveg
ANIN
n? : Name

m' : Message

m' = head{nig{n?)) »
nig’ = nig @ { n? = tarl{maq{n?)) }

Send and Receive

We can define an operation that both sends a message to a device and receives a
message fronm: that device.

NSendReceivey, 2 NSendy » NReceiveg

70 Messnge Systo

Combining Input and Ontput

We will introduce NDEY to describe the combined input and output state for all the
devices. I[a device can be used for input then it mnst be able to be used for output.

NDEY
NIN
NOUT

dom n1g € dom nog

Input and euiput operalions will preserve the cutput aed input states respectively.

=NQUT & [ANDEV | NOUT’ = NOUT]

=NIN

b

[ANDEV | NIN' = NIN |

where ANDEY & NDEY A NDEV',

The operations ou the combined state are

NSend 2 NSendg A =NIN
NSendll & NSenrdm, A =NIN
NReceive 2 NReceiveg A ZNQUT

\>

NSendReceve 2 NSendReceive, A ANDEV

Message System 71
Logical Names
Rather than work with actual (physical) device uames, as we have up until this point,
we wonld like to work with logical names that are mapped into physical device names,

We use the following mapping from logical names to physical ralues.

LLtoP

(ltop : LMame 2 Name
|

Nene of the operations discussed here wodify the mapping from logical names to
physical names hence we will use

sLtoP & [LtoP A LtoP' | LtoP” = LtoP |

I a logical name actually corresponds to a device we perform the operation on that
device, otherwise we use the device with physical canie comsole.

HapName
2LtoP
dev : Name -+ seq Message
In? : LName

n!' : Name
‘ in? € dom{ltopsdev) = nl = ltop{In?) &

‘ In? & dom{ltopidev) = n! = console

The operations on a single device become

>

LSend 2 MapName[nog/dev] >> NSend

LRecerve ¢ MapName[niq/dev] >> NReceive

1>

LSendReceive 2 HapName[mig/dev] >> NSendReceive

72 Message System
Multiple Logical Destinations
To send amessage to a set of logical names we need to map the set of logical nanes

into physical names. If none of the legical names correspond to a device we send the
message to the device with physical name console.

HapSet .
=Lt oP
Ins? : P LName
ns! : P Name
NOUT
et names = ltop(lns?) N dom noq n
names = {} = ns! = { console } &
names # {} = ns! = names
)

The operation to send a message to a set of logical devices is

LSendd 2 MapSet »> NSendH
Theorem:
Given
ToSetL 2 [I1n7 : LName: Ins! : P LName | 1lns! ={ 1n? }]

the following equality holds

LSend = ToSetlL »> LSendM

Message System 73

Domaing of the Operations
In practice we would like all the operalions to be total (defined for all inputs).
Unfortnnately the operations as defined are not total. If a name (or a set of names)
does not correspond to an acinal device then e name will be translated to the
special device console; if the console does not exist the operation is not defined.
For the output operations ensuring that the console exists s a sufficient

pre-conditiou for the operation to be defined. (We will also need this pre-condition {or
inpnt.)

~

Pre =2 [NDEY; LtoP: m? : Hessage | conscle & dom niq]
Remember that dom ni1g € dom nog soconsale € dom noq.
Thegrems:

Pre = pre LSend

Pre = pre LSendH

For the input operations we need the additional reguirement that the quene of
lessages yet to be input on the device is not empty.

Preln 2 [Pre; n? : Name | nig(n?) # []]
Theorems:
MapName [nig/dev] >> Preln = pre LReceive

HapName [nig/dev] »>> Preln = pre LSendReceive

74 Message System
Acknowledgement

This specification is based on a message system specified by David Renshaw of IBM
(U. K.) Laboratories, Hursley, Englard.

Z Referemnce Card
Mathematical Notation
Version 2.1

Programming Research Group
Oxford University

1. Definitions and declarations.
Let x, %, be identifiers and T, T, sets.

Definition of LHS as
syntactically equivalent to RHS.

LHS = RHS

xi T Declaration of x as type T.
xp Tys %zt Tos Poxp Ty

List of declarations.
Xyr Xz, ... Xg T

o xl:T; %20 T5 L., ;xn:T.
2. Logic.

Let P, Q be predicates and D declarations.

!

Negation: “not P”.
Conjuuctiou: “P and Q°.
Disjunction: “P or Q".
Implication: “P implies 1* or
“if P then Q7.

Equivalence: “P is logically

Q
Q

“(> ™

- T T

Q

= 0
equivalent lo Q7.
T-P
Universal quantification:
“for all x of type T, P holds”.
T-P

Existential quantification: “there

x

exists an x of type T such that P

I x 2 T - P,
Unique existence: “there exists a
unique x of type T such that P".
(I x : TP

~{3y:T | yéx - P}

~

A

Copyright @ L J. Hayes 11 Jul 85

VoxpiTys %p: Ty ol o+ P
“For all x; of typeT,,
x5 of type T;, . .. and
x_ of type T_, & holds.
A % Ty x0Ty ;o x T, « P
Similar to ¥.
EL xl:Tl; XZ:TZ; e xr“Tm - P
Sinnlar to V.
YOI P+=Q 2(¥D+P=10Q).
AD|P-0Q 2(3D-PArQ).
ty = t, Equality between terms.
ty #t, 2 -(ty = t5).
3. Sets.

Let S, T and X he sets; t, t, terms; P a
predicate and 0 declarations,

t €5 Set membership: 4 is an element
of 57.
tes 2 -(t € 5}.
SeT Set inclusion:
2 (¥ x: 5 -xeT),
SeT Strict set inclusicn:
£ SeTASH#ET.
{} The empty set.
{ty, ta . t, } The set
containing t |, t5 ... and t.
{x:T|F}
The set containing exactly those
x of type T for which P holds.
{t;, ts , t,) Ordered n-tuple
ofty,tz ... and t .
Ty * T, % ... x T, Cartesian product:
the set of all n-tuples such that
the kth component is of type T .
ox:Ty x5:Tpe pox T, 1P}
The set of n-tuples
(xy, %z . %, 1 with each

%, of type T, such that P holds.

{DIP -1t}

The set of t’s such that given the

declarations D, P holds.

{D-t}

P s

Fs

U ss

ls|

2 {D] true = t }.
Powerset: the set of all subsets
of 5.

Setof finite subsets of 5:

2 {T: P S| Tisfiite }.
Set intersectlon: given 5, T: P X,
e {x:X | x€5AxeT]}.
Setunion: given 5, T: P X,
2{x:X 1 x€S5VvxeT}].
Setdifference: given S5, T: P X,
2{x:X | x€SaxgT}
Distributed set intersection:
given 55: P (P X),

2 (x:X | (¥S5:55 » x € S)},
Dislributed set union:

given S5: P (P X),

& {x:% | {35:55 » x € S)}.
Size {nuinber of distinct
elements) of a fiuite set.

4. Numbers.

min §

max S

The set of natural numbers
(non-negative integers).

The set of strictly positive
natiral numbers:

2 §- {0}

The set of integers (positive, zero
and negative).

The set of integers between m
andn inclusive;
s{kiZ I mskaksgnl}.
Minimum of a set,S ¢ F N.
minS € S A

{¥x : S «
Maximum of a set, S :
max S € 5 A

(¥x : § » x € max 9).

x 2z min S).
F N

5. Relations.

A relation is modelled by a set of ordered

pairs hence operators defined for sets can

be used on relations.

Let X, Y, and Z be sets; x : X; y : Y,
and R: X € Y,

X e X
x Ry

x =y

{ x>y,

The set of relations from X to Y:
P (X x Y).
is related by R to y:
(x, y) €R.
(.)
Yz
The relation
{ (xli Hl)n
relating x; toyy,
x, toy,-
The domnain of a relation:
2 X | (JysY - x R oyd}.
The range of a relation:
2 {y:¥Y 1 (Ix:X ¢ x R y)}.
Forward relational composition:
given Ry: X&2Y; R,: Y& I,
e { x:X: z:Z | (Jy:Y -
xRiyryR;z)}
Relational composition:

(M

n» I %

%y, b

IR I
., and

2 R, 3 Ry.
[nverse of relationR:
2 { y:Y; =X | xRy},

Identity function on the set X:

2 {x: X «+xFH x}.
The relation R composed with
itself k times: given R : X & X,
RY 2 1d x, Rl 2 R « R.
Reflexive transitive closure:
U {n: N - R}
Non-reflexive trausitive closure:
2y {n: N" «R"}.
Image: given S5 : P X,

g {y:¥Y | (Ix:5 + x R P}

S 4R Domain restriction to S:

given 5: P X,

e {x:X;y:Y | x€5 A x R u}.
S 4R Domain subtraction:

given 5: P X,

2 (X -5) 4R.
RPT Range restriction to T:

given T: P Y,

2 {x:X:y:Y | x Ry A yeT},
RPT Range snbtraction of T:

given T: P Y,

2R P (Y -T).
R, € R, Overriding: given Ry, R, : Xe2Y,

2 (dom R, 4R,) U R,.

6. Functions.

A function is a relation with the property
that for each element in its domain there is
a nnique elenent in its range related to it.
As functions are relations all the operators
defined above for relations alsa apply to
functions.

X —» Y The set of partial functions from
XtoY:
2{f: X Y|
(¥x: dom f =
(Ily: ¥ » x fy))).
X — Y The set of total functions from
XtoY:
2 { f: XY | dom f = X }.
X »» Y The set of one-to-one partial
functions from X to Y:
2{f: X+ Y|
{¥y: rng f -
(Jix: X « x f y}) .
X > Y The set of one-to-one total
functions from X to Y:
2{ f: ¥y | dom f = X }.
ft The function f applied to t.

-77 -

(h x @ X

(hoxy: Ty

7. Orders.

totel _order X

[P et}

Lambda-abstraction:

the function that given an

argument x of typeX such that P

holds the result js t.

2 {x: X|P+sxrm= 13}

poxr Ty TP o=)

2 {xlle; cee %t T | P s

(xp e xn) — ot}

partial _order X

The set of partial orders on X.

2 {R: XX | ¥x,y,z: X «
® R ox A
XRgAny:)(:HA
xRynryRz = xRz

X

The set of total orders on X.
2 { R: pertial_order X |
¥x,y: X »
* RyvyR x
T.

monotonic X <y

The set of functions from X to X
that are monotouic with respect
to the order <y on X.
s {f:X>X|
x <y = fix) <y Fly}
1.

8. Sequences.

seq X The set of sequences whose
elements are drawn from X:
2 {A: N'-BX |
dom A = L..|Al }.
| At The length of sequence A,
[1 The epty sequence {}.
[81, ’ Elr]
2 {1—a, ..., nPa,
[a4. 0 R - TP |
Coneatenation:
] [al,..., a,. by, ...,
[174=A711 = A
head A 2 A{l).
last A 2 AllA]).
tenl Tha o2 oA,
front A7 [x] 2 A
rev [a;, a; ..., a,]
Revirse:
2 [3-1; T) al]a

/A

$/AR

rev([] = [].
Distributed concatenation:

giver A4 @ seq(seqg{X)),
s A1) T Lo TAA(lAAD),

/A= 1L
Distributed relational
conipesition:

giver AR : seqg (X & X),
2 AR(1) 5 ... 3 AR(|AR]),

$/01 = d X.

disjoint AS Pairwise disjomt:

given AS: seq (P X),
2 (" 1,) : dom AS + |

= AS(1) N AS{)) =

AS partitions S

2 disjoint AS
Al ran AS = S.

=

Contiguous subsequence:
2 (3C,D: seq X -
CTATD =B,
Convert a [unction, f: N + X,
into a sequence by squashing its
domain.
squash {} = [],
andif £ # {} then

squash f =
[f(i)] “squash{{i}4d f)
where + = min{dom f) eg.
squash {2r—A, 27—C, 4—B}
= [A, B, C]

Reastrict the sequeuce A to those
items whose index is in the set S:
2 squash(5 { A)

Restrict the range of the
sequence A to the set T:

2 squash(A P T).

The set of bags whose elements
are drawn from X:
2 X +» N
A bag is represeuted by a
function that maps each element
in the bag onto its frequency of
occurrence in the bag.
The empty bag {}.
=, 1 Thke bag

containing x;, xz ...and x|
with the frequency they cecur in
the list.
The bag of itews contained in
the sequence s:
2 { xirng s °*

x| {i:dom s | s{i)=x}!

}

Z Reference Card
Schema Notation
[For details see “Schemas in 27|

Programming Research Group
Oxford University

Schema definitiou: a schema groups together

some declarations of variables and a

predicate relating these variables. There are
two ways of writing schemas: vertically, for

example
3 1
x : N
4y : seq N
x < |yl
1

or horizontally, for the same example

S 2 [xt N: y: seq M | xsglyl 1.
Use in signatures after ¥, %, {...}, etc.
(VS » g # []) 2 (¥x:N; y: seq N |

xslyl « y#[l).
tuple S The tuple formed of a schema’s
variables.
pred S The predicate part of a schema:
eg.pred § s x € lyl.
Inclnsion A schema S may be included

within the declarations of a
schema T, in which case the
declarations of S are merged
with the other declarations of T
(variables declared in both S and
T must be the samne type) and the
predicates of S and T are
conjoined. epg.

T 1
S
z : N
z < X
J

- 79 -

Slnew/old]

Decoration

y : seq N

xslg\f\z<x

S—

The schema S withP conjcined 1o
its predicate part. eg.
(S | »x>0) is
[x:M;y:seq N | x¢|y!ax>0].
The schema 5 with the
declarations I merged with the
declarations of 5. eg.
(S1z: M) is
(x z:M; yrseq W | =glyl |
Renaming of components:
the schema S with the component
¢ld renamed to new in its
declaration and every free use of
that o1d within the predicate.
e.g. S[z/x]) is
[2:M; yiseq NI z < |y}]
and 5[y/x, x/y] i
[y:N; x:seq N | y g Ix|]
Decoration with subscript,
superscript, prime, etc,;
systematic renaming of the
variables declared in the schema.
eg.5 s
[:N; yiseg B | x'gly’|]
The schenma 5 wilh its predicate
part negated. e.p. =5 is
[x:M; y:seqg N | "(XS'Q‘ 7]
The schema formed from
schemas 5 and T by merging
their declaration: {see inclusion
above) and and’ing Lheir
predicates. Given
Te [x: N; 22 PH | xez],
5aAT is

Se T

S\ (VI, vz,

x: N
y: seq N
z: PN

xg |yl » x €z

The schema formed from

schemas S and T by merging

theirdeclarations and or’ing their

predicates. eg. Sv T is

ST (v,

x: N
y: seq N
z: PN

xg Jyl vxez

The schema formed from
schemas S and T by merging
theirdeclarations and taking
pred S = pred T as the
predicate. e.g. 5 = T is similar
toS5A TandS v T except the
predicate contains an “=” rather
thanan “A” or an “v”.
Theschema formed from
schemas S and T by merging
their declarations and taking
pred S « pred T asthe
predicate. e.g. 5 ¢ T ihe same
as S A T with “&"in place of
the A%,

.ovy)

Hidng: the schema $ with the

varisbles v, v, ..., and v,
hidden: the variables listed are undashed
remmoved from the declarations dashed

and are existentially quantified in
the predicate. eg. S\ x is
[g:seq M| (3x:H - XS‘U‘)]

ending in

variable names

ending in “7”
wpm

A schema may be specified
instead of a list of variables; in
this case the variables declared in
that schema are hidden.

eg. (S A T) VS s

z: PHN

(3 x: N; y: seq N -

x € Jyl A x € z)

Vo ee. o, V)

Projection: The schema S with
any variables that do not occur
inthelist v, v5 ..., v,
hiddea: the variables removed
from the declarations are
existentially quantified in the
predicate,

eg. {5 A TY I (xu)is

1
x @ N
y: seq N
(3z: PN -
x € |yl A x€z)
1

The list of variables may be
replaced by a schema as for
hiding; the variables declared in
the schema are used for the
projection.

The following conventions are used for

in those schemas which

represent operations:

state before the operation,
state after the operation,
inputs to the operation, and
outputs from the operation.

The following schema operations only apply

to schemas following the ahove conventions.

pre S

post S

Precondition: all the state after
components (dashed) and the
outputs (ending in “!?) are
hidden. e.g. given

5 1
x?, s, s, y!l + N
s’ =s - x?7Aayl =5
1
pre S is
1
x?, s * N
(Is, y : M-
s’ = g=x? A y! = 5)
i

Postcondition: this is similar to
precondition except all the state
before components (undashed)
and inputs (ending in “?7) are
hidden.

Overriding:

2 (5 A-preT)yvT

e.g. given S above and

T

The predicate can besimplified:

I 1
.
x?, s, s, y : N
(s" = 5—x7 Ayl =5
As 2 x?)
'
(s < x?7 A 5" = 5)
1

Schema composition. if we
consider an intermeciate state
that is both the final state of the
operation S and theinitial state
of the operation T tien the
composition of S and T is the
operation which relates the
initial state of S to lhe final
state of T through the
intermediate state. To form the
composition of 5 ard T we take
the state after components of S
and the state befor: components
of T that have a basename” in
connon, Tename beth to new
variables, take the schema “and”
(#) of the resultingschemas, and
hide the new variables.

eg. S 3 Tis
1
x?, s, s', yl N
(I sg: N .
sg = s x? 4yl = 5 A
5 < x? A5 = 5,)
1

* basename is the name withany decoration

(u.rn dpn upn
1 R .

,etc.) removed.

ST

Piping: this schema operaticn is
similar to schema composition;
she difference is that rather than
dentifying the state after
components of S with the state
before components of T, the
sutput components of S {ending
m “!") are identified with the
input components of T (ending
in “?") that have the same

basename.

