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Preface 

This monograph conta.ins papers produced as part of a joint project between IBM 
(UK) Laboratories at Bursley, England and the Programming Research Group of 
Oxford University into the application of fonnal software specification techniques to 
industrial problems. The work documented con8ists of 8pedfication of parts of the 
IBM Customer Information Control SY8tem (CICS). 

The first paper conta.in8 a description of the work carried outj thi8 paper has been 
published in the IEEE Transaction8 on Software Engineering (February 1985). 
A number of modules of the CICS command level application programmer's interface 
were specified; these include the CICS Exception Handling which is documented in 

the first paper and CICS Temporary Storage and Interval Control which are 
described in separate papers. The paper on the CICS Mellsage System was later work 
Dot directly related to the other papers. 

The work documented here was supported by research contract between rBM and 
Oxford University and is published by kind permission of the Company. 
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APPLYING FORMAL SPECIFICATION
 

TO SOFTWARE DEVEWPMENT IN INDUSTRY"
 

ABSTRACT 

This paper reports experience gained in applying formal specification techniques to an 
existing transaction proce88ing system. The system is the IBM Customer Information 
Control System (CICS) and the work bas concentrated on specifying a number of 
modules of the CICS application progranuner's interface. 

The UBea of fannal specification techniques with particular reference to their 
application to an exiBting piece of software are outlined. The specification process 
itself is described and a sample specification presented. The specificatioD!t are written 
in the specification notation Z, which is based on the notation of set theory from 

mathematics. 

One of the main benefits of applying specification techniques to existing softwa.re is 
the questions tha.t are raised about the system design and documentation during the 
specification process. Some samples of the problems that were identified by these 

questions"are discussed. 

Problems with the specification techniques themselves, that were encountered in 
applying the techniques to a commercial transaction processing system are outlined. 

* This paper is a minor revision of the paper of the same title published in 
the IEEE Transactions on Software Engineering, volume 11, number 2 
(February, 1985). 

Copyright@ I. J. Hayes 1985, Copyright © IEEE 1985 1 



2 Applying Forma.l Specification 

INTRODUCTION 

Oxford University and IBM United Kingdom Laboratories Limited are engaged in a 
joint project to evaluate the applicability of formal specification techniques to 
industrial scale software. The project is attempting to scale up fonnal mathematical 
methods so far used within a research environment to large scale software in an 
industrial environment. This paper reports the experience gained so far in applying 
these techniqll~s to describe the application programmer's interface of the IBM 
Customer Information Control System (CICS). 

CICS is widely used to support online transaction processing applications such as 
airline reservations, stock control, and banking. It can support applications iDvolving 
large numbers of terminals (tbousands) and very large data bases (gIgabytes). The 
CICS Gi:!neral Infonnation manual !3J gives the following description. 

CICS;VS provides (1) most of the standard functions required by 
application programs for communication with remote and local terminals 

and subsystems; (2) control for concurrently running user application 
progra.ms serving many online users; and (3) data base capabilities ... 

CICS is general purpose in the sense that it provides the primitives of transaction 
processing, and an individual application is implemented by writing a program 
invoking these primitives. The primitives are similar to operating system calls, but are 
at a higher level: they also provide such facilitieB as security checking, logging and 
error recovery. 

CICS bas been in use since 1968, and has undergone continuous development during 
its lifetime. In the original implementation, the application programmer's interface 
was at the level of control blocks and assembler macro calls. This is referred to as the 
macro level application programmer's interface. In 1976 a new interface, the 
command level application programmer's interface! was introduced. It provides a 

cleaner interface which does not require the application programmer to have 
knowledge of the control blocks used in the implementation of the system. The 
command level interface is the subject of our work on specification. 

CICS is supported on a number of IBM operating systems: DOS(VSE, MVS! and 

MVS/XA, in such a way that application programs written using the application 
programmer's interface may be transferred from one environment to another without 
recoding. In addition, the command level interface supports a number of 
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programming languages: PLjI, Cobol, Assembler and RPG II. This is achieved by the 
use of a preprocessor that translates programs containing CICS commands into the 
appropriate statements in the language being used (usually a calIon a CICS module). 
Hence the application programmer's interface provides a level of abstraction that 
hides a number of significantly different implementations. 

The command level interface is split up into a number of relatively independent 
modules responsible for controlling various resources of the system. The formal 
specification work has so far concentrated on specifying individual modules in relative 
isolation. Of the sixteen modules comprising the command level interface three: 
temporary storage, exceptional condition handling, and interval control, have been 
specified. Temporary storage provides facilities for setting up named temporary 
storage queues that may be used to communicate information between transactions or 
as temporary storage by a single transaction. Exceptional condition handling provides 
facilities to handle exceptions raised by calls on CICS commands in a manner similar 
to PLjI condition handling. Interval control provides facilities to set up time-outs and 
delays, as well as to start a new transaction at a given time and pass data to it. 

With the large number of CICS systems around the world, the usage of the CICS 
command level application programmer's interface is on a par with many 
programming languages. As with programming languages, it is important that the 
interface be clearly specified in a manner independent of a particular implementation. 

USES OF FORMAL SPECIFICATION 

The work reported in this paper deals with specification of parts of an already 
existing system. Before considering the benefits of specification when applied to 
existing software we will briefly review the benefits of specification in general. (For a 
more detailed discussion see [8].) 

In software development a formal specification can be used by 

o	 designers - to formulate and experiment with the design of the system; 

o	 implementors· as a precise description of the system being built, particularly if 
there is more than one implementation; 
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o	 documentoI"B - as an UDMDbiguoU8 starting point for user manualaj and 

o	 quality cootrol - (or the development of suitable testing strategies. 

Using a specification, the designer of a system can reason about properties of tbe 
system before development starts; and during development, fonnal verification tbat 
an implementation meets its specification can be carried out. 

When an existing system is being specified there are both short a.nd long term 
benefits. In the short term perfonuing the specification 

1. uncovers those parts of the existing manuals that are either incomplete or 
inconsistent, and 

2. gives insights into the anomalies of the existing system and can suggest ways in 
which the system could be improved. 

In the longer term the specification can be used 

1. for reimplementation of all or part of the system, 

2.	 as a basis for discussing and developing specifications for changes or additions 
to the system, and 

3. to provide a model of the functional behaviour of the system suitable for 
educating new staff. 

Re-implementation may involve a new machine architecture, progra.mming language, 
or operating system. or a restructuring to take advantage of multi·processor or 
distributed systems. As the specification is implementation independent, it provides a 
suitable starting point Cor each of the above alternatives. 

When changes or additions to the system are to be made, new specifications can be 
developed with reference to the previous specification. This process will give insights 
into the effect of the changes and their interaction with existing parts of the system. 

As the specification is a Cormal document it provides a more precise description for 
communication between the designers than natural language descriptions. This 
should help to reduce misunderstandings between the people involved. 
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Experimentation with specification provides a much quicker and cheaper method of 
investigating a number of alternative changes to the system than implementing the 
changes. On the other hand, because the specification is implementation independent, 
it cannot provide direct answers to questions of how difficult the changes will be to 
implement, or their impact on the performance of the system. However, as it is at a 
high level of abstraction it can give a better insight into the interaction of changes 
with other components of the system; it is just these high level interactions which get 
lost in the detail of implementation. 

While working predominantly at a more abstract level the specifier must be 
experienced in implementation and should be aware of the implementation 
consequences of his decisions. Those parts of the specification for which the 
implementation consequences are unclear should be further investigated before 
detailed implementation is begun. 

THE SPECIFICATION PROCESS 

The starting point for our specifitatioli work was the eIeS command level application 
programmer's reference manuaJ. 12J. The style of this manual is a combination of 
formal notation describing the syntax of commands and informal English 
explanations of the operation of the commands. We developed our initial specification 
of a module of the system by reference to the corresponding section of the manual. 
The main goal was to come up with a mathematical model of the module that is 
consistent with its description in the manual. This involves fanning a crude initial 
model of the module and extending it to cover operations (or facets of operations) not 
initially dealt with, or refining or redesigning the specification as inconsistencies are 
discovered between it and the manual. 

In attempting the initial 8pecification, questions arose that were not satisfactorily 
answered by the manual. At this stage a list of questions was prepa.red and an expert 
on that module of the system: (along witli the source code) was consulted to answer 
the questions according to the current implementation. 
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Questions can arise because 

L the manual is incomplete or vague, 

2.	 the manual is not explicit as to whether possible special cases are treated 

normally or not, 

3. the manual is itself incoDsistent, or 

4. the chosen mathematical model is inconsistent with the manual in some small 

way; either the model or the manual is incorrect. 

As the system has been in use for some time the answers to the more straightforward 

questions about its operation have already fOllnd their way into the manual. HeDce 
most questions that arose in the specification process were rather subtle and required 
reference to the source code of the module to be satisfactorily answered. Some of the 
questions led to inconsistencies being discovered between the manual and the 

implementation. These inconsistencies could either be errors in the manual or bugs in 
the implementation. Which way they should be classified depends on the origina.l 

intent of the designer. 

The specification was also given to people experienced in formal specification who 
gave comments on its internal consistency, style, and they suggested ways in which 

the specification could be simplified or improved. They were also given a copy of the 
relevant section of the manual to read after they have undeNltood the specification, 

and were asked to point out any inconsistencies they discovered between it and the 

specification. 

The answers to questions and the review of the specification led to revision of the 

specification which led to further questions and further review and so on. 

Notation 

The specification language Z [1,6, 7] developed in the Programming Research Group 
at Oxford University is the primary notation that has been used in this specification 
work. The formal basis of the notation is elementary set theory. People familar with 
set lheory from mathematics should have little trouble undeNltanding the 

specifications. A summary of the notations used is given in appendix 2. 
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The style of the specification document is a mixture of formal Z and informal 
explanatory English. The formal parts of the specification, given in Z, are surrounded 
in the text by boxi'S so that they stand apart from the explanatory surrounds and 
may be more ea.sily found for reference purposes. To make a readable specification, 
both formal and informal parts are necessaryj the formal text can be too terse for 
easy reading and often its purpose needs to be explained, while the informal natural 
language explanation can more easily be vague or ambiguous and needs the precision 
of a formal language to make the intent clear. The informal text provides the link 
between fOIDlality and reality without which the formal text would just be a piece of 
mathematics. To create a good specification the structuring of the specification and 
the composition and style of the informal prose are as important as the formal text. 

The aim is to provide a specification at a high level of abstraction and thus avoid 
implementation details. The specification should reveal the operation of the system a 
small portion at a time. These portions can be progressively combined to give a 
specification of the whole. This style of presentation is preferred to giving a 
monolithic specification and trying to explain itj the latter can be rather 
overwhelming and incomprehensible since there are too many different facets to 
understand ar once. It is hoped that by giving the specification in small portions each 
piece can be understood and when the pieces are put together the understanding of 
the parts that has already been gained can lead more easily to an understanding of 
the whole. 

For more complex specifications that are developed via numerous small steps 
understanding the wbole can be quite difficult, as one needs to remember the function 
of all the parts and understand the way in which they are combined. In such cases it 
can be useful to provide both a portion by portion development of the specification 
and an expanded monolithic specification as well. The latter is more assailable after 
one has been through a piece by piece development and has an understanding of its 
various components. 
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A SAMPLE SPECIPICATION 

As a. sample of the type of specification produced we will look in detail at the 
specification of exceptional condition ha.ndling within CIeS. The exception check 
mechanisms of eIeS are similar to those provided by PLfl [4J. This module was 
chosen for exposition because it is one of the smaller modules in the system. The 
manual entry on which the specification was initially based is given in appendix 1 and 
the notation used in this example is described in appendix 2. The specification given 
here is a final product of a specification process described in the previous sectlon. 

Exceptional Conditions Specifiee.tion 

Exceptional conditions may arise during the execution of a eIeS command. A 
transaction may either set up an action to be taken on a condition by using a Handl e 
Cand i t ion command, or it may specify that the condition is to be ignored by using 
an Ignore Cand i t ion conunand. If a condition has been Deither handled nor 
ignored. then the default action for that condition will be UBed. 

For example, to handle condition x with action y we can use 

Handle Condition(c=x, a=y) 

where the keyword parameter "c=" gives the condition and "e='" gives the action. 
To ignore condition z we use 

Ignore Candition(c=z) 

We introduce the set CONDITION, which contains all the exceptional conditions that 
may occur, and also contains two special conditions: succeS8 - the condition that 
indicates that a command completed normally, and error - a catchall condition that 
might be used if the exceptional condition that occurred is not handled. 

We also introduce the set ACTION which contains all actions that could be taken in 
response to some exceptional condition. The exact nature of ACTION will not be 
discu5sed in detail here. For each programming language supported by ClCS it has a 
slighlly different meaning, but for all the languages an action is represented by a 
label which is given control. There are five special actions used in this specification: 
nil - indicating a normal return (i.e., no action), abort· the action that abnormally 
tenninates a transaction, waH· indicating that the transaction is to wait until the 
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operation can be completed normally (e.g., wa.it until space becomes available), and 
system· used to simplify the specification of the Hand! e Cond i t i on command. 

The Stote 

The state of the exception controlling system can be defined by 

Except ions , 

Hendler , CONDITION" ACTION 

Handler(success) = nil 

The mapping Hand 1er gives the action to be taken for those conditions that have 

been set up by either an Ignore Condit ion or Handle Condit ion command. The 
handling a<:tion for condition success is always nil (i.e., return nonnally). The action 

for other conditions is determined by some fixed function 

Default, CONDITION -> ACTION 

We state two properties of Defaul t; 

Default{error) = abort
 

rng(Defeul t) = { nil. aborC, wait}
 

The default action for the special condition error is to abort and tbe only default 
actions are nH. aborC, and wait. 

The initial state of the exception handling system for a transaction is given by 

Initial 
Except ions 

Handler = {success 1-+ nil} 

Tbe initial state of the handler is to return normally if the operation completes 

successfully. 
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As an exarnple, if starting in the initial state the commands 

Handle Condition(c=x, e=y) 
Ignore Condition(c=z) 

are executed, then the final state will satisfy 

Handl er = { x ~ y, Z 1---+ nil. success H nil } 

The Handle Cand i t i on .sets up a mapping from condition )( to action y and the 
Ignore Condi t i on map! condition z onto the nil actioD. 

The OperatioIlS 

The two operationa, Handl e Cand i t i on and Ignore Condi t jon, work directly on 
the above state. We describe a state cbange using the following schema, which is 
called "l1Except ions" (fl. for change). 

[ ~[xcept ; ons j 

Except i cns 
Exceptions' 

j 

Except ions represents the state of the exception handling system before an 
operation and Except i cns l the state after. (Appendix 2 contains an expansion of the 

above schema.) 

The operation Handl e Cond I t i on is used to set up the action, a, to be performed on 
a particular exceptiooal condition, c; it is defined as 

Handl e Cond I t i on -----, 

llExceptions 
c CONDITION
 
e , ACTION
 

c '1 success " e E { nil. abort, wait} " 
(a=system) ~ Handl er' Handler tI { c 1---+ Default(c) }, 

Handler' = Hand 1er tI { c 1---+ a } 
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The fir9t predicate gives the pre-condition for the operation: the special condition 
success cannot be handled, and the special actions nil, abort, and waH cannot be 
given as handling actions. The second predicate describes the effect of the operation: 
if the action to be set up is specified as system, then instead the defa.ult action for the 
given condition will be set up as the handler for that condition; otherwise the supplied 
action, e, will be set up. For example, if the foHowing command is executed in the 
initial state 

Hand 1e Cond i t ion (c=x, a=system) 

where Defeul t (x) = waHl the resulting state will satisfy 

Handl er = { x t-+ wait. success t-+ nil } 

The operation to specify that an exceptional condition is to be ignored is given by 

Ignore Condition i 

.6.Except ions 
c , CONDITION 

c ~ success
 
Handler' = Handler. { c nil }
1-)0 

The special condition success cannot be specified in an Ignore Cand i t j on 
command. The action to be taken on an ignored condition is to return normally (Le., 
nil). 

ExeeptioD Cheek.i.ng 

Exception handling can take place on any CICS command except Handl e 
Cand i t Ion and Ignore Cond j t j on themselves. We need to describe the exception 
checking that takes place on all other commands. The exception checking process 
detennines the action, a, to be taken on completion of a command. The value of a is 
depended on the condition, c, returned by the command, and the current state of the 
exception handling mechanism. In addition, any command may specify whether a.ll 
exceptions are to handled or not for just the execution of that command. In 

describing the checking process we will include the Boolean variable handle to 
indicate this. The following defines the (complex) exception checking mechanism 
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which is included in the definition of ea.cb operation (other than Handl e Cand it ion 

and Ignore Condition). 

Except j on Check -, 

Except ions i 

handle: Boolean 
c CONDITION 
• , ACTION 

..,hand' e -. 8 = nil• 

c E dam Handler ~ 8 = Handler(c), 

Default{c} ':# abort ~ a = Default{c)' 

error Edam Handl er ~ a = Handler(error), 
a = abort 

If exceptkms are not being handled for the command ("handt e ) the action is to 
return nonnaUYi otherwise the action is determined from the exception handler. If the 
condition, c, bas been ignored or handled (including the cage where the handle adion 
was specified as system) then the corresponding handler action is used. OtherwiBe, if 
the default adion for the condition is Dot abort the default is used, else if the special 

condition error is handled its handler action is used, otherwise the action will be 
abort. 

QUESTIONS RAISED DURING SPECIFICATION 

The questions raised about the system during the specification process are an 

important benefit of the process. They indicate problems either in the documentation 
of the system or in its logical design, and provide the people responsible for 
mainta.ining the system with immediate feedback on problem areas. 

In writing a formal specification one is crea.ting a mathematical model of what i.s being 
specified, and in creating such a model one is encouraged to be more precise than if 
one were writing in a natural language. Because of the required precision, questions 
are raised during the specification process that are not answered by reference to the 

less formal manual. In fact, the task of formal specification is demanding enough to 
raise most of the questions about the functional behaviour of the system that would 
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be raised by an attempt to itnplement it. The effort required for a specification, 
however, is considerably less than that required for an implementation. 

We will now discuss some of the questions tha' were raised duricg the specification 
work on CICS modules. It is ictere9ting to note that most of the questions raised 
required the expert on the module to refer to the source code to give a conclusive 
answer. We will begin with the questions about exceptional conditions, then a 
question about interval control, and finally a question about the interaction between 
temporary 9torage and exceptional conditions. 

Exceptional Conditions 

We will first list some questions that were raised during the specification of 
exceptional condition handling and then examine one of the more interesting 
questions in detail. All these questions were resolved in producing the specification 
given in the previous section. 

1. What is the range of possible default actions? 

2.	 ls the default action for a particular condition the same for all commandll that can 
raise that condition? 

3. Can the special condition error be ignored? 

4.	 Is the action for condition error only used if the default system adion on a 
condition is abort? 

5. If executed from the initial state does the sequence 

Handle Condition(c=x, a=y) 

Handle Condition(c=x. a=system) 

return the handler to the initial state? 

The reader is invited to try to answer these questions from the manual entry given in 
appendix 1 and then from the specification given in the previous section. We will now 
look in detail at question 5 above. It shows a subtle operation of the exceptional 
condition9 mechanism that is counter-intuitive. 
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In an earlier model of the Hand 1e Cand i t i on command the following incorrect line 
was used in the specification. 

(8 :;: system) -+ Handler' :;: {c} ~ Handler 

That is, if the action is system then the entry for the condition c is removed from the 
handler (c Ii! dam Hendler'). The final model contains the line 

(8 = system) -+ Handler' = Handler. { c 1-+ Default(c) } 

In this version, if the action is system the entry in the handler for condition c is set 
uptobeDefault(c) (thereforec E dam Handler'). 

To see the effed of the difference we need to look at the Except i on Check 

mechanism given in the previous section. If we use the second line above then the 
action when that exception c occurs will be Def au 1t (c) (assuming hand 1e is true). 
In the earlier model, however, the action also depends on whether a handler has been 
set up for the special condition error: the action will be Defau 1t (c) unless 

Default(c) is abort and error E dom Handler, in which case the action will be 
Handler(error). The difference between the two versions is subtle and the reader is 

encouraged to study the definitions of Handl e Cond i t ion and Except ion Check 
in order to understand the difference. 

The exception check mechanism is quite complex. None of the people experienced 
with CICS who were questioned about exceptional condition handling were aware of 

the problem detailed above. It is interesting to conjecture why this is so. The most 
plausible explanation is that the operation of the exception check mechanism is 
counter-intuitive. For example, the sequence given in question 5: 

Handle Condition(c=x. a=y) 

Handle Condit ion(c=x, a=system) 

does not lea.ve the exceptional condition handler in its initial state if the default action 
for condition x is abort and a handler has been set up for the special condition 
error; before the above sequence the error handler will be used on an occurrence of 
condition x, but after, the action Default(x) (i.e., abort) will be used on an 
occurrence of x. 
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If the above sequence did restore the exception condition handler to its initial state, 
then it could be used to temporarily handle condition x for the duration of the 
statemen ts between the Hand 1e Cond i t i on commands. This fonn of operation is 
more what people using the exceptional conditions module expect. 

The Except i on Check mechanism is so complex that most readers of either the 
manual or the specification given in the previous section do not pick up the above 
subtle operation unless it is explicitly pointed out in some fonn of warning. This is 
probably a good argument in favour of revising exception handling to be more 
intuitive. 

The discussion about question 5 above also raises the point that a specifkation can be 
incorrect. This case shows one advantage of getting a second opinion on the 
specification and how it compares to the manual, from a person experienced in formal 
specification. It is significant that the reviewer reads the specification before reading 
the manual. The reviewer's mental model of the system is thus based on the 
mathematical model in the specification. When the reviewer reads the manual looking 
for inconsistencies with the specification) any questions that arise can be answered by 
consulting the precise model given in the specification. This contrasts with the person 
writing the specification who fonna a model from the manual and often has to consult 
other sources to answer questions that arise. Getting a second opinion on the 
specjfication and how it compa.res to the Dlanual is an important ingredient for 
increasing confidence in the accuracy and readability of the specification. 

Interval Control 

As another example we will consider one of the problems raised during the 
specification of the eIeS interval control module. Interval control is responsible for 
operations that deal with the interval timer. The operations provided by interval 
control ca.n be split logically into two groups: those to do with starting new 
transactions at specified times, and those to do with time-outs and delays. 

In specifying a module of the system we define the state components of the module (in 
the case of exceptional conditions there was only one state component, Handl er). 
The state components of interval control can be split jnto two groups that are 
concerned respectively with the two groups of interval control operations. For the 
most part, operations only refer to or change components of the corresponding state. 
One exception is the command Start (to start a new tra.nsaction) Which in some 
circumstances changes the time-out state components. This can be considered to be a 
carefully documented anomaly of the current implementation. Both the 
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implementation and documentation could be simplified if the Start comma.nd did 

not destroy the current time-out. More importantly, removal of this intera.ction would 
lead to a more useful time-out mechanism, as time-outs would not be affected by a 
tra.nsaction start. 

This anomaly is interesting as it points out an unwanted interaction between different 
pa.rts of a. module. In attempting to write the specification this interaction stood Qut 
because it involved the Start opera.tion using the time~out stale. This form of 
interaction between parts of modules tends to be pinpointed in the fonnal 

specification process as the offending opera.tioDS require access to state infonnation 
other tha.n 11I.3ot of the pari to which they belong. 

Two further facts reinforce the view that the current operation of the Start 
command i3 not the most desirable: if the new transaction is to be started OLI a 
different computer system to the one issuing the Start command, or if the start is 
protected (from the point of view of recovery on system fa.i.lure) then the start does 
not destroy the current time·out. Ideally we do not want to have to specify distributed 

system and recovery effects individually with each operation. We would like to add 
extra levels of abstraction to describe these effects for the whole Bystem. 

IDteraetion Between Modules 

As an example of an interadion between two CICS modules we will consider 3D 

interaction between exceptional conditions and temporary storage. When temporary 

storage runs out of space it can raise the exceptional condition nospace. This will be 
processed in the normal way if it has been explicitly handled; the default action, 
however, is to wait until space becomes available. 

Thus the specification of the temporary storage operations that can lead to a nospace 
exception require access to the exceptional conditions state to determine whether or 
not the L10space exception is handledi if it is handled it can occur, but if it is not, it 
cannot These operations would more simply be specified (and implemented) if they 
had an extra parameter indicating whether or not to wait. It is interesting to note that 

in the implementation such temporary storage commands are transfonned into a call 
with all additional parameter after the exception handling state has been consulted. It 
is 30180 interesting that these commands were not correctly implemented if the 
nospace exception were ignored. 

Interactions between modules of the system are pinpointed during the formal 
specification process (just as they would be in an implementation) as an operation 
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from one module will need access to the state components of a.nother. Any such 
interactions discovered during the specification process should be examined closely as 
they indicate a breakdown in the modular structure of the system. 

PROBLEMS WITH SPECIFICATION 

This section will examine the problems encountered in applying the formal 
specification techniques themselves - in contrast to the previous section, which 
examined problems with the system being specified. The problems encou.:ltered in 
applying specification techniques can be split into communication problems between 
the people involved, the general problem of achieving the aright'" level of abstraction 

in the specification, and more technical problems related to the partiCUlar 
specification technique. 

Communication PJ-oblems 

As specifiers from a university working with a commercial development laboratory we 
faced a communications problem. Both parties have their own language: the specifiers 
use the language of mathematics based on set theory, while the developers use 
terminology and concepts specific to the system which they are developing. The 
communication problem is in both directions. This requires education of each party in 
the language of the other. 

In performing a formal specification the specifier needs to understand what is being 
specified in order to be able to develop a mathematical model of it. To under'lltand 
the system he needs to read. manuals and consult experts, both of which u~ IBM and 
eIeS tetminology. Once a specification is written the specifier would like to get 
feedba.ck on its suitability from these same experts. This requires that they need to be 
educated in mathematics to a level at which they can understand a specification. At 
the current stage of the project the education has been more in the direction of the 
specifiers learning about the system. In performing a specification of part of a system 
the specifier of necessity becomes an expert on the functional behaviour of that part 
(but not on the implementation of the part). 
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The "right" level of abstraction 

In this context "right" means that a piece of specification conveys the primary 
function of the part of the system it specifies and is not unduly cluttered with details. 
Most importa.ntly a specification should Dot be biased towards a particular 
implementation. However, getting the right specification also involves choosing the 
most appropriate model and structuring the specification so that the minute details of 
the componen~do not hide the primary function. 

We can use hierarchical structuring to achieve this. Details of some facet of a 
component can be specified separatdy and then that specification can be referenced 
by the higher level specification. Different cases of an operation (e.g. the nonnal case 
and the erroneous case) can be specified independently and combined to give a 
specification of the whole. 

The structure of a good specification may not correspond to the structure one may 
use to provide an efficient implementation. In specification one is trying to provide a 

clear logical separation of concerns, while in implementation one may take advantage 
of the relationships between logically separate parts to provide an efficieilt 
implementation of the combined entity. The intellectual ability required of a good 
specifier is roughly equivaleilt to that of a good programmer; however, the view taken 

of the system must be different. 

Teclmi..J Problems 

The technical specification problems discovered in applying formal specification 

techniques to eIeS in particular were 

1.	 putting together the module specifications to provide a specification of the 
system as a whole, 

2.	 specifying parallelism, 

3. specifying recovery on system failures, and 

4.	 specifying distributed systems. 

We shall briefly discuss these in turn. 
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Putting modules together: Currently, three modules out of the sixteen modules 
that fonn the application programmer's interface hdve been specified and we now feel 
we have enough insight into the system to consider the problem of putting the 
specifications of modules together. Each module has state components and a set of 
operations that work on those state components. Putting the modules together is 
essentially combining the states together to form the state of the system, and 
extending the operations of the modules to operations on the whole system. 

The problems encountered in putting modules together were 

1.	 avoiding name clashes when the modules are <:ombined, 

2.	 specifying the effect on the whole system state of an operation defined within a 
module of the system, and 

3. coping	 with situations in which an operation of one module refers to state 
components of anotber module. 

Parallelism: In our current specifications the operations are assumed to be atomic 
operations acting on the state of the system. We have a sufficient underlying theory 
to allow one to rea.son formally about a single sequential transaction. An area for 
future research is to extend the theory to allow reasoning about the interactions 
between parallel processes. The current spedfications will still be used but they will 
need to be augmented with additional spe<:ifications which <:onstrain the way in which 
the parallel processes interact. 

Reeovery: An important part of a transaction processing system is the mechanism 
for recovery on failure of tbe system. The current specifications do not address the 
problem of recovery. Again we would like to augment the current specifications so 
that recovery can be incorporated without requiring the existing part of the 
specification to be rewritten. 

Distributed Systemll: A number of CICS systems may cooperate to provide services 
to users. The main facility provided within CICS to achieve this is the ability to 
execute certain operations or whole transactioD8 on a remote system. While the 
individual operation specifications could be augmented to reflect remote system 
execution it wa.s thought better to wait until we had a specification of the system and 
extend that to a distributed system. To reason effectively about a distributed system 
we need to be able to reason about parallelism. 
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CONCLUSIONS 

Fonnal specification techniques have been successfully applied to modules of an 
existing system a.nd as an immediate benefit have uncovered a number of probleme in 
the current documentation as well as flaws in the current interface design. In the 
longer term the formal specifications should provide a good starting point for 
specifying proposed changes to the system, a more precise description for educating 
Dew personnel, and a basis for improved documentation. 

In part the reason we have been successful in applying our specification techniques 
was that the modular structure of CICS is quite good, and we have been able to take 
advantage of this by concentrating on individual modules in relative isolation. 

The questioDs raised during the specification process are the main benefit in the short 
term of applying formal specification techniques to existing software. They highlight 
aspects of the system that are incompletely or ambiguously described in the manual, 
as well 3.8 focusing attention on problems with its strudure, for example, undesirable 

interactions between modules. 

In the longer term a formal specification provides a precise description which can be 
used to communicate between people involved with the system. The specification is 
less prone to misunderstanding than less formal means of communication, such as 
natural language or diagrams. It can be used as a basis for a new specification 
incorporating modifications to the original design, and it provides an excellent starting 
point for people responsible for improving the documentation. (In another group at 
Oxford work on incorporating formal specifications into user manuals is bemg done 

by Roger Gimson and Carroll Morgan [5).) 

The time required to specify a module of the system varied from about 4 weeks for 
Exceptional Conditions to 12 weeks for Interval Control. The time required was 
related to the size of the module (the number of operations, etc.) and also to the 
number and severity of problems raised about the behaviour of the module. The size 
of a module specification (in pages) turned out to be roughly comparable to the size of 
the manual entry for the module. The specification sizes ranged from 4 pages 
(handwritten) for Exceptional Conditions to 16 pages for Interval Control. 

The difficulties encountered with tbe specification process itself were the language 
gap between university a.n.d industry, and the problem of achieving the right level of 
abstradion. There were also a number of more technical specification problems that 
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arose in applying the techniques: the problem of putting together module 
specifications to provide a specification of the system as a whole, specifying 
parallelism, specifying recovery on system failure, and specifying distributed systems. 
These problems a.re areas for further research. 
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APPENDIX 1 

CICS/VS Version 1 Release 5 
Applieation Programmer's Rereren~e Manual (Com.m.and Level) 
Ex~eptional Conditione 

Exceptional conditions may occur during the execution of a CICS/VS command and, 
unless specified otherwise in the application program by an IGNORE CONDITION or 
HANDLE COND I TI ON command or by the NOHANDLE option, a default action ror each 
condition will be taken by CICS/VS. Usually, this default action is to terminate the 
task abnormally. 

However, to prevent abnoraml termination, an exceptional condition can be dealt with 
in the application program by a. HANDLE CONDITION command. The command must 
include the name of the condition and, optionally, a label to which control is to be 
passed if the condition occurs. The HANDLE CONDITION command must bl! executed 
before the command which may give rise to the associated condition. 

The HANDLE CONDITION command for a given condition applies only to the program 
in which it is specified, remaining active until the associated task is terminated, or 

until another HANDLE CONDITION command for the same condition is encountered, in 
which case the new command overrides the previous one. 

When control returns to a program from a program at a lower level, the HANDLE 
CONDITION commands that were active in the higher-level program before control 
was transferred from it are rea.ctivated, and those in the lower-level program are 
deactivated. 

Some exceptional conditions can occur during the execution of anyone of a number 
of unrelated commands. For example, IOERR can occur during file·control 
operations, interval-control operations, and others. If the same action is required for 
all occurrences, a single HANDLE CONDITION IOERR command will suffice. 

If different actions are required, HANDLE CONDITION commands specifying different 
labels, at appropriate points in the program will suffice. The same label can be 
specified for all caommands, and fields EIBFN and EIBRCODE (in the EIB) can be 
tested to find out which exceptional condition has occurred and in which command. 



24 Applying Formal Specification 

The IGNORE CONDITION command specifies that no action is to be taken if an 
exceptional condition occurs. Execution of a command could result in several 
conditions being raised. CICSfVS checks these in a predetermined order and only the 
first one that is not ignored (by an IGNORE CONDITION command) will be passed to 

tbe application program. 

The NOHANDlE option may be used. with any command to specify that no action is to 

be taken for any condition resulting from the execution of that command. In this way 
the scope of the IGNORE CONDITION command covers specified conditions for all 

commands (until a HANDLE CONDITION for the condition is executed) and the scope 
of the NOHANDLE option covers all conditions for specified commands. 

The ERROR Exceptioual Condition 

Apart from the exceptional conditions associated with individuaJ. commands, there is a 
generaJ. exceptionaJ. condition named ERROR whose default action also is to terminate 
the task abnormally. H no HANDLE CONDITION command is active for a condition, 
but one is active for ERROR, control will be passed to the label specified for ERROR. A 
HANDLE CONDITION command (With or without a label) for a condition overrides the 
HANDLE CONDITION ERROR command for that condition. 

Commands should not be included in an error routine that may give rise to the same 
condition that caused the branch to the routinej speciaJ. care should be taken not to 
cause a loop on the ERROR condition. A loop can be avoided by including a HANDLE 
CONDITION ERROR command as the first command in the error routine. Tbe original 
error action should be reinstated at the end of the error routine by including a second 
HANDLE CONDITION ERROR command. 

B""dl. Exceptional Conditio,," (HANDLE CONDITION) 

HANDLE CONDITION condition ( label) I 
[ condition (label) I I 

This command is used to specify the label to which control is to be passed is an 
exceptional condition occurs. It remains in effect until a subsequent IGNORE 
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CONDITION comma.nd for the condition encountered. No more than 12 conditions are 
allowed in the same command; additiona.l conditions must be specified in further 
HANDLE CONDITION commands. The ERROR condition can a.lso be used to specify 
that other conditions are to cause control to be passed to the same label. H 81 abe 1" 
is omitted, the default action for the condition will be taken. 

The following example shows the handling of exceptiona.l conditions, such as DUPREC J 

LENGERR, and so on, that can occur when a ~RITE command is used to add a record 
to a data set. DUPREC is to be handled as a specia.l casej system default action (that 

is, to terminate the task abnorma.lly) is to be taken for LENGERR; and all other 
conditions are to be handled by the genera.lized error routine ERRHANDL. 

EXEC ClCS	 HANDLE CONDITION
 
ERROR(ERRHANDL)
 
DUPREC(DUPRIN)
 
LENGERR
 

If the generalized error routine can handle a.ll exceptions except IOERR, for which the 
default action (that is, to terminate the task abnormally) is required, IOERR (without 

a label) would be added to the above command. 

In an assembler-language application program, a branch to a label caused by an 
exceptiona.l condition will restore the registers in the application progra.m to their 
values at the point where the EXEC interface program is invoked. 

I.n a PL/l application program, a branch to a label in an inactive procedure or in an 

inactjve begin block, caused by an exceptiona.l condition, will produce unpredictable 
results. 

Handle Condition Command Option 

cond i t ion [ (1 abe 1) 1 "cond i t i on" specifies the name of the exceptional 
condition, and "1 abe 1" specifies the locatjon within the program to be branched 
to if the condition occurs. If this option is not specified, the default action for 
the condition is taken, unless the default action is to terminate the task 
abnormally, in which case the ERROR condition occurs. If the option is specified 

without a label, any HANDLE CONDITION command for the condition is 
deactivated, and the default action taken if the condition occurs. 
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Ignore Ex,",pllonal Conditions (IGNORE CONDITION) 

IGNORE CONDITION condition 

[ condition 

ThiB command is used to specify that no action is to be taken if an exceptional 
condHion occurs. It remains in effect until a subsequent HANDLE CONDITION 

command for the condition is encountered. No more than 12 conditions are allowed in 
the same commandj additional conditions must be specified in further IGNORE 
CONDITION commands. The option Uconditioo" specifies the name of the exceptional 
condition that is to be ignored. 
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APPENDIX 2 
NOTATION 

Schemu 

A schema has the general fonn 

Neme --, 

Dec 1erat ions
 

Pred i cates
 

where the variable declarations are of the form 
identifier: type 

and the predicates give the properties of, and relationships between, the varia.bles. 

A schema may be used to describe either a state or an operation. To describe a state 
the declared variables fonn the components of the state and the predicates give the 
invariant properties of the state. For an operation the declarations consist of the 
initial state components, the final state components, and the inputs and outputs of the 
operation. As a convention the final state component names are dashed versions of 
the initial state component names. For an operation the predicate part describes the 
relation between the inputs, outputs, and initial and final states. 

A schema 5 may be included within another schema T. This has the effect of 
including all the variables declared in 5 in the declarations of T and of including aU 
the predicates of 5 in the predicates of T. A schema name may be decorated (e.g., 
dashed). This haa the effect of decorating in a similar way (e.g., dashing) all the 
declared variables both in their declaration and their uses within the predicates. For 
example, the schema ll.Except ions given in the sample specification in the body of 
the paper is equivalent to 

ll.Exceptions 
Handl er 
Handl er' : 

CONDITION 
CONDITION 

... 

... 
ACTION 
ACTION 

i 

Hand 1er (s uccess) 
Handl er' (success) 

= 
= 

nil 
nil 
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Logic 

Within the predicate part we may use the operators 

, - and 
v - or 

- - negation 
=0 - implication 
, - equal ity 
~ - inequality 
~X' 1 • P - for all x of type T, P holds 
3X'1 • p - there exists an x of type T such that P holds 
c ...... x, y - conditional expression 

For the conditional expression if c is true the value of the conditional expression iB x;
 
otherwise it is y.
 

Seta
 

We may coaslrod a set by listing its elements within braces:
 

{ x. ~. z } 

or by giving some property that only elements of the set have 

{ "T I P(x) }. 

We may test the following 

e - membership, e.g., 1 e {l,Z.3} 
f: - nan-membership, e.g., 2 f {I, 3, 5} 
~ - subset, e.g., {Z.3} • {Z.3,4} 

and perform the following operatioDs OD sets, given A and B subsets of T 

U - set union: A u B = {x:T I x E A v x E B} 
n - set intersection: An B = {x:T 1 x E A A)( e 8} 

- set difference: A - B ~ {x:T I x E A A X f B} 
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l'uDetiOJ18 

We may declare a function f from a set A to a set B by 

f : A ~ B 

Foreachelement)( e A,f(x) is the value of the functionf atx (f(x) e B). 

If a function f is not defined for all elements of A (Le., f is a partial function) then 
we write 

f A-<+B 

The domain of definition of f 

dom f 

is that subset of A (dom f ~ A) for which the function f is defined. 

The range of f is that subset of B (rng f l;;; B) containing exactly thoae values 
b e B such that there exists an x e dom f such that f(x) = b. That is 

rng f = { b e B I (3 x A· f (x) = b) } 

The notation 

{ xl H YI' Xz H Yz, ...• xn H Yn } 

where each xk is distinct, defines a function whose domain of definition is the set of 
xk's: 

dom { xl ...-. YI' Xz 1-+ Yz. Xn H Y } { xl' xz' ... , Xn }n 

and the value of the function at xk is Yk: 

{ xl H YI' Xz H yz•...• Xn H Yn }(xk) = Yk' 
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The notation 

f • 9 

stands for function f overridden by function 9 (we 338ume fundions f and 9 are of 
the 8a.me type). The function f • 9 is defined at a point if either f or 9 is defined at 
that point: 

dam (f • g) = dam f U dam 9 

IT 9 is defined at )( then the value of f • 9 is g(x); otherwise, if f .is defined at x 
the value of f • 9 is f(x): 

x • do. 9 => (f • g) (x) = g(x) 

x ~ do. 9 A X • dom f => (f • g)(x) = fIx) 

The notation 

s ~ f 

stands for lhe function f with <loll elements of jt8 domain that are in the set 5 removed 

dom (s ~ f) = (dom f) - s
 
x • dam (s ~ f) => (s ~ f)(x) = f(x)
 



CICS TEMPORARY STORAGE 

Abstract 

Temporary storage provide;; facilities for storage of information in named "queues". 
The operations that can be performed on an individual queue are either the st.andard 
queue-like operations (append to the end and remove from the beginning), or 
array-like randoln access read and write operations. 

A Single Queue 

An element of a queue is a sequence of bytes. 

TSEl em ~ seq Byte 

A single queue may be defined by 

TSQ _ 

ar seq TSE 1em 

p N 

p ~ Iar I 

The array ar contains the items in the queue. The size of the array is always equal to 

the number of append oper<:l.tions th<J.t have been performed on the queue since its 

creation - independently of the number of other (remove, read, or write) (lperations. 
The pointer p keeps track of the pOilition of the item which was last removed or read 

from the queue. 

The initial state of a queue is given by all empty array and a zero pointer. 

TSQ_I n , t , a I Q [ TSU I (er = [II A (p = 0) ] 

Copyright © I. J. Hayes 11 Jul 85 31 
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Operations 

We will define fOUf operations. all a single 1S0. The definitions of these operations 
will use the schema 

6TSQ , TSQ A TSQ' 

£lTSQ (6 for change) defines a before sbte ISO, with components ar and p 

(satisfying p ~ Iar I), and an after state TSQ I, with components ar and p' 

(satisfying p' ~ Iar' I). The definitions of the operations follow. 

Appendo ~ 

bTSQ I 

from? TS£lem 

I tern! ~ 

ar' '" ar~ [from?] 1\ 

i tern! Iar' I 1\ 

p' == p 

The new element from? (a "7" at the end of a D,.me indicates an input.) is 
appended 10 the end of ar to give the new valIJe of the array. The position of tiJe 

new item is returued in Item' (a "!" at the end of a name indicates an oIItput). 

The pointer position is unchanged. 

Removeo ------------------, 
6TSQ 
Into! : TSElem 

p <: I ar I 1\ 

p'=p+ll\ 

Into! "'" ar(p') 1\ 

ar = ar 

The pointer must not have Cllre<l.dy reached the end of the array. The pointer is 

incremented to the next item in the queue and the value of that item is returned in 
i nto l • The contents of the array is unchanged. 
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Ur I teo- ~ 

6TSQ 
item? l 
from? TSElem 

Item? E 1 .. jarl A 

ar'=arGl { I t em? ~ from? } A 

p' :::: p 

The position I tern? must lie within the bounds of the current arr<:LY. The item at that 

position in ar is overridden by the value of from? to give the new value of the array. 

The pointer position is unch<:Lnged. 

Read 
O 

, 

6TSO 
Item? l 
into! TSElem 

item? E 1.. Iar I A 

into! ad I tern?) A 

p' :=. item? 1\ 

ar :: ar 
I -----' 

The value of the item at position item?, which must lie within the bounds of the 

array, is returned in Into!. The pointer position is updated to be item? The arr<:Ly 

is unchanged. 

In the above, all lhe operations have been specified ill terms of the array ar and 

pointer p. While this is reasonable fOf the Read and Write operations it does not 

show the queue-like nature of the Append and Remove operations. Let 11S uow show 

that the queue-like operations are the familiar oues. We can define a standard queue 

by 

o seq TSElem 
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The standard append to the end of a queue opera.tion is given by 

Standard_Appendl---------------------, 
~Q 

from? TSElem 

q' ':::: q~ [from?] 

where liQ ~ [ q, q Q].
 

The standard remove from the front of the queue operation is given by
 

Standard RemDve' ~ 

liQ - I 

Into! : TSElem 

q:= [lntoIJ~qJ 

The predicate in the above specification may be unconventional to some 
readers. It states that the value of the queue before the operation is equal to 
the value returned ill into! catenated with the value of the queue after the 
operation. This form of specification more closely reflects the symmetry 
between Standard_Append and Standard_Remove than the more conventional 

Into! == head(q)
 

q ::: tail(q)
 

To see the relatiouship between standard queues and temporary storage queues we 

need to formulate the correspondence between the respective states. 

QL i ke ~ 

q , Q 

TSQ 

q ::: tallP(ar) 
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A standard q corresponds t.o the array ar with the first p elements removed. Given 
this relationship between states we will now show the relationship between Appendo 
and Standard_Append. What we will show is that if we perform an Appendo with 
initial state TSo. and final state TSO' then the corresponding standard queue states Q 
and a' (as determined by QLlke and QLlke' respectively) are related by 
Standard_Append. This can be formalised by the following theorem. 

Theorem: Appendo " alike" o.like' I- Standard---Append 

Proof: 

1. q,q':seq TSElem; from?:TSElem from Olike. QLlke' and Appendo 
Z. q ::: tai I P ' (ar') from aLike' 
3. ::: tailP(ar~[from?]) from Appendo 
4. ::: (tai IP(ar))~(from?] as p ~ larl from TSO 
S. ::: q-[from?] from alike 
6. Standard_Append from (1), (5) 0 

We can now do the same for Remove. 

Theorem: Removeo " aLike" o.Llke' I- Standard_Remove 

Proof: 

1. q,q :seq TSElem; into l :TSElem from QLlke, alike' and Removeo 
2. p < Iar I from RemoveO 
3. q::: tai IP (ar) from QL i ke 
4. ::: [ar(p+l)J~(tallP+l (ar)) from (2) and property of tall 

5. = [,nto!]-ttail P ' (ar')) from RemoveO 
6. ::: [rnto!j-q' from aL I ke' 
7. Standard_Remove from (1). (6) 0 
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Errors 

To allow for errors we can introduce a report to indicate success or failure of an 

operation. If a.n error occurs we would like the TSQ to remain uDchanged. This ca.n 
be encapsulated by 

£RROR , 

ATSQ 
report! CONDITION 

TSQ' = TSQ 

where the set CONDITION contains all the error reports plus the report Success. In 

the opera.tions described above there are three errors that can occur: trying to remove 

an item from a TSQ with no items left to remove, trying to read or write at a position 

outside the array, and running out of space to store an item. 

Noneleft ! 
ERROR 

p = larl A 

report! ::: ItemErr 

IOutofBounds' 
ERROR 
item? Z 

I 
item? Ii!! 1 .. Iar I A 

report! :: ItemErr 
--

NoSpace! 

ERROR
 

report! ::: NoSpace
 
--J 
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If the operations work correctly the report will indicate Success. 

Successful G [ report! CONDITION I report ~ = Success 1 

The operations given previously can now be combined with the erroneous situations. 
We will redefine the operations in terms of their previous definitions. 

Append G (AppendO A Successful) v NoSpace! 

Remove G (Removeo A Successful) v NoneLeft! 

Wr i te G (Urite A Successful) v OutofBounds! v NoSpace~o 

Read G (Reado A Successful) v OutofBounds! 

Note that NoSpace! does not specify under what conditions it occurs. The 
specifications of Append and Wr j t e do not allow us to determine whether or not the 

operation will be successful from the initial state and inpnts to an operation. This is 
au example of a non-deterministic specification. It is left to the implementor to 
determine when a NoSpace! report will be returned (we hope it will not be on every 

call). 

Named Queues 

We now want to specify a system with more than one queue. A particular TSO can be 
specified by name and the above operations performed on it. We will use a mapping 
from queue names (TSQName) to queues. The state of our system of queues is given by 

TS TSOName ---» TSO 

The initial state of the system of queues is given by an empty mapping. 

TS Initial ~ {} 

Our operations require updatiug of a particnlar named TSO. We can introduce a 
schelll<l., UpdateO l to encapsulate the COllllllOU part of npdating for operations on 

queues that already exist. 
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Updat eO"--- ---, 

HS 
queue? TSQName 
oTSQ 

queue? E dom(ts) ~ 

TSQ ::: ts(queue?) ~ 

ts' := ts III { queue? H ISQ' } 

where 6T5 :;. [ ts, ts' T5]. Note that UpdateQ specifies that the named queue 

(alone) is updated but does not specify in what way it is updated. This is ach.ieved by 
combining It with the single queue operations to get the operation 00 named queues. 

In adding named queues we have added the possibility of a Dew error: trying to 

perform operations 00 Don-existent queues. This error is given by 

I NonE)(istent! ~ 

6TS
 
queue? : TSQName
I 

report! : CONDITION 

queue? ~ dom(ts) ~ 

ts J ::: ts /'I 

report! == QIdErr 

OUT oper<ltions, except AppendQ which is allowed on ;'l. llon-existent queue, can now 

be redefined in terms of our previous definitions. 

RemoveD ~ (UpdateQ ~ Remove) \ 6TSQ
 
v NonExistent I
 

Ur i teQ (UpdateQ /'I Ur Ite) \ !:ITSa
 
v NonExistent!
 

ReadQ (UpdateQ ~ Read) \ ~TSQ
 

v NonEXistent!
 

The temporary V<lri<l.bles in ~ TSQ (ar, p. ar'. p') are hidden in the signature:- of 
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the final operations and the operations inherit the errors from the f:qnivalent single 

queue operations. 

A queue is created by performing an AppendD operation on a queue that does not 

exist. The following schema describes the creation of a queue. 

Creat eO. j 

6TS 

queue? : TSDName
 

TsQ_Init la1
 

TSQ' 

queue? e dom(ts) 1\
 

ts' = ts U { queue? l--lo TsD' }
 

Again the relationship between TsQ_1 nit I a 1 (ar, p) and TsO' (ar', p') is not 

defined within this schema. This i9 supplied by Append in the following definition 

AppendQ ~ «UpdateD v CreateD) 1\ Append) \ ~TSQ 

Note that for a non-existent queue, if an error occnrs (i.e. a NoSpace condition), then 
an empty queue will be created. 

In addit.ic.n to these promoted operations on named queues we have a.n operation to 

delete a n;l.med queue. 

DeleteD __ o 
6TS 

queue? : TSDName
 
report I CONDITION
 

queue? € dom(ts) 1\
 

t 5' = { queue? } ~ t 5 1\
 

report! = Success
 

An except.ioll occur:; if the queue to be deleted does not exist; De 1eteD becomes 

Da 1eteQ DeleteOo v NonExistent! 
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A Network of Systems 

Temporary stora.ge queues ma.y be located on more than ODe system. Let us ca.1l the 
set of all possible system identifiers SysId. We can represent temporary stora.ge 
queues on a network of systems by 

NTS • Sysld ~ TS 

For a network 

nts NT5 

dom(nts) is the set of systems that share temporary storage queues and for a system 

with identity s~sid such that sys\d E dom(nts), nts(sysld) is the temporary 
storage state of that system. The operations on temporary storage queues may be 
promoted to operate (or a network of systems by the following schema. 

Net"ork

I aNTS 
sys i d? Sysld 
aTS 

s~sld? E dom(nts) ~
 

ts = nts(sysid?) ~
 

nts' ~ nts ~ { sysld? ~ ts' }
 

where 6NTS ~ [ nt 5, nt 5': NTS ]. As with promoting the operations to work on 

na.med queues the above schema only specifies whIch system is upda.ted but not how it 
is updated. This will be supplied when this schema is combined with the defillitious of 
the operations on a single system. 
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Network operCl.tion also introduces the possibility of an error if the given system does 
not exist. 

NoSystem! , 

~NT5 I 

sysid? : SysId 

report I : CONDITION 

sysid? 1t dom(nts) " 

nts' "" nts " 
report! = SysldErr 

The operations on a multiple system are given by 

AppendQN (AppendQ " Netl-lork) \ tiTSo 
v NoSystem! 

RemoveQNo (RemoveQ " Netl-lork) \ tiTS
 

v NoSystem!
 

ReadQNo 9 (ReadQ "Netl-lork) \ tiTS
 

v NoSystem!
 

Ur i teQNo (UriteU "Netl-lork) \ tiTS
 

v NoSysteml
 

The sys i d? and queue? name supplied as inputs are not necessarily the ones on 

which an operation takes place. A queue name on a given system may be marked as 
actually being located on another (remote) system, possibly with a different name on 
that remote system. We will Lllodel this by the following function which takes the 

input p<tir of SYS j d? Cl.ud queue? name and gives the corresponding actual sys j d! 

and queue! nanle on which the operation will be performed. 

remote (S!:jsld x TSQName) -----+ (S!:JsId x TSUName) 
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In many ca..."es tbe input sys i d? and queue? name are the actu<:l.l system ann queue
 
name; in these cases remot e will behave as the identity.
 

We will use the following schema to incorporate remot e into the operations.
 

TSRemote 
sysid?, 

queue?, 

sysid! 

queue! 

Sysld 
TSQName 

I 

(sysidl, queue!) remote(sysid? queue?) 

The outputs, sys i d! and queue!, 01 TSRemot e form the inputs to the operations. If 
a sys i d? parameter is supplied then the operations on temporary stonge queues are 
defined by 

AppendQN 1 9 TSRemote» AppendQNo
 

RemoveQN1 9 TSRemote» RemoYeQNo
 

ReadQN 1 9 TSRemote» ReadQNo 

WrlteQN 1 9 TSRemote» lJrtteQNo 

If no SYSI d? parameter is given then the operations are given by 

AppendQNz 9 AppendQN t [cursysid?/sys,d?l 

RemoveQNZ ~ RemoveON1[cursysld?/sys 1 d?] 

ReadQN z ~ ReadON1[cursysid?/sysld?) 

UriteQNz ~ WriteON 1[cursysid?/sysld?} 

That is, the sys i d? parameter is replaced by a parameter giving the identity ,)f the 
current system (the system on Which the operation was initiated). 
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A note on the current implementation 

Each system keeps track of the names of queues that are located on other (remote) 
systems and for each remote queue the identity of the remote system and the name of 

the queue on that system. It is possible that the referred request could be fora queue 

name that is also remote to the referred system, in which case the request will be 

referred on to yet another system. To find the system on which the queue actually 
resides we need to follow through a chain of systems until we get to a system 011 

which the queue Dame is considered local. We can model the implementation by the 

function 

rem (S!:JsId x TSQName)"""'8 (SysId x TSQName) 

which for a sysid and queue name gives the sysid and queue name of the next link in 

the chain; if a sysid and queue name pair is not in the domain of rem then the chain 
is finished. The correspondence between rem and remot e is given by 

remote == repeat rem 

where repeat applies the function rem repeatedly until the parameter to rem is no 

longer in the domain of rem 

(repeat f) y = y if y ~ dom(f)
 

(repeat f) (f y) if y E dom(f)
 

That is 
remote(s, q) = (5, q) if (s, q) ~ dom rem 

remot e (rem (s, q) ) if (5, q) E dom rem 

As remote is a total fnnction the equality of remote and (repeat rem) requires 

that no chain of rem's contains any loop (so that (repeat rem) is also total). 
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Given the functilJn rem if we take the corresponding (curried) function with the 

following shape 

r : S\:1s1d -) (TSQ~jame --++ (S\:1sId x TSQName)) 

so thilt 

r(s) (ql rem(s, q)
 

dom(r(,)) { q : TSQName I (5. q) E dom rem}
 

The milpping that needs to be stored on a system 5 is given by r (s), and is of type 

TSQName --++ (Sysld x TSQName) 
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CICS INTERVAL CONTROL 

Abgtract 

The specification of Interval Control has been split into the specification of a timeout 

system, and a sta.rt/retrieve system, as these are logically different functions. 

III specifying the timeout system, events were initially included but it was later 

discovered that they were logically reduncbnt and should not be P<i.rt of the Interval 

Control interface. The version of the timeout system without events is presented here. 

Tbere are a number of differences (or omissions) between this specificatio[J aud the 

aetu:!.l interface: 

. Remote system aspects are not included. 

- A more abstract time parameter is used. 

- A more abstract data parameter is used. 

- Function management headers were ignored as they are a detail internal to the 

structure of the data (and not explained anywhere in the manual). 

- The "nocheck''' and "protect" options to Start have been ignored as they are to do 

with recovery. It is hoped to upgrade the specification to include recovery Clspects 

at a later stage, agClin on a CICS-wide basis. 

- The "wait" option to Retrieve (Clod associClted "dtill1out" meChClIlisl1l were not 

specified). 

As the specification techniques used here Clre only suitable for specifying sequential 

open.tions, the parts of Interval Control involving concurrent processes Clre not 

adequately specified in this docurnent. Interval Control is complicated, as is this 

specification. 

Copyright © 1. J. Hayes 11 Jul 85 45 
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Tim.e 

The Interval Control operations are involved with (intervals of) tlme. We can 

represent the effect on time of the operations by the following change of time schema. 

!J.Tlme ~ 

clock, clock' ; Time 

clock :;; clock I 

where T I me ~ N. We will assume time is measured in units of, say, seconds. Time 

cannot decrease. 

The operation to determine the current time is given by 

AskT I me , 

!J.T I rne 

t I me! T I me 

report! Condition 

t I me! :::: c1 ock 1\ 

report! = OK 

Aside: The eICS AskTime operation has no explicit output parameters but rather 

returns the time of day and the date in the Exec Interface Block (EIB) fields 

EIBTIME and EIBDATE. A specification should avoid the implementation detail of 

the EIB and bence an explicit output parameter bas been used above. Furthermore, 

only a single output t I me I incorporates both the date and time of day information. 

This is a little more abstract and allows consistent use of time throughout the 

specification. 0 
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Tilneouts
 

The following version of the timeout system is more abstract than the actual system. 

This version avoids the neerl for eveuts to be passed to and fro ou operations. 

The state required for timeout operations is 

U
10 ---,
 

,meout' Time
 

set up,
 

cance 11 ed Boolean
 

The initial timeout state of a process is given by 

~ [TO' ~setup 1TO INIT 

A stale change on a timeout operation is given by 

610 llTlme A TO A TO' 

The following operation is used to set up " timeout at t I me? 

SetUp1° ---,
0 

610
 

time? Time
 

clock < t I me? A
 

timeout' =: t I me? 1\
 

setup' 1\ -'cance11ed'
 

.\ timeout can only be setup provided the time has not already p<l.ssed. Tbe final stale 
records the timeout time and that a timeout has been setup and not yet cancelled. 

Aside: The corresponding CICS operation (inappropriately called "Pmt") has two 

differences to the ",bove. Firstly, it returns all event, and this specification avoids the 

need for events. Secondly, the time parameter for the CICS operation may be either 

relative to the current time or an absolute time in the day (well maybe in the 

morrow - to quote: "CICS treats as expired a request for an absolute time that is 
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equal to the current time or that precedes the current time by up to six hours. Tf the 

specified absolute time precedes the carreul time by more than six hours, CICS adds 

2-1 hours, that is, the requested function is performed at the time specified but on the 

next day.") In the specification above we have used a time parameter that is consistent 

with the time used by AskT I me '::l.1ld he lice it is neither restricted to a 100 hour period 

nor does it require the complicated definition quoted above. 0 

To determi1l': if the current timeout Iw.5 expired we lise 

TestExp i ryo , 

010 

hasexp I red I ; 800 lean 

I setup 1\
 

t hasexplred! = (timeout ~ clock) v cancelled
 I 

where =TO ~ [ !J. TO I TO' ::: TO ]. In order to test expiry a timeout must have 

been previously setup. A timeout is considered to have expired either if the time has 

passed or the timeout has beeu cancelled. 

Aside: This operation is not currently provided explicitly by CICS, rather, to quote: 

"'When the time specified has expired, the timer event control :l.rea is posted; that is, 

its first byte is set to X'40' aud its third byte to X'80'." Our TestExp I ry operatio\l is 

an abstraction of a rather low level bit testing operation. Furthermore, the lack of an 

explicit test operation is <L m<l.jor reason for the introduction of events into the Interval 

Control interface. If there were a TestExplry operation then there would be no 

need for post La return an event. 0 

To delay the current process until the previously setup timeout has expired we use 

Wa i to 
6[0 

setup"
 

"'setup' "
 
(timeout ~ clock') v cancelled'
 

Aside: The equivalent CICS operation Wait Event has an input event parameter 
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"ecaddr". This i~ not necessary in the above specification ..s it is assullul1ed we <I.re 

waiting for the current timeout to expire. In practice, however, the Wait Event 
operation is also used for process synchronisat.ion. To quote: "This command is used 
to synchronise a task with the completion of an event initiated by the sallle l<l.sk or by 
auother task". However, the manna] also states: "No other task shonld att.l?mpt to 

wait on the event setup by a Post cO\l1mand. The timer event control are.:r. can be 
released for a variety of reasous (e.g. task termin;"Ltion). If this happens, the result of 
any other task is~uing a Wait on the event setup by the Post is unpredictable." In 
summary, events created by Interval Control are nsed for synchronisation by some 
applications but this must be used with great care. 

The Wait Event operation can also get an InvReq exception "if the specified event 
control area address is above 16 megabytes for a program executing in 31-bit mode on 
MVSjXA." By avoiding events we avoid this, but even with events I think we would 

like to <l.void it! 0 

The opention to deby a process unt.il a given tittle is 

De 1a~o- -------------, 
6TQ 

time? : Time 

clock < tIme? A
 

(t ime? ~ clock') v cancelled'
 

For cancelling timeout::; we need two different forms of cancel oper:l.tion: one, 
Canee 1TO, when a process is callcelling its Own timeout and the other, Canee 1TOReq, 
when a process issues a cancel with a request identifer (f'ee later section for more 
details) indicating which process' timeont is to be cancelled. 

Cane e 1TOo ---, Cancel TOReqo -, 

HO 

se tup A 

~setup' A 

cancelled' lis~::up A 

setup' A 

cancell~d' 

In Cance 1Tao the timeout does not remain setup while in Canee 1TOReqG it does. 
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Aside: The different operation of Cance 1 depending all whether there is <l. request 

identifier given or not is rather J.nOIl1Ol]ouS, It would appeJ.f to be a side effect of the 

current illlplelllen~ation. 0 

Errors 

If the time has already expired on a setup timeout or delay an Expired exception cau 

occur. 

Exp Ired! ~ 

'TO 
time? Time 

repar t! : Cand I t Ion 

time? $ cleck A 

report! =: Expired 

Aside: There is also an InvReq exception for the CJCS operations due to an invalid 

format time parameter. The more abstract time used here <l.voids such an exception. 

D 

If a TestE)(p i ry, Wa i t or Canee 1 operation is performed when a timeout has not 

been setup we get a InvReq exception. 

Not Set Up! -------. 

"TO 
report! : Cand i t Ion 

..... setup A
 

report! ::: InvReq
 
I 

If the operations do Dot get 3D exception then report! will indicate success. 

Success ( report! : COrldl t iOrl I report I == OK ] 
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The total timeout system operations are 

SetUpT0 1 • (Success A SetUpTOO) v Expired! 

TestExp i rYl - (Success A TestExplryo) v NotSetUp! 

1\Wait l = (Success lJait O) v NotSetUp!
 

DelaYl • (Success 1\ DeJayo) v Expired!
 

Cance 1TO l • (Success A CancelTOa) v NotSetUp!
 

Cance 1TOReQI ~ (Success CancelTOReQO)v NotSetUp!
 1\ 

Aside: There is currently no method provided by Interval CDn~rol for a. process to 
determine whether a timeout or delay has been cancelled or whether it expired. This 

could be provided by a Cancelled exceptional condition. 0 

Multiple Processes 

In the preceding we have only used the state information of a single process. In order 
to include request identifiers which allow one process to cancel another's timeout we 
will extend our state to multiple processes. 

PTO " Pld -.. TO 

where PId is the set of process identifiers. Each process is associated with a unique 
element of PId. Given a. process identifier pld the timeout state associated with the 

corresponding process is given by pto(p I d). 

The ini~iJ.1 stJ.te of the timeout system is given by 

PTO ,NIT • () 
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To promote our timeout operations to equivalent ones in the Olulti-process state 
acting on a single process within that state we use the following promotion schema. 

MPTOI _ 

I ,PTO 
currentpld? : PId 
HO 

currentpid? € dom(pto) A 

TO = pto(currentpld?) A 

pta' = pta $ { currentpld? ~ TO' } 

where liPTD G: [ pta, pta' PTO]. The variable currentp I d? gives the 

identity of the process actually performing the operation.
 

We can now give final 5pecifications of Tes t Exp i ry and 1-18 i t (as neither use
 
request ideutifiers) and updated specifications for the other operations.
 

TestExpir\:j G: (TestExplrYl A MPTO) \ 6TO 

We ( t G: (Wa I t 1 A MPTO) \ 6TO 

SetUpTO z ~ (SetUpT0 1 A MPTO) \ MO 

Delayz Q (Del a!:l1 A ,~PTO) \ 6TO 

CancelTOz Q (CancelT0 1 A MPTO) \ 6TO 

CancelTOReqz Q (Cancel TOReQ1 A MPTO[pid/currentpld?]) \ bTO 

For Cancel TOReqz the iden~ity of the proce"" whose timeoLLt is cancelled is 
determined by a request identifier rather thau being tile current process (gee below). 
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Process Adivation 

When a process is initiated the system sets up its time-out state. 

In i t I ateTO -----,
 
bPTO
 
pid? ; Pld
 

pto' pta Ell { pid? t--+ }T0 1NIT 

When a process terminates the system removes its timeout state. 

Term i nateTQ , 

bPTO 
pi d? ; PId 

pt 0' (p'd?} 1pto 
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Request Identifie:rs
 

To complete the time-out system we need to introduce request identifiers and a map 

that associates a unique request identifier with a process. 

REQ Q Pld ~ Reqld 

For SetUpTO and Delay we record the supplied request identifier reqi d? in req 
for the current process. 

SetUpReqld -, 

t>REQ 

pld : PId 

reqid? : ReqId 

req i d? ~ ran( { pid} ~ req)/\ 

ceq req III { pid H reqid? } 

where L\REQ Q [ req. req : REQ ]. The request identifier supplied must not 
already be in use by any other process. The req I d? is recorded in req for the 

current process. 

On cancels we need to find the process associated with the request identifier. 

FlndReqId I 

6REQ 
reqid? : ReqId 
pid : PId 

reqld? E ran(req) 1\ 

pid = req-l(reqld?) 
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On cancels will also need to delete the entry ior the request identiiier. 

De 1eteReq I d ---, 
~REQ I 

pld : Pld
 

req' = {p i d} ~ req
 

With the introduction of request identifiers we have some additional errors. When 
setting up a req i d?, if it is already in use by some other process, we get an Inv Req 
exception. 

NonUn i que! , 
=REQ 
pld : PId 
reqid? : ReqId 

report! : CONDITION 

req i d? E ran ( {p i d} ~ req) 1\ 

report! ::: InvReq 

where =REQ ~ [ liREQ I req ::: req ]. 

If the req i d? is not found in req we get a NotFncl exception. 

NotFound! I 

=REQ 
req i d? ReqId 

reqld? ~ ran(req) 1\ 

report! ::: NotFnd 
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We can now complete our specification of operations involving request identifiers. 

SetUpTO = (SetUpTO, ~ SetUpReqld[currentpld?/pldj) 
v ("PTO ~ NonUnique!!currentpld?/pld]> 

Delay = (Delay, A SetUpReqld[currentpid?/pid\) 
v ("PTO A NonUnique! [currentpld?/pid]) 

Cance ITO Cancel T02 A DeleteReqld(currentpld?jpid]• 
CancelTOReq ~ (CancelTOReqzA FindReqId '" De 1eteReqld) 

v (NotFound! , "PTO) 

On errors due to request identifiers, the timeout state is not modified. If a process 

cancels its cwn timeout (Cance 1TO) the request identifier for that process is deleted. 

When the time for a timeout request expires the system removes all knowledge of the 

corresponding request identifier. 

Expi r\:j I 

6REQ 

"PTO 
pld? ; PId 

tlmeout(pto(pld)) !i: clock/\ 

req = {pld?} ~ req 

where"PTO. I 6PTO I pta' = pta ]. 
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Start and Retrieve 

A Start command may be used to start a transaction at a given time. The 
transaction runs a given transaction program. It may be associated with a terminal 
and may have data passed to it. A started transaction may use a Retr ieve 

command to retrieve data passed to it by a Start command. We will represent a 

transaction hy 

Transac t i on' _ 

transld TransId I 

starttime Time 
term i d TermId 
retrdata Data 

where TransId is the set of names of transaction programs and TermId is the set of 
terminal identifiers. If a transaction is not associated with a terminal then its term id 

will be nil (i.e. nil E Termi d). The type Oat a will not be further refined here but for 
the moment we can think of it as a sequence of bytes. If there is no data for a 
transactiou to retrieve then its retrdata will be nil (i.e. nil E Data). 

Transaction and terminal identifiers supplied to a Start command must be in the set 
of all transaction program names and the set of terminals known to the system, 
respectively. 

programnames f TransId
 
terml na 1s f TermId
 

We associate a unique identifier from the set PId with each transaction in the system. 
This is so we can distinguish two transactions with the same trans I d I star t time I 
termld, and retrdata. 
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The state of the transaction start/retrieve system is given by 

TR -----, 

tr: Pld ~ Transaction 
act i ve ~ Pld 
retrieved ; ~ Pld 
busy: IP Termld 

clock: Time 

act lYe ~ dom(tr) /\
 

retrieved ~ active /\
 
busy = (termid 0 tr)QactiveD - { nil}
 A 

(~pid : ar.tive· tr(pid).starttime ~ clock) A 

act ive <l (termid 0 tr) ~ {nil} E Pld~Termld /\ 

ran(termid 0 tr) - { nil } ~ terminals A 

ran(transid 0 tr) ~ programnames 

The main component of the state is the map tr which gives the transaction 

information for each transaction. The active (or running) transactions are a. subset of 

those known (dam( tr»), and the processes whose data has been retrieved must have 

been active. The busy terminals are those currently associated with an active 

transactioD (excluding the special tenninal identifier nil which gignifies there is no 

terminal attached). The starting time of every active transaction must have already 

passed. Each actual Germinal is associated with at most one active transaction. The 

terminal and transaction identifiers of transactions must be in the sets of tbose known 

to the system. 

The initi.ll state of the transaction system is given by 

~ [ TR I tr : {) J.TR INIT 

A state change is given by 

~TR TR A TR' A I1Tlme 
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The Start comlnand sets up a transaction.
 

Start ,
o 
IITR 
Transact ion? 
p,d , PId 

termld? E terminals II 

transld? E programnames II 

pld E dom(tr) II 

tr' ::: tr U {pid 1-+ Transaction?} II 

act j ve' = act i ve II 

retrieved' = retrieved 

The term i d and trans J d of the new transaction must be members of, respectively, 

the set of known terminals and the set of known transaction program names. The new 

transaction is added to the as yet unactivated transactions with a new unique 

identifier pi d. 

Aside 1: A Start on the local system causes the current timeout (see Interval 

Control time-out specification) to be lost. I b(\.ve chosen not to model this aspect of 

the operatiou as it would require adding the time-out state to the above schema. The 

timeout and start/retrieve operations should be logically separate. 0 

Aside 2: We will not attempt to model tbe effect of the nocheck and proted options 

here. They are to do with the implementation of recovery mechanisms. 0 

A St art command can cause an exception if the term Id? is not one of the available 
terminals. 

TermI dErr ! ---, 

=TR 
term I d? TermId 

report! Cond I t Ion 

termld? E terminals II 

report I = TermldErr 

where '=TR ~ [ 6TR I tr' trllactlve' act Ive ]. 
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A Start can alw cause an exception if the trans Id is not Oll€ of the known 
transaction program name~. 

TransldErr! , 

,rR 
transld? Transld 
report I (and i t Ion 

transld? ~ prDgram~ames A 

report! ::: TranddErr 

Finally, a request klentifier is setup on a Start; this may cause all error because it is 

not unique. The final definition of Start is 

Start G (Start o A SetUpReqld A Success) 
v (TermldErr! A =REO) 
v (TransldErrl A =REO) 
v (NonUnique! A =TR) 

Aside: For Start/Retrieve the reqnest identifier is also used as the Temporary Storage 
queue name under which the data is stored. This implies Start and Retrieve 
should also modify the Temporary Storage state. I have chosen not to model this as it 

is an implementation mechanism that should not be visible. 0 
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Activating Transactions 

A transaction may be aclivated by the system if its st art time has passd and if its 

associated terminal, if it has one, is free. The system action of acliv<l.cing of a 

transaction is given by 

Act i v at eTR ~ 

6TR 
pid?:Pld 

P i d? E dom( t r) - act I va II 

tr(pid?).starttime ::; clock II 

tr(pld?).tarmld it busy II 

-(3p: active· tr(p).transld tr(pld?).transid) II 

act Ive' = active u { pld? } II 

tr'=trll 

retr leved' = retr laved 

The transaction to be activated must be known to the system and nol already be 

active. The transaction's starting time must have passed and its terminal must be 

free. Only one transaction with a given trans I d may be adive at any oDe time. The 

transaction is noted as active. 

Deactivation of a process with respect to Interval Control is given by 

Daact i va t eTR ----,
 

l>TR
 
pid? PId 

P i d? E ac t i ve II
 

t r' = { pi d? } ~ t r II
 

active' = active - { pid? } II
 

retrieved' = retrieved - { pld?
 

The process lll\lst have been active. All knowledge of it is removed. 
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Data Retrieval
 

An active process may retrieve the data associated with its initiating St art 

command. After that data has been retrieved, data associated with other transactions, 
whose starttlmes have expired and which have the same termld and transid, 

may be retrieved. The data from these other transactions is retrieved in startt Im8 

order. First we will give the common parts of the Retr i eve operation and its 

associated error actions. 

IITRR	 -----, 

OTR 
currentp I d? Pld 
Transact ion 

retrievable P Pld 

Transaction = tr(currentpld?) ~ 

~ possible = 
dom (tr ~ {Transaction l I	 termld1 = termld ~ 

transtd1 = tranSld ~ 

starttlme1 ~ clock} ) La 

retrievable = { P : possIble I Vu : possible· 

tr(p).starttlme ~ tr(u).starttlme} ~ 

act i ve' ::: ac t I ve 

The state of the current transaction is represented by Transact i on, that is, 

trans Id, term i d, start t I me and retrdata. A transaction can only possibly 
retrieve data from a transaction with the same transaction identifier and terminal 

identifier, whose starting time has expired. Of these it chooses one with a minimal 
starting time. 
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The Ret r I eve operation is given by 

Retrieveo I 

ATRR
 
data! Data
 

retrdat a ~ nil 

" current p id? ~ ret r i eved ~ 

data! = retrdata " 
retrieved' = retrieved u { currentpld? } " 
tr' = tr 

" currentpld? e retrieved => 

(3p: retrievable· data! = tr(p).retrdata " 
Ir':{p}~lrA 

retrieved' = retrieved) 

A transaction will first attempt to retrieve its own data; there must have been s9me 
supplied when it was started. If the transaction retrieves its own da.ta it is marked as 
having done so. If a transaction has already retrieved its own data then it may 

retrieve data from transactions in the set ret r i evab 1e described above. The 
transaction whose data was retrieved is deleted. 

Aside 1: The current implementation of CICS returns data with equal start times in 

the order in which tbe corresponding Start commands were issued. No doubt 
applications may depend on this but the manual does not define the order (nor does it 

explicitly say it is arbitrary). D 

Aside 2: The CICS Start and Retrieve commands have additional parameters: 

RTransId, RTermId and Queue which are used to pass more data of a specific type. 
For our specification we will assume that these parameters are passed as part of the 
ret rdat a along with do sequence of bytes of normal data. These parameters a.re 

really redundan t as a structure containing them could be passed as data. 0 

Aside 3; We have not modelled the "wait" parameter to Retr i eve or the ~ime-out on 
do Retr I eve with the "wait" option. D 
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A Retr i eve command can get an exception if there is no data left to be retrieved. 

EndData! I 

.TRR 
report! Cand I t ion 

currentpid? E retrieved A 

retrievable = {} A 

report! = EndData 

where =TRR ~ t.lRR 1\ =TR. 

Aside: EndData also occurs on system shutdown. 0 

A Ret r i eve caD get an exception if no data was supplied on its corresponding 

Start or if the data of its Start has been retrieved and there is another transaction 

retrievable by the current transaction for which there was no data supplied. 

NotFnd ' -. 

=TRR 
repor"t! Cand i t ion 

(retrdata = nil 
v (currentpid? E retrIeved 1\ 

3p: retrievable· tr(p).retrdata nil ) 
) A 

report! NotFnd 

The final definition of Ret r I eve is 

Retrieve ~ (Retrleveo 1\ Success) v EndData! v NotFnd! 

If there are retrieva.ble transactions some of which have data and some of which do 
not, the a.bove allows the implementation to chose between retrieving data a.nd giving 

a N otFnd exception. 

Aside: Exceptions can also occur for the following reasons: input/output errors 

(IOErr), a dummy tempora.ry storage module is installed in the system (InvTSReq), 
the format of the data is incorrect (EnvDefErr, LengErr) or there is an invalid 
parameter (InvReq). 
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Cancel 

A transaction set up by a Start command may be cancelled provided its start time 
has not passed. 

Cance I TRO, ~ 

6TR 
pld : PId 

pld E dom(tr) A 

tr(pid).starttlme > clock 
tc' = {pid} ~ tc 
act ive' = active 

The cancelled transaction is removed from the known transactions. The identity of 
the transaction to be cancelled (p I d) is determined by a request identifier; on 
cancelling the request identifier is deleted. 

CancelTR 2 (CancelTRo 1\ FindReqId 1\ DeleteReqId Success)1'1 

v (NotFoundl A =TR) 

The cancel operation either cancels a timeout or a iltart. 

Cancel Q Cancel TO v CancelTR 

The domains of the two operations Cance 1TO and Cance 1TR are disjoint. The choice 
between the two alternatives depends on what operations have taken place previously. 
For Cance 1TO, pi d must be in the domain of pta. The only operation that achieves 

this is the timeout Inlt lateTO; therefore pid must correspond to an active process: 
pid e act ive. 

For Cance 1TR, pi d must be in the domain of tr and furthermore its starting time 

must uot have expired. When the Start command corresponding to pld was issued 
it resulted with pld e active. The only way pld can become active is vi~ ~ 

transaction Act i vate TR , but for a transaction to be activated its starting time ml1;;t 
have expired. Therefore, if Cance 1TR is applicable, the transaction has not been 
actinted. Hence the domains of Cance 1TO and Cance 1TR are disjoint. 



CICS Message System 

Abstract 

The following message system is based on the message handling in CICS. The 

specification itself is an interesting example: it combines states (of input and output 

devices), and gives a number of examples of the use of the "»" operator on schemas. 

Message Output 

We can represent a set of output devices by a mapping from a device name to a 

sequence of messages that have been ontput to that device. 

NOUT ---, 

I noq Name -H seq Message I 

The operations on outpnt that we will discuss here neither create nor destroy devices. 

6NOUT ~ [NOUT A NOUT' dom noq' = dom noq 1 

Sending a message to a device simply appends the message to the queue for that 

device. 

NSend ---, 
o 

6NOUT 
n? Name 

m? Message 

naq· = naq e { n? I--l noq(n?) - [m?J } 
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Multiple Destinations 

A message may be sent to a set. of destinations. 

NSendM ---, 
o 

6NOUT 

ns? IP Name 

m? Message 

ns? I; dom noq II
 

noq "'- noq Ell {n ~ ns? • n"'--) noq{n)-lm?] }
 

All the names in ns? mu",t correspond ~o valid output devices. Each device in n? is 

sent the message 

Theorem: 

Given 

ToSet ~ [n? : Name; ns! IP Name ns! { n? } ] 

the following equality holds 

NSendo = ToSet » NSendMo 

The schema operator "»" identifies the outputs (v<lriables ending in "I ") of its left 

operand with the inputs (va.riables ending in "?") of its Tight operand; these v.1.riables 

are hidden in the result. All other components are combiued together as per schema 

conjundioll (II). 
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Message Input 

We can represent a set of input devices by a mappiug from a device uame to a 
sequence of messages yet to be input from that device. 

NINI ~ 

I niq Name ~ seq MessagC! _ 

The operations on input described here will neither create nor destroy devices. 

~NIN NIN A NIN' dom nlq = dom nlq 1 

Receiving a message from a device simply removes it from the head of the input 

queue for that device. 

NRece I yeo ---, 

ANIN 
n? Name 

ml : Message 

ml == head(niq(n?)) II
 

nlq == nlq EEl { n? I--Jo tall(nlq(n?)) }
 

Send aDd Receive 

We can define an operation that both sends a message to a device and receives a 

message from that device. 

NSendRece I ve NSend II NRecelveoo o 



70 Me"qge SYSkHl 

Combining Input and Output 

We will introduce NDEV t(] describe the combined input and output state f0f all the 

devices. If a device can be used for input then it milS! be ;lble to be used for 0UtpUt. 

NDEV ~ 

I ~~:T
 
~o, n'q dom noq
c 

Input and output operations will preserve the output :In,i input ;;tates respectively. 

=NOD] ~ ~NDEV NOUT' NOUT I 

=NIN [ ~NDEV NIN' NIN I 

where ~NOEV :;: NDEV" NDEY'. 

The opcrOlt2011~ au the combined state are 

NS,"nd - NSenrl[i A =NIN 

NSendN = NSendMc A =NIN 

NRece I ve = NRec81v8CJ =NOUTA 

NSendRece I ve - NSendRece I vee' A ~NIJEV 
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Logical Names
 

Rather than work with <1c1uai (physical) device uame~, as we have up untilthi" point, 

we wonld like to work with logical names that are mapperl into physical device names. 
We use the followilJg m:tpping from logical names to phys-ieal [lames. 

LtoP ---, 

! 1tap LName ---H Name 

None of the operations discllssed here modify the mapping from logkal nallles to 

phys-ieal names hence we wiJl use 

:oLtoP ~ [LtaP 1\ LtoP' LtoP' = LtoP I 

If a logiol name actually corresponrls to a device we perform the operation on that 

device, otherwise we use the rleviee with physiDI [lame canso 1e. 

MapName , 

=LtoP 
dey Name ~ seq Message 
1n? LName 
n l Name 

In? E dom(ltop~dev) ltop(ln?) 1\"" n ' 
n JIn? E dom(ltap~dev) =} console 

The operations on (1, single device become 

LSend ~ HapName[naq/dev]» NSend 

LRecelVe = MapName[nlq/dev] » NRecelve 

LSendRecclve ~ MapName[nlq/devj » NSendReceiv8 
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Multiple Logical DestinationB 

To send a message to a set of logical names we need to map the set of logical names 

into physic:..] names. If nOlle of the logical names correspond to a device we send the 

message to the device with physic ..) llame conso 1e. 

MapSet--:- -, 

=LtoP 
lns? 
ns! 

NOUT 

IP 
IP 

LName 
Name 

let names = Itopalns?D n dam noq 
names = {} ~ ns! = { console} 
names ¢ {} ~ ns! = names 

In 

A 

The operation to send a message to a set of logical devices is 

LSendM MapSet » NSendM 

Theorem: 

Given 

ToSetL [ In? LName; lns! ; IP LName 1ns! { In? ) J 

the followillg equality bolds 

LSend ToSetL » LSendM 
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Domains of the Operations 

In practice we would like all the oper<:Lliolis to be tota.l (defined for all inputs). 

Unfortnnately the operations as defined are not total. If a name (or a. set of names) 

does Dot correspond to an aetnal device then the name will be translated to the 

special device console; if the console does not exist ~he operation is nol defined. 

For the output operations ensuring that the canso 1e exists is a sufficient 

pre-conditiou for the operation to be defined. (We will also need this pre-condition for 

inpnt.) 

Pre [ NDEV; LtoP: m? : Message console E dom niq 1 

Remember that dam n I q !;; dam noq so conso 1e Edam noq. 

Theorems: 

Pre pre LSend= 
Pre = pre LSendM 

For the jnpu~ operations we need the ",dditional requirement that the queue of 

messages yet to be inpllt on the device is not empty. 

Preln ~ [Pre; n? : Name 1 niq(n?) 1- [] 1 

Theorems: 

MapName(nlq/dev] » Preln ~ pre LRece i ve 

MapName[niq/dev] »Preln ~ pre LSendReceiv8 
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1. Definitions and declarations. 

Let XI x k be identifiers and T, Tk sets. 

LH5 ~ RH5 Definition of LH5 a.s 

syntactically equivalent to RH5. 
x; T Declaration of x as type T. 

x,: T1 ; xz: Tz ; ; xn: Tn 
List of declarations. 

, X : TXl' xz' n 

~ :T; xZ:T; ; X : T.x 1 n 

2. Logic. 

Let P, Q he predicates and 0 declarations. 

- P Negation: "not P".
 
P x Q Conjuuctiou: "P and Q".
 

P v Q Disjunction: up or Q".
 

P ~ Q Implication: "P implies Q" or
 
"if P then Q". 

P .", Q Eq uinlence: "P is logically 
eq uivalen t to Q". 

v x T • P 
Universa.l quantification: 
"for all x of type TJ P holds". 

3 x : T • P 

Existential quantific<ltion: "there 
exists all x of type T such that P". 

3! x T' Px 
Unique existence: "there exists a 
unique x of type T such that P". 
:; (3 x : T • P" !\ 

-(3y,T I	 y'x • P,» 

'oJ x,:T1;	 xz:Tz ; ." ; xn:Tn • P 
"For all Xl of type Tl' 

Xz of type Tz' ... , and 
xn of type Tn' P holds. 

3 x1 :T:; xz:Tz ; ... ; xn:T n • P 
Similar to 'rI. 

3! xl; T1; x 2 : TZ; ; xr ; Tn' P 

Similar to V. 
V DIP • Q Q(VD·P"'Q). 
3 DIP· Q Q(3D,pxQ). 

t 1 = t z Equality between terms. 
t 1 1. t z Q -ttl = t Z)· 

3. Sets. 

Let 5, T and X he sets; t, t k terms; P a 
predicate and 0 declarations. 

e S Set membership: "t is an element 
of 5". 

t • S Q-(teS). 

5 ~ T Set inclusion: 
Q (VX,S·xET). 

S c	 Strict set inclusion: 
:; 5~T!\5;iT. 

{} The empty set. 
{ t ,_ t z, ,tn } The set 

containing t l' t z,··· and tn. 
{ x , TIP} 

The set cont<lilling exactly those 

x of type T for which P holds. 

(t" t 2 , ,t n) Ordered ll-tuple 

of t 1, t z"" and tn· 
T1 x Tz x ... x Tn Clrtesian product: 

the set of <ll! n-tuples such that 
tbekth component is of type Tk . 

{ x 1 :T 1 ; xZ :T2 ; ... ; x~:Tn I P} 

The set of n-tuples 

(Xl' xz, . x ) with eachq 

xk of type Tk SIlCQ that P holds. 
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{DIP-,} 
The set of t'8 such tha.t given the 

declarations D, P bolds. 

D - t } 

~ { D I true • t }. 

IP 5 Powerset: the set of aU subsets 

of 5. 
fS Setaf finite subsets of 5; 

o {T, ~ SiT ;s [;n;'e }. 
S n T Selintersection: given S. T: IP X, 

~{x:X I XESAxET). 

S u T Set union: given 5, T: IP X, 
~ {x:X I x e 5 v x e T }. 

S - T Seldifference: given 5, T: IP X, 

~{x:X I xeS"xi;!T}. 

n ss Distributed set intersection: 

given 55: IP (IP X), 

o kX I	 (VS'SS • xES)}. 
u SS	 Distributed set union: 

given 55: IP (IP X), 

" k X I (3S' SS • X E S)} . 

lSI	 Size (number of distinct 

elements) of a fiuite set. I 
4. Nwnbers. 

N The set of natural numbers 

(non-negative integers). 

f\:t The set of strictly positive 

natural numbers: 

"N-{O}. 
~ ThE set of integers (positive, zero 

and negative). 
m.. n	 Theset of integers between m 

and n inclusive: 

;;;;, { k: Z I m l:;. k 1\ k '" n }. 
min 5 Minimum of a s.et, 5 : f N. 

minSESA 

('r/x : 5 • x ~ min S). 

max 5 Maximum of a set, S IF" N. 
ma)( S E 5 A 

('r/x S' x ~ ma)( 5). 

5. Relations. 

A relation is modelled by a set of ordered 

pairs hence operators defined for sets can 

be used on relations. 

Let X, Y, and l be sets; x X; Y Y; 
andR:X~Y. 

X ~ Y	 The set of relations from X to Y: 

" ~ (X x Y). 
xRy x is related byR toy: 

" (x, y) E R. 
x t----} y .;;, (x, y) 

xll--)Yl' xzt----}yz· xnl--)Yn }
 

Tbe relation
 

{ (x"y,), ,(x"y,) } 
relating Xl to Yl' ... , and 

X n tOYn' 
dom R The domain of a relalion: 

" {"X I (3y'Y • x R yl). 
rng R The range of a relation: 

" {y,Y I (3x,X • x R y)}. 

Rl ; R Forward relational composition:z 
givenR l : X~Y; R : Y~l,z 
o	 { "X, z,Z I (3y'Y • 

X R1 yAy R Z )}.z 
R1 0 Rz Relational composition: 

f2 Rz ~ Rt . 

R- 1 Inverse of relation R: 

" {y, Y; "X I x R y }. 
,d X Identity function OIl the set X: 

.;;, {x: X • x I--) x }. 

R'	 The rebtion R composed with 

itself k times: given R X H X, 
RO ~ I d X, Rk+ 1 :;: Rk 0 R. 

R'	 Reflexive transitive clo5ure: 

o U { n' N • R" } 
R' Non-reflexive trall:'litive closure: 

o U { n' N+ • R' }. 

RUSD Image: given 5 IP X, 
o {yY I	 (3x,S· x R y)}. 



5 <1 R	 Domain restriction to 5: 
given 5: IP X, 
o {"X;\,j;Y I xES A X R y). 

S ~ R	 Domain subtraction: 
given 5: lP X, 

O(X-S)1R. 

R t> T	 Range restriction to 1: 
given T: (P Y, 
:;:{x:X;y:Y I xRyAyeT}. 

R	 ~ T Range snbtraction of T: 
given T: (P Y. 

OR~(Y-T). 

R1 EEl Rz Overriding: given R1, Rz X~-H, 

o (dom R ~ R,) u R,.z 

6. Functions. 

A function is a relation with the property 
that for each element in its domain there is 

a nnique element in its range related to it. 
As functions are relations all the operators 
defined above for relations also apply to 
functions. 

X -+t Y	 The set of partial functions from 
X to Y: 
o {	 f; X ..., Y I 

('tJx; dom f • 

(3l y ; Y • x f y» ). 

X ~ Y The set of total functions from 
X to Y: 
o {	 f; x-...y I dom f = X ). 

X )oH Y The set of one-to-one partial 

functions from X to Y: 
o	 (f; X -... Y I 

('tJy: rng f • 

(31" X • x f y» ). 
X >--+ Y The set of one-to-one total 

functions from X to Y: 
• ( f; X~Y I dom f = X ). 

f t The function f applied to t. 

(AX XIP·t) 
Lambda-abstraction: 
the function that given an 

argument x of type X such that P 
holds the result is t. 

o ( " X I P • x ..... t ). 
(A xl: T1; ... ; xn : Tn I P • t) 

S: {xl:T1; ; xn:T I Pn 
(Xl' , )(~) ...... t }. 

7. Orders. 

part i a I_order X 

The set of partial orders on X. 

O{R; X""X Ilx.y,z; X 
x R x A 

X R y A y Rx ~ x=y A 

X R y A y R z ~ x R z 
). 

tote l_order X 

The set of total orders on X_ 
~ {R: pertia1_order X 

Vx. y; X 
xRyvyRx 

) 

monoton I C X <x 
The set of functions from X to X 
that are monotonic with respect 
to the order <x on X. 
.(f;X-"'XI 

x <x y ~ f(x) <x f(y) 
). 
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8. Sequences. 

seq X	 The set of sequences whose 
elements aie drawn fiQm X: 
o {A, N'-..X I 

dam A = 1.. IAI }. 
I AI The length of sequenee A. 

[ J The empty sequence {}. 

[ a 1• 8 r l 
~ {ll--+a1' , nl--+al) }. 

[aI'	 , anl-[b1, b",J 

Conca.tenation: 

~ [at.···. 81)' b 1,···, b",), 
[]~A=A-[I=A. 

head A	 0 All). 

last A ~ A(I'AI). 
t.,1 [x)-A 0 A. 
front A~[xl Q A. 

rev [a1'	 8Z' ... 8 n ] 

Revtrse:
 

Q [a." , 8 Z' 8 1 ],
 

rev I] = [J.
 
/AA	 Distributed concatenat.ion:
 

give~AA seq(seq(X)),
 

o All 1) - '" - AA( IAA I). 
~ /1] = I]· 

'/AR	 Distributed relational 

composition: 

given AR ; seq (X +-Jo X), 
o AR(l) , , ARI IAR I), 
,/[i = ,d	 X. 

dis 10 I nt	 AS Pairwise disjoint: 

given AS; seq (If' X), 

Q (! I. J dam AS • I # j 

=> AsI,) n AS(J) = {}I. 
AS p8rtltlons S 

Q dlsJo I nt AS 

1\ U ran AS = S. 

A ill B Contiguous subsequence: 

oI3C.D,seqX· 
C~A-D = B). 

squash f Convert a {unction, f: N ~ X, 
into a seqtlence by squashing its 

domain. 

squash {} = [], 

and if f i- {} then 

squash f = 

[f( i ») - squash I { 'H f) 

where I = min(dom f) e.g. 
squash {Z~A, 271---7C, 41--+B} 

= lA, B. C] 
S 1 A	 Restrict the sequeuce A to those 

items whose index is in the set S: 

Q squash( 5 <J A) 

A ~ T	 Restrict the range of the 

sequence A to the set T: 

Q squash (A t> T). 

9. Bags. 

bag X	 The set of bags whose elements 

are drawll from X: 
Q X ~ N+ 

A bag is represeuted by a 

function that maps each element 

ill the bag onto its frequency of 

occurrence in the bag. 

[] The empty bag {}. 

[ xI' xZ. xI) ] TiJe bag 

containing X I' xz.... and x" 
with the freg U~fLCy they occur ill 

the list. 

items s The bag of items contained in 

the sequence 5: 

~ { x; rng s • 

xl---7 I {I : dam sis ( I ) =x} ! 

} 
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Schema definitiou: a schema groups together 

some declarations of variables <lnd a 

predicate relating these variables. There are 

two ways of writing schemas: vertically, for 

example 
5	 _ 

x N 
lJ seq tJ 

x < Iy I 

or horizontally, for the sal}le example 

5 0 [ X' N, y' seq N I x, Iy I ]. 
llse in signatures after 'r;/,).., { ..• } 1 etc.: 

(VS • y , [I) 0 (VX'N, y' seq N I 
x< Iy I • y' [ ] ) . 

tup I e 5 The tuple formed of a schema's 

variables. 

pred 5 The predicate part of a schema: 

e.g. pred 5 is x ~ Iy I. 
Inclnsion	 A schema 5 may be included 

within the declarations of a 

schema T, in which case the 

declarations of 5 are merged 

with the other declantions of T 

(variables declared in bot.h 5 and 

T must be the same type) and the 

predicates of 5 and Tare 

Tconjoined. e.g. _ 

~ N 

z < xI 

is 

x, Z : N 
lJ : seq f\l 

x~lylllz<x 

5 I P The schema 5 with P conjoined to 

its predicate part. e.g. 

(S I x>O) is 

[x:f\l;y:seq NI x~lyiAx>Ol. 

5 D The schema 5 with the 

declarations D merged with the 

declarations of S. e.g. 

(5 ; z : N) is 

( x, z:N; y:seq N I x~lyl 

S [nel-l/o 1d I Renaming of components: 

the schema 5 with the component 

old renamed to ne~ in its 

declaration and every free use of 

that old within the predicate. 

e.g.5[z/x] is 

[ z:N; y:seq N I z 0:;; Iyl 

and S [y/x, x/lJJ is 

[ y:N; x:seq N I y s; Ixl 
Decoration Decoration with subscript, 

superscript, prime, etc.; 

systematic renaming of the 

v<lriables declared in the schema. 
e.g. 5' is
 

[x' : N; y': seq fJ I x' ~ Iy J I ]
 
""'5	 The schema S willl Hs predicate 

p<:lrt neg<lted. e.g. -'5 is 

[X'N, y"eq HI -(xclyl)] 
5	 II T The schema fOrllJPd from 

sche\l1<:ls Sand T by llwrging 

their decbr:\lioll: (.see illclu",ion 

:&b0ve) <:lnd :Lnd'i~g their 

predicates. Giv<2D. 

T ~ [x' N; z: IP f·j I xEz], 
SliT is 

- 79­



)(:	 N 

y :	 seq N 

z :	 P N 

)(,,; Iyl	 )( e zII 

5 v T	 The schema formed from 

schemas 5 and T by merging 
their declarations and or'ing their 
predicates. e.g. 5 v T is 

N 
seq N 

P N 

)(,,; Iyl v	 )( e z 

5 = T The schema formed from 

schelllas Sand T by merging 
their declarations and taking 
pred S ~ pred T as the 

predicate. e.g. S =:;0 T is similar 
to SliT and S v T except the 

5 ... T 

predicate contains an "~,, rather 
than an "II" or an "'v". 
The schema formed from 
schelllas Sand T by merging 

their declarations and taking 
pred S ¢9 pred T as the 
predicate. e.g. S ¢9 T the same 
as SliT with <I¢9" in place of 
the "II". 

S \ (VI' VZ' ...• Vn ) 

Hidi[lg: the schema S with the 
variables v1, vz, ...• and vn 
hidden; the variables listed are 
reilloved from the declarations 
and <lre existentially quantified in 

the predicate. e.g. S \ )( is 

[y"eq N I (3X'N • x<lylll 

A schema may be specified 
instead of a list of variables; in 
this case the variables declared in 
that schema. are hiddtotL 
e.g. (S II T) \ S is 

z P N 

(3	 x: M; y: seq N • 
x ~ J yl II )( e z) 

5 r (v" V z. '.' • vn ) 

Projection: The schema S with 
any variables that do not occur 
inthelistvt. v z, ... , vn 
hidden: the variables removed 
from the declarations are 
existentially quantified in the 
predicate. 
e.g. (5 AT) r (x, y) ;s 

x N 
y seq N 

(3 z U" N 

X"';(yIIlXEZ) 

The list of variables may be 
replaced by a schema as for 

hiding; the variables declared in 
the schema are used for the 
projection. 

The following conventions are used for 
variable names in those schemas which 
represent operations: 
undashed state before the operation, 
dashed state after the oper<l.tion, 
ellding in <I?" inputs to the operation, and 
ellding in "!" outputs from the operation. 



--

5 

The following schema operations only apply 
to schemas following the above conventions. 

pre 5	 Precondition: all the state after 

components (dashed) and the 
outputs (ending in "!") are 
hidden. e.g. given 
5	 -----, 

x?, s, S 
, 

, ~. 
I N 

S· :: S -	 x? A ~! :: S 

pre 5 is 

)(?, 5	 N 

(3 5', ~I N 
S' :: s-x? A ~! :: s) 

The predicate can be simplified: 

x?, s, S ~I N 

(5' :: S-)(? A y! :: 
A S ~ )(?) 

v 

(S < )(? A SiS) 

5 , T	 Schema composition. if we 

consider an intermecia.te state 
that is both the final state of the 

operation 5 and the initial sta.te 
of the operation T tJen the 
composition of 5 and T is the 

operation which relates the 
initial state of 5 to Ihe final 
state of T through tb.e 

intermediate state. To form the 
composition of 5 and T we take 
the state after componen ts of 5 
and the state before componen ts 
of T that have a basename* in 

common, rename both to llew 
variables, take the schema "and" 
(A) of the resulting schemas, and 
hide the new variables. 
e.g. 5 , T is 

x?, s, S ~ I N 

(3 50 ' N
 
So :: 5-)(? f ~! :: 5 1\
 

So < )(? A 5' :: So)
 

b<\.sename is the name with any decoration 
("i", "!", "?",etc.) removed. 

-

post 5 

5 • T 

Postcondition: this is similar to
 
precondition except all the state
 
before components (undashed)
 

and inputs (ending in "?") are
 
hidden.
 
Overriding:
 
~ (5 A ~pre T) v T.
 

e.g. given 5 above and 
T	 -----, 

x?, s~ 5 ~ 

S<X?AS·::S 

519TIS 

)(?, s, 5', ~I ~ 

(5' = S-)(? A ~I 5 A 

"(3 5' , N • 

s < )(? AS' :: 5» 
v (5 < x? AS' :: S) 
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5 » T	 Piping: this schema operation is 
,imilar to schema composition; 
;he difference is that rather than 
:dentifying the state after 
components of 5 with the state 

before components of T I the 
output components of 5 (ending 
III "! ") are identified with the 

input components of T (ending 
in "7") that have the same 
basename. 




