
SPECIFYING THE CICS

APPLICATION PROGRAMMER'S INTERFACE

Ian Hayes

Technical Monograph PRG·47

July 1985

Oxford University Computing Laboratory
Programming Research Group

8-11 Keble Road
Oxford OX1 3QD
England

Copyright © 1985 IEEE for section entitled
Applying Formal Specification to Software Development in Industry

Copyright © 1985 Ian Hayes

Ox.ford University Computing Laboratory
Programming Research Group
8-11 Keble Road
Oxford OX! 3QD
England

Author's address from September 1985:
Department of Computing Science
Queensland Univemity
St. Lucia
Queensland 4067
Australia.

SPECIFYING THE CICS

APPLICATION PROGRAMMER'S INTERFACE

Ian Hayes

Contents

Applying Formal Specification to

Software Development in Industry

CICS Temporary Storage. 31

CICS Interval Control 45

CICS Message System 67

Z Reference Card: Mathematical Notation 75

Z Reference Card: Schema Notation. 79

Preface

This monograph conta.ins papers produced as part of a joint project between IBM
(UK) Laboratories at Bursley, England and the Programming Research Group of
Oxford University into the application of fonnal software specification techniques to
industrial problems. The work documented con8ists of 8pedfication of parts of the
IBM Customer Information Control SY8tem (CICS).

The first paper conta.in8 a description of the work carried outj thi8 paper has been
published in the IEEE Transaction8 on Software Engineering (February 1985).
A number of modules of the CICS command level application programmer's interface
were specified; these include the CICS Exception Handling which is documented in

the first paper and CICS Temporary Storage and Interval Control which are
described in separate papers. The paper on the CICS Mellsage System was later work
Dot directly related to the other papers.

The work documented here was supported by research contract between rBM and
Oxford University and is published by kind permission of the Company.

iii

APPLYING FORMAL SPECIFICATION

TO SOFTWARE DEVEWPMENT IN INDUSTRY"

ABSTRACT

This paper reports experience gained in applying formal specification techniques to an
existing transaction proce88ing system. The system is the IBM Customer Information
Control System (CICS) and the work bas concentrated on specifying a number of
modules of the CICS application progranuner's interface.

The UBea of fannal specification techniques with particular reference to their
application to an exiBting piece of software are outlined. The specification process
itself is described and a sample specification presented. The specificatioD!t are written
in the specification notation Z, which is based on the notation of set theory from

mathematics.

One of the main benefits of applying specification techniques to existing softwa.re is
the questions tha.t are raised about the system design and documentation during the
specification process. Some samples of the problems that were identified by these

questions"are discussed.

Problems with the specification techniques themselves, that were encountered in
applying the techniques to a commercial transaction processing system are outlined.

* This paper is a minor revision of the paper of the same title published in
the IEEE Transactions on Software Engineering, volume 11, number 2
(February, 1985).

Copyright@ I. J. Hayes 1985, Copyright © IEEE 1985 1

2 Applying Forma.l Specification

INTRODUCTION

Oxford University and IBM United Kingdom Laboratories Limited are engaged in a
joint project to evaluate the applicability of formal specification techniques to
industrial scale software. The project is attempting to scale up fonnal mathematical
methods so far used within a research environment to large scale software in an
industrial environment. This paper reports the experience gained so far in applying
these techniqll~s to describe the application programmer's interface of the IBM
Customer Information Control System (CICS).

CICS is widely used to support online transaction processing applications such as
airline reservations, stock control, and banking. It can support applications iDvolving
large numbers of terminals (tbousands) and very large data bases (gIgabytes). The
CICS Gi:!neral Infonnation manual !3J gives the following description.

CICS;VS provides (1) most of the standard functions required by
application programs for communication with remote and local terminals

and subsystems; (2) control for concurrently running user application
progra.ms serving many online users; and (3) data base capabilities ...

CICS is general purpose in the sense that it provides the primitives of transaction
processing, and an individual application is implemented by writing a program
invoking these primitives. The primitives are similar to operating system calls, but are
at a higher level: they also provide such facilitieB as security checking, logging and
error recovery.

CICS bas been in use since 1968, and has undergone continuous development during
its lifetime. In the original implementation, the application programmer's interface
was at the level of control blocks and assembler macro calls. This is referred to as the
macro level application programmer's interface. In 1976 a new interface, the
command level application programmer's interface! was introduced. It provides a

cleaner interface which does not require the application programmer to have
knowledge of the control blocks used in the implementation of the system. The
command level interface is the subject of our work on specification.

CICS is supported on a number of IBM operating systems: DOS(VSE, MVS! and

MVS/XA, in such a way that application programs written using the application
programmer's interface may be transferred from one environment to another without
recoding. In addition, the command level interface supports a number of

3 Applying Formal Specification

programming languages: PLjI, Cobol, Assembler and RPG II. This is achieved by the
use of a preprocessor that translates programs containing CICS commands into the
appropriate statements in the language being used (usually a calIon a CICS module).
Hence the application programmer's interface provides a level of abstraction that
hides a number of significantly different implementations.

The command level interface is split up into a number of relatively independent
modules responsible for controlling various resources of the system. The formal
specification work has so far concentrated on specifying individual modules in relative
isolation. Of the sixteen modules comprising the command level interface three:
temporary storage, exceptional condition handling, and interval control, have been
specified. Temporary storage provides facilities for setting up named temporary
storage queues that may be used to communicate information between transactions or
as temporary storage by a single transaction. Exceptional condition handling provides
facilities to handle exceptions raised by calls on CICS commands in a manner similar
to PLjI condition handling. Interval control provides facilities to set up time-outs and
delays, as well as to start a new transaction at a given time and pass data to it.

With the large number of CICS systems around the world, the usage of the CICS
command level application programmer's interface is on a par with many
programming languages. As with programming languages, it is important that the
interface be clearly specified in a manner independent of a particular implementation.

USES OF FORMAL SPECIFICATION

The work reported in this paper deals with specification of parts of an already
existing system. Before considering the benefits of specification when applied to
existing software we will briefly review the benefits of specification in general. (For a
more detailed discussion see [8].)

In software development a formal specification can be used by

o	 designers - to formulate and experiment with the design of the system;

o	 implementors· as a precise description of the system being built, particularly if
there is more than one implementation;

4 Applying Formal Specification

o	 documentoI"B - as an UDMDbiguoU8 starting point for user manualaj and

o	 quality cootrol - (or the development of suitable testing strategies.

Using a specification, the designer of a system can reason about properties of tbe
system before development starts; and during development, fonnal verification tbat
an implementation meets its specification can be carried out.

When an existing system is being specified there are both short a.nd long term
benefits. In the short term perfonuing the specification

1. uncovers those parts of the existing manuals that are either incomplete or
inconsistent, and

2. gives insights into the anomalies of the existing system and can suggest ways in
which the system could be improved.

In the longer term the specification can be used

1. for reimplementation of all or part of the system,

2.	 as a basis for discussing and developing specifications for changes or additions
to the system, and

3. to provide a model of the functional behaviour of the system suitable for
educating new staff.

Re-implementation may involve a new machine architecture, progra.mming language,
or operating system. or a restructuring to take advantage of multi·processor or
distributed systems. As the specification is implementation independent, it provides a
suitable starting point Cor each of the above alternatives.

When changes or additions to the system are to be made, new specifications can be
developed with reference to the previous specification. This process will give insights
into the effect of the changes and their interaction with existing parts of the system.

As the specification is a Cormal document it provides a more precise description for
communication between the designers than natural language descriptions. This
should help to reduce misunderstandings between the people involved.

5 Applying Formal Specification

Experimentation with specification provides a much quicker and cheaper method of
investigating a number of alternative changes to the system than implementing the
changes. On the other hand, because the specification is implementation independent,
it cannot provide direct answers to questions of how difficult the changes will be to
implement, or their impact on the performance of the system. However, as it is at a
high level of abstraction it can give a better insight into the interaction of changes
with other components of the system; it is just these high level interactions which get
lost in the detail of implementation.

While working predominantly at a more abstract level the specifier must be
experienced in implementation and should be aware of the implementation
consequences of his decisions. Those parts of the specification for which the
implementation consequences are unclear should be further investigated before
detailed implementation is begun.

THE SPECIFICATION PROCESS

The starting point for our specifitatioli work was the eIeS command level application
programmer's reference manuaJ. 12J. The style of this manual is a combination of
formal notation describing the syntax of commands and informal English
explanations of the operation of the commands. We developed our initial specification
of a module of the system by reference to the corresponding section of the manual.
The main goal was to come up with a mathematical model of the module that is
consistent with its description in the manual. This involves fanning a crude initial
model of the module and extending it to cover operations (or facets of operations) not
initially dealt with, or refining or redesigning the specification as inconsistencies are
discovered between it and the manual.

In attempting the initial 8pecification, questions arose that were not satisfactorily
answered by the manual. At this stage a list of questions was prepa.red and an expert
on that module of the system: (along witli the source code) was consulted to answer
the questions according to the current implementation.

6 Applying Formal Specification

Questions can arise because

L the manual is incomplete or vague,

2.	 the manual is not explicit as to whether possible special cases are treated

normally or not,

3. the manual is itself incoDsistent, or

4. the chosen mathematical model is inconsistent with the manual in some small

way; either the model or the manual is incorrect.

As the system has been in use for some time the answers to the more straightforward

questions about its operation have already fOllnd their way into the manual. HeDce
most questions that arose in the specification process were rather subtle and required
reference to the source code of the module to be satisfactorily answered. Some of the
questions led to inconsistencies being discovered between the manual and the

implementation. These inconsistencies could either be errors in the manual or bugs in
the implementation. Which way they should be classified depends on the origina.l

intent of the designer.

The specification was also given to people experienced in formal specification who
gave comments on its internal consistency, style, and they suggested ways in which

the specification could be simplified or improved. They were also given a copy of the
relevant section of the manual to read after they have undeNltood the specification,

and were asked to point out any inconsistencies they discovered between it and the

specification.

The answers to questions and the review of the specification led to revision of the

specification which led to further questions and further review and so on.

Notation

The specification language Z [1,6, 7] developed in the Programming Research Group
at Oxford University is the primary notation that has been used in this specification
work. The formal basis of the notation is elementary set theory. People familar with
set lheory from mathematics should have little trouble undeNltanding the

specifications. A summary of the notations used is given in appendix 2.

7 Applying Formal Specification

The style of the specification document is a mixture of formal Z and informal
explanatory English. The formal parts of the specification, given in Z, are surrounded
in the text by boxi'S so that they stand apart from the explanatory surrounds and
may be more ea.sily found for reference purposes. To make a readable specification,
both formal and informal parts are necessaryj the formal text can be too terse for
easy reading and often its purpose needs to be explained, while the informal natural
language explanation can more easily be vague or ambiguous and needs the precision
of a formal language to make the intent clear. The informal text provides the link
between fOIDlality and reality without which the formal text would just be a piece of
mathematics. To create a good specification the structuring of the specification and
the composition and style of the informal prose are as important as the formal text.

The aim is to provide a specification at a high level of abstraction and thus avoid
implementation details. The specification should reveal the operation of the system a
small portion at a time. These portions can be progressively combined to give a
specification of the whole. This style of presentation is preferred to giving a
monolithic specification and trying to explain itj the latter can be rather
overwhelming and incomprehensible since there are too many different facets to
understand ar once. It is hoped that by giving the specification in small portions each
piece can be understood and when the pieces are put together the understanding of
the parts that has already been gained can lead more easily to an understanding of
the whole.

For more complex specifications that are developed via numerous small steps
understanding the wbole can be quite difficult, as one needs to remember the function
of all the parts and understand the way in which they are combined. In such cases it
can be useful to provide both a portion by portion development of the specification
and an expanded monolithic specification as well. The latter is more assailable after
one has been through a piece by piece development and has an understanding of its
various components.

8 Applying Formal SJ>ecification

A SAMPLE SPECIPICATION

As a. sample of the type of specification produced we will look in detail at the
specification of exceptional condition ha.ndling within CIeS. The exception check
mechanisms of eIeS are similar to those provided by PLfl [4J. This module was
chosen for exposition because it is one of the smaller modules in the system. The
manual entry on which the specification was initially based is given in appendix 1 and
the notation used in this example is described in appendix 2. The specification given
here is a final product of a specification process described in the previous sectlon.

Exceptional Conditions Specifiee.tion

Exceptional conditions may arise during the execution of a eIeS command. A
transaction may either set up an action to be taken on a condition by using a Handl e
Cand i t ion command, or it may specify that the condition is to be ignored by using
an Ignore Cand i t ion conunand. If a condition has been Deither handled nor
ignored. then the default action for that condition will be UBed.

For example, to handle condition x with action y we can use

Handle Condition(c=x, a=y)

where the keyword parameter "c=" gives the condition and "e='" gives the action.
To ignore condition z we use

Ignore Candition(c=z)

We introduce the set CONDITION, which contains all the exceptional conditions that
may occur, and also contains two special conditions: succeS8 - the condition that
indicates that a command completed normally, and error - a catchall condition that
might be used if the exceptional condition that occurred is not handled.

We also introduce the set ACTION which contains all actions that could be taken in
response to some exceptional condition. The exact nature of ACTION will not be
discu5sed in detail here. For each programming language supported by ClCS it has a
slighlly different meaning, but for all the languages an action is represented by a
label which is given control. There are five special actions used in this specification:
nil - indicating a normal return (i.e., no action), abort· the action that abnormally
tenninates a transaction, waH· indicating that the transaction is to wait until the

9 Applying Formal Specification

operation can be completed normally (e.g., wa.it until space becomes available), and
system· used to simplify the specification of the Hand! e Cond i t i on command.

The Stote

The state of the exception controlling system can be defined by

Except ions ,

Hendler , CONDITION" ACTION

Handler(success) = nil

The mapping Hand 1er gives the action to be taken for those conditions that have

been set up by either an Ignore Condit ion or Handle Condit ion command. The
handling a<:tion for condition success is always nil (i.e., return nonnally). The action

for other conditions is determined by some fixed function

Default, CONDITION -> ACTION

We state two properties of Defaul t;

Default{error) = abort

rng(Defeul t) = { nil. aborC, wait}

The default action for the special condition error is to abort and tbe only default
actions are nH. aborC, and wait.

The initial state of the exception handling system for a transaction is given by

Initial
Except ions

Handler = {success 1-+ nil}

Tbe initial state of the handler is to return normally if the operation completes

successfully.

10 Applying Formal Specification

As an exarnple, if starting in the initial state the commands

Handle Condition(c=x, e=y)
Ignore Condition(c=z)

are executed, then the final state will satisfy

Handl er = { x ~ y, Z 1---+ nil. success H nil }

The Handle Cand i t i on .sets up a mapping from condition)(to action y and the
Ignore Condi t i on map! condition z onto the nil actioD.

The OperatioIlS

The two operationa, Handl e Cand i t i on and Ignore Condi t jon, work directly on
the above state. We describe a state cbange using the following schema, which is
called "l1Except ions" (fl. for change).

[~[xcept ; ons j

Except i cns
Exceptions'

j

Except ions represents the state of the exception handling system before an
operation and Except i cns l the state after. (Appendix 2 contains an expansion of the

above schema.)

The operation Handl e Cond I t i on is used to set up the action, a, to be performed on
a particular exceptiooal condition, c; it is defined as

Handl e Cond I t i on -----,

llExceptions
c CONDITION

e , ACTION

c '1 success " e E { nil. abort, wait} "
(a=system) ~ Handl er' Handler tI { c 1---+ Default(c) },

Handler' = Hand 1er tI { c 1---+ a }

II Applying Forma.l Specification

The fir9t predicate gives the pre-condition for the operation: the special condition
success cannot be handled, and the special actions nil, abort, and waH cannot be
given as handling actions. The second predicate describes the effect of the operation:
if the action to be set up is specified as system, then instead the defa.ult action for the
given condition will be set up as the handler for that condition; otherwise the supplied
action, e, will be set up. For example, if the foHowing command is executed in the
initial state

Hand 1e Cond i t ion (c=x, a=system)

where Defeul t (x) = waHl the resulting state will satisfy

Handl er = { x t-+ wait. success t-+ nil }

The operation to specify that an exceptional condition is to be ignored is given by

Ignore Condition i

.6.Except ions
c , CONDITION

c ~ success

Handler' = Handler. { c nil }
1-)0

The special condition success cannot be specified in an Ignore Cand i t j on
command. The action to be taken on an ignored condition is to return normally (Le.,
nil).

ExeeptioD Cheek.i.ng

Exception handling can take place on any CICS command except Handl e
Cand i t Ion and Ignore Cond j t j on themselves. We need to describe the exception
checking that takes place on all other commands. The exception checking process
detennines the action, a, to be taken on completion of a command. The value of a is
depended on the condition, c, returned by the command, and the current state of the
exception handling mechanism. In addition, any command may specify whether a.ll
exceptions are to handled or not for just the execution of that command. In

describing the checking process we will include the Boolean variable handle to
indicate this. The following defines the (complex) exception checking mechanism

12 Applying Formal Specification

which is included in the definition of ea.cb operation (other than Handl e Cand it ion

and Ignore Condition).

Except j on Check -,

Except ions i

handle: Boolean
c CONDITION
• , ACTION

..,hand' e -. 8 = nil•

c E dam Handler ~ 8 = Handler(c),

Default{c} ':# abort ~ a = Default{c)'

error Edam Handl er ~ a = Handler(error),
a = abort

If exceptkms are not being handled for the command ("handt e) the action is to
return nonnaUYi otherwise the action is determined from the exception handler. If the
condition, c, bas been ignored or handled (including the cage where the handle adion
was specified as system) then the corresponding handler action is used. OtherwiBe, if
the default adion for the condition is Dot abort the default is used, else if the special

condition error is handled its handler action is used, otherwise the action will be
abort.

QUESTIONS RAISED DURING SPECIFICATION

The questions raised about the system during the specification process are an

important benefit of the process. They indicate problems either in the documentation
of the system or in its logical design, and provide the people responsible for
mainta.ining the system with immediate feedback on problem areas.

In writing a formal specification one is crea.ting a mathematical model of what i.s being
specified, and in creating such a model one is encouraged to be more precise than if
one were writing in a natural language. Because of the required precision, questions
are raised during the specification process that are not answered by reference to the

less formal manual. In fact, the task of formal specification is demanding enough to
raise most of the questions about the functional behaviour of the system that would

13 Applyicg Formal Specification

be raised by an attempt to itnplement it. The effort required for a specification,
however, is considerably less than that required for an implementation.

We will now discuss some of the questions tha' were raised duricg the specification
work on CICS modules. It is ictere9ting to note that most of the questions raised
required the expert on the module to refer to the source code to give a conclusive
answer. We will begin with the questions about exceptional conditions, then a
question about interval control, and finally a question about the interaction between
temporary 9torage and exceptional conditions.

Exceptional Conditions

We will first list some questions that were raised during the specification of
exceptional condition handling and then examine one of the more interesting
questions in detail. All these questions were resolved in producing the specification
given in the previous section.

1. What is the range of possible default actions?

2.	 ls the default action for a particular condition the same for all commandll that can
raise that condition?

3. Can the special condition error be ignored?

4.	 Is the action for condition error only used if the default system adion on a
condition is abort?

5. If executed from the initial state does the sequence

Handle Condition(c=x, a=y)

Handle Condition(c=x. a=system)

return the handler to the initial state?

The reader is invited to try to answer these questions from the manual entry given in
appendix 1 and then from the specification given in the previous section. We will now
look in detail at question 5 above. It shows a subtle operation of the exceptional
condition9 mechanism that is counter-intuitive.

14 Applying Formal Specification

In an earlier model of the Hand 1e Cand i t i on command the following incorrect line
was used in the specification.

(8 :;: system) -+ Handler' :;: {c} ~ Handler

That is, if the action is system then the entry for the condition c is removed from the
handler (c Ii! dam Hendler'). The final model contains the line

(8 = system) -+ Handler' = Handler. { c 1-+ Default(c) }

In this version, if the action is system the entry in the handler for condition c is set
uptobeDefault(c) (thereforec E dam Handler').

To see the effed of the difference we need to look at the Except i on Check

mechanism given in the previous section. If we use the second line above then the
action when that exception c occurs will be Def au 1t (c) (assuming hand 1e is true).
In the earlier model, however, the action also depends on whether a handler has been
set up for the special condition error: the action will be Defau 1t (c) unless

Default(c) is abort and error E dom Handler, in which case the action will be
Handler(error). The difference between the two versions is subtle and the reader is

encouraged to study the definitions of Handl e Cond i t ion and Except ion Check
in order to understand the difference.

The exception check mechanism is quite complex. None of the people experienced
with CICS who were questioned about exceptional condition handling were aware of

the problem detailed above. It is interesting to conjecture why this is so. The most
plausible explanation is that the operation of the exception check mechanism is
counter-intuitive. For example, the sequence given in question 5:

Handle Condition(c=x. a=y)

Handle Condit ion(c=x, a=system)

does not lea.ve the exceptional condition handler in its initial state if the default action
for condition x is abort and a handler has been set up for the special condition
error; before the above sequence the error handler will be used on an occurrence of
condition x, but after, the action Default(x) (i.e., abort) will be used on an
occurrence of x.

15 Applying Formal Specification

If the above sequence did restore the exception condition handler to its initial state,
then it could be used to temporarily handle condition x for the duration of the
statemen ts between the Hand 1e Cond i t i on commands. This fonn of operation is
more what people using the exceptional conditions module expect.

The Except i on Check mechanism is so complex that most readers of either the
manual or the specification given in the previous section do not pick up the above
subtle operation unless it is explicitly pointed out in some fonn of warning. This is
probably a good argument in favour of revising exception handling to be more
intuitive.

The discussion about question 5 above also raises the point that a specifkation can be
incorrect. This case shows one advantage of getting a second opinion on the
specification and how it compares to the manual, from a person experienced in formal
specification. It is significant that the reviewer reads the specification before reading
the manual. The reviewer's mental model of the system is thus based on the
mathematical model in the specification. When the reviewer reads the manual looking
for inconsistencies with the specification) any questions that arise can be answered by
consulting the precise model given in the specification. This contrasts with the person
writing the specification who fonna a model from the manual and often has to consult
other sources to answer questions that arise. Getting a second opinion on the
specjfication and how it compa.res to the Dlanual is an important ingredient for
increasing confidence in the accuracy and readability of the specification.

Interval Control

As another example we will consider one of the problems raised during the
specification of the eIeS interval control module. Interval control is responsible for
operations that deal with the interval timer. The operations provided by interval
control ca.n be split logically into two groups: those to do with starting new
transactions at specified times, and those to do with time-outs and delays.

In specifying a module of the system we define the state components of the module (in
the case of exceptional conditions there was only one state component, Handl er).
The state components of interval control can be split jnto two groups that are
concerned respectively with the two groups of interval control operations. For the
most part, operations only refer to or change components of the corresponding state.
One exception is the command Start (to start a new tra.nsaction) Which in some
circumstances changes the time-out state components. This can be considered to be a
carefully documented anomaly of the current implementation. Both the

16 Applying Formal Specification

implementation and documentation could be simplified if the Start comma.nd did

not destroy the current time-out. More importantly, removal of this intera.ction would
lead to a more useful time-out mechanism, as time-outs would not be affected by a
tra.nsaction start.

This anomaly is interesting as it points out an unwanted interaction between different
pa.rts of a. module. In attempting to write the specification this interaction stood Qut
because it involved the Start opera.tion using the time~out stale. This form of
interaction between parts of modules tends to be pinpointed in the fonnal

specification process as the offending opera.tioDS require access to state infonnation
other tha.n 11I.3ot of the pari to which they belong.

Two further facts reinforce the view that the current operation of the Start
command i3 not the most desirable: if the new transaction is to be started OLI a
different computer system to the one issuing the Start command, or if the start is
protected (from the point of view of recovery on system fa.i.lure) then the start does
not destroy the current time·out. Ideally we do not want to have to specify distributed

system and recovery effects individually with each operation. We would like to add
extra levels of abstraction to describe these effects for the whole Bystem.

IDteraetion Between Modules

As an example of an interadion between two CICS modules we will consider 3D

interaction between exceptional conditions and temporary storage. When temporary

storage runs out of space it can raise the exceptional condition nospace. This will be
processed in the normal way if it has been explicitly handled; the default action,
however, is to wait until space becomes available.

Thus the specification of the temporary storage operations that can lead to a nospace
exception require access to the exceptional conditions state to determine whether or
not the L10space exception is handledi if it is handled it can occur, but if it is not, it
cannot These operations would more simply be specified (and implemented) if they
had an extra parameter indicating whether or not to wait. It is interesting to note that

in the implementation such temporary storage commands are transfonned into a call
with all additional parameter after the exception handling state has been consulted. It
is 30180 interesting that these commands were not correctly implemented if the
nospace exception were ignored.

Interactions between modules of the system are pinpointed during the formal
specification process (just as they would be in an implementation) as an operation

17 Applying Formal Specification

from one module will need access to the state components of a.nother. Any such
interactions discovered during the specification process should be examined closely as
they indicate a breakdown in the modular structure of the system.

PROBLEMS WITH SPECIFICATION

This section will examine the problems encountered in applying the formal
specification techniques themselves - in contrast to the previous section, which
examined problems with the system being specified. The problems encou.:ltered in
applying specification techniques can be split into communication problems between
the people involved, the general problem of achieving the aright'" level of abstraction

in the specification, and more technical problems related to the partiCUlar
specification technique.

Communication PJ-oblems

As specifiers from a university working with a commercial development laboratory we
faced a communications problem. Both parties have their own language: the specifiers
use the language of mathematics based on set theory, while the developers use
terminology and concepts specific to the system which they are developing. The
communication problem is in both directions. This requires education of each party in
the language of the other.

In performing a formal specification the specifier needs to understand what is being
specified in order to be able to develop a mathematical model of it. To under'lltand
the system he needs to read. manuals and consult experts, both of which u~ IBM and
eIeS tetminology. Once a specification is written the specifier would like to get
feedba.ck on its suitability from these same experts. This requires that they need to be
educated in mathematics to a level at which they can understand a specification. At
the current stage of the project the education has been more in the direction of the
specifiers learning about the system. In performing a specification of part of a system
the specifier of necessity becomes an expert on the functional behaviour of that part
(but not on the implementation of the part).

18 Applying Formal Specification

The "right" level of abstraction

In this context "right" means that a piece of specification conveys the primary
function of the part of the system it specifies and is not unduly cluttered with details.
Most importa.ntly a specification should Dot be biased towards a particular
implementation. However, getting the right specification also involves choosing the
most appropriate model and structuring the specification so that the minute details of
the componen~do not hide the primary function.

We can use hierarchical structuring to achieve this. Details of some facet of a
component can be specified separatdy and then that specification can be referenced
by the higher level specification. Different cases of an operation (e.g. the nonnal case
and the erroneous case) can be specified independently and combined to give a
specification of the whole.

The structure of a good specification may not correspond to the structure one may
use to provide an efficient implementation. In specification one is trying to provide a

clear logical separation of concerns, while in implementation one may take advantage
of the relationships between logically separate parts to provide an efficieilt
implementation of the combined entity. The intellectual ability required of a good
specifier is roughly equivaleilt to that of a good programmer; however, the view taken

of the system must be different.

Teclmi..J Problems

The technical specification problems discovered in applying formal specification

techniques to eIeS in particular were

1.	 putting together the module specifications to provide a specification of the
system as a whole,

2.	 specifying parallelism,

3. specifying recovery on system failures, and

4.	 specifying distributed systems.

We shall briefly discuss these in turn.

19 Applying Fonnal Specification

Putting modules together: Currently, three modules out of the sixteen modules
that fonn the application programmer's interface hdve been specified and we now feel
we have enough insight into the system to consider the problem of putting the
specifications of modules together. Each module has state components and a set of
operations that work on those state components. Putting the modules together is
essentially combining the states together to form the state of the system, and
extending the operations of the modules to operations on the whole system.

The problems encountered in putting modules together were

1.	 avoiding name clashes when the modules are <:ombined,

2.	 specifying the effect on the whole system state of an operation defined within a
module of the system, and

3. coping	 with situations in which an operation of one module refers to state
components of anotber module.

Parallelism: In our current specifications the operations are assumed to be atomic
operations acting on the state of the system. We have a sufficient underlying theory
to allow one to rea.son formally about a single sequential transaction. An area for
future research is to extend the theory to allow reasoning about the interactions
between parallel processes. The current spedfications will still be used but they will
need to be augmented with additional spe<:ifications which <:onstrain the way in which
the parallel processes interact.

Reeovery: An important part of a transaction processing system is the mechanism
for recovery on failure of tbe system. The current specifications do not address the
problem of recovery. Again we would like to augment the current specifications so
that recovery can be incorporated without requiring the existing part of the
specification to be rewritten.

Distributed Systemll: A number of CICS systems may cooperate to provide services
to users. The main facility provided within CICS to achieve this is the ability to
execute certain operations or whole transactioD8 on a remote system. While the
individual operation specifications could be augmented to reflect remote system
execution it wa.s thought better to wait until we had a specification of the system and
extend that to a distributed system. To reason effectively about a distributed system
we need to be able to reason about parallelism.

20

----q

Applying Formal Specification

CONCLUSIONS

Fonnal specification techniques have been successfully applied to modules of an
existing system a.nd as an immediate benefit have uncovered a number of probleme in
the current documentation as well as flaws in the current interface design. In the
longer term the formal specifications should provide a good starting point for
specifying proposed changes to the system, a more precise description for educating
Dew personnel, and a basis for improved documentation.

In part the reason we have been successful in applying our specification techniques
was that the modular structure of CICS is quite good, and we have been able to take
advantage of this by concentrating on individual modules in relative isolation.

The questioDs raised during the specification process are the main benefit in the short
term of applying formal specification techniques to existing software. They highlight
aspects of the system that are incompletely or ambiguously described in the manual,
as well 3.8 focusing attention on problems with its strudure, for example, undesirable

interactions between modules.

In the longer term a formal specification provides a precise description which can be
used to communicate between people involved with the system. The specification is
less prone to misunderstanding than less formal means of communication, such as
natural language or diagrams. It can be used as a basis for a new specification
incorporating modifications to the original design, and it provides an excellent starting
point for people responsible for improving the documentation. (In another group at
Oxford work on incorporating formal specifications into user manuals is bemg done

by Roger Gimson and Carroll Morgan [5).)

The time required to specify a module of the system varied from about 4 weeks for
Exceptional Conditions to 12 weeks for Interval Control. The time required was
related to the size of the module (the number of operations, etc.) and also to the
number and severity of problems raised about the behaviour of the module. The size
of a module specification (in pages) turned out to be roughly comparable to the size of
the manual entry for the module. The specification sizes ranged from 4 pages
(handwritten) for Exceptional Conditions to 16 pages for Interval Control.

The difficulties encountered with tbe specification process itself were the language
gap between university a.n.d industry, and the problem of achieving the right level of
abstradion. There were also a number of more technical specification problems that

21 Applying Fonnal Specification

arose in applying the techniques: the problem of putting together module
specifications to provide a specification of the system as a whole, specifying
parallelism, specifying recovery on system failure, and specifying distributed systems.
These problems a.re areas for further research.

ACKNOWLEDGEMENT

I would like to thank raM for their permission to publish this paper and reproduce
part of one of their manuals as append1x 1. Several members of the IBM
Development Laboratory at Bursley, England assisted the author to understand Borne
part,s of CICSj of special note are Peter Alderson, Peter Collins and Peter Lupton.

This work bas benefited from consultations with Tony Hoare, Cliff Jones, and Rod
BurstaH. Tim Clement was responsible for the initial specification of temporary
storage. Paul Fertig, Roger Gimsom, John Nicholls and Bernard Sufrin gave useful
comments on this paper. Finally, I would like to express my gratitude to Carroll
Morgan and Ib Holm &i'rensen for their help as reviewers of the specificatioD.s, and for
their instruction in specification techniques.

22 Applying Fonnal Specification

REFERENCES

[1]	 J.·R. Abrial, "'The specification language Z: B~ic library", Programming Research
Group, Oxford University, Oxford, England, Internal Report, 1982.

[2J	 IlCICS/OSjVS application programmer's reference manual (Command level)", IBM

Corp., 1980.

[31	 "CICSjVS general information", IBM Corp., 1980.

[41	 "OS PLfI checkout and optimising compilers: Language reference manual", IBM

Corp., 1976.

[5J	 C. C. Morgan, "'Using mathematics in user manuals", Programming Research
Group, Oxford University, Oxford, England, Distributed Computing Project
Technical Report, 1983.

[5]	 C. C. Morgan and B. A. Sufrin, IolSpecification of the Unix filing system", IEEE
Trans. on Software Engineering, vol. 10, no. 2, pp. 12S-142, March 1984.

[7]	 1. H. S0reoseo, f1.A specification language"', in Program Specification (Lecture
Notes in Computer Science, Vol. 134), Springer-Verlag, pp. 381·401,1982.

[8]	 J. Staunetrup, Program Specification: Proceedings of a Worksbop, Aarbus,
Denmark, August 1981 (Lecture Notes in Computer Science, Vol. 134),
Springer-Verlag, 1982.

23 Applying Fonnal Specification

APPENDIX 1

CICS/VS Version 1 Release 5
Applieation Programmer's Rereren~e Manual (Com.m.and Level)
Ex~eptional Conditione

Exceptional conditions may occur during the execution of a CICS/VS command and,
unless specified otherwise in the application program by an IGNORE CONDITION or
HANDLE COND I TI ON command or by the NOHANDLE option, a default action ror each
condition will be taken by CICS/VS. Usually, this default action is to terminate the
task abnormally.

However, to prevent abnoraml termination, an exceptional condition can be dealt with
in the application program by a. HANDLE CONDITION command. The command must
include the name of the condition and, optionally, a label to which control is to be
passed if the condition occurs. The HANDLE CONDITION command must bl! executed
before the command which may give rise to the associated condition.

The HANDLE CONDITION command for a given condition applies only to the program
in which it is specified, remaining active until the associated task is terminated, or

until another HANDLE CONDITION command for the same condition is encountered, in
which case the new command overrides the previous one.

When control returns to a program from a program at a lower level, the HANDLE
CONDITION commands that were active in the higher-level program before control
was transferred from it are rea.ctivated, and those in the lower-level program are
deactivated.

Some exceptional conditions can occur during the execution of anyone of a number
of unrelated commands. For example, IOERR can occur during file·control
operations, interval-control operations, and others. If the same action is required for
all occurrences, a single HANDLE CONDITION IOERR command will suffice.

If different actions are required, HANDLE CONDITION commands specifying different
labels, at appropriate points in the program will suffice. The same label can be
specified for all caommands, and fields EIBFN and EIBRCODE (in the EIB) can be
tested to find out which exceptional condition has occurred and in which command.

24 Applying Formal Specification

The IGNORE CONDITION command specifies that no action is to be taken if an
exceptional condition occurs. Execution of a command could result in several
conditions being raised. CICSfVS checks these in a predetermined order and only the
first one that is not ignored (by an IGNORE CONDITION command) will be passed to

tbe application program.

The NOHANDlE option may be used. with any command to specify that no action is to

be taken for any condition resulting from the execution of that command. In this way
the scope of the IGNORE CONDITION command covers specified conditions for all

commands (until a HANDLE CONDITION for the condition is executed) and the scope
of the NOHANDLE option covers all conditions for specified commands.

The ERROR Exceptioual Condition

Apart from the exceptional conditions associated with individuaJ. commands, there is a
generaJ. exceptionaJ. condition named ERROR whose default action also is to terminate
the task abnormally. H no HANDLE CONDITION command is active for a condition,
but one is active for ERROR, control will be passed to the label specified for ERROR. A
HANDLE CONDITION command (With or without a label) for a condition overrides the
HANDLE CONDITION ERROR command for that condition.

Commands should not be included in an error routine that may give rise to the same
condition that caused the branch to the routinej speciaJ. care should be taken not to
cause a loop on the ERROR condition. A loop can be avoided by including a HANDLE
CONDITION ERROR command as the first command in the error routine. Tbe original
error action should be reinstated at the end of the error routine by including a second
HANDLE CONDITION ERROR command.

B""dl. Exceptional Conditio,," (HANDLE CONDITION)

HANDLE CONDITION condition (label) I
[condition (label) I I

This command is used to specify the label to which control is to be passed is an
exceptional condition occurs. It remains in effect until a subsequent IGNORE

25 Applying Forma.l Specification

CONDITION comma.nd for the condition encountered. No more than 12 conditions are
allowed in the same command; additiona.l conditions must be specified in further
HANDLE CONDITION commands. The ERROR condition can a.lso be used to specify
that other conditions are to cause control to be passed to the same label. H 81 abe 1"
is omitted, the default action for the condition will be taken.

The following example shows the handling of exceptiona.l conditions, such as DUPREC J

LENGERR, and so on, that can occur when a ~RITE command is used to add a record
to a data set. DUPREC is to be handled as a specia.l casej system default action (that

is, to terminate the task abnorma.lly) is to be taken for LENGERR; and all other
conditions are to be handled by the genera.lized error routine ERRHANDL.

EXEC ClCS	 HANDLE CONDITION

ERROR(ERRHANDL)

DUPREC(DUPRIN)

LENGERR

If the generalized error routine can handle a.ll exceptions except IOERR, for which the
default action (that is, to terminate the task abnormally) is required, IOERR (without

a label) would be added to the above command.

In an assembler-language application program, a branch to a label caused by an
exceptiona.l condition will restore the registers in the application progra.m to their
values at the point where the EXEC interface program is invoked.

I.n a PL/l application program, a branch to a label in an inactive procedure or in an

inactjve begin block, caused by an exceptiona.l condition, will produce unpredictable
results.

Handle Condition Command Option

cond i t ion [(1 abe 1) 1 "cond i t i on" specifies the name of the exceptional
condition, and "1 abe 1" specifies the locatjon within the program to be branched
to if the condition occurs. If this option is not specified, the default action for
the condition is taken, unless the default action is to terminate the task
abnormally, in which case the ERROR condition occurs. If the option is specified

without a label, any HANDLE CONDITION command for the condition is
deactivated, and the default action taken if the condition occurs.

26 Applying Formal Specification

Ignore Ex,",pllonal Conditions (IGNORE CONDITION)

IGNORE CONDITION condition

[condition

ThiB command is used to specify that no action is to be taken if an exceptional
condHion occurs. It remains in effect until a subsequent HANDLE CONDITION

command for the condition is encountered. No more than 12 conditions are allowed in
the same commandj additional conditions must be specified in further IGNORE
CONDITION commands. The option Uconditioo" specifies the name of the exceptional
condition that is to be ignored.

27 Applying Fonnal Specification

APPENDIX 2
NOTATION

Schemu

A schema has the general fonn

Neme --,

Dec 1erat ions

Pred i cates

where the variable declarations are of the form
identifier: type

and the predicates give the properties of, and relationships between, the varia.bles.

A schema may be used to describe either a state or an operation. To describe a state
the declared variables fonn the components of the state and the predicates give the
invariant properties of the state. For an operation the declarations consist of the
initial state components, the final state components, and the inputs and outputs of the
operation. As a convention the final state component names are dashed versions of
the initial state component names. For an operation the predicate part describes the
relation between the inputs, outputs, and initial and final states.

A schema 5 may be included within another schema T. This has the effect of
including all the variables declared in 5 in the declarations of T and of including aU
the predicates of 5 in the predicates of T. A schema name may be decorated (e.g.,
dashed). This haa the effect of decorating in a similar way (e.g., dashing) all the
declared variables both in their declaration and their uses within the predicates. For
example, the schema ll.Except ions given in the sample specification in the body of
the paper is equivalent to

ll.Exceptions
Handl er
Handl er' :

CONDITION
CONDITION

...

...
ACTION
ACTION

i

Hand 1er (s uccess)
Handl er' (success)

=
=

nil
nil

28 Applying Formal Specification

Logic

Within the predicate part we may use the operators

, - and
v - or

- - negation
=0 - implication
, - equal ity
~ - inequality
~X' 1 • P - for all x of type T, P holds
3X'1 • p - there exists an x of type T such that P holds
c x, y - conditional expression

For the conditional expression if c is true the value of the conditional expression iB x;

otherwise it is y.

Seta

We may coaslrod a set by listing its elements within braces:

{ x. ~. z }

or by giving some property that only elements of the set have

{ "T I P(x) }.

We may test the following

e - membership, e.g., 1 e {l,Z.3}
f: - nan-membership, e.g., 2 f {I, 3, 5}
~ - subset, e.g., {Z.3} • {Z.3,4}

and perform the following operatioDs OD sets, given A and B subsets of T

U - set union: A u B = {x:T I x E A v x E B}
n - set intersection: An B = {x:T 1 x E A A)(e 8}

- set difference: A - B ~ {x:T I x E A A X f B}

29 Applying Formal Specification

l'uDetiOJ18

We may declare a function f from a set A to a set B by

f : A ~ B

Foreachelement)(e A,f(x) is the value of the functionf atx (f(x) e B).

If a function f is not defined for all elements of A (Le., f is a partial function) then
we write

f A-<+B

The domain of definition of f

dom f

is that subset of A (dom f ~ A) for which the function f is defined.

The range of f is that subset of B (rng f l;;; B) containing exactly thoae values
b e B such that there exists an x e dom f such that f(x) = b. That is

rng f = { b e B I (3 x A· f (x) = b) }

The notation

{ xl H YI' Xz H Yz, ...• xn H Yn }

where each xk is distinct, defines a function whose domain of definition is the set of
xk's:

dom { xl ...-. YI' Xz 1-+ Yz. Xn H Y } { xl' xz' ... , Xn }n

and the value of the function at xk is Yk:

{ xl H YI' Xz H yz•...• Xn H Yn }(xk) = Yk'

30 Applying Formal Specification

The notation

f • 9

stands for function f overridden by function 9 (we 338ume fundions f and 9 are of
the 8a.me type). The function f • 9 is defined at a point if either f or 9 is defined at
that point:

dam (f • g) = dam f U dam 9

IT 9 is defined at)(then the value of f • 9 is g(x); otherwise, if f .is defined at x
the value of f • 9 is f(x):

x • do. 9 => (f • g) (x) = g(x)

x ~ do. 9 A X • dom f => (f • g)(x) = fIx)

The notation

s ~ f

stands for lhe function f with <loll elements of jt8 domain that are in the set 5 removed

dom (s ~ f) = (dom f) - s

x • dam (s ~ f) => (s ~ f)(x) = f(x)

CICS TEMPORARY STORAGE

Abstract

Temporary storage provide;; facilities for storage of information in named "queues".
The operations that can be performed on an individual queue are either the st.andard
queue-like operations (append to the end and remove from the beginning), or
array-like randoln access read and write operations.

A Single Queue

An element of a queue is a sequence of bytes.

TSEl em ~ seq Byte

A single queue may be defined by

TSQ _

ar seq TSE 1em

p N

p ~ Iar I

The array ar contains the items in the queue. The size of the array is always equal to

the number of append oper<:l.tions th<J.t have been performed on the queue since its

creation - independently of the number of other (remove, read, or write) (lperations.
The pointer p keeps track of the pOilition of the item which was last removed or read

from the queue.

The initial state of a queue is given by all empty array and a zero pointer.

TSQ_I n , t , a I Q [TSU I (er = [II A (p = 0)]

Copyright © I. J. Hayes 11 Jul 85 31

32 Temporary Storage

Operations

We will define fOUf operations. all a single 1S0. The definitions of these operations
will use the schema

6TSQ , TSQ A TSQ'

£lTSQ (6 for change) defines a before sbte ISO, with components ar and p

(satisfying p ~ Iar I), and an after state TSQ I, with components ar and p'

(satisfying p' ~ Iar' I). The definitions of the operations follow.

Appendo ~

bTSQ I

from? TS£lem

I tern! ~

ar' '" ar~ [from?] 1\

i tern! Iar' I 1\

p' == p

The new element from? (a "7" at the end of a D,.me indicates an input.) is
appended 10 the end of ar to give the new valIJe of the array. The position of tiJe

new item is returued in Item' (a "!" at the end of a name indicates an oIItput).

The pointer position is unchanged.

Removeo ------------------,
6TSQ
Into! : TSElem

p <: I ar I 1\

p'=p+ll\

Into! "'" ar(p') 1\

ar = ar

The pointer must not have Cllre<l.dy reached the end of the array. The pointer is

incremented to the next item in the queue and the value of that item is returned in
i nto l • The contents of the array is unchanged.

Temporary Storage 3~~

Ur I teo- ~

6TSQ
item? l
from? TSElem

Item? E 1 .. jarl A

ar'=arGl { I t em? ~ from? } A

p' :::: p

The position I tern? must lie within the bounds of the current arr<:LY. The item at that

position in ar is overridden by the value of from? to give the new value of the array.

The pointer position is unch<:Lnged.

Read
O

,

6TSO
Item? l
into! TSElem

item? E 1.. Iar I A

into! ad I tern?) A

p' :=. item? 1\

ar :: ar
I -----'

The value of the item at position item?, which must lie within the bounds of the

array, is returned in Into!. The pointer position is updated to be item? The arr<:Ly

is unchanged.

In the above, all lhe operations have been specified ill terms of the array ar and

pointer p. While this is reasonable fOf the Read and Write operations it does not

show the queue-like nature of the Append and Remove operations. Let 11S uow show

that the queue-like operations are the familiar oues. We can define a standard queue

by

o seq TSElem

34 Temporary Storage

The standard append to the end of a queue opera.tion is given by

Standard_Appendl---------------------,
~Q

from? TSElem

q' ':::: q~ [from?]

where liQ ~ [q, q Q].

The standard remove from the front of the queue operation is given by

Standard RemDve' ~

liQ - I

Into! : TSElem

q:= [lntoIJ~qJ

The predicate in the above specification may be unconventional to some
readers. It states that the value of the queue before the operation is equal to
the value returned ill into! catenated with the value of the queue after the
operation. This form of specification more closely reflects the symmetry
between Standard_Append and Standard_Remove than the more conventional

Into! == head(q)

q ::: tail(q)

To see the relatiouship between standard queues and temporary storage queues we

need to formulate the correspondence between the respective states.

QL i ke ~

q , Q

TSQ

q ::: tallP(ar)

35 Temporary Storage

A standard q corresponds t.o the array ar with the first p elements removed. Given
this relationship between states we will now show the relationship between Appendo
and Standard_Append. What we will show is that if we perform an Appendo with
initial state TSo. and final state TSO' then the corresponding standard queue states Q
and a' (as determined by QLlke and QLlke' respectively) are related by
Standard_Append. This can be formalised by the following theorem.

Theorem: Appendo " alike" o.like' I- Standard---Append

Proof:

1. q,q':seq TSElem; from?:TSElem from Olike. QLlke' and Appendo
Z. q ::: tai I P ' (ar') from aLike'
3. ::: tailP(ar~[from?]) from Appendo
4. ::: (tai IP(ar))~(from?] as p ~ larl from TSO
S. ::: q-[from?] from alike
6. Standard_Append from (1), (5) 0

We can now do the same for Remove.

Theorem: Removeo " aLike" o.Llke' I- Standard_Remove

Proof:

1. q,q :seq TSElem; into l :TSElem from QLlke, alike' and Removeo
2. p < Iar I from RemoveO
3. q::: tai IP (ar) from QL i ke
4. ::: [ar(p+l)J~(tallP+l (ar)) from (2) and property of tall

5. = [,nto!]-ttail P ' (ar')) from RemoveO
6. ::: [rnto!j-q' from aL I ke'
7. Standard_Remove from (1). (6) 0

36 Temporary Storage

Errors

To allow for errors we can introduce a report to indicate success or failure of an

operation. If a.n error occurs we would like the TSQ to remain uDchanged. This ca.n
be encapsulated by

£RROR ,

ATSQ
report! CONDITION

TSQ' = TSQ

where the set CONDITION contains all the error reports plus the report Success. In

the opera.tions described above there are three errors that can occur: trying to remove

an item from a TSQ with no items left to remove, trying to read or write at a position

outside the array, and running out of space to store an item.

Noneleft !
ERROR

p = larl A

report! ::: ItemErr

IOutofBounds'
ERROR
item? Z

I
item? Ii!! 1 .. Iar I A

report! :: ItemErr
--

NoSpace!

ERROR

report! ::: NoSpace

--J

37 Temporary Storage

If the operations work correctly the report will indicate Success.

Successful G [report! CONDITION I report ~ = Success 1

The operations given previously can now be combined with the erroneous situations.
We will redefine the operations in terms of their previous definitions.

Append G (AppendO A Successful) v NoSpace!

Remove G (Removeo A Successful) v NoneLeft!

Wr i te G (Urite A Successful) v OutofBounds! v NoSpace~o

Read G (Reado A Successful) v OutofBounds!

Note that NoSpace! does not specify under what conditions it occurs. The
specifications of Append and Wr j t e do not allow us to determine whether or not the

operation will be successful from the initial state and inpnts to an operation. This is
au example of a non-deterministic specification. It is left to the implementor to
determine when a NoSpace! report will be returned (we hope it will not be on every

call).

Named Queues

We now want to specify a system with more than one queue. A particular TSO can be
specified by name and the above operations performed on it. We will use a mapping
from queue names (TSQName) to queues. The state of our system of queues is given by

TS TSOName ---» TSO

The initial state of the system of queues is given by an empty mapping.

TS Initial ~ {}

Our operations require updatiug of a particnlar named TSO. We can introduce a
schelll<l., UpdateO l to encapsulate the COllllllOU part of npdating for operations on

queues that already exist.

38 Temporary Storage

Updat eO"--- ---,

HS
queue? TSQName
oTSQ

queue? E dom(ts) ~

TSQ ::: ts(queue?) ~

ts' := ts III { queue? H ISQ' }

where 6T5 :;. [ts, ts' T5]. Note that UpdateQ specifies that the named queue

(alone) is updated but does not specify in what way it is updated. This is ach.ieved by
combining It with the single queue operations to get the operation 00 named queues.

In adding named queues we have added the possibility of a Dew error: trying to

perform operations 00 Don-existent queues. This error is given by

I NonE)(istent! ~

6TS

queue? : TSQName
I

report! : CONDITION

queue? ~ dom(ts) ~

ts J ::: ts /'I

report! == QIdErr

OUT oper<ltions, except AppendQ which is allowed on ;'l. llon-existent queue, can now

be redefined in terms of our previous definitions.

RemoveD ~ (UpdateQ ~ Remove) \ 6TSQ

v NonExistent I

Ur i teQ (UpdateQ /'I Ur Ite) \ !:ITSa

v NonExistent!

ReadQ (UpdateQ ~ Read) \ ~TSQ

v NonEXistent!

The temporary V<lri<l.bles in ~ TSQ (ar, p. ar'. p') are hidden in the signature:- of

39 Temporary Storage

the final operations and the operations inherit the errors from the f:qnivalent single

queue operations.

A queue is created by performing an AppendD operation on a queue that does not

exist. The following schema describes the creation of a queue.

Creat eO. j

6TS

queue? : TSDName

TsQ_Init la1

TSQ'

queue? e dom(ts) 1\

ts' = ts U { queue? l--lo TsD' }

Again the relationship between TsQ_1 nit I a 1 (ar, p) and TsO' (ar', p') is not

defined within this schema. This i9 supplied by Append in the following definition

AppendQ ~ «UpdateD v CreateD) 1\ Append) \ ~TSQ

Note that for a non-existent queue, if an error occnrs (i.e. a NoSpace condition), then
an empty queue will be created.

In addit.ic.n to these promoted operations on named queues we have a.n operation to

delete a n;l.med queue.

DeleteD __ o
6TS

queue? : TSDName

report I CONDITION

queue? € dom(ts) 1\

t 5' = { queue? } ~ t 5 1\

report! = Success

An except.ioll occur:; if the queue to be deleted does not exist; De 1eteD becomes

Da 1eteQ DeleteOo v NonExistent!

40 Temporary Storage

A Network of Systems

Temporary stora.ge queues ma.y be located on more than ODe system. Let us ca.1l the
set of all possible system identifiers SysId. We can represent temporary stora.ge
queues on a network of systems by

NTS • Sysld ~ TS

For a network

nts NT5

dom(nts) is the set of systems that share temporary storage queues and for a system

with identity s~sid such that sys\d E dom(nts), nts(sysld) is the temporary
storage state of that system. The operations on temporary storage queues may be
promoted to operate (or a network of systems by the following schema.

Net"ork

I aNTS
sys i d? Sysld
aTS

s~sld? E dom(nts) ~

ts = nts(sysid?) ~

nts' ~ nts ~ { sysld? ~ ts' }

where 6NTS ~ [nt 5, nt 5': NTS]. As with promoting the operations to work on

na.med queues the above schema only specifies whIch system is upda.ted but not how it
is updated. This will be supplied when this schema is combined with the defillitious of
the operations on a single system.

41 TemporCl.ry StorCl.ge

Network operCl.tion also introduces the possibility of an error if the given system does
not exist.

NoSystem! ,

~NT5 I

sysid? : SysId

report I : CONDITION

sysid? 1t dom(nts) "

nts' "" nts "
report! = SysldErr

The operations on a multiple system are given by

AppendQN (AppendQ " Netl-lork) \ tiTSo
v NoSystem!

RemoveQNo (RemoveQ " Netl-lork) \ tiTS

v NoSystem!

ReadQNo 9 (ReadQ "Netl-lork) \ tiTS

v NoSystem!

Ur i teQNo (UriteU "Netl-lork) \ tiTS

v NoSysteml

The sys i d? and queue? name supplied as inputs are not necessarily the ones on

which an operation takes place. A queue name on a given system may be marked as
actually being located on another (remote) system, possibly with a different name on
that remote system. We will Lllodel this by the following function which takes the

input p<tir of SYS j d? Cl.ud queue? name and gives the corresponding actual sys j d!

and queue! nanle on which the operation will be performed.

remote (S!:jsld x TSQName) -----+ (S!:JsId x TSUName)

42 Temporary Storage

In many ca..."es tbe input sys i d? and queue? name are the actu<:l.l system ann queue

name; in these cases remot e will behave as the identity.

We will use the following schema to incorporate remot e into the operations.

TSRemote
sysid?,

queue?,

sysid!

queue!

Sysld
TSQName

I

(sysidl, queue!) remote(sysid? queue?)

The outputs, sys i d! and queue!, 01 TSRemot e form the inputs to the operations. If
a sys i d? parameter is supplied then the operations on temporary stonge queues are
defined by

AppendQN 1 9 TSRemote» AppendQNo

RemoveQN1 9 TSRemote» RemoYeQNo

ReadQN 1 9 TSRemote» ReadQNo

WrlteQN 1 9 TSRemote» lJrtteQNo

If no SYSI d? parameter is given then the operations are given by

AppendQNz 9 AppendQN t [cursysid?/sys,d?l

RemoveQNZ ~ RemoveON1[cursysld?/sys 1 d?]

ReadQN z ~ ReadON1[cursysid?/sysld?)

UriteQNz ~ WriteON 1[cursysid?/sysld?}

That is, the sys i d? parameter is replaced by a parameter giving the identity ,)f the
current system (the system on Which the operation was initiated).

Temporary Storage 43

A note on the current implementation

Each system keeps track of the names of queues that are located on other (remote)
systems and for each remote queue the identity of the remote system and the name of

the queue on that system. It is possible that the referred request could be fora queue

name that is also remote to the referred system, in which case the request will be

referred on to yet another system. To find the system on which the queue actually
resides we need to follow through a chain of systems until we get to a system 011

which the queue Dame is considered local. We can model the implementation by the

function

rem (S!:JsId x TSQName)"""'8 (SysId x TSQName)

which for a sysid and queue name gives the sysid and queue name of the next link in

the chain; if a sysid and queue name pair is not in the domain of rem then the chain
is finished. The correspondence between rem and remot e is given by

remote == repeat rem

where repeat applies the function rem repeatedly until the parameter to rem is no

longer in the domain of rem

(repeat f) y = y if y ~ dom(f)

(repeat f) (f y) if y E dom(f)

That is
remote(s, q) = (5, q) if (s, q) ~ dom rem

remot e (rem (s, q)) if (5, q) E dom rem

As remote is a total fnnction the equality of remote and (repeat rem) requires

that no chain of rem's contains any loop (so that (repeat rem) is also total).

44 Telilporary Storage

Given the functilJn rem if we take the corresponding (curried) function with the

following shape

r : S\:1s1d -) (TSQ~jame --++ (S\:1sId x TSQName))

so thilt

r(s) (ql rem(s, q)

dom(r(,)) { q : TSQName I (5. q) E dom rem}

The milpping that needs to be stored on a system 5 is given by r (s), and is of type

TSQName --++ (Sysld x TSQName)

Acknowledgements

The work reported in this paper was supported by a grant from IBM. The starting

point for this specification WilS an earlier specification done by Tim Clement. This

specification has benefited greatly from the detailed comments of Carroll Morgan and

Ib Holm Srrensen.

CICS INTERVAL CONTROL

Abgtract

The specification of Interval Control has been split into the specification of a timeout

system, and a sta.rt/retrieve system, as these are logically different functions.

III specifying the timeout system, events were initially included but it was later

discovered that they were logically reduncbnt and should not be P<i.rt of the Interval

Control interface. The version of the timeout system without events is presented here.

Tbere are a number of differences (or omissions) between this specificatio[J aud the

aetu:!.l interface:

. Remote system aspects are not included.

- A more abstract time parameter is used.

- A more abstract data parameter is used.

- Function management headers were ignored as they are a detail internal to the

structure of the data (and not explained anywhere in the manual).

- The "nocheck''' and "protect" options to Start have been ignored as they are to do

with recovery. It is hoped to upgrade the specification to include recovery Clspects

at a later stage, agClin on a CICS-wide basis.

- The "wait" option to Retrieve (Clod associClted "dtill1out" meChClIlisl1l were not

specified).

As the specification techniques used here Clre only suitable for specifying sequential

open.tions, the parts of Interval Control involving concurrent processes Clre not

adequately specified in this docurnent. Interval Control is complicated, as is this

specification.

Copyright © 1. J. Hayes 11 Jul 85 45

46 Interval Control

Tim.e

The Interval Control operations are involved with (intervals of) tlme. We can

represent the effect on time of the operations by the following change of time schema.

!J.Tlme ~

clock, clock' ; Time

clock :;; clock I

where T I me ~ N. We will assume time is measured in units of, say, seconds. Time

cannot decrease.

The operation to determine the current time is given by

AskT I me ,

!J.T I rne

t I me! T I me

report! Condition

t I me! :::: c1 ock 1\

report! = OK

Aside: The eICS AskTime operation has no explicit output parameters but rather

returns the time of day and the date in the Exec Interface Block (EIB) fields

EIBTIME and EIBDATE. A specification should avoid the implementation detail of

the EIB and bence an explicit output parameter bas been used above. Furthermore,

only a single output t I me I incorporates both the date and time of day information.

This is a little more abstract and allows consistent use of time throughout the

specification. 0

47 Interval Control

Tilneouts

The following version of the timeout system is more abstract than the actual system.

This version avoids the neerl for eveuts to be passed to and fro ou operations.

The state required for timeout operations is

U
10 ---,

,meout' Time

set up,

cance 11 ed Boolean

The initial timeout state of a process is given by

~ [TO' ~setup 1TO INIT

A stale change on a timeout operation is given by

610 llTlme A TO A TO'

The following operation is used to set up " timeout at t I me?

SetUp1° ---,
0

610

time? Time

clock < t I me? A

timeout' =: t I me? 1\

setup' 1\ -'cance11ed'

.\ timeout can only be setup provided the time has not already p<l.ssed. Tbe final stale
records the timeout time and that a timeout has been setup and not yet cancelled.

Aside: The corresponding CICS operation (inappropriately called "Pmt") has two

differences to the ",bove. Firstly, it returns all event, and this specification avoids the

need for events. Secondly, the time parameter for the CICS operation may be either

relative to the current time or an absolute time in the day (well maybe in the

morrow - to quote: "CICS treats as expired a request for an absolute time that is

48 Interva.l Control

equal to the current time or that precedes the current time by up to six hours. Tf the

specified absolute time precedes the carreul time by more than six hours, CICS adds

2-1 hours, that is, the requested function is performed at the time specified but on the

next day.") In the specification above we have used a time parameter that is consistent

with the time used by AskT I me '::l.1ld he lice it is neither restricted to a 100 hour period

nor does it require the complicated definition quoted above. 0

To determi1l': if the current timeout Iw.5 expired we lise

TestExp i ryo ,

010

hasexp I red I ; 800 lean

I setup 1\

t hasexplred! = (timeout ~ clock) v cancelled
 I

where =TO ~ [!J. TO I TO' ::: TO]. In order to test expiry a timeout must have

been previously setup. A timeout is considered to have expired either if the time has

passed or the timeout has beeu cancelled.

Aside: This operation is not currently provided explicitly by CICS, rather, to quote:

"'When the time specified has expired, the timer event control :l.rea is posted; that is,

its first byte is set to X'40' aud its third byte to X'80'." Our TestExp I ry operatio\l is

an abstraction of a rather low level bit testing operation. Furthermore, the lack of an

explicit test operation is <L m<l.jor reason for the introduction of events into the Interval

Control interface. If there were a TestExplry operation then there would be no

need for post La return an event. 0

To delay the current process until the previously setup timeout has expired we use

Wa i to
6[0

setup"

"'setup' "

(timeout ~ clock') v cancelled'

Aside: The equivalent CICS operation Wait Event has an input event parameter

49 Interval Control

"ecaddr". This i~ not necessary in the above specification ..s it is assullul1ed we <I.re

waiting for the current timeout to expire. In practice, however, the Wait Event
operation is also used for process synchronisat.ion. To quote: "This command is used
to synchronise a task with the completion of an event initiated by the sallle l<l.sk or by
auother task". However, the manna] also states: "No other task shonld att.l?mpt to

wait on the event setup by a Post cO\l1mand. The timer event control are.:r. can be
released for a variety of reasous (e.g. task termin;"Ltion). If this happens, the result of
any other task is~uing a Wait on the event setup by the Post is unpredictable." In
summary, events created by Interval Control are nsed for synchronisation by some
applications but this must be used with great care.

The Wait Event operation can also get an InvReq exception "if the specified event
control area address is above 16 megabytes for a program executing in 31-bit mode on
MVSjXA." By avoiding events we avoid this, but even with events I think we would

like to <l.void it! 0

The opention to deby a process unt.il a given tittle is

De 1a~o- -------------,
6TQ

time? : Time

clock < tIme? A

(t ime? ~ clock') v cancelled'

For cancelling timeout::; we need two different forms of cancel oper:l.tion: one,
Canee 1TO, when a process is callcelling its Own timeout and the other, Canee 1TOReq,
when a process issues a cancel with a request identifer (f'ee later section for more
details) indicating which process' timeont is to be cancelled.

Cane e 1TOo ---, Cancel TOReqo -,

HO

se tup A

~setup' A

cancelled' lis~::up A

setup' A

cancell~d'

In Cance 1Tao the timeout does not remain setup while in Canee 1TOReqG it does.

50 In~erv<J.l Control

Aside: The different operation of Cance 1 depending all whether there is <l. request

identifier given or not is rather J.nOIl1Ol]ouS, It would appeJ.f to be a side effect of the

current illlplelllen~ation. 0

Errors

If the time has already expired on a setup timeout or delay an Expired exception cau

occur.

Exp Ired! ~

'TO
time? Time

repar t! : Cand I t Ion

time? $ cleck A

report! =: Expired

Aside: There is also an InvReq exception for the CJCS operations due to an invalid

format time parameter. The more abstract time used here <l.voids such an exception.

D

If a TestE)(p i ry, Wa i t or Canee 1 operation is performed when a timeout has not

been setup we get a InvReq exception.

Not Set Up! -------.

"TO
report! : Cand i t Ion

..... setup A

report! ::: InvReq

I

If the operations do Dot get 3D exception then report! will indicate success.

Success (report! : COrldl t iOrl I report I == OK]

51 Interval Control

The total timeout system operations are

SetUpT0 1 • (Success A SetUpTOO) v Expired!

TestExp i rYl - (Success A TestExplryo) v NotSetUp!

1\Wait l = (Success lJait O) v NotSetUp!

DelaYl • (Success 1\ DeJayo) v Expired!

Cance 1TO l • (Success A CancelTOa) v NotSetUp!

Cance 1TOReQI ~ (Success CancelTOReQO)v NotSetUp!
 1\

Aside: There is currently no method provided by Interval CDn~rol for a. process to
determine whether a timeout or delay has been cancelled or whether it expired. This

could be provided by a Cancelled exceptional condition. 0

Multiple Processes

In the preceding we have only used the state information of a single process. In order
to include request identifiers which allow one process to cancel another's timeout we
will extend our state to multiple processes.

PTO " Pld -.. TO

where PId is the set of process identifiers. Each process is associated with a unique
element of PId. Given a. process identifier pld the timeout state associated with the

corresponding process is given by pto(p I d).

The ini~iJ.1 stJ.te of the timeout system is given by

PTO ,NIT • ()

52 Interva.l Control

To promote our timeout operations to equivalent ones in the Olulti-process state
acting on a single process within that state we use the following promotion schema.

MPTOI _

I ,PTO
currentpld? : PId
HO

currentpid? € dom(pto) A

TO = pto(currentpld?) A

pta' = pta $ { currentpld? ~ TO' }

where liPTD G: [pta, pta' PTO]. The variable currentp I d? gives the

identity of the process actually performing the operation.

We can now give final 5pecifications of Tes t Exp i ry and 1-18 i t (as neither use

request ideutifiers) and updated specifications for the other operations.

TestExpir\:j G: (TestExplrYl A MPTO) \ 6TO

We (t G: (Wa I t 1 A MPTO) \ 6TO

SetUpTO z ~ (SetUpT0 1 A MPTO) \ MO

Delayz Q (Del a!:l1 A ,~PTO) \ 6TO

CancelTOz Q (CancelT0 1 A MPTO) \ 6TO

CancelTOReqz Q (Cancel TOReQ1 A MPTO[pid/currentpld?]) \ bTO

For Cancel TOReqz the iden~ity of the proce"" whose timeoLLt is cancelled is
determined by a request identifier rather thau being tile current process (gee below).

53 Interval Control

Process Adivation

When a process is initiated the system sets up its time-out state.

In i t I ateTO -----,

bPTO

pid? ; Pld

pto' pta Ell { pid? t--+ }T0 1NIT

When a process terminates the system removes its timeout state.

Term i nateTQ ,

bPTO
pi d? ; PId

pt 0' (p'd?} 1pto

54 Interval Control

Request Identifie:rs

To complete the time-out system we need to introduce request identifiers and a map

that associates a unique request identifier with a process.

REQ Q Pld ~ Reqld

For SetUpTO and Delay we record the supplied request identifier reqi d? in req
for the current process.

SetUpReqld -,

t>REQ

pld : PId

reqid? : ReqId

req i d? ~ ran({ pid} ~ req)/\

ceq req III { pid H reqid? }

where L\REQ Q [req. req : REQ]. The request identifier supplied must not
already be in use by any other process. The req I d? is recorded in req for the

current process.

On cancels we need to find the process associated with the request identifier.

FlndReqId I

6REQ
reqid? : ReqId
pid : PId

reqld? E ran(req) 1\

pid = req-l(reqld?)

55 Interval Control

On cancels will also need to delete the entry ior the request identiiier.

De 1eteReq I d ---,
~REQ I

pld : Pld

req' = {p i d} ~ req

With the introduction of request identifiers we have some additional errors. When
setting up a req i d?, if it is already in use by some other process, we get an Inv Req
exception.

NonUn i que! ,
=REQ
pld : PId
reqid? : ReqId

report! : CONDITION

req i d? E ran ({p i d} ~ req) 1\

report! ::: InvReq

where =REQ ~ [liREQ I req ::: req].

If the req i d? is not found in req we get a NotFncl exception.

NotFound! I

=REQ
req i d? ReqId

reqld? ~ ran(req) 1\

report! ::: NotFnd

56 Interval Control

We can now complete our specification of operations involving request identifiers.

SetUpTO = (SetUpTO, ~ SetUpReqld[currentpld?/pldj)
v ("PTO ~ NonUnique!!currentpld?/pld]>

Delay = (Delay, A SetUpReqld[currentpid?/pid\)
v ("PTO A NonUnique! [currentpld?/pid])

Cance ITO Cancel T02 A DeleteReqld(currentpld?jpid]•
CancelTOReq ~ (CancelTOReqzA FindReqId '" De 1eteReqld)

v (NotFound! , "PTO)

On errors due to request identifiers, the timeout state is not modified. If a process

cancels its cwn timeout (Cance 1TO) the request identifier for that process is deleted.

When the time for a timeout request expires the system removes all knowledge of the

corresponding request identifier.

Expi r\:j I

6REQ

"PTO
pld? ; PId

tlmeout(pto(pld)) !i: clock/\

req = {pld?} ~ req

where"PTO. I 6PTO I pta' = pta].

57 Interval Control

Start and Retrieve

A Start command may be used to start a transaction at a given time. The
transaction runs a given transaction program. It may be associated with a terminal
and may have data passed to it. A started transaction may use a Retr ieve

command to retrieve data passed to it by a Start command. We will represent a

transaction hy

Transac t i on' _

transld TransId I

starttime Time
term i d TermId
retrdata Data

where TransId is the set of names of transaction programs and TermId is the set of
terminal identifiers. If a transaction is not associated with a terminal then its term id

will be nil (i.e. nil E Termi d). The type Oat a will not be further refined here but for
the moment we can think of it as a sequence of bytes. If there is no data for a
transactiou to retrieve then its retrdata will be nil (i.e. nil E Data).

Transaction and terminal identifiers supplied to a Start command must be in the set
of all transaction program names and the set of terminals known to the system,
respectively.

programnames f TransId

terml na 1s f TermId

We associate a unique identifier from the set PId with each transaction in the system.
This is so we can distinguish two transactions with the same trans I d I star t time I
termld, and retrdata.

58 Interval Control

The state of the transaction start/retrieve system is given by

TR -----,

tr: Pld ~ Transaction
act i ve ~ Pld
retrieved ; ~ Pld
busy: IP Termld

clock: Time

act lYe ~ dom(tr) /\

retrieved ~ active /\

busy = (termid 0 tr)QactiveD - { nil}
 A

(~pid : ar.tive· tr(pid).starttime ~ clock) A

act ive <l (termid 0 tr) ~ {nil} E Pld~Termld /\

ran(termid 0 tr) - { nil } ~ terminals A

ran(transid 0 tr) ~ programnames

The main component of the state is the map tr which gives the transaction

information for each transaction. The active (or running) transactions are a. subset of

those known (dam(tr»), and the processes whose data has been retrieved must have

been active. The busy terminals are those currently associated with an active

transactioD (excluding the special tenninal identifier nil which gignifies there is no

terminal attached). The starting time of every active transaction must have already

passed. Each actual Germinal is associated with at most one active transaction. The

terminal and transaction identifiers of transactions must be in the sets of tbose known

to the system.

The initi.ll state of the transaction system is given by

~ [TR I tr : {) J.TR INIT

A state change is given by

~TR TR A TR' A I1Tlme

59 Interval Control

The Start comlnand sets up a transaction.

Start ,
o
IITR
Transact ion?
p,d , PId

termld? E terminals II

transld? E programnames II

pld E dom(tr) II

tr' ::: tr U {pid 1-+ Transaction?} II

act j ve' = act i ve II

retrieved' = retrieved

The term i d and trans J d of the new transaction must be members of, respectively,

the set of known terminals and the set of known transaction program names. The new

transaction is added to the as yet unactivated transactions with a new unique

identifier pi d.

Aside 1: A Start on the local system causes the current timeout (see Interval

Control time-out specification) to be lost. I b(\.ve chosen not to model this aspect of

the operatiou as it would require adding the time-out state to the above schema. The

timeout and start/retrieve operations should be logically separate. 0

Aside 2: We will not attempt to model tbe effect of the nocheck and proted options

here. They are to do with the implementation of recovery mechanisms. 0

A St art command can cause an exception if the term Id? is not one of the available
terminals.

TermI dErr ! ---,

=TR
term I d? TermId

report! Cond I t Ion

termld? E terminals II

report I = TermldErr

where '=TR ~ [6TR I tr' trllactlve' act Ive].

GO Intern] Control

A Start can alw cause an exception if the trans Id is not Oll€ of the known
transaction program name~.

TransldErr! ,

,rR
transld? Transld
report I (and i t Ion

transld? ~ prDgram~ames A

report! ::: TranddErr

Finally, a request klentifier is setup on a Start; this may cause all error because it is

not unique. The final definition of Start is

Start G (Start o A SetUpReqld A Success)
v (TermldErr! A =REO)
v (TransldErrl A =REO)
v (NonUnique! A =TR)

Aside: For Start/Retrieve the reqnest identifier is also used as the Temporary Storage
queue name under which the data is stored. This implies Start and Retrieve
should also modify the Temporary Storage state. I have chosen not to model this as it

is an implementation mechanism that should not be visible. 0

61 Interval Control

Activating Transactions

A transaction may be aclivated by the system if its st art time has passd and if its

associated terminal, if it has one, is free. The system action of acliv<l.cing of a

transaction is given by

Act i v at eTR ~

6TR
pid?:Pld

P i d? E dom(t r) - act I va II

tr(pid?).starttime ::; clock II

tr(pld?).tarmld it busy II

-(3p: active· tr(p).transld tr(pld?).transid) II

act Ive' = active u { pld? } II

tr'=trll

retr leved' = retr laved

The transaction to be activated must be known to the system and nol already be

active. The transaction's starting time must have passed and its terminal must be

free. Only one transaction with a given trans I d may be adive at any oDe time. The

transaction is noted as active.

Deactivation of a process with respect to Interval Control is given by

Daact i va t eTR ----,

l>TR

pid? PId

P i d? E ac t i ve II

t r' = { pi d? } ~ t r II

active' = active - { pid? } II

retrieved' = retrieved - { pld?

The process lll\lst have been active. All knowledge of it is removed.

62 Iuterval Control

Data Retrieval

An active process may retrieve the data associated with its initiating St art

command. After that data has been retrieved, data associated with other transactions,
whose starttlmes have expired and which have the same termld and transid,

may be retrieved. The data from these other transactions is retrieved in startt Im8

order. First we will give the common parts of the Retr i eve operation and its

associated error actions.

IITRR	 -----,

OTR
currentp I d? Pld
Transact ion

retrievable P Pld

Transaction = tr(currentpld?) ~

~ possible =
dom (tr ~ {Transaction l I	 termld1 = termld ~

transtd1 = tranSld ~

starttlme1 ~ clock}) La

retrievable = { P : possIble I Vu : possible·

tr(p).starttlme ~ tr(u).starttlme} ~

act i ve' ::: ac t I ve

The state of the current transaction is represented by Transact i on, that is,

trans Id, term i d, start t I me and retrdata. A transaction can only possibly
retrieve data from a transaction with the same transaction identifier and terminal

identifier, whose starting time has expired. Of these it chooses one with a minimal
starting time.

Interval Control 63

The Ret r I eve operation is given by

Retrieveo I

ATRR

data! Data

retrdat a ~ nil

" current p id? ~ ret r i eved ~

data! = retrdata "
retrieved' = retrieved u { currentpld? } "
tr' = tr

" currentpld? e retrieved =>

(3p: retrievable· data! = tr(p).retrdata "
Ir':{p}~lrA

retrieved' = retrieved)

A transaction will first attempt to retrieve its own data; there must have been s9me
supplied when it was started. If the transaction retrieves its own da.ta it is marked as
having done so. If a transaction has already retrieved its own data then it may

retrieve data from transactions in the set ret r i evab 1e described above. The
transaction whose data was retrieved is deleted.

Aside 1: The current implementation of CICS returns data with equal start times in

the order in which tbe corresponding Start commands were issued. No doubt
applications may depend on this but the manual does not define the order (nor does it

explicitly say it is arbitrary). D

Aside 2: The CICS Start and Retrieve commands have additional parameters:

RTransId, RTermId and Queue which are used to pass more data of a specific type.
For our specification we will assume that these parameters are passed as part of the
ret rdat a along with do sequence of bytes of normal data. These parameters a.re

really redundan t as a structure containing them could be passed as data. 0

Aside 3; We have not modelled the "wait" parameter to Retr i eve or the ~ime-out on
do Retr I eve with the "wait" option. D

64 Interval Control

A Retr i eve command can get an exception if there is no data left to be retrieved.

EndData! I

.TRR
report! Cand I t ion

currentpid? E retrieved A

retrievable = {} A

report! = EndData

where =TRR ~ t.lRR 1\ =TR.

Aside: EndData also occurs on system shutdown. 0

A Ret r i eve caD get an exception if no data was supplied on its corresponding

Start or if the data of its Start has been retrieved and there is another transaction

retrievable by the current transaction for which there was no data supplied.

NotFnd ' -.

=TRR
repor"t! Cand i t ion

(retrdata = nil
v (currentpid? E retrIeved 1\

3p: retrievable· tr(p).retrdata nil)
) A

report! NotFnd

The final definition of Ret r I eve is

Retrieve ~ (Retrleveo 1\ Success) v EndData! v NotFnd!

If there are retrieva.ble transactions some of which have data and some of which do
not, the a.bove allows the implementation to chose between retrieving data a.nd giving

a N otFnd exception.

Aside: Exceptions can also occur for the following reasons: input/output errors

(IOErr), a dummy tempora.ry storage module is installed in the system (InvTSReq),
the format of the data is incorrect (EnvDefErr, LengErr) or there is an invalid
parameter (InvReq).

65 Interval Control

Cancel

A transaction set up by a Start command may be cancelled provided its start time
has not passed.

Cance I TRO, ~

6TR
pld : PId

pld E dom(tr) A

tr(pid).starttlme > clock
tc' = {pid} ~ tc
act ive' = active

The cancelled transaction is removed from the known transactions. The identity of
the transaction to be cancelled (p I d) is determined by a request identifier; on
cancelling the request identifier is deleted.

CancelTR 2 (CancelTRo 1\ FindReqId 1\ DeleteReqId Success)1'1

v (NotFoundl A =TR)

The cancel operation either cancels a timeout or a iltart.

Cancel Q Cancel TO v CancelTR

The domains of the two operations Cance 1TO and Cance 1TR are disjoint. The choice
between the two alternatives depends on what operations have taken place previously.
For Cance 1TO, pi d must be in the domain of pta. The only operation that achieves

this is the timeout Inlt lateTO; therefore pid must correspond to an active process:
pid e act ive.

For Cance 1TR, pi d must be in the domain of tr and furthermore its starting time

must uot have expired. When the Start command corresponding to pld was issued
it resulted with pld e active. The only way pld can become active is vi~ ~

transaction Act i vate TR , but for a transaction to be activated its starting time ml1;;t
have expired. Therefore, if Cance 1TR is applicable, the transaction has not been
actinted. Hence the domains of Cance 1TO and Cance 1TR are disjoint.

CICS Message System

Abstract

The following message system is based on the message handling in CICS. The

specification itself is an interesting example: it combines states (of input and output

devices), and gives a number of examples of the use of the "»" operator on schemas.

Message Output

We can represent a set of output devices by a mapping from a device name to a

sequence of messages that have been ontput to that device.

NOUT ---,

I noq Name -H seq Message I

The operations on outpnt that we will discuss here neither create nor destroy devices.

6NOUT ~ [NOUT A NOUT' dom noq' = dom noq 1

Sending a message to a device simply appends the message to the queue for that

device.

NSend ---,
o

6NOUT
n? Name

m? Message

naq· = naq e { n? I--l noq(n?) - [m?J }

Copyright © 1. J. Hayes II Jul 85 67

68 M",ss;\,ge System

Multiple Destinations

A message may be sent to a set. of destinations.

NSendM ---,
o

6NOUT

ns? IP Name

m? Message

ns? I; dom noq II

noq "'- noq Ell {n ~ ns? • n"'--) noq{n)-lm?] }

All the names in ns? mu",t correspond ~o valid output devices. Each device in n? is

sent the message

Theorem:

Given

ToSet ~ [n? : Name; ns! IP Name ns! { n? }]

the following equality holds

NSendo = ToSet » NSendMo

The schema operator "»" identifies the outputs (v<lriables ending in "I ") of its left

operand with the inputs (va.riables ending in "?") of its Tight operand; these v.1.riables

are hidden in the result. All other components are combiued together as per schema

conjundioll (II).

69 Message System

Message Input

We can represent a set of input devices by a mappiug from a device uame to a
sequence of messages yet to be input from that device.

NINI ~

I niq Name ~ seq MessagC! _

The operations on input described here will neither create nor destroy devices.

~NIN NIN A NIN' dom nlq = dom nlq 1

Receiving a message from a device simply removes it from the head of the input

queue for that device.

NRece I yeo ---,

ANIN
n? Name

ml : Message

ml == head(niq(n?)) II

nlq == nlq EEl { n? I--Jo tall(nlq(n?)) }

Send aDd Receive

We can define an operation that both sends a message to a device and receives a

message from that device.

NSendRece I ve NSend II NRecelveoo o

70 Me"qge SYSkHl

Combining Input and Output

We will introduce NDEV t(] describe the combined input and output state f0f all the

devices. If a device can be used for input then it milS! be ;lble to be used for 0UtpUt.

NDEV ~

I ~~:T

~o, n'q dom noq
c

Input and output operations will preserve the output :In,i input ;;tates respectively.

=NOD] ~ ~NDEV NOUT' NOUT I

=NIN [~NDEV NIN' NIN I

where ~NOEV :;: NDEV" NDEY'.

The opcrOlt2011~ au the combined state are

NS,"nd - NSenrl[i A =NIN

NSendN = NSendMc A =NIN

NRece I ve = NRec81v8CJ =NOUTA

NSendRece I ve - NSendRece I vee' A ~NIJEV

71 MesC'<1ge System

Logical Names

Rather than work with <1c1uai (physical) device uame~, as we have up untilthi" point,

we wonld like to work with logical names that are mapperl into physical device names.
We use the followilJg m:tpping from logical names to phys-ieal [lames.

LtoP ---,

! 1tap LName ---H Name

None of the operations discllssed here modify the mapping from logkal nallles to

phys-ieal names hence we wiJl use

:oLtoP ~ [LtaP 1\ LtoP' LtoP' = LtoP I

If a logiol name actually corresponrls to a device we perform the operation on that

device, otherwise we use the rleviee with physiDI [lame canso 1e.

MapName ,

=LtoP
dey Name ~ seq Message
1n? LName
n l Name

In? E dom(ltop~dev) ltop(ln?) 1\"" n '
n JIn? E dom(ltap~dev) =} console

The operations on (1, single device become

LSend ~ HapName[naq/dev]» NSend

LRecelVe = MapName[nlq/dev] » NRecelve

LSendRecclve ~ MapName[nlq/devj » NSendReceiv8

72 Message System

Multiple Logical DestinationB

To send a message to a set of logical names we need to map the set of logical names

into physic:..] names. If nOlle of the logical names correspond to a device we send the

message to the device with physic ..) llame conso 1e.

MapSet--:- -,

=LtoP
lns?
ns!

NOUT

IP
IP

LName
Name

let names = Itopalns?D n dam noq
names = {} ~ ns! = { console}
names ¢ {} ~ ns! = names

In

A

The operation to send a message to a set of logical devices is

LSendM MapSet » NSendM

Theorem:

Given

ToSetL [In? LName; lns! ; IP LName 1ns! { In?) J

the followillg equality bolds

LSend ToSetL » LSendM

73 Message Sys tem

Domains of the Operations

In practice we would like all the oper<:Lliolis to be tota.l (defined for all inputs).

Unfortnnately the operations as defined are not total. If a name (or a. set of names)

does Dot correspond to an aetnal device then the name will be translated to the

special device console; if the console does not exist ~he operation is nol defined.

For the output operations ensuring that the canso 1e exists is a sufficient

pre-conditiou for the operation to be defined. (We will also need this pre-condition for

inpnt.)

Pre [NDEV; LtoP: m? : Message console E dom niq 1

Remember that dam n I q !;; dam noq so conso 1e Edam noq.

Theorems:

Pre pre LSend=
Pre = pre LSendM

For the jnpu~ operations we need the ",dditional requirement that the queue of

messages yet to be inpllt on the device is not empty.

Preln ~ [Pre; n? : Name 1 niq(n?) 1- [] 1

Theorems:

MapName(nlq/dev] » Preln ~ pre LRece i ve

MapName[niq/dev] »Preln ~ pre LSendReceiv8

74 Message System

Acknowledgement

This specification is based on a message system specified by David Renshaw of IBM
(U. K.) Laboratories, Hursley, England.

z Reference Card

Mathematical Notation

Version 2.1

Programllling Research Group

Oxford University

1. Definitions and declarations.

Let XI x k be identifiers and T, Tk sets.

LH5 ~ RH5 Definition of LH5 a.s

syntactically equivalent to RH5.
x; T Declaration of x as type T.

x,: T1 ; xz: Tz ; ; xn: Tn
List of declarations.

, X : TXl' xz' n

~ :T; xZ:T; ; X : T.x 1 n

2. Logic.

Let P, Q he predicates and 0 declarations.

- P Negation: "not P".

P x Q Conjuuctiou: "P and Q".

P v Q Disjunction: up or Q".

P ~ Q Implication: "P implies Q" or

"if P then Q".

P .", Q Eq uinlence: "P is logically
eq uivalen t to Q".

v x T • P
Universa.l quantification:
"for all x of type TJ P holds".

3 x : T • P

Existential quantific<ltion: "there
exists all x of type T such that P".

3! x T' Px
Unique existence: "there exists a
unique x of type T such that P".
:; (3 x : T • P" !\

-(3y,T I	 y'x • P,»

'oJ x,:T1;	 xz:Tz ; ." ; xn:Tn • P
"For all Xl of type Tl'

Xz of type Tz' ... , and
xn of type Tn' P holds.

3 x1 :T:; xz:Tz ; ... ; xn:T n • P
Similar to 'rI.

3! xl; T1; x 2 : TZ; ; xr ; Tn' P

Similar to V.
V DIP • Q Q(VD·P"'Q).
3 DIP· Q Q(3D,pxQ).

t 1 = t z Equality between terms.
t 1 1. t z Q -ttl = t Z)·

3. Sets.

Let 5, T and X he sets; t, t k terms; P a
predicate and 0 declarations.

e S Set membership: "t is an element
of 5".

t • S Q-(teS).

5 ~ T Set inclusion:
Q (VX,S·xET).

S c	 Strict set inclusion:
:; 5~T!\5;iT.

{} The empty set.
{ t ,_ t z, ,tn } The set

containing t l' t z,··· and tn.
{ x , TIP}

The set cont<lilling exactly those

x of type T for which P holds.

(t" t 2 , ,t n) Ordered ll-tuple

of t 1, t z"" and tn·
T1 x Tz x ... x Tn Clrtesian product:

the set of <ll! n-tuples such that
tbekth component is of type Tk .

{ x 1 :T 1 ; xZ :T2 ; ... ; x~:Tn I P}

The set of n-tuples

(Xl' xz, . x) with eachq

xk of type Tk SIlCQ that P holds.

Copyright © 1. J. H~yes 11 Jul 85 - 75­

{DIP-,}
The set of t'8 such tha.t given the

declarations D, P bolds.

D - t }

~ { D I true • t }.

IP 5 Powerset: the set of aU subsets

of 5.
fS Setaf finite subsets of 5;

o {T, ~ SiT ;s [;n;'e }.
S n T Selintersection: given S. T: IP X,

~{x:X I XESAxET).

S u T Set union: given 5, T: IP X,
~ {x:X I x e 5 v x e T }.

S - T Seldifference: given 5, T: IP X,

~{x:X I xeS"xi;!T}.

n ss Distributed set intersection:

given 55: IP (IP X),

o kX I	 (VS'SS • xES)}.
u SS	 Distributed set union:

given 55: IP (IP X),

" k X I (3S' SS • X E S)} .

lSI	 Size (number of distinct

elements) of a fiuite set. I
4. Nwnbers.

N The set of natural numbers

(non-negative integers).

f\:t The set of strictly positive

natural numbers:

"N-{O}.
~ ThE set of integers (positive, zero

and negative).
m.. n	 Theset of integers between m

and n inclusive:

;;;;, { k: Z I m l:;. k 1\ k '" n }.
min 5 Minimum of a s.et, 5 : f N.

minSESA

('r/x : 5 • x ~ min S).

max 5 Maximum of a set, S IF" N.
ma)(S E 5 A

('r/x S' x ~ ma)(5).

5. Relations.

A relation is modelled by a set of ordered

pairs hence operators defined for sets can

be used on relations.

Let X, Y, and l be sets; x X; Y Y;
andR:X~Y.

X ~ Y	 The set of relations from X to Y:

" ~ (X x Y).
xRy x is related byR toy:

" (x, y) E R.
x t----} y .;;, (x, y)

xll--)Yl' xzt----}yz· xnl--)Yn }

Tbe relation

{ (x"y,), ,(x"y,) }
relating Xl to Yl' ... , and

X n tOYn'
dom R The domain of a relalion:

" {"X I (3y'Y • x R yl).
rng R The range of a relation:

" {y,Y I (3x,X • x R y)}.

Rl ; R Forward relational composition:z
givenR l : X~Y; R : Y~l,z
o	 { "X, z,Z I (3y'Y •

X R1 yAy R Z)}.z
R1 0 Rz Relational composition:

f2 Rz ~ Rt .

R- 1 Inverse of relation R:

" {y, Y; "X I x R y }.
,d X Identity function OIl the set X:

.;;, {x: X • x I--) x }.

R'	 The rebtion R composed with

itself k times: given R X H X,
RO ~ I d X, Rk+ 1 :;: Rk 0 R.

R'	 Reflexive transitive clo5ure:

o U { n' N • R" }
R' Non-reflexive trall:'litive closure:

o U { n' N+ • R' }.

RUSD Image: given 5 IP X,
o {yY I	 (3x,S· x R y)}.

5 <1 R	 Domain restriction to 5:
given 5: IP X,
o {"X;\,j;Y I xES A X R y).

S ~ R	 Domain subtraction:
given 5: lP X,

O(X-S)1R.

R t> T	 Range restriction to 1:
given T: (P Y,
:;:{x:X;y:Y I xRyAyeT}.

R	 ~ T Range snbtraction of T:
given T: (P Y.

OR~(Y-T).

R1 EEl Rz Overriding: given R1, Rz X~-H,

o (dom R ~ R,) u R,.z

6. Functions.

A function is a relation with the property
that for each element in its domain there is

a nnique element in its range related to it.
As functions are relations all the operators
defined above for relations also apply to
functions.

X -+t Y	 The set of partial functions from
X to Y:
o {	 f; X ..., Y I

('tJx; dom f •

(3l y ; Y • x f y»).

X ~ Y The set of total functions from
X to Y:
o {	 f; x-...y I dom f = X).

X)oH Y The set of one-to-one partial

functions from X to Y:
o	 (f; X -... Y I

('tJy: rng f •

(31" X • x f y»).
X >--+ Y The set of one-to-one total

functions from X to Y:
• (f; X~Y I dom f = X).

f t The function f applied to t.

(AX XIP·t)
Lambda-abstraction:
the function that given an

argument x of type X such that P
holds the result is t.

o (" X I P • x t).
(A xl: T1; ... ; xn : Tn I P • t)

S: {xl:T1; ; xn:T I Pn
(Xl' ,)(~) t }.

7. Orders.

part i a I_order X

The set of partial orders on X.

O{R; X""X Ilx.y,z; X
x R x A

X R y A y Rx ~ x=y A

X R y A y R z ~ x R z
).

tote l_order X

The set of total orders on X_
~ {R: pertia1_order X

Vx. y; X
xRyvyRx

)

monoton I C X <x
The set of functions from X to X
that are monotonic with respect
to the order <x on X.
.(f;X-"'XI

x <x y ~ f(x) <x f(y)
).

- 77­

8. Sequences.

seq X	 The set of sequences whose
elements aie drawn fiQm X:
o {A, N'-..X I

dam A = 1.. IAI }.
I AI The length of sequenee A.

[J The empty sequence {}.

[a 1• 8 r l
~ {ll--+a1' , nl--+al) }.

[aI'	 , anl-[b1, b",J

Conca.tenation:

~ [at.···. 81)' b 1,···, b",),
[]~A=A-[I=A.

head A	 0 All).

last A ~ A(I'AI).
t.,1 [x)-A 0 A.
front A~[xl Q A.

rev [a1'	 8Z' ... 8 n]

Revtrse:

Q [a." , 8 Z' 8 1],

rev I] = [J.

/AA	 Distributed concatenat.ion:

give~AA seq(seq(X)),

o All 1) - '" - AA(IAA I).
~ /1] = I]·

'/AR	 Distributed relational

composition:

given AR ; seq (X +-Jo X),
o AR(l) , , ARI IAR I),
,/[i = ,d	 X.

dis 10 I nt	 AS Pairwise disjoint:

given AS; seq (If' X),

Q (! I. J dam AS • I # j

=> AsI,) n AS(J) = {}I.
AS p8rtltlons S

Q dlsJo I nt AS

1\ U ran AS = S.

A ill B Contiguous subsequence:

oI3C.D,seqX·
C~A-D = B).

squash f Convert a {unction, f: N ~ X,
into a seqtlence by squashing its

domain.

squash {} = [],

and if f i- {} then

squash f =

[f(i ») - squash I { 'H f)

where I = min(dom f) e.g.
squash {Z~A, 271---7C, 41--+B}

= lA, B. C]
S 1 A	 Restrict the sequeuce A to those

items whose index is in the set S:

Q squash(5 <J A)

A ~ T	 Restrict the range of the

sequence A to the set T:

Q squash (A t> T).

9. Bags.

bag X	 The set of bags whose elements

are drawll from X:
Q X ~ N+

A bag is represeuted by a

function that maps each element

ill the bag onto its frequency of

occurrence in the bag.

[] The empty bag {}.

[xI' xZ. xI)] TiJe bag

containing X I' xz.... and x"
with the freg U~fLCy they occur ill

the list.

items s The bag of items contained in

the sequence 5:

~ { x; rng s •

xl---7 I {I : dam sis (I) =x} !

}

Z Refet'ence Card

Sr:hema Notation

[For details see "Schemas in Z"l

Programming Research Group

Oxford University

Schema definitiou: a schema groups together

some declarations of variables <lnd a

predicate relating these variables. There are

two ways of writing schemas: vertically, for

example
5	 _

x N
lJ seq tJ

x < Iy I

or horizontally, for the sal}le example

5 0 [X' N, y' seq N I x, Iy I].
llse in signatures after 'r;/,).., { ..• } 1 etc.:

(VS • y , [I) 0 (VX'N, y' seq N I
x< Iy I • y' []) .

tup I e 5 The tuple formed of a schema's

variables.

pred 5 The predicate part of a schema:

e.g. pred 5 is x ~ Iy I.
Inclnsion	 A schema 5 may be included

within the declarations of a

schema T, in which case the

declarations of 5 are merged

with the other declantions of T

(variables declared in bot.h 5 and

T must be the same type) and the

predicates of 5 and Tare

Tconjoined. e.g. _

~ N

z < xI

is

x, Z : N
lJ : seq f\l

x~lylllz<x

5 I P The schema 5 with P conjoined to

its predicate part. e.g.

(S I x>O) is

[x:f\l;y:seq NI x~lyiAx>Ol.

5 D The schema 5 with the

declarations D merged with the

declarations of S. e.g.

(5 ; z : N) is

(x, z:N; y:seq N I x~lyl

S [nel-l/o 1d I Renaming of components:

the schema 5 with the component

old renamed to ne~ in its

declaration and every free use of

that old within the predicate.

e.g.5[z/x] is

[z:N; y:seq N I z 0:;; Iyl

and S [y/x, x/lJJ is

[y:N; x:seq N I y s; Ixl
Decoration Decoration with subscript,

superscript, prime, etc.;

systematic renaming of the

v<lriables declared in the schema.
e.g. 5' is

[x' : N; y': seq fJ I x' ~ Iy J I]

""'5	 The schema S willl Hs predicate

p<:lrt neg<lted. e.g. -'5 is

[X'N, y"eq HI -(xclyl)]
5	 II T The schema fOrllJPd from

sche\l1<:ls Sand T by llwrging

their decbr:\lioll: (.see illclu",ion

:&b0ve) <:lnd :Lnd'i~g their

predicates. Giv<2D.

T ~ [x' N; z: IP f·j I xEz],
SliT is

- 79­

)(:	 N

y :	 seq N

z :	 P N

)(,,; Iyl)(e zII

5 v T	 The schema formed from

schemas 5 and T by merging
their declarations and or'ing their
predicates. e.g. 5 v T is

N
seq N

P N

)(,,; Iyl v)(e z

5 = T The schema formed from

schelllas Sand T by merging
their declarations and taking
pred S ~ pred T as the

predicate. e.g. S =:;0 T is similar
to SliT and S v T except the

5 ... T

predicate contains an "~,, rather
than an "II" or an "'v".
The schema formed from
schelllas Sand T by merging

their declarations and taking
pred S ¢9 pred T as the
predicate. e.g. S ¢9 T the same
as SliT with <I¢9" in place of
the "II".

S \ (VI' VZ' ...• Vn)

Hidi[lg: the schema S with the
variables v1, vz, ...• and vn
hidden; the variables listed are
reilloved from the declarations
and <lre existentially quantified in

the predicate. e.g. S \)(is

[y"eq N I (3X'N • x<lylll

A schema may be specified
instead of a list of variables; in
this case the variables declared in
that schema. are hiddtotL
e.g. (S II T) \ S is

z P N

(3	 x: M; y: seq N •
x ~ J yl II)(e z)

5 r (v" V z. '.' • vn)

Projection: The schema S with
any variables that do not occur
inthelistvt. v z, ... , vn
hidden: the variables removed
from the declarations are
existentially quantified in the
predicate.
e.g. (5 AT) r (x, y) ;s

x N
y seq N

(3 z U" N

X"';(yIIlXEZ)

The list of variables may be
replaced by a schema as for

hiding; the variables declared in
the schema are used for the
projection.

The following conventions are used for
variable names in those schemas which
represent operations:
undashed state before the operation,
dashed state after the oper<l.tion,
ellding in <I?" inputs to the operation, and
ellding in "!" outputs from the operation.

--

5

The following schema operations only apply
to schemas following the above conventions.

pre 5	 Precondition: all the state after

components (dashed) and the
outputs (ending in "!") are
hidden. e.g. given
5	 -----,

x?, s, S
,

, ~.
I N

S· :: S -	 x? A ~! :: S

pre 5 is

)(?, 5	 N

(3 5', ~I N
S' :: s-x? A ~! :: s)

The predicate can be simplified:

x?, s, S ~I N

(5' :: S-)(? A y! ::
A S ~)(?)

v

(S <)(? A SiS)

5 , T	 Schema composition. if we

consider an intermecia.te state
that is both the final state of the

operation 5 and the initial sta.te
of the operation T tJen the
composition of 5 and T is the

operation which relates the
initial state of 5 to Ihe final
state of T through tb.e

intermediate state. To form the
composition of 5 and T we take
the state after componen ts of 5
and the state before componen ts
of T that have a basename* in

common, rename both to llew
variables, take the schema "and"
(A) of the resulting schemas, and
hide the new variables.
e.g. 5 , T is

x?, s, S ~ I N

(3 50 ' N

So :: 5-)(? f ~! :: 5 1\

So <)(? A 5' :: So)

b<\.sename is the name with any decoration
("i", "!", "?",etc.) removed.

-

post 5

5 • T

Postcondition: this is similar to

precondition except all the state

before components (undashed)

and inputs (ending in "?") are

hidden.

Overriding:

~ (5 A ~pre T) v T.

e.g. given 5 above and
T	 -----,

x?, s~ 5 ~

S<X?AS·::S

519TIS

)(?, s, 5', ~I ~

(5' = S-)(? A ~I 5 A

"(3 5' , N •

s <)(? AS' :: 5»
v (5 < x? AS' :: S)

- 81

5 » T	 Piping: this schema operation is
,imilar to schema composition;
;he difference is that rather than
:dentifying the state after
components of 5 with the state

before components of T I the
output components of 5 (ending
III "! ") are identified with the

input components of T (ending
in "7") that have the same
basename.

