
SPECIFICATION DIRECTED MODULE TESTING
 

by 

Ia.n Hayes 

Technical Monogra.ph PRG·49 

July 1985 

Oxford University Computing La.boratory 

Progra.mming Resea.rch Group 

8-11 Keble Roa.d 
Oxford OX] 3QD 
Engla.nd 



Copyright @ 1985 Ian Hayes 

Oxford University Computing Laboratory 
Programming Research Grou p 
8-l! Keble Road 
Oxford OX! 3QD 
England 

Author's address from September 1985: 
Department of Computing Science 
Queensland University 
St. Lucia 
Queensland 4067 

Australia 



SPECIFICATION DIRECTED MODULE TESTING 

Abetraet 

U a. program is developed from a. specification in a ma.thematica.lly rigorous ma.nner, 

work done in the development can also be utilized in the testing of the program. We 

can apply the beUer understanding afforded by these methods to provide a. more 
thorough check aD the correct operation of the program under test. This should lead 

to earlier detection of faults (making it easier to determine their ca.uses), more useful 
debugging information, and a. greater confidence in the correctness of the fina.l 

product. Overall, a. more systematic a.pproach should expedite the task of the 

program tester, and improve software reliability. 

The testing techniques described in tbis pa.per apply to the testing of a.bstra.ct da.ta. 
types (modules, packages). The techniques utilize information generaled during 
refinement of a data type, such as the data type invariant and the relationship 

between the specjfication and implementation states. The techniques are illustrated 

by application to the implementation of a symbol tahle as an ordered list and as a 
height balanced tree. 

Index Term.s 

Module testing; software reliability; specification language· Z; abstract data types, 

modules, pa.ckagesj data. type invariant, retrieval function, pre- and post-conditions. 

Copyright © 1. J. Hayes 11 Jul 85 1 



3 Module Testing
 

Introduction
 

Rigorous program development, such as that advocated in Jones' excellellt book [51, 

can do much to increase our confidence in software We produce. The development of 
a program starts from a high-level specjfica~ion, which is then refined through one or 

more stages to produce the final program. Rigorous methods rely heavily on 

mathema~ics to specify the software to be developed, and to formalise the relationship 
between the specification and an implementation. The work done in formal ising these 
relationships can be of great benefit to program testers in developing;). thorough 

testing strategy that will trap errors as early as possible and thus be a aid to 

debugging. 

Given a rigorously developed program it is possible to prove that it meets its 
specification. If such a proof is performed mechanically (and we trust the verifier) 

then testing should not be required; given the current state of the art, however, 
complete mechanical verification is a rarity and is expensive in resources. If the proof 

is done by hand then there is still room for error and hence room for testing. 
Rigorous methods can help greatly to increase our understanding of the progra.m that 

we are developing and hence reduce the number of errors in the initial version of the 
program. However, we are still prone to make mistakes through oversights and 

typographical errors and without mechanical verification we will still require testing, 

especially on larger, more complex programs where errors could more easily slip in 
unnoticed. By making use of rigorous methods in testing we can increase our 

confidence in the correctness of the final product in a relatively straightforward 
manner that requires more moderate resources than complete mechanical verification. 

The testing techniq ues described in this paper apply to the testing of abstract data 

types (modules, classes, packages, clusters). An abstract data type consists of some 
data, which we will refer to as its state, and a set of operations on that stale. It is a 

good unit for testing purposes because it represents a coherent whole and, beca.use the 
operations are all working on the same state, parts of the testing code are common to 

all the operations; in many cases it would be difficult to test an operation without 
having the other operations on the data type available. Testing of abstract data types 

caD make use of the data type invariant for checking the consistency of the state 
between operations, the pre-condition for distinguishing errors in the module under 
test from those in the test program, and the relation between the specification and 

implementation states along with the individual operation input-output relations for 

testing the correctness of the operations. 



4 Module Testing 

We will illustrate the testing technique by following through the development and 
testing of a 3ymbol ta.ble module. The notation used in this paper will be based aD 

the specification la.nguage Z [I, 61; progra.ms will be given in a. Pa.scal-like notatiOD. 

Symbol Table Specification 

This example spe6fies a. symbol table with a.n opera.tion to update an entry. We will 

describe the table by a pa.rtial function from symbols (SYM) to va.lues (VAL). 

ST ~ 

I sf. SYM -++ VAL : 

The a.rrow -++ indica.tes a. function from SYM to VAL that is not necessa.rily defined 

for all elements of svn (hence "partia.l"). The subset of SYM for whjch it is defined is 

its domain of definition 

dom(st) 

If a symbol s is in the domain of definition of s t (5 e dom( st ») then st ( s) is the 
unique va.lue associated with s (st (s) e VAL), The notation { s ~ v } describes 
a function which is only defined for that particular s; 

dom( { s >-> v }) = { s } 

and maps that s onto v: 

{ • >-> v }(s) = v 

More generally we ca.n use the notation 

{ )(1 ~ Yl> X2 t--+ YZ> ." • Xn t--+ Yn } 

where all the Xk' s are distinct to define a function whose domain is 

{ xl' X2_ ,.. > Xn } 



5 Module Testing 

and whose value for each )(k is the corresponding Yk' For example, if we have the 
following mapping 

st = { •• John" ~ v!' "Mary" ~ Vz } 

which maps "John" onto v t and "Mary" ont.o vz, then the domain of st is the set 

dom( st) = { .. John". "Mary" } 

and 
st("John") = vI 

st(MMary") = Vz 

The notation 

{} 

is used to denote the empty fundion whose domain of definition is the empty set. 

We are describing a symbol table by modelling it a.s a partial function. This use of a 
function is quite dlfferent to the normal use of functions in computing where an 
algorithm is given to compute the value of the function for a given argument. Here we 
use it to describe a data structure. There may be many possible models that we can 
use to describe the same object. Other models of a symbol table could be a list of 
pairs of symbol and value, or a binary tree containing a symbol and value in each 
node. These other models are not as abstract because many different lists (or trees) 
can represent the same function. The list and tree models of a symbol table tend to 
bia.s an implementor working from the apecificahon towards a particular 
implementation. In fad, both lists and trees could be used to implement such a 
symbol table. However, any rea.soning we wish to perform involving symbol tables is 

far ea.sier using the partial function model than either the list or tree model. 

Initially the symbol table is empty 

st ; {} 



6 Module Testing 

Tbe update operation ca.n change the symbol table. We represent the effect of such 
an operation by the relationship between the symbol table before the operation and 
the symbol table after the operation. We use 

651 I 

I 51 0 
51 ) 

to represent tbe sta.te before (STo) and the sta.te a.fter (5T). The above defintitioD of 
.65T is equivalent to the following one in which ST 0 and ST have been expanded 

651 -----, 

5to SYM ~ VAL 

I,5t SYM ...... VAL 
I 

We use the convention that zero subscripted symbol ta.ble (st O) represents the state 

before all operation and the undecora.ted (st) the state after. (This cODvention is 
sligbtly different to the convention used in the references [5, 6] both of which use 

undecora.ted va.riables for the state before (st) and primed va.riables for the state 
after (st f); the convention used in this paper allows some simplification of the 
assertioDs used in programs.) 

The opera.tion to update an entry ilJ the table is described by the following schema 

Upd.te ---, 

6ST 
s7 SYN 
",7 : VAL 

st = sto • { s7 ~ ",7 } 

A schema consists of two parts: the declarations (above the centre line) in which 
variables to be used in the schema are declared, and a predicate (below the centre 

line) containing predicates giving properties of and relating those variables. In the 
schema. Update the second line declares a variable with name "57" which is the 
symbcl to be updated. The third line declares a variable with name "",7" to be the 

value to be associated with 57 in the symbol table. By convention names in the 



declarations ending in "1" ar~ inputs alld llames ending in "I" will be outputs; the 
"?" and '"I" are otherwise just part of the name. 

The predicate part of the schema states that it updates the symbol table (':ito) to give 

a new symbol table (st) in which the symbol s? is associated with the value v? Any 

previous value associated with 5? (if there was one) is lost. 

The operator IB (function overriding) combines two functions of the same type to give 

a new function. The new function f $ 9 is defined at x if either f or 9 are defined, 
and will have value g( x) if 9 is defined at x, otherwise it will have value f(x} 

dom(f IB g} = dom(f) U dom(g) 

)( E dom(g) - (f • g)(x) g(x) 

)( E dom(g) A )( E dom(f) ~ (f IB g) (x) = f(x) 

For example 

"Mar~"I---JoVl' "John"~v2 } lD { "John"~v3' "George"~vl 

= { "Mar~"""""vl' .. John .......... v3' "George"l--"vl } 

For the operation Update above the value of 5t(X) is v? if x = s?, otherwise it is 

stO(x) provided x is in the domain of st o_ In Update we are only u~ing • to 

override one value in our symbol table function, however, the operator lB is more 
general: its arguments may both be any functions of the same type. 

For a symbol table module we would normally defille further operations to lookup 

and delete entries in the table. For the purposes of illustrating testing, however, we 
will only consider the Updat e operation. 

If we were not allowed to know the internal structure of the implementation of the 

symbol table, this specification would give us all the information we needed to test 

that implementation. At one level this provides a reasonable testing strateIS)' hut, as 
will be demonstrated, if we are allowed knowledge of the implementation we can 
construct a more rigorous test of that implementation. 



8 Module Testing 

Implementation 8S an Ordered Sequence 

We will first consider implementing a. symbol table as an ordered sequence aDd later 
as a. height bala.nced binary tree. The testing techniques do not ha.ve a.s much to offer 

for the simpler ordered sequence implementa.tion, but it will serve to illustrate the 
ideas involved before moving OD to the more complicated balanced tree 

implementation. 

Each item in the ordered sequence will cODsist of a. pair of symbol and corresponding 
value. 

Item s SYM x VAL 

We a.lso define selector functioDs sym and va 1 to select the symbol and value, 

respectivelYl from an item. 

sym Item ----+ SYM
 
val Item ----+ VAL
 

such that for it I tem we have 

It = (i t . sym. it. va 1) 

The state is given by 

55T -----" 

sst seq I t em 

I ordered(sst) J 

where ordered(s : N -++ Item} ~ 

(Vi,j : dom(s)· i < j ..... s(i).s\:,lm <5 s(j).sym) 

where we are assuming there is some total order «5) on symbols. The state is 
modelled by a sequence of items, sst. The domain of the sequen<;e, dom( sst), is the 

set of integen that are valid indexes into the sequence. The invariant states that sst 
is in stricf.ly ascending order on symbols. Initially the sequence would be empty. 

••t = [J 



9 

I 

Module Testing 

Before describing the Update operation on this state let us look at the relation 

between the ordered sequence model and the partial function model. 

5T_55T --,
 
5T
 
55T
 

st = { It rng(sst) • It.sym ........ ILval }
 

where the range of the sequence, rng( sst), is the set containing all the items in the 

sequence. 

ST _SST shows how, given a sequence representation, we can retrieve the partial 

function model of a symbol table by, for each item in the sequence, mapping its 

symbol to its value. 

The update operation OD the sequence model is given by 

UpdateS I 

I 655T 
s? SYM 
v? : VAL 

rng(sst) rng{sst Q) U {(s?, v?) } 

where 

655T::::- _ 

L55To
 
5ST
 

The invariant on the states ensures that the final state sst Is ordered; the predicate 
part of UpdateS ensures that the final sequence contains the correct values. 



10 Module Testing 

The following is a. possible implementa.tion written in a P3..'ical-like nota.tion. It uses 

the simple scbeme of a.ppending the new pair to the sequence and then rippling it 

down the sequence into the correct place to maintain the ordering. 

UpdateS(s? : SYM, v? VAL): 

{ sst = sst o A ordered(sst o ) } 

sst := sst - [ (s?, v?) J;
 
i ,= Isst I ;
 

{ In,,: rng(sst) = rng(sst o) u {(5?"?)} A 
1 ~ i ,;;; Isst I A 

ordered«l .. i-l)<Jsst) A ordered«i .. lsstl)<Jsst)} 

wh i 1e i f. 1 cand sst ( i-I) .sym >s sst ( j ). sym do 

begin 

slooIap(sst(i-l). sst(i»; 

: = i-I 
end 

{In"l\(i 1 v 5st(i-l).sym ~S sst(l).sym) } 

where 

- is concatenation of sequences, 

[( s?, ,,?) J is a sequence containing a single item: that with symbols? and 

value v?, 

151 gives the length of a sequence s, 

( i .. j) <l sst is the sequence sst with its domain restricted (<J) to values in 

the subrange i to j inclusive, and 

cend is the conditional and operator: it only evalua.tes its second a.rgument if 

its first argument is true. 



11 MOdule Testing
 

CheC'.king the Inv8J'iant
 

To test this implementation we will first write a procedure to check if the invaria.nt 

holds. This will be used to check the invariant .initially and then after every operation 
performed on the symbol table during testing. The invariant on the ordered sequence 
i, 

(V i. J dom(sst) • I < j ... sst(I).sym <s sst(j).sym) 

The following code should suffice to check this holds 

k ,:	 1, 

Inv:	 ordered( (1.. k)<1sst) } 

I.Ihile k < 15stl cand sst{k).sym <s sst(k+l).sym do
 
k:==k+l;
 

Inv" (k ~ Isstl v sst(k).sym ~s sst(k+l).sym) } 

if k	 < Isst! then { sst(k}.sym ~s sst(k+l).sym}
 
"report unordered sequence"
 

The above proced ure ill written solely for testing purposes. In this case the testing 

code is as complex as the update operation itself. For more sophisticated 
implementations the invariant check is generally (though not always) simpler a.nd 

shorter than an operation. If the invariant check on a data structure is very simple 
and efficient then it is a good idea to leave the check on the invariant in the code 
when it is put into operation in order to aid earlier detection of faults tha.t do occur in 

operational use. 

The strategy of checking the invaria.nt after every operation on the symbollable will 
catch a violation of the invariant immedia.tely after the operation which caueed it. To 

aid in debugging, diagnostic information such as the point at which the sequence is 

out of order a.nd the corresponding items, should be displayed if the invariant check 
fails. 



12 Module Testing 

It is possible tha.t the invariant check fails to detect an invalid state because there is 
an error in ~be invariant check that "cancels out" the error in the operation. hi the 

majority of cases, however, we hope that the extra redundancy of the invariant cbeck 
will not be of the canceliing out form. Perhaps using different people to code the 

testing a.nd the module may belp avoid this problem and make full use of the 

redundancy in detecting errors. 

If we now run a series of tests on the "ordered sequence" implementation we should 
discover that it is incorrect: if the same symbol is inserted into the table more than 

once then the ordered sequence implementation will leave the first pair in the 
sequence when the Becoed pair is inserted. This will cause our invariant check to fail 

because there will be two consecutive items with the same symbol whereas the 
invariant states that the sequence is in strictly ascending order (no duplicates). The 

invariant check will fail as soon as a symbol is inserted a second time. If we followed 

the advice given above and displayed the items which caused the invariant check to 

fail, it should be obvious that the problem is due to the duplicate entry. 

If we did not perform the invariant check while testing, the error in the ordered 
sequence implementation would not be discovered immediately after the second 

insertion of the same symbol. The problem would probably be detected when we 

perform an operation that looks up the value associated with the duplicated symbol. 

This could happen at a point in the program far removed from the cause of the 
problem, and may not occur until a considerable time after the duplicate entry bas 

been inserted; locating the cause of the problem could then be much more difficult. 

Checking the Pre-Condition 

The invariant check in the above example failed because tbe implementation was 

incorrect. In general, the invariant check can fail either because of an incorrect 
implementation or because the testing program incorrectly used the operations of the 

module. In the latter case, a failure can be caused if the pre-condition of an operation 
does Dot hold when the operation is invoked. In our example UpdateS has a 

pre-coDdition of true so the testing program can never use the operation incorrectly. 
At thia stage let us not try to correct the implementation of UpdateS but rather 

change the original specification to include the following pre-condition stating that the 



Module Testing 13

symbol to be updated is not already in the symbol table 

s? i dam( st o) 

Having now changed our specification (a tactic widely used in practice but not really 

recomI:lended as the most appropriate solution in general) it is the test program that 
is now incorrect if it calls UpdateS with a symbol tba~ is alrea.dy in He b.ble_ In 

order to distinguish between a failure of the implementation and a failure of the test 

program we can insist (at least for testing purposes) that lhe operations s~ould check 
that their pre-conditions hold and if not report an error. For our symbol table 
example, checkin g the pre-condition that the symbol to be inserted is 0.01 alrea.dy in 

the table can be achieved by adding the following code a~ the end of ~he current 
implementation 

{ rng(sst) = rng(sstol U {(s?,v?)} A 

1 ~ i ~ Isst I A 

ordered«l .. I-ll<;1sst) {\ ordered«i .. lsstl)<;1sst) ~ 

(i = 1 v sst(i-l).sym ~s sst(i).sym) } 
if i :> 1 cand sst(i-l).sym:: sst(i).sym then 

~report symbol already in table~ 

Note that the above check only disco....ers that the pre-condition does not held after it 

has modified the da.ta structure. This is reasonable if all we do On a pre·condition 
failure 13 to print a me:;sage and abort; we sbould not attempt to carry on testing any 

further. 

If the pre-condition checks aTe inexpensive then it hi prudent to lea....e them in the code 

permanently. If they are too expensive to lea.....e in then we should at least ha..... e the 

ability to re-introduce them during the testing of any program tha.t makes use of the 
module so that errors in its use of the module are detected as early as possible. A 
good rule is to design module interfaces in such a way that the pre-condition can 

always be checked efficiently. This is an essential requirement for public interface6 
such as operating system calls or widely used packages; it can help sort out debates 

about which component is at fault. 



14 Module Testing 

Checking the Input·Output Relation 

Checking invaria.nts and pre-conditions is not a thorough te5t of <:I.D implementa.tion; 
the implementation could be quite disastrously wrong and still maintain the invariant. 

To thoroughly check an algorithm we also need to check that it conforms to the 

input-output relation of the specification. 

To perform such checking by testing we need to compare the results of two 
implementations of the same high-level specification. To illustrate the technique on 

our symbol table example let us assume that we have available a (very high-level) 

programming language with mapS and operations on maps as primitives. (In practice, 
such programming languages are Dot generally available; when we consider the more 

involved eumple of testing balanced trees we will make use of <l. simpler 

implemenLatioD) namely the ordered list implementation described above, to provide a 
cross-check.) The operation to update a symbol table can be coded in our very 

high-level programmiDg language a.s 

Update(s? SYM, v? V~L): 

5t : = st l!I { 5? ~ v? } 

where ~he state for this implementation is identical to tha.t in the original specification. 

We now nave two implementations, Update and UpdateS, of the operation to update 
a symbol table. The states that the two implementations work on are quite different 

in one case a mapping and in the other an ordered sequence - so the two are not 

directly comparable. In order to perform a cross-check between the "mapping" 

implementation and the "ordered sequence" implementation we need to implement a 

retrieval function that extracts a mapping from an ordered sequence. We can then 
compa.re the extracted mapping with that from the "mapping" implementation both 

initially and alter every operation; each operation being performed on both 

implementations before the retrieval and comparison test. 



15 Module Testing 

The relation between the "mapping" and "ordered sequence" states is defined by the 

retrieval relation 5T _55T given previously. The following' code will retrieve the 
output mapping st' from the input sequence sst? 

5T_SST(sst? seq Item. st! ST) , 

I ; = 0; 
st' ,: {}, 

{ Inv~ st! = {it:rng«(l .. i)<]sst?) • iLsym ~ It.val } } 

~hi le i ~ Isst?1 do 
begin 

: = I + 1; 

st l := st! $ {sst?(i).sym ~ sst?(i).val} 

end 

{ st! = { it ; rng(sst?) • iLsym ~ iLval } } 

The retrieved mapping can then be compared directly with that used in the mapping 

implementation 

If st! ~ st then
 

"report \nput -output re 1a.t ion check fa 11 ed"
 

Any error detected by the comparison may indicate an error in either 

- the "ordered sequence" implementation, 

- the "mapping" implementation, 

- the ordered sequence to mapping retrieval function, or 

. the comparison itself. 

The last three should normally be less likely because they should be somewhat 

simpler. However. they cannot be ruled out as possible causes of errors and if an 
error is detected further investigation will be required in order to determine which of 

the above is the cause and to find the actual fault. In more complex cases the 

retrieval function may need to be refined by a series of steps and may il8elf need 
testing before it is put to use. 



16 Module Testing 

When we combine input-output rela.tion checks with invariant and pre-condition 

checks we get a thorough test mechanism for operations on the "ordered sequence" 
symbol table implementation. It is almost certain that the redundancy incorporated 

into the above cbecks is sufficient to catch any fault manifested during testing. 

Furthermore, the fault will have been isolated to a particular operation and if 
appropriate diagnostics have been added to the checking code the cause should be 

ea.sily found. However, we are only dealing with a. testing strategy and like all testing 

it does Dot exclude the possibility of latent errors: errors that did not occur on the test 
cases used but could occur on other cases. Such latent errors show the inherent 

weakness of program testing when compared with program verification. To reduce the 
possibility of latent errors left after testing we should use our knowledge of the 

implementation to ensure that it is thoroughly exercised; all parts of the code should 

be tested. The selection of test ca.ses is covered in other treatments of program testing 

[4\ and will Dot be pursued further here. 



17 Module Testing 

Heigh t Balanced Binary Trees 

In the "ordered sequence" implementation the procedures to test the invariant and 
retrieve the symbol table are both as complicated as the operation to update an item. 
We will now consider a more involved example in which the invariant testing and 
retrieval function are somewhat simpler than the operations. 

Height balanced binary trees were invented by Adel'son-Velskii and Landis [21 to 
provide a binary search tree with worst case insert and delete times of O(log N} where 
N is the number of nodes in the tree. A binary tree is height balanced if ~t every node 
in the tree the heightsl of its left and right subtrees differ by at most one. The beauty 
of a height balanced tree is that its worst case height is at most 45% grealer that that 
of an equiva.lent perfectlr balanced tree, and insertion a.nd deletion of nodes can be 
performed by examining a path from the root to a node unlike perfectly balanced 
trees. Search, insert and delete operations can all be performed in O(log N} time in 
the worst case which should be compared with a worst case time of O(N) for these 
operations on an ordinary (unbalanced) tree. 

The major disadvantage of balanced trees3 is that the a.lgorithms to manipulate them 
are considerably more complicated than those for an unbalanced tree. Fortunately, 
for the purposes of this paper we do not need to delve into the details of these 
operations in order to illustrate the approach to testing them. The interested reader is 
referred to one of the many books on algorithms that discuss operations OIl balanced 
trees in detail. One such book is Wirth's'"Algorithms + Data structures =Programs" 
[7]. To give a crude idea of the complexity of the operations on balanced trees, the 
Pascal versions given by Wirth consist of 63 lines for insertion (p220-1) and 92 lines 
for deletion (p223-S). These figures should be compared with those for unbalanced 
trees: 19 lines for insertion (p205) and 18 lines for deletion (p211). Not ollly are the 
balanced tree operations considerably longer than their unbalanced tree counterparts, 
they are, in the opinion of the author, a good deal more subtle and more liable to 
erroneous implementation. 

1	 the height of a binary tree is the maximum number of nodes on a path starting 
at its root and descending down the tree. 

2	 a perfectly balanced tree is a binary tree in which at every node the number of 
nodes in its left and right subtrees differ by at most one. 

3 for the remainder of this paper we will abbreviate "'height ba.lanced binary 
tree" to "bal anced tree". 



IB Module Testing 

As promised ea.rlier we do not Deed to look in deta.il at the implemectation of the 

operatiollS on balanced trees. What we do Deed to look at closely, however, is the 
state invariant for a balanced tree. A tree is given by 

Tree ~ Node I nil 

That is, a. Tree is eitber a Node or it is the special value nil, where 

Node' _ 

,~m SYM 
,,1 VAL 
b.l -1. . I 
left. 
right : Tree 

IV 5 , syms(left) 5 <s sym) i\ 

(W 5 : syms(right) sym <s 5) i\ 

bel = helght(left) - height(right) 

where 

syms Tree -+ P SYH 

such that for n : Node 

,~ms(n;]) = {} 

syms(n) = syms(n. left) U { n.sym} U syms(n.right) 

and 

he i ght Tree -+ N 

such that {or n Node 

height(n!j) = a 

he i ght (n) == max{height(n.left), height(n.rlght)) ... 1 



The trees are both ordered a.nd balanced. A tree is ordered if at each node in the tree 

all the symbols in its left subtree are less than the symbol at the node which is less 
than all the symbols in its right subtree. A tree is balanced if at every node the 

difference in heights between the left and right subtrees is equal to the be 1 field of 
the node (which can only take on values in the range -1 .. 1). 

The relation between a balanced tree and the high level specification of a symbol 

table is given by 

ST~T I 

ST 
BT 

5' { node nodes (t) • node. sym t--+ node. va 1 } 

where 

nodes Tree -+ IP Node 

such that for n Node 

nodes(n 11 ) {) 

nodes(n) nodes{n. left) U { n } U nodes(n.right) 



20 Module Testing 

Checking the Invariant 

As before we can wri:e a procedure to check the state invariant: the tree is both 

balanced and ordered. A procedure to cbeck that do tree is balanced follows. It 

performs a post order traversal of a tree checking that each subtree is balanced and 

returning the height of the tree 50 that the higher level checking that the tree is 
balanced can take place. 

Ba 1anced ( t? Tree. h! integer) : 

i f t? = n, 1 then 

h! : = 0 
else 

begin 

'w'8i h 1, hr : i nl eger ; 

Balanced(t?left. hI); 

Balanced( t? right. hi); 

{ hi = he;ght(t? left) A hr = he;ght(t?r;ghtl } 
if hi - hi ~ t?ba1 then 

"report unba 1anced tree" 
h! := max(hl, hr) + 1 

end 

We have assumed here that the implementation of our programming language will 

trap any assignment of a value outside the range -1 .. 1 to the ba 1 field of a node; if 
this were not the case then a check that the be 1 field of each node is in this range 

should be added to the above procedure. The procedure to check that a tree is 
ordered is straightforward and is omitted here. 

For balanced trees the invariant checking is far less complicated than the operations; 

it is more akin to the complexity of the operations on the simpler unbalanced trees, 
requiring only straightforward tree traversal algorithms. The great value of the 

invariant check is that if an operation otherwise works correctly but manages to 

corrupt the data type invariant the fault will be detected immediately after the 
operation rather than at some indeterminate time in the future when an operation 

tries to access the corrupted part of the data structure. Not only is the detection in 
this lal~r case well after the fault it may be on an operation other than the one that 

caused the corruption; other than detecting that there is an error one has been given 
little help in diagnosing the fault. 



21 Module Testing 

Given this invariant check procedure our testing can now check thai the invariant 
holds initially and thee. after each operation during testing. The invariant checking 
above requires O(N) time versus the O(log N) time for the operations themselves. 
Hence it is not sensible to leave the invariant check in the program after testing. 
After all, the point of using balanced trees was to take advantage of their worst case 
O(log N) performance; if we were to leave the invariant check in the code the 
performance would always be O(N) and hence worse than the unbalanced tree which, 
while being OeN) worst case, is only O(log N) average case. 

The invariant check given above is a far more stringent test that the state of a module 
is consistent than any that cae. be carried out purely from knowledge of the high· level 
specification even jf one is givee. a retrieval function to extract the abstra.ct state. It is 
possible that the implementation could be incorrect in a. way that does not affect the 
high-level correctness. For example, the implementation may correctly maintain an 
ordered tree but it may be incorrectly balanced. In this case the operations would 
appear to work correctly but in some cases would not be as efficient. Such a fault 
could only be detected externally by timing operations and would require the testing 
to generate a badly balanced tree. With knowledge of the internal operation of the 
algorithm in the invariant check it is far less likely that an incorrect implementation 
would go undetected. 

Checking the Pre.-Condition 

As with the "ordered sequence" implementation a pre-condition check can be 
incorporated into the implemee.tation using balanced tree~. This will detect any 
incorrect use of the operatioe.8 by the testing program. For balanced trees a simple 
constant-time check (which should be left in the code permanently) can be 
incorporated into the update operation. As this is quite simple to do, but to explain 
requires deta.iled knowledge of the update operation on balanced trees, we will not 
elaborate the pre-condition check for balanced trees here. 



22 Module Testing 

Checking the Input·Ouput Relation 

As with the "'ordered sequence" implementa.tion we Deed to cbeck that the 

input-output relation is sa.tisfied. For this eX<i.mple we will nol ;).5sume tha.t we ha.ve 

available a very higb-Ievel programming langua.ge with mappings 35 primitives. In 

order to cross-check the input-output relation we Deed a second (simpler) 

implementation of a symbol table. Fortuna.tely we have just tha.t in our "ordered 

sequence" implementation. To perform the cross-check we need a. retrieval function 

that extra.cts an ordered sequence from a ba.lanced (ordered) tree. The rela.tion 

between ordered sequences a.nd balanced trees is given by 

SST_BT I 

SST 

BT 

node 
{ it 

nodes{t) 

rng(sst) 

node.sym 
It.sym 

1---+ 

~ 

node. va 1 } 

I t. va 1 } 

Extracting an ordered sequence from an ordered tree can be a.chieved by the 
following tree traversal algorithm 

TreetoSequence( t? Tree, sst! seq[ Item]): 

if t = f),J then
 
sst I ,= [I
 

else { t ~ f) I 1 }
 

begin 
var 13st. rsst : seq [Item] ; 
TreetoSequence(t? left, lsst); 

TreetoSequence(t?rlght, rsst); 

sst! := lsst-[(t?5~m, t?val))~rsst 

end 

The sequence retrieved by TreetoSequence is compared with the sequence 

maintained by the "ordered sequence" implementation after each operation is 

performed (on both implementations). The code for the comparison is straightforward 
and has been omitted here. 



23 Module Testing 

For the height balanced binary tree example the procedures required to use the 
testing techniques outlined in this paper require only a fraction of the time necessary 
for a programmer to develop the somewhat more sophisticated balanced tree 

operations. The extra time is well spent in terms of increa.sing ODe's confidence in the 
correct opera.tion of the algorithms, but furthermore the techniques are likely to 

actually save time: if there are errors in the operations the testing will isolate the 
errors quickly and provide useful diagnostics to aid in debugging. 

Dillicuilsion 

When implementing abstract data types in a programming language with facilities to 
support them (for example, Modula modules, Ada packages, or Clu dU5ters) the 

invariant check and retrieval procedures will both have to be part of the module as 
they need access to the internal data structure which should not be accessible 

externally. This will probably imply that the person responsible for the module 
should write these when writing the module (although as mentioned earlier there are 

good reasons for having a separate person write them). In practice this probably 

represents a reasonable line of demarcation between the module writer and tester as 

these functions provide everything that the tester needs from the module internals to 

apply the testing techniques. 

The author has used the techniques described above to test an implementation of 

B-trees [31: balanced multi-way trees suitable for secondary storage data bases. 
B-trees are more complicated data structures than height balanced treell and the 

algorithms to manipulate them have a number of special cases that can easily lead to 
errors in implementation. In the testing of the B-tree implementation the techniques 

described above were able to isolate two errors (one omission and the other a swap of 
variable names) and give good hints as to the nature of the fault; in this respect th.e 

invariant check, which for the B-tree is involved but not difficult to impleDlen~, was 

particularly useful in detecting faults a.a soon as possible after their prime c.:Luse. The 

use of these techniques certainly increased the author's confidence in the correctness 
of the final implementation - especially that the algorithms actually implemented 

B-trees rather then some other (strange) variety of multi-way trees. 



24 Module Testing 

Another technique that ca.n be used in testing programs is to check assertions such a3 

loop invariaIlts, at execution time. This could be useful if a fault is detected in an 

opera.tion of an abstra.ct da.ta type but the cause is not obvlous. Unfortunately 
expa.nding such assertions is non-trivial; in some cases the code to check a loop 

inva.ria.nt can be more complicated than the originatlonp. The tactic of testing at the 
abstract da.ta type level seems to provide the most benefits for the amount of effort 

involved; codiIlg up assertions can be left to a.id in debugging when a. non-obvious 

error is detected, although it is probably better to go back to the original reasoning 

about the program and find the fa.ult there. 

The testing procedures should not be discarded once a module has been tested; they 
will be uaeful to anyone responsible for making changes to the module (where 

introduction of errors is more likely due to lack of understanding). The invariant 

check procedure is of more general use if data is kept on pennanent storage devices. 
It can be used to check the consistency of the data after a hardware or software 
failure has occured. It cannot guarantee the correctness of the data but it can fie.d 
inconsistencies which imply the data is incorrect and it cae. ensure that the data is in a 

state suitable for running the system. 



25 Module Testing 

References 

1.	 Abrial, J .• R. The specification language Z: Basic library. Oxford University 
Programming Research Group internal report, 198Q. 

2.	 Adel'son-Velskii, G. M., a.nd Landis, Y. M. An algorithm for the organization of 
informa.tion. English translation in Soviet Math. Dokl. 3, (1962), 1259-1262. 

3.	 Bayer, R., a.nd McCreight, E. M. Organization and ma.intenance of la.rge ordered 
indices. Acta Informatica 1,3 (1972), 173-189. 

4. Beiser, B. Software Testing Techniques. Van Nostrand Reinhold, 1983. 

5. Jones, C. B. Software Development: A Rigorous Approacb. Prentice-HaU, 

1980. 

6. Morgan, C.	 C., and Sufrin, B. A. Specification of the UNIX file system. IEEE 
Transactions on Software Engineering 10,2 (March 1984), 128ol4Z. 

7. Wirth, N. Algoritbms + Data Structures = Programs. Prentice·Hall, 1976. 



27 Module Testing 

Appendix: Notation 

1. Definitions and declarations. 

Let x. xk be identifiers and T. T~ sets. 

LHS 0 RHS Definition of LHS as syntactically equivalent to RHS. 
)( : T Dedaratioc. of idec.tifier X of type T. 

xl: TI; T2; ,.. ; x : Tnx 2 n
 
List of decla.rations.
 
X : TXl' xl' n 

~ xl: T; X2 : T; ... ; Xn T. 

2. Logit:a.l ayzn.bols. 

Let p. Q be predicates ac.d D declarations. 

- p Negation: "not P". 
p v Q Oisjuc.ctioc.: "P or Q", 

P , Q Coc.jundioc.: "P and 0". 
Implication: "P implies Q" or "if P then QIt,P - Q
 

3 x T· P Existentia.l quaD.tification: "there exists an)( of type T such. that P".
 
V x T· P Universal quantification: "for all x of type T, P holds"'.
 

3 xl: TI; )0;2 T2 ; ... ; )(t1 : Tn • P
 

"There exist x: of type T1 J )(2 of type T2" . and Xn of type Tt11t 

such that P holds.1t 

V x, TI; x2 : Tz; ... : xn : Tt1 • P 
"For a.ll Xl of type Tl' x2 of type Tz, ... , and Xn of type Tn' P 
holds." 



28 Module Testing 

3. Sets.
 

Let 5 and T be subsets of X; t, t k terms; P a predicate and D declarat.ions.
 

t E 5 Set membership: "t is an element of 5"'. 
t • 5 

SoT 

5 c T 

• -(t E 5). 

Set inclusion: 

Strict set inclusion: 

SoT 

5 c T 
•
• 

('9 x S-xET) . 

S\;T~S'l-T. 

{} The empty set. 
{ t ,_ t,. ... . t, } 

The set containing t 1• 1. 2, ... and tn' 
{ x , T P }Tbe set containing exactly those x of type T for which P holds. 

( t ,_ t" • t,) 
Ordered n·tuple of 1. 1, t 2•... and tn' 

T1xTZx .•. xTn 
Cartesian product: the set of all n-tuples such that the kth 

component is of type Tk' 

{ xl T1; )(2 : Tz; ... ; x n ; Tn I P } 
The set of n-tuples (Xi' )(2' xn) with each xk of type TK 

such that P bolds. 
{xl T1 i Xz : T2 ; ... ; Xn : Tn J p • t } 

The set of t IS such tha.t given a.ll the)(~ of type Tk' P holds. 
{ D • t } • {D I true • t } 

P 5 Powerset: PSis the set of a.ll subsets of S. 
F 5 Finite subsets of S. 
5 u T Set union: given S, T : P X, 

~ {x: X I xeS Y x E T }. 

5 n T Set intersection: given S, T : f X, 
~ { x : X I xeS ~ x e T }. 

5 - T Set difference: given 5, T : P X, 
Q { x : X I xeS ~ x f T }. 

151 Size (number of elements) of a finite set. 



29 Module Testing 

4. Relations and functions. 

A relation is modelled by a set of ordered pairs hence operators defined for sets can 

be used on relations. A function is a relation with the property that for each element 

in its domain there is a unique element in its range related to it. As functions are 

relations, operators defined for relations also apply to functions. 

Let R be a relation; f be a. function; A, Band S be setsj a.nd x. xk' y, !:lk be terms. 

A .... B The set of reLations from A to B: A +-+ B • P (A , B). 

x R y x is related by R to y: x R Y ~ (x. y) E R. 
The set of partial functions from A to B:A - B 
.{f'A .... BI 

(Va: A; b. b': B a f b 1\ a f b' ~ b .:; b') }.& 

x ...... y • y)(x. 
{ )(1 ......... Yl' Xz 1-+ Yz' ... , xl'I 1-+ Yn } 

The reLation { (xl' Yl), (xZ' yz)' • .. • (x rv Yo) } 

relating xl a.nd Yl' x z a.nd Yz . xn and Yn. 
f x The function f applied to x. 

dom R The doma.in of a relation or function: for R: A +-+ B, 

dam R • (., A I (3 b, B • • R b) }. 

rng R The range of a relation or function: for R: A +-+ B, 

rng R • {b' B I (3 .' A •• R b) }. 

s ~ R Domain restriction: 

• (x, X, y , y x R Y A XES }. 

s ~ R Domain subtraction: 

• (x, X, y , Y I x R y , x • S}. 
R1 19 RZ Relational or functional overriding: for R1• RZ A +-+ B, 

• (dam R, ~ R, ) u R,. 

S. Numbe:rs. 

~ The set of natural numbers (non.negative integers).
 
~.
 The set of strictly positive na.tural numbers. 

z The set of integers (positive, zero and negative). 

m.. n The set of integers between m a.nd n inclusive: 

m.. n ~ {k: Z 1m, k k ~ n }. 1\ 



30 Module Te5ting 

6. Sequeneet. 

Let X be a. set; S be a sequence; a.nd lower case variables be terms. 

seq X	 The set of sequences whose elements a.re drawn from X: 

" {5 , N> ~ X I dom 5 = 1.. 151 }. 

15\ The length of sequence S. 

[ J The empty sequence {}. 
5(;) The I th element in the sequence S. 

[)( 1- )(2' , xnl The sequence { 1 ........ Xl' 2 ...... )(2_ ...• n 1-+ xn }. 

(51' 52_ , snl ~ Itt. t z•. , .• till] Concatenation: 

Q [51' 52' ...• sn' t 1• t z•...• t.,J 
rng([St. SZ'	 ...• sn]) Range of a sequence: the set of items in the sequence: 

~ {s1' 52_ '" • Sn }, 
rng([]) = {}. 

7. Schema notation. 

Schema. definition: 

5CH 
13: A 

b' B 

pre 

A schema groups together some declarations of variables and a predica.te relating 

these varia.bles. The following conventions a.re used for varia.ble Dames in those 

schemas which represent operations: 

subscripl "0" state before the operation, 
undecora.ted state after the operation, 
ending in "?" inputs to the operation, and 
ending in "1" outputs from the operation. 

A schema 5 may be included within a schema T, in wh.ich case the declarations of T 

are merged with the other declarations of 5 (va.riables declared in both 5 and T must 
be the same type) a.nd the predicates of 5 a.nd T are conjoined. 




