SPECIFICATICN DIRECTED MODULE TESTING

by

lan Hayes

Technical Monograph PRG-49
July 1985

Oxford University Computing Laboratory
Programming Research Group

8-11 Keble Road

Oxford OX13QD

England

Copyright (© 1985 Ian Hayes

Oxiord Unbhersity Computing Laboratory
Programming Research Group

8-11 Keble Road

Oxford OX13QD

England

Author’s address from September 1985:
Departmerl of Computing Science
Queensland University

St. Lucia

Queensland 4067

Australia

SPECIFICATION DIRECTED MODULE TESTING

Abetract

If a program is developed from a specification in a mathematically rigorous manner,
wark done in the development can also be utilized in the testing of the program. We
can apply the befter understanding afforded by these methods to provide a more
thorough check on the correct operation of the program under test, This should lead
to earlier detection of faults (making it easier to determine their causes), more useful
debugging information, and a greater confidence in the correctness of the final
product. Overall, a more systematic approach should expedite the task of the
program tester, and improve software reliability.

The testing techniques described in this paper apply o the testing of abstract data
types (modules, packages). The techniques ulilize information generaled during
refinement of a data type, such as the data type invariant and the relationship
between the specification and implemeatation states. The techniques are illustrated
by application to the implementation of a symbol tahle as an ordered list and as a
height balanced tree.

Index Terms

Module testing; software reliability; specification language - Z; abstract data types,
modules, packages; data type invariant, retrieval function, pre- and post-conditions.

Copyright © 1. J. Hayes 11 Jul 8§ 1

Module Testing 3

Introduction

Rigorous program development, such as that advecated in Jones’ excelleat book [5],
can do much to increase our confidence in software we produce. The development of
a program starts from a high-level specification, which is then refined through one or
more stages to produce the final program. Rigorous methods rely beavily on
mathematics to specify the software to be developed, and to formalise the relationship
betweer the specification and an implemertation. The work done in formalising these
relationships can be of great benefit to program testers in developing a thorough
testing strategy that will trap errors as early as possible and thus be a aid to
debugging.

Givea a rigorously developed program it is possible fo prove that it meets its
specification. If such a proof is performed mecharically (and we trust the verifier)
then testing should not be required; given the current state of the art, however,
complete mechanical verification is a rarity and is expensive in resources. If the proof
is done by hand then there is still room for error and hence room for testing.
Rigorous methods c¢an help greatly to increase our understanding of the program that
we are developing and hence reduce the number of errors in the initial version of the
program. However, we are still prone to make wmistakes through oversights and
typographical errors and without mechanical verification we will 3til! require testing,
especially on larger, more complex programs where errors could more easily slip in
unnoticed. By making use of rigorous methods in testing we can increase our
confidence in the correctpess of the final product in a relatively straightforward
manner that requires more moderate resources than complete mechanical verification.

The testing techmiques described in this paper apply to the testing of abstract data
types (modules, classes, packages, clusters). An abstract data type consists of some
data, which we will refer to as its state, and a set of operations on that state. It iz a
good unit for testing purposes because it represents a coherent whole and, because the
operations are al]l working on the same state, parts of the testing code are common to
all the operations; in many cases it would be difficult to test an operation without
having the other operations on the data type available. Testiag of abstract data types
can make use of the data type invariant for checking the consistency of the state
between operations, the pre-condition for distinguishing errors in the module under
test from those in the test program, and the relation between the specification and
implementation states along with the individual operation input-cutput relations for
testing the correctneas of the operations.

4 Module Testing
We will illustrate the testing technique by following through the development and

testing of a symbol table module. The notation used in this paper will be based on
the specification language Z [1, 6|; programs will be given in a Pascal-like notation.

Symbol Table Specification

This example specifies a symbol table with an operation to update an entry. We will
describe the table by a partial functicn from symbols (5Y) to values {VAL).

st

st SYR - YAL

The arrow indicates a function from 5YM to YAL that is not necessarily defined
for all elements of SYM {kence “partial”). The subset of SYM for which it is defined is
its domain of definition

dom({st)
If a gymbol s is in the domain of definition of st (s € dom(st}) then st(s) is the
unique value associated with s (st (s) € YAL). The notation { s + v } describes
a function which is only defined for that particular s:

dom{({ s = v }) ={s}
and maps that s conto v:

{5 v Hs) = v
More generally we can use the notation

{KIHQI, Xz P Yo, ..., angn}

where all the x, 's are distinct to define a function whose domair is

{xp %20 ooy % }

Module Testing [

and whose value for each x|, is the corresponding y,. For example, if we have the
following mapping

st = { “John" = v, “Nary” — v; }
which maps “John” onto v; and “Mary” onto v,, then the domain of st isthe set

dom{st) = { “John”, *Mary” }
and

st{"John™)
st(“Pary”™)

At

vz
The notaticn

{+
is used to denote the empty function whose domain of definition is the empty set.

We are describing a symbol table by modelling it as a partial {function. This use of a
function is quite different to the normal use of functions in computing where an
algorithm is given to compute the value of the function for a given argument. Here we
use it to describe a data structure. Thers may be many possible models that we can
use to describe the same object. Other models of a symbol table could be a list of
pairs of symbol and value, or a binary tree containing a symbol and value in each
node. These other models are not as abstract because many different lists (or trees)
¢an represent the same function. The list and tree models of a symbol table tend to
blas an implementor working from the specification towards a particular
implementation. In fact, both lists and trees could be used to implement such a
symbol table. However, any reasoning we wish to perform involving symbol tables ia
far easier ysizg the partial function wodel than either the list or tree model.

Initially the symbol table is empty

st = {}

6 Module Testing
The update operation can change the symbol table. We represent the effect of such
an operation by the relationship between the symbol table before the operation and

the symbol table after the operation. We use

AST

5Ty
ST

to represent the state before (5Tj) and the state after (ST). The abave defintition of
AST is equivalent to the following one in which ST, and ST have been expanded

AST

sty * SYM - VAL
st : SYM -2 VAL

We use the convention that zero subscripted symbol table {(st,) represents the state
before an operation and the undecorated (st) the state after. (This convention is
slightly different to the convention used in the references (5, 6] both of which use
undecorated variables for the state before (st) and primed variables for the state
after (st’); the convention used in this paper allows some simplification of the
agsertions used in programs.)

The operation to update an entry ia the table is described by the following schema

Update !
AST
s? : SYM
v? : VAL

st = sty & { s7 > v? }

A schema coopsists of two parts: the declarations (above the centre line) in which
variables to be used in the schema are declared, and a predicate {below the centre
line) containing predicates giving properties of and relating those variables. In the
schema Updetae the second line declares a variable with name “s?” which is the
symbel to be updated. The third line declares a variable with name “v?" to be the
value to be associated with s? in the symbol table. By convention names in the

declarations ending in “7?" are inputs and names ending in “!” will be cutputs; the
“?" and “'” are otherwise just part of the name.

The predicate part of the schema states that it updates the symbol table (stj) to give
a new syinbol table {st)in which the symbol s? is associated with the value v?. Any
previous value associated with s? (if there was one) is lost.

The operator @ (function overriding) combines two {unctions of the same type to give
a new function. The new function f & g is defined at x if either f or g are defined,
and will have value g(x) if g is defined at x, otherwise it will have value f{x)

dom{f @ g) = dOm(F) g dgm(g)

x € dam(g) = {f & g){x)

]
(o]
ES

x € dom{g) A x € dom{f) = (f @ g){x) = f(x)
For example

{ "Mary™—v,, “John"—v, } @ { “John™—v;, “Ceorge”—v, }
= { “"Mary™—v,, “John"rv,;, “George™v, }

For the operatiocn Update above the value of st{x) is v? il x = s7?, otherwise it is
stglx) provided x is in the domain of sty In Update we are only usng @ to
override one value io cur symbol table function, however, the operator & isa more
general: its arguments may both be any functions of the same type.

For a symbol table module we would normally define further operations to lookup
and delete entries in the table. For the purposes of illustrating testing, however, we
will only consider the Update operation.

If we were not allowed to know the internal structure of the implementation of the
symbol table, this specification would give us all the information we needed to test
that implementation. At one level this provides a reasonable testing strategy hut, as
will be demonstrated, il we are allowed knowledge of the implementation we can
construct a more rigorous test of that implementation.

B Module Testing

Implernentation as an Ordered Sequence
We will {irst consider implementing a symbol table as an ordered sequence and later
as a height balanced binary tree. The testing techniques do not have as much to offer
for the simpler ordered sequence implementation, but it will serve to illustrate the
ideas involved before moving on to the more complicated balanced tree

implementation.

Each item ip the ordered sequence will consist of a pair of symbol and corresponding
value,

Item 2 SYM x VAL

We also define selector functions sym and val to select the symbo!l and value,
respectively, from an item.

sym : Ttem — SYN
val : Item — VAL

such thatfor it : [tem we have
it = {it.sym, it.val)
The state is given by

55T

sst 1 seq [tem

ordered{sst)

where ordered(s : N + Item} £
(¥i,j : dom{s) + & < j = s{i).sym <g s(j).sym)

where we are assuming there is some total order [<g) omw syrmubols. The state is
medelled by a sequence of items, sst. The domain of the sequence, dom{sst}, is the
set of integers thai are valid indexes into the sequence. The invariant states that sst
is in strictly ascending order on symbols. Initially the sequence would be empty.

aat = [}

Module Testing 9

Before describing the Update operation on this state let us look at the relation
between the ordered sequence model and the partial function model.

ST_S55T
ST
SST

st = { 1t : rng(sst) « yt.sym — 1t.val }

where the range of the sequence, rng{sst}, is the set containing ali the items in the
sequence.

ST _SST shows how, given a sequence representation, we can retrieve the partial
function model of a symbol table by, for each item ip the sequence, mapping its
symbol to its value.

The update operation on the sequence model is given by
Update$

1 ASST
‘ s? : SYH

v? ¢ VAL

L rng(sst) = rng{sst,) U { {s?,v?) }

where

ASST
SST,
5T
1

The invariant on the states ensures that the final state sst is ordered; the predicate
part of UpdateS ensures that the final sequence contains the correct values.

10 Module Testing

The followicg is a possible implementation written in a Pascal-like notation. It uses
the simple scheme of appending the new pair to the sequence and then rippling it
down the sequence into the correct place to maintain the ordering.

Update5{s? : SYM, v? : VAL):
{ sst = ssty A ordered(ssty) }

gst = sStA{ (5?,‘4'?)]3
i == |55t‘5
{ Inv: rng(sst) = rng(ssty) ¥ {(s?,v?)} A
1giglsst] A
ordered{(l..i-1)dsst) A ordered({i..!sst]|}dsst) }

while i # 1 cand sst{i-1).sym >g sst{i}).sym do

begin
smap{sst{i=1}, sst{i));
o= o= 1
end
{ Inv A (i =1 v sst{i-1).sym <5 sst{i)}.sym) }

where
is concatenation of sequences,

[{(s7,v?)] I8 a sequence containing a single item: that with symbol s? and

value v7,
|s| gives the length of a sequence s,

(i..j) 4 sst is the sequence sst with its domain restricted (4) to values in
the subrange i to j inclusive, and

cand is the conditional and operator: it only evaluates its second argument if

its first argument is true.

Module Testing 11

Checking the Invariant

To test this implementation we will first write a procedure to check if the invariant
kolds. This will be used to check the invariant initially and then after every operation
performed on the symbol table during testing, The invariant on the ordered sequence
i8

(vi,) : dom{sst) = 1 < j = sst{1).sym < sst(j).sym)

The following code should suffice to check this holds
k := 1;
{ Iav: ordered({l..k)qsst) }

mhile k < |sst| cand sst{k).sym <g sst{k+l).sym do
k :=k + 1;

{ Inv o (k > |sst] v sst(k).sym 25 sst(k+tl}.sum) }

if k< |sst] then { sst(kj.sym 25 sst(k+l).sym }
“report unordered sequence”

The above procedure is writtea solely for testing purposes. In this case the testing
code is as complex as the update operatica itself, For more sophisticated
implementations the invariant check is generajly (though not always) simpler and
shorter than an operation. If the invariant check on a data structure is very simple
and efficient then it is a good idea to leave the check on the invariant in the code
when it is put into operation in order to aid earlier detection of faults that do occur in
operational use,

The strategy of checking the invariant after every operation on the symbol lable will
catch a violation of the invariant immediately after the operation which cansed it. To
aid in debugging, diagnostic information such as the point at which the sequence is
out of order and the corresponding items, should be displayed if the invariant check
falils.

12 Module Testing

It is possible that the invariant check fails to detect an invalid state because there is
an error in the invariant check that “cancels out” the error in the operation. Ia the
majority of cases, however, we hope that the extra redundancy of the invariant check
will not be of the canceliing out form. Perhaps using different people to code the
testing and the module may help avoid this problem and make full use of the
redundancy in detecting errors.

If we now run a series of tests on the “crdered sequence” implementation we should
discover that it is incorrect: if the same symbol is inserted intc the table more than
once then the ordered sequence implementation will leave the first pair in the
sequence when the second pair is inserted. This will cause our invariant check to fail
because there will be two consecutive items with the same symbol whereas the
invariant states that the sequence is in strictly ascending order {no duplicates). The
invariant check will {ail as soon as a symbol is inserted a second time. If we followed
the advice given above and displayed the items which caused the invariant check to
fail, it should be obvious that the problem is due o the duplicate entry.

If we did not perform the invariant check while testing, the error in the ordered
sequence implementation would not be discovered immediately after the second
insertion of the same symbol. The preblem would probably be detected when we
perform an operation that locks up the value associated with the duplicated symbol.
This could happen at a point in the program far removed from the cause of the
problem, and may not occur until a considerable time after the duplicate entry has
been inserted; locating the cause of the problem could then be much more difficult.

Checking the Pre-Condition

The invariant check in the above example falled because tbe implementation was
incorrect. In general, the invariant check can fail either because of an incorrect
implementation or because the testing program incorreciiy used the operations of the
module. [n the latter case, a failure can be caused if the pre-condition of an operation
does pot hold when the operation is invoked. In our example Update$S has a
pre-cendition of true so the testing program can never use the operation incorrectly.
At this stage let us not try to correct the implementation of UpdateS but rather
change the original specification to include the following pre-condition stating that the

Module Testing 13
symbeol to be updated is not already in the symbol table
s? € dom(st,)

Having now changed our specification (a tactic widely used in practice but not really
recommended as the most appropriate solution in general) it is the test program that
is now incorrect if it calls Update3 with a symbol that i3 already iz the table. In
order to distinguish between a failure of the implementation and a failurs of the test
program we can insist (at least for testing purposes} that the operations should check
that their pre-conditions hoid and if not report an error. For ocur symbol table
example, checking the pre-condition that the symbol to be inserted is no: already in
the table can be achieved by adding the following code at the end of the current
implementation

{ rng{sst} = rng{ssty) U {(s?,v?)} A

1€ i € |sst! A
ordered{(1..1-1)q4sst} A ordered{{i..|sst|}dsst) »
{i =1 vsst(i-l).sym < sst{i).sym) }

if i »1 cand ast(i-l).sym = sst{i).sym then
“report symbol already in tabie”

Note that the above check anly discovers that the pre-condition does not held after it
has modified the data structure. This is reasonable if all we do on a precondition
failure u to print a message and abort; we should not attempt to carry on testing any
further,

If the pre-condition checks are inexpensive then i is prudent to leave them in the code
permanently. If they are too expensive to leave in then we should at least have the
ability to re-introduce them during the testing of any program that makes use of the
module so that errors in its use of the module are detected as early as pussible. A
good rule s to design module interfaces in such a way that the pre-condition can
always be checked efficiently. This i an essential requirement for public ipterfaces
such ag operating system calls or widely used packages; it can help sort out debates
about which component is at fault.

14 Module Testing

Checking the Input-Output Relation

Checking invariants and pre-conditions is not a thorough test of an implementation;
the implementation could be quite disastrously wrong and still maintain the invariant.
To thoroughly check an algorithm we also need to check that it conforms to the
input-output relation of the specification.

To perform such checking by testing we need to compare the results of two
implementations of the same high-level specification. To illustrate the technigue on
our symbol table example let us assume that we have available a (very high-level)
programming language with maps and operations on 1naps as primitives. (In practice,
such programuming languages are not generally available; when we consider the more
involved example of testing balanced trees we will make use of a simpler
implemenlation, namely the ordered list implementation described above, to provide a
cross-check.) The operation to update a symbol table can be coded in our very
high-level programming language as

Update{s? : SYM. v? : VAL):
st := st @ { s? — v? }
where the state for this implementation is identical to that in the original specification.

We pow have two implementations, Update and UpdateS, of the operation to update
a symbol table, The states that the two implementations work on are quite different -
in one case a mapping and io the other an ordered sequence - so the two are not
directly comparable. In order to perform a cross-check between the “mapping”
implementation and the “ordered sequence” implementation we need to implement a
retrieval function that extracts a rmapping {rom an ordered sequence. We can then
compare the extracted mapping with that from the “mapping” implementation both
initially and after every operation; each operation being performed on both
impiementations before the retrieval and comparison test.

Module Testing 15
The relation between the “mapping” and “ordered sequence® states is defined by the
retrieval relation 5T7_S5T given previously. The following code will retrieve the

output mapping st' from the input sequence sst?

ST_S557(sst7? : seg [tem, st! : ST):

{ Inv: st! = {it:rng({l..i)dsst?) « it.sym — 1t.val } }
while i # [s5t?| do

begin

(I S

st! := st! & { sst?(i).sym — sst?{i}.val }
end

{ st! = { it : rng{sst?) + it.sym — it.val } }

The rettieved mapping can then be compared directly with that used in the mapping

implementation

(f st! # st then
“report input-output relation check failed”

Any error detected by the comparison may indicate an error in either

- the “ordered sequence” implementation,

- the “mapping” implementation,

- the ordered sequence to mapping retrieval function, or

- the comparison itself,
The last three should normally be less likely because they should be somewhat
simpler. However, they cannot be ruled out as possible causes of errors apd if an
error is detected further investigation will be required in order to determine which of
the above is the cause and to find the actual fault. In more complex cases the

retrieval function may need to be refined by a series of steps and may itself need
testing before it is put to use.

16 Module Testing

When we combine input-output relation checks with invariant and pre-condition
checks we geta thorough test mechanism for operations on the “ordered sequencze”
symbol table mplementation. It is almost certain that the redundancy incorporated
into the above checks is sufficient to catch any fault manifested during testing.
Furthermore, the fault will have been isolated to a particular operation and if
appropriate diagnostics have been added to the checking code the cause should be
easily found. However, we are only dealing with a testing strategy and like ail testing
it does not exclude the possibility of latent errors: errors that did not occur on the test
cagses used but could occur on other cases. Such latent errors show the inherent
wealkness of program testing when compared with pregram verification. To reduce the
possibility of latent errors left after testing we should use our knowledge of the
implementation to ensure that it is thoroughly exercised; all parts of the code should
be tested. The selection of test cases is covered in other treatments of program testing
[4] and will oot be pursued further here.

Module Testing 17
Height Balanced Binary Trees

In the “ordered sequence” implementation the procedures to test the invariant and
retrieve the symbol table are both as complicated as the operation to update an item.
We will now consider a more involved example in which the invariant testing and
retrieval function are somewhat simpler than the operations.

Height balanced binary trees were invented by Adel’son-Velskii and Landis (2] to
provide a binary search tree with worst case insert and delete times of O{log N} where
N is the number of nodes in the tree. A binary tree is height balanced if at every node
in the tree the heightsl of its left and right subtrees differ by at most one. The beauty
of a height balanced tree is that its worst case height is at most 45% greater that thai
of an equivalent pt::rfectly2 balanced tree, and insertion and deletion of nodes can be
performed by examining a path from the root to a node unlike perfectly balanced
trees. Search, imsert and delete operations can all be performed in O(log N) time in
the worst case which should be compared with a worst case time of O(N)} for these
operations on an ordinary (unbalanced) tree.

The major disadvantage of balanced trees® is that the algorithms to manipulate them
are considerably more complicated than those for an unbalanced tree. Fortunately,
for the purposes of this paper we do not need to delve into the details of these
operations in order to illustrate the approach to testing them. The interested reader is
referred to one of the many bocks on algorithms that discuss operations on balanced
trees in detail. One such book is Wirth’s “Algorithms + Data structures = Programs”
[7]. To give a crude idea of the complexity of the operations on balanced trees, the
Pascal versions given by Wirth consist of 63 lines for insertion (p220-1) and 92 lines
for deletion {p223-5). These figures should be compared with those for unbalanced
trees: 19 lines for insertion (p205) and 18 lines for deletion (p211). Not ouly are the
balanced tree operations considerably longer than their unbalanced tree counterparts,
they are, in the opinion of the author, a good deal more subile and more liable to
erroneous implementation.

! the height of a binary tree is the maximum number of nodes on a path starting
at its root and descending down the tree.

Za perfectly balanced tree is a binary tree in which at every node the number of
nodes in its left and right subtrees differ by at most one.

3 for the remainder of this paper we will abbreviate “height balanced binary
tree” to “balanced tree”.

18 Module Testing

As promised earlier we do not pneed to leok in detall at the implementation of the
operations on balanced trees. What we do need to look at closely, however, is the
state invarjant for a balanced tree. A tree is given by

Tree 3 Node | nil

That is, a Tree is either a Node or it is the special value nil, where

Nodp |
sym : SYH
val : VAL
bal : -1..1
Teft,
right : Tree

(¥ s : syms(left) =+ 5 <g sym)
(¥ 5 : syms(right) + sym <g s) 4
bal = height(left} ~ height(right)

where
syms : Tree — P SYH
such that for n : Node

{3

syms {nil}

syms{n.left) ¢ { n.sym } v syms(n.right)

]

syms (n)
and
height : Tree — N

such that for n : Node

H
[an)

height{nil)

height{n} = max{height{n.left), height{n.right}) + 1

The trees are both ordered and balanced. A tree is ordered if at each node in the tree
all the symbols in its left subtree are less than the symbol ai the node which is less
than all the symbols in its right subtree. A tree is balanced if at every node the
difference in heights between the left and right subtrees is equal to the bal field of
the node {(which can only take on values in the range -1..1}.

The relation between a balanced tree and the high level specification of a symbol
table is given by

ST_BT ,
ST
BT
st = { node : nodes(t) * node.sym + node.val }
]
where
rnodes : Tree — P Node

such that for m : Nade
nodes{nil) = {}

modes{n) = nodes(n.left) U { n } U nodes(n.right}

20 Module Testing

Checking the Invariant

As before we can write a procedure to check the state invariant: the tree is both
balanced and ordered. A procedure to check that a tree is balanced fallows. It
performs a post order traversal of a tree checking that each subtree is balanced and
returning the height of the tree so that the higher level checking that the tree is
balanced can take place.

Balanced(t? : Tree, h! : integer):

if t?7 = mil then
h! := 0
else
begin
var hl, hr : integer;
Balanced(t?.left, hl);
Balanced(t?.right, hr);
{ hl = height{t?.left) A hr = height{t?.right) }
if hl - hr # t?.bal then
“report unbalanced tree”
h! := max(hl, hr) + 1
end

We have assumed here that the implementation of our programming language will
trap any assignment of a value outside the range —1..1 to the bal field of a node; if
this were not the case then a check that the bal field of each node is in this range
should be added to the above procedure. The procedurs to check that a tree is
ordered s straightforward and is omitted here.

For balanced trees the invariant checking is far less complicated than the operations;
it 15 more akin to the complexity of the operations on the simpler unbalanced trees,
requiring only straightforward tree traversal algorithms. The great value of the
invariant check is that if an operation otherwise works correctly but manages to
corrupt the data type invariant the fault will be detected immediately after the
operatiopn rather than at some Indeterminate time in the future when an operation
tries to access the corrupted part of the data structure. Not only is the detection in
this latter case well after the fault it may be on an operation other than the one that
caused the corruption; other than detecting that there is an error one has been given
little help in diagnosing the fault.

Module Testing 21

Given this invariant check procedure our testing can now check that the invariant
holds initially and then after each operation during testing. The invariant checking
above requires O{N) time versus the O(log N) time for the operations themselves.
Hence it is not sensible to leave the invariant check in the program after testing.
After all, the point of using balanced trees was to take advantage of their worst case
O{log N) performance; if we were to leave the imvariant check in the code the
performance would always be O{N) and hence worse than the unbalanced tree which,
while being O(N) worst case, is only O(log N) average case.

The invariant check given above is a far more stringent test that the stale of 2 module
is consistent than any that can be carried out purely from knowledge of the high-level
specification even if one i3 given a retrieval function to extract the abstract state. It is
possible that the implementation could be incorrect in a way that does not affect the
high-level correctness. For example, the implementation may correctly maintain an
ordered tree but it may be incorrectly balanced. In this case the operations would
appear to work correctly but in some cases would not be as efficient. Such a fauls
could only be detected externally by timing operations and would require the testing
to generate a badly balanced tree. With knowledge of the internal operation of the
algorithm in the invariant check it is far less likely that an incorrect implementation
would go undetected.

Checking the Pre-Condition

As with the “ordered sequence” implementation a pre-condition check can be
incorporated into the implementation using balanced trees. This will detect any
incorrect use of the operations by the testing program. For balanced trees a simple
constant-time check (which should be left in the code permanently) can be
incorporated into the update operation. As this is quite simple to do, but to explain
requires detailed koowledge of the update operation on balanced trees, we will not
elaborate the pre-condition check for balanced {rees here.

22 Module Testing

Checking the Inpnt-Ouput Relation

As with the “ordered sequence” implementation we need to check that the
input-output relation is satisfied. For this example we will not assumie that we have
available a very high-level programming language with mappings as primitives. In
order to cross-check the input-output relation we need a second (simpler)
implementation of a symbol table. Fortunately we have just that in our “ordered
sequence” implementation. To perform the cross-check we need a retrieval function
that extracts an ordered sequence from 2 balanced {ordered) tree. The relation
between ordered sequences and balanced trees is given by

SST AT
SaT
8T

{ node : nodes(t} * node.sym — node.val }
= { it : rng{sst} = 1t.sym P 1t.val }

Extracting an ordered sequence frowm an ordered tree can be achieved by the
following tree traversal algorithm

TreetoSequence{t? @ Tree, sst! : seq[ltem]):

if t = nil then
sst! = []
eise { t # nil }
begin
var 1sst, rsst : seq[ltem]:
TreetoSequence{t?.left, lsast);
TreetoSequence(t?.right, rsst);
sst! := Isst” [(t?.sym, t?.val)} "rsst

end

The sequence retrieved by TreetoSequence is compared with the sequence
maintamed by the “ordered sequence” Implementation after each operation is
performed {on both impiementations). The code for the comparison is straightforward
and has been omitied here.

Module Testing 23

For the height balanced binary tree example the procedures required to use the
testing techniques outlined in this paper require only a fraction of the time necessary
for a programmer to develop the somewhat more sophisticated balapced tree
operations. T'he extra time is well spent in terms of increasing one’s confidence in the
correct operation of the algorithms, but furthermore the techniques are likely to
actually save time: if there are errors in the operations the testing will isclate the
errors quickly and provide useful diagnostics to aid in debugging.

Discussion

When implementing abstract data types in a programming language with facilities to
support them (for example, Modula modules, Ada packages, or Clu clusters) the
invariant check and retrieval procedures will both kave to be part of the module as
they need access to the internal data structure which shonld not be accessible
externally. This will probably imply that the person responsible for the module
should write these when writing the module (although as mentioned earlier there are
good reasons for having a separate person write them). In practice this probably
represects a reasonable line of demarcation between the module writer and tester as
these functions provide everything that the tester needs from the module internals to
apply the testing techniques.

The author has used the techniques described above to test an implementation of
B-trees [3|: balanced multi-way trees suitable for secondary storage data bases.
B-trees are more complicated data structures than height balanced trees and the
algorithms to manipulate them have a number of special cases that can easily lead to
errors in implementation. In the testing of the B-tree implementation the techniques
described above were able to isolate two errors (one cmission and the other a swap of
variable names) and give good hints as to the nature of the fault; in this respect the
invariant check, which for the B-tree is involved but not difficult to implement, was
particularly useful in detecting faults as soon as poasible after their prime cause. The
use of these techniques certainly increased the author's confidence in the correctness
of the final implementation - especially that the algorithms actually implemented
B-trees rather then some other (strange)} variety of multi-way trees.

24 Module Testing

Another technique that can be used in testing programs is to check assertions such a3
loop invariants, at execution time. This could be useful if a fault is detected in an
operation of an abstract data type but the cause is not obvious. Urfortunately
expanding such assertions is non-trivial; in some cases the code to check a loop
invariant can be more complicated than the original loop. The tactic of testing at the
abstract data type level seems to provide the most benefits for the amount of effort
involved; coding up assertions can be left to aid in debugging when a2 non-obvious
error i3 detected, although it is probably better to go back to the original reasoning
about the program and {ind the fault there.

The testing procedures should not be discarded once a module has been tested; they
will be useful to anyone responsible for making changes to the module {where
introduction of errors is more likely due to lack of understanding). The iovariant
check procedure is of more general use if data is kept on permanent storage devices.
It can be used to check the consistency of the data after a hardware or software
failure has occured. It cannot guarantee the correctness of the data but it can fiad
inconsistencies which imply the data is incorrect and it can ensure that the datz is in a
state auitable for running the system.

Module Testing 25
References

1. Abrial, J.-R. The specification language Z: Basic library. Oxford Uaiversity
Programming Research Group internal report, 1980.

2. Adel’son-Velskii, G. M., and Landis, Y. M. An algorithm for the organization of
information. Englisk translation in Soviet Math, Dokl 3, (1962), 1255-1262.

3. Bayer, R., and McCreight, E. M. Organization and maintenance of large ordered
indices. Acta Informatica 1,3 (1972}, 173-189.

4. Beiser, B. Software Testing Techniques. Yan Nostrand Reinhold, 1983.

5. Jones, C. B. Sofiware Development: A Rigorous Approach. Prentice-Hall,
1680.

1]

. Morgaa, C. C,, and Sufrin, B. A. Specification of the UNIX file system. [EEE
Transactions on Software Engineering 10, 2 (March 1984), 128-142.

-3

. Wirth, N. Algorithms + Data Structures = Programs. Prentice-Hall, 1976,

Module Testing 27

Appendix: Notation

1. Definitions and declarations,
Let x, x, be identifiersand T, T, sets.

LHS & RHS Definition of LHS as syntactically equivalent to RHS.

x : T Declaration of identifier x of type T.

Xy Tl;x2 : Tz; eon by o T
List of declarations.

Xy Xpp oo x0T

n

n

2xy s Tioxg e Ty oo 5wy T
2. Logical saymbols.

LetP, Q be predicates and D declarations.

- P Negation: “not P”.

P Digjunction: ¢ or Q"

P ad Conjunction: “P and 0°.

P =0 Implication: “P implies Q" or “if P then 0",

I x : T -« P Existential quantification: “there exists an x of type T such that P™.

¥ x : T+ P Universal quantification; “for all x of type T,P holds™.

ERETHEND FERE PR PE R ;xﬂ:Tn « P
“There exist x. of type Ty, x» of type T5,. . . , and x_ of fype T,
such that P holds.”

VxI:Tl;xZ:TZ;... :xn:Tn-P
“For all x; of type T, x, of type T, .. ., and x, of type T, P

bolds.”

28

3. Sets.

Module Testing

LetS and T besubsets of X; t,t, terms; P a predicate and D declarations.

t €5 Set membership: “t is an element of 5”.
t €5 2 -(t € 5).
SeT Set inclusion: SeT & (¥x: 5+ x€T).
5¢T Strict get inclusion: S T & SgT A5 #T.
{} The empty set.
{ty, ta oo, t,)}
The set containing t;, t,, ... and t,.
{ x + T | P }The set containing exactly those x of type T for which P holds.
(b, tp ..., t,)
Ordered n-tuple of ty, t,, ... and t_.
Ty x Tpx..0 x T,
Cartesian product: the set of all n-tuples such that the kth
component is of type T, .
{xl=Tl:x2:T2;...;xn:Tn|P}
The set of n-tuples (x,, xp, ... , x.,) with each x_ of type T,
guch that P hoids.
{xI:Tl;xZ:TZ;...:xn:TnIP't}
The set of t's such that given all the x, of type T_, P holds.
{D+1t} 2 { DI true -t}
PS Powerset: P 5 is the set of all subsets of 5.
FS Finite subsets of 5.
SuT Set union: givenS, T : P X,
8 {x: X1 x€eSvxeT]}
SnT Set intersection: given S, T : P X,
& {x:X| xeS5Ax€eT],
S-T Set difference: givenS, T : P X,
2 {x: X}l xeSAxe&T]}
5] Sige (number of elements) of a finite set.

Module Testing 29
4. Relations and functions.
A relation is modelled by a set of ordered pairs hence operators defined for sets can
be used on relations. A function is a relation with the property that {or each element
in its domain there is a unique element in its range related to it. As functions are

relations, operators defined for relations also apply to functions.

Let R be a reiation; f be a function; A,B and $ be sets; and x, x,, y, y, be terms.

Ao B The set of relations from A toB: A & B £ P (A xB),
xRy x is related by R to y: xRy & (x, y) R,
A--B The set of partial functions from A to B:

z2{f: A=B|

(Va: A; b, b’: B+afbaafb =b=b") }.
x —y 2 (x, y)

{xy =gy X 2 yz o Py}
The relation { (x;, uy), (%2, uzd, ..., {x, y,)?}
relating x; and y;, xpandy; .. ., x, andy,.
f x The function f applied to x.
dom R The domain of a relation or function: ferR: A < B,
domR 2 {a: A} (I b:B+aRb} .
rng R The range of a relation or function: forR: A < B,
rng R 2 {b: B | (3a: A-aRb}]}
SqR Domain restriction:
2 {x:X; y: Y| xRyAsxes]},
S 4R Domain subtraction:
2 {x:%X y:Y¥Y | xRyarx&S]}
R, ® R, Relational or functional overriding: forR,, R, : A &8,

2 (dorn RZ q Rl) u Re.

5. Numbers.

N The set of natural numbers (non-negative integers).
N "The set of strictly positive natural numbers,

F4 The set of integers {positive, zero and negative).
m..n The set of integers between m and n inclusive:

m..n 2 {k:Z|lmskaksnl]}.

30 Module Testing

8. Sequences.

Let X be a sel; S be a sequence; and lower case variables be terms.

seq X The set of sequences whose elements are drawn from X:
2 {5 : N + X)) dom5S=1..15}.
ISt The length of sequence S.
[1 The empty sequence {}.
5Ci) The 1 th element in the sequence 5.
{xy, %z ..., %] Thesequence { 1 — x;, Z = x5 ..., n > x_ }.
{sy, sz ..., s, "Ity ts ..., t,] Concatenation:
2 (s, Sz --- 4 Sp bty tz oo, t,]
rng{ [s:, L . sn]) Range of a sequence: the set of items in the sequence:
2 { s, Sz ..., 5, h
rng([1) = {}.

7. Schema notation.

Schema definition:

SCH .
A
b: B
predicate
1

‘A schema groups together some declarationa of variables and a predicate relating
these variables. The following conventions are used for variable names in those
schemas which represent operations:

subscripl “;* state before the operation,
undecorated atate after the operation,
endingin “7” inputs to the operation, and
endingin * outputs from the operation.

A schema S may be included within a schema T, in which case the declarations of T
are merged with the other dectarations of 3 (variables declared in both S and T muat
be thesame type) and the predicates of 5 and T are conjoined.

