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ALGEBRAIC SPECLFICATIDN AND

PROUF OF THE PROPECRTIES DF A MAIL SERVICE

Hoare, C.A.R. and He, 1ifeng

Summary

A mall service is 8 communications medium which can reorder
messsges between postage and delivery., This paper Investigatss
the algebralc properties ol such a service, using the mathemstical

theary of communicating sequential processes,



A communications iink which delivers messages Iin the same order
as they are tranasmltted cen be modelled abstrectly as an unbounded
buffer. In E, 4,2 X27 a buffar is deflned es a process which is at
all timas ready to lnput & message on lts left chennel, and {whenever
possible) is ready to output on its right chennel the earliest messege
whiech it has imput but not yet output., The state of a buffer can be
{dentified with the aequence s of massages which [t has input but not
yet output. Each incoming message x ls added to the right hand snd
of & (to glve a"&n)); and each ogutgolng mesgaga is removed from thae
left and of s (to give s*). The values of the message is that of the

removed item s - The sequenca a is lnltially empty (< >},

This 1nformal description is captured lmn the Tarmal definitiaen
of a buffer by a syetem of mutuslly recur9slve eguations, one far each

value of a:
BUFFER = BUF (< >)

whera BUF(a) = 1left?x —> BUF (<x >} if s = <>

(left?x —> BUF (s <x>)

Drlght!su —> BUF{s"')} if 8 <>

The buffer described above can never refuse to input snother
message, B0 thare is no upper bound on the number of messeges it can
store waitlng for del‘ivery. 1n contreet, a bounded buffer, when Full,
will refuse to 1nputlfurther messages, For exemple, a buffer which

can store at most one measage cen ba dafined by simple recursion:

COPY = laft?x —> right!x —» COPY



[N

Abufler Ls an example of a pipe, 1,9,, a urocess with a single
input crarnel on the left and a gingle output chanpel un the right.
A palr of pipes I and U can be agsamblad lntu a sirgle lomger pipe
{P>» 4} by cornacting the rlght channsl of P to tra left channel of U,
50 that all meesagus output by P are slmultanecusly 1nput by J and
vice versa. These internal messages are cancealed, so that (5 33 4)
is malsa a pipe, in which all axtarnal lnput gpes to P and all external

aytput comes from (],

The algabraic propertles of pilpes in general and buffers in

particular ara investigatad in /4, 4.4/, For a dasigner of communications
9 ’ a9

services, the most important properties ace that buffers cam walidly be

composed ln serles hy the chainlng operstor >}

BUFFElK = BUFFER >» LORY
= COkY >» BUFFER

= BUFFEAR >%» BUIFER

Jn this paper we shall extend these results to a different kind of
communicatic~ sarvice, namely one which may non-deterministically
reorder tre nessages befors delivery. Such a service can be madelled
abstractly 83 a bag {sometimes known as a collection or multiasat,
becguse sech member may sppear in Lt more than nrce). Llke 8 buffer, 8
bag ls at all times willing to input a megsags on its left channel.
Whenever the btag ls non—empty, 1t 18 prepared to output any of its
stored messages on the Eig.h.t. channal. The choice of messaga for output
18 made naon-ceterminlstically by the operetor ){?It , whleh sslects an
srbitrery member y from a beg t, Thua 8 bag can be defined in a mapner
similar to the byffer, uslng the veriable t ta stend for the bag of

velues which have bgen input but not yst output:




BAG = B( T )

B(t} = lert?x —> 8{Tx)) ife = TF
lort7x —» B{t{4) ()

U(Qt rightty —¥8(t (=) (I ire £ 1T

whera 0 is the empty bag

@ is the bag containing only x

w 'L-) arg bag addition and subtractian

For a deslgnar of communication services, it is an important fact
that bage enjoy tha asesme algebraic properties as those quoted abovs
for buffers, so that thay can be validly composed in series with other

baga or with buffere

I

BAG BAG > COPY = COPY >> BAG
= BAG >> BUFFER = BUFFER »> BAG

BAG »> BAG

Futtharmora, since a bag ie non—deterministic, it ia
poseibla for the non—deterministic choice always to fall on the longest
walting message, and in this case a bag cen behave exsctly like a
buffer. This meana that a buffer is & perfectly velid implementation of

a bag, Or more formally
BAG = BUFFER.

From the Implemdntor's point of view, the most important distinction
between buffers and bags is that bags can be composed not only in series
byt also in parallel with other bags and with buffers. Paraeliel
compoaltion in this case ia represented by the intaerleaving operator ”I

E. 3.E7| which parmits arbitrery interleaving ofF actions From its two



operands. S5So cansider the process (BAG I“ BAG), Each messege it
inpute ias atored by ona of Llts two operands, we know not which.

Esch messpge it cutpute ls output by one of the operands, we know

not which, HBut we do know that each message output has been previously
input and will not be output again, Thus the palr of bags behaves
like a single bag, end it mekes no difference which aof the palr has

actually carried each messege., Thus we informally juatlfy the law

BAG = BAG ||| 8AG
Other lews with similar justlflcstlon sra:

BAG

8AG I” copy

BAG |“ BUFFER

The glgebralc lews quotad above sre clearly onss which we would
like to be true, It la the purpose of this paper to supply the
necossary proofs, It la en equelly lmportant objectlve that thaese
proofe should use eimple methods such as algebrajc calculatlon, whlch
cen be epplled more generally to proofs of more compllcatad thaorems
needed for the dealgn af successful preotocels. Accordlingly, the naxt
section of the peper Ls devotad to guotlng snd explalning the relevant
proof methods and slgebraic propertise of the opsrators in use. Many
of these will be found in /47, The proofs of the theorems ere postponed
to the third sectlon, A flnel sectlon is devoted to 8 comperison of
our trestment with the orlglrel trestment of (17, which L based on en

algebraic versjion of CCS, end which inaplred us to work on the current

peper,



2. Proof method

A genaral met hod of proving eguations and lnequations in
Communicating S5equential Proresses is to reduce aach side to the
same standard form., The standerd form 13 a guarded expression deflning
a process by mutual racurslon, and not containing parallei combineters.
The theorsm of unigue solutions for guarded recursion then compietes
the proof, The reductien to standard form is achieved by symboiic
executlion of input and output cammands, which can bs formaily justified
by appeel to the relevent algebraic lews, The algabreic calculatiocn is
slightly simplified by introduction of some new compact but complicated
notetions, These are axplelnad informally in section 2,1, and deflned
Formally in terms of the more femiliar operators of ﬁ]. Saction 2,2
lists the standard algebrelc properties of the mew operators, and proves
them from their defilnitions. 5Section 2,3 gives the rather more
complicated laws which are actually usad in symbolic exacution of
exprasslons denoting pipes, These laws are strong anough to reduce
&8ll wall-dafined pipes to a standard guardad form, in which the piraeilel
combinetars »>» and ”[ are pushed as far inward as possible. This
gives confidance that the lews are strong encugh for all practical
purposes. We will ssves apace by omitting the chanmel 'laft' and 'right'

from input =nd output commands.

2.1 LComposite cholce

The technigue wa shall use Ffor proving equatioms in the reest of
this paper ia simply based on slgebraic calculations, which in practice
amounts to no mora then symbolic execution of inpyt and output commands,
In order to reduca thes size of calculstions and the number of lews

neaedad, we lntroduyce aavaral composite choice operators.



If P and (Q sre processaes, the process P "0 is formally defined
pw0 = (PR a)ng (or equivalently, (Pr G) 0 @)
The compoaite choics S\ arises natyraily from concealment of
internal events, for instance, the following law describes the behaviour

of a pipe P>>0Q when P i3 ready for both external communication and

internal commynication, but U is only wiiling to accept messages from P
3, 4.4, Leen,

if P e (2x —>pi(x) 0§ 1e —03)

and Q@ = (1x —>Q1(x))

then P20 = (Tx —> (P1(x)>> 1))\ (P2 »a1(e)).

Tha lgft operand of “ deals with the case when the extarnal
commynication oceurs first, and ths right operand describes what happens
after the conceaiad communication. That is why an ssymmetric opsrator

is needad.

Wa shall yas an infix notetion for conditions, 1f b is a boalean

expression

D*bfu = P if b is true

= Q if b ie false

Note that

(p1n p2) 40 (01 ma2) - (Prfo} o) N (P2 $o3a2)
Proof: consider the cases thet b ie true and faise.

Siwmiiarly

(p1Or2)kob (wilaz) = (Prdopar) D (p2feda2).




Lat b be & boolean expression, and S be a set, Tha gusrded sst

b & S is defined

bas5 = 5 fb}o

whera 0 is tha empty sget,
Simjilarly, if P is a process we define
b&p=pdo}siop

Another composite operator is danoted )!]1 . Let P be a procsss,
and {u(y)l yet} 8 sat of processas, Tha procass P [rl Q(y) is defined
YE
by

0 - -
P U1 aty) Pt gzlwnﬂyfzt aty))

where 0§ is tha empty set.

Thus a bag can be redefired from section t:

Bac = B(TY)
o) = (= 1IN Bl (v =IO 0
Y&

Let P ba # process, and {O(y)l yes} a set of processas, The

process Pmﬂ(y) is dafined in the sama way e&s m s but uslnp%in
Yet yet

place of D .

P 8\ aly) = ikt =0 (PN 1ot
yet Yet

fn immediate advantage aof the notations |] | snd W\ is that they
y£EL yet

Bnable us to reduce all well-definad pipee to a standard form, ss shown

in mectlon 2.3.



2.2 |ews of composite cholce

This section 1ls devoted to quoting and axplaining algebraic

properties of the oparatore in vse, which ers based on the followlng

basic lews presented in BJ.

(1) Laws of nandeterminism E, 3._27

M is idempotent, symmetrlc end aseociative.

{2) Laws of general choice /4, 3.3/

The general cholce operetor D an joys algebralc proper ties similar
to N . 1t ie iLdempotant, symmetrlc, associative and distributes
through [V . 5TOP is the unlt of D . Moreogver [l distributes

through ] -

A cansequence of the last distributlvity principle is that G ls

mors deterministic then M ; this ls expressed ln the closure lew
L1A (Closure)
PAg =« Prygm(rp Qo)

Proof: RHS praeney(Pragna) M distributes thraugh L)

= LHS propertiem of I
The following lemmas wlll be used immadlately
{a) stopn (0 R) = stoPmamrn (g 0r)

(6) stopn (alR) = stoen o n{oQR)



Proof: (a) LHS = (5T0P M Q)U(STDP i R} r distributes through D
= (sTor{}stor) n(eQstor)n(storrR)n (o 0R)

ﬂ distributes through M

= RHS [ is tcempotent
(b} RAMS = Q ﬂ(STDpn@Ulﬂ) properties of M
= LH5 by (a) twice

and properties of 1T

The fundamental convexity law for M and D follows directly

from the lemmas

L1B {Convexity)}

(8} PR{PQ g [ ry pne Qo)ynprdAinte B almy

(6) pn(prDa {r) pae Qonrlale)

pli(storn(a BrY) D olstribytes through M
and has ynit STDP

Proof: {a) LHS

= pDistormanan(a [ AY) lemma (a)

= RHS D distributas through M
{(b) similar

The closure and conwvexity isws generalise tc any finite number of
operands, Let “J be & finite nonempty family of sets snd let °] ' be

sn eniscged family such that <) € <!
and VT C'j"- Jue"J . UETEUT

Thus <J' contains only sets which lie between a set of =3 and the union of

all geata In T.

McOey = Qe

1T ter TeT' tel
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Thae comvex closure of 3 is the largeat family satisfying the conditions

L}
of <J given abova.

Any expression ln the operstors M and D can ba expanded tog a

normal form

b e

T€T  ter

1
in which T 13 its own convex cloesure, This method can be used to

prove moat of the theorems in this eection,

Whan P end Q have tha sama initial ewvant, (P [] ) dagenerates to

nondetarministic cholce ZZ, 3.2.1_7:

Lz (a—=r)lJ(e—~—>3) = (a—>r)N(a—>3)

(3) Laws of —> Jf4, 3.2.17
L3  The prefixing opsrator —> distributes through
(x:B —> (P(x} DV Q(x))) = {x:p—>P(x}) N {x:8 —>0(x))

provided B ia finite.

Geperalismation
If both 8 and C are finite, then
(x:8 —)P(x))r‘l(llzc —>Q(x})) = (x:B—>R(x)} N (x:C —>R(x))

where R{x} = p{x) M ol(x) x¢ Bflc

= P(x) x€ B -C

= Q(x) xe C-~B
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(4) vLaws of M\

VB ie idempotent, distributive and associative.
L4 PN\P = P

Proof: LHS

e Oeine del of N

= RHS noth U} snd O are idempatent

LS (a) (PIP2YNN0 = (PINNE) M (FP2Na)

() Pu(T1MTE2) = (PRW) N PN}

Proof; f{a) LHS (tprine2)J w)ymu daf of N\

= (prOa)yrer20a)na B distributes thraugh I
= (PO wnenerzBa)no)  properties of N

= RHS def of S\

(b) Similar to (a).

Corollary, If t is nonempty, than

P™ aly) = T eNet)
yet

yet

Proaf; LHS

AN \_1 aly)) def of
yet

yet

= RHS % distributes through [



12,

Lt PNENR) = (PN RRN\A.

Proof: LHs = PN ((a [l R) mR) def of M
=(p Nl anm N\ R S\ afstributes thraugh M
= efalmrafrnelrna def af N\
= (rlornelnineg isw of convexity
= ("N mnr [] sistributes through M

= RHS def of \

L7 \ also distributea through U

CONCIRIRGENYD)
(P ] (AN a2)

{a) (Dlﬂpz)\a
() o\ (01 az)

(p1ll P2 wymu def of \\

ePr2]uyneil oyme2lo)ne  law of convexity

Praof: {(a) LHS

(el 0y na) [J (pzla)na) {1 gtsteibutes through N

= RHS daf DF\

{(b) Similar to (a).

As expaected, U and [ distribute through\ .

e (PNOfr = IR elr)

Praofy LHS = ((pl] n)r\u)ﬂ R def °'°X

= (P[] q []R)H(DUH) D distributes through 1

= RHS def of k



L2 (PR nR = (PNRY X (O MR}

Proof: LHS (rlla)nannA

(prry B (anmr)) mg an

= RHS
Furthecmore, STOP fs the left-unit of Sy .

L0 STUP{ 0 = @

Proaf: LHS (storlo)nag
= Onag

= RHS

t3.

def of W\

M is ldempotent and
dlstributes through [

def of %

def of N

STDP {3 the unit of D

M is idempatent

Finally we glve an expansion theorem for “ » where the arguments

are axprassed in terms of geperzl choice,

L11 et P (x:8 —>P(x))

and (x:C —> q(x))

If bath 8 and C are finite, then

PAQ =

R
cgss(aUc)s
vhere RS = {x:5 —»R(x))
and R(x) = P(x) M a(x)

= <P(X)

= Q(x)

xe gfic
x€ B-C

Xx€ C~-8

Proof: LHS = ((x:B'—)P(x))n(x:CﬁD(x)))ﬂ(x:C—)D(x)) def of N

= (x:BUC =>R(x)) N (x:C —>R{x}}

= RHS

property of —»

law of convexity
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(5) Laws of YUJS

m is dietrlibutive and saspciatlive,
YES

vz @ enen By - e Bagnnez Lo

y£5

(5) ,@5 @mnae) <o Iaonne I eon

Proof: {a) LHs

(P1HP2)#_S=U#’((P1HPZ)D ,[;I_; z(v)) def of yﬂc-ls

(pirip2) ds =0} (p1 st a(y)nez fl aly)))

Yy €S
[] distribytas through N

RHS def of m and property
YES
of b

n

(b) sSimilar to (a).

us (P yllls oly)) zgls rR{z) = P y[l]s (aly) zgl R(z))

Proof: Case 1, 5 =10

= m f of
LHS P res a{y) daf o £€0
= P def of yeo
= RHS daf of m
ye(

Case 2, S £ 0O

ths = (pD )!:IS aty)y z‘]s R(z) def of yﬂe-ls
- o )!:,ls a0 ZDS R(2)) the associative lew of [
= pﬂﬂs (aty) 1 ZDS A(z)) [} distributes through M.
= pﬂyzls (aly) zE]s R(z)) def of zﬂe-IE

= RHS def of €S
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Genaraliestion

A R{z)) provided that § « 0 =T =0

(nm

YES

ol =p M
Uy)) Fer Rlzd =P Couly)
Proof:; Similar to L13.

L1a EEL gistributes left through U .

(p1Qe2) Bl aty) = (¢ Bl ay)) ez 0 0(r)

Proof: LHS

tp1Qp2) s =0% ((mﬂpz)ﬂ)f;g aly)) def of 9;15
= e1062) 5= 0¥ (00 L a0 G2 0§ ety

[] is idempotent and assoc—
iative

= t ; m
RHS property o ¢t.b:}‘ and daf of yes

Lis m distributes through g;ls

0 Il e = ear) O (aty) nm)

Proof: LHS = (P 5 = 0F(P []J:é aly ¥R def of Pc_ls

= (POR) 45 =0} ((D[]J:L a{y)) M R)
M distributes through {_b:{>

= RHS M distributes through 1]
L6 D slao distrlbutes through I

L]

v Dlan e = ¢ 0r) J1 atn T sy

Proof: Similar to L4,

L7 1F t la nonempty, then

p ety e TV Do)
yEt YEL

Proofs (HS = P [] ( HQ(Y)) def of [ﬂ
yet yet

[ PP o |
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ve P T RGY = (PNa) ng Riy)

Proof: LHs = (pr0f0 E} R{y)) M 935 R(y)) daf of M

((rQo)nw) &s = 0% ((PAaOLL RO M @RI =(y))
gar of I}

YES

(PNQ)4s = ot ((pPNa) | )ES R(y)) the distributive law of a

n

= RHS def of L1
ye€s

finally, we have an exparsion thearem for m

L19 Let P = (PL P;\S PR(Y))
and 0 = (OL YUJ QR(y })

If 5¢T, and GR{y)C PR(y} For all yeS, then

PRRC = ((PL™™QL) E—QT ary))

Proaf: Case 1, 5 =20

LHS = P det or U]
LN\ g ef of Lo
= RHS te of ()
y€s

Case 2, § f a
LH5 = )[ZL E’r (rcJ o Upn(y)ﬂuﬂ(z)) m E (e {ar(2))

the distributlve law of D

= L:} I;l (toe Qo Brea(y) Bor(2nymqar Dercz))meee Do Daria)))

law of convexity

= Ds l:lr ((pc Do Oer(y) Qorgayy N abor(z))

A (eclacBoriy)Terzn moeelocDorz) )

law of convexlty and since SET

- v@ I e BaQumeen m@or(an)
law of convexity and since QR(y)EPR(y)

= RHS
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2.3 Propsrties of nondeterministic pipes

Tha introduction of booleen guarda and the composite choice
operator [ﬂ wlll reducs the number of laws needsd to describe
y€S
behavlour of nondetarministic pipes, alnce they permit eil pipes to

be sxpressed in the standard form

e —m) 1 Gy —r2tv))
ye€5

The special case when a pipe cannot initielly Linmput is deelt with by
setting b = false. 1f it is not ready to output, then 5 is set to 0.

For the deadiocked plipe STOP, both b = false end 5 = O,

Now we can give an expension theorem for chaining of nondetarministic

pipea.

L20 Let P = (b1 & ?7x —>P1(x}) s(!y —>»p2(y))
«

-

and Q = (c1 & ?7x —>01(x)) (ty —>u2(y))
€

-
—

Than P>»Q = R “—\ w{y)

yeclkS

whare R = (bl & ?x —> (P1{x)>> Q)}) E(:y — (P >>02(y)}))
¥

and wiy) = P2y} >»>01(y}

Tha daefinition uf:. R meys that P »>0Q may angage in an exterral
communication if either P or J {or both) does, Whan both ars ready
to communlcate with each other, then the intarnal‘cnmmmlcatlon takes
place, snd the choicea among the mesepegas being transmitted from P to Q
is left unspecified. 1In this subtle cese, the behaviour of P >»{ is

stated by L20 to bs the composite choica R ‘S\ W (y}.
yecl & S
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Simple speciel cases of thia law are given below, They are bDest

remembered as examples of aymbollc axecutiom of input and cutput

cammands,

{a) whan P =
Ps»>»Q

(b) whenp =
Py

(=)

{a)

(e)

(r)

Progf:

(?x ~—= P1({x}) m (ty —>P2{y)) and U= (?x —>W{x})

yes

(T => (P1{x)>> 0)) YS\s (P2(y)>>ui(y))
y€

(2 =>p10x)) ] Gy > p2(y)) and u = (2z —>R)

yE£S

{7 =3 (P1(x)>»a)) T (22 > (Poen))

when P = (?x —»P1(x)) and 0 = (7« —>Q1(x))

P> Q

Tx —> (P{x) *> 1)

when P = (2z —PR) and U = (?x —>11(x))

P>

R>»Q1(2)

when B = (7x =>P1(x)} and 0 = (7x =>31(x)) ] (ty —>uz(y))
yel

Py> @ = {7x =Mp1{x)>> 1)) ]]:'T(!y"(P»D?(Y)))
¥

whan P = (lz >R} and 0 = (7x —>0Q1(x)) U_!r (ty =>02(y)})
Y€

Px»

ﬂ (y > (P> 020y} TN\ (R >501(2))
Y

see appendix.



The expanaipn theeraem for interleaving of pipes is

21 Lat P

(67 & 7x —>pi(x)) [ﬂ(ly —> P2(y))
y&S

and 0 = (g1 & 7x —» 01(x)) [} (1z =>a2(2)).
z&T

then b || @ (bt & = = (a1(x) [[f @)
Ber e 2x = loxh)

O1 1y = ezt | )
y€5

(T1 12 = 0] vzt

1 &7

Proof: ses appandix,

Finally, we have an expansion theorem for the composite choice of pipes,

122 Llet P = (b1 & 7Tx —»P1(x)) ED (iy =>»r2(y})}
yES
and 4 = (7x —» Qt(x}) U—l (ty => nz{y})
Y€T

If SC€T, then

PAe = (% =arx)) 1 Gy =>r2ty))

yeT

(P1{x) M o1 (x)) ¢b13 01(x)

where R1(x)

and  R2(y) {pz{y)}Mi a2(y)) £ yes$ 02(y)

Proof: LHS = ({b) & 7x —>R1(x)) UJS (ty —>»R2(y))
bi
N ({(7x = R1(x)) UJT (ty =>R2(y)))
Y property of —>
= ((b7 & 7x = R1(x)} N (7 > R1(x)]}

UJT (ty ~>Ri{y))
Y
the expanaion theoram ufx

= RHS
both U ahd Ml are idempotent,



29,

(a)

There are simplse special casee of this law.
ITP = (?2x —>p1(x)}

and g = (?x —> Q1(x)) D—} (:y —>az(y)),
YE

then PO = (2x —=> (R1(x) M d () )) m (ty =»02(y})
y€T




1. Properties of BAG

In this section we show that 8AG enjoys a set of algebraic

properties quoted in Section 1. The prgafa are based on pure algebraie

transformation and the uniguwe Ffixed polnt theorem,

3.1 Composition in series

This subsection 1s devoted to showlng the following results

8AGC = BAG >> CDPY = CDPY > BALC

n

BAG >> BUFFER = BUFFLR >> BAG

BAG >> BAG
We ahall vuse the deflnition of BAG glven in section 2.1,
The frllowing praperties of bags will be waad in the later proofs,
(a) If yet, then
PPV - tWWEY
(b} LfF yet, then
COWHEWE = t W
(c} tw a = w = (t =®AS=U] v o(t = UAs=w)

Readers will notice that the introduction of composlte choices x

and U_L is e great help in reducing the slze of calculstlons. The
Y&

laws of composlte cholce play a key rele in simplifying the proofs.

Firat we smhow that BAG can ba composed in serles with COPY,

21,
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Lemma 1

Let t denote & nonempty bag, then for any yet

(B{t) »> copPY) C B(t L—)@) >»(y —> COPY)

Proof; LHS = (7x —)E(tw@)»cop‘r)% (8(b (=3{y)) »> (ty —>copY))
Y

expanaion of >» case (a)

C [ (8(s (3{(yJ ) >> (ty =>copy)) def of SO\
yet yet
C RHS daf of ™M

This lemma will be used in the form
LHS M RHS = LHS

Thaorem 1
BAL >>»COPY = BAG
Proof: For any bag t we deflne

A(t) = B(t)>> CopY

By taking t = (J we obtsin

A(T ) = BAG >»COPY

We Intend to show that the processes A(t) and B(t) meet the mame

guatrded mutuslly recursive squations, There are two cases:

() t= TF _
Je A(TX) = B(1) »>cCopy def of A(TT)
= 7x —3 (B({Tx)) >>CoOPY) expanslon of > case {c)

= ™ —> () def of A(Tx))



(1)

t is

a(t)

nonempty

11

(2 =280t (0N [T 1y = 8(e TITUN 2y = (ty —> wPY))
yet

def A, B and COPY

(7 — (B(t U@)»CDPY))K}(EU D)) > (ty > cosr))
yE

axpangion of >> cass (a)

m (7 —)(B(t@@)»copv)xa(t U@) »» {1y —> COFY))

y€t

since t ias nomempty end %distributaa
through M .

[ 102 = (8 (I (x)) > coey)
yet

N\ (2% > (ale (T ED >ty —> coey))
D ty = (a(t TF{y})) »> copv)})

expansion of >> case (b)

[_| (7 —> {(B(t UQ))»cop\r)ﬂ(a(t UQ)@Q())»(H —3 COPY)))

yet

[[ ty —> {(B(t (—j@)>> CoPY)}

expanalon of the composite choice
of pipes case (a)

r"\ (= W) oy = ae TN

y&t
def 4, lemma 1 and property (a) of bag.

(7x —\)'A(t (JGH [ﬂ ty = alt (JOIN

yeEt
since t la nonampty and u distributes threugh M .

Oxtord University
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Combining these results we conclude that For any beg t
a(t) = B8(t)

by ths uninue Fixed point theorem, By taking t = <7 we camplete the

proof,
Now we give a procf of the eguality

BAG »>BAG = BAG

Lemma 2

if t is a nonampty bag, then for any yet
(8(t)»8ls)) C (8(t LT >»>s({H TN

Proof: Similar to lamma 1,

Lemma 3

B{u) > p(v) = (™ ——)a(uw@s)e(v )

Yﬂy:y = (8(u)»8(v (TP dvev 28(u T (P>8(v )

Proof: By induction on tte sire of the bagq u

(0) U = U
Lhs = (1= a()>»n(v ) B (1 >e00pstv twn

expansion of »> case (&)
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(1) Assume that the conclusion is true when the size of y is m,

Now let us exsmlne the case when the siza of u 1s met,

LHS = (7x —> (8(u (F{x)8(v)) [ 1ty = (8tw) > 8¢ TN

yeEv

K{\ce(u ISIOIELTAOION
IEU

gxpansion of »>

[} e = tato (138 [ty = a8 e TSN

zZEU yev

N\ (8 TGy 8te (I TH)

since o 18 nonempty and “distribut:s through M

I} —> (8(u (s 1xJ ) »a(v)) 07ty = (u) »> (v (SICTB)))

IEU YN

N\ (7 = (8w (D) >y S0

ycuu_‘wu 'y ‘%((B(UL—J@) »> B(v U@&)@)))ty U‘ULZ)#’

(el (T »>e(v TN

the inductive hypothesis and property (b} of bag

= I Voo (e hmetnnen D wmen Wih»
U1 o= (wrme TN 4 yevb et ) » 8le))

yeulsfv
4y = 23 (6(u (TN » st WEIIND
expansion of x
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Ll

1 (= (800 (I 1) »> B D)

X€uU

UD) ty = ((8(w)»8(v 1T [y 4y ev (80w TI ) »>8(v))))
yeul+fv

lemma 2 and propecty of —>

= RHS5
1 is idempotent.

Theorem 2
BAG >»BAC = BAG

Proof: For any bag t we define

A(t) = 8{t)>»> BAC
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[t is sasy tg calcuylate that

A(13) = M —> B(1¥F) >>BAC by taking u= v ={J in lemma 3
= Tx =—>a(Tx)) daf of A
and a(t) = (7x —a(t 1 )nBAn)P;L ty —»@(t 1J{y] )»»8Ac))

by taking v =U in lomea 3

T 2 EIONRREIE IR S102) '

f A m
def o and yet

From the unique Fixed point theorem it follows that for any bag t
A(t) = 8(t)
By taking t = {_J , we heve

B8AG

BAG »¥BAGC = A(T)) = 8(U)
Similerly we can prave
Theorem 3
BAG > BUFFER = BAG
Finally let us explore another property of BAG:
CwY>» BAGC = BAG
Lemma 4
(ly = coPy)>>08{t) = Copy> 8(t ww)

This femme states that though B{t} Ls willing to output messages on its
right channel, it does not mattar if the internal communlcation betwsen

two operandes takes place first; end the measage y is tranamitted to B{t).
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Proof By induction on the size of ths bag t,

LHS = COPY »»8({y}) expanslion of > caee (d)

(1) Aasume that the concluslon is true when tha eize of t is m., Then,

for any bag t with size m+1 we have

LHS = ( T;]t 'z =3 (ly = CopY)»B(t UM})‘&(EUDY»BU 1OIURY

gxpansiomn of >> case (r)

= L:L tz =3coey >>8(t 12 12f 1+ IS HRN(CorY >>8 (e T 1))
the induc tlve hypothesls

= F\t 1z =>opy > (e W W WD)

zé

N 7x =>((1x —> copy)s>a(t UM)LE@;Y“ —>(cory >28(t Hf IS )

expansion of >> cuase (=)

= (7x =>((1x ~>cory s e(t T 1) gv . =Seomyrs(e Y E )

zet ¥
U expansion ©f the compobite

cholce of pipes and property
(a) of bag

= CoPY >>B(t ww ) axpanaion af 33> caes (8)

Theorem 4

COPY »»BAG = BAG

Proof: Define A{t) = COPY>>B(t} for any bag t. Then we have

A(TJ) = COPY >>BAG def of A

7x —>{({1x —> COPY)>> BAG) expansion of >3 caas {c}

7x = a{{x)) lemma 4 snd oef of A.
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and A(t) = (7% —> {(1x —>COPY)>»B(t) m ty > copy > et 1=f{yf))
vét

expanaion of >> cese (»)

(e > e WUNT LY oy a0 TSN

lemma 4 and def m
yet

which implles that A(t) = B(t) by the unigue fixed point theorem,

in partlcular, by taking t ={J we flnieh the proof

Theoram 5

BUFFER >> BAG = BAG

Preof: Slmilar to theorem 4,

3.2 Composition in parallel

HBags can be composed not only in series as shown in Section 3.t,
but also in parellel wlth bsgs and with buffers, Ir this subsection

we shall prove that

BAG gac Il copy

8AG I} BUFFER

Bac Ji| BAG

"

Aa in tha prevlous subsectlon, both sldes of the aquetion wvill be
radyced to guerded mutuslly recursive expressions Formulated in terms
of primitive operators, The only subtle point is te choose the

appropriete proceases a{t).
First let us show thet

gac = 6ac {ijeac
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Lamma 5

B{uylyB(v) =

(7 => (v e vins(wiV e v W)

01 Gz —>eca Wste g )

EQJ {ty =3 SN etv )

LHs = {7x —>8(u UU)H\B(V N
ﬂ(?x—)B(u)lHB(v wbj))
I e > a) s TS

qu(zy —>au S M e(v )

Proofs

= RHS
Theorem 6
8ac Y\lerg = BAG
Proafy For gny bag t, we dafine
ate) = L et lile(e)
() = Bac I\ BaG
= (7 = ((a(0) Il eac) n (eac N a(L 1))
= Tx =3 a(lx])
Alt)

vy

rev

U—l(!z = a{u) e v

expansion of ”I

property of U

daf of A and BAG
lemma S

def of A and property (c) of
bag.

- l_]v ot {(= —)B(UUU)“\B(U yre{u) MB( v (.._.J‘b)))

YN

T1 sy 000 15T Wac v )

lemma 5




3.

= w7 *%QJWWU@) WetvimeIll a(v 35 1<)

) - (urlt(ﬂ(“) Wa(w L-J@)Jnug\uzt(a(uwlzj)u\s(v»))

e 1}
IEV ey
Ulty - (ugzgemuﬁj )ma(u))nu\';]i(a(u)u}s(ul-j@m)
yE€u YEV

property of
= (7 —=>at LIID y]_t (ty = ale 1T (B

def af A and since I\ is
idempotent

By the unique (Tixed polnt theorsm we conclude that

aAlt) = a(t) for any bag t

When t = U we obtaln the conclusion

Lemma §

a(t)te =>copy) = (7 >t L5 W) WCte —> copy)

e =300 corr)
93. by => (0 (I |l (te —>copn)))

Proof: Similar to lemma 5,

Lemma 7

B(e) fllcopy = (7x =>¢a(t T LMcopnmee) W (2x = corv))))
I (ty =t I Micosy))

y€t

Proof: Similar to lemma &,
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Theoren 7
BAR \jCoPy = BAG

Proof: We defins
AUy = ovacll| copy

and  Aa(t}! = (8(t)1}] cory) M ()|:'lt 8(t I ) Wty —>coey))

Then aimilar to theorem 6, we have

A(l)

A(t)

= (7 => ({8 1)l coey) 1 (sac N (21x —Dcopy})))  lemma 7
= =>4 () def of A
= (2 => ((a(e LI 1x5) W eome) M (a(e) WL (2x => copv))))
,{]:It(iY—)B(tUM)\H copy)
[)Dt((?“ =8t I I W ey = copy)

Dty ~> 6t T W coen)
,ﬂ?ﬂm’“‘?’ﬂtwwww)m(:y — CppY))

Lemma 6 and Lemma 7
- =ae W Iy > s
n !:l(?x A SN U 1y a3 E:‘Bw” —>#(t I

def of A, property of — and property (a)

of bag
= (2 (e W) yﬂet ty =it T

law of convexity



The dafinition of BUFFEA end BUF is glven in Sectlon 1. Wse can sho

Theorem 8
B8AG |1 BUFFER = 8AG

Flnally we show that s buffer is a vaild implemsntation of a bag.

Theoram 9
8AGC C BUFFER
Pzoof; For any beg t we deflna

Alt) = Da[g(—al}:t BUF (s)

where the functlon bag is deflned

bag(s) = U s =<>$ bag(s') 14J U

Then we have

A{U) = 8ur{<>) def of a{l))
= ?x —BUF (x>} oef of BUF(<>»)
= ™ —>a(xT) def of A(Tx))

when t 1s 8 nongmpty bag, we have

= I . f of A
alt) 1 Jbagis)nt BUF (cy> &) daf of A(t)
= | (7% = pur (<y>ﬂsh<_x>)n!y > gur(s})

v Jbag(s)=t

daf of BUF(ey>" &)

7% > A WLH iy >ate IWN

caf of A

2 w\'ﬂ_;_c}(a):

= (7 =>ale TN Il oy =>alt (SUIN

yet

def of m
yEb
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By the unique fixed point theorem we conclude that

B(t) S a(t) for any bag t

when t = 1) wa get

BAG = B{1J) = a{{J)} = BUFFER



4, Comparison

Many proof methods have been proposed far distributed systems

[1!_7[—3_7. Iln this section we compare our method with that presentaed

in fl].

The essence of treatments presented in ﬁ]and this paper is an
axiomatlc framework for the description of processes; verifications
are to bp cdone on the basis of the slgebraic laws. The axiomatic
framowork described in D is ACF“L, the algebra of communicating
processas including silent steps. The model of concurrency we
cancaentrate on is bapad on the mathematical theory of Communicating
Saguantial Processes /4/. Algebraic lewa prasented in /1] and /a7
allow us to prove the properties of distributed systems by symbolic
execution of atomic events. The general method of proving an equatiom
1s to reduce both sides of the equation to the same guarded recursive
expression, Tha thecrem of wnique solution for guarded recursion,

cailed the Recursive Specification Principle in &_7, pleys a key rola

1n both treatments.
The differences batween these two methods are the following:

{1) in our methed, the alphabet [s a permanent, predefined property
of a process. The cholce of ap alphabet usually involves a deliberate
simplificetion. On the other hand, soma processes may naver engege in
a particular event irn their aiphabet, For instance, STOPA is used to
describe the behavic;ur of a broken object with alphabet A, though it
nevar actually engages in any of the avants of A, In general, two

processas can behave identically, but have different alphabets.

in contrast, the slphabet of a process P in [TIJ is determined by
ite behavicur. Formelly 1t is specified by the alphabet function

oh? P —> &, where d:) denotes the set of processes, and a,. the set

35,
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of all subgets of events in the finite uyniverse, Intuitivaely, o((P)
containe exactly those events in which P will actually engage, As a
cansecwence, the alphabet of the deadlocked procese STOP is empty.

In order to find the aiphebet of an infinite process from its
specificatlon and in grder to epply some conditional axioms involwving
the alphabet, a thecty sbout alphebet, callad o-f/fj; calculus, was

introduwced in /1/. In general squality in ol(P) is undeclaable,

The predefined aiphsbat simplifies the definitlon enc laws for
tha H operator in /4/. This paper haas used tha interleaving operator
\” instesd of H r and so casts no light on the slgnificance of the

constant alphabet.

(2) Anaexplicit symbol 7 , denotlmg a sllent or intermal event, was
deacribat in f17/, 1t hes a natural meening, Tha drawbsck Is of course

that we lose abetrection from intermal activity,

In cur model, the internal event 1s taken to be wholly invieible,
and wholly lrrelevant tp the loglcal correctness of a process, As a
result, w have more lawe; and theorems lnvolving lnternal actlaons

become alightly easler to prova.
(3) In CCS, the timing of the resolutlion of internal non-determinlsm is
gigniflcart; =90 in LCS5 it 1ls not true thet

(e=>p)0 (@a—>u) = (a—=>(Pna))

|
Such distirctlons cannot ba drawn In CSP. (n the axempies of this paper,

the CSP epproach seema sdvantageous,

(4) 1n order to simplify the elgebraic calculation in sectlon 3, we
tave developad a celculus adspted more to the speciflc nesds of the

preeent problem, and introduced some new compact but complicatad notetlon



in section 2. The sxpansion Lheorem far nondetarministlc pipes heips to
sobreviate proofs, snd is applicsble to a clasa of simlilar prablems. e
think that it may be necesssry to derive laws specleal to each application

in order to control the complexity of the proofs,

In A_'I] all proofs ware based on the s5at of axioms and conditional
axioms for the primitive operators of CC5; the number of laws was small,

and the proofs were corraspondingly slightly more complex.

{5) The laws of C5P are proved fram a mathematical model, In the
traditional manner of mathamatics, Ths laws of CCS5 are deflned by an
ingenlous congruence relation over a syntactic or operational model.
The gistinctian is maore slgnifleant in non-algebrsitc reasoning, and so

i3 not epparent in this paper.
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Appendix

Definition

let P and § both be pipss, The process P>>( is formally

de Fined

P> = (p [mid/rignt] |} o [mia/1ert] )\{mu}

whare \ denotea the concealmant operator, ard the process P [d/c]

beheves tha same es P except that the channal c is rensmed by d,

The Following lew of concealment in [E, 3.§7 is useful in

exploring the property of nondeterministic pipe:
() IFBNC is fFinite, then

(x:8 —>0(x))\C = (x:B=C~—>P{x)\C) En\c(p(x)\l:)

Wa will rafer the following law ﬁ, 2.3.1 LZ7 in the proof of L20 of

nondeterministic pipe

(b) Let f = (x:A —>P(x))

(y:8 —>0{y))

end Q

Then (PllR) = (zgc—)p-HD.)
whare C = (AN8) U (a- «q) U (8-~ dP)

and p' = p(z} if zeA
=P, otherwise
and Q' = a{z) if ze€B

= q otherwise



Now we Offer & proof forlL20 of nandeterminiatic pipes guoted

in section 2.3
L20 Let P = (bt & left?x —> p1(x)) ,[-Ds {rightly —> pPz(y))
and 0 = (el & laft?x —>01{x)) PJ (rightly —>02{y))

N

Then P >>Q = yec1 &S wiy)

whers R = (bl & left?x —> p1(x}s>Q} EDT (rightiy —> P >>02{y))

and w(y) = P2{y) >>0T{y)

Proof:

LHS = ({67 & laft?x —:pm(x)[mid/riqht]r[DS midty —> p2(y) {mic/rignt))
“(m & mig?x —> u1(x)[mid/13rt]93 rightly —)DZ(y)Eﬂid/laft]))\Qnid}

daf of >3

= (b1 & left?x ——>p1{x)]:m1d/right] “ a[mis/1ert ]

[J] riortty —> plmta/rigne] |faz(y) [mtasrare]

yeT
y‘lz:!&smiﬂly -— PZ(y)[mid/rlght__l n 01 (y)mig/10rt ) )\{Tml
by (b}

= RHS by (&)
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The followlng properties of the interleaving operator H\ [d_. 3.27
wlll be used in the proof of the e@xpansion theorem for interleaving of

plpes,
(a) I} drstributes throwgh M
(b) Iff = (x:A —>P(x))

and § = (y:8 —> P(y))

thenplil e = (x:a —>e)Ha) [ y:e —> (oM
L21 et P = (b1 & leftox —>p1(x)) U] {1y —> p2(y))
y€5

and § = {1 & laft?7x —» Q1(x)) [rl {(tz —»0Q2(z))
zET

Then PW o = (b1 & leftzx —3 (P1(x}{\a)
0 e & rererx —> (p War(x))

T etoptry — (p2ey)W a)
y€S

D;]F rightfz —> (P 02(2)))

Proof: There ere four different caeea
{(0) S=T=0D

LHS = (b1 & left?x —> p1(x)) ||} (1 2 Lertox —> a1(x))

def af m
yel

= AH5 property (b} of |i|




(b1 & 1eFt7x -—}m(x))”]!—l(m & leftx —)m(x)Dughtlz—i' Q2(z))
zeT

daf af U—I and since T £ D
yell

[ 1o & terem = p100) et & reremm —>a1() [ ragnts2 = az2(2) ))

zeT

[7] (o1 & seren —

zeT

]] cl & left?x —>

property (a) of m

(P1(x)|”(|:1 & left?x —> Q1(x)Dright!z = u2(z)))

el o))

I rranezz = 0l 0z(2)))

m(m & leftix —>
zeT

D ¢t & laft?x —>

property (b} of |”

|_|(p1(,)m(c1 & teremx —> a1 (x) [| rigntiz —> 02(2)))

TeT

(el a1

[} rrght 2z = el 02t

RHS

for the following cases

(2) s g0

(3) s¢go

and T =10

and T £ O

)

property of —

propecrty (a) of \\\

the reasaonlng process ls similar to (1),

This completem the proof,



ALGEBRAIC SPECIFICATION AND PROOF

OF A DISTRIBUTED RECOVERY ALGORITHM

e, Jifeng and C.A.R. Hoare

Summnarty

an algebraic specification is given of an algorithm for recovery From
catastrophe by a deterministic process. A second version of the algorithm
also includes check-points. The algorithms are farmulated in the notations
of Communicating Sequential Processes [Hoare), and the proofs of correctness
are conducted wholly by applicaticon of algebraic laws (together with the

unigue fixed point theorem).



1. Introduction

Algebraic specifications have been formalized and used for a number
of years [Guttag and Horning] {Goguen, Thatcher and Wagner]. A problem that
has emerged in their practical application is that it invclves large numbers
of mutually interactive equations, which cannot easily be seen to reflect
the requirements. In this paper, present a problem in distributed computing,
for which the specification can be clearly expressed by a single algebraic
equation. Furthermore, the correctness of its scolution is established by purely
algebraic transformations similar to these proposed for functional programs !

[Backus) {Burstall and Darlington].

We shall use the notation of Communicating Sequential Processes [Hoare]

to define the preblem and its solution.
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The preblem is defined as follows: Let P be a deterministic pipe, i.e.,

a process which only has two channels in its alphabet, namely an input
channel 'left’' and an output channel 'right'. Let :Z be a symbol standing
for a catastrophic event. We specify /1§ as a process which behaves like P
untilj occurs, and after each z behaves like P from the start agaln.
Formally, ’l:-'\ is defined in [Hoare] to satisfy the recursive eqguation.

~ -
p=p" (7= P

The infix ¥ denotes the interrupt operator, whose traces are simply defined

traces (p7 Q) = Ls ~ e s € traces(P) A bt traces(Q) ]

where 5" t is the catenation of the two sequences s and t.

In general, for a long-lasting process P, a return to the start is not the
most pledsant way to deal with catastrophe. It would be much better to return
to the state just before the occurrence of 2 s l.e. on each occurrence of L/Z
P just carries on from where it has reached sco far., The behaviour that we
wish for can be specified as the arbitrary interleaving of the behaviour of

P and that of a process which just engages in a series of 12 . Thls is Jjust

the behavicur of the process

P ” iy

where “U"j = ux.(g—nu

and ‘ ig parallel composition

In order to lend plausibility to P RUN|, as a specification of what we want, we

can prove using laws given in section 2 that whenever {z occurs it behaves

exactly the same afterwards as before, 1.e., for all its traces s

(p IIRUH&)/S = (p||nm3)/s‘<j> = (P/(sf‘dP)" RUN

Here Q/s (for s € traces(Q)) describes the behaviour of Q after engaging in

the events recorded in the trace s.



Parallel composition is the same as interleaving in this case, sinice

the alphabetsof its operands are disjoint.

In summary, what we have been given is ’1; and what we want is P|| RUN:Z . 540 the
problem is to find sowe function F transforming the first into the second.

In theory, the function F would be easy to define. (hint: P " S'K}Pﬂ behaves
the same as P). In practice, there are additional constraints to be sar_isfied,
which will rule out such formal tricks as preventing the occurrence of

a altogether, In this particular case, the additional constraint is that
/l; be chained in between two pipes PRE and POST, which filter its input and

output respectively. 5o the solution must take the form
A
PRE >> P >> POST

where the chaining operator >> is defined te link the cutput channel of its
left operand to the input channel of its right operand, and to conceal the

communications which pass on this internal channel.

Readers will notice that the introduction ©f the input Ilnterface PRE and the
output interface POST involves at least one level of buffering on the input

. ~

and output of P. Therefore this fact must be reflected in our definitive

statement of the problem:

Find processes PRE and POST such that for all deterministic P
-~

PRE >> P > POST = (B >> P > B) ||RUN$

where B is the singie - buffering process:

B = left?x—3 right!x —5B

To simplify the solution, we suppose that 5 is in the alphabet of the processes
PRE and POST; and we extgnd the definition of >> in a natural way to ensure

the accurrence ofé requires simultanecus participation of both its operands.
Thus in the salution outlined above, whenever é occurs, all three processes
PRE, ,P\ and POST know about it at once., Furthermore, we may assume that all
pipes being examined are deterministic - a fact of whichour solution will

take advantage.
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The solution method we adopt is one that 1s fairly widely used in interactive
systems. PRE records all messages input; after an occurrence of :Land befare
inputting apy further messages, PRE feeds all these messages on again to?
{which s restarted as a result of the same occurrence of ;’Z ). Smilarly,
POST keeps a count of all messages output, and ignores that number of messages
output by/l; after an occurrence of . The only subtle point is to ensure the
correct outcome even when 2 occurs in the middle of the recovery procedure.

The forml solution of this problem and its proof of cerrectness are given

in section 3,

For a loeng-lasting process, the solutlon described above suffers from two

severe drawbacks:
1. The delay involved in recovery grows linearly with the passage of time.
2. The storage required by PRE also grows linearly (and POST logarithmically],

The solution to these problems is to introduce a checkpoint facility, triggered
by a speciil event @ The process Ch(P) is defined to behave like 3, except
that each sccurremce of sends it back to its state just aFter the most
recent occurrence of@, or to the beginning if@ bas not yet occurred. Any
accurrence of@ has no other effect on the behaviour of P. This operation is

defined in [Hoare] on deterministic processes by the following laws
LI Ch{P) = Ch2(P,P)

L2 if P = (%x:B— P{x))
then Ch2{P,Q) = (x:B — Ch2(P{x).Q)
|4 —emrq.0
D €. —>ch2(pP,P)}
Here L2 is suggestive of the standard implementation method. P is the current

process and Q is the checkpointed process, waiting to be reinstated on the

next occurrence of ﬁ , or superseded on the next occurrence Of@ .



The improved solution can now be specified:

I

Find a pair of pipes PRE and POST, containing bothi and @

in their alphabet, such that for all deterministic P

PRE >> Ch(P) »> POST = (B >» P >> B) n RE{Z ©§

The solution and its preof are gaven in section 4.

Before embarking on the proofs, section 2 contains a summary of the algebraic
laws which will lve used. Some of them are somewhat simpler and/or stronger
than those of [Hoare] because they apply only to deterministic processes,

which are therefore free of divergence.

In future we shall use the following abbreviations:

B, = B/<m> (=!'x -8}
BPFB = B >> P > B
BIP/s5)B = B »> {P/s) >> B

B {(P/s)B =B >> {P/s) >>» B, etc
x Y x Y

We alsc define

PRUN ﬁe Runz || STOPElEft'rightg

This is the pipe which has channels left and right in its alphabet, but
never uses them; it only engages (forever) in theﬁ event
[
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2. Ceterministic Pipes

In this section we are concerned with processes which input cnly cn a
channel named 'left' and output only on a channel named 'right'. Such
processes are called pipes. We also allow pipe to engage in events from

a fixed alphabet A. Thus our definition is slightly more general than that

given in [Hoare].

Two pipés P and Q may be joined together so that the output channel of P

is connected to the input channel of @, and the segquence of messages output
by P and input by ©Q on this internal channel is concealed from their common
environment. Furthermore any event in A requires simultaneous participation

of both P and Q. The result of connection is dencoted

P » 0

We will save space by omitting the channel names 'left’ and ¥ ight' from input
and output compands. We also suppose that all pipes being examined in the

rest of this paper are deterministic, and do nct diverge.

Now we intend to explore algebraic laws of the chaining operator »>, which

are based on the following basic laws presented in [Hoare].
(13 Law of general choice [Hoare, 3.3.1 L5]

{x:A 3 P[] (y:B—30(y)) =

(Z:{A UB) —>(if =z € (A-B) then P(2)
else if Ze (B-A) then Q(z)

else if z & {ANB) then (P(z) M Q(z))

In particular, when the left-hand side is known to be a deterministic

process, then the term (P(z)r\ Q(z})) in the right-hand side can be replaced

by eilther P(z) or Q(z). (1f AnB is nonempty, P(z) equals Q(z), since

otherwise the left hand side would be nondeterministic.)



{2} Laws for the after operator (ikare, 1.B8.3, L1-L3 and 2.6.1 L7]
{a) P/<> = P
Ea
(b) P/(s t}) = (P/s)/t

(c) (x:=B —)P(XH/(E> = P(<c>) provided that c¢ B

where P/s is the behavicour of P aftrer engaging in the events of the trace

5, and 1t is undefined if 5 is not a trace of P.

(d) f(P}/F¥{s) = [(P/s)

where f is an injection from the alphabet of P cnto a set of symbels s,
and the praocess f(P) is defined as one which engages in the event f (c)

whenever P would have engaged 1n ¢. The starred function f* is defined

by the fellowing laws
fr{<>) = <>

£* (<x> ™ u) =CE (xB™ £* (u)

{32 Laws of concurrency {Hoare, 2.3.1 L7 and 2.3.3 L2]

(a) Let P = (x:B —3>»P(x))
and @ = (y:C —>Qly))
Then (P uQ) = @op|len
where D = (BN C) U (B ~=tQ) U {C - = P)

and P' = Pz} if z & B
=P otherwise
and Q' = QIlz) if z € C
=Q otherwise

and = P denotes the alphabet of P.

u

(4t o lr = cefn gop @

where P tb} Q = 1iF b then P else Q

(r (| Q/a = /s tar) ” (@/ (sl e0))

where the expression {s{ B) denotes the trace s when restricted to events

in the set B.
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{4)

(a)

laws of chaining

The introduction of Boolean guards |INMOS] is a great help in
reducing the number of laws needed and the size of the calculations which

use them. A boolean guarded command is simply defined
b& P =P {b} STOP

An immediate advantage of this notation is that it enables us to

represent every deterministic pipe P in a fixed representation

P = (bla?x —5B10| b2ste —e2[] viB—P31y))

The special case when P cannot initially input is dealt with by setting
bl to false, sco that the first clause reduces to STOP, which disappears
because it is a unit of D . Similarly initial cutput is prevented by
setting b2 false, and initial participation is an event not possible when

B is empty.

In |Hoare] there are eight laws for chaining {(4.4.1). Use of Boolean
guards enable these to be reduced to a single expansion law, which serves

as an algebraic definition of the chaining operator.

Let P = {blg?x — Pl(x)D b2ete —3 P2 D ¥iB —3Pliy))
and ¢ = {cl&?x —y QI (x}D ce!f — @2 D y:C - Qily)}
Then F>>Q = ((T]] 1N U)4b2acl}T
where T = (bl&?x —)(Pl.(x) >> Q)

ﬂcZ&!f—){P »> 02)

Dy:Br\C —AP3(y) »> 03y )
and U= (b2Aacl) & (P2 >> Ql(e})

The first line of the definition of T describes case when the external
input by P takes pllace first; in the second llne the external output by Q
takes place first; and the third line describes simultaneous participation

by P and @ in an external event in which both are ready to engage.

The definition of U describes the case in which the internal communication

takes place first, so that the value of e¢ is transmitted from P to Q, but

the communication is concealed., 1In all four cases, the Process or Processes

which engage in the initial event make the appropriate progress, and they
continue to be chained by >>. A proof of this law is given in the
appendix.



(c)

The main diff iculty and complexity in the above law is the clause

(T l] Uy U which results from the hiding of an internal event

|Hoare, 3.5.1 L10j. Fortunately, if P >> Q is known to be deterministic
{and therefore free from divergence) we can simplify the statement of the
law to

P> Q=T H u

Proof: when b2 A ¢l is Ealse, U = STOP and T”U = T. In the othker case,
(T nujr‘\ U =T I]U, since (because of determinism) the two operands of M

are equal.

We come next to laws which show how the after operator distributes

through chaining. The proofs of these laws are given in appendix.

A deterministic pipe P »> Q may engage in an external event x 1f both

P and Q are ready for it. In this case, beth operands of »»> make the

appropriate progiess, and continue to be connected by >». Formally, this

is described by the law,

(P >> Q)/lx) = (B/<x>) >> (Q/<x>) provided that x ¢ A
and <x> ¢ traces(Pin traces(Q)

If P is ready to output a sequence of messages u to @, and Q is willing to

accept this seguence from P, then the internal communications take

place, so that the messages in u are trapsmitted from P to Q, but the

communications are concealed. The following law iLs just an obvious

formallzation of the informal description in terms of symbolic execution.

P >» Q = (P/right.u) >> (Q/left.u) provided that right.u € traces(P)
and left.u € traces (Q)

where right.u and left.u are defined

right.u = <> if u = <
= <right.u> “right. {u') otherwise
left.u = <> ifuw= ¢
= <left.ug> Vleft. (u) otherwise

where Uo and u' denotes the head and the tail of the sequence u respectively.
The laws given above for a deterministic chain generalise to three operands
(P >> Q> Rif<x> = (P/<x») >> (Q/<K>)  >> [R/<x>)

provided that x € A and <x> € traces(P}/\ traces(Q) ¢ traces(R)



54.

If s is a trace of Q, and P is willang to offer those input messages 1n

s to Q, and R 1s ready to accept theose oulput messages in s from Q, then
the internal communications may take place. Furthermore, after three
operands make ptogress, they will still be connecvted by >>. This informal

descripiion is most succincktly formalized in the law
[P >> Q>> R) = {P/right.ins(s)) »> (Q/s) >> (R/left.outs(s))
provided that s €traces(Q) and right.ins(s)etraces(P) and left.outs € traces(R}

where lins{s) = s ‘l kleft\g is the sequence of values input in the trace s,

and otks(s)y = sl trightg is the sequence of walues output in the trace s.



3. Recoverable PrIocesses

We return now to the first recovery problem, that of finding pipes PRE and POST.

PRE is convemently defined by mutual recursion with two parameters!

u the sequence of all values input so far

v the sequence of values that must be output before the next input takes place
Similarly, POST maintains two counts,

n the number of all outputs so far

m the number of 1nputs that must be ignored before the next output is copied,

The processes PRE and POST are defined:

PRE = PRE {<>,<>)

PRE(<>,u} = (?x ——3 PRE (<x>,u” <x>]|] 'IZ —3 PRE(u,u))
PRE (<x>™ v,u) = (!x—3 PRE( v,u) ull—,pnz(u,u))

POST = POST (0, 0}
POST(Q,m) = {?x —> (!x 7—>msr(0,m+1)1 {Z—a POST{m,m} }

i 4 = POST(m,m))

POST (n+l,m) = (?x —)POST(n,m}Dé—)POST(m,m))

where u and v denote the sequence of messages.

The purpose of PRE(wv,u) is first to output the messages recorded in v, and
then to behave like PRE(<>,u}. Similarly, the purpose of POST{n.,m) 1ls to
input and ignore any sequence of n messages and then behave like POSTIO,m).

These facts can be formalized and proved as simple lemmas

Lemma 1

{a) PRE{u,v)/right.u = PRE (<>,v)

(b) POST(#v,Hu)/left.u = POST(0, Wu)

where right.u is the trace Eonsisting of outputs of all the messages in v, amd left.v is
the trace consisting of all the messages in v, and Hu is the length of

the sequence u.

Proof:
(a) By induction on the length of u
(G) Far u = <
FRE {<>, v )/right.<> = PRE(<>,v) /<> def of right.

= PRE (<>, V¥ ) L2(a)



(1} Assume the inductive hypothesis

PRE({u, v ) /right.u = PRE(<>,v) for Hu = n

A .
PRE (<> u, w )/right.{ <x>"u) = PRE (<x> " u,v) /{<right. x>nr1ght.u)
def of right(<x>"u)

=(PRE{<x>" u,v )/<ight.xo)/rignt.u L2 (b)

= PRE(u,v )/right.u L2(c) and definition of
PRE

= PRE{<>,v ) the inductive
assumption

{b) Similar to (a}

In the following part of this secticn, we intend to show that

“~
PRE > P >> POST = BPB " RUNIZ

The technigue of the proof is one of quite general applicability: we show Lhat
each side of the equation is a scluticn of the same set cof guarded mutually
recursive definitions., In order to formulate these equations, we need to
choose an appropriate set of indices, where there 1s at least one index for
each "state' of the process. A common strategy is to use the traces of the
process jitself as an indéxinq set, or as 1ts main component. We deal with

the right hand side of the equation first

3.1 The right hand side of the equation

First of 21l we define for any trace of s of p
SERICER TSN RUN

C(x,s) = Bx(P/s)BY " RUNJ for <ly» = Last(sr {right )
By taking s = <> we get the initial eguatiocn

BPB iRUN{Z = A{<)

For convenience we introduce, for any pipe P a pair of predicates r? and r!
to indicate whether P is ready for input or output.

r = dm, <m> € traces(p)
]
r = dm. <Im> € traces(P)
In general we define for any trace s of P
? A
r "=
s 3 m s <?m> £ traces(P)

r = 3 m s"<lm> € traces(P)
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Lemma 2

1
BPB = (?x —> (BP/<7x> B {r } (Hg P/<!e> Bg {1 } STOP))

I]r 's1e —3(BP/<le>B))

Proof:

BEB = {2x —3BPB[ ]! & BE/<le> Be) L4 (b)

? — 1
(7% —slr ' — Bp/<?x>aU £ — Byb/<le> Be)

D r! & (7x —3 B‘P/<!e>Be|] te —»BP/<le>B)) L4{b)

= R8S Lt
Lemma 3

? 1
BLPE, — {1y —5(BP/<oBix 3 (ByP/<ten tr 1 sToP) )
?

D r & ?= ﬁBszé?x}BY)

Proof:

Similar to lemma 2.

Lemma 4

(a} A{s) = {?x —> (Al{s" <7x>) trs?i ©x, 8" <lex) §r ’tPRUN&,n
D rs!&!e —sA({s ™ <le>)

U bi,ms)) for s € traces (P)

(b) €fx,8) = (1y —>(A(s™<?x>) Fr cix,s” <les) trs'ipﬂmrz),
l] rs? & ?z —5C(z.sl‘<?x>)

l] ﬁ —C{x,5)) for s & traces (P)
and <!ly> = last (sf\ i:ight}}

Proaf (a)

Als)

BP/s B " BN i def of A(s)
= (?x — (BPA <70 B{qs?i (ByP/s™<1enBy rslt STOF)) ”RU‘N&

-]

4 —-)BP/SB" RUNj) lemma 2 and L3(a)

1
U £ &l'e —3 BP/5 <le>B " mmﬁ
= RHS Liibt
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{b} Similar to (a}

We have now reduyced the right hand side of our equaticon to a set of guarded
mutually recursive definitions of A and C. As is guite usual, these equations
are formulated in terms of elementary operators[l - . {Q . They do not contain

” ., »» or hiding, sc they conceal the original process structure of the formula.
That is why they are useful in proving identity of formulae with radically differing

process structures.

The time has come to apply the same technique to the left hand side of the equation.
If we canderive the same set of mutually recursive definiticns, then an appeal to

the unique fixed peoint theorem completes the proof of the solution.

3.2 The left hand side

Similar to A(s) and C(x,s), the processes A'(s) and C'(x,s) are defined for

any trace s of P!

A'(s) = PRE(<>,ins(s}} >> (P/s UZ—;;)) »> POST (0, H ouks(s))

€' (6,8) = PRE(<x>,ins{s)"{x)) >> (P/s"( faB)) >> POSTY (0, # outs(si-1)
where POSTy(0,n) = (!y—)POST(U.nHj,]j—)POST(n,n))
and  <Ip = last(sl iright}}

First, let us show that occurrence of i has no effect on the behaviour of the

processes AYsyand C' (x,s)

Lemma 5
{a} A'!s)/ql) = A'(s)

.

(b} c‘(x,s)/<3>= C'i(x,s)

Proof:
A~
(a) LHs = (PRE(<>,in5ts)}/<z>) »> (1p/s” (f"p”k1 ) s> (POST(O,#outs(s))/(z >1

L4{C)

-
PRE(ins(s) ,ins(5)) »> P >> POST(#outs(s), #outs(s))

Lz4{C) and definitio;

PRE, POST and P

(PR—EU-US‘S],inS(S))h"}b_lns[s)J 2> (P/s} >> (POST (Houts(s),Mouts(s) Aeffoutis)
L4 (C)

A' (s} Lemma 1 and definit.

~
of P

(b} Similar ko (a)



Corollary
? !
1f neither rg nor rg¢ is true, then

At (s) = RUN'g

)

Proof

il

a'(s) ﬁ —> Pﬂ.E:(ins(s],irls(s))>>’-l\3 >> POST{#outs(s), #outs(s)) L4 (b}

7 — nis) Lemma 5

Now is the time tc reduce the left hand side of the equation to a set of
guarded mutually recursive definitions of A' and C', and to show that both

sides of the eguation meet the same set of recursive definitions.

Lemma 6
The processes A'(s) and C'(x,s) meet the same guarded recursive equations as
Als) and C(s).

Proof: (d}

A'(s) = (?% —>» PRE (<x>,ins(s) <x>) »> ((p/s)Ag—.pn >> POST (0, #outs(s))
D é I——> PRE (ins(s),ins{s)) >> B >> POST(#outs{s),Houts(s))
[ & PRE (¢ ,ins(s]) > ({p/s <lex)” (j—:vP)) >> POST_ (0, #outs(s))
L4 (b)

= (7x a(rs? & (PRE(<>,insis) <x>) »» ((P/s"<?x>1"(i—-3n 3> POST (G, Houts(s)))
|] rs! & (PRE(<x>,ins(s) <x>) >> uP/s“<!e>J“(k-»?m >> POST_(0, #outs (s)) )
A
[I ﬁ — PRE(ins(s)ﬂ<x>,in5(5)"<x>) >> P »> POST (#outs(s),Houts{s))}
Df ~> A'(s)
[ rs! & {7x - PRE (x>, Las(s) <x>) »> ((p/s‘c!e>)“('l{—>?n >> POST, (0, #outs (s})

[] le —» PRE [(>, ins (s))} »> ((p/s"ue))“{g—;/ﬁ) >> POST (D, Houts(s)+1}
U ? —PRE(ins(s),ins(s)) >> P >> POST (Houts(s),H#outs(s))))

Lemma 5 and L4 (b}
= (7x —=> (A'(s <°x>){r $(C'(x,s <'e))ﬁr }PRUN'IZ)

1
l] T & le — s <le>)

Corollary of lemma 5
” i»a'(sjl and Ll
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Theorem 2
~
BEB IRU‘N& = PRE >> P >> POST

Proof:
From lemma 6 and the unigue fixed point theorem it follows that
A'(s) = Als) for s ttrraces(P)

By taking s = <>, we complete the proof
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4. Recoverahle Progesses with Checkpoints

This section is dewvoted to the second recovery problem, that of finding a pair of
pipes of PRE and POST, containing both f} and@in their alphabet such that for all
4

deterministic P

PRE >> Ch{P) >> POST = BPB ” RU’N&@}

Here PRE has the same parameters as that defined in Section 3. But BOST is with

an extra parameter u, which records the sequence of messages which has input but

not yet output.

The technigque adopted in Section 1} will be used again; we will show that each
side of the equation is a solution of the same set of mutually recursive equations,

and choose the traces of P as the main part of an indexing set for the equations.
Definition

The processes PRE and POST are defined
PRE = PRE (<>, <>)
PREfu, v} = (& — PRE(v,v)

I] © - PRE(u,u)
” u$ <> &'ty — PRE(u',v)

D B o= <> & Pu —3 PRE{<x>, v “<x>})

POST = POST{<>»,0,0)

 POST{u,n,m) = (Z—,\ POST (u,m,m)
[l © —* POST (u,n,m
I] u § <> & tu  —3 POST(<>,n,m)

ﬂ (u = <> V nf0)I82x —> (POST {u,n-1.m) {n#0pPOST (<x>,0,m+1)})
\
where n,m » 0 and u, v denote the sequence of messages.

Furthermore, foxr any trace s of P we define

Q'{s,t) = PRE(<>,ins{s-t)) >> Ch2(F/s,P/t) >> POST{<>,0,Houts{s-t})

for t & s



62.

R'(x,s,t) = PRE(<x>,ins(s-t) <x>) >> Ch2(P/s,P/t) >> POST (<y>.0,
for t £
and <!y>

where s-t is the suffix of s obtained by removing t from s,

By taking s = t = <> we get the initial equation

PRE >> Ch(P) >> POST = ' (<>,<>)

Similar t¢c lemma | and lemma 5 we can show the following results

Lemma ?

(a) PRE{u, v )/right.u = PRE(<>,v)

(b) POST(S,#u ¥ v)/left .u = POST(S, O, §v)

Lemma 8

(a) Q (s.e)kf> =Q'(s.t)

(b) R'(x,s.tl/<f> = R'(x,s,t)
Corollary
? !
If neither rg nor r, is true, then

Q' (s,t) = PRU'N'&, @

Lemma 9

{a) Q'(s,t) = (?x—-;.(Q'(s"@x),tJ{:rs?p (R (x,s5™ <le>,t){ .—slstRUN i
D rs's.!e — Q' ("¢ e, )
H g —>o(s,1)
D ©—* Q" (s,5))

£ 5

#outsis-u)?

= lasti(s r EI‘tht})

'©))

‘(9; R' (x,s5,t} = (ly — (' (s/<?x>,t)fr ?}(R'(x,s"aw,t)tr !bPRUN'jJ©J)

U re’a?% — > R'(z,5 " <¥x>,t)
I] i — R'(x,s,t)
D ® = R'(x,5,5))

Proof

Similar to lemma 6



Theorem 3

BPB“ RUNf @

Proof:

and

For any trace s of P we define
5,t}) = BP/s B RUN
Q(s,t) /s 8 || b, ©
R{xX,5,t} = ByP B RUN
( Fl ) b3 /S Y ” 2 ) @

From these definiticns it follows that
Qis.t)] = Q(s,s)
Rix,s,t) = R(x,s,s)
when s= t = <> we obtain
BPB " RN = Qoo
b.©

Morecver we have

= PRE »> Ch{p} >> POST

for t £ s
for t £ s

and <ly> = last (s Erlqht})

provided that t £ s

1
Q(s,t) = (?x —(BP/s <?x>3{zs?}<ﬂkp/s <!e>Be{r5'}STOPj) " RUN&: ©

5

l]& — sBP/S B “ RN,y
U &)—> BR/SB || RUN'Z (d

r
=(?n —3(Q(s" <>, ) rs?i(R(x,s"(!e),t}{rs')FRUN& -

I rstle —>Q(s<le> ,t)
U 2 —3»Q{s,t)

H @ —~——Q(5,5))

Similarly we can show that

Rix,8,t) = {1y — (D (s <2x>,t)k rs?*(ﬂ[x,s"(_!e>,t)¥rs!;)PRUN} @
g

? A
rg &7z-» R (2,8 <7x>,t)

H 2—JR(X.5,t)

D J —3B(x,s5,5))

H r !&!e — HP/s <le>B ” RUN& '@

lemma 2 and Ll{a)

L3(b) {¢) and since
Q(s.t}) = Q{s,s}

]

Thus we conclude that the processes Q(s.t) and R{x,s,t) meet the same guarded

recursive equations as ¢'(s,t) and R’ (x,s,t) and they must be the same.

In particular, by taking 5 = t = <>, we obtain
PRE >> Ch(P) >> POST

BPB "RUNz ,©= Q<> , <>} = Q' (<> ,<>) =
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Discussion

For the particular problem treated in this paper, algebraic methods seem much
preferable to more familiar assertional techniques [Hoare, Zhou). There is
insufficient experience to generalise this conclusiony perhaps in sume cases a

mixed approach would be the most effective.

Nevertheless, even for a grossly over-simplified problem, the algebraic calculations
are non-trivial. This probably has to be accepted as inevitable in any sericus
application of mathematics to engineering. The calculations can be simplified by
prior development of a calculus adapted more to the specific needs of a problem.

It will be interesting to see how Far such calculi are applicable toc more general
classes of preblems; but it seems quite likely that they will net. Again, we may
have to accept that each application will require derivation of specialised laws

to control its complexity.

It would be interesting to explore more realistic problems and selutions. For

example:

{1} Extension of the present soluticon beyond pipes to any number of input and

output channels. Here the problem and its solution are sketched out.

Let F be a process with £ input channels l.left ..., £.left, and m ourput
channels I.right, ..., m.right. ILet G be a process with m input channels
1.left, ..., m.left, and n output channels l.right, ..., n.right. We

suppcse that they are also allowed to engage in events from a fixed alphabet A.

.P and ¢ can be joined together so that the output channels l.right,...,m.right of F
are comnected to the input channels 1.left, - m.left of Q respectively, and

the sequences of messages output by P and input by ¢ on these internal channels
are concealed from the common environment. Moreover, any event in A reguires

simultanecus participation of both P and Q. The result of connection is

denoted by
Py Q

Whenever we connect P and @, we assume that these connected channels are

capable of transmitting the same kind of messages.

o i.right (P) = ai.left(Q) for I‘(- i¢gm



el tnrtion
et P Le a provrss with ‘elnput channels i.left, ..., £.left, and w cutput

<hannels ).right, ..., m.right. we define

Bra = Ry e P > n Hm

1
.
=

whe te B
1¢1 4§

b
ancd Bm = ‘ngt.l,B

and the procoss 1:B Qs defined as one that engages in the communication i.c.w

wherpever B would bhave engaged in the communication c.w,
Wee are required £o find the suitable processes PRE; and POSTm such that

-
BPB RUN = PRE > P o>> FOST

g [4 [ m m
1n fact, the structures of PRE, and POST_ are similar to those defined in
Section 3. Here wa only formalize the process PREe, and leave the definition

cf POST and the detailed proef as an exercise for the interested reader.
m

FREp = “ i:PRE
igig £

whera PRE was defined inm Section 3.

(2) Removal of the simplification that the i and {c) events are detected

simultaneously by all processes.

In Lhis case, it is not possible te impilement check pointing exactiy,
because PRE and/or PCST may continue te input or output after the@
but before the chackpointing message reaches them. The best that can

be done is to guarantee recovery to some point soon after (G

. - s 1 . .
¥hen the specification ik appropriately weakened, the lmplementation could

be based on the \deca of (Lamport].

{3) But perhaps the most serious simplification is the assumption that all Processes

are deterministic, For general non-deterministic processes, a full recovery

using the techniques of this paper is not possible; sc the specification must

be somehow weakened .



Ancother related problem is selective recovery in a distributed transaction
processing system. Here an operator at a console may deliberately wish to
fall back to his most recent checkpoint; but this should have minimal effect
on the behaviour of the system as observed by operators at other consoles.
It would be interesting if the methods used in this paper could be extended

to throw light on this intractable problem.
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Appendix

Pefinition

Let P and ¢ both be pipes. The process P >> Q is formally defined
P >» Q= (P[mid/right] |Q[mid/left])\ imid}
where \ demtes the concealment operator, and the process P[d/c] behaves the

same as P except that the channel ¢ is renamed by d.

The following laws of concealment in [Hoare, 3.5] are useful in exploring

the propert:es of the chaining operator
(1) 1f B\ ¢ = ‘13
then (:B 5 POONC = (0B (R (0)\ C))

(2) 1f BN fi] and is finite

then (x:B — P(x})\C = @0 (QU (%:B-C —> B(x}})
where ¢ = ‘—)I P(x)\c
x:BNC

(3 (e\CIs = ([ Ee\e
teT
where T = traces (P} M it | tr leap-C) = S}
provided that T is finite and s ¢ traces (P\ c)

Here we offer proofs for laws of chaining quoted in Section 2

(a) Let P = (bla?x —>P1(x)]] b2uie —yp2 [I yiB — P3(y))
and Q = (cu?x__)Ql(x)[l cZalf 2 D y:C — R3(y))
then P >» 9 = if b2ACl1 then (TD Ui\ U else T
where T = (bl&?x —» P1(x) >> @
[] c2atf—s p 5> Q2
ﬂ Y:BEC-— PI(y) >> Q3(y))
and Q= (b2acl) & (P2 >> Ql(e])
Proof:
LHS = (P[mid/right] || Qlmid/lefe ) imid}
(bl&?x —>P1 {x) (mid/Tight} || QImid/left)

D c2&! f—> P[mid/right}] “ Q2 [mid/left]
[ ¥BN ¢ — P3(y) (mid/right] ]| @ (y) Imia/lefr)
[} 62Acl) & midle — P2(mid/right] Il Ql(e) Imid/lefel)\ imidg
L3{c) in Section 2

= RiS Law 1.2 of concealment a



(b Let P = (bl & ?x_,Pltx)D b2sle ——3 P2 UyrBﬂPJ(y))
and 9 = (<l & ?x ”Q“")D c2elf —Q2 (] v:C — Q3(y))
and R = {d) & ?x—a-RI(xJD d2s!y - R2 D y:D —s RI(y))
1f p »>> Q@ >> R is deterministic, then
Po>»0Q> R= (bl & ?2x—3Pi(x) >>Q > R

Dd?& 'y — P 2> Q D> R2
IRE (BACHDY— PI{y) >> QI(y) >> RIly)
D (b2 s cl) & (P2 >> Qi{e) >> R)
U (cZAadl] & [P >> Q2 >> RU(E)}
Proof :

Similar to {a)

lc}
I. If P >> Q is deterministic, then
P >> Q) /ex> = (B/<x>) >> (Q/<x») provided that x¢ A
and <x> & traces {P)M traces{(Q)
Proofl;

wWe define
T o= it ] t ¢ traces(P{mid/right) || Qlmid/left])at r(iﬂ.eft,rightl Ua) = <x>1
From the assumption it follows that <x> €T

(P >> Q) fex> = {(P[mid/right} "Q[mid/left]/t))\ Emidg
teT

.

Law ] of concealment
{ (P [mid/r ight) u QImid/leftly o)y imia}

Since P >> Q 15 deterministic
({P[mid/right]/<x> “ (@imiastertl/ <\ fmia }

L3{d) in Section 2

I

(Pr/e<x>) 2> (Q/<n>) def of »>

2. If P >> Q is deterministic, then
P > Q = [P/right.u} > (Q/left. u) provided that right.u¢ traces(P}
and left.u e¢traces(Q)
Proof:
we define
T = it | t € traces {P[mid/right] “ Qlmid/leftlia tf (ileft.riqhtl ya = <>3
From the assumption we have
mid.u &traces (P[mid/right])
mid.u ¢ traces (Qlmid/left])
and mid.ur({left,rightl Un) = o
which implies that

mid.ue T



Thus we concluvle that

B >> Q0 =(P > Qi/< L2{a) in Section 2

=] {(P[mid/right} "Q[mid/left])/t]\ 2'““3 Law 3 of concealment

teT

(P [mid/right]/mid.u}

]

| (Qimid/1left] /mid.u) )\(mej

{(P{mid/right]) ”Q[mld/left]}/mid.u!\ imidi since P >> Q is delerministic

L3{d} in Section 2

= IP/right.u) >> (Q/left.u) def of >>
3. If P »>» Q>» R i5 deterministic, then
(B >> Q > R) /<> = (P/<a>) D> [Q/<udx} << (R/<x>)

provided that x €A and <x>¢ traces (P)O traces (Q}(\traces (R)
Prock:

Similar to (c).1

4. If P >> Q> R is deterministic, then

P >>Q >> k = (P/right.ins(s)) >> (Q/s) »> {(R/left.outs(s)}

provided that s ¢ traces (Q) and right.lns(s)étraces(P) and left.cuts{s)&€traces(R)

Proof:

Similar teo (c).2





