THE LAWS OF OCCAM PROGRAMMING

by
A.W. Roscoe
and

C.AR. Hoare

boratarg

Gxlord University Ccrr'g‘ut_ing (I

Wolison Building
Parrs Foad

Oxford CX1 3GD

Technical Monograph PRG-53
February 1986

Oxford University Computing Laboratory
Programming Research Group

8-11 Keble Road

Oxford OX13QD

England



Copyright © 1086 A.W. Roscoe, C.A.R. Hoare

Oxford University Computing Laboratory
Programming Research Group

8-11 Keble Road

Oxford 0OX13QD

England



CONTENTS

a. Introduction

1. The laws of occam:

Laws
Laws
Laws
Laws
Laws
Laws

Laws

of
of
of
of
of
of

IF

ALT
assignment
SEQ

PAR

declaration

of qL

pre-normal form:

Syntactic approximation

Proving additional laws

3. The normal form

- fule of substitution for expressions

- Three more laws

4. Conclusions and prospects

-~ Deciding the equivalence of programs

- Improving efficiency

- Transformation to a restricted syntax

appendix: B summary of the laws of c¢ccam

References

Page

O

12
13
14
18
20

46
59
61

69

70

73

76

78

B3



The laws of occam programming

A.w, Roscee and C.A,R, Hoare

Abstract Ope of the attractive featuras of cccam is the larga humber
of memorable algebraic laws which exist relating progrems. ue
investigate these laws and, by discovering a normal form for WHIL{-free

programs, show that they comgletely characterise the langusge's aemantics.

D, Introduction

Dccam [1_7 i1s a lapguage for concurrent systems, especially those
implemented on netwaorks of communicating processcra {transputers)., It
has been deeigned with simplicity and elegance as major goals. One way
in which this elegance manifests itself is in the large number of
algebraic laws which exist between occsm programs, The eim of thie
paper is to investigate the set of laws and to show how they completely

characterise the semantics of the language,

For simplicity we concantrate on a suyhasat of occam: timing,
priority, vectora, coenstanta, replicators and named proceasss (procedures}
are omitted, Our vergsion of occam thus contains only the essential core
negded to write simple programe. uWe expact that our work can readily be
extendad to versiors of occam containing thess featuras. The laws
given in this paper will ecarry over [with occasional modification) to
lsrger versions of the language, For theoretical raasons we will also
atd a few features to the language: multiple assignment, output guards
in alternatives and e divergent {racing) process, In other raspects ve
will Pollow the symtax and conventions introdueced in [R], in particuler
those regarding the parallel operator. (When writing a parallal conatruct
the programmer must deeclare which global variables and chamnels are to ba

assigned to each component proceas.)



A finite occam program is ane which is wHlLE-free. 1t may, however,
contein the racing or diverging proceas 1 {eguivalent to WHILE trua S5K1P).
Much of this paper is concerned with the analysis of finite programs,

This is bacause the absence of WHILF-lopps a2llows proof by induction.
This restriction doas not lose us any powar, hawever, because avary
occem program can be ldentified with the set of its finite syntactic

approximations {a term which is definsd pracisaly in the sacond section)},

The first saction liats the majority of the lews we requirs. UWs
s6e how each of the laws erises out of our informal understanding of how
occam conatructors work. UWe sse how algebreic laws allow us to give a
preciss and succinct description of esch cperestor, The laws giwven ars

a8ll congruences in the denotatlonsl semantics for occam reportec in [ﬁ].

The second section shows how the lews introduced in the firat section
can transform every finite progrem to a form whose only constructs ars
IF, ALT, multiple easignment end _|_(tha diverging process). Particular
attention ia peld teo ragularising thes use of fras and bound variables,
We pse how this work, together with continuity assumptions, allows us to

prove non—trivial laws additional tp tbose of the first section,

Even in this restricted form it is poesibla to write wssentially
different programs which ere nevertheless semanticelly squiwalant. The
third section igentifies a number of altuatione where such equivalences
can sriee, and cevelops & pormal farm for finite programs, Two normal
form progrems are semantically equivalent if mna anly if they are
syntactically equivalent in a aimple way. By shawing how swvery finite
program can be transformed tp normgl form we have thus produced s decisian
procedurs for the equivalence of erbitrary finite programs, Ap infinitary
rule besed on syntactic approximation extends this to general programs,

This proves that our set of algebraic lews (tegether with the infinitsry



3.

rule and substitution) is complete wlth respect to the given
denotational semantics. The algsbraic laws thue yisld an algebraic
semantice for occam that ies isomorphic to our chosen denotetionmal

samantics.

Finally we review the relative merits of algebreic, denotatlonal
and other forms of ssmentics, and in particular discuss posslble

applications of tha algebraic laws as transformation rules,

All the laws presented in this paper are summerised in an

appendix.

Even though the work in this paper is cast in terms of a specific
denotationpal semantics, most of the laws quoted must be true in any
reasonable abstract eemantics for otcam, UWe ingicate several places

where modifications may bs required for alternative undetlying semantice.

The work reported in this papsr owes much to the similar work for

an abatract veraiaon of C5F (i,e, with ao internal state) reported in /B J,



Notation

Throughout this paper we will observe the following conventions

within program terms

P,Q program fragments (processes}

c conditionsl

G guarged procsss

gy h,k guards

B,f general expressions

b boolean exprsssion

u parallel oaclaration

Ke¥yZ identifiers representing veriables
c,d identifiers repressnting channels

Lists of igentifiers and expressions ars denotad Xr B
respectively, x + Y, denotes the concatsnatlon of the lists x end y.
Occam syntax le ueually linearised as in Zﬁ_], and we fregquently use
such abbreviatlons as

4

= 1IF
ii; b, Py (=1 (b1P1, b

P2 Bafar BaPy))-
Pogslbly empty lists of procssses, conditlonals and guarded processes
are respectively writtan_g, E‘and £§ The most general form of an ALT

construct is thus ALT(().



free end bouno veriables

If P is some occam term and x is a varisole, we say that an
occurrance af x in P is free if it is not in the scope of any declaration
(other than a parallel declaratinn) of x in P, and bound otherwise. (These
notions can easily be defined formally.) Note thet x may occur btoth

free and bound in P.

free (P) denotes the set of all variables appearing
free in P
bound (P) danotes the sst of all variables appaering

bound in P

Zgimilar notions of free and bound occurrences can be defimed for channels£7

Substitution

b
1f x and y are variables, then F)[AJ denotes the result of
substituting x for every free occurrence of y in P, If x is bound at
any point in P where there is a free y, systematic renaming of P's

bouno variables ie carried out,

We similarly uyse tne notatione

(IR ARA RN

to denote the substitution of {lists af) expressions for (egual length

lists of) variables in (lists of) expressions. Note that in general

e is distinct fram
<x1, seay xﬂ)

f f
e 'Ix 1ea nx
1 n .




t. The laws of occam

1n this section we visit each occam construct in turn, and uncover
the laws govermning it, The set of laws given is not exhaustive; wa
reatrict ourselves to the laws nesded to translate finite programe to
normal form., Othaer laws can be cdeduced from these laws, either by
elementary manipulstion, or by structural induction on normal forms,
The laws we present hgre provide e clear description of the semantics

of each construct.

Befare detailing the laws, we must deciode exactly what we mean
by the term "law", All our laws hava the form P = § {P, (0 both being
expressions representing procssses), lnformally this must meen that P
"ia pssentially the seme ae" (, in that, to an observer who cannot detect
their internal structure, the behaviaurs of P and ) ara indistinguishable.
Further, since we will want to use our laws to transform subcomponents of
compound progrems, P = J must imply that E[F'] is essentially the same as
C[l]] for all contexts C [.] (progrems with a slot in which to place a
progrem segment ). Since we may wish to use our laws to tranaform an
inefficient program to an observaticnally equiwvalent efficient one, our
notion of eguivalence will be independsnt of the times et which evants
occur. Thus P = 0] does not imply thet P and J run at the sameg speed.
Neither, far similar reasons, doss it mean that P and O require the

sameg amount of store.

Maving eatabiished the broad principlas above, we hope that most
of the laws will seem "clearly trus". Nevertheless, it is helpful to have
aome underlying semantics by which to judge the laws. In our case this is
provided by the denctational semantics for occam raported in [_RJ. All
the laws we Quote ere congruences of that semantice in the context

(described there) of snvironments with unboundsd sets of free locations



and chanrpis, however, all laws myst be interpreted as conditional
upon both =sides being correct occam, in the sense that naither side
contains a Syntax error, we will assump that the evaluyation of every
occam expression yields a value (even though it may contain division
by zero or an uninitialised identifier}. Thus no syntactically correct
program in our restricted version of occam can contain an exscution
error. 1f the language were pxtended to incluce vectors the situation
woyld be more difficult, and some of our laws woulco have to include

exception conditions,

Thers are two limitations on the completely free use of our laus
in transforming occam, The first is that, with a few of our laws, it
is possible to transform a correct pragram C[P] (c [.] being a cantext)
to an incorrect one CE.]]. This is usually brought about by wiolating
the separation rules for PAR, The lews that can have this effact ars
merked (‘*), and hawve been set out so that only right to left use can
bring about this difficulty, These lews may thus only be used right to
left in contexts where syntactic corractness ie preserved, The second
limitation is that it is only occam procasses that may be transformed:
the lews do pot apply to guarded processes or conditionals, even when
they have the same syntax as processes, For example, the transfarmation
of

ALT (c?x SK1P, ALT(SXK1P ALT(d?x SK1P))) to
ALT {c?x SKIP, ALT(d7x SK1P)}

is invalid, even though, as a process, ALT SKIP P may be transformed to P,

Each law is given a name suggestive of its use, and a number.



1. Laws of LF

The [F constructor is used to select the behavicur of a program,
depending on the values of its wariables, For this reason it wili play

a wvital role in cur leter construction of a mormal form.

[ takes as its arguments a numper of conditionals. A corditional
is either a (boolean) expressicn and a process (b P) or an IF construct.
The first law permits us to unnest 1Fs, se thet all arguments are of

the flrst type.
{1.1) Gy 1F(G,)s Gy) = 1F(G s Gy ) <1F assoc>

This is not an associative law in the usual binary sense of
a * (bfe) = (a%0b) * c, but is analegous in the context of accam's

constructors, which can take an arbitrary finite number of arguments.

The second law expresses the fact thet in the process IF b. Di. it
i=t

is the first (i.e. lowest index) boclean guard to be true that activates

the corresponding Pi. Thus Pi only runs if bi is true and sech of

l:n,1 “re bi-'l is false.
¥ Fo ¥ ¥
1 = = ee :
(1,2) 11=F1 by Di 11;1 bi s where bi by Aesea —lbl_1»\bi
<1F priority™>
n
1f the boolean guards im 1F I::i Pi ere pairwise disjoint, then the crder
i=1

of composition is immaterial., (This is a Symmatry law, )}

n
(1.3) I b, P, = IF for any permutation =€ of {1 ver
1

11 o D) Pe(a)

provided b, A nj S false wharever i £ j

<lF sym>




1f two booleans guard the same process, they can be amzlgamated,

(1.4) Ir(n1 fe b, Py B) = lr(b,lv b, Ay C) ¢IF = v distrib>

2 2

A false gusrd is never activated, and so can be discarded.
(1.5)* IF{false P, C) = 1F(L) £1F — false unit >

If none of the booleans im If is true, the process tehaves like STOP
{i.e. it comes to a complete helt without terminating; a process
sequentislly composed with it is not allowed to start). Thus final

clausea of conditionala which are 5TGP may freely be added or deleted.
(1.6)* lF(E, b STOP) = 1F(L) £If =STOP unit >

if one branch of am lf construct is always executed, then the construct

may be replaced by thet branch,
{(1.7) 1IF{true P} = P ¢lf —trus unit>

The final IF law lets us deal with 1f constructs which are nested as

processes rether than as comditionals.
m m
1 = - i
(1.8) 1r(_c_, bil;:- bi pi) IF(E_,11=F1 Bab, Pi) <{A=1F distriby

This law will, of course, be used in combipation with <IF = assoc>,

which campletes the unnesting.

24 Laws of ALT

The ALT constructor allows a process to offer a choice of possible
communication options to its environment. The ALT constructor tekes as
arguments a number of guardec oroceeses, # guarded process is either a
guard and a proceas {g P) or an ALT comstruct., As with IF, there is a

law which allpwa us tp "unmnest'" ALTs.



10,

(2.1) ALT{nLT(_c._1), _[:,.2) = ALT{(G

(G, ‘92) <ALT assoc>»

This law does not have quite such a general form es that for IF (1.1},
However the general form of the law can be deduced from 2,1 and the

fact that ALT is fully symmetrical (see below),
The order of arguments im an ALT is immaterial.

n n

. - — .

(2.2) p}LT L‘.i = !f\LT Gﬁ(i) Tt any permutation of {1 ves n}
i=1 i=1

CALT =5ym>

The alterrmative composition of no arguments is STOP (the non~termipating

process which does nothing).
(2.3) ALT{ ¥ = S5T0P &ALT = STOP upit’»

This law is termsg a "unit" lew because, together with 2.1 and 2,2, it

says that S5TOP is essentially the unit oFf ALT,

Guards may be simple (SKIP, c?™, cle}) or heve & boolean component,
AL Ts with guards with boolean components may be reduced to IF combinations

of ALTe with simple guerds by the law
(2.8) AT(c&g P, G) = IF(b ALT(g P, G), -b ALT{G)) <« beolean guard elim>

In other words, a guard with a boolean component may be executed if and

only if the boolean is true.

A SKIP guard is always ready, ang its exacution hae no effect other

than to start the process which it guards, This esxpleins the law
(2.5) ALTISKIP F) = P LALT = SK1P identify >

A communication guard, on the othar hand, is executed only when the

procass at the othar enda of the given chamnel is also willing., The



(2.6)

{2.7)

(2.8)

{2.9)

11,

effect is exactly like the corresponding single communication atomic

processes

ALT{c?=x SKIP)

n

c?x Linput >

it
a
-
©

ALT{cle SKTP} < output»

1f an alternative is already present in an ALT, adding it again has no

effect, since the set of Blternatives available does not change.
ALT(g P, L) = ALT(g P, g P, &) & ALT idempotence

1n any executian of an ALT construct, it ia the first guard to

becoma ready which ia executed. If more than one guard becomes ready

at the same time, the choice of which one to execute is nondeterministic
(there is no left=to=-right precedence tule as with [F). We can deduce
from this thet iFf a guard g is used toc guard two different processes,
then whenever that guard becomes ready either copy may be activated, the
choice being invisible to the environment. The two guarded processes
can thus be replaced with a single one, where the process is ane which

nondeterministically chooses between the original pair.
ALT(g Py g €y §} = ALY(g ALT(SKIP P, SKIP 4), G} <guard distrib>

The laws abova do nat gquite catch the full rangs of equivalsnces
related to ALT with S5KIP guards. Three more laws reflecting fairly
subtle aguivalences will be introduced in section 3, when they ars

required, and can be better motiveted,

ue need a law For relating IF and ALT. It is a very simple law,
which marely observes that the wvalue of a boplean is unchanged by the
sxpcutian of a guard that doea not input to & variable appearing in

the bpolean,



12.

(2.70)

(3.1)

(3.2)

n n
IF b ;}Lr 9 p; = iF o ﬁ_uLT 5 {1F b pL)
i=1 i=1
pravided no variable appearing in b ois input in any 9, L IF= ALT distrib»

Pernaps surprisirmgly, this lay is the anly one we will need
relating IF and &LT. An example of how it can be used to derive an

apparently meore powerful law can be found at the and of section 2,

3. Laws of assignment

wn Occam process may assign values to its variasples. The atomic
agsigrment process in pccam is xi=e, which evaluates the expression e,
aesigns the result to the location denoted by x, and then terminates,
As described in tne introduction, we allow multiple assignments, of tha
form x:=e where x is a 1list of distinct variables, and g is an egual-length
list of expressions, The components of e are evaluated, the results
are then all sssigned to the locations represented by x, and the process
than terminates., The empty muitiple assigrment terminates without

changing the state .
(> =<>» = GKIP 3 <SKIPX

The aorder in which the expression/varisble pairs appaar is of no

Conseguence.

=1 saa N> = <E.‘i*—:‘| ees A
= s =1 ... = =1 ...
<x“‘(i)ll A TTHE n>

for il any permutation aof {l e n} <assignmant sym >



3.3)*

{4.1)

(4.2)

X
{6.3) SEQ

k

(4.4)

The assignment of a variable's own value to itself has no effect.

X+ y =8+ < identity assignment >

J, = xi=g
There will be several laws later on which show how assignment intaracts

with the various constructs of the language,

4. Laws of SEQ

The S5EQ constructor runs & numoer of processes in sequence,

If it has no arguments it simply terminates,
SEG( ) = SKle < SEU = SKIP unit>

Dtharwise it runa its first argument until that terminates and then

runs the rest in sequencsa.
5ey (P, P) = 3EQ (F, seu(P)) £ 5EQ assoc >

It is possible to use 4,1 and 4.2 tu transform all occurrences of S5EQ
within a program to binary applicetions, and in our transformation to
normal form we will always do ttis. Thus the remainder of our laws

for SE4 are cast in binary form,

When P does not terminate immediately, SEQ(P,G)'s iritial behaviour
is just that of P, Thus 5EQ distributes owar both IF and ALT in its

left argument.

Fo. e, = fFo, sealp,, o) C€5EU~1F distrib®»
N 1 1 N 1 1
i= i=1
n n
SEi (ALT g, P,y Q) = ALT g, 5EQ{P,, ) < 5EQ - ALT distrib »
i=1 1 1 i=1 1 1

On the other hand, when P doess tetminate immedietely, SEQ{P,3} bghaves

like ( mooified to teke account of eny assignment by P,



Thus the compound operatar SEQ (:::3_, . )} can be oistributac over

both If and ALT in a limited way,

Xx n o
{4,5) 5[0(5_==§_. 11=F1 b, F'i) =i£1; Di [“’/!] 5ED(5:= .Pi) < apsignment ~ IF distrioy
) 3 n n 3
(4.6) fa({x:=m, ALT g, P.) = ALT g, [7,] SEu{x:=s, P,)
B TS B iz b oo

provided no variaole which occurs in % or e is
L =]

input in any G;e « assignment ~ ALT distrib%

The spquential composition of two assignmenta to the same list of wariables

is eavily combined to a single assignment,
(4.7} SEQ(xi=g, x:=f) = i::f‘li-e-/él £ combine assignments

The sajuentiel composition of a peir of assignments to differant lists of
variahles may be reduced to @& single assignmant wsing this law with 3,2

and 3.3,

5. Laws of PAR

Tha occam parellel operator takes a number of processes as arguments,
and runs them copturrently, with the possibility of communication betwsen
tham, Communicetiorn is the only way two parallel processes can affect
one another, so ona parallel process cannot access a variable that another
one cen modify, No channel may be input from nor owtput to oy more than
ore of the proceeses. In this paper {as in [ﬁ]) we insist that each
parallel process declares which global variables it wishes to be able ta
madify, end which global chennels it wishee to be allowed to input from,
output to, or use privately. In the sarlisr paper this permitted the
gyntactic datermination of the environment in which sach component process
ahould run, In this paper thera is an aoditicnal reeson: it would be

unfortunete from the point of view of algedraic laws if tha channel ana



variable alphabsts of parsllel processes were determined purely fram

the syntax of the component processes, Manpy of thas most usaful trans-
formations (e.g. the expansion rules below) would became invalid,

because on changing the syntax of the camporents of PAR, alphabats might be
significantly altered., {(for example, Oy commuting a communication

through a PAR using 5.6 or 5.7, one might apparently remowe it from

the alphabet cof the corresponding process., )

The syntax of thesa "parallel declarstions" is unimportant; a

suitable one may be Found in /R/.

A PAR command terminates as soon as all its componente have. Thug

the ampty PAR terminates immediately.
(5.1) PAR{ )} = B5KIP <PAR = SKIP unit>

PAR is an associetive operator, provided suitable provisions are mads

for alphabets,

n * n
(5.2) 525 be, = PuR(u1.p1, 1] :(Eig ui.pi)) (n»0)
whera u* is the union of U2 con Un: <PAR assoc >

(IJ* claima all variables and private chanpels claimad by the Ui' claime
as input {output ) chamnals all channels occurring only as inputs (outputs)
among tha Ui' and claims as private channels all chapnela occurring bath

85 an input and as an output among the Ui')

As with SEQ, we will alyeys uae 5,1 ang 5,2 to reduce PAR to a bimery
operator when transforming to normal form, Thus the rest of the laws
desl only with that case. Firstly, PAR is symmetric, because the

ordar in which processes are combined in parallel is immaterial.



I6,

{s.3) DAR(U1:P1, UZ:PZ) = PAH(UZ:DZ, u1:|31) ZPAR sym>

If one of @ pair of parallel processes is 8 conditional, then the
cholce represented by that conditional may be parformed before the
parallel construct is antered, provided the choices are exhaustive

(so that the conditional cannot stop the PAR being entered),

* n n
(5.4) DAR(U1:_I_F bl Pis Uz:l]) = IF bi cAﬂ(ulzpi, UZ:L.I)
i=1 i=1
provided b_l Vaessv hn = true <PAR ~ IF gistrib>

If two multiple assignments are combinred ir parallel, then the effact
ls that of & single multiple assignment, (Note that the conditions an
use of variables wlthip PAR mgan that ths variables of x below do not

occur in yi=F, nor thoss of y in x:=e)
2 S S8
(5.5 f PAR(U, sx:=g, U sy:=f} = X+ y:i=8 +F <PAR assignments>
1 e 2 .1 - .1. - -

If e nen—terminmated process is put in parallel with s termipated ans,

then only the non-terminated one cen procesd, It can percform any

action other then a communication with the tarminated process {which

clearly cannot egree to any communicztion}, 1In this context en

aasighment may be consibered "terminatad", because it cannot affect or

be affected by the othar process, and is free to terminate at any time,
(5.6)* If each g; has one of the forms c?x, cle or SKIP,

- i€X

n
H . P, ixi=g) = ALT g, PAR 1P, HE AL
then PAR(Y, 2;{ 9; Py Ui e} LT g, PA (U1 ir Upsx =8}

where X is the set of indices 16{1,2, vees n} such that

g = 3KIpP

er g, = cls and ceouts(u1] = ins{U,)

ar g, = c?7x and c€.ins(U1} - nuts(UZ) .

< expansion 1>



(ins(u) and outs{U) are respectively the seta of input and output

channels declared in L.)

If two non=-terminated processes are put in parallel with one another
then they can proceed independently on all actions except thaee which
reprasent communication between tham. If they agree on a communication,
this can occur as an intearnal (automatic) action, This explains the

following law for expanding two ALT constructs in parallsel,

n m
(5.7)* If P =ALT g, P, and § = ALT hj Uy whers each gi,hj has one of
i=1 j=1

L]
the forms c?x, cle or SK1F, then PAH(U1:D, UZ:Q) = ALT kr Rr' whare the
r=1

pairs <kr,Rr> are precisely all posgsibilities from the following:

(i) R =F‘AR(U1:Pi, UZ:D} and

k = gi = SKIP

r
= =c! -i

or k., =g5; =cla and ceoute{u1) LHS(UZ)
= = ? i - u

or k, =19, =c? and ceins(U, )-outs( 2)

{ii) A= PaR{u, :P, uz:qj) and

kK = h, = 3KI1P
T J
= h, 6 = ! -1
or ke j= ctle and ceouts(uz) 1ns(U1)
= = c? i -
or ke hJ. c?x and c£1ns(u2) outs(u,l)

(idi) AL = SEg{x:=e, PRH(U1:Pi. uzzuj))

k = SKIPF and
g, = cles end hj = c?x and ceina(uz) " 0ut5(U1)
or g, =c?™ and hj = cle and ceins(U1) " outs(uz).

< expansion 27>

(i) and (ii) abowe represent P and (b (respactively)} making indepandant

progress. (iii) represents the effecte of communication between P and Q.



18.

(6.1)

{6,2)

(6.3)

{6.4)

6. Laws of declaration

The construct uAR xy

can xn:F‘ oeclares the variables X, ees X fer

use 4yitkin P, These variables are distinct Frem any ot her variables

with the same names that may be present in the external scope, It does

not ratter whether variables are oeclared in ome list or singly:

VAR x1=(Uﬂﬁ x VAR X 1P)u..) = VAR X, .aa X

21 rre

Nor does it matter in which order they are declared,

] e H = A : H
UAR x1.(VAH X, 2B} VAR x (uar LB A)

n

P £ VAR assoc

LUAR sym >

1f a declared variable is never used, its declaration has no effect.

VAR xzP = P if x ¢ free{p)

Z VAR elim >

One can change the name cof a bound varieble, provided the new pame is

not already used For a free wvariable,

VAR x:P = VAR y:ﬁ[%(] if vy & free(r)

< VAR rename »

(Note tnat any clashes of y with bound variables of P are dealt with

by the renaming implicit in the substitution operator.)

Germerally speaking, the scope of a bound variable may be increased

without effect, providec it does not interfere with another variable

with the same name. Thus each of the occam constructors has a

distribuwion law with declaration, The first two say that iFf each

component proceas of an IF or ALT oeclares the variable x, and that

variable does not clash with the booleans or guerds, then the

decleration may e moved ocutside the constructor.



(6.5)

(6.6)

(6.7)

(6.8)

(6.9)

n n
ALY g {vaR =:P. ) = VAR x:(ALT g, P )

i=1 i=?

provided x is free in no 8 <VAR - ALT distrib»
n n

IF b, (VAR x:P,} = VAR x:;(1F b. P )

j=1 1 i i=1 1 1

previded x is free in no Oi £ VAR — IF distrib >

Note that it is possible to deal with casea whers x is only declared in

a few of the Di, but is not free in any othr, by ueing 6.3,

Two laws are required for SERQ, one for sach of its arguments.
SEG(VAR x:P,Q) = VAR x:5EQ(P,Q) if x¢free (0) LVAR = SEQ 1
SEQ(P, VAR x:0) = VAR x:SEQ{F,Q) if x & free (P} LVAR = SEG 2>

The law for PAR takes into account the fact that, when a declaration
is moved outside the constructor, the process that uses it muat now

declare the Fact that it might want to use the variable dsclared,

PAH(U.I:(VAR x:pAy, uz:u) = VAR x: PAR(uf:P” Uz’pz)'

provided x is not free in U2=p2' whare U, is Uy modified ta include a
declaration of the variable x {in the notation of fR/, it is the wnion

of U, and USING( VAR x}).

4
ZVUAR —PRA >

When a varianle is used for inputting, the affect is the same as that
of inputting to a completely new variable, and then mssigning to the

original ons,



20.

{6,10)

[6-11)* VAR x:{<x> +_x) i= (z_e‘)+_£‘) = VAR x:(y :=

(6.12)

(6.13)

ALT (c7x p,g) = VAR y: ALT(c?y SEd(x:=y,P), G)

provided x £y and y is not free in P or_g < input renaming >

There is no point in assigning teo @ wariable at tha very enc of its

scope, since the wvalue given to it can have no effect,

3 < assignment alim

The final law of VAR is reguired to deal with uses of uninitialised
wariables in expressicons. Upon declaration a variable may take any
walua, the choice being nondeterministic, 1Its valua remains constant uptil
it is assigmed or imput to, Thus the value of one uninitielised variable
may be replaced by that of ancother, provided it has not yet been read and

the value of the second variable is useo nowhere else,
VAR x:P = VAR xtSLO{vAR zi{x:=z), P) < initialisation>

It tyrns out that we only resd ope lew to deal with channel declarations:

an elimination rule analogous to {(B6.3).

P = i f .e
CHAN c1 PR Cn.P P if pore o C1 . Cn appears

free in P. < CHAN elim>

The reason for this simplicity is thet our normal form will eliminate

all PAR etonstructs, and hence al]l internal use of champels,

7 Laws of L

Recall that .\. is the divergent proceas WHILL true SKIP, In
practice this process may oe consioered broken, for pot only will it
nevar imteract with the outside world, but what is worse the environment
can mever detect thie fact. (Seeing that the process is still performlng

internal actions, an observer can never discount the possibility that it



might still do something,) A divergent process can also pe regardsed
as having the most undefined behaviour possihle, since it ferewver
performs internal actions in an effort to decide what its behaviaur

will be, but neEver makes any progress,

with this philecsopny in mind, we postulate that the divergent
process is the worst possible. #ow, in general, Lif P's behaviour is
more predictable than that of (§, we must ragard P as better (since
whenever (] will guarantee the success of some axperiment, so will P),
we ere thus forced to identify - with all procasses that might
diverge (before daing anything else), It 1s guite raassonable to maxe
this identificatian: in practice, e process which can either behavs
correctly or diverge will probebly de the Fformer while it is being
tested, but will dec the latter when it ias being used in earnest, Putting
it more simply, a racing program is always a programming errar and may D8
considered breken. Wwe therefore chogse the simplest and most canvenient
laws, which state that almost any program made from a broken compenent

is itself broken.

Our philosaphy gives rise to a number of laws, Ffirst, a process

that can eutomatically choose to diverge must be identified with L. ,

(?.1)1K aLT(skie L, §g) = _L <ALT =5KIF zero»

an

it is clear that, if the first operand of a SEJ construct can divergs,

sc cen the whole construct.

t 4

(7.2) seg( L, P) = L <SEQ left zerp)

1F the first operand aof a 5tu terminates before interacting with its
enviropment, divergence in the second argument yields divergence in the

whole construct,



22.

(7.3) 5[9(5:-.-5. 1.y = _L C5E0 right zero»

Divergence in ons operand of a PAR may give rise to divergence in
the complete construct, since an implementation may choose te run

one arqumernt until it cam proceed no further befocre ruynning anothsr.

"
(7.4) saR(uge L, U eP) = L L PAR zere >



2, A pre=normal form

The first section introduced almost all the lawe one reguires
ta characterise the semantics of occam. Unfortunstely it is not
satiefactory merely to state this; we must find some way of demonstrating
it. This is sspecially true because we slready have a denotational
semantics; we weould like the laws to yield the same gpguivalences.
Even if we had no standard semantics to characterise, it woulg still ba
neceesary ta inveetigate the structure of the classes of inter-
transformable praograms, because it is only this that reveels the true

power of a set of laws.

As explained in the introgucticn, our method of demonstrating the
power of our laws wlll be the discovery of a normal form for finmits
programs. Every such program will have a normal form eguivalent (lhrnugh
transformation), but two normal form programs will have the eama value
in the odenotational semantics only if there are (at most) trivial

syntactic differences betwesn them,

A normal form must therefore exactly captuyre Qur ideas about
denotational equivalence, This gives rise ta a number of interrelated

problems, all of which need to be solved before we have a normal form.

a) We need toc characterise a procese' behaviour as a communicating
agent, 1n othar words, we myst identify a unigue way of representing
sach possible pattern of commynication a process might exhibit. for

example, if U1 and IJ2 are suitable parallel declarations, the processes

ALT(c?x d?y, o?y c?x) and

PAH(U,I 1c?%, U, :0?y)

2

are equivalent, and therefore have the eeme normal form,



24
o) we need to cnaracterise, relative to its communicating behaviour,
the ways ip wnich a process assigns to its variables. For example,
the following pair of programs have the same effect op the final state

and so have the same normal form:
x:1=3 ano VARy:SEQ(y:=3, z:=z, =xi=y, yi=b6)

There are important odistircticons that nead tou be made between processes

at the poundary oetween (a) amo {b). Considar the two processes

PMP(U.I:I:H, U, :ALT(d?x STOP, c%x g7x))

P

and a?x {u, and u, are suitably chosan).

Both preccesses have exactly the sama communicating Dehaviour (they

input along chanmel d), and when they terminate they have the same effect
on their free varieble x, However, the first proceas is atrictly less
deterministic than the aecond: it is not obliged to terminate successfully;
when comosed in sequence with another process the second process need not

be started.

c} The use of bound variaoles rneeds to be regularisad, 1n writing a
program, one coften has a lot of freedom in the usa of bowund variables:
not only ip where they are declared, but also in whether to declara a
new warisole or re-use an old one, For example, the fFollowing pair of

eguivalert programe must have the same normal form,
SEule?x, c?x, oOlx)

and VAR y,z:S5Ed{c?y, c?z, x:=z, glz}.

AP essential aid to the solution of (a) and {(b) above ia a calculus

for deciging the eguivalenca of expressiona, Ffor example, 2+2 = 4 = true,

and {x mod 3) + (x + 1 mod 3} + (x + 2 mea 3) = 3. Often we need to



gecide such equiwvalencas in the context of the booleans representing
the facts already known about the variables invplved., Ffor example
tre programs
1F
x mog 2 = 0
c:(x/Z)* 2
x mod 2 = 1
et{{x+1)/2) $2-1

and clix

are equivalent, because of the equivalences of "x" with *(x/2)% 2" and

"({x+1)/2)42-1" in the respective (boolean} contexts.

Because this issue, though important, is not really relevant to the
algebraic properties of occam, we will abstract away from it., Spacifically,

we will assume & knowledge of all true facts of the form
b1 l:: I::'2 for boolean expressions b1 and I:l2

meaning "in all states where b, is satisfied, so is DZI" Thus our later

1

completeness results are relative to this knowledge,

Our approach has the advantage of not tying us tp a particular
syntax and semantics for the space of expressiona, We do, howewver,
make freguent demands on the syntax and semantice of axpressions
representing booleans, the good behaviour of expressions under substitution
for their variables, and the fact that all expressions in occam are

evaluated without side-effects and without fear of non=termination {even 27/01).

The discovery of a full normal form is rather difficult. We
therefore introduca an intermadiate form to act as a conceptual and
technical bridge,., This will essentially solve the oroblems described

in {(b) and {c) above, as well as simplifying the most difficult problem,



26.

which is the one described in (a), The intermediate form is called
1F/ALT form, because it eliminates all uses df SE£Q and PAR, It has

a single parameter: a list of free variables.

de will say that a proram is in x- IF/ALT form if it has one of
the following forms,
1. the wholly unaefined, divergent process.

=g, a multiple (simultanecus) assignment to each fres
variable of x (the parameter of the form),

InF b, P, where sach Py is :.-IF/ALT an¢ the b, partition true
(i.e. Byv ane vb = true, and bin bj = false
whenever i # j). No variable free in thse whole
pregram is in any bound(P;).

where each Pi is A—lF/RLT, each 9; has one

n
VAR x_!,...,xm:QE‘]T 9; Pi

of the forms SKI1P, cle or c?xj. {x_l,...,xm-i are the
{all vistinct) variables used in guards of the third
type. They are disjoint from each boung (Di) and from
the comporents of Xe xj can appear frea in g:1 Di only
if 9; has the form C?x-i' No variable in x or free in
the whole program may be in any bound (Pi).

VAR x:P where x € free(P} but x is not a component of x,

Pisx ~1F/ALT.

Note that all assignments in IF/ALT programs are final (i.s. ocour
at the end of a program's run, just before it terminates) ano made only
to free variables. Also, because of the way a fresh bound wvariable is
created for every input, no varimole that contains a value relevant to
the program is overwritten until this final assignment. 1t is the
imtroguction of multiple assignments that allows us to reduce the assign-

ments in every program to this ferm, Not only do they bring symmetry



by temoving the order of assignments, but by allowing such assignments as

LXy¥y P> 5= LY XD
they will allow us to eliminate all assignments to bound variables.

Aoung variables are of two types. The bnes that sre boclared as
imputting variables are used only for inpput and subsequent use in
expressions, Variables declared in programs af the final type (VAR x:P)
can never be given a "proper” value (since they are neither input to nor
assigned to). They are thus, purely and simply, uninitialised variables,
which contain a mondaterministically chosen constant walue throughout the
life of P, Thus, in practice, all programs of this form would be rejarded

as erraneous.
The following is the main tpeorem pf this section.

Theorem 1. 1f x contains all the free veriables that the finite program P
sver inputs or a2asigns tp, then there is anvx'-lf-'/ALT program P*' such that
free{P') € free{(P) v x and P=P' is provable from the lsws presented in

section 1,

The proof of this theorem is that every such program cen be trans—
formed to_x'-IF/ALT using the said laws. A strategy for performing this

transformation is set out below.

The first step is to ktransform all 5Ed and PAR constructs to binary
applications { < SED -5K1P unit»(4,1), £PAR - SK1P unit® (5.1), <SEL assoc™ (4.2),
<PAR assoc»{5.2)). ALT constructs are then unnesteo (€ALT assoc)d (2.1),
<ALT sym>(2.2)) ano the boolean components of guards remavad
{ 2¢ALT sym>(2,2), <boolean guard slim>» (2,4)). 1F constructs are then

unnested <£1F assoc> (1.1},

The rest of the strategy Ls recursive, UWe deal in turn with esach

form a program might take,



28.

The atomic processes are all straichtforwaro:

5TOP = ALT( ) CALT=5TDP unit»{2,3}
SKIP = xi=x <3KIP» (3.1), <identity assignment > (3.3)
xize = xi=x [E/x:l Zassignmant sym> {3.2},

£ lidentity assignment» (3,3)
tte = ALT(cle 35::3;) <coutput >(2.7), <3KIP> (3.13,

<identity assignment > (3,3}
£ = VARy:;ALT{c?7y xi=x ny] )y where y is not a component DFJ',

- ey

<input> (2.6), < input renaming» (6.70),
<identity assignment » (3.3},
ZSKIE > (3.1), <assignment sym™» (3,2),
<combine assignmentad (4,7).

(Recall that, in IF/ALT, no free variables may be used for inputting.)

If the program P has thse fprm i[iF‘| t:i Di, we recursively transform
sach P, to x- IF/RALT, making sure (via < VAR rename »>(6.4)) that the

bound variables of the resulting pragrams do not collide with free(P).

1t only remains to make sure that the b, pattition true (< LF ~5ST0P uwnit > (1.6),
< IF priority» (1,2)) and transform any STUP tnus introouced ta ALT { )

{ CALT-5T0P unit»>{3,3)).

n
[f tha pragram P has the Fprm ALT 9 Pi, we recursively transform
i=1

each P, to x- IF/ALT Pi' (making sure that boung (Qi') n free{P) = g).
Upe then applies < input renaming®» (6,10) to each of the input 9, in tuen
(choosing a suitable variable), and < VMR assoc »{56.1) to collapse the
VARAX's thus created to a single declaretion, The reaulting program

looks like

n 1
SALT g, #,
m =1 1 1

Uon1 seaegX



h i = ! = "o ope =
where, if 9 SKIP or cle, 8, gi and pl p' and if gi c7x
then g.' = :'?xj and p." = SEQ(K:=KJ.. Pi'} for some j. The only thing
left to do ia to transform a&ll the P,"™ of tha second typa to

"
x-IF/ALT. This is dane by firat tranaforming x;=x_ to x:=x[ J/x] and
-3 ] o e

then applying the procedure set out under 5EQ below,

1f the program has the form S5Cd{P,Q) we recursively transform P
end 4 to x=- IF/ALT programs P' and Q'. We then apply the following
racursive procedure which, given P' and Q' in x- IF/ALT, transforms
SEQ(P',0") to x - IfF/ALT. The first setep is to ensure (using <VAR rename » (6.4)

if necessary) that free(P') n bound{Q'} = # and vice=versa.

IF Pt = L then SEQ(P',a') = L <SEQ left zero (7.2)

If Pr = IF b, P. then SEQ(P',q*') =
i=1 1 11
n
IF b, SEG (P;s0")  <SEQ-1F distrib>(4.3); each
i=

SEQ(ﬂi,ﬂ') is dealt with recursively.

n
1f P' = VAR x1...!m=BL]|- 9; P;» then because frea(d')a bound(P') = g,
i=
the declarstion can be moved outside the SEQ (& VAR assac »(6,1),

VAR =SEQ1 > (6.7) =0 that the pragram looka like
n L}
VAR x1...xm=sm(£§ 9; F;r @ )
Wea then apply & SEN0-ALT distrib™ (4,4) to obtein
n ]
VAR x1"°xm'2£j gi SEU(pil q )

and firally deal with the SED(Di,Q') recursively.

If P' = YAR x3P", then because x ¢ free(y'), the declaration can
be moved outside tha SEQ < VAR=SEQ1>{6,7); we then appaal to recuraion,
Tha program will! then have tha form VARy:R, If y is not free in R its

declaration ¢an be remoyed with £VAR elim>>(6,3),



If P = Xt=n we need to dgal with each case of ' separately,

1f 0t e L, then SEQ(x:=e, u') = L <SEQ right zero »{7.3).
.
If Q* = xi=f, then SEQ{x:=a, G') = x:=f ["x] ¢combine assignments)(4.7}.

If Q' = WARy3Q", then because of y ¢frsa (x::g) we heve

(=

SEQ{xt=m, Q') = VARy:SEU(xt=8, G") and can then appeal ta recursion,

The prtogram will then have the form VARy:R. If y is not fres in R

then apply «<VAR —elim (6.3).

n
IfF g = .1r1 b, ;s then, by <assignment - IF distrib» (4.5) we have
1=

n
%0(xs=g, 0%) = IF bi[%] SEB(x3=8, 2,).
i=

We then gaal with the SEQ(x:=s, Di) racursively, noting that the

a
biE’/ﬁ] partitlon true, because the bi dao.

If Q' = VAR %, .., xm:m_r 5; ni, the first step {noting that

1
{x1 e lml,( n free (:.‘:ae} = @) is to move thg declaration outside

the SCY to abtain

n
VAR %) aes xmzscu(gz.-g. 25 9 mi).

Becavuse tha input varisblas of the 9; are the xj, none of which appear

in x:e@, we can use <aesignment~ALT distrib> (4,6) to get

n
VAR %, ee0e % 3ALT g, SEQ{x:=e, T,)

izt ' i
and then appeal to recursion,

Nots that this procedure for reducing SEU{P,Q), with P,U already
in x - IF/ALT, is guarantesd to terminate because every recureive call
strictly aimplifies ome of tha two arguments, lpaving the other one

unchangad,



If we wish to transform VARy:P to _:_g-]F/ALT. the firgt step is to
use <VAR rename> (6.4) if pecessary to ensure that y is not a component
of x. We then recursively tranefaocm ¥ to an x + <y> - TF/ALT program P',
Choosing a variable z that is distinct from y and does not appear in P,
we use Zinitialisation%{6.12), LVAR-SEQ 1> (6.7}, < VAR sym>»{6.2)

and <identity assignment »{(3.3) to obtain

VARZ:(VARy:SEQ(x+eyri=x+42), P')

We then apply the procedure for reducing seguential compositions of

IF/RLT programs to reduce this to
VARZ:(VARy:P"™} where P" is x+<y> IF/ALT.

Observe that the only places y can appear in P" are on the left hand

sides of the fimral multiple assignments, because the transformation From
sea{{x+ ¢.y>:=A+<z>),P') to F" replaces all others by z. {This is

easy to prova by structural induction on P',) We can therefara make
rapeated use of L VAR- ALT distrib»{6.5), {VAR— IF diastrib»{6.6),

£ VAR symS (6,2), <VAR assocd (6,1} to shift the declaratiesn VARy down
to the leaves of P", 1t can be eliminated from those of the form

VARy: 4. by L VAR elim’»(6.3), and leaves of the form VARy:x+<y) =g + <F>

ars transformed to x:=e by <assignment elim(6.11) and <VAR elim~ (6,3},

* =

The resulting program is then just VARZ:P , where P is the program obtalmad
*

from P" by deleting all assignments to y. If z is not free in P we make

vee of VAR slim™» (6,3)., In any case we are left with our desired

x- IF/ALT pragram, in which we npate that y is not free.

If a program has the Form CHAN c1...cn:D. wa first recursively
transform P to an _ﬁ—IF/ALT program P', Now any occurrences of 51’"'":1'1

within CHAN c,l...cn:P' (other than their declaration) are syntacticaily



32.

incorrect = for P! contains no PAR constructs and so thera is no place
for internal communications on these channels., Since we have
postyleted that all programa are syntactically correct, we can infer
that none of €j1eessC appaars free in P', Thus < CHAN elim> (6,13)

i8 epplicable.

The only cese that remains is that of PAR. 1t ie important to
nate that none of the clauass wa have so far dealt with have introduced
a PAR conetruct (SEQ, on the other hand, was irtroduced by ALT and VAR).
Thus tha procedure we have already set up will work when given a program

not containing any PAR constructs.

If wa ere given a program of the form PAR(U1 1P, U2:D), the first
etep is to rscursively transform P into A-IF/RLT P* and Q into
- 1
X~IF/ALT Q' whara x

and x_ are respectively the components of x

1 2

declared in L"I and U2. {That this transformation is possible follows
from the correctness of PAR(LI1=P. uzzu).) PAR(Y 3P, uzzu') is then
tranaformed ta_;_-lF/ALT using the recursive procecure set out balow.
The first step is to make sure the bound variable sets of P' and Q' are
diejoint from Free(PnR(U1:P'. Uz:ﬂ')) and the components of x, If
edther P* or (' is | , we can apply <£PAR zera»(7,4) {(and perbsps
£PAR ayny (5.3))to obtain L. .

n
If P" is IF bi F‘i, then aince the bi partition true we cen apply
i=1 I

<PAR = IF distriby (5.4) to obtain
IF b. PAR (U, :P 1)
iI=F1bi 1EPye Brt)e
We then recursively reduce each DAH(U1:Pi, uz:u').

If 0 ialF b then we apply £ PAR sym(5,3) and then the aboua.

P Y



If P ia VARy:P" then since, by construction, y ie not fres in UZ:Q',
we can use <VAR — FAR D> {6.9) to obtain

*
UAHy:PAR(U.I =L uz:u')

whera U: is u, with y "sdded”; we then appeal to recursion, If Q' is
VARy:Q" wa apply <PAR sym>(5,3) and the above. As before, if y ia nat

frae in tha resvlting body, ita declaration can be removed by <VAR elim=(6,3).

If f' is Xqi=8, ard Q°* 15:2:?’,2 then, noting that the elements nr: and x

4

are disjoint subsets of those of x, ue can apply £PAR assignmnts)(s.s),

2

Zidentity assignmenty» (3,3) and <assignment sym% (3.2} to ebtein something

of the farm x:=e.
- -

n
s . ' s - .
1f A is VAR V1'°'ym‘§H gi Pi and ' ia x _9_2, then by construction

2

none of y,l...ym appaar free in LIZ:D'. 30 the VAR may be moved oytelde

tha PAR, using <VAR assoc»(6,1) and <VAR =PAR > (6.9) (thereby changing
+

Uy to U, say). Wa can then use <expansion 1>(5.6) to transform it to

something of the form

*

VAR yyeee¥o 2 TEZ 9 DAH(U_I 1P uzzu').
The Y5 that no longer appeer es input varisbles among the g:.| still
appear in the declsration and in U:. They are remowed by first moving
tham inside the ALT (<VAR eseoc »(6.1), <VAR eym>(6.2), VAR = ALT dietrib (6,5}
and then insida the PARS <ZVAR - PAR>™(6,9), removing tham from u:
(obtaining U1'. aay). Because theese variables ere free in no remaining Pj,
we can finally delste thair declarations ueing £VAR elim3»(6.3), ¥hen

we have recursively traneformsd the resulting DAR(U1':P Uz:u‘ )y the

i'
whole program is x=1F/ALT,



34.

n
The symmetric case (P' = x =8, Q' = VAR y1...ym:ALT 9; [.}i) is dealt

1" e izt

with by the above, after epplying £PAR sym» (5.3).

n
The only remaining cese is when P' = VAR y.l...ym:ﬂLT gi F-’i and
i=1

t
Q' = VAR z,l...zs:ALT hi [.}i. The same type of strategy as above, using
i=1

<expansion 2> (5.7), will transform PAR(Ulzp', UZ:Q') to something of
the form

N
VAR X' ... x[; 2 ALT k

R,
L i=1 L

i

where thare is some M (O£ MEN} such that 1€ i¢ M impiies Ky is SKIP

and Ri is VAR y;:SED(yi::ai,Rj'_) where RJ!- J.sj_-IF/RLT; MLigN implies Ri
is _E’-IF/ALT. 1t can further be guaranteed that the ";. are precisely
the (omstinct) variebles used for input among the ki {i» M), and that no
xj‘_ or yj'_ occurs in any Hj except the one obviously corresponding to it.
(The first M guarded processes result from communicatione between P' and

G*, the rest from ingependent action by either P' or §',)

Dbserving that no Ri (1< 1i¢M) has any occurrence of PAR, we can
safely transform them tn_g-_:—l’F/.QLT. Thie having been done the whole program
is in x-= IF/ALT, as required, after perhaps some renaming of bound variabies.
(Care i: required over this last point because we have no reason faor
supposing that the programs Ri are in any aengse "simpler™ than the
complete progrem, 1t is thersefore vital that this transformation does not
introdute a PAR and esa make use of the recursive procedure we are

currently defining .)

This comletes the description of the procedure for tranaforming
FAR(U1:P, Uz:Q) to A-IF/ALT. Since that was the last clause of ths
main procedure, we have elso completed the description of how to transform

a general program to IF/ALT.



Syntactic approximation

Finite programs are relatively aasy to reaeon about algebraically,
but do not tend to be very useful in practice. fortunately there sre
technigues which allow us to apply our resulta on finite programa to

general programs: Ssyntactic approximation allowe uws to icdentify avery

program with a set of finitae ones.

The concept of syntactic approximation ie quite well known (sse,
for example, [G]) and has been applied to CSP ip similar circumetances
to ours [BJ. 1t gives a pre-crder (in aur case a partial arder) on the
syntax of a2 language, The order is a veary simple one, baesed on ths
igeas that replacing part of & progrem by the least defined program (in
our esse - ) produces an epproximation, and that unfolding a rscuraion

{(in our casa a WHILE lcop) produces an approximatien,

Through most of this peper wa make no Formal distinction betwsen
tha text of a progrem and ite value (sementics}. Howaver whan considering
syntactic approximation it is necessary to make a claar distinction: we
will thersfore place guotes (rP1) round any program that ie to ba
consideresd as syntactic object, amd econtinue to uee uhadorned pragrams
(P) for the corresponding semantic valyes., It is important to nots that
=0 does ppt imply et _ rlﬂ. 80 the clauses balow may not be comiinag

with our existing lawe {which are all semantic).

we will weite "MV ¢ F5' if P! is a syntactic approximation ts g1,

The following clauses define <€ for our version af occam,



36.

2) |'p1 grp'l

3) P ¢ & WeR = PR

Sorg o, r r AVRI a
4
) A" ¢oy = Tsea e < s g
i=1 i=1 i=
sy A ] = TPAR U, 1P € PAR U100
i=1 1% 7i i=t 171 Y g4 TiTd
» N, e o1 rhoom "
6) A'cl¢® tl=y "irc g arc
1=7 1 1 i=1 1 7 = d
*+ P oroq rol r " | rhn 1
N A'g, <3 G; => ALT G, & ALT G,
§=1 i=1 2% i=1 1

ra A r - r 7
8} P& O ==b VAR KyewoX tPOCOVAR X 00ax 20

r,N, ron r o r .
9) P4’ => CHAN R 4 CHAN £y eeeC t

10)  "1F(b SEQ(R,WHILE b P), b sk1p) € FURILE b P7

*
Clauses (6) and (7) require thp definition of auxiliary relations

c

/)

and Q.g on (rESpectivaLy) conditionals and guarded processss.

These satisfy

r
1) " -“(rq-' = b P gc 'k
n n n
rfoa o cre r T e T 1
12) i/:\] c, g 't = l[=r1 C; € iI=F1 g

13) o =y T eI 7

n - r N - rn 1
14 ,' 3 ! ALT 3 ALT G
) /\1 G. € G # _L1 G, £ ~L‘| Gl .

i= i



[ : .
Farmally, (£, < , ‘gg) is the smallest triple of relations satisfying
(1-14). ¢ is a partial order on the syntax of cur lamguage. (This
can fail for other languages if they have more general Forms of

1

recursions; one can bave distinct pieces of syntax % ang rd-" such that

i ] N
and "G" £'P'y Big. ppepoep  and  paupp.pd.p.) It is important
to remember that € is a purely syntactic relation, and that it is not

permissitle tp use the above clauses in conjunction with our laws {uhich

preserve semantics rather than syntax).

FIN("PY), the set of R's finite syntactic approximatimns, is
defined to oe {"Q" | ¢ ana Tl is finite. It is easy to urite
down an equivalent definitinn of FIN("F') that is a straightforwaro
recyrsion on syntax, Typical clayses are given below (the only moderately

difficylt one beimng WHILE).

Fn(Tsg™) = {700 Ted]
FIN(Tem?) = 4747, rc?;'}
r.n - {r T {r n T | ne 9 fom
FTN( SEQ P, = Lt v d oseqoa, q, € FIN( P, }
(i=1 i) } i=t 1 i/=\1 i ¢eyt)

FIN(TWHILE b FY) = {rJ_1,rlF(bJ_, -o ), TFbL, ~b SK[P-)'}
u {rIF(b SEQ(D;y 2,)y b i,

T1F(b seafa,, 0,), b SK1p}

1

el erin("pM), raz

; € FIN(TWHILE b P")z

{The last clause, which is circular, is easily seen to hava a unigue

solution,)

Any finite, non divergent, behaviour of a program has required only
finitely many iterations of any loop. It is therefore possible to unwind
the program that many times, obtaining a Finite syntactic approximation

which exhibits the asme behaviour, Of course, any non divergent behaviour



38.

possinle for a syntactic approximation will also be possible for the
original process. lntuitively, there is thus a close relationship

betuwean the behaviour of a process and those of its finite syntactic
approximations, To understand this relationship properly we need to

go back to our underlying asemantic model.

The denotational semantics of [ﬁ] map each process into a domainm with
a partial order according to which ane process is greater than another
if it is better definec, or more predictable, If P and [ are processes,
we will write PCQ (Q is more deterministic than P) if the semantic
value of P is less than that of § for all environments with unbounded

seta of free locations and channels, and states where unused locations

are mapped to error. P &J is aguivalent to

P = ALT(SKIP P, SKIP ).

This law simply says that ewvery behaviour of § is alao possible for PR3
thus in observing J we cannct be syre that we are not looking at P. L
induces a natural partial order on occam terms (factored under the

equivalence induced by the domain},

The following three lemmas express the formal propertiea we will
require of syntactic approximationa, The first one is easy to prove

(in the denotationel semantics)by structural induction.

temms 1 1f “P7¢Q", tren P,

0f course,tha converse to Lemma 1 does not held,

The second lemma is easy tp prove using a combination of
structursl induction and mathematical induction (the latter for WHILE

loops).



. . . -
Lemma 2 FIN("P ') is (unoer € ) a directed set (i.e. if rG11 , a;e Fin(meT),

-
there is soms "7 € FIN(TEY) with "ut £ W7 snd q; <),

Lemmas 1 and 2 tell us that the semantic values of the elements of FIN("PY)
are themselves a directed set under & . The last, and most important,

of our lemmas, shows just how this set characterises the samantics of P,
It, also, Ls proved using @ combination of structural and mathematical

inguction,

Lemna 3 {a tru_'erm("rf‘)} is a directed set {under C ) with least

upper Hound P {i.e. L {u["u" € rm("p’)} = P).

Later we will take aovantgge of this strong way in which the

semantic wvelus nf a procass is determined by its syntactic approximations,

Proving eddi tiaonal laws

Ona very useful comseguence of Lemma 3 above is that, if we want to
prove a new algebraic law, it will usually be sufficient to prowve it for

finite programs. Ffor example, conslder the law
sEu(P, SE0(u,R)) = SEU(SEW(R,d),R)}.

This (the conventional binary associative law of SEQ) is not trivislly
deduclble from aur existing laws, even though it is semantically true.
However, suppose we have provad it for all finite P, 4, R. (We will

shortly do this.) Then, using Lemma 3, we have for gecaral B, Q, :
sea(p,sea(l,R)) = LI {r|"r"erm(rsm(p,sau(u)ﬁ))’}

Now because the few elements F of the first set which are not of the
form SEQ(P',SEU(U',RT)) are easily proved (using the laws) equivalent

to anes that are, using the laws, e.g,



40.
S5Eu(P, L} = SEY{P,SE4(L, L)) this is egual to
U{SED(P',SED{Q',R')) Fple FIng™ ey,

Wrte rin(ra), TRTE FIN(TRNY

By our assumption that the result holds for finite processes this in

turn is equal to
Y issu(sgu(p'.u').ﬂ'ﬂ plernpl),
ol e rin("uT), "Rl e rlm('ﬂ")'g
] {r |"F" € Fin(seadscu(p,a),r)’) }

SEG(SLu(P,u},R).

m

Since we are in the procass of setting up powerful machipery for
dealing with finite programs (for example Theorem 1)} there are
advantages in only bhaving to prove new laws for them. 1n particular,
it is enough to prove them for IF/ALT programs {since, by Thaorem 1,
svery finite program is equivalent to one in IF/ALT). As an illustratian
of the technigues one can employ to prove laws for IF/ALT programs, we
will complete the proof of the SE4 associativity low given abava. By
virtue of what we bave already established, the following proposition

will suffice.

Proposition [F P,i,R are all x-IF/ALT, then

SEu{p,SER{u,RY) = SEQ(SEQ(P,L),R}.

Proof e use structural induction on the triple (P,y,R}. Supposa

the result holos for ell simpler triples {P',0',R'). ((P',W',R") is
simpler than {P,U,R) if each of its camponents is a (not necessarily
proper) syntactic subcomponent of the corresponding component of {(P,0,R},
except possibly for changes of variables not in‘f‘. At least one must

be a proper subcomponent,)



IFP =_1 the result is trivial by applications of <£SEQ left zero)(7.2).

n

If P = IF hi Pi, we have
i=1

1]

n
SEQ(P,SEd(wyR)} = IF b, SEu(Di. SEU(u,R)) < SEw-1IF distrib®» (4,3)
i=1

i3 o, SEW(SEQ(P,,0),R)  (by induction)
i=1

"

n
SED(_1F1 by SEQ(P 4G},R)  <SEQ = IF distrib>(4,3)
i=

n
scu(sn'.\(_lr1 b, Py, 0), R) <SEQ-IF oistriby {4.3)
i=

SEQ{sEU(P,4)}, R) as reguired.

1F P = VARx:P' we first ensure (via < VAR repame»{(6,4)) that x

is pot in free(d ) w free(R), and then

sSEQ(P,5eQ(0,R)) = vARxsSEQ({P',S5EQ(d,R)) CVAR=SEQ 1% (6.7
= VARx:SEQ{SEQ(P',0),R) {induction)
= SEQ({SE4(P,Q),R) CVAR-SEU 1> {6,7) twice.

n
1IF P = VARX, ,..% 34LT g
1 m° i

two cases (ueing <SEQ =ALT distrib’ (4.4} rather than <SEQ - IF distrib > (4.3}).

i Pi ong combines the technigues of the previous

If P = Xize we need to deal with the individual cases cof () separately,
IF @ = L. the result is trivial by <SEQ left zero> (7.2} and
<5EQ right zere ™ (7.3).

n
IFg=1IF0Db
i=1

. Q. then
i’i

n
SEQ(P,SE0(Q,R}) = SEu(x:=g, IF b, SEG(U , R))
i
< 5E()= IF distrib »{4,3)

n _g/
= IF b [%] 5EQ{xz=e, SEQ(Q.,R})
i=1 1 = i

< assignmant = [F distrib > (4.5)



42.

n _E,/
= if b, ['x SEW(sEu(xs=e, Qi). /)

i=1 e

n o=

(induction)

n ,‘;’/ . -
SEagL; by|™xf Stalx:=g, it R)

<50 ~ IF distrib {4.3)

n
SEQ(SEU{x:=e, IF b, d,), R)
adie R 1 1

<assignment — IF distrib ' (4.5)

SEQ(SEQ(F,u), R) .

If U = VUARx:JQ* the result may be established (after possible reneming of
pbound variables) by VAR -SEG 1,23 (6.7, 6.8) and induction.

n
1f g zUARx,I...xm:ALT g-i i)j.: the result follows using the techniques

i=1
of the previous two clauses, using €SE4 - ALT distrib»{6,4) in place of
<SEW = If distrib>» (4,3) and < assignment— ALY distrib »(4.6) in place of

Lassignment - [F distrib (4.5).

If @ = Je=f we need to conmsider each case of R separately, If R = _|
the result follows simply from <SEQ right zero (7.3) and < combine assignments >

(6,7). If R =

SEG{P,SEG(u,R))

g
:::(f':E;/,{l) [“/_g‘] < compine assignments »(4.7)

2= [‘fh[:gf“]/,]

by properties of substitution

i

SE(SELW({P,u), R) <combine assignments (4,7).

If R = VARx_I...xm:ALT 9y Ri' then after possibly remaming KyweeXo to

avoid clashes with free{P) U free(y) we hawve



sEa(p,sea{u,RYY

]

- -

n
UAH!1...Km:SEu(_§:=e, SEQ{x:=f, il;;r g Ri))

£VAR expansion{6.1), <VAR - 5£u 2 »>(6.8)

= VARX, ... -nu g. E/] I:/]sau(x-~e, sta(xz=f, Ri))

¢acaignment - ALT distriby (4.6) twice

= UARK ...l! ‘ALT q [ E-y] SEU(SEL](_’E ' R-33 _,,)' Ri)

(induction and praperties of substitution)

3
Sl 5
= VARx, . auxX 3 SALT a; %, ssu(_i:ﬂ[fx]. Ri}

i=1
Zcambine assignments} {4.7)

&,
= UARx1...xm.SEQ(.§‘:=“|:/.5] , fLI a; R,)

Zassignment — ALT distrib» (4.6}

= VAR <eeX :SEQ(SEQ(xi=g, x:=f), R)

-

Lcombine assignments S (4,7)

= SEQ{SEQ(P,u), R)

CVAR expansion (6.1), £VAR = 5E0 2 (6.8)

If R = If bi Ri the same argument as above applies, only
Zassignment ~ 1f distrib»{4.5) is used in plece of gassignment - ALT gistrib»(4.6).

The case of R = VARx:A' is essy.

This completes the proof.

Other laws can ba proved in much the same way {often rather more easily),

Some examples are given below.



44,

a) SEG(SKIP, P) = SgEg(p, SKIP) = P
nF d,) f'F b, SEG{P )
b} SEU(P,iI=1 by d;) = RN wlp, 0,

irf t|1 v ...an = true and no variable in any bi is altered oy P,

c} par(u

13Ps U2=5KIP) = pm(u1:p) = P

provided u, declaras all global wariables and channels usad by P,

and I_I2 declares none of them,

Mot 81l proofs of nmew laws go along these lines, Some may reguire the
full power of a normal form, while some can be derived directly. As an
exampls of direct oderivation we here prove a law relating IF ang ALT

that is apparently more powerful than the law £IF - ALT distrib’> (2,10)

we already have.

n m m n

AT g, (IF b, P} = If b, (ALT qg. P,.)

E S I P R A j=1 1 iz TE
providing D1v...vbm = true and no variable input in a 9, appears
in a bj. £ ALT ~ IF distrib’>

This says that, providing the execution of the guards gi always
leads to the evaluation of the same conditionals, the value of which is
not affected by the gi, then the conditional choice may be brought

outsioea,

To derive this law we first establish the following law as a lemmaj

n n
IFe, P, = IF o (1F b¥p)
j=1 i1 =1 i i'i

where b.*= ThH. A L. ATIB, A b, ,
i 1 i=1 i




n *

The right hand side may be transformed to IF‘I Di Pi by repeated
i=

< A- 1F distrib» {1.8), £IF assoc>(1,1) and LIF sym»(1.3),

then eguivalent to the left hand side by <IF priority>»(1.,2).

The proof of &£ ALT-IF distribis as fallows,

n m
ALT g, IF b, P,
i=1 7 o3=1 J
If b b (AET anh P.L)
= VoeaaV . L P,
1 m i glj:1 J i)
(by £ IF =true unit > (1.7), as b.lv...vbm
m n m
= I1fF b (ALT g_ IF b, P,.}
k=1 K Tj=1 T1g= 3 13
(by <IF — v distrib>{1.4))
* % N m "
= 1 b, (IF b, (AT g 1f b7 P )
k=1 i=1 j=r 3 1
*
whera bi = b1A...A‘1bi_{~ by {by lemma)
m * * n * m *
= Irb (IF b_ ALT g, (IF b, (IF b, P_.))}
k=1 ¥ kojor 1 k 321 3 i)

{by £IF - ALT distrib®» (2,10}, since no variabla inp

in a gi appears in a bj)

IF 6® (1F b ALT g (IF 6¥ A bY £, 1))
= g A -
kel ® kijar 1hm 3 i

(by < A= IF distrib»{1.8) and <If assoc>(1.1})

*
k Pik!

H
—
=3

* +« N
b (IF b, ALT g, IF b
ke K k i=1 1

{by <1F - false unit >(1.5) and £IF = sym® (1.3}

* *
sinca b A nj = false when j # k)

N m * * n
= If b, (1f b, (-’-_\LT 9; aik))
k=1 i=1

(by € 1F = ALT distrip™»(z.10))

m n
= IF ALT g; P,

(oy the Lemma)
k
k=1 i=1 1

use of

It is

= true)

ut



46.

3. The noemsl form

We eannot claim that 1F/ALT Is a normal form since even though it
has a far mare restricted syntax than general occam, it is still possible
ta have equivalent programs with essantialiy different syntax, This is
because ita canstruction did not take account of many of the equivalences
that tan ariee between [IF constructs, betwsan ALT conatructs, or as a
consequance of <IF = ALT distrib>» (2,10), tha law which relates the two,
The followlng examplas illustrete soma non-trivial forms of equivalance
that ars not recognised by reduction ta 1F/ALT. After each example we
1ndlicate tha way in whieh our normal form will solve the problem

illustrated.

a) It is possible to have clauses in [F constructs that are never
executed, becsuse tha associated booleans must always evaluate to false.
S5ome such cases are obvious, as when false ie itself one of the booleans,

but som ere more subtla, as in

IF 1F
xmod 2=1 x mag 2=1
IF = q
x =0
p
x#0
Q

where, in the lefthend proceas, one of the boolaans in the innar [F is

always false because of its context.

In the normal form all such cleusas will be aliminated from
conditionals by using «<IF —false unit» (1,5). Difficulties such as

those posed by the above example will be ayoided by making sure that



any boolean appearing within the “scope" of another is stronger than it.

n
The above example also illustrates the point that if, in 11F1 bi Py

i
any of Pi is a conditional, then it may be unfolded ualng
< A =1F distrib > {(1.8), etc. The normal form never has one IF directly

as theg argument of another,

b) 1t is sometimes possicle to make a conditlonai choice before it is
atrictly required, and always possible to introduce a meaningless choice

(between two idemticeal processes). Consider the pracess

1
x =0
ALT(c!1 P)
x>0
ALT(c!D Q)
x€0
STDP .

This has essantially diffarent beheviours dependlng on x>0 or
x£0 (it either can communicate or not): this conditiomrml choice is
therefore unaveidabis, On the other hand, the choice betweern x=0 and
x>0 can be postporned to {at least) the next step: it is only the
value communicated down C that is at stake, and it iIs possalble to
construct a single expraesion that takea the correct value im all
atates with x» 0. If b,e,f are expressions, we will use the notation
e*b*f for the expression that takes value e if b is "true" and f
if b is "False". {We do not specify its value for other values of b.)
Tre program above may be tranaformed to

1F

x30
aT(ct(1dx=0%0) 1F(x=0 P, x200))

%<0
5TOP



4B8.

by & combination of substltution of expressions, <IF sym>(1.3),
LA ~1F distrib>» (1.8) and £ALT - IF distrib> (tha derived lew proved

at the end of Section 2).

In our pormal form only atrictly mecessary choices will be mads,

and theas will be made as late as possible,

c) There are sevaral ways in which apparently different ALT
constructs can give the same effect. For example,

ALT

c™x
P and ALT (c?x P, G}

SKIP
ALT{c™ P, £)

are eguive lent,

If the communication option of the first process is tawen up,
the environment cannot tell it is not operating the second (for exactly
the same option ia present there). If that option ia not offered or
not teken up, the first process quickly transforms itself (by the

operation of the SKIP guerd) to the secend.

Tha above equelity cannot be proved from our existing laws, sinca
{as we have already stated) the laws of ALT are not yet camplete.
We will shortly develop the further lasws needed to counter this type

of equivalence,

d) If, at some point, a program can ogutput several different
expressions on the aame channel, ar assign several different expressions
to the seme verieble, some subtle difficultias appear. {Such behaviour

can easlly erise in occam because of nondaterminism.) A pair of



expressions may, as the state varies, somatimss avaluate to tha sams
value and sometimesa to different values, For example
ALT
cld
P

ci{x mad 2)
Q

is clearly eguivalent to

since, if (x mod 2) = DO, communicating 0 can lead down eithar brench

of the first program,

In our narmal form we will insist that if two expressions are
both available ams outputs on the seme channel, or for assignment to
ths seme varisble, then they are different. (In no stets whers thay

are svaluated do they take the same valua,)

Even thie restriction ls not enough: consider the followlng

pair of procasses.



50.

ALT ALT
SKIP SKIP
x3=0 xi=xX mog 2
SK1P SkIp
xg=1 x:=t=(x mod 2}

Thay are clearly equivalent, even though there is np ane-to-one
matching tetween the pairs of expressions that sppear in them. Just
becayse, in every state, tns spts {0,1} ang {x mod 2, 1=~ (x mod 2)}
are the same, doas not mean tnat there is any uniform eguivalence
betwesn the individual sxpressions, In the normal form we are forced
to accept only one of these repragsentations; we choose the left hand
one by insisting that peirs of expressians {a,l,sz} output on the same
channel or assigned to the same wvariable be ordered. This maans that
in all states where thsy are evaluated, 8, (say) is sluays strictly
larger than e, {The linear order chosan is of littls conseguence,

provided it is expressitls in the language, ue will assume the

identificatian of all posaibla expression values with distinct integers,)

for a convincing constructlon of a normal form it is not enough
merely to llet a Few types of equivalence that can arise and show how
to geal with them, This approach can never tell us that there are no
more (even more subtie) equivalences waiting to be discowvered. lnstead
we must construct a normel form sxplicitly around the semantic
properties of programs: it should be obwvious that dgifferant normal
form grograms are dif ferent semanticslly, A good example is "full
disjunctive normal form" for propositional formulae., There is an obvious
and close correspondence betwsen ths syntax of full d.n.f, formulee and

the underlying semantics (functione frem truth assignments to {true,f‘alse\g).

An occam process can be thought of as acting in steps: a step is

elther a single communication or the act of successful termination,



The normsl form will cherscterise the first step of a procesa'
pehavlour using the hlghast levels of syntex, end rely on inner
lavels to deal with subssquent sateps, There are three esspntially

different ways in which the flrst step can be influenced,

(i) It can depend on the values of the program's varisbles. This

type of choice is typifiasd by IF conmetructs,

{ii) 1t can depend on internal decisions by the procesa that are
nondeterminietic and invisible to the envlronmant, The purest form
of thie is in ALT constructs with S5KIP quards: for example
ALT(SKIP P, SKIP Q) is a process that is free to behave like P or
like J, the chpice depanding nsither on the environment nor on the

program's variables,

(iii) An occam procass can offer its enyironmant a8 choice of
communicatlones its firegt step bahaviour than depends on the cholce
made by tha enviconment. This cholce might be et the level of
chpopeing whet to output to ths process along a particular channel,
or of choosing {wie an ALT with communicatiobn guards) which chennel

to communicate on.

To deacribe a process' firat step behaviour we will thus use

three isvels of syntax: essentielly one fer each varlety of choice,

The normal form hes two perameters. The first is a boolean
expression representing sll facts known about the process' free
variables. This is necessery betause, as was shown in example (s}
above, it ls rmegcessary to teke account at inmer levels of conditiocnals
alresdy pessad through. The gther perameter, lnherited from IF/ALT,

is a list of free variables,



52.

To keep our individual defipitions as simple as possible we will
defirg two sorts of progrem mutually, A b,_)'ﬂ- normel form program
has conditional choice (type (i} above} at its outermost lewvel, while

a b,g_t'- ALT pettern has a mixture of the other two.
Definition A b,%x= normsl form is a program of the form
n
IF b, P.,
i=t 1 i

whers the Di partition b, for no i is bj. = false, and the Pi are

diatinct ni,‘g‘— ALT patterns.

(ALT pstterns, perhaps with different booiean perameters, are distinct
if they cannat be reconciled to a single choica, as was done in
axampls (b) sbove, A formal definition of this notion will be supplied

latar.,)

An ALT pattern will te & way af characterising the beheviour of
a process whose general shape of first-step bshaviour is the same for
all permitted initial wvelues of {te free variablee, This '"shape" is
determined by looking et the range of first step behaviours ocpen to

the procees.

Thwre are four essentially different things a process can cp on

ite first step:
(1) it diverges;

(i) it communicatea with its environment {and goes on to its second

step);

(iii) it stops becsuse, even though it has not termirated, it cannot

agree with its environment on any communication;

(iv) it terminatea in some stata,



The "shape" of a process' first step will be a mixture of
possibilities from the above, Nongeterminism within the process,
and the many choices open to the environment, mean that any mixture
of these containing at least cne of i,iii,iv} is possible. (It
is impossible to construct a process that communicates in every
circumstante, This is because any process can be faced with an
envircnment that will nct agree to any communication.) Recall,
howsver, that we havs chosen to ioventify all processes that can
diverge. Thus 4 uwill be a b.zt'—ALT pattern, ano all others will

be divergence-free on their first staps.

The other b,x=ALT patterns are essentially just lists of the

possibls combinations from (ii), {iii) and {iv) above,

Definition The program P is a b,X- ALT pattern iff it is pither | or

N
VAR iy esey ¥t n_u_I 9; Py
i=

where there are integers K, L with 0LKE L <% and K<N such that

1 gigK implies that 9; has one of tha forms c'?yj and cle, and that
F'i is a byx =normal ferm, All input channeis are distinct,
and the (distinct) variables used in input guards are
precisely Yyr ceer¥ {none of which is a component of _3:_).
yj is not free in 9 Pi unless o; = c?yj. 1f cle and cif
are tuo dlfferent g. tnen bk=a<f or bl=f<e. for sach i, bnund(Pi)

is disjoint from free(P), [y1, veny yn‘ and the campanents of x,

i i ies g. i1s SKIP and P, is P, where the X, (K<i&l
K<igl impl 8; N ;f‘chigj P i ¢ )
are incomparable subsets of {1 - K} with the property that
if g = cle and q_ = c!f {both outputs on the same channel),
then aexj_:}r€ Ki. (The sets X and Y are said to be incomparable

if x%v and st—x.)



54,

L<ig¢N implies g, is SKIP and P, ls x:=e. where, if e . denotes
i i hadit § ij
the jth expression in the vector ‘_gi, we always have

b[:eij=a . orbt:aij)sekj orl:||=ei

Kj < ij' Furthermors,

h|
if i # k, there exists some j with b k= e ¥# ®je

Clearly the first K guards carrespond ta the process' possible
communications, the next L-K to tha minimal combhinations of
communications it cen choose to accept from {(but not terminate), and
the final N-L to its possible finel states (aftar termination}, The
condition K¢ N asserts that the process must be able either to terminate

or to stop,.

The ressons for demanding that expressions output on one chamnel, ar
assigred to the sema variable, be uniformly ordered have already been
explained. Most of tne other constructions should be reasocnably clear

except posgibly the construction of the secticn KL iglL.

Thig section is present to identify those enviromnments with which
the protgss might deadlock (i.e, stop becsuse it cannot agree any
communication with the environment), 0Obssrve that the process is free
to exacuta any of the corresponding SKIP guards (gi for Je {K+1, vewsy Li
and cean anly deadlock if it does ewecute one of these guards, Thus
deadlack can occur if and only if the erviromment offers to communicate
on a sat af channels disjoint from one of the sets represented by the

pi (he<igl).

It is clear that the set of such environments would not be changed
by iptroducing an additional option with a largsr set of P's communications
than one of the Py (k<igl), becausa whenever it can deadlock, so cen Al
This is why we only record minimal accsptences, ar in other words, why we

insist that the Xi (K<iglL) are incomparable,



55.

On the other hend processee with different sets of minimal
acteptances are observebly different, This is clear when ws note
that, given two different collections of incomparable subsets af
{1, anay K} , ong must contsin an element X that is not a superset
of any element of the other. Thus there is a set af channels (the
complement of thase represented by X) that the environment can offer

which one process can deadlock on but nat the other.

Note that the whole set {91. auay gk-i or the empty sat can
appear ae minimal acceptarces, but that if one of them daes appear then
it is the only minimal acceptance (i.e. L = K+1). The first of these
happens when the process can fail to terminate but there is no
communication it can either accept or refuse. The second occurs
when the process has the option of deadlocking completely: getting inte

e nonterminated state where no commuynicaticn is pessible,

All outputs along the same chennel aiways appear together in the
minimal acceptances because we assume that the environment, like gccam
processes, does not have the power of selective input on a channel.
Thus we do not discriminate between a process thet aoffers to output
one of two values on e channel nondeterministically and cne thet offers
the choice to the enyironment, even if this last idea were operaticrally
reasonable, NO environment we allow is equipped to observe such
distinctions, Tha minimail acceptancee are thus essentially sets of
channels, and so in constructing them we must identify all guards
corresponding to the same channel, (This problem does not arise with
input channels because these are all, by assumption, distinct in ALT

patterns.)

The list of commynications {1 £1i<¢K) needs to be represented

Inoependantly of the minimal acceptances becauss not all communications



need appear in a minimal acceptance set, Indeed, it is possible to
have caommynications but no minimal acceptances at all, aa in

ALT(e™ S5KIP, SK1B SKLP),

Notice that each communicaticn guarog 5; is alweys followed by
the same process Di, whether it appears in the commurication section
or the minimal acceptances section, This is because our semantic model
{chosen because it expresses the weakest equivalence required for mast
practical correctness issues) does not distinguish between processes
on the grounds of what communications cam be observeo after the refusal

of specific sets, For example, we regard the two pracesses

a} ALT end b) ALT
SKIP SKIP
ALT ALT
c?x c?x
c7x cTx
d?x o07x
c?x c'x
SKIP 5K1A
ALT ALT
c?x c?x
5TopP STOP
c?x
ctx

as equivalent, swvan though they have different possible behaviours
once the refusal of “"d" has been cbserved and an input has been made

on channel c,

A finer model (i.e, one identifying less processes) might
necessitate different processes efter different instances oF & guard,
It might also be necessary to include more acceptances than just the

minimal omes in order to accommogate this type of distinction.




We can extract from each b,g-ALT pattern an abstract shape
for the behaviour it represents, It is either L or a triple, whose
fFirst component is a set aof directed channels, the output channels
having a multiplicity. Its second component is a set of incomparable
subsets af the channels. The final component is a set of k-tuples of
positive integers, where k is the length of x, Fpr each i E{l, any kﬂg
the set of ith componants of these tuples has tha farm {1, 2, ..., ni‘g
for some niQD. For example, if X = <x,, «.., xk> the tuple <1, 3, ..., 2>

means "assign the smallest of x, 's expressions to it, the third smallest

1

of xz's axpressions to it, ,.,., and the second smallest of xk‘s expressions
to it". Note that the second and third components of the triple carnot
bath be empty.

Reeall that the hi,_)g-- ALT pattercns Pi making up the normal farm
grogram 112'1 bi Pi must be gistinct, in that for no i and j can IF(I:Ii Pi, bj Pj)
be transformed into a bi v hj'fn- ALT pattern. Uue define ALT patterns
to be distinct if they have different abstrect shapes. Note that this
corresponds well to our objective of having the outar conditional :n the
normal form determine the shape of first step behaviour. it is easy to
see that two non— L ALT pattarns fail to be distipct if and only IT
there are straightforward permutations of the communications, minimal
acceptances and terminations of tha first that match the second (Bxcept
for namas of input variaoles and the various expressions, put preserving
oroder of expressiona). If such a set of permutationa exists we will call

them a matebing of the twa ALT patterns.

Definition

N
Let P = VAR x seny X0 ALT 9 Pi

’
1 i=1

with KLig€ L omp 5 = SK1P and p.l = ALT g, P,

and L<iEN = o = SKIP ang P, _



58,

*

*
N

and W = YAR y1, aany ym :n_ﬁL:lr hi Q
i=

* *
with K < i 4L == h_ = SKIP and Q. = ALT h,k 0,
L 1 5evy 3

* *
ang L < 14N =D hy

SKIP and Di =

* * -+ *
be respectively b anc b ,x-ALT patterns. Lf N=N , m=m , K=K

*
and L =L a matching of P and Q is a quadruple < \),‘5,/0,‘7’> of
bi jections Vi {1, veey m}—,‘vE. cees m}, % {‘I. cres K}—)&, veey K%.

Y {KH, cers L} —>{K+1, cees L} . T :{L+1, N} —->[|.+1. N}

such that

a) if o = c?xj than hX(i) = C?Y\J(j) H

*
8 then hX(i) = cle” for some o H

ifgi=r_‘

if gi = cle, gj = cif, hx(i) = CIB'

* * * *
andh.s(j)=clf‘,t.hen bEe<f iff b EFe £f .,

0 = P sen]

c) if the jth components of @, and f: are raspectively denotec e, ,
i vl ij

and f_ . then
ij

bEe e 0 Fipnyy < fra;

*
bEey =8 P F gy = frp;

*
D 20 =28 F s > kg

This eompletes our cdefinition of the normal form, UOur objective
when construeting the normal form was that two such progrems would
only be semantically equivalent if they were syntactically equivalent
in some obvious way. Thers are three ways ln which two b,;-—normal form

programs tan be semantically equivalent.



59,

(i) The operators ALT and [f (with disjoint booleans} are symmstric,
Thus their arguments can be permuted without changing the

semantics of a normal form program,

{ii) The names of bound variables may be chenged.

{iii) Any expressicn can be raplaced by another one which is eguivalent.
In the case af expressions output on channels or assigned to
variables this expression only needs to hold in the context of the

strongest enclosing boolean,

Programs that are eguivalent for reasons (i) and {ii) above are reacily
proved squivalent using the laws, Programs that are equivalent for the

third raason are proved equivalent by the following rule.

Rule of substitution for expressions

a) If e 1s any expreasion appearing in the program P and 8 = ",
then provided P', a program in which spme occurrence of s has

been replaced by &', is corract, P = P*,

b) If bke=e' then IF b ALT(cle P, G) = 1IF b ALT{cle' P, G).

c) ItbfFe==ga' then IF o »xt=e = IF b xt=s'.

1n fact {1), (ii) end (iii) (ano combinations theraof) are the only
ways in which a pair of b.;-normal form programs can be semantically
equivalant, We thus formally define sguivalence of normal forms as

followa,



60.

n
Definition a) The b,x=normal form programs _14"'1 Di Pi and
Detfinition io

nl
1F b'iP'i are gquivalent if and only if n=n' and there is a bijection
i=1
o~ 1{1. rery %——) &. ceey n} such that, for each i, kb =bi.

. : T
and Pi is equivalent (as an ALT pattern) to %‘(i)'

b) The b,x ALT patterns P and ( are eguivalent if and only if sither
they are both 4., or

N
P = VAR Hyn weey X E ii}' 9 F‘i

with KLigl = 5; SK1P and F'i = ALT g, P,
iji

and L &i&h — g9; = SKIP and P, =X =8

~i

N
G = VAR Yyr eear ¥oi ALT h

=1 L %

with KLigl =—> hi = 5K1P and Eli = ALT h, G,

and L&igN = h

. SK1P and 0, =
i i
and there is a matching (\) .\‘ ;f.j—) betwean them such that b e = f
whenever @ {from P} end f (from 0) appear "at the same point" (i,e.

- ) - ) - -
g, = Cie ang ha,(i) =clf,ore=ege,.and f = f,

i ij J"(i)j) and such that

1¢igK implies that P, is equivalent to Ay . <X1y sesy *p>
VY, sy NP>

as a b,;-normal form,

Theorem 2

The b,_zc_-normal form programs P and O have IF b P and IF b 4
semantically eguivalent in the sense of [ﬁ] if and only if they are

equivalent.



W8 cannot giwve a odatailed proof of this important result here
since it dapends so crucially on the details of the oenotational
semantics, which have not been gescribed in this paper. The following
is an outline of the proof of the "only if" part. (The "if" part
peing Much easier.)

nl
g o= T 0
Dipi'"‘—f}:ﬂbi uianlebPandl}'bu

=]

50 suppose B =

...
(i
U

are semantically equivalent, 1t is possible to recover the abstract
shape of a proceass' first step behaviour from its semantics. Hence

for every state satisfying b, P and § must have identical shapes of

first step behaviour, Now the distinctress of the ALT patterns making

up P and I means that the eets af booleans {b“ “any bn?S and

{ '1, ey b‘n,i both partition the stateg satisfying b according to

these shapes. From this we can deduce that n=n' and that there is a
bijection o : {1, eany n.i -'—)5, caey ni such that for sach 1§1¢ n,
i E Di = ha'_(i) anrd eithar Di = EJG_(i) = L or there is @ matching

betwesn F‘i and In the latter case it is easily shown that the

ua_(i).
matching in fact yields an equivalence ance induction has been useo to

deal with lower lewvels,

Three more laus

There is an Important gap that needs to be filled: the last three
laws of ALT, They all comcern SK1P guards in ALT constructs: the
situation where the process is given an option that it car choose
invisibly and sutomatically. 1n particular, they show what sort of
equivalences arise between the type of nondeterministic processes these
pive rise to. Imp studying these laws the reader should bear in mind our
philosophy that mnondivergent processes are squivalent if they have the
same communications, minimal acceptances and terminations, and if their

poseible behaviours after each communication are equivalent., These laws



62,

maore than any others depend on the way our semantic model treats non—

determinism, and would probably need to be revised in cothar systems.

The firet law says that if the process communicates, the environment

is nat intsrested in whether this occurred before or after a SKIP puard,

(z.11) ILT(SK1P ALT(gy Py §y)0 G, 4y G}
= ALT(SKIP ALT(g, P, g, Uy Gy §))
provided either g, = c?x and g9, = cTy

or g, = cle and g, = ctf < ALT = SK1P sym»

The fact that tha process on the left hand side has a communication on
the same channal as 9, within the inner ALT ensures that both processes
have the sams minimal acceptances. The fact that, in the case

9, = cle and 9, = cif, 8 need not egqual f, expresses the fact that the

environment is not capable of inputting selectively an channel c,

Tha second law allows us to aliminate nested ALTs with SKIP guards,
1t says that if an ALT can SK1P to a second ALT, which in turn can 5KIP
to P, then all othar options in these ALTs are in exactly the same

position: they might be offered, or might be ignored in Ffavour Baf P.

{(2.12) ALT(SKIP ALT(SKIP P, G ), G,) = ALT(SKIP ®, Gy G}

< ALT = 5K1f reduction >

Tre Final law depends on tha fact that we are only interasted in
minimal acceptance sets, Thus the following two processes with the same

communication options {and subsequent behaviours) are equiwvalent:

(2,13) ALT(SK1P ALT(E_I). SK1p ALT(E1, _qz), 53)

= ALT(SK1P ALT(_E1), Sor _'53) cconvexity >



The left hand process can 541P to two options, one of which is a

subset of the othar., 1f ane of the lists G and _@'2 contains a SKIP

1
guard the egquivalence is quite sasy to see. 1f neither doea it is
clear that both processes have exactly the same posaible communications,

and furthermore any environment which can deedlock with either can

deadlock with SKIP ALT(_I_3'1) or some SK1P option within _§3.

We now have enough laws to completsly capture the semantics of

our version of occam. There is one eswception: the cese of uninitialised
variables. The nondeterminism introduced by these is of a particularly
difficult kind, Given that any instance of ons of these is erronecus,

it is rot worth putting a great cdeal of effort inta their study. Any

use of such a variable by a program will show up in its IF - ALT fors,

We will thus not attempt to transform amy further an 1F = ALT program

with the “uminitialised variabla" construct within it, (Notice that we
have not included the possibility of uninitialised wariables withlp normal
form programs, since na bound variable is ever read until it nhas besn

input to.)

Given Theorem 2 abova, the following theorem shows that we have
achieved our objective of completely characterising the semantics of

finite programs.

Theorem 3 If the list x conteins avery free variable that the finite
program P ever inputs or assigns to, and if P never svaluates an
uninitialised variable, than there is a trus, X- normel form program P'
such that free(P') < free(P)u'{, and P = P' ls provabla from our laws

and the rule of substitution for expressions.

By wirtue of Theorem 1 it is sufficient to prove this for tha case

whan P is an x - IF/ALT program.



64,

The proof of Theorem 3 takes wvery much the same farm as that of
Theorsm 1: it is a recursive procedure for transforming 1F b P to
byx=normal form, where P is an _5-IF/ALT precgram without uninitialised
variebles. Indeed in some ways the proof is rather simpler than
Theorem 1, since it doas mot need such a complex structure of nested
racursions, (The reason for this is that [F/ALT and normal form share
the property that syntactic structure corresponds closely to execution

order‘, things at high syntactic levels are executed first,)

Theorems 2 and 3 together give us a relative completeness resulti
relative to the knowledge we ere assuming about expresslons, our
algabraic laws are complate with respect to deciding the equivalence of
finite programs. Recall the relation P E 0 introduced in the second
section, meaning "G is more deterministic than P", This was formally

definad

PcQ E P = ALT(SKIP P, SKIP Q).
It is therefore (relatively) decidable for finite programs using our laws,

It is a fact that, provided the set of "basic wvalues" that
expressions can take is finite, the finite programs are finite in the
lattice-theoratic sense of the word. In other words, if D is a directed
set of processee {under 2}, P is finite and LJD 3P, than there is some
Q€D auch that @ 3 P, Thus the following theorem is an easy corollary to

Lemma 3,

Theoram 4 If P and (] are two occem programs with the property

(%) VBT e rn(), 3V ermn(oh). preg
then PLCQ. If the underlying set af basic values is finite, (J{) holds

if and only if PCQ.



Since P = @ is equivalent to PCQ and P320Q, Thecrem 4 proves the
soundness and, in the finite set of values case, completeneas of the

following infinitary rule for decidlng eguivalence.

lafinitary rule 1 Suppose P and {Q are such that

V% erIin(rhy . 30e rIn(e). Prea
and WO erIn( g, AT e FIN(TPY). 0t

then we mgy infer P = Q.

This rule, together with our laws and the rule of substitutiaon
for expressions is enough to completely characterise the semantica of

occam if the set of values is finita,

Our uvse of an infipitary rula, which raquires an apparently infinita
amount of work to verify its preconditions, appears undesirable, indesd
for any particular finite value set it will be poseibla to give a complete
finitary rule based on tha fact tnat, amince esny program only contalna
Finitely many variables, it can be regarded as e finite etate mechina
{(with a huge number of states), However any such rule would he inelegant
and be impossible to agply in prectice because of the prohibitive amount
of case checking required, Indeed our infinitary rule may well be mora
practical, since itwill be paseibla to verify its preconditions by

induction in many applicationa.

1t should be noted that thers is mo chance of & complets finitary
rule when the value space is infinite. For example we could take our
valua space tp be the integers {with the truth valuas embedded agmehow).
we rastrict the language of expressiona toc the comparisomn and boolsan
operations {including 4:‘15— see Example b of this section}, + and -.

This means that the facts b, b2 we ars assuming sra in principle



06.

decidable,‘ end so add nothing to the real power of gur syatem, A
complete fFinitary rule for this language would allow us to decide the
halting of erbitrary reqister mschine programa: this is well-known
to be impossitla. (We have taken care hers to ansure that an
unecrypulpus wvaer cowld not make use of thse calculua of expressions
to reason about the lsrge scsle structure of programs, It would of
course be completely outaide the spirit of our style of proof system

for him syer to do this,)

Unfortunately Infinitary rule 1 as it stands is not strong enough
to give us 5 complets systeam when the set af basic values is infinite.
Supposs the valup space is the integers, end consider the following pair

of programs,

IF WHILE y7éu
¥y20 SEQ
SEQ and yi=y =1
Ki=X+ ¥y xi=x + 1
yi=0
y<0O
A

These are equivalent, but the rule does not prove this because the
left hant program is finite but is not waaker thsn any finite syntactic
approximation to the right hand program. This is bacause, aa the
initial state variee, the number of itarations of the WHILE loop varies

unboundedly.

There are several methods of extending our rule to cape with this
problam, all of which are essentially ways of considering programs
rpstrictad so that we only need worry about a finite set of walues at a time,

—

1. The theory of these expressions reduces to that of Presburgser
arithmtic {see, for example, [F7).



It is quite easy to restrict normal form programs to finite
sets of values. Given any list of uariablesl and finite set of constant
F.-:q:u:assions2 F, it is easy to construct a boolean b; which is true if
and only if every element of‘._).' is in F, All we have to do is to
introduce extra conditions of the form b;- into the conditionals of

the normal form, with an "escape" clause of .l.. .

Definition

n
a) 1f P = _IF:I bi Pi is a b,x~ normal form program and F is a finite
i=

set of constant expressions we define D,LF to be

F F F
1F( by A, (n)_,h b) P4F) wues, (bzf\ b BbF)

where y is the list of all variables appsaring free in P,
4

n
o) If P = ALT a; p. is a Dyx = ALT pattern and F is a finite set of
i=1

i

constant expressions we define PJF to be the program in which }F is

applied to each mormal form appearing after a communication or within

a minimal acceptance.

{Note that DJF nged not be a normal form program if P is, since the

clausse in tha IF S might be false or not all distinct,)
The following lemma expresses the important properties of the F'lF.

Lemma 4 Suppose P is a normal form program and that every value is

expressed by some constant expression, then we haveg

a) {‘PlFIF is a finite set of constant expressinns}

is odirected (under &) with limlt P,

2, A constant expression is cne which contains no variables.



68,

=M} ‘or each F, if D is a directed set of processes with

Ldoae)r, then trere is some J€D with 3IFIF.

we caer associate 8 set of these "ultra=finite" programs with each

occam program P as follows,

)T(P) = {P‘LF\F is a finite set of constant expressions ang

F' is a normal form eguivalent of same

F-"eFIN(P)Z.

Lemmas 3 and 4 now combine to prove the sgundness and completeness of

the following rule,

Infinitary rule 2 Suppose the programs P and J are suwch that
YereF(P).T areFlu). frout
and YireF (o). 3pef (k). LEe!

then P = (.,

de have now completad our characterisation of the semantics of
occam, The algebraic laws, infinitary rule 2 and the rule of
substitution jn expressions provide a sound and complete system for
decidinc the equivalence of programs. Unfortunately, infinitary rule 2
is likely to be much harder to use in practice than infinitary rule 1.
The Facts that it relies on transformation to normal form and uses two
separate types of approximation mean that its hypotheses will be much
harder to prove by induction thanm those of the earlier rule., There
may be zltermative rules that are not so problamaticjy in particylar
it shoule be possible tg eliminate the need to transform ewvery program

to normal form. This is a topic for Future research.



4. Conclusions and prospects

In the first section of this paper we saw tha® algebraic laus
provide a novsl but precise framework for describing ano defining
occam, The completeness of this description was shown by the rest
of the paper. This approach can also be used to good effect with cther
well constructed languages: this is illustrated in ﬁau«g, where a
simple sequential language {Dijkstra's langyuage of guarded commands [Q])

is considered.

The algebraic approach to programming language semantics has
several Features to recommend it. laws do not reguire the constructiion
of complex mathematical models, Each group of laws is fairly self
contained and usuwally easy to understand. Thay are very modular: a
change which, with denctational semantics, would reguire alterations to
the mathematical model and conseguent revision of every semantic clause,

may well require the altaration of only one or two laws,

Nevertheless, the algebraic laws can give rise to complex and
unexpected interations, leading to a danger that too many programs will
be squated. 1t is therefore desirable to describe the languace by an
independent semantic technique (for example denotatiopal) and prove that
this is congruent to the algebraic semantics. 5uch a proof will prcbably
follow similar lines to ours: a demonstration that all laws preserve
the semantics, the construction of a normal form, and @ proaf that two
different normal form programs have different denotations., Nots that
in our case it would have been very difficult to construct the normal

form without knowing the structure aof the denotational model.

Algebraic laws alone only allow us to provs one occam program

equal to another. They do not help in proving a program cerrect with



70.

respect to some specificatior expressed in terms of a more abstract
description of its intended beheviour, Correctness proofs might be
based on concepts such as satisfactior (sat) [PJ. the weakest pre-
condition [—3_? ar Hoare locic [:Fg. Je gxpect that these methods
will te based more usually on the denpotational than the algebraic
descriztion of occam. however the laws may well be useful for
transforming a program after it has been developed, or for making a

progren more amenable ta some proof technique.

we conclude that even though the algebraic and denmatational
semantics characterise exactly the same equivalence over occam, they

are in some sense complementary, Etach has a lot to offer toc the other.

hevertheless, thare are a rumber of practical applications for
the laws described inm this paper: proving programs equivalent to ane
another, transfarming programs to make them mure efficient, and
transforming programs to a restricted syntax far special applications,
In the three following subsections we examine their potential for these

applications.

Deciding the equivalence of programs

Tre mast adovious application of the laws is in deciding whether or
not a given pair of finite programs ere equivalent. Sections ? and 3
have developed a procedure for doing this, Tkis is a clear cancidate
far automation, The enly parts ef this procedure that are not
immediately susceptinle to practical impliementation are those that rely
on the sssumptinn of facts about expressions, For some languages of
expressions it will be possible in gereral to decide these facts
{though perhaps not wery efficiently), and in any reascnable larguage

there should be wide classes of pairs of expressions whose eguivalence



is cecidatle. twen in the absenrce of a complete procedure for
deciding expressions it will te posaiole to automatically transform
eact Finite prograrm to ncrmal form {except perhaps for the inclusion
of some false branches in I statements), 1n such circumstances

the procedure might be atle to deciae the equivalence of a given

pair aof programs, and would ip all other cases reduce the question

of thelr equivalenca to a boolean expression. It might be appropriate
to make suth a program interactive, allowing it to interrogate its

user on cifficult Facts concerning expressions,

ruch of the complexity of the normal form can be attributed to
the potential nondeterminism of occam programs. we have seen various
ways in which programs can behave unpredictably: the normal faorm
needs enouch structure to characterise all of these, In Fact trans-
formation to normal form will be an excellent way af analysing the

nonceterminism of programs,

In many practical ceses the program will be deterministic, in
tnat it cannot diverge and never has any choice over what to communicate
or what to assign to its free variables. For these programs, and
deterministic sections of otbers, much of the structure of our normal
form will be redundant, IFf we wish to store end manipulate normal form
programs in computers it will oe worthwhile lnvestigating this and other

topics to discover how they can be made more compact.

A useful asystem for handling practical progrem equivalence
questions must be able to deal with programs conmtaining loops. Un-
fortunately, in decidipc the eguivalence of any pailr of programs imvolving
YHILE loops, it is necessary to compare infimitely many pairs of their
finite syntactic approximations, As explainecd in the previous section,

any reasonable complete system is bound to be somatimegs infinitary.



T2.

However it is certain that by extending our set of laws and rules,
and by the use of inductive methods, we can develop systems that
will require the use of infinitary rules a cood deel less often,
It is thus likely thet we ocan cevelop practical finitary proof
techniques which are applicable to many pairs of programs invalvirg

WhILE.

A typical methoo would involve attempting ta tramsform programs
to some standard form, for example the mormal form withs the introduction
of looss in some tightly defined ways, The incompleteness of such 2
method would eppear sither from the impossicility of transforming ewery
pragran to standardg form, or because the stendard form was nat a true

normal Form.

Fer such technigues we will probeacly rmeed to ciscover a number of
algebraic laws involving JHILT. e tave noi nseded ary of these so
far, bscause finite programs contain no loops. Five examples are given
below, each of which is easily cerived from our existing systems,

(Each reguires an application of Infinitary rule 1 and induction,)
(Wi} wHiLE b P = TF(b SEW(F, CHILE b P), b SKIR) £ UAILE expansion>

(WwZ) wHILE b,I(UJHILE b, P) = WHILE b,v l:'2 IF(b2 P, true L)  <uWHILE combinaticny

(U3} WilE b P = 1Ff{g SURILL true F, b 3KIR)
1F no verlable appearing im o is input or assigped to by P

CinfFinite loop

(94) UHILE true x:=e' = | <divergent loop

(WS) WHILE b 5E3(P,.)
= IF(b SEQ(P, wHILE b SEU(W,P),i), b SKIP)
if no variable appearing in b is input or assigned to in J

& JUHILE reordering %



In addition to l®ws in this familiar style, it may also be necessary
to use more explicitly directed transformations towards particular
standard forms., Fcr example the following may be useful if the
target is a state — machina like program. MNote that an extra variable

is introduced as a flag,

{wb) WHILE b VAR x3
5eU = SEU
P x:=false
Q WHILE x v b
1F
x
SEQ
Q
x:=false
ix
5EWQ
p
xr=trua

if x is pot free in the left hand side.

<loop fTactorisation®

Howeusr there is little hope that the above six laws, or any
reasonable extension of them, will be adequate for every problem likely

tc be encountered in practice.

Improwing efficiency

The second possible practical application of algebraic laws ia
for transforming programs to lmprove their efficiency in some way.
That this is possible reflects the fact tbat the laws, while pressrving
all essential abstract correctness properties, do not imply equal
efficiency on either side, OGccam giwves extra scope for this because it

is a parallel language: one can improve a program nat only by reducing



4.

the overall amount of celculation, but also by configuring it fer
the (poasibly parallel) maching on which it is to be rum. The second

of these objectives may be easier than the first.

In some circumstances one might seek a maximally parallel version
of a program, but it is more likely that cne will be attempting to
optimise it for a particular conflguratian. This might be a fixed
langth pipeline, or even a slngle sequential processor, A typical
technigua here might be to seek meximally parallel wersions of a program,
use the symmetry and associative laws of PAR to divide the task into
groups of proceaaes suiteble for running on single processors in a
given network, and then eliminates some of the parallelism within these

groupa,

A helpful tool for this type of transformation will be a repertoirse
of laws directly relating sequantial and parallel compositicn, Begause
thase constructions were both sliminated at an parly stage of the
trenaformation te normal form, we have so far not needed any such laws.
1t should also be possible to discover a numbher of lawa which can be
used to asaist parallelism introduction, for example by making a
sequential program mora amanable to it,or speeding up the behaviour
of a parallel network, A good axample of a seguential=-to-psarallsl

transformation 15 provided by tha following.

Suppose na two of the processas P.I. cesy Pm (m>1) can commypicate
on the samg glabal channel {even interrally), that the list

Xig mear X (n3» 1} contains sach free variable that can be input or

1’

assigned to by cne P, and used {in any way) in another, and that no I'-’i

i

has a free occurrence of any of the chanrels Cor =7y C . Then



SEU(P1. cees Pm) =

NN - o - . 1 . L}
CHAN £y v e ey l:m.PdFi(UD.d, UptPly veay um.pm)

1

v
M
i

where J

UD claims . for cutput, €. for input and Xy eee X3S variables.

Faor rE{h sasny m} N Ur claims c. far input, e for output and all

=1

variablas and channels used by Pr except Xy wne Xo.

This transformation sets up a ring in which the values of the
variables shared between the Pi are passed arcund in saquence, It
would be easy to devise a version of this transformation in which the
network created was a straightforward pipelire, (This would be in

saguence with another simple process for managing the final values of



76.

K, asws xn.) Note that no F'i can start up until Pi.— has terminated;

1 1

it is this that makes the transformation so gensral, but it also
makes the resulting parallel program uselsss as it stands, After
performing this transformation ope would seek to introduce more
useful parallelism by transforming the PJ!’_ in ways that remove the
temporal dependence betwesn acticrs in different P:’i. Usgful laus
for this include <aseignment - ALT distrib > {4.6) and simple derived

laws such as

503 {x:=e, clf) = SED(CET[‘E/I], 5_::_9') Lassignment—output sym™
5[1(5::3_, c?y) = SEQ(c?y, x:i=g) provided y is nat free in x:=p,

£Lassignment—input sym

Unfortunately the corresponding law of input/output symmetry

SEG(c?x, die) = GSEQ{dis, c?x)

provided x does nct appear in e

is pewer true as it etands. Nevertheless It is 7 substitution that
can be made in a pumber of contexts where at least ome of C and d is

vsed for internal communicaticn.

Transigrmation to a restricted syntax

The fipal easily identified practical application for the laws
ia the transformaticn of general occam programs into restricted subsets
of the language., This paper has showrn just how successfully this can be
done: we have transformed every finite program to a normal form ta
which it usually bears ro syntactic or structural resemblance. [t seems
umnlikely that the pormal form is one into which we would choose to
transform programe for execution, but our work gives hope that trans-

formation into other, more useful forms might be tractable,



4n important application of this idea is likely to be ip VLSI
gesign. {Occam is a natural lanquage for specifying and describing
systems such as ULS! circuits, The way in which these circuits are
built up in a structured way out of interacting modules and submodules
corresponds well to the use of nested parallel consttucts irn occam.
1n specifying such systems we are likely to use fairly straightforward
types of ceccam, which will make tranaformation easier, In particular
the set of expression valuas is llkely to be much restrictad (perhaps

allowing anly the Boolean values 0 and 1).

Let us suppose that we know that particular types of cccam
program are directly implementable in silicon by some eutometed system.
Then to implement a circuit speclfiad in occam it will be sufficient to
transform it to ome of thesa implementable subsets of occam., Because
all our transformations are provably correct, the resulting chip design
is guaranteed to be a correct implementation of the original

specification,

An esseptial prerequisite for this work will be the definitian of
the directly implementable subsets of occcam. Ap obvious candidate is
some 8tylised representation of a finite~state machine, Others will
clearly involve parallelism and communication, The handshaksn
communication of occam can be implemerted directly on silicon by
asynchronous design rules; and for larger circuits this is anp sffective
method for avoiding problems of clock skew. For smaller circuits with
hignly regular communications, the occam bhandshake can sometimes be

replaced by a clocked synchronous transfer.



78.

Appendixi A summary of the laws of occam

a) The complete set of laws

Laws of IF

{1.1) :r('cﬂ, Ir(_g_z), 53) = 1r(£1, o 33) <IF assoc ¥
n n M *
(1.2) L1=r1 by Py = LI=r1 By Pj» uhere b7 = b Auio A MB LA b

<1F priority>

n n
1.3 IF b, B, = 1F b, P for a routation 0 of 31 ... N
(.3) 108 8 = 1 By H(1) ny perme v e { |
provided b, A hj = false wherever i # j
£IF sym >
(1.4) IF(b, Py b, Py g o= Ir(bﬂ'bz Py £) <IF - v distribs
(1.5)* IF{false P, T} = IF(C) £IF = falge unit >
(1.6)* 1F(£, b STOP) = IF(E') ¢1F = STGP unit>»
(1.7} IF{true P}y = P ZIF - true unit »

m m
(1.8 1F(C, b IF b, P,) = IF{C, If bab, P.} <a=1F distrib»
- PECTE T R i i

Laws of ALT
(2.1} i\LT(ALT(E,I), 52) = ALT(E_I,EZ) 4ALT assDc »
(2.2) ALT G alT T tation of {1 3
- . = . 1 an ermutation o sae N
i=1 1 i=1 G'r(l) * P

<ALT — sym>

(2.3) ALT( ) STOP 4ALT - 5TOP unit>



(2.4) ALT{b & g P.J_:') = IF(b ALT(z O,'E.), -b ALT(-E)) «<boolean guard elim>

(2.5) ALT(S5KIR BP) = P CALT = SKIP identity>
(2,6) ALT{c?x S5KIF) = c?x <input’y
(2.7) ALT{cle SK1P) = cls Loutput »
{z.8) ALT(g P, ‘5) = ALT(g P, g P, &) ¢ALT idempotence »
(2.9) ALT{g P, g 3, E_} = ALT{g ALT(SKIP P, SKIP 0O}, J,I) «<guard distrib>
. n n
(2,10} IF 0 ::|;1T g; P, = If b ES 9 {IF b pi) provided no variable appearing

in be is inpl.lt in any g;
<IF -ALT distrib>
(2.11) ALT{SkIp ALT(Q1 Py E1)9 85 Uy ‘_sz)

= ALT(SKIP ALT(g, P, 9, & _g,l), .9-2)

provided either 9, = c?x and 9, = c?y

org, = cle and 9, = clf £ALT = SKIP sym>
(2.12) ALT(SKIP ALT(SKIP P, G 5o} = ALT(SKIP Py Gy» G50
” ZALT - SKIP reduction?

(2.,13) ALT(SKIP L\LT(E1), SKIP ALT(E,I, 52), 53)

= ALT{SKIP ALT(E1), 52,33) {convexity>
Laws of assignmant
(3.1) 4> 1= <> = SKIP LSKIP
(3.2} «x;1i=1 wuny is <ai\i =1 4ea P ¢

;
= i=A1 . :—( =1"...
gyl § =1 e it ">

~

for W any permutation of {1 “ra n} (Essignmenw

(3_3)* X+ yi=g+y =

- An

¢ idenmtity assignment 3>



80.

Lawa of SEJ
{6.1) SE{ ) = SKIP L5Ei ~SKIP wunit>
(42} ssn(p,.;_:’) = SEd{p, SEO(L)) £S5E5 assoc >
k n n
(4.3) SEC(_IF_L by Pye @) = 1F by sEa(e,, ) <3EQ = 1F distriby
1= i=
* n n . : R
(4.4) SEQ{.l_\L:‘I' 6; Pio a) = ;_AL: 5, 5Ea(Pi, 3) 4L5EG~ALT distrib®>
i= i=
(4 5)* SE0(x:= InF o, P,) = InF b 5/ | sEG(x:=e,P,} eassignment - IF distrib®
: STy i Ty iU TRy aassiane
* n n e
(4.6) Stux:=g, I%LJ 9; Pi) = F:\Ll._'g gj_[‘_.’l‘j sealxs=e, Pi)
pravided no variable which occurs in X or g is
input in any gi. Lassignment = ALT distrib®
X e
(4,7) SEQ(x:=e, f..:z.ﬁ) = x=f 7y < comoine assignments
Lawe of PAR
(5.1} BAR( )} = SKIP CPAR - SKIP unit>
n n
(5.2)  PAR UsP = PAR(U sP,, u¥i(RAR U 2P ) (n>D)
=t 171 1 jop L1
where U"L is the union of U2 ‘en Un £PAR assoc>
(5.3) PAR(U, 2P, uzzpz} = Mn(uz:pz, Uyj2Pyl  <PAR sym>
i .n . _n
(S.4) mm(u1 .11=: bi Piv UZ.Q) = 11-F1 b; PAR(u1.Pi, uz‘D)
provided b, v .., Vbn = trus &PAR = IF distrib>
(.1.5)* F'P.H(U,l xi=Ey Uyiyis ) = x+yi=ge+ f <&PAR assignments >
Lad [C2 A ) (=1 “-y a— -




[5.6)* WMW,
then P!\R(U 'ALT 9y Py U rxi=g) = ALT 5; PAR(U U ix:i=e)
27 e 2 s
i= iex

where X 1is the set of indices 16{1,2, ceey n} such that

g, = SKIF
b ),
ar g. =fcle and ce€outs{U,} - ins(U,)
i 1 2
%
or 9; = c?x  and c€inS(U1) - Duts(Uz).
< expansion 1>
m
is.m)} 1fp-nfrg Pis and 3= ALT h. 3, uhsse—each gryh, Tres omeof
1 j=1 7 1
i= 1=
the forms c2x, cle-sr—53A, then PAR(L, 1P, U_:14) = ALT k_ R o
_ the forws ¢ 1 2 1 T

where the pairs <kr,Hr> are precisely all possibilities from
the following:

(i) R = PAR(U Py UZ:J) and

r 1
kl:‘ = gi =%KIP
A;: \
= =fel t -1 ;
or k. =g e and Ccé€ou s{u,l) J.I'\S(b,z)
or k. =g =Ac?x and cems(u1 )—outs(Uz)

(ii) R, = F'r\R(U,l 1P, uzguj) and
k = h, = EKIP
r i g\\
or k_ = h, =fcle and ceauts(u2)-ins(u1)

or k = h. =/Cc?x and ceins(Uz)-outs(u.l)

r 3

(111) R_ = SEQ(xz=e, PAR(U, P, U 20.))

k_ = SKIF ~am (bl\)(l”'}& Jse e
rL.e.zD e
9; _Ac. and hj =-r\c?x and celns(Uz)nouts(u_l)

7

ar 9 =4:?>< ard hy =’{c!e and csins(u_l).n uuts(uz).

Zexpansion 2>

a81.



Laws of declaration

(6.1)
(6.2)
(6.3)
(6.4)

(6.5)

{6.6)

{6.7)
(5.8)

(6.9)

(6.16)

(6.11)#
(6.12)

(6.13)

Pk 1{ua Toves VA P)...) = VA aas :

Ui x, (vaRr L Ak P) ) = val’ %, x 2P £YAR assocS
VAR x1:(UﬂH xz:p) = VAR xZ;(una x1:P) CVAR sym >

ViR 3P = P if x¢frea(F) £VAR plim >

Y/ . .

GBR %iF = VAR yiP|'x | if y & free(P) 4 VAR Tename >

n n

ALT a. (VAR x:P_ ) = VAR x:(ALT g, P.)

. 1 1 . 1 1l

i=1 i=1

orovided x is free in no a; < VAR — ALT distrib™>

n _ n .

IF o, (VAR x:Di) = VAR =z {IF o, i)
=1 i=1

provided x is free in no bi LMAR = IF distrib>
SCu{VAR x:P,U) = ViR x:SEQ{F,d) if x & fre={Q) ZUAR = 5E0 1>
SEQG{P, VAR x:u) = VAR x;SEG(P,u) if x & frae (P) CUAR = SED 2%

. . T . ¥, .
PAR(U].(UAH x:PJ), uz.u) = VAR x: PnR(u1.p1. Uz'pz)’

provided x is not free in UZ:pZ’ where Uf is U1 modified ta

include a declaration of the variable x (in the notation of R/,

it is the unwn of U, and USING(VAR x)). ZUAR = PAR »

i
(¢ ¢

ALT(E?x P,G) = UAR y: ALTfe?y SEd(xz=y,P), §)
N

provided x ¢ y and y is not free irP or ¢input teraming’

;;)
VAR x:(ex» 4 y) i1= (€e» +f) = VAR xi{y 1= F) cassignment elim>
—r -r Led —
VAR xsP = VAR x:SEQJ(VAR zi(x:=2), F) <initialisation»
CHAN C, roe C”:lj =P if none of ¢, ... c, appears

1 1

Free in P. <CHAN elim>




Laws of =

(7-7)* att(skip L, 5} = _L LALT - SKIP zero S
(7.2)* sea(d1—, ) = Lo <5SEL left zeros
(7.3)* seafxi=e, L) = L <564 right zerod
(7.a)* Par(u, = Aoy U P) = 1 LPAR zero»
1 2
b} Some derived laws
(01) sec(p, seu{w,R)) = SEQ(SEU{F,Q),R) ¢SEG binary assoc)
( n m m ( n
Dz} ALT g, (IF b, P, . = 1IF b, (ALT g, P,
) AT gy (j=1 5 Pigh) ey Uy 9 Pyy)
providing b,l ¥ aae vhm = true and no variable inmput in a 9
appears in a bj. < ALT - IF distrib?>
(03} sea{skip, PY = sSE3(P, SKIP) = P &80 -SKIP unith
n n
4 T
(4) S2(P JF By 4,) = 17y SEA(P, U)
if b1v eV bn = true and ro variable in any bi is
altered by P. {5EG - IF right distriby
(Ds5) PAR(U_I:P, U2:5K19) = pAR(u1:u) =P
proyided U? declares all global variables and channels
usad by A, and U, declares none of them {PAR = SKIP unity
. =/ = i - t
(p&) SEL"(’“:.P# clf) = sEG{clf x ,_z(.._g) cassicnment-cutput sym>
(07) stu(x:=e, c7?y) = SEl(c?y, x:=e
provided y is not free in x:=e. <assignment=input sym>»



(U1} wHILL o P = IF(b SE3(P, WHILZ b P}, 1b SKI1F) < WHILE expansion

{22} WHIL: b, (“HILE b, £} = wHILE byvo

, IF(t\2 P, true L)

2
<WHILE combination?

(w3) WHIL: b p = IF(b wHILL trua P, —}b SKIP)

if rp variable sppearing in & is input or assigned to by P

Zinfinite loopss

(Wa) WHILE trua xz=p = -L <divergent loop>

{LS) WHILL b SEG(F,d)
= IF{b SE2{P, wHILE b SEQ(%,P), 3}, ~Ib 5kIR)

if 7o variable appearing in b is input or assigned to in Q.

< WHILE reordering »



References

Liwed

&7

mn7

5]

LT

4y
[Taus]

7

Apt, K.R,, Francez, N, and de Roever, W.P, A proaf system
for communicating seguential processes, KCKF Trans, Frogrem

Leng, Syst. 2, 3 {July 1980) 355-385.

Brookes, 5.J. A model fob communicating segquentisl processes,
Oxford University 0.Phil, thesis (1983), (4vailable as ¢

Carnegie-®ellon University technical report.)

Dijkstra, E.,J. A discipline of programming., Frentice-Hzll

(1976).

Fisher, 4, Formal number theory and computability, Oxfard

Logic Guides 7, G.U.F. (1882),

Guessarian, 1, Algebraic semantics. Springer L&CS Vol. 39

(1581).

Hozre, C.A,R. Communicetlng sequential procasses, Prentice-

Hall (1985).
1NMOS Ltd, The occam programming manual. Prantice-Hall {1G84),

Hoare, C.A,R,, He, Jifeng, hayes, 1.J., Morgan, C,C., Saniers,
J.u., S@rensen, l.H., Spivey, IJ.M., Sufrin, 8,4, anc Rostae, A,u.
Laws of programming: & tutorial paper. Oxford University

Computing Laboratory technical managraph PRG-45 (15R%).

Roscoe, A,J. Denotatiormal semantics for occam. Version {a)
in Proceedings of the July 1984 Seminar on Concurrency.

Springar LNCS Vol. 157 (1585).

version {b) to appear as a PXG monograph, OxFord University

Computimg Laboratory.



The semantics referred to in this caper is that of version
(b). Tre only significant cifferences betuween these
papers are in the treatment of uninitialised variables and
in muitiple outputs on the same channel: version (a)
distirguishes betwsen ALT(SKIP cl1, 54IF cl2) ard

ALT(elt SKIF, clZ =KIT), but versicn (b} vaes nat,








