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FUNCTIONAL PROGRAMMING WITH SIDE-EFFECTS 

Mark Brian Josephs, D.Phil. Thesis, 
Wolfson College, Oxford Trinity Term, 1986 

ABSTRACT 

In this thesis functional and logic programming languages are combined 

into a new declarative language. This allows for lazy lJing/e-asllignment to 

logical varIables in an otherwise purel'::J functional language. E~cient 

solutions to various programming problems are developed. It is also shown 

that these IJ,.og,.ams 11!ith side-e! ff:ct" can be derived by means of 

transformational programming. On implementations that support para1!elism. 

further interesting pOSSibilities arise, which are discussed brie~y. 

The formal semantics of this extension to functional programming is 

investigated. 80th denotabonal and axiomatic semantic desc;riptic'lS of 

the language are presented. Programming with slde-eWeets lS partieularl::l 

attractive. because it can be supported b~ graph reduction based 

implementations of functional programming languages. Details of a 

prototype implementation are given. 
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CHAPTER 1 

INTRODUCTION AND OVERVIEW 

1.1 AN EXTENSION TO FUNCTIONAL PROGRAMMING 

In recent !:lears there has been a growing appreciation of the declarative 

style of programming. in which we are encouraged to look upon programs 

as mathematicat objects. Idealllj, we can understand a program wlthout 

having to form a mental picture of some kind of machine executing a 

sequence of instructions. Furthermore, we might hope to be able to prOVt:, 

more easil::! than hitherto, that a program meets its speci~cat.ion 

(lljpicalllj expressed in some rich mathematical notation [25]). 

Declarative programmLng languages can be divlded into two classes. the 

functional and logic stljles. A functional program consists of a set of 

function definitions, and computation involves the evaluabon of an 
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expression b~ USlng these definitions as rewrite rules. For example. the 

Functional program 

faclorial Int --+ Int 
factorial n 1 iin=O 

n _ factorial (n-l) otherwise 

can be used to calculate (factorial I). The evaluation process proceeds 

through the sequence of reductions (rewrites) 

fadorial 1	 ---+ 1 • factorial (1-1) 
---+ I • factorial 0 
---+1_1 
---. J 

Logic programming languages are usuall~ based on the Horn clause subset 

of predicate lOgic [34] and a unification algorithm [46] for matching 

atomic formulce. It is possible to give a declarative reading to logiC 

programs. However. it is also necessar8 for the programmer to 

understand the procedural interpretation of the language. Consider once 

again the radorial example: the clauses 

factorial(O.l).
 
faclorial(n.x) <:::: plus(m.l.n). faetorial(m.!:J), limes(n.y,x)
 

can be read	 as 

factorial 0	 is 

For all integers m, n, x, 1:1, 

factorial n is x 

if m p Ius 1 is n, 

factor i al m is 1:1. 

and n times 1:1 is x 



,
 

The following represents a top-down solution (35 J to the probl~'-:l of 

determining the value z of factorial 1. It shows how the output z;: 1 

ca.n be computed. 

D ¢= factorial(l.z) 

unifying faetorial(1.z) with faetorial(n.x) 

c ¢= plus(m.1.1), faetorial(m.y). timEs(l,y.Z) 

m ~ 0 

¢= factorial(O.~). times(l.'d.z) 

I I unifying faetoriaJ(O.y) with faetorial(O.l)" 
o ¢= tlmes(l.l.z) 

z 

o D 

'Values produced by the execution of a logiC program can contain [iogical} 

variables, in contrast to the totally ground expressions manipulated by 

functional programs' [14]. Darlington suggests that 'this gives logiC 

languages extra power and enables many elegant solutions to be 

developed', 

This thesis is concerned with a style of programming. which has been 

dubbed functional programming with side-ef feetll. It is made possible b~ 

combining functional and ioglc programing languages into a new declarative 

language. Logical variables are made avallable for use. in a restricted 

manner. in functional programs. However. unipcation is not used as an 

evaluation mechanism; furthermore, unlike Prolog [121. there is no 

backtracking on the binding of variables. 
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The language can be regarded as the extension of an otherwise purel,:::! 

functional language to include a novel feature. a lazy 8ingle-a88ignment 

construct. Now, the lack of a notion of assignment (and hence 

side-effects) is said to be a fundamental propert!:j of the class of 

functional programming languages. so this idea seems to be particularl,:::! 

controversial. For example. Pe':::lton-Jones [42] states. in support of 

functional programming 

(i)	 The absence of side-e~eets leads to clean and simple 

semantics, which makes programs easier to write, and 

easier to reason about than conventional languages. 

(ii)	 Distinct subexpressions of a program can safell:J be 

evaluated concurrentl,:::!. since the absence of side-effects 

ensures that the subexpressions are genuinel!:J 

independent. This opens up possibihties for the 

exploitation of parallel hardware. 

In defence of functional programming with side-e~ects. evidence is provided 

that 

(1)	 It is not too di~cult to develop or understand such progr::::ms; 

(2)	 The programs are sUitable for f;larallel execution; 

(3)	 The proposed extension permlts the expression of some interesting 

algorithms that would otherwise be unavailable to the functional 

programmer: 

(4)	 It is sometimes possible to achieve a gam in elJi.clenc!:j over purel,:::! 

functional programs because, With the assignment construct. we ma!:j 
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be in a position to take advantage of the order in which expressions 

get evaluated. (It should be noted that we have in mind a particular 

model of computahcln, demand-driven graph reduction [16.28.54]. 

Graph reduction machines provide one method b~ which funcbona1 

programming languages can be implemented, and the new language has 

been speclficall'::J designed to ful1~ exploit this graph reduction method 

of computation.) 

Programs with side-eWE::ts do not alwa!:js behave quite as one might 

expect. There is the possibilit'::l that evaluation will deadlock. that is, 

come to a premature halt. instead of returning the value of an 

expression. The programmer requires a sound methodoloffil that will 

facilitate development of programs in the language: for example, the lJlork 

on weakest preconditions [17,20 J for deriving programs in an imperative 

language. Transformational programming [7,13,37.47] is known to be a 

useful method for obtaining efficient functional programs from clear, but 

inefficient. functional prcgrams that act as specifications, likewise. 

transforming purel~ functional programs into functional programs with 

Side-effects has proven to be reasonabl~ straightforward. 

Another challenge we address is 'to be able to understand the language 

without having to understand the implementation' [26]. For example, we 

would like to understand Pro I09 without having to think about 

backtracking but. unfcrtunatel~. we would then have no wa~ of knowing 

when to use the cut. Functional programs with side-effects can be written 

with little or no knowledge of graph n:!duction. A formal s~stem based on 

inference rules has been developed for reasoning about such programs. 

This formal s~stem gives a" axiomatic semantics for the language. 
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1.2 ORDER OF EVALUATION 

ThiS section contains a brief discussion of issues relating to the order of 

evaluation of expressions during the execution of pure!y functional 

programs. With this background material it: is hoped that: the reader will 

be in a better pOSition to full!::! appreciate functional programming with 

side--effed.s. which is described in the next chapter. 

We begin with a short account of the lazy evaluation strateffij [19. 22J 

for executing functional programs, used in such languages as SASL [53]. 

KRC [56J and Lispkit [21]. Under laz!;l evaluation, (i) the argL1lT1ents to 

fundion calls are evaluated at most once. and then onl!;j if their values 

are required. giving cal1-b!;l-need [60] as opposed to call-by-name or 

call-b!;l-value semantics. and (it) this laz!;l approach also extends to the 

components of data structures. For example. for (cons E. E1 ) evaluation 

of the head. E). and the tail, E1• is dela!;led until the!;l are needed. It is. 

of course. one thing to appreciate this. but qUite another to realise how 

it can be implemented. Laz!;l evaluation is desirable because it can be 

exploited in a modular st!;!le of programming. For example. the first 20 

prime numbers are computed b!;l the expreSSion (take 20 primes). where 

pr imes has been defined to be the infinite list 2. 3. S. 7. ... of prime 

numbers and take is a function such that (tal<e n xs) returns the j\rst 

n elements of the list xs. 

Another possible evaluation strategy allolJJs for concurrent evaluation of 

expressions, Superficiall!;l. it might be thought that laz!:l and parallel 

evaluation strategies are irreconcilable. However. we have ani!;! to realise 

that. if a function is strict. then it is perfectl!;l consistent with an 

otherWise laz!;l approach for the evaluation of a function call to proceed 

concurrentl!;! with the evaluation of lL-; arguments. Thus, for example. in 

evaluating (E + E ) we might want E) and E to be evaluated in parallel.
1 1 2 

Two disadv<mtages with parallel evaluation are that it is difficult to 
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implement e~cientl~. even on distrmuted computmg architectures, and that 

unnecessar~ (parallel) evaluation of expressions can waste resources, 

possibl~ produdrlg a non-terminating computation. 

An important observation is that the order of evaluation of expressions 

is something that is not usuall~ taken into account when first writing a 

functional program. Our primar~ concern is to ensure that the functions 

are defined correctl~: in other words. we concentrate on the declarative 

reading of the program, or equivalentl~ its logic. under Kowalski's 

definition Algorithm ::: logic .... control [35]. However. if we are to anal~e 

the :s:opace and time complexities of funet.ional programs (with or without 

parallelism>, then it becomes necessar!:J to consider the order in w~ich 

expressions are evaluated. 

For example. in the KRC pre:ude [56] the minimum element of a list xs is 

defined b~ head(sort xs), where sort is insertion sort. Because of laz~ 

evaluation the minimum element is determined in linear time. even though it 

takes quadratic time to completel~ sort a list b~ this method. 

As a second example: we ought to be able to determine the length of a 

list in constant space, but the program 

length List. ---+ Tnt
 
length length' 0
 

length' Int ---+ List • -j. Int 
length' n ni I n 
length' n (cons x xs) length' (n+l) xs 

takes space proportional to the length of the list. because. under iaz~ 

evaluation. the additions are nested and not calculated until the entire 

hst has been parsed [29J. Thus: 
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length [3.6] --. length' 0 [3.6] 
~ length' (0+1) [61 
----+ length' «(0+1)+1) nil 
--. ((0+1)+1)) 
--. (1+1) 
--. Z 

We cor,elude this section b':::l noting that It is possib Ie to alter the order 

of evaluation of expressions b':::l anr,otating a program with control 

functions (8.9.29.30.48]. Hughes [29.30] has suggested a function that 

has the eWect of synchronizing the execution of parallel computations. 

When misused this can cause evaluation to deadlock. As was mentioned 

earlier, this undesirable behaviour can occur in functional programs UJith 

side-effects; we shall be concerned with ensuring that our programs are 

free from deadlock. 

1.3 ORGANIZATION OF THE THESIS 

The thesis has been organized as follows:­

In Chapter 2 a functional language with side-eWeets is lntroduced. The 

syntax and semantics of the language are described informal\,::!_ and man':::! 

programming examples are given. 

Chapter 3 is devoted to an explanation of a formal method of program 

development based on transformational programming. Man~ of the examples 

of Chapter 2 are reworked as transformation problems. It is shown that 

stde-effects can be used as an alternative to tupling r4 O. 41 ] or 

continuations [51,61]. 

In Chapter 4 a method of computation based on graph reduction is 

introduced and a denotational semantics for the language is presented: 

this does not cover parallel evaluation. The semantics provides some 

justircation for the transformation rules of Chapter 3. 
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Chapter 5 describes an axiomatic semantics. which extracts from the 

process of graph reduction those properties essential for reason,ng about 

the language. The axiomatic semanhcs is also useful for understanding 

parallel and s~nchronized execution of programs. 

A summar!:! of the achievements embcdied in the thesls and a discussion of 

related work appear in Chapter 6. Flnall!:j. details of an actual 

implementation of a language with side-effccts are to be found In the 

appendiX, along with the results of some experImental comparisons. 

- :!,., 
r"Jra~ory 

:: ""search Group-Library
'load 

OX, 3QD 
'.--: i0Q~'i) .1:;4141 



CHAPTER 2 

PROGRAMMING WITH SIDE-EFFECTS 

2.1 INTRODU=ION 

The essence of programming with slde--effec;ts can be stated as follows:­

Unlike a conventional Functional language. an applicative expression mal:J 

contain occurrences of uninstantiatrd variables. During the process of 

evaluating such expressions. it. is pOSSible for these variables tv become 

bound to further expressions. An attempt. to evaluate an uninst.anbated 

variable will Iluspend until the variable gets instantiated. t.hat IS, bound 

to some expression. Thus. It is pOSSible for a state of deadlock to arise 

during program execution: this occurs when all demands For the values of 

expressions have been suspended. 
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This chapter begins with a brief and informal account of the s!:lntax and 

semantics of a langu2ge which supports programming with side_ffeets. The 

remainder of the chapter is then devoted to the presentation of a 

selection of program.'L1ing examples in this language. It is hoped that these 

exarr,ples demonstrate that the new st!:lle of programming made possible b~ 

side-€ffects is both useful and not too difficult to understand. To be sure, 

an additional burden has been placed on the programmer. who now has to 

take care to avoid the possibility of deadlock during program execution. 

However, in the next chapter it is shown that a s~tematic method of 

program tran3formation can be adopted for programming with side-effects. 

In this method side-eWeets are introduced in a controlled and safe manner. 

We shall not concern ourselves at this point with how the language can 

be implemented. other than to note that: functional languages can be 

implemented on graph reduction machines, and side--eWects can be 

accommodated Without modifYing such machines. (The possibilit!;j of binding 

variables by graph reduction was recognised in (IS], namely. ·TlLe logic 

based programming languages are supported b!:l a facilit!:l that permits a 

packet to be treated as a variable b~ allowing a reduction to have the 

side--elfed of assigning new contents to an~ argument packet:) Further 

explanation can be found in Chapter 4 and in the appendix. 

2.2 THE SYNTAX OF THE EXTENDED LANGUAGE 

In this section we give an informal description of the syntax of a 

functional language that incorporates the extension. 

An expreSSion is evaluated according to a program that consists of a set 

of function deliniticns. as in t<.RC [56). In fact a s~ntax has been adopted 

that is based on Orwell [581 and Miranda [57J which include a 

pol~morphlc type s!:lstem [35]. Function definitions can be viewed as 

recurSlOn equatiOns or rewrite rules. and take the form 
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(fund ion name) : <type)
 
<function name) <patterG)· <expression>
 

Here. a paHern can be formed from variables and basic values 

(eg. numbers) b~ means of certain constructors (eg. cons). An,::! variables 

appearing in patterns have the nght hand side of the equahcn as their 

scope. To improve r-eadabihty. variables are marked as var parameters if 

the,::! are to be assigned to as a slde-eWeet of a call to the function. 1.1 

addition to these user-declared functions. we will assume the e;t.istence of 

some primitive functions. for instance. the common arithmetic operators. 

The catego.,::! of expre~::cions is defined to include variables. basic values. 

function names and function applications. as well as the forms 

(side-effect> (expression) 
(declarat.ion) (expression) 

where 

<si de-effect) assi~ (variable) <expression) 
<declaration) ~ <variable) 

Note that for (var :z: ; E). the scope of :z: is E. Of course, variables 

can anI,::! appear within their scope. For example, 

(00 x (cons y (var ys)) = var zs assign ys = tail zs ( x zs 

is a well-formed definition prOVided ( is the name of some function. 

Function application is left associative. that is, we write (E. E~ E ) to
3 

mean «( E. E~) E~). Other conventions that have been adopted include 

(1) ++ as an infix form of append. and (ii) a notation based on set 

abstraction. so that. for example. [yt-xsly<x] denotes the list of 

numbers drawn from xs that are less th;::;.n x. 
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2.3	 SEMANTICS 

The language is based on lazy evaluation. as is the case for man~ 

functional languages. Furthermore. although its va, and ass I gn 

constructs have their counterparts in imperative languages. for example. 

Pascal, there are some subtle differences between assign and a standard 

assignment statement. We can give an informal semantics to this 

extension as follows:­

A.	 Evaluation of Va, z ; E 

1.	 R new location in the store is allocated to z and rT\2rked as unset. 

(We call x an uninstantiated variable.) 

2.	 E is evaluated. 

B. Evaluation of assign x = E 1 E1 

1.	 If z is not uninstantiated.
 

an error Is reported for improper assignment. Otherwise;
 

2.	 E. is stored in unevaluated form at x,
 

that is, Z is bound to the expre8sion E •.
 

3. E 2 is evaluated.
 

Thus. ass i gn is a lazy single-assignmenl: construct.
 

c.	 Evaluation of an uninstantiated variable is suspended until an 

expression is asSigned to it. Evaluation then continues with 

that expression. 

Notes: 1) (var z vaT" 1/ ; E) (vaT" lJ -""-£!:.:r: ; E) 

since distmct new locations are allocated to z and y in each 

case. Hence. we can abbreViate such expreSSions as simp I'd 

(var x, 1/ ; E) 
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2)	 {assign x E, Clssign 11 E, E) 

(assign 11 E, aSSL-.9JJ. x E, E) 

since the expressions E 1 and E J are stored in unevaluatecl forrr. 

Again we adopt the abbrevlated notation 

(assign	 x E J • 11 E, , E) 

3)	 Some functional languages have a construct such as where for 

mak.ing lecal recursive definitions. Then 

(E where Xl = E • ....• xn = En)
 

(~ 21" -.- • X n ; assign z. = E, x. E. E)
 

since in both cases all occurrences of Xl in E. EJ' .... En refer 

to E.,. Further explanation can be found in [31), which 

describes an el!icient lmplementabon of where. 

4)	 Order of evaluation of expressions is important. For example, 

addition only remains a commutative operator if it evaluates its 

operands in parallel. 

To see this, suppose instead that addition evaluates Its left 

operand before its right. We can compare the expressions 

(add (assign x 3 2) (sub 4 x)) 

and 

(add (sub 4 x) (assign x ~ 3 ; Z») 

where x is an uninstantiated variable. in the following UJa~. 
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Evaluation of (assign x = 3 : 2) binds x to 3 and returns 2. 

Evaluation of {sub 4 x} returns 1, if x = 3, but suspends if )( 

is uninstantiated. Now, because the right operand of an 

addition onl~ gets evaluated once the left operand has returned 

its value, it can be seen that 

(add (assign x = 3 2) (sub 4 x)) 

evaluates to 3, whereas evaluation of 

(add (sub 4 x) (assign x 3 • 2)) 

deadlocks. 

We therefore have to take order of ;}valuahon into account so 

as to guarantee terminati.on. 

2.4 EXAMPLES OF PROGRAMMING WITH SIDE-EFFECTS 

The first two problems are taken from [4]. Bird uses transformation 

techniques to develop efficient programs from inelficient programs that act 

as speci~cahons. Tupling is used to improve efli:cienc,::! b~ a'Joiding 

repeated traversal of a data structure, but as a result the programs 

lose their darit!;!. It is claimed that our solutions to the problems are no 

less elficient and, given some familiarit'::! with the extended language, are 

not too di~cult to develop. 

For all problems for which a formal speclpcation. in the form of a 

functional program, has been given. the reader is referred to Chapter 3, 

where the solutions are s:JStematicall!;! derived b'::l means of 

transformational prC'gramming. 
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ExAMPL~ 

Consider the data type of binary lr2fO!S derned by 

iY£g Tree = tip In\: fork Tree Tree 

We wish to change a given tree into a second l,ee identical In shape to 

the ~rst. However. each tip "alue should be replaced by the minimum bp 

value of the tree. 

transform Tree --+ Tree 
transform t ~ replace t (tmin l) 

replace: Tree --+ Int --I Tree 
replace (lip n) m:: lip m 
replace (fork L R) rn:: fork (replace L m) (replace R m) 

lmin : Tree --lInt 
lmin (lip n) n 
lmin (fork L R) :: (tmin L) MIN (lmin R) 

METHOD 

We introduce a local variable II to hold the minimum tip vatue. (lmin l). 

for a given tree L Thus, for t :: (lip n), we wish to assign \{ = n. 

and for l :: (rork L R). we wish to assign II :: (u MIN z). where we 

ha"e introduced y and 2 to stand for (lmin L) and (lmln R). 

respectivel,::!' 

Suppose also that m stands for the minimum tip value of the tree to be 

transformed. Of course, for this tree 'I :: m. We only have to reahze one 

more thing: namely, a tip is replaced b!:! a tip. and a fork by a fork, and 

we are read!:! to formulate our solution. 
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SOLUTION 

transform Tree ~ Tree 
transform t var m replace t m m 

replace Tree ~ Int ---to Int ---to Tree 
rep I ace (tip n) m (var v) assign v::: n ; tip m 
rep I ace (fork L R) m (var v) var y. z ; ~ v ::; y MIN z 

fork	 (replace L m y) 
(replace R m z) 

A declarative or logical reading can be given to this program as follows: 

Vx.t:Tree. x::: transform t ~ 3m: Int. x replace ~ m m 

Vx: Tree; n. m. v: Int. x. replace (lip n) m v ~ v n , x lipm 

Vx.L.R;Tree; m.v:Int. 
x ::: replace (forI< L R) m v ~ 3y. z: Inl. V:::!:l HIN z 

~ x ::: forI< (replace L m y) 
(replace R m z) 

From this we can infer that if transform is applied to a. given tree and 

evaluates to some new tree. then this resulting tree will indeed meet the 

specification. What this logical reading does not tell us is how much. if 

any. of the transformed tree can be computed. For this operati.onal aspect 

of the behaviour of the program. an understanding of demand-driven 

e ... aluation is required. 

From an alternative point of vie~. the declarabve readmg re~eds a 

parallel evaluation s~rategy. b'::j which evaluation of an expresSlOn 

(whether being assigned to a variable, or occurring in a data structure 

or as an argument in a function call) proceeds eagerl!:j rather than lazil!:j. 

To reason about our language we require a more elaborate formal system 

into which some concep~ of dela!:jed e ...aluation has been built: see the 



18 

k..,tur-ning 1:.0 Solution 1, we can deduce that all the forks and \:ips can be 

COiT.pllted in response to demands_ However. a demand for a tip value will 

be suspended until all the tips have been computed. This means thaI:. our 

program is unsuitable - it would deadlock - if. sa~, we wanted 1:.0 

determine the minimum tip value by sending demands only along some 

selected branch of the tree. For example. 

findval (transform {fork (tip 2) (tip I»} 

will deadlock rather than evallJal:.e to 1, for findval defined as 

r nelval : Tree ~ Int 
r nelval (tip n) = n 
r nelval (fork L R) := findval L 

Thus. our program has a diWerenl::. operational b€haviour from that given 

by Bird, which is the following: 

transform Tree -J Tree
 
transform t , t'
 

~here (t', m) =repmin t m
 

repmin Tree -J lnt -+ (Tree x Int) 
repmin (tip n) m::: (tip m, n) 
repmi n (ro'k L R) m' (ro'k L' R', y MIN z) 

where	 (l', ~) ::: repmin l m 
(R', z) ::: repmin R m 

Sird's program. which is deadlock-free, was synthesized from the deJinition 

repmin t m ~ (replace t m. tmin t) 

Fortunately, a minor modiJication to Solution 1 is all that is req~ired to 

make it free from deadlock: the deJ1nition of replace is annotated with 

the val combinator [29] (the use of which makes functiOns strict), so that 

replace (fork l R) m (:'{P-!. v) =: var y, Z ; assign v ~ y MIN z ; 
val (val fork (replace l m ld)) 

(replace R m z) 
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The (complete) trar.sformed tree is then constructed in reponse to an 

imbal d~mand. 

Note that for (val E. Ell. E, gets evaluated before E
1 

is (evaluated 

and) applied to it: this corresponds to call-by-value. The simple 

expression (E. E,) gives call-by-need, that is, E, gets evaluabd only 

when first required. So, h~ annotating the program with val, the mimmum 

tip value is computed in response -to a demand for any tip's new value. 

Our program is no less efficient than Bird's and is now deadlock-free: an 

experimental comparison of the programs appears in the appendix. 

On implementations that support parallelism. it would be possible to use 

Hughes' par combinator [29,301 in place of val: evaluation of (par E. E1 ) 

involves the concurrent reduction of E1 and (E. E1 ). its value being that 

of (E , E1 ). (Te~hnical note : we assume that expressions cannot be 

garbage collected while the\;! are being evaluated; although the value of 

the expr~ssion may not itself be required. evaluation of the expression 

may have a vital side-elfect.) 

ExAMPLE 2 

This tree transformation problem is similar to Example 1. Aga:n the 

transformed tree is to have the same shape as the original tree. but 

this time the original tip values must be sorted into increasing order and 

then allocated to the new tips from left to right. 

transform Tree -+ Tree
 
transform t = replace t (sort (tips t)
 

replace: Tree -+ List Int -+ Tree
 
replace (tip n) us = tip (head us)
 
replace (fork L R) us ~ fork (replace L us)
 

(replace R (drop (size L) us» 
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tips Tree -+ List In!:.
 
lips (tip n) , En]
 
ti ps (fork L R) = tips L ++ tips R
 

size : Tree -+ In!:. 
size (lipn) =1 
size (fork L R) = size L + size R 

drop Int -+ List. -+ List IE 

drop a xs = xs 
drop (n+l ) (cons x xs) = drop n xs 

(Note that this specif,cation is slightly Simpler than that given by Bird.) 

METHOD 

Suppose some subtree is to be replaced. It will suflice to have access to 

that parI:. of the sorted list of tip values remaining after values for all 

tips on suhlrees-to-l:.he-Iefl:. have been removed. We store this sub list in 

the variable us. HaVing allocated the Initial values on us to the tips in 

the subtree, the rest can be passed on via some shared variable I-lS. say. 

Furthermore, a list vs of the tip values in the subtree can be produced. 

So. at the root of the tree. vs is a list of all the tip values in the tree 

and us is a sorted version of vs. (Note also that ~s will be instanbated 

to ni I during execution.) 

SOLUTION 2 

transform Tree -+ Tree 
lransform t ~ var vs. ~s ; replace t (sort vs) vs ws 

replace Tree -+ list Int -+ List Int -+ Lisl Int -+ Tree 

replace (tip 1"1) us (var vs) (va~ ws) 
~ assign ws ~ lail us. vs En] tip (head us) 

replace (fork L R) us (var vs) (var ws) 
var xs. ys, zs assign vs = xs ++ ys ; 
fork (replace L us xs zs) (replace R zs ys ws) 
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for some suitabl!:! de~ned funcbon sort.. Since sod. is strict:.. an attempt 

to det.ermine a new tip value will deadlock if all t.he t.ips do not. .ventual1~ 

get demanded. As in Example I. t.hls can be avoided b!:! ust.rg valor par 

(in an Identical wa!:!). 

Not.e that the list of bp values is created b!:! appending subllsts 

toget.her. It should be possible to formulat.e a more efficient solution t.hat 

aVoids t.he use of ++. We revise our met.hod as follows. 

ALTERNATIVE METHOD 

As will be explained In Chapter 4. we would like an expresston-graph such as 

to reduce t.o 
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A program that achieved this reduction w1t:.h minimal overheads m\ght. b. 

regarded lIS an ·opt.lmal' solution t.o t.he problem. W. devise IlUCh a 

program b~ modif~1ng Solution 2. 

An ext.ra argument. rs is used by rep Iace to keep a llst. of t.ip values on 

l5Ubt:rees-t.o-t:he-rtght. V5 ls now used t.o store. for a given subtree. t:.h. 

list: of tu t.ip values appended on to rs. Thus. at. t.he root: of the tree 

to be transformed. rs :: nil and vs is a list. of all tip values (as 

before). 
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SOLUT:O.... 1,\ 

t:. r ansform Tree.., Tree 
t:. ransform t:. var \'5. I-IS ; replace t:. (sort vs) V5 1-15 nil 

replace Tree List Tnt:. -) List Int:.-jo 

-+ List Int -+ LIst Int -I Tree 

replace (tip n) us ( ....ar vs) (vOIr 1-15) rs 
= assign I-IS = tail us. vs = cons n rs tip (head us) 

replace (fork L R) us (vOIr V5) (vOIr l,.Is) rs 
Y.M. ys, zs ; 
fork (replace L us vs zs !ds) (replace R 25 ys >.IS 1"5) 

In Examples 1 and 2 we have used algorithms that Ulould probabl!:J be 

favoured b!:j a Pro 109 programmer. The cost of our effiCient graph 

reduction mechanism is unexpected deadlock for the naive programmer. 

In the next:. two examples we shall be concerned with the space complexIty 

of some programs. Even for purel!:! functional programs, lazy evaluation 

makes analysis difli.cult. For example, the expression (I .. n). representing 

the list of integers from 1 to n, requires space linear in n if ful1!:j 

evaluated (Without any part of the resulting list bems garbage collected): 

whereas (head (1 .. n» evaluates to 1 in constant space, since the list:. 

from 2 t:.o n does not get constructed. 

EXAMPLE 3 

In (29) an analysis is presented of a function spl it:. which takes a list Xl; 

of characters and returns a pair comprisi.ng the /irst line of characters 

and the rest of the list. If the list xs is bUilt up lazi1!:j. then in ~ 

circumstances its members can be garbage collected soon after the!:j have 

been produced. For example, the split may be performed just so as to 

determine the ji.rst character of the ji.rst and second lines of X5. 

However. Hughes has shown that there are situations in which a 
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'sequential evaluation' strateffil makes it impossible to obtain an expected 

constant space solution, no matter how we define the function sp I it. 

Therefore he devises n2W primitives - par and s\:;lnch - with which he 

annotates sp Iii:. in order to allow for the possibility of execution in 

constant space. 

We now present a version of split that can be run in constant space Even 

though only sequential evaluation is required. 

SOLUTION 3 

split: List Char -+ List Char -+ List Char 
split (cons x xs) (var ys) = assign ys = xs nil.i.[x=CR 

cons x (split xs ys) otherl-lise 

Here, (spl it xs ys), where ys is an uninsl:.antiated variable, will evaluate 

lazily to the first line of xs. ys then becomes bound to the remainder of 

X5. 

Hughes gives a program that uses spl it in order to compute the length 

of the first line of a list and the length of the remainder of the list. We 

might write this as 

program: list Char --4 (lnt. x Int)
 
program xs = var rest; val pair (length (split xs rest»
 

(I ength rest)
 

pa i r • ---+ .II! --4 (. X •• ) 

pair x y = (x.y) 

Now the evaluation of either length (or both) requires only constant 

space, given a sUitable garbage colledor and assuming we use the space 

elJicient deflnition of length formulated by Hughes. (His version of length 

is formed by anr:.otating the de~nition given in Section 1.2 of Chapter 1 so 

that lengt.h' n (cons x xs) = val length' (n+l) xs ,) 
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Wh~ have we used va I in the definibon of program xs? This is because 

( Iength rest) can never be determined without parsing the first line of 

xs. This might have been inadvertantl~ attempted. resulting in deadlock. 

had we written 

program X5 = var rest (length (split xs rest). length rest) 

We mention here that Hughes' synch no longer has to be treated as a 

primitive. He gives the folloWing description of it:­

synch E = (E , E) 

However. the two copies of E which are returned are aetuall~ diWerent: 

call them E) and E2• No demand is propagated from E) or E2 to E until 

both have been demanded. 

The following definition of synch achieves the same effect. 

synch _ -+ (. x .)
 

synch x = var ~. z ; «(assign z x ; \:01) (assign \:01 = x; 2'»
 

Evaluation of (s\:oInch E) returns a pair of expressions. The combination 

of lazy evaluation and side-elfects means that the values of both 

expressions must be demanded before E gets evaluated (to v say); only 

then can the value (v, v) of (sl:;'nch E) be determined. 
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Ex...<\.MPLE -4. 

No set. of Examples of functional programs lJJould be complete W;i..hcut 

inclusion of quicksort. 

sort: List Int -+ List Int 
sort nil ::;; nil
 
sort (cons x xs) = sort [I:J+-xsll:l<x] ++ cons X (sort ['d+-xs\y~x])
 

An anallf->ls of the space/time complexities of this program appears in 

[29J. It is shown to have O(nlogn) average and 0(n2 
) worst case time 

complE!xit~, the same as for the imperative version of quiclcsort. 

However, we wish to reduce from quadratic to linear its (worst case) 

space complexitB' 

METHOD 

Rather than compute [\:l+-xs Il:J<X 1 and [Y+-xs IbI~X 1 separately. we can 

combine them bB using a suitabl'::l defined function that partitions :w;s. This 

leads to the following program, where part i t ion is similar to the function 

sp J it of the previous example. 

sort: List lnt -+ List Int 
sort nil = nil 
sort (cons x xs) = var ~s ; 

sort (partition x xs ~s) ++ cons x (sort ~s) 

partition Int --+ List Int --+ List lnt -+ list. Int. 
part i t ion x nil (var ~s) ::: assign ~s::: nil; nil 
partition x (cons 2 2S) (ver ~s) 

var ~s' ;
 
assign ~s = cons 2 ~s·
 

part.ition x 2S ~s· II x$z
 
cons z (part.it.ion x zs ~s) ot.herwise
 

The program is deadlock-free: see Chapt.er 3 for its formal derivation and 

a proof of freedom from deadlock, It. can be furt.her improved bB use of 

an accumulating parameter. as shoUln in Solution 4. 
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SOLUTiON 

sort List lnt -. list Int 
sort sort· nil 

sort' : list Ir.t -. list lnt -. list lnt 
sort' rs nil == rs 
sort· rs (cons x xs) == liar ys : 

sort· {cons x (sort· rs ys)) 
(partition x xs ys) 

where parlil ion is as defined above. 

We observe that (part i t ion x xs ys). where xs is a list of integers 

and ys is an uninstantiated variable. ellaluates (Iazi!!:j) to a list, us sa!:j: 

this evaluation has the side-elfect of binding ys to a list. liS say. Thus, 

xs gets partitioned into two sublists. us and liS. and ")(5 == aus + "liS. 

so r t can be shown to have linear space complexit!:j. as Follows:­

Without loss of generalit!:j. we can assume that the list being sorted is 

not referenced elsewhere. (If this were not the case. more space would 

be required during sorting. The amount of additional space would be 

linear in the length of this list, and so can safel!:j be ignored. since we 

are onl!:j trying to prove that sort runs in linear space.) 

Consider some call of partition. (partition x xs \:15). occurring during 

the sorting of a list. The on1V refermce to xs will be from thi8 call. So, 

rewritlng the expression accordiP.g to the definition of part i t ion will free 

the cons cells from which the list xs is built up: the cells can be 

garbage collected and, hence. reallocated. In particular. the!:j can be used 

to construct the lists us and liS. Thus. onl!:j a constant amount of space 

is required during the evaluation of (part i t i on x xs \:15); that is. its 

storage needs are independent of the length of xs. 
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Now. for an~ expression E that evaluates to a list. let S[ED denote the 

space required for it to be so evaluated. 

THEOREM For 3n!:::J list xs and expression is that evaluates to a list 

S[sort' is XS] Sirsl + 0(""5) 

~ 

Because part i t ion runs in constant space. we have that 

3110me integer k s.t. for any lillt xs. 

S[sort· is (cons x )(5)] ~ S[sort' (cons x (sort' is '"'5» us] + k 

lor some li8t" us. "5. with Itus .. !tvs Oxs . .. (I) 

We shall prove, b~ induction on **)(5, that for any list XE, 

S[sort' is xsl ~ S[id + kttX5 

Base Case t:lXs ;:: 0 =* xs ;:: nil 

Short'rsnil] Sirs] :::; S[rs) + kttni I 

Inductive Case We can assume that 

S[sort' is ys] ~ S[rs] + knys 

for any list ys with UysSltxs. Then 

S[sor t • rs (cons x xs)! 
:::; S[sort' (cons x (sort' rs V5» us] + k. for .lome liltt,~ us. "5. 

with huS + Itvs ;:: tt)es. by (1) 
::; S[ccns x (sort' is VS)] .. kltus + k by indo hyp. 
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S[sort' rs vs] + k(~us + I) 
:::; S[rs] + k(~us + ttvs + I) 61/ indo hyp. 

S[rs] + k~(cons x xs) 
c 

COROLLARY For any list.	 xs 

Sisort. xs] 0(""5) 

PROOF S~sort xs]	 S[sort' ni I xs] + 00) 
Sin; II + 0(""5) bl/ Theorem 
O(~xs) 

lJ 

The remaining examples explore further the use of side-elfeds as a Ula~ 

of combining computations. It is also shown that side-elfeds can be used 

as an alternative to r.ontinuatiorllf. We shall return to qui cksort in 

Example 7. 

£xAMpI,E S 

The Fibonacci function	 can be defined as follows:­

fib: Int -+ Int 
f;b 0 ~ 1 
f;b 1 ~ 1 
fib (n+2)::. fib (n+1) + fib n 

Treating the above as a program rat.her than simpl~ as a specification. it 

nVlis obviousll:J a very inefficient way to determine the Fibol"li:l.cci number: 

it gives rise to ~ repeated computations. 

MEtHOD 

There are many efficient algorithms for computing Fibonacci numbers 

[5.41]. but the ones we shall consider simpl~ "remember' the value of 

fib (n-1) when evaluating fib n. 
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A linear lime solution can be achieved (using a recursive I-lhere construet:.) 

b~ tupling. as follows:­

f b lnt --+ Int 
f b 0 = I 
f b (1"1+1) : fst (fibs 1"1) 

fst : (. X .11) --+ • 

fst (x. y) ::; x 

fibs : lnt --+ (lnt x Int)
 
fibs o = (I. I)
 
fibs (n+l) ::; (x + y. x) where (x. y) fibs n
 

So, fibs n (fib (0'1). fib nJ. 

The above solution necessitates the construction and subsequent 

destruction of tuples. We believe this to be a source of inefficien::!;l. and 

consider the folloWing solution (using sLde-effect.s) to be an improvement. 

SOLUTION 5 

f b : Int --+ Int 
f b 0 = 1 
f b (1"1+1) =~ x fj b' n x 

f b' : lnt --+ Int --+ Int 
f b' o (var )C) = assign x = I ; 
f b' (0'1 ) (var x) ::; var y ; ~ x fib' n y : x -+ y 

Here. z:: fib' n x ~ x = fib n '" z = fib (1"1+1) . Not:::. however, this 

program only makes prcgress under the assumption that + evaluates its 

left argument before its right. or alternativelH evaluates these two 

arguments in parallel. 

It is also possible to use continuations instead of tuples to obtain a 

linear time Fibonacci furx::bon. In the following table we give such a 
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program; alongside appears a similar program that relies on side-eWects. 

The programs are free from deadlock. irrespective of the order in which 

+ evaluates its arguments. 

ALTERNATIVE 

fib: Int -+ Int 
fib 0 = 1 
fib (n+1) = fib' n (lox 1:1. x) 

fib' ; Int-+ 
(Int -+ Int -+ Int) -+ Int 

fib' 06=611 

fib' (n+1) 8 = fib' n 
(Iy z. 6 (y + zj yj 

SOLUTIONS 

fib Int -+ Int 
fib 0 = 1 
fib (n+1) = y.§!!. x. y 

fib"nxyx 

fib" ; Int -+ 
lnt -+ Int -+ Int 

fib" 0 (.:!.2!. x) (var 
assign x = 1. 1:1 = 

fib" (n+1) (.:!.2!. x) (var 
var z; assign x = 
fib" n 1:1 z t 

-+ Int 
y) t 
1 : t 
y)	 t 

1:1+2 

The above solutions can be derived from the definitions 

fib' n 6 = , (fib (n+1) (fib nj 
fib" n (Yi!!. x) (,YM 1:1) t = assign x fib (n+l). y fibn t 

Here the function (J is a continuation; the integer t is a kind of 

continuation that has been applied to its arguments. 

ExMWLE 6 

The task of an assembler is to translate an assembl!:j language listing into 

a form sUitable for machine execution. A formal speci~cation of a simple 

assembler appears in [SO]. In a given line of assembly code a s~olic 

operand referring to some label can appear. but the location associated 

with the label may not be determined until a line occurring further ('In in 

the listing gets assembled. 
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METHOD 

The standard method is to construct a symbol table relating labels to 

locations in the store of the machine. We shall sketch a solution that 

takes advantage of 1az!::l evaluation and side--efects to bUild up the symbol 

table .on-the-jl~·. 

Each line of assembl~ cede will consist of -I;hree fields:­

~ A = Label x (Opcode x Operand) 

The Label field can be left 'blank', that is, we assume blank E Label. 

Similarly. a line of machine code has three fields for numbers denobng the 

location. machine instruction and operand. 

iYEg M= lnt x lnt x lnt 

A ~ol table has t!::lpe 

iYEg Table = List (Label x lnl) 

No details will be given of the functions for decoding s!::lmbolic instructions 

into machine instructions and looking up operands in the s!::lmbol table. 

decode Opcode -t lot 
look_up: Table -t Operand -t Inl 

The assembler can be expressed as a function 855emb Ie that takes an 

assembl~ language listing and prociuces a machine code listing. It calls 

upon the auxiliar~ funcbon assremble' which has parameters n. the 

number of the line being assembled.. converl. the function that converts 

operands into integers. and resl. that part of the symbol table to be 

built from the remainder of the assembl~ listing. assemb Ie' handles the 
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label ~eld of each line of assembly code, recording a new entry in the 

tabl2 rest whenever a non-blank label field is encounb~red. The remaining 

tasks of lh2 assembl~ process are passed on to tha Function a55emb Ie". 

SOLUTION 6 

assemb Ie Li st A --+ Li st H 

assemble xs = var s!:jmtab; assEmble' xs 1 (look_up s!:jmtab) s!:jmtab 

assemble': List A --+ Int --+ (Operand --+ Integer) --+ Table ---+ listH 

assemble'nil n convert (var rest) = ~ssign rest = nil; nil 

assemble'(cons (label. line) xs) n convert (var rest) 
assemble" line n xs convert rest li label blank 
var rest'; 
assign rest = cons (label. n) rest'; 
assemble" line n xs convert rest' otherwise 

assemble": (Opcode x Operand) --+ lnt --+ List A --+ 

(Operand --+ Integer) --+ Table --+ List H 

assemble" (opcode, operand) n xs convert (~ rest) 
= val (cons (n. decode opcode. convert operand») 

(val (assemble' xs) (n+1) convert rest) 

Note 1. Initiall~ assemble' is called at line 1 of the listing with 

rest :: s!:jmlab, sinc2 the entire symbol table has to be constructed. 

Note 2. assemble" has been annotated with val to ensure that (i) all 

the listing is pars2d before any look ups (by convert) are made in tha 

symbol table, and (ii) the new line number is calculated as each line is 

assembled. 
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EXAMPLE 7 

Consider once again the task of sorting a list b~ means of the quicksort:. 

algorithm (Example 4), Note that an imperative version of quicksort:. wlil 

complete the partitioning of a list before sorling the sublists so 

generated. Because of \az~ evaluation, in the functional programs 

considered so far these sublists are generated incrementtJlly: the sublists 

are produced as sorting progresses. Such unwanted laziness can have a 

detrimental effect on the space complexH.y of a program. Thus. although 

we were successful in obtaining a linear space version of quicksort. it is 

worthwhile I:.r~ing to develop a solution that executes in a similar uray to 

an imperative program. 

The follOWing program seems an appropriate staring point.:­

sor\:. Lisl:. Int:. -+ Lisl:. Inl:. 
sort = sarI:.' nj] 

sort· List lnl:. --+ Lisl Tnl -+ Lisl Int 
sor\:. • rs ni I cs 
sarI:. • rs (cons x xs} -= sorl' (cons x (sort' rs [~+-xsJ!:l~x])) 

[!:l+-xsIY<x] 

In lhis last equalion. we should like [y+-xsIY<x] and [y+-xsl!:l~)() to be 

fuJJII evaluated lo lists before sorling can begin. This can be achieved by 

defining a function parl ilion thal is supplied wilh an appropriate 

continuation. We shaH also demonstrale a related method involving 

side-elfecls . 

CONTINUATION METH.OD 

Partitioning an empt~ list results in two empty suhlisls. to which the 

continuation can be applied. For a non-empty list. with J1rst element z 

sa~, lhe lail of the lisl should be partitioned and z cons-w on to the 

appropriate sublist; afler which the continuation can be applied. 
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SOLUTION 

sort' : list Int -f List Int -f List lnt 
sort' rs ni I cs 
sort' rs (cons x xs) = partition x xs 

(."us vs. sort' (cons x (sort' rs vs)) us) 

partition tnt -f list Int -f 

(list Int -f list Int -f List lnt) -f List Int 
partitianx ni18=8nilnil 
part i t ian x (cons z zs) 8 

partition x zs (~us vs. 8 us (cons z vs}) .if x-S;z 
partition x zs (~us vs. 8 (cons z us) vs) otherH i se 

SIDE EFFEGI'S METHOD 

Let us, vs be the sublists resulting from partitionmg 21 list. If the list is 

empty then partition must assign us ::: nil. vs = nil. If the list L.'i 

non-empty, with head z, then z is. the first element of either us or vs. 

Thus, in one case partition must assign us = cons z us', where us', 

vs are the sublists resulting from partitioning the remainder of the list: 

in the ather case part i t i on must ~ vs = cons z vs', for sublists 

us, vs'. 

SOLUTION 

sort' : Lisl Int -f list Int -f list Int 
sort' rs ni I cs 
sort' rs (cons x xs) ::: val' us. vs ; 

partition x xs us vs
 
(sort' (cons x (sort' rs vs)) us)
 

par tit i on I nt -f Li st Jnt -f 

List Lnt -f List Int -f list Int -f list lnt 
partition x nil (var us) (var vs) l-IS 

= assign us = nil. vs = nil; l-IS 

partition x (cons z zs) (v2lr us) (var vs) l-IS 

var vs' ass i gn vs = cons z vs' 
partition x zs us vs' l-IS .if x-S;z 
var us' ; assign us = cons z us' 
partition x zs us' VS l-IS otherl-lise 
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The above solutions run in linear space. This can be shown b~ (rather 

difficult) anal~is. similar to that of Solution 4. 

2.5 CONCLUSION 

A new extension that combines features of functional, logic and imperative 

ianguages has been presented and used to solve a variety of prograJ11/Tling 

problems. Program execution is solely by demand-driven graph reduction. 

and so it should be possible to extend graph reduction based 

implementations of functional languages to support programs with 

side-effeds. A consequence of the decision not to use unifi:cation as the 

evaluation mechanism is that some programs deadlock: the order in whi.ch 

expressions are evaluated must be taken into account by the programmer 

if programs are to be produced that never deadlock. However. deadlock 

can sometimes be aVOided by use of control a.nnotatioll5. 

The extension enables some interesting programs to be developed that 

would otherwise be unavailable to the functional programmer. (It is hoped 

that this has been well illustrated by the worked examples.) tn particular: 

(1) Stde-eWeds allow computations to be combined together in a new way 

and it is suggested that the standard tupling alternative is often less 

eft\cienl. {Only constant fador improvements in space and time compleXity 

are expected in seneral; thouSh in Example 3 an order of magnitude space 

improvement was obtained.) 

(Z) Hushes suggested a synchronization function to reduce the space 

requirements of certain programs. His function can be defined ir terms of 

side-eWecls. or pro9Tams wlth side-€!fects can be used directly to give 

space efl1cient soluhons. 
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(3) Exarr.ples have been given of programs with side--effects that are verl:l 

similar to purely functional programs im.'o[ving continuations. However. the 

side-effecl:.s solutions are not higher-order. since functions do not have to 

be passed as arguments in calls to other functions. 



CHAPTER 3 

TRANSFORMAnON 

3.1 INTRODUcrION 

Chapter 2 has demonstrated the possibilities of (a) programming directly 

in a language with side-E!ffeds. and (b) improving upon the performance of 

existing purely functional proSrams by developing equivalent programs that 

use side-effects. In this chapter we aim to give a more forrral treatment 

to the development process of {b}. 

We shall adopt the following as a working h~pothesis:- The prcgrammer is 

capable of writing clear (modular) functional programs. It ma~ often be 

the case that such pr0'3!"'ams are less efti.cienl.:. that is, run more sloU!l~ or 

use more space, than is deSired: so it is further assumed that the 
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programmer knows some standard transformation techniques. Our 

objective is to provide additional methods that will allow use to be made 

of side-effecl:.s. 

The next section serves to introduce an extension to the fold/unfold 

method of Burstal1 and Darlington [7]. The transformation system 

includes new rules that cater for programs with side--effects. In the 

remainder of the chapter a few .Simple transformation strategies are 

described and are applied to various programs. Many of the examples 

from Chapter 2 are reworked as transformation problems. Strategies for 

developing programs with side-effecl:.s are employed and can be seen as 

alternatives to strategies that make use of tuples and continuations. 

Adopting a transformational approach to the development of programs 

with side-eWects beneJits us in two ways. Firstl~. a synthesized program 

is known to meet its speci~cation. That is, it is equivalent to the original 

purely functional program. Secondly. we are aware of those steps in the 

transformation that can give rise to a program which deadlocks. It can 

sometimes be revealed by local anal!:JSis whether such steps are in fact 

aafe (have not introduced deadlock). If a step is unsafe. changing order 

of evaluation b~ careful use of control annotations or attempting a 

different transformation can often rectify the situation. When local 

analysis is UIlhelpful. a direct proof that a program is free from deadlock 

may still be pOSSible. 

Note that our metnods are formal, but not automatic. Machine assistance 

may be helpful during program tran.o::;:formation [18]. but there appears to 

be onl~ a remote possibilit~ of being able to complle from ine~cient 

functional programs into efficient programs with side-effects. 
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S.2 TRANSFORMATION RULES 

This section assumes some familiarit!;j with the Burstall-Darlmgton 

approach to program transformation. Two limitations of their ~stem are 

that (i) transformation retall"-S correctness. but terr:'lination rna!:! be lost 

unless some extra restriction is imposed, and (i1) no general conditions 

are given under which transformations are known to improve the effi:cienc~ 

of programs. The s!;jstem has been extended with two new transformation 

rules. introducing assigned variables and the mQve-in trans/ormation. so 

that:. programs with side-effects can be developed. The move-in 

transformation is not:. alwa':;ls saFe. in that:. it rna'::! introduce deadlock. 

Therefore. conditions under which the rule can be used safel!;! are also 

provided. 

Although the Burstall-Darlington approach is concerned with the 

redefinition of functiOns. it can be looked upon as eStablishmg the equalitH 

of certain expressl0ns. We take a 'disjoint and exhaustive subset' [7J of 

these equations as the new program. When Viewed in this wa~. the fold. 

unfold and abstraction rules amount to nothing more than substituting 

equals for equals. As is demonstrated b~ the following (trivial) example. 

care has to be taken to ensure that the new program still termlflates:­

From the program 

f	 tnt --t tnt 
f n = 0 
we can obtain 

f n	 = 0 bJl definition 
::;: f n bJl folding 

However. the program 

f	 Int --t Int 
f n =: f n 

is not equivalent to the orIginal dejlnilion of f. because evaluation of 

(f E), for some expreSSion E. fails to terminate instead of returning O. 
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The programmer can check for termination either by reasoning (usually in 

some informal. operational way) about the new program. or by USIng the 

technique given in [33,47] 

More subtle termination problems can arise from transforming a non-strict 

function into a strict one. For example, we mighl:. give an inductive 

dellnil:.ion 1:.0 f above. That is. 

f ; Int -+ Int 
f 0 00 

f(n+I)oO 

can be treated for most purpo5'!s as equivalenl:. to the original de~nil:.ion 

of f. However. for an undefined argumenl:., f is now itself undefined. 

whereas preViously it returned O. Bird had 1:.0 guard against I:.his in 

deVising 'circular programs' [4]. He has shown thaI:. I:.he partial 

approximations 1:.0 a program. as defined by ~xed poinl:. I:.heory, can be 

used to establish I:.hal:. a program is well-behaved. 

Turning now to programs with side-effecl:.s. the Bursl:.all-Darlington 

I:.ransformal:.ion rules can be used as before. However, (i) unfolding. and 

(ii) using properties of operal:.ors, are best applied 1:.0 expreSSions 

withoul:. side--effeets. For otherwise:­

(i) To see the problem With unfolding. COnsider the definition 

double Int _ lnt 
double n = n + n 

Now compare the evaluation of (double (assign x = 3 ; 2» wil:.h thaI:. 

of «assign x = 3 : 2) + (~ x = 3 ; 2». The former rel:.urns 

I:.he value 4 and has the side-effect of binding 3 to x. The latter gives an 

error from atl:.empl:.ing to assign to x tWice. even though it can be 

derived from I:.he expression (double (assign x = 3 ; 2») by unfolding 

according to the dellnil:.ion of doub Ie. 
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(ii) The commutative propert~ of addil:ion IS an example of a mathematical 

law that no longer holds when dealing with expressIons involv~"9 

side-effeds: see Chapter 2. Section 2.3. Note (4). In this case the 

problem is one of introducing deadlock b~ altenng the order in whch 

expressIOns are evaluated. 

In Note (3) of Secl:ion 2.3. we saw that the recursive l-lhere construct 

can be re-expressed in terms of var and ass i gn as follows:­

(E where % = E') = ( ... ar %; assign:z: = E' ; E)
 

Hence. it: is possible l:o devise a rule. eqUivalent to where-abstraction.
 

for a language with side-effecl:s:
 

DEFINITiON By introdueing an aBlfigned variable, we can transform an 

expression E into (var :z: ass i gn :z: = E' ~ E) • for some variable :z: 

and expression E', provided E ls not alread~ in the scope of x. 

For example. we can perform the folloUJing transformation. 

faa (baz x) = var y ~ y = baz x ; faa (baz x) 
introducing an aJJ81gned variable 

var y assign y = baz x : faa y 
referential tranlfparenC!I 

This is equivalent to the transformation 

faa (baz x) = faa y ~here y = baz x 
abstraction 

Note that we have to be slightl,::! careful in uSing referential trarsparenc~: 

UJithin an expression (ass i gn z E' E), UJe cannot rep lace 

occurrences of z b~ E' unless evaluation of E' is free from sid~Weets. 

FinaH,::!, we provide a transformation rule that can be used to take 

advantage of the order in UJhich expressions are evaluated:­
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DEFJ;>;ITION The mOl/Mn transformation takes the form 

(ass i gn z = E ; E') = E" 

where E" is E' with some subexpression F: replaced b~ 

(assign z ::" E ; F:) 

There are some problems in transforming an expression E 1 into an 

expression E, by this rule:­

Evaluation of E, might suspend rather than give the same value as E•. 

For example, (assign x = not; x true) evaluates to false. whereas 

evaluation of (x (assign x = not; true») suspends. 

Although E. and E
2 

ma~ have the same value, their evaluations may 

differ in effect. For example. (assign x = 3 I< 1 2) returns the value 

1 and binds x to 3. whereas {I< 1, (ass i gn x = 3 ; 2») returns 1. but 

fails to assign to x. 

However. a condition sufficient to ensure the safety of the move-in 

transformation 

(assign z = E : E') = E" 

is that: evaluation of E" has the side-eWeet of binding z to E. If this 

condition is not satisfied and E" is strict in z, then the move-in 

introduces deadlock. 

Consider the three general cases: 

(assign z = E (E. E2 )) = «(assign z = E ; E.) E.) (I) 

(assign z;::. E (E, E I ») = (E. (assign z = E ; E 2 }) (2 ) 

(ass i gn z = E . 11 = E. ; E J ) = 
(assign 11 = (assign z E, E,) E,) (3) 
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Case (1) is alwa~s safe because of normal order reduction; for case (2), 

we have to look at E. ; for case (3), E2 has lo be analysed. Thus: 

(2) is safe if evaluation of E, does not need the value z, and E 1 reduces 

to a strict function. for example. E, = not. It introduces deadlock if 
evaluation of E , does demand the value of z, for example. E , = z. If E. 

reduces to a non-striet function then we cannot rel!;j on the safel:!;j of the 

transformation; though it might still be possible to prove that we have 

developed a program that is free from deadlock. 

Similarl!;j, (3) is safe if evaluation of E2 needs the value of 11 but nol :t, 

or 15 guaranteed to evaluate 11 even if evaluation of z suspends. It 

introduces deadlock if it needs onl!;j the value of %, or does not evallJate 

11 until the value of z has been determined. Thus. if add evaluates its 

arguments from left to right. (3) is safe for E, = (add V x), but 

deadlocks for E t = (add z V). Again. more information is required to 

determine its safety in other situations. 

The reasoning suggested in the last two paragraphs is rather operational 

in nature and requires an appreciation of order of evaluation. It is 

suggested that the aXiomatic semantics described in Chapter 5 provtdes 

some help in thts: see Section 5.3 in particular. A few examples of safe 

move-in transformations are also cOllSidered in Chapter 4, and shown to 

preserve equivalence. 

It Is worth mentioning that the proper-lies of val and par ensure that 

the following move-in transformations are safe. 

(assign 2: E (val E 1 E,}) (val E, (assign z = E ; E,») 
(assign 2: E (par E, E,» (par E. (~% = E ; E,)) 
(ass i gn 2: E (par E. E,» (par (assign z = E ; E ) E )

I 1 
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3.3 SIDE-EFFEcrS AS AN ALTERNATIVE TO TUPLING 

In this section we shall demonstrate a new program transformation
 

strateg!:j made possible b~ side-elfeets. It is very slmilar to the tupling
 

atrategy [40, 41] and is almost as easy 1:.0 use: we just have to watch Qut
 

for deadlock when performing a move-in transformation. The idea is to
 

achieve a gain in efficiency 'by introducing a new recursive de~nition which
 

intertwines what were origlnally separate computations' [7].
 

Suppose we wish to combine the computation of (f x) and (9 x). When
 

using the tupllng strategy. the eureka step is to dej1ne a new function
 

h z = (f z. 9 z)
 

We then try to synthesize a more efficient version of h. Note thaI:. it
 

would make no difference if we derned h x = (g z • / 3:) • However. with
 

side-effects we can try to combine the expressions in two dis t inel:. wa~s.
 

The way that is chosen should take advantage of the order in which the
 

expressions are to be evaluated. That is,
 

h z (var v) = assign 11 = 9 % ; I z
 

is suitable if the value of (f z) is required before that of (g %),
 

whereas
 

h % (var V) = assign 11 = I % ; 9 %
 

is appropriate when the value of (g 2:) gets demanded jlrst.
 

To see what happens in practice, we shall solve various problems b~
 

these strategies. We start with a simple example. the Fibonacci function
 

(Example 5 of Chapter 2).
 

Given the definition 

fib: Int --+ Int 
fib 0 = I 
fib I = I 
fib (n+2) = fib (n+1) + fib n 

we might decide to combine computation of (fib (n+I)) and (fib n). 
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TlJpLlNG STR.-\TEGY 

Dej1ne a new function fibs such that 

fibs: Int -4 (Int x Int) 
fibs n:=	 (fib (n+l). fib n) 

It is then possible to redeFne fi b L'l terms of fibs. as Follows. 

fib (n+l)	 = fst (fib (n+l). fib n) by definition of fst 
= fst (fibs n) folding with definition of fibs 

It remaIns	 to s~nthesize a more efficient version of fibs. This can be 

achieved by giving an inductive deji.nition to fibs. 

fibs a	 (fib 1. fib 0) tnstantiatlng n to 0 in definition of fibs 
(1 • 1) unfolding with definition of fib 

fibs (n+l) (fib (n+2). fib (n+1» 
instantiating n to (n+ I) in definition of fibs 

{fib (n+l) + fib n. fib (n+l» 
unfolding with definition of fib 

(x + y. x) where (x.~) := (fib (n+l), fib n) 
abstraction 

(x + y. x) ~here (x. y) := fibs n 
folding vrith definiti.on of fibs 

The transformation has produced a solution that computes fib in linear 

time. name1!:! 

rib: Int -+ Int 
rib 0 = 1 
rib (n+l)	 = rst (fibs n) 

fibs 1nt -+ (lnt x Int)
 
fibs o (I . I )
 
fibs (n+l) = (x + y. x) where (x. ") fibs n
 



47 

SIDE-EF'r£cTs STRATEGY 

Consider t.he fund-ion 

fib' Int. -+ Inc _ Inc
 
fib' n (var x) = assign x fib n fib (n+l)
 

Now, 

fib (n+l) =~ x assign x = fib n ; fib (n+l) 
introducing an aJMigned variahlt:
 

= var x fib' n x folding with definition of fib'
 

Consider, once again, che cases n=O. n)O. 

fib' 0 (var x)	 assign x fib 0 ; fib 
assign x I , I 

fib' (n~l) (var xl assign x = fib (n+l) ; fib (n+2) 
~ x = fib (n+l) ; fib (n+l) + fib n 

unfolding vrich definition of fib 
assign x = fib (n+l) ; x + fib n 

refermtial tran8parmcu 
var y ; assign	 y = fib n . 

x = fib (n+l) ; x + fib n 
introdueing an a""igned tJfJI'iablt: 

var y ; assign	 y = fib n . 
x = fib (n+l) ; x + y 

refermtial tran8parmcy 
var y ;
 
assign x = {assign y = fib n ; fib (n+I}) ;
 
x + y movt:-in tran"formation
 
var y ; assign x = fib' n y ; x + y
 

fo!lding with dt:finition of fib' 
Note that. the move-in transformation used above is safe under the 

assumption t.hat	 evaluation of (EI + E,) demands che value of E., even 

though evaluation of E, might suspend. 

Thus. the solution based on the side-elfeets scracegy is 

fib: Int. -+ Int 
fib 0 = I 
fib (n~ 1) = var x fib' n x 

f b' : I nt _ Jnt. -+ Int 
f b' o (var x) assign x = 1 ; 
f b' (n+l) (var x) = var y ; assign x fib' n y x + y 
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We shall now tackle Example of Chapter 2 by transformational 

programming. The development of a solution based on lupling is described 

in [4]. Here onl~ the side--eWeds strategy will be demonstrated. It will 

prove necessary to make use of control annotations if deadlock is to be 

avoided. So, consider the following' speciji.cation of the problem. 

transform Tree -t Tree 
transform t = replace t (trnin t) 

replace: Tree -t Int -t Tree 
replace (tip n) m = tip m 
replace (fork	 L R) m = fork (replace L m) (replace R m) 

tm n ; Tree -t Int 
tm n (ti p n) = n 
tm n (fork L R) :::: (tmin L) MIN (tmin R) 

TRANSF0m.lATlON 

First we introduce a function rep I ace' dellned by 

replace' Tree -t lnt -t lnt -t Tree 
replace' t m (var v) = assign v = lmin t ; replace t m 

This allows us to synthesize a new deji.nition of t ransfarm ; ­

transform t	 replace t (tmin t) 
var m assign m ~ tmin t ; replace t (tmin t) 

introdu.cing an assigned variable 
var m assign m = tmin t ; replace t m 

referential transparency 
var m : replace' t m m 

folding with definition of rep 1ace' 

Redefining rep Iace' by cases, gives us 

replace' (tip n) m (var v) assign v = tmin (tip n) 
replace (tip n) m 

instantiating tip n fort 
assign v = n : tip m 

u.nfolding with definition~ 

of lmin and replace 
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replace' (fork L R) m (var \I)
 
assign v = tmin (fork L R) ; replace (fork L R) m
 

inlltantiating fork L R for t
 
assign v = (lmin L) MIN (lmin R) ;
 
fork (replace L m) (replace R m)
 

unfolding with definitions 0/ lmin and rep 1ace
 
~ ~ . z ; assign v = y MIN z . y = lmin L , Z = lmin R
 
fork (replace L m) (replace R m) 

introducing alllJigned variablell 

At this stage of the derivation we should like to emplo~ the move-in 

transformation to give us 

var ~. z ; assign v = y MIN z ;
 
fork (assign y = tmin L replace L m)
 

(assign z = tmin R ; replace R m)
 

However, we cannot show that this is a safe step to take. Indeed. It was 

shown in Chapter 2, that in certain circumstances the program so 

produced will deadlock. 

Instead. we return to the original specification and convince ourselves 

that it is acceptable to annotate replace as follows:­

replace (fork L R) m = par (par fork (replace L m» (replace R m) 

That is. we use an "eager" rather than "laz~' version of for k. This will 

allow us to move-tn the assignments safel~. 

The previous derivation onl~ has to be changed slightl~. and we arrive at 

the stage 

rep Iace' (fork L R) m (:!.2L v)
 
var y . z ; assign v <= y MIN z , y = lmin L • z = lmin R ;
 
par (par fork (replace L m)) (replace R m)
 
var y , z ; assign v ::; y MIN z :
 
par (par fork (assign y = lmin L ; replace L m»
 

(assign z = lmin R ; replace R m) 
move-in tran, / ormation
 

var y , Z : assign v = y MIN z ;
 
par (par fork (replace' L my») (replace' R m z)
 

folding with definition 0/ replace' 
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SOLUTION 

transform Tree -+ Tree 
transform t = var m ; replace' t m m 

replace' : Tree -+ Int --+ lnt --+ Tree 
replace' (tip n) m (var v) = assign II = n ; lip m 
replace' (fork L R) m (var v) =var y • z : assign II = Y HIN z ; 

par (par fork (replace' L my» 
(replace' R m z) 

As an alternative. we might have chosen to annotate rep Iace with va 1. 

Then the move-in 

~ y . z : assign II = Y HIN z • y = lmin L . z = lmin R
 
val (val fork (replace L m» (replace R m)
 
var y . z ; assign II = Y HIN z • y = lmin L
 
val (val fork (replace L m» (assign z = lmin R replace R m)
 

is clearly safe. However. the further move-in 

var y . z ; assign II = Y MIN z :
 
val (val fork (assign y =lmin L replace L m»
 

(assign z = lmin R ; replace R m)
 

relies on evaluation of (~ z = lmin R : replace R m) not requiring 

the value of y. Now. R is a given tree, but m is dependent on y. 

Fortunatel~. evaluation of (replace R m) does return an answer without 

demanding the value of m. This can be shown by structural induction on R: 

PROOF 

(i) replace (tip n) m = tip m
 

and m is not evaluated because tip is laz~ (non-strict).
 

(ii) Suppose evaluation cf (replace L' m) and (replace R' m) do not
 

evaluate m. Then nor does evaluation of (rep Iace (fork L' R')), since
 

replace (fork L' R') = val {val fork (replace L' m))
 
(replace R' m) 

c, 
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Thus. using val instead of par in the above solution also "!;lields a 

program that is free from deadlock. 

A rather dilferent solution involving side--elfects can be developed. Instead 

of (tmin t) bei..""Ig determined as a side-elfed. of the evaluatlon of 

(rep I ace t m). the replacement tree is determined as a side-elfect of 

the evaluation of the minimum tip value. This time the original 

specip.cation should be annotated so that 

transform t :: val (replace t) (tmin t) 

Our solution will make use of the primitive seq. where (seq E1 E2 ) 

evaluates E •• and, if and when this returns a value. evaluates to EJo 

TRANSFORJ.tATION 

Deme imin' by 

imin' Tree -+ Tree -+ Int -+ Int 
tmin' t (var 5) m :: assign 5 :: replace t m tmin t 

Synthesize a new definition of transform. 

transform t ::	 val (replace t) (tmin t) 
var m assign m :: lmin t ; val (replace t) m 

introducing an lUlJigned vrlTiablt' 
~ var m ~ m ~ tmin t : seq m (replace t m) 

identity 
var m. s : assign s = replace t m, m = tmin t : 
seq m s 

introducing an alJlJigned variable 
var m, S 

assign m ~ (assign s = replace t m ; tmin l) ; 
seq m s 

move-in tranlJjormation 
var m. s ; assign m = tmin' t 5 m ; seq m s 

The idenlit~ (val E x) == (seq x (E x)) should be evident because 

evaluation of both expressions involves f.rst the evaluation of x and then 

the evalualion of (E x). 
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Synthesize a new def1nibon of tm in' . 

tmin' (t ip n) (var s) m
 
assign s replace (tip n) m ; trnin (tip n)
 
assign s = tip m ; n
 

tmin' (fork L R) (var s) m 
assign s = replace (fork L R) m ; tmin (fo~k L R) 

= assign s = fork (replace L m) (replace R m) ; 
(tmin L) MIN (tmin R) 

=	 var L'. R'; 
assign s = fork L' R'. L' = replace L m. R' = replace R m ~ 
(tmin L) MIN (tmin R) 

introdu.cing a88igned variable" 
var L', R'; assign s = fork L' R';
 
(assign L' = replace L m ; tmin L)
 

MIN
 
(assign R' replace R m ; trnin R)
 

move-in trans!ormation 
var L', R'; assign s = fork L' R';
 
(tmin' L L' m) MIN (tmin' R R' m)
 

The move-in performed above is safe because MI N is strict in both 

arguments and (tmin L). (tmin R). are independent of L', R'. 

SOLUTION 

transform Tree -} Tree
 
transform t = vac m, s ; assign m = trnin' t s m ; seq m s
 

tmin' ; Tree -} Tree -+ In\: -+ In\:
 
tmin' (tip n) (var s) m = assign s = \:ip rn ; n
 
tmin' (fork L R) (var s) m = var L', R'; assign s = fork L' R',
 

(tmin' L L' m) MIN (tmin' R R' ,,) 

The syn\:hesis of solutions to Example 2 of Chapter Z is similar to that 

given above: the details are omitted here. The ~nal problem to b€ tackled 

in this section is quicksort (Example 4). 
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sort List Int --+	 List Tnt 
sort nil ::	 nil 
sort (cons x xs) = sort [yf-xsIY<x] ++ cons x (sort [y+-xsly~xJ) 

TRANSFORMATION 

De~ne 

partition Tnt --+ List Int --+ List Int --+ List Int
 
partition x xs (var ys) = assign ys = [y+-xsly~x] ; [y+-xsi'd<x]
 

Rede/lne sort in terms of par tit ion. 

sort '(cons x xs)	 sort [y+-xsIY<x] ++ cons x (sort [y+-xsly~x]) 

~ ys ; ~ssign ys = (y+-xsly~x] 

sort [y+-xsly<x] ++ cons x (sort ys) 
introdw:i.ng an auigned variable 

var ys :
 
sort (assign ys = [Yf-xsly;:::'x] [Yf-xs[y<x])
 
++ cons x (sort ys) 

moue-in trandformation 
~ ys; 
sort (partition x xs ys) ++ cons ;( (sort 'ds) 

folding with (lefinition of partition 

The move-in above is safe because sort is strict and ++ forces 

evaluation of its rrst argument. 

Synthesize a new de/lnition of par tit ion. 

partition x nil (var ys)	 assign ys [y+-nilly~x]; [y+-nilIY<x] 
assign ys ni I : ni I 

partition x (cons z zs) (var ys)
 
assign ys :::: [y+-(cons z zs) Iy;:::':x] [y+-(cons z zs) Iy<x]
 

CASE x:$;z 
partition x (cons z zs) (~ar ys) 
assign ys :::: cons z [y+-zsly;:::':x] ; (y+-zsly<x] 
var ys' assign ys :::: cons z ys·. ys' :::: [y+-zsly;:::':x] 
[y+-zsl~<xJ 

var ys' ; assign ys = cons	 z ys' ; partition x zs ys' 
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, - Urlj··/!":"'Sity 
'~'~''"Iry 

-i-;' GroliD-Library 
'.J.-, 

cford Or <)G 
O;;ford (0'" " CASE x)z 

partition x (cons z zs) (var '::,Is) 
assign ys = [Y'l--zsly~x] : cons z [y+-zsIY<x] 

= cons z (assign ys = [y+-zsly~x] : [Y+-2sIY(x]) 
r7lOtle-;n tran.'l formation
 

cons z (part i l:. ion x zs ys)
 

It is no!:. possible to determine b!;l local anal!:jsis whether the move-in is 

safe or introduces deadlock. This could be remedied b!;;j employing a cons 

t.hal:. evaluated its tail eagerly. Instead, the solution is presented 

accompanied b!;l a proof thaI:. it is free from deadlock. 

SOLUTION 

sorl:. : List. Int -+ list Int 
sorl:. ni I ni I 
sorl:. (cons x xs) = var ys ; 

sorl:. (partition x xs ys) ++ cons x (sort '::,Is) 

parti tien Inl:. -+ List. Int --+ list Inl:. -+ List Inl:. 
parti l:. i on x nil (varys}=assignys=nil; nil 
partition x (cons z zs) (~~ ys) 

var ys' ; 
assign ys = cons z ys' 
partition x zs ys' .if x~z 

cons z (partition x 2S ys) otherwise 

The main proof wiH require the following Lemma. 

LEMMA Given x, an integer J XS, a list of integers, and ys, an 

uninstantlated variable. Then. (partition x xs ys) evaluates (lazily) to 

a li.st without deadlocki.ng. Further. if it has been evaluated to a list. 

then ys must have been instantiated to a list. 

PROOf By structural induction on xs. 

CASExs=nil 

Trivial, since (partition x nil ys) (assign \:Is ni I ni I) 



CASE xs ;;: cons z zs 

a) x:5z 

(partition x (cons z zs) ys) 
(var !,lS' : assign ys = cons z ys' partition x zs ys') 

But (parli tlon x zs ys') evaluates to a list, ps sa!:j. with ys' being 

instantialed to a list. qs sa!:j, b!:j inductive h!:jpothesis. 

Therefore, (partl ti on x xs \:Is) evaluates to the list pSt with yS 

instantiated to the list (cons 2 q5). 

b) x>z 

(partition x (cons z zs) ys) = (cons 2 (partition x 25 ys)) 

and. again the inductive h!:jpothesis gives us that. (partition x xs ys) 

evaluates to a list without deadlocking. and with ys instantiated to a 

list. o 

We can nolU prove freedom from deadlock for quicksort itself. 

THEOREM Given xs. a list of integers. Then. (sort xs) evaluates (lazily) 

to a list without deadlocking. 

PROOF B!:j induction on ttx s. 

BASE CASE l;IxS O. ie. xs n i \. Trivial. since (SOT't nil) nil. 

Ir-,;oUCTIVE Cc>..Sf;. Suppose true for l;Ixs :5 n. 

Consider (SOT't (cons x xs}) 

(vaT' ys; sort (partition x xs ys) ++ cons x (sort ~"s)) 
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B!;/ Lemma. (part i tion x xs \:ls) evaluates (lazil~) to a list. ps sa'::!. 

without deadlocking, and. b\;l inductive h'::lpothesis, (sort ps) evaluates to 

a list without deadlocking, since tlps :5 tlxs = n. . .. (1) 

Now. in evaluating (E ++ E' ). E is demanded prst. So, 

(sar t (part i t i on x xs ys» does indeed get evaluated. 

Of course, we know that even just to determine the prst element (or. 

mOre precise!'::!. the prst cons cell) of the sorted list. the entire list:. of 

integers being sorted must. be examined. Thus. (partition x xs blS) must 

get full!:! evaluated to a list. 

Then. by the lemma, \:,IS is always instantiated to a list. prior to any 

evaluation of (sort ys). 

But I'tys :5 tlxs :: n, so by inductive hypothesis (sort \:ls) evaluates to a 

list without deadlocking_ ... (2) 

From (1) and (2), we have that (sort:. xs) evalu.ates (laZily) to a list 

without deadlocking. 

o 
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3.4 SIDE-EFFEcr5 AS AN ALTERNATIVE TO CONTINUATIONS 

In transformational programming man~ improvements made possible b~ 

tupling can also be achieved b\::l using cont.inuat..ions. In general. the eureka 

step is to take some function I. and deflne a new function /' of the form 

f' z 0 = e (f z) 

ll!nere 8 is a continuation. Just as there is a strate~ involving 

side--elfects that seems c1osel\::! related to tupling. so there is a second 

strateffi:j t.hat resembles the use of continuations. In this approach. the 

function /' is defined b\:l 

/' ::z: (var,,) t = ass i gn " = I % : t 

Here. t acts as a continuation that has alread'::l been applied to its 

argument. The use of these strategies will be demonstrated on a couple 

of examples in the remainder of this section. Note that solutions inl/olving 

side-elfects will be developed without using the move-in transformation. 

Consider once more the Fibonacc1 function. 

CONTINUAnON STRATEGY 

Deline 

fib' : Int --fo (Int --fo lnt --fo Int) --fo Int 
fib' n 0 ~ 0 (fib (n+1» (fib n) 

so that fib can be redefined b~ 

fib (n+1)= (~x y. x) (fib (n+1» (fib n) 
.= rib' n (~x y. x) 

folding with definition of fib' 

Giving an inductive definition to rib':­

fib' 0 0 o (fib 1) (fib 0) 
o 1 1 

unfolding with defini£ion of rib 
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fib' (0+1) B = B (fib (n+2)) (fib (n+1)) 
= B (fib (n+1) + fib n)(fib (n+l») 

unfolding with definition of fib 
(Ay 2.	 B (Y+2) y) (fib (n+l)) (fib n) 
f Lb' n	 (..\y z. 8 (y+z) y) 

folding with definition of fib' 

SOLUTION 

f b , Tnt -+ Tnt 
f b 0 = 1 
f b (n+l) = fib' n (AX y. x) 

fib' I nt -+ (I nt -+ Int --+ Tnt) -+ Int 
fib' 0 B = B 1 1 
fib' (n+l) B = fib' n (.Iy 2. B (Y+2) y) 

SIDE-EFFECTS STR.4..TtGY 

o.pne 
fib' Tnt -+ Tnt -+ Int -+ lnt --+ lnt 
fib' n (var x) (var y) t = assign x = fib (n+1), y fib n 

Now, 

fib (n+1) = var x, y assign x = fib (n+1). y = fib n ; x 
introducing a88igned variable8 

= var x, y ; fib' n x y x 
folding with definition of fib' 

S~nthesize a new deJinition of	 fib'. 

fib' 0 (~ x) (var y) t =	 assign x fib 1. y fib 0 ; t 
assign x 1. y = 1 t 

fib' (n+l) (~x) (var y) t 
= ~~ x = fib (n+2), y = fib (n+l) ; t 
= assign x = fib (n+1) + fib n. y = fib (n+1) ; t 
= var z assign x = y + z. y = fib (n+l), z = fib n ; t 

introdueing an a8Mgned variable
 
var z assign x = y + Z : fib' n y z t
 

folding with definition of fib'
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SOlIlTIO;-,; 

f b l'l --I I nl 
f b o I 
f b (n+l) \far x, y fib' n x y x 

f b' : Int -+ Int -+ In\:. --lInt -+ Int 
f b' o (\far x) (var y) t = assign x = I. y = 1 : t 
f b' (n+l) (var x) (var y) l = var z ; assign x = y + z 

fib'nyzl 

As a second example. consider Example 7 of Chapter 2. 

sort List Int --t List Int 
so r t = sar t· nil 

sort· ; list Int -+ List Int -+ List Int 
sort· rs ni I ,s 
sort' rs (cons x xs) = sorl' (cons x {sorl' rs (\:j....xsly;::x]) 

[y+-xsIY<x] 

CONTINUATION STRATEGY 

DeFne 

partition; Tnt --t List Int -+ 
(List Int -+ List Int -+ List Int) -+ List Int 

partition x xs 8 = 8 [!:l+-xsl!:l<x] [y+-xsIY2x] 

so that 

sar t' rs (cons x xs) sorl'	 (cons x (sort' rs [y+-xsly?x)) 
[yt-xs Iy<x] 

by debnition 
(Aus'ls. sort' (cons x (sort' rs vs}) us} 
[y+-xsl!:l<x] [y+-xslbl2x] 
partition x xs 
(Aus 'Is. sort' (cons x (sort'	 rs vs» us) 

by folding 

II:. is straightforward to ~nthesi'Ze an effiCIent version of partition. 

Thus: 

partition x nil 0 = 0 [y+-niI l\d<x] [\d+-nilly:?:x] 
1·ndantiating xs to nil 

o nil ni I 



60 

part i t ion x (cons z zs) 8 
8 [Y+-2sIY<x] (cons Z [y+-zsIY?x]) l..[ x~z 

8 (cons z [yr2sIY<x]) [y+-zsly?x] otherwise 
intltantiating xs to (cons z zs) and aimpli/ving 

(),us 'V5. 0 us (cons z vs» [y+-zsly(xj [y+-zsly~x] .if x~z 

(~us V5. 0 (cons 2 us) vs} [y+-zsly(x] [y+--zsly~xJ otherwise 
~ partition x zs (~us vs. 8 us (cons z vs» l[ x~z 

partition x zs (~us V5. @(cons z us) vs) otherwise 
folding with definition 01 partition 

SOLUTION 

sorl' ; list Int -+ List Int -+ List Int 
sort' rs ni 1 :: is 

sort' rs (cons x xs) = partition x xs 
(),us V5. sort' {cons x (sort· is vs» us) 

partition Int -+ list Int -+ 

(lisl:. Int -+ list:. Int -+ List Int) -+ List lnt 
partitionx nil8=8nilnil 
partition x (cons z zs) 8 

::;	 partition x zs (),us V5. 8 us (cons z vs}) if x~z 

partition x zs (),us V5. 8 (cons z us) vs) otherwise 

SIDE-EFFECTS STRATEGY 

The eureka step Is as follows:­

partilion Int -+ list tnt -I' 

list lnt -I' list Int -+ list lnt -I' list Int 
partition x xs (var us) (var vs) ws 

;:: assign uS ;:: [Y .....xsly<x}. vs;:: [y+-xsl!J~xl : ws 

Thus. sort' can be redefined by 

sorl' rs (cons x xs) sort' (cons x (sort' rs [y+-xsl!J~x])) 

[y+-xsl!J<x} 
var us. vs : 
assign us ;:: [y+-xsIY<x]. vs;:: [y+-xsl':,l~x] 

sort· (cons x (sort' rs vs» us 
introdunng assigned variables 

.YJ![ us. vs :
 
partition x xs us vs
 
(sort· (cons x (sort· rs vs» us)
 

folding with dt:finition of partition 
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Specializing the definition of part i t ion to the various cases, gives:­

CASE xs = nil 

partition x nil ( ..... ar us) (var vs) W5 

:: assign us::: [y+-niIISl<x]. vs = [y+-nilly2:::x] ; 1-15 

=~us=niJ. vs=nll: ws 

CASE xs ::: cons z zs with x~z 

partition x (cons z zs) (~us) ( ... ar vs) I-lS 

::: assign us = [y+-zsIY<x]. vs::: cons z [y+-zsjY2::x] : ws 
::: ~ vs' ; ass i.£l!l vs = cons z vs·. us ::: [y+-zs Iy<x]. 

vs' = {y+-zsly~x] ; ws 
introdueing an B88igned lJariable 

::: ~ vs' ; assign vs = cans z vs' ; 
partition x zs us vs' ws 

folding VJitA definition of partition 

CASE xs ::: cons z zs with x>z 

partition x (cons z zs) (var us) (var vs) \-IS 

::: ~ us ::: cons z [y+-zsly<x]. vs :: [1:l+-zsIY~x] ; ws 
::: .... ar us' ; assign us = cons z us'. us' ::: [y+-zsl y<x]. 

vs = [Y+-Z5 Iy2::x] : ws 
introdueing an auigned variable 

::: var us' ; assign us ::: cons z us' ; 
partition x zs us' vs ws 

I aiding with delinition 01 par tit ion 

SOLUTION 

sort' : List Int -+ list Int -+ list Int 
sort' rs nil =rs 
sort' rs (cons x xs) = var us, vs ; 

partition x xs us vs
 
{sort' (cons x (sort' rs vs)) us}
 

partition Int -+ list Int -+ 
list Int -+ list Int -+ list Int -+ List Int 

partition x nil (var us) (var vs) ws 
= assign us = nil. vs = nil ; ~s 

partition x (cons z zs) (var us) (var vs) ws 
= ~ liS' : assign vs = cons Z liS' 

partition x zs us vs' ~s li x~z 

~ us' ; assign us = cons z us' 
partition x zs us' vs ~s otherwise 
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3.5 CONCLUSION 

In this chapter we have demonstrated that transformational programmmg 

can be used in the dEvelopment of programs with side-effeets from purel~ 

funcl:.ional programs. We have identified two new transformabon rules, 

introducing assigned variables and the move-in transformation. which are 

unique to programming wlth side:""€Wects. Furthermore. strategies for 

developing programs with side-efecl:.s haVE been presented and have been 

compared With well-known strategies involVing tuples and continuations on 

a small selection of problems. 

By adopting this formal methodology it has proven pOSSible 1:.0 isolate 

those steps in the development process at which there is a danger that 

deadlock might be introduced. This Simplifies the task of ensuring that 

programs are free from deadlock.. Control annotations (especiall~ par 

[29.30]) can sometimes be useful in developing deadlock-fr~ programs. 

An attempt has been made to outline the sort of reasoning that is 

required for that purpose and mention has been made of various problems 

that might arise. To summarise: deadlock-free programs with side-1!fects 

can be developed b~ a transformational programmer who has a good 

understanding of order of evaluation. 



CHAPTER 4 

DENOTATIONAl SEMANTICS 

4.1 INTRODUCfION 

This chapter provides a formal semantic descrlption of a functional 

programming language url.th side-effeds. The description takes the form of 

a denctationaJ ..tmanti~~ for the language. That is, [51} 

'We give 
.semantic valuation functions", which map 

s!:F'tactic constructs in the program to the 

abstract values (numbers. truth values. functions etc.) 

which the~ denote. These valuation functions are USlJall~ 

recurstvel~ defined: the value denoted b~ a construct IS 

speci~ed: in terms of the values denoted b~ its s~ntactic 

subcomponents .••• 
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A valU3tlon ! is dejined which gives a meaning t.o an~ well-formed 

expr2~sion. ! can be thought of as an abstraoet model for a graph 

reduchor\ machine. It gives call-b!:j-need serr.anbcs [601 to fundion 

application and provides for laz!:j constructors [19]. A straightforward 

meaning is given to the var and assi gn constructs in functional programs 

with side-elfeds. 

The chapter is organized as follows. It begins with an informal 

description of the process of graph reduction. This has been provided so 

that additional insight rna!:! be gained into the semantic equations of 

Section 4.3. In that section the syntax and semantics of the programrning 

language are given. Simple proofs of the equivalence of some expressions 

are also demonstrated. 

4.2 GRAPH REDUCfION 

Graph rEduction, as a method b!:j which functional programming languages 

can be l'llplemented, was invented b!:j Wadsworth [60] and popularised b!:j 

Turner [54]. In this section we shall give a brief description of the 

process; further explanation, as well as details of optimisations. can be 

Found in [27.31.43.52.55]. 

The ke!:j idea is that expressions are represented in graphical form. 

Reduction rules can then be performed on these e:r.pre.IlMon-graphll iil such 

a way that expliCit cop!:jing of subexpressions can be aVOided. For 

example. in the sequence of reductions 

(h.	 add x x) (sub 3 Z) ----. add (sub 3 2) (sub 3 2) 
----. add 1 I 
--> Z 

the expression (sub 3 Z) is not copied. Instead. an instance of the bod!:! 

of the ),--expression is created, with pointer" to (sub 3 Z) substituted 
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for the two occurreoces of x. When add evah.Jates one of its arguments 

the expression (sub 3 Z) is ooer-...rlt:ren b!:j its value 1. Hence. the 

reduction does not. have to be repeated for the second argument. This Is 

the 'stmultaneous contraction of rede)l;8S' ,noted in (601. Thus: 

~ 
-->dd --> ~ CD 

sub ~ 

3 Z 

Evaluation of an expressjon involves the repeated application of reduction 

rules Wltil it. has been transformed into luad normal farm' (sometimes 

called canonical form or tozv nor~al form):, that la, to sa!:!. a 

.\-expresston. a partiall!:j applied function or a data !itrl.lcture. such as a 

number or (cons E
l 
E~). Thus, the exprE!lSsions (1)(. add 3 5), (add 2). 

true and (cons (add 3 5) 2) are all in head normal form; whereas. 

(add 3 5) itself Is not. 

Graph reducUan machines emplo!:j a normdl order reduction strateml' That 

is. (E l E , > is evaluated b!:j jtrst evaluating E 1 and then appl!:jirg the 

resulting function to £2' 8!:j the Church-Rosser Theorem this ensw"eS that. 

a head normal form can be found whenever one exists. 

A rather subtle point is that. although normal order graph reduction 

tmplements laz~ evaluation. it. does not achieve luJI luineee [28.29]. 

This simpl~ means t.hat a subexpression in the bod~ E of a .\-expresslon 

(.\:.:. E) ma~ be re-evaluat.ed each time the .\-expression is applied. even 

if it. cont:.airB no occurrences of :.:. Thus. (add 3 5) Is re-evaluated 

whenever (.>.x. add 3 5) is applied t.o 150me argument.. It is t.herefore 

prudent to transform or compile Ox. add 3 5) into an equivalent 

expresslon such as «.\IJ x. IJ) (add 3 5», before performing graph 

'[Ii P ~. TIw '-'Jo,Lo. ~u.-: ,;t4 .ptn::: tIII.d ._bu. Ncrrthwi'loll....a 1984) 

_ t .... l..rnl Iw-.d .........01 /gr... to mean "omolth~"'9 "lignt\~ dljfer...,t. 
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reduction. Because a pointer to (add 3 5) is substituted for ~. the 

expression «),l::' x. l::') (add 3 5» redutes to (.lx. 8) on being applied 

to an expression. 

So far we have seen that graphical-expressions facilitate the sharing of 

subexpressions. A new posslbilit!;J is also opened up. that of bUilding 

ei,aJ.!tJr structures. Turner [54] rec0gni2ed that an efl\cient circular 

version of the Paradoxtcal Combirator Y can be giwn: t.he rule 

Y! -+ ! (Y J) 

is replaced b~ 

y!-+(Ill 

Circular structures also allow for a convenient representation of certain 

infinite data structures. For example. 

:fJ 
represents an Infinite list of ones. A further point is that some 'sill~ 

recursions' can be detected. For instance. 

)( : I nt 
)IIi = add I )IIi 

can be "'Presentod b~ the graph 

tJ 
The node x can be marked as not read" while the value of x 15 being 

determined. Thus. when add demands the value of its second argument. the 

infinite loop can be detected. 
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Finan\:!. we note that graph reduction machines are usuall\:j driven b\:j a 

printing routine; which for example. when reducing an expression to a list. 

will force evaluatton of all members of the list. 

The above properties of the graph reduction method of computation are 

repeded by the semantic equations of the next section. 

4.3 DENOTATIONAL SEMANTICS 

In this section. we first give the syntax of the programming language. 

This is fOllowed b':j the semantic domains and equations. Finall':!. 

explanation of the e<:{Uations is prOVided and the semantics is employed to 

prove the equivalence of some expressions. 

SYNT!a.CTIC CATEGORIES 

z E Ide identi~ers (variables) 

p E Prim primitives 

E E Exp expressions 

SYNTA.X 

E :;= l: 1 pIE E I .\:t:. E I var z E I assign z = E ; E 

We will assume that cons E Prim is the only constructor of pOSitive 

arit\:!. Though. further constructors could be accommodated b~ making 

suitable extensions to the semantic domains. (A deJi:cieTlC!:l of the language 

is that it does not support the direct deJi:nition of functions b~ 

pattern-matching. However. a method for transforming pattern-matching 

into Simpler constructs can be found in [1].) 
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SnlANTIC DoMAINS 

Bv = Bool + Num + {nil} basic values 

A E AIls = Bv + (Ans x ADs) + {8usvend. ~} answers 

a E Loe: locations 

I!. E Env = Ide --+ Loe environments 

u E Store = Loc --+ Sv stores 

9 E Cant = Store --+ (Ans x Store) cont.inuations 

" E ECoDt = Ev --+ Cont expression continuations 

1.1 E Cia = ECont --+ Cont	 closures 

€	 E Ev = Bv + (Loc x Lac) + (Lac --+ CIa) expressed values 

Sv = Ev + CIa + {unllet. NotReadv. ~} stored values 

AUXILIARY FuNCTJONS 

new ; Store --+ Loc • satisFes u(new 0') = 1.rM. 

wrong : Cont • is defined b\-j wrong (J -= (er,.or. 1'1) 

print : Ev --+ Coot 

print € = e E (Lac --+ CIa) --jo turong: 

'E (Lac x Lac) ---; ~a. «A,. A,l . a,) 

where	 (al • 0:2 ) = € 

(AI' 0'1) = force Ct, print u 

(A 2 • 0'1) = force 0:2 print 0'1 

cEBv	 ------. ),,(7, (e. 0') 
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SEMo\NTlQ F'T.'NCTIONS 

A tl:lpical computation will be 

l! [E] 20 Ito 0'0 where lt~ ::: print 

E is the expression to be evaluated (and printed); I!.o is the arid 

environment. in which no variables have been declared; no is the emptl;j 

store. in which all locations are ~ . A well-formedness condition on E 

is that it mal:! onl~ contain variables declared within ~ or ), constructs. 

The valuation ! is defined as folloUls:­

't ; Exp -+ Env -+ ECont -+ Cont 

!lzl,. = tor" (,Ixl) "
 

!lpl,. = • (Pip])
 

't[E I E,}e/t :; !(E,]I!.l't' where It' =A[E,]elt
 

![,\x. EI•• = ,,(.Ia. !IEI(. Ell {x H a)))
 

!ha' x ; EI,. = .Iu.!IEI(. Ell {x H a}).(u Ell {a H un,"})
 

whet'e (J ::: new (7 

't[assign x E1 ; E, ]I!.It::: ).d. (oa ::: un..,et -----4­

!IE,J,.(u Ell {a H !IE,I,}) 

(error. u) ) 

where CI ::: £1[:.>:] 

f oru. Lee: -+ ECont -+ Coot 

! oree (): It ::: AO'". case C1 (J Q./. 

NotReadu . un,'let ; (suspend. 0') 

~ : 1t~(J 

JI JlIt'(t7 lB {aI-l'NotReadu}) 

where It'::: ),c (7' • It C (iT' ED {a H co}) 

fnd 
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A : Exp --+ Env --+ ECont --+ ECont 

A[E]elC. = At. € E (Lac --+ CIa) --+ O. wrong 

where (J = E E Ide ---+ ()I' 8,
 

0, = <(uIE]l ~
 

{}J = AO'. cQ-It(1'
 

where a = new 0' 

u' = u G> {a H !IEhl 

P : Prim --+ Ev 

P[t.ruel = !r..!g 

P[ni I] = nil 

P(not) = "'11:.4. fQ?'ct:a: (.\c. cEBooI --+ It (-,,;). wrong) 

P[head] = "'QIt. force a ().t. tE(Loc: x Loc:} --+ 

force alit vJhere (a •• Ct2) = € • wrong) 

P[YB = "'QIC.. forct:a:(,1,c. cE(Loc: -+ Cla)--+ 

),(7. !crt:ea:'lto' vJhere (}' = new (1 

(1'= qED{a·H€(~I}. 

wrong) 

P[cons] = ).,alC.. Ie (eon" a) 

P[addl = ).,alC.. It (add al 

Pldiv] = ).,alC.. '" (diu a) 

PIval] = ).,alC. • .It (val cr) 

P[seq] = ).,alt. It (.~eq (I) 

Plifl = ).,0:.<.. ,,(if 0:) 

etc' 
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eons =: ),al(l,It. It (0'1' a:,) 

a.dd ::: ),a1a , lt. /oreea,p,c l , £,ENum ---+ O. wrong 

where 0 ::: force 0:, p..c,. £, E Nom ---+ 

te(t', + £,) . wrong) 

dilJ ::: ),a\f.l,It. force a 1 (>.c 1• £1 E Nom ---+ O. wrong 

where 0 ::: f oref u, {AC" (£, E Num) A (£2~O) -----) 

It (£1 + £,) , wrong) ) 

lJal ::: ),a1a,lt. force 0', p'c . force a l (Al'I' £1 E (Lac: -Jo Clo) ---+ £1 a,it. wrong» 

8t:q ::: ),al~lt. /orCfO'l(),C. forceaJIt) 

if ::: ),a1f.l,It. I(. (if' a l at) 

if' ::: AaJa,a:Jlt. !orccuIP.£. £EBooI---+(c---+forceu,lt. !orceal lt).1Drong) 

COMMENTS 

An expressed value £ corresponds to the head normal form of an 

expression E. Since the store may change, from (J to (1' say. during the 

evaluation of E. the rest of the computation is modelled by an expression 

continuation 1(., such that 

i:![E)elW ::: IUD" 

The equations for Val' and ass i gn correspond closely to their informal 

description given in Chapter 2. Section 2.3. 

A closure v represents an expression that has been stored in unevaluated 

form. The value c of such an expression will only be computed if 

demanded. Propagation of demand to a location a in the store is modelled 

by the function forte. Thus, by forCing a closure stored at a, the 

contents v of a are replaced by c. During the computation of c, a: is 

marked as not read!::!. This method implements laz!::! evaluation, because 

once v has been replaced b!::! c. demands sent to a: simpl!::! return c. Thus: 



72 

PROPOSITION	 lorceap.£.lorcealt) = loreeCtIt 

PROOF Show loret: 0: p.£. force 0: It) q = force Ct It q b~ case ana.1!::1sis on q a. 

Trivial for q a equal to NotReadu or un"et. 

£ = t7a => loreea(>..£.loreeCtIt)q = (>.£.loreeaft)£C1 = !oreea 1tt7 

/.I = (fa =>	 !oreea(>,£.!orceCtIt)q 
" (.I. a' . (.I<. 'o"e a <). (a' Ell {a H.}))(a Ell {a >-+ NotReadu II 
" (.I. a' . 'ow a < (a' Ell {a H.}))(a Ell (a H NotReadu}) 
" (.I. a' . u (a' Ell {a H'll)(a Ell (a H NotReadu}) 
!orcealtr:1 n 

The expression continuation A[E]elt takes a function and applies it to E. 

To preserve laziness. if E is not an identifier then it is stored as a 

closure at some location 0: and the function is actually applied to 0:. The 

special treatment of identifiers avoids unnecessar~ indirection [S4] which 

would complicate the semantics of assign. For example, evaluation of 

«AX. ass i gn :z: = E) ; E I ) yo). in some environment iI. must bind .z to 

e[Y], rather than some location at which ~Y']e is stored, so as to handle 

the side-Effect properl~. 

The valuation P gives values to the primitive functions of the language. In 

particular. partially applied functions take values in (Lex -+ Clo) . 

Evaluation of an expressi.on results in an error in certain circumstances, 

namely:­

(i) Evaluation of (E( E 3 ) gives rise to an error if E, does not evaluate 

to a function. For example, an error aris;~s from evaluating 

(cons nil 46), because (cons I"li I 4) denotes an S--expression rather 

than a function. 

(ii) During evalu<'.tion an attempt is made to assign to a variable that 

has already been instantiated. This re~ects the fact that ass i gn is a 

single-assignment construct. 
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(iii) A primitive function is applied to arguments for wt-ucn it :5 undepned.
 

for example (div 4 0).
 

(tv) An attempt is made to print a funcl:.ion. Dnl~ S--expressions can be
 

output as answers.
 

Evaluation of an exp.ession suspends when 

(i) There is a demand for the value of an uninstantiated vallable. that 

is, one which is bound to an urllld location. 

(ii) The value of an expression that is alread~ uncler evaluation is 

required. This is detected by marking a location as NotReadfJ wHle 

evaluating it contents. 

The reason for distinguishing between ",u"pmd and error is that, on an 

implementation that supports parallel evaluation of expressions, a 

suspended computation will resume if and when an expression is stored at 

the un$etlNotReady location. [32J ref12rs to this as 'suicidal suspensions'. 

However. in the semantics presented here. no attempt is made to model 

paranel evaluation. 

Finally. we d8J'nonstrate the equivalence of some expressions. Thi first 

proposition proves that 

(~x E, assign" :::: E
1 E) 

(assioo " E, assign x E, E) 

The other propOSitions illustrate safe instances of the move-in 

transformation. It should be noted that man~ equivalences cannot be 

proven so Simply; whether or not an expression is aet:.uall~ stored and. if 

so. the particular locabon used. may be renected b~ the equations. but 

not be of semantic lmport:.ance. 
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PROPOSITION Suppose Q = ,,[d. P= e[yl, a::ttf3 and (1' a = rr f3 == un.4et. Then 

![~ z = E, assign II = E, ; E]eltO' 
= ~[~ II = E, : assign % = E, ; E]e1tt7 

PRoor 

~[assign x = E j ; assign 11 = E, ; EneItO' 
= nassign v = E, ' EI,.(. III {a H !IE,I,}) 
= !IEI,.(. $ {a H !IE,J" P H !IE,n,}) \ 

and similarly for ![assign 11 = E, ; assign:r::: E, EDex.a. 0 

PROPOSITION Suppose Q = ebB, and (1' a = un&et. Then 

~[a55ign z = E ; (E I E,)DeM = ~[(as~ign x = EEl) E,DeItO' 

£]QQ[ 

l[~ z = E ; (E, E,}DeM 
!IE, E,I,.(. III {a !IEh))H 

!IE,I,(AlE,I,.)(. III {a !IEI.})H 

l[(assign z = E ; E I ) E,)eM 
:; ![assign x = E ; E,h(AlEtJe«;)O' 
= ![E,Jq(AIE,I,. )(. III {a H !lEI,)) o 

PROPOSIilON Suppose a = elxB, fJ = elvl. Q'#.{3 and 0' Q = 0' fJ = un3et. Then 

llassign z = E, : assign 11 = E, : y]eM 
:: ll~ V = (assign x ::; E, ; E,) ; vlLI/tO" 

PROOF 

l[assiill! % = E1 ; assign JJ = E, ; !IDeM 
!Ivl,.(. III {a !IE,J" P H !IE,I,))H 

= fom p. (. III {a i![E,I" P H i![E,I,))H 

!IE,I,(.le.' , • <(.' III {P H <)))(. III {a H !IE,I, , P H NatR'adu)) 

l[~ y = (assign z = E, ; E,) ; VIi'M' 
!lvl,.(. III {P !Iasslgn = E, , E,I,))H % 

forr:e PIt(l1 $ {fJ H l[as!'ilgn x = E1 : E,De))
 
l[ass iill! x = E1 ; E,]e(J.€ If' • If; e (u' ED {.8 H e}}){O' ED {{J NotRmdu }}
1-+ 

!IE,I,I.l<u', «(.'$ {PH')))(' III {a H !IE,1e. P HNutR"'du)) 

CJ 
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PROPOSITION Suppose E 2 is not an idenl:.irer. a::::: (/[:1:], and (T a ::: utl.1cl. Then 

![assi...9!! x = E) ; (nol:. E1)]{lM" = ![nol:. (assign x ~ E. ; E2)]eIW 

PROOf 

;![assign z = E , ; (nol:. E,)]lIKn 
= !Inat E,I,.(u Ell {a H !IE,I,}} 
= !lnatl,(AIE,I,,,)(" e {a H !IE,I,}} 
= AiE,I,.(Plnatl)(u e (a H !IE,I,)} 
= PlnatJP.(u e {n H !IE,I,. P H !IE,I,}} I", '""" P 
= lomp(k ,EBool-,.(-.e). w"",g)(" e (" H !lE,I,. PH !!E,ldl 
= !IE,J,(A,u·. (.k 'EBaol-,.(-.e). w,ong)'(U'e\pH,}}) 

(u e {. >--> !lE,I,. P H NotR,.d.}} 

![nol:. (assign x = E 1 ; E,»j?M
 
!'[nol:.]Q(.AI[assign x = E 1 ; E,]glt}l7
 
A[assign z = E) ; E,]elt(P[nol]}".
 
P[notJ,8"(17 ED {,8 H !'[~ z == E 1 ; ElDe)) jor .8ome (3
 
f()r-uf3 pc. cEBooI ~ It (ot). wrong)
 

(u e {P H ![assign x = E, ; E,I,}} 
= !'[assign z :::: E, ; E,]e 

(.I,u', (Ae. ,EBool--..(-.e). w,ong)'(U'e(pH'}) 
(u e {P H NotRead.}} 

!IE,J,(A,u', (Ae. 'EBaoI--..(-.e). w,ong)'(U'e{pH,}})
 
(O' e {<> H ![E,1e. P H NotR,.d.}}
 

o 

Although the transformation 

(assign .:t = E 1 ; (not E,)) = {nol:. (assign z == E. ; E,l) 

is also perFectl~ safe for E, E Ide. this is not revealed b~ the semantic 

equations: !'~nol:. (assign z = E 1 ; E~)hlW lakes the same value as 

before, but now 

;!hssign z = E. ; (nol:. E, )]{lM 
= !IE,I (k £ EBooI--.. (-.e). w'ong)(u e {a H !IE,lell 
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4.4 CONCLUSION 

In t.his chapter a formal semantics has been presented for a fLmctiona\ 

language with side-effects. The semantic equations for the var and 

ass i gn constructs are particularly straightforward. Because it modals 

order of evaluation and allows for side-effects, the denot.ational semantics 

is more complicated t.han that usuall~ given to purel~ functional languages. 

for example the semantics of the >.-calculus in LSI]. Even so, it remains 

a lJtanda,.rJ semantics: it has not proven necessar!:! to foilow the 

suggestion in [38) (p.27S) that semantic equations for call-by--need are 

best formulated iI'I IJtor-t: semantics. 

The semantics also provides a formal. abstract description of the 

process of graph reduction. Note that we have given a semantics dir-utlll 

to the programming language. In [21. 31] the language has first to be 

compiled into a form sUitable for a stack machine; the operation of the 

machine is then speci~ed b!;l a set of state transition rules. 



CHAPTERS 

AXIOMATIC SEMANTICS 

5.1 INTRODUCTION 

The axiomatic semantics presented in this chapter is intended to be 

useful to the programmer in reasonmg about programs with side-eWeds. 

Rules are given from which can be deduced some of the consequences of 

executing a program. The denolational semantics of Chapter 4 is rather 

unwield!:J for such reasoning. 

The axiomatic semantics prOVides information about the state of the 

graph reduction machine during the evaluation of an expression; this 

contrasts with Hoare's axiomatic semantics [23] which descrlbes the 

relationship between the slate before and the slale after Iil'xecuting a 
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commard. Boehm [6] has suggested that 'one might benefit from matching 

the programming logic to the programming language' : our axiomatic 

semantics has been designed for those functional programming languages in 

which order of evaluation has to be taken into account. There IS a 

super~cial resemblance to Plotkin's Structured Operational Semantics [44]. 

Such a semantics could be given to a Functional language with side-elfects. 

However, the entire state of the machine would have to be conSIdered in 

speCifying the transition relation. a complication which we are able to 

aVOid. 

The aJiomatic semantics is intended to complement the transFormational 

approach to the development of programs with side-elfeets. It is a formal 

s~tern based on a set of inference rules. some of which correspond to 

reduction rules; while others prescribe a particular order of evaluating 

expressions. The s~tem does not allow us to prove very much. It does, 

however. describe order of evaluation in a rather concise way. Even the 

parallel evaluation of expressions can be specified. Note that order of 

evaluation must be taken into accOW1t when programming with side-elfects. 

Otherwise. we are liah\e to believe that a program is correct, on(~ to 

discover when ute tr~ to run it that it deadlocks. This Ulas discussed in 

Example 1 of Chapter 2. To take another example. the program 

faa Int 
foo = var x ; add x (baz x) 

baz ; Int -+ Int 
baz (~ y) = assign y = I 2 

can be given the declarative reading 

3x: I nt. foo = add x (baz x) 

Vn. y: I nt. n = baz 61 {:) bI = 1 A n 2 
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Now. from this declarative reading, we are lead to believe that roo = 3. 

because: 

I. ~. faD::: add x (baz x) 
2. :lx. \01. faa = add x \ol f\ ).J ::: baz x 
3. :lx. \01. faa = add x \ol f\ X ::: 1 f\ W = 2 
4. roo = add 1 2 
5. faD::: 3 

However. assuming add evaluates its arg.;ments from left to right, 

evaluation of faa will in fact proceE:d as follows:­

foo --4 add x (baz x) for lJome uninlltantiated variable x 

At this point the value of x is required. Because x is uninstantiated. 

evaluation suspends. That IS, evaluation of roo deadlocks. 

It should also be recognized that knowledge of the lJtrictnelM of a function 

is insufficient to determine the order in which it evaluates its arguments. 

For example. add is strict in both its arguments:­

add .l E =. J..
 

addEJ..=J..
 

That is, it is undeji.ned if either argument is undel\ned, but this provIdes 

no information as to whether add evaluates its arguments from lefl:. to 

right, from right to 112ft, or even in parallel. 

In the next section we present the s~stem and give it an informal 

interpretation in terms of graph reduction. In Section 5.3 we explain hoUJ 

to reason diree:tl~ about programs. It is also shown that the axIomatic 

semantics can be of assistance in determming whether the move-in 

transformation of Chapter 3 is safe to use. In Section 5.4 the limitations 
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of the S'::jStem are considered arKi the modelling of parallel evaluation is 

discussed. In Section 5.5 we make some concluding remarks. 

6.2 AN AXIOMATIC SEMANTICS 

In this sectton a slPtem of tnference rules is presented. By using the 

rules we can tr~ to deduce the value of a particular expression (the head 

normal form to which it reduces) from a statement that the expression is 

evaluated. These rules are intended to correspond to our intuibon about 

demand-drlven graph reduction. Note that the expression (E. EI ) should 

b. thought: of as being represented in the graph b~ the application node 

[54J 

R 
8 1 E~ 

w. shall construct predicates out of the follOWing three fortnulCl!:­

2: de1ar E force z 2: eval E 

In reasoning abOllt: the evaluation of some expression. these formulae can 

b. interpreted as follows. 

z ddaJl E states that at some stage of the computation E is stored in 

unevaluated Jorm at z. For example, x delaJl (add 1 2) means that the 

machine must engage in the action of bUilding the graph 

~2 
add 

The root node of this graph corresponds to the location denoted bJ x. 
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force 3: asserts that demand gets propagated to z. so causing evaluation 

of anH expression stored at z. This is similar to the role of the function 

force depned in Chapter 4. 

z ~val E asserts that the machine must evaluate E, that is, perform a 

sequence of reductions so as to determine the head normal form of E. if 

one exists. If E does reduce to some head normal form H. then H is 

stored at z. For example, )( eval (add 1 Z) means thaI:. the value. 3. of 

(add 1 2) is eventuall~ stoNd at x. Note that we do not specif~ when 

this evaluation takes place. So. for x eva/. E. and II eval E, . either E, 

or E, might be evaluated first, Dr their evaluations ma~ be somehow 

intertwined. 

Under this interpretation of the formulce the !irst inference rule should 

come as no surprise. 

RULE OF Foree 

Joree 2: x delay E 

3: eval E 

Predicates can be formed by combining these formulce with the standard 

lOgical connectives, but we wiH onlH have occasion to use conjW1Ction and 

existential quanti~cation over identifiers. The set of inference rules 

includes reduction rules for the primitive reducible functions of the 

language. The var/assign constructs of functional programming \!lith 

side-effects also have rules attributed to them. 'Rules of Reference' 

establish the relatlonship between identifiers and expressions. FinallH. 

'Rules of Order' re~ect a restricted order of evaluation for e'Xpressions. 
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vie shall have occasion to use !ree[EB. the set of free variables in an 

exp~ession E. and E[ 1I1;z 1. the expression formed b~ replacing all free 

occurrences of ;z in E b~ 1/. These are deBned formal1~ at the end of thi.s 

section. 

The s!f'5tem has been so devised that. an e'J:::pression E. which does not 

contain free variables. evaluates to some head normal form H if and 

onl~ if. from 

;z eval E 

for some x, it is possible to deduce 

3z "%Q' % eval H where {xl' .... x,,} j",IH] - {z)
"

Here. z] • ... • 2:.. denote new locations that are allocated during the 

reduction. For example. the value of 

(var y cons y (assign y = 1 ; nil» 

is (cons y (assign y 1 ; ni I» for some uninstantiat.ed variabie y. 

Thus. from 

x eval (var y : cons y (assign y oi I)} 

we should able to deduce 

~. x eval (cons y (assign y oi I)) 

The scope of the variable y in the program text is re~ected b~ the use 

of existential quantification in the program logic. 
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RULES OF REDUCTION 

In the 'x-calculus. expressions can bl;! simplified b~ the .a-reduction rule. 

The folloUJing inferencli! rule achieves the same effect. 

(>.-Ru Ie) % f:val (Pu.E) z) 

x ella! (E[zlvl) 

Variable declaration introduces a new location and so takes the form 

(var-Rule) z ~al (val'" II : E) 
provided z;J!1/ 

311_ :r: eval E 

Note that: % roal (val'" Z : E) can be handled b~ rrst renaming the 

bound occurrence of z. For this purpose, we shall take for granted the 

following (a-conversion) rule:­

(~z E) (var V ; (Elvlz]) lor any V, v'i'I",(Ei 

The rule for assignment i.<;: 

(assign-Rule) :r: roal (assign 1/ = E. E 2 ) 

Z ellal E2 '" 1/ delall E.
 

This re~ects the fact that the assignment construct is laz~.
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Primitive functions. defined b!:j r-educbon rutes of the form 

E l ---+ E, 

are covered b!;l the following scherna:­

(Reduct ion) Z inial EJ 

provided E, ---+ E
J 

z eval £1 

Thus, the ru'18 for head is 

z evlll (head (cons E. E,)} 

:r: eval E, 

The rule for add is 

:r: eval (add "I "1) 

% cual n 

,!,here n. n~. " .. Me inJegera 

with n =". +", 

More interesting is the rule 

Paradoxical Combinator Y [54] • 

for­ Turner's circular version of the 

• ",aI (V E) 

• ",aI (E .) 

This is based on the reducb.on rule 

V E ---+<;~\ 
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Care has to be taken over the val combinator [29]. g1vmg call-by-value. 

val E E1 -J E.t E 1
 

va 1 E .L .L
 

since val is not:. specified simply by a reduction rule. The correct inference 

rule is 

:z: eval (val E H) 
for H in head normal form 

z eval (E H) 

N,B. The above rule is illustrative of our method for specifying order of 

evaluation. It is not permitted for the reduction 

va I E) E. -----+ E l E. 

to take place until E. has first been reduced to head normal form. 

Similarly. we have 

:E: eva/. (seq H E) 
for H in head normal farm 

z evaJ E 

RULES OF REFERENCE 

The Rules of Reduction onl~ permit us to perform reouctions at the 

outermost level of an expr2ssion. For instance. we can deduce x fl!l1l true 

from x evaJ (not false). but no means has be"n provided for deduci.ng 

x eval f a I se from x eval (not (not fa I se) ). Hence. we must extend the 

system with new rules. These. when ccmbined with the Rules of Order. will 

enable us to evaluate subexpressions and substitute thelr values back 

into the main expression. 
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The j1rst rule explains what it means to evaluate an identiFer. 

(Reference) x elJal 11 11 elJai E 

x evai E 

The rule 

(Abstract ion) :1: eual (E, E,) 
provided 

31/_ z elJal (" E,) II 11 delay E, v E (.) u !r,,!E, E,I 
3v.• ",aI (E, v) II 11 delay E, 

enables us to focus on a particular subexpression bl:l abstracting it out 

of the main expression. The fact that z can be thought of as an 

application node with pointers to E 1 and E, prOVides some justification 

for this rule. The first inference could also have been written as 

31/. :z: roal (" E,) II II eual E, 

since normal order reduction implies force 11 • as wHl be given in the Rules 

of Order. 

It remains to prOVide a mechanism bH which an identifier, denotmg some 

location, can be replaced b!;l the expression stored at that location. 

Thus: 

(Subst i tut i on) 

~ etJal (" E,) 11 etJai E, :t eval (E, II) 11 elJai E, 

:z: eval (EI E,) :z: eval (E1 E 2 ) 
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RULES OF ORDER 

Normal order reduction is specified b!:j the rule 

(Normal Order Rule) 

z <val (. E) 

f oree " 

Evaluation of an identifier involves sending demand to the location denoted 

by the identifier. Thus: 

(Incii reet ion Rule) 

x eval " 

loree " 

This should be compared with the semantic equation i![I/]l:!K. ::: fort:e (l?[IIH) It 

of Chapter 4. 

The following schema is applicable to an!:! primitive p of aril!:j n. 

(Strictness) x eual (p E l .•• E ,_, II E\+l ..• En) 

/oru II 

provIded ( i) P E • ••• E 1_ 1 -l E1+I ... Ell "" -.l 

and (i i) Eir. i& in head normal form if p fIJaluate8 its Jtb. argumen.t 

before its i tb
• 
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For example. 

z eval (head 1I) 

Joru 1I 

z eval (add y E) z eval (add n 11') 
integer n 

force 1I force y 

Note that lhe asymmetry of the above rules for add re~ects a laf\:.­

argument-beFore-right evaluation strate~. The operand E~ m the 

expression (add E, EI ) rna!:! be left unevalual:.ed if evaluation of E, failed. 

for some reason, to yield an integer. 

va I gives applicative order evaluation. So. in the case of va I. the 

strictness rule becomes 

z eval (val E tI) 

force 11 

AN Ex.A1.{PLE OF DmUCTION 

Consider the example given in Chapter 2. Section 2.3. Note (4). We used 

informal reasoning to show that 

(add (assign x = 3 2) (sub 4 x» 

evaluates to 3 • whereas evaluation of 

{add (sub 4 x) (assign x = 3 2» 

suspends, for x an uninstantiated variable. With our aXiomatic:: semantics 

we might reason as follows. 
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1. \:l eva! (add (assign x = 3 ; 2) (sub 4 x)) 
2.	 3u. ~ eval (add u (sub 4 X)} 1\
 

u ev'u {assjgn x '" 3 2} (Lemma 1)
 
3.	 3u. \:l f,V'U {add u (sub 4 x» 1\
 

u eval 2 A x delall 3 (assjg~-l<!u[el
 

4. 3u.	 y evrJ. (add 2 (sub 4 x») 1\ x delall 3 (Lemma 2) 
S. ~ eval (add 2 (sub 4 x» 1\ x delall 3 (3--Et iminalion) 
6.	 3v. ~ eval (add 2 v) 1\ v eva! (sub 4 x) 1\
 

x delflJl 3 (Lemma 3)
 
7.	 3v. ~ eval (add 2 v) 1\ v eva! (sub 4 x) 1\
 

/oree x A x delall 3 (Slrictness)
 
8.	 3v. ~ eval (add Z v) 1\ v eva! (sub 4 x) 1\ 

x eval 3 (Rule or force) 
9. 3v.	 y eval (add 2 v) 1\ v eval (sub 4 3) (Subslitution) 

10. 3v. ~ eval (add Z v) 1\ v eval 1	 (Reduct ion) 

11. 3v. \:l eval (add 2 t)	 (Subslitution) 
12. " ,val (add 2 I)	 (3-Et iminalion) 
13. ~ eval 3	 (Reduct ion) 

This proves that (add (ass i gn x 3 ; 2) (sub 4 x» evaluales to 3. 

It uses the lemmas 

LEMMA! :z: eval (add E
j 

E2 ) 

3y. z eva! (add II E2 ) 1\ 1/ eval E. 

pr01Jided 1I~{x}ufree[E.]ufree[E2] 

PROOF 

I. z eva! (add E 1 E 1 ) 

2. 3z.	 :z: eval (z Et ) 1\ z eva! (add E.) (Abs tr-ael i on) 
3. 3y. z. :z: f:vaJ (z E 2 ) 1\ Z eva! (add 1/) 1\ 1/ delall E 1 (Abstraelion) 
4. 31/. z. :z: evaJ (add y E 1 ) 1\ II dela1/ E. (Substi tulion) 

S. 3y. :z: eval (add 1/ E t ) 1\ y delall E 1 
(3-E lim inab on) 

6. 311.	 :z: e1Ja.l (add 1/ E 1 ) 1\ force II 1\ 1/ dela1/ E. (Slrictness) 

7. 311. z eval (add II E t ) 1\ II eva! E.	 (Rule of force) 
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LEM'\1.~ 2 x eval (E, II E)) A II eval E) 

PROOF 

1. x eval 

2. 3z. x 

3. 3z. x 
4. 3z. x 
S. x eval 

x eval (E l E) E) 

(E) U Et ) A U wal E, 
eval (z Ea) A z eval (E I 1/) A 

evaJ (z E 3 ) A Z eval (El E t ) 

evlJ.l (E. Et E
3 

) 

(£. E 1 E 3 ) 

1/ wal E) (Abstraction) 
(Subst i tut ion) 
(Substitution) 
(3--El iminalion) 

Lf"MMA 3 :r. eval (add n E) 

3y. x eval (add" 1/) A Y eval E 

for anu	 integer n. provided yf1.{x}ufree[E] 

PROOF 
I. x eval	 (add n E) 
2. 3y.	 x eual (add" y) A l/ delay E (Abstraction) 
3. 3y.	 x eval (add n II) A force y A 1/ delay E (Strictness) 
4. 3y.	 x efJal (add" y) A Y eval E (Rule of force) 

Consider	 now evaluation of (add (sub 4 x) (assign. x = 3 ; 2»). We 

are unable to prove within Ou. 1ll/8tem that evaluation suspends. However. 

an~ attempt to prove that it reduces to some H is destined to fail. For 

example, 

1. y eval (add (sub 4 x) (assign x = 3 ; 2}) 
2.	 3u. y wal {add u (assign x = 3 ; 2» A 

u wal (sub 4 x) (Lemma 1) 
3.	 3u. v. y eval (add u v) A U war (sub 4 x) A 

v delay (assign x = 3 ; 2) (Abstraction) 

an.d, becaLlSe we lack the information fDrce v, the value of u cannot be 

deduced. 
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For completeness. we conclude this section with the depnitions of !r,'r; and 

substitution. 

The notion of fr!!e varia.bles of an expression, can be formalizad as 

follows:­

free : Exp -+ FIde
 
/",[x! = {x}
 
/",[p! = ()
 
!ree[E

j 
E ] :: !ree[E j ] U free[E~]


2 

/,,,[.Ix. EI = /",[E! - (x) 
free[var :t; E] == !ree[E] - {x} 
!ree[assign z ::: E j ; E2] ::: {x} u fre~[El] u !ree[E1] 

We next de~ne a process of s~ntactic subsbtubon. The subsbtutlOn of 

the identirer :J:' for x in an expression is deilned recursivel'::! as follows:­

E[x/x] = E 

For x· ~x :­

x[x'lx] = x' 
y[z'/x] ::: y for y.,ex 
p[x'lx] := p 
(E. E 2 )[z'/z] = E.[xlx] (E2 [x'/x])
 
(.lx.E}[x'/x] = .Ix.E
 
(Ax'.E}[x'/x) = .Iy.(E[y/x')[x'/x])
 

for /lome y. y~{z,z'}ufree[E] 

(Ay.E)[:t'lx] = ),y.(E[x'/z]) for !I~X. y.,ex· 
(var x : E)[x'lx] = var z ; E 
(va' z', E}[x'/x] = va, y, (E[y/x')[x'/x)) 

for Borne y. ylit{x.z'}u/ree[E] 
(var y : E)[x'lx] = yar !I; (E[x'/x]) for I/70X, I/;tez' 

(assign y=E j ;E
2 
)[x'/z) = assign(y(x'/x])=(E.[z'/x]); (E2 [z'/z]) 

IJfliV3iSjty 
L2t'0r':·~1! 

'. Group-Ubrary 

(" 

:'" )4141 
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6.3 REASONING ABOUT PROGRAMS 

As described so far. the axiomatic semantics allows us to reason about 

expressions tn which all functions are eitiler primitives or locall~ defined 

2.S ).-expresslons. In this section inference rules will be given to functtons 

derned in a program. Rules will even be prescribed for definitions of 

functions that involve pattern-matching. Finall~. the use of inference rules 

in reasoning about the safet~ of the move-in transformation of Chapter 3 

will be demollStrated. 

A reduoible function f of arit!:l n can be defined in a program b~ an 

equa Hon of the form 

f z . .,. %n = E 

where Zl' .••• Zn are distinct IdentiJ1ers and ignoring var parameter 

annotations. In reasoning about the evaluation of expressions according 

to this program, we can make use of the rule of reduction 

:z: £val (f Y1 ••• II,,) 

Z ",aI (E[y/z,] ... [Y/zo ]) 

Thus. the functiOns faa and baz defined in Section 5.1 by 

foo var x add x (baz x) 

baz (~y) assign y ~ I : 2 

give rise to the rules 

x ~vlll f 00 x eva! (baz y) 

:I l"vlll (var x ; add x (baz x)) :r. clml (a55 i gn V Z) 



93 

This method natural1!:j extends to definitions involv~ng pattern-matching. 

but additional rules of order are also requlred. That is, the program 

f nil = E j 

f (cons Xl x~) = E~ 

has the foilowing thr<l'e ;ules associated with it: ­

z eval (f nil) x ClJal (f (cons III y~» x wrU (f II) 

:: eval E, x evILl (E,[y/z,][y!zJ]) force !I 

Returning to the solution presented to Example 1 in Chapter 2. the 

program 

transform Tree --t Tree 
transform t var m replace t m m 

replace Tree -t Int --t Int --+ Tree
 
replace (tip n) m ('o'ar v) = assign" = n ; tip m
 
replace (fork L R) m ('o'ar v) = var !oj : \o'ar z ;
 

assign v = y MIN z 
fork (replace L m y) 

(replace R m z) 

gives rise to the folloUJing inference rules:­

z euw (transform II) x curd (replace" E , E, ) 

z cual (var m ; replace" m m) force. 11 

x curd (replace (tip fl l ) Y, ,,~) z eoni (replace (fork fl 1 fl2 ) !I~ fl.) 

z eval (ass i gn l/, l/I ; tip tl2) z elml (~ y ; var z ; 

assl9.!l fit = Y MIN z ; 
fork (replace fl i fl3 Y) 

(replace fI, fI, 2)) 
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If multiple patterns occur in a single dej1nihon then the appropriate set 

of rules of strict.ness will depend upon the order in which patterns are 

matched. Rlso. for certain data t~pes pattern matching can be 'laz~' 

[59]. For example, whether J is strict: when defined b~ f (x,V) ~ E 

depends on the implementation - it is in Orwell [58J, but not in Miranda 

[57) where it is treated as J z == E l.Ihere (x, II) = z. It is obvious!,:::! a 

good idea to ensure that the correctness of a program does not rel~ on 

a particular implementation of pattern-matching_ 

Note thaI:, because of the relationship between l.Ihere and var/assign 

(Chapter 2, Section 2.3. Note 3). we can derive the rule 

:z; eva! (E l-lhere XI E 1• •••• 2 EJa 

3:r: j , •• " xe' z cual E " 2:, delay E j A ••• " z" delall En 

provided z ~ {Xl ••... Zll} 

Note also that E
1 

l.lhere (z. V) E
2 

is treated as 

E
l 

where z fst z. V snd z. z E, 

An important use of the axiomatic semantics is to check the safel::l of a 

move-in transformation when s::lnlhesizing a new function definition b~ 

program transformation. The rules explained informall~ in Chapter 3, 

Section 3.2, can be re--expressed succinct!::l as follows:­

Consider the move-in transformation (£~ :c = E ; E') := E" 

where E" is E' with some subexpressLon E' replaced b\:l 

(assign z E, E') 
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We can prove bll local rfluo:1tng that the trc.nsfornL3tlon IS s2fe .; frum 

y eVfll E" we can sbll deduce x (ld'ly E. 

Likewise, the transformation is known to introduce deadlock If from 

II cvrU E" we can deduce force z , but not :r detail E . 

Thus. examples of safe move-in trar.sformabons are 

(assign z == E (E, E1 » ::: «assign z == E ; E l ) E 1 ) 

(assign z .== E (val E l E~)) ::: (val E, (assign z ::: EEl» 
(assign z == E (add E. E~» ::: (add (assign x ::: E ; E l ) E1 ) 

(assign z ::: E (add n E'»::: (add n (assign x::: E; E')) 

Examples of the transformation mtroducing deadlock are 

(assign z E (x E'»::: (z (assign x::: E; E')) 
(assign x oE (val E' x» ::: (val (~slgn x :: E ; E'l xl 
(assign x E (add z E') ::: (add x C~ssign x ::: E E')) 

5.4 LIMITATIONS OF THE AXIOMATIC APPROACH 

Our Iirst:. remark is that the semantic model is not sufficientl~ 'pne' to 

distinguish between computations that deadlock and those that loop 

(diverge, never terminate). For example, evaluation of (var x : x) 

deadlocks, whereas evaluation of 

rinite (Y (cons 1» 

where r in i te is dep..'led b~ 

rinite : List. -+ 8001 
f ini te ni 1 true 
rinite (cons x xs) ::: finite xs 

diverges; but:. in both cases we can do no more than to tr~ \n vain to 

find a head normal form. This is no great disadvantage for sequential 

evaluation. since it is reasonable to treat programs that come to a 
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premab..:re halt and those that run forever as equa1!~ bad. HOUJever. it 

does limit what can be deduced about parallel evaluation. which will be 

discussed nex.t. 

Can the rules be modified to a1low for parallel evaluation of expressions? 

Not onl~ can this be done, but It can be done ve,!:! simply_ 

Suppose, for example. that add is to evaluate both operands in parallel. 

We need onl!:j relax its second rule of strictness. That is, 

z ella[ (add n 51') 
lOT an.y integer n 

force 1/ 

to the more general 

z eva[ (add E tI) 

!orl:C 11 

Its two rules of strictness are now s~metrical. 

Hughes' par combinator (29.30] has the rule of reducHon 

x cum (par E. E I ) 

z eval (E. EI ) 

and rule of order 

:r; eua.l (par E y) 

force y 
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NoLI that the mava-in transfonnation 

(~ % = E par E. EI ) =: (par E. (~ % = E ; E.)} 

is safe because from »' eval (par E. (ass i gn z E E,» we can 

deduce % delav E. 

Now we clarify our previous remark about the problem of failtrg to 

distinguish between deadlock and divergence. Consider the expression 

(,a. (K H) &) 

where evaluation of E (i) deadlocks. or hi) diverges. For (i) it seems 

reasonable to say that (par (K H) E) evaluates to H. However. for 

(il) a particular implementation of parallel evaluation ma~ diverge b~ using 

all it:s resources to evaluate E : we have to wait an 1ndel\nite time for 

the result. (This is analogous to the danger of not Fding a normal form 

even though one exists. when applicative order reduction 18 used instead 

of normal order reduction.) Unfortunatel~. the rules allow us to deduce 

z tual H from z eval {par (K H) E) 1n both ca:se (i) and case (il). 

There is one further danger arising from the axiornattzation. We might b. 

tempted to at tribute a value to expressiOns that would 1n fact return an 

error when evaluated. For example. from 

:I tuol (assign», = 2 ;. assign», =3 f). 

It 15 possible to deduce both :I e1IaI 2 and z cvol 3. but a graph 

reduction machine should report an error in performing t,he. evaluation. 

Care must be taken to keep to the 'single-assignment' principle in writing 

programs. for example. b~ developing progrill'llS b~ transformation. It 

would also be possible to trap such errors while t~hecking. 

'Ttw :!.£ ~t.r ernolal,,:n" proYlOo ,",or_tIOfl Lo faclhtate thw. For _ump., 
ttw defnllOfl of r ano..1d be rcJe'Cled III It- e;...,. (,) f .. '" .la.L2! " ~ E, . E, 

II'Id IIi) r (.!.n .) '" nlim:' ~ '" E,; g .. Mot.~ g III del\t1-d D;j II (~ w) '" ", 
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One rnal comment concerns Hughes' sLlggestion [30] that temporal logic 

might be used for describing his synchronization primitive. It has alread\:j 

been shown (Chapter 2, Section 2.4, Example 3) that synch can be derned 

b~ 

s~nch e	 var e j ; YEI:: e~ 

pai r (ass ign e e ; 12
1

) (assign e e : e~)z	 J 

Thus. our al:lomatic semantics can be used to understand synchronized 

behaviour. Taking an example from [29], it should be clear that: for the 

expression 

add x y where (x, y) ::: s\,jnch E 

to evaluate to twice the value of E, requires that add evaluates its 

arguments in parallel. The point is that we need the information force x 

and force !:l, before we can deduce x eval E 1\ Y eval E . 

5.5 CONCLUSION 

An aXiomatic semantics has been presented for functional programming 

with side-efeds. The inference rules give us a grasp of this method of 

programming in much the same wa\:j as reduction rules help us to reason 

about purel~ functional programs. Particu\arl~ pleasant is the Ease with 

which rules can be given to specif\:j parallel evaluation. 

In postulating the rules appeal has been made to properties underlying 

evaluation b\:j graph redudion: but, it is hoped that the rules alone are 

sufficient to prOVide an adequate understanding of functional programming 

with side-effects. In partioular. they ma~ prove useful in reasonmg about 

the move-in transformation. b\:j whioh programs with side--effects can be 

developed. 



CHAPTER 6 

SUMMARY AND RELATED WORK 

In thIS thesis we have put forward a proposal for a new programming 

feature in an otherwise purely functional language. The extension makes 

possible a r'leW s\::'d1e of programming. functional programmmg with 

side-e/fect.". The examples of Chapter 2 demonstrate the feasibilil!:J of 

programming with side-effects. The!:j also provlde evi.dence that solutions 

to some programming problems can be developed in the extended language 

that are more efficient than may be posstble in a purel!:J functional 

language. Furthermore, it was shown in Chapter 3 that transformational 

programming provldes a sound methodology for the development of 

programs with side-eWeds. It would appear to be the case that the task 

of ensuring that:. programs with side-eWeets are free from deadlock IS 

most easily tackled when such programs are developed b~ transformation 
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from purel\:j functicnal programs. It has also been shown thaI: programs 

wil:h side--efecl:s are closel\:j related 1:0 programs involving I:uples or 

conl:inual:ions. 

The formal semanl:ics of I:he exl:ended language have been considered. In 

Chapter 4 a denotal:ional semantics was presenl:ed. This also serves 1:0 

prOVide us wlth a mal:hematical model of I:he process of graph reducl:ion. 

b\:j which I:he laz';l evaluation stral:eg\:j can be implemented. Chapter 5 

e:xplored a novel programming logic. The logical s!;lstem gives an a:xiomal:ic 

semantics for I:.he language. II:. promol:.es reasoning aboul:. programs wil:.h 

side-effects. This reasoning can be performed wil:.houl:. knowledge of how a 

compul:.er execul:.es such programs. 

II:. is imporl:.anl:. 1:.0 apprecial:.e I:. hal:. I:.he new feature can readil\:j be 

accommodal:.ed b';l graph reduction based implementations of funcbonal 

programming ianguages. A descripl:.ion can be found in I:.he appendi:x of I:.he 

I:.rivial modipcabons I:.hal:. had 1:.0 be made 1:.0 one such implemenl:.al:.ion. 

There should. for e:xample, be no di~cull:.ies in compiling programs wIl:.h 

side-eWec\:s into G-machine code [31] or ALI CE CTl [45]. Indeed. as was 

menl:.ioned in Chapl:.er 2, a brief descripl:.ion of I:he mel:.hod of binding 

logical vanables b';l graph reducl:.ion appears in I:.he ALICE paper (15]. 

Thus. programming wil:.h side-eWeds can be supporl:.ed on bol:.h se.:p;;nbal 

and parallel machines. 

Research Inl:.o funcbol"'lal programming has previousl~ shown I:.hat diWerenl:. 

orders of evaluahon can all:.er I:.he efficienc!;l of programs. Schwarz has 

p:-oposed ~all-b\:j-opporl:.unil:.!;l [48] and Hughes par and synch [29.30] as 

suil:.able a:mol:ahons for changing the now of conl:.rol wll:.houl:. changing I:he 

sl:.rucl:.ure of programs. Ol:.her conl:.rol annol:.al:ions have been suggesl:.ed b!:l 

Burton [8]. We have shown (hample 3 of Chapter 2) I:.hal:. wil:.h 

side-eWeds il:. is possible 1:.0 give a space efficlenl:. version of Hughes' 
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spl it function. Control annotations have also pro ....en useful in developing 

deadlock-free prograrr,s with side-eWects. 

Previous attempts to incorporate logical variables into funchonal 

languages. for example [3,14]. have assumed program execli~ion can 

involve uni/ication. Progr-arns	 with side-elfeds require no more than 

standard pattern-matching. There is. however, some similarity between 

our language and the non-backtracking logic based languages. such as the 

relational language of [10] from which Parlog [11] and Concurrent 

Prolog [49] have evolved. For example. execution of the logic program 

mode sort(7.-) 
sort(nil.nil }. 
sorl(cons(x.xs),'::Is) ¢:: parlition(x.xs,us .....s), sort(us.ps), 

sort (vs, qs). append( ps. cons (x. qs). '::Is] 

mo~ partilion(7. 7,~.A) 

parl i t ion(x. oi I. ni I. ni I). 
partilion(x. cons(z.zs).us.cons(z.vs» ¢:: x$z I 

parlition(x,zs,us.vs) 
partition(x.cons(z.zs).cons{z.us) .....s) ¢= x>z I 

partition(x.z5,US,VS) 

mode append(?7. A)
 
append(nil.ys.ys).
 
append(cons(x.xs).'::Is,cons(x.zs}) ¢:: append(xs.'::Is,zs)
 

proceeds in a similar wa!:! to that of the functional program
 

sort List tnt......., List Int	 ......., Bool
 
sort nil (val" '::Is)	 assign '::Is = nil; true
 
sort (cons x xs) ( .... ar '::15) _-:c	 val" ps. qs; 

partition x xs us .... s AND 
sort us ps AND sort vS qs AND 
append ps (cons x qs) ~s 
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partltion Int ........ List Int -+ list Int ........ List Int --+ Baal 
partition x ni 1 (var us) (var vs) = assign us =: ni I. \IS = ni I 

true 
partitIon x (cons Z Z5) (var us) (var vs) 

~ vs' : assign vs = cons z vs' 
partition x Z5 us vs' If x::;z 
var us' ; assign us =: cons z us' 
partition x Z5 us vs otherl-lise 

append list ......... List II! --+ List. --+ Baal 
append ni J ys (var zs) = assign Z5 blS ; true 
append (COf'\S X xs) ys (vae zs) =: var zs' 

assign zs =: cons x zs' 
append xs blS ZS' 

where AND is the standard infix operator. (Detailed explanation of mode 

declarations and the commit bar 'I' can be found in [10].) 

Final1~. the language can be compared wlth notations for describing 

parallel processes. The idea of suspending processes unbl a variable 

becomes instantiated has been suggested b~ Banatre (2]. There is no 

s!:f1chroni2ation between one process engaging in the output event of 

assigntng to a variable and other processes that require the value of 

that variable. This contrasts UJith the hand-shaking form of 

communication, as in CSP [24], in which a process must be ready to 

receive a message before another process can transmit it. In its 

treatment of parallelism. programming with side-eWects is closer to the 

languages Parlog and Concurrent Prolog, mentioned above. 

POSTSCRIPT. It should also be pointed out that an idea related to 

programrmng with side-eWects is described in [Arvind. R E Thomas. 

I-Structures: An Efficient Data Type for Functional Lt1.ngut1.ge.~. 

MIT/LCSfrM-178. 1980]. I-structures were conceived. however. as a means 

of reducin9 data dependencies in dataflow languages. 
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IMPLEMENTATION 

This appendix provides details of a protot::;pe implementation of a 

functional programming language wlth side--effeds, an extension of the 

purely functional language Drl-le II [58]. Side-€ffects were incorporated by 

means of a trivial modi~cation to the Modula-2 interpreter for On.,jell. 

The implementation provides 2l powerful system for experimentlng With 

side-effects and some encouraging results have been produced: 

particularly, when programs with side--effeds were compared with programs 

involving tuples. It seems also that, by making more extensive changes to 

the interpreter. a substantial improvement in the space/HIne performancr 

of programs with side-effeets can be obtained. 
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Orwell supports a recursive where construct. This has simpli~ed the 

1mplementaUon of the ~ construct. as will be explained. In fact. no 

changes to the s~tax of expressions were needed in order to provide for 

side-effeet.s. Instead. two new primit.iv~ ••IsAVar and ass i gn, were added. 

These can be given types 

IsAVar • -+ •• 
assign a .... a-+ •• -+ •• 

The concrete syntax of the expression {Y£.r. ~ Ells 

(8 ~here ~ = IsAUar undefined) 

and that of (assign z ; E, ; E,) Is 

(assign ~ E , Es> 

Thus. an unirfitanbated varlable z Is represented. in t.he graph ~ 

z 

~ 
IsAUar undefined 

The reduction rule for ass i gn can then .be pictured as: 

r r 
--+ 1\ 

E, 

z z 

1\ 1\
 
assign z IsAUar undefined E, 
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Implementation essenl:iall~ mvo\ved addmg the follcwmg two procedures to 

the module in which the primitive operators for Or\.le 1I were depned. 

PRJCEDURE UarProc (UAR x Object) Object; 
BEGIN 

RETURN MakeErrorl ("IsAUar", x) 
END UarProc ; 

PROCEDURE AssignProc (UAR x. e1. e2 Object): Object; 
BEGIN 

IF	 (INTEGER (x) <= PAIRHI) AND
 
(x".left = IsAVac) THEN
 
x".left ,= IObj ,
 
xA.right ;:: el ; 
RETURN eZ , 

ELSE RETURN HakeError3 ("assign q x. el. eZ)• 

END, 
END AssignProc 

UarProc deals with an al:tempt 1:0 evaluate an uninsl:antiated variable. 

Since we do not have parallelism. no further progress can be made. We 

choose to report this state of deadlock as an error. AssignProc is the 

code for the reduction rule shown above. 

Note thaI:: it would not have been pOSSible simply 1:0 represent an 

uninstantiated variable by undefined, because the implementation of 

Or\.le II does not allocate a new location for 2 in the expression 

(E	 \.lhere z :: undef i ned) 
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The above method of implementing the ass i gn construct can be improved 

upon. Consider. for example. the ev~luation of (J 1/), for some 

un1nl5tantiated variable 1/. according to the del1rutlon 

f (Y..5U:. :.:) :: assign 2: ~ E1 ; E, 

An efti:cient l1rplement.ation would, 111 a single reduction step. bind II to 

E1[1//%] arw::t rewrite (/ 1/) as E,tll/:!:}. However, in the protot~p8 

implementation. / is defined b!:j 

/ z: = assign :z: E 1 E, 

(/ r) must Jirst be reduced to (esslgn II E1[1I/.z] £,[I//2:]) before the 

above reduction can take place. Thus. the strocture 

10..., 
assign 1/ 

is constructed, onl!:j to become garb~ge after .one reduction. In th\s 

example. the protot~ implementation, compared with an elficient 

lmplementation of side-effects. requires one more reduction and t.wo more 

cells when reducing (/ 1/) to E,[I//2:]. For a function such as 

f (~ z) (~ II) =0 ass i gn z ::: E•• 1/::: E, ; E 

which has to be del\ned b~ 

/ % II ::: assign :r: E 1 (assign 1/ E, E) 

two more reductions and five more cells are required. 
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Thus. when interpreting the following table of results. allowance must be 

made for the possibilit~ of signifawnt impn:lUement-oJ to the space and 

time requirements of the side-elfeds solutions. 

ExAMPLE METHOD REDUCTIONST CELLS' DESCRIPTION 

Tupl i ng 1 1 first tree 
Side-erredsTI .98 .82 transformat ion 
Side-erreetsn .80 .73 problem 

2	 Tupling 1 1 second tree 
Side-erreetsn I. 00 .77 transformation 
S i de-ef f eetsT , .97 .78 problem 

3	 Tupl i ng {Memory Overflow} split in 
Cant i nuat ions {Memory Overflow} constant space 
Side-erfectsT linear constant 

417	 Tupling 1 1 quicksort 
S i de-erfectsT .71 .64 
Cant i nuat ions .77 .57 
S i de-effeetsc .84 .90 

5	 Tupling 1 1 Fibonacci 
Side-erreetsT .76 .67 numbers 
Cant i nual i ens .76 .45 
Side-erredsc .76 .81 

Side-effectsT == tupling-related side-effects strategy 
Side-efrectsc continuations-

IExcept for Example 3. the number of reductions and cells 

are expressed as a fraction of those required by the 

tupling solution. 
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The above table compares various solutions to the examples of Chapter 2. 

For each example, the programs were compared aver a wide range of 

input, that is, trees in Examples 1. and 2, lists in Examples 3 and 4, and 

integers in Exa'Tlple 5. Side-effedsTI , Side-effeetsn , Side-effedsn 

and 5 I de-ef feel Sn refer to solutions derived from the folloWing 

deJinitions:­

replace' t m (var v) assign v tmin t ; replace t m ( I ) 

tmin' t III (::@I. s) assign s replace t m ; tmin t (2\ 

replace' l us (var vs) (var I.ls) rs 
assign I.lS = drop (size t) us, 

vs = tips t ++ rs ; 
replace t us (3) 

tips' t us (var s) (var I.ls) rs 
assign I.lS = drop (size t) us, 

s = replace t us ; 
tips t H rs (4) 

It seems reasonable to conclude that Side-effects o~er sizeable gains over 

tupling. and, if implemented eflicientl~, some improvement over 

continuations. Side--effects is the onll::J method that salves the constant 

space split problem [Z9.30]. 
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