Rq063 - feey

FUNCTIONAL PROGRAMMING

WITH SIDE-EFFECTS

by

Mark B. Josephs

7! University
" Laboratory
ining Research Grous
¥sile Road
- Tord OX1 3QD
wuford (0865) 54141

Technical Monograph PRG-55

June 1986
{published October 1986}

Oxford Uriversity Computing Laboratory
Programming Research Group

8-11 Keble Road

Oxford 0X13QD

England

Copyright (€) 1986 Mark B. Josephs

Oxford University Computing Laboratory
Programming Research Group

8-11 Keble Road

Oxford OX13QD

England

A thesis submitted for the degree of
D.Phil at the University of Oxford
June 1986

OXTFORD UNIVERSITY COMPUTING LABORATORY

PRG-2

PRG-3

PRG-5

I'RG-6

PRG-9

PRG-10

PRG-1T

PRG-18

PRG-20

PRG-22

PRG-23

PRG-26

PRG-29

PRG-32

PRG-34

PROGRAMMING RESEARCH GROUP
8-11 Keble Roead, Oxford OX1 3QD, England

Technical Monographs to May 1986

Outline of a Mathematicai Theory of Computation
by Dana Scott. November 1970, 24 p., £0.50

The Lattice of Flow Diagrams
by Dana Scott. November 1970. 57 p., £1.00

Data Types as Lattices
by Dana Scatt. September 1976, 65 p., £2.00

Toward a Mathematical Scmantics for Computer Languages
by Dana Scott and Christopher Strachey. August 1671, 43 p., £0.60

The Text of OSPub
by Christopher Strachey and Joseph Stoy. July 1972, 2. 126, 151 p. £3.50

The Varieties of Programming Language
by Cbristopher Strachey. March 1973, 20 p., £0.50

Report on the Programming Notation 3R
by Andrew P. Black. August 1980, 58 p., £2.30

The Specification of Abstract Mappings and their Implementation as B+ Trees
by Elizabeth Fielding. September 1980, 74 p. + Appendix, £1.30

Partial Correctness of Communicating Processes and Protocols
by Zlou Chao Chen and C.A.R. Hoare. May 1081, 23 p., £1.75

A Model for Communicating Sequential Processes
by C.A.R. Hoare. June 158}, 26 p., £1.30

A Calculua of Total Correctaess for Communicating Processes
by C.A.R. Hoare. April 1981, 31 p., £1.75

The Consisteacy of the Calculus of Total Correctness for Communicating Sequential
Frocesses
by Zhou Chao Chen. February 1982, 38 p., £1.80

Specifications, Programs and Implementatinus
by C.A.R. Hoare. June 1982, 20 p., £1.75

The Lispkit Manual
by Peter Henderson, Geraint A. Jones and Simon B. Jones. 1983, 2v. 127. 136G p..
£4.00 {or both volumes

Abstract Machine Support for Purely Functional Operating Systems
Ly Simou B. Jones. Anpust 1983, 53 p. + Appendix. £1.75

PRG-35

PRG-37

PRG-38

PRG-39

PRG-40

PRG-42

PRG-44

PRG-45

PRG-46

PRG-47

PRG-48

PRG-49

PRG-50

PRG-51

PRG-562

PRG-53

PTL7:-54

The Formal Specification of a Conference Organising System
by Tim Clement. August 1983, 52 p. + Appendix. £1.75

Specifization-Oriented Semantics for Communicating Processes
by E.R. Olderog and C.A.R. Hoare. Februacy 1984, 81 p.. £1.50

Making Nets Abstract and Structured and Nets and thejr Relation to CSP
by Ludwik Czaja. January/June 1984, 23, 2G p., £1.30

pFP - An Algebrare VLSI Desigu Language
by Mary Sheeran. Ph.D. thesis November 1983, 139 p.. £2.50

The Design and Implementation of Programming Languages
by John Hughes . PL.D. thesia July 1983, 130 p. + Appendix, L2 50

A Range of Operating Systems Writter in a Purely Functional Style
by Sirmon B. Jones. February 1985 44 p., £1.30

The Weakest Prespecification
by C.A.R. Hoare and He Jifeng. June 1985, 60 p., £0.85

Laws of Programming - A Tutorial Paper

by C.A.R. Hoare, He Jifeng, L.J. Hayes, C.C. Morgan, 1.W. Sanders,. LH. Sgrensen, J M.
Spivey, B.A. Sufrin, A.W. Roscoe.

May 1985, 43 p., £2.35

Specification Case Studies
by lan Haye=. July 1985, 68 p., £2.50

Specifying the CICS Application Programmer’s Interface
by lan Hayes. July 1985, 82 p., £[3.10

CAVIAR: A Case Study ip Specification
by Bill Flinn and b Holm Sercnsen. July 1985, 46 p.. L2.00

Specification Directed Module Testing
by Ian Hayes. July 1985, 30 p., £0.9D

The Distributed Computing Software Project
by Roger Gimson and Carroll Morgan. July 1985, 85 p.. £4.00

JSD Expressed in CSP
by K.T. Sridbar and C.A.R. Hoare. July 1085, 40 p., £1.45

Algebraic Specification and Proof of Properties of Communicating Sequentizl Proresses
Ly C.A.R. Hoarr and He Jifeng. November 1585, 72 p., £0.50

The Laws of Occam Programming
by A.W. Roscoe and C.A.R. Hoare. Febmary 1586, 86 p.. L2 50

Exploiting Parallelism in the Graphies Pipeline
by Theohans A, Theoharis. June 1986, 101 p., £2.50

squasnd Aw of

FUNC TIONAL PROGRAMMING WITH SIDE-EFFECTS

tark Brian Josephs, D.Phil. Thesis,
Wolfson College, Oxford Trinity Term, 1836

ABSTRACT

In this thesis functicnal and logic programming languages are combined
into a new declarative language. This allows for lazy singe-assgnmmt to
logical varables in an otherwise purely functional language. [ficient
solutions te various programming problems are developed. [t is also shown
that these programs with side-effects can be derived by mears of
transformational! programming. On implementations that support parallelism,

further interesting possibilities arise, which are discussed briefly.

The formal semantics of this extension to functional programmng is
investigated. Both denotational and axiomatic semantic descripticss of
the language are presented. Programming with side-effects 1= particuarly
attractive, because it can be supported by graph reduction based
implementations of functional programming languages. [letails o a

protatype implementation are given.

CONTENTS

CHAPTER 1: INTRODUCTION AND CVERVIEW
1.1 An Extension to Functional Programming
1.2 Order of Evaluation
1.3 Organization of the Thesis

CHAPTER 2 : PROGRAMMING WITH SIDE-EFFECTS
2.1 Introduction
2.2 The Syntax of the Extended Language
2.3 Semantics
2.4 Examples of Programming with Side-Effects
2.5 Conciusion

CHAPTER 3 : TRANSFORMATION
3.1 Introduction
3.2 Transformation Rules
3.3 Side-Effects as an Alternative to Tupling
3.4 Side-Eftects as an Alternative to Continuations
3.5 Conclusion

CHAPTER 4 : DENOTATIONAL SEMANTICS
4.1 Introduction
4.2 Graph Reduction
4.3 Denotational Semantics
4.4 Conclusion

CHAPTER 5 : AXIOMATIC SEMANTICS
5.1 Introduction
5.2 An Axiomatic Semantics
5.3 Reasoning about Programs
5.4 Limitations of the Axiomatic Approach
5.5 Conclusion

CHAPTER 6 : SUMMARY AND RELATED WORK
APPENDIX : IMPLEMENTATION

REFERENCES

—

10
n

13
15
36

38
40
45
57
62

63
64
67
76

77
80
92
85
98

g9

103

109

CHAPTER 1

INTRODUCTION AND OVERVIEW

L1 AN EXTENSION TC FUNCTIONAL PROGRAMMING

In recent years there has been a growing appreciation of the declarative
style of programming, in which we are encouraged to look upon programs
as mathematical objects. Ideally, we can understand a program without
having to form a mental picture of some kind of machine executing a
sequence of instructions. Furthermc;re, we might hope to be able to prove,
more easily than hitherto, that a program meets its specification

(typically expressed in some rich mathematical notation [25]).

Declarative programming languages can be divided into two classes, the
functional and logic styles. A functional program consists of a set of

furction definitions, and computation involves the evaluation of an

expression by using these definitions as rewrite rules. For example, the

functional program

factorial : Int — Int
factorial n =1 ifFn=20
n » factorial (n-1) ctherwise

can be used to calculate (factorial 1}. The evaluaticn process proceeds
through the sequence of reductions (rewrites}

factorial 1 actorial {1-1)

»x f
x factorial O
» 1

Logic programming languages are ususlly based on the Horn clause subset
of predicate logic [34] and a unification algorithm [46] for matching
atomic formulee. It s passible to give a declarative reading te logic
programs. However, it is also recessary for the programmer to
understand the procedural interpretation of the language. Consider ornce

again the factorial example: the clauses

factorial(D,1).
factorial(n,x} < plus(m,1,n), factorial{m,y). times{n.y.x)

can be read as

factorial 0 42 1

For all integersa m, n, x, u.
factorial n ds x
if m plus | ta n,
factorial m s y,

and n Limes y ¢ x

The following represents a top-down solution [3B] to the problem of
determining the value 2z of factorial 1. It shows how the output z = |

can be computed.

<= factorial(l.z)

| uni fying factorial(l.2) with factorial (n. x}

4= plus{m. 1,1}, factgrial(m.y}, times{!, y.z)

m=0|
o «= factorial(0.y), times(l, y,z)

y =11 unt fying factorial{0,y) with factorial(0,1)
e <= times(i.1,2}

z =11

= [

"Values produced by the erxecution of a leogic program ¢an contain [iogical)
variables, in contrast to the totally ground expressions manipulated by
functional programs’ [14]. Darlington suggests that ‘this gives logic
languages extra power and enables many elegant solutions to be

developed'.

This thesis is concerned with a style of programming, which has been
dubbed functional progremming with side-cffects. Tt is made possible by
combining functional and logic programing languages into @ new declarative
language. Logical variables are made available for use. in a restricted
manner. in functional programs. However, unification is not wed as an
evaluation mechanism; furthermore, unlke Prolog [12], there is no

backtracking on the binding of variables.

The language can be regarded as the extension of an otheruwise purely
functional language to include a novel feature, a lazy single-assignment
construct. Now, the lack of a notion of assigiment ({(and hence
side—effects} is said to be 2 fundamental property of the class of
functional programming languages., so this idea seems to be particularly
controversial. For example, Peyton-Jones [42] states, in support of

functional programming

* {i) The absence of side-efects leads to clean and simple
semantics, which makes programs easier to write, and

easier to reason about than conventional languages.

(ii) Distinct subexpressions of a program can safely be
evaluated concurrently, since the absence of side-efects
ensures that the subexpressions are genuinely
independent. This opens wup possibilities for the

exploitation of parzallel hardware. -

In defence of functional programming with side-efects, evidence is provided

that

{1} It is not too difficult to develop or understand such progroms;

{2) The programs are suitable for parallel execution;

(3) The proposed extension permits the expression of some interesting
algorithms that would otherwise be unavailable to the functional

programmer;

{4) It is sometimes possible to achieve a gan in efficiency over purely

functicnal programs because, unth the assignment construct, we may

be in a position to take advantage of the order in which expressions
get evaluated. (It should be noted that we have in mind a particular
model of computation, demand-driven graph reduction [lE.ZB,54].
Graph reduction machines provide one method by which functional
programming languages can be implemented, and the new language has
been specifically desigred to fully expleit this graph reduction methad

of computation.}

Programs with side-effests do not always behave quite as one might
expect. There i5 the possibility that evaluation will deadlock, that is,
come to a premature halt, instead of returning the vale of an
expression. The programmer requires a sound methodology that will
facilitate development of programs in the language: far example, the work
on weakest preconditions {17,20] for deriving programs in an imperative
language. Transformational programming [7,13.37.47] is known to be a
useful method for obtaining efficient functional programs from clear, but
ineficient, functicna! prcgrams that act as specifications. Likewise,
transforming purely functional programs into functional programs with

side-effects has proven to be reasonably straightforward.

Ancther challenge we address is 'to be able to understand the language
without having to understand the implementation’ [2B]). For example, we
would like to wunderstand Prolog without having to think about
backtracking but, unfcrtunately, we would then have no way of knowing
when to use the cut. Functional programs with side-effects can be written
with little or no knowledge of graph reduction. A formal system based on
inference rules has been developed for reasoning about such programs,

This formal system gives an axiomatic semantics for the language.

[4]

1.2 ORDER OF EVALUATION

This section contains a brief discussion of issues relating to the order of
evaluation of expressions during the execution of purely functional
programs. With this background material it is hoped that the reader will
be in a better position to fully appreciate functional programming with

side—effects, which is described in the next chapter.

We begin with a sheort account of the lazy evaluation strategy [19.22]
for executing functional programs, used in such languages as SASL [53],
KRC [5B] and Lispkit [21]. Under.lazg evaluation, (i} the arguments to
function calls are evaluated at most once, and then only if their values
are required, giving call-by-need [B0] as opposed to call-by-name or
call-by-value semantics, and (ii) this lazy approach alsc extends to the
components of data structures. For example, for (cons E, E,) evaluation
of the head, E,, and the tail, E,, is delayed until they are needed. It is,
of course, one thing to appreciate this, but quite ancther to realise how
it can be implemented. lazy evaluation is desirable because it can be
exploited in a modular style of programming. For example, the first 20
prime numbers are computed by the expression (take 20 primes), where
primes has been defined to be the infnite list 2, 3, S, 7, .., of prime
numbers and take is a function such that (take n xs)} returns the first

n elements of the list xs.

Another possible evaluation strategy allows for concurrent evaluation of
expressions. Superficially, it might be thought that lazy and parallel
evaluation strategies are irreconcilable. However, we have only to realise
that, if a function is strict, then it is perfectly consistent with an
otherwise lazy approach for the evaluation of a function call to proceed
concurrently with the evaluation of 1ts arguments. Thus, for example, in
evaluating (E, + E,) we might want E| and E, to be evaluated in pazrallet.

Two disadvantages with parallel evaluation are that it is difficult to

implement efficiently, even on distributed computing architectures, and that
unnecessary (parallel) evaluation of expressions can waste resources,

possibly producing a non-termirating computation.

An important observation is that the order of evaluation of expressions
is something that is rot usually taken into account when first writing a
functional program. Our primary concern is to ensure that the functions
are defined correctly: in other words, we concentrate on the declarative
reading of the program, or equivalently its logic, under Kouwalsks
definition Algorithm = logic + control [35]. However, if we are to analuse
the space and time complexities of functioral! programs (with or witheut
parallelism}, then it becemes necessary to consider the order in which

expressions are evaluated.

For example, in the KRC preiude [SG] the minimum element of a list xs is
defined by head(sort xs), where sort is insertion sort. Because of lazy
evaluation the minimum element is determined in linear time, even though it

takes quadratic time to completely sort a list by this method.

As a second example: we ocught to be able to determine the length of a

list in constant space, but the program

length : List m — [ni
length = length' 0

length® : Int — List
length' n nil
length' n {cons x xs)

— Int

non

n
length" (n+!) xs

takes space proportional to the length of the list, because, under iazy
evaluation, the additions are nested and not calculated until the entire

list has been parsed [Z29]. Thus:

length [3,6] — length' 0 [3,6]
—+ length® (0+1)} [E]
— length® ({(0+1)+1) nil
— ({0+1)+1))
— (1+1)
— Z

We conclude this section by noting that it is possible to alter the order
of evaluation of expressions by anrotating a program with control
functions [8,9.29.30,48]. Hughes [29.30] has suggested a function that
has the efect of synchronizing the execution of parallel computations,
When misused this can cause evaluation te deadlock. Rs was mentioned
earlier, this undesirable behaviour can occur in functional programs with
side—effects; we shall be concerned with ensuring that our programs are

free from deadlock.

1.3 ORGANIZATION OF THE THESIS

The thesis has been crganized as follows:-

In Chapter 2 a functicnal language with side—efects is introduced. The
syntax and semantics of the language are described informally, and many

programming examples are given.

Chapter 3 is devoted to an explanation of a formal method of program
development based on transformational programming. Many of the examples
of Chapter 2 are reworked as transformation problems. It is shouwn that
side—effects can be used as an alternative to tupling [40.41] or

continuations [5!,61].

In Chapter 4 a method of computation based on graph reduction is
introduced and a denotaticnal semantics for the language is presented:
this does not cover parallel evaluation. The semantics provides some

Jjustification for the transformation rules of Chapter 3.

Chapter 5 describes an axiomatic semantics, which extracts from the
process of graph reduction those properties essential for reasemng about
the language. The axiomatic semantics is also useful for understarding

parailel and synchronized execution of programs.

A summary of the achievements embedied in the thesis and a discussion of
related work appear in Chapter 6. Finally, details of an actual
implementation of a language with side-effects are to be found in the

appendix, along with the results of some experimental comparisens.

-y
A.!':'C-'raf.ory
o Assearch Group-Libra
r QAnad P y
'~ OXr 3QD
W NAEE) a149

CHAPTER 2

PROGRAMMING WITH SIDE-EFFECTS

2.1 INTRODUCTION

The essence of programming with side—effects can be stated 2s follows:-

Unlike a conventional functional language. an applicative expression may
contain occurrences of uninstantiated variables. During the process of
evaluating such expressions, it is possible for these variables to become
bound to further expressions. An attempt to evalvate an uninstzntiated
variable will suspend until the variable gets instantiated, that s, bound
to some expression, Thus, 1t is possible for a state of deadleck to arise
during program execution: this occurs when all demards for the values of

expressions have been suspended.

This chapter begins with a brief and informal account of the syntax and
semantics of a language which supports programming with side—effects. The
remainder of the chapter is then devoted to the presentation of a
salectien of programming examples in this language. It is heped that these
examples demonstrate that the new style of programming made possible by
side—efects 15 both useful and not too difficult to understand. To be sure,
an additional burden has been placed on the programmer, who now has to
take care to avoid the possibility of deadlock during program execution.
However, in the next chapter it is shown that a systematic method of
program tronsformation can be adopted for programming with side-effects.

In this methed side—effects are introduced in a controlled and safe manner.

We shall not concern ourselves at this point with how the language can
be implemented, other than to note that: functional languages can be
implemented on graph reduction machines, and side—effects <¢an be
accommedated without modifying such machines. {The passibility of binding
variables by graph reduction was recognised in {15], namely, ‘The logic
based programming larnguages are supported by a facility that permits a
packet to be treated as a variable by allowing a reduction to have the
side—effect of assigning new contents to any argument packet.’) Further

explanaticn ¢can be found in Chapter 4 and in the appendix.

2.2 THE SYNTAX OF THE EXTENDED LANGUAGE

[n this section we give an informal description of the syntax of a

functional language that incorporates the extension.

An expression is evaluated according to a program that consists of a set
of function definiticns, as in KRC [56]. In fact a syntax has been adopted
that is based on Orwell [SB] and Miranda [57] which include a
pelymorphic tupe system [35]. Fumction definitions can be wviewed as

recursion equations or rewrite rules, and take the form

11

{function name> : <type>
functicn named> (patterr>® = {expression>

Here, a pattern can be formed from variables and basic values
{eq. numbers) by means of certain constructors (eg. cons). Any variables
appearing in patterns have the mght hand side of the equaticn as thetr
scope. To improve readability, variables are marked as var parameters if
they are to be assigned to a5 2 side—effect of a call to the function. I
addition te these user—declared functions, we will assume the existence of

some primitive functiens, for instance, the common arithmetic operators.

The category of exprescions is defined to include variables, basic values,

function names and function applications, as well as the forms

{side-effectd ; (expression)
{declaration> ; {(expression)
where

{side-effect> ::
{declaration)> ::

assign <variable) = <{expression>
var {(variable)

Note that for {(var z : FE}, the scope of z is E. Of course, varisbles
can only appear within their scope. For example,

foo x {cons y (var ys)) = var 2s ; assign ys = tail z5 ;: [x zs

is a well-formed definition provided { is the name of some function.

Funmction application is left associative, that is, we write (E, E, E,} to
mean ((E, E,} E,). Other conventicns that have been adopted include
(i) ++ as an infix form of append, and {ii) a notation based on set
abstraction, so that, for example, [y+xs|yix] denotes the list of

numbers drawn from xs that are less than x.

2.3 SEMANTICS

The language is based on lazy evaluation, as is the case for many
functional languages. Furthermore, although its var and assiagn
constructs have their counterparts in imperative langueges, for example,
Pascal, there are some subtle differences between assign and a standard
assignment statement. We can give an informal semantics to this

extension as follows:~

A. Evaluation of var z ; &
1. A new location in the store is allocated to z and marked as unset.
(We call = an uninstantiated variable.)

2. E is evaluated.

B. Evalation of assign z = E, ; E,
1. If zis not uninstantiated,
an error Is reported for improper assignment. Otherwise:
2. E, is stored in uncveluated form at z,
that is, z is bound to the expression E,.
3. E, is evaluated.

Thus, assign is a lazy single-assignment construct.

C. Evaluation of an uninstantiated variable is suspended until an
expression is assigned to it. Evaluation then continues with
that expression.

Notes: 1) {(var ¢ ; var y . E) = (var v : var z , E)

since distinct new locations are allocated to z and y in each

case. Hence, we can abbreviate such expressions as simply

(var z. y : E)

13

2} (assign z = E, ; assigny =K, ; E)
= (assign y = E, ; assign z = E, ;: E)

since the expressions E, and E, are stored in unevaluated form,

Agein we adopt the abbrewviated notation

{assign =z = E,, y= E, ; E)

3} Some functional languages have a construct such as uhere for

making local recursive definitions, Then

(E where z, = E, , z = E))
= (var 2. ... 1, 3ssignz, =B, , .., z, = E, ;. E)
since in both cases all ocourrences of z, in E, E,, ... , E_ refer

to E, Ffurther explenation can be found in [31), which

describes an efficient implementation of where.

4) Order of evaluation of expressions is important. For example,
addition only remains a commutative operator if it evaluates its

operands in parallel.

To see this, suppose instead that addition evaluates its left

operand before its right. We can compare the expressions

(add (assign x = 3 ; 2} (sub 4 x})

and

{add (sub 4 x)} (assign x = 3 ; Z})

where x is an uninstantiated veriahle, in the following way.

14

Evaluation of (assign x = 3 ; 2) binds x to 3 and returns 2.
Evaluation of (sub 4 x)} returns I, if x = 3, but suspends if x
is uninstantiated. MNow, because the right operand of an
addition only gets evaluated once the left operand has returned

its value, it can be seen that

(2dd (assign x = 3 ; 2} {sub 4 x))

evaluates to 3, whereas evaluation of

{add {sub 4 x) (assiagn x = 3 ; 2))

deadlocks.

We therefore have to take order of evaluation into account so

as to guarantee termination.

24 EXAMPLES OF PROGRAMMING WITH SIDE-EFFECTS

The first two problems are taken from [4]. Bird uses transformation
techniques to develop eficient programs from ineffcient programs that act
as specifications. Tupling is used teo improve eficiency by avoiding
repeated traversal of a data structure, but as a result the programs
logse their clarity. It is claimed that our sclutions to the problems are no
less efficient and, given some famillarity with the extended language, are

not too difeult to develop.

For all problems for which a formal specification, in the form of a
functional pragram, has been given, the reader is referred to Chapter 3,
where the seolutions are systematically derived by means of

transformational pregramming.

15

16

EXAMPLE 1

Consider the data type of binary trees defired by

type Tree = tip Int | fork Tree Tree

We wish to change a given tree inte a second tree identical n shape to
the first. However, each tip value should be replaced by the minimum tp

value of the tree.

transform : Tree — Tree
transform t = replace t {(tmin t)

replace : Tree — Int - Tree
replace (tip n) m tipm
replace (fork L R} m fork {replace L m) (replace R m)

tmin : Tree — Int
tmin (tip n) = n
tmin {ferk L R} = ({tmin L} MIN {tmin R)

METHOD

We introduce a local variable v to heold the minimum tip value, (tmin t}),
for a given tree t. Thus, for t = (tip n), we wish to assian v = n,
and for t = (fork L R), we wish to assian v = (y MIN z), where we
have introduced y and 2z to stand for (tmin L} and (tmn R},

respectively.

Suppese also that m stards for the minimum tip value of the tree to be
transformed. Of course, for this tree v = m. We only have to realize cne
more thing: namely, a tip is replaced by a tip, and a fork by a fork, and

we are ready to formulate our solution.

SOLUTION 1

transferm : Tree =+ Tree
transferm t = var m ; replace t mm

replace : Tree — Int — Int -+ Tree
replace {tip n} m {var v) = assign v=n; tipm
replace (fork L R} m (var v) = var y, 2 ; assign v=y MIN z ;
fork {replace L m y}
{replace R m z)

A declarative or logical reading can be given to this program as follows:

¥x,t:Tree. x = transform t & 3m:Int. x = replace t m m

Yx:Tree; n,m,v:Int. x = replace {tipn) mv & v=nax=tipm

¥x,L.R:Tree; m,v:Int.
x = replace (fork LR} mv & 3Jg.2z:Int, v =y MIN 2z
A x = fork (replace L m y)
{replace R m z)

From this we can infer that if transform is applied to a given tree and
evaluates tc some new tree, then this resulting tree will indeed meet the
specification. What this logical reading does not tell us is how much, if
any, of the transformed tree can be computed. For this operational aspect
of the behaviour of the program, an understanding of demand—driven

evaluation is required.

From an alternative pecint of viey, the declarative reading reflects a
parallel evaluation strateqy. by which evaluation of an expressicn
(whether being assigned to a variable, or cccurring in a data structure
or as an argument in a function call} proceeds eagerly rather than lazily.
To reason abaut aur language we require = more elaborate formal system

into which some concept of delayed evaluation has been built: see the

17

R~turning to Solution 1, we can deduce that all the forks and tips can be
computed in response to demands. However, a demand for a tip value will
be suspended until all the tips have been computed. This means that our
program is unsuitable - it would deadlock - if, say, we wanted to
determine the minimum tip value by sending demands only along some

selected branch of the tree. For example,

findval (transform {(fork {(tip 2} (tip 1}}}

wili deadlock rather than evaluate to !, for (indval defined as

findval : Tree — Int
findval (Ltip n} = n
Findval (fork L R) = findval L

Thus, our progrem has a diferent operational behaviour from that given

by Bird, which is the following:

transform : Tree ~» Tree
transform £t = bt~
whare {t’, m) = repmin t m

repmin : Tree — Int =+ (Tree x I[nt}
repmin {(tip n) m {(tip m, n)
repmin (fork L R) m = {fork L' R*. y MIN z}
where (L', y} = repmin L m
(R', z) = repmin R m

H

Bird's program, which is deadlock-free, was synthesized from the definition

repmin t m = (replace t m. tmin t)

Fortunately, a minor modification to Solution [is all that is required to
make it free from deadlock: the definition of replace is annotated with
the val combinater [29] (the use of which makes furctions striet), so that

replace (fork L R) m {var v} = var y, z ; assign v = y MIN z ;
val {val fork (replace L my}}
{replace R m z)

18

The (complete) trarsformed tree is then constructed in reponse to an

imttial demand.

Note that for (val E, E,}, E, gets evaluated before E, is (evaluated
and} applied to it: this corresponds to call-by-value. The simple
expression (E, E,) gives call-by-need, that is, E, gets evaluated only
when first required. So, by annotating the program with val, the minirnum
tip value is computed in response -to a demand for any tip's new value.
Our program is no less efficient than Bird's and is now deadlock—free: an

experimental comparison of the programs appears in the appendix.

On implementations that support parallelism, it would be possible to use
Hughes' par combinator [23,30] in place of val: evaluation of (par E, E,)
involves the concurrent reduction of E, and (E, E,), its value being that
of (E, E,}). (Technical note : we assume that expressions cannct be
garbage collected while they are being evaluated; although the value of
the expression may not itself be required, evaluation of the expression

may have a vital side-effect.}

EXAMPLE 2

This tree transformation problem is similar te Example 1. Again the
transformed tree is to have the same shape as the original tree, but
this time the original tip values must be serted inte increasing order and

then allocated to the new tips from left to right.

transform : Tree = Tree
transform t = replace t {sort {tips t}}

replace : Tree = List Int = Tree
replace (tip n) us = tip (head us)
replace (fork L R} us = fork (replace L us}
(replace R (drop (size L)} us)}

19

tips : Tree — List Int
tips (tip n) = [n]
tips {fork L R) = tips L ++ tips R

size : Tree —+ Int
size (tip n} =1
size (fork L R} = size L + size R

drop : Int —+ List = — List =
drop 0 X5 = xs
drop {n+l) (cons x xs) = drop n xs

{Note that this specification is slightly simpler than that given by Bird.}

METHOD

Suppose some subtree is to be replaced. It will sufice to have access to
that part of the sorted list of tip values remaining after values for ail
tips on subtrees-to-the-left have been removed. We store this sublist in
the variable us. Having allocated the Initial values on us to the tips in
the subtree, the rest can be passed on via some shared variable ws, say.

Furthermore, a list vs of the tip vaiues in the subtree can be produced.

So, at the root of the tree, vs is a list of all the tip values in the tree
and us is a sorted version of vs. (Note also that ws wiil be instantiated

to nil during execution.)

SOLUTION 2

transform : Tree — Tree
transform t = var vs. Ws ; replace t (sart vs) vs ws

replace : Tree — List Int — List Int — List lnt — Tree
replace (tip n) us {var vs) {(var ws)

= assign ws = tail us. vs = [n] : tip (head us)
replace {(fork L R) us (var vs) {var ws}

= ¥ar XS, Ys, Z5 . assiqn vs = X5 ++ ys ;
fork (replace L us xs zs) (replace R zs ys ws)

21

for some suitably defired function sort. Since sort is strict, an attempt
to determine a rew tip value will deadlock if all the tips do not eventually
get demanded. As in Exampla 1, this can be avoided by using val or par

{in an identical way).

Note that the list of tip values is created by appending sublists
together. It should be possible to formulate a more effictent solution that

avolds the use of ++. Wa revise our method as follows.

ALTERNATIVE METHOD

As will be explained in Chapter 4, we would like an expression—graph such as

(rorsforn

tiny o
O G W

to reduce to

A program that achieved this reduction with minimal overheads miht be
regarded ms an ‘optimal’ solution to the problem. We deviee sich a
program by modifying Solution 2,

An extra argument rs Is used by replace to keep a list of tip values on
subtrees-to—the-right. vs Is now used to store, for a given subtree, the
list of its tip values appended on to rs. Thus, at the roct of the tree
to be tramsformed, rs = nil and vs is a list of all tip values (as
before).

22

SOLUTION 24

transform : Tree — Tree
transform £ = var vs. ws ; replace t (sort vs} vs ws nil

replace : Tree — List [nt — List [nt
—+ List Int — List Int = Tree

replace (tip n) us (var vs) (var ws) rs
= assign Ws = tail us, vs = cons nts ; tip (head us}

replace (fork L R) us (var vs) {var ws) rs

= war ys, 25 :
fark (replace L us vs zs ys) (replace R z5s ys ws rs}

In Examples 1 and 2 we have used aigorithms that would probably be
favoured by a Prolog programmer. The cost of our efficient graph

reduction mechanism is unexpected deadlock for the maive programmer.

In the next two examples we shall be concerned with the space complexity
of some programs. Even for purely functional programs, lazy evaluation
makes analysis difficult. For example, the expression (1..n), representing
the list of integers frem | to n, requires space linear in n if fully
evaluated (without any part of the resulting list being garbage collected);
whereas (head (l..n})} evaluates to 1 in constant space, since the list

from Z to n does not get constructed.

EXAMPLE 3

In [23] an amalysis is presented of a function split which takes a list xs
of characters and returns a pair comprising the first line of characters
and the rest of the list. If the list xs is built up lazily, then in many
circumstarces its members can be garbage collected soon after they have
been produced. For example, the split may be performed just so as to
determine the first character of the first and second lines of xs.

However, Hughes has shown that there are situations in which a

‘sequential evaluation' strategy makes it impossible to obtain an expected
constant space solution, no matter how we defne the function split.
Therefore he devises new primitives - par and synch - with which he
annotates split in order to allow for the possibility of execution in

censtant space.

We now present a version of split that can be run in constant space even

though only sequential evaluation is required.

SOLUTION 3

split : List Char — List Char — List Char
split (cons x xs) (var ys) = assign ys = xs ; nil if x = CR
cons x (split x5 ys) othernise
Here, (split xs ys), where ys is an uninstantiated variable, will evaluate
lazily to the first line of xs. ys then becomes bound to the remainder of

XS.

Hughes gives a program that uses split in order to compute the length
of the first line of a list and the length of the remainder of the list. we

might write this as

program ! List Char — (Int x Int}
program xs = var rest ; val pair (length (split xs rest)}
{length rest}

pair : = — % — (® x xx)
pair x y = (x.4)

Now the evaluation of either length {or both) requires only constant
space, given a suitable garbage collector and assuming we use the space
efficient definition of length formulated by Hughes. {His version of length

is formed by amnotating the definition given in Section 1.2 of Chapter 1 so

that length® n {cons x xs} = val length' (n+1} xs .}

24

25

Why have we used val in the definition of pragram xs? This is because
(length rest) can never be determined without parsing the first line of
xs, This mght have been inadvertantly attempted, resulting in deadlock,

had we written

program xs = var rest ; (length (split xs rest), length rest)

We mention here that Hughes' synch no longer has to be treated as a

primitive. He gives the following description of it:-

synch E = (E . E)

However, the two copies of E which are returned are actually different:
call them E, and E,. No demand is propagated from E, or E, to E until
both have been demanded.

The following definition of swnch achieves the same effect.

synch : w = (& x =)
synch % = var y, z ; {(assign z =x . y) . (assighy = x; 2})

Evaluation of (synch E)} returns a pair of expressions. The combination
of lazy evaluation and side-efects means that the values of both
expressions must be demanded before E gets evaluated (to v say); only

then can the value (v.v) of (synch E} be determined,

ExsMPLE 4

No set of examples of functional programs would he complete wiihout

inclusion of quicksert.

sart : List Int — List Int
sort nijl nil
sort {cons x xs) sort [yexslydix]l ++ cons x (sort [yéxsly=x])

An analysis of the space/time complexities of this program appears in
[29]. It is shown to have O{nlogn} average and 0(n®} worst case time
complexity, the same as fer the imperative version of quicksert.
However, we wish to reduce from quadratic te linear its (worst case)

space complexity.

METHOD

Rather than compute [ytxsiy<x] and [y¢xs|u>x] separately, we can
cambine them by using @ suitably defined function that partitions xs. This
leads ta the following program, where partition is similar to the function

split of the previcus example.

sort : List Int — List Int
sort nil = nil
sorkt {cons x xs)} = var ys ;
sort {partition x xs ys) ++ conps x (sert ys)

partition : Int — List Int — List Int — List Int
partition x nil (var ys) = assign ys = nil ; nil
partition x {cons z 2zs)} (~var ys)

= var ys'
assign ys = cons z ys’
partition x 25 ys’ if x<=z

cons z {partition x 2s ys) atherwise

The program is deadlock~free: see Chapter 3 for its formal derivation and
a proof of freedom from deadlock. It can be further improved by use of

an accumulating parameter, as shown in Solution 4.

SOLUTION 4

sort : List Int — List Int
sort = sort’ nil

sort® : List Int — List Int — List Int
sort’ rs nil = rs
sort’ rs {cons x xs) = var ys ;
sort' {cons x (sort' rs ys))
(partition x xs ys)

where partition is as defned above.

We observe that (partition x xs ys), where xs is a list of integers
and ys is an uninstantiated variable, evaluates (lazily) to a list, us say:
this evaluation has the side-effect of binding ys te a list, vs say. Thus,

xs gets partitioned into two sublists, us and vs, and #xs = sus + #vs,
sort can be shown to have linear space complexity, as follows:-

Without loss of generality, we can assume that the list being sorted is
not referenced elsewhere. (If thiz were not the case, more space would
be required during sorting. The amount of additienal space would be
linear in the length of this list, and so can safely be ignored, since we

are only trying to prove that sort runs in linear space.)

Consider some call of partition, (partition x xs ys), occurring during
the sorting of a list. The only reference to xs will ¢ from this call. So,
reuriting the expression according to the definition of partitien will free
the cons cells from which the list xs is built up: the cells can be
garbage coliected and, hence, reallocated. In particular, they can be used
to construct the lists us and vs. Thus, only a constant amount of space
is required during the evaluation of (partition x xs ys); that is, its

storage needs are independent of the length of xs.

27

Now, for any expression £ that evaluates to a list, let S[E] dencte the

space required for it to be so evaluated.

THEOREM For any list xs and expression rs that evaluates to a list

Slsort' rs xs] = Slral + O{snxs)
PROOF

Because partition runs in constant space., we have that

d some integer k a.t. for any list xs,

S[sort* rs (cons x xs)] < Slsort’ (cons x (sert' rs vs}) us] + k

Jor zome lists us, vs, with vus + fvs = fxs ... (1)

We shall prove, by induction on #xs, that for any list xs,

Slsort® rs xs} < Slrs] + k#xs

Base Case #xs = 0 = x5 = nil

Sisort’ rs nil] = Slrs] < S[rs) + k#nil

Inductive Case We can assume that

SIsart® rs ys] < Sfrs] + knys

for any list ys with #ys<sixs. Then

S[sort’ rs (cons x xs}i

Sfsort' {cons x (sort' rs vs)) us] + k. for some lists us, vs.
with Bus + #vs = txs. by (1)

Sfcens x (sart’ rs vs)] + kius + k by ind, hyp.

A

1A

28

Slsort' rs vs] + k(sus + 1)
Slrs] + k{sus + s8vs + 1} by ind. hyp.
S[rsl + k{cons x xs)

TRT

COROLLARY For any list xs

Slsort xs] = O{#xs)

Slsort® nil xs] + O{1)
Snill + O{#xs) by Theorem
O{#xs)

PRoOGE S[sort xs]

un

0

The remaining examples explore further the use of side-efects as a way
of combining computations. It is also shown that side-efects can be used
as an alternative to continuations. We shall return to quicksart in

Example 7.

EXAMPLE 5

The Fibenacei function can be defined as follows:-

fib : Int — Int

fib 0 =1
fFib 1 =1
Fib (n+2) = fib (n+l) + fib n

Treating the above as a program rather than simply as a specification, it
is obviously a very inefficient way to determine the n* Fibonacci number:

it gives rise to many repeated computations.

METHOD

There are many efficient algorithms for computing Fibonacci rumbers
[S.41], but the ores we shall consider simply ‘remember’ the wvalue of

fib (n~1) when evaluating fib n.

29

A linear time solutien can be achieved (using a recursive where construct)

by tupling, a= follows:-

fib : Int = Int
fib 0 =1
fib (n+1} = fst (fibs n}

fst @ (% x ex) — =
fst {x,y} = x

fibs : Int — (Int x Int)
fibs 0 (1. 0
fibs (n+l)} {x + y.x) where (x, y} = fibs n

non

Sao, fibs n= (fib (n+l}, fib n).

The above solution necessitates the construction and subsequent
destruction of tuples. We believe this to be a source of ineficiercy, and

consider the following solution (using side—effects)} to be an improvement,

SOLUTION 5

fib : Int — Int
fib 0 =1
hd

fib (n+l) = war x ; fib’> n x

fib* : Int — Int — Int

fib" 0 {var x} = assign x =1 ; 1

fib* (m+«l} (var x} = var y ; sssign x = fib" ny: x +y

Here, z = fib" n x & x = fibn a z = fib (n+!) . Note, however, this
program only makes progress under the assumption that + evaluates its
left argument before its right. or alternatively evaluates these two

arguments in parallel,

It is also possible to use continuations instead of tuples to obtain a

linear time Fibonacci function. In the following table we gwe such a

30

31

program; slongside appears a similar program that relies on side-efects.
The programs are free from deadlock, irrespective of the order in which

+ evaluates its arguments.

ALTERNATIVE _ SOLUTIONS

fib : Int = Int fib = Int — Int
fib 0 =1 fib @ =1
fib (n+l) = fib® n {Ax y. x) fib {(n+!} = var x. Y :
fib" n x 4y x
fib' : Int — fib™ : Int —
{Int = Int = Int) — Int Int = Int =+ Int — Int
fib* 0 d=011 Fib” 0 {var x} {(var y) t
=z assign x =1, y=1; t
Fib' (n+l1) & = fib* n fib" (n+1) (var x) {(var y) t
{(Ay z. 0 (y + 2) y) = var z ; assign x = y+z ;
fib" nyzt

The above solutions can be derived from the definitions

Fib* n 8 =8 {(Fib (n+l)) (Fib n)
Fib"™ n (var x) (var y)} t = assign x = fib {n+l), y="fibn ; t

Here the function # is a continuation; the integer t is a kind of

continuation that has been applied to its arguments.

EXAMPLE &

The task of an assembler is to translate an assembly language listing into
a form suitable for machine execution. A formal specification of a simple
assemmbler appears in [S0]. In a given line of assembly code a =symbolic
operand referring to some label can appear, but the lecation associated
with the label may not be determined until a line occurring further en in

the listing gets assembled.

METHOD

The standard method is to construct a symbol table relating labels to
locations in the store of the machine. We shall sketch a solution that

takes advantage of lazy evaluation and side-effects to build up the symbol
table ‘on-the-fly’.

Each line of assembly ccde will consist of hree felds:-

wype A = Label x (Opcode x Operand)

The Label field can be left ‘blank’, that is, we assume blank € Label.
Similarly, a line of machine code has three fields for numbers dencting the
location, machine instruction and operand.

type M = Int x Int x Int

A symbol table has type

tyve Table = List (Label x Int}

No details will be given of the functions for decoding symbelic instructions

into machine instructions and looking up operands in the symbol table.

decode : Opcode -+ Int
[ook_up: Table -+ Operand -+ Int

The assembler can be expressed as a function assemble that takes an
assembly language listing and produces a machine code listing. It calls
upon the auxiliary functiom ass=mble’ which has parameters n, the
number of the line being assembledl, convert, the function that converts
operands into i.r.‘ntegers, and rest, that part of the symbol table to be

built from the remainder of the assembly listing. assemble’ handles the

32

label feld of each line of assembly code, recording a new entry in the
table rest whenever a non-blark label field is encountered. The remaining

tasks of tha assembly process are passed on to the function assemble”.

SOLUTION 6§

assemble : List A — List M

assemble xs = var symtab; assemble’ xs | {look_up symtab)} symtab

assemble’: List A — Int — {Operand — Integer) — Table — ListM

assemble'nil n convert (var rest) = assign rest = nil ; nil
assemble’ (cons {label, line) xs) n convert (var rest)
= assemble”™ line n xs convert rest if label = blank
var raest’;
assign rest = cons (label. n} rest’:
assemble” line n xs convert rest' otherwise

assemble™: {Opcode x Operand) — Int — List A —
{Operand — Integer) — Table — List M

assemble” {(opcode, operand) n xs convert {(var rest}
= val (cons {n, decode cpcode, convert operand))
(va) (assemble’ xs) (n+l) convert rest}
Note 1. Intially assemble’ is called at lie | of the listimg with

rest = symtab, since the entire symbol table has to be constructed.

Note 2. assemble™ has been annotated with val to ensure that (i} all
the listing is parsed bejfore any look ups (by convert} are made in the
symbol table, and {il) the new line number is calculated as each line is

assembled.

33

EXAMPLE T

Consider once again the task of sorting a list by means of the quicksort
algorithm {Example 4). Note that =n imperative version of quicksart will
complete the partitioning of a list $efore sorting the sublists so
gererated, Because of lazy evaluation, in the functional programs
considered so far these sublists are generated incrementally: the sublists
are produced as sorting progresses. Such urwanted laziness can have a
detrimental effect on the space complexity of a program. Thus, although
we were successful in obtaining a linear space version of quicksort, it is
worthwhile trying to develop a solution that executes in a similar way to

an imperative pregram.

The following program seems an appropriate staring point:-

sort : List Int — List Int
sort = sort” nijl

sort’” : List Int — List [nt = List Int

sort’ rs nil =rs

sort’ rs (cons x xs) = sort’ (cons x (sort’ rs [y+xs|y2x]))
[yexs|ydx]

In this last equation, we should like [y+xs|y¢x] and [y+xsju2x] to be
fully evaluated to lists before sorting can begin. This tan be achieved by
defning a function partition that is supplied with an appropriate
continuation. We shall also demonstrate a related method inveolving

side—effects.

CONTINUATION METHOD

Partitioning an empty list results in twe empty sublists, te which the
continuation can be applied. For a nan-empty list, with first element =z
say, the tail of the list should be partitioned and z cons—ed on to the
appropriate sublist; after which the continuation can be applied.

4

SOLUTION

sart® : List [nt = List Int = List Int
sart’ rs nil =rs
sart’ rs {cons x xs) = partition x xs
{Aus vs. sort’ {cons x (sort' rs ws)) us)

partition : Int = List Int —
{List Int — List Int = List Int} = List Int
partition x nil 8 = # nil nil
partition x (cons z zs) #
= partition x zs (Jus vs. & us {cons z vs)) if x<=z
partition x zs (Mus vs. # {cons z us) vs) otherwise

SIDE-EFFECTS METROD

Let us, vs be the sublists resuiting from partitioning a list. If the list is
empty then partition must assign us = nil, vs = nil. If the list is
non—empty, with head =z, then 2 is.the first element of either us or vs.
Thus, in one case partition must assign us = cons z us’, where us’,

vs are the sublists resulting from partitioning the remainder of the list;

in the other case partition must assiagn vs = cons 2z vs', for sublists
us, vs'.
SOLUTION

sort” : List Int — List Int = List Int
sort” rs nil =rs
sort’ rs (cons x xs) = var us, vs ;
partition x xs us vs
(sort’ {cons x (sort®' rs vs)) us)

partition : Int = List Int —
List Int = List Int —= List Int — List Int
partition x nil (var us} (var vs) wWs

= assign us = nil, vs = nil ; ws
partition x (cons z zs) (var us) (var vs) us
= var vs' ; assign vs = cons z vs’'
partition x z5 us vs' ws if x<=z
var us' : @ssign us = cons z us'

partition x zs us’ vs Ws otherwise

35

The above solutions run in linear space. This can be showr by {rather

difficult) analysis, similar to that of Solution 4.

2.5 CONCLUSION

A rew extenston that combines features of furctional, logic and imperative
languages has been presented and used to sclve a variety of programming
problems. Program execution is solely by demand-driven graph reduction,
ard so it should be possible to extend graph reduction based
implementations of functional languages to support programs uwith
side-effects. A consequence of the decision not to use unification as the
evaluation mechanism is that some programs deadlock: the order in which
expressions are evaluated must be taken into account by the programmer
if programs are to be produced that never deadlock. However, deadlock

can sometimes be avoided by use of control annotations.

The extension enables some interesting programs to be developed that
would otherwise be unavailable to the functional progremmer. (It is hoped

that this has been well illustrated by the worked examples.} In particular:

(1} Side-effects allow computations to be combined together in a rew way
and it iz suggested that the stendard tupling alternative is often less
eficient. {Only constant factor improvements in space and time complexity
are expected in general; though in Example 3 an order of magnitude space

improvement was obtained.)

{2) Hughes suggested a synchronization function to reduce the space
requirements of certain programs. His funciion can be defined ir terms of
side-effects, or programs uwith side—effects can be used directly to give

space eficient sclutions.

37

(3) Examples have been given of programs with side—effects that are very
similar to purely furmctional programs invelving continuations. However, the
side—effects solutions are not higher—order, since functions do not have to

be passed as arguments in calls to other functions.

CHAPTER 3

TRANSFORMATION

3.1 INTRODUCTION

Chapter 2 has demonstrated the possibilities of (a} programming directly
in a language with side-effects, and (b) improving upon the performance of
existing purely functional programs by developing equivalent programs that
use side-effects. In this chapter we aim to give a more formal treatment

to the devetcpment process of {b}.

We shall adept the following as a werking hypothesis:- The pregrammer is
capable of writing clear (modular) functional programs. [t may often be
the case that such programs are less efficient, that is, run more slowly or

use more space, than is desired: so it is further assumed that the

programmer knows some standard transformation techniques. Our
objective is to provide additional methods that will allow use to be made

of side-effects.

The next sectlon serves te introduce an extension to the fold/unfold
method of Burstall and Darlington [7]. The transfermation system
includes new rules that cater for pregrams with sideefects. In the
remainder of the chapter a few 'simple transformation strategies are
described and are applied to various programs. Many of the examples
from Chapter Z are reworked as transformation problems. Strategies for
developing programs with side-effects are employed and can be seen as
alternatives to strategies that make use of tuples and continuations.

Adepting a transformational approach to the development of programs
with side-efects berefits us in two ways. Firstly, a synthesized program
is known to meet its specification. That is, it is equivalent to the original
purely functional program. Secondly, we are aware of those steps in the
transformation that can give rise to a program which deadlocks. It can
sometimes be revealed by local amslysis whether such steps are in fact
safe {have not introduced deadlock). If 2 step is unsafe, changing order
of evaluation by careful use of control annotations or attempting a
diferent transformation can often rectify the situation. When locat
analysis is unhelpful, a direct proof that a program is free from deadlock

may still be pessible.

Note that our metnods are formal, but not automatic. Machine assistance
may be helpful during program transformation [18], but there appears to
be only a remote possibility of being able to compie from ineficient

functional programs into eficient programs with side-effects.

39

3.2 TRANSFORMATION RULES

This section assumes some familiarity with the Burstall-Darlington
approach to program transformation. Two limitations of their system are
that (i) transformation retains correctness, but termination may be lost
urless some extra restriction is imposed, and (ii} no general condiions
are given under which transformations are known to improve the efficiency
of programs. The system has been extended with two new transformation
rules, iniroducing assigned variables and the move—in trangformotim, so
that programs with side-efects can be developed. The move-in
transformation is not always safe, in that it may introduce deadiock.
Therefore, conditions under which the rule can be used safely are also

provided.

Mthough the Burstall-Darlington approach is concerned with the
redefinition of functions, it can be looked upon as establishing the equality
of certain expressions. We take a 'disjoint and exhaustive subset' [7] of
these equations as the new program. When viewed in this way, the fold,
unfold and abstraction rules amount to nothing more than substituting
equals for equals. As is demonstrated by the following (trivial) example,

care has to be taken te ensure that the new program still termnates:—

From the program

f: Int = Int

fn=1

we can obtain

fn=20 by definition
= f n by folding

However, the program

f: Jat — Int
fn=fn
is not equivalent to the original definition of f, because evaluation of

(f E}, for some expression E, fails to terminate instead of returning 0.

The programmer can check for termination either by reasoning (usually in
some informal. operational way} about the new program. or by using the

technique given in [33,47] .

Mcre subtle termination problems can arise from transforming a non-strict
function into a strict one. For example, we might give an inductive
definition to f above. That is,

£ : Int = Int

F D =0

F (n+l) =0

can be treated for most purposes as equivalent to the original definition
of f. However, for an undefred argument, f iz now itself undefined,
whereas previously it returned 0. Bird had to guard against this in
devising ‘circular programs’ [4]. He hkas shown that the partiai
approximations to a program, as defined by fixed point theory, can be

used to establish that a program is well-behaved.

Turning now to programs with side—effects, the Burstall-Darlington
transformation rules can be used as before. However, (i) unfolding, and
(ii) using properties of operators, are best applied to expressions

without side—effects. For otheruwise:-

(i) To see the problem with unfolding, consider the definition

double : Int — Int
double n=n +n

Now compare the evaluation of (double {assign x = 3 ; 2}} with that
of {{assian x = 3 : 2} + (assign x = 3 : 2}). The former returns
the value 4 and has the side—effect of binding 3 to x. The latter gives an
errar from attempting to assign to x twice, even though it can be
derived from the expression (double {assign x = 3 ; 2)) by unfolding
according to the definition of double.

11

(ii) The commutative property of addition 15 an example of a mathematical
law that no longer holds when dealing with expressions invelving
side-effects: see Chapter 2, Section 2.3, Note (4). In this case the
problem is one of introducing deadlock by alter:ng the order in which

expressions are evaluated.

In Note (3} of Section 2.3, we saw that the recursive where construct

can be re-expressed in terms of var and assign as follows:-
(E where z = E*) = (var z ; assignz = E' ; E}
Hence, it is possible to devise a rule, equivalent to where-abstraction,

for a language with side-effects:

DEFINITION By introdustng an assigned varialle, we can transform an
expression E into (var z ;: assign z = E' ;. E} , for seme varizble =

and expression E°, provided E Is not already in the scope of =z

For example, we can perform the following transformation.

foo {baz x) = var y . assign y = baz x ; foo {(baz x)
introducing an assigned variable
= var y : assign §y = baz x : foo y
referential transparency

This is equivalent to the transformation

foo (baz x) = Foo y where y = baz x
abstraction

Note that we have to be slightly careful in using referential tramsparency:
within an expression (assign 2z = E' ;. E), we cannot replace

occurrences of z by E' unless evaluation of E' is free from sideeffects.

Finally, we provide a transformation rule that can be used to take

advantage of the erder in which expressions are evaluated:-

DERINITION The move-in transformation takes the form

{assign z = E ; E’) = E”

where E” is E’ with some subexpression E' replaced by
(osgign z = E ; E")

There are some problems in transforming an expression E,; into an

expression E, by this rule:-

Evaluation of E, might suspend rather than give the same value as E, .
For example, (assign x = nat : x true) evaluates to false, whereas

evaluation of {x {assign x = not ; true)) suspends.

Although E, and E, may have the same value, their evaluations may
differ in effect. For example, {assign x = 3 : K | 2} returns the value
1 and binds x to 3, whereas (K 1 {assign x = 3 ; 2)) returns 1, but

fails to assign to x.

However, a condition sufficient to ensure the safety of the move-in
transformation

{assign z = E ; E') = E

is that: evaluation of E" has the side—effect of binding = to E. If this
condition is not satisfed and E™ is strict in 2, then the move-in

introduces deadlock.

Consider the three general cases:

(agsign z=E ; (E, E,)) = ((assian z = E ; E,) E,) {1}
(assign z = E ; (E, E;})) = {E, (assign = = E . E,}} {2)

(assign z=E . y = E, ; E,) =
(assign y = {(assian z = E : E,) : E,)) (3)

43

Case (1) is always safe because of normal order reduction; for case (2),

we have to look at E, ; for case (3). B, has to be analysed. Thus:

{2) is safe if evaluation of E, does not need the value z, and E, reduces
to a strict function, for example, E, = not. It introduces deadlock if
evaluation of B, does demand the value of z, for example, E, = z. If E,
reduces to @ non-strict function then we camnot rely on the safety of the
transformation; though it might still be possible to prove that we have
developed a program that is free from deadlock.

Similarly, {3) is safe if evaluation of E, reeds the value of y but not z,
or Is guaranteed to evaluate y even if evaluation of 2z suspends. It
introduces deadiock if it reeds only the value of z, or dees not evaliate
y until the value of z has been determined. Thus, if add evaluates its
arguments from left to right, (3) is safe for E, = (add y =z}, but
deadlecks for B, = (add z y). Pgain, mere information is required to

determine its safety in other situations.

The reasoning suggested in the last two paragraphs is rather operational
in mature and requires an appreciation of order of evaluation. It is
suggested that the axiomatic semantics described in Chepter 5 provides
some help in this: see Section 5.3 in particular. A few examples of safe
move-in transformatiors are also considered in Chapter 4, and shoun to

preserve equivalence.

It is worth mentioning that the properties of val and par ensure that

the following move-in transformations are safe.

{assign z = E ; (val E, E}}) = (val E, (assign z = E ; E,})
{assign z = £ ; (par E, E,}) = (par E, {(assign z = E ; E,))
{assian # = E . (par E, E,)) = (par {assign z = E ; E\) E)

14

3.3 SIDE-EFFECTS AS AN ALTERNATIVE TO TUPLING

In this section we shall demonstrate a rew program transformation
strategy made possible by side—effects. It is very similar to the tupling
strategy [40,41] and is almost as easy to use: we just have to watch out
for deadlock when performing a move-in transformation, The idea is to
achieve a gain in effciency ‘by introducing a new recursive definition which

intertwines what were originally separate computations’ [7].

Suppose we wish to combine the computation of {f z)} and {g z). When
using the tupling strategy, the eureka step is to define a new function
hz =(fz. gz

We then try to synthesize a more efficient version of h Note that it
would make no difference if we defned A z = (¢ =, f z) . However, with
side-effects we can try to combine the expressions in twe distinct ways.
The way that is chosen should take advantage of the order in which the
expressions are to be evaluated. That is,

hz{vary) =assigny=gz; fz

is suitable if the value of (f =z} is required before that of (g z),
whereas

hz (vary) =assigny=fz; gz

is appropriate when the value of (¢ z) gets demanded first.

To see uwhat happens in practice, we shall solve various problems by
these strategies. We start with a simple example, the Fibomacei function

(Example S of Chapter 2).

Given the definition
fib : Int = Int

fib 0 =1
fib 1 =1
fib (n+2) = fib (n+1} + Fib n

we might decide to combine computation of (fib (n+l}) and {fib n}.

15

40

TUPLING STRATEGY

Defire a new function fibs such that

fibs : Int — {Int x [nt)
fibs n= (Fib (n+l). fib n}

It is then possible to redefine fib in terms of fibs, as follows.

Fib {n+l} fst (fib {n+l). fib n) by definstion of Fst
fst (fibs n) folding with definition of fibs

It remains to synthesize a more eficient version of fibs. This can be
achieved by giving an inductive definition to fibs.

Fibs 0 {fib 1, fib 0) instantialing n to 0 tn definition of fibs

{1,1) un folding with definition of fib

fFibs {n+l) = (fib (n+2), Fib {(n+l})
tnstantiating n o {n+]) in definition of Fibs
{fib {n+l} + Fib n, fib (n+l})
unfolding with definition of fib
{x + y., x) where (x,y) = {(fib {(n+l}), fib n)
abstraction
{x +y.x) where (x.y) = fibs n
Jolding with definition of fibs

The transformation has produced a solution that computes fib in lingar
time, namely

Fib = Imt —= [nt
Fib 0 1
Fit {n+l1) Fst {Fibs n}

fFibs : Int -+ (Int x Int)
fibs O (1.1)
fibs (n+1) { + y. x} where {x,y) = fibs n

47

SIDE-EFFECTS STRATEGY

Consider the function

Fib* : Int = Int - Int
Fib* n (var x} = asgign x = Fib n ; Fib (n+l)

Now,

1}
<
o
ul

fib {n+l) = var x : assign x = Fib n; fib (n+l}
introducing an assigned variable
= var x : [ib' n x folding with definition of fib’

Consider, once again, the cases n=0, n>0.

Fib’ 0 (var x) = assign x = fib 0 ; fib 1
=assign x=1: 1

fib* (n+l) {var x) = assign x = fib {n+1) ; fib {n+2)
= assign x = Fib {n+l}) ; Fib {n+l} + fib n
unfolding with definition of fib
assign x = fib {n*1) ; x + fib n
referential transparency
=var y; assigny = fibn ,
x = Fib {n+1} : x + fibn
introducing an assigned vartable
= var y ; assigny = fibn ,
x = Fib (n+l)} ; x + y
referential transparency

1}
<

ar :

assign x = {assign y = fib n ; Fib {(n+l)) :
+y move-in tranaformation

= var y ; assign x = fib> ny; x +y

folding with definition of Fib’

Note that the move-in transformation used above is safe urder the

c

assumption that evaluation of (E, + E,) demands the value of E,. even

though evaluation of E, might suspend.

Thus, the solution based on the side-efects strategy is

Fib : Int = Int
fib 0 =1
Fib (n+l}) = var x : fib" n x

Fib' : Int — Int = Int
fib® D {var x} = asgign x = 1 ; 1
Fib" (n+l} (var x} = var y ; assign x = fib' ny ; x +y

We shall now tackle Example 1 of Chapter 2 by transformational
programming. The devetopment of 2 solution based on tupling is described
in [4]). Here only the side—effects strategy will be demonstrated. It will
prove necessary to make use of eontrol annotations if deadlock is to be

avoided. Se, consider the following specification of the problem.

transform : Tree — Tree
transform t = replace t {tmin t}

replace : Tree — Int — Tree
replace {tip n} m tipm
replace {fork L R} m = fork {replace L m) (replace R m)

tmin : Tree — Int
tmin (tip n) =n
tmin (Fork L R) = (tmin L) MIN (tmin R}

TRANSFORMATION

First we introduce a function replsce' defined by

replace’ : Tree = Int = Int = Tree
replace’ t m (var v) = assign v = tmin t ; replace t m

This allows us te synthesize a new definition of transform -

transform t = replace t (tmin t)
= var m ; assign m = tmin t ;: replace t (tmin t)
introducing an assigned variable
var m ; assign m = tmin t ; replace t m
referenttal transparency
= var m ; rteplace’ t mm
folding with definiiion of replace’

1]
<
o
-

Redefining replace’ by cases, gives us

replace’ (tip n}) m {var v} = assign v = tmin (Lip n) ;
replace (tipn) m
instanttating tip n for t
assign v =n; tipm
un folding with definitions
of tmin and replace

48

replace’ {fork L R} m {var v}
assign v = tmin (fork L R} ; replace (fork LR) m
inatantiating fork L R for t
= assign v = (tmin L) MIN {tmin R} :
fork {replace L m} (replace R m}
unfolding with definitions of tmin and replace
vary, z; assign v=y MINz, y=tminlL , z=tmin R ;
fork {replace L m)} (replace R m}
introducing assigned vartables

At this stage of the derivation we should like to employ the move-in
transformation to give us

var y, z ; assign v =y MIN z ;
fork {assign y = tmin L ; replace L m)
(assign z = tmin R ; replace R m}

However, we cannot show that this is a safe step to take. Indeed, it was
shown in Chepter 2, that in certain circumstances the preogram so

produced will deadiock.

Instead, we return to the original specification and convince ourselves
that it is acceptable to amnotate replace as follows:-

replace {fork L R) m = par {par fork {(replace L m)) (replace R m)
That is, we use an ‘eager’ rather than ‘lazy’ version of fork. This will

allow us to move-tn the assignments safely.

The previous derivation only has to be changed slightly, and we arrive at
the stage

replace’ (fork L R} m {var v)
=wvar y, z; assign v=yMNz, 6 y=tminlL , z=tmin R ;

par (par fork {(replace L m}) {replace R m)
=wvar y, 2z ; agssign v =y MIN z ;

par {par fork (assign y = tmin L ; replace L m}}

{assign z = tmin R ; replace R m)
move—in trans formation
= var 4y, z : assign v = y MIN z ;
ar {par fork {replace’ L m y}) (reptace’ R m 2}
folding with definition of replace’

o

49

50

SOLUTION

transform : Tree — Tree
transform t = var m ; replace’ t mm

replace’ : Tree =+ Int — Int = Tree
replace” {tip n) m {var v} = assign v =n; tipm

replace’ (fork L R} m {var v} = var y, 2 ; assign v =y MIN 2 ;
par {(par fork {(replace’ L m y})
{replace’ R m z)

As an altermative, we might have chosen to annotate replace with val.
Then the move-in

vary , z; assignv=yMINz, y=tminlL , z=tminR ;
val (val fork (replace L m)) {replace R m}

y, z; assign v=yMINz, y=tminl;

val (va] fork {replace L m)} (assign z = tmm R ; replace R m}

i
<
IJJ
=

is clearly safe. However, the further move-in
var y , 2 ; assign v =y MIN z ;

val {val fork (assign y = tmin L : replace L m})
{(assign z = tmin R ; replace R m)

relies on evaluation of (asslgn z = tmin R ; replace R m} not requiring
the value of y. Now, R is a given tree, but m is dependent on yu.

Forturately, evaluation of (replace R m) does return an answer without

demanding the value of m. This can be shown by structural induction on R:

]
bl
2
¥

{i) replace {(tip nY m = tip m

and m is not evaluated because tip is lazy {non-strict).

(i1) Suppose evaluation of {replace L* m} and {(replace R* m} do not
evaluate m. Then nor dees evaluation of (replace (fork L R’}), since

replace (fork L” R') = val {val fork (replace L' m))
{(replace R' m}

Thus, uwsing val instead of par in the above solution also yields a

program that is free from deadlock.

B rather different solution involving side—effects can be developed. Instead
of {tmin t) being determined as a side—efect of the ewvaluation of
(replace t m), the replacement tree is determined as a side-effect of
the evaluation of the minimum tip wvalue. This time the original
specification should be annotated so that

transform t = val (replace t) {tmin t}

Our solution will make use of the primitive seq, where (seq E, E,)

evaluates B, and, if and when this returns a value, evaluates to E,.

TRANSFORMATION

Define tmin' by

tmin' : Tree — Tree — Int — Int
tmin® t (var s) m = assign s = replace t m ; tmin t

Synthesize a new definition of transform.

transfaorm t = val (replace t} {tmin t)
= var m ; assignm = tmin t ; val (replace t)} m
introducing an assigned variable

var m ; assign m = tmin t : seq m (replace t m}

tdentily
= wvar m, s : assign s = replace t m, m = tmin t ;
seq m s
introducing an oaasigned variable
= var m s :
assign m = (assign s = replace t m ; tmin bt} ;
seq m s

move-in transformation
= var m. s ; assignm=tmin' t sm; seqms

The identity {(val E z) = {(seq z {E z)) should be evident because
evaluation of both expressions involves frst the evaluation of z and then

the evaluation of (E z).

51

an
[

Synthesize a new definition of tmin’.

tmin' (tip n} (var s} m
assign s = replace (tip n) m ; tmin (tip n}
assign s = tip m ; n

tmin® {fork L R} (var s) m
assign s = replace (fork L R} m ; tmin {(fo-k L R)
assign s = fork (replace L m) (replace R m} ;
{tmin L) MIN {(tmin R)
var L', R";
assign s = fork L' R, L' = replace L m, R" = replace R m .
{tmin L} MIN {tmin R}
tntroducing aasigned variables

= var L', R'; assign s = fork L' R';

(assign L* = replace L m ; tmin L)

MIN

(zssign R* = replace R m ; tmin R)

move-in tranaformation

= var L', R'; assign s = fork L' R';

(tmin* L L* m) MIN (tmin® R R m)

i N

The move-in performed above is safe because MIN is strict in both

arguments and (tmin L)}, (tmin R), are independent of L*, R.

SOLYTION

transferm : Tree — Tree
transform t = var m, s ; assignm = tmin’ t s m; seqm s

tmin’® : Tree — Tree — Int — Int

tmin® {tip n} (var s) m = assign s = tip m; n

tmin® (fork L R}{var s} m = var L*. R'; assign s = fork L” R";
(tmin® L L" m) MIN {(tmin® R R =)

The synthesis of solutions to Example 2 of Chapter Z is similar to that
given above: the details are omitted here. The final problem to be tackled

in this section is quicksort (Example 4).

sort : List Int — List Int
sort nil = nil
sort (cons x xs) = sort [ytxs|ydix] ++ cons x (sort [y+xs|y>x])

TRANSFORMATION

Define

partition : Int ~— List Int — List Int -+ List Int
partition x xs {var ys) = assign ys = [y+xsiy>x] ; [y+xsiydx]

Redefine sort in terms of partition.

sort ‘(cons x xs) = sort [ytxs|yix] ++ cons x (sort [yexs|y>x])
= var ys ; assign ys = [yexsly2x] ;
sort [ytxs|yix] ++ cons x (sart ys}
introducing an assigned varigble
= var ys :
sort {assign ys = [yexs|y>x] : [yt=s|ydx])
++ cons x {sort ys)
move-in tranasformation
= ¥ar 4s
sart (partition x xs ys) ++ cons x (sort ys)
Solding with definition of partition

The move-in above is safe because sort is strict and ++ foerces

evaluation of its first argqument.
Synthesize a new definition of partition.

partition x nil {var ys) = assign ys = [uenilly>x] ; [Yenil|ydx]
= assign ys = nil ; nil

partition x {cons z zs} (var ys)
= assign ys = [yt({cons z zs}|y>x) : [ut(cons z 25)|uwx]

CASE x<2z
partition x {(cons z zs) {var ys)

= assign ys = cons z [y+tzs|y>x] ; [ytzs|ydx]

= var ys' ; @ssign ys = cons z ys', ys' = [yezsly2x] :
[y+zslydx]

= var ys' ; assign ys = cons z ys' ; partition x zs ys’

53

£o et Unieresity

D e 1+

i~ Croun-Library 54

..dorg Gr i
i T ';_njn‘ et A
CASE x>2 Cxford {0+

partition x {(cons z zs) (var ys)
= assign ys = [y«zs|y>x] ;: cans z [y+zs|yix]}
= cons 2z {assign ys = [y+zs|y2x] ; [u+zs|ydx]}
rnove—in {ransformation
cons z {(partitior x zs ys)

It is not pessible to determine by lecal analysis whether the move-in is
safe or introduces deadlock. This could be remedied by employing a cons
that evaluated its tail eagerly. Instead, the solution is presented

accompanied by a proef that it is free from deadlock.
p yap

SOLUTIOQN

sort : List Int — List Int
sort nil = nil
sort (cons x xs) = var ys ;
sort (partition x xs ys) ++ cons x (sort ys)

partition : Int — List |nt — List Int — List Int
partition x nil {var ys} = assign ys = ni! ; nil
partition x {cons z 2zs) (var ys)
= var ys’
assign ys = cons z ys' :
partition x zs us’ if x<z
cons z (partition x 2s ys) atherwise

The main proaf will require the following Lemma.

LEMMA Given x, an integer, xs, a list of integers, and us, an
uninstantiated variable. Then, (partition x xs ys} evaluates (lazily} to
a list without deadlecking. Further, if it has been evaluated to a list,

then ys must have been instantiated to a list.

PROOF By structural induction on xs.

CASE x5 = nil

Trivial, since (partition x nil ys) = {assign ys = ril : nil).

CASE X5 = cons z ZS
a) x<z

{partition x (cons z zs} ys)
= {var ys' ; assign ys = cons z ys' ; partition x 25 ys')

But (partition x zs ys') evaluates to a list, ps say, with ys’' being

instantiated to a list, qs say, by inductive hypothesis.

Therefore, (partition x xs ys) evaluates to the list ps, with ys

instantiated to the list (cons 2z gs).

b) x>z
(partition x (cons 2 2s) ys) = {cons z (partition x 25 ys})

and, again the inductive hypothesis gives us that, (partition x xs ys)
evaluates to a list without deadlocking, and with ys instantiated to a
list. 0

We can now prove freedom from deadlock for quicksort itself.

THEOREM Given xs, a list of integers. Then, (sort xs} evaluates {lazily)

to a list without deadlocking.

ProoF By induction on #xs.

BASE CASE taxs = 0, ie. xs = nil. Trivial, since {sort nil) = nil.

INDUCTIVE Cast Suppose true for axs < n.

Consider (sort (cons x xs})}

= (var ys: sort (partition x x5 ys) ++ cons x {sort us))

By Lemma, (partition x xs ys) evaluates (lazily) te a list, ps say,
without deadlocking, and, by inductive hypothesis, (sort ps) evaluates to

a list mithout deadlocking, since #ps < oixs = n. . {1

Now. in evaluating (E ++ E'), E is demanded first. So,

{sort {(partition x x5 ys)) does indeed get evaluated.

Of course, we know that even just to determine the first element {(or,
more precisely, the first cons cell) of the sorted list, the entire list of
integers being sorted must be examined. Thus, (partition x xs ys) must

get fully evaluated to a list.

Then, by the Lemma, ys is always instantiated to a list, prier to any

evaluation of {sort ys).

But Rys < #xs = n, so by inductive hypothesis {sort ys) evaluates to a

list without deadlocking. cer (2}

From (1) and {2}, we have that (sert xs} evaluates (lazily) to a list

without deadlocking.

3.4 SIDE-EFFECTS AS AN ALTERNATIVE TO CONTINUATIONS

In transformational programming many improvements made passible by
tupling can also be achieved by using continuations. In general, the eureka
step is to take some function f, and defne a new function f' of the form
f"zé=101(f2z)

where # s a continuation. Just as there is a strategy involving
side—effects that seems closely related to tupling, so there is a second
strategy that resembles the use of continuations. In this approach. the
furction f* is defined by

J' z(vary) t=assiany=fz.t

Here, ¢t acts as a continuation that has already been applied to its
argument. The use of these strategies will be demonstrated on a couple
of examples in the remainder of this section. Note that solutions involving

side—effects will be developed without using the move-in transformation.
Consider ance more the Fibonace! function.

CONTINUATION _ STRATEGY

Define

fib* : Int = (Int = Int — Int) — Int
Fib’ n @ =# (fib {n+1)}) (Fib n}

so that fib can be redefined by

Fib {(n+l} = (Ax y. x} (Fib {n+1)) (Fib n)
= fib" n (A% y. x)
Solding unth definition of fib®

Giving an inductive definition to Fib’:-

Fib> 0 8 =4 (Fib 1} (fib 0)
#11

un folding with definition of fib

LI 1}

57

fFib' (m+l) & =8 (fit (m+2}) (fib (n+l))
¢ (fib (n+l) + fib n){fib (n+i{})
unfolding with definition of fib
(dy z. 8 (y+zy y) (fib {n+1}) (fib n)
Fib' n (dy 2. & {y+z) y}
folding with definition of Fib’

"o

SOLUTION

fib : Int = Int
fib 0 =1
fib (n+!} = fib' n (Ax y. x)

fib' : Int = {(Int = Int 4+ Int} — [nt
fib' 0 8=0611
Fib' {n+l) 8 = fib' n (Ay z. # {y+z) y}

SIDE-EFFECTS STRATEGY

Define

fib* : Int — Int —+ Int — Int = Int

fib* n (var x} {(var y) t = assign x = fib {n+l), y="Fibn ; t

Now,

fib (n+l) = var x, y ; assign x = fib {n+l). y= Fibn; x
introducing assigned variables

= var x, y; fib' nxyx
folding with definition of fib’

Synthesize a new definition of fib’.

fiv' 0 (var x) (var y) t = assign x
= assign x

fib l. y=T"ib 0 ; t
1, y=1 t

Fib® (n+l} (var x} {var y} t
assign x = fib (n+2), y = fib {(n+l) ; t
assign x = fib (n+l) + fib n, y = fib {n+l) ; t
var r : assign x =y + 2, y=fib {n+l), z=fibn; t
tntroducing an assigned variable
var z ; assign x =y + z: fib"' nyzt
folding with definition of fib’

wonn

(&

Px

SoLuTION

Fib : Int = [nt
fib 0 =1
Fib (m+l) = var x, y; Fib* n x y x

fFib*' « Int = Int - Int — Int = Int

Fib' 0 {var x) (var y) t = assignx =1, y=1:t

Fib* (n+l} (var x) (var y) t = var z ; @ssign x =y + z ;
Fib* ny z t

As a second example, consider Example 7 of Chapter 2.

sart : List Int — List Int
sort = sort® nil

sart’ : List Int — List Int — List Int

sort’ rs nil =rs

sork’ rs {cons x xs} = sort' (cons x {(sort’ rs [y+xslu=x]))
[y+xs|udx]

CONTINUATION STRATEGY

Defire

partition : [nt — List Int —
(List Int = List Int — List Int) — List Int
partition x xs # = # [y+xs|yix] [u+xs|y>x]

sa that

sart' rs (cons x xs) = sort’” {cons x (sort’ rs [u+xs|y>x]})
[urxs|udx]
by definition
= {Aus vs. sort' (cons x (sort' rs vs)) us)
[urxslydx] [y+xs|u>x]
= partition x xs
(lus vs. sort' (cons x (sert' rs vs})) us)
by folding

It is straightforward to synthesize an efficient version of partition.

Thus:

partition x nil 8 = & [y+nil|y<x] [y+nilly2x]
instantiating xs to nijl
§ nil nil

59

partition x {cons z zs) §
= & [yrzsty<x]) (cons z [urzs|y2x]} if x<z
¢ (comns z [y+2s|yix]} [utzsly2x] otherwise
tnatanitaing xs lo {cons z zs) and simplifying
{Aus vs, & us (cons z vs)) [y+zsiyx] [yezs|uxx] if x<z

{Mus vs. & (cons 2 us) vs) [u+zs)yix] [y+zs|u>x] atheruise

= partition x zs (Mus vs. # us [cons z vs)} if x<z
partition x zs (dus vs. # {cons z us) vs) ptheruise
Jolding with deftnition of partition

OL! N

sort’ : List Inmt — List Int —+ List Int
sort' rs nil =rs
sort’ rs (cons x xs)} = partition x xs
{dus vs. sart' {cons x (sort' rs vs}} us)

partition : Int — List Int —
(List Int —+ List Int — List Int) — List Int
partition x nil # = # nil nil
partition x {cons z 25) @
= parkition x zs (Aus vs., & us (cons z vs}) if x<z
partition x zs (Mus vs. ¢ {cons z us) vs) ctherwise

SIDE-EFFECTS STRATEGY

The eureka step is as follows:-

partition : Int — List Int —
List Int —+ List Int —+ List Int — List Int
partition x xs {var us) (var vs) us
= assign us = [y+xs|y(x]. vs = [y+xs|y>x} ; us

Thus, sort' can be redefned by

sort’ rs {cons x xs} = sort® (cons x {sart’ rs [y+xsly>x]l)})
[ytxs [y<x]
= var us, vs ;
assign us = [y+xs|yix], vs = [y+xs|yzx] ;
sort' (cons x (sort' rs vs)) us
inlroducing azsigned varialdes
¥ar us, vs ;
partition x xs us vs
{sort” (cons x (sort’ rs vs}) us)
folding with definition of partition

6()

6l

Specializing the definition of partition to the various cases, gives:-

CASE x5 = nil

partition x nil (var us) {(var vs) ws
= assign us = [genil|ydx], vs = [u+nil|y2x] ; ws
= assign us = nil, vs = nil ; ws

CASE xs = cons z 2zs with x<z

partition x {cons z zs) (var us) (var vs) ws

= assign us = [y+zs|yix]. vs = cons z [y+zs|y>x] : ws
= var ¥s5' ; assiqgn vs = cons z v5', us = [y+zs|y<dx],
vs' = {y+zs|yzx] : ws

introductng en masigned variable
= var vs" ; assign vs = cons z vs' ;
partition x zs us vs' ws
Jfolding with definttion of partiltion

CASE xs = cons z zs with x>z

partition x {cons z zs) {var us) (~var vs) us
= as5ign us = cons z [y+zs|yix], vs = [y+zs|y=2x] ; ws
= var us’ ; assign us = cons z us', us’ = [y+2zs|ydx],
vs = [y+rzsiy>x] ; ws
introducing an assigned variahe
= var us' ; assign us = cons 2 us'
partition x zs5 us' vs ws
folding with defimition of partition

H

SOLUTION

sort’ : List Int — List Int — List Int
sort’ rs nil =rs
sort’ rs (cons x xs) = var us, vs ;
partition x xs us vs
(sart' {cons x (sort’ rs vs)) us})

partition : Int = List Int —
List Int = List Int — List Int — List Int
partition x nil (var us) {var vs) us
= assign us = nil, vs = nil ; ws
partition x {cons z zs) {var us} {var vs) ws

= war wg§" ; 3gsign vs = cons z vs'

partition x zs us vs’' ws il x<z
var us' ; assign us = cons z us'

partition x zs us’ vs ws otherwise

3.5 CONCLUSION

In this chapter we have demonstrated that transformational pregrammng
can be used in the development of programs with side—eflects from purely
functional programs. We have identified two rew transformation rules,
introducing assigned variables and the move-in transformation, which are
unique to programming with sidereffects. Furthermore, strategies for
developing programs with side-effects have been presented and have been
compared with well-known strategies involving tuples and continuations on

a small selection of problems.

By adopting this formal methedology it has proven possible to isolate
those steps in the development process at which there is a danger that
deadlock might be introduced. This simplifies the task of ensuring that
programs are free from deadlock. Control annctations (especially par
[29.30]) cean sometimes be useful in developing deadlock—ree programs.
An attempt has been made to ocutline the sort of reasoning that is
required for that purpose and mention has been made of various problems
that might arise. To summarise: deadlock-free programs with side-efects
can be developed by a transformational programmer who has a good

urderstanding of order of evaluation,

o2

CHAPTER 4

DENOTATIONAL SEMANTICS

4.1 INTRODUCTION

This chapter provides a formal semantic description of a functional
programming language with side—effects. The description takes the form of
a denctationnal semantica for the language. That is, [51)

‘We give ‘“semantic valuation functions”, which map
syntactic constructs in the program to the
abstract values (numbers, truth values, functions etc.)
which they dencte. These valuation functions are usually
recursively defined: the value deroted by a construct 15
specified in terms of the values denoted by its syntactic
subcomponents ...’

A valuation ¥ is defined which gives a meaning to any well-formed
exprassion. ¥ can be thought of as an abstract model for a greph
reducties machine. It gives call-by-need semantics [B0] ‘to function
application and provides for lazy constructers [19]. A straightferward
meaning is given to the var and assign constructs in functional programs

with side-efects.

The chepter is organized as follows. 1t begins with an irformal
description of the process of graph reduction. This has been provided sc
that additienal insight may be gained into the semantic equations of
Section 4.3. In that section the syntax and semantics of the programming
language are given. Simple proofs of the equivalence of some expressions

are also demonstrated.

4.2 GRAPH REDUCTION

Graph reduction, as a method by which functional programming languages
can be implemented, was invanted by Wacdsworth [60] and popularised by
Turner [54]. In this section we shall give a brief description of the
process; further explanation, as well as details of coptimisations, can be

found in [27,31,43,52, 55].

The key idea is that expressions are represented in graphical form.
Reduction rules can then be performed on these ezpression-graphs in such
a way that explicit copying of subexpressions can be awvoided. For

example, in the sequence of reductions

(Ax. add x x) {sub 3 2} — add (sub 3 2) (sub 3 2)
—+ add 1 1
- 2

the expression {sub 3 2} is not copied. Instead, an instance of the body

of the Aexpression is created, with peinters to (sub 3 2) substituted

G4

for the two occurrences of x. When add evaluates one of its arguments
the expression (sub 3 2Z) is over-wriften by its value |. Hence, the
reduction does not have to be repeated for ths second argument. This is

the ‘simultanecus contraction of redexes .noted in [60]. Thus:
(2dd) — - @
<y @
E> @

Evaluation of an expression involvas the repeated application of reduction
rules until it has been transformed into hcad normal form' (somstimes
called canonical form or lazy normal form): that 15 to say a
A-expression, a partially applied function or a data structure, such as a
number or (cans E, E,). Thus, the expressions {Ax. add 3 5), (add 2},
true and (cons {add 3 5) 2) are all in head normal form; whereas,
{add 3 5) itself is not.

Graph reduction machines employ a normal order reduction strategy That
is, (E, E,) is evaluated by frst evaluating E, and then applying the
resulting function to E,. By the Church-Rosser Theorem this ensures that

a head normal form can ba found whenever ore exists.

A rather subtle point is that. although normal order graph reduction
implements lazy evaluation, it does not achieve full laziness [2B,23).
This simply means that a subexpression in the body E of a A-expression
(Az.E) may be re-evaluated eac}; time the A-expression is applied, even
If it contalns no occurrences of z. Thus, {(add 3 5) is re-evaluated
whenever {Ax. add 3 5) is applied to some argument. It is therefore
prudent to transform or compile {Ax. add 3 35} into an equivalent
expression such as ({Ay x. y} {add 3 5}), before performing graph

‘[N P Barerciregt. The lambia eoleulus: ste symioz and semanties. North-Holiund 1984)
ume the Lerm Arad morma! form to mean something slightly differant.

reduction. Because a pointer to (add 3 5) is substituted for y. the
expression ({Ay =x. y} {2dd 3 5)) reduces to (Ax. 8) on being applied
to an expression.

Sa far we have seen that graphical-expressions facilitate the sharing of
subexpressions. A new possibility is also opened up, that of building
cireular structures. Turner [54] recognized that an eficient circular

version of the Paradoxical Combinator Y can be given: the rula

YS— SN
ia replaced by

v s =%

Circular structures also allow for a convenient representation of certain

in finite data structures. For example,

f’

represents an Infinite list of ones. R further point is that some “silly
recursions' can be detected. For instance,

x : Int
x = add | x

can be represented by the graph

x

The node x can be marked as not ready while the value of x is being
determined. Thus, when add demands the value of its secord argument, the
Infinite loop can be detected.

Finally, we note that graph reduction machines are usually driven by a
printing routine; which for example, when reducing an expression to a list,

will force evaluation of all members of the list.

The above properties of the graph reduction method of computation are

reflected by the semantic equations of the next section.

4.3 DENOTATIONAL SEMANTICS

In this section, we first give the syntax of the programming language.
This is followed by the semantic domains and equations. Finally,
explanation of the equations is provided and the semantics is employed to

prove the equivalence of some expréssions.

SYNTACTIC CATEGORIES

z € Ide identifiers {variables)

p € Prim primitives

E € Exp expressions

SYNTAX

E::=z | p| EE| A.E | varz: E) assiatnz=F ; E

We will assume that cons € Prim is the only comstructor of positive
arity. Though, further constructors could be accommodated by making
suitable extensions to the semantic domains. (R deficiency of the lanquage
is that it does not support the direct definition of functions by
pattern-matching. However, a method for transforming pattern-matching

into simpler constructs can be found in [1].)

67

68

SEMANTIC DOMAINS

Bv = Bool + Num + {ni} basic values
A € Ans = Bv + {Ans x Ans) + {suspend , error } answers
a € Lo locations
g € Env = Ide — Loc environments
o € Store = Loc -~ Sv stores
€ Cont = Store —+ (Ans x Store) continuations
£ € ECont = Ev -3 Cont expression continuations
¥ € Clo = ECont — Cont closures
¢ €Ev = Bv + (Loe x Loc) + (Loc — Clo) expressed values
Sv = Ev + Clo + {unset. NotReody . free} stored values

AUXILIARY FUNCTIONS

new : Store — Loc , satisfles a(rew o) = free
wrong : Comt , is defied by wrong o = (error, a)

print : Ev — Cont
print £ = ¢E(Loc —+ Clo) — wrong:
¢E(Loc x Loc) — Ao, ({(A,. A}, o)
where (o, . a,) = ¢
(A,. o) = force o, print o
(A,. 0;) = foree a, print o, ;
cEBv — Ao, (¢, o)

SEMANTIO _ FTUNGTIONS

A typical computation will be

20E) g, vy 0, where &, = print

E is the expression to be evaluated (and printed}); g, is the ard
environment, in which no variables have been declared; o, is the empty
store, in which all locations are free . A well-formedness condition on E

is that it may only contain variables declared within var or A constructs.
The valuation 2 is defined as foilows:-

¢ . Exp -+ Env -+ ECont —+ Cont

Elzlex = fForee (olz]) »

2lplex = = (PEPI)

2LE, EJex = Z[E Jor’ where &' = ALE,lgx

2[3z. Elgx = & (ha. 2[ENe @ {z — a)))

glvar z ;. Elox =)0, 2[El(e ® {z = a})x(c @ {a — unset})

where a = new o

2lassign = = E, : EJgr = do. (0@ = unset —
ZLE,Jox(c @ {a — ZIE]q)) .
(errer, o))

where a = p[=]

feree © Loe — ECont — Cont
force ax = Ao, case oo of
NotReady . unset : (suspend , o)
£ : Reg
v: ve'(s @ {a— NotReady })

where &" = deg’ . meo’ @ {arie})

]
&

(]

A : Exp - Env — ECont — ECont

AME]gr = Xe. cE{Loc = Clo) — 8, wrong

where § = EEIde — 4, ¢,

g £

P : Prim — Ev

Pltrue] =
Pinil]
Plrot}] =
Plhead] =

PIY]

Plcons] =
Pladdl
Pldiv]
Plvall
Plseq] =
PLifR

L]

etc,

true

Aak.
Aax.

Aax,

Aak

Aax.

Aax.

. Jorcea {he

(lED) <

8, = o, caxe'

where a

= new o

a'=¢ & {a =+ E[E]g)

. ¢ E Bool

— & (—€), wrong}

. Jorcea(Ae. ¢E(Loc x Loc) —

Jorcea, & where {a,a,}) = € . wrong)

. Jorcea (A¢, eE{Loc — Clo) —

x (cons a)
x (add a)
& (div a)
. x [val a)
 (seq o)

s {if a)

Az, forcea' kg’ where @’ = new o

wrong}

r=oca{a eca'},

70

Tl

cons = Aaax. k(. @)
add = laax. forcea, (Ae,. , ENum — #, wrong
where § = forcea, (Ar,. ¢, ENum —

c(e, +) . wrong))

div = Ja,a,k. forcea (Ae,, e ENum — 0, wrong
where 8 = foreea, (Ae,. (¢, E Num) 4 (£,=20) —
Re, + &) . wrong))
val = dmayx. forcee, (Ae. forcea, (A¢,. £, E (Loc — Clo) — ¢, a,x . wrong))
aeg = daoyx. foreea (Me. forcea, k)
if = leax k(if'aa,)
if' = ek, forcca, (Ae. eEBool — (¢ — forcea,n, forcea, x), wrong)
CMMENT:

An expressed value ¢ corresponds to the head normal form of an
expression E. Since the store may change, from ¢ to ¢’ say, during the
evaluation of E, the rest of the computation is modelled by an expression
continuation x, such that

S EVpner = kea

The equations fer var and assign correspond closely to their informal

description given in Chapter 2, Section 2.3.

R closure » represents an expression that has been stored in unevaluated
form. The value ¢ of such an expression will only be computed if
demanded. Propagation of demand to a location a in the store is modelled
by the function foree. Thus, by forcing a closure stored at a, the
contents v of a are replaced by & During the computation of ¢, a is
marked as not ready. This method implements lazy evaluation, because

once v has been replaced by £, demands sent to a simply return & Thus:

PROPOSITION forcea (Ae. forcea k) = forcear

PrOOF Show foreea (Ae. forceax)o = forcearo by case analysis on oa.

Trivial for ¢a equal to NotReady or unaet.
€ = ca = forcea (. forcean)o = (e, forcear)eo = forcearc

v =oa = forcea(re, forccan)o

v (heo’. {de. forceax)e(o’ @ {ar e})} e @ {a — NotReady})
v (hea. forecarn(o’ @ {are})) e ® {ar— NotReady })
vido .xefor @ {a—e))) (o @ {a— NotReady })

forceare Il

The expression continuation A[EJgr takes a function and applies it to E.
To preserve laziress, if F is not an identifier then It is stored as a
closure at some location a and the function is actually applied to a. The
special treatment of identifiers avoids unnecessary indirection [54] which
would complicate the semantics of assign. For example, evaluation of
({Az. assign z = B, ; E,) y), in some environment g, must bind z to
olyl. rather than some location at which &ylp is stored, so as to handle
the side-effect properly.

The valuation P gives values to the primitive functions of the language. In

particuler, partially applied functions take values in {Loe — Clo) .

Evaluation of an expression results in an error in certain circumstances,

namely:-

(i} Evaluation of {E, E,) gives rise to an error if E, does not evaluate
to a function. For example, an error aris:s from evaluating
{cons nil 4 B), because {cons nil 4) denotes an S-expression rather
than a function.

(ii) During evaluation an attempt is made to assign to a variable that
has already been instantiated. This refects the fact that assign is a

single~assignment construct.

T2

(iii) A primitive function is applied to arguments for which it :s undefined.
for example (div 4 0).
(iv) An attempt is made to print a function. Dnly S—expressions can be

output as answers.

Evaluation of an expression suspends when
(i} There is a demand for the value of an uninstantiated varable, that
is, one which is bound to an unset location.
(ii) The value of an expression that is already under evaluation is
required, This is detected by marking a location as NetBeady utile

evaluating it contents.

The reason for distinguishing between suspend and error is that, on an
implementation that supports parallel evaluation of expressions, a
suspended computation will resume if and when an expression is stored at

the unset/NotReady location. [32] refers to this as 'suicidal suspensions’.

However, in the semantics presented here, no attempt is made to model

parallel evaluation.

Finally, we dzmonstrate the equivalence of some expressions. The first

proposition praves that

{asgion = = B, ; assign y = E, : E}
= (assign y = E, ; assign z = E, ; E}
The other propesitiens illustrate safe instances of the move-in

transformation. It should be noted that many equivalences cannot be
proven so simply; whether or not an expression is actually stered and, if
so, the particular location used, may be reflected by the equations, but

not be of semantic \mportance.

73

PROPOSITION Suppase a=glz], f=plyl, a=p and ca=0pf=ynaet. Then

2lassign z = E, ; assign y = B, : Elgre
= #assiem y = E, : assign z = E, ; Elro

PROOQF

#assign z = E, ; azssiagn y = E, : Elgre
Massign vy = E, : Elesle & {a — 2[E]g})
2Elr(e @ {a — 2[EJe. £ — ZIENe)

and similarly for #assign y = E; ; assign z = E, : Elere. [

ProPOSTION Suppose a = glz], and o a=unset. Then
2[=ssion z = E ; (E, E,)lenc = #{assign z = E : E\} Eleno

:

Hassign z = E ; {E, E,)]eno
2E, Eles(c & {o — 2[EDg))
HEWME,Jex Yo ® {a — 2[EL})

#(assion z = E ; E,|) EJero
HMassign z = E : EJe(AE,)ex)0o
2E J(ALE ex Yo ® {a — 21Elg)) 0

i

ProrosimioN Suppose a=glzl, f=¢lyl, a=f and ca=c f=unset. Then

Zassign z = E, : assign y = E, : ylexe
= MMassign y = {assian z = E, : E,} : ylgno
ROOF

¥assian = = E, ; sssian y = E, ; ylene

2ylexle @ {a = ZEJe £ 2EJN))

Jorce (o @ {a — 2EJde. 7 — ¥ EJg))

ZEJofrea’. se(a” @ {f=£}))c @ {a — 2[E)o. § — NotReady})

i un

2Massign y = (assian z = E, : E,) ; ylere
Elylox(e @ {f — Zlassign z = E, ; Elg})
Jorce o & {f — Z[assian z = E, : Ele))

[L | | B}

ZE Je(rec' . me(c’ & (A e)))e ® {a — MEDe. £ — NotRewdy)}
G

2lassian z = E, ; Elp(ree’ . sc{c’@{f - e}})o @ (f — NotReady }}

T4

PROPOSITION Suppase E, is not an identifier, a=plzl, and o a=unget. Then
Hazssiagn z = E, . {not E,)lgre = ¥not (zssign z = E, : E,)ere
PrROOT

¥assign z = E, ; (not E,}exr
2[nat Elex(c @ {a — ZIEJle}}
natle(AEdex)(r & {a — 20E 1))
AE Jox(Plnot])(e ® {a — Z[E lg))
Plrnotlge(c @ {a — 2[Ele. A — BIE,le}) for some 8
Joree f (e, cEBool — & (~¢), wrong)(e @ [= 2[EJe. — 2[E,lo})
2EJe(de o’ . (Ae. cEBool — & (~¢), wrong)e (0" @ {f— ¢}))
(c ® {avs 2(E]s. § — NotReady})

o onowoaon

[rot (assign z = E, . E,)lere
notlg(Mlassiagn = = E, ; E,lex)e
Alassian = = E, ; E,lpx(Plnot]}e
Plnot¥be(e @ {# — Zlassion z = E, ; E,lg}} for some g
Joree B (2. ¢ E Bool —+ & {~¢} . wrong)
fc @ {# — ¥lassian = = E, ; EJp))
= ¥assign z = B, ; Ele
(reo’. (A, eEBool — k (¢). wrong)e (" @ {f—}})
(c & {# — NotReady })
= 2[E,Je(heo’ . (Ae. eEBool — & (~¢), wrongle (o' @ {1 €}))
(c @ {a— 2[Els. F - NotReadv))

Although the transformation
(assign =z = E, : (not E,}) = (not (assign z = E, ; E,])
is alsa perfectly safe for E, E Ide, this is not revealed by the semantic

equations: ¥fnot (assign z = B, : E,)lprs takes the same value as

befcre, but new

Zlassign = = B, ; (not E,}]ere
= ¥[E,} (de. eEBool — x (—¢}, wrong) (o & {a — FILE,Jp))

4.4 CONCLUSION

In this chapter a formal semantics has been presented for a functional
language with side—effects, The semantic equations for the var and
assign constructs are particularly straightforward. Because it models
order of evaluation and allows for side-effects, the denotational semantics
is more complicated than that usually given to purely functicnal languages,
for example the semantics of the A-calculus in [51]. Even so, it remains
a standord semantics: it has not proven necessary to follow the
suggestion in [3B] (p.275) that semantic equations for call-by-need are

best formulated in store semantics.

The semantics also provides a formal, abstract description of the
- process of graph reduction. Note that we have given a semantics directly
to the programming language. In [Z21,31] the language has first to be
compiled into a form suitable for a stack machine; the operation of the

machine is then specified by a set of state transition rules.

76

CHAPTER 5

AXIOMATIC SEMANTICS

5.1 INTRODUCTION

The axiomatic semantics presented in this chapter is intended to be
useful to the programmer in reascring about programs with side-effects.
Rules are given from which can be deduced some of the consequences of
executing a program. The denotational semantics of Chapter 4 is rather

urwieldy for such reasoning.

The axiomatic semantics provides information about the state of the
graph reduction machine during the evaluation of an expression; this
cortrasts with Hoare's axiomatic semantics [23] which describes the

relationship between the state before and the state after executing a

command. Boehm [6) has suggested that ‘one might benefit from matching
the programming tlogic to the programming language’ : our axiomatic
semantcs has been designed for those functional programming languages in
which order of evaluation has to be taken into account. There is a
superfcial resemblance to Plotkin's Structured Operational Semantics [44],
Such a semantics could be given to a functional language with side-effects.
However, the entire state of the machine would have to be considered in
specifying the transition relation, a complication which we are able to

avoid.

The axiomatic semantics is intended to complement the transformational
approach ta the development of programs with side-effects. It is a formal
system based on a set of inference rules, some of which correspord to
reduction rules; while others prescribe a particular order of evaluating
expressions. The system does not allow us to prove very much. It does,
however, describe order of evaluation in a rather concise way. Even the
parallel evaluation of expressions can be specified. Note that order of
evaluation must be taken into account when programming with side—effects.
Otheruwise, we are liable to believe that a program is correct, only to
discover when we try to run it that it deadlocks. This was discussed in

Example 1 of Chapter 2. To take another example, the program

foo : Int
foo = var x ; add x {(baz x)

baz : Int -4 Int
baz (var y) = assign y=1: 2

can be given the declarative reading

D Int. foo = add x (baz x}

Vog:lnt, n=bazyeygy=1an=2

78

79

Now, from this declarative reading, we are lead to believe that foo = 3,

because:

Ix. foo = add x {baz x)

1.

2. Ix,u. Foo = add x w A W = baz x
3. Ik,W. foo madd x mAXx=1Auw=2
4, foo = add | 2

5, foo = 3

However, assuming add evaluates its arguments from left to right,

evaluation of foo will in fact proceed as follows:~

foo — add x {baz x} for some uninatantiated variable x

At this point the value of x is required. Because x is uninstantiated,

evaluation suspends. That 1s, evaluation of [oo deadlocks.

It should also be recognized that knowledge of the strictness of a function
is insufficient to determine the order in which it evaluates its arguments.

For example, add is strict in both its arguments:-

add L E = §
add E L

That is, it is undefined if either argument is undefined, but this provides
no information as to whether add evaluates its arguments from left to

right, from right to left, or even in parallel.

In the nmext section we present the system and give it an informal
interpretation in terms of graph reduction. In Section 5.3 we explain how
to reason directly about programs. It is alsc shown that the axtematic
semantics can be of assistance in determining whether the move—in

transformation of Chapter 3 is safe to use. In Section 5.4 the limitations

80

of the system are considered and the meodelling of parallel evaluation is

discussed. In Section 5.5 we make some céncluding remarks.

5.2 AN AXIOMATIC SEMANTICS

In this section a system of inference rules Is presented. By using the
rules we can try to deduce the valus of a particular expression (the head
normal form to which it reduces) from a statement that the expression is
evaluated. These rules are intended to correspond to our intuition about
demand-driven graph reduction. Note that the expression (E, E,)} should
be thought of as being represented in the graph by the application node
[54]

E, E,

We shall construct predicates out of the following three formulae:-

z deloy E Jorce z z eval E

In reasoming about the evaluation of some expression, these formulae can

be interpreted as follows.
z delay E states that at some stage of the computation E is stored in

unevalusted form at z. For example, x delay {add 1 2) means that the

machine must engage in the action of building the graph

add 1

The root node of this graph corresponds to the location denoted by x

force © asserts that demand gets propagated to z, so causing evaluation
of any expression stored at z. This is similar to the role of the function

force defined in Chapter 4.

z eval E asserts that the machine must evaluate E, that is, perform a
sequence of reductions so as to determine the head normal form of E, if
ore exists. If E does redure to some head normal form H, then H is
stored at z. For example, x eval (add | 2) means that the value, 3, of
(add 1 7} is eventually stored at x. Note that we do not specify when
this evaluation takes place. So, for z eval E, and y eval E, , either E,
or E, might be evaluated first, or their evaluations may be socmehow

intertuwined.

Under this interpretation of the formulze the first inference rule should

come as Mo SUrprise.

RULE OF force

Joree z z delay E

z eval E

Predicates can be formed by combining these formulee with the standard
logical connectives, but we will only have occasion to use conjunction and
existential quantification over identifiers. The set of inference rules
includes reduction rules for the primitive reducible functions of the
language. The var/assign constracts of functional programming with
side—effects also have rules attributed to them. ‘Rules of Reference’
establish the relationship between identifiers and expressions. Firally,

‘Rules of Order’ reflect a restricted order of evaluation for expressions.

a1

We shall have occesion to use free[El, the set of free variables in an
expressien E, and E[y/z], the expression formed by replacing all free
occurrences of z in E by y. These are defined formally at the end of this

section.

The system has been so devised that an expression B, which does not

contain free variables, evaluates to some head normal form H if and

only if, from

z eval E

for some z, it is possible to deduce

Jz,...

x,. % eval H where {z,. ...z} = [fred H] - {z}

Here, z, , .. , z, dencte new locations that are allocated during the

reduction. For example, the value of

{(var g4 : cons y (assigny=1; nil))

is {cons y {assign y = 1 ; nil)) for some uninstantiated variable y.

Thus, from

x eval (var g : cons y (assigny =1 : nil}))}
we should able to deduce

Jy. x eval {cons y (assian gy = | ; nil)}

The scope of the variable y in the program text is reflected by the use

of existential quantification in the program logic.

B2

RULES OF REDUCTION

In the M-calculus, expressions can ke simplified by the f-reduction rule.

The following inference rule achieves the same effect.

{(Rule) z evad ((Ay, E) 2)

z eval (E[z/y])

Varizble declaration introduces a new location and so takes the form

{var-Rule) z eval {var y : E)
provided z=y

Jy. z eval E
Note that: z eval (var z : E) can be handled by first renamirg the
bound occurrence of & For this purpose, we shall take for granted the

following (a~conversion) rule:-

(var z ; E) = (var y ; (E[y/z])) for any y. y€[ree(E}

The rule for assignment is

(assign-Rule) z eval (assign y = E, : E,}

z eval B, A y delay E,

This reflects the fact that the assignment construct is lazy.

83

Primitive functions, defined by reduction rules of the form

E,— E,

are covered by the following schema:-

{Reduction) 2z eval E,
provided E, — E,

z wal E,

Thus, the ruie for head is

z eval {head {cons E, E,}}

z eval E,

The rule for add is

z cval (add n, n,}
where n, n, n, ere sntzgers

z eval n with n=n, +n,

More interesting is the rule for Turner's circular version of the

Paradoxical Combirator Y [54].

z cval (Y E}
z eval (E 2z}

This is based on the reduction rule

YE—r®)

84

Care has to be taken over the val combinator [29], giving call-by-value,

val E, E, — E E,

val B L = L

since val is not specified simply by a reduction rule. The correct inference
rule is

x eval (val E H)
for H in head normal form

z eval (E H)

N.B. The above rule is illustrative of our method for specifying order of

evaluation. It is not permitted for the reduction

val B, E, — E, E,

to take place until E, has first been reduced to head normal form.

Similarly, we have

z eval (seq H E)
for H in head normal form

z eval E

RULES OF REFERENCE

The Rules of Reduction only permit us te perform reductions at the
outermost level of an expression, For instance., we can deduce x eval true
from x eval (nct False}, but no means has been provided for deducing
x eval false from x eval (not (not false}). Hence, we must extend the
system with new rules. These, when combined with the Rules of Order, will
enable us to evaluate subexpressions and substitute thewr values back

Inte the main expression.

8G

The first rule explains what it means to evaluate an identifier.

(Reference) =z eval gy y eval E

z eval E

The rule

(Abstraction) z eval {(E, E,)}
provided

Jv. z eval {y E,) A y delay E, v €{z}u fredE, E\Q
Jy. 2 eval (E, y) A y delay E,

enables us to focus on a particular subexpression by abstracting it out
of the main expression. The fact that z can be thought of as an
application node with pointers to E, and E, provides some justification

for this rule. The first inference could also have been written as

Jy. =z eval (y E;) A y eval E|

since normal order reduction implies force y , as will be given in the Rules

of Order.

It remains to provide a mechanism by which an identifier, denoting some
location, can be replaced by the expression stored at that location.

Thus:

(Subst itution)

zeval (y E)) y evad E| z eval (E, y) y eval E,

z eval (E, E,) z eval (B, E,}

87

RULES OF ORDER

Normal order reduction is specified by the rule

{Normal Order Rule}

z eval (y E)

Joree y

Evaluation of an identifier invelves sending demand teo the location denoted

by the identifier. Thus:

{Indirection Rule}

z eval y

Joree y

This should be compared with the semantic equation 2[ylex = foree (elyf) =
of Chapter 4.

The following schema is applicable to any primitive p of arity n.

(Strictness) <z ewad {(p E, .. E_, v B, ... E,)

Joree y

promded (i} p B, . E_, L E,, ... B, = |
and (ii} E, is in head normal form if p evaluates its K argument

before ita .

For example,

z eval (head y)

foree y
z eval {add y E) z eval {add n y)
integer n
force y force y

Note that the asymmetry of the above rules for add refects a left-
argument-before-right evaluation strategy. The operand £, in the
expression (add E, F,} may be left unevaluated if evaluation of E, failed,

for some reason, to yield an integer.

val gives applicative order evaluation. So, in the case of wval, the

strictness rule becomes

z eval (val E)

fores y

AN __EXAMPIE OF _DEDUGTION

Consider the example given in Chapter 2, Section 2.3, Note (4}. We used

informal reasoning to show that

(add {assign x = 3 ;: 2} (sub 4 x))

evaluates to 3 , whereas evaluation of

{add (sub 4 x} (assign x = 3 ; 2)}

suspends, for x an uninstantiated variable. With our axiomatic semantics

we might reason as follows.

88

10.
11,
12,
13.

This proves that (add (assign x = 3 ;

.y eval (add {assign x = 3 ; 2} {sub 4 x})

y evaf {add u (sub 4 x)} a
u eval (assign x = 3 ; 2) (Lemma 1)
Fu. y eval {add u {sub 4 x}) A
u eval 2 & x delay 3 {assigrn-Rule)
Ju. y eval (add 2 (sub 4 x)) A x deluy 3 {Lemma 2)
.y eval {add 2 {(sub 4 x)} A x deley 3 {FEliminaticn)
Iv. yeval (add 2 v} A v eval (sub 4 x} A
x delay 3 {Lemma 3)
Iv. y eval {add 2 v} A v eval {(zub 4 x) A
Joree x & x deloy 3 {Strictness)
., Iv. yeval (add 2 v) a v eval {sub 4 x) a
x eval 3 {(Rule of force)
Iv. y eval (add 2 v} A v evad (sub 4 3) {Substitution)
dv. y eval (add 2 v} a v eval 1 {Reduct ian)
Iv. y eval (add 2 1) (Substitution)
y eval (add 2 1) {(I-Elimination}

y eval 3 {Reduction}

It uses the lemmas

LEMMA 1

z cval (add E| E,)

Jy. z eval {add y E,) A y eval E,

2} {sub 4 x)) evaluates to 3.

provided y & {z}u freelE Ju fred E,]

PRCOF

1. z ewal {add E, E,}

2. Jz. z eval {z E,) & z eval (add E,} (Abstraction)
3. Jy.z. z eval (z E,} A z eval (add y) A y delay E, (Abstraction)
4, Jy.z. 2 eval {add y E,} » y delay E, (Substitution)
5. Jy. z eval (add y E,) & y deloy E, (3-Elimination)
6. Jy. z evad {add y E,} A [force y & y deloy E, {Strictness)

7. dy. z eval (add y E,) » y eval E, (Rule of foree)

£9

o0

LEMMA 2 z eval (E, y E,) A y eval E,

z eval (E E, E))

ROOF

I. z eval (B, y E,) & y ewal E,

2. dz. z eval (z E,) A z eval (E, y} A y eval E, {Abstraction}
3. 3z. z eed (z E,) A z eval (E, E,) (Subst itution)
4, J2. z ewal {E, E, E,) (Subst itution)
5. z eval (E, E, E,) (FElimination}
LEnovia 3 z eval {add n E)

Jy. =z eval (add n y) o y eval E

for any integer n, provided y@&{z}u fred E]

ROOF

[. £ eval {add n E)

2. Jy. 2z ewal (add n y) A y delay E (Abst raction)
3. . z eval (add n y} A foree y A y delay E {(Strictness)
4, Jy, T eval {add n y) A y eval E {(Rule of foree)

Consider now evaluation of {add {sub 4 x} (assign x = 3 ; 2}). We
are unable to prove within the aystem that evaluation suspends. However,
any attempt to prove that it reduces to some H is destined to fail. For

example,

1. y eval {add (sub 4 x} {assign x = 3 ; 2}}
2. Ju. yeval (add u {assign x = 3 ; 2)) A

uevad (sub 4 x) (Lemma 1)
3. Ju.v, yeval {add u v) A u eval {sub 4 x) a
v delay {assign x = 3 ; 2} {Abstraction)

and, because we lock the information force v, the value of u cannot be

deduced.

For completeness, we conclude this section with the definitions of free and

substitution.

The notion of free variables of an expression, can be formalizad as

follows:=

free : Exp — F Ide

Sreelz] = {z}

Jreelpl = {}

freel[El E’] = frce[E']B u ITCEEE,H

freelrz, E] = frelE] ~ {z}

fredlvar =z ; E] = fredEl - {z}

freclassian z = E, ; E)] = {2} u fredlE] u frelE,]

We next defrme a process of syntactic substitution. The substitution of

the identifier = for z in an expression is defined recursively as follous:-

Elz/z] = F
For z'»z =~

z[z'/z] '
plz'/z]
plz’/z}
(E, E,}[z'/z] = E[z7/z]} (E,[z/z])
{(Az, B} (2" /z] = Az . E
{(Az" . EY[z*/z]) = Ay. (Ely/z'[[2°/=2])
for some y. p&fz.z'Yu fredE]
(Jy. By[z'/z) = dy.(Elz'/z]) for y=z, ymz’
(var z ; E)[z'/z] = var = ; E
{var z*; E}(z'/z] = var y: {E(y/z'][z’/=])
for zome y. y€{z.z'}u fredlE]
(var vy : E)[z/z]} = var y : (E[z'/z]) for ysez, y=z’
(essign y=FE . E,){z’ /] = assign (y[z'/2]) = (E,[z'/2]); (E{z'/z])})

for y=z

oo
=B]

Univarsity
T lakoratany

- " Group-Library

B t 247141

a1

5.3 REASONING ABOUT PROGRAMS

fis described so far, the axiomatic semantics allows us te reason about
expressions in which all functions are eitiier primitives or locally defined
as)-expressions. In this section inference rules will be given to functions
defimed in 2 program. Rules will even be prescribed for definitions of
functions that involve pattern-matching. Finaily, the use of inference rules
in reaseoning about the safety of the move-in transformation of Chapter 3

will be demonstrated.

A reducible function f of arity n can be defined in a program by an
equation of the form

where =z z, are distinct identifers and ignoring var perameter

rone
annotations. In reasoning about the evaluation of expressions according

to this program, we can make use of the rule of reduction

zewad (fy ..p)

z eval (Ely/z]..[y./2.])

Thus, the functions foo and baz defined in Section 5.1 by

fco = var x ; add x {baz x}

baz (vary}) = assigny=1; 2

give rise to the rules

r eval foo z eval (baz y)

3 eval {var x : add x (baz x}) T eval {@ssign y =1 2)

52

This method mnaturally extends to definitions involving pattern-matching,

but additicnal rules of order are alse required. That is, the pragram

f nil = E,

f {coms z, z,) = E,

has the following three rules associated with it:-

z eval ([nil) z ool (f {cons y, v;}) z eval {f y)

4 z eval (E[y/z}{y/z,]) foree y

Returning to the solution presented to Example 1 in Chapter 2, the

pregram

transform : Tree — Tree
transferm ¢ = var m; reploce t mm

replace : Tree = Int — Int = Tree
replace {(tip n) m {var v} = assign v =
replace {fork LR) m {var v} = var y; var z ;
assign v = y MIN z ;
fork (replace L m y)
{replace R m =z}

n; tipm

gives rise te the following inference rules:-

z evad (Lransform y) z eval {replace y E, E,)

z eval {var m ; replace y m m) Sforee ¢

z eval (replace (tip y,) ¥, 1) = eval {replace (fork y, w) ¥ v,)

z eval {assigny, =y, : Lip 4} =z eval (var y ; var z :
assign y, = y MIN z ;
fork (replace y, ¥,)

(replace y, v, 2))

53

04

If multiple patterns occur in a single definition then the appropriate set
of rules of strictness will depend upon the order in which patterns are
matched. Rlso, for certain data types pattern matching can be ‘lazy’
[59). For erample, whether f is strict when defned by f (=z.y) = E
depends on the implementation - it is in Orwell [5B8], but not in Miranda

[57) where it is treated as f z = E uwhere (z,y) = 2. It is obvicusly a

good idea to ensure that the correctness of a program does not rely on

a particular implementation of pattern-matching.

Note that, because of the relationship between where and var/assign

(Chapter 2, Section 2.3, Note 3), we can derive the rule

z eval (£ where z, = E, z, = E)
3r..... z. z eval E a z, delay E A ... a z, delay E,
provided z ¢ {z..... %]

Note also that E, where (z,y) = E, is treated as

E where z = st z, y = snd 2. z = E,

An important use of the axiomatic semantics is to check the safety of a
move—in transformation when synthesizing a rew function definition by
program transformation. The rules explained informally in Chapter 3,

Section 3.2, can be re—expressed succinctly as follows:-

Consider the move-in transformation (assign z = E ; E") = E”

where E” is E' with some subexpression E' replaced by

(assign z = E ; EY)

We can prove by locel reasoning that the transfornation s sefe if from

y evad B" we can still deduce = delay E.

Likewise, the transformation is kmcwn to introduce deadicck if from

y cval E™ we can deduce force z , but not z deflay E .

Thus, examples of safe move-in trarsformaticns are

(assign z = E : (E, E,})) = {{assign z = E ; E,) E,)

(assian z = E ; (val E E,))) = (val E, (assign z = E . E,})
{(assign z = & ; (add E. E))) = (add (3551gn z=FE . E} E)
(assign 2 = E ; (add n E')) = (add n (assign z = E ; E’))

Examples of the transformation introducing deadlock are

{assign a = E : (z E')) = (z (assign z = E ; E’})
(assign z = E : (vel E* z)} = (val (assian z = E ; E') 1)
{assign z = (add z E')) = {(add z {assignz = E ; E')}

54 LIMITATIONS OF THE AXIOMATIC APPROACH

Our first remark is that the semantic model is not sufficiently ‘fine” to
distinguish between computations that deadlock and those that loop
(diverge, never terminate). For example, evaluation of {(var x : x)

deadlecks, whereas evaluation of

finite (Y {(cons 1))

where finite is defned by

finite : List ®= — Bool
finite nil = tirue
fFinite (cons x xs) = finite xs

diverges: but in both cases we can do no more than to try in vain to
finrd a head normal form. This is no great disadvantage for sequential

evaluation, since it is reasonable to treat programs that come to a

06

premature halt and those that run forever as equally bad. However, it
does limit what can be deduced about parallel evaluation, which will be

discussed next.

Can the rules be modified to allow for parallel evaluation of expressions?

Not only can this be done, but 1t can be dore very simply.

Suppese, for example, that add is to evaluate both operands in parallel.

We need only relax its second rule of strictmess. That is,

z eval (add n y)
Jor eny integer n

foree p

to the more general

z eval (add E y}

foree y

Its two rules of strictness are now symmetrical.

Hughes’ par combinator [29.30] has the rule of reduction

z evel {(par E, E,}

z eval (E, E,)

and rule of order

z eval (par E y)

foree y

Notae that the move-in transformation

{gssign = = E : par E, E,) = (par E, (gssign z = E ; E,}}

is safe because from y eval {per E, {assign z = E ; E,)) we can
deduce z delay E.

Now we clarify our previous remark about the problem of failing to
distinguish between deadlock and divergence. Consider the expression

{par (K H} F)

where evaluation of E (1) deadlocks, or {1i) diverges. For (i} 1t seems
reasonable to say that (per (K H) E} evaluates to H. Howaver, for
{ii) @ particular implementation of parallel evaluation may diverge by using
all its resources to evaluate E : we have to wait an Indefinite time for
the result, {This is analogous to the danger of not finding a normal form
even though one exists, when applicative order reduction ls used instead
of normal order reduction.} Unfortunately, the rules allow us to deduce

z cval H from z eval {(par (K H) E) in both case (i} and case {it).

There is one further danger arising from the axiomatization. We might be
tempted to attribute a value to expressions that would in fact return an

error when evaluated. For example, from

t eval (assigny =2 ;. assigny =3 :).

It is possible to deduce both 2z eval 2 and z ewal 3, but a graph
reduction machine should repert an error in performing the evaluation.
Lare must be taken to keep to the 'single-assignment’ principle in writing
programs, for example, by developing programs by transformation. It
would also be possible to trap such errors while type—checking. '

The var paramoter amolations provide sfermation Lo facihtate this. For ezmmphe,
the defition of f ahould be remcied in the cases (1) 7 = = gs51an x = E, . E,
wnd {4} [{var l):mx:f,; g » where g & defrwd by g {var W) = K

97

One final comment concerns Hughes' suggestion [30] that temporat logic
might be used for describing his synchronization primitive. It has already
been shown {Chapter 2, Section 2.4, Example 3} that synch can ke defined
by

synch e = var e, ; var e, ;
pair (assign e, = e ; e,) {@ssign e, = e : &)

Thus, our awomatic semantics can be used to understand synchronized
behaviour. Taking an example from [23], it should be clear that: for the

expression

add x y where (x,y) = synch E

to evaluate to twice the value of E, requires that add evaluates its
arguments in parallel. The point is that we need the information foree x

and force y, before we can deduce x eval E Ay eval E .

6.5 CONCLUSION

An axiomatic semantics has been presented for functioral programming
with side-efects. The inference rules give us a grasp of this method of
programming in much the same way as reduction rules help us to reason
about purely functioral programs, Particularly pleasant is the ease with

which rules can be given to specify parallel evaluation.

In postulating the rules appeal has been made tc properties underlying
evaluation by graph reduction; but, it is heped that the rules alore are
sufficient to provide an adequate understanding of functional pr-ogramming
with side-effects. In particular, they may prove useful in reasoning about
the move-in transformation, by which programs with side—effects can ke

developed.

98

CHAPTER 6

SUMMARY AND RELATED WORK

In this thesis we have put forward a proposal for a new programming
feature in an otherwise purely functional language. The extension makes
possible a new stule of programming, functional programming with
side—ef fects. The examples of Chapter Z demonstrate the feashbility of
programming with side-efects. They also provide evidence that solutions
to some programming problems can be developed in the extended language
that are more efficient than may be possible In a purely functicnal
language. Furthermore, it was shown in Chapter 3 that transformational
programming provides a sound methodology for the development of
programs with side-effects. It would appear to be the case that the task
of ensuring that programs uwith side-effects are free from deadlock is

most easily tackled when such programs are developed by transformation

frem purely functicnal programs. It has also been shown that programs
with side—efects are closely related to programs involving tuples or

continuations.

The formal semantics of the extended language have been considered. In
Chapter 4 a denotational semantics was presented. This aiso serves to
provide us wth a mathematical mode! of the process of graph reduction,
by which the lazy evaluation strategy can be implemented. Chapter 5
explored a novel programming logic. The logical system gives an axiomatic
semantics for the language. It promotes reasoning about programs with
side-effects. This reasoning can be performed without knowledge of how a

computer executes such programs.

[t is impertant to appreciate that the new feature can readily be
accommodated by graph reduction based implementations of functional
programming languages. A description can be found in the appendix of the
trivial modifications that had to be made to one such implementation.
There sheuld, for example, be no dificulties in compiling programs wth
side-effects into G-machine code [31] or ALICE CTL [45]. Indeed. as was
mentioned in Chapter 2, a brief aesoription of the method of binding
logical variables by graph reduction appears in the ALICE paper [15].
Thus, programming with side-effects can be supported on both seguantial

and parallel machines.

Research into functional programming has previously shown that diferent
orders of evaluation can alter the efficiency of programs. Schuwarz has
proposed call-by-opportunity [4B] and Hughes par and synch [23,30] as
suitable annotations for changing the flow of control unthout changing the
structure of programs. Other control annotations have been suggested by
Burton [B]. We have shouwn (Example 3 of Chapter 2} that with

side-efects it is possible to give a space eficient version of Hughes’

L0O0

split function. Control annctations have also praven useful in developing

deadlock-frae programs with side—effects.

Previous attempts to incorporate logical variables inte functional
languages, for example [3.14], have assumed program execution can
involve unification. Programs uwith side—effects require no more than
standerd pattern-matching. There is, however, some similarity between
our language and the non-backtracking logic based languages, such as the
relatioral language of [10] from which Parlog [l!] and Concurrent

Prelog [49] have evolved. For example, execution of the lagic program

mode sort{?. ~}

sort{nil.nil}.

sort {cons{x. xs),ys) « partition{x.xs, us,vs), sort{us,ps).
sort{vs, qs), append(ps.cons{x.qs),ys)

made partition(?.7.". ")
partition(x. nil.nil,nil).
partition{x. cons(z, zs),us,cons{z,vs)) <« x<z |
partition{x, zs,us.vs)
partition{x, cons{z,zs},cons(z.us).vs) & x>z |
partiticn{x, zs,us,vs)

mode append(?.7?, *}
append{nil, ys.ys).
append{cons{x,xs},ys, cons{x.,zs}) < append(xs,ys, zs)

proceeds in a similar way to that oi: the functional program

sort : List Int — List Int — Bool

sort nil (var ys) = assign ys = nil ; true

sart {cons x xs) {var ys) = var ps. gs;
partition x xs us vs AND
saort us ps AND sort vs qs RAND
append ps (cons x qs) us

101

102

partition : Int —+ List Int — List Int — List Int — Bool

partition x nil {var us) {var vs} = assign us = nil. vs = nil ;
true
partition x {cons z zs) (var us} (yar vs)
= var vs' ; assign vs = cons z vs’
partition x zs us vs' if x<=z
var us' ; assign us = cons z us’
partition x zs us® vs otheruise

append : List * —+ List » — List ® — Bool
append nil ys {var zs} = assign zs = ys ; true
append (cons x xs) ys {var zs} = var zs'
assign zs = cons x zs'
append xs ys zs'

where AND is the standard infix operater. (Detailed explanation of mode

declarations and the commit bar '|" can be found in [10}.)

Finally, the language can be compared with notations for describing
parallel processes. The idea of suspending processes until a variable
becomes instantiated has been suggested by Banatre [2]. There is no
synchronization between one process engaging in the eutput event of
assigning to a variable and other processes that require the value of
that variable. This contrasts with the Aand-shaking form of
communication, as in CSP [24], in which a process must be ready to
receive a message before another process can transmit jt. In its
treatment of parallelism, programming with side-efects is closer to the

languages Parlog and Concurrent Prolog, mentioned above.

POSTSCORIPT. It should also be pointed out that an idea related to
programmng with side-efects is described in [Arvind, R E Thomas.
I-Structures: An Efficient Data Type for Functional Languages.
MIT/LCS/TM-178, 1980]). [-structures were cornceived, however, as a means

of reducing data dependencies in dataflow languages.

APPENDIX

IMPLEMENTATION

This appendix provides details of a prototype implementation of a
functional pregramming language with side—effects, an extension of the
purely functional language Drwell [58]. Side—effects were incorporated by
means of a trivial modification to the Mcdula-2 interpreter for Orwell.
The implementation provides a powerful system for experimenting with
side-effects and some ercouraging results have been produced:
particularly, when programs with side-effects were compared with programs
involving tuples. It seems also that, by making more extensive changes to
the interpreter, a substantial improvement in the space/time performance

of programs with side-effects can be obtained.

Orwell supports a recursive shere construct. This has simplified the
implementation of the var construct, ad will be explained. In fact, no

changes to the syntax of expressions were needed in order to provide for

side—effects. Instead, two new primitives, «lsAVar and assign, were added.

These can be given types

IsfiVar : m = mn
assign : m =+ m — ER — AN

The concrete syntax of the expression {(var z ; E} is

{E where £ = Isfllar undefined)

and that of {assign z = E, ;: E,} is

{assign = E, E,)

Thus, an unirstantiated varizble £ is represented in the graph by

/N

IsAVar undefined

The reduction rule for assign can then be pictured as

1) 1)
E, 1 E
z z

assign =z [sAVar undef ined 1 E,

104

Implementation essentially wnvolved adding the follcwing two procedures to

the module in which the primitive operators for Orwell were defined.

PRICEDURE VarProc (VAR x : Object) : Object ;
BEGIN

RETURN MakeErrorl {"IsAlar™, x) ;
END VarProc ;

PROCEDURE AssignProc {UAR x. e!, &2 : Object) : DObject ;
BEGIN
IF (INTEGER (x) <= FAIRKI) AND

(x~.left = IsAVar} THEN
x~. left == 10bj

x~, right := el ;
RETURN &2 ;

ELSE RETURN MakeError3 ("assign”. x. el. e2} ;
END ;
END AssignProc ;

VarProc deals with an attempt to evaluate an uninstantiated variable.
Since we do not have parallelism, no further progress can be made. We

choose to report this state of deadlock as an error. AssignProc is the

code for the reduction rule shown above.

Note that: it would not have been possible simply to represent an

uninstantiated wvariable by undefined, because the implementation of

Orwet] does not zllocate a new location for z in the expression

(E where z = undef ined)

113

106

The ahove methed of implementing the assign construct can ba improved
upen, Consider, for example, the ewvaluatien of (f y). for some

uninstantiated variable y, according to the definitien

J (var x) = assign =z = E, ; E,

An efficient implementation would, n a single reduction step, bind y to
E\ly/z] and rewrite (f y) as E,[y/z]. However, in the prototype
implementation, f is defined by

f z = assign z E, E,

(f ¥) must first be reduced to (essign y E,[y/z] E,[y/z]) before the

above reduction can take place. Thus, the structure

E\[y/=]
assign]

Is constructed, only to become garbage after one reduction. In this
example, the prototype implementation, compared with an efficient
implementation of side—effects, requires one more reduction and two more

cells when reducing (f y) to E;[w/z]. For a function such as

J (var z) {var y} = assiagnz=E. y= &, : £

which has to be defined by

[z y =sssign z B, (assign y E, E)

two more reductions and five more cells are required.

Thus, when interpreting the following table of results, allowance must be

made for the

time requirements of the

side—effects solutions.

possibility of significant tmprovements to the space and

EXAMPLE METHOD REDUCTIONS' CELLS' DESCRIPTION

1 Tupling 1 1 first tree
Side—effects;, .98 .82 transformat jon
Side—effects,, .80 .73 problem

2 Tupling i 1 second tree
Side—effects,, .00 77 transformation
Side—effects,, .57 .78 problem

3 Tupling {Memory Overf low} split in

Cont i nuat ions

Side—effects;
4/7 Tupling
Side-effects;
Cont i nuat ions
Side—effectsg

5 Tupling
Side—effects;
Cont inuat iens
Side—effects,

{Memory Overf low}

linear constant
{ 1
el .b4
A7 .57
.B4 .80

1 1
.76 .67
.76 .45
.76 .81

constant space

quicksort

Fibonacci
numbers

Side-ef fects,
Side-effectsg

non

continuations—

tupling-related side-effects strategy

'Except for Example 3, the number of reductions and cells

are expressed as a fraction of those required by the

tupling solution.

07

The above table compares various solutions to the examples of Chapter 2.
For each example, the programs were compared cver a wide range of
input, that is, trees in Examples 1 and 2, lists in Exeamples 3 and 4, and
integers in Example 5, Side-effects;, Side-effects , Side-effectsy;
and Side-effects;, refer to solutions derived from the fellowing

definitions:-

replace” t m {var v} = assign v = tmin t ; replace t m (1)

tmin® t m {var s) assign s = replace t m ; tmin t {2\

replace’ t us {var vs)} (var ws) rs

= gssign ws = drop (size t) us,
vs = tips t ++ rs ;
replace t us (3)

tips' t us (var s) (var ws) rs
= assign ws = drop {size t) us,
s = replace t us ;
tips t ++ rs (4)

It seems reascnable to conclude that side~efects offer sizeable gains over
tupling, and, if implemented efficiently, some improvement over
continuations. Side—effects is the only method that solves the constant

space split problem [29.30].

108

REFERENCES

[1] L Augustsson. Compling Pattern Matehing. [n Proc. Functional
Programming Languages and Computer Architecture, Nancy,
1985 (Lecture Notes in Computer Science 201. Springer-Yerlag)

[2] J-P Banatre. Go-operation Schemes for Paralld Programming. In
Distributed Cemputing Systems, Synchronization, Control and
Commurication, Academic Press, 1983

[3] M Bellia, P Degano, G Levi. The Gall ty Name Semantics of a
Clause Language with Functions. In Logic Programming. Academic
Press, 1962

[4] R S Bird. Using crecular programs to eliminate muliiple traverses of
data. Acta Informatica, Vol. 21, 1984

{5] R S Bird. Tabulation Techniques for Recursive Programs. Computing
Surveys, VYol. 12, No. 4, 1980

6] H-J Boebm. Side Effects end Alidsing Gan Heve Simple Aziomatic
Deacriptions, ACM TOPLAS, Uol. 7, No. 4, 1985

{71 R M Burstall, J Darlington. A Transformation System for
developing recursive programs. J ACM, VUol. 24, No. 1, 1977

[8] F W Burton. Annotalions lo Control Parallelism and Reduction Order
in the DHatributed Evaluation of Functional Programs. ACH TOPLAS,
Usl, 6. No. 2, 1984

[9)] KL Clark, F G McCabe, S Gregory. IC-Prolog Language Featurea,
In Logic Programming, Academic Press, (982

[10] K L Clark, S Gregory. A Relational Language for Parallel
Programming. In Proc. ACM Conference on Functional
Programming Languages and Computer Architecture., Hentworth,
1381

[11} KL Clark, S Gregory. PARLOG: paralled programming in logie,
Research Report DOC 84/4, Imperial College London, !9B4

[12) W F Clocksin, C S Mellish. Programming in Prolog.
Springer—Verlag, 198!

[13) J Darlington. Program transformation. In Functional
Programmming and its Applications, Cambridge University
Press, 1982

[14] J Darlington. Unification of Lepe and Functional Languaeges,
Imperial College Londen, 1383

[1S] J Darlington, M Reeve. ALICE: a multiproceasor reduction machine
for the parallel evaluation of epplicative lenguagesa. In Proc. ACM
Conference on Functional Programming Languages and
Computer Architecture, MWentworth, 1981

[16] A L Davis, R M Keller. Daia Flow Program Graphs. COMPUTER
magazine, [EEE Computer Society, Vol, 15, Ko. 2, 1882

{17] E W Dijkstra. A Discipline of Programming. Prentice-Hall, 1976

{1B] M S Feather, A system for aasisting program transformation. ACM
TOPLAS, Vol. 4, No. 1. 1982

[13] DP Frieman, D S Wise. GONS should not evaluate tts arguments.
In Prec. 3rd International Colloquium on Automata Languages
and Programming, Edinburgh University Press, 1976

[20] D Gries. The Seence of Programming. Springer—VUerlag, 1981

[21] P Henderson. Funetional Programming: application and
implementation. Prentice-Hall, 1380

[22] P Henderson, J H Morris. A lazy evaluator. In Proc. 3rd Annual
SIGACT-SIGPLAN Sympoasium on Principles of Programming
Languges. Atlarta. 1976

[23] € A R Hoare. An Aziomatic Basis for Computer Programming.
C ACM, Vol. (2. No, 10, 19869
[24] C £ R Hoare. Cemmunicating Sequential Processes. Prentice-Hall,

1985
[25] C AR Hoare. Programs are Predicates. In Mathematical Logic and
Programming Languages. Prertice-Hall, 1985

[26] C AR Hoare. Private Communication. 985

[27] P Hudak, B Goldberg. Ezperiments in Dif fused Combinater
Redution. In Proc. ACM Symposium on LISP and Functional
Programming., RAustin, 1984

[28] R] M Hughes. Graph reduction with super-combinators, PRG-28,
Oxford University Programming Research Group, 1982

[29] R i M Hughes. The Design and Implementation of Programnting
Languges. Oxford University D.Phil Thesis, 1983 (PRG-40)

[30] R I M Hughes. Paralld functional languages use less space. Oxford
University Programming Research Group, 19B4

[31] T Jhnsson, Efficient Compilation of Lazy Fvaluation. In Proc.
ACM SICPLAN '54 Symposium on Compiler Construction, SIGPLAN
Notices, Vol. 19, No. 6, 1984

[32] R MKeller, M R Sleep. Applicative Caching: programmer eontrol of
obyect sharing and lifetime in digtributed implementations of applicative

langucges. [n Proc. ACM Conference an Functional
Programming Languages and Computer Architecture, Hentworth,
1981

[33) L fott. About R. Buratall and J. Darlington’s Transformation
System. Universite Paris, 1978

[34) R A fowalski. Predicate logic as a programming language. In Proc.
IFIP. North-Holland, 1374

[35] R A Yowalski. Algorithm = logic + control. J ACM, Vol.22, 1979

[36] R A Kowalski. Logie for problem solving. Elsevier (New York,
Amsterdam}, 1979

[37] 2 Marna, R Waldinger. A Deductive Approach to Program Synthesta,
ACM TIPLAS, Vol. 2. No.i, 198D

[38] R Milne, C Strachey. A theory of programming language aemanties.
Chapman and Hall, London, and John Wiley, New York, 197¢

[33] R G Milner. A Theory of Type Polymorphism in Programming.
Journal of Computer and System Science. Vol. 17, No. 2 1978

[40] A Pettorossi. Transfermation of Programs and Use of 'Tupling
Strategr’. Informatica 77 Conference Bled Jugoslavia, 1977

(41] A Pettorossi. Methedologies for Transformation and Memoing sn
Applicaive Languages. Edinburgh University Ph,D Thesis, 19B4

[42] S L Peyton-Jones. Directions in funetional programming research.
In Distributed computing systems programme, [EEE Oigital
Electronics snd Computing Series 5. Peter Peregrinus Ltd, 1984

[43] S L Feyton-Jones. The Implementation of Functional Programming
Languapes. internal Note 1730, University College London,
1985

[44] G Plctkin. A Structural Approach to Operational Semantics, DAIMI
FN-19, Rarbus University. 1981

{45] M Reeve. The ALICE Compiler Tarcet Language. Imperial College
London, 198!

[46] 3 A Robinson., A machine oriented logie based on the resolution
principle,] ACM, Vol, 12, No. 1, 1965

110

[47] W L Scherlis. FEzpression Procedures and Progrem Dersvntion.
Stanfard University Ph.D Thesis, 1980

[48] J Schuarz. Using Annetations to make Recursion Equations behave,
1EEE Transactians on Software Engireering, Vol. SE-B, HNo. 1,
1982

[43) E Y Shapiro, A Takeuchi. Object-Ortented Programming in
Coneurrent Proleg, New Generation Computing, Val. 1, No. |,
1983

[S50] 1 H Sorensen, B Sufrin. Formal Specification and Design of a
Simple Assembler. Oxford University Programming Research Group,
1985

[31] J E Stoy. Denotational Semantica: The Scott-Strachey Approsch to
Programming Language Theory. MIT Press, 1377

(52] WR Stage, T 3 W Clarke, A C Norman. Some practical methods for
rapid combinator reduetion, In Proc. ACH Symposium on LISP and
Functional Programming. Austin, 1984

{S53) D A Turner. The SASL manual. St. Andrews University, 1976

[S4] D A Turner. A new smplementation technigue for applicative
languages. Software Practice and Experience, Vol. 3, 1973

551 D A Turner. Aspectsa of the ifmplementation of programming
languagea. Oxford University 0.Phil Thesis, 1981

[56] D A Turmer. Recursion Equationa aa a programming language, In
Functional Progremmming and its Applications, Cambridge
University Press, 1982

[S7] O A Turrer. Mirenda: a nen-sirict funetional longuage with
pelymorphic types. In Proc, Functional Programming Languages
and Computer Architecture, MNancy, 19B5 (Lecture Notes in
Computer Science 201, Springer-VYer!ag)

[58] P L Wadler. An Introduction to ORWELL., Oxford University
Programming Research Group. 1385

[S3] P L Hadler. A Splitting Headache: strict va. lazy semantics for
pattern matching tn lazy languages. Oxford University Programming
Research Group, 198BS

[E0] C P Wadsworth. Semanties and Pragmatics of the A-caleulus, Oxfard
University 0.Phil Thesis, 197]

[Bl} M HWand. Continuation-Based Transformation Strategies. J RCM,
Vol.27. No. |, 1980

ACKNOWLEDGEMENTS

[am very grateful to Richard Bird: [could not have wished fcr a more

helpful supervisor.

I have received much help and encouragement in carrying cut my research,
and should like tc thank Paul Fertig, Michael Goldsmith, Tony Hoare, Nick
Holt, Jeremy Jacob. Andrew Newman, Mike Spivey and Phil Wadler for their
support. I am alsc grateful to John Hughes, whe first intraduced me to

graph reduction.

| acknowledge the financial support of the Gcience and Engineering

Research Council of Great Britain.

