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The Pursuit of Deadlock Freedom
 

by A.W. Roscoe and Naiem Dathi 

Oxford University Computing Laboratory, 
8-11 Keble Road, Oxford OXl 3QD, U.K. 

ABSTRACT We introduce some combinatorial techniques for establishing the de4dlock 
Jnedom 0/ concurrent systems which a.re similar to the variantjinvan'ant mtthod 0/ prov­
ing loop termination. Our meth0d3 are based on the local a.n.alysis 0/ networks} wh.ich is 
combinaton'ally Jar easier than analysin.g all global states. They arc ill~tra.ied by proving 
numeroU3 e~amplu to be !nc 0/ deadlock, /lome 0/ which are lUelul cl~u:J 0/ network. 

Introduction 

Deadlock occurs in a concurrent network when DO fUI1her action can take place. Thill 
is u8u",lly because, even though each component process is in a state in which it can 
communicate, its potential communications are blocked by its neighbours. This is a. 
common probleIl;l. in concurrent systelD8 and is unique to them. A proof of deadlock 
freedom for such a system is an integral part of a total correctness proof, and is often a 
desirable first step towards the latter. 

Unfortunately, the introduction of concurrency not only introduces the possibility of 
pathological behaviour such as deadlock, but it also makes systems harder to understand 
and analyse. Because the components of a concurrent system can often ad independently, 
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there is no predetermined sequential order for its various actions. This means that 
systems can exhibit real n.on.determin.ism, or unpredictability: just because a system 
passes a test once does not mean that it will always do so. 

Ignoring the values of its variables, the number of control states in a sequential 
program increases linearly with the number of lines (the program can be llatD anyone 
line). With concurrent programs this growth becomes exponential: the program can be 
Ilat" one line in each of its parallel components. 

This observation means that any method of checking for deadlock tha.t involves in· 
specting the global states of a network is likely to be very unattractive. This paper, 
which continues the work begun in IBR2,3], describes some methods of deadlock analysis 
which only involve very local analysis of networks: usually only single processes and pairs 
of processes which communicate directly. These lead to rules for proving the absen<:e of 
deadlock which are reasonably easy to apply in practice, and also to ways of devising 
networks which are deadlock free by construction. The methods we describe are not 
complete, for it is possible to construct examples which are deadlock free for very subtle 
and non-local reasonSj it seems that a complete proof rule must involve fairly exhaustive 
checking of global states. 

The techniques introduced in this paper are closely related to the idea of using a 
"variant" to prove tennination of a loop. The wide applicability of these techniques 
is illustrated by several examples. Some of these examples are fairly general classes of 
network and establish some easy to apply design rules for building networks (of certain 
types) which are deadlock free by design. 

In the ned section we see how networks of processes are composed and learn how 
deadlock is represented. Then the simplest version of our variant technique is described 
and illustrated by examples. In later sections, we see how the results of [BR3J allow us 
to derive more powerful versions. 

We assUlD.e a certain familiarity with the veIllion of CSP described in iH], [BHRJ and 
[BRil, and the basic properties of its operators. The mathematics of this paper, like 
that of IBR2,3], is based on the failures model for CSP described in [BRI] (which is 
an improved version of that of [BHRJ). As we shall see, this model has a very simple 
representation of dea.dlock. Familiarity with the failures model will be helpful in reading 
this paper, though its basic structure is described below. The sema.ntics of CSP we use 
is that of (BRiJ and [HI, though the definition of the most important operator for the 
present paper, namely the one for composing networks of processes in parallel, is given 
below. Even though we have cast our work in this particular framework, we imagine 
that it wlll transfer rea.dily to other models of concurrency_ 

In the failures model a process is modelled as a pair (F, D). Here F is a set of failures 
or paiIll (.I', X), s being a trace (finite sequence of communications) and X being a refv.saJ 
set (set 01 communications). (s, X) E F if the process can communicate the elements 
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of 8 in sequence and then fail to communicate if its environment offers the set X for it 
to choose from. D is the set of traces on which the process might diverge. A process 
diverges when it performs an unbroken infinite series of internal actions. [n a concurrent 
system where internal COntlnunications are hidden for the environment this will often 
take the form of livdod; where the components of the network communicate infinitely 
among theIIUlelves without ever perfonning an external communication. 

From the point of view of the user, a diverging process is deadlocked because it will 
never communicate with him again. (In fa<::t it is worse because the user can never detect 
that this is the case.) However, divergence is operationally quite different from deadlock: 
this means that different techniques are required for analysing a system for potential 
divergence and deadlocks. We will therefore assume that aU the processes we meet are 
alrea.dy known to be divergence free. Thus each CSP process P we consider is completely 
described by its set offailures 1[PJ (sometimes written failures (P». 

A NOTE ON ALPHABETS The CSP parallel operator depends crucially on the idea 
of an alphabet: each process in a network has an alphabet of communications, and no 
communication can occur until all the processes with it in their alphabets are willing to 
participate. 

Two methods have been used in the literature for introducing these alphabets. In, 
for example, [BHR] and [BRl,2] these were introduced explicitly into the parallel oper­
ator: thus (PAIIDQ) was the parallel composition of P and Q, with alphabets A and B 
respectively. However in [Hj, all processes are defined in such a way that they have an 
alphabet (usually, though not invariably, the set of communications which they might 
wish to make). Thus there is no need to introduce explicit alphabets in the parallel 
operator. en this paper we will follow /BJ. The alphabet of the process P will be denoted 
ClP. The traces, refusalseb and divergence traces of P are all composed exclusively of 
elements of o.P. 

Deadlock and networks 

This section summarises the basic facts we will need to know about the representation 
of deadlock and networks. 

A process P can deadlock after the trace s if and only if (S,ClP) E 1~PJ. ThuB a 
process is deadlocked exactly when it must reject everything the environment caD offer 
it. This explains the following definition. 

Definition. A process P is said to be deadlock free if and only if 

V. E (apr· (•• aP) '" T!P] .0 
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This is a very clear formulation of deadlock freedom and, because of ita simplicity, it 
is the one we shall use. In practice one might wish to complicate it slightly by allowing a 
process that has a.lready terminated successfully to do nothing. In order to accomodate 
this more complex form, small modifications would have to be made to most of the 
definitions and results that follow. But none of the example processes we use can ever 
terminate, so we will not make these modifications. 

The following two laws are often very helpful in establishing that a process is deadlock 
free. DI is useful in establishing the dea.dlock freedom of the individual processes that 
make up networks. It will allow us to deduce the deadlock freedom of all the component 
processes of our example networks. 

(Dl) Suppose the definition of the process P uses only the following syntax: 

P::= SKIP I. ~ P IP;Q IPOQ IPnQ I/(P) IpII'P·P 

(where p denotes a process variable), but P contains no free process variables. If further 
P is divergence free l and has every occurrence of SKIP directly or indirectly followed by 
a _jF' (to prevent successful termination). then the process is deadlock free. 

(D2) U P\C is divergence free, then it is deadlock free if and only if Pis. 

D2 observes that, as far as deadlock is concerned, it does not matter whether a 
process' possible action is external or internal: provided it ha.s any action available, it is 
not deadlocked. 

Let us now turn our attention to cases where many processes are working in parallel. 
If, for each i E {I, 2, ... , n}, PI is a process, then we denote their parallel composition 
by . 

II Pi or P,IIP,II···IIP•. 
i=1 

The alphabet of 111::=1 Pi iSl.J'i=l aPi, and a communication a only occurs when every Pi 
such that aE exPj executes it. Thus the communications which lie in more than one exPi 

can be regarded as communications between the relevant Pi, while those that are in only 
one aPi represent that P;'s communications with the environment. When the Pi are all 
divergente free this operator is defined: 

11 II P'] ((" UXi} I' E (U aP,r " (.faPi' Xi) E 11p,n, 
i=l .=1"""1 

where s~aPi denotes the sequence fonned from 8 by removing all elements not in aPi • 

If one or more of the Pi can diverge the definition is slightly longer. Note that because 
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Pi must co·operate in every communication in exPi, if it can refuse something in exPi , so 
can the whole process. 

The parallel operator is associative in that, when 1 ~ n < m, 

" ( II P,) II ( II Pi) = II Pi 
i=1 ;=n+1 ;=1 

and symmetric, in that PIIQ = QIIP. 

A network V is an indexed set {Pi 11 ~ i ~ N} (N ~ 1), where each Pi is a process. 
The corresponding process 1I~=1 P; is denoted PAR(V). We say that V is deadlock free if 
PAR(V) is. Note that, in view of the associative and symmetric properties of II, we have 

P AR(V) = PAR{PAR(U,) 11 ~ i ~ M} 

whenever {U1 , ••• , UN} is a partition of V. 

We will generally restrict our attention to networks where no event requires the 
participation of more than two processes: thus all communication is point to point. 
Such networks, where aP; n aPj naP, = 0 whenever i, j and k are all distinct, will be 
termed triple.dis;"oint 

A .!tate of a network V = {Poll ~ i ~ N} is a pair q = {s, (XII ... llXN)) (which 
we will sometimes abbreviate (s,X)) such that s E (Ui;l aPit and (s~exp;,X;) E 1~Ptl 
for every i. Since the more each individual process refuses! the more likely deadlock 
becomes, it is sufficient, when considering potential deadlocks, to consider states where 
each Xi is maximal in refu.9als(P;a.fter(,,~aPi))' Therefore, throughout Ihis paper, we 
will assume for convenience that all states'have this form. We will denote the maximal 
failures of a process P, in the sense above, by 1(P]. 

A state of a network shows us what each individual process is refusing. Clearly 
every maximal failure of a divergence free network corresponds to some state and vice· 
versa. In particular the network can deadlock on trace s if and only if lhere is a state 
6 = (s, (Xl"'" X ...... )) such that 

N N

UK, U"P, . 
i=1 ;=1 

Such states will be termed deadlock state". 

With every network we may associate a graph, termed the communi~ation graph., in 
the following way. Each process P; identifies a unique node in the graph, and there is an 
edge between Pi and Pj (i i- j) if and only if aP; n aPj i- 0. Thus two process are joined 
in the graph if and only if there is the possibili~ of communication between them. 
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H W is a not necessarily strict, nonempty subset of the network V, we will term it a 
subnetwork. Notice that some of the communications of the elements of W which were 
with other elements of V may become external communications of W (i.e., communi­
cations of a single process with the environment). We shall say that a property of a 
network is keredilary if it holds of all its subnetworks. For example, a network is hered­
itarily deadlock free if none of the processes represented by its subnetworks (including 
itself) can deadlock. Notice, for example, that a.n)' network which is triple-disjoint is 
hereditarily triple-disjoint. 

The vocabulary of the network V = {P;ll ~ i S N} is defined to be U{aP;naP, li i­n: the set of V's "internal communications". This is an important set from the point of 
view of deadlock analysis because it is the set of events for which agreement is necessary. 
At any time when V is deadlocked it is clear that no P; can be willing to communicate 
outside this set. Note that if W is a subnetwork of V, then the vocabulary of W is a 
subset of that of V. 

The parallel operator we have defined does not conceal the internal communications 
of a network: in PAR(V} a communication in the language of V remains visible to the 
environment. However it is often desirable to conceal the internal communicationej this 
is done, for example, in the chaining operator "»" of esp. Indeed it is common pradice 
(as is the case with ::so) to hide internal communications as the network is put together, 
so that networks become interleavings of the parallel and hiding operators. We already 
know, by (D2) above, that hiding the internal communications would make no difference 
if done at the outermost syntactic level. The following law shows that it does not matter 
whether the internal actions of an element of a network are hidden immediately or at 
the outermosi level. 

(D3) If en aQ = 0, then (P\C II Q) (P II Q)\C. 

Using this law, the associative law for II and perhaps some renaming of internal 
communications, any finite parallel system of processes with internal events hidden at 
any stage can be proved equivalent to a network with a single hiding operation at the 
outermost level. Thus, from the point of view of deadlock analysis, all such networks are 
equiva.lent to a network without <;l.ny hiding at alL 

We will say that the network V = {P;! 1 SiS N} is bU3y if and only if each 
component process Pi is deadlock free. 

We will concentrate on the deadlock analysis of triple-disjoint, busy networks. In 
such networks deadlock can only occur when every process is willing to communicate 
with some neighbour or neighbours, but none of these neighbours is wilting to respond. 
These local situations can easHy be detected in the global states of a network. 

Definition. Suppose a = (s, X) is a state of the network V = {Pi 11 S i ;:;; N}. 
Then we call (i, i) a request (respectively a stron.g request) of the state if i i=- i and 
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(aP; - x.. )n aPj :F 0 (respectively 0 i- (aP; - Xi) ~ aPj). Thus {i, i} is a request when 
Po' is trying to comrn.unicate with Pj, and a strong request if Pi can only communicate 
with Pj. 

We say this request or strong request is ungranted if additionally 

oPinoPj ~XiUXj, 

i.e., if Pj is unwilling to respond to Po's request. One can regard ungranted requests as 
being the building blocks of deadlock. 

Sometimes we are only interested in ungranted requests when neither process is able 
to communicate outside some set A. (Often this will be the vocabulary of the network.) 
Thus we define (i, j) to be an ungranted request or strong request with. respect to A if, 
in addition to the above, 

(aP; - X;) u (aP; - X;) <; A. 

We will write 
Pi~Pi or Pi~Pi 

when (i, j) is a request or strong request of u. Similarly we will write 

P"~",,.Pi or P,,~.Pi 

when (i,i) is a ungranted request or strong request of u, and 

Pi~Pj or Pi~.Pi 

when (i,i) is an ungranted request with respect to A. 0 

Notice that if A ~ A/, then Po'~Pi => Pj ~.Pi' and that Pi~.PI $} Pi~.Pi 
when aP; U aPi ~ A. (Of course, similar observations are true of strong requests.) 

Definition. Let {P,lI :$. i ~ N} be a triple disjoint network with vocabulary A. Pi is 
said to be blocked in a state u if 

1. Pi ~ Pj for some j, and 

2. Pi~. Pi whenever P; ~ Pi. 

Lem..ma 1. If u is a state of the triple disjoint, busy network V, then q is a deadlock 
state if, and only if, every process in V is blocked. 

Proof. This follows easily from the definitions. 0 
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Definition. In the network {Pi 11 ~ i ~ N} with vocabulary A, the sequence of distinct 
indices (io, ... , i,_I) with r 2': 3 is tenned a cycle of ungranted requests if, for each j, 
(li,li+l) is an ungranted request with respect to A (where addition is modulo r). 0 

We have stipulated that all cycles of ungranted requests must have length at least 
three. The length two case, where each of a pair of processes asks the other for a 
communication, but where they cannot agree on anything, is sufficiently different to 
deserve speciallreatment: see section 4. 

It will turn out that these cycles are symptomatic of deadlock in large classes of 
networks. The reason for stipulating that all the ungranted requests are with respect to 
A is that, if one of the Pi can communicate outside A, the network cannot be deadlocked. 

A cycle in a communication graph will be a sequence of at least three distinct pro­
cesses, each of which is joined to the next by an edge and where the first is joined to the 
last. Clearly each cycle of ungranted requests corresponds to a cycle in the communica. 
tion graph. 

It hall long been known that trees {networks with no cycles) are especially easy from 
the point of view of deadlock analysis. For example a number of simple conditions were 
introduced in IBR2,3] which ensure the deadlock freedom of trees. Perhaps the most 
useful of these conditions is described in section 4 of the present paper. It is the purpose 
of this paper to present techniques for proving deadlock freedom even in networks with 
ma.ny cycles. 

3 A proof-rule for deadlock freedom. 

We are now in a position to present the simplest form of our main result, which establishes 
the validity of a technique for proving deadlock freedom. The idea behind our method 
is simple and derives from methods used to prove the termination of loops in standard 
programming languages. We assign to each process in a network a function which assigns 
values to the states of that process. If it can be proved that whenever one process is 
waiting for another, the value of its state must be at greater than that of the one it is 
waiting for, the network must be deadlock free. This is because in a deadlock state one 
would, starting from any process, be able to Construct an infinite sequence of processes 
whose states have strictly decreasing values. This means that all the processes in the 
sequence are different, which is clearly impossible in a finite network. We can think of 
these functions as being the variant of the network. 

Theorem 1. Let V = {Pi liE {l, ... ,N}} be a triple·disjoint, busy network with 
vocabulary A. Suppose that there exist functions 

f; : tiP;] ~ II (;E{I, ... ,N)) 
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where (IT. » is a partial order. such that if C1 = (s, X) is any state of V then 

Pi~. Pi "* h(S~QPi' Xi) > h(s~QPi' Xi) . 

Then V is deadlock free. 

Proof. Suppose that V is as in the statement oUhe theorem and 6 = (s,.x.) is adeadlock 
state. 

For each i we may, using Lemma 1, select an index r(i) such that P;~ P'(ij. 

Necessarily, then, fo(s~aPi' Xi) > Jr(il(S~aPr(iltXr(;))' 

Now observe that each of the indices i, r(i), r(i), ... , r"'(i), ... is distinct because, 
by a trivial induction, if m < n. then 

f.o(;)(,faP.o(;), X,oUI} > f."(;)(,faP."UI> X."U) . 

This contradicts the fact that our network is finite. 0 

Unfortunately the preconditions of Theorem 1 are not quite the ty~e oi completely 
local conditions we are seeking for deadlock freedom. The problem is that we ~e required 
to check every sta.te of the whole network. rather than the states of small subnetworks. 
However, it is clear that the condition is essentially one on pairs of proce~ses and it is 
easy to derive purely local properties which imply it. 

Lemma 2. Suppose V = {Pi liE {I •...• N}} is a triple-disjoint, busy network with 
vocabulary A, and that (IT, » is a partial order. Then if the functions 

/;: tlP;1 ~ n (. E (l, ... ,N}) 

have the property that, whenever C1 = {s, (X;, Xi)) is a state of any two-element subnet­
work {P;,Pi } (i ~ j), 

P;~.Pi ~ j;(sfaP;,X;) > f,(,faP"Xi )· 

Then V satisfies the conditions of Theorem 1 (with functions j;). Furthermore this is 
also true of every subnetwork of V. . 

Proof. The main part of this result follows trivially because any ungranted request in 
V gives rise to an ungranted request with respect to A in {Pi. Pi}' The conditions of this 
lemma are hereditary for, since the vocabulaxy A' of every subnetwork of V is a subset 
of A, any ungranted request with respect to A' is also one with respect to A. 0 

Rule 1. U V is any network satisfying the conditions of Lemma 2. then V is hereditarily 
deadlock free. 0 

Rule 1 provides us with a technique for proving deadlock freedom where the checking 
of preconditions is entirely local: we have to verify that each P, is deadlock free, that 
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no communication is in the alphabet of three processes, and that each pair of processes 
which can communicate satisfy the lldecreasing variant ll condition. The only time when 
one needs to consider the whole network is while inventing a suitable system of variant 
functions. 

In general, variant functions are associated with the maximal failures of processes, 
however we wiU often restrict them to just traces, as these are simpler to work with and 
almo15t always sufficient: for deterministic CSP processes, there is no difference. 

The guiding principle of our work has been to develop methods which are reasonably 
easy to apply in practice. (Hence our demand for purely local preconditions.) Therefore 
an important part of this paper will be a series of worked examples to illustrate their 
application. The following ~·hree examples illustrate the applicability of the Rule I, which 
is our most basic technique. The finlt two are applications to fairly specific systems. The 
third illustrates how an existing theorem on deadlock freedom can be extended using our 
techniques, and in turn how this extended result can be used to establish straightforwll.rd 
ways of constructing deadlock free networks. 

Example 1: Self~thned version of a systolic array. A common type of systolic array 
is one where there is a rectangular array of processing elements, each of which repeatedly 
inputs a pair of elements from its "up" and "left" channels, and then outputs values to 
its "bottomll a.nd "right" channels and processes its present values. Thios is sometimes 
implemented with a distributed dock signal, which ensures that the processing elements 
proceed in exa.ct step. Usually it will be necessary to use some device such as triangles 
of delay elements to ensure that the correct painl of data elements meet. 

However, if the processing elements are described as CSP processes (with llhand­
shake" conununication) there is no need either for a distributed clock or for the delay 
elements; the network becomes self-timed. (See [HI for an example of a matrix multipli­
cation algorithm treated in this way.) Which implementation is better will depend on 
the application: one needs to weigh the overheads of handshake communication against 
the overheads of distributing a dock, introducing a delay element, and needing to slow 
the clock to the longest time any element might ever take to complete its computation. 

By moving to the self·timed version of such an algorithm one loses the comforting 
predictability of the tightly synchronised version: there is no longer any way in which 
we can predict what state the network will be in at any time. We need to analy15e the 
patterns of communicating behaviour that can arise. Fortunately these are essentially 
independent of the particular function being computed by the array, and BO it is Bufficient 
to examine a paradigm array where all details of the data being processed are omitted, 
150 that only the synchronisations between processes remain. The paradigm processing 
element is described by the CSP process 

P(up, down, left, nght) = (up ~ SKlP II left _ SKIP); 
(down ~ SKlP II n"ght - SKIP); 
P(up, down, If/t, n"ght) 
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Figure 1: Matrix multiplier array 

The array is then formed by setting 

P;,i = P(V;,i' V;+I..i,h;,i' hi,i+d and aP;J = {V;,.ilvi+l..i,h'J,h',i+d 

and forming the triple disjoint, busy network {P;"j 11 s: i $ m, 1 $ j s: n}. Even though 
the individual elements of this network are quite simple, because they are free to choose 
their own rates of progress the number of possible behaviour patterns of the whole is 
very large indeed. It is by no means immediately obvious that none of these can lead to 
deadlock, but we can prove deadlo~k freedom using our technique. 

Let us consider the operation of the subnetwork {PiJ , Pi..i+1}. Observe that aP',i n 
aP",i+1 = {h;,i+I}, and that each process communicates this event exactly once on each 
cycle: Pi,i as either the third or last event, Pi,HI as either the first or seeoed. Therefore 
the two processes can never be more than one cycle apart. It is easy to see that if (s, XJ 
is a state of {P;J, PiJ+I} and Pi,i~. Pi,HI then P;,J' must have completed one more 
cycle than Pi,j+i' More precisely, we have 

I,f"?;,il ~ 4 x !sf{h;J+.ll + 2 and l,f"?;,H>! 5: 4 x Isf{h;J+,ll- I 

as Pi,J' must have executed at least two events of its cycle number IsHh',J+I}1 + 1 before 
it can wait for h i •i +1 and Pi,J'+l cannot have comp'leted cycle number IsHhi.i+I}I. Thus, 
combining the above inequalities, 

3 5: l,f"?;JI - l,fa?;J.,I, 
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and hence 
IsfaP'JI > [sfaP'J+.1 + 2 

which in turn implies 

IsfaP'JI + 2 x (i + j) > IsfaP'J+.1 + 2 x (i + j + 1). 

"1 'f P. (•.,l) P. bFor Simi ar reasons, I i ....+l --+. ".,i t en 

IsfaP'J+.1 ? 4 x !sf{h'J+1J! and JsfaP,.il ~ 4 x Isf{h'J+.}1 + 1 

and hence 
? IsfaP'JI - /,faP'J+lI. 

This is easily seen to imply 

IsfaP'J+l1 + 2 x (; + j + I) > HaP'JI + 2 x (i +J). 

Clearly the cases dealing with ungranted requests between PiJ and Pi+l,j are sym­
metric, the common event in their alphabet being I!i+l ..... Therefore in this case if (s,X) 
is a sta.te of the subnetwork {Pi,j, P;+l,j} 

p..'.,·~.Pi+IJ => IsfaP'JI + 2 x (i + j) > [sfaPi+'JI + 2 x (i + 1 + J) 

P'+IJ~.P'J => IsfaPi+1JI + 2 x (; + 1 + j) > IsfaP'JI + 2 X (i + j). 

Thus defining ji,j : ~mcf!$(Pi,j) - N where 

/'J(s) = lsi + 2 x (i + j) 

we have that, in general, if Pi'/·:.:E.P", then /;,J.(S~crPi,j) > j',l{8~crP"I)' We conclude 
that the network is deadlock free. 

The pa.rallel input, parallel output scheme for relaying information that we used in 
this example is probably the most efficient in terIIll!l of avoiding delays to processing. 
We will see in Example 3 that it is in itself a powerful tool for ensuring that networks 
broadly similar to the present one are deadlock free. 

It is enterta.ining to consider variants on the present system where the parallel in­
put/output scheme is replaced by another. In fact no rectangular array where, on every 
cycle. each process always does both its inputs before both its outputs can deadlock: 
this is shown by considering a network made up of elements with the following fonn. 

P'(o,. down, left. right) =	 ((op ~ left ~ SKIP) n (left ~ op ~ SKIP)); 
(( down ~ right ~ SKIP) n (right ~ down ~ SKIP)); 
P'( up, down, left, n'ght) 
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(PI may, on each cycle, choose which input channel it wants to communicate on first, 
and then which output channel.) Since these are the most nondetenninistic processes 
satisfying the above specification, if a network composed of P's is deadlock free l so must 
every such network. 

The construction of the variant for the network of P's is left as an exercise to the 
reader. He will find that the variant given above will only guarantee non-strict joequality 
between all linked pairs of nodes. In fact, because this network is in some Bense only 
marginally deadlock free. and because the nodes are non-deterministic in a crucial way, 
it is necessary to define the variant functions for pI network in terms of tbe maximal 
failures of the nodes, not just their traces. 

The fact that this nondeterministic version is finely balanced on the edge of deadlock 
is emphasised when one considers the corresponding tbree-dimensional network. This 
is a three dimensional rectangular array of processors where, on each cycle, each inputs 
on channels up, left and front (in nondeterministic order) and then outputs on down} 
righ.t and back. When we know that the two-dimensional network is deadlock free it 
is surprising to discover that network can easily deadlock. (The reader might enjoy 
constructing this dea.dlock in a 2 x 2 x 2 array.) 0 

In the above example there is clearly some sense in which we can regard /;A8~aPiJ) 
as measuring the &.lamount of work" PiJ has done: thus one process can only be waiting 
for another when it bas progressed further in its calculations. Note, for exa.mple, that the 
/iJ are monotonic in the length of trace. This is a useful a.nalogy for this network and 
can assist in the construction of the variant functions for similar networks. However, 
as is illustrated by the next example, our technique can be applied in quite different 
circumstances. 

Example 2: The corredneS8 of • resoUl'Ce allocation protocol. Suppose that 
there are a number of "useri' processes {Pi! 1 $ i :5 N} which compete for the resources 
{R j 11 .$ i .$ M}. (No resource may be used. by more than one Pi at a. time.) A 
well-known method of avoiding deadlock in this system is to place a linear order on the 
resources, which we can assume is that on the indices {I"",M}, and ensure that no 
process ever tries to acquire a resource with higher priority than a resource it already 
holds. Here will show that this result ca.n be proved simply using Rule 1. 

We first need to define the system a. little more precisely. We can define the resource 
processes 

Rj = i.get.i; {l •... ,N}-+j.rel.i -+ R j 

(aR j = {i.gel.i,i.rel.' 11 $ i:$ N}). We will assume that a.ll the Pi are deadlock free, 
that aPi n aPj = 0 whenever i "# i and that aPi n aRj = {j.get.i,j.rel.i}. Further, 
whenever s E trac:es(Pi) we will assume 

s~aRj ::; (j.geU,j.rel.i)n for some n 
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(which means that Pi never tries to release Ri when'it doesn't hold it, or to acquire RJ 

when it does hold it). Thus, when s E traces(Pi ), we can define the set oC resources Pi 
"'has" by 

'i(') ~ {j II,f{j.g,t.ill > I,f{j·",l.illl . 
We can think of the above conditions as setting up a "'reasonable'" system oC resource· 
using processes. In this Cramework we can restate the protocol as Collows: 

,(j.g,t.i) E t..",(Pi ) 1\ k < j ~ k i< ,,(,) • 

It is clear that, under our assumptions, the network V = {Pi 11 ~ i $; N} U{Ri 11 $ 
j $ M} is busy and triple disjoint. As our parlial order n we choose {I, 2, ... , 2M, 2M+ 
1, big}, where the natural numbers have their usual order and big is maximal in n. We 
define Cunctions 'i: traas(Pi ) _ n and gi: traces(Ri) - IT as Collows: 

j;(,j ~ 2 x min({M + 1} U 'i(,j) - 1 

gil') ~ big if lsi is even 

= 2 x j if 1'1 i. odd. 

(Note that, when s E traas(Ri)' lsi is even when the resource is "'Cree" and odd when 
it is held by some Pi') It is a trivial matter to verify that these functions satisCy the 
required condition Cor Rule 1; we may therefore conclude that the network is deadlock 
free. 

Example 3; Networks of cydie elements. In [OJ, Dijkstra and Scholten state and 
prove a theorem concerning the deadlock Creedom oC networks in which every element 
communicates with its neighbours in a strict cyclic order. We show here that an extension 
of this resull can be proved via Rule 1. The following is the theorem of [DJ re-phrased 
to reflect the terminology of the present paper. 

Theorem [D]. Suppose each of the processes in the triple-disjoint, conflict Creel net­
work {Pi 11 $ i $ n} communicates with all its neighbours in strict cyclic order: Pi 
communicates with the processes with index (Ci,lI"" Ci,m,) (where Ci.l, ... ,Ci.m. are all 
distinct) unendingly in cyclic order starting with Ci,l' Then the network is hereditarily 
deadlock free if and only if there is no cycle in the communication gra.ph 

{ao, ... , am_d (a.i all distinct, m > 2) 

where, for each j, process aj wants to talk to process ai+1 beCore it is prepared to talk to 
ai-I (arithmetic being modulo m). (In other words, if Sf and Pi are defined to be such 
that ci" 

l 
= 0i+1 and ci.SJ, = OJ-I then Pi > si Cor all j E {D,l, ... , m - I}.) 0 

Co"ftid free ol'twork~ are deihlI'd formally at the beginiog of the next section. Es~entiaUy ~hey are 
networks where DO pair of processes call request a communication of each. oth.er ... ichout bl'ing able to 
agree 00 one. 

14 

I 



We strengthen this result by replacing the cyclic communication with single processes 
by cyclic parallel communications with groups of processes in the style of Example l. 
Formally we say that a process communicates in parallel with the nonempty subset C of 
its neighbours when, before it can proceed, it must communicate with each element of 
C exactly once and furthermore, until this is finished, always requests a communication 
with all elements of C with which it has not yet communicated. Typically this would be 
implemented by the CSP construct 

II ap ~ SKIP 
PEe 

Where ap E aP for each P E C. 

Theorem. Suppose each of the processes in the triple-disjoint, conflict free network 
{Pi) 1 :5 i :5 no} communicates with· each of its neighbours once on every cycle by 
communicating in parallel with subsets of them in cyclic order. Thus there is some 
partition {C",II'" ,Ci ,,",} of the indices of each P;'s neighbours such that, in strict and 
unending cyclic order, Pi communicates with the processes with indices in each Ci,J' in 
parallel. Then the network is hereditarily deadlock free if and only if there is no cycle in 
the communication graph 

{ao, ... , a,"-Il (a; all distinct, rn> 2} 

where, for each i, process aj wants to talk to process aj_l before it is prepared to talk to 
aj+l (arithmetic being modulo rn). (In other words, if Sj a.nd Pi are defined to be such 
that aj+1 E Cj'.J and ai_I E Ci-Sl/ then Pi < Sj for all i E {O, 1, ... , m -I}.) 0 

Proof. The "only if It part of the proof is essentially the same as that in IDJ: one simply 
observes that any cycle with the property above is a subnetwork that ca.n (and does) 
deadlock. None of the members aj of the cycle can agree to communicate with its 
successor aj+1 until it has communicated with its predecessor aj-I: therefcre no element 
of the cycle ca.n be the first to communicate with its successor. This means that after 
a few communica.tions the subnetwork is bound to find itself in the state where each 
process is waiting (exclusively) for its predecessor. Indeed (as is observed in ID]), if the 
network is connected a cycle of this type must eventually deadlock the whole eystem. 
The number of cycles completed by a pair of neighbouring processes differs by at most 
one, as they share one event on each cycle. Hence in a connected network with a cycle of 
the type described, no process can complete more cycles than the diameter of the graph. 

To prove the "ifIt part we will define a relation on the (undirected) edges of the 
communication graph. We will denote the edge between Pi and Pj by the two element 
set {i, i}. For all i and k, i S rni we define 

{i.a} ..: {i, b} whenever a E CiJ,b E C i ,. and i < k. 
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Thus the edges joining each process to its neighbours are "ordered" according to the 
order in which Pi fint addresses them, with no order between edges along which Pi 
communicates in parallel. Note that, because no two processes have more than one edge 
in common, -< induces a partial order on the edges surrounding each individual Pi. 

Now let <J be the transitive closure of -<. Claim that <J is a partial order (on the set 
of all edges of the graph). This could only fail if there were a sequence (necessarily with 
length> 2) of distinct edges 

{iod'o} -< {il,jtl-<··· -< {i""jm} 

where io = im ao.d jo = jm' 

Since each pair of edges ordered by -< have a node in common, and since -< is transitive 
on edges all of which have a particular node in common, we may assume that 

O~r<m => J.=i.+1 • 

(Any edge which has the same node in common with each of its neighbours may be 
removed from the sequence.) 

Consider tbe cycle of processes given by (io, ill' .. , i m _ I). For each k we have {iI:, il:_l } -< 
{il:,il:+a} (arilhmetic modulo m). Thus, if we define 81: and PI: as in the statement of the 
theorem, we bave SI: > PI: by definition of -<. This contradicts the assumption that no 
such cycle exi9ts. Hence <J is a partial order. 

Since every partial order can be extended to a linear order it follows that there is a 
function 9 from the edges of the graph to the open interval (0, 1) such that 

{i,f} <I {k,/} => g{i,f} < g{k,/}. 

Now de~ne functions Ii : trace,,(Pi ) - R by 

!;(.) = [~J + m••{g{;';} 13. E "P; .•(.) E tr.e..(P;)} 

where N i is the number of neighbours of Pi and [:tl denotes the greatest integer less t.han 
or equal to :to 

In other words, /;(.9) is the number of complete cycles that Pi has executed plus the 
greatest value of any edge over which it can communicate next. Note that if Pi has 
complete<! n cycles then n < li(s) < n + L 

Consider the interaction of any pair of neighbouring processes {Pi. Pi}. By our as­
sumptions they share exactly one communication on every cycle. Hence if Pi~. Pj it 
is clear that either Pi and Pi have completed the same number of cycles but that Pj has 
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not yet reacb.ed the point in its present cycle where it can communicate with Pi, or Pj 
has completed one less cycle than Pi. In the latter case it is clear that, if P; is on cycle 
n, then 

f;(s~aP;) > n > /;(s~aPi) 

which establishes the desired inequality. 

So suppose that both processes have completed n cycles. Since Pi can communicate 
with~' on its next step We have from the definition of f; that /;{S~O!Pi) ~ n+ g{i,j}. 
On the other hand we know that Pi has not yet reached the point where it can com­
municate with the set of its neighboul"8 that includes i, so that every event which it can 

. communicate next belongs to some aP* with {i, ok} --< {i, I}. The definition of h then 
tells us that f;(s~ctPj) < n + g{i1j}. Thus the inequality of Rule 1 is satisfied in this 
case as well. We may thus conclude that the network Is deadlock free. 0 

This result has a number of useful corollaries, three of which are listed below. They 
all illustrate the power of parallel communication as a means of avoiding deadlock. 

Corollary 1. If a network of the type described in the statement of the above theorem is 
modified by replacing some of the P; by processes which are identical except that all the 
commullications in some consecutive groups of communications now occur in parallel, 
deadlock cannot be introduced. 

Proof. Modifying a network in this way can only serve to make the relation --<, and 
hence the partial order <J I smaller so that no cycle of the type described in the statement 
of the theorem can be introduced. 0 

Corollary 2. If, in a network of the type described in the statement of the theorem
l 

each process does all its communication on each cycle in parallel, then tha.t network is 
deadlock free. 

Proof. In such a network the relations --< and <l are empty. 0 

CoroUary 3. Suppose V is a network of the type described in the theorem on which 
there is a partial order on the elements of the network such that every pair of neighbours 
is comparable. (In a network laid out geom·etrically this might be the partial order 
induced by the z-coordinate of the processes' positionsj the comparability condition 
meaning that there is no direct link between two processes with the same :z:-coordinate.) 
Suppose further that each process is designed so that on each cycle it communicates with 
all its neighbours less than itself in parallel. (The order of its communications with those 
greater than itseU is not specified, and neither is the relative order of the parallel block 
within these communications.) Then the network is deadlock free. 

Proof. Any cycle of the type described in the statement of the theorem would necessarily 
have one or more maximal elements. So suppose Pi is a maximal element l and its prede­
cessor and successor in the cycle are Pi and H,. On the one hand, since by assumption 
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Figure 2: A typicalleft-then-right system which Corollary 3 proVes deadlock free 

both P j and P" are less than Pi, the latter communicates (on each cycle) with Pj and P" 
in parallel. On the other hand (by the properties of the cycle) P, needs to communicate 
with P j before it can first communicate with P". This gives a contradiction, proving the 
Corollary. 0 

One case of this corollary is where each process cycles between communicating with 
all its left-hand neighbours in parallel, and all its right-hand neighbours in parallel. 
Even though the right-hand parallel communication is not strictly necessary to achieve 
deadlock freedom, we can expect it to improve efficiency. Note that the network of 
Example 1 b.Us exactly into this category. (The partial order is that induced by i + j.) 
Often, as in Example I, the communications to the left will be inpub and those to the 
right outputs. ]0 this ca.se the outputs at the extreme .ight of the network will correlate 
exactly with the inputs at the extreme left: the first output on each channel is produced 
by the first group of inputs, and so on. 

lt is at first sight surprising that some networks proved deadlock free by Corollary 3 
are so (even networks of the very restricted type described in the last paragraph). For 
example the one in Figure 2, where there is no clear division of the processes into "levels", 
meaning that some parts of the network appa.ently want to go faster than others. 

Later, when the necessary machinery is available, we will be able to generalise Corol· 
lary 3 a litne. 

It should be possible to discover further extensions to the Theorem above, and also 
others in a similar style, Hopefully these will lead to more results like the three cOlOllaries 
above, which have the g.eat virtue of being simple to apply in practice. 0 (End of 
Ex&=pJ.3) 

Rule 1 is strong enough to prove the dea.dlock f.eedom of many systems in addition 
to those shown above. It can be used to prove the deadlock freedom of the "token 
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passing ring" system of [BR2]. (Here the fact that ungranted requests need only be in 
the vocabulary of the network is crucial.) Also it can be applied to various versions of 
the "dining philosophers", including the one treated using Rule 2 in the next section. 

However there are many networks to which it cannot be applied. There are networb, 
like the dining philosophers (all of whom are, say, right· handed) with a "butler" process 
who regulates the number of philosophers who may sit down, which though deadlock 
free are not hereditarily deadlock free. (After the removal of the butler, this system may 
deadlock.) Secondly there are networks where a pair of processes can each simul~aneously 

be willing to communicate with each other without there being any joint communication 
possible. (Under the conditions of Rule 1, each process would need a variant smaller 
than the other.) The following theorem identifies precisely those networks to which Rule 
1 can be applied, its proof is in the same vein as that of the main theorem in Example 3. 

Theorem 2. Suppose V = {Pi liE {I, ... , N}} is a triple-disjoint, buay network 
with vocabulary A. Let IT = U:;'I(j~P..1x {ill. Define the relation >- on TI as follows: 
(s,X,i) >- (~,Y,j) holds whenever there exists a state (J = (u,{X,Y)} of {Pi,Pj } such 

that u~aPi = s, U~ClPi = t and Pi ~ Pi. Then V can be proved deadlock free by Rule 
1 if, and only if, the transitive clOlmre of >- on Il is a partial order. 0 

Proof. Let Do be the transitive closure of the relation >- on II. Firstly, let U8 assume 
(II, 1» is not a partial order. This can only be if there is a sequence 

(so,Xo,io) >- (sl,XlI id >- ... >- (sm,Xm,im) 

where So = Sm, X o = X", and io = i m • Now, if RUle 1 can be used on V, by the properties 
of the variant functions and the definition of >-, we would have 

li~(SO,XO) > h{s"Xd > ... > lim(S""Xm) 

and hence that f;~(SOIXO) > 1,'o(so,Xo), which is a contradiction. ThUll, if (11, 1» is not 
a partial order, Rule 1 cannot be applied to V. 

Now, let us assume that (Il, Do) is a partial order. Then define functions 

f;: t~P;1 ~ tIP;) x {i) by f;(s,X) = (s,X,i). 

It is easy to verify that, using (TI, t» as the partial order required by Rule I, the functions 
Ii are in fact variant functions. Hence, if (Il, 1» is a partial order, it is pOBsible to prove 
V deadlock free by Rule 1. 

So we conclude that V may be proved deadlock free by Rule 1 exactly when (II, 1» 
is a partial order. 0 

Note that when Rule 1 fails, from the theorem above, there exists a "local cycle of 
ungranted requests". However, this does not necessarily imply t~e existence of a global 
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state in which there is a cycle of ungranted requests (although 'he converse is true). An 
example of such a network ill the mesllage passing ring in IBR3J where each element is 
a restricted double buffer. This network is deadlock free, has no global state in which 
there is a cycle of ungranted requests but does have local cycles that preclude the use of 
Rule 1. 

Having eitablished the type of networks which Rule 1 encompasses, the rest of t.his 
paper is devoted to extending our methods to wider classes of network, and to developing 
an understanding of which networks are liable to be susceptible to a given technique. 

'" Networks with conflict 

The notionsof conflids and strong conflids betweell pairs of processes were introduced in 
IBR3], and ILsed to prove results about deadlock. In this section we summarise the main 
ideas from ilie earlier paper and show how, by incorporatillg these ideas into our present 
theory, we (an make our proof rule both easier to apply and more widely applicable. 

Deflnition. Suppose A is a set of communications. The processes P, q are said to be in 
conflict wit~ rellptct to A in the state (7 = {S, (X, Y)) of {P, Q} if and only if 

P~.Q and Q~P. 

They are in strong conflict ifI additionally, 

P~.Q or Q~.P. 

P and Q are said to be conflict free (respectively strong conflict free) with respect to A 
if they have no conflicts (resp. strong conflicts) with respect to A. 

We wiU say that a network V is conflict free (resp. strong conflict free) if each of 
its pairs of processes is conBict free (resp. strong conOict free) with respect. to A. the 
vocabulary of V. 0 

A con~ict is precisely the "cycle of ungranted requests of length two· described a.t 
the end of Section 2. A strong conflict is one where one of the pair of processes involved 
is complelely blocked by the other. Once again we restrict our attention to the case 
where neither process can communicate outside the vocabulary of the network because no 
network is deadlocked when any of its components is able to communicate independently. 
It is important to note that conflict freedom and strong conflict freedom are hereditary 
properties of a network and can be checked by purely local analysis. 

The wmmunication pa.tterns of most practical parallel systems are fundamentally 
conflict free in that, even though a given version of a program is not, it can be trivially 
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be redesigned to be so (see JBM] for an e'l:ample). For example, any pair of processes 
connected by a single occam-like channel are conflict free because the jnputting process 
cannot be wBJjng to talk to the other without being willing to accept anything the 
other might offer. Some systems, often ones with particularly symmetric communication 
patterns, cannot be made conflict free. However it is hard to think of a sensible system 
that cannot be made free ofstrong conflict, since strong conflict arises when one process is 
willing to talk to another, even though it is itself preventing that process from proceeding. 
As we shall see, strong conflict freedom is the more important of the two conditions. See 
[BR3] for a more detailed discussion of these conditions, and a number of examples. 

The following theorem gives us a sharp and usable characterisation of deadlock states. 

Theorem 3 [BR3] Every deadlock state of a triple disjoint, busy, strong conflict free 
network has a cycle of ungranted requests. 0 

This theorem says that when deadlock occurs in a "reasonable" network, there is a 
chain of processes in which each process is waiting for the one ahead of it in the chain, 
and where the last process is waiting for the first one. The following useful result is an 
immediate corollary. 

Theorem 4 [BR3] If V is a busy, triple disjoint, strong conflict free network whose 
communication graph is a tree, then V is deadlock free. 0 

In practice, many parallel networks are trees (for example pipeline systeIll8 and binary 
trees). Theorem 4 is usually all that one needs to prove their deadlock freedom. 

If V is a network, we define the disconnecting edges of V to be the edges of the 
communication graph whose removal would increase the number of components of the 
graph. The essential components of V are the components of the graph after all djscon­
necting edges are removed. (In graph theoretic terms, the essential components are the 
maximal edge bi-connected subgraphs.) Note that the disconnecting edges are precisely 
the edges which cannot be part of any cycle in the graph. Observe also that the essen­
tial components of a tree are its individual processes, and that the essential components 
themselves always form a tree when an edge is drawn between a pair if and only if there 
can be communication between any of their elements. This fact, and analysis of conflict 
freedom, establishes the following result. 

Theorem 6 [BR3] Suppose V is a triple disjoint network with essential components 
VI, ... t Vol: where the pair of processes joined by each disconnecting edge are conflict free 
with respect to A, the vocabulary of V. Then if each of the Vi is deadlock free, so is V. 
o 

This result identifies parts of networks which can, from the point of view of deadlock 
analysis, be regarded as independent. This is very useful since we can reasonably expect 
a small network to be much easier to analyse than a big one. 
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Theorem 3 can be combined with the idea of variants to give a number of results on 
deadlock which are sharper than either Tbeorem 1 or Tbeorem 3 by themselves. In tbe 
following re511lt we relax tbe conditions on variants, so tbat tbe variant never increa.:ses 
on an ungranted request, ratber tban strictly decreases. 

Theorem eLet V = {Pi liE {I, ... I N}} be a triple disjoint, busy, strong conflict free 
network witb. vocabulary A. Furthermore, suppose there exist functions 

f;: tiP,) ~ II (iE (l"",N)) 

wbere (II, » is a partial order, such that wbenever {l,i} is a non-disconnecting edge 
and U = (s,{Xi , Xj)} is a state of {~, Pi} then 

Pi~. Pi ~ 1,(s~aP .. , Xi) ~ li{s~aPi! Xi)' 

Tben any deadlock state (s, K) of V contains a cycle of ungranted requests (to, ... , i m - 1 ) 

sucb that all tbe 1;,(s~aP.J are equal. 

Proof. Suppose V satisfies tbe prerequisites of tbe theorem and (s, X) is a deadlock 
state. By Tbeorem 31 (s, Xl bas a cycle of ungranted requests , say (io, ... , 1m -I)' Now 
define /} ; {~, .. " m -I} ;---+ II by setting g(k) = Ii. (s~aPi.' X,-..). Since none of tbe edges 
making up tbe cycle can be a disconnecting edge, it follows from the properties of tbe 
functions /; tbat 

g(O) ? g(l) ? ... ? g(m - 1) ? g(O) 

and bence tbat g(l) = g(O) for all i. 0 

Observe tbat wben we define all tbe variant functions to be tbe same constant, Tbe­
orem 6 reduces to Tbeorem 3. Sbortly tbis result will allow us to sharpen tbe tecbnique 
introduced in Rule 1. By itself it provides a useful tool for analysing "difficult" networks 
for potential deadlocks by placing bounds on tbe places deadlock might appear. One tries 
to produce a system of variants whicb is as "refined" as possible (Le., yields as many 
strict ineqllalities as possible). Tbe searcb for deadlocks is tben restricted to <:ycles witb 
equal variant. Tbe power of tbis idea is illustrated by returning to two of our earlier 
examples. 

Exa.mple 1 revisited. Recall the nondeterministic verisions of the array in two and 
tbree dimensions. We observed there tbat tbe two dimensional case was deadlock free, but 
that its variant was bard to construct, but that tbe tbree dimensional case deadlocks. Tbe 
reasons for tbis apparently paradoxical situation become far clearer w hen we examine tbe 
networks using Tbeorem 6. The variants we ta.ke are very simple: in tbe two dimensional 
case 

1,.;(9) = [191/21 + i + j 

and in the three dimensional case 

1,.;,.(9) [1'1/31 + i + j + k . 
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In each case the varia,llt is the number of half cycles the proce99 has completed plus its 
"depth" into the network. In each case it is simple to establi9h that the con.ditions of 
Theorem 6 are satisfied. It i9 also simple to establish that if Pi,Jd.l'd ~. P;~,j~(.I:~) and 
Pi~.j~(.,l:,) ~. p;aJa(,l:al and all three proce9se9 have the 9ame variant, then it +il (+ k1) = 
i 3 + i3( + k3}. From this we can deduce that, in the two-dimensional case, any cycle of 
ungranted requests is a subget of {(i, i} I i + i E {r, r + I}} for some r; while in the three 
dimeD9ional case it is a subset of90me {(i,j,k) li+i+k E {r,r+ I}}. Theformer 
i9 e8sentially a straight line, and contaJn9 no cycles (proving deadlock freedom), while 
the second is essentia.lly a plane and contains many cycles (which is the reason why this 
network deadlocks). 0 

Example 3 revisited. We are now in a p09ition to fulfil the promise made earlier and 
generalise Corollary 3. On careful ana,lY9is it turns out that the crucial features which 
make this result true are that, on each "cycle", every process communicates exactly 
once with each neighbour and that its communications with its left-hand neighbours 
are in parallel. The hypothe9is (inherited from our extension of the Dijkstra theorem) 
that there is a pre-determined cyclic order to the conuuunications turns out not to be 
necessary. Note that the proce9ge9 in the networks on the Theorem below are free to be 
nondeterministic provided they 9ati9fy the basic 9pecification laid out. 

Theorem Suppose V = {Pi 11 S; i S; n} i9 a triple di9joint, busy, conflict free network 
where each procea9 conununicates with each of its neighbours once on each "cyc1ell 

• 

(In other words, if Pi has m neighbours, then for each k its communications number 
k x m + I to (k + 1) x m consi9t of one with each neighbour.} Suppose further that there 
is a partial order on the elements of the network such that every pair of neighbours is 
comparable, and that each proceS9 is designed so that on every cycle it communicates 
with aU neighbours le9s than itgelf in parallel. Then the network is deadlock free. 

Proof. The variant of P; is the number of cycle9 it has completed. Since each pair of 
neighbours share exactly one event on each cycle, no proces9 can wait for a process that 
has completed more cycle9 than it has. Thus these functions sati9fy the conditions of 
Theorem 6. The form of these function9 means that the cycles of ungranted requests 
described in the statement of Theorem 6 necessarily consist of processes on the same 
cycle. Suppose p. is a maximal element of such a cycle, and its predece9sor and successor 
in the cycle are Pj and Pi:' Becauge Pi and Pj are on the same cycle we can deduce that 
P; has not commullicated with P

J 
on it9 present cycle. On the other hand, since by 

a.s9umption both P j and P" are less than Pi, the latter communicates (on each cycle) 
with P j and Pi: in parallel. Thu9, since Pi is wiUing to communicate with PI: it must also 
be willing to communicate with Pi- This contradicts the facts that the pair {Pi, Pi} is 
conflict free and that Pj has an ungranted reques\ to Pi' 0 

We can in fact show that Rule 1 is applicable \0 thi9 network. It might interest the 
reader to prove this using Theorem 2 and much the 9ame argument as above. 0 

In both of the above examples where we have been able to prove a. network deadlock 
free, the crucial feature has been that no cycle of ungranted requests with equal variants 
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can exist. In ea.ch case this followed only after examination of the processes. A rather 
more straightforward application of this theorem is where no such cycle exists because 
the network contains enough edges where strict variant inequality is maintained. 

Note that cycles in communication graphs can be thought of as consisting of directed 
edges: an edge of the graph together with a direction. We can represent the directed 
edge from Pi to Pi as the ordered pair (i,i) just as we could represent the undirected 
edge as the set {i,i}. 

Rule 2. If the network V satisfies the conditions of Theorem 6 and additionally E a set 
of directed edges from the communication graph of V such that every cycle in the graph 
contains at least one edge from E and such that whenever (I, i) in E and t1 = {s, (Xi, Xj)) 
is any state of {Pi,Pi } then 

Pi~.Pj =>- f;(sf.P"Xi) > f;(sfaPi' Xi) if (i,j) E E 

Then V is hereditarily deadlock free. 0 

The validity of this rule follows easily (rom Theorem 6. 

Since the preconditions of Rule 1 trivially imply conflict freedom, the preconditions 
of this theorem are easily seen to be weaker than those of Rule 1. Thus the second 
rule we give is in some sense strictly stronger than Rule 1. Notice that, since there is DO 

condition relating the values of the variants of elements of different essential components, 
it is possible to develop the variant of each of these components independently. 

We give three examples of the use of Rule 2. The first is to a network where the 
possibility of having non-strict inequalities leads to much simpler variant functions than 
could have been used under Rule). The second and third examples are not conflict free, 
and so could not have been treated at all using Rule 1. 

Example 4: The D dinmg philosophers. This problem is sufficiently well·known to 
need little introduction. A number of philosophers (PHILu· . PHILn_d sit at a circular 
ta.ble, and between each pair PHILj and PHIL,'+l lies FORK". (All arithmetic in this 
example will be modulo n.) In order to eat, a philosopher requires both neighbouring 
forks (len and right). Deadlock can occur when all philosophers pick up one fork simul­
taneously: nOne can acquire the second fork he needs until another philosopher releases 
iti but no philoBopher will release a fork until he has eaten. 

As stated earlier, one way to prevent deadlock occurring is to ensure that the network 
contains at least one left-handed philosopher (Le., a PHIL; who will always seek to pick up 
FORK; before FORK j _ J ) and one right-handed one. The rest may nondeterministically 
choose, on ea.ch visit to the table, which fork to seek first. The following processes 
describe the a.ctions of PHIL; making a single visit to the table, when respectively he 
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opts {or the left or right fork first. 

LEFTVISIT; i.sits __ i.picksup.i -I i.picksup.i-l _ i.eats 
_ i.putsdown.i -1 _ i.putsdown.i - i.gehup -I SKIP 

RIGHTVISIT ; i.sits _ i.pick.sup.i~l _ i.picksup.i _ i.eats 
_ i.putsdown.i __ i.putsdown.i -1 _ i.getsup SKIP-4 

The left-handed philosopher PHIL, is thus defined 

PHIL, = LEFTVISIT,; PHIL, 

and the right. handed philosopher PHILr is 

PHIL, = RIGHTVISIT,; PHIL,. 

When i ¢ {r,lL we have 

PHIL; = (LEFT VISIT, n RIGHTVISIT,); PHIL,. 

Fork processes a.re described 

FORK; (i.pid:sup.i _ i.putsdown.i _ FORK.. ) 
o(i+l.picksup.i _ i+l.putsdown.i -I FORK;). 

The alphabet of each process is just the set of all events used in its definition. 

The component processes are trivially deadlock free and the network is conOict free 
because the communications between each pair follow a strict cyclic pattern (see [BRJ1, 
Lemma .,), 

We choose the set {O,l} (with its usual order) as our partial order, and the directed 
edges from PHIL, to FORK'_I and from PHI4 to FORKr as the set E over which strict 
inequality is required. (Clearly every cycle includes one of these.) The va.ri<l.nt functions 
are, as we will see, extremely simple. 

The variant function f; of FORK; is defined
 

f;(. ) o if i E {r + l,r+ 2,,,,,1- 2}
 

!'(,) I ifiE{l,l+l''''lr-l}
 

if lsi is even
!'(,) ifiE{I-l,,).{~ if 1'1 i. odd 

The variant of FORK; js thus either the constant 0 or the constant 1 unless it is one of 
the forks at the end of an edge in E, in which case it is 1 or 0 depending on whether it 
is "free" or not. 
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The varian~ function gi of PHIL; is defined 

gi(S) ~ 0 ifiE{r+l, ... ,I-l} 

g,(s) ~ 1 ifiE{I, ... ,r} 

Thus all the philosophers have constant variant functions. 

It is clear that the variant conditions are met on all edges other tha.n those including 
FORK1_ 1 and FORK" since on all such edges the processes at either end have equal 
constant variants. It is clear that a philosopher can only be waiting for a fork when 
he wants to pick the fork up, but the fork is in the possession of its other user. Since 
both of the two forks in question have value 0 when possessed by a user, the non-strict 
inequality is clear in this case. Indeed, when PHILJ or PHIL. is waiting for one of these 
forks the inequality is strict (as required), since these philosophers always have value 1. 

If FORK1_ 1 or FORK, is waiting for a philosopher other than PHIL, or PHIL" 'there 
can be no problem since the philosopher's variant is the constant o. Similarly there is 
no problem when one of these forks are waiting for one of these two philosophers to pick 
them up, for the fork's variant is then 1. Finally, observe that since the only action 
that PHIL, performs between picking up FORK'_I and putting it down is the external 
action l.eats, there can never be an ungranted request from FORK1_ 1 to PHIL, while the 
former's variant is o. (A symmetric argument applies to FORK, and PHIL•. ) 

Thus the preconditions of Rule 2 are met, so we can conclude that this network is 
deadlock free. The reader might like to verify that this example can be proved deadlock 
free by Rule 1, but will inevitably find that this proof is rather harder than the above. 

As observed earlier, we cannot hope to prove the deadlock freedom of the well-known 
solution to the dining philosophers problem that involves a "butler" or "Cootman" process 
which prevents more than n-l philosophers sitting down using any rule which establishes 
hereditary deadlock freedom, for the simple reason that this system is not. We will 
show in a later paper how this network can be dealt with by adding "invariants~ to our 
armoury. The best that can be managed for this system using our present techniques is to 
use Theorem 6: variants will show that the only possible cycles are the well-known ones 
where each philosopher has one fork, and this cannot happen because oC the structure oC 
the processes used. 0 

As We have already observed, the preconditions of Rule 1 imply conBict freedom, 
which means that there is no hope of using that rule to prove deadlock freedom in 
networks which have conflict. The reason for conftict appearing in a correct network is 
almost invariably that a pair of processes which are fairly symmetric with respect to each 
other have two channels linking them, one for each to initiate some interaction with the 
other. For example, if they are two nodes in a mail network, each might be in a position 
to send a message to the other. It is the authors' experience that most interesting small 
examples with conflict are trees a.nd therefore best dealt with by Theorem 4. Perhaps thiB 
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is because Rule 2 only allows us to treat networks where the edges over which conflict can 
appear contain no tree: thus any non-tree example must contain at least two different 
l<modes" of communication. This is clearly illustrated in the following two examplelJ. 

Example 6: A message 8witehing network. Suppose there are a number of potential 
sellders of messages, each of whom might wish to send a message to anyone of a class 
of receivers. It is possible to construct a network which implements the mail service 
they require out of binary switching nodes connected in a "butterfly" pattern. For 
simplicity we will assume that there are exactly 2n sender! and 2n receivers. (A few 
simple generalisations of what follows extend this to arbitrary, and possibly different, 
non·zero numbers at each end.) 

Between the ith sender and the 'ith receiver (i E {O," .. , 2n - I}) there is a chain of 
n switch processes. In addition to an In and out channel (connected in the chain), a 
switch process has a sWln and swout channel connected to another switch process (input 
to output). The ,.th process on chain number i is linked (via these extra channels) to the 
,.th process in the (unique) chain whose index j differs in only the ,.th binary digit from 
i. On receiving a. message on in, the ,.th switch process on chain i either passes it on 
down the same chain (out) or passes it over (via swout) to its linked chain depending on 
whether the ,.th binary digit in the destination process agrees with that of i. On receiving 
a message on sw;n, the process passes it to out. Figure 3 illustrates the connections in 
this network when n = 3. 

From the point of view of proving deadlock freedom, we need not concern ourselves 
about the contents of the messages passing though the network. Indeed, we need not 
worry either about the routing algorithm described above, so long as we accept that a 
message entering a node on channel in may (so far as we are concerned) nondetermin· 
istically be sent either along out or along swoul. (Of course, a system of processes with 
this behaviour is more nondeterministic than our actual network, so proving it deadlock 
free is certainly enough.) Thus, much as in the case of the sYlJtolic array, we will omit 
all details of actual messages from the process definition we give here, so retaining only 
details of synchronisations. 

SWITCH(in,out,sUlt'n,swout) = S,where 

S ~ (i. ~ (ou. ~ S) n S')) 
o (sUlt"n __ out - 5) 

5' = (swout __ 5) 
o (sUlt'n ----> out __ 5') 

Notice that, when this process contains a message it wants to pass across its link, it 
retains the ability to accept a message from the linked process. This is to avoid the 
linked processes becoming deadlocked when each wants to relay a message to the other. 

The result of combining n x 2n of these 6witches together as described above is a 
strong conflict free network. It is not conflict free, for the pairs of linked Bwitches are in 
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conflict when they a.re empty; if we had not made them able to accept input from the 
link when able to output to it, there would have been strong conflict. 

Let E be the set of all edges linking nodes in the same chain: clearly every cycle 
includes an element of E. If So" is the rth switch on the ith chain, we define the variant 
functions: 

r when the node contains no messages, 
f;,,( s) = { -r when it contains one or more messages. 

That these functions work is clear when we observe that no process that contains a 
message can, in this network, have an ungranted request to one that is empty. Note that 
when a pair of linked switches on dHferent chains are either both empty or both full, 
they have the same variant. 0 

Example 6: Adding a mail service to Example 2. Suppose we have designed a 
parallel network and proved it free of deadlock, but we would like to add some further 
communication links for some purpose. A good example would be the network of Exam­
ple 2: where, in addition to the resource management we might like to implement a ma.il 
service between the user processes. In general it is extremely likely that such additions 
will lead to deadlock, even when the communications introduced are extremely simple. 
For example, suppose we introduce a mail channel between two processes, each of which 
is only prepared to communicate on this channel when it holds more than half of the 
resources: it is easy to see that deadlock can ensue. 

Fortunately it is possible to add a mail service in such a way that it has a system of 
variant functions satisfying the conditions of Rule 2. Choose some tree interconnection 
pattern which spans all the user processes, either by linking them directly, by adding 
one or more mail server processes or by a mixture of the two. The idea is that the new 
edges thus introduced will be included in the set of edges over which equality of variant 
is allowed (i.e., the complement of E). Now implement a mail service over these edges 
in such a way that the following hold. 

1. The network remains busy and triple disjoint. 

2.	 The network remains strong conflict free. (In this context this means that there 
cannot be a pair of processes each of which is committed either to send a message 
to the other, or to receive a message from the other.) 

3.	 No user process can execute any mail event while it holds a resource. (In other 
words, it can only use the new service while its variant, as defined in Example 2, 
is maximal.) 

Then the augmented network is deadlock free. 

To prove this we define the set E of edges to be all directed edges from user processes 
to resources. (Clearly this set includes at least one element of.every cycle.) We then 
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define variant fundions as in EX<Wlple 2 (thinking of any mail server processes as users 
which never use any resource), except that the value big is identified with 2 x M + 1 
(rather than being greater than it as before). These fundions satisfy the preconditions 
of Rule 2. 

Ioor suppose one process, P, has an ungranted request to another, Q. If neither is 
a resource then the edge between them is not. in E and, by (3) above, P's variant is 
2 x M + I, which is the maximum of all possible variant values in the network (and hence 
certainly greater than or equal to that of Q). 

If P is a resource and Q is a user process then the edge between them is not in E. If 
P is unused then its variant is 2 x M + 1 and exactly the same argument as used above 
applies; if P is in use then the properties of the variant inherited from Example 2 apply. 

Finally, if P is a user process and Q is a resource, the arguments of Example 2 still 
apply. 

One intEresting feature of this example is the way in which we used variants as a way 
of discovering what the corred way of extending the existing network was, rather than 
just as a tool for proving an already construded system. 0 

Finding useful general conditions under which similar manipulation of networks can 
be, done safely is an interesting subject for future research. What seem to be the essential 
features that make the above example work were the existence of .a proof of deadlock 
freedom of the original network (that of Example 2) with a set E of cycle-cutting edges 
that continued to work in the augmented network, and the fad that new communications 
were only possible when the original variants were maximaL 
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5 Postscript.: Using invariants 

The methods described so (ar caD only prove a network deadlock free when it i! heredi­
ta.rily deadlock free. In a network which is deadlock free but not hereditarily so, there is 
some subnetwork which is restrained from getting into a deadlock state by one or more 
processes not in the subnetwork. This is clearly the case in the best-known such net­
work, the dining philosophers with Abutler". There is a clear sense in which the deadlock 
freedom of such a network can be rather le5s a locally checkable property than in the 
networks we have examined up to DOW: while examining the interactions of a. pair of 
processes one might well have to consider the ways in which they are influenced by other 
elements of the network. 

This having been said, it is often not too hard to identify the properties of a network 
that make it deadlock free, even though its subnetworks are not. (Of course, in the 
example quoted above, it is the behaviour of the butler.) It is clearly desirable that 
we should be able to incorporate such information into our methods, thereby enabling 
ourselves to prove these networks deadlock free. 

Recall that when one uses the decreasing variant technique to prove that a WHILE 
loop terminates, one is only expected to prove that the variant decreases when certain 
conditions hold (namely, that the boolean condition of the loop is false, and that the 
loop invariant holda). For example. in the program 

IF n >':' 0 THEN 
WHILE n () 0 DO 
BEGIN 

n :'" n - 1; 
m :'" m + l' 

END 

one is only expected to prove that the variant (Inn deaeases when the innriant ((n ~ 

0/\ (n + m = no + moll bolds and n f; 0). This suggests that it might be possible to use 
sirrUlar ideas to limit the cases where we have to prove a network variant decreases round 
a cycle. 

There is no obvious analogue of the WHILE boolean in our world, except perhaps 
the ability of a process to communicate externally, whicb we bave treated fully already. 
We will thus concentrate on the idea of using invan"ants. There are at least two distinct 
levels at which one can to use these: either to establish reasonable local behaviour or 
reasonable global behaviour. In this paper we will consider mainly the local case, where 
ea.ch process in the network has its own separate inva.riant. 
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The invariant of a network element will be a condition on tbose traces wbicb the 
process can actually execute wbile the wbole network is running. [f one could prove 
that, in the context of tbe network, a process satisfied some invariant, one could restric* 
the domain of a process' variant to those traces (or corresponding m<uimal failures) 
satisfying its invariant. Furthermore, it would only be necessary to prove the deadlock­
freedom of tbe elements of the network and tbe strong conflict freedom of tbe pairs wbile 
they satisfied their invariant. 

This is done in a slightly different sense tban before. One proves that in every 
state satisfying its invariant, each process is able to perform some action after wbich 
the invariant will still hold. This stronger form of "busy-ness", when proving strong 
conflict freedom, allows us to ignore any request whose satisfaction would mean that the 
requesting process' invariant no longer bolds. (In proving tbe validity of this tecbnique 
one replaces each process Pi in the network by the process Pi\Jd(I")j where d(li) is tbe 
deterministic process with tbe same alphabet as Pi whicb is at any time be prepared to 
communicate precisely tbose actions which keep its invariant Ii true.) 

Of course one is obliged to prove, by considering the behaviour of the network as 
a whole, tht eacb process' invariant actually is satisfied at all times. Notice that this 
proof technique can only be useful wbere the global hebaviour of tbe network restricts 
the traces in whicb its individual components can engage. 

The following example, in the style of [HI. illustrates this type of reasoning. 

Example 7: Vending machine. We consider three processes: a customer, a messenger 
and a vending machine arranged in a line. The vending machine gives chocolates in 
return for 5p coins but, due to a design flaw, will break (deadlock) jf two coins are 
inserted 'lliithout the first cbocolate being removed. 

V M = in5p --t (outchoc --t V Moin5p _ STOP) 

The messenger knows nothing of tbis flaw, and faithfully carries any coin from tbe cus­
tomer to the machine, and any chocolates from the macbine to the customer. 

MSGR ~ (5p ~ in5p ~ MSGR) 0 (outcho<: ~ cho<: ~ MSGR) 

Notice that the combination MSGRII VM can still deadlock j for, as defined, tbe messenger 
might take a second coin to the macbine before bringing back the first chocolate. However 
the customer is mindful of this, and so carefully makes sure be has received the last 
chocola~e before parting witb any more money. 

GUST = 5p _ choc _ GUST 

It is not too hard to see that the network GUSTIIMSGRII VM is deadlock free. However, 
notice that the subnetwork GUSTIIMSGR can also dea.dlock, for if the firtll thing tbe 

32 



messenger does is to take a 'free' chocolate to the customer he is unable to accept it and 
the messenger is unable to accept the coin he offeI1l. 

To prove this network deadlock free we need invariants. Because our network is a 
tree it will be sufficient, after establishing invariants, to check that the network is busy 
and strong conflict free in the I:'iense outlined above. 

The invariant of the vending machine process is 

I""AI = #outchoc ~ #in5p ~ #outchoc + 1 

where, for example #in5p denotes the number of times that event has occurred up to 
any given time. That of the messenger is 

IMSGR = #choc ~ #outchoc ~ #in5p ~ #5p ~ #choc + 1. 

The customer's invariant is TRUE (i.e., it imposes no constraint). Since at every time 
the messenger and machine have communicated exactly the same number of ordchoc and 
in5p events, it is clear that if the messenger satisfies its invariant then the other two 
satisfy theirs. 

It is simple to verify that, in the sense above, the network is busy and conOid free 
with respect to these invariants. That the invariants do in fact hold follows easily from 
the inequalities below, which are derived from the definitions of the individual processes. 

#choc Sc #5p Sc #choc + 1 from CUST 

#choc ~ #outchoc ~ #choc + 1 from MSGR 

#i.5p Sc #5p Sc #i.5p + 1 from MSGR 

#outchoc ~ #in5p from VM 

An interesting extension of this network is obtained by replacing the single messenger 
by a row of messengers which pass the coins and chocolates backward and forward in 
the manner of a chain of people conveying buckets of water to 3. fire and the empty 
buckets back. If all the messengers have the same definition as the one above (except for 
renaming of communications) the resultant network is deadlock free (the proof being a 
straightforward extension of the above), but every proper cODnected subnetwork of size 
greater than one can deadlock. There is an interesting contrast between this and the 
*deadlocked chain" example of [BR2,3], which has almost exactly the opposite properties. 
o 

Even though the above technique works for proving deadlock freedom, it would be 
a grave mistake to rely on it regularly. On the one hand it will probably be easier in 
practice to design the elements of a network so that their local behaviour is good than to 
prove this from the global properties of the network. After all, the behaviour of one or 
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a pair of proces5es is very much easier to understand and control than that of the whole 
network, so it would be strange to expect to use the latter to control the former. Also it 
must be wrong to get round a bug in one part -of a program by designing a second part 
of the program to avoid it, rather tban eliminating the bug at source. Such an approach 
would, for example, make re-using parts of programs far more dangerous. For example, 
in network above the vending machine should be replaced by one that cannot deadlock, 
and the messenger(s) should be replaced by one(s) that know that every chocolate is 
preceded by a coin. 

VM' inSp --t (outch.oc --t V M') 

MSGR: Sp --t inSp -_ outchoc --+ choc _ MSGR' 

The astute reader wlll have noticed that, in each case, we have replaced each process Pi 
by one that is equivalent to its parallel composition with the deterministic CSP process 
dUd described above, that will communicate any action which preserves its invariant. 
Note that the revised network is now hereditarily deadlock free. Given a set of invariants 
which ensure the local good behaviour of a network, this provides a general technique 
for converting it into a "weU-constructed" network. 

Of course it would be far preferable to include suitable invariants in the initial spec­
ifications from which the elements of the network are developed, rather than having to 
modify their definitions as above. 

Thus tbere is a sense in which we prefer to regard this form of invariant as a guide 
to the COrrect (re-)construetion of a network, rather than as something closely linked to 
our ideas about variants. We argue that the style of proof above will not be necessary 
for a properly constructed system. 

The possible uses of global invariants for networks where each state of individual 
processes is reachable but which fail to be hereditarily deadlock free is briefly discussed 
in the Conclusions section below. 
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6 Conclusions and Prospects 

The aim of this paper has been to show how a few simple ideas can make deadlock analysis 
both clear and trada.ble. We believe that the methods we have described are applicable 
to a large proportion of real systems, perhaps after a certain amount of redesign along the 
lines set out in the post8cript. We a.lso believe that these methods and the insight into 
deadlock produced by our investigations should be useful for producing new networks 
which are dea.dlock free by design. 

The methods we have presented are those which we believe will be most commonly 
useful in practice. However, as we observed earuer, they are not complete in that flome 
deadlock free networks cannot be so proved using them. There are a few disHnct situ­
ations under which tbey fail; in the following paragraphs we identify these and indicate 
what modifications will be required to get round them. 

Sometimes a network can be deadlock Cree even though it contains a cycle ofungranted 
requests, usually because one or more processes in the cycle have alternative requests 
whose eventualsa.tisfaction will break the cycle. Our existing methods can deal with this 
situation when this alternative request is outside the vocabulary of the network (for the 
process, formally, cannot then be making an ungranted request) or when the alternative 
request is along a conflict free disconnecting edge (by Theorem 5). However, in other 
cases we would need to extend our methods. A typical example would be where a number 
of user processes share some resource using a "token ring" (see [BR2]) and have some 
other mode of interconnection which stops the edges from the ring elements to the users 
being disconnecting. This network now initially has a cycle of ungranted requests (the 
ring elements listening for a request from their anticlockwise neighbour for the token), 
but each element is also waiting for its user process. It is fairly easy to extend our 
method to deal with this type of network: under certain circumstances, where a process 
has requests to several of its neighbours. we may select which one must b.a.ve a lesser 
variant. It is possible to find several extensions of Rule 2 which take advantage of this 
fact: they either use functions to do the selecting or examine larger "localities" , typically 
the set of a process aild all its neighbours. 

We have already observed that our existing rules can never prove the deadlock free­
dom of non-heredita.rily deadlock free networks. Some of these can be improved to being 
hereditarily dea.dlock free along the lines described in the postscript, but others such 
as the "butler" version of the dining philosophers are more subtle. Tb.ese are busy, 
strong conflict free and have every state of each process reachable within the context 
of the whole network (so that no individual process invariants can help us by excluding 
unwanted ones). 

Such a network can only work because, exactly as happens in this version of the 
dining philosophers, one part of the network keeps another from entering a deadlocked 
state. It seems inevitable that, in general, arguments for this type of hehaviour must be 
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non-local in nature (il is easy to imagine, for example, a system of dinjng philosophers 
interacting via a number of intermediaries with a butler). In such examples perhaps the 
best we can hope for is that we can express the essential property which is preventing 
deadlock as a global invariant of the network (for the dining philosophers this would 
be "not all philosophers are sat down"). We can theo take advantage of this property 
wheo constructing the systems of variants: one way of doing this is to construct several 
different systems where the variant functions are in fact partial functions, but proving 
that in every global state satisfying the invariant, at least one of the systems of variants 
is totally defined. (For the dining philosophers we could define one system oC variants 
for each philosopher, for use when he is the one preveoted Crom ~jtting down last.) The 
extent to which one can useCully adopt this versioo of the invariantjvariaot approach 
must depend on the difficulties oC individual examples. 

In additioo to the types of network mentioned above where it is obvious that Rules 1 
and 2 cannot apply, one occasionally comes across a network which, though hereditarily 
deadlock free and without cycles of ungranted requests, still seems to be too much for 
these methods. The authors have only come across one such example: the message 
passing ring in [BR3] (mentioned in the present paper after Theorem 2) where each 
element is a restricted double buffer (though Theorem 6 may still be deployed to good 
effect). 

In this message passing ring, it turns out iC, whenever a pair oC processes communicate 
they tell each other the current value of their variant (i.e., that prior to the current 
communiC2.tion), variants for Rule 1 can easily be constructed because the traces oC 
individual processes then contain sufficient ioCorrnation about neighbours. It seems that 
this is because the relation described io Theorem 2 is in some sense llrefined" by this 
transformation. 

We intend to continue our investigations into deadlock by developing some of the 
above idea.s further and trying to achieve as good an understanding as possible oC the 
relative c:l.pabilities and difficulties oC the various techniques. We also intend to investi­
gate ways oC proving other properties oC networks by local methods, particularly related 
ones such as absence of livelock and starvation. We also intend to investigate the ways 
in which: as described in the last paragraph, trivial transCormations of proces~es that 
do not change the basic communication pattern can be used in aiding prooCs oC network 
properties. 

When other authors have addressed the problem oC proving deadlock freedom in a 
general way they have tended to describe methods of prooC which are essentially global. 
Given that they were generally looking Cor complete methods, this is understandable. 
Usually these have iovolved proving ~ome invariant of the global state that precludes 
the blocking of all processes [AFR,OG,S]. It should often he possible to iotegrate our 
methods with fairly general techoiques such as these, in that the invariaots to be proved 
could be just the preconditions oC our rules. 
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Perhaps the most similar approach to ours has been that of Chandy and Misra [CM], 
who have described different measures termed tlpriorities" for use in proving deadlock 
freedom. In the tenninology of the present paper a set of priorities for a network, given 
a linear order, is a collection of maps from the vocabulary of the network to tbe linear 
order (one map for every global state) such that, whenever a process is blocked it must be 
willing to communicate the event of minimum priority in the intersection of its alphabet 
and the vocabulary of the network. A triple-disjoint, busy network permitting a set 
of priorities is deadlock free. This method is easily seen to be complete. In general, 
obtaining a set of priorities may be difficult, as it entails global checking; however, for 
some networks within the framework of this paper, simplifications to this end can be 
made. For a conflict-free network, it suffices to have priorities defined only on edges 
of the communication graph for which there exists an ungranted request. Moreover, 
for a network amenable to Rule I, we can construct a set of priorities locally in the 
following way. Firstly, as any partial order may be extended to a linear order, we will 
assume, without loss of generality, that the range of the variants yielded by Rule 1 is a 
linear order. Then, if a process in the network is blocked, assign a priority to each edge 
incident on it on which there is an ungranted request, the value of the variant of the 
process being waited upon. The case of Rule 2 and non conflict free networks (which are, 
however, strong conflict free) is a little harder because we would have to assign priorities 
to individual actions rather than edges, and to take account of the large scale topology 
of a network. Using the concepts of conflict freedom and strong conflict freedom has 
enabled us to abstract away from individual events and assign priorities to processes. 
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