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The Pursuit of Deadlock Freedom

by A.W. Roscoe and Naiem Dathi

Oxford University Computing Laboratory,
8-11 Keble Road, Oxford 0X1 3QD, U.K.

ABSTRACT We introduce some combinatorial techniques for establishing the deadlock
freedom of concurrent systems which are similar to the variant/invariant method of prov-
ing loop termination. Our methods are based on the local analysis of networks, which fs
combinatorially fer easier than analysing all global states. They are silustruted by proving
numerous ezamples lo be free of deadlock, some of which are useful classes of network.

1 Introduction

Deadlock occurs in a concurrent network when no further action can take place, This
is usually because, even though each component process is in a state in which it can
communpicate, its potential communications are blocked by its neighbours. This is a
common problem in concurrent systems and is unique to them. A proof of deadlock
freedom for such a system is an integral part of a total correctness proof, and is often a
desirable first step towards the latter.

Unfortunately, the introduction of concurrency not only introduces the possibility of
pathological behaviour such as deadlock, but it also makes systems harder to understand
and analyse. Because the components of a concurrent system can often act independently,
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there i3 no predetermined sequential order for its various actions. This means that
systems can exhibit real nondeterminism, or unpredictability: just because a system
passes a test ance does not mean that it will always do so.

Ignoring the values of ita variables, the number of control states in a sequential
program increases linearly with the number of lines (the program can be “at” any one
line). With concurrent programs this growth becomes exponential: the program can be
“at” one line in each of its parallel components.

This observation means that any method of checking for deadlock that involves in-
specting the gichal states of a network is likely to be very unattractive. This paper,
which continues the work begun in {BR2,3], describes some methods of deadlock analysis
which only involve very local analysis of networks: usually cnly single processes and pairs
of processes which communicate directly. These lead to rules for proving the absence of
deadlock which are reasonably easy to apply in practice, and also to ways of devising
networks whick are deadlock free by construction. The methods we describe are not
complete, for it is passible to construct examples which are deadlock free for very subtle
and non-local reasons; it seems that a complete proof rule must involve fairly exhaustive
checking of global states.

The techniques introduced in this paper are closely related to the idea of using a
“variant™ to prove termination of a loop. The wide applicability of these techniques
is illustrated by several examples. Some of these examples are fairly general classes of
network and establish some easy to apply design rules for building networka (of certain
types) which are deadlock free by design.

In the next section we see how networks of processes are composed and learn how
deadlock is represented. Then the simplest version of our variant technique ia described
and illustrated by examples. In later sections, we see how the results of |BR3| allow us
to derive more powerful versions.

We assume a certain familiarity with the version of CSP described in [H], [BHR] and
[BR1}, and the basic properties of its operators. The mathematics of this paper, like
that of {BR2,3], is based on the faslures model for CSP described in [BR1] {which is
an improved version of that of [BHR]). As we shall see, this model has a very simple
representation of deadlock. Familiarity with the failures model will be helpful in reading
this paper, though its basic structure is described below. The semantica of CSP we use
is that of [BR1] and |H|, though the definiticn of the most important operator for the
present paper, namely the one for composing networks of processes in parallel, is given
below. Even though we have cast our work in this particular framework, we imagine
that it will transfer readily to other models of concurrency.

In the failures model a process is modelled as a pair {F, D). Here F is a set of failures
or pairs (s, X}, s being a trace (finite sequeace of communications) and X being a refusal
set (set of communications). (s, X) € F if the process can communicate the elements
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of & in sequence and then fail to communicate if its environment offers the set X for it
to choose from. D 1s the sei of traces on which the process might diverge. A process
diverges when it performs an unbroken infinite series of internal actions. [n a concurrent
sysiem where intermal communications are hidden for the environment this will often
take the form of liwelock, where the components of the network communicate infinitely
among themselves without ever performing an external communication.

From the point of view of the user, a diverging process is deadlocked because it will
never communicate with him again, (In fact it is worse because the user can never detect
that this is the case.) However, divergence is operationally quite different from deadlock:
this means that different techniques are required for analysing a system for potential
divergence and deadlocks. We will therefore assume that all the processes we meet are
already known to be divergence free. Thus each CSP process P we consider iscompletely
described by its set of failures F]P] (sometimes written failures (P)).

A NOTE ON ALPHABETS The CSP parallel operator depends crucially on the idea
of an alphebet: each process in a network has an alphabet of communications, and no
communication can occur until all the processes with it in their alphabets are willing to
participate.

Two methods have been used in the literature for introducing these alphabets. In,
for example, [BHR] and [BR1,2] these were introduced explicitly into the paralle! oper-
ator: thus (P4||p@) was the parallel composition of P and Q, with alphabets A and B
respectively. However in [H|, all processes are defined in such a way that they have an
alphabet {usually, though not invariably, the get of communijcations which they might
wish to make). Thus there is no need to introduce explicit alphabets in the parallel
operator. In this paper we will follow [H]. The alphabet of the process P will be denoted
aP. The traces, refusa] sets and divergence traces of P are all composed exclusively of
elements of aP.

2 Deadlock and networks

This section summarises the basic facts we will need to know about the representation
of deadlock and networks.

A process P can deadlock after the trace s if and only if (s,aP) € F[P]. Thus 2
process is deadlocked exactly when it must reject everything the environment can offer
it. This explains the following definition.

Definition. A process P i3 said to be deadlock free if and only if

Vs € (aP). (s,aP) g F[P} . D



This is a very clear formulation of deadlock freedom and, because of its simplicity, it
is the one we shall use. In practice one might wish to complicate it slightly by allowing a
procese that has already terminated succeasfully to do pothing. In order to accomodate
this more complex form, amall modifications would bave to be made to most of the
definitions and results that follow. But none of the example processes we uge can ever
terminate, so we will not make these modifications.

The following two laws are often very belpful in establishing tkat a process is deadlock
free. D1 is useful in establishing the deadlock freedom of the individual processes that
make up networks. It will allow ua to deduce the deadlock freedom of all the component
processes of our example networka.

{D1) Suppose the definition of the process P uses only the following syntax:

Pu=8KIP|a— P|PiQ|POQ|PNG|f(P)|pippP

(where p denotes a process variable), but P contains no free process variables. If further
P ia divergence free, and has every occurrence of SKIP directly or indirectly followed by
a *" (to prevent successful termination), then the process is deadlock free.

(D2) If P\C is divergence free, then it ia deadlack free if and only if P is.

D2 observes that, as far as deadlock is concerned, it does not matter whether a
process’ possible action is external or internal: provided it has any action available, it is
not deadlocked.

Let us now turn our attention to cases where many processes are working in parallel.

If, for each i€ {1,2,...,n}, P is a process, then we dencte their parallel composition
by

Il P or PPl - ||Pn -

The alphabet of ||2, P; is Uiz, aP;, and a communication a only occurs when every P;
such that a € aP; executes it. Thus the communications which lie in more than one aF;
can be regarded as communications between the relevant F;, while thoae that are in only
one aP; represent that P.'s communications with the environment. When the P; are all
divergente free this operator is defined:

i [I Pl = {(s,LHJX.-}Is € (L"J aPY A (s"aP.-, X e FIR}),

=l =1

where sl‘aP.- denotes the sequence formed from s by removing all elements not in aP;.
If one or more of the P: can diverge the definition is slightly longer. Note that because

4



P; must co-operate in every communication in aF;, if it can refuse something in aF;, so
can the whole process.

The parallel operator is associative in that, when 1 < n < m,

C(iipyne i ry= T &

=n+1 i=1

and symmetric, in that P||Q = Q||P.

A network V is an indexed set {P;|L <i < N} (N > 1), where each F; 8 a process.
The corresaponding process |, P; is denoted PAR(V'}. We say that V is deadlock free if
PAR(V) is. Note that, in view of the associative and symmetric properties of ||, we have

PAR(V)Y = PAR{PAR(I;)|1<i< M)}
whenever {{/},..., Ux} is a partition of V.

We will generally restrict our attention to networks where no event requires the
participation of more than two processes: thus all communication is peint to point.
Such networks, where aP; N aP; N aPy = @ whenever 1, j and k are all dislinct, will be
termed triple-disjoint,

A stale of a network V = {P:|1< i< N} isapaire={(s(X,..., An)) (which
we will sometimes abbreviate (s, X)) such that s € (U, aP)* and (shaP, X;) € F[P]
for every t. Since the more each individual process refuses, the more likely deadlock
becomes, it is sufficient, when considering potential deadlocks, to consider atates where
each X, is maximal in refu.ans(P,-after(af‘aP,-)). Therefore, throughout this paper, we
will assume for convenience that all states have this form. We will denote the maximal
failures of a process P, in the sense above, by fﬁP]

A state of a network shows us what each individual process is refusing. Clearly
every maximal failure of a divergence free network corresponds to some state and vice-
versa. In particular the network can deadlock on trace s if and only if there is a state
&= (s, {Xy,-.., X} such that

N

UX" = GQP;.

=1 =1
Such states will be termed deadlock states.

With every network we may associate a graph, termed the communication graph, in
the following way. Each process P; identifies a unique node in the graph, and there is an

edge between P; and P; (i # j) if and ouly if a PiNaP; # 0. Thus two process are joined
in the graph if and only if there is the possibility of communication between them.
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If W is a not necessarily strict, nonempty subset of the network V, we will term it a
subnetwork. Notice that some of the communications of the elements of W which were
with other elements of V may become external communications of W (i.e., communi-
cations of a single process with the environment). We shall say that a property of a
network ia keredilary if it holds of all its subnetworks. For example, a network is hered-
itarily deadlock iree if none of the processes represented by its subnetworks (including
itself) can deadlock. Notice, for example, that any network which is triple-disjoint is
hereditarily triple-disjoint.

The vocabulary of the network V = {P;|1 <{< N} jadefined to be U{aP;NaP,|i #
7}: the set of ¥’s “internal communications”. This is an important set from the point of
view of deadlock analysis because it is the set of events for which agreement is necessary.
At any time when V is deadlocked it is clear that no P; can be willing to communicate
outside this set. Note that if W is a subnetwork of V, then the vocabulary of W iz a
subset of that of V.,

The parallel operator we have defined does not conceal the internal communications
of a network: in PAR(V} a communication in the language of V remainsa visible to the
environment. However it is often desirable to conceal the internal communications; this
is done, for example, in the chaining operator “3»” of CSP. Indeed it is common practice
(as is the case with ») to hide internal communications as the network is put together,
8o that networks become interleavings of the parallel and hidizg operators. We already
know, by (D2) above, that hiding the internal comrmunications would make no difference
if done at the outermost syntactic level. The following law shows that it does not matter
whether the internal actions of an element of a network are hidden immediately or at
the outermost level.

(D3) i Cna@ =8, then (P\C || @) = (P QN\C.

Using this law, the associative law for || and perhaps some renaming of internal
communications, any finite parallel system of processes with internal events hidden at
any skage can be proved equivalent to a network with a single hiding operation at the
outermoat Jevel. Thus, from the point of view of deadlock analysis, all such networks are
equivalent to a network without any hiding at all.

We will say that the network V = {F;[1 <3 < N} is busyif and only if each
component process P; is deadlock free.

We will concentrate on the deadlock analysis of triple-disjoint, buay networks, In
such networks deadlock can only occur when every process is willing to communicate
with some neighbour or neighbours, but none of these neighbours is willing to respond.
These local situations can easily be detected in the global states of a network.

Definition. Suppose ¢ = {s, X) is a state of the network V = {F; |1 <1 < N}.
Then we call {i,7} a request (reapectively a sirong request) of the state if ¢ # j and
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(aP; — X,)NaP; # @ (respectively @ # {aP; — X;) C aP;). Thus {15} is a request when
P, is trying to communicate with P;, and a strong request if P; can only communicate
with P;.

We say this request or strong request ia ungranted if additionally

aP;naP; CX;UX;,

i.e., if P; is unwilling to respond to F;’s request. One can regard ungranted requests aa
being the building blocks of deadlock.

Sometimes we are only interested in ungranted requeats when neither process is able
to communicate outaide some set A. (Often this will be the vocabulary of the network.)
Thus we define {1, 7} to be an ungranted request or strong request with respect fo A if,
in addition to the above,

(aPi— X;)u(aP; — X;) CA.
We will write

P,=. P or P=%P;

when (i, j} is a request or strong request of o, Similarly we will write
Fi"veP; or P=SpeP;

when (i, 7} is a ungranted request or strong request of ¢, and
P  or B A p;

when {f, §} is an ungranted request with respect to A. O

Notice that if A C A", then P, Z%e P, = P; 250 P, and that P, 2%e P> Pi e P;
when aP; UaP; € A. (Of course, similar observations are true of strong requests.)

Definition. Let {P,|1 <1 < N} be a triple disjoint network with vocabulary A. P; is
said to be blacked in a state o if

1. P, 2. P, for some 3, and

2. P, 2Me P; whenever P, - P;.
Lemma 1. If & is a state of the triple disjoint, busy network V, then ¢ is a deadlock
state if, and only if, every process in V is blocked.
Proof. This follows easily from the definitions. O
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Definition. In the network {F;|1 < ¢ £ N} with vocabulary A, the sequence of distinct
indices (i;,...,1,.,) with r > 3 is termed a cycle of ungranted requests if, for each j,
{4;,%;41) is an ungranted request with respect to A (where addition is modulo r). O

We have stipulated that all cycles of ungranted requests must have length at leaat
three. The length two case, where each of a pair of processes asks the other for a
communication, but where they cannot agree on anything, is sufficiently different to
deserve special lreatment: see section 4.

It will turn out that these cycles are symptomatic of deadlock in large classes of
networks. The reason for stipulating that all the ungranted requests are with respect to
A is that, if one of the P; can communicate outside A, the network cannot be deadlocked.

A cycle in a communication graph will be a sequence of at least three distinct pro-
cesses, each of which is joined to the next by an edge and where the first is joined to the
last. Clearly each cycle of ungranted requests corresponds to a cycle in the communica-
tion graph.

It has long been known that trees {networks with no cycles) are especially easy from
the point of view of deadlock analysis. For example a number of simple conditions were
introduced in (BR2,3| which ensure the deadlock freedom of trees. Perhaps the most
useful of these conditions is described in section 4 of the present paper. Tt is the purpose
of this paper to present techniques for proving deadlock freedom even in networks with
many cycles, -

3 A proof-rule for deadlock freedom.

We are now in a position to present the simplest form of our main result, which establishes
the validity of 2 technique for proving deadlock freedom. The idea behind our method
is gimple and derives from methods used to prove the termination of loops in siandard
programming languages. We assign to each process in a network a function which assigns
values to the states of that process. If jt can be proved that whenever one process is
waiting for another, the value of it8 state must be at greater than that of the omne it is
waiting for, the network must be deadlock free. This is because in a deadlock state one
would, starting from any process, be able to construct an infinite sequence of processes
whose ptates have strictly decreasing values. This means that all the processes in the
sequence are different, which Is clearly impossible in a finite network. We can think of
these functions as being the varfant of the network.

Theorem 1. Let V = {Pi|1i € {1,...,N}} be a triple-disjoint, busy network with
vocabulary A. Suppose that there exist functions

Ji:FIRl—T  (ie{1,...,N})




where (I1, >) is a partial order, such that if ¢ = {s, X} is any state of V then
P2hep, = fistaPLX) > fi(sheP, X)) .
Then V is deadlock free.

Proof. Suppose that V is ag in the statement of the theorem and § = (s, X} is adeadlock
state.

For each 1 we may, using Lemma 1, select an index r(s) such that P B, ;.
Necessarily, then, fi(sbaP, X)) > foa(sbaPry, Xem)-

Now observe that each of the indices i,r(i),r*(s},...,r™(d),... is distinct because,
by a trivial induction, if m < n, then

frm(f](sy‘ﬂpfm(i).xm(s}} > fin(shaPongy, Xongi)) -
This contradicts the fact that our network js finite.

Unfortunately the preconditions of Theorem 1 are not quite the type of completely
local conditions we are seeking for deadlock freedom. The problem is that weare required
to check every state of the whole network, rather than the states of emall subnetworks.
However, it is clear that the condition is essentially one on pairs of processes and it is
easy to derive purely local properties which imply it.

Lemma 2. Suppose V = {F;|i € {1,...,N}} is a triple-disjoint, busy network with
vocabulary A, and that (1, >) i a partial order. Then if the functions

LiFIPl— T (e{L,...,N})
have the property that, whenever ¢ = (3, {X;, X;)} is a state of any two-element subnet-
work {F;, P;} {3 # j),
P, e P = fisbaP, X)) > f(sheP;, X)) .

Then V satishies the conditions of Theorem 1 {with functions f;). Furthermore this is
also true of every subnetwork of V. )

Proof. The main part of this result follows trivially because any ungranied request in
V gives rise to an ungranted request with respect to A in {P;, P;}. The cenditions of this
lemma are hereditary for, since the vocabulary A' of every subnetwork of V is a subset
of A, any ungranted request with respect to A’ is also one with respect tc A. D

Rule 1. I V is any network satisfying the conditions of Lemma 2, then V is hereditarily
deadlock free. O

Rule 1 provides us with a technique for proving deadlock freedom where the checking
of preconditions is entirely local: we have to verify that each P, is deadlock free, that
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no communication is in the alphabet of three processes, and that each pair of processes
which can communicate satisfy the *decreasing variant® condition. The only time when
one needs to consider the whole network is while inventing a suitable system of variant
functions.

In general, variant functions are associated with the maximal failures of processes,
however we will often restrict them to just traces, as these are simpler to work with and
almost always sufficient: for deterministic CSP processes, there is no difference.

The guiding principle of our work has been ta develop methods which are reasonably
easy to apply in practice. (Hence our demand for purely local preconditions.) Therefore
an important part of this paper will be a geries of worked examples to illustrate their
application. The following three examplea illustrate the applicability of the Rule 1, which
is our most basic technique. The first two are applications to fairly specific systems. The
third illustrates how an existing theorem on deadlock freedom can be extended using our
techniques, and in turn how this extended result can be used to establish straightforward
ways of constructing deadlock free networks.

Example 1: Self-timed version of a systolic array. A common type of systolic array
is one where there is a rectangular array of processing elements, each of which repeatedly
inputs a pair of elements from its “up™ and “left” channels, and then outputs values to
its “bottom® and “right” channels and processes its present values. This is sometimes
implemented with a distributed clock signal, which ensunres that the processing elements
proceed in exact step. Usually it will be necessary to use some device such as triangles
of delay elements to ensure that the correct pairs of data elements meet.

However, if the processing elements are described as CSP processes (with “hand-
shake” communication) there is no need either for a distributed clock or for the delay
elements; the network becomes self-timed. (See [H] for an example of a matrix multipli-
cation algorithm treated in this way.) Which implementation is better will depend on
the application: one needs to weigh the overheads of handshake communication against
the overheads of distributing a clock, introducing a delay element, and needing to slow
the clock tothe longest time any element might ever take to complete its computation.

By moying to the self-timed version of such an algorithr one loses the comforting
predictability of the tightly synchronised version: there is no longer any way in which
we can predict what state the network will be in at any time. We need to analyse the
patterns of communicating behaviour that can arise. Fortunately these are essentiaily
independent of the particular function being computed by the array, and so it is sufficient
to examine a paradigm array where all details of the data being processed are omitted,
g0 that only the synchronisations between processes remain. The paradigm processing
element isdescribed by the CSP process

P{up, down, left, right) = (up — SKIP || left — SKIP);
(dawn — SKIP || right — SKIP);
Plup, down, left, right} .
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Figure 1: Matrix multiplier array

The array is then formed by setting
Pij = P(vij vier g hijyhige) and  aPij = {vig, Vigg, hiobijn}

and forming the triple disjoint, busy network {P;;]1 £i £ m, 1 < j < n}. Even though
the individual elements of this network are quite simple, because they are free to choose
their own rates of progress the number of possible behaviour patterns of the whole is
very large indeed. It is by no means immediately obvious that none of these can lead to
deadlock, but we can prove deadlock freedom using our technique.

Let us consider the operation of the subnetwork {Pi;, F;;41}. Observethat aP;;n
aP; ;i1 = {hij+1}, and that each process communicates this event exactly once on each
cycle: P;; as either the third or last event, P;;;, as either the first or second. Therefore
the two processes can never be more than one cycle apart. It is easy to see that if (s, X}
is a state of {P;;, Pi;+1} and }’,‘JE‘). %+ then Pij musé have completed one more
cycle than F;j4,. More precisely, we have

lshaPij| = 4 x [sMhijn}l +2 and |shaPisul < 4x|shbgn)l -1

a3 P;; must have executed at least two events of its cycle number |sh{h.d+1}| + 1 before
it can wait for A, ;4; and P;;;, cannot have completed cycle number |sf‘{h.-‘,-+1}|. Thus,
combining the above inequalities,

3 S IS"&P;J} - ISPQP;J+1|,

11



and hence
|sf‘aP.;,—I > 1sf‘aP.»,,-+1| +2

which in turn implies
lshaPj| +2x (i +7) > IshaPijul+2x(E+j+1).

For similar reasens, if P, (=R P:; then

lsbaPyy| = ax fsMhisu}l and |shaPiy] < 4 x [sM{hip}] +1
and hence
1 2 [shaPyi - IshaPijul-

This is easily seen to imply

lshaPij | +2x(i+5+1) > [shaPy|+2x{E+7).

Clearly the cases dealing with ungranted requests between P;; and Pj4,; are sym-
metric, the common event in their alphabet being vy ;. Therefore in this case if {3, X}
is a state of the subnetwork {F;;, Piyi )}

P e Py = |haPyl+2x (i +]) > lshaPaajl+2x (14 1+ )

P.'+1Jt'—"%}.P.'J => ISP‘C!P.'+1J'i+2X(l'+l+]') > lar'CIP.'Ji'I‘IX(I:"I"j).

Thus defining f;, : tracee(P;;) = N where

fii{s) = |sl+2x (s + )
we have that, in general, if P;; (-'-'=Y20P.,, then f.-‘,-[sr‘aP.-J] > fu(ar‘aP.,r). We conclude
that the network is deadlock free.

The parallel input, parallel output scheme for relaying information that we used in
this example is probably the most efficient in terms of aveiding delays to processing.
We will see in Example 3 that it is in itself a powerful tool for ensuring that networks
broadly similar to the present one are deadlock free.

It is entertaining to consider variants on the present system where the parallel in-
put/output scheme is replaced by another. In fact ro rectangular array where, on every
cycle, each process always does both itz inputs before both its outputs can deadlock:
this is shown by considering a network made up of elements with the following form.

P'(up, down, left, right) = {(tup — left — SKIP) N (left — up — SKIP));
((down — right — SKIP)N{right — down — SKIP));
P'(up, down, left, right) .
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{(P' may, on each cycle, choose which input channel it wants to communicate on first,
and then which output channel.) Since these are the most nondeterministic processes
satisfying the above specification, if a network composed of P's is deadlock free, so muat
every such network.

The construction of the variant for the network of P's is left as an exercise to the
reader. He will find that the variant given above will only guarantee noun-strict inequality
between all linked pairs of nodes. In fact, because this network is in some sense only
marginally deadlock iree, and because the nodes are non-deterministic in a crucial way,
it is necessary to define the variant functions for P' network in terms of the maximal
failures of the nodes, not just their traces.

The fact that this nondeterministic version is finely balanced on the edge of deadlock
is emphasised when one considers the corresponding three-dimensional network. This
is a three dimensional rectangular array of processors where, on each cycle, each inputs
on channels up, left and front (in nondeterministic order) and then outpuis on down,
right and ba2ck. When we know that the two-dimensional network js deadlock free it
is surprising to discover that network can easily deadlock. (The reader might enjoy
constructing this deadlock in a 2 x 2 x 2 array.) O

In the above example there is clearly some sense in which we can regard f;‘,-(sf‘uP;J)
as measuring the “amount of work® P;; has done: thus one process can only be waiting
for anokher when it bas progressed further in its calculations. Note, for example, that the
fi; are monotonic in the length of trace. This is a useful analogy for this network and
can assist in the construction of the variaot functions for similar networks. However,
as is illustrated by the next example, our technique can be applied in quite different
circumstances.

Example 2: The correctness of a resource allocation protocol. Suppose that
there are a number of “user® processes {F;{1 < i < N} which compete for the resourcea
{R; |1 £ 7 £ M}. (No resource may be used by more than cne P; ai a time.) A
well-known method of avoiding deadlock in this system is to place a linear order on the
resources, which we can assume js that on the indices {1,..., M}, and ensure that no
process ever tries to acquire a resource with higher priority than a resource it already
holds. Here will show thay this result can be proved simply using Rule 1.

We first need to define the system a little more precisely. We can define the resource
processes
R = jugeta:{1,..., N} o jreli - R;

(«R; = {j.get.i,j.reli [1 <1< N}). We will assume that all the P; are deadlock free,
that aP;naP; = O whenever i # j and that oP; N aR; = {f.get.i,j.reld}. Further,
whenever 3 € traces(P,) we will agsume

af\aR,- < {f.get.d, 7. reld)” for some n
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{which meane that P; never tries to release R, when'it doesn’t hold it, or to acquire R,
when it does hold it). Thus, when s € traces(F;), we can define the set of resources P,
“has” by

ri(s) = {5 | |sh{F.get-i}| > sMG.ret.i}|} .
We can think of the above conditions as setting up a “reasonable” system of resource-
using processes. In this framework we can restate the protoco! as folows: !

3lj.get.i) € traces(P) Ak < j = kgrls}.

It is clear that, under our assumptions, the network V = {P;|1 <1< NJU{R;|1 <
7 € M} is busy and triple disjoint. As our pactial order IT we choose {1,2,...,2M,2M +
1, big}, where the natural numbers have their usual order and big is maximal in II. We
define functions f; : treces(F;) — I1 and g; : traces(R;) — IT as follows:

fi{a) =2 x min{{M +1}Ur(s)) -1

gi{a) = big if |9| is even
=2xi if |3] is odd.

{Note that, when 3 € traces(R;), |3 is even when the resource is “free” and odd when
it is held by some P;.) It ie a trivial matter to verify that these functions satisfy the
required condition for Rule 1; we may therefore conclude that the network is deadlock
free.

Example 3: Networks of cyclic elements. In [D}, Dijkstra and Scholten state and
prove a theorem concerning the deadlock freedom of networks in which every element
communicates with its neighbours in a strict cyclic order. We show here that an extension
of this resuli can be proved via Rule 1. The following is the theorem of [D] re-phrased
to reflect the terminology of the preseut paper.

Theorem {D]. Suppose each of the processes in the triple-disjoint, conflict free’ net-
work {P;|] £ i < n} communicates with all its neighbours in strict cyclic order: FP;
communicates with the processes with index {¢;1,...,¢im,) {where ¢;;,...,& n are all
distinct) unendingly in cyclic order starting with ¢;;. Then the network is hereditarily
deadlock free if and only if there is no cycle in the communication graph

{@9, .- 8m~1) (ai all distinct, m > 2)

where, foreach 7, process a; wants to talk to process a;y, before it ia prepared to talk to
a;_, {arithmetic being modulo m). (In other words, if s; and p; are defined to be such
that ¢;, =a;4y and g7, =a,-, then p; > 3; forall j€ {0,1,...,m-1}) O

" Conflicl free networks are defined formally at the begining of the next section. Essentially they are
networks where mo pair of processes can request a communicasion of each other wichout heing able to
agree on ooe.
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We strengthen this result by replacing the cyclic communication with single processes
by cyclic parallel communications with groups of processes in the style of Example 1.
Formally we say that a procesa communicates in parallel with the nonempty subset C of
its neighboura when, before it can proceed, it must communicate with each element of
C exactly once and furthermore, until this is finished, always requests a communication
with all elements of € with which it has not yet communicated. Typically this would be
implemented by the CSP construct

Il ap — SKIFP ,
Pec

Where ap € aP for each P € C.

Theorem. Suppose each of the processes in the triple-disjoint, conflict free network
{P:]1 < i € n} communicates with each of its neighbours once on every cycle by
communicating in parallel with subseta of them in cyclic order. Thus there is some
partition {Ci,,...,Cim,} of the indices of each P;’s neighbours such that, i strict and
unending cyclic order, P; communicates with the processes with indices in each Ci; in
parallel. Then the network is hereditarily deadlock free if and only if there it no cycle in
the communication graph

(Coy+--18m_1) (a; all distinci, m > 2}

where, for each 5, process a; wants to talk to process a;_, before it is prepared to talk to
a4y (arithmetic being modulo m). (In other words, if s; and p; are defined to be such
that ¢;y, € C;,, and a;_, € G, then p; < g;forallje {0,1,...,m—-1}) D

Praof. The “only if” part of the proof is essentially the same as that in [D]: one simply
observes that any cycle with the property above is a subnetwork that can (and does)
deadlock, Nome of the members a; of the cycle can agree to communicate with its
successor g;y; until it has communicated with its predecessor ¢;—: therefore no element
of the cycle can be the first to communicate with its suecessor. This means that after
a few communications the subnetwork is bound to find itself in the state where each
process i3 waiting {exclusively) for its predecessor. Indeed (as is observed in [D}), if the
network is connected a cycle of this type must eventually deadlock the whole system.
The number of cycles completed by a pair of neighbouring processes differs by at most
one, as they share one event on each cycle. Hence in a connected network with a cycle of
the type described, no process can complete more cycles than the diameter of the graph.

To prove the “if* part we will define a relation on the (undirected) edges of the
communication graph. We will denote the edge between F; and P; by the two element
set {1,7}. For all i and k, 7 < m, we define

{i,a} < {i,5} wheneverae C,;,beC;; andj < k.
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Thue the edges jeining each process to its neighbours are “ordered” according to the
order in which F: first addresses them, with no order between e¢dges along which P;
communicates in parallel. Note that, because no two processes have more than one edge
in common, < induces a partial order on the edges surrounding each individual P;.

Now let < be the transitive closure of <. Claim that < is a partial order (on the set
of all edges of the graph). This could only fail if there were a sequence (necessarily with
length > 2) of distinct edges

{Sos g0} < {in i} <+ < {fm) Jom}
where 1y = 1, and jy = Jpn-

Since each pair of edges ordered by < have a node in common, aud since < is transitive
on edges all of which have a particular node in common, we may assurme that

0<rgm =>Jlr=£r+1‘

{Any edge which has the same node in common with each of itz neighbours may be
removed from the sequence.)

Consider tbe cycle of processes given by {(fo,%1,+-.,%m-1). Foreach k we have {ix, 141} <
{is,%4;} (arithmetic modulo m). Thus, if we define s, and p; a5 in the statement of the
theorem, we have 5; > p; by definition of <. This contradicts the assumption that no
such cycle exists. Hence < i3 a partial order.

Since every partial order can be extended to a linear order it follows that there is a
function g from the edges of the graph to the open interval (0, 1) such that

(.5} a {k 1} = g{i,j} <g{kl}.
Now define functions f; : traces(F;) — R by
fils) = [I%l] + maz{g{,7} | 3a € aP;.s{a} € traces{P;)}

where N; is the number of neighbours of P; and [z] denotes the greatest integer less than
or equal to z.

In other words, fi{a) is the number of complete cycles that P; has executed plus the
greatest value of any edge over which it can communicate next. Note that if P; has
completed n cycles then n < fi(s) <n+ L

Consider the interaction of any pair of neighbouring processes { P;, P;}. By our as-
sumptions they share exactly one communication on every cycle. Hence if P; e P; it
is clear that either P; and P; have completed the same number of cycles but that F; has
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not yet reached the point in its present cycle where it can communicate with P;, or P;
has completed one less cycle than P;. In the latter case it is clear that, if P; ison cycle
n, then

fisbaP) > n > fi(sbap))

which establishes the desired inequality.

So auppose that both processes have completed n cycles. Since P; can communicate
with P, on its next step we have from the definition of f; that f.v(sbaP‘-) Zn+g{i, 1},
On the other hand we know that P; has not yet reached the point where it can com-
municate with the set of ita neighbours that includes i, 8o that every event which it can

“communicate next belongs to some aPy with {f, k} < {7,1}. The definition of f; then
tells us that f,-(st‘a:P,-) < fi + ¢{4,7}. Thus the inequality of Rule 1 is satisfied in this
case a8 well. We may thus conclude that the network js deadlock free. O

This result has a number of useful corollaries, three of which are listed below. They
all illustrate the power of parallel communication as a means of avoiding deadlock.

Corollary 1. If a network of the type described in the statement of the abovetheorem is
modified by replacing some of the F; by processes which are identical except that all the
communications in some consecutive groups of communications now occurin parallel,
deadlock cannot be introduced.

Proaf. Modifying 2 network in this way can only serve to make the relation <, and
hence the partial order <, smaller so that no cycle of the type described in the statement
of the theorem can be intreduced. O

Corollary 2. If, in a network of the type described in the statement of the theorem,
each process does all its communication on each cycle in parallel, then thal network is
deadlock free.

Proof. In such a network the relations < and <« are empty. O

Corollary 3. Suppose V is a network of the type described in the theoremn on which
there is a partial order on the elements of the network such that every pairof neighbours
is comparable. (In a network laid out geometrically this might be the partial order
induced by the z-coordinate of the processes’ positions; the comparabllity condition
meaning that there is no direct link between two processes with the same z-coordinate.)
Suppose further that each process is designed so that on each cycle it communicates with
all its neighbours less than itself in parallel. (The order of its communications with those
greater than itself is not specified, and neither is the relative order of the parallel block
within these communications.) Then the petwork is deadlock free.

Proof. Any cycle of the type described in the statement of the theorem would necessarily
have one or more maximal elements. S0 suppose P, is a maximal element, and its prede-
cessor and successor in the cycle are P; and F;. On the one hand, since by assumption
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Figure 2: A typical left-then-right system which Corollary 3 proves deadlock free

both P; and P are less than P;, the latter communicates {on each cycle) with P; and P
in parallel. On the other hand (by the properties of the cycle) P, needs to communicate
with P; before it can first communicate with F;, This gives 2 contradiction, proving the
Corollary. D

One case of this corollary is where each process cycles between comrnunicating with
all its left-hand neighbours in parallel, and all its right-hand neighbours in parallel.
Even though the right-hand parallel communication is not strictly necessary to achieve
deadlock freedom, we can expect it to improve efficiency. Note that the network of
Example 1 falls exactly into this category. (The partial order is that induced by 1 + j.)
Often, as in Example I, the communications to the left will be inputs and those to the
right outputs. In this case the cutputs at the extreme right of the network will correlate
exactly with the inputs at the extreme left: the first cutput on each channel is produced
by the first group of inputs, and so on.

1t is at first sight surprising that some networks proved deadlock free by Corollary 3
are 8o {even networks of the very restricted type described in the last paragraph). For
example the one in Figure 2, where there is no clear division of the processes into “levels”,
meaning that some parts of the network apparently want to go faster than others.

Later, when the necessary machinery is available, we will be able to generalise Corol-
lary 3 a liftle.

It should be possible to discover further extensions to the Theorem above, and also
others in asimilar style. Hopefully these will lead to more results like the three corollaries
above, which have the great virtue of being simple to apply in practice. O (End of
Example 3)

Rule ] is strong enough to prove the deadlock freedom of many systems in addition
to those shown above. It can be used to prove the deadlock freedom of the “token
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passing ring” systern of [BR2|. (Here the fact that ungranted requests need culy be in
the vocabulary of the network is crucial.) Also it can be applied to various versions of
the “dining philosophers”, including the one treated using Rule 2 in the next section.

However there are many networks to which it cannot be applied. There are networks,
like the dining philosophers (all of whom are, say, right-handed) with a “butler” process
who regulates the number of philosophers who may sit down, which though deadlock
free are not hereditanly deadlock free. {After the removal of the butler, this systern may
deadlock.} Secondly there are networks where a pair of processes can each simullanecusly
be willing to communicate with each other without there being any joint communication
possible. {Under the conditions of Rule 1, each process would need a variant smaller
than the other.) The following theorem identifies precisely those networks to which Rule
1 can be applied, its proof is in the same vein as that of the main theorem in Example 3.

Theorem 2. Suppose V = {P|f € {1,...,N}} is a triple-disjoint, busy network
with vocabulary A. Let T1 = U% (F[P] x {i}). Define the relation > on IT as follows:
(2, X,1) > (4,Y,5) bolds whenever there exists a state ¢ = {u, {X, ¥)} of {F;, F;} such
that wtaP; = s, ur‘aP,- =tand P, 2 F;. Then ¥V can be proved deadlock free by Rule
1 if, and only if, the transitive clopure of > on II is a partial order. O

Proof. Let - be the transitive closure of the relation > on IT. Firstly, let us assume
(M, 1>) is not a partial order. This ¢an only be if there is a sequence

{SQ,XQ,‘io) > (shx.l:‘.l) e {swuxmgim)

where sy = s, Xy = X, and iq = in. Now, if Rule } can be used on V, by the properties
of the variant functions and the definition of >, we would have

Jio(so, Xo) > fi(s, X0) > - > fi (80, X}

and hence that fi (s, Xo) > fi.(90, Xo), which is a contradiction. Thus, if (I, ») is not
a partial order, Rule | cannot be applied to V.

Now, let us assume that (71, t} is a partial order. Then define functicns
fi: FIP = FIBL x {i} by fils, X) = (s, X, 4).

It is easy to verify that, using (IT, >) as the partial order required by Rule ], the functions
fi are in fact variant functions. Hence, if (T, 1>) is a partial order, it is possible to prove
V deadlock free by Rule 1.

8o we conclude that ¥V may be proved deadlock free by Rule 1 exactly when (II, 1)
is a partial order. O

Note that when Rule 1 fails, from the theorem above, there exista a “local cycle of
ungranted requesta”. However, thiz does not necessarily imply the existence of a global
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state in which there is 2 cycle of ungranted requests (although the converse is true). An
example of such a network is the message passing ring in [BR3] where each element is
a restricted double buffer. This network is deadlock free, has no global state in which
there is a cyde of ungranted requeste but does bave local cycles that preclude the use of
Rule 1.

Having established the type of neiworks which Rule 1 encompasses, the reat of this
paper i8 devoted to extending our methods to wider classes of network, and to developing
an understaiding of whick networks are liable to be susceptible to a given technique.

4 Networks with conflict

The notionsof conflicts and strong eonflicls between pairs of processes were introduced in
|BR3], and used to prove results about deadlock. In this secticn we summarise the main
ideas from the earlier paper and show how, by incorporating these ideas into our present
theory, we (an make our proof rule both easier Lo apply and more widely applicable.

Definition. Suppose A is a set of communications. The processes P, @ are said to be in
conflict with respect to A in the state o = {5, {X,¥)) of {P,Q} if 3and only if

PTeQ and @NeP.
They are in strong conflict if, additionally,
P23aQ or QZBeP.

P and @ are gaid to be conflict free (respectively strong conflict free) with respect to A
if they bave no conflicts (resp. strong conflicts) with respect to A.

We will say that a network V is conflict free (resp. strong confiict free} if each of
its pairs of processes is conflict free (resp. strong conflict free] with respect to A, the
vocabulay of V. O

A conflict is precisely the “cycle of ungranted requests of length two® described at
the end of Section 2. A stroag conflict is one where one of the pair of processes involved
is completely blocked by the other. Qnce again we restrict our atiention to the case
where neither process can communieate outside the vocabulary of the network because no
network js deadlocked when any of its components is able to communicate independently.
It is impertant to note that conflict freedom and strong conflict freedom are hereditary
properties of a network and can be checked by purely local analysis.

The commurication patterns of most practical parallel systems are fundamentally
conflict free in that, even though a given version of a program ie not, it can be trivially
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be redesigned to be so (see |BR3| for an example). For example, any pair of processes
connected by a single occam-like channel are conflict free because the inputting process
cannot be willing to talk to the other without being willing to accept anything the
other might offer. Some systems, often ones with particularly symmetric communication
patterns, cannot be made conflict free. However it is hard to think of a sensible syatem
that cannot be made free of strong conflict, since strong conflict arises when one process is
willing to talk to another, even though it is itself preventing that process from proceeding.
As we ghall see, strong conflict freedom is the more important of the two conditions. See
[BR3] for a more detailed discussion of these conditions, and a number of examples,

The following theorem gives us a sharp and usable characterisation of deadleck states.

Theorem 3 [BR3] Every deadlock state of a triple disjoint, buay, strong conflict free
network has a cycle of ungranted requests. OO

This theorem eays that when deadlock occurs in a “reasonable” network, there is a
chain of processes in which each process is waiting for the one ahead of it in the chain,
and where the last process is waiting for the first one. The following useful result is an
immediate corollary.

Theorem 4 [BR3] If V is a busy, triple disjoint, strong conflict free network whose
communication graph is a tree, then V is deadlock free. O

In practice, many parallel networka are trees (for example pipeline systems and binary
trees). Theorem 4 is usually all that one needs to prove their deadlock freedom.

If V is a network, we define the disconnecting edges of V to be the edges of the
communication graph whose removal would increase the number of components of the
graph. The essential componenis of V are the components of the graph after all discon-
necting edges are removed. (In graph theoretic terms, the essential compouents are the
maximal edge bi-connected subgrapha.) Note that the disconnecting edges are precisely
the edges which cannot be part of any cycle in the graph. Obaerve also that the essen-
tial components of a tree are its individual processes, and that the essential cornponenta
themselves always form a tree when an edge is drawn between a pair if and only if there
can be communication between any of their elements. This fact, and analysia of conflict
freedom, establishes the following result.

Theorem b [BR3| Suppose V is a triple disjoint network with essentia! components
Vi,..., Vi where the pair of proceases joined by each disconnecting edge are conflict free
with respect to A, the vocabulary of V. Then if each of the V; is deadlock free, s0 is V.
O

This result identifies parts of networks which can, from the point of view of deadlock
analysis, be regarded as independent. This is very useful since we can reasonably expect
a small network to be much easier to analyse than a big one.
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Theorem3 can be combined with the idea of variants to give a number of results on
deadlock which are sharper than either Theorem 1 or Theorem 3 by themselves. In the
following result we relax the conditions on varianis, so that the variant never increases
on an ungranted request, rather than strictly decreases.

Theorem ¢ Let V = {P; |1 € {1,...,N}} be a triple disjoint, busy, strong conflict free
network with vocahulary A, Furthermore, suppose there exist functiona

fiFlRl— I (ie(l,...,N})

where (IT, >} is a partial order, such that whenever (f,7} is a non-disconnecting edge
and ¢ = {a,(X;, X;}} is a state of (F;, P;} then

P, e Py = f(shaP Xi) 2 filshaPy, X))

Then any deadlock state {3, X} of ¥ contains a cycle of ungranted requests {iy,...,9m-1)
such that all the fi’(shaP;_) are equal.

Proof. Suppose V satisfies the prerequisites of the theorem and {s, X) is a deadlock
state. By Theorem 3, {3, X} has a cycle of ungranted requests, say {¥9,-..,%m—1}. Now
define g : {0,...,m—1} ;— II by setting g(k) = f.-,(sr‘aP.-,, X.,). Since none of the edges
making up the cycle can be a disconnecting edge, it follows from the properties of the
functions f; that

g(0) > g(1) 2 - 2 g{m — 1) 2 ¢{0)

and hencethat g(r) = g{0) for all 4. O

Observe that when we define all the variant functions to be the same constant, The-
orem 6 reduces to Theorem 3. Shortly this result will allow us to sharpen the technique
intreduced in Rule 1. By itseif it provides a useful tool for analysing “difficult”™ networks
for potential deadlocks by placing bounds on the places deadlock might appear. One tries
to produce a system of variants which is as “refined” as possible (i.e., yields as many
strict inequalities as possible). The search for deadlocks is then restricted to cycles with
equal variant. The power of this idea is illustrated by returning to two of our earlier
examples.

Example 1 revisited. Recall the nondeterministic verisions of the array in two and
three dimenaions, We observed there that the twe dimensional case was deadlock free, but
that its variant was hard to construct, but that the three dimensional case deadlocks, The
reasons for this apparently paradoxical situation become far clearer when we examine the
networksusing Theorem 6. The variants we take are very simple: in the two dimensional
case

Joils) = llsij2] +3 +3

and in the three dimensional case
feja(s) = [sl/3]| +i+j+k.
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In each case the variant is the number of half cycles the process haa completed plus ita
“depth” into the network. In each case it is simple to establish that the conditions of
Theorem 6 are satisfied. It is also simple to establish that if P, ;,(4,) ~ e P, sk, and
Py jatks) —* Piy juika) aDd all three processes have the same variant, then £, + 1{+ k,) =
i3 + 7a(+ ks}. From this we can deduce that, in the two-dimensional case, any cycle of
ungranted requests is a subset of {{{,j}|i+j € {r,r+1}} for some r, while in the three
dimensional case it is a subset of some {(i,7,k) |+ +7 +k € {r,r + 1}}. The former
is essentially a straight line, and containas no cycles (proving deadlock freedom}, while
the second is essentially a plane and contains many cycles (which is the reason why this
network deadlocks). O

Example 3 revisited. We are now in a position to fulfil the promise made earlier and
generalise Corollary 3. On careful analysis it turns out that the crucial features which
make this result true are that, on each “cycle”, every process communicates exactly
once with each neighbour and that its communications with its left-hand neighbours
are in parallel, The hypotbesis (inberited from our extension of the Dijksira theorem)
that there is a pre-determined cyclic order to the communications turns out not to be
necessary. Note that the processes in the networks on the Theorem below are free to be
nondeterministic provided they satisfy the baaic specification laid out.

Theorem Suppose ¥V = {F;}1 < i < n} is a triple disjoint, busy, conflict {ree network
where each process communicates with each of its neighbours once on each “cycle®.
(In other words, if P; has m neighbours, then for each k itsa commuunications number
kxm+1to (k+ 1) x m consist of one with each neighbour.} Suppose further that there
is a partial order on the elements of the network such that every pair of peighbours s
comparable, and that each process is designed so that on every cycle it communicates
with all neighbours less than itself in parallel. Then the network is deadlock free.

Proof. The variant of P; is the number of cycles it has completed. Since each pair of
neighbours share exactly one event on each cycle, no process can wait for a procesa that
bas completed more cycles than it has. Thus these functions satisfy the conditions of
Theorem 6. The form of these functions means that the cycles of ungranted requests
described in the statement of Theorem 6 necessarily consist of processes on the same
cycle. Suppose P; is a maximal element of such a cycle, and its predecessor and successor
in the cycle are P; and F;. Because P; and P; are on the same cycle we candeduce that
P, has not communicated with P, on its present cycle. On the other hand, since by
assumption both P; and P, are less than F;, the latter communicates (on each cycle)
with P; and P; in parallel. Thus, since P; is willing to communicate with Py it must also
be willing to communicate with P;. This contradicts the facta that the pair {P;, P;} is
conflict free and that P; has an ungranted request to P;. O

We can in fact show that Rule 1 i applicable to this network. It might interest the
reader to prove this using Theorem 2 and much the same argument as above. [

In both of the above examples where we have been able to prove a nelwork deadlock
free, the crucial feature has been that no cycle of ungranted requests with equal variants
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can exist. Ineach case this followed only after examination of the processes. A rather
more straightforward application of this theorem is where no such cycle exists because
the petwork contains enough edges where strict variant inequality is maintained.

Note that cycles in communication graphs can be thought of as consisting of directed
edges: an edge of the graph together with a direction. We can represent the directed
edge from F: to P; as the ordered pair (,7) just as we could represent the undirected
edge as the st {1,1}.

Rule 2. If the petwork V satisfies the conditions of Theorem 6 and additionally £ a set
of directed edges from the communication graph of ¥ such that every cycle in the graph
contains at least one edge from F and such that whenever (i, 7} in E and ¢ = {s, (X}, X,}}
is any stateof {F;, P;} then

Pi"%e P, = fishaP X)) > fi(sdaR X)) i (i) e £
Then V is bereditarily deadlock free, O
The validity of this rule follows easily from Theorem 6.

Since tbe preconditions of Rule 1 trivially imply conflict freedom, the preconditions
of this theorem are easily seen to be weaker than those of Rule 1. Thus the second
rule we give is in some sense strictly stronger than Rule 1. Notice that, since there is no
condition relating the values of the variants of elements of different essential compenents,
it is possible to develop the variant of each of these components indeperndently.

We give three examples of the use of Rule 2. The first is to a network where the
possibility of having non-strict inequaljties leads to much simpler variant functicus than
could have been used under Rule 1. The second and third examples are not conflict free,
and so ¢ould oot have been treated at all using Rule 1.

Example 4: The n dining philosophers, This problem is sufficiently well-known to
need little introduction. A number of philosophers { PHILy - - - PHIL,_,) sit at a circular
table, and between each pair PHIL; and PHIL;y, lies FORK,. (All arithmetic in this
example will be modulo n.} In order to eat, a philosopher requires both neighbouring
forks (lefl aad right). Deadlock can occur when all philosophers pick up one fork simul-
taneously: none can acquire the second fork ke needs until another philosopher releases
it; but no philosopher will release a fork until he has eaten.

As stated earlier, one way to prevent deadlock occurring is to ensure that the network
contains at least one left-handed philosopher (i.e., a PHIL; who will always seek to pick up
FORK, before FORK,_,) and one right-handed one. The rest may nondeterministically
choose, on each visit to the table, which fork to seek first. The following processes
describe the actions of PHIL; making a single visit to the table, when respectively he
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opts for the left or right fork first.

LEFTVISIT; = 1.3 — 1.picksup.q — i.picksup.y—1 — ¢.eats
— i.pulsdown.s -1 — i.putsdown.s — i.getaup — SKIP

RIGHTVISIT; §.51ts — i.picksup.i 1 — t.picksup.y — {.eals

— i.putsdown.i — i.putsdown.i —1 — {.getsup — SKIP

The left-handed philosopher PHIL, is thus defined
PHIL, = LEFTVISIT,;; PHIL
and the right-handed philosopher PHIL, is
PHIL, = RIGHTVISIT,; PHIL,.
When i ¢ {r,1}, we have
PHIL, = (LEFTVISIT;n RIGHTVISIT,); PHIL,.
Fork processes are described

FORK; = (i.picksup.i — i.pulsdoun.s — FORK,}
O(s+1.picksup.i — i+ 1.putsdown.d — FORK,}.

The alphabet of each process is just the set of all events used in its definition.

The component processes are trivially deadlock free and the petwork is conflict free
because the communications between each pair follow a strict cyclic pattern (see [BR3],
Lemma ..},

We choose the set {0,1} {with its usual order) as our partial crder, and the directed
edges from PHIL; to FORK,_, aud from PHIL, to FORK, as the set E over which strict
inequality is required. {Clearly every cycle includes one of these.) The variant functions
are, as we will see, extremely simple.

The variant function f; of FORK; is defined
filsy =0 Hie{r+lr+2...,1-2)
Ji(9) 1 ifie{hi+1,...,r—1)

] 1 if |s} is even
fi(s) { 0 if [sf is odd

it

e {l—1,r).

The variant of FORK is thus either the constant O or the conatant 1 unless it is one of
the forks at the end of an edge in E, in which case it is 1 or D depending on whether it
is “free” or not.
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The varian function g; of PHIL; is defined

gls) = 0 ifief{r+1,...,i-1}
afs) = 1 ifie{l,...,r}

Thus all the philosophers have constant variant functions.

It i3 clearthat the variant conditions are met on all edges other than those including
FORK,_ | and FORK,, since on all such edges the processes at either end have equal
constant variants. It is clear that a philosopher can ouly be waiting for a fork when
he wants to pick the fork up, but the fork is in the possession of its other user. Since
both of the two forks in question kave value 0 when possessed by a user, the non-strict
inequality igclear in this case. ludeed, when PHIL; or PHIL, is waiting for one of these
forks the inejuality is strict (as required), since these philosophers always have value 1.

It FORK,_, or FORK, is waiting for a philosopher other than PHIL, or PHIL,, there
can be no problem since the philosopher’s variant is the constant 0. Similarly there is
no problem when one of these forks are waiting for one of these two philesophers to pick
them up, far the fork’s variant is then 1. Finally, observe that since the only action
that PHIL, performs between picking up FORK,_, and putting it down is the external
action [.eats, there can never be an ungranted request from FORK,_, to PHIL; while the
former’s variant is 0. (A symmetric argument applies to FORK, and PHIL, .}

Thus the preconditions of Rule 2 are met, so we can conclude that this network is
deadlock free, The reader might like to verify that this example can be proved deadlock
free by Rule 1, but will inevitably find that this proof is rather harder than the above.

As observed earlier, we cannot hope to prove the deadlock freedom of the well-known
solution tothe dining philesophers problem that involves a “butler” or “footman” process
which prevents more than n—1 philosophers sitting down using any rule which establishes
hereditary deadlock freedom, for the simple reason that this system is not. We will
show in a later paper how this network can be dealt with by adding “invariants} Lo our
armoury. The best that can be managed for this system using our present techniques is to
use Theorem 6: variants will show that the only possible cycles are the well-known ones
where each philosopher has one fork, and this cannot happen because of the structure of
the processes used. 0O

As we have already observed, the preconditions of Rule 1 imply conflict freedom,
which means that there is no hope of using that rule to prove deadlock freedom in
neiwaorks which have conflict. The reason for conflict appearing in a correct network is
almest invariably that a pair of processes which are fairly symmetric with respect to each
oiher have two channels linking them, oue for each to initiate some interaction with the
other. For example, if they are two nodes in a mail network, each might be in a position
to send amessage to the other. It is the anthors’ experience that most interesting small
exampleswith conflict are trees and therefore best dealt with by Theorem 4, Perhaps this
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is because Rule 2 only allows us to treat networks where the edges over which conflict can
appear contain no tree: thus any non-tree example must contain at least two different
“modes” of communication. This is clearly illustrated in the following two examples.

Example 6: A message switching network, Suppose there are a number of potential
senders of messages, each of whom might wish to send a message to any one of a class
of receivers. It is possible to construct a network which implements the mail service
they require out of binary switching nodes connected in a “butterfly” pattern. For
simplicity we will assume that there are exactly 2" senders and 2" receivers. (A few
simple generalisations of what follows extend this to arbitrary, and possibly different,
nen-zero Dumbers at each end.)

Between the ith sender and the ith receiver (i € {0,...,2" — 1}) there is a chain of
n switch processes. In addition to an in and out channel (connected in the chain), a
switch process has a swin and swout channpel connected to another switch process (input
to output). The rth process on chain number s is linked (via these extra channels) to the
rth process in the (unique) chain whose index j differs in only the rth binary digit from
£. On receiving a message on in, the rth switch process on chain ¢ either passes it on
down the same chain (oul) or passes it over {via swouf) to its linked chain depending on
whether the rth binary digit in the destination process agrees with that of i. Onreceiving
a message on swsn, the process passes it to out. Figure 3 illustrates the connections in
this network when n = 3.

From the point of view of proving deadlock freedom, we need not concern ourselves
about the contents of the messages passing though the network. Indeed, we meed not
worTy either about the routing algorithm described above, 5o long as we accept that a
message entering a node on channel sn may (so far as we are concerned) nondetermin-
istically be sent either along out or along swouf. (Of course, a system of processes with
this behaviour is more nondeterministic than our actual network, so proving it deadlock
free is certainly enoungh.] Thus, much as in the case of the sysiolic array, we will cmit
all details of actual messages from the process definition we give here, 30 retaining only
details of synchronisations.

SWITCH (in, aut, swin, swout ) = 5, where
s (fn — {{eut — S)N 87)
O(swin — out — §)

5 = (swout - §)
[{swin — out — §°)

I

Notice that, when this process contains a message it wants to pass across its link, it
retains the ability to accept a message from the linked process. This is to avoid the
linked processes becoming deadlocked when each wants to relay a message to the other.

The result of combining n x 2° of these switches together as described above is a
strong conflict free network. It is not conflict free, for the pairs of linked switches are in
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Figure 3: Message switching network forn = 3
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conflict when they are empty; if we had not made them able to accept input from the
link when able to output to it, there would have been strong conflict.

Let E be the set of all edges linking nodes in the same chain: clearly every cycle
includes an element of E. I 5;, is the rth switch on the ith chain, we define the variant

functions:
r when the node contains no messages,

fisls) = { —r when it contains one or more messages.

That these functions work is clear when we observe that no process that contains a
message can, in this network, have an ungranted request to one that is empty. Note that
when a pair of linked switches on different chaing are either both empty or both full,

they have the same variant. O

Example 6: Adding a mail service to Example 2. Suppose we have designed a
parallel network and proved it free of deadlock, but we would like to add some further
communication links for sone purpose. A good example would be the network of Exam-
ple 2: where, in addition to the rescurce management we might like to implement a mail
service between the user processes. In general it is extremely likely that suck additions
will lead to deadlock, even when the communications introduced are extremely simple.
For example, suppose we introduce a mail channel between two processes, each of which
ia only prepared to communicate on this channel when it holds more than half of the
resources: 1t is easy to see that deadlock can ensue.

Fortunately it is possible to add a mail service in such a way that it has a system of
variant functions satisfying the conditions of Rule 2. Choose some tree interconnection
pattern which spans all the user processes, either by linking them directly, by adding
one or more mail Server processes of by a mixture of the two. The idea is that the new
edges thus introduced will be included in the set of edges over which equality of variant
is allowed (i.e., the complement of E}), Now implement a mail service over these edges
in such a way that the following hold.

1. The network remains busy and triple disjoint.

2. The network remains strong conflict free. {In this context this means that there
cannot be a pair of processes each of which is committed either to send a message
to the other, or to receive a message from the other.)

3. No user process can execute any mail event while it holds a resource. {In other
words, it can only use the new service while its variant, as defined in Example 2,
ia maximal.}

Then the augmented network is deadlock free.

To prove this we define the set E of edges to be al] directed edges from user processes
to resources. (Clearly this set includes at least one element of.every cycle.} We then
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define variant functions as in Example 2 (thinking of any mail server processes as users
which never use any resource), except that the value big is identified with 2 x M + 1
(rather than being greater than it as before). These functions satisfy the preconditions
of Rule 2.

For suppose one process, P, has an ungranted request to another, @. Tf neither is
a resource then the edge between them is not in EF and, by (3) above, P’s variant is
2x M + 1, which is the maximum of all possible variant values in the network {and hence
certainly greater than or equal to that of @).

If P is aresource and @ is a user process then the edge hetween them is not in E. If
P is unused then its variant is 2 x M + 1 and exactly the same argument as used above
applies; if Pis in use then the properties of the variant inkerited from Example 2 apply.

Finally, if P is a user process and @ is a resource, the arguments of Example 2 still
apply.

One inferesting feature of this exatnple is the way in which we used variants as a way
of discovering what the correct way of extending the existing network was, rather than
just as a tool for proving an already consiructed system. O

Finding useful general conditions under which similar manipulation of networks can
be done safely is an interesting subject for future research. What seem to be the essential
features that make the above example work were the existence of a proof of deadlock
freedom of the original network {that of Example 2) with a set E of cycle-cutting edges
that contirued to work in the augmented network, and the fact that new communications
were only possible when the original variants were maximal.
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6 Postscript: Using invariants

The methods described so far can only prove a network deadlock free when it is Aeredi-
terily deadlock free. In a network which is deadlock free but not hereditarily so, there is
some subnetwork which is restrained from getting into a deadlock atate by oneor more
processes not in the subnetwork. This is clearly the case in the best-known such net-
work, the dining philosophers with “butler”. There is a clear sense in which the deadlock
freedom of such a network can be rather less a locally checkable property than in the
networks we have examined up to now: while examining the interactions of s pair of
processes one might well have to consider the ways in which they are influenced by other
elements of the network.

This having been said, it is often not too hard to identify the properties of a network
that make it deadlock free, even though its subnetworks are not. (Of course, in the
example quoted above, it is the behaviour of the butler.) It is clearly desirable that
we should be able to incorporate such information into our methods, thereby enabling
ourselves to prove these networks deadlock free.

Recall that when one uses the decreasing variant technique to prove that 2 WHILE
loap terminates, one is only expected ko prove that the variant decreases when certain
conditions hold (namely, that the boolean condition of the loop is false, and that the
loop invariant holda). For example, in the program

IF n »>= 0 THEX
WHILE n <> 0 DO

BEGIN
n:=n - {;
m:=m+1;
END

one is only expected to prove that the variant (|n|) decreases when the invariant ((n >
0A{n+m=ng+ mp)) bolds and n # 0). This suggests that it might be possible to use
similar ideas to limit the cases where we have to prove a nelwork variant decreases round
a cycle.

There is na obvious analogue of the WHILE boolean in our world, except perhaps
the ability of a process to communicate externally, whicb we bave treated fully already.
We will thus concentrate on the idea of using fnvarfants. There are at least two distinct
levels at which one can to use these: either to establish reasonable local behaviour or
reasonable global behaviour. In this paper we will consider mainly the local case, where
each process in the network has its own separate invariant,
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The invariant of a network element will be a condition on those traces which the
process can actually execute while the whole network is running. If one could prove
that, in the context of the network, a process satisfied some invariant, one could restrict
the domain of a process’ variant to those traces (or corresponding maximal failures)
satisfying its invariant., Furthermore, it would only be necessary to prove the deadiock-
{reedom of the elements of the network and the strong conflict freedom of the paire while
they satisfied their invariant.

This is dene in a slightly different sense than before. One proves that in every
state satisfying its invariant, each process is able to perform some action after which
the invariant will still hold. This stronger form of “busy-ness®, when proving strong
conflict freedom, allows us to ignore any request whose satisfaction would mean that the
requesting process’ invariant no longer holds. (In proving the validity of this technique
one replaces each process P; in the network by the process Bi||d(X]), where d([;) is the
deterministic process with the same alphabet as F; which is at any time be prepared to
communicate precisely those actions which keep its invariznt I; true.)

Of coure one is obliged to prove, by considering the behaviour of the network as
a whole, that each process’ invariant actually is satisfied at all times. Notice that this
proof techrique can only be useful where the global hehaviour of the network restricts
the traces m which its individual components can engage.

The following example, in the style of [H|, illustrates this type of reasoning.

Example7: Vending machine. We consider three processes: a customer, a messenger
and a vending machine arranged in a lipe. The vending machine gives chocolates in
return for 5p coins but, due to a desige flaw, will break (deadlock) if two coins are
inserted without the first chocolate being removed.

VM = in5p — (outchoc — VMQOins5p — STOP)

The messenger kpows nothing of this flaw, and faithfully carries any coin from the cus-
tomer tothe machine, and any chocolates from the machine to the customer.

MSGR = (5p — in5p — MSGR)(O)(outchoc — choc — MSGR)

Notice that the combination MSGR|| VM can still deadlock, for, as defined, the messenger
might take a second coin to the machine before bringing back the first chocolate. However
the customer is mindful of this, and so carefully makes sure he has received the last
chocolate before parting with any more money.

CUST = 5p — choc — CUST

It is not too hard to see that the network CUST||MS5GR|| VM is deadlock free. However,
notice that the subnetwork CUST[|MSGR can also deadlock, for if the first thing the
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messenger does i3 to take a ‘“free’ chocolate to the customer he is unable to accept it and
the messenger is unable to accept the coin he offers,

To prove this network deadlock free we need invariants. Because our network is a
tree it will be sufficient, after establishing invariants, to check that the network is busy
and strong conflict free in the sense outlined above.

The invariant of the vending machine process is
Iyas = Foutchoe < #inSp < #oulchoc +1

where, for example #in5p denctes the number of times that event has occurred up to
any given time. That of the messenger is

Insar = Fchoe < #oulchoe < #inSp < #5p < #choc + 1.

The customer’s invariant is TRUE (i.e., it imposes no constraint). Since at every time
the messenger and machine have communicated exactly the same number of oulchos and
in5p events, it is clear that if the messenger satisfies its invariant then the other two
satisfy theirs.

It is simple to verify that, in the sense above, the network is busy and conflict free
with respect to these invariants, That the invariants do in fact hold follows easily from
the inequalities below, which are derived from the definitions of the individual processes.

#choc < #5p <Hchoc+1 from CUST

#choe < ftoulchoe < #choc + 1 from MSGR

#in5p < #5p < #inSp+ 1  from MSGR
#outchoe < #insp from VM

An interesting extension of this network is obtained by replacing the single messenger
by a row of messengers which pass the coins and chocolates backward and forward in
the mazner of a chain of people conveying buckets of water to a fire and the empty
buckets back. If all the messengers have the same definition as the one above (except for
renaming of communications) the resultant network is deadlock free (the proof being a
straightforward extension of the abcve}, but every proper connected subnetwork of size
greater than one can deadlock. There is an interesting contrast between this and ihe
“deadlocked chain” example of [BR2,3|, which has almost exactly the opposite properties,
[}

Even though the above technique works for proving deadlock freedom, it would be
a grave mistake to rely on it regularly. On the one hand it will probably be easier in
practice to design the elements of a network 8o that their local behaviour isgood than to
prove this from the global properties of the network. After all, the behavicur of one or
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a pair of processes is very much easier to understand and control than that of the whole
network, so it wonld be strange to expect to use the latier to conirol the former. Also it
must be wrong to get round a bug in one part of a program by designing a secornd part
of the programto avoid it, rather than eliminating the bug at source. Such an approach
would, for example, make re-using parts of programs far more dangerous. For example,
in network above the vending machine should be replaced by one that cannot deadlock,
and the messenger(s) should be replaced by one(s) that know that every chocolate is
preceded by acoin.

VM' = inSp — (oulchoc - VM)
MSGR = 5p ~rin5p — oulchoc — choc - MSGR'

The astute reader will have noticed that, in each case, we have replaced each process F;
by one that is equivalent to its parallel composition with the deterministic CSP process
d(I;) described above, that will communicate any action which preserves its invariant.
Note that the revised network is now heredilanly deadlock free. Given a set of invariants
which ensyre the local good behaviour of a network, this provides a general technique
for converting it into a “well-constructed” network.

Of course it would be far preferable to include suitable invariants in the initial spec-
ifications from which the elements of the network are developed, rather than having to
modify their definitions as above.

Thus there is a sense in which we prefer to regard this form of invariant as a guide
to the correct [re-)construction of a network, rather thar as something closely linked to
our ideas shout variants. We argue that the style of proof above will not be necessary
for a properly constructed system.

The possible uses of global invariants for networks where each state of individual
processegis reachable but which fail to be hereditarily deadlock free is briefly discussed
in the Conclusions section below.
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6 Conclusions and Prospects

The aim of this paper has been to show how a few simple ideas can make deadlockanalysis
both clear and tractable. We believe that the methods we have described are applicable
to a large proportion of real systems, perhaps after a certain amount of redesign along the
lines set out in the postacript. We also believe that these methods and the insight into
deadlock produced by our investigations should be useful for producing new networks
which are deadlock free by design.

The methods we have presented are those which we believe will be most commonly
useful in practice. However, as we observed earlier, they are not complete in that some
deadlock free networks cannot be so proved using them. There are a few dislinct situ-
ations under which tbey fail; in the following paragraphs we identify these and indicate
what modifications will be required to get round them.

Sometimes a network can be deadlock iree even though it contains a cycle of ungranted
requests, usually because one or more processes in the cycle have alternative requests
whose eventual satisfaction will break the cycle. Qur existing methods can deal with this
situation when this alternative request is outside the vocabulary of the network (for the
process, formally, cannot then be making an ungranted request) or when the alternative
request is along a conflict free disconnecting edge (by Theorem 5). However, in other
cases we would need to extend our methods. A typical example would be where a number
of user processes share some resource using a “token ring® (see [BR2)) and have some
ather mode of interconnection which stops the edges from the ring elements to the users
being disconnecting. This network now initially has a ¢ycle of ungranted requests (the
ring elements listening for a request from their anticlockwise neighbour for the token),
but each element is also waiting for its user process. It is fairly easy te extend our
method to deal with this type of network: under certain circumstances, where a process
has requests to several of its neighbours, we may select which one must have a lesser
variant. It is possible to find several extensions of Rule 2 which take advantage of this
fact: they either use functions to do the selecting or examine larger “localities”, ty pically
the set of a process ard all its neighbours.

We have already observed that our existing rules can never prove the deadlock free-
dom of non-hereditarily deadlock free netwaorks. Some of these can be improved to being
hereditarily deadlock free along the lines described in the postscript, bul others such
as the “butler” version of the dining philosophers are more subtle. These are busy,
strong conflict free and have every state of each process reachable within the context
of the whole network (so that no individual process invariants can help us by excluding
unwanted ones).

Such a network can only work because, exactly as happens in this version of the
dining philosophers, one part of the network keeps another from entering a deadlocked
state. It seems inevitable that, in general, arguments for this type of hehaviour must be
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non-local in nature (il is easy to imagine, for example, a system of dining philosophers
interacting via a number of intermediaries with a butler). In such examples perhaps the
best we can hope for is that we can express the essential property which is preventing
deadiock as a global invariant of the network (for the dining philosophers this would
be “not all philosophers are sat down®). We can then take advantage of this property
when construciing the systermns of variants: one way of doing this is to conatruct several
different systems where the variant functions are in fact partial functions, but proving
that in every global state satisfying the invariant, at least one of the systems of variants
is totally defired. (For the dining philosophers we could define one system of variants
for each philosopher, for use when he is the one prevented from sitting down last.) The
extent to which one can usefully adopt this version of the invariazt/variant approach
must depend on the difficulties of individual examplea,

In additien to the types of network mentioned above where it is obvious that Rules 1
and 2 cannot apply, one occasionally comes across a network which, though hereditarily
deadlock free and without cycles of ungranted requests, still seems to be too much for
these methods. The authors have only come across ome such example: the message
passing ring in [BR3| (mentioned in the present paper after Theorem 2) where each
element is a restricted double buffer (though Theorem 6 may still be deployed to good
effect).

In this message passing ring, it turns out if, whenever a pair of processes communicate
they tell each other the current value of their variant (i.e., that pricr to the current
communication), variants for Rule 1 can easily be constructed because the traces of
individual processes then contain sufficient information about neighbours. It seems that
this is because the relation described in Theorem 2 is in some sense “refined” by this
transformation.

We inlend to continue our investigations into deadlock by developing some of the
above ideas further and trying to achieve as good an understanding aa possible of the
relative capabilities and difficulties of the various techniques. We also intend to investi-
gate ways of proving other properties of networks by local methods, particularly related
ones such as absence of livelock and starvation. We also intend to investigate the ways
in which, as described in the last paragraph, trivial transformations of processes that
do not change the basic communication pattern can be used in aiding proofs of network
properties.

When other authors have addressed the problem of proving deadlock freedom in a
general way they have tended to describe methods of proof which are essentially global.
Given that they were generally looking for complete methods, this is understandable.
Usually these have involved proving some invariant of the global state that precludes
the blocking of all processes [AFR,0G,S]. It should often he possible to integrate our
methods with fairly general techniques such as these, in that the invariants to be proved
could be just the preconditions of our rules.
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Perhaps the most similar approach to ours bas been that of Chandy and Misra [CM],
who have described different measures termed “pricrities” for use in proving deadlock
freedom. In the terminology of the present paper a set of priorities for a network, given
a linear order, is a collection of maps from the vocabulary of the network to the linear
order (one map for every global state) such that, whenever a process is blocked it must be
willing to communicate the event of minimum priority in the intersection of its dphabet
and the vocabulary of the network. A triple-disjoint, busy network permitting a set
of priorities is deadlock free. This method is easily seen to be complete. In general,
obtaining a set of priorities may be difficult, as it entails global checking; however, for
some networks within the framework of this paper, simplifications to this end can be
made. For a conflict-free network, it suffices to have prioritics defined only on edges
of the communication graph for which there exists an ungranted request. Moreover,
for a network amenable to Rule ], we can comstruct a set of priorities locally in the
following way. Firstly, as any partial order may be extended to a linear order, we will
assume, without loss of generality, that the range of the variants yielded by Rule 1 is a
linear order. Then, if a process in the network is blocked, assign a priority toeach edge
incident on it on which there is an ungranted request, the value of the variant of the
process being waited upon. The case of Rule 2 and non conflict free netwerks (which are,
however, strong conflict free) is a little harder becanse we would have to assign priorities
to individual actions rather than edges, and to take account of the large scale topology
of a network. Using the concepts of conflict freedom and strong conflict freedom has
enabled us to abatract away from individual events and assign priorities to processes,
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