
FORMAL METHODS

APPLIED TO A

FLOATING POINT NUMBER SYSTEM

by

Geoff Barrett

Technical Monograph PRG-S8

JaiJuary 1987

Oxford University Computing Laboratory

Programming Research Group
8-11 Keble Road
Oxford OXl3QD
England

Copyright © 1987 Geoff Barrett

Oxford University Computing Laboratory

Programming Research Group

8·11 Keble Road
Oxford OXl3QD
England

Abstract

This report presents a. forma.l.isation of the IEEE standard for binary floating-point
arithmetic and proofs of procedures to perform non-exceptional a.rithmetic cakula.tioDs.

Contents

1 Speciftcation 3

1.1 Rounding . 3

1.2 Addition} Subtraction, Multiplication and DivisioD 8

1.3 Remainder...... . . 12

1.4 Square Root . 14

1.5 Floating Pain t Format ConversioDs .. 15

1.6 Rounding and Converting to Integers. 16

1.6.1 CODversioDs to Integer Formats 16

1.6.2 Rounding to Integer 17

1.7 Comparisons . 18

2 Implementation 20

2.1 Foreword to the Proof 20

2.2 Representations of FP 22

2.3 Representing Real Numbers 23

2.4 Unpacking and Denormalising . 25

2.4.1 Unpacking .. 25

2.4.2 Denormali:sing 26

2.5 Rounding and Packing 26

2.5.1 Rounding ... 26

2.5.2 Packing 29

2.6 Finite Arithmetic Procedures 30

2.6.1 Addition and Subtraction 31

2.6.2 Addition. 33

2.6.3 Subtraction. 33

2.6.4 Multiplication. 36

2.6.5 Division 37

A Standard Functions and Procednres 41

A.I The Data Type 41

A.2 Bit Operations . 41

A.3 Boolean Values . 42

AA Shift Operations 42

A.S Comparisons 42

A.6 Arithmetic 43

A.7 Shift Procedures 43

A.8 Arithmetic Procedures 44

Introduction

The main aim of a standard is that "conforming'" implementations should behave in the
manner specified - it is, therefore, desirable that tbey should be proved to do 80. It has
long been a.rgued that natural language specifications Can be ambiguous or misleading
and, furthermore, that there is no fonnal link between gpecification and program. Tbie
report sets out to formalise the standard defined in [IEEE] and present algorithms to
perform tbe non·exceptiona.l arithmetic operations. Conversions between bina.ry and
decimal formats and delivery of bias adjusted results in trapped underflows are not
covered.

The notations used in tbis paper are Z (see [Abrial,Hayes,Z]) and OCCAM (aee [iomos)).
The meaning of each new piece of Z is explained in a footnote before an example of its
use.

Using a formal specification language bridges the gap between natural language spec·
ification and implementation. Natural language specifications have two disadvantages:
they can be ambiguous; and it is difficult to show their consistency. The first problem is
considered to be a.n important source of software and hardware errors and is eliminated
completely by a fonnal specification. Further, it is important to show that a specification
is consistent (i.e. has an implelnentation) for obvious reasons.

Of course, it could be argued that an implementation of a solution provides a precise
specification of a problem. While this is true, no one likes to read other peoples' code
and the structure of a program is designed to be read by machine and not by humans.
Moreover, any flexibiHty in the approach to the problem is hampered by the need to
make concrete design decisions. Specification languages are structured in such a way
that they can reflect the structure of a problem or a natural language description or
even of a program. But, above all, they can also be non·algorithmic. This me"ans that
one can formalise what one has to do without detailing how it is to be done.

A formal development divides the task of implementing a specification into four well­
defined steps. The first is to write a fonnal specification using mathematic!. In the
second, this specification is decomposed into smaller specification! which can be recom­
bined in mch a way that it can be shown formally that the decomposition is valid.
Third, programs are written to satisfy the decomposed speciflcations. And, lastly, pro­
gram trauformations can be applied to make the program more efficient or, possibly, to
adapt it for implementation on particular hardware configurations.

The example presented here is part of a large body of work which bas been undertaken
to formaUy develop a complete floating-point system. This work has been taken further
by David Shepherd to transform the resulting routines into a software model of the
inmos IMST800 processor, and so specify its functions. Thus, the development process
has been ca.rried through from formal specification to silicon implem.en~ation.

References of the form, e.g., p.14 §6.3 are to [IEEE].

2

Chapter 1

Specification

1.1 Rounding

This section presents a. formal description of floating-point numbers and how they are
used to approximate real numbers. The description serves as a specification (or a round·
ing procedure.

First, floating-point numbers and their representation are described. Each number
has a. format. This consists of the exponent and fraction widths and other useful COD8t~Dts
a.ssociated with these - the minimum and maximum exponent and the bias: 1

Format ---"

tzpwidth,/racwidth :N
wordlength :N
EMin, EMQ.%, Bias :N

wordlength = expwidth + Irntwidth + 1
EMin =0
EMQ% ~Z'''''''-l

Bias =2"""..:.fll-l - 1

Four formats are specified - the exponent width and wordlength are constrained to
have particular values:

Sin.gle == Format I expwidth = 8 Awordlength = 32
Doublt. =. Format I t.xpwidth = lll\wordlt.ngth = 64
Sin.glt.Erlt.n.dt.d == Format I t.xpwidth ~ lll\wordlt.ngth ~ 43
Doublt.Exft.ndt.d == Fonnat I t.xpwidth ~ ISI\wordlt.ngth ~ 79

Once ~he forma~ is known, ..he sign, exponen~ and fraction ca.n be extracted from the
___ L'_L 2 __

I Tile variable Dame~ "'UKll 'u" u~{"u /:L.f~ ae(:lar~u ID a Slsua\ure \\Ut" upVt"c V>ln VI U.l" VVX) lUlU >luy
COIlstraioh 00 thes~ are dE'scribf'd by the prl"dicales iu the lower paM;.

3

integer in which they are stored: 2

Fields

Format

nat :N

sign :0 .. 1

exp,frac :N

~ nat ~ sign x 2"""""''-' + np x 2,..,.... + frac
I exp < 2"q>NlJI

I frac < 2"... NlJI

I

Some of the elements of Fields are considered to be error codes, or DOD-Dumbers.
These will be denoted by NaNF:

NaNF == Fields II frac of:. 01\ exp = EMlU

Now, there are enough definitions to give a definition of the value. This is only
specified in single or double formats when the number is not a non-number: ("infinite"
numbers are given a value to facilitate the definition of rounding)

!FP
F,-eld3-----------------i
value: R

(Single V Double) 1\ -,NaNF =?

exp = EMm 1\ val"e (-I)";" X 2·q>-B.... x 2 x fraeo
V

np I'	 EMin , value (-1)'" X 2,.-B'" x (1 + fro",)
whe-re fraeo ::: 2-~"" x fmc

To facilitate further descriptioDs, FP is partitioned into five classes depending on how
its va.lue isca1cula.ted from its fields: (non-numbers; infinite, nonna.l, denormal numbers;
and ~ero)

NaN == FP I fmc f. 0 1\ ezp :::: EMlU

Inf == FP I frac = 0 1\ exp :::: EMax

Norm =- FP I EMin < exp < EMax

Denorm == FP f frac f. 0 1\ exp = EMin

Zero == FP I fmc = 0 1\ exp = EMin

Finite == Norm V Denorm V Zero 3

4This form is equiYalellt to declarmg theo variabks ul Formal ill tb(' 5ig"uaturl.' and ~_olljoilli.ug" iti ('011­
straints with the lIew COlistraint.

4

The essential ingredients of rounding are as follows:

• the number to be approximated;

• a set of values in which the approximation must be;

• a rounding mode;

• a set of preferred values in case two approximations are equally good.

Because the number to be approximated may be outside the range of the approximating
values, two values, MaxValue and M1"n Value, are introduced which are analogoue to +00
and -00. The set of PreferTt:dvalues is restricted to ensure that when two approximation"
are equally good, at least one of them is preferred. To ensure that rounding to zero is
consistent, 0 must be in the approximating values.

Mode ::= ToNeartst I ToZero I ToNt:.glnf I ToPoslnf

RountLSignaturt

r : lRj mode: Modes

ApproxValuts, Prtferrtd : PR

Min Value, Max Value : R

value' : R

Preferred U {value'} s;: ApproxValues U {MinValue, Max Value}

o E ApproxValue'.s

Vvaluel' value2 : .A,ppro%Values U {MinValue, Ma%Value} I value! > value2 •
3p : Preferred • value! ~ p ~ value2

Vvalue : ApproxVaJues • Min Value ~ value ~ Ma.:z:Value

The following schernas describe the closest approximations from above and below.
H, e.g., the number is smaller than Min Value, then the approximation from below is
Min Value:

Above

I Round_Signature rr > Max Value => value' = Max Value

I r < Mao: Value => value' > r
Vealue : ApprorValues U {MarValue) ! value 2 r •

. tlalue ~ value'

'Logical operatan betweeu sc:hemas have tbe elfec:t of merging the ~ignalurr~ and prrforming:be logical
operation hetWeeh tbe predicates.

5

Be/ow ~

I Round_Signature I

r < Min Value => tlalue' = Min Value
r ~ Min Value => tlalue' ~ r

V'tlalue : Appro:t Value" U {Min Value} I value ~ r
tlalue ~ tlalue'

_

Finally, we are in the position to define rounding in its various different modes.
Rounding toward zero gives the approximation with the least modulus:

RoundToZero __

Round _Signature

mode = ToZero
(r ~ 01\ Below

v
r ~ 01\ Abotle)

Rounding to positive or negative infinity returns the approximation which is respec­
tively greater or less than the given number:

RoundToPo"Inf ,

Round_Signature

mode = ToPo"Inf

Abotle

RoundToNeglnf ,

Round_Signature

mode = ToNeglnf

Below

Wben rounding to nearest, the closest approximation is returned, but if both are

6

equally good, a member of ~he 5et Pre/erred is returned: 4

RoundToNearest

Round_Signature

mooe = ToNearest
3Abovel; BeloWJ I rl = r = r2 •
valuel - r < r - value2 1\ Abo"e

V

valuel - r > r - value2 1\ Below
V

valuel - r = r - value2 A

(value, = value2 A Above A Below
V

valuel -:F value2 A value' E Pre/ured A (Above V Below))

These specifications can be disjoined to give the full specification as follows,

Round == Round ToNearest V RoundToZero V RoundToPosln/ V RoundToNegln/

So far, the specification is suitable for describing rounding into any fonnal - be it
integer or Hoating-point. To adapt Round specifically for floating-point format, all that
is necessary is to fill in the definitions of ApprozValues, Pre/erred, Min Value and Ma'Z­
Value. This inevitably involves the fonnat of the destination, so FP' must be conjoined
with Round. Once the definitions are filled in, they are no longer needed outside the
specification and can be hidden (by existential quantification), It is not difficulL to show
that the definition of Pre/erred is consistent with the constraint in RountLSignalure, but
this will be left until section 2.3 where a result is proved which makes it even simpler.
It is algo simple to verify that 0 is an element of ApprozValues and that Min Value a.nd
Max. Value sa.tisfy the constraint of Round
signature ,

FP-Roundl

Round 1\ FP'

ApprozValues {Finite I Format =' Format' • value}

Pre/erred {Fanlte IFormat = Format/A/me MOD 2 = 0 • value}

Min Value E {In/ I Format = Forma.t' Asign = 1 • value}

Max Value E {In/ IFormat = Format' Asign = 0 • value}

FP-Round2 == FP -Roundl \ {ApprtJ2: Values, Pre/erred, Min Value, MaxValue}

'Decora.ting the name Olf a schl"ma .".ith, I".g., l, I ha.s chI" effect <;If decorating the nawe9 of the variables
in the signature of that ~chema chroughouc.

7

I

The resulting error-conditions have no~ ye~ been specified. The condi~ions resul~ing

in overflow and underftow exceptions are specifically rela~ed to a floating-point fonnat
and can be described as follows:

Errors .. ­ inezaet I overflow I underflow
Error _Signature ~ r : R; errors' : P Errors; FP'

Error_Spec

Error _Signature

inezact E errors' {:? r l' value'
overflow E errors' -e:> I./, V 31./ • abs r ~ abs value
(underflow E errors' -e:> 01' abs r < 2E&1·'-lW'

V

underflow E errors' {:? Denorm')

(The two alternative conditions under which underflow is included in the set errors'
mean th~t there is a choice about which condition ~o implement.)

Finally, the whole specifica&ion is:

FP ...Round :=: FP...Round2 1\ Error _Spec

1.2	 Addition, Subtraction, Multiplication and Divi­
sion

In order to discuss these operators, they must be introduced into the mathema&ics:

Op, ::= add I 'ub Imull diu

The eS!lential ingredien&s of an ari&bmetic operation are two numbers, FP" and FP"
and an operation op: Ops; the number FP' is the result - its fonnat mus& be at least as
wide as each of the operands:

A riLSignature
I

FPzi FP,i op : Ops
FP'

wordlength' 2'. wordlenglhs
wordlength' 2'. wordlength,

When both FP. and FP, are finite numbers, the specification is straightforward. A
real number is specified which can be rounded to give the corred result - the result of

8

division by zero is described separately:

Value_Spec ,

A riLSignature /\ Finite. /\ Finite,
r: R

op = add /\ r = value. + value,
v

op = sub /\ r = value. - value,
v

op = mul /\ r = value. x value,
v

op = div /\ value, # 0 /\ r = value" + value,

If the result after rounding will be zero, some additional information is neces!lary to
specify the !lign completely (p.14 §6.3). If zero result!l from rounding a !lroall number,
the !lign is that of the small number. If zero is the accurate result then it i!l the exclusive
or of the !ligns of the arguments when the operation is multiplication or division and is
best described by the maths otherwise:

Sign..Bit _

Ant_Signature

mode: Modes; r : R

(-1).' x abs r = r

(op = mw v op = die) => (-1)"" = (-1)+...,

(op = add v op = sub) /\ r = 0 =*

(Zero,,/\ Zero, /\ (sig~ = sign., <=> op = add) /\ sign' = sig~

v
,(Zero. /\ Zero,) /\ (sig~ = sign., <=> op = add) /\ (sign' = 1 ¢} mode = ToNegInn)

Rounding has already been described so operations on finite numbers may be defined
by using FP Jlound to specify the relation of r to FP':

FinitLArit == (ValucSpec /\ FP ..Round /\ Sign_Bit)\{r}

Division of a finite, non·zero number by zero gives infinity; but, division of zero by
zero is not a number:

Div_By_Zero

Ant _Signature

Finite. /\ Zero,

op = div

(Zero_ "NaN') v (~Zero_ "In/, ,,(-1)"" = (-1)...·-)

9

I

If one of the operands is not a Dumber, then the result is not a number (the standard
dema.nds that the result be equal to the offending operand but tha1i is not alwaye possible,
p.13, §6.2):

NaN-Aril --,

An't _Signature

NaN. V NaN,

NaN'

Now, arithmetic with infinity i9 considered. This is defined to be the limit of finite
arithmElic. However, certain cases do not have a limit, and these result in a NaN:

In!_A riLSignature

A riLSignature

~(NaN. V NaN,)
In!. v In!,

In/_Add I

In! -Arit_Signature

op == add

(in!sign.! == {sign'} 1\ In/') V(in!signs = {O, I} 1\ NaN')

where in!signs == {In! I In! = FP. V In! = FP, • .sign}

In/_Su!

In! -An't_Signa~ure

---,

op = sub
(in/sig", = {sign') /\ In!') V (in/'ig", ~ {a, I} /\ NaN')
where in!signs == {In! ,I In! = FP. V In! ~ FP,[-value,/value,] • sign}

In/.Mod _

In! -Arit_Signa~ure

op == mul

(Zero. V Zero,) 1\ NaN'

V

~(Zero. V Zero,) /\ Inr/\ (-1).... = (_1)","0+",".) __________J

10

Inl·Div -,

In!AnLSignature

op = div
(In!. 1\ In!, /\ NaN'

v

Finite, 1\ In/, /\ (-1)"'" = (-1)....~ -..,.~

v

Finite, A Zero' 1\(-1)""" == (_l)"",a-..,..~)

These partial 8pecifications can be disjoined to give the complete specification of
arithmetic with infinity:

Inf ...Ari' '" Inf -Add v Inf .S.b v Inf -MuJ v Inf J)iv

None of, the exceptional cases return the rounding errorsi No---Round_Errors ~escribe8

tbjs, and FP ...Ant describes the complete relation on Ant_Signature:

No...Round_Errors == round_errod : PRound_Errors I round_errors' = { }

FP ...Ant == Finite_Ant
v

No--.Round_Errors /\ (Div-By-Zero v NaN...A.n·t v In! ...Arit)

Five different errors caD occur during the operations. These cover all the different
casel' when the finite operations do Dot extend to infinite numbers; division by zeroj and
when one operand is not a number:

AnLErrors ::= NaN _Op I muLZero_In! I div...zero I divJn! In! IMag_3ub

Error_Spu

An·t_Signature
an·Lerrors' : P An'LErTors

NaN_Op E ariLerrors' {:? NaN. v NaN,
muLZero_In! E arit-errors' {:? op = mill /\ ((Zero. /\ In!,) v (In!. /\ Zero,))
iV_zero E ariLerrors' {:? (op == div /\ ,NaN. /\ Zero,)

divJn! In! E ariLerrors' {:? (ap == div /\ In!. /\ In!,)
Mag.,.b E ar'L,,,or,' <> (lnf. A Inf. A (("gn. = ,i9':: A op ~ "b)

[("gn" # ,ign, A op = add))

Fina.lly, the whole specification is:

Ant -= FP...Ant /\ Error~Spee

11

1.3 Remainder

To calculate remainder, all that is necessary ie: a divisor and a dividend, FP. and FP,.
The result will be given by FP'. The signature is;

Rem_Signature ---,

FP.;FP, I
FP'

I I

In the general case, in wbkb both numbers are finite and the divisor is not zero, the
result is defined as follows:

FilLRem ----,

Rem-..Signatuft.

Finite. 1\ Finite,
...,Zero,

2 x aha value' :$ aha value,

3n: Z •

value. = n x value, + value'

2 x abs value' = aba value, ~ n MOD 2 = 0

Remainder of a finite number by zero is a non-number:

&m~ZerQ "

Rem-..Signaturt

Finite. /\ Zero,
NaN'

As ever, when one of the operands is a non-number, the result is a non-number:

NaNJI,m --,

Rem_Signature

NaN. V NaN,
NaN'

The remainder of infinity by any number is not a number. The remainder of a finite

12

number by infinity is the original number:

m~&m i

Rem..5ignature

In/.. /\ ,NaN, /\ NaN'

V

Finite.. /\ In/, /\ FJH = FP..

Wben the reeult is zero, the sign is the eign of the dividend:

Sign_Bit

&m..5ignature

Zero' ::::> sign' == sign.

There are three erroJ"B possible with remainder - when one of the operande is not a
number, or the divisor is zero or the dividend is infinity. The eecond two give rise to the
same exception:

&m.-Errors ::= NaN _Op I rem...zero_In/

Error_Spec

Rem _Signature

errors' : P &m_errors

NaN _Op E errors <:> NaN. V NaN,

rem-Zero_In/ E errors <:> (In/./\ -.NaN,) v (,NaN./\ Zero,)

Putting all the pieces together gives the full specification:

Rem == (Fin_Rem v Rem1erv v NaN ...Rem v In/ Jlem) /\ Sign_Bit /\ Error_Spec

13

1.4 Square Root

As with addition etc., an exact result i!'l specified then rounded using FP -Round. The
exact square root is defined as follows:

ExacLSqrt ,

FP
r: R

Finite

value ~ 0

rxr=vaJut.

r ~O ~
I

This is rounded and r is hidden. The destination must have a fannat at least as wide
as the argument:

POB...5qrt == (ExacLSqrt /I. FP-Round) I wordlength :S. wordlength.' \{ r}

The sign of zero is uDchanged:

S.gn_Bil _ ,
FP
FP'

Zero' :::::> sign' = sign

The square root of positive infinity is infinity:

In/-Sqrt ,

Inf

FP'

sign = 0
FP' = Inf

In all olher cases, tbe result is a NaN:

Exc_Sqrt ----,

FP
FP'

NaN V value < 0
NaN'

14

There are two errore - NaN.Op and when the operand is less tha.n zero;

SqrLErrors == NaN _Op I OpLTO

Error_Spec ----,

FP
FP'; errors' : PSqrLErrors

NaN _Op E errors' ¢} NaN
OpLTO E errors' ¢} -,NaN /\ value < 0

Putting the pieces together:

Sqrt == (Po,,-Sqrl v In! -Sqrt V EZLSqrt) /\ Sign_Bit /\ Error_Spec

1.5 Floating Point Format Conversions

When converting to a different format, In! and NaN must be preserved, and Finite
numbers may have to be rounded:

NaN_Convert ,

FP

FP'

NaN /\ NaN'

Inf_Converl ,

FP

FP'

In! /\ In!,
sign' = sign

Fin_Convert ,

FP
FP'

FinIte
FP JlDund[vaJu'/'1
sign = sign'

15

Colttlert == {(NaN __Contlert Y Inf ~Contlert) 1\ No...Round_Errors) Y Fin_Contlert

1.6 Rounding and Converting to Integers

This section covers both converting to an integer format and rounding to an integer
in floating-point format. The bagic adaptation of the rounding predicate is the same
for both operations. The approximating values are all the numbers from Min Value to
Max Valli(and the preferred values are the even integers. When converting to an integer
format, the minimum and maximum values can be defined to be the minimum and
maximum integers of the fonnat. When rounding to an integer value in floating-point
format, these values will be the greatest and smallest integers available in the destination
format.

Integer_Roundl

Round

Approx Values
Preferred

Min Value ..Max Value
ApP"'xValu" n {n: 7I.ln MOD £ = OJ

Integer _Round == Integer_Roundl \ {Approx Values, Preferred}

1.6.1 Conversions to Integer Formats

All that we need to know of an integer format are the minimum and maximum integers.
These can be used to adapt Integer _Round to describe rounding into an integer format:

[Maxlnt, Minlnt : Z :

InLCon~...Round ==
Integer _Round IMin Value = Minlnt A MaxValue = Maxlnt\{ Min Value, Max Value}

When lhe operand is not a Finite number or is out of range of the integer fonnat,
the result is not specified:

Exc_Conv ,

FP
Integer'

NaN Y Inf Y value < Minlnt Y Maxlnt > value

The spEcification is:

Contlert~Integer == Exc_Conv Y InLConv...Round[tlalue/rJ

16

1.6.2 Rounding to Integer

There is <l. small probleo"l ;0 using Integer_&und to specify rounding to an iDteger value in
a given floating-point format a.s there may be some integer values between the maximum
and minimum va.lues which canDot be oMained. The following definition assumes (as is
the case with tbe formats specified in the standard) that jf there exist two integers m a.nd
n such tbat there is 010 intermediate integer which canDot be obtained in the destination
format, tben no other value between m and n can obtained in that format. Although it
is not difficult to give a definitioD in the general case l it is felt that the assumption is
Dot unreasonable. Hence, MinVaiue and Ma.%Vaiue can be defined to be the minimum
and maximum integer available in tbat format:

RruLInLRoundl -,
I

Integer _Round

Maz. Value sup {FP' I Format == Format' _ value} n 7L.
Min Value inf {FP' IFormat = Format' _ value} n 7L.

Rnd 3nt _Round == Rnd _lnt_Roundl \ {Min Value, Maz. Value}

The destination format is restricted to be the same as that of the argument:

InLSignature

FP

FP'

Format = Format'

Fin_Int ~ Finite 1\ InLSignature /\ Rnd_lnLRound[valuejrj

In this case, In! and NaN are preserved:

Inf_NaNJnt ~

Int_Signature

In! V NaN
FP~ FP'

The whole specification:

1nl == FinJnt v In! ..NaN Jnt

17

1.7 Comparisons

There a.re four mutually exclusive compa.risoDs. Unordered when one is a. non·nurober;
equal; less tha.n; or greater than:

Unordered

FP.
FP,

NaNz v NaN,

Equal
I

FP.
FP,

~(NaN. v NaN,)
value. = value,

Less Than

FP.
I FP.

~(NaN. V NaN,)
tlaJue.. < value,

GreaterTkan "

FP.
FP,

~(NaN. V NaN,)
tlalue. > lJaJue,

The resu.lt of a comparison ca.n be a condition code identifying one of the four disjoint
relations:

C.nditi.... ,,~ UO I EQ I LE I GE

18

Compare_ Coftdition
i

FP.. ; FP,

condition' : Coftditiora.3

condition' == va A Unordered
V

condition' = EQ A Equol
V

co ndition' = LE A Le33Than
V

condition' = GE A GreaterThan

Alternatively, it may return a true-false result depending on one of the useful com­
parisons liated below:

Bool :0= true I false

Compare_Bool ,

FP.j FP,; op : PConditiora.3

result' : Bool

op cF {}

op i: Condition.!

result' = true <:} 3condition' : op • Compare_Condition I

An exception can be raised when one of the operands is not a number. If this exception
is to be raised, the flag exception must be set:

Compare_BooLError ,
i

Compare_Bool
e:tception : Bool

NaN _Op E errors' # Unordered A exception = true
(op = {EQ} vop = Conditio", - (EQ}) => ezception = false

19

Chapter 2

Implementation

2.1 Foreword to the Proof

Much of the proof relies on OCCAM specifications given in the appendix. Informal spec.
ificationJl can be found in [inmasl. The proof of the a.rithmetic procedures is largely
routine manipulation of equations. Tbese parts will be treated somewhat briefly with
statements of the theoreID3 necesBary. Hints to the proof of theorems will be indicated,
e.g., Rof/;tine manipulation. (This hint is omitted.) For tbe nOD~exceptiona.1 cases, the
algoritbru uses the following scheme:

1. Unpack both operands into their sign, exponent and fraction fields.

2. Denonnalise both by shifting in the leading bit of the fraction when necessary.

3. Perform the relevant operation.

4. Pack the result.

5. Round the packed result.

Error conditions are set during packing and rounding. The more difficult parts of the
proof are caused by changes in the representation of numbeI"8 (e.g. packing, denormal­
ising, etc.). The first section of the proof is concerned with specifying the relationship
between FP or R and these representations. The second section contains procedures for
changing representations along with their proofs. Later sections contain procedures for
the arithmetic operations. The proofs of these are much simpler than for the others and
only an informal outline of why they are correct is given.

The following is a brief de!>cription of how specifications and programs are related
and how it is possible to assert formaUy that a program meets its specification. The

predicates in braces, e.g. {4'}~,p}, mean that if P is executed in a state satisfying

4', then it is guaranteed to terminate in a state satisfying,p. Some of the conjuDcts
of the asSErtions are omitted for the sake of darity. The first assertion is called the
precondition of the program - if this doell not hold on entry to the program, neither is
it guaranteed to terminate nor, if it does, to terminate in any sensible state. The rules

20

relating the progTam \0 the assertions are described in jGries], [Dijkstra] and [Roue]. A
brief descript.ion follows:

Rule 1 The program SKIP does nothing but tenninate:

f- {¢}ISKIP~¢}

Rule 2 If the u:pruslon e can ~ evaluated correctly (i.e. there is no division by zero
de.), then if the state IS rtquirtd to satisfy if> after tennination, it must satisfy ~ with e
substituted for z ~fore:

f- {Oe,,¢[e/xnG{¢}

Rule 3, If P starts in stale if> and terminates in state "/J and Q starts in state"" and
~enninatell in state x, then P followed by Q starts in ,date if> and terminate8 in date x:

~ {¢}B,p} " {,p}0tx} f- {¢}Lj{X}

Rule", The rwe for conditionals is that, if P starts in a 6tate satisfying ¢ and it.! guam
and tenninates in .,tate 'I/J and similarly for Q, then the conditional composition can
start in a state which. satisfies one or other of the guard.'J and ¢ and terminate in aBlate
satisfying "/J:

F
Ip

{Ip " oj> }~{,p} " {IQ" ¢ }@]{,p} f- {(Ip V IQl " ¢) p {,p}
I Q[f:

Q

Rule 6 The prtcondition of a program may ~ strengthened:

(x => ¢)" {¢}B,p} f- {x}B,p}

Rule 6 The postcondition of a program may ~ weakened:

(X <=,p)" {¢}~{,p} f- {¢}Bx}

The following two functions are useful, they return the integ,er part a.nd the fractiona.l
part of a real number:

Int :IR_N
noninl : IR _ R

l' = int l' + nonint l'

abs (nonint 1') < 1
abs(int r) ~a.bsr

21

2.2 Representations of FP

The aim of this section is to specify the relation between FP a.nd its representations
in the program. We will only be concerned with tbe implementation of single-length
numbers on a machine whose wordlengtb is 32 :

FPS32 =. FP I Single 1\ wordlength = wI

Externally to the program, each number is represented as a single Word corresponding
to the va-Ine of its field nat. Thus, the relationship of FP to its external representation
is given by:

External -= FPS32; word: Word I nat = Ulord.nat

Internally to the program, FP is represented by three words giving its sign, exponent
and fraction. The ex<\.Ct relation between these words and FP is discussed further below:

lnternai == FPS32j UlsigR, Wt.XP, wfrac : Word

To distinguish the five different classes of Dumber, t.hey are first unpacked into the
sign, exponent and fraction fields. The words wsign, wexp, and wfrae correspond 10 the
fields sign, exp, and frae:

Unpacked

Internal

wsign.nat = sign x 2-1- 1

wexp.int = exp
wfrac.nat = frac x 2~q>""+1

To perform the arithmetic operations, Finite numbers are given II representation
which bears a uniform relation to their value - the first equation in the following implicitly
defines wfrac.nat:

Unnormalised ---,

Internal

Finite
value = (-I)';" X 2_~q·.,-B....- ..I+l x wfrac.nat
wsign.nat = sign x 2-.1-1

wexp.int = exp

22

2.3 Representing Real Numbers

The aim of this section is to specify the relation between iR and its representations in
the program.

First, notice the simple result that the order on the absolute value of a numbfr is tbe
same as the usual order on the less significant bits of its representation as a word:

FP;FP', Format = Format' 1\ -,(NaN V NaN')

f- abs value ~ aba value' <::} nat MOD 2·""dSt.,cl-1 ~ nat' MOD 2..-:u.,ci-l

This can be used to see that the number of least modulus with modulU'S grea;er than
a given finite number is obtained by incrementing its representation as a word:

Succ

FP; FP.

Finite
abs value < abs l.'alueo
"tFP' Iaha value < aha value' • abs valueo :0:; abs value I

FPj FPo I Finite /\ nato = nat + 1 f--- Sua

From tbis result, tbe consistency of Preferred in section 1.1 can be deduced.
In turn, this means that if the approximation of leas modulus i8 known, only enough

extra information to determine the four predicates in RoundToNearut is needed 10 return
the correct value. This is, of course, the familiar guard. and ~ticky bits defined below:

Bounds

r :R l
SUCCi guard, ~ticky :0.. 1

r >0 :::). ~ign=Ot\Below[value/value'J

r =0 :::). Zero
r < 0 :::). sign = 1 t\ Above[value/value'J

guard = 0 {:} l' - value < valueo - l'

sticky = 0 {:} r - value = valueo - l' V l' = value

Bounds I- 3Abovel; Belowz I1'1 = l' = rz •
valuel - r < l' - valuez {:} guard = Ot\~ticky = 1
value1 - l' > l' - valuez 0(:} guard = 1t\sticky = 1
valuel - l' = l' - valuez {:} ~ticky = 0
valuel = valuez 0(:} guard = Ot\sticky = 0

23

This is, bowever, not quite enougb information to return the correct overflow condi­
tion. If r 2: 2EM..'-B"" , tbis information is lost. Conversely, it is not possible to determine
tbe o~erflow conditioD before rounding aa the condition in!, cannot be tested until the
final result is calculated. Tbus, it is necessary to divide Error...5pec into two parts. The
ine.:tact and underflow conditions can be determined before or after rounding. Tbe de­
sign decision is made tbat 80 many error conditions aa possible will be determined after
rounding in order tbat the precondition of tbe module is simpler. Tbus, tbe following
decomposition is valid (tbe validity is demonstrated by the theorem):

Error_Before

Error_Signature

overflow E errors' ¢} abs r ~ 2EM'q'-B....'

I Error_After --------------0,
Error _Signature; errors: P EFTors

overflow E errors {:> abs r ~ 2EM'..'-&'"

inexad E errors' ~ r i- valuel

overflow E errors' {:> overflow E errors V In/'

underflow E errors' {:> Denorm'

I- Error _Spec ~ (Error _Beforej Error_After)1

If we bave the approximation of less modulus, tbe guard and sticky bits and an
overflow indication, tbere is enougb information to determine tbe correct result and the
correct error conditions. Tbus, a real number may be represented prior to rounding as
follows:

Packed == ((3Sua • Bouncla) 1\ External 1\ Errot_A/ter)\{errors'}

Tbis representation is too complicated for tbe immediate result of a calculation ­
we require a form which haa a sign, exponent and fraction but whicb contains enougb
information to produce a Packed number. If tbe exponent is considered to be unbounded
above (this assumption causes no problems since tbe largest exponent wbich can be
produced from finite aritbmetic is less than 2"'), and demand that the fraction be at
least 2~-1 wben the exponent is not EMin, a condition for an extra digit of accuracy is
easy to formulate. Tbe condition given bere is stronger tban necessary but simpler than

III a. sch~ma is thought of a.~ a. funttion Crom its unprimed to its primed c.ompunents. the sequential
c.ompositioo (;) is lWalogous to the right composition of ~h~ two functions. ThE' 5)'mbol \;; " used to
indica.tE' that a desigll decision h~ bpen made.

24

the weake9t condition:

Normal

J r: R
Internal

wexp .int ~ EMin
2wl 1wap .int > EMin::) wlmc.nat ~ ­

abs (approx - exact) < 0
nonint approx = 0 {:} nonint exact == 0
where appro~ = (-1)·...,.·- x 21 -.qwWItl x wlmc.nat

exact = 2Biu- ••,., .•H2+""- x r

2.4 Unpacking and Denormalising

The objed of this section is to specify and prove the procedures which will he used
to perform changes of repregentation of FP. First, the numbers are unpacked from
their External representation into the Unpacked representation. Second, numbers a.re
converted into their UnnormaliJed representation.

Some useful constant words:

Zero, One, NSB, INF: Word

Zero. nat o
One.nat I
NSB.bitsd {wi-I}
INF.nat 2"..... x EMa:r.

2.4.1 Unpacking

The specification of the procedure:

Unpack == {word} <l Extunal; Unpacked' I FP = FP' t> {wsign, wexp, wJroc)Z

The most significant bit of the word is stored in wsign, then the sign bit is shifted
out and the exponent and fradion fields are shifted into the appropriate Words:

~"" "
filling the other fields consistently, and put its uutput into the "ariabl('s on th(' right of po Formall)', <1
hides all unprimed variables except those in the s('t to its Il'f~; po hides the primed form 01 all variahles
except those to its right.

. .IDe symoolS <J P indica.~e that the procedure is to take its input from the vallables to the left of <1,

25

PRoe Unpack (VALUE word. VAR wBlgn. we:·p. wfrac)
{Ext'mal}
SEQ

wl1gn : = word A MSB

{Unpa,k,d\ (W'"", wl,a,))

SHIFnEFT (wexp, wfrac, Zero. word « One. e:r.pw1dth)

(Unl"',k,d)
Tht following three theorems about integers are useful in the details of the proof.

a, b, c : IN I c 'f; 0 I- a == b ¢> a DIV c == b DIY c 1'1 a MOD c = b MOD c
f- a X (b MOD 'J = (a X b) MOD (a X c)
f- (a X b) DlV (a X ,) = b DIY ,

2.4.2 Denormalising

The specification:

Denormalise == {Wf:XP, w/mc} <l Unpacked; Un.normalised' \ FP = FP' f> {wezp, wfmc}

If the number is in Norm then the implicit leading bit is shifted in, otherwise it is
left unchanged:

PRoe Dell.Onnal1Be (VAR lfexp. due)
(Unpa,k,d)
IF

wexp = EMin

(D,no",,)
SKIP

wexp <> ENi.ll.

(Ha'm)
wine := MSB V (wfrac » Dne)

{ Unnormalised}

2.6 Rounding and Packing

This section aiffi9 to specify and prove procedures (or convening between representations
of R.

2.5.1 Rounding

Specification:

Round :2: {wont, guard, sticky, mode, errors} <l Packedl'lFP _Rourul 1'1 Error_After f> {word, error.

There are two things to notice about the specification:

26

•	 the specification of "errors is conjoined in such a way that the unprimed variable,
tfT()rs. upon which it depends is not restrided by the the other conjundsi thus
the specification decomposes into a sequential composition of a specification on FP
and a specification on tfT()r,,;

•	 Round, and hence FP Jlound, is a disjunction of specifications and thus may be
implemented by a conditional.

The first observation can be formalised as:

I- Round_Proc '* (3r: R; FPo • FP Jlound2" Bound3); Error _Afttr

And the second observation can be formalieed as:

I-- 3r : IRj F Po • F P ...Round'l " Bounds..

3r : Rj FPo • FP Jlound2j modt = ToNtartsf "Bound3

V

3r : IR; FPo • FP ...Round'll modt = ToPo"In/" Bound3

V

3r: lRj FPo • FP ...Round21 modt = ToNtgln/" Bound3

V

3r : Rj FPo • FP Jlound2 Imode = ToZero" Bound3

The first observation has the obvious implication that the module can be implemented
as the sequence of two smaller programs, the first of which sets the correct approximation
and the second of which returne the correct error conditions.

The second observation leads to a decomposition because each of the disjuncts is
disjoint (i.e. the conjundion of any two is not satiefiable). Thus. a conditioml can be
fonned in which the guards discriminate according to the rounding mode.

The most obscure line is the following: nat ;'" nat + (guard A (sticky V nat».
This ie derived from: nat :,. nat + «guard A sticky) V (guard A (nat A One»).
Ueing guard'" guard A One and the commutativity and associativity of A, the last pad
of the expression reduces to guard A nat. Now, A distributes through V to give the
optimised expression.

The original expression can be seen to be corred by studying the inequalities used
to define RoundToNeartst.

27

PROC Round (VALUE mode. guard. sticky. VAR nat, errors)
Bwl }{DlJerjlfJW E error8 ¢> r ;::: 2eNQ ­

(e 2 0", Below[FPIFP'i)
{e '" 0", Aboue[FPIFP'i}
SEQ

IF
mode = ToZero

SKIP
IFP ~ound2[FP I FP'i}

mode = ToNegInf

IF

sign = Zero

SKIP

sign i- Zero

nat :'" nat + One

(FP ~ouM2[FPI FP'i)

mode = ToPosInf

IF

sign = Zero

nat ;= nat + One

sign f; Zero

SKIP

{FP ~ound2[FP I FP']}

mode = ToNearest

lIat ;;z nat + (guard" (sticky V nat»

{FP~ound2[FP I FP'i}

{olJerflow E error8 ¢> r ~ 26M.... - B""}

errors ;= errors n {overflow}

{underflow, inexact ¢ error.!}

{olJerftow E error8 ¢> r ~ 2F.M... -B.... }

IF

Inf

errors := errors U {overflow}

.., In!

SK1P

{olJerflow E error.! ~ In! V r ;::: 2EMQ - B;"'}

{underjirJw ¢ error.!}

IF

Denorm

err()rs errors U {underflow}

-, Denorm

SKIP

{underflow E error.! ¢> Denorm}

28

{inexact ~ error3}

IF

(sticky V guard) #- Zero

errors := errors U (inexact}

(sticky V guard) = Zero

SKIP

{inexact E ef"J'tlf'3 ¢? r #- value}

(FPJIoundIFP/ FP'Il

2.5.2 Packing

Specification:

Pa.ck == (w3ign,we%p,wfrac}
<J(Nonnal; Packed') "Error_Before) r = r' l>

(word, gua.rd, sticky, errors}

The fraction is a.di listed to remove the leading bit if the exponent is large enough.
The exponent is checked for overflow. If overflow has occurred then the appropriate error
condition is set and the exponent and fraction are set to give the largest finite modulus
and to ensure that the guard and sticky bits will be correct; if over8.ow has not occurted,
no change is made. Then, the fraction and exponent are packed and the guard and sticky
bits set appropriately. The proof of this procedure is very much like that of Unptlck and
DenonnaJise:

29

PRoe Pack (VALUE ws1gn. wexp, wirac. VAR worQ, guard. sticky. errors)
{Nonnal)
SE~

IF

wexp "" ENin

SKIP

wu:p <> EM in

wfrac :: wfrac « One

IF

Wtlp >.. EMu:

SE~

errors := {overflow}
wexp :"" EMax-One
wirac :: NOT Zero

weIp < EMax

errors :"" {}

2EAf
{otlefj!'ow E errors ¢) r ~ ... -S-}
{Belllw[abs r/rJ A FP => exp' = wexp.int Afrae' = wfrae.nat DIY 2·.,..-ril+l}
SHIF!LEFT (word,sticky.wexp.wfrac,fracwldtb~One)

{BeloU/[abs r/r] A FP'j(lI'ord » One).bitset/bitset']}
guard := worQ A One
IF

sticky '" Zero
SKlP

sticky <> Zero
sticky : '" One

word :'" w8ign V (word» One)
{Packed}

2.6 Finite Arithmetic Procedures

These procedures will take two Unnormalised numbers and calculate the result inlo an
External. Their specification:

FinifeArit == {wsign,., wezp,., wfrac,., op, wsign" wezp" w f rac,}
<J (Unnormalised.; Unnormalised.,j Normal') A Value_Spec t>

{ wsign, wexp, wfrae}

The procedures for each operation will be considered separately in the following sections.

30

2.6.1 Addition and Subtraction

Since a.dding a. Dumber is the sa.me as subtracting the Dumber with its sign changed, the
two procedures a.re cotnhined into ODe;

l- Add = Sub[sign,jl - sign,J

AddSub =:::. FiniteArit I op == add v op = sub

First! consider the sum of two numbers:

d, , , Z; /, g : N I d ;" • ~ 2' x/ + 2' x g ~ 2' x (f + 2'-' x g)
~ 2' x (f + ;nt(2'-' x g) + non;nt(2'-' x g))

a.nd the difference:

carry: 0.. 1 ~- 2.1xf-2~xg = 2.1 x (/ - 2~-<I X 9)

201= x (J - int(2~-4 X g) - carry + (carry - nonint(2,-<I x g)))

If carry is 0 or 1 as nonint(2,-<I x 9) is zero or non-zero then simple manipulations
show that we ha.ve enough informa.tion to cakula.te the sum or difference accurately
Thus, the first step in botn opera.tions is to align the fra.ctioDs: the least significant bit
of carry is set if a.nd only if a.ny set bits a.re shifted outj the exponent of the result is set
to the greater of the two arguments. Its specification:

Aligned _

Internal.; Internal, ~
carry: 0.. 1
wexp: Word

Unnonnalised. V Unnonnalised.,
wexp.int = mlU{ezp., exp,}
wsign.. na~ = 2_1- 1 X sign.
wsign,.nat = 2cl- 1 X sign,
wfrac•. nat = frae. DIY 2..·.,·--Uf/s
wfrae,.nat = /rac, DIV 2··"·--·"'Y

/'oc. MOD 2·..•·..- ...• ~ 0)
t:.arry. nat = 0 {:} 1\

(frae, MOD 2"·S,·--·s,y = 0

Align == {wezps, wfrae,., wexp" wfrae,}
<J Unnormalised.; Unnonnalised.,; Aligned' I

tlaJue. = tlalue,.' 1\ lJalue, = lJalue, I t>
{w/raG,. l wfrae" wap, earry}

The following is a proof of the procedure which ignores the values of variables asso­
ciated with y. The proof can be extended simply to include these:

31

paoe Align (VALUE wup_x. wup_y. VAR w1nex. due-y. wexp. carry)
{ Un1lOrmaJised. 1\ ~ = Internal.}
SEQ

IF

'fUp_X)= wexp_y

SEQ

we:lp := wexp_x

{wexp.int = ma.%{exPs,exp,}}

IF

(we:lp_x-we:lp_y) (= wI
SHIFTRIGHT (wfne-y. carry, wfnc_y. Zero, wexp_x-we:lp_y)

(we:lp_x-we:lP_y)) wl
SEQ

carry :.. wtrac_y

w1rac_y '" Zero

{'" = Int<rnaf.}
lle:lp_y)= wexp~

SEQ

wexp := wexp_y

{wexp.inl = max{exps.exp,}}

IF

(wexp_y-wexp_x) (= wI
SHIFTRIGHT (wfnc~. carry. wfrac~. Zero. wexp_y-we:lp~)

(wup_y-wup_x)) wl

SEQ

carry:"" w1rac..%

w1rac~ :"" Zero

{carry = 0 {:} frac" MOD 2·c",."'-ni'~ = O}

{wfrac•. nat = fmcs DIV 2··...·MI-c }

IF

carry" 0

SKIP

clrry () 0

carry := 1 :

{carry = 0 {:} frac" MOO 2··"'·--·"'· = 0 1\ carry E O.. I}

32

2.6.2 Addition

This procedure will deal wi~h addition of numbers with like signs or subtr<ldion of
numbers with opposite signs:

Add == {wsign., wfrae., op, wsign" wI rae" we%"p}
<] Aligned; Normal' 1\ Value 5pec I

(op = add 1\ sign. = sig~ V op = sub 1\ sign. f:. sig~) t>

{wsign, wexp, wfrac}

f- Align; Add = {wsign" WU:P., wfrac., op, wsign" wt'%"p" wI rac" }
<] (Unnormalised,.; Unnormalised,; Normal') 1\ Value_Spec i

(op = add 1\ sign.. = sig~ V op = sub 1\ sign. f:. sig~) t>
{wsign, wexp, wfrac}

Once the fractions have been aligned, they are added together. If the sum overflows, the
result is shifted down by one - its least significant bit is preserved in carry and replaced
after shifting. The sign of the result will be the same as both arguments.

PROC Add '"
{AI;gned}

{(op = sub 1\ sign. f; 6ig",,) V (op = add 1\ sign. = sig",,)}

{we:rp.int ~ EMin}

VAR carryl:

SEQ

LONGSUM (carryl. wfrac, wfrac...J:, wfrac_y. Zero)

{2~ x carrlll.nat + wfroc.nat = wfroca.nat + wfmc,.nat}

carry: .. carry V (wfrac A One)

{carry E 0..1}

we1gn ;= wslgnJ

wexp := wexp+earryl

SHIFTRIGHT (carryl.wfrac,carryl,wfrac,carryl)

{nonant (2'" x r) = 0 ¢} carry = 0 1\ wfrac« (Jracwidth + 2) = o}

due := drac V carry:

{Normal I a.ba r = abe valuea + a.bs value,}

2.6.3 Subtraction

This procedure deals with subtraction of numbers with like signs or addition of numbers
with different signs. Its specification:

Sub == {wsigna,wfraca, op, w,sagn" wfrae" wezp}
<] Alignedj Normal' 1\ Value _Spec I

(op = add 1\ signa f:. sig"" V op = sub 1\ sign. = sig",,) t>

{wsign, we:rp, wfrac}

33

f- Align; Sub = {wsignu werp., wfrae., op, wsign" flJexp" wfrae,,}
<:I (Unnorma/ised.,; Unnorma/ised,;NonnoJ') 1\ Va/ue...5pee f

(op = add 1\ signs i- sign., V op = sub 1\ signa = sign.,) t>
{flJsign, wezp, wfrae}

An exception is made if the result will be zero 50 that the sign can be given correctly.
Otherwise, the smaller argument is subtracted from the larger. The {allowing procedure
is useful to ensure that the exponent is in the correct range.

PRoe Normal (VAR sticky)
IF

wfrac '" Zero
{Zero}
wexp := ENin

(wexp < ENin) AND (vine <> Zero)

{Denorm}
SEQ

sticky :"" sticky V (wfrac " (NOT «NOT Zero) « (-wexp»))
wfrac :- wfrae » (-wexp)
wexp :'" ENin

(wup)- [Min) AND (wfnc <> Zero)
{Norm V [nf}
mp

IF

sticky '" Zero

SKIP

sticky <> Zero

wfrac := wfrac V D~e

{Nomal}

34

PROC Sub '"'
{Aligned}

{(op = ,u! " ,ig", = ,;g...) Y (op = add" ,ig", " ,;g...)}

IF

(word-z II (NOT NSS» • (word_y II (NOT NSS»

{aba value. = aba value,}

IF

(mode = ToNegInf) AND (wfraex <> Zero)
SEQ

wsign : "" NSS

wexp : = Zero

wfrac : = Zero

{Sign_Of _Zero[Zero/ Zero'I}
(mode <> ToNeglnf) OR (wfraex '" Zero)

SEQ

wslgn := wsign...% A wsign_y

weJ:p :s Zero

wfrac :'"' Zero

{S.gn_Of _Zero [Zero/ Zero']}

{Sign_O/.2ero[Zero / Zero']}

(word...% A (NOT NSB» <> (word_y A (NOT NSB»

{abs value. i-- aba value,}

SEQ

IF
(word-z II (NOT NSS» < (word-y II (NOT NSS»

{aba value" < abs value,}

SEQ

wsign := wSign_y

wfrac := wfracy - wfrac_x - carry

(word-z II (NOT NSS») (word_y II (NOT NSB))

{aba value. > aba value,}

SEQ

wsign := wsign...%

wfrac :"" wfrac...% - wfrac_y - carry

{wfrac. nat ~ 2_1- 2 Y (aba value" - aba value, = 2-qo·--B..:..--l+, 1\ t.arry = O)}
VAR places, zero:
SEQ

NORMALISE (places,wfrac,zero.wfrac,Zero)

wexp :"" wexp - places

Normal (carry) :

{Normal Iaba r = aba value. - aba value,}

35

These procedures are combined in the following procedure which deals with all non­
exceptiQllal addition and suhtraction:

PRoe AddSub '"
{Alig..d}
VAR carry:
SEQ

Align

IF

op "" sub

wslgn_y :'" wslgl1_Y X).ISB

op '" add

SKIP
IF

1IIs1gn..% '" wslglLy

Add

1II81gl1..% <> ws1gn_y

Sub:

{Normal A Value~P'c}

2.6.4 Multiplication

Specification:
Multiply =. FiniteArit lop = mul

After multiplying the fractions, the result is determined exactly The fra.ction and expo­
nent of the result are then adjusted to satisfy Normal. Deta..i1.'l cf the proof are left as
an exercise:

PRoe Multiply'"
{ UnnormalilU!~ " Unnormalised,}
VAR 10:
SEQ

ws1gl1 :'" wslgn_z X wsign_y

wexp :'" (wexp_x + wexp~y + One) - Bias

LONGPROD (wfne .10. wfrac..%. wfnc_y. Zero)

VAH places:

SE~

NORMALISE (plaees.wfrac,lo.wfrac.lo)

wexp :"" wexp - places

Norul (0) :

{Normal I r = value.)(value,}

36

2.6.5 Division

Specification:
Divitk == Fi1l.iteA rit I op = div

An exception is made when dividing by lero. Both arguments are normalised so that
the arguments to LONGD1V are in the required ra.uge and tha.t the resulting quotient
has enough 8ignificant digits. The quotient is then adjusted to sa.tisfy Normal:

PROC Divide ­
{Unnonnalised. 1\ Unnormalised,}

{"'"". "oj
SEQ

.sign :'" ••1gn....x X ws1gn_y

SEQ

{ Unnormalis~d.}

VAR places • .zero:

SEQ

NORMALISE (places ,wfrac...2:.zero. wfrac...%'. Zero)
wexp...x ;- wexp....z - ph.cea

{wfrac•.nat 2: 2wl- 1 V wfrtlca •nat = O}

{value" = 2_qoa.;"-BiM-wl+l x w!rac".nBt}

{Unnormalised, j

VAR places. zero:

SEQ

NORMALISE (places. wfrac_Y,zero. due-y, Zero)
wexp_y : = wexp_y - places

{wlmer.nat ~ 2-'-1}

{value, = 2·~·w·"-BiM-.l+l x wfrat.,.nat}

VAR rem:

SEQ

wup ;= (wexp_z+B1as) - wexp_y

LONGO IV (wfrac,rem.wfracJ:» One.Zero.wfrac_y)

2wl 2{value. = 0 v wfra~.n(Jt ~ - }

VAR places, zero:
SEQ

NORKALISE (places,wfrac,zero.wfrac,Zero)

wexp :- wexp - places

Nonaal (rem) :

{Normal I r = value. -;- value,}

37

Fina[y, the component parts can be assembled by the following procedure which
performs all non-exceptional arithmetic:

PRoe FilLiteArit =

{Unnormalised. 1\ Unnormalised., 1\ value, # o}
VAR wsign. wexp. due:
IF

(op"" add) OR (op = sub)

AddSub

op '" mul

MlLltiply

op = div

Divide:

{NomaJ 1\ VaJ,,-Spec}

Conclusions

It is ofteJ. heard said that formal methods can only be applied to practically insignificant
problerm, that development costs in large products are too high, and that the desired
reliability is still not achieved. The problem presented here is only a part of a large
body of work which has been undertaken to implement a proven-correct floating-point
system. This work develops the system from a Z specification to silicon implementation
- an achievement whicb cannot be considered insignificant. The formal development was
started some time after the commencement of an informal development and has since
overtaken the informal approach. The reason for this was mainly because of the large
amount of testing involved in the intermediate stages of an informal development -. a
process which becomes less necessary with a formal development.

As for reliability, that remains to be seen. However, the existence of a proof of
correctness means that. mistakes are less likely and can be corrected witb less danger of
introducing further mista.kes. Errors can arise in two ways: first, a simple mistype in
the programj or a genuine error in the proof. Because of the steps in the development,
the effe<t of this can be limited. Either, a fragment of prograrrl is wrong and can be
corrected without affecting a.ny larger scale properties of the program; or, the initial
decomp~sition was at fault, in which case most of the development may have to be
rework€1l. If the last scenario seems a little dire, remember tbat decomposition is a
prerequisite of any structured programming methodology but errors at this stage are
more li~ely to be discovered in a formal development. Furthermore, there are now two
ways to discover bugs and a way to show that they are not present. The possibility of
automalic proof-checkers gives some hope that programmers will be able to guarantee
the quality of a program more reliably than an architect can gua.rantee the robustness
of a hO\lse.

Thisexample, however, does demonstrate some of the advantages wbich can be gained
from a lormal specification. Specificat.ions often become modified - either the customer
changes her mind or the original description of the problem is found to be at fault.

38

Trying to modify a badly documented system ia disaatrous. Trying to modify <l. well
documented system is', at best, error prone. Using a formal specification, it is possible
to determine which parts of the system to change and, moreover, how to change them
witbout affecting unmodified parts. For instance, if the specification of error conditions
were to change, it would be possible to prove that only the second part of the rounding
module and, perhaps, its precondition need be changed. The modifications can take place
witbout having to resort to various pieces of code. Likewise, in the development stage,
the formalism exists to rea..'lon about how proposed modules will fit together. Moreover,
modules may be reused with greater confidence because there is a precise description of
what each one does.

The advantages of a non-algorithmic formalism speak for themselves. The language
used here bears a formal relation to its implementation and can be transformed to em­
ulate the structure of a program. On the other hand, the high-level specification can be
written to bear a close relationship to a natural language description - there are many
mathematical idioms which already exist to formalise seemingly intractable descriptions.
This paper has assunled some familiarity with the IEEE Standard, but it is desirable to
use the formalism as a supplement to a natural language specification to which reference
can be made in case of ambiguity.

Acknowledgements

Thanks are due to David Shepherd, Michael Goldsmith, Bill Roscoe, Tony Hoare and
Jim Woodcock for comments and encouragement. This work waa carried out under an
Alvey Research Project in collaboration with inmos.

39

Bibliography

[Abrial] Abrial, J-R., Schumann, S.A. & Meyer, B. Specification Language Z. Ma.s­
sachwett~ Computer Associates, Inc. 1979.

[Dijkstra] Dijkstra, E.W. A discipline of programming. Prmtice·HaJl, 1976

[Gries] Gries, D. The science of programming. Spn'nger· Verlag, 1981

[Hayes] Hayes, I. (ed.) Specification Case Studies. Prentice Hall, 1987

[Hoare] Hoare, C.A.R. An axiomatic Basis for Computer Programming. CACM 12
(1969). pp.S76·SBO,SB3.

[IEEE] IEEE Standard for Binary Floating-Point Arithmetic. ANSI/IEEE Std 754­
1985, New York, AUfjtUlt, 1985.

[inmosJ JOIDoS, ltd. The OCCAM Programming Manual. Prentice HalJ. 1984

[ZI SufTin, B.A., editor. The Z Handbook. Programming Reuarch Group, Oxford
University. March, 1{}86.

40

Appendix A

Standard Functions and Procedures

A.I The Data Type

l ~:N :

Wont --"

bit"t : P(O.. (w/ - 1))
not
int

: 0.. (2"' - 1)
: (-2"'-') .. (2"'-' - 1)

nat
int

::::
=

E i : bitset • 2'
(2 x nat) MOD Z..t - nGt

A.2 Bit Operations

flOT Word _ Word

(NOT w).bit"t = 0..(w/-1) - w.bitset

A, V, X Word - Word

(WI" Wz).bitset = wl.bitset n Wz.bitset
(lOt VWz).bitset = wl·bitset U Wz.bitset
(Wl X tuz).bitset = Wl.bitsetLl.Wz.b~

41

A.3 Boolean Values

TRUE, FALSE: Word

TRUE.bihd =O.. wl-I

FALSE. hi",! = {}

Bool '" {TRUE, FALSE}

f- NOT TRUE = FALSE
NOT FALSE ~ TRUE

AND I OR : Bool x Bool _ Bool

I

i

FALSE
TRUE

TRUE

FALSE

AND h = FALSE
AND h = h

OR h ~ TRUE

OR h = h

A.4 Shift Operations

»,« : Word X Word f+ Word

n.int 2: 0

=>

(w» n).bit.set = (a..wi - 1) n succ-··,;., (w.bitset)

(w« n).bitset = (0.. wi - 1) n suee··- (w.bitset)

A.5 Comparisons

<, >, <=, >=, =, <>: Word x Word _ B001

WJ..int < W2.int # WI < Wz = TRUE
Wi. = Wz ¢} Wt. := Wz = TRUE
WI>Wz=Wz<Wt.
W, <= W, = NOT(w, > w,)
tot >= Wz = Wz <= WI

W, <> W, ~ NOT(w,,, w,)

H

A.6 Arithmetic

+, -, x: Word' x Word' _ Word

(WJ, + W2),nat =: (wl.nat -+ W}.nat) MOD 2'"
(... - ""J.nal = (w,.nal - "".nal) MOD 2"'
(lL'j x W2).nat =: (wI.nat X W}.nat) MODz_1

I, \: Word x Word f> Word

W}.int ¥ 0
=>
w,.int = (... /",,).inl x "".inl + (""\",,J.int
(WJ:.int > 01\0::; (wl\WJ:).int < WJ:.int
V

"".int < 0" "".inl < (... \ ",,).inl <; oj

A.1 Shift Procedures

SHIFTLEFT

h.i', 10': Word
hi,lo; Word
n: Word

,

r;.-:;-? 0

~,.nat + lo'.nat =: ((2-' x hi.nat + lo.nat) x 2&) MOD2'Z)(·1

SHIFTRIGHT ---,
I i

hi',lo' : Word
11.1,10: Word
n: Word

n.int ;:::-. 0

2·' x hi'. nat + lo'.nat =: (2-' x hi.nat -+ lo.nat) DIV 2&

43

NORMALISE

hi', 10' : Word
hi, 10: Word
places' : Word

n.int ;::: 0

2-' x hi'. nat + lo',nat ::= (2- X hi. nat + lo.nat) x 2,.t..c~·'

wl- 1 E hi'.bitset V hi' .nat = 0:::: lo'.nat /\ plaas' = 2 x~

A.S Arithmetic Procedures

LONGSUM ----"

carry',z': Word
x, Y. carry: Word

carry. nat E 0.. 1
2-1 x carry'.nat + z'.nat:::: x.nat + y.nat + carry.nat

LONGDIFF ,

borrow', z'; Word

X, y, borrow: Word

borrow. nat E 0 .. 1
-2- x borrow' .nat + z'.nat = :t.nat - y.nat - borrow. nat

LONGPROD

hi' ,la' : Word
x, y, carry: Word

2·' X hi',nat + lo'.nat::= x.nat x y.nat + carry. nat

44

LONGDIV ---,

qu.ol', rem' ; Word

hi,lo,Y: Word

2-1 x hi.1tat + to.nat < 2~ x y.nat
2- x hi.Rat + lo.nat = quot' x y.nat + rem'.nat
o S; rem' < y.nat

45

Index

Above 5

AddSub 31

Add 33

Aligned 31

Align 31

A nLSignature 8

An·t 11

Below 6

800142

Bounds 13

Comparr._Bool...Error 19

Compaf'f._Bool19
ComparLCondition 18

Convert_Integer 16

Convert 16

Denormalise 26

Denorm 4

Di'LBy_lero 9

Divide 37

DoubleEz:tended 3

Double 3

Equall!

Error_After 24

Error_Bt/ore 24

Error_Signature 8

Error_Spec 11

Error_Spec 13

Error_Spec 15

Error_Spec 8

ExacLSqrt 14

Exc_Conv 16

Exc~Sqr1 14

External 22

FPS92 22

FP_Arit 11

FP_Round27

FP_Roundl 7

FP_Round 8

FP4

Field3 4

F1·n_Converl 15

Fin_Int 17

Fin-&m 12

FiniteArit 30

Finite_Ant 9

Finite 4

Format 3

GreaterThan 18

In/_Add 10

In/_AnLSignature 10

In/_Arit 11

In/_Convert 15

In/_Di' 11

In/_Mol 10

Inf_NaNJnt 17

In/_Rem 13

In/_Sqrl 14

In/_Sub 10

In/4

[nt-Conti_Round 16

InLSignature 17

Integer_Roundl 16

Integer_Round 16

Internal 22

lnt 17

LONGDIFF44
LONGDIV44
LONGPROD44
LONGSUM44

46

U33Than 18

M.Jtiply 36

NORMALISE 43
NaNF4
NaN....Arit 10
NaN_Convert 15
NaN.-Rem 12
NaN 4
No--.Round-Errors 11
Normal 25
Norm 4

Packed 24
Pack 29
P03_Sqrt 14

Rem_Signature 12
Rem_Zero 12
&m 13
Rnd_InLRoundl 17
Rnd-InLRound 17
RoundToNeare3t 7
RoundToNegln/6
RoundToPosln/6
RoundToZero 6
Round-Signature 5
Round 26
Round 7

SHIFTLEFT 43
SHIFTRIGHT 43
Sign-Bit 13
Sign-Bit 14
Sign-Bit 9
Single-Extended 3
Single 3
Sqrt_Error3 15
Sqrl 15
Sub 33
Succ 23

Unnormalised 22
Unordered 18
Unpacked 22
Unpack 25

Value_Spec 9

Word 41

Zero 4

47

