FORMAL METHODS
APPLIED TO A

FLOATING POINT NUMBER SYSTEM

by

Geoff Barrett

Technical Monograph PRG-58
January 1987

Oxford University Computing Laboratory
Programming Research Group

8-11 Keble Road

Oxford OXi13QD

England

Copyright (S} 1987 Geoff Barreit

Oxford University Computing Laboratory
Programming Research Greup

8-11 Keble Road

Oxford 0X13QD

England

Abstract

This report presents a formalisation of the IEEE standard for binary floating-point
arithmetic and proofs of procedures to perform non-exceptional arithmetic cakulaticns.

Contents

1 Specification

1.1 Rounding i e e e e e e
1.2 Addition, Subtraction, Multiplication and Division
1.3 Remainder. e
1.4 Square Root . . .« .« o oL e
1.5 Floating Point Format Conversions
1.6 Rounding and Convertingto Integers
1.6.1 Conversions to Integer Formats
162 RoundingtolInteger,
1.7 Comparisons . . . - . ¢ o v vt i e e e
2 Implementation
2.1 Foreword to the Proof L. ...
2.2 Representationsof FP
2.3 Representing Real Numbers, L.
2.4 Unpacking and Denormaliging
24.1 Unpacking. . . -« . o o e e e
242 DenormaliSIDE i e e e e e e
2.5 Rounding and Packing Lo
251 Rounding e e e e
2852 Packing e e e e e e
2.6 Finite Arithmetic Procedures
26.1 Addition and Subtraction Lo L
26.2 Addition. e e
26.3 Subtractiono e e
2.6.4 Multiplication,
265 Division
A Standard Functions and Procedures
Al TheData Type o e
A2 BitOperations e
A3 Boolean Values e
A.d 8hift Operations e
A5 CompariBOoms . . . o v v v i i i e e e e e
A6 Arithmetic L L e e
A.7 Shilt Procedures e e e e
A8 Arithmetic Procedures

12
14
15
16
16
17
18

Introduction

The main aim of a standard is that “conforming” implementations should behave in the
manher specified — it is, therefore, desirable that they should be proved to do so. It has
long been argued that natural language specifications can be ambiguous or misleading
and, furthermore, that there is no formal link between specification and program. This
report sets out to formalise the standard defined in [IEEE| and present algorithms to
perform the non-excepiional arithmetic operations. Conversions between binary and
decimal formats and delivery of bias adjusted results in trapped underflowa are not
covered.

The notations used in this paper are Z {see [Abrial,Hayes,Z]) and 0GcaM (see {inmos]).
The meaning of each new piece of Z ie explained in a footnote before an example of its
use.

Using a formal specificaticn language bridges the gap between natural language spec-
ification and implementation. Natural language specifications have two disadvantages:
they can be ambiguous; and it is difficult to show their consistency. The first problem is
considered to be an important source of software and hardware errors ard is eliminated
commpletely by a formal specification. Further, it is important to show that a specification
is consgistent (i.e. has an implernentation) for obvious reasons.

Of course, it could be argued that an implementation of a solution provides a precise
specification of a problem. While this is true, no cne likes to read other peoples’ code
and the structure of a program is designed to be read by machine and not by bumans.
Moreover, any flexibilily in the approach to the problem is hampered by the need to
make concrete desigu decisions. Specificatior languages are structured in such a way
that they can reflect the structure of a problem or a natural language description or
even of a program. But, above all, they can alsc be non-algorthmic. This Ineans that
oDne caz formalise what one has to do without detailing how it is to be done.

A formal development divides the task of implementing a specification inte four well-
defined steps. The first is to write a formal specification using mathematica. In the
second, this specification is decemposed into smaller specifications which can be recom-
bined in such a way that it can be shown formally that the decompoesition is valid.
Third, programs are writfen to satisfy the decomposed specifications. And, lastly, pro-
gram transformations can be applied to make the program more efficient or, possibly, to
adapt it for implementation on particular hardware configurations.

The example presented here is part of a large body of work which has been undertaken
to formally develop a complete floating-point system. This work has been taken further
by David Shepherd to transform the resulting routines into a software model of the
inmos IMST800 processor, and so specify its functions. Thus, the development process
has been carried through from formal specification to silicon implementation.

References of the form, e.g., p.14 §6.3 are to [IEEE].

Chapter 1

Specification

1.1 Rounding

This section presents a formal description of floaling-point numbers and how they are
used to approximate real numbers. The description serves as a apecification for a round-
ing procedure.

First, floating-point numbers and their representation are described. Each number
has a format. This conaists of the exponent and fraction widths and other useful constants
associaled with these — the minimum and maximum expcnent and the bias: !

Format
ezpundth, fracundth ‘N l
wordlength :N

EMin, EMaz, Bias N

wordlength = expwidth + fracundth + 1

EMin =0
EMaz = e _]
Bias = 2:q-’ﬂl—l -1

Four formats are specified — the exponent width and wordlength are constrained to
have particular values:

Single = Format | ezpundih = 8 Awordlength = 32
Double = Format | ezpundth = 11Awordlength = 64
SingleExtended = Format | ezpundth > l1Awordlength > 43
Double Extended = Formal | expwidith > 15Awordlength > 79

Once the format is known, the sign, exponent and fraction can be extracted from the

1The variable pames which are used are declared in a signature (the upper part of the box) and any
constraints on these are deacribed by the predicates in the lower part.

integer in which they are stored: 2

Fields

Format

nat ‘N

‘ stgn :0..1
ezp, frac :N

nat = gign x 2merdemethol oy o phecmdh 4 g
erp < 20PTHA
< 2{!&:.@&

‘ frac |

Some of the elemenis of Fields are considered to be error codes, or nco-numbers.
These will be denoted by NaNF:

NaNF = Fields | frac # 0 A ezp = EMaz

Now, there are enough definitions to give a definition of the value. This is only
specified in single or double formats when the number is not a non-number: (“infinite”
numbers are given a value to facilitate the definition of rounding)

FpP
| Fielas
value : R
(Séngle v Double) A ~NaNF =
ezp = EMin A value = (—1)"" x 279 5 0 2 5¢ frag,
v

ezp # EMin A wvalue = (—1)% x 27%-5% (1 + frag)
where fracg 2~ frecwitth o frge

I

To facilitate further descriplions, FP is partitioned into five classes depending on how
its value iscalculated from its fields: (non-numbers; infinite, normal, denormal numbers;
and zero)

NaN = FP|frac # 0 A ezp = EMaz
Inf = FP| frac =0 A exp = EMaz
Norm = FP| EMin < ezp < EMaz

Denorm = FP | frac £ 0 A ezp = EMin
Zero = FP|frac = 0 A ezp = EMin

Finite = Norm v Denorm v Zero®

*This form is equivaleat to declaring the variables of Format in the signature amd conjoining its con-
straints with the new coustraint.

The essential ingredients of rounding are as follows:

¢ the number to be approximated;

e a set of values in which the approximation must be;

e a rounding mode;

» a set of preferred values in case two approximations are equally good.

Because the number to be approximated may be outside the range of the approiimating
values, two values, MaxValue and Min Value, are intreduced which are analogousto +o00
and —co. The set of Preferred values is restricted to ensure that when two approximations
are equally good, at least one of them is preferred. To ensure that rounding te zero is
consistent, O must be in the approximating values.

Mode ::= ToNearest | ToZero | ToNeginf | ToPosInf

Round Signature

r: R; mode : Modes ‘l
ApprozValues, Preferred : PR

Min Value, Maz Value : R

value' : R

Preferred U {value'} C ApprozValues U {MinValue, Maz Value}
0 ¢ ApprozValues

Vvalue , valuey : ApprozValues U { MinValue, MazValue} | volue; > value; »
dp: Preferred o value, > p > value,

Vvalue : Approz Values o MinValue < value < MazValue

|

The following achernas describe the closest approximations from above and below.
if, e.g., the number is smaller than MinValue, then the approximation from below is
MinValue:

Above
Round_Signaticre |

tr > MazValue = value’ = MazValue

r < MazValue = value' > r
Yvaiue : ApprozValues U {MazValue} |value 2 r »
value > value'

]

*Logical operators between schemas have the effect of merging the signatures and performing :he logical
operation hetween the pred icates.

Below

Round _Signature

r < MinValue = value' = Min Value
r > MinValue = value' < r
Vvalue : ApprozValues U { Min Value} | value <r
velue < value'

|

Finally, we are in the position to define rounding in its various different modes,
Roundicg toward zero gives the approximation with the least modulua:

RoundToZero

Round _Swnature |

mode = Tolero

{r 2 0 A Below
v

r < 0 Above)

Rounding to positive or negative infinity returns the approximation which is respec-
tively greater or less than the given number:

RoundToPosInf
Round_Signature j

rmode = ToPosInf
Above

RoundToNeginf
Round_Signalure |

mode = ToNegInf
Below

When rounding to nearest, the closest appreximation is returned, but if both are

equally good, a member of the set Preferred ia returned: *

RoundToNearest
Round_Signature

mode = ToNearest
JAbove,; Belowy |n=r=r o
value, — r < r— value; A Above
\s
value, — r > r — value; A Below
\
value, — r = r — value; A
{value, = value; A Above A Below
v
value, # value; A value' € Preferred A (Above vV Below))

These gpecifications can be disjoined to give the full apecification as follows.
Round = Round ToNearest ¥V RoundToZero V RoundToPosInf v RoundToNegInf

So far, the specification is suitable for describing rounding into any format - be it
integer or floating-point. To adapt Round specifically for floating-point format, all that
is necessary is to fill in the definitions of ApprozValues, Preferred, Min Value and Masz-
Value. Thie inevitably involves the format of the destination, so FP' must be conjoined
with Round. Qunce the definitions are filled in, they are no longer needed outside the
specification and can be hidden (by existential quantification). It is not difficult to show
that the definition of Preferred is consistent with the constraint in Round_Signalure, but
this will be left until section 2.3 where a result is proved which makes it even simpler.
It is also simple to verify that O is an element of ApprozValues and that Min Value and
Maz Value satisfy the constraint of Round

stgnature,
FP_Roundl
Round n FP' |
ApprozVelues = (Finile | Formaf = Format' » value}
Preferred = (Finite | Forma!l = Format'Afrac MOD 2 =0 o value}
MinValue € {Inf | Formal = Formal’'Asign =1 e value)
MazValue € {_Inf | Format = Format'Asign =0 o value} |

FP_Round? = FP_Round1\{ ApprozValues, Preferred, Min Value, Moz Value}

‘Decorating the name of a schema with, e.g., |, * has the eflect of decorating the names of the variables
in the signature of that schema throughout.

The resulting error-conditions have not yet been specified. The conditions resulting
in overflow and underflow exceptions are specifically related to a floating-point format

and can be described as followa:

Errors = inezact | overflow | underflow
Error_Signature = r:R;errors' : PErrors, FP

Error_Spec
Error_Signature |

inezact € errory’ r # value'
overflow € errory’ Inf'v3Inf » absr > abs value
{underflow € errors' < 07 absr 2EMW -5’
v
underflow € errors’ & Denorm') |

t s

(The two alternative conditions under which underflow is included in the set errors’
mean that there is a choice about which condition to implement.)
Finally, the whole specification is:

FP_Round = FP_Round2 A Error_Spec

1.2 Addition, Subtraction, Multiplication and Divi-
sion
In order io discuss these operators, they must be introduced into the mathematics:
Ops ::= add | sub | mul | div

The essential ingredients of an aritbmetic operation are two numbers, FP, and FP,,
and an operation op : Ops; the number FP' is the result — jts format must be at least as

wide as each of the operands:
Anit_Signature

FP,; FP,;0p: Ops
FP

wordlength' > wordlength,
wordlength' > wordlength, |

When both FP, and FP, are finite numbers, the specification is straightforward. A
real number is specified which can be rounded to give the correct result — the result of

division by eero is described separately:
Value._Spec

Arit_Signature A Finite, A Finite,
r:R

op = add A r = value, + value,

v
op = sub A r= value, — value,
v
op =mul A r= value, X value,
v

op = div A value, # 0 A r = value, + value,

If the result after rounding will be gero, some additional information is necessary to
specify the sign completely (p.14 §6.3). I zero results from rounding a small number,
the sign is that of the small number. If zero is the accurate result then it is the exclusive
or of the signs of the arguinents when the operation is multiplication or division and is
best described by the maths otherwise:

Sign_Bit
Arit_Signature l
mode : Modes; r : R

(-1} xabsr=r
(0p = mul v op = div) = [~ 1) = (= 1)reme+rmy
(op = add v op = sub)Ar=0=>
(Zero, A Zero, A (sign, = sign, 3 op = add) A sign’ = sign,
v

~(Zero, A Zeroy) A {sign, = sign, < op = add) A (sign’ = 1 & mode = ToNeglnf))

Rounding has already been described so operations on finite numbers may be defined
by using FP_Round to specify the relation of r to FP':

Finste_Arit = (Value_Spec A FP_Round A Sign_Bit)\{r}

Divigion of a finite, non-zero number by zero gives infinity; but, division of zero by
gero is not a number:
Div_By_Zero

Ant_Signature |

Finite, A Zero,
op = div
{Zero, A NaN') v (—Zero, A Inf' A (—1)%% = (- 1)ms—rmy)

If one of the operands is not a number, then the result is not a number (tke standard
demands that the result be equal to the offending operand but that is not always possible,
p.13, §.2):

NaN_Arit

Ant_Signature |

NeN, v NaN,
NaN'

Now, arithmetic with infinity is considered. This is defined to be the limit of finite
arithmetic. However, certain cases do not have a limit, and these result in a NaN:

Inf_Arit_Signafure
Arit_Signature 1

—(NaN, v NaN,)
Inf, v Inf,

Inf.Add
Inf _Ant_Signature !

op = add
(infaigns = {aign’} A Inf') v {infsigns = {0,1} A NalN')
where infaigns = {Inf | Inf = FP,vInf = FP, « sign)} |

Inf Sud
Inf _Arit_Signature

0p = sub
(infstgns = {sign'} A Inf") v (infsigns = {0,1} A NaN")
where infsigns = {Inf | Inf = FP, v Inf = FP,[—value, /value,] » sign}

Inf Mu
Inf _Ant_Signature |

op = mul
((Zero, v Zero,) A NaN'
v

~(Zere, v Zero,)} A fnf A (=1)"" = (—1)"metrimy)

10

Inf_Div

Inf_Ant_Signalure
e

op = div

(Inf. A Infy A NeN'

v

Finite, A Inf' A (_1)-11’ = (—1)Mm=—remy
v

Finite, A Zerd' A (—1)%" = (—1)"ms~nmy)

These partial specifications can be disjoined to give the complete specificalion of
arithmetic with infinity:

Inf _Ant = Inf _Add v Inf _Subv Inf_Mu v Inf _Div

None of the exceptional cases return the rounding errors; No_Round_E'rrors describes
this, and FP_Ant describes the complete relation on Ant_Signature:

No_Round_E'rrors = round_errors' : PRound_Errors | round _errors’ = { }
FP_Ant = Fintte_Arit

v
No_Round _Errors A (Div_By_Zero v NaN_Ant v Inf _Ant)

Five different errors can occur during the operations. These cover all the different
cases when the finite operations do not extend to infinite numbers; division by zero; and
when one operand i8 mot a number:

Arnit_Errors 1:= NeN_Op| mul_Zero_Inf | div_Zero | div_Inf_Inf | Mag_sub

Error_Spec

Arst_Signature |
arii_errors’ : PAri_Errors

NaN_Op € arit_errors’ & NaN, v NaN,
mul_Zero_Inf € arit_errors’ © op = mul A ((Zero, A Infy) v (Inf, A Zero,))

div_Zero € arit_errora’ ¢ (op = div A " NaN, A Zero,}

div.Inf Inf & ariterrors’ & [ap = div A Inf, A Inf,)

Mag_sub € arit_errors' & (Inf, A Infy A ((9ign, = sign, A op = sub)
v

(stgny # sign, A op = add)) |

Finally, the whole specification is:

Ant = FP_Arit A Error_Spec

i1

1.3 Remainder

To calculate remainder, all that is necessary is a divisor and a dividend, FP, and FF,.
The result will be given by FFP'. The signature js:

Rem_Signalure

FP,; FP, |
Fp' |

Io the general case, in which both numbers are finite and the divisor is not gero, the
result is defined as follows:

Fin_Rem
Rem_Signature

Finite, A Finite,
—Zero,
2 x abs value' < abs value,
In:Z =
value, = n x value, + value'
2 x abs value’ = abs valve, =» n MOD2 =0

Remainder of a finite number by zero is a non-number:

Rem_Zero
Rem _Signoture

Finste, A Zero,
NaN'

As ever, when one of the operands is a non-number, the resuit is a non-number:

NeN_Rem
Rem _Signature

Nakl, v NaN,
NaN'

l

The remainder of infinity by any number is not a number. The remainder of a finite

12

number by infinity is the original number:

Inf Rem
Rem _Signotyre

Infe A ~NaN; A NaN'
v

Finite, A Infy AN FP' = FP,

When the result is zero, the sign is the sign of the dividend:

Sign_Bst
Rem_Signature |

Zery' = sign' = sign,

There are three errors possible with remainder - when one of the operandsis not a
number, or the divisor i8 zero or the dividend is infinity. The second two give rise to the
same exception:

Rem _Errors ::= NaN_Op | rem _Zero_Inf

Error_Spec

Rem _Signatyre
errors’ : PRem_errors

NaN _.Op € errors < NaN, v NaN,
rem _Zero_Inf € errors « (Infy A ~NaN,) v (- NaN, A Zero,}

&

Putting all the pieces together gives the full specification:

Rem = (Fin_Rem v Rem _Zero v NaN _Rem v Inf _Rem) A Sign_Bit A Error_Spec

13

1.4 Square Root

As with addition etc., an exact result is specified then rounded using FF_Rourd. The
exact square root ia defined as follows:

Ezact Sqrt

FP |
r:R

Finite

value > 0
rx r = value
r>0

|

Thisis rounded and r is hidden. The destination must have a format at least as wide
as the argument:

Pos_Sqrt = (Ezact_Sqrt A FP_Round) | wordlength < wordiength'\{r}
The sign of zero is unchanged:
Sign_Bit

FP
FP'

Zero' = sign! = sign

The square root of positive infinity is infinity:

Inf Sqrt
Inf
Fp!
atgn =0
FP' = Inf

In all other cases, the result is a NaN:
Ezc_Sqrt

FP
FpP

NaN v value < 0
NoN'

14

There are two errore — NaN.Op and when the operand is less than zero;

Sgrt_Errors = NeN_Op| OpLT0O

FError_Spec

FP
FFP'errors' : PSgrt_Errors

NaN_Op € errors' © NaN
OpLT0 € errors' & " NaN A value < 0

|

Putting the piecea together:
Sqrt = (Pos_Sqrt v Inf _Sqrt v Ezc_Sgrt) A Sign_Bit A Error_Spec

1.6 Floating Point Format Conversions

When converting to a different format, Jnf and NaN must be preserved, and Finile
numbers may bave to be rounded;

NaN_Convert

FP f
FP'

NaN A NaN'

Inf Convert

FP ?
FP'

Inf A Inf'

sign’ = sign

Fin_Convert

FP J
FP'

Finite
FP_Round{value/r}
sign = sign'

15

Convert = ({NaN Convert v Inf Convert) A No_Round_Errors) v Fin_Convert

1.6 Rounding and Converting to Integers

Thie section covers both converting to an integer format and rounding to ab integer
in floating-point format. The basic adaptation of the rounding predicate is the same
for both operations. The approximating values are all the numbers from MinValue to
Maz Value and the preferred values are the even integers. When converting to an integer
format, the minimum and maximum values can be defined to be the minimum and
maximum integers of the format. When rounding to an integer value in floating-point
format, these values will be the greatest and smallest integers available in the destination
format.

Integer_Roundl
Round]

ApprozValues = MinValue. MazValue
Preferred ApprozVelues N {n: Z | n MOD £ = 5}

Integer_Round = Integer_Round1\{ ApprozValues, Preferred}

1.6.1 Conversions to Integer Formats

All that we need to know of an integer format are the minimum and maximum integers.
These car be used to adapt Infeger_Round to describe rounding into an integer format:

FMaz[nt, Minint : Z I!
Int_Conv_Round =

Integer_Round | MinValue = Minint A MazValue = MazIni\{ Min Value, Maz Value}

When the operand is not a Finite number or is cut of range of the integer format,
the result is not specified:

Ezc_Conv

FP |
Integer’

NaN v Inf v value < Minint v Mazint > value

|

The specification ia:

Convert_Integer = Exc_Conv v Int_Corv_Round|value/r]

16

1.6.2 Rounding to Integer

There is a small problemm in using Integer_Round to specify rounding to an integer value in
a given floating-point format as there may be some integer values between the maximum
and minimum values which cannot be oblained. The following definition assumes (as is
the case with the formats specified in the standard) that if there exist two integers m and
n such that there is an intermediate integer which cannot be obtained in the destination
format, then no other value between m and r can obtained in that format. Although it
is not difficult to give a definition in the geoeral case, it is felt that the assumption is
not unreasonable, Hence, Min Value and MazValue can be defined to be the minimum
and maximum integer available io that format:

| Rnd Int_ Roundl
Integer _Round)

MazValue
Min Value

sup {FP'| Formal = Formatl' e velue} NZ
iaf {FP'| Format = Format' e value}NZ

|

Rnd_Int_Round = Rnd_Int_Roundi\{MinValue, Moz Value}
The destination format ia restricted to be the same as that of the argument:

Int_Signature _

FP I
FP'

‘ Format = Format'

Fin_Int = Finste A Int_Signature A Rnd_Int_Round|value, r|

In this case, Jnf and NalN are preserved:

Inf NaN_Int
Int_Signature

Inf v NaN
FP=FP

The whole specification:

Int = Fin_int v Inf _NaN _Int

17

1.7 Comparisons

There are four mutually exclusive comparisons. Unordered when one is a non-number;
equal; less than; or greater than:
Unordered

FP, |
FP,

NaN, v NaN,

Equal

FP, o

Fpr,

~(NaN, v NaN,)

value, = value, ‘

LessThan
FP, j

FP,

—{NaN, v NaN,)
value, < value, l

GreaterThan

FP, |
FP,

~{ NaN, v NaN,)
value, > vdue, I

The result of a comparison can be a condition code identifying one of the four disjoint

relations:
Conditions ::= UO | EQ | LE | GE

18

Compare_Condition

FP,; FP,
condition’ : Condstions

condiiion’ = UO A Unordered

\%

condition' = EQ A Egual
v

condition' = LE A LessThan
v

conditton’ = GE A GrealerThan

!

Alternatively, it may return a true-false result depending on cne of the useful com-
parisons listed below:

Bool = true | faise

Compare_Bool
FP,; FP,;0p : PConditions ||
result’ : Bool

op # {}
op # Conditions
result’ = frue & Jcondition’ : op & Compare_Condition

Am exception can be raised when one of the operands is not a number. If thisexception
i8 to be raised, the flag ezceptron must be set:

Compare_Bool_ Error

Compare _Bool I
ezception : Boal

NaN _Op € errors’ ¢» Unordered A ezception = lrue
(op = {EQ} V op = Conditions — {EQ}) = ezception = false

19

Chapter 2

Implementation

2.1 Foreword to the Proof

Much of the proof relies on 0CCAM specifications given in the appendix. Informal spec-
ifications can be found in [inmos]. The proof of the arithmetic procedures is largely
routine manipulation of equations. These parts will be treated somewhat briefly with
statements of the theorems necessary. Hints to the proof of theorems will be indicated,
€.g., Rostine manspulation. (This hint s emitled.] For tke non-exceptional cases, the
algorithm uses the following scheme:

1. Unpack both operands into their sign, exponent and fraction fields.

2. Denormalise botk by shifting in the leading bit of the fraction when necessary.
3. Perform the relevant operation.

4, Padk the result.

5. Round the packed result.

Error conditions are set during packing and rounding. The more difficult parta of the
proof are caused by changes in the representation of numbers (e.g. packing, denormal-
ising, etc). The first section of the proof is concerned with specifying the relationship
between FP or R and these representations. The second secticn contains procedures for
changing representations along with their proofs. Later sections contain procedures for
the arithmetic operationa. The proofs of these are much aimpler than for the others and
only an informal outline of why they are correct is given.

The following is a brief description of how specifications and programs are related
and how i is possible to assert formally that a program meets its specification. The
predicates in braces, eg. {¢}P {4}, mean that if P is executed in a state satisfying

¢, then it is guaranteed to termimate in a state satisfying ¢. Scme of the conjuncts
of the asssrtions are omitted for the sake of clarity. The first assertion is called the
precondition of the program - if this doees not hold on entry to the program, neither is
it guaranteed to terminate nor, if it does, to terminate in any sensible state. The rules

20

relating the program to the assertions are described in |Gries|, [Dijkstra] and |[Hoare]. A
brief description follows:

Rule 1 The program SKIP does nothing but lerminale:

- {#}]sxirf(e)

Rule 2 If the expression e can be evalugied correctly (i.e. there is no division by zero
etc.), then if the state is required to salisfy ¢ after termination, it must satisfy ¢ with ¢
substituted for z before:

F{Dendle/xlx := e|{¢}

Raule 3 If P staris €n slate § and termingtes in stete o and Q slarts in state Y and
terminales in state x, then P followed by Q starts in state ¢ and terminates in stale y:

wirker A wifalxr - @) ?loo

Rule 4 The rule for conditionals is thal, if P staris in o stale satisfying ¢ andits guard
and terminales stn stale ¥ and simslarly for Q, then the condilional composilion can
start in ¢ state which salisfies one or other of the guards and ¢ and terminale in a state
salisfying ¥

IF
bp
{tr A SYPRw) A (bg A 8Ya (8] F (e v bo) A) P
q

Q
Rule 6 The precondstion of a program may be strengthened:
=)~ (@)Pfw - Onfpkw)
Rule 8 The postcondilion of a program may be weckened:
(<= W) A @) Jied - (#)Plix)

The following twao functions are useful, they return the integer part and the fractional
part of a real number:

int :R—=N
nontnl :R — R

r=1nl r+ nonint r
abs (nonint r) < 1
abs (inf r) < absr

21

2.2 Representations of FP

The ajm of this section is to specify the relation between FP and its representations
in the program. We will only be concerned with the implementation of single-length
numbers on a machine whose wordlength is 32 :

FPS32 = FP| Single A wordlength = wl

Externally to the program, each number is represented as a single Word corresponding
to the value of its field rat. Thus, the relationship of FP to its external represeatation
ia given by:

External = FPS32; word : Word | nat = word.nat

Intemally to the program, FP is represented by three words giving its sign, exponent
and fraction. The exact relation between these words and FP is discussed further below:

Internal = FPS32; wsign, wezp, wfrac : Word

To distinguish the five different classes of number, they are first unpacked into the
sign, exponent and fraction fields. The words wsign, wezp, and wfrac correspond to the
fields sugn, ezp, and frac:

Unpacked

Internal _I

wsign.nat = sign x 2%
wezp.int ezp
wfrae.nal = frae x 2P+

f

To perform the arithmetic operations, Finife numbers are given a representation
which bears a uniform relation to their value - the first equation in the following implicitly
defines wjrae.nat:

Unnormalised
Internal |
Finite
value = (—1)" x 2memmt-Bia-elbl o yfrac.nat
wsign.nat = sign x 2%~
werp.anl = exp |
S

22

2.3 Representing Real Numbers

The aim of this section is to specify the relation between R and its representalions in
the program.

First, notice the simple result that the order on the absolute value of a number is the
same as the usual order on the less gignificant bits of its representation as a word:

FP;FP'| Format = Format' A ~{NaeN v NaN')
i abs value < absvalue’ ¢ nat MOD 257demti=1 < pap! MOD 2=eriersti-2

This can be used to see that the number of feast modulus with modulus greaier than
a given finite number is obtained by incrementing its representation as a word:

Suce

FP; FP, 1

Finste
abs value < abs value,
VFP' | aba value < abs value' o abs value, < abs value

FP; FP, | Finite A naty, = nat + 1+ Syce

From this result, the consistency of Preferred in section 1.1 can be deduced.

In turn, this means that if the approximation of less modulus is known, only enough
extra information to determine the four predicates in RoundToNearest is needed lo return
the correct value. This is, of course, the familiar guard and sticky bits defined below:

Bounds
r ‘R —i

Swuce; guard, shicky :0..1

r>0 = sign = 0 A Below[value/value'|
r=20 = Zero

r <0 = sign = 1 A Above[value/value'|
guard =0 < r— value < valuey — r

sticky =0 ¢ r — value = valugy — rv r = value

i

Bounds - 3Above;; Below; |ri=r=r; »
value, — r < r — value; > guard = OAsticky = 1
value, — r > r — value, & guard = 1Asticky =1
value, — r = r — value; & sticky =0
value, = value, < guard = Oasticky =0

23

This is, however, not quite enough information to return the correct overflow condi-
tion. If r > 2EMe’~Bis’ this information is lost. Conversely, it is not possible to determine
the overflow condition before rounding as the condition Inf' cannot be tested until the
final result is calculated. Thus, it i3 necessary to divide Error Spec into two parts. The
tnexad and underflow conditions can be determined before or after rounding. The de-
sign decision is made that 20 many error conditions ag possible will be determined after
rounding in order that the precondition of the module is simpler. Thus, the following
decomposition is valid (the validity is demonstrated by the theorem):

Error_Before

Error_Signature i

overflow € errors’ > abg r > 2EMas’-Bia’

| Error_After

Error_Signature; errors : PErrors 1

overflow € errors ¢ abs r > 2EMes’-Dls’
tnezact € errars’ & r # value

overflow € errors’ & overflow € errora v Inf'
underflow € errors’ < Denorm'

t Error_Spec C (Error_Before; Error_After)!

If we bave the approximation of less modulus, the guard and sticky bits and an
overflow indication, there is enough information to determine the correct result and the
correct error conditions. Thus, a real number may be represented prior to rounding as
follows:

Packed = ((ISucc « Bounds) A External A Error_After)\{errors'}

This representation is too complicated for the immediate result of a calculation -
we require a form which has a gign, exponent aod fraction but which contains enough
information to produce a Packed number. If the exponent is considered to be unbounded
above (this assumption causes no problems since the largest exponent which can be
produced from finite arithmetic is less than 2}, and demand that the fraction be at
least 2%~! when the exponent is not EMin, a condition for an extra digit of accuracy is
easy to formulate. The condition given here is stronger than necessary but simpler than

‘1t & schema is thought of as a function from its unprimed to its primed compeaents, the sequential
tomposition (;} s azalogous to the right composition of the two tunctions. The symbol T ia used to
indicate that s design decision bas been made.

24

the weakest condition:

Normal
r:R
Internal

werp.int > EMin

wezrp .int > EMin = wfrac.nat > 2!

abs { approz — ezact) < 0

nonint appror = 0 & noninl exact =0

where approz = (—1)*o4 x 2'-*F"4 » wfrac.nat
eract = 2Pummepiliiihends o o

2.4 Unpacking and Denormalising

The object of this section is lo specify and prove the procedures which will he used
to perform changes of representation of FP. First, the numbers are unpacked from
their External representation into the Unpacked representation. Second, numbers are
converted into their Unnormalised representation.

Some useful constant words:

Zero,Dne,NSB, INF : Word

Zero.nat = 0

Dne.nat = 1

MSB.bitset = {wi-1}
IKF.nat = 2hewdh . PAer

|

2.4.1 Unpacking

The specification of the procedure:

Unpack = {word} < External; Unpacked' | FP = FP' b {wsign, wezp, wime}?

The most significant bit of the word is stored in wsign, then the sign bit is shifted
out and the exponent and fraction fields are ehifted into the appropriate Words:

?The symbols < p indicate that the procedure is to take its input from the vanables to the left of «,
filling the other flelds consistently, and put its output into the variables on the right of & Formally, <
hides all unprimed variables except those in the set to its lefs; p hides the primed form of all variables
except those to its right.

25

PROC Unpack (VALUE word, VAR wsigu, we:'p, wfrac) =
{ Edernal)
SEQ
weign := word A NSB

{Unpacked\{ wezp, wfrac]}
SHIFTLEFT (wexp, wfrac, Zero, word << Qne, expwidth)

{ Unpacked }
The followtng three theorems about integers are useful in the details of the proof

a,bc:N|c#£#0Fa=0oaDIVec=tDIVcAaMODc=5MOD¢
Fax (B MOD¢) = (a x b) MOD (a x ¢)
Flax) DIViaxc)=8DIVc

2.4.2 Denormalising
The specification:
Denormalise = {wezp, wfrac} <1 Unpacked; Unnormalised' | FP = FP' b {wezp, wfrac)

If the number is in Norm then the implicit leading bit is shifted in, otherwise it is
left ynchanged:

PROC Denormalise (VAR wexp, wfrac) =
{ Unpacked}
IF
wexp = ENin
{Denorm}
SKIP
wexp <> ENin
{¥orm}
wirac := MSB Y (wfrac >> DOne) :
{ Unnomalised)}

2.6 Rounding and Packing

This section aima to specify and prove procedures for converting between representations
of R.

2.5.1 Rounding
Specification:
Round = {word, guard, sticky, mode, errors} <1 PackedA FP_Round A Error_After 1> {word, error.

There are two things to notice about the specification:

26

« the specification of ‘errors is conjoined in such a way that the unprimed variable,
errors, upon which it depends is not restricted by the the other conjuncts; thus
the specification decomposes into a sequential composition of a specification on FP
and a specification on ervors;

¢ Round, and hence FP_Rournd, is a disjunction of specifications and thus may be
implemented by a conditional.

The firat observation can he formalised as:
- Round_Proc « (3r:R; FP, e FP_Roundl A Bounds); Error_After

And the second observation can be formalieed as:

b dr:R; FP; e FFP_RoundlA Bounds
3r:R; FF, e« FP _Round? rmodc = ToNearest 1 Bounds
3r:R; FP, « FP_Round2 rmode = ToPosInf A Bounds
dr: R; FP, ¢ FP _Round2 rmodc = ToNegInf n Bounds
\%

3r : R; FP, e FP_Round2 | mode = ToZere A Bounds

The first observation has the obvious implication that the module ¢can be implemented
ag the sequence of two smaller programs, the first of which sets the correct approximation
and the second of which returns the correct error conditions.

The second observation leads to a decomposition because each of the disjuncts is
disjoint {i.e. the conjunction of any two is not satisfiable). Thus, a conditional can be
formed in which the guards discriminate according to the rounding mode.

The most obscure line i the following: nat := net + (guard A (etvicky V nat)).
This is derived from: nat := nat + ({guard A sticky) V (guard A {nat A Dme))).
Using guard = guard A One and the commutativity and associativity of A, the last part
of the expression reduces to guard A nat. Now, A distributes through ¥ to give the
optimised expression.,

The original expression can be seen to be correct by atudying the inequalities used
to define RoundToNearest.

27

PROC Round (VALUE mode, guard, sticky. VAR nat, errors)
{overflow € errors « r > IEMa-Ba}
{r > 0= Below|FP/FP']}
{r <0= Above| FP/FP']}
SEQ
IF
mode = ToZero
SK1P
{FP_Round2|FP/FF'|}
mode = ToNegInf
IF
sign = Zero
SKIP
aign # Zero
nat := nat + One
{FP_Round2{FP/FP')}
moda = ToPoslInf
IF
aign = Zero
nat ;= nat + One
sign # Zero
SKIP
{FP_Round2(FP/FP'|}
mode = ToNearest
nst ;= nat + (guard A (sticky V nat))
{FP_Round2|FP/FP'|}
{overflow € errors ¢« r > 2EMar-Bias}
errors := errorg N {overflow}
{underflow, inezact ¢ errors}
{overflow € errors ¢ r > 2EMee-Buasy
IF
Int
errors = errors U {overflow}
= Inf
SKIP
{overflow € errors & [nf v r > 2EMas-Bias}
{underfow & errors}
IF
Denorn
errors ;= errors U {underflow}
= Denorm
SKIP
{underflew € errors & Denorm}

28

{inezact & errors)
IF
(sticky V guard) # Zero
errors := errora U {lneract}
(sticky V guard) = Zero
SKIP
{inezact € errors < r # value}
{FP_Round|FP/FP’)}

2.5.2 Packing

Specification:

Pack = {wsign, wezp, wfrac}
<{Normal; Packed') A Error_Before | r=r'b
{word, guard, sticky, errora}

The fraction is adjusted to remove the leading bit il the exponent is large enough.
The exponent is checked for overflow. I overflow has occurred then the appropriate error
condition is set and the exponent and fraction are set to give the largest finite modulus
and to ensure that the guard and sticky bits will be correct; if overflow has not cccurtfed,
no change is made. Then, the fraciion and exponent are packed and the guard and sticky
bits set appropriately. The proof of this procedure ie very much like that of U'npack and
Denormalise:

28

PROC Pack (VALUE wsign. wexp, wirac, VAR word, guard, sticky, errors) =
{Normal}
SEQ
IF
wexp = ENin
SKIP
wexp <> EMin
wfrac := wfrac << QOne

IF
wexp >= ENax
SEQ
errors := {overflow}
wexp := EMax-One

wirac := NOT Zero
werp < EMax
errors := {}
{overflow € ertors > ¢ > 2EMu-Bus)
{Belowlabs r/r) A FP' = exp’ = wezp.inl A frac’ = wfrac.nat DIV 2romdbtl}
SHIFTLEFT (word,sticky,wexp,.wfrac,fracwidth+One)
{Belou[aba r/r] A FP'|(word >> One), bitset/bitset'|}
guard := word A One
IF
sticky = Zero
SK1P
sticky < Zero
sticky := One
wvord := weign V (word >> Ome)
{Packed)

2.6 Finite Arithmetic Procedures

These procedures will take two Unnormalised numbers and calculate the result into an
Egzternal . Their specification:

Finite Arit = {wsign,, wezp,, wfrac,, op, wsign,, wezp,, wfrac,}
<1 Unnormalised, ; Unnormalised,; Normal') A Value_Spec >
{ wsign, wezp, wfrac)

The procedures for each operation will be considered separately in the following sections.

30

2.6.1 Addition and Subtraction

Since adding a number is the same as subtracting the number with its sign changed, the
two procedures are combined into one:

F Add = Subsign,/1 — sign,]
AddSub = FiniteArit | op = add V op = sub
First, consider the sum of two numbers:
die:Z;f,g:N|d> e 2 xf42xg=2x(f+2¢xyg)
=24 % (f +int(2 % g) + nonint(2~ x ¢))
and the difference:
carry 10,10 29xf—2°%xg = 29 x {f — 274 x g)
=2¢x% (f — int(2°% x ¢) — carry + (carry — nonint(2°¢ x g)))
If carry is 0 or 1 a3 nonfnt[2¢7¢ x g) is zero or non-zero then simple manipulations
show that we have enough information to calculate the sum or difference accurately
Thus, the first step in both operations is to align the fractions: the least significant bit

of carry ia set if and ounly if any set bits are shifted out; the exponent of the result is set
to the greater of the two arguments. Its specification:

Aligned

Internal,; Internal, |
carry : 0.1
wezp : Word

Unnormalised, v Unnormalised,
wezp.int = mas{ezp., ezp,)
wsign, .aat = 2971 x sign,
wrign, .nat = 2% % sign,
wfrae,.nat = frac, DIV 27w —ceps
wfrac,.nat = frac, DIV gecrp.int—erpy
frac, MOD 2=s#-—es —
carry.nat =0 & A
frac, MOD 2w —esty .)

Align = {wezp,,wfrac,, wezp,, wfrac,)
< Unnormalised, ; Unnormalised,; Aligned’ |
value, = value,’ A value, = value,’ >
{wfrac, , wfrac,, wezp, carry}

The following is a proof of the procedure which ignores the values of varables asso-
ciated with y. The proof can be extended simply to include these:

31

PROC Aligh (VALUE wexp_z, wexp.y, VAR wirac_z, wfrac.y, wexp. carry) =
{ Unnormalised, A o = Internal,}
SEQ
IF
YRIp_I >= Wexp_y
SEQ
WeIp = Wexp.I
{wezp.int = maz{ezp;, ezp,}}
IF
(wexp_z-weIp_y} <= wl
SHIFTRIGHT (wfrac_y,carry,wfrac y,Zero,wexp z-werp_y)
{wexp_z-wexp_y) > wl
SEQ
carry = wirac_y
wirac_y = Zerc
{z = Internal}
weIp_y >= wexp.r
SEQ
Wwexp = wexp.y
{wezp.int = maz{ezp., exp,}}
IF
(wexp_gy-wexp.z} <= wl
SHIFTRIGHT (wfrac_z,carry,wfrac_r,Zero,wexp_y-vwexp_1)
(wexp_y-wexrp_z) > wl
S5EQ
carry := wfraczx
wfrac z := Jero
{carry = 0 & frac, MOD 294%™ <: — ()
{wfrac, nat = frac, DIV 2o=-&1-cm)
IF
arry =0
SKIP
arry <> 0
carry =1 :
{cary =0 ¢ frac, MOD 2%% =~ <Px — 0 A carry € 0..1}

32

2.6.2 Addition

This procedure will deal with addition of numbers with like signs or subtraction of
numbers with opposite signs:

Add = {wsign,, wfrac,, op, wsign,, wfrac,, wezp}
d Aligned; Normal' A Value Spec |
(op = add A sign, = sign, V op = sub A signg # sign,) >
{wsign, wezp, wfrac)

F Align; Add = {wsign,, wezp,, w frac,, op, wsign,, wezp,, wfrac,, }
A(Unnormalised, ; Unnormalised, ; Normal'} A Value_Spec
{op = add A sign, = sign, V op = sub A sign, # signy) I>
{ waign, wezp, wirac}
Once the fractions have been aligned, they are added together. If the sum overflews, the
result is shifted down by one - its least significant bif is preserved in carry and replaced
after shifting. The sign of the result will be the same as both arguments.

PROC Add =

{ Aligned}

{(ap = sub A sign, # sign,)V (op = add A sign, = sign,)}

{wezp.ant > EMin}

VAR carryl:

SEQ
LONGSUN (carryl,wfrac,wfrac_r,wirac_y,Zero)
{2 x carryl.nat + wfrac.nal = wfrac,.nat + wfrac,.nat}
carry := carry YV {(wfrac A One)
{earry € 0.1}
welgn := wsign_z
wexp = weXp+carryl
SHIFTRIGHT (carryl.wfrac,carryl,wfrac,carryl)
{nonint (2 x r) = 0 & carry = 0 A wfrac<< (fracuidth + 2} = 0}
wirac := wfrac V carry :

{Normal | abs r = abs value, + abs value, }

2.6.3 Subtraction

This procedure deals with subtraction of numbers with like signa or additien of numbers
with different signs. Its specification:

Sub = {wsign,,wfrac,, op, weign,, wfrac,, wezp}
< Aligned; Normal' A Value Spec |
(op = add A sign, # sign, V op = sub A sign, = sign,) b
{wstgn, wezp, wfrac}

33

i Align; Sub = {wsign,, wezp,, wfrac,, op, wsign,, wezp,, wfrac,, }
<(Unnormalizedy; Unnormalised,; Normal") A Velue Spec |
(op = add A sign, # sign, Vv op = sub A sign, = sign,) b
{wsign, wezp, wfrac}
An exception ia made if the result will be zero so that the sign can be given correctly.
Otherwise, the smaller argument is subtractied from the larger. The followicg procedure
is useful to ensure that the exponent is in the correct range.

PROC Hermal (VAR sticky) =
IF
wirac = Zero
{Zero}
vexp := ENin
(wexp < ENin) AND (wfrac <> Zero)
{Denorm}
SEQ
sticky := aticky V (wirac A (HOT ((NOT Zero) << (-wexp})))
wirac := wirac >> (-wexp)
Wexrp ;= ENin
(werp >= ENin) AND (wfrac <> Zero}

{Norm v Inf}
SXIF
IF
sticky = Zero
SKIP
aticky <> Zero
wfrac := wfrac V Ore :
{ Normal}

34

PROC Sub =

{Aligned}
{{op = sub A sign, = sign,) v (op = add A sign, # aign,)}
IF

{word_z A (NOT NS5B3)) = (word_y A (NOT NSB))
{abs value, = abs value,}

IF
(mode = ToNeglnf) AND (wfrac z <> Zero)
SEQ
walgn := MSB
wexp = Zero
wifrac := Zero

{Ssgn _Of _Zero|Zero/ Zero'|}
(mode <> ToNegInf) OR (wfrac_z = Zero)
SEQ
weign := wsign.r A wsign y
wexp := lero
wirac := Zero
{Sign_Of _Zero|Zero/ Zero'|}
{Sign_0f Zero|Zero [Zero']}
(word_x A (NOT MSB)) <> (word_y A (NOT MSB))
{abs value, # abs value,}
SEQ

IF
{word_z A (NOT MSB)) < {word_y A (NOT NSB))

{abs value, < abs value,}

5EQ
wslgn := wsigny
wirac := wirac y - wirac_z - carry

(word_z A (NOT MSB)) > (word.y A (NOT NEB))
{abs value, > abs value, }
SEQ
wsign := wsign z
wirac := wfracz - wifrac_y - carry
{wfrac.nat > 2°-% v (abs value, — abs valug, = 2om--Be-siti 4 worry — D)}
VAR places, zero:

SEQ
NORMALISE {(places,wfrac,zero,wfrac,Zero)

wexp = wexp - places
Normal (carry) :
{Normal | abs r = abs value, - abs value,}

35

These procedures are combined in the following procedure which deals with all non-
exceptional addition and suhtraction:

PROC AddSub =
{ Aligred}
VAR carry:
SEQ
Align
IF
cp = sub
weign.y := walgn y X MSE
op = add
SKIP
IF
wsign_z = welgn._y
Add
walgn z <> weign.y
Sub :
{Normal A Value Spec}

2.6.4 Multiplication

Specification:
Multiply = FiniteArit | op = mul

After muliiplying the fractions, the result is determined exactly The fraction and expo-
nent of the result are then adjusted to satisfy Normal. Details of the proof are left as
an exercise:

PROC Multiply =
{ Unnormalised, A Unnormalised, }
VAR lo:
SEQ
welgn := weign.r X welign.y
wexp = (wexp .z + wexp.y + One) - Blas
LOKGPROD (wfrac.lo.wfrac_z,wfrac_y,Zero)

VAR places:

SEQ
NORMALISE (places,wfrac,lo,wfrac.lo)
wexp := wexp - places

Normal (lo)

{Nommal | r = value, x value,}

36

2.8.6 Division

Specification:

Divide = FiniteAnt | op = div
An exception is made when dividing by gerc. Both arguments are normalised s0 that
the arguments to LONGDIV are in the required range and that the resulting quotient
has enough significant digits. The quotient is then adjuated to satisfy Normal:

PROC Divide =
{Unnormalised, A Unnrormalised, }
{value, # 0}
SEQ
wsign = weign z X weign.y
SEQ
{ Unnormalised, }
VAR places, 2ero:
SEQ
NORNALISE (places,wfrac_r zero,wfrac.z, Zero)
wexp.z := wexp.r - places
{wfrac,.nat > 2% v wfrae, .nat = 0}
{value, = 2weops-al-—Bise—witl o yfe nat)

{ Unnormalised, }

VAR places, zero:

SEQ
NORNALISE (places.wfrac y,zero,wfrac.y, Zero)
wexp_y := wexp_y - places

{wfrae, nat > 2%-1}
{value, = 2Py -Biar—wi4l o yirae .nat}
VAR rem:
SEQ
wexp ;= {(wexp r+Bias) - wexp.y
LONGDIV (wirac,rem,wfrac_z >> One,Zersc,wfrac y)
{value, = O V ufrac.nat > 272}
VAR places, zero:
SEQ
NORMALISE (places,wfrac,zero,wfrac,Zero)
wexp = wexp - places
Normal (rem)
{Normal | r = value, + value,}

37

Finaly, the component paris can be assembled by the following procedure which
performs all non-exceptional arithmetic:

PROC FiniteArit =
{ Unnermalised, A Unnormalized, A value, # 0}
VAR welgn, wexp, wirac:
1F
(op = add} OR {op = sub)
AddSub
op = mul
Multiply
op = div
Divide :
{Nornal A Value _Spec}

Conclusions

1t is oftex heard said that formal methods can only be applied to practically insignificant
problems, that development costs in large products are too high, and that the desired
reliability is still not achieved. The problem presented here is only a part of a large
body of work which has been undertaken to implement a proven-correct Aoating-point
system. This work develops the system from a Z specification to silicon implementation
— an achievement which cannot be considered insignificant. The formal development was
started some time after the commencement of an informal development and has sizce
overtaken the informal approach. The reason for this was mainly because of the large
amount of testing involved in the intermediate stages of an informal development — a
process shich becomes less necessary with a formal development.

As for reliability, that remains to be seen. However, the existence of a proof of
correctness means that mistakes are less likely and can be corrected witb less danger of
introducing further mistakes. Errors can arise in two ways: first, a simple mistype in
the program; or a genuine error in the proof. Because of the steps in the development,
the effest of this can be limited. Either, a fragment of program is wroong and can be
correctel without affecting any larger scale properties of the program; or, the initial
decomposition was at fault, in which case most of the development may have to be
reworked. If the last scenario seems a little dire, remember that decomposition is a
prerequsite of any structured programming methodology but errors at this stage are
more likely to be discovered in a formal development. Furthermore, there are now two
ways todiscover bugs and a way to show that they are not present. The possibility of
antomalc proof-checkers gives some hope that programmers will be able to guarantee
the quality of a program more reliably than an architect can guarantee the robustness
of a house.

Thisexample, however, does demonstrate some of the advantages which can be gained
from a formal specification. 8pecifications often become madified - either the customer
changes her mind or the original description of the problem is found to be at fault.

as

Trying to modify a badly documented system is disastrous. Trying to modify 2 well
documented system is, at best, error prone. Using a formal specification, it is possible
to determine which parts of the system to change and, moreover, how to change them
witbout affecting unmodified paris. For insiance, if the apecification of error conditions
were to change, it would be possible to prove that only the second part of the rounding
module and, perhaps, its precondition need be changed. The modifications can take place
without having to resort to various pieces of code. Likewise, in the development stage,
the formalism exists to reason about how proposed modules will fit together. Moreover,
modules may be reused with greater confidence because there is a precise description of
what each one does.

The advantages of a non-algorithmic formalism speak for themselves. The language
used here bears a formal relation to its implementation and can be transformed to em-
ulate the structure of a program. On the other hand, the high-level specification can be
written to bear a close relationship to a natural language description — there are many
mathematical idioms which already exist to formalise seemingly intractable descriptions.
This paper has assumed some familiarity with the IEEE Standard, but it is desirable to
use the formalism as a supplement to a natural language specification to which reference
can be made in case of ambiguity.

Acknowledgements

Thanks are due to David Shepherd, Michael Goldsmith, Bill Roscoe, Tony Heare and
Jim Woodceock for comments and encouragement. This work was carried out under an
Alvey Research Project in collaboration with inmos.

39

Bibliography

|Abrial] Abrial, J-R., Schumann, 8.A. & Meyer, B. Specification Language Z. Mas-
sachusetls Computer Associales, Inc. 1979,

[Dijkstra| Dijkstra, E.W. A discipline of programming. Prentice-Hall, 1976
[Gries] Gries, D. The science of programming. Springer- Verlag, 1981
{Hayes] Hayes, I. (ed.} Specification Case Studies. Prentice Hall, 1987

[Hoare] Hoare, C.A.R. An axiomatic Basis for Computer Programming. CACM 12
(1969). pp.576-580,583.

[IEEE| IEEE Standard for Binary Floating-Point Arithmetic. ANSI/IEEE 5td 754-
1985, New York. August, 1985.

[inmoes] inmos, Itd. The cccaM Programming Manual. Prentice Hall. 1984

1Z) Sufrin, B.A., editor. The Z Handbook. Progrumming Research Group, Ozford
University, March, 1986.

40

Appendix A

Standard Functions and Procedures

A.1 The Data Type

wi:N !

Word
batset : P(D..(wi — 1)) |
nat :0.(2%-1)
tnt o (—2%-1) (2% - 1)

X v bitset » 2°
(2 x nat) MOD 2¥ — nat

nat
it

o

A.2 Bit Operations

HOT ; Word — Word I

(HOT w). bifset = 0..(wl — 1) — w.bitsel

|

AV, X Word - Word !

(wy A we).bifset = w, . bitsel N w,. bilsel
(ty V wy).bitset = w; . bitset U wy bitset
(wq X we).bitset = w,.WitselAw, bitset

41

A.3 Boolean Values

TRUE , FALSE : Word

TRUE .bitset =0.wli—1
FALSE .bitset = {}

Bool = { TRUE, FALSE }

- NOT TRUE = FALSE
NDT FALSE = TRUE

’7AND, OR : Bool x Bool — Bool

FALSE AND b = FALSE
TRUE AND b =3

TRUE OR b = TRUE
FALSE OR b =1}

A.4 Shift Operations

>>, << Word x Word 4+ Word

n.nt > 0
=

(w>>n).bitset = (0..w — 1) N suce™™™ fu.bitset)
(we<n).bitset = (0wl — 1) N suec™™ fu.bitsel)

~ |

A.6 Comparisons

<, >, <=, >=, =, <> Word x Word — Bool

ant < wp.tnt ¢ wy; < wy = TRUE
= w; <+ W = vy, = TRUE
>w=w <y

<= 1w = NOT (w; > wy)

>= g = wy <=

<> w; = NOT (wy = uy)

EEEEEE

42

A.8 Arithmetic

+,—, % : Word x Word — Word

(w, + w;).nat = (w,.nat + wy.nat) MOD 2%
(w — wp).nrat = (w,.nat — w.nat) MOD 2™
(w, x wq).nat = (w,.nal X wp.nat) MOD 2%

5\ : Word x Word /» Word

wpdnt # 0

=

w.and = (w/wy).imt X wpant + (my\w).int
(w.int > 0A0 < (w\w).dnt < wyint

v

wp.int < 0 A wint < (uwy\wy).int < 0) |

A.T Shift Procedures

SHIFTLEFT

ke’ lo" : Word
hi,lo . Word
n: Word

nant > 0
2% % hi'.nat + lo'.nat = (27 x hi.nat + lo.nat) x 2°) MOD 27 |

SHIFTRIGHT
| k', L' s Word I
hi, lo: Word
n: Word

n.fnl > 0
2= x hi'.nat + lo' nat = (2 x hi.nat -+ lo.nat) DIV 2°

43

NORMALISE

hi', lo' : Word
hi,lo: Word
places’ : Word

nant >0
2% x hi'.nat + lo".nat = (2% x hi.nat + lo.nat) x 2%’
wl -~ 1 € hi'.bitset v hi'.nal =0 = lo'.nat A places’ = 2 x wl

A.8 Arithmetic Procedures

LONGSUM

carry’, z' : Word
z,y, carry : Word

carry.nat €0..1
2® x carry'.nat + #’.nat = z.nat + y.nat + carry.nat

I

LONGDIFF

borrow', z' ; Word j
2, y, borrow : Word

borrow.nat € 0..1
—2* x borrow'.ngt + z'.nat = z.nat — y.nat — borrow.nat

LONGPROD
hi',lo' : Word
z,y, carry : Word

2*' x M".nat + lo'.nat = r.nat x y.naf + carry.nat

44

LONGDIV

quol', rem' ; Word
ki, lo, y: Word

2= x hi.ngt + lo.nat < % x y.nat
2™ % hi.nal + lo.nal = quot’ X y.nat 4 rem’.nat
O < rem' < y.nat

45

Index

Above 5
AddSub 31

Add 33

Aligned 31
Align 31
Arit_Sigrature 8
Ant 11

Below 6
Bool 42
Bounds 23

Compare_Bool_Error 19
Compare_Bool 19
Compare_Condstion 18
Converi_Integer 16
Convert 16

Denormalise 26
Derorm 4

Drv_By Zero 9
Drivide 37
DoubleErtended 3
Double 3

Egual 18
Error_After 24
Error_Before 24
Error_Signature 8
Error_Spec 11
Error_Spec 13
Error_Spec 15
Error_Spec 8
Ezact_Sirt 14
Eze_Conv 16
Ezc Sgri 14
Erlernal 22

FP5s2 12

46

FP Art 11
FP_Round? 7
FP_Roundl 7
FFP_Round 8
FP 4

Fields 4
Fin_Convert 15
Fin_Int 17
Fin Rem 12
FintteAnit 30
Finite_ At 9
Finite 4
Format 3

GreaterThan 18

Inf Add 10
Inf_Ant_Signature 10
Inf_Anit 11

Inf Convert 15
Inf_Div 11

Inf_-Mul 10

Inf NaN_int 17

Inf Rem 13

Inf Sqri 14

inf Sub 10

Inf 4
Int_Conv_Round 16
Int_Signature 17
Integer_Round! 16
Integer_Round 16
Internal 22

Int 17

LONGDIFF 44
LONGDIV 44
LONGFROD 44
LONGSUM 44

LessThan 18 Value_Spec 9
Multiply 36 Word 41

NORMALISE 43 Zero 4
NaNF 4

NaN_Ant 10

NaN_Convert 15

NaN_Rem 12

NaN 4

No_Round_Errors 11

Normal 25

Norm 4

Packed 24
Pack 29
Pos_Sgrt 14

Rem_Signature 12
Bemn_Zero 12

Remn 13
Rnd_Int_Roundl 17
Rnd_int.Round 17
RoundToNearest 7
RoundToNeginf 6
RoundToPosinf &
RoundToZero 6
Round_Signature 5
Round 26

Round 7

SHIFTLEFT 43
SHIFTRIGHT 43
Sign_Bst 13

Sign Bit 14

Stgn. Bt 9
SingleExtended 3
Single 3
Sqri_Errory 15
Sqrt 15

Sub 33

Suce 23

Unnormalised 22
Uneordered 18
Unpacked 22
Unpack 25

47

