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Abstract 

This report presents a. forma.l.isation of the IEEE standard for binary floating-point 
arithmetic and proofs of procedures to perform non-exceptional a.rithmetic cakula.tioDs. 
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Introduction 

The main aim of a standard is that "conforming'" implementations should behave in the 
manner specified - it is, therefore, desirable that tbey should be proved to do 80. It has 
long been a.rgued that natural language specifications Can be ambiguous or misleading 
and, furthermore, that there is no fonnal link between gpecification and program. Tbie 
report sets out to formalise the standard defined in [IEEE] and present algorithms to 
perform tbe non·exceptiona.l arithmetic operations. Conversions between bina.ry and 
decimal formats and delivery of bias adjusted results in trapped underflows are not 
covered. 

The notations used in tbis paper are Z (see [Abrial,Hayes,Z]) and OCCAM (aee [iomos)). 
The meaning of each new piece of Z is explained in a footnote before an example of its 
use. 

Using a formal specification language bridges the gap between natural language spec· 
ification and implementation. Natural language specifications have two disadvantages: 
they can be ambiguous; and it is difficult to show their consistency. The first problem is 
considered to be a.n important source of software and hardware errors and is eliminated 
completely by a fonnal specification. Further, it is important to show that a specification 
is consistent (i.e. has an implelnentation) for obvious reasons. 

Of course, it could be argued that an implementation of a solution provides a precise 
specification of a problem. While this is true, no one likes to read other peoples' code 
and the structure of a program is designed to be read by machine and not by humans. 
Moreover, any flexibiHty in the approach to the problem is hampered by the need to 
make concrete design decisions. Specification languages are structured in such a way 
that they can reflect the structure of a problem or a natural language description or 
even of a program. But, above all, they can also be non·algorithmic. This me"ans that 
one can formalise what one has to do without detailing how it is to be done. 

A formal development divides the task of implementing a specification into four well­
defined steps. The first is to write a fonnal specification using mathematic!. In the 
second, this specification is decomposed into smaller specification! which can be recom­
bined in mch a way that it can be shown formally that the decomposition is valid. 
Third, programs are written to satisfy the decomposed speciflcations. And, lastly, pro­
gram trauformations can be applied to make the program more efficient or, possibly, to 
adapt it for implementation on particular hardware configurations. 

The example presented here is part of a large body of work which bas been undertaken 
to formaUy develop a complete floating-point system. This work has been taken further 
by David Shepherd to transform the resulting routines into a software model of the 
inmos IMST800 processor, and so specify its functions. Thus, the development process 
has been ca.rried through from formal specification to silicon implem.en~ation. 

References of the form, e.g., p.14 §6.3 are to [IEEE]. 
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Chapter 1 

Specification 

1.1 Rounding 

This section presents a. formal description of floating-point numbers and how they are 
used to approximate real numbers. The description serves as a specification (or a round· 
ing procedure. 

First, floating-point numbers and their representation are described. Each number 
has a. format. This consists of the exponent and fraction widths and other useful COD8t~Dts 
a.ssociated with these - the minimum and maximum exponent and the bias: 1 

Format ---" 

tzpwidth,/racwidth :N 
wordlength :N 
EMin, EMQ.%, Bias :N 

wordlength = expwidth + Irntwidth + 1 
EMin =0 
EMQ% ~Z'''''''-l 

Bias =2"""..:.fll-l - 1 

Four formats are specified - the exponent width and wordlength are constrained to 
have particular values: 

Sin.gle == Format I expwidth = 8 Awordlength = 32 
Doublt. =. Format I t.xpwidth = lll\wordlt.ngth = 64 
Sin.glt.Erlt.n.dt.d == Format I t.xpwidth ~ lll\wordlt.ngth ~ 43 
Doublt.Exft.ndt.d == Fonnat I t.xpwidth ~ ISI\wordlt.ngth ~ 79 

Once ~he forma~ is known, ..he sign, exponen~ and fraction ca.n be extracted from the 
___ L'_L 2 __ 

I Tile variable Dame~ "'UKll 'u" u~{"u /:L.f~ ae(:lar~u ID a Slsua\ure \\Ut" upVt"c V>ln VI U.l" VVX) lUlU >luy 
COIlstraioh 00 thes~ are dE'scribf'd by the prl"dicales iu the lower paM;. 
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integer in which they are stored: 2 

Fields 

Format
 
nat :N
 
sign :0 .. 1
 

exp,frac :N
 

~ nat ~ sign x 2"""""''-' + np x 2,..,.... + frac 
I exp < 2"q>NlJI 

I frac < 2"... NlJI 

I 

Some of the elements of Fields are considered to be error codes, or DOD-Dumbers. 
These will be denoted by NaNF: 

NaNF == Fields II frac of:. 01\ exp = EMlU 

Now, there are enough definitions to give a definition of the value. This is only 
specified in single or double formats when the number is not a non-number: ("infinite" 
numbers are given a value to facilitate the definition of rounding) 

!FP
F,-eld3-----------------i 
value: R 

(Single V Double) 1\ -,NaNF =? 

exp = EMm 1\ val"e (-I)";" X 2·q>-B.... x 2 x fraeo 
V 

np I'	 EMin , value (-1)'" X 2,.-B'" x (1 + fro",) 
whe-re fraeo ::: 2-~"" x fmc 

To facilitate further descriptioDs, FP is partitioned into five classes depending on how 
its va.lue isca1cula.ted from its fields: (non-numbers; infinite, nonna.l, denormal numbers; 
and ~ero) 

NaN == FP I fmc f. 0 1\ ezp :::: EMlU
 
Inf == FP I frac = 0 1\ exp :::: EMax
 
Norm =- FP I EMin < exp < EMax
 
Denorm == FP f frac f. 0 1\ exp = EMin
 
Zero == FP I fmc = 0 1\ exp = EMin
 

Finite == Norm V Denorm V Zero 3 

4This form is equiYalellt to declarmg theo variabks ul Formal ill tb(' 5ig"uaturl.' and ~_olljoilli.ug" iti ('011­
straints with the lIew COlistraint. 
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The essential ingredients of rounding are as follows: 

• the number to be approximated; 

• a set of values in which the approximation must be; 

• a rounding mode; 

• a set of preferred values in case two approximations are equally good. 

Because the number to be approximated may be outside the range of the approximating 
values, two values, MaxValue and M1"n Value, are introduced which are analogoue to +00 
and -00. The set of PreferTt:dvalues is restricted to ensure that when two approximation" 
are equally good, at least one of them is preferred. To ensure that rounding to zero is 
consistent, 0 must be in the approximating values. 

Mode ::= ToNeartst I ToZero I ToNt:.glnf I ToPoslnf 

RountLSignaturt 

r : lRj mode: Modes
 
ApproxValuts, Prtferrtd : PR
 
Min Value, Max Value : R
 
value' : R
 

Preferred U {value'} s;: ApproxValues U {MinValue, Max Value} 

o E ApproxValue'.s 

Vvaluel' value2 : .A,ppro%Values U {MinValue, Ma%Value} I value! > value2 • 
3p : Preferred • value! ~ p ~ value2
 

Vvalue : ApproxVaJues • Min Value ~ value ~ Ma.:z:Value
 

The following schernas describe the closest approximations from above and below. 
H, e.g., the number is smaller than Min Value, then the approximation from below is 
Min Value: 

Above 

I Round_Signature rr > Max Value => value' = Max Value 

I r < Mao: Value => value' > r 
Vealue : ApprorValues U {MarValue) ! value 2 r • 

. tlalue ~ value' 

'Logical operatan betweeu sc:hemas have tbe elfec:t of merging the ~ignalurr~ and prrforming:be logical 
operation hetWeeh tbe predicates. 
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Be/ow ~ 

I Round_Signature I 

r < Min Value => tlalue' = Min Value 
r ~ Min Value => tlalue' ~ r 

V'tlalue : Appro:t Value" U {Min Value} I value ~ r 
tlalue ~ tlalue' 

_ 

Finally, we are in the position to define rounding in its various different modes. 
Rounding toward zero gives the approximation with the least modulus: 

RoundToZero __ 

Round _Signature 

mode = ToZero 
(r ~ 01\ Below 

v 
r ~ 01\ Abotle) 

Rounding to positive or negative infinity returns the approximation which is respec­
tively greater or less than the given number: 

RoundToPo"Inf , 

Round_Signature 

mode = ToPo"Inf
 
Abotle
 

RoundToNeglnf , 

Round_Signature 

mode = ToNeglnf
 
Below
 

Wben rounding to nearest, the closest approximation is returned, but if both are 
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equally good, a member of ~he 5et Pre/erred is returned: 4 

RoundToNearest 

Round_Signature 

mooe = ToNearest 
3Abovel; BeloWJ I rl = r = r2 • 
valuel - r < r - value2 1\ Abo"e 

V 

valuel - r > r - value2 1\ Below 
V 

valuel - r = r - value2 A 

(value, = value2 A Above A Below 
V 

valuel -:F value2 A value' E Pre/ured A (Above V Below)) 

These specifications can be disjoined to give the full specification as follows, 

Round == Round ToNearest V RoundToZero V RoundToPosln/ V RoundToNegln/ 

So far, the specification is suitable for describing rounding into any fonnal - be it 
integer or Hoating-point. To adapt Round specifically for floating-point format, all that 
is necessary is to fill in the definitions of ApprozValues, Pre/erred, Min Value and Ma'Z­
Value. This inevitably involves the fonnat of the destination, so FP' must be conjoined 
with Round. Once the definitions are filled in, they are no longer needed outside the 
specification and can be hidden (by existential quantification), It is not difficulL to show 
that the definition of Pre/erred is consistent with the constraint in RountLSignalure, but 
this will be left until section 2.3 where a result is proved which makes it even simpler. 
It is algo simple to verify that 0 is an element of ApprozValues and that Min Value a.nd 
Max. Value sa.tisfy the constraint of Round 
signature , 

FP-Roundl 

Round 1\ FP' 

ApprozValues {Finite I Format =' Format' • value}
 
Pre/erred {Fanlte IFormat = Format/A/me MOD 2 = 0 • value}
 
Min Value E {In/ I Format = Forma.t' Asign = 1 • value}
 
Max Value E {In/ IFormat = Format' Asign = 0 • value}
 

FP-Round2 == FP -Roundl \ {ApprtJ2: Values, Pre/erred, Min Value, MaxValue} 

'Decora.ting the name Olf a schl"ma .".ith, I".g., l, I ha.s chI" effect <;If decorating the nawe9 of the variables 
in the signature of that ~chema chroughouc. 
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The resulting error-conditions have no~ ye~ been specified. The condi~ions resul~ing 

in overflow and underftow exceptions are specifically rela~ed to a floating-point fonnat 
and can be described as follows: 

Errors .. ­ inezaet I overflow I underflow 
Error _Signature ~ r : R; errors' : P Errors; FP' 

Error_Spec 

Error _Signature 

inezact E errors' {:? r l' value' 
overflow E errors' -e:> I./, V 31./ • abs r ~ abs value 
(underflow E errors' -e:> 01' abs r < 2E&1·'-lW' 

V 

underflow E errors' {:? Denorm') 

(The two alternative conditions under which underflow is included in the set errors' 
mean th~t there is a choice about which condition ~o implement.) 

Finally, the whole specifica&ion is: 

FP ...Round :=: FP...Round2 1\ Error _Spec 

1.2	 Addition, Subtraction, Multiplication and Divi­
sion 

In order to discuss these operators, they must be introduced into the mathema&ics: 

Op, ::= add I 'ub Imull diu 

The eS!lential ingredien&s of an ari&bmetic operation are two numbers, FP" and FP" 
and an operation op: Ops; the number FP' is the result - its fonnat mus& be at least as 
wide as each of the operands: 

A riLSignature 
I 

FPzi FP,i op : Ops 
FP' 

wordlength' 2'. wordlenglhs 
wordlength' 2'. wordlength, 

When both FP. and FP, are finite numbers, the specification is straightforward. A 
real number is specified which can be rounded to give the corred result - the result of 

8 



division by zero is described separately:
 

Value_Spec ,
 

A riLSignature /\ Finite. /\ Finite, 
r: R 

op = add /\ r = value. + value, 
v 

op = sub /\ r = value. - value, 
v 

op = mul /\ r = value. x value, 
v 

op = div /\ value, # 0 /\ r = value" + value, 

If the result after rounding will be zero, some additional information is neces!lary to 
specify the !lign completely (p.14 §6.3). If zero result!l from rounding a !lroall number, 
the !lign is that of the small number. If zero is the accurate result then it i!l the exclusive 
or of the !ligns of the arguments when the operation is multiplication or division and is 
best described by the maths otherwise: 

Sign..Bit _ 

Ant_Signature
 
mode: Modes; r : R
 

(-1).' x abs r = r
 
(op = mw v op = die) => (-1)"" = (-1) ....+...,
 
(op = add v op = sub) /\ r = 0 =*
 

(Zero,,/\ Zero, /\ (sig~ = sign., <=> op = add) /\ sign' = sig~ 

v 
,(Zero. /\ Zero,) /\ (sig~ = sign., <=> op = add) /\ (sign' = 1 ¢} mode = ToNegInn) 

Rounding has already been described so operations on finite numbers may be defined 
by using FP Jlound to specify the relation of r to FP': 

FinitLArit == (ValucSpec /\ FP ..Round /\ Sign_Bit)\{r} 

Division of a finite, non·zero number by zero gives infinity; but, division of zero by 
zero is not a number: 

Div_By_Zero
 

Ant _Signature
 

Finite. /\ Zero,
 
op = div
 
(Zero_ "NaN') v (~Zero_ "In/, ,,( -1)"" = (-1)...·- .... )
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If one of the operands is not a Dumber, then the result is not a number (the standard 
dema.nds that the result be equal to the offending operand but tha1i is not alwaye possible, 
p.13, §6.2): 

NaN-Aril --, 

An't _Signature 

NaN. V NaN,
 
NaN'
 

Now, arithmetic with infinity i9 considered. This is defined to be the limit of finite 
arithmElic. However, certain cases do not have a limit, and these result in a NaN: 

In!_A riLSignature
 

A riLSignature
 

~(NaN. V NaN,) 
In!. v In!, 

In/_Add I 

In! -Arit_Signature 

op == add
 
(in!sign.! == {sign'} 1\ In/') V(in!signs = {O, I} 1\ NaN')
 
where in!signs == {In! I In! = FP. V In! = FP, • .sign}
 

In/_Su! 

In! -An't_Signa~ure 

---, 

op = sub 
(in/sig", = {sign') /\ In!') V (in/'ig", ~ {a, I} /\ NaN') 
where in!signs == {In! ,I In! = FP. V In! ~ FP,[-value,/value,] • sign} 

In/.Mod _ 

In! -Arit_Signa~ure 

op == mul
 
(Zero. V Zero,) 1\ NaN'
 
V 

~(Zero. V Zero,) /\ Inr/\ (-1).... = (_1)","0+",".) __________J 
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Inl·Div -, 

In! ....AnLSignature 

op = div 
(In!. 1\ In!, /\ NaN'
 
v
 
Finite, 1\ In/, /\ (-1)"'" = (-1 )....~ -..,.~
 

v
 
Finite, A Zero' 1\(-1)""" == (_l)"",a-..,..~)
 

These partial 8pecifications can be disjoined to give the complete specification of 
arithmetic with infinity: 

Inf ...Ari' '" Inf -Add v Inf .S.b v Inf -MuJ v Inf J)iv 

None of, the exceptional cases return the rounding errorsi No---Round_Errors ~escribe8 

tbjs, and FP ...Ant describes the complete relation on Ant_Signature: 

No...Round_Errors == round_errod : PRound_Errors I round_errors' = { } 

FP ...Ant == Finite_Ant 
v 

No--.Round_Errors /\ (Div-By-Zero v NaN...A.n·t v In! ...Arit) 

Five different errors caD occur during the operations. These cover all the different 
casel' when the finite operations do Dot extend to infinite numbers; division by zeroj and 
when one operand is not a number: 

AnLErrors ::= NaN _Op I muLZero_In! I div...zero I divJn! In! IMag_3ub 

Error_Spu 

An·t_Signature 
an·Lerrors' : P An'LErTors 

NaN_Op E ariLerrors' {:? NaN. v NaN, 
muLZero_In! E arit-errors' {:? op = mill /\ ((Zero. /\ In!,) v (In!. /\ Zero,)) 
iV_zero E ariLerrors' {:? (op == div /\ ,NaN. /\ Zero,) 

divJn! In! E ariLerrors' {:? (ap == div /\ In!. /\ In!,) 
Mag.,.b E ar'L,,,or,' <> (lnf. A Inf. A (("gn. = ,i9':: A op ~ "b) 

[ ("gn" # ,ign, A op = add)) 

Fina.lly, the whole specification is: 

Ant -= FP...Ant /\ Error~Spee 
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1.3 Remainder 

To calculate remainder, all that is necessary ie: a divisor and a dividend, FP. and FP,. 
The result will be given by FP'. The signature is; 

Rem_Signature ---, 

FP.;FP, I 
FP'

I I 

In the general case, in wbkb both numbers are finite and the divisor is not zero, the 
result is defined as follows: 

FilLRem ----, 

Rem-..Signatuft. 

Finite. 1\ Finite, 
...,Zero,
 
2 x aha value' :$ aha value,
 
3n: Z •
 
value. = n x value, + value'
 
2 x abs value' = aba value, ~ n MOD 2 = 0
 

Remainder of a finite number by zero is a non-number: 

&m~ZerQ " 

Rem-..Signaturt 

Finite. /\ Zero, 
NaN' 

As ever, when one of the operands is a non-number, the result is a non-number:
 

NaNJI,m --,
 

Rem_Signature 

NaN. V NaN, 
NaN' 

The remainder of infinity by any number is not a number. The remainder of a finite 
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number by infinity is the original number: 

m~&m i 

Rem..5ignature
 

In/.. /\ ,NaN, /\ NaN'
 
V 

Finite.. /\ In/, /\ FJH = FP.. 

Wben the reeult is zero, the sign is the eign of the dividend: 

Sign_Bit 

&m..5ignature 

Zero' ::::> sign' == sign. 

There are three erroJ"B possible with remainder - when one of the operande is not a 
number, or the divisor is zero or the dividend is infinity. The eecond two give rise to the 
same exception: 

&m.-Errors ::= NaN _Op I rem...zero_In/ 

Error_Spec 

Rem _Signature
 
errors' : P &m_errors
 

NaN _Op E errors <:> NaN. V NaN,
 
rem-Zero_In/ E errors <:> (In/./\ -.NaN,) v (,NaN./\ Zero,)
 

Putting all the pieces together gives the full specification:
 

Rem == (Fin_Rem v Rem1erv v NaN ...Rem v In/ Jlem) /\ Sign_Bit /\ Error_Spec
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1.4 Square Root 

As with addition etc., an exact result i!'l specified then rounded using FP -Round. The 
exact square root is defined as follows: 

ExacLSqrt , 

FP 
r: R 

Finite
 
value ~ 0
 
rxr=vaJut.
 

r ~O ~ 
I 

This is rounded and r is hidden. The destination must have a fannat at least as wide 
as the argument: 

POB...5qrt == (ExacLSqrt /I. FP-Round) I wordlength :S. wordlength.' \{ r} 

The sign of zero is uDchanged: 

S.gn_Bil _ , 
FP 
FP' 

Zero' :::::> sign' = sign 

The square root of positive infinity is infinity:
 

In/-Sqrt ,
 

Inf
 
FP'
 

sign = 0 
FP' = Inf 

In all olher cases, tbe result is a NaN:
 

Exc_Sqrt ----,
 

FP 
FP' 

NaN V value < 0 
NaN' 
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There are two errore - NaN.Op and when the operand is less tha.n zero; 

SqrLErrors == NaN _Op I OpLTO 

Error_Spec ----, 

FP 
FP'; errors' : PSqrLErrors 

NaN _Op E errors' ¢} NaN 
OpLTO E errors' ¢} -,NaN /\ value < 0 

Putting the pieces together:
 

Sqrt == (Po,,-Sqrl v In! -Sqrt V EZLSqrt) /\ Sign_Bit /\ Error_Spec
 

1.5 Floating Point Format Conversions 

When converting to a different format, In! and NaN must be preserved, and Finite 
numbers may have to be rounded: 

NaN_Convert , 

FP
 
FP'
 

NaN /\ NaN' 

Inf_Converl , 

FP
 
FP'
 

In! /\ In!, 
sign' = sign 

Fin_Convert , 

FP 
FP' 

FinIte 
FP JlDund[vaJu'/'1 
sign = sign' 
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Colttlert == {(NaN __Contlert Y Inf ~Contlert) 1\ No...Round_Errors) Y Fin_Contlert 

1.6 Rounding and Converting to Integers 

This section covers both converting to an integer format and rounding to an integer 
in floating-point format. The bagic adaptation of the rounding predicate is the same 
for both operations. The approximating values are all the numbers from Min Value to 
Max Valli( and the preferred values are the even integers. When converting to an integer 
format, the minimum and maximum values can be defined to be the minimum and 
maximum integers of the fonnat. When rounding to an integer value in floating-point 
format, these values will be the greatest and smallest integers available in the destination 
format. 

Integer_Roundl 

Round 

Approx Values 
Preferred 

Min Value ..Max Value 
ApP"'xValu" n {n: 7I.ln MOD £ = OJ 

Integer _Round == Integer_Roundl \ {Approx Values, Preferred} 

1.6.1 Conversions to Integer Formats 

All that we need to know of an integer format are the minimum and maximum integers. 
These can be used to adapt Integer _Round to describe rounding into an integer format: 

[Maxlnt, Minlnt : Z : 

InLCon~...Round == 
Integer _Round IMin Value = Minlnt A MaxValue = Maxlnt\{ Min Value, Max Value} 

When lhe operand is not a Finite number or is out of range of the integer fonnat, 
the result is not specified: 

Exc_Conv , 

FP 
Integer'
 

NaN Y Inf Y value < Minlnt Y Maxlnt > value
 

The spEcification is: 

Contlert~Integer == Exc_Conv Y InLConv...Round[ tlalue/rJ 
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1.6.2 Rounding to Integer 

There is <l. small probleo"l ;0 using Integer_&und to specify rounding to an iDteger value in 
a given floating-point format a.s there may be some integer values between the maximum 
and minimum va.lues which canDot be oMained. The following definition assumes (as is 
the case with tbe formats specified in the standard) that jf there exist two integers m a.nd 
n such tbat there is 010 intermediate integer which canDot be obtained in the destination 
format, tben no other value between m and n can obtained in that format. Although it 
is not difficult to give a definitioD in the general case l it is felt that the assumption is 
Dot unreasonable. Hence, MinVaiue and Ma.%Vaiue can be defined to be the minimum 
and maximum integer available in tbat format: 

RruLInLRoundl -, 
I 

Integer _Round 

Maz. Value sup {FP' I Format == Format' _ value} n 7L. 
Min Value inf {FP' IFormat = Format' _ value} n 7L. 

Rnd 3nt _Round == Rnd _lnt_Roundl \ {Min Value, Maz. Value} 

The destination format is restricted to be the same as that of the argument: 

InLSignature
 

FP
 
FP'
 

Format = Format' 

Fin_Int ~ Finite 1\ InLSignature /\ Rnd_lnLRound[valuejrj 

In this case, In! and NaN are preserved: 

Inf_NaNJnt ~ 

Int_Signature 

In! V NaN 
FP~ FP' 

The whole specification: 

1nl == FinJnt v In! ..NaN Jnt 
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1.7 Comparisons 

There a.re four mutually exclusive compa.risoDs. Unordered when one is a. non·nurober; 
equal; less tha.n; or greater than: 

Unordered 

FP. 
FP, 

NaNz v NaN, 

Equal 
I 

FP. 
FP, 

~(NaN. v NaN,) 
value. = value, 

Less Than 

FP. 
I FP. 

~(NaN. V NaN,) 
tlaJue.. < value, 

GreaterTkan " 

FP. 
FP, 

~(NaN. V NaN,) 
tlalue. > lJaJue, 

The resu.lt of a comparison ca.n be a condition code identifying one of the four disjoint 
relations: 

C.nditi.... ,,~ UO I EQ I LE I GE 
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Compare_ Coftdition 
i 

FP.. ; FP,
 
condition' : Coftditiora.3
 

condition' == va A Unordered 
V 

condition' = EQ A Equol 
V 

co ndition' = LE A Le33Than 
V 

condition' = GE A GreaterThan 

Alternatively, it may return a true-false result depending on one of the useful com­
parisons liated below: 

Bool :0= true I false 

Compare_Bool , 

FP.j FP,; op : PConditiora.3
 
result' : Bool
 

op cF {}
 
op i: Condition.!
 
result' = true <:} 3condition' : op • Compare_Condition I
 

An exception can be raised when one of the operands is not a number. If this exception 
is to be raised, the flag exception must be set: 

Compare_BooLError , 
i 

Compare_Bool 
e:tception : Bool 

NaN _Op E errors' # Unordered A exception = true 
(op = {EQ} vop = Conditio", - (EQ}) => ezception = false 
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Chapter 2 

Implementation 

2.1 Foreword to the Proof 

Much of the proof relies on OCCAM specifications given in the appendix. Informal spec. 
ificationJl can be found in [inmasl. The proof of the a.rithmetic procedures is largely 
routine manipulation of equations. Tbese parts will be treated somewhat briefly with 
statements of the theoreID3 necesBary. Hints to the proof of theorems will be indicated, 
e.g., Rof/;tine manipulation. (This hint is omitted.) For tbe nOD~exceptiona.1 cases, the 
algoritbru uses the following scheme: 

1. Unpack both operands into their sign, exponent and fraction fields. 

2. Denonnalise both by shifting in the leading bit of the fraction when necessary. 

3. Perform the relevant operation. 

4. Pack the result. 

5. Round the packed result. 

Error conditions are set during packing and rounding. The more difficult parts of the 
proof are caused by changes in the representation of numbeI"8 (e.g. packing, denormal­
ising, etc.). The first section of the proof is concerned with specifying the relationship 
between FP or R and these representations. The second section contains procedures for 
changing representations along with their proofs. Later sections contain procedures for 
the arithmetic operations. The proofs of these are much simpler than for the others and 
only an informal outline of why they are correct is given. 

The following is a brief de!>cription of how specifications and programs are related 
and how it is possible to assert formaUy that a program meets its specification. The 

predicates in braces, e.g. {4'}~,p}, mean that if P is executed in a state satisfying 

4', then it is guaranteed to terminate in a state satisfying,p. Some of the conjuDcts 
of the asSErtions are omitted for the sake of darity. The first assertion is called the 
precondition of the program - if this doell not hold on entry to the program, neither is 
it guaranteed to terminate nor, if it does, to terminate in any sensible state. The rules 
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relating the progTam \0 the assertions are described in jGries], [Dijkstra] and [Roue]. A 
brief descript.ion follows: 

Rule 1 The program SKIP does nothing but tenninate: 

f- {¢}ISKIP~¢} 

Rule 2 If the u:pruslon e can ~ evaluated correctly (i.e. there is no division by zero 
de.), then if the state IS rtquirtd to satisfy if> after tennination, it must satisfy ~ with e 
substituted for z ~fore: 

f- {Oe,,¢[e/xnG{¢} 

Rule 3, If P starts in stale if> and terminates in state "/J and Q starts in state"" and 
~enninatell in state x, then P followed by Q starts in ,date if> and terminate8 in date x: 

~ {¢}B,p} " {,p}0tx} f- {¢}Lj{X} 

Rule", The rwe for conditionals is that, if P starts in a 6tate satisfying ¢ and it.! guam 
and tenninates in .,tate 'I/J and similarly for Q, then the conditional composition can 
start in a state which. satisfies one or other of the guard.'J and ¢ and terminate in aBlate 
satisfying "/J: 

F 
Ip 

{Ip " oj> }~{,p} " {IQ" ¢ }@]{,p} f- {( Ip V IQl " ¢) p {,p} 
I Q[f:

Q 

Rule 6 The prtcondition of a program may ~ strengthened: 

(x => ¢)" {¢}B,p} f- {x}B,p} 

Rule 6 The postcondition of a program may ~ weakened: 

(X <=,p)" {¢}~{,p} f- {¢}Bx} 

The following two functions are useful, they return the integ,er part a.nd the fractiona.l 
part of a real number: 

Int :IR_N 
noninl : IR _ R 

l' = int l' + nonint l' 

abs (nonint 1') < 1 
abs(int r) ~a.bsr 
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2.2 Representations of FP 

The aim of this section is to specify the relation between FP a.nd its representations 
in the program. We will only be concerned with tbe implementation of single-length 
numbers on a machine whose wordlengtb is 32 : 

FPS32 =. FP I Single 1\ wordlength = wI 

Externally to the program, each number is represented as a single Word corresponding 
to the va-Ine of its field nat. Thus, the relationship of FP to its external representation 
is given by: 

External -= FPS32; word: Word I nat = Ulord.nat 

Internally to the program, FP is represented by three words giving its sign, exponent 
and fraction. The ex<\.Ct relation between these words and FP is discussed further below: 

lnternai == FPS32j UlsigR, Wt.XP, wfrac : Word 

To distinguish the five different classes of Dumber, t.hey are first unpacked into the 
sign, exponent and fraction fields. The words wsign, wexp, and wfrae correspond 10 the 
fields sign, exp, and frae: 

Unpacked 

Internal 

wsign.nat = sign x 2-1- 1 

wexp.int = exp 
wfrac.nat = frac x 2~q>""+1 

To perform the arithmetic operations, Finite numbers are given II representation 
which bears a uniform relation to their value - the first equation in the following implicitly 
defines wfrac.nat: 

Unnormalised ---, 

Internal 

Finite 
value = (-I)';" X 2_~q·.,-B....- ..I+l x wfrac.nat 
wsign.nat = sign x 2-.1-1 

wexp.int = exp 
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2.3 Representing Real Numbers 

The aim of this section is to specify the relation between iR and its representations in 
the program. 

First, notice the simple result that the order on the absolute value of a numbfr is tbe 
same as the usual order on the less significant bits of its representation as a word: 

FP;FP', Format = Format' 1\ -,(NaN V NaN') 

f- abs value ~ aba value' <::} nat MOD 2·""dSt.,cl-1 ~ nat' MOD 2..-:u.,ci-l 

This can be used to see that the number of least modulus with modulU'S grea;er than 
a given finite number is obtained by incrementing its representation as a word: 

Succ 

FP; FP. 

Finite 
abs value < abs l.'alueo 
"tFP' Iaha value < aha value' • abs valueo :0:; abs value I 

FPj FPo I Finite /\ nato = nat + 1 f--- Sua 

From tbis result, tbe consistency of Preferred in section 1.1 can be deduced. 
In turn, this means that if the approximation of leas modulus i8 known, only enough 

extra information to determine the four predicates in RoundToNearut is needed 10 return 
the correct value. This is, of course, the familiar guard. and ~ticky bits defined below: 

Bounds 

r :R l 
SUCCi guard, ~ticky :0.. 1 

r >0 :::). ~ign=Ot\Below[value/value'J 

r =0 :::). Zero 
r < 0 :::). sign = 1 t\ Above[value/value'J 

guard = 0 {:} l' - value < valueo - l'
 

sticky = 0 {:} r - value = valueo - l' V l' = value
 

Bounds I- 3Abovel; Belowz I1'1 = l' = rz • 
valuel - r < l' - valuez {:} guard = Ot\~ticky = 1 
value1 - l' > l' - valuez 0(:} guard = 1t\sticky = 1 
valuel - l' = l' - valuez {:} ~ticky = 0 
valuel = valuez 0(:} guard = Ot\sticky = 0 
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This is, bowever, not quite enougb information to return the correct overflow condi­
tion. If r 2: 2EM..'-B"" , tbis information is lost. Conversely, it is not possible to determine 
tbe o~erflow conditioD before rounding aa the condition in!, cannot be tested until the 
final result is calculated. Tbus, it is necessary to divide Error...5pec into two parts. The 
ine.:tact and underflow conditions can be determined before or after rounding. Tbe de­
sign decision is made tbat 80 many error conditions aa possible will be determined after 
rounding in order tbat the precondition of tbe module is simpler. Tbus, tbe following 
decomposition is valid (tbe validity is demonstrated by the theorem): 

Error_Before 

Error_Signature
 

overflow E errors' ¢} abs r ~ 2EM'q'-B....'
 

I Error_After --------------0, 
Error _Signature; errors: P EFTors 

overflow E errors {:> abs r ~ 2EM'..'-&'" 

inexad E errors' ~ r i- valuel
 

overflow E errors' {:> overflow E errors V In/'
 
underflow E errors' {:> Denorm'
 

I- Error _Spec ~ (Error _Beforej Error_After)1 

If we bave the approximation of less modulus, tbe guard and sticky bits and an 
overflow indication, tbere is enougb information to determine tbe correct result and the 
correct error conditions. Tbus, a real number may be represented prior to rounding as 
follows: 

Packed == ((3Sua • Bouncla) 1\ External 1\ Errot_A/ter)\{errors'} 

Tbis representation is too complicated for tbe immediate result of a calculation ­
we require a form which haa a sign, exponent and fraction but whicb contains enougb 
information to produce a Packed number. If tbe exponent is considered to be unbounded 
above (this assumption causes no problems since tbe largest exponent wbich can be 
produced from finite aritbmetic is less than 2"'), and demand that the fraction be at 
least 2~-1 wben the exponent is not EMin, a condition for an extra digit of accuracy is 
easy to formulate. Tbe condition given bere is stronger tban necessary but simpler than 

III a. sch~ma is thought of a.~ a. funttion Crom its unprimed to its primed c.ompunents. the sequential 
c.ompositioo (;) is lWalogous to the right composition of ~h~ two functions. ThE' 5)'mbol \;; " used to 
indica.tE' that a desigll decision h~ bpen made. 
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the weake9t condition: 

Normal 

J r: R 
Internal 

wexp .int ~ EMin 
2wl 1wap .int > EMin::) wlmc.nat ~ ­

abs (approx - exact) < 0 
nonint approx = 0 {:} nonint exact == 0 
where appro~ = (-1)·...,.·- x 21 -.qwWItl x wlmc.nat 

exact = 2Biu- ••,., .•H2+""- x r 

2.4 Unpacking and Denormalising 

The objed of this section is to specify and prove the procedures which will he used 
to perform changes of repregentation of FP. First, the numbers are unpacked from 
their External representation into the Unpacked representation. Second, numbers a.re 
converted into their UnnormaliJed representation. 

Some useful constant words: 

Zero, One, NSB, INF: Word 

Zero. nat o 
One.nat I 
NSB.bitsd {wi-I} 
INF.nat 2"..... x EMa:r. 

2.4.1 Unpacking 

The specification of the procedure: 

Unpack == {word} <l Extunal; Unpacked' I FP = FP' t> {wsign, wexp, wJroc)Z 

The most significant bit of the word is stored in wsign, then the sign bit is shifted 
out and the exponent and fradion fields are shifted into the appropriate Words: 

~"" " 
filling the other fields consistently, and put its uutput into the "ariabl('s on th(' right of po Formall)', <1 
hides all unprimed variables except those in the s('t to its Il'f~; po hides the primed form 01 all variahles 
except those to its right. 

. .IDe symoolS <J P indica.~e that the procedure is to take its input from the vallables to the left of <1, 
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PRoe Unpack (VALUE word. VAR wBlgn. we:·p. wfrac) 
{Ext'mal} 
SEQ
 

wl1gn : = word A MSB
 

{Unpa,k,d\ ( W'"", wl,a,) )
 
SHIFnEFT (wexp, wfrac, Zero. word « One. e:r.pw1dth)
 

( Unl"',k,d) 
Tht following three theorems about integers are useful in the details of the proof. 

a, b, c : IN I c 'f; 0 I- a == b ¢> a DIV c == b DIY c 1'1 a MOD c = b MOD c 
f- a X (b MOD 'J = (a X b) MOD (a X c) 
f- (a X b) DlV (a X ,) = b DIY , 

2.4.2 Denormalising 

The specification: 

Denormalise == {Wf:XP, w/mc} <l Unpacked; Un.normalised' \ FP = FP' f> {wezp, wfmc} 

If the number is in Norm then the implicit leading bit is shifted in, otherwise it is 
left unchanged: 

PRoe Dell.Onnal1Be (VAR lfexp. due) 
( Unpa,k,d) 
IF
 

wexp = EMin
 
(D,no",,) 
SKIP
 

wexp <> ENi.ll.
 
(Ha'm) 
wine := MSB V (wfrac » Dne) 

{ Unnormalised} 

2.6 Rounding and Packing 

This section aiffi9 to specify and prove procedures (or convening between representations 
of R. 

2.5.1 Rounding 

Specification: 

Round :2: {wont, guard, sticky, mode, errors} <l Packedl'lFP _Rourul 1'1 Error_After f> {word, error. 

There are two things to notice about the specification: 
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•	 the specification of "errors is conjoined in such a way that the unprimed variable, 
tfT()rs. upon which it depends is not restrided by the the other conjundsi thus 
the specification decomposes into a sequential composition of a specification on FP 
and a specification on tfT()r,,; 

•	 Round, and hence FP Jlound, is a disjunction of specifications and thus may be 
implemented by a conditional. 

The first observation can be formalised as: 

I- Round_Proc '* (3r: R; FPo • FP Jlound2" Bound3); Error _Afttr 

And the second observation can be formalieed as: 

I-- 3r : IRj F Po • F P ...Round'l " Bounds..
 
3r : Rj FPo • FP Jlound2j modt = ToNtartsf "Bound3
 

V
 

3r : IR; FPo • FP ...Round'll modt = ToPo"In/" Bound3
 
V
 

3r: lRj FPo • FP ...Round21 modt = ToNtgln/" Bound3
 
V
 

3r : Rj FPo • FP Jlound2 Imode = ToZero" Bound3
 

The first observation has the obvious implication that the module can be implemented 
as the sequence of two smaller programs, the first of which sets the correct approximation 
and the second of which returne the correct error conditions. 

The second observation leads to a decomposition because each of the disjuncts is 
disjoint (i.e. the conjundion of any two is not satiefiable). Thus. a conditioml can be 
fonned in which the guards discriminate according to the rounding mode. 

The most obscure line is the following: nat ;'" nat + (guard A (sticky V nat». 
This ie derived from: nat :,. nat + «guard A sticky) V (guard A (nat A One»). 
Ueing guard'" guard A One and the commutativity and associativity of A, the last pad 
of the expression reduces to guard A nat. Now, A distributes through V to give the 
optimised expression. 

The original expression can be seen to be corred by studying the inequalities used 
to define RoundToNeartst. 
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PROC Round (VALUE mode. guard. sticky. VAR nat, errors) 
Bwl }{DlJerjlfJW E error8 ¢> r ;::: 2eNQ ­

(e 2 0", Below[FPIFP'i) 
{e '" 0", Aboue[FPIFP'i} 
SEQ 

IF 
mode = ToZero 

SKIP 
IFP ~ound2[FP I FP'i} 

mode = ToNegInf
 
IF
 

sign = Zero
 
SKIP
 

sign i- Zero
 
nat :'" nat + One
 
(FP ~ouM2[FPI FP'i) 

mode = ToPosInf
 
IF
 

sign = Zero
 
nat ;= nat + One
 

sign f; Zero
 
SKIP
 
{FP ~ound2[FP I FP']} 

mode = ToNearest
 
lIat ;;z nat + (guard" (sticky V nat»
 
{FP~ound2[FP I FP'i}
 

{olJerflow E error8 ¢> r ~ 26M.... - B""}
 
errors ;= errors n {overflow}
 
{underflow, inexact ¢ error.!}
 
{olJerftow E error8 ¢> r ~ 2F.M... -B.... }
 
IF
 

Inf
 
errors := errors U {overflow}
 

.., In!
 
SK1P
 

{olJerflow E error.! ~ In! V r ;::: 2EMQ - B;"'}
 
{underjirJw ¢ error.!}
 
IF
 

Denorm
 
err()rs errors U {underflow}
 

-, Denorm
 
SKIP
 

{underflow E error.! ¢> Denorm}
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{inexact ~ error3}
 
IF
 

(sticky V guard) #- Zero
 
errors := errors U (inexact}
 

(sticky V guard) = Zero
 
SKIP
 

{inexact E ef"J'tlf'3 ¢? r #- value}
 
(FPJIoundIFP/ FP'Il
 

2.5.2 Packing 

Specification: 

Pa.ck == (w3ign,we%p,wfrac} 
<J(Nonnal; Packed') "Error_Before) r = r' l> 

(word, gua.rd, sticky, errors} 

The fraction is a.di listed to remove the leading bit if the exponent is large enough. 
The exponent is checked for overflow. If overflow has occurred then the appropriate error 
condition is set and the exponent and fraction are set to give the largest finite modulus 
and to ensure that the guard and sticky bits will be correct; if over8.ow has not occurted, 
no change is made. Then, the fraction and exponent are packed and the guard and sticky 
bits set appropriately. The proof of this procedure is very much like that of Unptlck and 
DenonnaJise: 
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PRoe Pack (VALUE ws1gn. wexp, wirac. VAR worQ, guard. sticky. errors) 
{Nonnal) 
SE~ 

IF
 
wexp "" ENin
 

SKIP
 
wu:p <> EM in
 

wfrac :: wfrac « One
 
IF
 

Wtlp >.. EMu:
 
SE~ 

errors := {overflow} 
wexp :"" EMax-One 
wirac :: NOT Zero 

weIp < EMax
 
errors :"" {}
 

2EAf
{otlefj!'ow E errors ¢) r ~ ... -S-} 
{Belllw[abs r/rJ A FP => exp' = wexp.int Afrae' = wfrae.nat DIY 2·.,..-ril+l} 
SHIF!LEFT (word,sticky.wexp.wfrac,fracwldtb~One) 

{BeloU/[abs r/r] A FP'j(lI'ord » One).bitset/bitset']} 
guard := worQ A One 
IF 

sticky '" Zero 
SKlP 

sticky <> Zero 
sticky : '" One 

word :'" w8ign V (word» One) 
{Packed} 

2.6 Finite Arithmetic Procedures 

These procedures will take two Unnormalised numbers and calculate the result inlo an 
External. Their specification: 

FinifeArit == {wsign,., wezp,., wfrac,., op, wsign" wezp" w f rac,} 
<J ( Unnormalised.; Unnormalised.,j Normal') A Value_Spec t> 

{ wsign, wexp, wfrae} 

The procedures for each operation will be considered separately in the following sections. 
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2.6.1 Addition and Subtraction 

Since a.dding a. Dumber is the sa.me as subtracting the Dumber with its sign changed, the 
two procedures a.re cotnhined into ODe; 

l- Add = Sub[sign,jl - sign,J 

AddSub =:::. FiniteArit I op == add v op = sub 

First! consider the sum of two numbers: 

d, , , Z; /, g : N I d ;" • ~ 2' x/ + 2' x g ~ 2' x (f + 2'-' x g) 
~ 2' x (f + ;nt(2'-' x g) + non;nt(2'-' x g)) 

a.nd the difference: 

carry: 0.. 1 ~- 2.1xf-2~xg = 2.1 x (/ - 2~-<I X 9) 

201= x (J - int(2~-4 X g) - carry + (carry - nonint(2,-<I x g))) 

If carry is 0 or 1 as nonint(2,-<I x 9) is zero or non-zero then simple manipulations 
show that we ha.ve enough informa.tion to cakula.te the sum or difference accurately 
Thus, the first step in botn opera.tions is to align the fra.ctioDs: the least significant bit 
of carry is set if a.nd only if a.ny set bits a.re shifted outj the exponent of the result is set 
to the greater of the two arguments. Its specification: 

Aligned _ 

Internal.; Internal, ~ 
carry: 0.. 1 
wexp: Word 

Unnonnalised. V Unnonnalised., 
wexp.int = mlU{ezp., exp,} 
wsign.. na~ = 2_1- 1 X sign. 
wsign,.nat = 2cl- 1 X sign, 
wfrac•. nat = frae. DIY 2..·.,·--Uf/s 
wfrae,.nat = /rac, DIV 2··"·--·"'Y 

/'oc. MOD 2·..•·..- ...• ~ 0 ) 
t:.arry. nat = 0 {:} 1\

( frae, MOD 2"·S,·--·s,y = 0 

Align == {wezps, wfrae,., wexp" wfrae,} 
<J Unnormalised.; Unnonnalised.,; Aligned' I 

tlaJue. = tlalue,.' 1\ lJalue, = lJalue, I t> 
{w/raG,. l wfrae" wap, earry} 

The following is a proof of the procedure which ignores the values of variables asso­
ciated with y. The proof can be extended simply to include these: 
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paoe Align (VALUE wup_x. wup_y. VAR w1nex. due-y. wexp. carry) 
{ Un1lOrmaJised. 1\ ~ = Internal.} 
SEQ 

IF
 
'fUp_X )= wexp_y
 

SEQ
 
we:lp := wexp_x
 
{wexp.int = ma.%{exPs,exp,}}
 
IF
 

(we:lp_x-we:lp_y) (= wI 
SHIFTRIGHT (wfne-y. carry, wfnc_y. Zero, wexp_x-we:lp_y) 

(we:lp_x-we:lP_y) ) wl 
SEQ
 

carry :.. wtrac_y
 
w1rac_y '" Zero
 

{'" = Int<rnaf.} 
lle:lp_y )= wexp~ 

SEQ
 
wexp := wexp_y
 
{wexp.inl = max{exps.exp,}}
 
IF
 

(wexp_y-wexp_x) (= wI 
SHIFTRIGHT (wfnc~. carry. wfrac~. Zero. wexp_y-we:lp~) 

(wup_y-wup_x) ) wl 

SEQ
 
carry:"" w1rac..%
 
w1rac~ :"" Zero
 

{carry = 0 {:} frac" MOD 2·c",."'-ni'~ = O}
 
{wfrac•. nat = fmcs DIV 2··...·MI- ....c }
 

IF
 
carry" 0
 

SKIP
 
clrry () 0
 

carry := 1 :
 
{carry = 0 {:} frac" MOO 2··"'·--·"'· = 0 1\ carry E O.. I}
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2.6.2 Addition 

This procedure will deal wi~h addition of numbers with like signs or subtr<ldion of 
numbers with opposite signs: 

Add == {wsign., wfrae., op, wsign" wI rae" we%"p} 
<] Aligned; Normal' 1\ Value 5pec I
 

(op = add 1\ sign. = sig~ V op = sub 1\ sign. f:. sig~) t>
 
{wsign, wexp, wfrac}
 

f- Align; Add = {wsign" WU:P., wfrac., op, wsign" wt'%"p" wI rac" } 
<] ( Unnormalised,.; Unnormalised,; Normal') 1\ Value_Spec i 

(op = add 1\ sign.. = sig~ V op = sub 1\ sign. f:. sig~) t> 
{wsign, wexp, wfrac} 

Once the fractions have been aligned, they are added together. If the sum overflows, the 
result is shifted down by one - its least significant bit is preserved in carry and replaced 
after shifting. The sign of the result will be the same as both arguments. 

PROC Add '" 
{AI;gned}
 
{(op = sub 1\ sign. f; 6ig",,) V (op = add 1\ sign. = sig",,)}
 
{we:rp.int ~ EMin}
 
VAR carryl:
 
SEQ
 

LONGSUM (carryl. wfrac, wfrac...J:, wfrac_y. Zero)
 
{2~ x carrlll.nat + wfroc.nat = wfroca.nat + wfmc,.nat}
 
carry: .. carry V (wfrac A One)
 
{carry E 0..1}
 
we1gn ;= wslgnJ
 
wexp := wexp+earryl
 
SHIFTRIGHT (carryl.wfrac,carryl,wfrac,carryl)
 
{nonant (2'" x r) = 0 ¢} carry = 0 1\ wfrac« (Jracwidth + 2) = o}
 
due := drac V carry:
 

{Normal I a.ba r = abe valuea + a.bs value,} 

2.6.3 Subtraction 

This procedure deals with subtraction of numbers with like signs or addition of numbers 
with different signs. Its specification: 

Sub == {wsigna,wfraca, op, w,sagn" wfrae" wezp} 
<] Alignedj Normal' 1\ Value _Spec I
 

(op = add 1\ signa f:. sig"" V op = sub 1\ sign. = sig",,) t>
 
{wsign, we:rp, wfrac}
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f- Align; Sub = {wsignu werp., wfrae., op, wsign" flJexp" wfrae,,} 
<:I ( Unnorma/ised.,; Unnorma/ised,;NonnoJ') 1\ Va/ue...5pee f 

(op = add 1\ signs i- sign., V op = sub 1\ signa = sign.,) t> 
{flJsign, wezp, wfrae} 

An exception is made if the result will be zero 50 that the sign can be given correctly. 
Otherwise, the smaller argument is subtracted from the larger. The {allowing procedure 
is useful to ensure that the exponent is in the correct range. 

PRoe Normal (VAR sticky) 
IF 

wfrac '" Zero 
{Zero} 
wexp := ENin
 

(wexp < ENin) AND (vine <> Zero)
 
{Denorm} 
SEQ 

sticky :"" sticky V (wfrac " (NOT «NOT Zero) « (-wexp»)) 
wfrac :- wfrae » (-wexp) 
wexp :'" ENin 

(wup )- [Min) AND (wfnc <> Zero) 
{Norm V [nf} 
mp 

IF
 
sticky '" Zero
 

SKIP
 
sticky <> Zero
 

wfrac := wfrac V D~e
 

{Nomal} 
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PROC Sub '"' 
{Aligned}
 
{( op = ,u! " ,ig", = ,;g... ) Y (op = add" ,ig", " ,;g... )}
 
IF
 

(word-z II (NOT NSS» • (word_y II (NOT NSS»
 

{aba value. = aba value,}
 
IF
 

(mode = ToNegInf) AND (wfraex <> Zero) 
SEQ
 

wsign : "" NSS
 
wexp : = Zero
 
wfrac : = Zero
 

{Sign_Of _Zero[Zero/ Zero'I} 
(mode <> ToNeglnf) OR (wfraex '" Zero) 

SEQ
 
wslgn := wsign...% A wsign_y
 
weJ:p :s Zero
 
wfrac :'"' Zero
 

{S.gn_Of _Zero [Zero/ Zero']}
 
{Sign_O/.2ero[ Zero / Zero']}
 

(word...% A (NOT NSB» <> (word_y A (NOT NSB»
 
{abs value. i-- aba value,}
 
SEQ
 

IF 
(word-z II (NOT NSS» < (word-y II (NOT NSS»
 

{aba value" < abs value,}
 
SEQ
 

wsign := wSign_y
 
wfrac := wfracy - wfrac_x - carry
 

(word-z II (NOT NSS» ) (word_y II (NOT NSB))
 

{aba value. > aba value,}
 
SEQ
 

wsign := wsign...%
 
wfrac :"" wfrac...% - wfrac_y - carry
 

{wfrac. nat ~ 2_1- 2 Y (aba value" - aba value, = 2-qo·--B..:..--l+, 1\ t.arry = O)} 
VAR places, zero: 
SEQ 

NORMALISE (places,wfrac,zero.wfrac,Zero)
 
wexp :"" wexp - places
 

Normal (carry) :
 
{Normal Iaba r = aba value. - aba value,}
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These procedures are combined in the following procedure which deals with all non­
exceptiQllal addition and suhtraction: 

PRoe AddSub '" 
{Alig..d} 
VAR carry: 
SEQ
 

Align
 
IF
 

op "" sub
 
wslgn_y :'" wslgl1_Y X ).ISB
 

op '" add
 

SKIP 
IF
 

1IIs1gn..% '" wslglLy
 
Add
 

1II81gl1..% <> ws1gn_y
 
Sub:
 

{Normal A Value~P'c} 

2.6.4 Multiplication 

Specification: 
Multiply =. FiniteArit lop = mul 

After multiplying the fractions, the result is determined exactly The fra.ction and expo­
nent of the result are then adjusted to satisfy Normal. Deta..i1.'l cf the proof are left as 
an exercise: 

PRoe Multiply'" 
{ UnnormalilU!~ " Unnormalised,} 
VAR 10: 
SEQ 

ws1gl1 :'" wslgn_z X wsign_y
 
wexp :'" (wexp_x + wexp~y + One) - Bias
 
LONGPROD (wfne .10. wfrac..%. wfnc_y. Zero)
 
VAH places:
 
SE~ 

NORMALISE (plaees.wfrac,lo.wfrac.lo)
 
wexp :"" wexp - places
 

Norul (0) :
 

{Normal I r = value. )( value,}
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2.6.5 Division 

Specification: 
Divitk == Fi1l.iteA rit I op = div 

An exception is made when dividing by lero. Both arguments are normalised so that 
the arguments to LONGD1V are in the required ra.uge and tha.t the resulting quotient 
has enough 8ignificant digits. The quotient is then adjusted to sa.tisfy Normal: 

PROC Divide ­
{Unnonnalised. 1\ Unnormalised,} 

{"'"". "oj
SEQ
 

.sign :'" ••1gn....x X ws1gn_y
 
SEQ
 

{ Unnormalis~d.}
 

VAR places • .zero:
 
SEQ
 

NORMALISE (places ,wfrac...2:.zero. wfrac...%'. Zero) 
wexp...x ;- wexp....z - ph.cea
 

{wfrac•.nat 2: 2wl- 1 V wfrtlca •nat = O}
 
{value" = 2_qoa.;"-BiM-wl+l x w!rac".nBt}
 

{Unnormalised, j
 
VAR places. zero:
 
SEQ
 

NORMALISE (places. wfrac_Y,zero. due-y, Zero) 
wexp_y : = wexp_y - places
 

{wlmer.nat ~ 2-'-1}
 
{value, = 2·~·w·"-BiM-.l+l x wfrat.,.nat}
 
VAR rem:
 
SEQ
 

wup ;= (wexp_z+B1as) - wexp_y
 
LONGO IV (wfrac,rem.wfracJ:» One.Zero.wfrac_y)
 

2wl 2{value. = 0 v wfra~.n(Jt ~ - } 

VAR places, zero: 
SEQ
 

NORKALISE (places,wfrac,zero.wfrac,Zero)
 
wexp :- wexp - places
 

Nonaal (rem) :
 
{Normal I r = value. -;- value,}
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Fina[y, the component parts can be assembled by the following procedure which 
performs all non-exceptional arithmetic: 

PRoe FilLiteArit = 

{Unnormalised. 1\ Unnormalised., 1\ value, # o} 
VAR wsign. wexp. due: 
IF 

(op"" add) OR (op = sub)
 

AddSub
 
op '" mul
 

MlLltiply
 
op = div
 

Divide:
 
{NomaJ 1\ VaJ,,-Spec} 

Conclusions 

It is ofteJ. heard said that formal methods can only be applied to practically insignificant 
problerm, that development costs in large products are too high, and that the desired 
reliability is still not achieved. The problem presented here is only a part of a large 
body of work which has been undertaken to implement a proven-correct floating-point 
system. This work develops the system from a Z specification to silicon implementation 
- an achievement whicb cannot be considered insignificant. The formal development was 
started some time after the commencement of an informal development and has since 
overtaken the informal approach. The reason for this was mainly because of the large 
amount of testing involved in the intermediate stages of an informal development -. a 
process which becomes less necessary with a formal development. 

As for reliability, that remains to be seen. However, the existence of a proof of 
correctness means that. mistakes are less likely and can be corrected witb less danger of 
introducing further mista.kes. Errors can arise in two ways: first, a simple mistype in 
the programj or a genuine error in the proof. Because of the steps in the development, 
the effe<t of this can be limited. Either, a fragment of prograrrl is wrong and can be 
corrected without affecting a.ny larger scale properties of the program; or, the initial 
decomp~sition was at fault, in which case most of the development may have to be 
rework€1l. If the last scenario seems a little dire, remember tbat decomposition is a 
prerequisite of any structured programming methodology but errors at this stage are 
more li~ely to be discovered in a formal development. Furthermore, there are now two 
ways to discover bugs and a way to show that they are not present. The possibility of 
automalic proof-checkers gives some hope that programmers will be able to guarantee 
the quality of a program more reliably than an architect can gua.rantee the robustness 
of a hO\lse. 

Thisexample, however, does demonstrate some of the advantages wbich can be gained 
from a lormal specification. Specificat.ions often become modified - either the customer 
changes her mind or the original description of the problem is found to be at fault. 
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Trying to modify a badly documented system ia disaatrous. Trying to modify <l. well 
documented system is', at best, error prone. Using a formal specification, it is possible 
to determine which parts of the system to change and, moreover, how to change them 
witbout affecting unmodified parts. For instance, if the specification of error conditions 
were to change, it would be possible to prove that only the second part of the rounding 
module and, perhaps, its precondition need be changed. The modifications can take place 
witbout having to resort to various pieces of code. Likewise, in the development stage, 
the formalism exists to rea..'lon about how proposed modules will fit together. Moreover, 
modules may be reused with greater confidence because there is a precise description of 
what each one does. 

The advantages of a non-algorithmic formalism speak for themselves. The language 
used here bears a formal relation to its implementation and can be transformed to em­
ulate the structure of a program. On the other hand, the high-level specification can be 
written to bear a close relationship to a natural language description - there are many 
mathematical idioms which already exist to formalise seemingly intractable descriptions. 
This paper has assunled some familiarity with the IEEE Standard, but it is desirable to 
use the formalism as a supplement to a natural language specification to which reference 
can be made in case of ambiguity. 
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Appendix A 

Standard Functions and Procedures 

A.I The Data Type 

l ~:N : 

Wont --" 

bit"t : P(O.. (w/ - 1)) 
not 
int 

: 0.. (2"' - 1) 
: (-2"'-') .. (2"'-' - 1) 

nat 
int 

:::: 
= 

E i : bitset • 2' 
(2 x nat) MOD Z..t - nGt 

A.2 Bit Operations 

flOT Word _ Word 

(NOT w).bit"t = 0..(w/-1) - w.bitset 

A, V, X Word - Word 

(WI" Wz).bitset = wl.bitset n Wz.bitset 
(lOt VWz).bitset = wl·bitset U Wz.bitset 
(Wl X tuz).bitset = Wl.bitsetLl.Wz.b~ 
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A.3 Boolean Values 

TRUE, FALSE: Word 

TRUE.bihd =O.. wl-I 

FALSE. hi",! = {} 

Bool '" {TRUE, FALSE} 

f- NOT TRUE = FALSE 
NOT FALSE ~ TRUE 

AND I OR : Bool x Bool _ Bool 

I 

i 

FALSE 
TRUE 

TRUE 

FALSE 

AND h = FALSE 
AND h = h 

OR h ~ TRUE 

OR h = h 

A.4 Shift Operations 

»,« : Word X Word f+ Word 

n.int 2: 0 

=>
 
(w» n).bit.set = (a..wi - 1) n succ-··,;., (w.bitset)
 
(w« n ).bitset = (0.. wi - 1) n suee··- (w.bitset)
 

A.5 Comparisons 

<, >, <=, >=, =, <>: Word x Word _ B001 

WJ..int < W2.int # WI < Wz = TRUE 
Wi. = Wz ¢} Wt. := Wz = TRUE 
WI>Wz=Wz<Wt. 
W, <= W, = NOT(w, > w,) 
tot >= Wz = Wz <= WI 

W, <> W, ~ NOT(w,,, w,) 
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A.6 Arithmetic 

+, -, x: Word' x Word' _ Word 

(WJ, + W2),nat =: (wl.nat -+ W}.nat) MOD 2'" 
(... - ""J.nal = (w,.nal - "".nal) MOD 2"' 
(lL'j x W2).nat =: (wI.nat X W}.nat) MODz_1 

I, \: Word x Word f> Word 

W}.int ¥ 0 
=> 
w,.int = (... /",,).inl x "".inl + (""\",,J.int 
(WJ:.int > 01\0::; (wl\WJ:).int < WJ:.int 
V 

"".int < 0" "".inl < (... \ ",,).inl <; oj 

A.1 Shift Procedures 

SHIFTLEFT 

h.i', 10': Word 
hi,lo; Word 
n: Word 

, 

r;.-:;-? 0 

~,.nat + lo'.nat =: ((2-' x hi.nat + lo.nat) x 2&) MOD2'Z)(·1 

SHIFTRIGHT ---, 
I i

hi',lo' : Word 
11.1,10: Word 
n: Word 

n.int ;:::-. 0
 
2·' x hi'. nat + lo'.nat =: (2-' x hi.nat -+ lo.nat) DIV 2&
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NORMALISE 

hi', 10' : Word 
hi, 10: Word 
places' : Word 

n.int ;::: 0
 
2-' x hi'. nat + lo',nat ::= (2- X hi. nat + lo.nat) x 2,.t..c~·'
 

wl- 1 E hi'.bitset V hi' .nat = 0:::: lo'.nat /\ plaas' = 2 x~
 

A.S Arithmetic Procedures 

LONGSUM ----" 

carry',z': Word 
x, Y. carry: Word 

carry. nat E 0.. 1 
2-1 x carry'.nat + z'.nat:::: x.nat + y.nat + carry.nat 

LONGDIFF , 

borrow', z'; Word 

X, y, borrow: Word 

borrow. nat E 0 .. 1 
-2- x borrow' .nat + z'.nat = :t.nat - y.nat - borrow. nat 

LONGPROD 

hi' ,la' : Word 
x, y, carry: Word 

2·' X hi',nat + lo'.nat::= x.nat x y.nat + carry. nat 
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LONGDIV ---, 

qu.ol', rem' ; Word
 
hi,lo,Y: Word
 

2-1 x hi.1tat + to.nat < 2~ x y.nat 
2- x hi.Rat + lo.nat = quot' x y.nat + rem'.nat 
o S; rem' < y.nat 
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