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The Formal Specification of a
Microprocessor Instruction Set

Jopathan Bowen

Abstract

The specification language Z is used to define a microprocessor based system in a
formal notation. The Motorola 6800 8-bit microprocessor is chosen as an example. Its
simplicity allows the entire instruction set to be covered. Memory configuration and
interrupts are alsc included. The use of a formal description langnage allows the
possibility of verification of the instruction set. Additionally, the use of 2 combined with
informal text is sufficently readable for the specification to be used for decumentation

purposes.
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1. Introduction

Currently, computer instruction sets are normally documented usng tables,
semi-formal formulae and informal text. This monograph attempts to show that they
may be described juat as easily and with more precision using formal specification
methods. Microprocessors have been formally specified previously [1]. Often these
specifications have been difficult to understand since they have not been designed for
documentation purposes. The specification given here concentrates on presenting a
specification which is readable by humans as well as computers.

In this monograph, the specification language Z [2-7], developed at the Programming
Research Group, is used to define the instruction set for an 8-bit microprocessor, the
Motorola 6800. As well as the instruction set, interrupts and memory configuration are
also covered. Readers not familiar with the G800 are referred to its programming
manual [8] or instruction set summary card [9]. These may also be used as acomparison
with the description given here.

It was felt that a complete microprocessor instruction set should be attempled in order
to detect any possible weaknesses in the use of Z for such a task. The relatively simple
6800 processor was chogen because this allowed the entire inatruction st of a real
microprocessor to be specified. A processor such as one of the 68000 family was
deliberately not selected for an initial attempt at such a specification aince its greater
complexity would either require a good deal more wark, or for many featurea not to be
included.

Some of the material covered here is generally useful for any microprocessor based
sysiem. Hence any subsequent specifications could draw on this groundwork.
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2. Basic Concepts

2.1 Word organisation

Machines such as microproceasors generally manipulate bits. These are organised into
non-gzero length finite words. By convention, bit positions are numbered from zero up.

Bit
Word

{o, 1}

{rn:N®»Bit | 8na>0Adomw=0..86—11}

e W

Often the least significant bit (LSB} and most significant bit (MSB} of a word are of
particular interest.

LSB, MSB : Hord — Bit

¥ wu: Uord -
LSB m =nw DA
MSB v = H #n-1

Each bit pattern in 2 word uniquely maps to a particular numerical value.

val : Hord — M

¥ u : Hord »
=1 = val w = LSBW A
#i>1 = val w = LSBu + 2#*val(succtwn)

It is sometimes useful to set all of the bits in a word to a particular value, whatever
their previcus value.

I _set _: (Hord % Bit) — Hord

¥Yu: Hord; b - Bit »
wset b = wi{0—b, 1 b}
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A word contains its maximum unsigned value when all the bits are set to 1's.

I maxval : Hord =& N

¥ w: Hord -
maxval W = val{w spt 1)

For convenience, we define a function to generate a word of particular size and value:

Iurd:Nl—DI—DHord

¥ size : Ny: value : M: w : Hord -
Hrd size value = w &
B = Siza A
val W = value mod succ(maxval w)

Sometimes it is useful to concatenate words together since processors can often handle
multiples of some base size of word. These two words may be of differing sizes for

complete generality.

| " _ : {Hord X% Uord} — Hord

¥ wy, Wy ¢ Hord o
W Mg = Wy U opred™iium,

The number of bits in the resulting word i3 the sum of the number of bits in each of the
words being concatenated:

b ¥ uy, wp i Hord » S(H,"Hz) = HHy b By

The high and low halves of a word may be projected using two functions. These
projections can be concatenated to form the original word.

lo, hi : Word — Hord

¥ w : Hord -
lo{w) = (0..(#udivZ)-1)dw A
hilu) = suce!™ dix 2)g

LY w: Hord » w = lo{w) “hi(w)
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2.2 Bitwise functions
Bitwise logical functions invelve individeal bits. A bit may be complemmented:

|-:Bit>-»Bst

| ~ = {0=31, 10}

We can also AND, (inclusive) OR and (exclusive) XOR pairs of bits by providing the
relevant iruth table in each case:

_e_: (Bitx Bit) = Bit

» = {(0,0)—0, (0,1)-0, (1,0)0, (1,1}—1}
+ = {{0,0)=0, (0,1)=1, (1,01, (1,1)}=1}
o = {{0,0)—0, (0,1)—1, (1,0)-1, (1,1)0}

Most microprocessors allow bitwise logical operations on words. For instance, a word
may be (1) complemented i.e. all O bits are changed to 1%s and all 1's are changed to
0's. This is sometimes referred to as a bitwise logical NOT operation. We can upgrade
the definition for a bit to a function which applies to a word:

| = : Hord » Hord

Y wu: Hord »
W= Wl

Many bitwie operations take pairs of bits as input {e.g. those described above).

HordPair 2
{n:N»(Bit X Bit) |su>0 A domw = 0..8.a-1}

_pair _ : (Hard % Hord) — HordPair

Vouy, Wzt Hord »
H; DAIF Hy =
{i:N]| i€domwy ndomwy » iV (Wy i, Hz i}}
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The corresponding pairs of bits in a pair of words may now be ANDed, ORed, and
XORed, again by upgrading the equivalent bit functions:

@ _ : {(Hord % Hord) = Hord

¥ Wy, Hp ¢ Hord -

(W) pair W) (_e_) A
wph g = (W pairc w3+ ) A
Hi® Wy = (Hlﬂ_ﬂ.i_f:_ Hz)‘(_’_)

Hi® Wy

2.3 Shift functions

A word may be shifted left or right. In this case, the bottom (LSB) or top {MSB) bit of
the word can attain a certain value, depending on the type of shift (e.g. arithmetic,
logical or rotation).

(Hord x Bit) — Hord
{(Bit x Hord) — Hord

¥ w: Hord; b : Bit -+
wEb = ({#u}dpredtu) UV {G— b} A
b u = {#u-1 b} v (succin)
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2.4 Arithmetic fanctions

Microprocessors normally allow arithmetic operations. For example, a word may be
incremented or decremented. The result wraps around i there is overflow or underflow

in each case,

ing, dec : Hord > Word

¥ w : Hord -
incw = wrd #4 {succ ® {maxvel v = 0}){val W) A
dec w = wrd #u ({0 > maxval W} Vpred){val w)

Incrementiog and then decrementing a word (or vice versa) leaves it unchanged.
Additionally one is the inverse of the other.

b inc 3dec = dec 8 inc = id{Hord]

F dec = inc’?

This may be generalised for addition and subtraction by repeatedly incrementing or
decrementing a word:

+ r
_—_ 1 (Hordx H) — Hord
Vw:Hord; i t H »
Hti = inc'W A
W-i = decin

Similarly, a second word, possibly of a different size, may be added to or subtracted
from a word. The size of the resulting word is determined by the first word.

- _ 3 (Hord % Hord) — MHord

LU P Hord -
HitHp = Wy + (val Wp) A

Hi= Hp = Wy — (val wy)
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Some operations can return the 2's complement (negation) of a word:

I - : Hord > Hord

¥ wuw: UHord «
~w = (mget 0) -w

Note that the 1’s complement (bitwise logical NOT) and 2's complement {negation) of a
word are related as follows:

FYw: Hord « —Wn = inc(~}
Sometimes it is useful to "sign-extend” a word into another (normally longer) word.
This involves setting any extra bits to the value of the most significant bit (the “sign®
bit) in the first word. The rest of the bits in the resulting word are set to the values of

the equivalent bita in the firat word.

| _signext _ : (Hord X Hord) — Hord

v Hy, Wzt Hord
Wy signext Wy = (w; get (HSBw;)) @ w;

A word can be used as a signed relative offset. The value of the top bit determines
the direction of the offset.

| ~t_ 7 (Hord % Hord) — Hord

¥ Wy, wp: Hord -
Wyt My = Wy + Wy signext wy)

This is particularly useful for branch irstructiona which usually allow a relative branch
forwards and backwards.
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2.5 Test conditions

Most microprocessors contain a status word which contains bits related to the resulta of
previous operations. Different operations may affect different bits. Sometimes different

operations affect the same bit in (possibly subtly) different ways.

Often we wish to test whether a word has a zero value, returning a “1” if it has and a '0*
il not:

zera : Hord = Bit

¥ w: Hord
ran W = {0} = zeromw =1 A
ran w # {0} = zero w =10

Conversely, we may wish to test whether a word contains all 1%, returning a ‘1’ if it
does and a ‘0" if not. This test ¢an not usually be performed by microprocessors
explicitly (unlike the test for zero above). However it can still be useful for the
apecification of other test conditions (see later).

ones : Hord — Bit

¥ w: Hord -
onea W = zero{~n)

Testing for a negative value can be performed by most microprocessors, returning a ‘1’
if it is negalive and a '0’ if not. Negative words have the top “sign” bit set. Hence this
funection can be performed by the previously defined HSB function.
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2.6 Hexadecimal notation

Most microprocessor documentation uses hexadecimal values for op<odes, addresses
and so forth, since this notation may easily be converted to the corresponding bit
pattern. Each digit is the equivalent of four bits. Hexadecimal digits are drawa from
the set of characters (CHAR) and comsist of the decimal digits ‘0" to ‘9’ and the
lettere ‘A" to ‘F°. Each of these hexadecimal digits uniquely maps to a numerical
value:

[CHAR]

hex : CHAR - N

hex = {‘0'— 0, ‘I'— 1, ‘2’ 2, ‘3" 3,

‘4'v> 4, ‘5' 5, ‘6’ B, ‘7' 7,

‘8'— 8, ‘S'— 5, ‘A'—10, 'B'—il,

‘12, 'D'v13, ‘E’'—214, ‘F'iS5}
We can define a function to handle a sequence of hexadecimal digits (ie. a
hexadecimal number). We shall employ the widely used notation of prefixisg Ox to the

hexadecimal atring.

Lox : (seq CHAR) & W

0x<> =0
V s : seq, CHAR | ran s € dom hex -
Ox s = 16 # Ox{front s} + hex{last s)

An alternative posibility would be to postfix the letter H (i.e. to define asimilar postfix
function, _H).
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3. State

We shall consider the state of a 6800 based system in three parts, covering static
conditionsand then changes in state in each case:

1.  Memory
2.  Registers
3.  System clock

We shall then combine these and consider changes in state of the entire system (as
defined above) when an instruction Is execnted or an interrupt occurs. Finally, the

state of the system when it powers up is detailed.

The 6800 operates on 8-bit bytes of data and 16-bit addresses:

8}
16 }

Byte
Address

n

{ w: Hord | 8n
{ w: Hord | 8w

The following functions convert values to data bytes and addresses respectively:

data 2 (wrd 8)
add- & {wrd 1B)

Some pumerical values have known ranges. In particular, some nurmbers will fit into a
nibble (4 tits), a data byte (8 bits) and a word address (16 bits). [t is useful to define
these ranges.

Valug, £ 0..2%-1
Valueg & 0..25-1
Value,g & 0..2!5-1
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3.1 Memory

The address space of the 6800 (and many other microprocessors) may be considered as
a total function from Addresses to Buytes. We shall assume that ROM (Read Only
Memory) and RAM (Random Access Memory) make up the available real memory.
These two areas do not overlap.

_ Hemory
Hem : Address — Byte
ROM, RAH : F Address

RAM n ROH = P

The memory may be updated by operations such as instructions and interrupts. In this
case, the ROM and RAM areas [ie. their domajns) do not change. The RAM contents
may be partially updated by an instruction or interrupt. Areas outside valid ROM and
RAM may vary unpredictably and are thus not defined by this specification. The
values in ROM do not vary. Only values in RAM may be updated reliably.
Additionally, some cperations do not affect the RAM contents.

~ dMemory
Hemory
Hemory”
EMem : Address -» Byte

ROM* = ROM

RAM’ = RARH

ROM qHem’ = ROM ¢ Hem

RAM qHem® = RAM ¢ (Mem ® EMem)

EHMemory % AMemory | EHem = @

Note that the assumptions above are not strictly true in all cases. For example, it is
possible to have software switchable banked memory. However they hold for the
majority of simple systems. In practice areas outside ROM and RAM may be used for
memory mapped I/O. This is not covered here since it is very system dependent. It
could be considered separately.
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3.2 Registera
The 6800 has a number of registers:
Regs ::= A | B | CCR
| PC, | PC_ | PC
| SP, I SP_ | SP
I % X | X
Most of these are B-bit registers:
Regsy & { A, B, CCR, PC,, PC,, SP, SP_, X, X_ }
Two of the #-bit registers are general purpose accumulators:

Accumuletor 2 { A, 8 }

Some of the registers are normally used In pairs, so that they may be used to hold 16-
bit memory addresses:

Regs;; & { PC, SP, X }
The 8-bit registers always contain byte values and the 1G-bit registers always contain
address values. The low and high bytes of the PC, SP and X registers concatenate to

form 16-bit registers. The top two bits of the CCR are unused and are always set to 1.

- Registers
Reg : Regs — Uord

ReglRegsg) s Bute
Reg(Regs;g) s Address
Reg(PC) = Reg{PC ) ~Reg{PC,)
Reg(SP) = Reg(SP ) ~Reg{SP,)
Reg(X) = Reg{X_ )™ Reg(X,)
Reg CCR {6..7) = {1}
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Any of the registers may be updated by an instruction {or interrupt). Every instruction
congists of one or more bytes. (External interrupts have no bytes.) Normally the next
instruction to be executed is the instruction following the current instruction. This may
be overridden, for example by a branch instruction (see later). Individual bits in the
Condition Code Register may be updated by the instruction depending on the result of
the operation. However the top two bite of the CCR remain set to I's even if the
instruction attemypts to overwrite them.

_ ARegisters
Reg isters
Reg isters’
NBytes : N
Next : Address
8Reg : Regs - Hord
8CCR  : (0..7) -+ Bit

Next = Reg(PC) + NBytes
Reg’ = Regq & {PC+»MNext}
@ SReg

® {CCR = (Reg(CCR)® SCCR
& {6—1,71})}

Sometinies an operation does not affect the 6800 registere (apart from the Program
Counter which is automatically updated):

ZRegisters & MARegisters | 8Reg = B A 6CCR = @
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Condition codes

The Condition Code Register holds various single bit codes at different bit positions.
These are the carry, overflow, gero, negative, interrupt mask and half-c arry bits:

I = = M o= O
n Do mnmn
(4, N FUR N ]

The contenits of the individual condition code bits are often of interest. We make the
Tollowing definitions for syntactic brevity:

(Reg CCR)
{(Reg CCR)
(Reg CCR)
{Reg CCR)
(Reg CCR)
{Reg CCR)

I —= Z M <= O

mmnomw i W

Condition code bits often depend on the values of bits in results of operations. For the
convenience of these specifications, we use the following short forms for i €0..7,
JE€0..15 and x € Accumulator:

¥, & (Reg x) i
M2 (Mem M) i
R, & Ri
X, & (Reg X) j
RR, & RR j



3.3 System clock

The system contains a clock which controls the timing of the system. This consists of a
sequence of pulses. This may be modelled as the number of clock pulses which have
occurred since the system was powered-up:

Clock —

‘CIk:N

When an instruction iz executed or an interrupt occurs, it takee a certain number of
clock cycles to execute:

. AC1 ock
Ciock
Clock”’

Cycles : H

-1

Clk* = Clk +Cycles
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3.4 M6800 system

The system state consists of memory, registers and a clock:
16800 & HMemory A Registers A Clock

There are various types of 6800 addressing modes. Additionally, the 6800 may respond
to an external Interrupt or execute an I11egsel instruction.

Hodes ::= Immediate
Direct
Indexed
Extended
Inherent
Reletive
Interrupt
I1legsl

Each of these modes is detailed later.

When an justruction is executed, the op-code is read from the memory location
indicated by the current value of the Program Counter. The instruction will have a
particular addressing mode. The state of the system will change when the instruction
has executed:

- &Me800
AMemory

bRegisters

AClock

Dp : Valueg
Mode : Hodes

Op = val Mem{PC}
1

Some operaiions do pot affect the memory or registers (apart from the Program
Counter which is automatically incremented depending on NBytes):

ZH680C =2 AMGBOO A EHemory A ZRegisters
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3.5 Power-up

The clock starts from zero for convenience in this model, when the system is initialised
(ie. powered up). Ii is assumed that the ROM already holds the program to be
executed.

Interrupts are disabled and the Program Counter is loaded from the top two locations
in memory. Note that hexadecimal numbers are used, rather than decimal, for memory
addresses and op-code values since this is more normal (and convenient} in
microprocessor documentation as discussed earlier.

- ne8a0 7
nesqo”
Clk’ =0
I..” =1
Reg " (PCy)
Reg *{PC,)

Mem’ {addr OxFFFE)
Mem’ {addr OxFFFF}




22 Microprocessor Instruction Set

4. Interrupts

When an inlerrupt occurs, or if the SWI or WAI instructions are executed (see later),
all the 6800 registers are saved on the stack. program control is transferred to a new
address specified by the contents of memory at a particular vector address. The
interrupt mask bit is set in the Condition Code Register. This is defined by a framing
schema {denoted by ¢) which may be used in the subsequent definitions of these cases:

_ $dinterrupt .

AHG800

Vector : Valueg

&Mem = { Hem(Reg{SP)-6) »» Reg(CCR),
Hem{Reg{SP}-5) 3 Reg{(B),
Hem{Reg(SP)-4) ~» Reg(A),
Hem(Reg(SP)-3) +* Reg(X,),
Nem(Reg(SP}-2) — Reg(X,),
HMem{Reg(SP}-1) = hi(Next),
tem{Reg(SP}) > lo{Next} }

6Reg = { PC, + Mem{eddr{VYector)),
PC_ + Hem(eddr(Vector+l}),
SP +3 Reg{5P}-7 }

&CCR = {1m1}

There are three interrupts which may be activated externally to the 6800
microprocessor. An external interrupt is not an instruction read froma memory so it
may be considered to have a length of zero bytes. This will result in program control
returning to the current instruction when au RTI instruction (see later) is subsequently
executed at the end of the interrupt service routine, provided the stack is not corrupted.

It takes a number of clock cycles to service the interrupt and stack the registers. The
exact number of cycles could not be found in the documentation used to formulate this
specification [8,9], 8o it is not given here. It is likely to be of the order of the minimum
number of cycles taken by the HA! instruction. If known, it could easily be inserted in
the following schemas.



The hardware interrupt (IRQ) can only be activated if the interrupt mask bit in the
CCR is clear:

IR@Q

¢lnterrupt

IEC = 0

Vector = OxFFF8
NBytes = 0

The non-maskable interrupt (NMI) may be activated at any time:

~NML —
¢lnterrupt

RMI? : Bit

NHI? = O
Vector = OxFFFC
NBytes = 0

When a reset occurs, the registers are not stacked and the memory is left unaffected,
but the ®reset® wector is used to restart the program in the same way as occurs at

power-up:

_ Reset
AMG 800
Eflemory

1t

{ PC, ~ Mem{addr OxFFFE),
PC_ +> Mem(eddr OxFFFF) }
{11}

BReg

8CCR

In conclusion, the system has three possible sources of external interrupt. Note that the
6800 interrupt vectors are all located at the top of memory. Hence it ia normal for this
area to be contaimed in ROM.
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5. Instructions

All microprocessors have a set of instructions which they car execute. These
instructions can affect the registers and/or the memory using a variety of addressing
modes, depending on the microprocessor involved.

6.1 Addreesing modes

Many of the 6800 instructions use a selection of memory addressing modes. Each has a
memory address (1) of an operand calculated in a manner depending on the addressing
made. The op-code for a given type of addressing mode is always and constant offset
from the opcode for a particular base addressing mode. The 6800 Extended
addressing mode may conveniently be selected for this base addressing mode. The
corresponding op-code for a particular instruction will be known as the base op-code
{OpBase). The value of OpBase is specified in subsequent schemas defining specific
inatructions.

The number of clock cycles which an instruction takes to execule also depende on the
addressing mode. Again this is easily calculated from a base number of cycles for a
particular addressing mode (CyclesBase). The number of execution cycles may be
defined in terms of an offset from the base number of cycles in subsequent schemas.

The informalion above may be combined together in a framing schema for use when
defining each of the addressing modes covered in the rest of the section:

¢Addriode
ANBB00

N : Address
OpBase : Yaluey
CyclesBase : N

We shall now define the major addressing modes of the 6800 as {raming schemas for
use by subsequent schemas describing individual 6800 instructions.



Microprocessor Instruction Set 25

Immediate mode addressing gives the address of the byte immediately following the
instruction opcode byte:

— Qlmmediate
dAddrHode

Mode = Immediate
Op = OpBase - 0x30
H = Reg{(PC)+1
NBytes = 3
CyclesBase = 2

Direct mode addresses are in the first 256 bytes of memory. The byte following the
op-code specifies this address, the upper byte of the address being zero:

~ PDirect
PpAddrMode

Mode = Direct

Op = OpBase - Ox20

M = Mem{Reg(PC)+1) " data{0)
NBytes = 2

CyclesBase = 3

Indexed mode address are calculated by adding the contents of the byte following the
op-code (0-255) to the index register;

- @§lndexed
dAddriiode

Hode = Indexed

Op = OpBase - 0x10

M = Reg(X) + Hem{Reg{PC)+1)
NBytes = 2

CyclesBase = 5
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Extended mode addresses are specified fully using the two bytes following the op-code,
high byte first, low byte second:

_ fExtended
JAddrHode

Mode = Extended

Op = OpBase
M = Hem{Reg(PC}+2) " Hem(Reg(PC}+1)
NBytes = 3

CyclesBase = 4

Several or all of these addressing modes may be used by a specific instruction. Hence
we shall combine them together into one schema.

flodes & @Qlmmediate V QQirect V ¢lndexed V ¢$Extended

There are two other addressing modes used by many instructions so these are also
defined separately here.

Some instructions use inherent addressing. In this case there iz no memory address to
be calculated, The instruction consists of a single byte op-code.

- §Inherent
dAddrHode

Hode = Inherent
NBytes = 1
CyclesBase = 2

Note that the memory address (M) is left undefined in the above framing schema since it
will never be used in later specifications making use of this achema.
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Some “branch® instructions use relative addressing to calculate a new vilue for the
Program Counter if a branch occurs. The byte following the op-code is sign-extended
and added to the address of the next instruction. Hence a branch instruction may
transfer program control up to 127 bytes forwards or 128 bytes backwards relative to
the start of the instruction following the branch instruction.

_ fRelative
dAddrHode

Hode = Reletive

Op = OpBase

H = Hext + Mem({Reg(PC)+1)
NBytes = 2

CyclesBase = 4

The complete instruction set of the 6800 is covered in subsequent sections consisting of
families of related instructions as designated by Motorola [8).
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5.2 Accumnlator and Memory instrnctiona

This family of instructions use one or both of the 8bit accumulators and/or a byte in
memory. These can be further sub-divided into different types of instruction,
depending on the allowed addressing modes.

Inherent addressing

Some instructions use inherent addressing and operate on accumulator A or B only.
The memory contents are unaffected. The instruction operation produces a byte result,
R, which is used to update the accumulator.

- §SingleAce o
$inherent

ZHMemory
x i Accumulator
R : Byte

Cycles = CyclesBase
8Reg = {x m R}

Accumulator addressing

Either of the accumulators may be pushed onto or popped off the stack. These
operations take four cycles to execute.

_ §StackAce
dlnherent
x : Accumulator

OpBasze : Valueg
—

(x = A A Op = OpBase) v
{(x = 8 A Op = OpBase +1)
Cycles = CyclesBase +2
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Single operand addressing

Some instructiona have a single operand. They can update a memory byte by
performing an operation on it, but only using a limited set of the available addressing
modes:

_ @lemUpdste
Weodes
Operand,

R : Byte

Hode € { Indexed, Extended }
Cycles = CyclesBase + 2
Operand = Hem(H)

sMem = {H — R}

BReg = @

These can also pexform the same operation on one of the accumulators. These replace
the op-codes which would have been used by the immediate and direct addressing
modes not used because of the limited number of addressing modes above.

_ dAcclpdate
§SingleAcc
Opersnd : Byte
CpBase : Valueg

{x A A Op = OpBase - Ox30) v
{x = B A Op = OpBase - 0x20)
Oper-snd = Reg{x}

The last two schemas may be combined to produce a framing schema which describes
single operand instructions with multiple addressing modes:

dSingle £ QMemUpdate V QAcclpdate
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Double operand addressing

Some instructions have two operands. One is in one of the two accumulators and the
other is extracted from memory using a selection of addressing modes. The op-code
base offsets are calculated from the op-code base of the instruction which uses
accumulator A (OpBaseA). The value of OpBaseA is defined in subsequent schema
definitions for specific instruckions.

_ dAccumulator

PModes

x 3 Accumulator
OpBaseA : Valueg

(x
(x

A A OpBase
B A OpBase

1]

OpBaseA) v
OpBaseA + Ox40)

1]
1]

]

These double operand instructions leave memory unaffected and take the basic number
of clock cycles to execute, The instruction operation produces a byte result (R).

_ 0ouble S
fAccumulator

EMemory
R : Byte

Cycles = CyclesBase
BReg = {x = R}
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Test instruction framing schema

Same instructions simply perform tests on a byte value, T. In this case, the memory
and registers (apart from the CCR) are left unaffected (or effectively updaied with
existing contents). The top “sign” bit of the byte may be of particular interest.

~ {Test
Plodes
% : Accumulator
T : Byte
T, = Bit

fflem € { @, {M = Hem{Mm)} }
6Reg € { @, {x » Reg(x}}}
T, = M5B(T)

The accumulator and memory family of instructions can now be defined using ihe
framing schemas above. All the instructions operate on 8-bit values in memory and the
two accumutlators.
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Tranefer jnstructions

Some imstructions simply transfer bytes between registers and/or memory without
modifying their contents. For example, an accumulator may be loaded from a memory

byte. The Condition Code Register bita are updated appropriately.

_ LDA
®ouble

OpBaseA = OxBG

R = Hem(l)

8CCR = {N—R,,
£ v zero(R),
Y0}

|

Conversely, there is an instruction to store the contents of an accumulator into a byte
in memory. This cannot use the immediate addressing mode. It takes an exira clock
cycle to execute compared to most other similar instructions {e.g. LDA). The addressed
memory byte is updated with the result and the CCR bits are set appropriately.

_ STA
PAccumulator

OpBaseA = OxB7

Hode # Immediate

Cycles = CyclesBase +1

&Mem = { H— Reg(x) }

EReg = @

8CCR = { N~ HSB(Reg x),
Z » zero(Reg x),
V3 0}
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The accumulators may be transferred back and forth:

TAB .
( §SingleAce
O0p = Ox16

8Reg = { Av>»Regy(B) }
8CCR = { N8,
Z » zero{B),

Y—0}
]
~ TBA ,
$S ingleAce
Op = O0x17

BReg = { B~ Reg(A) }
BCCR = {Nv> A,
Z V> zero(A),
¥v=>0}

R |

The accumulators may be pushed on to the stack. In this case, the condilion codes are
not affected.

_ PSH
§StackAce

OpBase = 0x36

BMem = { Reg{SP) — Reg{x} }

6Reg = {SP ¥ Reg{SP)-1}
6CCR =@
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The accumulators may also be restored from the stack. Again, the CCR is unaffected.
In this case the memory contents are also unaffected.

- PULA
{StackAcc
EMemory

OpBase = (Ox32

SReg = { x r Hem{Reg{SP)+1),
SP — Reg(SP}+1}

SCCR = @

Logical i .

Some instructions perform bitwise logical operations on the accurmulators and memory
bytes. Forexample, a byte operand may be 1’s complemented:

. CON
§Single

OpBase = 0x73

R = ~0Operand

8CCR = { N R,,
Z = zero(R),
¥Y¥=0,
cCY—1}
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There Is a bitwise logical AND instruction:

AND
( foouble

OpBaseA = OxB4
R = Reg(x) = Mem(M)
BCCR = {NPR,,

£ = zero(R),

v 0}
S |

a bitwise logical inclusive OR instruction:

r ORA ]
dlouble

OpBaseA = OxBA
R = Reg(x) ¢ Hem(M)
S8CCR = {N+—R,,
Z v zero(R),
¥ve—=0}

and a bitwise logical exclusive OR instruction:

- EOR
flouble

OpBaseA = OxBS
R = Reg(x) @ HMem(M)
8CCR = {NPR,,
Z —» zerofR),
Y07}
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Arithpetic instructions

Some izstructions perform simple arithmetic operations on bytes.

An operand may be incremented. The gverflow bit in the CCR is set if the original

contents of the operand had the top bit clear and the rest of the operand bits were set
to I's,

~ INC
¢Single

OpBase = Ox7C
R = QOperand + 1
8CCR = {NPR,,
Z - zero(R),
¥« ~Operand(7)eones(740perand) }

Conversely, an operand may be decremented. The overflow bit in the CCR is set if the
original contents of the operand had the top bit set and the rest of the operand bits
were 1o,

_ DEC
@Single

OpBase = Ox7A
R = Operand -1
8CCR = { N R,
2 zero(R),
¥V 5 Operand(7)eszero(740perand) }

1

There are three “add” instructions. They all update the half-carry bit in the CCR with
the carry from hit 3. The overflow bit is set if there was a 2's complement overflow.
The carry bit is set if there was a carry from the most significant bit of the result. The
standard “add” instruction simply adds a byte from memory to an accumulator.



_ ADD
ouble

OpBaseA = OxBB

R = Reg{x) + Hem{HM}

8CCR = { H > xjeMy#tze~Ry#~Ryexs,
N—R,
Z¥ zerofR),
¥ > xoell;e~Rod~x e~ ok,
Cr x?.n?'l'n?t“'R?'l"R?lx? }

Accumulator B can be added to accumulater A (but not vice versa):

_ ABA :
§SingleAcc
Op = OxIB

R = Reg(A) + Reg(B)

8Reg = {A—R}

B8CCR = { H > A;eB 4B e~Ro#~R3eA,,
N+ R?,
Z ¥~ zerofR),
Vi AseBye~R#~Ase~B,0R,
Cr A?-B?fB7O*R7+~R?OA? }

The current value of the carry bit in the CCR may be added to the result as well:

_ ADC
Poouble

OpBaseA = 0OxB9

R = Reg{x) + Mem{H) + Cec

ECCR = {H— xaoﬁafﬂai"Raf"Ralxa,
N>Ry,
Z — zero(R),
V1 xpelpenRotmupetizeR,,
C— x70H?+I1?-";R?+~R?ox? }
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There 5 a *Decimal Adjust Accumulator” instruction for use when binary coded
decimal (BCD) operands are involved. The adjustment to be added to the accumulator
is calculated from the carry bit, upper half-byte value of the accumulator, half-carry
bit and lower half-byte value of the accumulator as follows:

daa : Bit xValue, XxBit X Yalue, =¥ Valueg

Vi : BitXxValue,XBit xValue, +

i € {0}x{0x0..0x9)x{0}x(0x0..0x9) => daa i = Ox00
i € {0}x{0x0..0x8)%x{0}x{0xA, . OxF) => dea i = Ox08
i B {0}%{0x0. . 0x9)x{1}%({0x0..0x3) = dea i = Ox06

i € {0}x(0xA..OxF)x{0}%{0x0..0x9) = dea i = OxB0
i € {0}%(0x9..0xF)x{0}x(0xA..0OxF) => daa i = OxbB
i € {0}x(0xA..0xF)x{1}%(0x0..0x3) = daa i = Ox66

i € {0}%(0x0. .0x2)X{0}x(0x0. .0xF) => das i = Ox60
i € {0}%(0x0..0x2)%{0}%{0OxA..0xF) => daa i = 0x66
i € {0}%(0x0..0x3)%{1}%(0x0..0x3} = daa i = O0x66

Entries not included in the table are undefined. The overflow bit in the CCR is always
undefined after this instruction has been executed. It iz intended that this instruction
should beused immediately after an “add” instruction.

~ DAA
¢SingleAce
Adjustment : Byte
Undefined : Bit

0p = OxlB
Adjustment = date daa(C__, val hi{RegA),
H.., val lo{Reg &)}
R = A+ Adjustment
BReg = { AR}
BCCR = { NP R,
E — zerof(R),
¥V 2 Undef ined,
C— ~zero(hi Adjustment) }
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There are matching “subtract” instructions for each ®add” mstruction. Noie however
that the halfcarry bit in the CCR is left unaffected by these instructions.

_ SUB
flouble

OpBaseA = OxBO
R = Regf(x) - Mem(M}
6CCR = {N—R,,
Z > zero(R),
V= xoenflenRodnx o1, 0R,,
Cw— ~x?oH7+H7oR7+R?.~x? }
—_—

— SBA
§SingleAcc

Op = Dx10Q
R = Reg{A) - Reg(B)
8Reg = {APR}
SCCR = {N—R,,
2 zero(R),
Y= A?O‘*B?."'R?i-"A?.B?.R?_
C > ~AeBo4B,eR 4R e~A; }
a

~ SBC
f0cuble

OpBeseA = (xB2

R = Reg(x) - Hem(N) - C__

8CCR = {N—R,,
Z = zero(R),
¥ = x et e~Rotonc ol R,
€ ~xjoM4H, eR#R0vx;, }
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An operand may be negated {2's complemented). The overflow bit in the CCR ia set if

the result has the top bit set and the rest of the result bits are zero

to the opposite of the zero bit.

NEG

r !

dSingle

OpBase = 0x70

R = -Operand

SCCR = {NPR,,
Z —* zero(R),
¥ 3 Roezero(74R),
C = ~zero{(R) }

A memory byte or an accumulator may be cleared to all 0'a.

_ CLR
dSingle

OpBase = Ox7F

R = data(0)

SCCR = {N©— 0,
I,
¥—0,
C—0}

T 1

Note that there ig no equivalent instruction to set a byte to all 1's.

. The carry bit is set



Some 6800 instructions shift hytes by one bit position left or right. Note that the
overflow bit in the CCR is always set as the XOR of the resulting negative and carry
CCR bits for all 6800 shift instructions.

There are shift instructions which rotate a byte left or right by one bii tirough the
carry bit in the CCR:

ROL

= 1

dSingle

OpBase = 0x79

R = Operend & C__

BCCR = {N—R;},
Z - zero(R),
v — NCC' @ CCC"
C = Operand{7} }

~ ROR
§Single

OpBase = (Ox76

R = C_. ¥ Operand

8CCR = {N>R,,
Z —» zero(R),
V=N @ Ccc',

C — Operand{0) }
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There are arithmetic shift instructions which shift a byte left or right by one bit. These
are equivalent to multiplying and dividing a signed byte value by 2.

~ ASL
JSingle

OpBase = 0x78

R = Operend = 0

6CCR = {N—R,,
£~ zero(R),
Y Ncl:’ ® Cc:”

C v~ Operand(7) }
)

- ASR
fSingle

OpBase = 0x77
R = Operend(7) 2 Operand
6CCR = { N R,,
Z — zero(R),
VO N eC 7,
C = Opereand(0) }
]

There i a logical shift right instruction, filling the result with a zero in its top bit:

- LSR
@Single

OpBase = Ox74

R = 0» Operand

8CCR = {N+—0,
Z — zero(R),
Al Ncc‘ @ cr:r:"

C — Operand(0) }

Note that there s no matching LSL (logical shift left}) insiruction since this is
equivalent to an ASL instruction (see above).



Test jnstructions
Some instructions only affect the condition codes by performing tests on byte values.

There is a bitwise logical AND test instruction which simply sets the condition code bits
as if an AND instruction had been performed, but does not update the resuli:

~ BIT
Plouble
fTest

DpBaseA = DxBS
T = Reg(x} « Hem(H)
SCCR = (NPT,
= zero(T),
Y0}

A byte operand may be tested. The condition codes are set as if zero had been
subtracted from the operand.

- TST ,

fSingle
PTest

OpBase = Ox7D

T = Operand~ 0

SCCR = {Nw-T,,
Z 7 zero(T),
Yy—=0,
C—0}
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There & a "compare® instruction which simply sets the condition code bits as if a SUB
instruciion had been performed, but does not update the resuit:

_ CHP
@Double
PTest

OpBaseA = 0xBS

T = Reg(x)} - Hem(H}

8CCR = { N— T?s
2> zero(T),
Y 1 xoetenT oy el 0T,
€ xpot e T4 T o0 }

The two accumulators may be compared in a similar way without changing the
contents of either:

~ CBA
$SinglehAce
PTest

Op = Oxl11
T = Reg{A) - Reg(B)
8CCR = {N—T,,
> zerolT),
Y AjenBoenT 4vAeBoe T,
Crr ~AeB 4B, 0 T 4T 0~A, }
1
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Instruction types

The 6800 includes the following transfer/logical/arithmetic /shift/test type accumulator

and memory instructions:

b1H]

LDA
AND
ADD
BIT

DoubleOp

-]

COH
DEC
ROL
15T

SingleOp

113

TAB
ABA
CBA

InherentOp

n

StackOp PSH

v

o~ oo

-

v

STA
ORA
ADC
CHP

INC
ROR

TBA
DAA

PUL

EOR V¥
SUB ¥ SBC V

NEG ¥V CLR ¥V
ASL V ASR Y LSR ¥V

SBA ¥

We can combine all these sub-types of instruction together:

AccMemOp £ DoubleOp V SingleOp V InherantOp ¥V StackOp
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5.3 Index Register and Stack instructions

These imstructions manipulate the 16-bit index register and stack pointer. Some have
several addressing modes. These can be further sub-divided into “load® and stiore”
type operations, each of which produces a 16-bit result, RR. Load operationa do not
alfect memory:

_ PXtoed
PHodes
ZHemory
RR : Address

Cycles = CyclesBase + 1

Store operations cannot be used in immediate mode:

_ PXStore
Podes
RR : Address

Hode # Immediate
Cycles = CyclesBase + 2

Some of the inatructions use inherent addressing. None of these affect the memory
contents.

_ §XInherent
¢lnherent
Memory

_—

Op = OpBase
Cycles = CyclesBase + 2

This family of instructions can now be defined using the framing schemas above.
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The index register and stack pointer can be loaded from memory:

LDX
I- $XLoad

OpBase = OxCE

RR = Reg(X)

8Reg = {XH = Mem(N),
XV Hem(M+1) }

8CCR = {N V3 RR,,
Z P zero(RR),
Ve 0}

— LDS
¢XLoad

OpBase = Ox8E

RR = Reg(SP)

EReg = { SP, — HMem{M),
SP_ V> Mem{N+1) }

BCCR = {N = RR,
Z = zero{RR),
Vo)

and stored into memory:

_ STX
PXStore

OpBase = OxCF

RR = Reg(X)
6Reg = B
SCCR = {N » RR,c,
£ V@ zero(RR),
Y= 0}
BHlem = { N = Reg(X,). M+1 > Reg(X }}

47
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_ 575
$XStore

OpBase = Ox8F

RR = Reg(5P)

6Reg = @

B8CCR = { N = RRyg,
Z — zero(RR},
¥ = 0}

BMem = { M > Reg(SP,), M+l > Reg(SP )}
]

They can also be transferred back and forth:

_ TXS .
fXInherent
Op = 0x35
6Reg = { SP = Reg(X}-1}
8CCR =
]
TSX

( fXInherent

Op = 0x30
8Reg = { X — Reg(SP}+1}
8CCR = @

Note that the SP i loaded with one less than the contents of the index register and the
index register is loaded with ome more than the SP in each case. This is for
programming convenience so that the index register can be pointed io the first entry on
the stack, not the next empty entry.
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49

The index register and stack pointer can both be incremented and decremented. In the
case of the index register, the zero flag bit in the CCR is set appropriately. In the case
of the stack pointer, the CCR is not affected.

—. INX

PXInherent

Op = Ox08
BReg = { X ¥ Reg(X)+1}
§CCR = { Z V@ zero{Reg(X)-1)}
- |

~ INS

Op =

§CCR

¢XInherent

0x31

SReg = { SP > Reg(SP)+1 }

- DEX

dXInherent

Op = 0Ox08
8Reg = { X »* Reg{X)}-1}
8CCR = { Z ¥ zero(Reg(X}-1)}

BES

Op =
&Reg
BCCR

dilnherent

Ox34

{ 5P — Reg(SP)-1}
%]
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The index register can be compared with memory:

_ CPX
PXLoad

OpBase = Ox8C
RR = Reg(X) - Hem{M+1) " Hem(H)
5Req = 0
8CCR = {N—RR,
2 zero(RR},
Y XyperttyeRR ¢~ X geMeRR 5 }
—1

The 6800 includes the following instructions involving the index register and/for stack
pointer:

IndexOp & LDX V LDS ¥V STX V S5TS ¥ TXS ¥ TSX ¥
INX V INS V DEX V DES V CPX



5.4 Branch and Jnmp instructions
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All “branch” instructions use the relative addressing mede. They leave the memory

unchanged and take four cyeles to execute. The CCR is not affected. If a branch
condition occurs, then the PC is updated with the relative offsel. Otherwise the
program procedes to the next instruction as normal.

. $Branch
fRelative
ZHemory
Cond : Bit
Cycles = CyclesBase
8CCR = @
Cond = 1 = EReg
Cond = 0 = BReg

{PC > H}

2

The 6800 has the following branch instructions:

BRA
BCC
BCS
BEQ
BGE
BGT
BHT
BLE
BLS
BLT
BHI
BNE
BYC
BYS
BPL

LI 1 TH I 1+ T B T - 1 I I BT B 1D )

dBranch
®Branch
¢Branch
®Branch
dBranch
$Branch
$Branch
dBrench
$Branch
dBranch
fBranch
dBranch
$Branch
®Branch
¢Branch

Op
Op
Op
Op
Op
0p
Op
Op
Op
Op
Op
Op
Op
Op
Cp

0x20
Ox24
0x25
0x27
Ox2C
Ox2E
0x22
0x2F
0x23
0x2D
Ox2B
0x26
0x28
0x29
Ox2A

A
A
A
A
A
AN
A
A
A
A
A
A
A
A
A

Cond
Cond
Cond
Cond
Cond
Cond
Cond
Cond

Cond =

Cond
Cond
Cand
Cond

Cond =

Cond

1
~CCC
Cee

F4

cc
~ ( NC?C:e VCC)
‘\'(ZCI':+(NI:I:Q VDC) )
~(CCC+_ zCC )
ZCC+( N(:l:0 vl:l:)
CCI’." ZEC
NCC@ VCC
NCC
NZCC
~vl:l:
VEC

~N

cC
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There is also a “Branch to Subroutine” instruction, which saves the return address on
the stack and calculates a new value for the PC:

_ BSR
JRelative

Op = 0x8D
Cycles = 8
SHem = { Hem(Reg(SP)-1} = hi(Next),
Hem(Reg{SP}) > lo{(Next) }
{PC - H,
SP > Reg(SP) -2}
2

&Reg

§CCR

There is a “Jump” instruction. Indexed and extended addressing modes may be used.
The memory and CCR contents are unaffected.

_ JHp
Podes
EHemory

Hode € { Indexed, Extended }
OpBase = Ox7E

Cycles = CyclesBase-1

8Reg = {PC — N}

§CCR = @
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There is a2 “Jump to Subroutine® instruction, simitar to the JMP instruction, which saves
the return address on the stack. The number of cycles taken to execute this imstruction
does not obey the mormal rules which apply to all other instructions with multiple
addressing modes,

_ JSR .
PHodes

Node € { Indexed, Extended }
OpBase = OxBD
Hode = Indexed = Cycles = 8

Hode = Extended = Cycles = 9
gHem = { Mem(Reg(SP)-1} > hi{Next),
Hem(Reg(SP}) = lo{(Next) }
EReg = {PC = N}
SP — Reg(SP)-2 })
&CCR =19

The 6800 jncludes the following branch apd jump instructions:

BranchOp & BRA V BCC V BCS V BEQ V BGE V¥
BGT ¥ BHI V BLE V BLS V BLT ¥
BMI Vv BNE V BYC V BYS V BPL ¥
JHP ¥ JSR
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5.5 Condition Code Register instructions

This set of instructions use inherent addressing and do not affect the memory contents.
Most of the instructions update CCR flag bits, but not the rest of the registers.

_ QCCR '
dlnherent
=Hemory

Cycles

= CyclesBase
BReg = @

The following instructions may be performed to clear and set imdividual Condition
Code Register bits:

CLC & ¢CCR | Op = 0xOC A SCCR = {C = 0}
CLI 2 §CCR | Op = OxOE A BCCR = {1 = 0}
CLY 2 ¢CCR | Op = Ox0A A ECCR = {¥ = 0}
SEC & ¢QCER } Op = Ox0D A SCCR = {C v 1}
SEI & ¢QCCR J Op = OxOF A SCCR = {1 + 1}
SEVY & {QCCR } Op = Ox0B A SCCR = {Y — 1}

The setable bits of the CCR may be loaded from accumulator A:
TAP @ {CCR | Op = 0x06 A BCCR = Reg(A)
Counverscly, accumulator A may be loaded with the contents of the CCR:

~ TPA
§SingleAce

Op = Ox07
SReg = { A ¥ Reg{CCR) }
BCCR = @

These operations may be collected together as a family of instructions:

CCROp & CLCVCLIVCLYVSECVSEIVSEYVYTAP V TPA
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5.8 Migscellaneoms instructions

There is a *No Operation” instruction which does nothing but pass program control to
the next instruction:

~ NOP
¢Inherent
EM6 800

Op = Ox01
Cycles = CyclesBase

There is a “Return from Subroutine” instruction, The PC is restored {rom the stack.
The memory contents and the CCR are left unaffected.

_ RTS
¢Inherent
ZMemory

Op = 0x39

Cycles = 5

8Reg = { PC, > Mem(Reg(SP}+1),
PC_ = Hem(Reg(SP}+2).
SP = Reg{SP)+2}

ECCR = @

There is a “Software Interrupt® instruction. This simulates an interrupt using its
own vector.

~SWL
¢Inherent

¢Interrupt

Op = Ox3F
Cycles = 12
Yector = OxFFFA
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There is a “Wait for Interrupt” instruction. This stacks the registers and then waits for
an IRQ (if the interrupt mask bit in the CCR is not set) or an NMI interrupt to occur,
or for the system to be reset. Unless an external interrupt is received, the program will
be suspended forever.

_ HAI
tInherent
dlnterrupt

Op = Dx3E

Cycles 2 9

VYector € {0xFFF8, OxFFFC, OxFFFE}
I_.=0 = Vector # OxFFF8

There is a *Return from Interrupt” instruction. The registers are all restored from the
stack. The memory contents are left unaffected. The CCR is loaded from a memory
byte on the stack but the individual bits are not subsequently affected by the
instruction.

~ RTI .
$inherent
EHemory
Op = Ox3B
Cycles = 10
BReg = { CCR v~ Hem{Reg{SP)+1),
B + Mem(Reg{SP)+2),
A Mem{Reg(SP)+3),
X, 3 Hem(Reg(SP)+4),
X+ Hem(Reg{(SP)+5),
PC, ¥ Hem(Reg{SP}+B),
PC_ — Nem{Reg(SP)+7),
SP — Reqg(SP)+7 }
8CCR = &
]

The 6800 includes the following miscellanecus instructions:

HiscOp & NOP ¥V RTS V SHUI ¥V UAT ¥ RTI
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8. Overall operation

Op-codes which have not so far been specified are considered illegal. Thestate of the
system after the execution of such an op-code is undefined.

IllegalOp & AMBRO0 | Hode = Illegal

This specification could be tightened i more were known about an illegal instruction.
For example, at present this specification allows the contents of the registers and RAM
to be entirely changed after an illegal instruction. If more information were available,
predicates could be added to this schema.

The following groups of legal instructions discussed in previous sections may be
executed by the 6800. We project the (change of} state of the 6800 since we are not
interested in any of the temporary components defined in each of the individual
instruction schemas for the convenience of the specification.

LegalOp =
{ AccHamdp ¥ IndexOp ¥ BrenchOp ¥ CCROp ¥ MiscOp) I 816800

The system has three possible sources of external interrupt:
ExtInterrupt & (IRQ V NHI ¥ Reset) | Mode = Interrupt

The priority of external interrupts bas not been defined above (ie. if two interrupts
occur simultaneously either could be serviced first) since the documentation used [8,9]
did not make any ordering clear. Such detajls could easily be included iz the formal
definition of the 6800 by including the status of the external interrupts as part of the
state.

Each operation execution of the 6800 consists of the execution of an instrction (legal
or otherwise) or an external interrupt:

Instruction 2 IllegalQOp ® LegalOp

A

Exec £ Instruction V ExtInterrupt
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When the 6800 is started, a sequence of such operations is executed depending on the
contents of memory and (non-deterministically in this specification) on the occurence of
external interrupts.

Given the specification of each of the instructions, it is possible to consider sequences of
instructicns and prove (in the absence of any external interrupta) properties of such
sequences. For example, often a decrement instruction is followed by a conditional
branch instruction at the end of a loop. We could prove the following properties of
such a construct:

DEXBNE & DEXFANMGRGO 3 BNEFAMBS0O

DEXBNE F Reg{X}#1 => Reg’(PC) = (Reg(PC)+3)tMem(Reg(PC)+2)
DEXBNE F Reg{X)=1 = Reg’(PC) = Reg{PC}+3
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7. Conclusion

The instruction set of the Motorola 6800 microprocessor has been formally specified.
Enough experience haa been gained so that more complicated ard modern
microprocessors 8uch as the 68000 family could be specified i a similar manner.
However such processors would require a larger document and more workin order to
cover them fully.

The specification of the instructions have been factored out using framing schemas to
reduce the overall length of the specification given here. If Z where to be used to
present an instruction set in the form of a manual, then it is anticipated that each
instruction would be allocated at least a page with an expanded schema allowing easy
reference for the instruction on that page alone. A possible example layoutis shown in
Appendix A.

Z has proved an excellent tool for specifying a microprocessor instruction set. The
length of the specification is very favourable with the more informal methoda currently
used for instruction set documentation in industty and elsewhere. Not only that, but we
also gain a means of formally reasoning about the properties of the instruction set.
This could prove to be invaluable, especially at the design stage. In the future,
computer-based tools should be available to check consistency and give assistance with
proofs. It is to be hoped that manufacturers will adopt such methods in duecourse.

8. Acknowledgements

Thank you to the developers of the 2 specification language at the PRG and the
inventors of the 6800 microprocessor at Motorola. Carroll Morgan, Tim Gleeson and
Brian Monahan at the PRG provided helpful comments on early drafis. Ruaridh
Macdonald at RSRE, Malvern and Stephen Murrell at the University of Miami also
gave some useful suggestions. Steve Heath of Motorola, UK and Rajit Chandra of
Intel, California commented on the paper from a manufacturer’s point of view. Roger
Gimson, Karen Paliwoda, Stig Topp-Jorgensen and Bernard Sufrin at the PRG kindly
checked later drafts.



60

5.

Microprocessor Inatruction Set

9. References

Hunt, W.A. “FMB501: A Verified Microprocessor®, Techunical Report 47.
Institute for Computing Science, The University of Texas at Austin, (1986).

Sufrin, B. A. {Editor) “Z Handbook”, Draft 1.1, Programming Research Group,
Oxford University, (1986).

Spivey, J.M. “Understanding Z: A Specification Language and ita Formal
Semantics®, DPhil Thesis, Programmieg Research Group, Oxford University,
(1985).

Spivey, J. M. ®The Z Library - A Reference Manval®, Programming Research
Group, Oxford University, (1986).

Woodcock, J. “Structuring Specifications - Notes on the Schema Notation?,
Programming Research Group, Oxford University, (1986).

King, 8., Sgrensen, 1., Woodcock, J. *Z: Concrete and Abstract Syntaxes®,
Verdion 1.0, Programming Research Group, Oxford University, (1987).

Hayes, 1. J. (Editor) “Specification Case Studies”, Prentice-Hall International
Series in Computer Scieace, (1987).

*“M6800 Microprocessor Programming Manual?, Moiorola Semiconductor
Products Inc., (1975).

“M6B00 Microprocessor Iustruction Set Summary®, Motorola Microcomputer
Applications Engineeriag.



Microprocesgor Instruction Set 61

Appendix A

Example manual pages

An example layout for two instructions in a 6800 microprocessor inatruction set manual
are given overleaf. It is suggested that each instruction should be given a page like this
in such a manual o allow quick reference for a particular instruction without the
necessity for cross reference, once the framework of the specification has been
assimilated by the reader.
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Branch if Greater Than sero BGT
Operation
~ BGT .
AHBB00
Cond : Bit
Op = Ox2E
Mode = Relative
NBytes = 2
Cycles = 4
Cond = chf(NCEchc)
Cond = @ = SReg=0
Cond = 1 =» SReg = {PC ~> Next+HMem{Reg(PC)+1 )}
SCCR = o
&Mem = B
]
Description

Causes abranch if 7 is set or one of N and ¥ {but not both) is set.

If the BCT instruction is executed immediately after execution of any of the instructions
CBA, CHP, SBA, or SUB, the branch will occur i and only if the two’s complement
namber represented by the minuend (i.e. accumulator A or B contenls) was greater
than the two's complement nunmber represented by the subtrahend (i.e. memory
contents),

Only the PC is affected. If a branch occurs, then the PC is updated with the relative
offset, otherwise the program procedes to the next inatruction as normal.
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Jump to Subroutine JSR
Operation
_ JSR —_

A6 800

(Op = OxAD

Rode = Indexed

NBytes = 2

Cycles = 8

EReg = { PC = Reg(X)*Mem{Reg(PC)+1}),
5P +>» Reg(SP)-2})

v

{0p = OxBD
Mode = Extended
NBytes = 3
Cycles = 9

8Reg = { PC; » Mem(Reg(PC)+1),
PC_ +> Mem(Reg{PC)+2),
SP > Reg{SP)-2})

$C(CR=19
8Hem = { Hem(Reg(SP)-1}) ~> hi{Next),
Mem{Req{SP)}) +> lo{Next} }

Description

The program counter is incremented by 2 or by 3, depending on the addressing mode,
and is then pushed onto the stack, eight bits at a time. The stack pointer points to the
next empty location on the atack. A jump occurs to the instruction stored at the
numerical address, obtained according to the addressing mode.
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Appendix B

Mathematical and Schema notation

A glossary of the Z mathematical and schema notation used in this monograph is
included here for easy reference. Readers should note that the definitive concrete and
abstract syntax for Z is available elsewhere [5].



Z Reference Glossary
Mathematical Notation
1. Definitions and deelarations.

Let x, x, be identifiers and let T, T, sets.

[Ty Tz]1  Introduction of generic sets.
LHS 2 RHS Definition of LHS as
syntactically equivalent to RHS,
T = xy |le cee Ix,
Data type defmition.
x: T Declaration of x as type T.
nyt Tﬁ wpr Top oo 4 Xyt T
List of declarationa.
cer oo %t T

n

X, Xz,
8 xpiT; 2T ... 5 x0T

n

2. Logle.

Let P, Q be predicates and D declarations.

- P Negation: ®not P”,
Pal Conjunction: P and Q°.

Pva Disjunction: P or Q™
a=~(~Pa -0).

P = Q Implication: *P implies 0® or
“HP then Q™ &-Pv0Q

P +«=+ Q0 Equivalence: °P is logically
equivalent toQ™
c(P=+0Q) A(T=*P).

true Logical constant.

false 2 -~true

¥ x: T+ P Universal quantification:
“for all x of type T, P holds”.

I x: T+ P Existential quantification:
“there existsan x of type T such
that P”,

3, x : T « P, Unique existence:
*there existsa unique x of type
T such that P.
2 (I x: T+ P A
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-'(3.__,:T l g#x hd Py)).

¥ xl:Tl: XZ:TZ; : xn:Tn « P
“For all »; of type Ty,
%, of type To,. . ., and
x, of type T, P holds.”

ERTERPEEE P28 PH iox: T« P
Similar to V.

EIE SRR PEA P ; x:T o P
Similar to ¥.

YVDIP-«Q a{(vD-P=0qQ).
ADIP -0 & (3D +«PaQ).
D+P Theorem: @ + ¥ D - P,

3. Seta,

let S, T and X be sets; t, t, terms; P a
predicate and D declarations.

ty = t; Equality between terms.

t; # tz Inequality: & ~(t; = tp).

t €5 Set membership: “t ia an element
of 5™,

te5S Non-membership: ¢ ~(t € S).

] Empty set: & { x:X | false }.

seT Set inclusion:
& (Vx:5 + x€eET),

ScT Strict set inclusion:
& SecTaseT,
{ty, tz ... . t,} Theset

containing ty, ty, ... and t .
{x:T 1P}

The set containing exactly those

x of type T for which P holds.

(ty, ta .., b)) Ordered n-tuple
oft,t, ... and t .
Ty % T, ... xT  Cartesian product:

the set of all n-tuples such that

the kth component is of type T .
{xq:Tys xo: T o0 5o x 2T | P}

The set of n-tuples

{xq, %3, ..., x%,} with each

x, of type T, suchthat P holds.
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{DV1P <t}
The set of t's guch that given
the declaratione D, P holds.

{D+t}a {DI true + t}.
PS Powerset: the get of all subsets
of 5.
P S Non-empty powerset:
P;S 2 PS \ {@}.
FS Set of {inite subsets of S:
g {T: P S | Tisfinite}.
F, 5 Non-empty finite set:

F,5 a FS \ {g}.

snT Set intersection: given 3, T: P X,
2{x:X | x€5 A x€T}.
SuT Set union: given 5, T: P X,
S{x:X | x€S v xe€T}.
SANT Set difference: given S, T: P X,
S{x:X ] x€5 A x€T}.
n ss Distributed set intersection:
given 55: P (P X),
@ {x:X | {¥5:55 ¢« x€5)}.
U S5 Distributed set union:
given 55: P (P X),
B {x:X ]| (35:95 « x€5)}.
asS Size (number of diatinet
elements) of a finite set.
ps Arbitrary choice from a set.
4. Relations.

A relation is modelled by a set of ordered
pairs hence operators defined for sets can
be used on relations.

Let X, Y, and 7 be sets; x: X; y: Y; and
R: X & Y,

X & Y  The set of relations from X to Y:
& P (X xY).
x Ry x is related by R toy:

2 (x,y)€R. (R isoften
underlined for clarity.)

x =y

{1y %Py,

dom R
ran R

Ry R,

RyoR,
R-l
idX

Rk

RI

R{S)

5 4R

S 4R

RPT

RPT

a (x, y).

e angn}
The relation
{(xpuy). o0 L%y}
relating x; toy;, ., and
x boy,.

The domain of a relation:

& {x:X | 3y:¥Y » x R y}.

The range of a relation:

@ {y:¥ | I3x:X * xRy}

Forward relational composition:

givenR;: X < Y; Ry: Y& Z,

2 {x:X; z:Z | Jy:Y «
xRyyAryRz}.

Relational composition:

&R, s Ry.

Inverse of relation R:

[3 {g:Y; x:X | xR g}.

Identity function on the get X:

2 {x:X = x—x}.

The relation R composed with

itself k times: given R : X « X,

ROG id X, R*“! a R* o R.

Reflexive transitive closure:

alq{n: N+ R"}.

Non-reflexive transitive closure:

€U {n: N; - R"}.

Relational image: given 5: P X,

@ {y:¥ ] 3x:5 + xRy}
Domain restriction to 5:
given S: P X,

@ {x:X;y: Y| x€5S A xR y}.
Domain subtraction:

given 5: P X,

@ {X\S) 4R.

Range restriction to T:

given T: P Y,

@ {x:X;y:Y | xRy A yeT}.
Range subtraction of T:

given T: P Y,

aRDP (Y NT).



5. Functiona.

A function is a relation with the property
that for each element in ite domain there is

a unique element in its range related to it.

As functions are relations all the operaiors
for relations also apply to functions,
X Y  Theset of partial functions from
Xto¥:
Q@ {f: XY | ¥x:domf+
(3 u:Y-x fuyh
The set of total functions from
Xto¥:
@ {f:X=+Y [ dom f =X}
The set of partial injective (one-
to-one) functions from X to Y;
a {f:X+Y|{VYy:ranf-
(3 x: X+ fx=y)}.

The set of total injective
functions from X to ¥:
@ (X Y) n (X—=Y).
The set of partial surjective
functions from X to Y:
S {f: XY | ran f=Y]}.
The set of total surjective
functions from X to Y:
& (X-Y) n(X—=Y).
The set of total bijective
(injective and surjective)
functions from X to Y:
& (X—=2Y) n (X>Y),
The set of finite partial
functions from X to ¥:
g {f: XY |

feF (xxT}
~8x-2 Partial functions,
—>+—#>» Total functions.
k-8 Finjte functions.
f, ® f, Functional overriding: given
fi. fa: X0Y,
@ (dom f, 4 f{) U f,.
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f_ Prefix function (default).

_f_ Infix function (often undertined
for clarity).

_f Postfix functicn.

ft The function f applied to t .

f{t) s ft.

(Ax:X | P+« t) Lambdaabstraction:
the function that, given an
argument x of type X such
that P holds, the result is t .

@ {x:X | P »xrt }.

(s Ty ixt T [P e t)
& {x:Tys oo sx:T | P
(%, ..., x) = t}.
6. Numbera.

Let m;, n be natural numbers.

N The set of natural numbers
(non-negative integers),

N, The aet of strictly positive
natural numbers: & N\ {0}.

F 4 The set of integers {positive,

zero and negative).

succ n Successive ascending natural
number,

pred n  Previous descending natural
pumber: & succ .

m+* n Addition: & suec” m.

m-n Subtraction: @ pred” m.

m%*n Multiplication: & {_+ m)" 0.

m div n Integer division.
m mod n  Modulo arithmetic.
m Exponentiation: & (_%*m)" 1.

ms<n Less than or equal, Ordering:
_S_ & suce".
m<n Less than, Strict ordering:
@ mE<nAm#En,
m=n Greater thar or equal: 8 ngm.
m>n Greater than: @ n<m.
m..n Range: @ {k:N{[msk Aksgn}.
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min S

max S

Minimum of a finite set;
for S: Fy N,

mnS €5 A

{¥x:5 » x > min S).
Maximurm of a finite set;
forS : £ N,

mx S €5 A

(¥x:5 + x € max 5).

7. Sequences.

Let a, b be dlements of sequences, A, B be
sequences and m, n be natural numbers.

seq X

<
seq;, X

<ay, ...

<91. -

head A

last A

tail A
front A

rev <a,,

The set of sequences whose
elements are drawn from X:
a{A:N=mY |

dom A = 1..#A}.
The empty sequence B.
The set of non-empty sequences:
& seq X \ {O}

, ag

a2 {1—a,, ., nHa )
RIS AN T i
Concatenation:

& <ay, ..., &, by, ..., b2,

QTA=ATO = A

The first element of a
non-empty sequence:

A¥ & = head A = A(1).
The {inal element of a
non-empty sequence:

A2 O = Jast A = A(HA),
All but the head of a sequence:
tait(<x> TA) = A.

All but the 1ast of a sequence:
front (AT GOY = AL

8, ..., 80 Reverse:
@a<a, ..., 8z 82,

rev O = O.

JAA Distributed concatenation:
given AA : seq(seq(X)),
a (D™ TAA{HAA),
SO = O
$/AR Distributed relational
composition:
given AR : seq (X & X),
2 AR(1) s ... 3 AR(HAR},
1 /O = id X,
®/AR Distributed overriding:
given A : seq (X # Y},
& AR{1) @ ... @ AR(uAR),
o/ O = @
squash f Convert a finite function,
f: N-# X, into a sequence by
squashing its domain. That is,
squash @ = <,
andif f # @ then
squash f =
<F(i}> " squash({i}q f)
where i = min{dom f}.
S1A Index restriction:
& squash(S qA).
ALNT Sequence restriction:
& squash(A P T).
disjoint AS Pairwise disjeint:

given AS: seq (P X},
8 (V i, jrdomAS ¢+ i#j
= AS( i) NAS(j) = B).

AS partitions S

AinB

& disjoint AS A
U ren AS = 5.
Contiguons subsequence:
& (3C,D: seq X -
CTATD = 8).




Schema MNotation

Axiomatic definition: introduces global
declarations which satisfy one or more
predicates for use in the entire document.

declaration(s)

predicate(s)

Schema definitjon: a schema groups
together some declarations of variables and
a predicate relating these variables. There
are two ways of writing schemas: vertically,
for example

S 1
x : N
y : seqg N
x < #y

or horigontally, for the same example
S & [ x: N yr seq N | xs#y ].
Use in signatures after ¥, X, {...}, etc.
(VS » y # O) & (¥x:N; y: seq N |
xshy * yFro).

Schemas as types: when a schema name S
is used as a type it stands for the set of all
objects described by the schema, {S}. For
example, w : 5 declares a variable w with
components x (a natural number)and y (a
sequence of natural numbers) such that
x € By,

Projection functions: the component names
of a schema may be used as projection {or
selector) functions. For example, given
W3S, W.xis m's x component and m.y is

its y component; of course, the following
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predicate holds: W.x < #wu.y. Additionally,
given w : X = S, w§(AS5.x) is a function
XN, ete.

as The tuple formed from =a
schema’s variables: for example,
8S is (x,y). Where there is
no rick of ambiguity, the © is
sometimes omitted, so that just
“S" is written for “(x, y) ™.

pred S  The predicate part of a schema:

eg. pred S is x g#y,

Inclusion A schema S5 may be included
within the declarations of a
schema T, in which case the
declarations of 5 are merged
with the other declarations of T
(variables declared in both 5
and T must be of the saame type)
and the predicates of S and T
are conjoined. Forexample,

%, z: N
y : seg N

x.’g#ghz<x
Il

SiIP The schema S with P conjoined
to its predicate par. E.g.,
(S| x>0) is

[ x:Niusseq N | xstty A x>0 ].
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S:D

S[new/old]

Decoration

Glossary

The schema S with the
declarations D merged with the
declarations of 5. For example,
(5:z: N)is
[x,z:N; y:seq N | xguy ].
Renaming of components:
the schema S in which the
component old has been
renamed to new both in the
declaration and at its every free
eccurrence in the predicate. For
example, S[z/x] is
[ z:N;s y:seq N | z < #y ]
and S[u/x, x/y) is
[ ysN; x:seq N | y < ®x |,
In the second case above, the
rnaming Is simultaneous.
Decoration with subscript,
superseript,
systematic renaming of the
variables  declared in  the
schema. For example, S’ is

prime, etc,;

[x*:M; y’:seqN | x‘suy’],
The schema S with its predicate
part negated. Eg., -$ is

[x:N; y:seq N | —~{xsity)].
The schema formed from
schemas S and T by merging
their declarations (see inclusion
above) and conjoining {and-ing)
their predicates. Given T 2 [x:
N: z: PN | x€z],S A Tis

x : N
y: seq N
z: PN

x&ﬂgﬁxﬁz

SYT

The schema formed from
schemas S and T by merging
their declarations and disjoining
{or-ing) their predicates. For

example, S ¥ T is

x: N
y: seq N
z: PN

x € HY Vv x € Z

]

The schema formed from
schemas S5 and T by merging
their declarations and taking
pred S =% pred T as the

predicate. Eg,,5 = T is

x: N
y : seq N
z: PN

X € By = x € 2

formed from
gchemas S and T by merging
their declarations and taking
pred 5 e pred T as the
predicate. E.g.,5S & T is

The schema




5 \(vl, PR Vn)

Hiding: the schema S with the
variables v, v,, ..
hidden: the variables listed are
removed from the declarations
and are existentially quantified
in the predicate. Eg.,5 \ x s
[y:seq N | (Fx:N » xstry) ).
(We omit the parentheses when
only one wvariable is bhidden.) A
schema may be specified instead
of a list of wvariables; in this case
the variableas declared in that
schema are  hidden. For
example, (S A T)\S is

., and v,

z: PN

{3 x: N; y: seqN -+
x € 8y A x € Z)

S P vy var ooy Vo)

Projection: The schema S with
any variables that do not occur
in the list vy, v, ..., v
hidden:
from the
existentially quantified in the
predicate.

Eg,(SA TP (xy)is

n
the variables removed

declarations are

¥
x : N
y : seqN
(3z: PN -
X § By A x € 2)
t

As for hiding above, we may
projgct a single variable with no
parentheses or the variables in 2
schema.
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The following conventions are used for

variable names in those schemas which
represent operations - that is, which are
written as descriptions of operations on

some state:

undashed

dashed (“" ")
ending in “?°
" outputs from (results of)

ending in

The following

apply to

state before,
state after,
inputs to {arguments for),

the operation.

schema operations only
schemas following the above

convenbions.

pre S

post S

Precondition: all the state after
components ({dashed) and the

outputs (ending in “!1®) are
hidden. E.g. given
[

x?, s, 8°, y': N

s* =sx? Ayl =g

1
pre Sia

1
x?, s : N

(3s’, y: N~

x

S =5—x?l\g!=5)

Postcondition: this is similar to
precondition except all the state
before componenis {undashed)
and inputs {ending in *?”) are
hidden. (Note  that this
defmition differs from some
others, in which the
“posatcondition” is the predicate
initial state,
inputs, outputs, and final state.)

relating all of
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S5eT

Glossary

Overriding:

(S A-preT) VT,

For example, given S above and
T

L]
x?, 5, 37 : N

s <« x? Ag’ =3

S5eTis
1
x?, 8, s', y' + N
(s’ = sx? Ayl =54
~{(3 s': N«
5 < x? Ag’ =5s))
v {s <« x? A s’ = 3)
1

Because (given the deciaration
s: N above):

{(Is: N = &8'=s A 5<x?) =
{3 € NAS<x?) =

5 < X?,

the predicate can be simplified:

1
x?, s, 8', y! ¢+ N
(s" =s5-x? Ayl =3
As 2 x?)
v
(s < x? A 5" = s)

)

Schema if we
consider an intermediate state
that is both the final state of the
operation S and the initial state
of the operation T then the
composition of S and T is the
operation which relates the
initial state of S to the final
state of T  through the
intermediate state. To form the

composition:

composition of S and T we take

S>> 7

the state-after components of 5
and the state-before components
of T that have a hasename" in
common, rename both to new
variables, take the schema which
is the “and” {A) of the resulting
and hide the new
variables. Eg.,S s T is

schemas,

1
x?,s, s’, y! : N
(359 : N.
sy = s=x A yl = g A
5 < %7 A8’ = sg)
1

* basename is the name with

any decoralion (%'", “!», 2%,
etc.) removed.

Piping: this schema operation is
similar to schema composition;
the difference is that, rather
than identifying the state after
components of S5 with the state
before components of T, the
output components of S {ending
in ®!®) are identified with the
input components of T (ending
in “?”) that have the same
basename.

The following conventions are used for
prefixing of achema names:

%45

change of before and after state,
no change of state,
framing schema for definition of
further operations.

For example

AS & S A S’

=5 & AS | 85 = 85’
¢ & AS | y=y’
Spp & 5 | x* =0






