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The Pormal SpecificaUon of a
 
Microproeessor Instruction Set
 

Jonathan Bowen
 

Abstract 

The specification language Z is used to define a microprocessor based s)'Btem in a 
fonnal notation. The Motorola 6800 S-bii microprocessor is chosen as an example. Its 
simplicity allows the entire instruction set to be covered. Memory configuration and 
interrupts are also included. The use of a formal description language allows the 
possibility of verification of the instruction set. Additionally I the use of Z combined with 
infonnal text is sufficently readable for the specification to be used for documentation 
purposes. 
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1. IDtrodudiou 

Currently, computer instruction sets are normally documented using tables, 
semi-fonnal fonnulae and informal text. This monograph attempts to show that they 
may be descdbed just a.s ea.sily and with more precision using formal specification 
methods. Microproc.essol'8 have been formally specified previously [lJ. Often these 
specifications have been difficult to understand since they have not been designed for 
documentation purposes. The specification given here concentrates on presenting a 
specification which is readable by humans a.s well as computel'8. 

In this monograph, the specification language Z 12-n developed at the Programming 
Research Group, is used to define the instruction set for an 8-bit microprocessor, the 
Motorola 6800. As well a.s the instruction set, interrupts and memory configuration are 
a.lso covered. Readers not familiar with the 6800 a.re referred to its progra.mming 
manual IS] or instruction set summary card 191. These may also be used as acompa.rison 
with the description given here. 

It was felt that a complete microprocessor instruction set should be a.ttemp\ed in order 
to detect any possible weaknesses in the use of Z for such a. task. The relalively simple 
6800 processor was chosen because this allowed the entire instruction eet of a real 
microprocessor to be specified. A processor such a.s one of the 68000 family was 
deliberately not selected for a.n initial attempt a.t such a specification sin<e its greater 
complexity would either require a good deal more workJ or for many features not to be 
included. 

Some of the mated,d covered here is generally useful for any micropro:essor based 
system. Hence a.ny subsequent specifications could draw on this groundwork. 
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2. Basic Coneepta 

2.1 Word organisation 

Machines such as microprocessors generally manipulate bits. These are organised inkl 
non-zero length finite words. By convention, bit positions are numbered (rom zero up. 

Bit e ( D. 1 }
 
t.lord Q { I-l : N • Bit I _1-1 > 0 1\ dam H = O.......-1 }
 

Often the least significant bit (LSD) and most significant bit (MSB) of a word are of 
particular interest. 

L5B, M5B !-lord ...... Bit 

V	 I-l : lJord 

LSB I-l = I-l 0 1'1 

M58 I-l = I-l aw-l 

Each bit pdtern in a. word uniquely maps to a particular numerical value. 

val : lJord ~ N 

Vw:t.lord 
.1-1 = 1 ~ vel H = lSB I-l 1'1 

.1-1 > 1 ~ val H = LSB I-l + 2 * va 1(suec aw) 

It is sometimes useful to set all of the bits in a word to a particular value, whatever 
their previous value. 

set : (I-lord x Bit) -+ I-lord 

Viol: !-lord; b : Bit· 
w "-".t b = wl(D ..... b,l ..... b} 
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A word contains its maximum unsigned value when all the bits are set to l's.
 

maxvel : Uord -+ N 

Vw:Uord
 
maxval w :: val (w ~ 1)
 

For convenience, we define a function to generatoe a word of parlicular size and value: 

wrd : Nt -+ N --t Uord 

V size: Nt: value: N: w Uord ­
wrd size velue =w C9 

IIw = s i ZB I't, 

vel w :: value CD!2.d. succ(maxval w) 

Sometimes it is useful to concatenatoe words together since processors can often handle 
multiples of some base size of word.. These two words may be of differing sizes for 
completoe generality. 

(Uord x Uord) --t Uord 

V wI. Wz : Uord • 
1011'-' Wz :: w U pred tha

, Wzt 

The number of bits in the resulting word is the sum of the number of bits in each of the 
words being concatenated: 

.. V w • Wz : Uord • lI(w1 -'w ) :: IIW I + IIWZt z 

The high and low halves of a word may be projected using two functions. These 
projections CaD be concatenated to form the original word. 

10. hi : Uord -+ Uord 

Vw:Uord· 
10(H) = (0 .• ("H<li.Y.2)-1)4 H , 
hi (w) :: succC'I.,. d.J.:i. ZJ. w 

.. V w: Uord· w = lo(w) ..... hi(w) 
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2.2 Bitwise functions
 

Bitwise logical functions involve individual bits. A bit may be complemented:
 

.... : Bit >* Bit 

• = (0.....1. I .....O} 

We can al!o AND, (inclusive) OR and (exclusive) XOR pairs of bits by providing the 
relevan t truth table in each case: 

_.­
-+ -' 

• (Bit)( Bit) -+ Bit 

.=«0.0) 0. (0.1) 0. 0.0) 0. (l.1) 1} 
+ = «0.0) 0. (0.1) 1, (1.0) 1, (l,1) 1} 
.. = «0.0) 0. (0.1) 1. (1,0) 1. (l.1) 0} 

Most microprocessors allow bitwise Jogical operations on words. For instance, a word 
may be (l's) complemented i.e. all 0 bits are changed to l's and all lis are changed to 
D's. This is sometimes referred Lo as a bitwise logical NOT operation. We can upgrade 
the definition for a bit to a function which applies to a word: 

.... : ~ord >* Word 

'fw:~ord 

"""'=1011'" 

Many bitwise operations take pairs of bits as input (e.g, those described above). 

UordPair Q 

{ H : N -4& (B j t JC Bj t) I 11101 > 0 '" dam H O......-1 } 

Dair _ 

V HI> HZ : Word • 

HI I2Il..i..c. H2 

{ i : N liE dom HI n dom '"'z • i ...... (HI i. HZ i)} 
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The corresponding pairs of bits in a pair of words may now be ANDed., ORed, and 
XORed, again by upgrading the equivalent bit functions: 

_. - ­
-+ ­

_e_ (~ord x ~ord) ~ Uord
 

V	 loll_ H2 Uord • 
H1- H2 = (H1IlD.ic.WZ)I(_e_) 11 

H1~ HZ (H1= HZ" <- + _) A 
loll- HZ = (H1= HZ)' <- e_) 

2.3 Shift functions 

A word may be shifted left or right. In this case, the bottom (LSB) or top (MSB) bit of 
the word can attain a certain value, depending on the type of shift (e.g. arithmetic, 
logical or rotation). 

~ _ : (Uord x Bit) ~ Uord
 
~ : (Bit x Uord) ~ Uord
 

V	 H : Uord; b : Bit • 
H« b = ({sHH pred'H) U {O .... h} A 
b ~ 101 = {IH-l H b} U (SUCCIH) 
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2.4 Arilhmetie tunetions 

Microprocessors normally allow arithmetic operations. For example, a word may be 
incremented or decremented. The result wraps around if there is overflow or underflow 
in each c;u;e. 

inc. dec: Word ~ Word 

v ... : Word 
inc w :::: wrd #101 ($ucc. {maxve1 H H O}) (va1 w) "­

dec H :::: Hrd #1-1 ({O .....-+ msxval H) upred)(val w) 

IncrementiDg and then decrementing a word (or vice versa) leaves it unchanged. 

Additionally one is the inverse of the other. 

.. inc J dec:::: dec 8 inc:::: id[J.lord] 

.. dec:::: inc-1 

This may be generalised for addition and subtraction by repeatedly incrementing or 
decrementing a word: 

+ 

(Word)( N) -+ Word 

v w : Word: i : N 

w+i=inc'wll. 

H - i :::: dec i H 

Similarly, a second word, possibly of a. different size, may be added to or subkaded 

from a word. The size of the resulting word is determined by the first word. 

+ 

(Word x Word) -+ J.lord 

V wI' w2 : Word • 

w1+ w2 = w1 + (val w2) 1\ 

w1- w2 = wI - (val w2 ) 
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Some operations can return the 2's complement (negation) of a word:
 

- : L.lord >* L.lord 

Vw:Uord­
-~ = (~nlO)-~ 

Note that the l's complement (bitwise logical NOT) and 2's complement (negation) of a 
word are related as follows: 

...	 Viol: L.lord - -101 = inc(""W) 

Sometimes it. is useful to "sign--extend" a word jnto another (normally longer) word. 
This involves setting any extra. bits to the value of the most significant bit (the lII:sign" 
bit) in the first word. The rest of the bits in the resulting word are set to the values of 
the equivalent bits in the first word. 

_signext _: (L.lord x L.lord) ~ L.lord 

V	 HI' wz: L.lord • 
"'1 sjgoext Wz = (Wz 3.l(MSB 1011» .1011 

A word can be used as a signed relative offset. The value of the top bit determines 
the direction of the offset. 

_ t _ ; (L.lord)( L.lord) ~ L.lord 

V loll_ wz: L.lord •
 

WIt Wz = WI + (wz signext WI)
 

This is particularly useful for branch instrudions which usually allow a relative branch 
forwa.rds and backwards. 
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2.5 Test conditions. 

Most microprocessors contain a status word which contains bits related to the results of 
previous operations. Different operations may affect different bits. Sometimes different 

opera.tions affect the same bit in (possibly subtly) different ways. 

Often we wish to test whether a word has a zero value) returning a '1' if it has and a. '0' 
if not: 

zero: Word -+ Bit 

v w : !.lord • 

ran w = {O} =* zero w = 1 A 

ran w ~ {O} ~ zero w = 0 

Conversely! we may wish to test whether a word contains alII's, returning a. '1' if it 
does and 3. 40' jf not. This test ca.n not usually be performed by microprocessors 
explicitly (unlike the test for zero above). However it can still be useful for the 

specification of other test conditions (see later). 

ones: Word -+ Bit 

v w : Uord 
ones w = zero(~w) 

Testing for a negative value can be performed by most microprocessors, returning a'I' 

i! it is negative and a 10' if not. Negative words have the top "sign" bit set. Hence this 
function can be performed by the previously defined MSB function. 
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2.6 Hexadecimal notation 

Most microprocessor documentation uses hexadecimal values for op-<:odes, addresses 
and so forth, since this notation may easily be converted to the corresponding bit 
pattern. Each digit is the equivalent of four bits. Hexadecimal digits are drawn from 
the set of characters (CHAR) and consist of the decimal digits '0' to 'g' and the 
letters 'A' to 'r·. Each of these hexadecimal digits uniquely maps to a numerical 
value: 

[CHAR] 

he. , CHAR 1+ N 

hex = {"D· O. ·1· 1. '2' 2, ·3· 3, 
·4' 4. ·5' 5. ·6· 6. '7' 7. 
·s· S. ·9· 9. 'A' 1O. ·S· l1. 
'C' 12. 'D' 13. 'E' 14. 'F' IS} 

We can define a function to handle i1 sequence of hexadecimal digits (Le. a 
hexadecimal number). We shall employ the widely used notation of prefixhg Ox to the 
hexadecimal string. 

O. , (seq CHAR) 1+ N 

Ox<> = 0 
V	 9 : seq} CHAR I ran s ~ dom hex • 

Oxs = l6*Ox(fronts) + hex(lests) 

An alternative posibility would be to postfix the letter H (Le. to define a similar postfix 
function, _H). 
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3. State 

We shall consider the state of a 6800 based system in three part9, covering static 
conditions and then changes in state in each case: 

1. Memory 
2. Registers 

3. System clock 

We shall then combine these and consider changes in state of the entire system (as 
defined above) when an instruction is executed or an interrupt occurs. Finally, the 
state of the system when it powers up is detailed. 

The 6800 operates on 8-bit bytes of data and 16-bit addresses: 

Byte a {H l.Jord OH 8 }
 
Address a {H I-lord OH 16 }
 

The following functions convert values to data bytes and addresses respectively: 

data Q (Hrd 8)
 

addr a (Hrd 16)
 

Some numerical values have known ranges. In particular, some numbers will fit into a 
nibble (4 bits), a data byte (8 bits) and a word address (16 bits). [t is useful to define 
these ranges. 

Value1 a O.. 2'-1
 

Values a O.. 28-1
 

Va 1ue16 a O.. 2 '6_1
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3.1 Memory 

The addrees space of the 6800 (and many other microprocessors) may be considered as 
a totaJ function from Addresses to Bytes. We shall assume tbat ROM (Read Only 
Memory) and RAM (Random Access Memory) make up the available real memory. 
These two areas do not overlap. 

Memory i 

Mem : Address -+ Byte 
ROM, RAM, F Addres. 

RAM n ROM = ~ 

The memory may be updated by operations such as instructions and interrupts. In this 
case, the ROM and RAM areas (i.e. their domains) do not change. The RAM contents 
may be partially updated by an instruction or interrupt. Areas outside valid ROM and 
RAM may vary unpredictably and are thus not defined by this specification. The 
values in ROM do not vary. Only values in RAM may be updated reliably. 
Additionally, some operations do not affect the RAM contents. 

6Memory i 

Memory 
Memoryi 
6Mem : Address -++ Byte 

ROM" = ROM 
RAM' = RAM 
ROM ~ Mem' = ROM ~ Mem 
RAM ~ Mem' RAM ~ (Mem e 6Mem) 

EMemory Q !Memory I 6Mem = e 

Note that the assumptions above are not strictly true in aJI cases. For example, it is 
possible kl have software switehable banked memory. However tbey bold for the 
majority of simple systems. In practice areas outside ROM and RAM [Day be used for 
memory mapped I/O. This is not covered here since it is very system dependent. It 
could be considered separately. 
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3.2 Registers
 

The 6800 has a number of registers:
 

Regs " = A I B 
PCH I PC l 
SPH I SP l 
XH I Xl 

I CCR 
I PC 
I SP 
I X 

Most of these axe 8-bit registers: 

RegsB e {A. B, CCR, PC", PCl' SPH• SPl , XH• XL } 

Two of the 8-bit registers are general purpose accumulaton: 

Accumulator e {A. B } 

Some of the registers aN normally used in pairs, 80 that they may be used to hold 16­
bit memory addresses: 

Regs,. e {PC. SP. X } 

The 8-bit registers always contain byte values and the 16-bit registers always contain 
address values. The low and high bytes oC the PC, SP and X registers concatenate to 
fOTm 16-bit registers. The top two bits oC the CCR are unused and are always set to 1. 

Registers 
Reg : Regs -+ Word I 

RegORegsBD • Byte 
Reg(Regs16D ~ Address 
Reg(PC) = Reg(PCl ) -Reg(PCH) 
Reg(SP) = Reg(SPl ) -Reg(SPH) 
Reg(X) = Reg(Xl ) -Reg(XH) 

RegCCR 06 . .7D = {I} 
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Any of the regiliters may be updated by an instruction (or interrupt). Every instruction 
consilits of one or more bytes. (External interrupts have no bytes.) Norm~lly the next 
instruction to be Executed is the instruction following the current instruction. This ma.y 
be overridden, for example by a branch instruction (see later). Individu~l bits in the 
Condition Code Register may be updated by the instruction depending on the result of 
the operation. However the top two bits of the CCR rema.in set to I'B even if the 
instruction attempts to overwrite them. 

ARegisters 

Reg i sters 

Reg isters' 

NBytes : N 

Nex"t : Address 

6Reg : Regs ..... 1J0rd 

SCCR ,(0•• 7)'" B;t 

Nex"t = Reg(PC) + NByte. 

Reg' Reg • {PC .... Next} 

• SReg 

• {CCR .... (Reg(CCR). SCCR 

• {6....1. 7....1})} 

Sometimes an operation does not affect the 6800 registers (apart from the Program 
Counter which is automatically updated): 

:Registers S ARegisters I 6Reg =B A 6CCR =0 
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CQDditiQn~ 

The Condition Code Register bolds various single bit codes at different bit positions. 
These are the carry, overflow, zero, negative l interrupt mask and half.carry bits: 

C e o 
V e 1 
Z e Z 
N e 3 
I e 4 

H e 5 

The contentc! of the individual condition code bits are often of interest. We make the 
following definitions for syntactic brevity: 

Coo	 e (Reg CCR) C
 
e (Reg CCR) V
V"
 

Zoo - (Reg CCR) Z
 
e (Reg CCR) N
N"
 

1t : e (Reg CCR) 1
 
e (Reg CCR) H
H" 

Condition code bits often depend on the values of bits in results of operations. For the 
convenience of these specifications, we use the following short forms for i EO . . 7 , 
j EO .. IS and x E Accu"'-llator: 

x,	 a (Reg x) i 

M,	 a (Mem M) i 

R,	 a R i 

X	 a (Reg X) j
J 

RR	 a RR j
J 



3.3 System d~ 

The system conta.ins a clock which controls the timing of ~he system. This consists of a 
sequence of pulses. This may be modelled as the Dumber of clock pulses which have 
occurred since the sysLem was powered-up: 

Clock ---, 

[elk, N I 

When an instruction is executed or an interrupt occurs, it takes a certain number of 
clock cycles lo execute: 

6Clock I 

Clock 
Clock" 
Cycles: N 

Clk" = Clk + Cycles 
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3.4 M6S00 system 

The system state consists of memory, registers and a clock: 

M6800 ~ Memory ~ Registers ~ Clock 

There are various types of 6800 addressing modes. Additionally, the 6800 may respond 
to an external I nt errupt or execute an III ega 1 instruction. 

Nodes :: =	 Immediate
 
oired
 

Indexed 
Extended 
Inherent 
Relative 
Interrupt 
I II egel 

Each of these modes is detailed later. 

When an instruction is executed, the op-code is read from the nlemory location 

indicated by the current value of the Program Counter. The instruction will have a 
particular addressing mode. The state of the system will change when the instruction 

has executed: 

6"6800 , 
Memory 
6Registers 
6C1ock 

Op : Values 
Mode : Modes 

Op = val Mem(PC} 

Some operatltms do not affect the memory or registers (apart from the Program 

Counter which is automatically incremented depending on NBytes): 

E"6800 e 6~6800 A =~emory A =Registers 
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3.6 Power-up 

The clock starts from zero for convenience in this model, when the system is initialised 
(Le. powered up). It is assumed that the ROM already holds the program to be 

executed. 

Interrupts are disabled and the Program Counter is loaded from the top two locations 
in memory. Note that hexadecimal numbers are used, rather than decimal, for memory 
addresses and op-<:ode values since this is more normal (and convenient) in 
microprocessor documentation as discussed earlier. 

M6800 INIT i 

M6800' 

Clk' = 0 
Icc ~ = 1 
Reg' (PCH) = Mem'(addr OxFFFE) 
Reg' (PCL) Mem'(addr OxFFFF) 
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4. Interrupts 

When ail inlerrupt occurs, or if the SUI or UAI instructions are executed (see later), 
all the 6800 registers are saved on the stack. program control is transferred to a new 
address specified by the contents of memory at a particular vector address. The 

interrupt mask bit is set in the Condition Code Register. This is defined by a framing 
schema (denoted by lfl) which may be used in the subsequent definitions of these cases: 

41Interrupt 
6116800 
Vector: Valuel5 

6Mem = {Mem(Reg(SP)-6) ..... Reg(CCR), 
Mem(Reg(SP)-S) ..... Reg(B), 
Mem(Reg(SP)-4) ..... Reg(A), 
Mem(Reg(SP)-3) ..... Reg(XH), 
Mem(Reg(SP)-Z) ..... Reg(XL), 
Mem(Reg(SP)-I) ..... hi(Next), 
Mem(Reg(SP» ..... lo(Next)} 

6Reg = {PCH ..... Mem( eddr (Vector) ), 
peL ~ Mem(eddr(Vector+l» • 
SP ..... Reg(SP)-7 } 

6CCR= {I ..... l} 

There a.re three interrupts which roay be activated externally to the 6800 
microprocessor. An external interrupt is not an instruction read frolll memory so it 

may be considered to have a length of zero bytes. This will result in program control 
returning to the current instruction when au RTI instruction (see later) is subsequently 
executed at the end of the interrupt service routine, provided the stack is not corrupted. 

It takes a. number of clock cycles to service the interrupt and stack the registers. The 
exact number of cycles could not be found in the documentation used to fonnulate this 
specifica.tion [B,9], so it is not given here. It is likely to be of the order of the minimum 
number of cycles taken by the UAI instruction. If known, it could easily be inserted in 
the following schemas. 



The hardware interrupt (IRQ) can only be activated if the interrupt mask bit in the 

CCR is dear: 

IRU 
tInterrupt 

Icc = 0 
Vector OxFFF8 
WBytes = o 

The non·maskabIe interrupt (NMl) may be activated at any time: 

NMI 

tInterrupt 
WMI? : Bit 

NMI? = 0 

Vector 

WBytes 

= OxFFFC 
o 

When a reset occurs, the registers are not stacked and the memory is left unaffected, 
but the «reset" vector is used to restart the program in the same way as occurs at 
power·up: 

Reset i 

6116800 

EMemory 

8Reg = {PCH Mam( addr OxFFFE), 
PCl Mam(addr OxFFFF) } 

8CeR = { I ..... I } 

In conclusion, the system has three possible sources of external interrupt. Note that the 
6800 interrupt vedors are all located at the top of memory. Hence it is normal for this 
area ro be contained in ROM. 
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S. Instructions 

All microprocessors have a set of instructions which they can execute. These 
instructions can affect the registers and/or the memory using a variety of addressing 

modes l depending on the microprocessor involved. 

5.1 Adm-eBBing modes 

Many of the 6800 instructions use a selection of memory addressing modes. Each ba.6 a 
memory address (M) of an operand calculated in a manner depending on the addressing 
mode. The op-code for a given type of addressing mode is always and constant offset 

(rom the op-code for a particular base addressing mode. The 6800 Ext ended 
addressing mode may conveniently be selected for this base addressing mode. The 
corresponding op-code for a particular instruction will be known as the base op-code 

(OpBase). The value of OpBase is specified in subsequent schema.s defining specific 
instructions. 

The Dumber of clock cycles which an instruction takes to execute a\60 depends on the 
addressing mode. Again this is easily calculated from a base number of cycles for a 

particular addressing mode (CyclesBase). The number of execution cycles may be 

defined in terms of an offset from the base number of cycles in subsequent schemas. 

The infonnalion above may be combined together in a framing scheIlla for use when 
defining each of the addressing modes covered in the rest of the section: 

~ddrMode 

6116800 

" : Address 
OpBase : Val ueB 
CyclesBase : N 

We shall now define the major addres!ling modes of the 6800 as framing schemas for 
use by subsequent. achemas describing individua168lO instructions. 
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Immediate mode addressing gives the address of the byte immediately following the 
instruction op-<:ode b~: 

lIJlmmediate 
~ddrMode 

Mode = Immediate 

Op = OpBase - Ox30 

M = Reg(PC)+! 
NBytes = 3 

Cye 1esBase = 2 

Direct mode addresses are in the [iret Z56 bytes of memory. The byte following the 
op-code specifies this address) the upper byte of the address being zero: 

110 i rect 
llJAddrMode 

Mode = Direct 
Op = OpBase - Ox20 

M = Mem(Reg(PC)+1) - dete(O) 

NBytes = 2 

Cye , esBase = 3 

Indexed mode address are calcula.ted by adding the contents of the byte following the 
op-code (0-255) to the index register: 

cIlIndexed I 

tAddrMode 

Mode = Indexed 

Op = OpBase - Oxl0 
M = Reg(X) + Mem(Reg(PC)+!) 

NBytes = 2 

Cye 1esBase = 5 
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Extended mode addresses are specified Cully using the two bytes following the op-cooe, 
high byte first, low byte second: 

~xtended i 

~Addrnode 

Node = Extended 
Op = OpBase 
n = nem(Reg(PC)+2) -nem(Reg(PC)+l) 

NBytes = 3 
CyclesBase = 4 

Several or all of these addressing modes may be used by a specific instruction. Hence 
we shall combine them together into one schema. 

~ode5 e ~Immedi8te V tDirect V tlndexed V ~xtended 

There are two other addressing modes used by many instructions so these are also 
defined separately here. 

Some instructions use inherent addressing. In tbis case there is no memory address to 
be calculated. The instruction consists of a single byte op-code. 

iIIInherent i 

~ddrnode 

Mode = Inherent 
NBytes = 1 
eye 1esBase = 2 

Note that the memory address (M) is left undefined in the above framiD.g schema since it 
will never be u.sed in later specifications making use or this schema. 



27 Microprocessor Instruction Set 

Some IIbranch" instructions use relative addressing to calculate a new value for the 
Program Counter if a branch occurs. The byte following the op-code is sign-extended 
and added to the address of the next instruction. Hence a branch instruction may 
transfer program control up to 127 bytes forwards or 12B bytes backwa.rds relative to 
the stan of the instruction following the branch instruction. 

~e 1 at i ve i 

~AddrMode 

Mode = Relet ive 

Op = OpBase 
M = Next ± Mem(Reg(PC)+!) 

NBytes = 2 

eye 1 esBese = 4 

The complete instruction set of the 6800 is covered in subsequent sections consisting of 
families of related instructions as designated by Motorola [BJ. 
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5.2 Accnm.nlator and Memory instrndioDS 

This family of instructions use one or both of the 8-bit accumulators and/or a byte in 
memory. These can be further sub-divided into different types of instruction, 
depending on the allowed addressing modes. 

Inherent addressing 

Some instructions use inherent addressing and operate OD accumulator A or B only. 
The memory contents are unaffected. The instruction operation produces a byte refiult, 

R, which is used to update the accumulator. 

41SingleAcc 
41Inherent 
SMemory 
x : Accumul atar 
R , Byte 

Cycles = CyclesBase 
6Reg = {x ...... R} 

Accumulator addressigg 

Either of the accumulators may be pusbed onto or popped off the stack. These 
operations take four cycles to execute. 

tstackAcc i 

41Inherent 
l( : Accumulator 
OpBase : ValueS 

(x = A A Op = OpBase) y 

(x = B A Op = OpBase + 1) 

Cycles eyc 1esBase + 2 
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~~ addressing 

Some instructions have a single operand. They can update a memory byte by 
performing an operation on it, but only using a limited set of the available addressing 
modes: 

lIttemUpdate 
lIfIodes i
 

Operand,
 
R , Byte
 

Mode E {Indexed, Extended}
 
eye 1 es :. eye 1esBase + 2
 
Operand = Mem(M)
 
5Mem={M .... R}
 
5Reg = 0
 

These can also perform the same operation on one of the accumulators. These replace 
the op-codes which would have been used by the immediate and direct addressing 
modes not used because of the limited number of addressing modes above. 

lIlAccUpdate i 

l!ISingleAce 
Operand : Byte 
OpBase : Values 

(x = A " Op = OpBase - Ox30) v 
(x = B " Op = OpBase - Ox20) 
Operand = Reg(x) 

The last two schemas may be combined to produce a framing schema which describes 
single operand instructions with multiple addressing modes: 

lIlSingle a ~emUpdate V tAccUpdate 
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D..2Y.!2k ~ addressing 

Some instructions ha.ve two opera.nds. One is in one of the two accumulators and the 

other is extracted from memory using a. selection of addressing modes. The op-code 
base offset5 are calculated from the op-code base of the instruction which uses 
accumulator A. (OpBaseA). The value of OpBaseA is defined in subsequent schema 
definitions for specific instructions. 

tA,ccumulator 
tModes 
)( : Accumulator 
OpBaseA : Values 

(x = A A OpBase =OpBaseA) v 
(x ~ B A OpBase :: OpBaseA + 0)(40) 

These double operand instructions leave memory unaffeded and take the basic number 
of clock cycles to execute. The instruction operation produces a byte result (R). 

GJOouble 
IllAccumulator 
5Memory 
R , Byte 

Cycles CyclesBese 
6Reg = {x ..... R} 
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~ instruction fra.ming ~ 

Some instructions Eimply perform tests on a byte value, T. In this case, the memory 
and registers (apa.rt from the CCR) are left unaffected (or effectively updated with 
existing contents). The top Gsign" bit of the byte may be of particular interest. 

~Te5~ 

t/1odes 
)( : Accumulator 
T , Byte 
T7 : Bit 

SMem. {B, {M Mem(M)} } 
SReg • { B, {x Reg(x) } } 

T7 = MSB(T) 

The accumulator and memory family of instructions can now be defined using the 
framing schemas a.bove. All the instructions operate on 8-blt values in memory and the 
two accumulators. 
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Transfer instructiops 

Some instructions 8imply transfer bytes between registers and/or memory without 
modifying their contents. For example, an accumulator may be loaded from a memory 
byte. The Condition Code Register bits are updated appropriately. 

LDA I 

lWouble 

OpBaseA. = OxB6 
R = Mem(M)
 

SCCR = {N .... R,.
 
Z....-oJ zero(R). 
V .... D} 

Conversely, there is an instruction to store the contents of an accumulator into a byte 
in memory. This cannot use the immediate addressing mode. It take8 an extra clock 
cycle to execute compared to most other similar instructions (e.g. LDA). The addressed 
memory byte is updated with the result and the CCR bits are set appropriately. 

STA 
IIlAccumulator 

OpBeseA = OxB7 
Mode ~ Immediate 
eye Ies =. eye 1esBase + 1 
SMem = {M .... Reg(x) } 

SReg = 0 
SCCR = {N .... MSB(Reg xl. 

:z ....-+ zero(Reg x). 
v .... O} 
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The accumulators may be transferred ba.ck and forth: 

TAB I 

ts i ngleAcc 

Op , Ox16 
SReg , {A Reg(B)} 

seCR {N B7• 

l t--+ zero(B), 
V ..... 0 } 

TBA I 

tsingleAcc 

Op = Ox17 
SReg {B Reg(A) } 

seCR , {N A7• 

Z t--+ zero(A). 
V ..... O} 

The accumulators may be pushed on to the slack. In this Ci18e 1 the condi~ion codes are 
not affected. 

PSH I 

tstackAcc 

OpBase = Ox36
 
SMem = {Reg(SP) ..... Reg(x) }
 
SReg {SP ..... Reg(SP)-l }
 
SeeR, B
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The accumulators may also be restored from the stack. Again, the CCR is unaffected. 
In this case the memory contents are also unaffeded. 

PULA 
1Il5tackAcc 
EMemory 

OpBese Ox32 
6Reg = {x .... Mem(Reg(SP)+l ). 

SP .... Reg(SP)+l } 

6CCR = 9 

~ instructions 

Some instructions perform bitwise logical operations aD the accumulators and memory 
bytes. Forexarnple, a byte operand may be lIs complemented: 

COM 
tsingle 

OpBase = Ox73 
R = -.operand 
6CCR = { N R7• 

Z zero(R). 
V O. 
C l } 



35 Microprocessor Instruction Set 

There is a bitwise logical AND instruction: 

AND 
,zDoub 1e 

OpBaseA = OxB4 
R = Reg(x). Mem(M) 

SCCR = (N ..... R,. 
Z too-+ zero(R). 
V ..... 0 } 

a bitwise logical inclusive OR instruction: 

ORA 
,zDoub 1e 

OpBaseA = OxBA 
R = Reg(x) + Mem(M) 

SCCR = (N ..... R,. 
Z t-+ zero(R). 
V..... O} 

and a bitwise logical exclusive OR instruction: 

EOR 
,zDouble 

OpBaseA = 0)(88 

R = Reg(x) e Mem(M) 

SCCR = (N ..... R,. 
Z t-+ zero(R), 
V ..... 0 } 
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Arithmetic instryctions 

Some instructions perform simple arithmetic operations on bytes. 

An operand may be incremented. The overflow bit in the CCR is set if the original 
con tents of the operand had the top bit dear and the rest of the operand bits were set 

to 1'8. 

INC ~ 

tsingle I 

OpBase = Ox7e 
R :: Operand + 1 
SCCR = (N ..... R,. 

I H zero(R).
 

V H "'Operand(7)-ones(7-40perand) }
 

Conversely, an operand may be decremented. The overflow bit in the CCR is set if the 

original eontenf.8 of the operand had the top bit set and the rest of the operand bits 
were zero. 

DEC 
~ingle 

OpBase =" Ox7A 
R :: Operand - 1 

SCCR = (N R,. 
Z zero(R), 
V Operand(7).zero(740perand) } 

There are three "add" instructions. They all update the half·carry bit in the CCR with 
the cany from hit 3. The overflow bit is set if there was a 2'5 complement overflow. 
The carry bit is get if there was a carry from the most significant bit of the result. The 
standard "add" instruction simply adds a byte from memory to an accumulator. 



ADD 

lIiJoub 1e 

OpBaseA = OxBB 

R = Reg(x) + Mem(M) 

seeR = {H H x3.M3+M3....R3+...R3.x3. 
N H R7• 

2 .... zero(R), 

V t-+ xl.M7....R7+...x7 M7.R7. 

C t-+ xl.M7+M7.....R7+ R7.x7 } 

AccumulatoT B can be added to accumulator A (but not vice versa): 

ABA 

cIlSingleAcc 

Op = OxlB 
R = Reg(A) + Reg(B) 

SReg = {A .... R) 

SeeR = {H t-+ A3.B3+B3....R3+...R3.A3. 
N t-+ R7• 
l t-+ zero(R), 

V t-+ A7.B7....R7+ ...A7 S7.R7. 
C t-+ A7.B7~B7....R7+ R7.A7 } 

The current value of the carry bit in the CCR may be added to the result as well: 

ADe 

4Qouble 

OpBaseA = OxB9 

R = Reg(x) + Mem(M) + eel: 

SeeR = {H t-+ x3.M3~M3....R3~...R3.x3. 
N t-+ R7• 
l t-+ zero(R). 

v t-+ x7.M7....R7~...X7 M7.R7. 
C t-+ x7.M7+M7....R7+ R7.x7 } 
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There is a. "Decima.l Adjust Accumulator" instrudion for use when binary coded 
decimal (BCD) operands a.re involved. The adjustment to be added to the a.ccumulator 

is calculated from the ca.rry bit, upper half-byte value of the accumulator, half-carry 
bit and lower ha,1f·byte va.lue of the accumula.tor as follows: 

dee Bit x Value1lC Bit lC Value .. -++ Values 

Vi: Bit XValue... XBit xVelue.. 

i E {O}x(OxO .. Ox9)x{0}x(OxO .. Ox9) ~ dee i = OxOO 
i E {O}x(OxO.. Ox8)x{0}x(OxA .. 0xF) ~ dee i = Ox06 
i • {O}x(OxO .. Ox9)x{l}x(OxO .. Ox3) ~ dee i = Ox06 

i • {O}x(OxA .. 0xF)x{0}x(OxO .. Ox9) ~ dee i = Ox60 
i E {0}x(Ox9.. 0xF)x{0}x(OxA .. 0xF) ~ doe i = Ox66 

i E {O}x(OxA .. OxF)x{l}x(OxO .. Ox3) ~ dee i = Ox66 

i E {O}x(OxO .. Ox2)x{0}x(OxO .. Ox9) ~ dee i = Ox60 

i E {O}x(OxO .. Ox2)x{0}x(OxA .. 0xF) ~ doe i = Ox66 
i E {O}x(OxO .. Ox3)x{l}x(OxO .. Ox3) ~ dee i = Ox66 

En tries not included in the table are undefined. The overflow bit in the CCR i5 always 
undefined after this instruction has been executed. It is intended tha.t this instruction 
should be used immediately after a.n "add" instruction. 

DAA I 

~SjngleAcc 

Adjustment : Byte 
Undefined: Bit 

Op = Ox16 
Adjustment = date daa(Ccc' val hi (Reg A). 

Hcc' val lo(Reg A» 
R = A + Adjustment 
6Re9 = {A R } 
6CCR = {N R,. 

l H zero(R). 
V H Undef i ned, 
C H ....zero(h i Adjustment} } 
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There are rnakhing ·subtract!! instrudions for each "add" instruction. Note however 
that i;he half-earry bit in the CCR is left unaffected by these inatructions. 

SUB 
lIiloub1e 

OpBaseA = OxBO 
R = Reg(x) - Mem(M) 

SCCR = {N .... R7• 
:Z...-+ zero(R).
 

V ...-+ x7 ....M7....R7+...x7.M7.R7'
 
C ...-+ ...x7.M7+M7.R7+R7....x7 }
 

SBA 
tsingleAcc 

Op = Oxl0
 
R = Reg(A) - Reg(B)
 

SReg = {A R}
 
SCCR = {N R7•
 

:z ...-+ zero(R). 
V...-+ A7 ....B7.""R7+...A7.B7.R7. 
C ...-+ "'A7.B7~B7.R7+R7."'A7 } 

SBC I 
lIiloub1e 

OpBBseA = OxB2 

R = Reg(x) - Mem(M) - Coo 
SCCR = {N .... R7• 

:Z...-+ zero(R).
 

V ...-+ x7.owM7.""R7+""'X7.M7.R7'
 
C ...-+ "'x7.M7~M7.R7+R7'''''x7 }
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An operand may be negated (2'8 complemented). The overflow bit in the CCR is set if 
the resull has the top bit set and the rest of the result bits are zero. The carry bit is set 
to the opposite of the zero bit. 

NEG 
l1lSingle 

OpBese = Ox70 
R = -Operand 
SCCR = {N .... R7, 

Z t--+ zero(R), 

V t--+ R7.zero(7~R>' 

C .......ero(R) } 

A memory byte or an accumulator may be cleared to all O's. 

CLR I 

46ingle 

OpBase = Ox7F 
R = data(O) 

SCCR = {N 0, 
Z 1, 

V O. 
C O} 

No~ thaUhen!! is DO equivalent instruction to set a byte to all l's. 



.5hill. jpstmetjQQS 

Some 6800 instructions shift hytes by one bit position left or right. No1e tha.t the 

overflow bi\ in the CCR is always set as the XOR of the resulting negative and ca.rry 
CCR bits (or all 6800 shift instructions. 

There are shift instructions which rotate a byte left or right by one bj~ through the 

carry bit in the CCR: 

ROL 
~Single I 

OpBase = Ox79
 

R = Operand« ec::c::
 
6CCR = {N .... R,}.
 

Z H zero(R). 

V HNc::c::' eCc::c'. 
C .... Operand (7) } 

ROR i 

~ingle 

OpBase = Ox76 

R = ec::c:::::!> Operand 
6CCR = {N .... R,. 

Z H zero(R).
 

V H Nee' e Cee '.
 

C .... Operend(O) } 
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There are a.rithmetic shift instructions which shift a byte left or right by one bit. These 
are equivalent to multiplying and dividing a signed byte value by 2. 

ASL 
~ingle 

OpBase = Ox78 
R = Operend < 0 
6CCR = {N R7• 

Z zero(R), 

V ' eCce',Ncc 
C Operand(7) } 

ASR 
~ingle 

OpBase = Ox77 
R = Operand ( 7) >0 Operand 

6CCR = {N R7• 

Z zero(R). 

V Nee' • Cc:c'. 
C Operand(O) } 

There. a. logical shift right instruction j f1l1ing the result with a zero in its top bit: 

LSR i 

IJlSingle 

OpBase = Ox74 
R = 0:> Operand 
6CCR = {N O. 

Z zero(R). 

V Nee' • Cc:c:'. 
C Operand(O) } 

Note that there is no matching LSL (logical shift left) instruction since this is 

equivalent to an ASL instruction (see above). 



~ instructiops 

Some instructions only affect the condition codes by performing tests on byte values. 

There is a bitwise logical AND test instruction which simply seb; the condition code bits 
as if an AND instruction had been performed, but does not update the result: 

BIT 
lIiloub 1e 
tTest 

OpBaseA = OxB5
 
T = Reg(x) • Mem(M)
 

SCCR = (N ...... T,.
 
Z "'"""" zero(T), 
V ...... 0 ) 

A byte operand may be tested. The condition codes are set as if zero had been 
subtracted from the operand. 

TST 
tSingle 
tTest 

Op8ase = Ox7D 

T = Operand - 0 
SCCR = (N ...... T,. 

Z H zero(T). 
V o. 
C 0) 
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There is a lOcompare!l instruction which simply sets the condition code bits as if a SUB 
instruction had been performed, but does not update the result: 

CMP I 

Wouble 
il>Test 

OpBaseA = OxBS 
T = Reg(x) - Mem(M) 

SCCR = {N T,. 
t: zero(T). 
V H x7....M7 ....T7+""X7.M7.T7. 

C ...... "")(7.M7+M7.T7~T7."")(7} 

The two accumulators may be compared in a similar way without changing the 
contents of either: 

CBA 
tSingleAcc 
il>Test 

Op = Ox11
 
T = Reg(A) - Reg(B)
 

SCCR = {N T,.
 
l zero(Tj,
 

V A7....B? ...T7+"'A7.B7-T7­

C "'A7-B7+B7• T7+17.....A7 }
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Instmetion ~ 

The 6800 includell the following transfer/logical/ariLhmetic/shift/test Lype accumulator 
and memory instructions: 

Daub 1eOp a	 LOA V STA V
 
AND V ORA V EOR V
 
ADD V ADC V SUB V SBC V
 
BIT V CMP
 

SingleOp •	 COM V 
DEC V INC V NEG V CLR V 
ROL V ROR V ASL V ASR V LSR V 
TST 

InherentOp e	 TAB V TBA V 
ABA V DAA V SBA V 
CBA 

SteckOp •	 PSH V PUL 

We can combine all these sub-types of instruction together: 

AccMemOp S DoubleOp V SingleOp V InherantOp V StackOp 
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5.3 Index Register and Stad. instruetioDB 

These instructions manipulate the 16--bit index register and stack pointer. Some have 
several addressing modes. These can be further sub-divided into lIJ.oad" and IIstore" 

type operations, each of which produces a 16-bit result, RR. Loa.d operatioDS do not 
affect memory: 

iIlXLoed 
tModes
 
:=Memory
 
RR : Address
 

eye 1es = eye 1esBase + 1 

Store operatioDS cannot be used in immediate mode: 

tXStore 
lJtIodes 
RR : Address 

Mode ':# Immediate
 

eye Ies = eye1esBase + 2
 

Some of the instructions use inherent addressing. None of these affect the memory 
contents. 

tXInherent
 
lIlInherent
 
EMemory
 

Op = OpBase
 
eye1es = eye1esBase + 2
 

This family of instructions can now be defined using the framing schemas above. 
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The index register and stack pointer ca.n be loa.ded from memory:
 

LDX 
~XLoad 

OpBase = OxCE 
RR = Reg(X) 
SReg = {XH Mem(M), 

XL Mem(M+l) } 

SCCR = {N RR ,S' 
Z J-+ zero(RR). 
V .... a} 

LDS 
~XLoad 

OpBase = OxSE 
RR = Reg(SP) 

SReg = { SPH Mem(M), 
SPL Mem(M+!) } 

SCCR = {N RR ,S' 
Z zero(RR), 
V a} 

and stored int.o memory: 

STX 

~XStore 

OpBase = OxCF 
RR = Reg(X)
 

SReg = 0
 
SCCR = {N .... RR ,S'
 

Z J-+ zero(RR). 
V a} 

SMem = {M Reg(XH), M+1 .... Reg(XL) } 
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STS 
lIlXStore 

OpBase = Ox8F 
RR = Reg(SP)
 

SReg = 0
 
SCCR = {N .... RR,s,
 

:z ~ zero(RR), 

V O} 
SMem = {M Reg(SPH), M+l .... Reg(SPL) } 

They can also be transferred back and forth: 

TXS 

lIIXInherent 

Op = Ox3S 
SReg = {SP .... Reg(X)-1 } 

SCCR = 0 

TSX 
lIIXInherent 

Op = Ox30 
SReg = {X .... Reg(SP)+l } 
SCCR = 0 

Note that the SP is loaded with one less than the contents of the index register and the 
index register is loaded with one more than the SP in each case. This is for 
programming convenience so that the index register can be pointed to the first entry on 
the stack, not the next empty entry. 
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The index register and stack pointer can both be incremented and decremenled. In the 
case of the index register, the zero flag bit in the CCR is set appropriately. In the case 
of the stack pointer, the CCR is not affected. 

INX 
4lXlnherent 

Op = 0.08 

6Reg = { X 

6CCR = {Z 

Re9(X)+! ) 

zero(Re9(X)-!») 

INS _ 

4lXInherent 

Op = Ox3!
 
6Reg = {SP .... Reg(SP)+! )
 

6CCR = 0
 

DEX 

4lXlnherent 

_ 

Op = 

6Reg 

6CCR 

Ox09 

= {X 

= {Z 

Reg(X)-l ) 

zero(Reg(X)-!») 

DES _ 

lIIXlnherent 

Op = Ox34 
6Reg = {SP .... Reg(SP)-! ) 

6CCR = 0 
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The index register can be compared with memory: 

CPX 
~XLo.d 

OpBSS8 = O)(8C 
RR = Reg(X) - Mem(M+l) -Mem(M)
 
6Reg = 0
 
6CCR = {N .... RR".
 

Z H zero(RR).
 

V H X1SeovM7.-RR1S+-X1SeM7eRR15 }
 

The 6800 includes 'he following instructions involving the index register and/or stack 
pointer: 

IndexOp a	 LOX V LOS V STX V STS V TXS V TSX V 
INX V INS V oEX V DES V CPX 
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5.4. Brandl. and J nmp inBtructions 

All '"branch" instructions use the relative addressing mode. They leave the memory 

unchanged and take (our cycles to execute. The CCR is not affected. If a branch 

condition occurs, then the PC is updated with th"!! relative offseL Otherwise the 

pragram procedes to the next instruction as normal. 

4>flranch --, 

~elat ive 

:Memory 
Cond : Bit 

Cycles CyclesBase 

SCCR o 
Cond 1 => SRag {PC .... M} 
Cond o => SRag o 

The G800 has the following bra.nch instructions: 

BRA = c1Branch Op = Ox20 A Cand =
 
BCC c1Branch Op ::: Ox24 A Cand = "'Cee
• 
BCS c1Branch Op = Ox25 A Cand = C

• 
ee
 

BEa c1Branch Op = Ox27 A Cand = :lee
 

BGE • c1Branch Op = Ox2C A Cand = "'(NeeElVee >
 

BGT • c1Branch Op = Ox2E A Cand = .... C:lee+(NeeIllVec))
 

BHI • 46ranch Op = Ox22 A (and = ... ( Cee ~ Zee >
 

BLE c1Brench Op = Ox2F A (and = :lee+(NceEiVee )
 

• 

• 
BLS • 46ranch Op = Ox23 A (and = C + leeee
BLT • c1Branch Op = Ox2D A Cand = Nce@Vee 
BMI c1Branch Op = Ox2B A Cand = Nee• 
BNE • 46ranch Op = Ox26 A Cand = ....lee 

BVC • 46ranch Op = Ox28 A Cand = -Vee 

BVS c1Branch Op = Ox29 A Cand = Vee• 
BPL • 46ranch Op = Ox2A A Cand = -Nee 
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There is also a "Branch to Subroutine" instruction, which saves the return address on 
the stack and calculates a new value for the PC: 

BSR i 

tRelative 

Op = Ox8D 
Cycles = 8 
SMem = {Mem(Reg(SP)-I) hi (Next), 

Mem(Reg(SP» lo(Next) } 
SReg = {PC M. 

SP Reg(SP) - 2 } 
SCCR = 0 

There is a lIJump" instruction. Indexed and extended addressing modes may be used. 
The memory and CCR con~nts are unaffected. 

JMP 

lItIodes 
EMemory 

Mode E { Indexed. Edended} 
OpBase = Ox7E 
Cycles = CyclesBase-l 
SReg {PC .... M} 

SCCR = o 
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There is a "Jump to Subroutine" instruction, similar t·? the JMP instruction, which save.s 
the return address on the stack. The number of cycles taken to execute thi!: iastrvdion 
does not obey the normal rules which apply to all other instructions with multiple 
addressing modes. 

JSR 
lIttodes 

Mode e { Indexed, Extended} 
OpBase = axBD 
Mode Indexed =} Cycles = 8 
Mode Extended =} Cycles = 9 

SMem = (Mem(Reg(SP)-I) hi(Next). 
Mem(Reg(SP» lo(Next) } 

BReg {PC M} 
SP Reg(SP)-2 }) 

BCCR 9 

The 6800 includes the following branch and jump instruetion.s: 

BranchOp a BRA v BCC V BCS V BEU V BGE V 
BGl V BHI V BlE V BlS V Bll V 
BMI V BNE V Bve v BVS V BPl V 
JMP V JSR 
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0.5 Condition Code Regleter instruetions 

This set of instructions use inherent addressing and do not a.ffect the memory contents. 
Most of tbe instructions upda.te CCR fla.g bits, but not the rest of the registers. 

ilJCCR I 

4lInherent 
:Memory 

Cycles = CyclesBase 
SReg = 0 

The following instrucl.ioDs ma.y be performed to clear and set individual Condition 
Code Register bits: 

CLC s ilJCCR I Op =OxOC A SCCR ={C ~ O}
 
CLI Q ilJCCR I op = OxOE A SCCR ={I ~ O}
 
CLV s ilJCCR I Op = OxOA A SCCR ={V ~ O}
 
SEC S ilJCCR , Op = OxOD A SCCR ={C ~ I}
 
SEI e ilJCCR I Op = Ox OF A SCCR ={I ~ I}
 
SEV S ilJCCR I Op =OxOB A SCCR ={V ~ I}
 

The setable bits of the CCR ma.y be loaded from accumulatQr A: 

TAP Q ilJCCR I Op =Ox06 A SCCR =Reg(A) 

Coovef1lely, accumulator A ma.y be loaded with the CDDtent8 of the CCR: 

TPA -, 

~ingleAcc I 

Op = Ox07 
SReg = {A ~ Reg(CCR) } 
SCCR = 0 

These operations may be collected together as a. fa.mily of instructions: 

CCROp e CLC VCLI VCLV VSEC VSEI VSEV VTAP V TPA 
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5.6 Miscellaneous instructions 

There is a ClNo Operation" instruction which does nolhing but pass program control to 
lhe nexl instruction: 

NOP 
tIIInherent 
=M6800 

Op = OxOl 

Cycles = CyclesBase 

There is a "Return from Subroutine" instruction. The PC is restored from the slack. 
The memory contents and the CCR are left unaffected. 

RTS i 

tIIInherent 
EMemory 

Op = Ox39 

Cycles = 5 
6Reg = {PCH Mem(Reg(SP)+!), 

PCl Mem(Reg(SP)+2), 
SP Reg(SP)+2 } 

6CCR = B 

There is a GSoftware lnterrupt" instruction. This simulates an interrupt using its 

own vector. 

SWI 
tIIInherent 
tIIInterrupt 

Op = Ox3F 

Cycles = 12 
Vector = OxFFFA 
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There is il. IIlWait for Interrupt"' instruction. This stacks the registers and then waits for 

a.n IRQ (if the interrupt mask bit in the CCR is not set) or an NMI interrupt to occur, 

or for the system to be reset. Unless a.n external interrupt is received, the program will 

be suspended forever. 

~AI 

41Inherent 
41Interrupt 

Op = Ox3E 
Cycles ;t 9 
Vector • {OxFFF8. OxFFFC. OxFFFE} 
Icc = 0 ::::> Vector ~ OxFFF8 

There il!l a IilReturn from Interrupt" instruction. The registers a.re a.ll restored from the 

stack. The memory contents are left una.ffected. The CCR is loaded from a. memory 
byte on the stack but the individual bits are not subsequently a.ffeded by the 
instruction. 

RTI 
I)Inherent 
EMernory 

Op =Ox38 
Cycles = 10 
6Reg = (CCR .... Mem(Reg(SP)+1l, 

B .... Mem(Reg(SP)+2l. 
A .... Mem(Reg(SP)+3), 
XH .... Mem(Reg(SP)+4), 
Xl .... Mem(Reg(SP)+S). 
PCH .... Mem(Reg(SP)+6). 
PCl .... Mem(Reg(SP)+7) • 
SP .... Reg(SP)+7} 

seCR = 0 

The 6fO) includes the following miscella.neous instructions: 

M;.cOp • NOP V RTS V S~I V ~AI V RTI 
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8. Overall operation 

Op·codes which have not so far been specified are considered illegal. The state of the 
system alter the execution of such an op-code is undefined. 

IllegalOp S M6BOO I Mode = Illegal 

This specification could be tightened if more were known about an illegal instruction. 
For example, at present this specification allows the contents of the registers and RAM 
to be entirely changed after an illegal instruction. If more information were available, 
predicates could be added to this schema. 

The following groups of legal instructions discue:sed in previous e:ections may be 

executed by the 6&10. We project the (change of) state of the 6800 since we are not 
interested in any of the temporary components defined in each of the individual 
instruction schemas for the convenience of the specification. 

LegalOp a: 
(AccMemOp V IndexOp V BranchOp V CCROp V Mi scOp) t AM6800 

The system has three pose:ible sources of external interrupt: 

Ext Int errupt ~ (IRQ. V NMI V Reset) I Mode = Interrupt 

The priority of external interrupts bas not been defined above (i.e. if two interrupts 

occur simultaneously eitber could be e:erviced first) since the documentation used 18,9J 
did not make any ordering clear. Sucb details could easily be included in the formal 
definition of the 68)0 by including the status of tbe external interrupts aa pari of the 
state. 

Each operation executjon of the 6800 consists of the execution of an instruction (legal 
or otberwise) or an external interrupt: 

Instruct ion IllegalOp • LegalOp 

Exec ~ Instruction V Ext Interrupt 
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When the 6800 is started, a sequence of such operations is executed depending on tbe 
contents of memory and (non-detennini!tically in this specification) on the occurence of 
external interrupts. 

Given the specification of each of the instructions I it is possible to consider sequences of 
instrudioD.s and prove (in tbe absence of any external interrupts) properties of such 
sequencu. For example, often a decrement instruction is followed by a conditional 
branch instruction at the end of a loop. We could prove the following properties of 
sue b a construct: 

DEXBNE Q DEXtAM6800 , BNEtAM6800 

DEXBNE ~ Reg(X)~l => Reg' (PC) = (Reg(PC)+3ltMem(Reg(PC)+2) 
DEXBNE ~ Reg(X)=l => Reg' (PC) = Reg(PC)+3 
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7. Conclwlion 

The instruction set of the Motorola 6800 microprocessor has been formally specified. 
Enough experience has been gained so that more complicated and modern 
microproce6sors such as the 68000 family could be specified in a similar ma.nner. 
However such processors would require a larger document and more work in order to 
cover them fully. 

The specification of the instructions have been factored out using framingschemas to 
reduce the overa.ll length of the specification given here. If Z where to be used to 
present an in6tructioD set in the form of a manual, then it is anticipated that each 
instruction would be allocated at least a page with an expanded schema allOWing easy 
reference for the jnstruction on that page alone. A possible example layoutis Shown in 

Appendix A. 

Z has proved an excellent tool for specifying a microprocessor instruction set. The 
length of the specification is very favourable with the more informal methods currently 
used for instruction set documentation in industry and elsewhere. Not only that, but we 
also gain a means of formally reasoning about the properties of the instruction set. 
This could prove to be inva.luable, especially at the design stage. In the future, 
computer-based tools should be available to check consistency and give assistance with 
proofs. It is to be hoped that manufacturers will adopt such methods in due course. 
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Appendix A 

Example manual pages 

An example layout for two instructions in a 6800 microprocessor instruction set manual 
are given overleaf. It is suggested that each instruction should be given a page like this 
in such a manua.l k> allow quick reference for a particular instruction without the 
necessity for cross reference , once the framework of the specification has been 
assimilated by the reader. 
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Brand. if Greater Than lero BGT
 

Operation 

BGT i 

M16800 
Cand : Bit 

Op 
Mode 
NBytes 
Cycles 
Cand 
Cand 
Cand 
6CCR 
6Mem 

= 
= 
= 

Ox2E 
= Relati ....e 

= 2 
4 

Zcc~(Ncc·Vcc) 
O=06Reg=B
 

1 =0 6Reg = {PC'" NexttMem(Reg(PC)+l)}
 

B 
B 

Description 

Causes a branch if 1.. is !let or one of N and V (but not both) is set. 

If the BGT instruction is executed immediately after execution of any of the instructions 

CBA, CMP j SBA, or SUB, the branch will occur if and only if the two's complement 

number represented by the minuend (Le. accumulator A or B contents) WaB greater 
than the two's complement number represented. by the subtrahend (i.e. memory 
contents). 

Only the PC is affected. If a. branch occurs, then the PC is updated with the relative 
offset, otberwise the program. procedes to the next inatruction as Donna!. 
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Jump to Subroutine JSR 

Operation 

JSR 
AM6800 

(Op = OxAD 
Mode Indexed
 
NBytes 2
 
Cycles 8
 
6Reg (PC Reg(X)+Mem(Reg(PC)+l», 

SP Reg(SP)-2}) 
v 
(Op OxSD 
Mode = Extended
 
NBytes = 3
 
Cycles 9
 
6Reg = (PC, Mem(Reg(PC)+I),
 

PCl Mem(Reg(PC)+2),
 
SP Reg(SP)-2})
 

seeR = e 
6Mem = {Mem(Reg(SP)-I) .... hi(Next), 

Mem(Reg(SP) ) .... lo(Next) } 

DeeaiptioD 

The program counter is incremented by 2 or by 3, depending on the addressing mode, 
and is then pushed onto the stack, eight bits at a time. The stack pointer points to the 
next empty location on the stack. A jump occurs to the instruction stored at the 
numerical address, obtained according to the addressing mode. 
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Appendix B 

MathematkaJ and Sehema notation 

A glossary of the Z malhematical and schema. no\alion UBed in this monograph is 
included here for easy reference. Readers should note 'hat the definitive concrete and 
abstract syntax for Z is available elsewhere [SI_ 



Z Reference Glossary 

Mathematical Notation 

1. net"mitions and dedarationa. 

Let x, )( I be identifiers and let T,T I sets. 

[Tl' T2] Introduction of generic sets. 
LHS Q RHS Definition of LHS as 

syntactically equiva,lect ~ RHS. 

T :: = xl I xz ' ••• I xn 
Data type definition. 

x: T	 Declaration of x as type T. 
xl:	 T1 ; xz: 1z; ... ; xn: Tn 

LUit of declarations. 

Xl'	 xz. • )en: T 
Q Xt:Ti X2: Ti •. , x :1.n

2. LogIe. 

Let P. Q be predicates and 0 declarations. 

~ P Negation: -Dot P". 
P A Q Conjunction:"P and QIt, 

P v Q Disjunction:" or 0": 
.-(_PA -U). 

P'" Q Implication: "P implies U" or 
"if P then 0": Q ... p Y Q. 

P .. Q Equivalence: "P is logically 
equivalent toO"; 
.(P"'Q) A(Q"'P), 

true Logical constant.
 
false Q .. true
 
'f x : T .. P Universal quantification:
 

&for all x of type T,P holds". 
3 x : T .. P Existential quantification: 

"there exists an x of type T such 
that Pll. 

31 x T	 .. P)C Unique existence: 

"there exists a. unique)C of type 
T such that P". 

~ (3 )C : T • Px " 
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-(3y,r I y" • Py }). 

'ttl xl:Tl' x2:T2' ... ; xn:Tn • P 

"For all Xl of type TI' 

)(z of type Tz•••. , and 
x n of type Tn' P holds." 

3 )(1:11; )(2:T2; •.. : xn:Tn • P 

Similar to V. 

3 1 xl: T1; )(2:T2; ... : )(n:Tn· P 

Similar to 'ttl • 
Y 0 I P • Q • (Y 0 • P .. Q). 

3 0 I P • Q • (3 0 • P A Q). 

D t- P Theorem: Q t- V D • P. 

a. Seta. 

Let 5, T and X be setsj t , tl,: tenns; P a 
predicate and D declarations. 

t 1 = t 2 Equality between terms.
 
t 1 1- t z Inequality: Q ..... (t 1 = t z ).
 
t • 5 Set membership: 4t, is an element
 

of 5". 
t , 5 Non-membership: Q ... (t E 5). 

e Empty ,.1: • {"X I f.lse}. 

5 ~ r Set inclusion: 

• (Yx'S·x'T). 
5 c r Strid set inclusion: 

Q sl;TASPT. 

{t1• t z..... to} The sel 
containing t 1• t z•... and tn' 

{xdlP} 
The set containing exactly those 
)( of type T for whic::h P holds. 

(tl' t z•...• t ) Ordered n~tuplen 

oft l.t2•··· and tn' 
T1 )( T2 )( ... )( Tn Cartesian product: 

the set of all n·tuples SUch that 

the k th componen I is of type Tk' 

{)(l: Tl: x2:T2: '" • xn:Tn I P} 

The set of n-tuples 

(Xl' )(2' ...• xn) with each 
xk of type TI,: such tbat P bolds. 
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{DIP.t} 
'The set of t 's such that given 
the declarations D, P holds. 

{D • I}. {D I Irue • I}. 
P 5 Powerset: the set of all subsets 

015. 
PIS Non-empty powerset: 

P, 5 • P 5 \ {~}. 

F 5 Set of lillite subsets of 5: 
• {T, P 5 I Tisfinile}. 

F1 5 Non·empty finite set: 
F,5"F5\{~}. 

5 n T Set intersection: given 5. T: P X, 

• {., X I x E 5 A X E T}. 
5 u T Set union: given 5. T: P X, 

• {., X I x E 5 v x E T}. 
5 \ T Set difference: given 5. T: P X, 

• {., X J x E 5 A X _ T}. 
n 55 Distribuled set intersection: 

gi,en 55, P (P X), 
i {.,X I (V5,55 ' xE5)}. 

U 55 Distribu\ed set union: 
gi,en 55, P (P X), 
• {.,X I (35,55 • x E 5)}. 

as SiJe (number of distinct 
elements) of a finite set. 

p 5 Arbitrary choice from a set. 

4. Relations. 

A relation is modelled by a set of ordered 
pain hence operaton defined for sets can 
be used on relations. 

Let X, V,andZ besetsjx: X; y: V; and 
R, X .... Y. 

X 4-+ V The set of relations from X to V: 
"P(XxY). 

x R Y x is related by R to y: 

" (x. y) • R. (R is olteo 
underlined for clarity.) 

x y 
{xl yl. 

dom R 

ran R 

R1 I Rz 

RIo RZ 

R-1 

j d X 

Rk 

R· 

R+ 

ReS) 

5 ct R 

5 4 R 

R ~ T 

R .. T 

" (x, y). 
xz ....... yz, ...• xn~Yn} 

The relation 
{(x,.y,) ..... (xo,Yo)} 
relating Xl to Yl' ... , and 

X n ~ Yn •
 

The domain of a relation:
 
o{.,X 13y,Y·xRy}.
 

The range of a relation:
 
" {y,Y I 3.,X • x R y}.
 
Forward relational composition:
 
given R1: X 4-+ V; R : V 4-+ Z,
z 
" {.,X; z,Z 13y'Y' 

x RI Y " Y Rz Z }. 

Relational composition: 
Q Rz , RI · 
Inverse of relation R: 

• {y,Y, ",X I x R y}. 
Identity function on the set X: 
a{x:X·x ....... x}. 
The relation R composed with 
itself k times: given R: X4-+ X, 

RllRO Q id X, Rk+ 1 Q 0 R. 

Reflexive transitive closure: 

" U {n' N ' RO
}. 

Non·renexive transitive closure: 
o U {n' N, • RO

}.
 

Relational image: given 5: P X,

° {y,Y r 3., 5, xRy}.
 
Domain restriction to 5:
 
given 5: F X.

° {.,X, y'Y I xE5 A xRy}.
 
Domain subtraction:
 
given 5: F X,


° (X \ 5) 4 R. 
Range restriction to T:
 
given T: F V,
 
o{.,X,y'Y I xRy A yET}.
 

Range subtraction of T:
 
given T: F V,
 

" R ~ (Y \ T).
 



5. Fnnctions. 

A function is a relation with the properly 
that for each element jn its domain there is 
a unique element in its range related to it. 
A!J functions are rel.a.tions all the opera~ors 

for rel.a.tions also apply to functions. 

X -H Y	 The set of partial functions from 
X to Y: 

•	 {f : X.... Y I V.: dom f· 
(3, y: Y •• f y)}. 

X	 -+ Y The set of total functions from 

X 10 Y: 

• {f : X -++ Y I dom f =X}. 
X	 >4+ Y The set of partial injective (one­

to-one) functions from X to Y: 
• {f : X-++ Y I V Y : ran f • 

(3, x: X·f.=y)}. 
X ~ Y The set of total injective 

functions from X to Y: 

• (X-Y) n (X .... Y). 
X ....	 Y The set of partial surjective 

functions from X to Y: 

• {f : X -++ Y I ran f = V}. 
X ... Y The set of total surjective 

functions from X to Y: 
• (X .... Y) n (X .... Y). 

X	 ~ Y The set of total bijective 

(injective and surjective) 
functions from X to Y: 

• (X-y) n (X>-+y). 
X	 ~ Y The set of finite partial 

functions from X to Y: 

• if:	 X-++ Y I 
f • F (X x V)}. 

-H>4+ ,.. Partial functions. 
-+~ ~	 Tota.l functions. 

.....,....--- Finite functions. 
fl. f z Functional overriding: given 

f 1,fz :X......Y, 

• (dom f Z ~ f,) u f 2. 
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Prefix function (default).
 

Infix function (often underlined
 
for clarity).
 

f POfitfix function. 
f t The function f applied to t. 
f(1) • f t. 

(X x , X I P • t) Lambda-abstraction: 
the function that, given an 
argument x of type X such 
that P holds, the result is t. 
• { • : X I P ...... t }. 

(Xx,:T,: ... : '"T, IP· t) 
Q {><l:T I : '" ; xn:T n I p. 

(Xl' ...• x n) ~ t}. 

6. Nnmbera. 

Let m, n be natura.l numbers. 

N The set of natural numbers 
(non.negative integers). 

HI The set of strictly positive 
natural numbers: a N \ {O}. 

Z The set of integers (positive,
 
zero and negative).
 

succ n Successive ascending natural
 
number. 

pred n Previous descending natural 
1number: a succ- n. 

m ... n Addition: a succ n m. 
m - n Subtraction: a predn m. 

m * n Multiplication: Q (_ ... m)n O. 

m d...i..Y. n Integer division. 
m mod n MOdulo arithmetic. 

nm Exponentiation: Q L * m)n 1. 
m ~ n Less than or equa.l, Ordering: 

_'li;_ Q succ·. 

m < n	 Less than, Strict ordering: 
iii m'li;.n"miiln . 

m ~ n Greater than or equal: Q n ~ m. 
m > n Greater than: Q n<m. 

m.. n	 Range: Q {k:N I m~k" k~n}. 
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min S	 Minimum of a finite set; 
forS:F 1 N, 
min 5 E 5 II 

(Vx.:S • x ~ min 5). 
max. S	 Maximum of a. finite set; 

for 5 : F1 N, 
max.SES II 

(Vx.:S • x. :( m8X 5). 

7. Sequenc::es. 

Let a, b be elements of sequences, A, B be 
sequences and m, n be natural numbers. 

seq X	 The set of sequences whose 
elements are drawn from X: 
_{A, N-X I 

domA=!,.oA}. 
<> The empty sequence e. 
seq1 X The set of non-empty sequences: 

_ seq X \ {<>} 

<a 1• ••• • an> 
a {1""-+81' ...• n....-+an }. 

<e1• .•. • en>'-' <b 1• ... • bm> 
Concatenation: 

Q: <a 1.....	 an' bt •.•.• bm>, 
<>-A = A-<> = A. 

head A	 The first element of a 
non-empty sequence: 
A ~ <> ...	 head A = A(I). 

1ast A	 The final element of a 
non-empty sequence: 
A ~ <> ... las' A = A(oA). 

t ail A All but the head of a sequence: 
h;]«x>-A) = A. 

front A	 All but the 1ast of a sequence: 
fron'(A-<x»= A. 

rev <aI'	 82' • 8 n> Reverse: 
Q <an 8Z' al>' 
rev <> =	 <>. 

-1M	 Distributed concatenation: 
givenAA: seq(seq(X», 
- M(I)- ... -M(oM), 

-1<> = <>. 
liAR	 Distributed relational 

composition: 
given AR : seq (X H X), 
- AR(I)	 •... I AR(oAR>, 
I 1<> = i d X. 

_/AR	 Distributed overriding: 
givenA : seq (X ~ Y), 
• AR(l) •... _ AR(oAR), 
_I <> = e. 

squash f	 Convert a finite function, 
f: N.... X	 into a sequence by J 

squashing its domain. That is, 

squash " = <>, 
and if f iI- iJ then 
squash f = 

<f( j» -squash({j}~ f) 

where i = min(dom n. 
S 1 A Index restriction: 

• squash(S 4 A). 
A t T	 Sequence restriction: 

- squash(A ~ T). 
d i sjo i nt	 AS Pairwise disjoint: 

given AS, seq (P X), 
Q (V i.j	 : dom AS • i~j 

... AS( i) nASU) = e). 
AS pert it ions S 

~ disjoi nt AS II 

U ran AS = S. 
A .in B Contiguous subsequence: 

• (3C, D, seq X • 
C-A-D=8). 



Schema Notation 

Axiomatic definition: introduces global 
declarations which satisfy one or more 
predicates for use in the entire document. 

Ldedaration(s) 

I predicate(s) 

Schema definition: a schema groups 
klgether some declarations of variables and 
a predicate relating these variables. There 
are two ways of writing schema.s: vertically, 
for example 

r;:~, · ·
 
x , Ity

---------', 
or horizontally, for the same example 

S • I X' N; y; seq N I x<Oy J. 
U.se in signatures after V, A. { ..• }, etc.: 

(VS • y ~ 0) • (Vx;N; y; seq N 
x<oy • y~O). 

&hemas as types: when a schema name 5 
is used as a type it stands for the set of all 
objects described by the schema, {S}. For 
example, w : 5 declares a variable H wjth 
components )( (a natural number) and y (a 
sequence of natural numbers) such that 

)( " Ity. 

Projection functions: the component names 
of a schema may be used as projection (or 
selector) functions. For example, given 
H: 5, H.xis H'S)( cornponentand H.y is 
its y componentj of course, the following 
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predicate holds: H. x, 8tH. y. Additionally, 
given 101 : X ~ 51 HI (>'5. x) is a function 
X~N, etc. 

as	 The tuple formed from a 
schema's variables: for example, 
as is (x. y). Where there is 
no risk of ambiguity, the e is 

someiimes omitted, so that just 
"5" is written for ~(x. y) ... 

pred S	 The predicate part of a schema: 
e.g. pred S is x ~ lIy. 

Inclusion	 A schema S may be included 
within the declan.tions of a 
schema T, in which case the 
declarations of S are merged 
with the other declaratioDs of T 
(variables declared in both S 
and T must be of the same type) 
and the predicates of 5 and T 
are conjoined. For example, 

T~~;N i 

z < X 
--- .....1 

' 

is 

I
x. Z : N 
y : seq H 

x~ltyl\z<x 

SIP	 The schema S with P conjoined 
to its predicate part. E.g., 
(S I x>O) is 

[x:N;y:seqN J xOyl\x>O). 
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S ; D The schema S with the 
declarations D merged with the 
declarations of S. For example, 
(5 : z : N) is 

[ x, z: N; y: seq N I x~ay ]. 

5 V T The schema formed from 
schemas 5 and T by merging 
their declarations and disjoining 
(or-ing) their predicates. For 
example,S V T is 

S [new/o 1dl Renaming of components: 
the schema S in which the 
component old has been 
renamed to ne... both in the 
declaration and at its every free 
occurrence in the predicate. For 
example, S[z/x] is 

x : N 
y : seq N 

z P N 

x~l:tyvxez 

[ z:N: y:seq N I z ~ ay 5 - T The schema fonned from 
..d5[yfx.xfy} is schemas 5 and T by merging 
[ y: N 0 x; seq N I y 'SO ax ]" their declarations and taking 
In the second case above, the pred 5 .. pred T as the 
renaming is simultaneous. predicate. E.g., 5 .... T is 

Decoration Decoration with subscript, 
superscript, prime, etc.; 
systematic renaming of the 
va.riables declared in the 
schema. For example, S' is 
[x':N; y':seqN I x':li:ay']. 

.....S The schema 5 with its predicate 

x N 
y seq N 
z : P N 

X~I:tY"'XEZ 

p:ut negated. E.g., "'S is 5 .. T The schema formed from 
["N: y:,eo N [ "(x.'y»). schemas Sand T by merging 

SAT The schema formed from their declaratioI18 and taking 
schemas 5 and T by merging pred S .. pred T as the 
their declarations (see inclusion predicate. E.g., 5 ~ T is 

above) and conjoining (and-ing) 
their predicates. Given T Q [x: x N 
No z: P N I xEz], SAT is Y seq N 

z P N 

x N 
y seq N x:li:I:tY"'xEz 

z P N 

x~ayAxEz 



5 \ (v 1• Vz. ... • vn ) 

Hiding: the schema 5 with the 

variables v l' vz•. ··• and vn 
hidden: the variables listed are 
removed from the declarations 
and are existentially quantified 
in the predicate. E.g.,S \ x is 
[y'Seq N I (3X'N· x,"y)]. 

(We omit tbe parentbeses when 
only one variable is bidden.) A 
schema ma.y be specified instead 
of a list of variables; in tbis case 
tbe variables declared in that 
scbema are bidden. For 
example, (S A T)\5 is 

z , P N 

(3 X' N, y' seq N • 
x ':!iO .y II X E z) 

S t (v1'	 vz• ... • vn) 

Projection: Tbe schema S witb 
any variables tbat do not occur 
in tbe list v1' vz. ...• vn 
hidden: the variables removed 
from the declarations are 
existentially quantified in the 
predicate. 
E.g., (S A T) t (x, y) is 

x : N 
y seq N 

(3 z , P N 

x EO #y /I, x E z) 

As for hiding above, we may 
project a single variable with no 
parentbeses or tbe variables in a 
scbema. 
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The following conventions are used for
 
variable names in those scbemas which
 
represent operations - that is, which are
 
written as descriptions of operations on
 
some state:
 

undasbed state before,
 
dashed ("'") state after,
 
ending in Cl?lII inputs to (arguments for),
 
ending in II!" outputs from (results of)
 

tbe operation. 

The following schema operations only 
apply to Bchemas following the above 
conventions. 

pre S	 Precondition: all tbe state after 
components (dasbed) and the 
outputs (ending in II! It) are 
hidden. E.g. given 

S	 I 

x?, s, 5'. y! N 

s = s-x? II \J! = 5 

pre S is 

x?, s N 

(3s',y!'N. 

5' = s-x? II \J! = 5) 

post S	 Postcondition: tbis is similar to 
precondition except all tbe state 
before components (unda.sbed) 
and inpuls (endin& in "'?") are 
hidden. (Note tbat this 
definition diffen from some 
otben, in which the 
"postcondition" is the predicate 
relating all of initial state, 
inputs, outputs, and final state.) 
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S • T 

S , T
 

Overriding: 
, (S A "pre T) V T. 

For example, given 5 above and 
T 

x?, 5, 5' N 

5 < x? II 5' = 5 

5 • T is 

x?, 5, 5', y! N 

(5' ~ 5-X? II y! = 5 II 

~(3 s', N 
5<X?II5'=5)) 

v (5 < x? II 5' = 5) 

Because (given the declaration 
s: N above):
 
(35': N • 5'=5 II 5<X?) ..
 

(s E N A 5 < x?) ..
 

s < x?,
 

the predicate can be simplified:
 

x? 5. 5'. y! : N 

(5' = 5-X? II y! = 5 

II 5 ~ x?) 
v 

(5 < x? II 5' = 5) 

Schema composition: if we 
consider an intermediate state 
that is both the final state of the 
operation 5 and the initial state 
of the operation T then the 
composition of 5 and T is the 
operation which relates the 
initial state of 5 to the final 
state of T through the 
intermediate state. To fonn the 
composition of 5 and T we take 

the state-after components of 5 
and the state-before components 
of T that have a basename l in 

common, rename both to new 
variables, take the schema which 
is the uand" (A) of the resulting 
schemas, and hide the new 
variables. E.g., 5 , T is 

X?5, 5', y! H 

, N(3 So 
50 = s-x II y! = 5 II 

50 < x? II 5' = 50) 

• basename is the name with 
any decoration (,...., OI! ", ll?tI, 

etc.) removed. 
5	 » T Piping: this schema operation is 

similar to schema composition; 
the difference is that, rather 
than identifying the state after 
components of 5 with the state 
before components of TI the 
output components of 5 (ending 
in cr.! tI) are identified with the 
input components of T (ending 
in U?tI) that have the same 
basename. 

The following conventions are used for 
prefixing of schema names: 

~s change of before and after state, 
=5 no change of state, 
¢6 framing schema for definition of 

fuI1her operations. 

For example 
~s • 5 " 5' 
55 • ~s I as = as' 

~S I y = y'
4>5 •5 0p Q 4>S I x'	 = 0 




