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Abetrari 

The specification language Z has been applied by the Distributed Computing Sohware 
Project to the formal specification of network resource managers or 'services'. The use 
of a fonnal langua.ge gives a more precise understanding of the behaviour of a service 
and is a prerequisite for verification of programs which use or implemen~ the service. 
Additionally, the use of Z combined with infonnal1ext is sufficiently readable for the 
specification to be used for documentation purposes. 

An introduction is provided to the style of specifica1ion devised for the project. A 
framework for the specification of a va.riety of network services has been developed. 
The framework is presented, and then incorporated into an example illustrating 1he 
specification of both the user's view and the implementor'lll view of a simple senrice. A 
discuBsion of the experience gained from the specification and use of the example 
service is also included. 
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8 The Specification of Network Services 

1 Motivation 

It is fundamental to the desigu of any complex artefact, and of computer systems in 
particular, that an appropriate mea.os of describing and communicating the design is 

used. 

A very important line of communication is between the designer and the user of the 
system. It is only if this communication ifl accomplished satisfactorily that the designer 
can have any expectation of meeting the requirements of the user and, likewise, the 
user have any expectation of being able to make proper use of the finished product. 

No less important is the communication from the designer to the maker (or 
implementor) of the system. This ifl necessary to ensure that the finished product does 

indeed have \he characterifltics that the designer specified. 

The aim of the work described here is the improved communication between designer, 

user and implementor which can be achieved by the use of formal specification in the 
design and documentation of computer systems. 

1.1 Formal specification 

Satisfactory communication relies firstly on the production of an unambiguous 

description. If a description ifl sufficiently precise, it ca.o act as a contract between the 
designer, user and implementor, to ensure that they agree on what is to be provided. 

A fundamental objective of the Distributed Computing Software Project has been to 

make use of mathematical techniques for program specification to assist the design, 
development and presentation of distributed system services. 

The formal notation used tbroughout the project has been Z (as defined in [2-7]). This 
specification language, based on mathematical set theory, has been developed at the 

Programming Research Group over the past few years. The Distributed Computing 
Software Project has been testing the application of the theoretica.l ideas to a realistic 
and practical system. As a result of this, tbe project has been i-nfluential in the 

development of notational techniques whicb have now become a standard part of tbe Z 
style of specification. 

The use of formal specification techniques, because of their rigor, tends to guide 
designs towards the conceptually simple. Thifl bas the advantage of making the 
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designs easier to understand, but the possible disadvantage of making them harder to 
implement efficiently, since the simplest ideas do not necessarily have the most 
straightforward realisation. 

Formal techniques encourage a level of abstraction that is important in avoiding the 
introduction of unnecessary implementation bias into designs. In the initial design, 
implementation bias simply restricts the range of possible implementations. It is 
usually an indication that the designer allowed unnecessary knowledge of a potential 

implementation to become visible at the user level. 

1.Z DoenmentatioD 

Conventionally, various pieces of documentation are the main means of communication 
between designer and user. In order that the rigor of the specifications I!hould not be 
lost, it was felt to be of great importance that the system documentation should 
incorporate the full formalism used in the design. However, it was aLso important to 
ensure that, as for any documentation, readability and accessibility were not sacrificed 
in the process. 

A significant amount of effort has therefore been spent on developing a manual style 
which combines informal and formal text. The presentation of the User Manuals 
emphasises the effect of each user·invoked operation on a service. The Implementor 
Manuals, on the other hand, concentrate on identifying the subcomponents from which 
an implementation of the service can be built. 
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2 Serviee speciCication 

A service of a distributed computing system can be modelled in much the same way as 

a componen' in a centralised system. 

A service can be described in terms of a service state a.nd a set of operations which will 

change the state in a well-defined way. Consider a service with a state S. The effect 
on the service of a given operation OP can be described in terms of the preceding state 

S and the subsequent state S' (the dash is used by convention in 'l to denote the state 
after an operation). Thus, at any given time, the current state of the service can be 
determined from knowledge of the initial service state and of the sequence of 
operations executed in the lifetime of the service so far. 

Two small but significant differences can exist in a distributed systern., as compa.red to 

a centralised system. The first is that the individual services will usually be at least 
partly involved in tasks such as accounting, user authentication and access control, 
which would be more easily separable in a centralised sY5tem. Secondly, jt is a 
characteristic feature of a distributed system that componen~ in the system may 

continue to work after others have failed, so that the error notification and handling 
provided by services becomes important. 

2.1 User'. view 

A user will in general be interested only in the extemally observable behaviour of a 
service. In the case of a file storage service, for instance, a user will be concemed with 

files, filenames and file contents, but will not be interested in details of how these 
items are represented and stored by the service. When specifying the requirements and 
the user interface for a service, it is useful k> do so in terms of an abstract (i.e. not 
implementation specific) service state and corresponding abstract operations. 

If the user's view of the (abstract) service state is AS, then each abstract operation will 
be described in terms of the preceding and subsequent abstract states AS and AS' . 
In order for the state of the service to be defined at all times, the initial state of the 
service In j tAS also needs to be established. 
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2.2 Implementor'. view 

Unlike a user, an implementor will need a much more detailed view of a service a.nd 
will specifically be intere:sted in the internal behaviour of the service. In tbe case of a 
file storage service for instance, the implementor will have to deal with items such as 
index blocks and data blocks. 

H the implementor's view of the (concrete) service state is CS, then concre'e operations 
are expressed in terms of the before and after states CS and CS I. As before, the initial 
state of the concrete service In i tCS must be well~defmed. 

2.3 Camm.OD framework 

In a distributed system consisting of a number of separate services connected by a 
network, it is useful for the services to have certain characteristics in common. Thege 
will include such facilities as service access, user authentication) accounting, 
accumulation of statistics and error reporting. Making the provision of such facilities 
the same across the collection of services means that the system as a whole will appear 
more homogeneous to the user and therefore easier to use. Also, the specification and 
implementation of the services becomes simpler since some pam are common to all 
services. 

These common aspects of services have been collected together into a set of definitions 
known as the Common Service Framework. When required, these defmitions can be 
incorporated into specifications of individual services in a standard way. 

2.4. Corred:ness of implementatioD 

In order to verify that the implementor's view of a service is compatible with the user's 
view of the same service, formal correctness arguments can be used. 

These arguments depend on the formal definition of how the concrete and abstract 
represen tations of the service state relate to each other. In the following we will let 
Re 1 denote the relation between CS and AS, and Re l' the same relation between CS' 
and AS'. 
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In order for the concrete service state to be capable of representing the state of the 
abstract service, it needs to have at least one concrete state for each possible abstract 
state: 

Y AS • 3 CS • Re 1 

And the inital concrete service state must specifically represent the the initial abstract 
service state: 

In;tCS ... 3 AS' • In;tAS , ReI' 

For each ab6tract operation AOP, we must supply a corresponding concrete operation 
COP which is applicable in the corresponding domain to the abstract operation and 
which will produce a result that satisfies the abstract specification. In other words, if 
AOP changes the abstract state from AS to AS', then the corresponding concrete 
operation COP must, given an initial state CS which relates to AS according to Re 1, 
produce a new state CS' which relates to AS' according to Re 1 '. This can be 
expressed more fonnally as: 

pre AOP A ReJ ~ pre COP
 
pre AOP A COP A Rel .. 3 AS' w AOP A ReI'
 

The concrete state is thus considered as a data refinement of the abstract state, and 
each of the concrete operations must model the same behaviour on the concrete state 
as the corresponding abstract operation does on the abstract state. 

The relationships between the two models can be illustrated as: 

ADP 
AS ~ AS'User view: 

··1 ·,1
 
EOP 

Implementor view: [5 ~ [5' 

Note that operation refinement is also often applied to the concrete operations, so that 
each is implemented as a combination of a number of simpler operations. 
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3 ServiCt:! doemneutatioD 

In this section we give an outline of the structure we have adopted for the 
documentation of a service. The documentation consists of two main parts, a "User 
Manual" and an "Implementor Manual lt 

• 

The User Manual describes the service as it appears to the user without glvlDg 
unnecessary details regarding the implementation strategies used. The user manual is 
presented as a series of formal specifications (written in Z) interleaved with infonnal 
explanations in English prose. Apart from serving as a reference manual to the user of 
the finished service, this document normally also serves as the requirements 
specification for the service. 

The purpose of the Implementor Manual is to present in detail an implementation of 
the service. The manual presents a concrete representation of the service state which 
is more directly irnplementable using available and (hopefully) well-documented 
resources, such as programming languages, file systems and databases. For each 
abstract operation the manual describes how the corresponding concrete operation can 
be refined in terms of a number of simpler operations, each of which is reasonably easy 
to implement in a programming language. The manual formally defines the relation 
between the concrete and abstract representations of the service state, which forms the 
basis for proofs of the correctness of each of the implemented operations. Like the 
User Manual, the Implementor Manual is also presented as a series of formal 
specifications linked together by prose which may contain additional informal 
explanation where required. 

The manuals currently use Z throughout, and thus some effort is still required to 
transform the presented implementation into final code. Note that an Implementor 
Manual presents only one possible implementation, reflecting a particular set of design 
decisions. A programmer could choose to implement a service differently, provided it 
still satisfied the specification given in the user manual. 

3.1 User manual 

We have adopted the following outline for the content of user manuals: 

1. Introduction - describes the purpose of the service. 

2. Service state - presents the service state as observed by the user (abstract 
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state) together with possible constra.ints on change of state. AlsoJ the initial 
state of the service is defined. 

3. Operation	 parameters - defines input/output parameters which an shared by 
a number of service operations. 

4. Reports	 - covers the possible reports which service operations may return, 
usually IISuccess" and a number of error cases. Each report· is detailed 
together with the circumstances under which it will be triggered. 

5.	 Operation defmJtions ~ describes in detail each of the operations which the 
service provides. The deecription of each operation consists of three sections: 

a. Abetract section	 - a possible procedure heading for the operation (as it 
might appear in some programming language) detailing the explicit 
input/output parameters, and a shon infonnal description of the operation. 

b. Defmition section -	 formal specification of the successful behaviour of the 
operation. This takes the form of a Z schema which incorporates all the 
formal parameters listed in the previous section. The schema may be 
accompanied by a short infonnal explanation where required. Note that the 
defined operation is panial and does not cater for any error conditions. 

c. Reports section	 - fonnal specification of the total operation. The total 
operation is fonned by combining the partial operation described in the 
Definition section with a number of error echemas described in section 4 of 
the manual. 

6. Service charges	 - presents a tariff schema defIDing the charges incurred by 
use of each of the service operations. 

7. Complete service	 - shows how the service state and operations defined in 
sections 2 and 5 of the manual combine with standard states and operations 
defined in the Common Service Framework to fonn the complete service. 

An example of the layout of a manual page defining a service operation is given on the 
next page. The fonnal text will be explained in more detail later. 
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OP 

Abstract 

OP (i n? IN; 
out! OUT; 
report! Report) 

Informal description of the operation and the parameters. 

DetinitiOD 

OPsuccess I
 

liS
 
in? IN
 
out! OUT
 

POST (in?S.out!.S') 

Informal text clarifying points in the fonnal definition of the operation. 

Reports 

OP (OPsuccess 1\ Success) 
• InputError 1 
• InputErrorz 

Optional informal text describing error conditions. 
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3.2 Implementor manual 

The content of Implementor Manuals may vary considerably due to the difference of 
complexity iII. implementing various types of services. However, a typical outline for an 
Implementor Manual would be as follows: 

1.	 Introduction - background and overall implementation strategy. 

2.	 Abstract state - extract from the user manual (included to avoid cross· 
referencing). 

3. Concrete state -	 defines the concrete (implementation) state together with its 
inital value. 

4.	 Reports - each related to the concrete circumstances under which it will be 
triggered. Corresponds closely to section 4 of the user manua.1. 

5.	 Operation implementations - for each of the abstract service operations, the 
corresponding concrete operation is defined. The description of each operation 
is in three sections, as in the user manual. 

6. Complete service	 - shows how the service state and operations defined in 
sections 3 and 5 of the manual combine to fonn the complete service. 

1. Implementation	 correctness - formally relates the abstract and concrete 
statea as a necessary precursor to any proofs of correctness of the 
implementation. 
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1 IntrodUetiOD 

When building a distributed operating system, consisting of a number of separate 
services connected to each other and to user5 by a communications network, there are 
a number of features that are common to all (or at least most) network services. 

A common framework for the specification of the user interface to services is presented 

here, in a way which allows the common features to be factored out of the 
specifications of particular services. 

The description is given in terms of an example skeleton service. The state and 
operations of this service are introduced only in outline. Any actual service description 
would provide explicit detail of these components. However, the example does show 
how any service can be elaborated to include common features. 

The common features include a number of subsystems such as a service clock, 
accounting, statistics and access control. Each of these subs)'fitems introduces a 

number of extra operations which may be performed by the service. These additional 
operations are introduced in separate sections which need not necessarily be absorbed 
in detail at a fir5t reading, but are designed to be used for reference when required. 
The subsystems combine with the specific service operations to fonn a complete 

service. This is illustrated in the diagram below. 

Complete ServJce 

Cammon Operations 

IAccounts ~ IStatJst'cs I I Access IB 

IService Operations I 

SubsequentlYI it is shown how a complete distributed system may be defined by 
combining the specification of individual services. Each service is identified by a 
unique user number. This allows services to act as clients to other services if required. 
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Finally, attributes of the network itself and the client's syslem are introduced, in as far 
as these affect the operation of a service. The 'network' may be considered to 
authenticale clients and can introduce errors. The client program must identify itself 
to the network and IDay also wish to keep jts own accounting record. 

The last section gives details of the following standard sets and data types used in 
service specifications. Further sets may be introduced in individual service manuals as 

required. 

IBool ean. UserNum. Userld. Time. Interval. Money. Op. Report. Key} 

1.1 Example service 

A service is specified by providing a mathematical model of the stale of the service, 
and by formally defining the change in state when an operation on the I!lervice is 

invoked by a client of the service. 

For our example skeleton service (ES)I we model the state of the I!lervice as follows. 

ES i 

state STATE 

INV (state) 

Here, STATE is a set which jncludes all possible states of the service. A predicate INV 
(the state invariant) is defmed to hold in all valid service states. 

We introduce the name 6.ES to denote the change in state ca.used by some opera.tion, 
dermed as a relation between the stale (undashed) before and the state (dashed) after 
the operation. 

lIES ., ES A ES' 

Sometimes an operation leaves the state of the service unchanged. 

=ES a ~ES I 8ES = 8ES' 

(In the following, we will assume for any schema 5, unless otherwise stated, that 6.5 
and =5 are defined in an equivalent way.) 
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The state of the service is initialised before it is ever used by any operation. The state 
of the skeleton service after initialisation is defined. 

In;tES ~
 

ES'
 

In i tPRED (state') 

An operation on the service is then defined by introducing the inpu t parameters in? 

and output parameters out! of the operation and relating them to the change in state 
by further predicates. PRE is the precondition which must hold over the current state 
and the input parameters in order for the outcome of the operation to be well-defmed.. 
POST is the postcondition which relates the new state and output parameters to the 

curren t state and input parameters. 

Operat i onsuccess i 

6£S 
in? : IN
 
out! OUT
 

PRE (state, in?)
 

POST (state, in?, out!, state')
 

(Here we have specified the precondition only in terms of the initial state and inputs. 

In Z, this Deed not always be sufficien t to define the domain of the operation because 

there may be some hidden implicit preconditions in POST. However in our style of 

specif.ication, we try to avoid this for the sake of clarity.) 

The sets STATE, IN, and OUT, and the predicates INV, PRE and POST used in the 
above definitions clearly depend OD the particular operation with in the particular 
service being specified. We leave them undefined for this example skeleton service. 
Additionally, the number of inputs and outputs will vary depending on the operation. 

However, there are a number of attributes of operations and services, and indeec also 
of the network across which the service operations are invoked a.nd of the invoking 
client process, which are common to all service specifications. The remainder of this 
document introduces these common features, and illustrates how they enable the 
specification of the example service to be augmented. 
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2 OperatioD attributes 

As well as parameters which are particular to the service operation being specified, 

there are a number of other attributes common to all operations. 

2.1 Repo.... 

We add to each service operation the output parameter 

report! Report 

which indicates to the client in a standa.rd way either that the operation succeeded or 
why it failed (in most cases, failure will leave the state of the service unchanged). 

The normal outcome of an operation is success. 

Success 

report! Report 

report 1 SuccessReport 

(Note that italics within formal text are used to denote implemenbtion·specific 
consta.nts,) 

Success Report is the same across all services for simplicity. The specification of a 
particular operation on a particular service may introduce report values which are 
returned to indicate that some specific precondition of the operation bas Il2.1 been 
satisfied. 

For example, if the specific precondition PRE of the operation on the example service 
is not satisfied, a report indicating the reason may be returned as follows. 
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Input Error 
=ES 
in? : IN 
report! : Report 

"'PRE (state. in?) 
report! = InputErrorReport 

The state of the service is defined as being unchanged if the error OCCUllI. 

We can now defme the total effect of the operation in this example as being either 
success, or an operation-specific error. 

Operat ion ~ (Operat ionsuccess A Success) v InputError 

H more tha.u one error report may be produced from an operation invocation, it is 

often useful, or even necessary, to specify an ordering of the reports according to the 
satisfaction of predicates over subsets of the state and inputs. 

For example, if the successful outcome of an operation requires satisfaction of the 
predicates contained in two schemas, PRE l and PREZI then we can specify the total 
effect of the operation using schema overriding (assuming error scbemas InputErrorl 
and InputErrorZ are defined for the negation of the respective predicates, as for 
InputError above) 

Operat ion ~ (Operat ionSUcceS5 A Success) 
• InputErrorl 
• InputErrorz 

which can be expanded to give the following. 

Operat i on ~ « « Operat i onsuccess A Success) 
A PREll v InputErrorl) 
A PREZ) v InputErrorZ 

In other words, from the report produced by calling this operation we could deduce: 

Operation report! Success = PRE,' PRE, 
Operation report! InputErrorReport1 ~ ..... PRE 1 A PREz 
Operat ion report! Inp utErrorReportz ~ ~PREz 
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Note that if overriding is used to specify the total operation, then it is not necessar1i to 
explicitly include the preconditions in the defmition of the successful operation. 

At this point it is worth noting that, in practice, a client will usually invoke a 

particular operation on a service by calling a programming language construct, such as 
a procedure. The procedure take8 input parameters to be passed to the 5ervice and 
output parameters returned by the 8ervic.e as a result of the call. The output 
parameters will include the report value. 

We include in the user manual for the service an indication of the format of the 
procedure call that would be used in a procedure.-oriented interface as follows. 

Operat ion (in? IN; 
out! OUT; 
report! Report) 

2.2 Cli~nt identifieatioD 

In order that a service can attribute any resources used in performing an operation to 

a particular user, each client is given a user number which is allocated from the set 
UserNum. The allocation is public - that is, it is common for clients tlJ know each 

others' user numbers. It is expected that the user number of a particular client will 
change only rarely, if at all. 

The user number of the client who invoked an operation is assumed to be an implicit 

parameter of the operation. In other words, the user number is not explicitly passed as 
a parameter to the service, but is derived from other information (see l!ection 4.1 on 
Authentication). 

We therefore augment the attributes of an operation with the user number of the 
client. 

c 1 ientnum UserNum 

2.3 Special clients 

Some service operations may behave differently if their invoking client i!! either one of 
two special cases. 
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The guest user is an identity which may be assumed by any client who is (usually 
only temporarily) lacking their own individual identity. The gue5t user has the fixed 

user number GuestNum which is a special value from the set of all user numbers. 

The servke manager is a particular user, fixed for any particular service, who is 

responsible (or the management of the resources provided by the service. 

{GuestNum. ManagerNum} c UserNum 

Some service operations which need to attribute the use of resources to an identifiable 
client may prevent the guest user from successfully performing the operation. The 
following schema may be used as an overriding component in a.n operation defInition 
to ensure thilt the client is known, or to produce an appropriate error report. otherwise. 

Not KnmmUser
 
cl ientnum : UserNum
 
report! : Report
 

c1 ientnum = GuestNum 
report! = NotKnownUserReport 

Such an operation would be specified. to leave the state of the service unchanged. if the 

user is not properly identifIed. 

Operat ion a Operat ionSlJcces50 • (NotKnoHnUser 1\ =E5) 

Similarly, services often include special operations which are invoked to manage the 
resources provided by the service. Examples of such operations include status 
operations to discover the amount of a resource currently being used by each client, or 

scavenge operations to reclaim resources that are no longer being used. The service 
may restrict successful invocation of these operations to the service manager by using 
the following overriding schema. 

Not Manager 
cl ientnum : UserNum 
report! : 

cl ientnum 

Report 

'" ManagerNum 
report! = NotManagerReport 
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A management operation would therefore be specified as follows. 

Operat ion ~ Operat ionsuccess • (Not Manager 1\ =ES) 

2.. C1lJftnt time 

Each service has access to the current tilDe (for example via access to a common time 
service). It is useful to denote this by including as an implicit attribute of all operation 

the time now at which the operation was invoked. 

now: Time 

We do not attempt here to specify in more detail the value that this attribute will 
assume, except to informally hint that for successive operations Lhe value will be 
non-decreasing! Later, a standard specification for a service clock is presented, which 

may be used in individual services if desired. 

2.5 Operati01l """t 

Each service is responsible for charging its clients for their use of th~ resources 

provided by the service. Every operation has an output parameter which indicates the 
cost incurred by the client in perlonn.ing the operation. (We shall see later that this 
parameter need not be explicitly included in the procedure call when using a 

proced.ure.oriented interlace.) 

cost! : Money 

The value of this parameter will be specified separately (see section 3.1 on Service 
charges). 

2.6 Key-llnlI:ed operations 

Some operations are designed to operate over a potentially large set of values (such as 

block identifiers). Such operations are designed to allow the set to be kaversed in 
several operation calls. This may be necessary to limit either the sUe of output 
parameters or the execution time of any particular call. 
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For example, sayan Operat i on schema requires the traversal of the (potentiaJly 
large) set 

xs : F X 

(For example, Xcould be the set of all file identifiers.) 

The operation itself is designed to traverse only a subset of xS on each call, and 
repeated calls of it may be necessa.ry to construct xs as the union of the individually 
traversed pa.rts. The execution of the separate operations is related by passing a key 
parameter from one call to the next, taken from the given set Key. Each operation has 
an input key parameter (key?) and an output key parameter (key!) and affects a 
subset of xs (subx9). 

To construct X9, the client first calls the operation with a special key StartKey: 

Operat i on I	 key? = StartKey 

The client then continues to caJl Op repeatedly, supplying as the new key in each case 
the key returned by the previous call. The following is an example of the i th call: 

Operat i on I	 key? = key I A
 

key! = key ,+! A
 

subxs = subxs ,
 

Finally, the speciaJ key EndKey will be returned to indicate that no more calls need 
be made. 

Operat i on I	 key! = EndKey 

At that point, providing the set xs has remained constant, and not been affected by 
other operations on the service: 

xs = U subxs j 

A key is itself to be regarded as standing for a set of X, using SOIDe implementation­
specific representation (denoted hy the generic constant function, KeySet). The 
special keys, StartKey and EndKey, denote the set of no X and the set of all X. 
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IX] i 
KeySet Key ~ r X 

KeySet(StarIKey) = ~
 

KeySet(EndKey) = X
 

Each key value, passed from one call to the next, fitands for all the ids that have been 
traversed so far (including possibly many that are not in xs). 

The following framing schema (parameterised by an appropdate set X) is used to 
simplify the definition of such key-linked operations. 

<1i\ey[X] i 

key? Key 
key! : Key 

xs r X 

sub)(s r X 

KeySet(key?) c KeySet(key!) 
sub.s = (KeySet(keyi) \ KeySet(key?» n •• 

[Note: a framing schema is denoted with the prefix letter '~~ and consists of a partial 
specification for use as part of a subsequent schema.] 

The difference between the sets denoted by the two keys indica.tes the subset of xs 

involved in the particular call. 

BadKey indicates that an input key has been provided which does not denote a valid 
set. Note that this includes supplying an end key to an operation. This error schema 
should always be provided by key-linked operations. 

BadKey 
key? Key I 

r-eport! Report 

key? f (dom KeySet) \ EndKey 
r-eport! = BadKeyReport 
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2.7 Operation identification 

So far, we have only considered the specification of individual operations on the 

example service. It is useful to defme the effect of any general operation on a service. 

In order to select which operation is to be performed, the operations of a service are 
each identified by a different value from the set Op, and each call includes an explicit 
parameter denoting the operation to be invoked. (When using a procedure-oriented 
interface, this parameter is implied by the name of the procedure being called.) We can 
define a framing schema for an operation. 

~p --------,I 

op? : Op II 

H the individual operations on the example service have been specified as A, B, _._, 0, 
with operation numbers AOp, BOp, ''', DOp respectively, then the effect of an 
arbitrary choice of one of these operations on the service can be specified as follows. 

ESSen.. i ceOps 0 

(A A q,Dp lop? = AOp ) v 

(B A q,Dp lop? = BOp ) v 

(0 A q,Dp lop? = DOp 

Any attempt to invoke a non-existent operation on a particular service is rejected with 
an appropriate report, which will be included in a later definition of the complete 
service. 

BadOperat ion 
report! 

report! 

: 

= 

Report 

BadOperationReport 

2.8 Operation parBDlete:rs 

Typically, for each operation requested by clients there is au output parameter 
reporting the outcome of the operation (report!). Additionally the current time (now) 
and the user number of the client (c 1 i entnum) are available. It is convenient to define 
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a schema containing such parameters in each service user manual. 

¢Bas i cParams 
report! Report 

no,", Time 

cl i entnum UserNum 

Additionally, the basic parameters are supplemented by hidden parameter.sl normally 
an operation identifier and the cost of executing the operation. 

¢f'arams
 
¢Bas i cParams
 
op? Op
 
cost! : Money
 

Again, it may be convenient to define such a schema in a user manual. Note that these 
hidden parameters will not normally appear as parameters to procedures invoked in a 

specific user programming language to execute the operation, but will be passed by 
some other means. For example, op? will depend on the name of the procedure called 
by the user. 

Note that since ¢f'arams includes op?, it may be used instead of <pop in the definition 
of ESServ i ceOps if this is convenient in a particular service. 
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3 Servit:e attributes 

Having specified the effect of individual operations on a service, it is then possible to 
consider the attributes that apply to the service as a whole. These include charges, a 

null operation, and four subsystems, each with their own state and operations, which 
may be incorporated in to the specifications of individual services. 

3.1 Se:rvice ch8l'gea 

Each service operation will incur some charge on the invoking client. The charge may 
be fixed or may be a function of the parameters of the operation. (Some service 
operations may sometimes give a credit because of resources returned by the clientj 

this is indicated. by a negative charge.) 

A service manual will include a tariff section which defines the value of the cost! 
parameter for any particular invocation of an operation. The details of the tariff will 

be specific to a particular implementation of a service. 

For example, a tariff of the following form may be imposed on a client of the example 
service who successfully invokes an operation. 

ESlariff 
6ES 
op? Op 

in?A : INA 
out!A QUlA 

cost! Money 

op? = AOp ~ cost! = ABasicCost + 

AExtraCost(6ES. in?A' out !A) 
op? = BOp ~ cost! = BBasicCost + ... 

where	 { ABasicCost, BBasicCost, ... } !; Money 
AExtraCost E (6ES x INA x QUlA) -++ Money 
etc. 
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The cost when errors occur should also be covered and included in the delmition of a 
tarnf error schema. 

ErrorTar iff i 
cost! : Money 

cost' = ErrorCost 

Ij£STar;ff Success ~ ESTariff A
 

~Success ~ ErrorTariff
 

Note that a particular service may specify a more complex set of charges for different 
error reports. This tariff framing schema combines with the service optrations to 
define the basic service: 

ESBasicOps 9 ¢ESTeriff A ESServiceOps 

3.2 Null operation 

A null operation is provided in most services. This operation does not change the state 
of the service, but allows any client to check that they can successfully access the 
service. A standard (small) cost is involved. 

op? = NullOp 

cost! = NullCost 

Note that at this stage we do not know the state of the particular service. Hence the 
fact that the service state does not change will be recorded when the complete service 
is formally defined. 

3.3 Serviee cloclr. subsystem 

A service may include its own clock subsystem which maintains the currell~ time. 
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Clock

I notol Time: 

Initially t!J.e dock u; set to some value (typically using a separate Time Service, 
although lhis is not specified here). 

InitClock
 
inittime Time
 
Clock'
 

no.... ' = initt ime 

The interval between most service operations as measured by the clock is positive, but 
may be zero if the granularity of tlme measurement is large. 

¢Clock
 
AClock
 

notol' ~ no.... 

Note that notol is considered to be the time the service operation took place, and notol' 
will be the Ume the next operation will take place. ThUB notol' will Dot be available in 
the specifications of operations in practice. 

Two operations are associated with this subsystem. The current time according to the 
service can be read by any client. A (small) fixed cost is associated with this operation. 

Get C1 ocksUCClI!ss i 

¢Clock 
now! Time 
cost! : Money 

no.... ! = now
 
cost! = GetClockCost
 

GetCl ock ~ GetClocksuccess A Success 
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When the time is set, the time of the next operation will then be after (or possibly the 

same as) the required time. 

SetClocksuc:c:ess t 

AClock 

nolo'? Time 

cost! Money 

no,", ~ ~ no~? 

cost! = SetClockCost 

SetClock ~ (SetClocksuc:c:ess A Success) 
• (NotManager A ¢Clock A ErrorTariff) 

The clock may only be set by the service manager, but may be read by ll.D.y client. 
These clock subsystem operatioDS may be combined as follows: 

ClockOps a 
(Get Clock A cjJOp op? = GetTimeOp) v 

(Set Clock A cjJOp op? = SetTimeOp ) 

3.4 Service accounting Bubsystem 

Each service may keep an accounting record of the accumulated. credit and charges 
made to each client for use of that service. Account balances may be positi"e denoting 
a credit or negative denoting a debt. Here we assume that the service can keep a 

record for all possible users, so the accounts function is total. (IT the number of 
possible users were very large, this may not be feasible in practice.) 

Accts 

I accounts UserNum ~ Money 

Initially the accounts are all zero. 

InitAccts ~ Accts' I ran accounts' = {O} 

When a service operation is performed, the output cost parameter (cost!) is deducted 

from the balance for the appropriate client, The following framing schema will 
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therefore be included in the specification of each servke operation. 

4lAccts 
~ccts 

cost! Money 

cl ientnum UserNum 

accounts' = accounts. 
{cl ientnum ~ accounts(cl ientnum) - cost!} 

A subsystem operation is provided to allow clients to check the balance of their 
account. Note that this operation involves a cost itself (similar to a charge for a bank 
statement). The balance is that after deduction of this amount. 

GetBa 1ancesuccess j 

4lAccts 
balance! Money 
cl ientnum UserNum 

balance! = accounts'(cl ientnum) 
cost! = GetBalanceCost 

GetBa 1ance a; (Get Ba 1ancasuccess I\. Success) 

A management operation is provided to check the accounts of those clients with non­

zero balances. 

CheckAccountssuccess I
 

:Acct s
 
accounts! : UserNum ~ Money
 

accounts! = accounts. {O} 

CheckAccount s S (CheckAccount 5success I\. Success) 
• (NotManager I\. 4lAccts .... ErrorTariff) 

The manager may reinitialise all the accounts jf required. 
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ZeroAccount ssuccess -----------~
I aAccts I 

ran accounts' = {O} 

ZeroAccount s ~ (ZeroAccount ssuccess " Success) 
e (NotManager " ¢Accts " ErrorTariff) 

Finally, a specified account may be credited when a client pays all or part of his bill, 
or prepays for use of the service. 

Cred i tAecountsuccess i 

,Meets 

cl i entnum? UserNum 

credit? Money 

accounts' = accounts e 
{el ientnum? 1-+ accounts(cl ientnum?) + credit?) 

Cred i t Account Q (Credi tAccountsuccess " Success) 
e (NotManager " ¢Accts " ErrorTariff) 

Apart from Get Ba 1ance, these operations can only be invoked by the service ma.nager 
and no cost is involved, unless a client who is not the service manager atlempts the 
operation in which case the error charge will be incurred. 

The operations combine to form the accounting subsystem operations: 

Acet sOps • 
(Get Balance " ¢lip lop? = GetBalanceOp ) v 

(CheckAccounts " ¢lip lop? = CbeckAccountsOp ) v 

(ZeroAccount s " ¢lip lop? = ZeroAccountsOp ) v 

(CreditAccount " ¢lip lop? = CredUAccountsOp ) 

This subsystem could be augmented to impose a credit limit if desired, but Ihis would 
require an extra error report. 
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3.5 Serviee IJtatistia ilubsystem
 

Each service may keep a record of the number of invocations of each of its operations.
 

5tats I
 

I ca 11 s Op ~ OpCount J
 

Initially, the number of calls for all operations is zero. 

Init5tats ~ 5tats' I ran calls' = {O} 

When a Bervice operation is performed, the call count for that operation is 

incremented. The following framing schema will therefore be included in the 
specification of each service operation. 

$5tats 
~Stat. 

op? : Op
 

calls' = calls. {op? ~ (cells op?) + 1}
 

Management operations are provided on the subsystem to check the non·zero counts 
and to zero the accumulated statistics. 

CheckStet ssuccess I 

=Stets
 
ca 11 s! : Op ....... OpCount
 

call.! = call. ~ {O} 

CheckStets Q (CheckStatssuccess A Success) 
• (NotManager A =Stets) 

ZeroStatssuccess i 

b.5tats 

ran calls' = {O} 
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ZeroStats ~ (ZeroStatssuccess 1\ Success) 
e (Not Manager 1\ =Stats) 

These statistics subsystem operations can only be invoked by the service manager. 

Stat sOps a 
(CheckStets , ¢Op op? = CheckS/alsOp ) v 

(Zerostats , ¢Op op? = ZeroStatsOp ) 

3.8 8erviee aeeess subsystem 

For some sequences of management operations it is important to ensure that the state 
of the service is not changed, or even observed, by other clients between operations. It 
is therefore possible in some services for the service manager to enable or disable 

access to the service by other clients. 

The state of the access subsystem includes an indication of whether service access to 

other clients is enabled or not. Initially service access is not enabled. 

Access I

I enabled: Boolean, 

In i tAccess ;:::: Access' I enab IEd' = False 

Operations on the basic service can only be perfonned if it is enabled or if the 

operations are perfonned by the service manager. 

cIlAccess 
=Access 
c 1 i entnum UserNum 

enab 1ed = True v 

cl i entnum = ManagerNum 

Operations on the ba.sic service will fail with an error report if access is disabled and it 
is not the service manager perfonning them. 
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NotEnabled 
=Access 
cl ientnum UserNum 

enab1ed = False 
cl ientnum ~ ManagerNum 

report' = NotElJabledReport 

Management operations are provided on the subsystem to change the state of access. 

Enab1esuccess , 
Mccess 

enabled' = True 

Enable Q (Eneblesuccess A Success) 
• (NotMeneger A =Access) 

Di seb1esuccess i 

Mccess 

enab1ed' = False 

Di seb 1e Ii:: (D issb1e su l:l:ess A Success) 
• (NotNanager A =Access) 

These operations specific to changing the state of access can only be invoked by the 
service manager. 

AccessOps a 
(Eneble A ¢lOp op? EnableOp ) v 

(Disable A ¢lOp op? DiBableOp ) 

3.7 Service operatioDB 

This completes the definitions of the common operations that may be available on a 
service. Not every service need implement the subsystems for a local clock l accounting, 
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statistics or access control. Every service must implement the null operation. 

An operation may occasionally fail, even if its preconditions are satisfied, because of 
an underlying nondeterministic fault in its implementation (for example, a hardware 
fault or tbe unavailability of some other service). In this case a standard failure report 

is returned. 

Serv i ceError 
fault Boolean 
report! Report 

faul t = True 
report! = ServiceErrorReport 

The state of the service should remain unchanged in this case. 

Note that this imposes a heavy, if not impossible, burden on the implementor of the 
service to ensure recovery from all such errors without changing the observable service 
state. An alternative, but not very useful, specification would allow the fleroce to 
assume any valid state after such an error. In the case of a catastrophic eJ1'Of such as 
complete disk failure, the implementation could be designed to continually return 
Serv i ceError and 80 not have to return the previous state! 

We are now in a position to specify all the operations and error conditions for our 
example service. In this example we shall define a service including a null operation, a 
clock, accounting, statistics and access control. 

The combined state of the complete service is: 

ESState Q ES A Clock A Accts A Stats A Access 

The initial state is defined as: 

In i tESStete ~ 

InitES " InitClock A InitAccts A InitStets A InitAccess 

The possible changes of stale of the complete service, covering all operations which 
can be performed by the service, including the case where the service is not enabled, is 
as follows: 
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ESAllOps • 
(ESBas icOps II .6ES II ¢(:lock II epAccts II $Stats A epAccess) v 

(Null II =ES II ¢(:loek II epAeets II $Stats A epAccess) v 

(ClockOps II =ES II l!.Cloek II epAeets II ¢6tats A epAccess) v 

(AcetsOps II =ES II ¢(:loek II .6Aeets II ¢6tats A epAeeess) v 

(Slat sOps II =ES II ¢(:lock II =Aeets II l!.Stats A ~Access) v 
•(AceessOps II =E5 II ¢(:loek II =Aeets II =5tats A .6Aecess) v 

(NotEnabled II =E5 II ¢(:loek II =Aects II =stats A =Access) 

Finally, we include the possibility of a bad operation number (the only possible 
conclusion if all the operation preconditions have failed) or a non-deterministic service 

error: 

ESOps •
 

( (BadOperat i on II =ES II ¢(:1oek II =Acct s II =5t ats II =Access) II
 

(EsAl10ps II .6E5 II l!.Cloek II Meets II l!.5tats II .6Access»
 
v 

(ServieeError II =E5 II ¢(:loek II =Aeets II =Stats II =Access) 

Similar schemas should be defIned at the end of each service manual. 

3.8 Service identification 

So far, we have only considered the specification of an individual service. We have 

made use of a number of definitions which are specific to the service in question, such 
as E5, E5Teriff and E5BasieOps. 

It is useful to define the effect of any general operation on the complete collection of 
services. Since services may act as clients by invoking operations on other services, ,
they are given user numbers from the same set UserNum as other users. 

In order to select which service is to be affected by a particula.r operation, the user 

number of the service is provided as a parameter. (When using a procedure-oriented. 
interface, the service to be affected is implied by the name of the procedure being 

ca.lled.) 

¢6v	 ~ 

sv? UserNum	 i
 
I
 I 



Any attempt to invoke an operation on a non-existent service is rejected with an 

appropria.te repon. 

BadServ i ce I
 

report! Report
 

report! = BadServiceReport 

If the individu.al service states have been specified as WSState, XSState, ..., ZSStete, 
the initial states a.re WSInitState, XSInitState, ..., ZSInitState, and the 
combined operations on the services are defined as WSOps, XSOps, ..., lSOps, then the 
combined state, the initi.al state and the effect of an arbitrary operation on an 
arbitrary service on the network can be specified as follows: 

SvStete Q
 

I-lSStete A XSState A ••• A ZSStete
 

SvInitStete a 
I.JSInitState A XSInitState A .•• A lSInitState 

SvOps ~ 

(BadService A =SvStete ) • 
«~SOp. A sSvState\~SState A ¢6v sv? = W8v) v 

(XSOps A sSvState\XSState A ~Sv sv? = XSv ) v 

(ZSOps A sSvState\ZSState A ¢6v I sv? = ZSv ») 

In other words, any operation on a particular service does not affect the sla.te of any 
other service. Note that in the case of services making use of common operations, the 
common state components should be renamed uniquely for each service to avoid 
name clashes. 

(Strictly speaking, the invocation of a service operation may cause opera.tions on ~ 

services to be performed by the invoked service. However, as far as the client of the 
original operation is concerned, those additional operations ca.n be considered as 
having been performed by other users after the completion of the original opera.tion 
and before the client can perform another operation on any affected service. Hence, 
because no user has control over the interleaving of other users' operations between 
their own, there is no need to explicitly cater for these secondary effects in the 
specification.) 
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4 Network attributes 

There are some features of services that are independent of the particular service upon 
which an operation is being performed. We include authentication of clients at this 
stage, since it is something which can be considered the responsibility of the network, 

rather than of an individual service (otherwise, for example, a service could 
impersona.te one of its clients). Indeed, it is possible for networks to include security 

and authentication measures as part of the hardware network inLerfa.ce. 

4.1 Authentication 

Authentication ensures that the client of a service operation is genuine, so that any 
costs incurred in performing the operation can be reliably attributed to a particular 
client. A very simple scheme has been chosen which makes it difficult for one client to 

impersona.te another. 

00 far, we have presumed that the user number of the client is an implicit parameter of 
any service operation. Since user numbers are public, they do not provide a secure 
identification of the client. 

In order to provide authentication, each registered client also has a user identifier. 

User identifiers are allocated privately, from the set Userldj a client should not reveal 
his user identifier to anyone else. Since user identifiers may become compromised 
(known by too many people) or forgotten (known by too few!), it Inight be necessary to 
change a client's user identifier from time to time. 

Authentication is achieved by the existence of a (secret) partial function 

authentiC UserId ~ UsarNum 

(GuesUd H GuestNum) e Buthent IC 

which for any user identifier gives the user number of the client who should be its sole 
possessor. Since the set Userld of user identifiers has been made very large, and the 
set (dam authent ie) of authentic user identifiers has been made a relatively small 
pa.rt of it, it will be hard for clients to guess the user identifiers of others. 

We have already introduced the guest user, which some services might recognise as a 
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special client, and who has the user number GuestNum. The guest user h;u; the user 
identifier Guest/d. This user identifier mpublic, and is expected to be used by clients 
temporarily without a private user identifier of their own. The guest user is always 

authentic. 

Each service operation htl..f! an explicit input parameter 

c 1 i ent id? UserId 

identifying the client who has invoked the operation. (We will see later that in a 
procedure-oriented interface this parameter need not be provided explicitly by the 
client on each call.) 

The authentication performed by the service-network interfa.ce will reject an operation 
if the client is not authentic. If authentica.tion is successful, the user number of the 
client (c 1 ientnum) is defined and may be used in specifying the particular behaviour 
of the operation, as already described. 

IsAuthentic 
i 

eli ent id? UserId 
cl ientnum UserNum 

cl ientnum authentic cl ientid? 

NotAutnent ic 
cl ientid? Userld 
report! Report 

cl ient id? Ii! dom authentic 

report! = NotA uthenticReport 

We augtDent the specification of the service operations as follows. 

S"AuthOps ~ 

(IsAuthentic 1\ S"Ops) " 
(NotAuthent ic 1\ =S"State) 
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4.2 Network elTOn 

In rare cases an unexpected network failure may occur during the transmission of 
parameters to or from a service operation. In this case, an errorreporl is returned, but 

the client cannot determine from the report whether or not the operation was 

executed. 

Net Error 

•
 

Again the service operations are augmented. (We use the notation 5\ ( *!) to denote 
the schema 5 with all output parameters, ending in !, hidden.) 

NetOps ~
 

SvAuthOps v
 
({SvAuthOps\{*!) v =SvState) A Net Error)
 

Hence no meaning can be attributed to any output parameters if a network error has 
occurred, except the error report! value itself. However we guarantee that the 
operation either will or will not have taken place (sometimes known as 'at-most-once 
semantics'). 

, 

report! Report I 

report! N etErrorReport 
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Ii Clieut attributes 

So far, we have defmed the following explicit parameters as common to each operation 

invocation. 

Params 
cl i ent jd? Userld i 

sv? UserNum 
op? Op 
cost! Money 
report! Report 

These parameters, plua the input and output parameters specific to an operation, must 
all be present if we view the interface to a service at a low enough level (for example 

as data transmitted over a network). 

However, in a procedure-oriented interface we have already said that the identification 
of the service sv? and the operation op? is implied by the name of the procedure itself. 

In order to reduce the number of parameters that must be explicitly provided on each 
procedure call still further, jt is convenient to specify that the client's name and the 
accumulated cost incurred are stored locally in the client program. 

5.1 Clieut idelltif'ic:atiou 

Since the identification of a client program (or process, or operating system 

environment) is likely to remain constant over a number of service calls, it is 
convenient to allow the user identifier of the current client to be remembered in the 
state of the client program. 

C1 ient
 

I cl ientid Userld
 

Initially, on starling a new client program, the current client is the guest user. 

InitClient f:l Client' I clientid' = GuestId 
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The current client may he changed or interrogated by operations. (Note that thes~ 

operations are local to the client program, rather than being perfonned by a service, 
and so do not involve the normal service parameters. Their effect is left non­
detenninislic in this specification since their use is completely under the control of the 
client.) 

SetCl ientld 
6.Client 
neHcl ientid? : Userld 

cl ientid' = neHcl ientid? 

GetCJ ient Id 
=C1 ient 
currentcl ientid! Userld 

currentcl ientid! = cl ientid 

LocalCl ientOps e SetCl ientld v GetCI ientld 

When calling a service operation, the input parameter c 1 i ent i d? is that of the 
current name remembered by the client program. The following framing schema will 
therefore be used in the specification of each service operation. 

¢Client
 
=Cl ient
 
cl ient,d? Userld
 

cl ientid? =cl ientid 

5.2 Client aecoUDtmg 

It is also convenient to accumulate the cost incurred by the client's use of a service in 
the client program, rather than pass it explicitly as an output parameter on each 
procedure call. We therefore allow the client program to accumulate the total costa 
incurred over a number of service operations. 
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Cost i

I totalcost Money, 

Initially, on starting a new client prograIU, the accumulated cost is zero. 

InitCost Q Cost' I total cost • = 0 

The accumulated cost may be interrogated or reset to zero by operations. (Note that 
these operations are local to the client program, rather than being performed by a 

service, and so do not involve the normal service parameters.) 

GetCost 
=Cost 
totalcost! Money 

totalcost! = totalcost 

leroCost

I ~Cost I 

total cost • = 0 

LocalCostOps Q GetCost v leroCost 

When calling a service operation, the output cost parameter (cost!) is added to the 
accumulated cost remembered by the client program. Some reports denote that access 
to a service has not been possible, 80 no C06t has been incurred, and the cost! 
parameter is undefined.. 

NoCostReports e {ServjceErrorReport.
 
BadServiceReport.
 
N otAuthenticReport,
 
NetErrorReport}
 

The following framing schema will then be used in the specification of each service 
operation. 
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etCost 
.6Cost 
cost! Money 
report! : Report 

(report! f NoCostReports) ~ 

totalcost' = totalcost + cost! 
(report! E NoCostReports) ~ 

totalcost' = totalcost 

It is possible, if a network error has occurred and if the invoked operation was indeed 
performed by the service, that some actual charge may have been incurred by the 
client. Clients can check their actual charges by invoking the Get.Ba1ance operation 
on the appropriate service. 

5.3 Client view 

The client views the state of the whole system as including the local authentication 
.and accounting operations. Note that initially, the state of the network services may be 
.any valid state. 

LocalState ~ SvState A C1 ient A Cost 

InitLocalState e SvState A InitCl ient A InitCost 

Local0ps ~ 

(NetOps A .6SvState A etCl ient h ¢Cost) v 

(LocalC] ientOps A =SvState A .6Cl ient h =Cost) v 

(LocalCostOps A sSvState A =Cl ient h ft.Cost) 
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6 Sets and data type. 

Service specifications, and the common gervice framework presented bere, m~ke use of 
a number of given sets and a data type. These are described in this section. 

6.1 Boolean values 

A boolean data type is 90metimes useful when there is a simple yes/no choke, defined 

as follows. 

Boo 1ean ; ; = False I True 

6.2 User Dumbers and mel' ids 

The set UserNum is a finite set of publicly known "numbers" associated with clients. 
The set User Id is a corresponding finite set of private identifiers for clients. (Note 
that there may be more than one valid Userld associated with a given UserNum. 

Also each service has a UserNum, and 60 may act as a client to another service.) 

6.3 Time and intervals 

The set Time denotes the finite set of all instants of time (to an appropriately small 
resolution, such as a second) covering dates relevant to the life of the system. 

The set Interval denotes a finite set of non-negative time intervals, or differences 
between pairs of time instants. 

The follow infix operators and constants are assumed to be defined for Time and 
Interval: 

" ­ Time H Time 

(- + -) (Time x Interval) -+ Time 

<- - -) (Time x Interval) ~ Time 
ZeroTime : Time 

_~_ e total_order Time 

Zero Time = min Time 
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~ _ : Interval +-+ Intarval 
(_ - _) : (Time x Time) ---+ Interval 
Zerolnterval: Interval 

)_ E total_order Interval 
ZerolntervaJ = min Interval 
V t:Time • 

t + Zerolnterval = t
 
t - Zerolnterval = t
 
t - t = Zerolnterva.l
 

All these operators are defined to be total, ignoring any problems with error conditions 
caused by arithmetic overflow or underflow. Note that the addition of two absolute 
Time inslants would be meaningless. 

6.4 MOIley 

The set Money denotes a finite set of all (signed) measures of cost. It is used for 
operation charges and accounting purposes. The following infix operators are assumed 
to be defined for Money: 

Money +-+ Money
 

(- + -) (Money x Money) ---+ Money
 

(- - -) (Money x Money) -+ Money
 

- ~ 

_~_ E total_order Money 

The operators above are defined to be total, again to avoid errors. 

6.5 Operation identifiers 

The set Op denotes the finite set of possible operation identifiers. These are unique for 
different operations within a given service. However. they may be shared across 
services since the user number of the service itself may be used to identify on which 
service a particular operation is to be performed. Common operations, such as the null 
operation, will be given a standard operation identifier across all services to avoid 
confusion. 
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6.6 Reports 

The set Report denoLes Lhe finite set of possible reports which may be relurned by 
operations. As for operation identifiers, reports need only be unique within a 
particula.r service. Again, common reporLs will be given standard values across all 
services. 

6.7 Keys 

The finite set Key is used for certain operations which are called in a sequence, 
passing a key value between successive operaLions. There are special firsL and last keys 
(StartKey a.nd EndKey) for iniLialisation a.nd tennination of the sequence of 
opera.tions. 
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1 Introduction 

The Reservation Service allows clients to notify a manager how long they may require 

use of other services. A client may make a reservation for a specified period. 
Subsequently the reservation may be cancelled by requesting a reservation of zero 
interval. At any one time, there may be a number of client reservations. 

The service manager may inspect the reservations whenever required. The manager 
may also set a shutdown time after which the availability of services in the distributed 
system is no longer guaranteed (for example, because of maintenance). If any client 
reservations are threatened by the shutdown time, the manager will be notified, and 
can then negotiate with the clients concerned or set a new shutdown time. Note that a 
client cannot make a reservation past the current shutdown time. 

Normally a client will make a reservation for some reasonable period. before using any 
other services. However a client may still use other services without making a 
reservation. In this case there is no guarantee a.bout the availability of services. 
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Z Serviee state 

A reservation records the user number (public identity) of the client wb.o made it and 
the time at which it will expire. A number of reservations may exist at anyone time. 
Each user may only have one reservation, and there is a limit on the total number of 
reservations. 

Reservat i ons ~ {r: UserNum -++ Time I Ur :!i; Capacity} 

The state of the Reservation Service records the shutdown time most recently set by 
the service manager (shut dOlo4n) and the set of current reservations (resns). The 
guest user cannot make reservations. 

RS 
shutdown Time 
resns Reservations 

GuestNum f. dom resns 

Initially the shutdown is set to a default value and there are no reservations. 

InitRS 
RS' i 

shutdown' = InitShutdownTime 

resns' = l?J 

The service is in its initial state every time it is powered up. 
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3 Operation parameters 

For each operation requested by clients there is an output parameter reporting the 
outcome of the operation (report!). Additionally the current time (now) and the user 
number of the client (c 1 i entnum) are available. 

<l£as i cParams 
report! Report 

no" Time 
eli entnum UserNum 

Operations may change the state of the Reservation Service. 

bRS ~ RS A RS' A ¢BasicParams 

Some operations may leave the state of the service unchanged, 

'RS 0 6RS I 8RS ~ 8RS' 

OperatioDs can return finite sets of users, so we make the following definition for the 
convenience of subsequellt specifications. 

Users ~ {u: r UserNum I Ilu ~ Capacity } 
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• R.porte 

The report! output parameter of each operation indicates either that the operation 
succeeded or suggests: why it failed. 

Success indicates successful completion of an operation. 

Success 
report! Report 

report! ::: SuccessReport 

If a reservation cannot be made due to early shutdown, the shutdown time itself is 
returned in unt j 1 ,. Note that a reservation of zero interval will not cause this error. 

NotAvai lable 
=RS 
interval? Interval 
unt i 1 ! Time 

i nterva1? ~ ZerolneervaJ 
shutdown < now + interval? 
unt i 1! shutdown 
report! = NotA vai/abJeRepore 

The service has finite capacity for recording reservations; the report TooManyUsers 
occurs when that capacity would be exceeded. The report cannot occur if tbe client 
bas a reservation (since it is overwritten by the new one). 

TooManyUsers
 

=RS
 

ttresns = Capacity 
clientnum f dom resns 

report! = TooManyUsersReport 
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Some operations can only be executed by the service manager. 

Not Manager
 

=RS
 

cl ientnum i- ManagerNum 
report! = NotMa.nagerReport 

Guest users cannot ma.ke reservations. 

NotKnownUser
 

=RS
 

cl ientnum = GuestNum 

report! = NotKnownUserReport 
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5 Servir:e operations 

Four operations are described in this section. Reserve, which may be performed by 
any authentic client, SetShutdololn and Status, which may be performed only by the 
service manager, and Scavenge, which is perfonned by the service itself. 

The description of each operation has three sections, titled Abstract, Definition and 

Reports. 

The Abstract section gives a procedure heading for the operation, with formal 
parameters, as it might appear in some programming language. The cQrrespondence 
between this procedure heading and an implementation of it in some real programming 
language is designed to be obvious and direct. A short infonnal description of the 

operation may accompany the procedure heading. 

The Definition section mathematically defines the successful behaviour of the 
operation. It does this by giving a schema which includes as a component every formal 

parameter of the procedure heading, either explicitly or as componen~s of included 
subschemas (such as .6.RS). A short explanation may accompany the schema. 

The Reports section summarises the report values which can be returned by the 
operation. This gives the definition of the total operation including the behaviour in 

the case of errors. 

5.1 Client and manager operations 

The following operations are available: 

Reserve make or clear a reservation 

SetShutdokin set a shutdown time 

Stat us obtain current reservations 

Only the Reserve operation may be performed by most clients. The last two 
operations may only be performed by the service manager. 
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RESERVE 

Abstract 
Reserve (interval? Interval; 

unt i 1 ! Time; 
report! Report) 

A reservatioD. is made for a period of time (i nterva 1?), and returns the expiry time of 
the new reservation (unt i 1 ! ). 

A client caD cancel a reservation by making a new reservation in whicb i nterva l? is 

zero; this will then be removed by the next scavenge. 

Definition 

Reservesul;cess -------------------~ 
~RS I 

i nterva 1? Interval 

unt i 1 ! Time 

unt i 1 ! now + interval? 
shutdown' shutdown 

resns resns e {cl ientnum ~ until!} 

Reports 

Reserve (Reserve
SU 

l;l;eSS /I. Success) 
e TooManyUsers 
e NotAvai lable 
e NotKnownUser 

The client tannot be a guest user.
 

The reservation must expire before the shutdown time or be for a zero interval.
 

There may be no space for new reservations.
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SETSBUTDOWN 

Abotrad 

SetShutdo~n (shutdo~n? Time: 
threatens! Users; 
report! Report) 

The service manager may set a. new shutdown time. All clients who have reservations 

which are threa.tened by the new time a.re returned. It is the responsibility of the 

service manager to negotiate with the clients affected. 

Definition 

Set Shut downSUcces5 j 

/IRS 
shutdown? Time 

threatens! Users 

shutdololn' shutdown? 
resns' resns 
threatens! 

dam (resns ~ (ZeroTime . . shutdo....n'» 

The shutdown time is changed to the new value regardless of existing reservations. 
Current reservatioD5 are unaffected. 

Clients with reservations P<l.6t the Dew shutdown time are reported. 

Reports 

SetShutdown ~ (SetShutdownSUCCES5 A Success) 
• Not Manager 

This operation may only be performed by the service manager. 
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STATUS 

Abetrad 

Status (now! Time; 

shutdown! Time; 

resns! Reservations; 
report! Report) 

The servicE manager may look at the current status of the service. The current and 
shutdown times are returned together with details of the current reservations. 

Definition 

5tat~~'sc"ess 

now! Time1
 shutdown! Time 

resns! Reservations 

now! now 

shutdown! shutdown 
resns! resns 

Reports 

Status ~ (Statussuccess 1\ Success) 
• Not Manager 

This opera-lion may only be performed by the service manager. 
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5.2 Internal operation - 8eavengiDg 

In order to remove reservations which have expired, the service will perform a 
scavenge before each operation. This is in fact the only way in which reservations are 
removed. 

Scavenge 
RS 
RS' 
now Time 

shutdown' = shutdown
 
resns' = resns ~ (ZeroTime.. now)
 

Scavenging does not change the shutdown time. A scavenge can remove reservations, 
but it never makes new ones. All reservations up to now are removed. 

Perfonning a scavenge before each operation ensures that the service contains only 
non-expired reservations when the operation itself is performed. Thus, for example, 
the Status operation with only return current reservations. 
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6 Service charges 

The basic parameters are supplemented. by two hidden parameters, an operation 
identifier and the cost of executing the operation. 

¢f'arams
 
4lBasicParams
 
op? Op 

cost! : Money 

There is a fixed cost for each successful operation. All clients who make a reservation 
will also be charged an amount depending on the requested interval. There is no 

refund when a reservation is cleared to encourage clients to make reasonable requests. 

RSTeriff
 
4Perams
 

op? = ReserveOp "'* cost! = ReserveCost + 

(TimeCost * interval?) 

op? = SetShutdownOp =+ cost! = SetShutdownCost 

op? = StatusOp =+ cost! = StatusCost 

where (_ * _) (Money x Time) ~ Money is defined appropriately. 

If an error occurs, a fixed amount may still be charged. 

ErrorTeriff 4Params I cost! :: ErrorCost 

These two schemas combine to form an overall tariff framing schema. 

I/lSTariff Success =+ RSTariff A 

-Success =+ ErrorTariff 
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T Complete service 

This section provides a definition of the complete reservation service. This uses 
schemas which are defined in the two previous sections as well as some schemas 

defined in the "Common Service Framework". Each operation is identified by an extra 
parameter op? which depends on the procedure name. 

RSServ I ceOps ;: 
(Reserve II ¢farams op? ReserveOp ) v 

(SetShutdown II ¢farams op? SetShutdownOp) v 

(Status II ¢farams op? StatusOp I 

Each of these operations has a tariff associated with it, and they may all be considered 
to be preceded by an internal scavenge opera.tion before the operation is invoked. 

RSBasicOps Q Scavenge a (¢RSTariff II RSServiceOps) 

The complete state and the initial state of the Reservation Service including a service 

clock, accounting and statistics as outlined in the "Common Service Framework" are: 

RsState ~ RS II Clock A Accts II Stats 

InitRSState ~ InitRS II InitClock II InitAccts II InitStats 

The operations of the Reservation Service including a null opera\ion and operations 
concerned with the service clock, accounting and statistics are as follows: 

RSA I 1Gps • 

(BasicOps II nRS II ¢Clock II ~Accts II $Stats) v 

(Null II =RS II ¢Clock II ¢Accts II $Stats) v 
(ClockOps II =RS II nClock II ¢Accts II $Stats) v 
( AcctsOps A =RS II ¢Clock II nAccts II $Stats) v 
( Stat sOps II =RS II ¢Clock II :Accts II nStats) 

Access control is Dot included since the shutdown time gives a form of access control. 
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Finally I the possibility of a bad operation and service error are included: 

RSOps 0 
«BadOperation A =55 A ¢Clock A =Accts A =Stats) • 
(RSA110ps A ~SS A ~Clock A ~Accts A ~Stats» 

v 

(ServiceError A =55 A ¢Clock A :Accts A =Stats) 
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1 IntrodUctiOD 

This document assumes that the reader is familiar witb the "Reservation Service - User 
Manual" wllich outlines the abstract specification of tbe service. Here, this abstract 
specification is refined into a concrete specification of a possible implementation of the 
service. First the concrete state of the service is defined and then the concrete error 
and operalion schemas are defined in terms of the concrete state components. 
Optimisations are included where this is desirable. The ju.stification that tbe given 
concrete specification is a correct implementation of tbe abstract specification is 

discussed. 

The specification given here is still not directly implementable. Predicates in scbemas 
are given broadly in the order whicb tbe corresponding statements of a procedure in a 
sequential programming language ntight be written, as a bint to the implementor, A 
particular programming language must be chosen by the implementor and tllen this 
design must be refined. into that language. Even witb the advent of the use of formal 
specification in the design of computer based systems, it is anticipated that the job of 
the programmer is safe for some time to come. 
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2 Abstract state 

The abstract state of the Reservation Service, as defined in the "Reservation Service ­
User Manual'", includes the shutdown time most recently set by the service manager 
(shutdown) and the current reservations (resns). The guest user (annot make 

reservations. 

Reservat i ons ~ {r: UserNum -++ Time I Ir ~ Capadty } 

RS ~ 

shutdown Time 

resns 

GuestNum 

Rese

Ii! dom 

rvations 

resns 

Initially the shutdown time has an initial default value and there are no reservatjons. 

Ini tRS _ 

RS' 

shutdown' = InitShutdownTime 
resns' = 121 

Full details of the abstract operations on the service can be found in the User Manual. 
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3 Concrete state 

In the abs~ract state, the reservations are modelled as a partial function. We shall 
assume that the number of clients with reservations at any particular time is relatively 
small compa.red to the total number of clients (i.e. the function is sparse). 

Hence in the concrete state, we shall implement this partial function as a pair of arrays 
containing matching user numbers and reservation times at corresponding array 
indices. Since not all entries in these arrays need be in use at any given moment, we 
need a special user number to indicate an empty entry. The guest user is not allowed 
to make reservations, and cannot appear as a user number in the reservation table, so 
we shall therefore use this number to denote unused entries in the array. 

Unused UserNum 

Unused = GuestNum 

The arrays have indices limited to a maximum upper bound Capacity which 
determines the number of clients for whom the service can hold reservations 
simultaneously. This limit must be determined by the implementor according to the 
estimated usage of the service. 

Index S! 1 .. Capacity 

UserArray S! I ndex ~ UserNum
 
TimeArray Q Index ~ Time
 

The shutdown time may easily be implemented as a single variable (shutd), so that 
the concrete implemented service state consists of three components. 

cRS 
shutd Time 
users UserArray 
t j mes TimeArray 

(users ~ {Unused}) e (Index >++ UserNum) 
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Each authentic client can have at most one entry in the users array, all other entries 
being unused. 

Initially the shutdown time has the default value and all the entries in the user arra.y 
are unused. (It will not matter what values are held in the time array.) 

cIn i t RS
 
cRS'
 

shutd' InitShutdownTime
 
users' A s: Index· Unused
 

For each operation requested by clients there is an indication of the outcome of the 
operation (report!). Additionally the current time (now) and the user number of the 
client (c1 i entnum) are available. 

¢Bas i cParams 

report! Report 

no" Time 
c 1 j entnum UserNum 

Operations may change the state of the Reservation Service implementation. 

l!.cRS ~ cRS f\ cRS' f\ ¢BasicParams 

Some operations may leave the state of the service unchanged. 

=cRS 0 6cRS I cRS = cRS' 

Operations can return finite sets of users, so we make the following definition for the 
convenience of subsequent specifications. 

Users ~ {u: F UserNurn I '*u ~ Capacity} 
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4. Reports 

The report schema definitions are little changed in the implementation because they 
mainly do not involve refined state components. 

cSuccess i
 

6cRS
 

report! SuccessReport 

cNotMansger 
=cRS 

i 

clientnum 
report! 

'# 

= 
ManagerN um 
NotManagerReport 

cNot KnownUser 
=cRS 

i 

c 1 i entnum 

report! : 
GuestNum 
NotKnownUserReport 

cNotAva i lab 1e 

=cRS 
interval? Interval 

unt i 1 ! Time 

interval? '# ZerolntervaJ 

shutd < now + interval? 
unt i 1 ! = shutd 
report! NotA. v ailableReporl 

(The TooManyUsers report schema has been directly incorporated in the 
implementation of the Reserve operation.) 
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6 Operation implementations 

The four service operations are redefined here in terms of the refined concrete state. 
As in the "User Manual", the description of each operation has three sections, titled 
Abstract, Definition and Reports. 

The Abstract section is included to reduce cross-reference with the "User Manual". It 
gives the procedural interlace to the operation for a program running on the client's 
machine. This will of course need to be adapted for a particular programming 
language. 

The Definition section gives the fonnal description of the operation in terms of the 

concrete state together with informal details to aid the implementor. Extra state 
components indicate extra variables which will be required in the final program. 

The Reports sections covers error conditions to produce a fonnal description of the 

total operation. 

Each schema definition may be cODveniently implemented as a procedure in the final 
program. 
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RESERVE 

Abstraet 
Reserve (interval? Interval j 

unt i 1! Time; 
report! Report) 

Definition 

]n the concrete form of this operation) the combination of the Success and 

TooManyUsers report cases are optimised into a combined 'available' definition. 

cReserveava,l 
lIcRS 
interval? Interva1 
unt i 1! Time 

i. j Index 

shutd' = shutd
 
until! = nOH + interval?
 
c1 ientnum E ran users ~
 

users i = cl ientnum 
users' = users 
times' = times. {i ~ until!} 
report! = Success Report 

cl ientnum f ran users ~ 

Unused E ran users ~ 

users J = Unused 
users' = users. {J ~ cl lentnum} 
times' = times. {j ~ until!} 

report! = SuccessReport 
Unused f ran users ~ 

users' users 
t J mes' times 
report! = TooManyUsersReport 

The shutdown time is unaffected.
 

A check is made to see whether an entry for the client already exists in the users
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array. If a client already has a reservation entry, then that entry in the array (with 
index i) is used. Otherwise, if there are any unused entries in the array, one of them 
(with index J) is used. 

If the client does not have an existing entry and there are DO unused entries, the state 

remains unchanged and an error report is given. 

Reports 

cReserve ~ cReser ..... e ava ' 1 

Gl cNotA..... ai lable 

$ cNotKnownUser 
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SETSHUTDOWN 

Abstract 

SetShutdown (shutdown? 

threatens! 
report! 

Timei 

Users; 
Report) 

Definition 

cSet Shut down5UCCe55 
6cRS 
shutdown? Time 
threatens! Users 

shutd' = shutdown? 
users· = users 

times' = times 

threatens! = 
{i:lndex I (users i". Unused) 1\ 

(t imes i > shutd') • users i } 

The shutdown time is set but the arrays are left unaffected. 

The set of threatened users is returned. Each such user must have a valid entry in the 
user array and a reservation time past the new shutdown time. 

Reports 

cSetShutdown 9 (cSetShutdownsuccess 1\ cSuccess) 
• cNotManager 
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STATUS 

Ab&trad 

Def"mition 

Status (no.-.ll 
shutdown! 
resns! 
report! 

cS t at uSsuccess 
=cRS 
no'-l! 

shutdown! 
resns! 

Timej 

Time; 

Reservations; 

Time;
 
Time;
 
Reservations;
 

Report)
 

now! no" 
shutdown! shutd 
resns! { i: Index I users i 

(users i 
~ Unused· 
...-.+ times i)} 

The state of the service is not changed. 

All the valid user array entries and their corresponding reservation times are returned 
as a set of pairs. Threatened reservations may be deduced by the calling pro~am 

from the shut.down time. 

Reports 

cStat us (cSt at uSsucceS5 A cSuccess) 
• cNotManager 
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Sea.venging 

In order 10 remove reservations which have expired, the service will perform a 
scavenge before each operation. This is in fact the only way in which reservations are 
removed. 

cScavenge i 

cRS 
cRS' 
noloo4 : Time 

shutd' = shutd 

V i:Index • 
(users i = Unused) v (times i < noloo4) ~ 

users' i = Unused 
(users i ~ Unused) A (t imes i i:l' noloo4) ~ 

users' i = users i 

times' = times 

Scavenge does not change the shutdown time. 

Valid entries with reservation times in the past are removed from the user array. The 
reservation time array is left unchanged. The entries in the time array corresponding 

to unused entries in the user array may be ignored. 
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8 Complete serviee 

This section provides a combined definition of the operations of the implemented 
Reservation Service. It does not include details of the implementation of service 
components, such as accounting and statistics, which are incorporated from the 
"Common Service F:ramework:lt. 

Both in the abstract and the concrete model of the service, the basic parameters are 
supplemented by two hidden parameters, an operation identifier (op?) and the cost of 
executing the operation (cost!). 

¢Params I 

¢lBas i cParams 
op? Op 
cost! : Money 

Since all charges for this service depend only on the operation parameters, and not on 
the refined state of the service, the definition of the ~STar i ff framing schema given 
in the "User Manual" does not require further elaboration for the implementation. 
The implemented service operations can then be brought together into a single 
definition as follows: 

cRSServ i ceOps Q 

( cReserve 1\ ¢Params op? ReserveOp ) v 

( cSetShut do~n 1\ ¢Params op? SetShutdownOp) v 

( cStatus 1\ ¢Params op? St.lusOp ) 

cRSBasicOps ~ cScavenge • (~STariff 1\ cRSServiceOps) 
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T Implementation correrln.ess 

It is necessary to show that the implementation of the Reservation Service as described 
in this manual correctly implements the view presented. in the user manual. In order to 
do this, the state refinement step is expressed as an abstraction rela~ion, and service 
initialisation and each of the operation implementations must be shown to achieve the 
appropriate change of state with respect to this relation. 

For service initialisation, the concrete iDitial state must be shown to lead to a valid 
abstract initial state. For each operation, it must be shown that the concrete operation 
may be applied whenever the abstract operation may be applied, and that it will then 
produce a result satisfying the abstract specification. 

When a complete definition is constructed by composing a number of schemas, such as 
in defining the error behaviour of an operation, the proof can be constructed in an 
equivalent manner. 

The rest of this section describes what needs to be proved in order to show the 
correctness of the implementation. The proofs themselves, because of their length, are 
omitted here but are contained in [8]. 

State rermenumt 

The state refinement step is expressed by relating the abstract user state to the 
concrete implementation state in the following abstraction relation. 

RelRS 
RS 
cRS 

shutdown = shutd 
resns = (users. {Unused})-l , times 

The abstra.et variable shutdol-ln is exactly implemented by the concrete va.riable 
shut d. The abstract reservations are found by taking the time en tries in the concrete 
time array which correspond to each of the 'used' entries in the concrete user array. 
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To show that there is a concrete implementation for every abstract state, we must 
prove that 

f- Y RS • 3 cRS • ReI RS 

Initialisation 

To show the correctness of the service initialiilation we must prove that 

cInitRS f- 3 RS' • InitRS A ReIRS' 

Operation impleDleDtatioDB 

First consider the Reserve operation. In order to show the correctness of the total 
operation, we first show the correctness of the partial operation in the 'a.vailable' case. 
This corresponds to cReserveava 11 in the implementation and the following in the 

Ufler manuaI. 

Reserveava,l Q (Reservesuc;c;ess 1\ Success) • TooMan~Users 

To show that the partial concrete operation is as applicable as the partial ab:ltract one 
we must prove that 

pre	 Reserveava,l 1\ Re 1RS I- pre cReserveava,l 

To show that the partial concrete operation correctly implements the partial abstract 
operation we must prove that 

pre	 Reserveava,l 1\ cReserveava,1 1\ RelRS
 
I- 3 RS' a Reserveavail 1\ RelRS'
 

In order to demonstrate the correctness of the total operation, we must extend the 
'available' case to include the other possible error conditions. The total concrete and 
abstract definitions are respedively 

cReserve Q cReserveava Ii· cNotAvailable III cNotKnownUser 
Reserve Q Reserveava,l III Not Ava i 1Bb 1e III NotKnownUser 

In both of the additional error cases, the error schemas depend only on the operation 
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parameters and not on the service state (in either concrete or abstract form). They 
both leave the service state unchanged. Hence the refinement of the state does Dot 
change either the applicability or the correctness of the total operations. 

The correctness of the SetShutOown and Status operations follow the same pattern 
of showing the correctness of the partial operation in the 'success' case and then 
extending it to the total case. 
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1 General 

This chapter discusses some of the achievements and of the second phase of the 

project. Some changes in the style of specifications contained in the user manuals have 
been made. Implementor manuals have been provided in the same formal style. 
Addition~lly, the Common Service Framework has been developed to simplify service 
specification. Experience has been gained using the original services, and this has 
increased our confidence in the specifications presented. 

1.1 Uaer mannal format 

The style of the User Manuals has been improved during the second phase of the 

project. For example, the description of the Reservation Service from the first phase, 
presented in [1] and [71, can be compared with that presented here. 

Error conditions have been more exactly specified in the Reports section for each 
operation, using the schema overriding operator (lD) to define an order of checking for 

error conditions. 

The cost of performing operations has been gathered together in a tariff schema after 
the operations themselves have been presented. The cost of an operation is often of 
secondary interest to understanding what the operation does, and clutters its 
specification. 

At the end of each manual, the operations specific to the service are combined with 
those incorporated (rom the Common Service Framework to produce an overall 
specification of the operations available in the service. 

The initi~l state is now included formally for each service. The state of a service at any 
given time is the result of the initial state being composed with all the operations which 
have been performed to date. 

1.2 Service implementation 

With the introduction of Implementor Manuals, it has been possible to present an 
implementor's view of a service, showing how the abstract user's view can be refined 
towards a. concrete implementation. 
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A significant amount of effort has been spent on the presentation of these manuals, 
since it is all too easy for them to become swamped by detail. The implementor 
manual for the Reservation Service, included here, is a relatively straightforward 

example because of the simplicity of the service itself. 

It has not been possible in the time available on this project to take the refinement of 
the implementation of every service all the way down to the code of iI. particular 
programming language. Other work in progress at Oxford has considered this step in 
more detail [9]. We have concentrated on the 'architectural' aspects of system design, 

taking a top-down approach in which the structure of the implementation has been of 
greatest concern. 

1.3 Representation of parameters 

The types of parameters of service operations have been presented. as Z sets. These 
can be either given sets, assumed to be unstructured, such as Time or Report, or they 
can be defined in Z as a set, sequence or other more complicated structure. 

We have ignored the issue of how such types will be represented in a specific 
programming language. Clearly, at the lowest level, the parameter values must be 
transmitted over tbe network between client and service in some bit pattern. Since 
there is no assumption that all client applications and service code will be written in 
the same programming language, there would need to be a clear specifica.tion of the 
representation at this level so that data conversion functions could be applied if 

necessary. 

Take, as an example, the set of Reservat ions which is returned by the Status 
operation of the Reservation Service. This consists of a partial function (of limited 
size) from UserNum to Time. Most programming languages would no! be able to 
implement this directly. Typically it could be implemented as an array with elements 

consisting of a record containing a user number and associated time. The ordering of 
the array could be arbitrary, or it may be ordered by user number or time. 

Pa.rameter refinement is still a topic under active discussion. It could be considered as 
a relation between abstract and concrete parameters in a similar manner to the way 
abstract and concrete states are related. It would therefore form a second, orthogonal, 
dimension of refinement to that of the implementation of a service. 
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2 Common framework 

The introduction of the Common Service Framework has allowed a number of 
definitions common to several services to be grouped together in one document. This 

has also meant that the specifications of individual services have been made that much 
simpler. 

The specification of the common framework has also illustrated how separate 
subsystems can be defined, with their own state and operations, and then incorporated 

into the definition of a complete service. It has addressed, at the specification level, the 
issues of errors in the implementation of services or in the network over which they are 
accessed, 

An Implementor Manual should be provided for the Common Service Framework, 
which refines the state and provides operation implementations for each of the 
subsystems and other components introduced in the common framework. This should 
be a straightforward exercise, following the same pattern as the manuals provided for 
other services. 

2.1 Service and network errors 

There are two kinds of errors specified in the common framework which are non­
detenninistic. In other words, they do not arise because of some predicate which the 
client's parameters have failed to satisfy, but because of an error arising in the 

underlying implementation. Service errors are caused by a failure in the service 
implementation, such as a disk error in a storage service. Network errors are caused by 
a failure in communication over the network. 

Both kinds of error have been made visible to the client through the return of 
corresponding error report values. It is left to the client's application to take 
appropriate action in the case of such errors arising. At a higher level of abstraction, it 
might be possible to hide transient errors from the client by automatically retrying 

operations until they achieved a definite result (i.e success, or a specific error report). 

The specification of these non-deterministic errors is a problem, When a service error 
occurs, we have specified that the state of the service remains unchanged. This may be 
hard to achieve in practice. For example, if a disk crashes and loses some of its data, 
the service will clearly not be able to maintain that part of its state. To keep within its 
specification, it would be obliged to return a service error for any subsequent operation 
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which depended on information in the lost pan of the state, effectively rendering it 

invisible to any cHent. 

When a network error occurs, we have specified that either the state of the service 

remains unchanged or that the operation has been completed (though the result is not 
visible to the cHen\). These two cases correspond to a communication. failure in 
transmitting the operation request or reply respectively. On receiving such an error 
report, the client may re-attempt the operation. However, if the operation is not 
idempotent, such as one which creates or deletes a component in the service state, this 
will produce unwanted side·effects. A stricter specification might eliminate the second 
case, so that this error could be handled in the same way as a service error. The 

network implementation would then be obliged to provide a mechanism to recover 
from loss of operation replies. 

2.2 Operaton on basi~ sets 

One area which is of concern in many Z specifications involves dealing with the partial 
nature of some of the underlying operators. 

Operators such as addition, subtraction and comparison are assumed to exist for some 
of the sets, such as Time and Money, introduced in the Common Service Framework. 
These operators are dermed to be total in the abstract specification to avoid having to 

introduce error checks and reports when they are invoked outside their domain. 

Since these sets are to be implemented they must be finite. Hence 'overflow' or 

'underflow' (i.e the required result lies outside the defined range) could occur When 
adding or subtracting some values. Many arithmetic implementations in hardware 
simply wrap round when this occurs, producing undetectable invalid results. A more 
sensible approach is to return some standard error value in these cases. Output 
parameters may be checked for this value by the client if desired. 
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3	 Reservation Serviee 

The following comments refer specifically to the Reservation Service presented in the 

previous chapters. 

3.1 Design of the 8ervi~e 

The design of the Reservation Service reflects its provi5ion as part of a distributed 
system nther than a monolithic system. When building a distributed operating system 

from a D.umber of services which are largely independent of each other, it is possible 

that one service needs to be enabled or disabled while other services and clients 
continue to run. 

When a service is disabled (shutdown), there should not be any client who is at that 
moment involved in s<Jme series of interactions with it - because interruption of such a 
series could be quite inconvenient for the client. If these series (or transactions) can 

be recognised by the service, it is possible to avoid this inconvenience a.<; follows. 

Possible shutdown procedure: 

1.	 The service manager requests shutdown of the service. 
2.	 The service rejects any attempt to begin a new transaction, but allows 

current transactions to continue. 
3.	 When all transactions have completed, the service notifies the service 

manager that shutdown is complete. 

However, there are some problems; for example, a client might fail to complete a 
transaction (presumably due to accidental failure of the client's own software). If this 
happened, the service would never shutdown. A second problem is that for some 
services (e.g. the low-level block storage service) there is no recognisable transaction 

structure, and so the above scheme cannot be used at all. 

The Reservation Service presented here does not interact at all with the service or 
services it reserveSj it interacts only with its own clients, and with the service manager. 
It all<Jws clients to state for how long they would like to use tbe availabJe services, and 
it allows the service manager to set a shutdown time beyond which all reservations 
are to be rejected. "It becomes the clients' responsibility to protect themselves from 
sudden shutdown of tbe services (by making reservations), and the service manager's 
responsibility to disable tbe service only after the shutdown time. Thus a shutdown 
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can be unexpected only by those clients who have made no reservation (or if the 
service manager deliberately ignores outstanding reservations). 

A typical use of the Reservation Service would be for clients to include a reservation 
request at the start of every program using the available services. The duration of the 
reservation sbould be long enough to allow the program to complete, but short enough 
to allow the service manager to make a reasonably spontaneous decision to shutdown. 
A reservation time of half an hour has proved convenient in practice for many of the 
applications making use of our services. 

3.2 A problem discovered 

The Reservation Service was in use before the start of the current phase of the project, 
and its original User Manual has been published previously [1,71. However an error 
was discovered during tbe use of the service which was not anticipated during the 
design stage. This has led to a small revision in the speciiicat.i.on of one ()f the error 
schemas for the service. 

The problem arose when a client made a reservation successfully and subsequently 
tried to clear it by making a reservation of zero-interval in the nonnal way. However 
the service reported that it was "Not AvaiJable" and bence the reservation could not 
be removed. 

The specification in tbe User Manual was examined. to see how this state of affairs 
might transpire. To obtain the "'Not Available" report, the following pref:ondition in 
the NotAva i) ab 1e schema had to hold: 

shut down < no~ + i nt erva I? 

With i nterva l? being zero, this implied that the shutdown time was set earlier than 
the current time. Given that the client had earlier successfully made a reservation that 
was still in force (and hence needed to be cleared), this implied that the shutdown time 
had been brough t forward by the service manager} threatening the pending 
reservation. In fact, the client was a laser printing service which was known to always 
make balf-hour reservations. Tbe manager had set a shutdown time earlier than the 
end of the printing service's reservation time, assuming that it could clear its current 
reservation but not make any new reservations. The manager was prepared to wait 
until the reservation was cleared as an indication tbat the printer had finished its 
current pb - but the reservation was never cleared. 
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3.3 A probleID solved 

To prevent the problem of not being able to cancel reservations after the shutdown 

time, two solutions were proposed. The choice between them illustrates the kind of 
design choice in which additional complexity in a single operation may be balanced 
against the use of an additional operation. A first solution involves adding an extra 

precondition to the original NotAva i 1ab 1e schema: 

interval? 1- ZeroInterval 

This llleans that a call to the Reserve operation with a ZeroInterval can no longer 

return with a NotAvailableReport. 

This is the solution presented in the previous chapters in which the Reserve operation 

serves the dual purpose of making a reservation (when Interval? '# ZeroInterval) 
and also clearing a reservation (when i nterva17 = ZeroInterval). 

An alternative solution to this would be to provide a new Cancel operation for 
clearing a reservation. This complicates the service by providing an extra operation, 
which is the reason it was not included in the original version of the service. However 

it is likely that its inclusion would have prevented the problem just described from 
arising. A specification for this operation is presented overleaf. Note that the 
NotAvailable schema need no longer check for a ZeroInterval. A client could still 
make a reservation for a zero interval, which would normally clear the reservation 
except in the circumstances described above. 

An additional error schema is required for use with the Cance 1 operation. This 
returns an error report if the client has no outstanding reservation. 

NotReserved 

=RS 

cl ientnum ~ dom resns
 
report! = NotReservedReport
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CANCEL 

Abstract 
Cancel (report 1 Report) 

A client can cancel a reservation which has previously been made. 

Definition 

Cance 1success --------------------" 
t.RS 

shutdown' = shutdown 
resns' = {c 1 i entnum} i1 resns 

The shutdown time ill unaffected. The client's reservation is removed. 

Reports 

Cance 1 ~ (Cance 1success 1\ Success) 
• NotReserved 

An error is reported if the client does not have an outstanding reservation. 
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3.4 Re&uvation of individual services 

As implemented, the Reservation Service is a separate service in its own right Making 
a reservation does not affect any other service, and it is assumed that the client may 
wish to make use of any service. However in a larger distributed system, with a greater 
number of services to choose from, it may well make sense to include the reservation 
operations in individual services so that they may be shutdown independently. To do 
this, another la.yer would need to be defined in the "Common Service Framework" 
containing the reservation state and operations. This could then be included in any 
services requiring their own (standard) reservation and shutdown procedures. 

3.5 Proof of correctness 

The design in the Implementor Manual has been proven correct with respect to the 
User Manual. Due to their length, the proob have been omitted here; they can be 
found in a separate document [8J. In addition, the document shows how the opera.tions 
can tben be programmed in Dijkstra's guarded comma.nd language to meet the 
specifications in the Implementor Manual. 
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Appendix A 

Index or forma] definitions 

The following index lists the page numbers on which each formal name is defined in 
the text. Those names which are defined twice correspond to duplicated entries in the 
User and Implementor Manuals. Names which have a special symbol (.6., $, =, c) as a 
prefix are listed after the corresponding base name. 
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St atussucces5 62
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Appendix B 

GIOllB&ry of Z notation 

A glossary of the Z mathematical and schema notation used in this monograph is 

included here for easy reference. Readers should note that the definitive concrete and 
abstract syntax for Z is available elsewhere [6]. 



Z Reference Glossary 

Mathematical Notation 

1. Definitions and dedar.tioDil. 

Let X, Xl	 be identifiers, t , t I be terms and 

T. TI be sets. 

[T l' Tz• ... J Introduction of given sets. 
x Q t Definition of x as syntactically 

equivalent to t. 
x ;:= xl «t 1»1 .". I )(n «tn» 

Data type definition (the «t» 

tenus are optional). 
x : T	 Declaration of x as type T. 

xl: T1; ; xn: Tn List of declarations. 
xl_ ... , X n : T Declarations of the same 

type: ~ xl: T; ... :xn:T. 

2. Log;" 

Let p. Q be predicates and 0 declarations. 

- P Negation: ~ot pl'.
 
P A Q Conjunction: !If and 0".
 
P v Q Disjunction: "P or a":
 

• -(-PA-Q). 
P = Q Implication: "P implies on or 

"if P then Q": ~ ..... p v Q. 

P ... Q	 Equivalence: " is logically 
equivalent to Q": 

• (P=Q) A(Q=P). 
true Logical constant. 
false ;;;:: ..... true 

V 0 P Universal quantification: 
lIfor all D, P holds". 

3 0 P Existential quantification: 
"there exists 0 such that P". 

31 0 • P Unique existence: "there exists 
a unique 0 such that P", 

VOlp·Q • (V () • P = Q). 
301P·Q • (3 () • P A Q). 

Glossary 99 

P ~ 0 I Q Where clause: 
.30 I Q • P 

P ~ Xt,:lt 1 ; ... ;xnSt n Where clause: 
P holds, with the syntactic 
definition(s) defined. locally. 

o f- P	 Theorem: • f- V D • P. 

3. Sets. 

I.e" 5, T and X be setsj t, t
j 

termsj P a 
predicate and 0 declarations. 

= Equality between terms. 
t l ; t z Inequality: • -(t, = t z ). 
t • 5 Set membership: "t is an element 

of 5", 
t , 5 Non-membership: ~ ..... (t E 5). 

t l t z 

o Empty sel: • ("X I false}. 

5 Set inclusion: " T 
• (V x : 5 • x • T). 

5	 c T Strict set inclusion: 
!Ol 5 l;; T 1\ 5 '10 T. 

{tt. t z..... t n } The set containing 

t l • t z•.•. and tn' 
{ DIP· t } The set of t's slIcb that given 

the declarations D, P holds. 

{DIP} GivenD~xl:Tl;"';)(n:Tn' 

• (0 I P' (xl ..... ")}. 
{ 0 • t } • (0 I true' t). 

(tl' t z• .... t n) Ordered n-tuple 

oft 1.t2.··· and tn' 
TI X T2 X ... X Tn Cartesian product: 

the set of all n-tuples such that 

the i th component is of type T I • 

f 5 Powerset: the set of all subsets 
of S. 

f , 5 Non-empty powerset: 

• ~ 5 \ {0}. 
r 5 Set of finite subsets of 5: 

• {T: f 5 I T is finite} . 

r IS Non-empty finite set; 

• r 5 \ {0}. 
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S n T	 Set intersection: given S. T: P X, 
o {X' X I xeS A X e T} . 

S u T Set union: given S, T: P X, 
o {X' X I xeS v x e T}. 

S \ T Set difference: givenS, T: PX, 
o {X' X I	 xeS A X fT}. 

n SS	 Distributed set intersection: 
given 55, P (P X). 
o{X'X I (VS,SS· xeS)}. 

U	 SS Distributed set union: 
given 55, P (P X). 
o {X'X I (35,55, xes)}. 

itS Size (number of distinct 

elements) of a finite set. 
IJ. DIP • t Arbitrary choice from the 

.et{DIP·t}. 
IJ. 0 • t a IJ. 0 I true· t 

4. Relations. 

A relation is modelled by a set of ordered 
pairs hence operators defined for sets can 

be used on relations. Let X, Y. and l be 
setsj x:X; y:Y; and R:X +-+ Y. 

X +-+ Y	 The set of relations from X to Y: 
oP(XxY). 

x R y	 x is related by R to y: 
a (x, y) E R. (R is often 

underlined for clarity.) 
x >--. y Maplet: 0 (x. y). 

dom R The domain of a relation: 
o{X'X I 3y'Y· xRy}. 

ran R The range of a relation: 
o {y' Y I 3 X' X • x R y}. 

R1 ' Rz Forward relational composition: 
given R1: X +-+ Y; Rz: Y +-+ l, 

o { X' X; z' l I 3 y' Y • 
X R1 Y 1\ Y Rz Z }. 

R1 0 Rz Relational composition: 

aRz,R1• 
R-'	 Inverse of relation R: 

o {y'Y; X'X I x R y}. 

id X	 Identity function on the set X: 
~ {x:X· xl--+x}. 

R'	 The relation R composed with 
itself k times: given R: X+-+ X, 
RO ~ id X, R' + ~ R' 0 R.1 

R'	 Reflexive transitive closure: 
o U {n;N • R"}. 

R' Non-reflexive transitive closure: 
o U {n' N, • R"}. 

RIS! Relational image: given S: P X. 
o {y,Y	 I 3,,5, xRy}. 

5	 4 R Domain restriction to S: 
given 5: P X, 
o {x;X; y;Y I xeS A x Ry}. 

5 ~ R	 Domain subtraction: 
given 5: P X, 
o(X\S)4R. 

R ~ T Range restriction to T: 
given T: P Y, 
o {x; X; y; Y I x R yAy e T} . 

R	 ~ T Range Bubtraction of T: 

given T: P Y, 
OR~(Y\T). 

R	 Infix relation declaration (often 
underlined in use for clarity). 

5. FnndioDS. 

A function is a relation with the property 
that for each element in its domain there is 
a unique element in its range related to it. 

As functions are relations all the operators 
for relations also apply to functions. 

X -<+ Y	 The set of partial functions from 

X to Y: 
o	 {f ; XH Y I V x ; dom f • 

(3, y , y. x f y)}. 

X --. Y The set of total functions from 
X to Y; 
o {f ,	 X -<+ Y I dom f = X}. 
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X >H Y	 The set of partia.l injective (one­
to-one) functions from X to Y: 
• {f , X-++ V I V ~ , ran f • 

(3,x,X'fx=~)}. 

X >-+ Y	 The set of total injectjve 
functions from X to Y: 
• (X-V) n (X-+V). 

X	 ..... Y The set of partial surjective 

functions from X to Y: 

• {f' X-V I ran f=Y}. 
X	 ---* Y The set of total surjective
 

functions froro Xto Y:
 
• (X4V) n (X-+V). 

X	 >.- Y The set of total bijective
 
(injective and surjective)
 

functions from Xto Y:
 
• (X -;0 V) n (X >-+ V). 

X ~ Y	 The set of finite partial
 

functions from X to Y:
 
.(f,X-VI
 

feF(Xxy)}. 

.......>H....,... Partial functions.
 

---+>-+-it>'- Total functions.
 
-Hm Finite functions.
 

(1 • (2 Functional overriding: given
 
(1' (2: X-+t>¥,
 
• (dom f 2 <l f , ) u f 2· 
Prefix function declarationf 
(default if no underlines used). 

(_ ( _) Infix function declaration (often 
underlined in use for clarity). 
Postfix function declaration.f 
The function f applied to t . 

f( t ) • f t. 

P • t Lambda-abstraction: 

f t 

AD I 
the function that, given an 
argument x of type X such 
th at P holds, the result is t. 

Given O~xl : T1; ... ; Xn: Tn' 
• {DIP' (X, •... ,x c) ...... t}. 

AD' t • A D I true' t 

N 

N, 

l 

succ n 

pred n 

m + n 
m - n 

m * n 
m d...i.:£ n 
mlllQdn 

Cm
m • n 

m < n 

m ~ n 
m> n 

m.• n 

min 5 

max 5 

6. Numben.
 

Let m, n be natural numbers.
 

The set of natural numbers 
(non-negative integers). 
The set of strictly positive 
natural numbers: ~ N \ {O}. 
The set of integers (positive, 

zero and negative). 
Successive ascendwg na.tural 

number. 
Previous descending na.tural
 
number: S succ-1 n.
 

Addition: S succI' m.
 

Subtraction: Q predn m.
 
Multiplication: Q. (_ + m)n o.
 
Integer division.
 
Modulo arithmetic.
 
Exponentiation: Q. (_ * m)n 1.
 
Less tha.n or equal, Ordering:
 
_~_ a succ· •
 

Less than , Strict ordering:
 

~ m~n""mjlfn. 

Greater than or equa.l: a n ~ m.
 

Greater than: a n <m.
 

Range: a {k:H I m~k .... k.l!O:n}.
 

Minimum of a finite setj
 
for 5 : F1 H, min S e 5 ....
 
(Vx:S • X ";l: min 5).
 

Maximum of a finite set;
 
for 5 : F1 H, max S E 5 ....
 
(Vx:S •	 x ( max 5). 

7. Orden. 

part i a l_order X 
The set of partial orders on X: 
• {R'X....X I V X,Y, z,X • 

x R x .... 

xRy yR)(~x=y .... 

xRy"yRz~xRz}. 
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total_order X 
The set of total orders on X: 
~ {R:partial_orderIVx,y:X­

x R y v y R x}. 

monotonic X <x The set of fundions 
from X to X that are monotonic 
with respect to the order <xon X: 
• (f,X-++X I ~ x, y'X • 

x <, Y ...	 f(x) <, f(y)}. 

8. Sequences. 

Let a , b be elements of sequences, A, B be 
sequences and m, n be natural numbers. 

seq X	 The set of sequences whose 
elements are drawn from X: 

a {A' N-X I 
dom A' I..'A}. 

(> The empty sequence 0'. 

seqt X The set of non-empty sequences: 

OseqX\{<>) 

(aI' ... , an> 
~ {ll-+a1' ...• nl-+a }· 

(a1• ... , an> - (b ••• , b > 
n 

t , m

Concatenation:
 

~ (at, ...• an' b t •... , bm>,
 
<> - A • A- <> • A.
 

head A	 The first element of a 
non-empty sequence: 

A " <> ... head A • A(I) . 
1ast A	 The final element of a 

non-empty sequence: 

A" <> -- last A • A(.A). 
ta i 1 A All but the head of a sequence:
 

tail«x>-A) • A.
 

front A All but the 1ast of a sequence:
 
front(A-<x»' A.
 

rev (at.	 a2' ... , an> Reverse: 

~ (an' ...• a2' 81>' 
rev <> = <>. 

IAA Distributed concatenation: 

givenAA	 , seq(seq(X», 
• AA(l)- __. -AA(oAA), 

- 1 <> •	 <>. 

IIAR	 Distribu ted relational 
composition: 
given AR : seq (X +-+ XL 
• AR(I) , _ , AR(oAR), 

,/<>'idX. 
$1AR Distribu ted overriding: 

givenA : seq (X -++ Y), 

• AR(l)	 $ ... $ AR(.AR), 
$1 <> • ~. 

squash f Convert a finite function, 
f: N -fi X, into a sequence by
 

squashing its domain. That is,
 
squash 0" = <>,
 
and if f :# 0" then
 
squash f =
 
<f(i»-squash({;}~ f) 

where i = mln(dom n. 
S 1 A Index restriction: 

• squash(S q A). 
A ~ T Sequence restriction: 

• squash(A ~ T). 
d i sjo int	 AS Pa.irwise disjoint: 

giveDAS, seq (f X), 
a (V i p j : dom AS • j:# j 

__ AS(i) nAS(j) • ~). 

AS pactit ions S 

~ disjoint AS " 
U ran AS = S. 

A ill B Contiguous subsequence: 

• (3C,D, seq X • 
C-A-D.S). 

o. Bags. 

bag X	 The set of bags whose elements 
are drawn from X: ~ X -++ N1 

items s	 The bag of items contained in 
thesequences: a {x:rans' 
xl-+I*{i :domsls(i}=x}} 
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Schema definition: a schema groups 

Logether some declarations of variables and 

a predicate relating these variables. There 

are two ways of writing 6chemas: vertically, 

for example 
5 

)( : N 
y seq N 

)( " ay 

or horizontally, (or the same example 

5 • { ., N; Y' seq N I x,oy J. 
Use in signatures after 'tI, A.. { ...}, etc.: 

(VS • Y • <» • (\lxoN; y' seq N 

x<Oy • Y'<». 

Schemas as types: when a schema name 5 is 

used as a type it stands for the set of all 
objects described by the schema, {S}. For 
example, I-l : 5 declares a variable I-l with 

components x (of type N) and y (of type 

seq N) such that x ~ 1:ty. 

Projection functions: the component names 
of a schema may be used as projection (or 

selector) functions. For example l given 

I-l : S, 1-1. X is w's x component and 101. y is 

its y componentj of course, the following 

predicate holds: ~.X ~ .w.y. Additionally, 

given I-l : X -++ 5, I-l' (AS. x) is a function 

X-++N, etc. 

es The tuple formed from a 

schema's va.ria.bles: for exa.mple, 
es is (x, y). Where there is 

no risk of ambiguity, the e is 

sometimes omitted, so that just 

"5" is written for "(x. y)". 

pred 5 The predica.te part of a schema: 
e.g. pred 5 is x ~ .y. 
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Inclusion	 A schema 5 may be included 

within the declarations of a 

schema TI in which case the 

declarations of 5 are merged 

with the other declarations of T 
(variables declared in both 5 
and T must be of the same type) 

and the predicates of 5 and T 
are conjoined. For example, 

r; ,· · 
z < X 

I 

is 

x. Z : N 
y : seq N 

x ~ .y 1\ z < )( 

5 I P The schema 5 with P conjoined 

to its predicate part. E.g., 
(5 I x>O) is 

I x; N; y;seq N I "Oy , x>O ]. 

5 o The schema 5 with the 

declarations D merged with the 

declarations of S. For example, 
(5 ; z;N) is 

[X.Z:Ni y:seq N I x~l:Iy ]. 

5[ne",/0Id] Renaming of components: 

the schema 5 in which the 

component 0 1d has been 

renamed to ne", both in the 

declaration and at its every free 

occurrence in the predicate. For 

example,S {z/x] is 
[ z; N; y: seq N I z ~ .y 

and SlY/x, x/yJ is 
[ y' N; x; seq N I y • Ox I. 
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Decoration 

SAT 

S V T 

In the second case above, the 
renaming is simultaneous. 

Decoration with prime, 
subscript, superscript, etc.; 
systematic renaming of Ihe 
components declared in lhe 
schema. For example, 5' is 
I x',N; y''SeqN I x'.'y'l. 

The schema 5 with its predicate 
part negated. E.g., .....5 is 
["N; y'Seq N I ~(x.'y)J. 

1'he schema formed from 
schemas 5 and T by merging 
their declarations (see inclusion 
::!.bove) and conjoining (::!.nd·ing) 
their predicates. Given T g [x; 
N; z' P N I xezl, SAT m 

)( : N 
y seq N 
z P N 

x ~ tty /I. X e z 

The schema fanned from 
schemas 5 and T by merging 

their declarations and disjoining 
(or-ing) their predicates. For 
example, 5 V T is 

x N 
y seq N 
z P N 

x~·Y"xez 

5 *+ T 

5 \ ("1' 

predicate. E.g., 5 =t T is 

X : N 
y : seq N 
z ; P N 

x ~ .y :q x e z 

The schem::!. formed from 
schema.s 5 and T by merging 
their declarations and taking 
pred 5 *+ pred T 38 the 
predicate. E.g., 5 ~ T is 

X : N 
y : seq N 
z ; P N 

x ~ .y *+ x e z 

"2- - "n)
 
Hiding: the schema 5 with the
 

variables "1' "2' • and "n 
hidden: the vari::!.bles listed are 
removed from the declarations 
and are existentially quantified 

in the predicate. E.g., 5 \ x is 
[yo seq NI (3x;N·x.'y) J. (We 
omit the parentheses when only 
one variable is hidden.) A 
schema may be specified instead 
of a list of variables; in thiB case 
the va.riables declared in that 
schema are hidden. For 
example, (5 1\ T) \S is 

z ; P N 

5 =+ T The schema formed from (3 x' N; y; seq N • 
schemas 5 and T by merging x ~ "y /I. X e z) 

their declarations and taking 
pred 5 =+ pred T as the 
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5 t (vl'	 v2' ... , v n ) 

Projection: The 5Chema 5 with 
any va.riables that do not occur 

in the list	 "1' "2' ... , "n hidden: 
the variables removed from the 
declarations are existentially 
quantified in the predicate. E.g., 
(S A T)t (x, y) is 

x N 
Y : seq	 N 

(3	 z , f N 

x ~ ""y II X e z) 

As for hiding above, we may 

project a single variable with no 
parentheses or the variables in a 

schema. 

The following conventions are used for
 
variable names in those schemas which
 
represent operations on some state:
 

undashed state before,
 
dashed (" , ") state after,
 
ending in a:?" inputs to (arguments for),
 
ending in l(!" outputs from (results of)
 

the operation. 

The following schema operations only 
apply to schemas following the above 
conven tions. 

pre 5	 Precondition: all the state after 
components (dashed) and the 
outputs (ending in "! ") are 

hidden. E.g. given
S	 ---, 

x?, 5, 5', y! N 

5' = s-)(? 1\ y! = 5 

post 5 

S • T 

,	 -----, 
x?, 5	 N 

(3.',y"N· 
5 = s-x? 1\ y! = 5) 

Postcondition: this is similar to
 
precondition except all the state
 
before components (undashed)
 
and inputs (ending in "?") a.re
 
hidden. (Note that this
 
definition differs from some
 

others, in which the
 
"postcondition" is the predicate
 
relating a.ll of initial sta.te,
 

inputs, outputs, and final state.)
 

Overriding:
 
e (S A -pre T) V T.
 
For example, given S above and
 

1-'-0'-'-,-.,-,N-----,' 

5 < x? 1\ s' = 5 

----' 

5 ., T is 

x?, 5, 5', y! N 

(s' = s-x? II y! = s 1\ 

-(3.', N 

s < x? II S' = 5)) 

" (s < x? AS' = 5) 

which simplifies to 

1 'y'I X 0.• S, 5, . N 

(5' = 5-X? II y! S A 

5 ~ x?) " 
(s < x? 1\ 5' 5) 

pre S is 
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5 I T	 Schema composition: if we 
consider an intermediate state 
that is both the final state of the 
operation 5 and the initial state 
of the operation T then the 
composition of 5 and T is the 
operation which relates the 
initial state of 5 to the final 
state of T through the 
intermediate state. To fonn the 
composition of 5 and T we take 
the state·a.fter components of 5 
and the state-before components 
of T that have a basename- in 
common, rename both to new 
variables, take the schema which 
is the "and" (1\) of the resulting 
schemas, and hide the new 
variables. E.g., 5 I T is 

)(? ,9, 5'. y! N 

(3 50 ' N 
So = 9-)( A y! = 5 A 

So < )(? A 9' = So) 

- basename is the name with 
any decoration ( , "I" . ,., "?"
etc.) removed. 

fi. '"

5 » T	 Piping: this schema operation is 

similar to schema composition; 
the difference is that, rather than 
identifying the state after 
components of 5 with the state 
before components of T, the 
output components of 5 (ending 
in fl.! ") are identified with the 
input components of T (ending 
in fl.?") with the same basename. 

6.5 change of ~ to after state, 
=5 no change of state, 
ct6 framing schema for definition of 

further operations. 

For example 
~S 5 A 5' 

=5 ~ ~S I as = as' 
<l>S ~s I y = y' 
50p Q <l>S I x'= a 

Other Defmitions 

Axiomatic definition: introduces global 
declarations which satisfy one or more 
predicates for use in the entire document. 

declaration{s) 

predicate(s) 

or horizontally: a I P 

Generic constant; introduces generic 
declarations parameterised by sets A, B, 
etc. which satisfy the given predicates. 

[A, B, ..J~~~-== 

declaration(s) 

predicate(s) 

Generic schema definition: introduces 
generic schema para.meterised by sets A, B, 
etc. When used subsequently, the schema 
should be instantia.ted (e.g. S[X, Y, ... J). 

S[A, S, ...1---_-----, 
declaration(s) 

predicate(s)
!	 j 

The following conven tions are used for 
prefixing of schema names: 




