
Copy'ight @ I9B7 Jonathan Bowen, ROge< G;""'on, Sti Topp-J.,gensen
g

Ox:ford Ulliversity Computing Laboratory

ProgralUlning Research Group

B-ll Keble Road

Ox/o'd OX I.~QD
ElIgJand

"I.' _........... _

r~~;;~~~~-~ ~:'~.. i: I
~r"-T:::'-',' ~' • ..,. • I­

f - -.-' r
..) I --f

<j;. <.. "-<
 I
l \- ~' !

i S, ;;"';':_~_,->j,'~.:, •• ~;~
i...I OYi()"~ U

t

1 __ ~
c:,..~ r

I
IIIIJ'JIIIII J

. ----....-_.,"'~-_ ..­

THE SPECIFICATION OF NETWORK SERVICES

by

Jonathan. Bowen

Roger Gimson

Stig Topp-J~rgenseD

Oxford University C(,i1"'D'Jt;",..,.! ,l.

Wc:fs::;-f'l [?";-.'-:

~, Oxro~~;;~~~ c31~D

Technica.l Monograph PRG-61

August 1987
•

Oxford University Computing Laboratory

Programming Research Group
8-11 Keble Road

Oxford OX13QD
England

The Specification of Network Services

Jonatb an Bowen

Roger Gimson

Stig Topp-Jl2irgensen

Abetrari

The specification language Z has been applied by the Distributed Computing Sohware
Project to the formal specification of network resource managers or 'services'. The use
of a fonnal langua.ge gives a more precise understanding of the behaviour of a service
and is a prerequisite for verification of programs which use or implemen~ the service.
Additionally, the use of Z combined with infonnal1ext is sufficiently readable for the
specification to be used for documentation purposes.

An introduction is provided to the style of specifica1ion devised for the project. A
framework for the specification of a va.riety of network services has been developed.
The framework is presented, and then incorporated into an example illustrating 1he
specification of both the user's view and the implementor'lll view of a simple senrice. A
discuBsion of the experience gained from the specification and use of the example
service is also included.

3

Chapter 1.

Chapter 2.

Chapter 3.

Chapter 4.

Chapter 5.

Appendix A.

Appendix B.

Content&

Introduction 5

Service Specification and Documentation . 7

Common Service Framework 17

Reservation Service - User Manual 53

Reservation Service - Implementor Manual 67

Discussion and Experience. . 83

Acknowledgements 93

References 94

Index of formal definitions 95

Glossary of Z notation 98

8 The Specification of Network Services

1 Motivation

It is fundamental to the desigu of any complex artefact, and of computer systems in
particular, that an appropriate mea.os of describing and communicating the design is

used.

A very important line of communication is between the designer and the user of the
system. It is only if this communication ifl accomplished satisfactorily that the designer
can have any expectation of meeting the requirements of the user and, likewise, the
user have any expectation of being able to make proper use of the finished product.

No less important is the communication from the designer to the maker (or
implementor) of the system. This ifl necessary to ensure that the finished product does

indeed have \he characterifltics that the designer specified.

The aim of the work described here is the improved communication between designer,

user and implementor which can be achieved by the use of formal specification in the
design and documentation of computer systems.

1.1 Formal specification

Satisfactory communication relies firstly on the production of an unambiguous

description. If a description ifl sufficiently precise, it ca.o act as a contract between the
designer, user and implementor, to ensure that they agree on what is to be provided.

A fundamental objective of the Distributed Computing Software Project has been to

make use of mathematical techniques for program specification to assist the design,
development and presentation of distributed system services.

The formal notation used tbroughout the project has been Z (as defined in [2-7]). This
specification language, based on mathematical set theory, has been developed at the

Programming Research Group over the past few years. The Distributed Computing
Software Project has been testing the application of the theoretica.l ideas to a realistic
and practical system. As a result of this, tbe project has been i-nfluential in the

development of notational techniques whicb have now become a standard part of tbe Z
style of specification.

The use of formal specification techniques, because of their rigor, tends to guide
designs towards the conceptually simple. Thifl bas the advantage of making the

9 Service Specification and Documentation

designs easier to understand, but the possible disadvantage of making them harder to
implement efficiently, since the simplest ideas do not necessarily have the most
straightforward realisation.

Formal techniques encourage a level of abstraction that is important in avoiding the
introduction of unnecessary implementation bias into designs. In the initial design,
implementation bias simply restricts the range of possible implementations. It is
usually an indication that the designer allowed unnecessary knowledge of a potential

implementation to become visible at the user level.

1.Z DoenmentatioD

Conventionally, various pieces of documentation are the main means of communication
between designer and user. In order that the rigor of the specifications I!hould not be
lost, it was felt to be of great importance that the system documentation should
incorporate the full formalism used in the design. However, it was aLso important to
ensure that, as for any documentation, readability and accessibility were not sacrificed
in the process.

A significant amount of effort has therefore been spent on developing a manual style
which combines informal and formal text. The presentation of the User Manuals
emphasises the effect of each user·invoked operation on a service. The Implementor
Manuals, on the other hand, concentrate on identifying the subcomponents from which
an implementation of the service can be built.

10 The Specification of Network Services

2 Serviee speciCication

A service of a distributed computing system can be modelled in much the same way as

a componen' in a centralised system.

A service can be described in terms of a service state a.nd a set of operations which will

change the state in a well-defined way. Consider a service with a state S. The effect
on the service of a given operation OP can be described in terms of the preceding state

S and the subsequent state S' (the dash is used by convention in 'l to denote the state
after an operation). Thus, at any given time, the current state of the service can be
determined from knowledge of the initial service state and of the sequence of
operations executed in the lifetime of the service so far.

Two small but significant differences can exist in a distributed systern., as compa.red to

a centralised system. The first is that the individual services will usually be at least
partly involved in tasks such as accounting, user authentication and access control,
which would be more easily separable in a centralised sY5tem. Secondly, jt is a
characteristic feature of a distributed system that componen~ in the system may

continue to work after others have failed, so that the error notification and handling
provided by services becomes important.

2.1 User'. view

A user will in general be interested only in the extemally observable behaviour of a
service. In the case of a file storage service, for instance, a user will be concemed with

files, filenames and file contents, but will not be interested in details of how these
items are represented and stored by the service. When specifying the requirements and
the user interface for a service, it is useful k> do so in terms of an abstract (i.e. not
implementation specific) service state and corresponding abstract operations.

If the user's view of the (abstract) service state is AS, then each abstract operation will
be described in terms of the preceding and subsequent abstract states AS and AS' .
In order for the state of the service to be defined at all times, the initial state of the
service In j tAS also needs to be established.

11 Service Specification and Documentation

2.2 Implementor'. view

Unlike a user, an implementor will need a much more detailed view of a service a.nd
will specifically be intere:sted in the internal behaviour of the service. In tbe case of a
file storage service for instance, the implementor will have to deal with items such as
index blocks and data blocks.

H the implementor's view of the (concrete) service state is CS, then concre'e operations
are expressed in terms of the before and after states CS and CS I. As before, the initial
state of the concrete service In i tCS must be well~defmed.

2.3 Camm.OD framework

In a distributed system consisting of a number of separate services connected by a
network, it is useful for the services to have certain characteristics in common. Thege
will include such facilities as service access, user authentication) accounting,
accumulation of statistics and error reporting. Making the provision of such facilities
the same across the collection of services means that the system as a whole will appear
more homogeneous to the user and therefore easier to use. Also, the specification and
implementation of the services becomes simpler since some pam are common to all
services.

These common aspects of services have been collected together into a set of definitions
known as the Common Service Framework. When required, these defmitions can be
incorporated into specifications of individual services in a standard way.

2.4. Corred:ness of implementatioD

In order to verify that the implementor's view of a service is compatible with the user's
view of the same service, formal correctness arguments can be used.

These arguments depend on the formal definition of how the concrete and abstract
represen tations of the service state relate to each other. In the following we will let
Re 1 denote the relation between CS and AS, and Re l' the same relation between CS'
and AS'.

12 The Specification of Network Services

In order for the concrete service state to be capable of representing the state of the
abstract service, it needs to have at least one concrete state for each possible abstract
state:

Y AS • 3 CS • Re 1

And the inital concrete service state must specifically represent the the initial abstract
service state:

In;tCS ... 3 AS' • In;tAS , ReI'

For each ab6tract operation AOP, we must supply a corresponding concrete operation
COP which is applicable in the corresponding domain to the abstract operation and
which will produce a result that satisfies the abstract specification. In other words, if
AOP changes the abstract state from AS to AS', then the corresponding concrete
operation COP must, given an initial state CS which relates to AS according to Re 1,
produce a new state CS' which relates to AS' according to Re 1 '. This can be
expressed more fonnally as:

pre AOP A ReJ ~ pre COP

pre AOP A COP A Rel .. 3 AS' w AOP A ReI'

The concrete state is thus considered as a data refinement of the abstract state, and
each of the concrete operations must model the same behaviour on the concrete state
as the corresponding abstract operation does on the abstract state.

The relationships between the two models can be illustrated as:

ADP
AS ~ AS'User view:

··1 ·,1

EOP

Implementor view: [5 ~ [5'

Note that operation refinement is also often applied to the concrete operations, so that
each is implemented as a combination of a number of simpler operations.

Service Specification and Documentation 13

3 ServiCt:! doemneutatioD

In this section we give an outline of the structure we have adopted for the
documentation of a service. The documentation consists of two main parts, a "User
Manual" and an "Implementor Manual lt

•

The User Manual describes the service as it appears to the user without glvlDg
unnecessary details regarding the implementation strategies used. The user manual is
presented as a series of formal specifications (written in Z) interleaved with infonnal
explanations in English prose. Apart from serving as a reference manual to the user of
the finished service, this document normally also serves as the requirements
specification for the service.

The purpose of the Implementor Manual is to present in detail an implementation of
the service. The manual presents a concrete representation of the service state which
is more directly irnplementable using available and (hopefully) well-documented
resources, such as programming languages, file systems and databases. For each
abstract operation the manual describes how the corresponding concrete operation can
be refined in terms of a number of simpler operations, each of which is reasonably easy
to implement in a programming language. The manual formally defines the relation
between the concrete and abstract representations of the service state, which forms the
basis for proofs of the correctness of each of the implemented operations. Like the
User Manual, the Implementor Manual is also presented as a series of formal
specifications linked together by prose which may contain additional informal
explanation where required.

The manuals currently use Z throughout, and thus some effort is still required to
transform the presented implementation into final code. Note that an Implementor
Manual presents only one possible implementation, reflecting a particular set of design
decisions. A programmer could choose to implement a service differently, provided it
still satisfied the specification given in the user manual.

3.1 User manual

We have adopted the following outline for the content of user manuals:

1. Introduction - describes the purpose of the service.

2. Service state - presents the service state as observed by the user (abstract

14 The Specification of Network Services

state) together with possible constra.ints on change of state. AlsoJ the initial
state of the service is defined.

3. Operation	 parameters - defines input/output parameters which an shared by
a number of service operations.

4. Reports	 - covers the possible reports which service operations may return,
usually IISuccess" and a number of error cases. Each report· is detailed
together with the circumstances under which it will be triggered.

5.	 Operation defmJtions ~ describes in detail each of the operations which the
service provides. The deecription of each operation consists of three sections:

a. Abetract section	 - a possible procedure heading for the operation (as it
might appear in some programming language) detailing the explicit
input/output parameters, and a shon infonnal description of the operation.

b. Defmition section -	 formal specification of the successful behaviour of the
operation. This takes the form of a Z schema which incorporates all the
formal parameters listed in the previous section. The schema may be
accompanied by a short infonnal explanation where required. Note that the
defined operation is panial and does not cater for any error conditions.

c. Reports section	 - fonnal specification of the total operation. The total
operation is fonned by combining the partial operation described in the
Definition section with a number of error echemas described in section 4 of
the manual.

6. Service charges	 - presents a tariff schema defIDing the charges incurred by
use of each of the service operations.

7. Complete service	 - shows how the service state and operations defined in
sections 2 and 5 of the manual combine with standard states and operations
defined in the Common Service Framework to fonn the complete service.

An example of the layout of a manual page defining a service operation is given on the
next page. The fonnal text will be explained in more detail later.

15 Service Specification and Documentation

OP

Abstract

OP (i n? IN;
out! OUT;
report! Report)

Informal description of the operation and the parameters.

DetinitiOD

OPsuccess I

liS

in? IN

out! OUT

POST (in?S.out!.S')

Informal text clarifying points in the fonnal definition of the operation.

Reports

OP (OPsuccess 1\ Success)
• InputError 1
• InputErrorz

Optional informal text describing error conditions.

16 The Specificatjon of Network Services

3.2 Implementor manual

The content of Implementor Manuals may vary considerably due to the difference of
complexity iII. implementing various types of services. However, a typical outline for an
Implementor Manual would be as follows:

1.	 Introduction - background and overall implementation strategy.

2.	 Abstract state - extract from the user manual (included to avoid cross·
referencing).

3. Concrete state -	 defines the concrete (implementation) state together with its
inital value.

4.	 Reports - each related to the concrete circumstances under which it will be
triggered. Corresponds closely to section 4 of the user manua.1.

5.	 Operation implementations - for each of the abstract service operations, the
corresponding concrete operation is defined. The description of each operation
is in three sections, as in the user manual.

6. Complete service	 - shows how the service state and operations defined in
sections 3 and 5 of the manual combine to fonn the complete service.

1. Implementation	 correctness - formally relates the abstract and concrete
statea as a necessary precursor to any proofs of correctness of the
implementation.

17

Chapter 2

Common Serviee Framework.

1 Introduction
1.1 Example service

2 Operation attributes

2.1 Reports

2.2 Client ideotification

2.3 Special clients

2.4 Current time

2.5 Operation cost

2.6 Key-linked operations

2.7 Operation identification

2.8 Operation parameters

3 Service attributes

3.1 Service charges

3.2 Null operation

3.3 Service clock subsystem

3.4 Service accounting subsystem

3.5 Service statistics subsystem

3.6 Service access subsystem

3.7 Service operations

3.B Service identification
4 Network attributes

4.1 Authentication

4.2 Network errors

5 Client attributes

5.1 elient ideotification

5.2 Client accounting

5.3 Client view

6 Sets and data types

6.1 Boolean values

6.2 User numbers and user ids

6.3 Time and intervals

6.4 Money

6.5 Operation identifiers

6.6 Reports

6.7 KeyB

18 The Specification of Network Services

1 IntrodUetiOD

When building a distributed operating system, consisting of a number of separate
services connected to each other and to user5 by a communications network, there are
a number of features that are common to all (or at least most) network services.

A common framework for the specification of the user interface to services is presented

here, in a way which allows the common features to be factored out of the
specifications of particular services.

The description is given in terms of an example skeleton service. The state and
operations of this service are introduced only in outline. Any actual service description
would provide explicit detail of these components. However, the example does show
how any service can be elaborated to include common features.

The common features include a number of subsystems such as a service clock,
accounting, statistics and access control. Each of these subs)'fitems introduces a

number of extra operations which may be performed by the service. These additional
operations are introduced in separate sections which need not necessarily be absorbed
in detail at a fir5t reading, but are designed to be used for reference when required.
The subsystems combine with the specific service operations to fonn a complete

service. This is illustrated in the diagram below.

Complete ServJce

Cammon Operations

IAccounts ~ IStatJst'cs I I Access IB

IService Operations I

SubsequentlYI it is shown how a complete distributed system may be defined by
combining the specification of individual services. Each service is identified by a
unique user number. This allows services to act as clients to other services if required.

Common Service Framework 19

Finally, attributes of the network itself and the client's syslem are introduced, in as far
as these affect the operation of a service. The 'network' may be considered to
authenticale clients and can introduce errors. The client program must identify itself
to the network and IDay also wish to keep jts own accounting record.

The last section gives details of the following standard sets and data types used in
service specifications. Further sets may be introduced in individual service manuals as

required.

IBool ean. UserNum. Userld. Time. Interval. Money. Op. Report. Key}

1.1 Example service

A service is specified by providing a mathematical model of the stale of the service,
and by formally defining the change in state when an operation on the I!lervice is

invoked by a client of the service.

For our example skeleton service (ES)I we model the state of the I!lervice as follows.

ES i

state STATE

INV (state)

Here, STATE is a set which jncludes all possible states of the service. A predicate INV
(the state invariant) is defmed to hold in all valid service states.

We introduce the name 6.ES to denote the change in state ca.used by some opera.tion,
dermed as a relation between the stale (undashed) before and the state (dashed) after
the operation.

lIES ., ES A ES'

Sometimes an operation leaves the state of the service unchanged.

=ES a ~ES I 8ES = 8ES'

(In the following, we will assume for any schema 5, unless otherwise stated, that 6.5
and =5 are defined in an equivalent way.)

20 The Specification of Network Services

The state of the service is initialised before it is ever used by any operation. The state
of the skeleton service after initialisation is defined.

In;tES ~

ES'

In i tPRED (state')

An operation on the service is then defined by introducing the inpu t parameters in?

and output parameters out! of the operation and relating them to the change in state
by further predicates. PRE is the precondition which must hold over the current state
and the input parameters in order for the outcome of the operation to be well-defmed..
POST is the postcondition which relates the new state and output parameters to the

curren t state and input parameters.

Operat i onsuccess i

6£S
in? : IN

out! OUT

PRE (state, in?)

POST (state, in?, out!, state')

(Here we have specified the precondition only in terms of the initial state and inputs.

In Z, this Deed not always be sufficien t to define the domain of the operation because

there may be some hidden implicit preconditions in POST. However in our style of

specif.ication, we try to avoid this for the sake of clarity.)

The sets STATE, IN, and OUT, and the predicates INV, PRE and POST used in the
above definitions clearly depend OD the particular operation with in the particular
service being specified. We leave them undefined for this example skeleton service.
Additionally, the number of inputs and outputs will vary depending on the operation.

However, there are a number of attributes of operations and services, and indeec also
of the network across which the service operations are invoked a.nd of the invoking
client process, which are common to all service specifications. The remainder of this
document introduces these common features, and illustrates how they enable the
specification of the example service to be augmented.

Common Service Framework 21

2 OperatioD attributes

As well as parameters which are particular to the service operation being specified,

there are a number of other attributes common to all operations.

2.1 Repo....

We add to each service operation the output parameter

report! Report

which indicates to the client in a standa.rd way either that the operation succeeded or
why it failed (in most cases, failure will leave the state of the service unchanged).

The normal outcome of an operation is success.

Success

report! Report

report 1 SuccessReport

(Note that italics within formal text are used to denote implemenbtion·specific
consta.nts,)

Success Report is the same across all services for simplicity. The specification of a
particular operation on a particular service may introduce report values which are
returned to indicate that some specific precondition of the operation bas Il2.1 been
satisfied.

For example, if the specific precondition PRE of the operation on the example service
is not satisfied, a report indicating the reason may be returned as follows.

22 The Specification of Network Services

Input Error
=ES
in? : IN
report! : Report

"'PRE (state. in?)
report! = InputErrorReport

The state of the service is defined as being unchanged if the error OCCUllI.

We can now defme the total effect of the operation in this example as being either
success, or an operation-specific error.

Operat ion ~ (Operat ionsuccess A Success) v InputError

H more tha.u one error report may be produced from an operation invocation, it is

often useful, or even necessary, to specify an ordering of the reports according to the
satisfaction of predicates over subsets of the state and inputs.

For example, if the successful outcome of an operation requires satisfaction of the
predicates contained in two schemas, PRE l and PREZI then we can specify the total
effect of the operation using schema overriding (assuming error scbemas InputErrorl
and InputErrorZ are defined for the negation of the respective predicates, as for
InputError above)

Operat ion ~ (Operat ionSUcceS5 A Success)
• InputErrorl
• InputErrorz

which can be expanded to give the following.

Operat i on ~ « « Operat i onsuccess A Success)
A PREll v InputErrorl)
A PREZ) v InputErrorZ

In other words, from the report produced by calling this operation we could deduce:

Operation report! Success = PRE,' PRE,
Operation report! InputErrorReport1 ~ PRE 1 A PREz
Operat ion report! Inp utErrorReportz ~ ~PREz

Common Service Frame.ork 23

Note that if overriding is used to specify the total operation, then it is not necessar1i to
explicitly include the preconditions in the defmition of the successful operation.

At this point it is worth noting that, in practice, a client will usually invoke a

particular operation on a service by calling a programming language construct, such as
a procedure. The procedure take8 input parameters to be passed to the 5ervice and
output parameters returned by the 8ervic.e as a result of the call. The output
parameters will include the report value.

We include in the user manual for the service an indication of the format of the
procedure call that would be used in a procedure.-oriented interface as follows.

Operat ion (in? IN;
out! OUT;
report! Report)

2.2 Cli~nt identifieatioD

In order that a service can attribute any resources used in performing an operation to

a particular user, each client is given a user number which is allocated from the set
UserNum. The allocation is public - that is, it is common for clients tlJ know each

others' user numbers. It is expected that the user number of a particular client will
change only rarely, if at all.

The user number of the client who invoked an operation is assumed to be an implicit

parameter of the operation. In other words, the user number is not explicitly passed as
a parameter to the service, but is derived from other information (see l!ection 4.1 on
Authentication).

We therefore augment the attributes of an operation with the user number of the
client.

c 1 ientnum UserNum

2.3 Special clients

Some service operations may behave differently if their invoking client i!! either one of
two special cases.

24 The Specification of Network Services

The guest user is an identity which may be assumed by any client who is (usually
only temporarily) lacking their own individual identity. The gue5t user has the fixed

user number GuestNum which is a special value from the set of all user numbers.

The servke manager is a particular user, fixed for any particular service, who is

responsible (or the management of the resources provided by the service.

{GuestNum. ManagerNum} c UserNum

Some service operations which need to attribute the use of resources to an identifiable
client may prevent the guest user from successfully performing the operation. The
following schema may be used as an overriding component in a.n operation defInition
to ensure thilt the client is known, or to produce an appropriate error report. otherwise.

Not KnmmUser

cl ientnum : UserNum

report! : Report

c1 ientnum = GuestNum
report! = NotKnownUserReport

Such an operation would be specified. to leave the state of the service unchanged. if the

user is not properly identifIed.

Operat ion a Operat ionSlJcces50 • (NotKnoHnUser 1\ =E5)

Similarly, services often include special operations which are invoked to manage the
resources provided by the service. Examples of such operations include status
operations to discover the amount of a resource currently being used by each client, or

scavenge operations to reclaim resources that are no longer being used. The service
may restrict successful invocation of these operations to the service manager by using
the following overriding schema.

Not Manager
cl ientnum : UserNum
report! :

cl ientnum

Report

'" ManagerNum
report! = NotManagerReport

Common Service Framework 25

A management operation would therefore be specified as follows.

Operat ion ~ Operat ionsuccess • (Not Manager 1\ =ES)

2.. C1lJftnt time

Each service has access to the current tilDe (for example via access to a common time
service). It is useful to denote this by including as an implicit attribute of all operation

the time now at which the operation was invoked.

now: Time

We do not attempt here to specify in more detail the value that this attribute will
assume, except to informally hint that for successive operations Lhe value will be
non-decreasing! Later, a standard specification for a service clock is presented, which

may be used in individual services if desired.

2.5 Operati01l """t

Each service is responsible for charging its clients for their use of th~ resources

provided by the service. Every operation has an output parameter which indicates the
cost incurred by the client in perlonn.ing the operation. (We shall see later that this
parameter need not be explicitly included in the procedure call when using a

proced.ure.oriented interlace.)

cost! : Money

The value of this parameter will be specified separately (see section 3.1 on Service
charges).

2.6 Key-llnlI:ed operations

Some operations are designed to operate over a potentially large set of values (such as

block identifiers). Such operations are designed to allow the set to be kaversed in
several operation calls. This may be necessary to limit either the sUe of output
parameters or the execution time of any particular call.

26 The Specification of Network Services

For example, sayan Operat i on schema requires the traversal of the (potentiaJly
large) set

xs : F X

(For example, Xcould be the set of all file identifiers.)

The operation itself is designed to traverse only a subset of xS on each call, and
repeated calls of it may be necessa.ry to construct xs as the union of the individually
traversed pa.rts. The execution of the separate operations is related by passing a key
parameter from one call to the next, taken from the given set Key. Each operation has
an input key parameter (key?) and an output key parameter (key!) and affects a
subset of xs (subx9).

To construct X9, the client first calls the operation with a special key StartKey:

Operat i on I	 key? = StartKey

The client then continues to caJl Op repeatedly, supplying as the new key in each case
the key returned by the previous call. The following is an example of the i th call:

Operat i on I	 key? = key I A

key! = key ,+! A

subxs = subxs ,

Finally, the speciaJ key EndKey will be returned to indicate that no more calls need
be made.

Operat i on I	 key! = EndKey

At that point, providing the set xs has remained constant, and not been affected by
other operations on the service:

xs = U subxs j

A key is itself to be regarded as standing for a set of X, using SOIDe implementation­
specific representation (denoted hy the generic constant function, KeySet). The
special keys, StartKey and EndKey, denote the set of no X and the set of all X.

Common Service Framework 27

IX] i
KeySet Key ~ r X

KeySet(StarIKey) = ~

KeySet(EndKey) = X

Each key value, passed from one call to the next, fitands for all the ids that have been
traversed so far (including possibly many that are not in xs).

The following framing schema (parameterised by an appropdate set X) is used to
simplify the definition of such key-linked operations.

<1i\ey[X] i

key? Key
key! : Key

xs r X

sub)(s r X

KeySet(key?) c KeySet(key!)
sub.s = (KeySet(keyi) \ KeySet(key?» n ••

[Note: a framing schema is denoted with the prefix letter '~~ and consists of a partial
specification for use as part of a subsequent schema.]

The difference between the sets denoted by the two keys indica.tes the subset of xs

involved in the particular call.

BadKey indicates that an input key has been provided which does not denote a valid
set. Note that this includes supplying an end key to an operation. This error schema
should always be provided by key-linked operations.

BadKey
key? Key I

r-eport! Report

key? f (dom KeySet) \ EndKey
r-eport! = BadKeyReport

28 The Specification of Network Service!

2.7 Operation identification

So far, we have only considered the specification of individual operations on the

example service. It is useful to defme the effect of any general operation on a service.

In order to select which operation is to be performed, the operations of a service are
each identified by a different value from the set Op, and each call includes an explicit
parameter denoting the operation to be invoked. (When using a procedure-oriented
interface, this parameter is implied by the name of the procedure being called.) We can
define a framing schema for an operation.

~p --------,I

op? : Op II

H the individual operations on the example service have been specified as A, B, _._, 0,
with operation numbers AOp, BOp, ''', DOp respectively, then the effect of an
arbitrary choice of one of these operations on the service can be specified as follows.

ESSen.. i ceOps 0

(A A q,Dp lop? = AOp) v

(B A q,Dp lop? = BOp) v

(0 A q,Dp lop? = DOp

Any attempt to invoke a non-existent operation on a particular service is rejected with
an appropriate report, which will be included in a later definition of the complete
service.

BadOperat ion
report!

report!

:

=

Report

BadOperationReport

2.8 Operation parBDlete:rs

Typically, for each operation requested by clients there is au output parameter
reporting the outcome of the operation (report!). Additionally the current time (now)
and the user number of the client (c 1 i entnum) are available. It is convenient to define

Common Service Framework 29

a schema containing such parameters in each service user manual.

¢Bas i cParams
report! Report

no,", Time

cl i entnum UserNum

Additionally, the basic parameters are supplemented by hidden parameter.sl normally
an operation identifier and the cost of executing the operation.

¢f'arams

¢Bas i cParams

op? Op

cost! : Money

Again, it may be convenient to define such a schema in a user manual. Note that these
hidden parameters will not normally appear as parameters to procedures invoked in a

specific user programming language to execute the operation, but will be passed by
some other means. For example, op? will depend on the name of the procedure called
by the user.

Note that since ¢f'arams includes op?, it may be used instead of <pop in the definition
of ESServ i ceOps if this is convenient in a particular service.

30 The Specification of Network Services

3 Servit:e attributes

Having specified the effect of individual operations on a service, it is then possible to
consider the attributes that apply to the service as a whole. These include charges, a

null operation, and four subsystems, each with their own state and operations, which
may be incorporated in to the specifications of individual services.

3.1 Se:rvice ch8l'gea

Each service operation will incur some charge on the invoking client. The charge may
be fixed or may be a function of the parameters of the operation. (Some service
operations may sometimes give a credit because of resources returned by the clientj

this is indicated. by a negative charge.)

A service manual will include a tariff section which defines the value of the cost!
parameter for any particular invocation of an operation. The details of the tariff will

be specific to a particular implementation of a service.

For example, a tariff of the following form may be imposed on a client of the example
service who successfully invokes an operation.

ESlariff
6ES
op? Op

in?A : INA
out!A QUlA

cost! Money

op? = AOp ~ cost! = ABasicCost +

AExtraCost(6ES. in?A' out !A)
op? = BOp ~ cost! = BBasicCost + ...

where	 { ABasicCost, BBasicCost, ... } !; Money
AExtraCost E (6ES x INA x QUlA) -++ Money
etc.

Common Service Framework 31

The cost when errors occur should also be covered and included in the delmition of a
tarnf error schema.

ErrorTar iff i
cost! : Money

cost' = ErrorCost

Ij£STar;ff Success ~ ESTariff A

~Success ~ ErrorTariff

Note that a particular service may specify a more complex set of charges for different
error reports. This tariff framing schema combines with the service optrations to
define the basic service:

ESBasicOps 9 ¢ESTeriff A ESServiceOps

3.2 Null operation

A null operation is provided in most services. This operation does not change the state
of the service, but allows any client to check that they can successfully access the
service. A standard (small) cost is involved.

op? = NullOp

cost! = NullCost

Note that at this stage we do not know the state of the particular service. Hence the
fact that the service state does not change will be recorded when the complete service
is formally defined.

3.3 Serviee cloclr. subsystem

A service may include its own clock subsystem which maintains the currell~ time.

32 The Specification of Network Services

Clock

I notol Time:

Initially t!J.e dock u; set to some value (typically using a separate Time Service,
although lhis is not specified here).

InitClock

inittime Time

Clock'

no.... ' = initt ime

The interval between most service operations as measured by the clock is positive, but
may be zero if the granularity of tlme measurement is large.

¢Clock

AClock

notol' ~ no....

Note that notol is considered to be the time the service operation took place, and notol'
will be the Ume the next operation will take place. ThUB notol' will Dot be available in
the specifications of operations in practice.

Two operations are associated with this subsystem. The current time according to the
service can be read by any client. A (small) fixed cost is associated with this operation.

Get C1 ocksUCClI!ss i

¢Clock
now! Time
cost! : Money

no.... ! = now

cost! = GetClockCost

GetCl ock ~ GetClocksuccess A Success

Common Service Framework 33

When the time is set, the time of the next operation will then be after (or possibly the

same as) the required time.

SetClocksuc:c:ess t

AClock

nolo'? Time

cost! Money

no,", ~ ~ no~?

cost! = SetClockCost

SetClock ~ (SetClocksuc:c:ess A Success)
• (NotManager A ¢Clock A ErrorTariff)

The clock may only be set by the service manager, but may be read by ll.D.y client.
These clock subsystem operatioDS may be combined as follows:

ClockOps a
(Get Clock A cjJOp op? = GetTimeOp) v

(Set Clock A cjJOp op? = SetTimeOp)

3.4 Service accounting Bubsystem

Each service may keep an accounting record of the accumulated. credit and charges
made to each client for use of that service. Account balances may be positi"e denoting
a credit or negative denoting a debt. Here we assume that the service can keep a

record for all possible users, so the accounts function is total. (IT the number of
possible users were very large, this may not be feasible in practice.)

Accts

I accounts UserNum ~ Money

Initially the accounts are all zero.

InitAccts ~ Accts' I ran accounts' = {O}

When a service operation is performed, the output cost parameter (cost!) is deducted

from the balance for the appropriate client, The following framing schema will

34 The Specification of Network Services

therefore be included in the specification of each servke operation.

4lAccts
~ccts

cost! Money

cl ientnum UserNum

accounts' = accounts.
{cl ientnum ~ accounts(cl ientnum) - cost!}

A subsystem operation is provided to allow clients to check the balance of their
account. Note that this operation involves a cost itself (similar to a charge for a bank
statement). The balance is that after deduction of this amount.

GetBa 1ancesuccess j

4lAccts
balance! Money
cl ientnum UserNum

balance! = accounts'(cl ientnum)
cost! = GetBalanceCost

GetBa 1ance a; (Get Ba 1ancasuccess I\. Success)

A management operation is provided to check the accounts of those clients with non­

zero balances.

CheckAccountssuccess I

:Acct s

accounts! : UserNum ~ Money

accounts! = accounts. {O}

CheckAccount s S (CheckAccount 5success I\. Success)
• (NotManager I\. 4lAccts ErrorTariff)

The manager may reinitialise all the accounts jf required.

Common Service Framework 35

ZeroAccount ssuccess -----------~
I aAccts I

ran accounts' = {O}

ZeroAccount s ~ (ZeroAccount ssuccess " Success)
e (NotManager " ¢Accts " ErrorTariff)

Finally, a specified account may be credited when a client pays all or part of his bill,
or prepays for use of the service.

Cred i tAecountsuccess i

,Meets

cl i entnum? UserNum

credit? Money

accounts' = accounts e
{el ientnum? 1-+ accounts(cl ientnum?) + credit?)

Cred i t Account Q (Credi tAccountsuccess " Success)
e (NotManager " ¢Accts " ErrorTariff)

Apart from Get Ba 1ance, these operations can only be invoked by the service ma.nager
and no cost is involved, unless a client who is not the service manager atlempts the
operation in which case the error charge will be incurred.

The operations combine to form the accounting subsystem operations:

Acet sOps •
(Get Balance " ¢lip lop? = GetBalanceOp) v

(CheckAccounts " ¢lip lop? = CbeckAccountsOp) v

(ZeroAccount s " ¢lip lop? = ZeroAccountsOp) v

(CreditAccount " ¢lip lop? = CredUAccountsOp)

This subsystem could be augmented to impose a credit limit if desired, but Ihis would
require an extra error report.

36 The Specification of Network Services

3.5 Serviee IJtatistia ilubsystem

Each service may keep a record of the number of invocations of each of its operations.

5tats I

I ca 11 s Op ~ OpCount J

Initially, the number of calls for all operations is zero.

Init5tats ~ 5tats' I ran calls' = {O}

When a Bervice operation is performed, the call count for that operation is

incremented. The following framing schema will therefore be included in the
specification of each service operation.

$5tats
~Stat.

op? : Op

calls' = calls. {op? ~ (cells op?) + 1}

Management operations are provided on the subsystem to check the non·zero counts
and to zero the accumulated statistics.

CheckStet ssuccess I

=Stets

ca 11 s! : Op OpCount

call.! = call. ~ {O}

CheckStets Q (CheckStatssuccess A Success)
• (NotManager A =Stets)

ZeroStatssuccess i

b.5tats

ran calls' = {O}

Common Service Framework 31

ZeroStats ~ (ZeroStatssuccess 1\ Success)
e (Not Manager 1\ =Stats)

These statistics subsystem operations can only be invoked by the service manager.

Stat sOps a
(CheckStets , ¢Op op? = CheckS/alsOp) v

(Zerostats , ¢Op op? = ZeroStatsOp)

3.8 8erviee aeeess subsystem

For some sequences of management operations it is important to ensure that the state
of the service is not changed, or even observed, by other clients between operations. It
is therefore possible in some services for the service manager to enable or disable

access to the service by other clients.

The state of the access subsystem includes an indication of whether service access to

other clients is enabled or not. Initially service access is not enabled.

Access I

I enabled: Boolean,

In i tAccess ;:::: Access' I enab IEd' = False

Operations on the basic service can only be perfonned if it is enabled or if the

operations are perfonned by the service manager.

cIlAccess
=Access
c 1 i entnum UserNum

enab 1ed = True v

cl i entnum = ManagerNum

Operations on the ba.sic service will fail with an error report if access is disabled and it
is not the service manager perfonning them.

38 The Specification of Network Services

NotEnabled
=Access
cl ientnum UserNum

enab1ed = False
cl ientnum ~ ManagerNum

report' = NotElJabledReport

Management operations are provided on the subsystem to change the state of access.

Enab1esuccess ,
Mccess

enabled' = True

Enable Q (Eneblesuccess A Success)
• (NotMeneger A =Access)

Di seb1esuccess i

Mccess

enab1ed' = False

Di seb 1e Ii:: (D issb1e su l:l:ess A Success)
• (NotNanager A =Access)

These operations specific to changing the state of access can only be invoked by the
service manager.

AccessOps a
(Eneble A ¢lOp op? EnableOp) v

(Disable A ¢lOp op? DiBableOp)

3.7 Service operatioDB

This completes the definitions of the common operations that may be available on a
service. Not every service need implement the subsystems for a local clock l accounting,

Common Service Framework 39

statistics or access control. Every service must implement the null operation.

An operation may occasionally fail, even if its preconditions are satisfied, because of
an underlying nondeterministic fault in its implementation (for example, a hardware
fault or tbe unavailability of some other service). In this case a standard failure report

is returned.

Serv i ceError
fault Boolean
report! Report

faul t = True
report! = ServiceErrorReport

The state of the service should remain unchanged in this case.

Note that this imposes a heavy, if not impossible, burden on the implementor of the
service to ensure recovery from all such errors without changing the observable service
state. An alternative, but not very useful, specification would allow the fleroce to
assume any valid state after such an error. In the case of a catastrophic eJ1'Of such as
complete disk failure, the implementation could be designed to continually return
Serv i ceError and 80 not have to return the previous state!

We are now in a position to specify all the operations and error conditions for our
example service. In this example we shall define a service including a null operation, a
clock, accounting, statistics and access control.

The combined state of the complete service is:

ESState Q ES A Clock A Accts A Stats A Access

The initial state is defined as:

In i tESStete ~

InitES " InitClock A InitAccts A InitStets A InitAccess

The possible changes of stale of the complete service, covering all operations which
can be performed by the service, including the case where the service is not enabled, is
as follows:

40 The Specification of Network Services

ESAllOps •
(ESBas icOps II .6ES II ¢(:lock II epAccts II $Stats A epAccess) v

(Null II =ES II ¢(:loek II epAeets II $Stats A epAccess) v

(ClockOps II =ES II l!.Cloek II epAeets II ¢6tats A epAccess) v

(AcetsOps II =ES II ¢(:loek II .6Aeets II ¢6tats A epAeeess) v

(Slat sOps II =ES II ¢(:lock II =Aeets II l!.Stats A ~Access) v
•(AceessOps II =E5 II ¢(:loek II =Aeets II =5tats A .6Aecess) v

(NotEnabled II =E5 II ¢(:loek II =Aects II =stats A =Access)

Finally, we include the possibility of a bad operation number (the only possible
conclusion if all the operation preconditions have failed) or a non-deterministic service

error:

ESOps •

((BadOperat i on II =ES II ¢(:1oek II =Acct s II =5t ats II =Access) II

(EsAl10ps II .6E5 II l!.Cloek II Meets II l!.5tats II .6Access»

v

(ServieeError II =E5 II ¢(:loek II =Aeets II =Stats II =Access)

Similar schemas should be defIned at the end of each service manual.

3.8 Service identification

So far, we have only considered the specification of an individual service. We have

made use of a number of definitions which are specific to the service in question, such
as E5, E5Teriff and E5BasieOps.

It is useful to define the effect of any general operation on the complete collection of
services. Since services may act as clients by invoking operations on other services, ,
they are given user numbers from the same set UserNum as other users.

In order to select which service is to be affected by a particula.r operation, the user

number of the service is provided as a parameter. (When using a procedure-oriented.
interface, the service to be affected is implied by the name of the procedure being

ca.lled.)

¢6v	 ~

sv? UserNum	 i

I
 I

Any attempt to invoke an operation on a non-existent service is rejected with an

appropria.te repon.

BadServ i ce I

report! Report

report! = BadServiceReport

If the individu.al service states have been specified as WSState, XSState, ..., ZSStete,
the initial states a.re WSInitState, XSInitState, ..., ZSInitState, and the
combined operations on the services are defined as WSOps, XSOps, ..., lSOps, then the
combined state, the initi.al state and the effect of an arbitrary operation on an
arbitrary service on the network can be specified as follows:

SvStete Q

I-lSStete A XSState A ••• A ZSStete

SvInitStete a
I.JSInitState A XSInitState A .•• A lSInitState

SvOps ~

(BadService A =SvStete) •
«~SOp. A sSvState\~SState A ¢6v sv? = W8v) v

(XSOps A sSvState\XSState A ~Sv sv? = XSv) v

(ZSOps A sSvState\ZSState A ¢6v I sv? = ZSv »)

In other words, any operation on a particular service does not affect the sla.te of any
other service. Note that in the case of services making use of common operations, the
common state components should be renamed uniquely for each service to avoid
name clashes.

(Strictly speaking, the invocation of a service operation may cause opera.tions on ~

services to be performed by the invoked service. However, as far as the client of the
original operation is concerned, those additional operations ca.n be considered as
having been performed by other users after the completion of the original opera.tion
and before the client can perform another operation on any affected service. Hence,
because no user has control over the interleaving of other users' operations between
their own, there is no need to explicitly cater for these secondary effects in the
specification.)

42 The Specification of Network Services

4 Network attributes

There are some features of services that are independent of the particular service upon
which an operation is being performed. We include authentication of clients at this
stage, since it is something which can be considered the responsibility of the network,

rather than of an individual service (otherwise, for example, a service could
impersona.te one of its clients). Indeed, it is possible for networks to include security

and authentication measures as part of the hardware network inLerfa.ce.

4.1 Authentication

Authentication ensures that the client of a service operation is genuine, so that any
costs incurred in performing the operation can be reliably attributed to a particular
client. A very simple scheme has been chosen which makes it difficult for one client to

impersona.te another.

00 far, we have presumed that the user number of the client is an implicit parameter of
any service operation. Since user numbers are public, they do not provide a secure
identification of the client.

In order to provide authentication, each registered client also has a user identifier.

User identifiers are allocated privately, from the set Userldj a client should not reveal
his user identifier to anyone else. Since user identifiers may become compromised
(known by too many people) or forgotten (known by too few!), it Inight be necessary to
change a client's user identifier from time to time.

Authentication is achieved by the existence of a (secret) partial function

authentiC UserId ~ UsarNum

(GuesUd H GuestNum) e Buthent IC

which for any user identifier gives the user number of the client who should be its sole
possessor. Since the set Userld of user identifiers has been made very large, and the
set (dam authent ie) of authentic user identifiers has been made a relatively small
pa.rt of it, it will be hard for clients to guess the user identifiers of others.

We have already introduced the guest user, which some services might recognise as a

Common Servjce Framework 43

special client, and who has the user number GuestNum. The guest user h;u; the user
identifier Guest/d. This user identifier mpublic, and is expected to be used by clients
temporarily without a private user identifier of their own. The guest user is always

authentic.

Each service operation htl..f! an explicit input parameter

c 1 i ent id? UserId

identifying the client who has invoked the operation. (We will see later that in a
procedure-oriented interface this parameter need not be provided explicitly by the
client on each call.)

The authentication performed by the service-network interfa.ce will reject an operation
if the client is not authentic. If authentica.tion is successful, the user number of the
client (c 1 ientnum) is defined and may be used in specifying the particular behaviour
of the operation, as already described.

IsAuthentic
i

eli ent id? UserId
cl ientnum UserNum

cl ientnum authentic cl ientid?

NotAutnent ic
cl ientid? Userld
report! Report

cl ient id? Ii! dom authentic

report! = NotA uthenticReport

We augtDent the specification of the service operations as follows.

S"AuthOps ~

(IsAuthentic 1\ S"Ops) "
(NotAuthent ic 1\ =S"State)

44 The Specification of Network Services

4.2 Network elTOn

In rare cases an unexpected network failure may occur during the transmission of
parameters to or from a service operation. In this case, an errorreporl is returned, but

the client cannot determine from the report whether or not the operation was

executed.

Net Error

•

Again the service operations are augmented. (We use the notation 5\ (*!) to denote
the schema 5 with all output parameters, ending in !, hidden.)

NetOps ~

SvAuthOps v

({SvAuthOps\{*!) v =SvState) A Net Error)

Hence no meaning can be attributed to any output parameters if a network error has
occurred, except the error report! value itself. However we guarantee that the
operation either will or will not have taken place (sometimes known as 'at-most-once
semantics').

,

report! Report I

report! N etErrorReport

Common Service Framework 45

Ii Clieut attributes

So far, we have defmed the following explicit parameters as common to each operation

invocation.

Params
cl i ent jd? Userld i

sv? UserNum
op? Op
cost! Money
report! Report

These parameters, plua the input and output parameters specific to an operation, must
all be present if we view the interface to a service at a low enough level (for example

as data transmitted over a network).

However, in a procedure-oriented interface we have already said that the identification
of the service sv? and the operation op? is implied by the name of the procedure itself.

In order to reduce the number of parameters that must be explicitly provided on each
procedure call still further, jt is convenient to specify that the client's name and the
accumulated cost incurred are stored locally in the client program.

5.1 Clieut idelltif'ic:atiou

Since the identification of a client program (or process, or operating system

environment) is likely to remain constant over a number of service calls, it is
convenient to allow the user identifier of the current client to be remembered in the
state of the client program.

C1 ient

I cl ientid Userld

Initially, on starling a new client program, the current client is the guest user.

InitClient f:l Client' I clientid' = GuestId

46 The Specification of Network Services

The current client may he changed or interrogated by operations. (Note that thes~

operations are local to the client program, rather than being perfonned by a service,
and so do not involve the normal service parameters. Their effect is left non­
detenninislic in this specification since their use is completely under the control of the
client.)

SetCl ientld
6.Client
neHcl ientid? : Userld

cl ientid' = neHcl ientid?

GetCJ ient Id
=C1 ient
currentcl ientid! Userld

currentcl ientid! = cl ientid

LocalCl ientOps e SetCl ientld v GetCI ientld

When calling a service operation, the input parameter c 1 i ent i d? is that of the
current name remembered by the client program. The following framing schema will
therefore be used in the specification of each service operation.

¢Client

=Cl ient

cl ient,d? Userld

cl ientid? =cl ientid

5.2 Client aecoUDtmg

It is also convenient to accumulate the cost incurred by the client's use of a service in
the client program, rather than pass it explicitly as an output parameter on each
procedure call. We therefore allow the client program to accumulate the total costa
incurred over a number of service operations.

Common Service Framework 47

Cost i

I totalcost Money,

Initially, on starting a new client prograIU, the accumulated cost is zero.

InitCost Q Cost' I total cost • = 0

The accumulated cost may be interrogated or reset to zero by operations. (Note that
these operations are local to the client program, rather than being performed by a

service, and so do not involve the normal service parameters.)

GetCost
=Cost
totalcost! Money

totalcost! = totalcost

leroCost

I ~Cost I

total cost • = 0

LocalCostOps Q GetCost v leroCost

When calling a service operation, the output cost parameter (cost!) is added to the
accumulated cost remembered by the client program. Some reports denote that access
to a service has not been possible, 80 no C06t has been incurred, and the cost!
parameter is undefined..

NoCostReports e {ServjceErrorReport.

BadServiceReport.

N otAuthenticReport,

NetErrorReport}

The following framing schema will then be used in the specification of each service
operation.

48 The Specification of Network Services

etCost
.6Cost
cost! Money
report! : Report

(report! f NoCostReports) ~

totalcost' = totalcost + cost!
(report! E NoCostReports) ~

totalcost' = totalcost

It is possible, if a network error has occurred and if the invoked operation was indeed
performed by the service, that some actual charge may have been incurred by the
client. Clients can check their actual charges by invoking the Get.Ba1ance operation
on the appropriate service.

5.3 Client view

The client views the state of the whole system as including the local authentication
.and accounting operations. Note that initially, the state of the network services may be
.any valid state.

LocalState ~ SvState A C1 ient A Cost

InitLocalState e SvState A InitCl ient A InitCost

Local0ps ~

(NetOps A .6SvState A etCl ient h ¢Cost) v

(LocalC] ientOps A =SvState A .6Cl ient h =Cost) v

(LocalCostOps A sSvState A =Cl ient h ft.Cost)

Common Service Framework 49

6 Sets and data type.

Service specifications, and the common gervice framework presented bere, m~ke use of
a number of given sets and a data type. These are described in this section.

6.1 Boolean values

A boolean data type is 90metimes useful when there is a simple yes/no choke, defined

as follows.

Boo 1ean ; ; = False I True

6.2 User Dumbers and mel' ids

The set UserNum is a finite set of publicly known "numbers" associated with clients.
The set User Id is a corresponding finite set of private identifiers for clients. (Note
that there may be more than one valid Userld associated with a given UserNum.

Also each service has a UserNum, and 60 may act as a client to another service.)

6.3 Time and intervals

The set Time denotes the finite set of all instants of time (to an appropriately small
resolution, such as a second) covering dates relevant to the life of the system.

The set Interval denotes a finite set of non-negative time intervals, or differences
between pairs of time instants.

The follow infix operators and constants are assumed to be defined for Time and
Interval:

" ­ Time H Time

(- + -) (Time x Interval) -+ Time

<- - -) (Time x Interval) ~ Time
ZeroTime : Time

~ e total_order Time

Zero Time = min Time

50 The Specification of Network Services

~ _ : Interval +-+ Intarval
(_ - _) : (Time x Time) ---+ Interval
Zerolnterval: Interval

)_ E total_order Interval
ZerolntervaJ = min Interval
V t:Time •

t + Zerolnterval = t

t - Zerolnterval = t

t - t = Zerolnterva.l

All these operators are defined to be total, ignoring any problems with error conditions
caused by arithmetic overflow or underflow. Note that the addition of two absolute
Time inslants would be meaningless.

6.4 MOIley

The set Money denotes a finite set of all (signed) measures of cost. It is used for
operation charges and accounting purposes. The following infix operators are assumed
to be defined for Money:

Money +-+ Money

(- + -) (Money x Money) ---+ Money

(- - -) (Money x Money) -+ Money

- ~

~ E total_order Money

The operators above are defined to be total, again to avoid errors.

6.5 Operation identifiers

The set Op denotes the finite set of possible operation identifiers. These are unique for
different operations within a given service. However. they may be shared across
services since the user number of the service itself may be used to identify on which
service a particular operation is to be performed. Common operations, such as the null
operation, will be given a standard operation identifier across all services to avoid
confusion.

Common Service Framework 51

6.6 Reports

The set Report denoLes Lhe finite set of possible reports which may be relurned by
operations. As for operation identifiers, reports need only be unique within a
particula.r service. Again, common reporLs will be given standard values across all
services.

6.7 Keys

The finite set Key is used for certain operations which are called in a sequence,
passing a key value between successive operaLions. There are special firsL and last keys
(StartKey a.nd EndKey) for iniLialisation a.nd tennination of the sequence of
opera.tions.

53

Chapter 3

Reservation Service • User Ma».ual

1 Introduction

2 Service sta.te

3 Opera.tion parameters

4 Reports

5 Opera.tion defiD itiODS

5.1 Client a.nd manager operations

Reserve
SetShutdo~n

Status
5.2 Internal operation - scavenging

6 Service cha.rges

7 Complete service

54 The Specification of Network Services

1 Introduction

The Reservation Service allows clients to notify a manager how long they may require

use of other services. A client may make a reservation for a specified period.
Subsequently the reservation may be cancelled by requesting a reservation of zero
interval. At any one time, there may be a number of client reservations.

The service manager may inspect the reservations whenever required. The manager
may also set a shutdown time after which the availability of services in the distributed
system is no longer guaranteed (for example, because of maintenance). If any client
reservations are threatened by the shutdown time, the manager will be notified, and
can then negotiate with the clients concerned or set a new shutdown time. Note that a
client cannot make a reservation past the current shutdown time.

Normally a client will make a reservation for some reasonable period. before using any
other services. However a client may still use other services without making a
reservation. In this case there is no guarantee a.bout the availability of services.

Reservation Service - User Manual 55

Z Serviee state

A reservation records the user number (public identity) of the client wb.o made it and
the time at which it will expire. A number of reservations may exist at anyone time.
Each user may only have one reservation, and there is a limit on the total number of
reservations.

Reservat i ons ~ {r: UserNum -++ Time I Ur :!i; Capacity}

The state of the Reservation Service records the shutdown time most recently set by
the service manager (shut dOlo4n) and the set of current reservations (resns). The
guest user cannot make reservations.

RS
shutdown Time
resns Reservations

GuestNum f. dom resns

Initially the shutdown is set to a default value and there are no reservations.

InitRS
RS' i

shutdown' = InitShutdownTime

resns' = l?J

The service is in its initial state every time it is powered up.

56 The Specification of Network Services

3 Operation parameters

For each operation requested by clients there is an output parameter reporting the
outcome of the operation (report!). Additionally the current time (now) and the user
number of the client (c 1 i entnum) are available.

<l£as i cParams
report! Report

no" Time
eli entnum UserNum

Operations may change the state of the Reservation Service.

bRS ~ RS A RS' A ¢BasicParams

Some operations may leave the state of the service unchanged,

'RS 0 6RS I 8RS ~ 8RS'

OperatioDs can return finite sets of users, so we make the following definition for the
convenience of subsequellt specifications.

Users ~ {u: r UserNum I Ilu ~ Capacity }

Reservation Service - User Ma.nual 57

• R.porte

The report! output parameter of each operation indicates either that the operation
succeeded or suggests: why it failed.

Success indicates successful completion of an operation.

Success
report! Report

report! ::: SuccessReport

If a reservation cannot be made due to early shutdown, the shutdown time itself is
returned in unt j 1 ,. Note that a reservation of zero interval will not cause this error.

NotAvai lable
=RS
interval? Interval
unt i 1 ! Time

i nterva1? ~ ZerolneervaJ
shutdown < now + interval?
unt i 1! shutdown
report! = NotA vai/abJeRepore

The service has finite capacity for recording reservations; the report TooManyUsers
occurs when that capacity would be exceeded. The report cannot occur if tbe client
bas a reservation (since it is overwritten by the new one).

TooManyUsers

=RS

ttresns = Capacity
clientnum f dom resns

report! = TooManyUsersReport

58 The Specification of Network Services

Some operations can only be executed by the service manager.

Not Manager

=RS

cl ientnum i- ManagerNum
report! = NotMa.nagerReport

Guest users cannot ma.ke reservations.

NotKnownUser

=RS

cl ientnum = GuestNum

report! = NotKnownUserReport

Reservation Service . User Manual 59

5 Servir:e operations

Four operations are described in this section. Reserve, which may be performed by
any authentic client, SetShutdololn and Status, which may be performed only by the
service manager, and Scavenge, which is perfonned by the service itself.

The description of each operation has three sections, titled Abstract, Definition and

Reports.

The Abstract section gives a procedure heading for the operation, with formal
parameters, as it might appear in some programming language. The cQrrespondence
between this procedure heading and an implementation of it in some real programming
language is designed to be obvious and direct. A short infonnal description of the

operation may accompany the procedure heading.

The Definition section mathematically defines the successful behaviour of the
operation. It does this by giving a schema which includes as a component every formal

parameter of the procedure heading, either explicitly or as componen~s of included
subschemas (such as .6.RS). A short explanation may accompany the schema.

The Reports section summarises the report values which can be returned by the
operation. This gives the definition of the total operation including the behaviour in

the case of errors.

5.1 Client and manager operations

The following operations are available:

Reserve make or clear a reservation

SetShutdokin set a shutdown time

Stat us obtain current reservations

Only the Reserve operation may be performed by most clients. The last two
operations may only be performed by the service manager.

GO The Specification of Network Services

RESERVE

Abstract
Reserve (interval? Interval;

unt i 1 ! Time;
report! Report)

A reservatioD. is made for a period of time (i nterva 1?), and returns the expiry time of
the new reservation (unt i 1 !).

A client caD cancel a reservation by making a new reservation in whicb i nterva l? is

zero; this will then be removed by the next scavenge.

Definition

Reservesul;cess -------------------~
~RS I

i nterva 1? Interval

unt i 1 ! Time

unt i 1 ! now + interval?
shutdown' shutdown

resns resns e {cl ientnum ~ until!}

Reports

Reserve (Reserve
SU

l;l;eSS /I. Success)
e TooManyUsers
e NotAvai lable
e NotKnownUser

The client tannot be a guest user.

The reservation must expire before the shutdown time or be for a zero interval.

There may be no space for new reservations.

Reservation Service - User Manual 61

SETSBUTDOWN

Abotrad

SetShutdo~n (shutdo~n? Time:
threatens! Users;
report! Report)

The service manager may set a. new shutdown time. All clients who have reservations

which are threa.tened by the new time a.re returned. It is the responsibility of the

service manager to negotiate with the clients affected.

Definition

Set Shut downSUcces5 j

/IRS
shutdown? Time

threatens! Users

shutdololn' shutdown?
resns' resns
threatens!

dam (resns ~ (ZeroTime . . shutdo....n'»

The shutdown time is changed to the new value regardless of existing reservations.
Current reservatioD5 are unaffected.

Clients with reservations P<l.6t the Dew shutdown time are reported.

Reports

SetShutdown ~ (SetShutdownSUCCES5 A Success)
• Not Manager

This operation may only be performed by the service manager.

62 The Specification of Network Services

STATUS

Abetrad

Status (now! Time;

shutdown! Time;

resns! Reservations;
report! Report)

The servicE manager may look at the current status of the service. The current and
shutdown times are returned together with details of the current reservations.

Definition

5tat~~'sc"ess

now! Time1
 shutdown! Time

resns! Reservations

now! now

shutdown! shutdown
resns! resns

Reports

Status ~ (Statussuccess 1\ Success)
• Not Manager

This opera-lion may only be performed by the service manager.

Reservation Service . User Manual 63

5.2 Internal operation - 8eavengiDg

In order to remove reservations which have expired, the service will perform a
scavenge before each operation. This is in fact the only way in which reservations are
removed.

Scavenge
RS
RS'
now Time

shutdown' = shutdown

resns' = resns ~ (ZeroTime.. now)

Scavenging does not change the shutdown time. A scavenge can remove reservations,
but it never makes new ones. All reservations up to now are removed.

Perfonning a scavenge before each operation ensures that the service contains only
non-expired reservations when the operation itself is performed. Thus, for example,
the Status operation with only return current reservations.

64 The Specification of Network Service!

6 Service charges

The basic parameters are supplemented. by two hidden parameters, an operation
identifier and the cost of executing the operation.

¢f'arams

4lBasicParams

op? Op

cost! : Money

There is a fixed cost for each successful operation. All clients who make a reservation
will also be charged an amount depending on the requested interval. There is no

refund when a reservation is cleared to encourage clients to make reasonable requests.

RSTeriff

4Perams

op? = ReserveOp "'* cost! = ReserveCost +

(TimeCost * interval?)

op? = SetShutdownOp =+ cost! = SetShutdownCost

op? = StatusOp =+ cost! = StatusCost

where (_ * _) (Money x Time) ~ Money is defined appropriately.

If an error occurs, a fixed amount may still be charged.

ErrorTeriff 4Params I cost! :: ErrorCost

These two schemas combine to form an overall tariff framing schema.

I/lSTariff Success =+ RSTariff A

-Success =+ ErrorTariff

Reservation Service - User Manual 65

T Complete service

This section provides a definition of the complete reservation service. This uses
schemas which are defined in the two previous sections as well as some schemas

defined in the "Common Service Framework". Each operation is identified by an extra
parameter op? which depends on the procedure name.

RSServ I ceOps ;:
(Reserve II ¢farams op? ReserveOp) v

(SetShutdown II ¢farams op? SetShutdownOp) v

(Status II ¢farams op? StatusOp I

Each of these operations has a tariff associated with it, and they may all be considered
to be preceded by an internal scavenge opera.tion before the operation is invoked.

RSBasicOps Q Scavenge a (¢RSTariff II RSServiceOps)

The complete state and the initial state of the Reservation Service including a service

clock, accounting and statistics as outlined in the "Common Service Framework" are:

RsState ~ RS II Clock A Accts II Stats

InitRSState ~ InitRS II InitClock II InitAccts II InitStats

The operations of the Reservation Service including a null opera\ion and operations
concerned with the service clock, accounting and statistics are as follows:

RSA I 1Gps •

(BasicOps II nRS II ¢Clock II ~Accts II $Stats) v

(Null II =RS II ¢Clock II ¢Accts II $Stats) v
(ClockOps II =RS II nClock II ¢Accts II $Stats) v
(AcctsOps A =RS II ¢Clock II nAccts II $Stats) v
(Stat sOps II =RS II ¢Clock II :Accts II nStats)

Access control is Dot included since the shutdown time gives a form of access control.

66 The Specification of Network Services

Finally I the possibility of a bad operation and service error are included:

RSOps 0
«BadOperation A =55 A ¢Clock A =Accts A =Stats) •
(RSA110ps A ~SS A ~Clock A ~Accts A ~Stats»

v

(ServiceError A =55 A ¢Clock A :Accts A =Stats)

~7

Chapter '"

Reservation Serviee • hnplementor Manual

1 Introduction
2 Abstra.ct sta.te
3 Concrete sla.te

4 Reports

5 Operation implementa.tions
Reser.... e
SetShutdolo<ln
Statu5
Sca.venging

6 Complete service
7 Implementation correctness

68 The Specification of Network Services

1 IntrodUctiOD

This document assumes that the reader is familiar witb the "Reservation Service - User
Manual" wllich outlines the abstract specification of tbe service. Here, this abstract
specification is refined into a concrete specification of a possible implementation of the
service. First the concrete state of the service is defined and then the concrete error
and operalion schemas are defined in terms of the concrete state components.
Optimisations are included where this is desirable. The ju.stification that tbe given
concrete specification is a correct implementation of tbe abstract specification is

discussed.

The specification given here is still not directly implementable. Predicates in scbemas
are given broadly in the order whicb tbe corresponding statements of a procedure in a
sequential programming language ntight be written, as a bint to the implementor, A
particular programming language must be chosen by the implementor and tllen this
design must be refined. into that language. Even witb the advent of the use of formal
specification in the design of computer based systems, it is anticipated that the job of
the programmer is safe for some time to come.

Reservation Service - Implementor Manual 69

2 Abstract state

The abstract state of the Reservation Service, as defined in the "Reservation Service ­
User Manual'", includes the shutdown time most recently set by the service manager
(shutdown) and the current reservations (resns). The guest user (annot make

reservations.

Reservat i ons ~ {r: UserNum -++ Time I Ir ~ Capadty }

RS ~

shutdown Time

resns

GuestNum

Rese

Ii! dom

rvations

resns

Initially the shutdown time has an initial default value and there are no reservatjons.

Ini tRS _

RS'

shutdown' = InitShutdownTime
resns' = 121

Full details of the abstract operations on the service can be found in the User Manual.

70 The Specification of Network Services

3 Concrete state

In the abs~ract state, the reservations are modelled as a partial function. We shall
assume that the number of clients with reservations at any particular time is relatively
small compa.red to the total number of clients (i.e. the function is sparse).

Hence in the concrete state, we shall implement this partial function as a pair of arrays
containing matching user numbers and reservation times at corresponding array
indices. Since not all entries in these arrays need be in use at any given moment, we
need a special user number to indicate an empty entry. The guest user is not allowed
to make reservations, and cannot appear as a user number in the reservation table, so
we shall therefore use this number to denote unused entries in the array.

Unused UserNum

Unused = GuestNum

The arrays have indices limited to a maximum upper bound Capacity which
determines the number of clients for whom the service can hold reservations
simultaneously. This limit must be determined by the implementor according to the
estimated usage of the service.

Index S! 1 .. Capacity

UserArray S! I ndex ~ UserNum

TimeArray Q Index ~ Time

The shutdown time may easily be implemented as a single variable (shutd), so that
the concrete implemented service state consists of three components.

cRS
shutd Time
users UserArray
t j mes TimeArray

(users ~ {Unused}) e (Index >++ UserNum)

Reservation Service . Implementor Manual 71

Each authentic client can have at most one entry in the users array, all other entries
being unused.

Initially the shutdown time has the default value and all the entries in the user arra.y
are unused. (It will not matter what values are held in the time array.)

cIn i t RS

cRS'

shutd' InitShutdownTime

users' A s: Index· Unused

For each operation requested by clients there is an indication of the outcome of the
operation (report!). Additionally the current time (now) and the user number of the
client (c1 i entnum) are available.

¢Bas i cParams

report! Report

no" Time
c 1 j entnum UserNum

Operations may change the state of the Reservation Service implementation.

l!.cRS ~ cRS f\ cRS' f\ ¢BasicParams

Some operations may leave the state of the service unchanged.

=cRS 0 6cRS I cRS = cRS'

Operations can return finite sets of users, so we make the following definition for the
convenience of subsequent specifications.

Users ~ {u: F UserNurn I '*u ~ Capacity}

72 The Specification of Network Services

4. Reports

The report schema definitions are little changed in the implementation because they
mainly do not involve refined state components.

cSuccess i

6cRS

report! SuccessReport

cNotMansger
=cRS

i

clientnum
report!

'#

=
ManagerN um
NotManagerReport

cNot KnownUser
=cRS

i

c 1 i entnum

report! :
GuestNum
NotKnownUserReport

cNotAva i lab 1e

=cRS
interval? Interval

unt i 1 ! Time

interval? '# ZerolntervaJ

shutd < now + interval?
unt i 1 ! = shutd
report! NotA. v ailableReporl

(The TooManyUsers report schema has been directly incorporated in the
implementation of the Reserve operation.)

Reservation Service - Implementor Manual 73

6 Operation implementations

The four service operations are redefined here in terms of the refined concrete state.
As in the "User Manual", the description of each operation has three sections, titled
Abstract, Definition and Reports.

The Abstract section is included to reduce cross-reference with the "User Manual". It
gives the procedural interlace to the operation for a program running on the client's
machine. This will of course need to be adapted for a particular programming
language.

The Definition section gives the fonnal description of the operation in terms of the

concrete state together with informal details to aid the implementor. Extra state
components indicate extra variables which will be required in the final program.

The Reports sections covers error conditions to produce a fonnal description of the

total operation.

Each schema definition may be cODveniently implemented as a procedure in the final
program.

74 The Specification of Network Services

RESERVE

Abstraet
Reserve (interval? Interval j

unt i 1! Time;
report! Report)

Definition

]n the concrete form of this operation) the combination of the Success and

TooManyUsers report cases are optimised into a combined 'available' definition.

cReserveava,l
lIcRS
interval? Interva1
unt i 1! Time

i. j Index

shutd' = shutd

until! = nOH + interval?

c1 ientnum E ran users ~

users i = cl ientnum
users' = users
times' = times. {i ~ until!}
report! = Success Report

cl ientnum f ran users ~

Unused E ran users ~

users J = Unused
users' = users. {J ~ cl lentnum}
times' = times. {j ~ until!}

report! = SuccessReport
Unused f ran users ~

users' users
t J mes' times
report! = TooManyUsersReport

The shutdown time is unaffected.

A check is made to see whether an entry for the client already exists in the users

Reservation Service - Implementor Manual 75

array. If a client already has a reservation entry, then that entry in the array (with
index i) is used. Otherwise, if there are any unused entries in the array, one of them
(with index J) is used.

If the client does not have an existing entry and there are DO unused entries, the state

remains unchanged and an error report is given.

Reports

cReserve ~ cReser e ava ' 1

Gl cNotA..... ai lable

$ cNotKnownUser

76 The Specification of Network Services

SETSHUTDOWN

Abstract

SetShutdown (shutdown?

threatens!
report!

Timei

Users;
Report)

Definition

cSet Shut down5UCCe55
6cRS
shutdown? Time
threatens! Users

shutd' = shutdown?
users· = users

times' = times

threatens! =
{i:lndex I (users i". Unused) 1\

(t imes i > shutd') • users i }

The shutdown time is set but the arrays are left unaffected.

The set of threatened users is returned. Each such user must have a valid entry in the
user array and a reservation time past the new shutdown time.

Reports

cSetShutdown 9 (cSetShutdownsuccess 1\ cSuccess)
• cNotManager

Reservation Service . Implementor Manual 77

STATUS

Ab&trad

Def"mition

Status (no.-.ll
shutdown!
resns!
report!

cS t at uSsuccess
=cRS
no'-l!

shutdown!
resns!

Timej

Time;

Reservations;

Time;

Time;

Reservations;

Report)

now! no"
shutdown! shutd
resns! { i: Index I users i

(users i
~ Unused·
...-.+ times i)}

The state of the service is not changed.

All the valid user array entries and their corresponding reservation times are returned
as a set of pairs. Threatened reservations may be deduced by the calling pro~am

from the shut.down time.

Reports

cStat us (cSt at uSsucceS5 A cSuccess)
• cNotManager

78 The Specification of Network Services

Sea.venging

In order 10 remove reservations which have expired, the service will perform a
scavenge before each operation. This is in fact the only way in which reservations are
removed.

cScavenge i

cRS
cRS'
noloo4 : Time

shutd' = shutd

V i:Index •
(users i = Unused) v (times i < noloo4) ~

users' i = Unused
(users i ~ Unused) A (t imes i i:l' noloo4) ~

users' i = users i

times' = times

Scavenge does not change the shutdown time.

Valid entries with reservation times in the past are removed from the user array. The
reservation time array is left unchanged. The entries in the time array corresponding

to unused entries in the user array may be ignored.

Reservation Service - Implementor Ma.nual 79

8 Complete serviee

This section provides a combined definition of the operations of the implemented
Reservation Service. It does not include details of the implementation of service
components, such as accounting and statistics, which are incorporated from the
"Common Service F:ramework:lt.

Both in the abstract and the concrete model of the service, the basic parameters are
supplemented by two hidden parameters, an operation identifier (op?) and the cost of
executing the operation (cost!).

¢Params I

¢lBas i cParams
op? Op
cost! : Money

Since all charges for this service depend only on the operation parameters, and not on
the refined state of the service, the definition of the ~STar i ff framing schema given
in the "User Manual" does not require further elaboration for the implementation.
The implemented service operations can then be brought together into a single
definition as follows:

cRSServ i ceOps Q

(cReserve 1\ ¢Params op? ReserveOp) v

(cSetShut do~n 1\ ¢Params op? SetShutdownOp) v

(cStatus 1\ ¢Params op? St.lusOp)

cRSBasicOps ~ cScavenge • (~STariff 1\ cRSServiceOps)

80 The Specification of Network Services

T Implementation correrln.ess

It is necessary to show that the implementation of the Reservation Service as described
in this manual correctly implements the view presented. in the user manual. In order to
do this, the state refinement step is expressed as an abstraction rela~ion, and service
initialisation and each of the operation implementations must be shown to achieve the
appropriate change of state with respect to this relation.

For service initialisation, the concrete iDitial state must be shown to lead to a valid
abstract initial state. For each operation, it must be shown that the concrete operation
may be applied whenever the abstract operation may be applied, and that it will then
produce a result satisfying the abstract specification.

When a complete definition is constructed by composing a number of schemas, such as
in defining the error behaviour of an operation, the proof can be constructed in an
equivalent manner.

The rest of this section describes what needs to be proved in order to show the
correctness of the implementation. The proofs themselves, because of their length, are
omitted here but are contained in [8].

State rermenumt

The state refinement step is expressed by relating the abstract user state to the
concrete implementation state in the following abstraction relation.

RelRS
RS
cRS

shutdown = shutd
resns = (users. {Unused})-l , times

The abstra.et variable shutdol-ln is exactly implemented by the concrete va.riable
shut d. The abstract reservations are found by taking the time en tries in the concrete
time array which correspond to each of the 'used' entries in the concrete user array.

Reservation Service - Implementor Manua.l 81

To show that there is a concrete implementation for every abstract state, we must
prove that

f- Y RS • 3 cRS • ReI RS

Initialisation

To show the correctness of the service initialiilation we must prove that

cInitRS f- 3 RS' • InitRS A ReIRS'

Operation impleDleDtatioDB

First consider the Reserve operation. In order to show the correctness of the total
operation, we first show the correctness of the partial operation in the 'a.vailable' case.
This corresponds to cReserveava 11 in the implementation and the following in the

Ufler manuaI.

Reserveava,l Q (Reservesuc;c;ess 1\ Success) • TooMan~Users

To show that the partial concrete operation is as applicable as the partial ab:ltract one
we must prove that

pre	 Reserveava,l 1\ Re 1RS I- pre cReserveava,l

To show that the partial concrete operation correctly implements the partial abstract
operation we must prove that

pre	 Reserveava,l 1\ cReserveava,1 1\ RelRS

I- 3 RS' a Reserveavail 1\ RelRS'

In order to demonstrate the correctness of the total operation, we must extend the
'available' case to include the other possible error conditions. The total concrete and
abstract definitions are respedively

cReserve Q cReserveava Ii· cNotAvailable III cNotKnownUser
Reserve Q Reserveava,l III Not Ava i 1Bb 1e III NotKnownUser

In both of the additional error cases, the error schemas depend only on the operation

82 The Specification of Network Services

parameters and not on the service state (in either concrete or abstract form). They
both leave the service state unchanged. Hence the refinement of the state does Dot
change either the applicability or the correctness of the total operations.

The correctness of the SetShutOown and Status operations follow the same pattern
of showing the correctness of the partial operation in the 'success' case and then
extending it to the total case.

83

Chapter 5

DisCUBllion and Experience

1

2

3

1.1

1.2

1.3

2.1

2.2

3.1

3.2

3.3

3.4

3.5

General
User manual format
Service implementation
Representation of pa.ra.meters

Common framework
Service and network errors
Operators on basic sets

Reservation Service

Design of the service
A problem discovered

A problem solved
Reservation of individual services
Proof of correctness

84 The Specification of Network Services

1 General

This chapter discusses some of the achievements and of the second phase of the

project. Some changes in the style of specifications contained in the user manuals have
been made. Implementor manuals have been provided in the same formal style.
Addition~lly, the Common Service Framework has been developed to simplify service
specification. Experience has been gained using the original services, and this has
increased our confidence in the specifications presented.

1.1 Uaer mannal format

The style of the User Manuals has been improved during the second phase of the

project. For example, the description of the Reservation Service from the first phase,
presented in [1] and [71, can be compared with that presented here.

Error conditions have been more exactly specified in the Reports section for each
operation, using the schema overriding operator (lD) to define an order of checking for

error conditions.

The cost of performing operations has been gathered together in a tariff schema after
the operations themselves have been presented. The cost of an operation is often of
secondary interest to understanding what the operation does, and clutters its
specification.

At the end of each manual, the operations specific to the service are combined with
those incorporated (rom the Common Service Framework to produce an overall
specification of the operations available in the service.

The initi~l state is now included formally for each service. The state of a service at any
given time is the result of the initial state being composed with all the operations which
have been performed to date.

1.2 Service implementation

With the introduction of Implementor Manuals, it has been possible to present an
implementor's view of a service, showing how the abstract user's view can be refined
towards a. concrete implementation.

Discussion and Experience 85

A significant amount of effort has been spent on the presentation of these manuals,
since it is all too easy for them to become swamped by detail. The implementor
manual for the Reservation Service, included here, is a relatively straightforward

example because of the simplicity of the service itself.

It has not been possible in the time available on this project to take the refinement of
the implementation of every service all the way down to the code of iI. particular
programming language. Other work in progress at Oxford has considered this step in
more detail [9]. We have concentrated on the 'architectural' aspects of system design,

taking a top-down approach in which the structure of the implementation has been of
greatest concern.

1.3 Representation of parameters

The types of parameters of service operations have been presented. as Z sets. These
can be either given sets, assumed to be unstructured, such as Time or Report, or they
can be defined in Z as a set, sequence or other more complicated structure.

We have ignored the issue of how such types will be represented in a specific
programming language. Clearly, at the lowest level, the parameter values must be
transmitted over tbe network between client and service in some bit pattern. Since
there is no assumption that all client applications and service code will be written in
the same programming language, there would need to be a clear specifica.tion of the
representation at this level so that data conversion functions could be applied if

necessary.

Take, as an example, the set of Reservat ions which is returned by the Status
operation of the Reservation Service. This consists of a partial function (of limited
size) from UserNum to Time. Most programming languages would no! be able to
implement this directly. Typically it could be implemented as an array with elements

consisting of a record containing a user number and associated time. The ordering of
the array could be arbitrary, or it may be ordered by user number or time.

Pa.rameter refinement is still a topic under active discussion. It could be considered as
a relation between abstract and concrete parameters in a similar manner to the way
abstract and concrete states are related. It would therefore form a second, orthogonal,
dimension of refinement to that of the implementation of a service.

86 The Specification of Network Services

2 Common framework

The introduction of the Common Service Framework has allowed a number of
definitions common to several services to be grouped together in one document. This

has also meant that the specifications of individual services have been made that much
simpler.

The specification of the common framework has also illustrated how separate
subsystems can be defined, with their own state and operations, and then incorporated

into the definition of a complete service. It has addressed, at the specification level, the
issues of errors in the implementation of services or in the network over which they are
accessed,

An Implementor Manual should be provided for the Common Service Framework,
which refines the state and provides operation implementations for each of the
subsystems and other components introduced in the common framework. This should
be a straightforward exercise, following the same pattern as the manuals provided for
other services.

2.1 Service and network errors

There are two kinds of errors specified in the common framework which are non­
detenninistic. In other words, they do not arise because of some predicate which the
client's parameters have failed to satisfy, but because of an error arising in the

underlying implementation. Service errors are caused by a failure in the service
implementation, such as a disk error in a storage service. Network errors are caused by
a failure in communication over the network.

Both kinds of error have been made visible to the client through the return of
corresponding error report values. It is left to the client's application to take
appropriate action in the case of such errors arising. At a higher level of abstraction, it
might be possible to hide transient errors from the client by automatically retrying

operations until they achieved a definite result (i.e success, or a specific error report).

The specification of these non-deterministic errors is a problem, When a service error
occurs, we have specified that the state of the service remains unchanged. This may be
hard to achieve in practice. For example, if a disk crashes and loses some of its data,
the service will clearly not be able to maintain that part of its state. To keep within its
specification, it would be obliged to return a service error for any subsequent operation

Discussion and Experience 87

which depended on information in the lost pan of the state, effectively rendering it

invisible to any cHent.

When a network error occurs, we have specified that either the state of the service

remains unchanged or that the operation has been completed (though the result is not
visible to the cHen\). These two cases correspond to a communication. failure in
transmitting the operation request or reply respectively. On receiving such an error
report, the client may re-attempt the operation. However, if the operation is not
idempotent, such as one which creates or deletes a component in the service state, this
will produce unwanted side·effects. A stricter specification might eliminate the second
case, so that this error could be handled in the same way as a service error. The

network implementation would then be obliged to provide a mechanism to recover
from loss of operation replies.

2.2 Operaton on basi~ sets

One area which is of concern in many Z specifications involves dealing with the partial
nature of some of the underlying operators.

Operators such as addition, subtraction and comparison are assumed to exist for some
of the sets, such as Time and Money, introduced in the Common Service Framework.
These operators are dermed to be total in the abstract specification to avoid having to

introduce error checks and reports when they are invoked outside their domain.

Since these sets are to be implemented they must be finite. Hence 'overflow' or

'underflow' (i.e the required result lies outside the defined range) could occur When
adding or subtracting some values. Many arithmetic implementations in hardware
simply wrap round when this occurs, producing undetectable invalid results. A more
sensible approach is to return some standard error value in these cases. Output
parameters may be checked for this value by the client if desired.

88	 The Specification of Network Services

3	 Reservation Serviee

The following comments refer specifically to the Reservation Service presented in the

previous chapters.

3.1 Design of the 8ervi~e

The design of the Reservation Service reflects its provi5ion as part of a distributed
system nther than a monolithic system. When building a distributed operating system

from a D.umber of services which are largely independent of each other, it is possible

that one service needs to be enabled or disabled while other services and clients
continue to run.

When a service is disabled (shutdown), there should not be any client who is at that
moment involved in s<Jme series of interactions with it - because interruption of such a
series could be quite inconvenient for the client. If these series (or transactions) can

be recognised by the service, it is possible to avoid this inconvenience a.<; follows.

Possible shutdown procedure:

1.	 The service manager requests shutdown of the service.
2.	 The service rejects any attempt to begin a new transaction, but allows

current transactions to continue.
3.	 When all transactions have completed, the service notifies the service

manager that shutdown is complete.

However, there are some problems; for example, a client might fail to complete a
transaction (presumably due to accidental failure of the client's own software). If this
happened, the service would never shutdown. A second problem is that for some
services (e.g. the low-level block storage service) there is no recognisable transaction

structure, and so the above scheme cannot be used at all.

The Reservation Service presented here does not interact at all with the service or
services it reserveSj it interacts only with its own clients, and with the service manager.
It all<Jws clients to state for how long they would like to use tbe availabJe services, and
it allows the service manager to set a shutdown time beyond which all reservations
are to be rejected. "It becomes the clients' responsibility to protect themselves from
sudden shutdown of tbe services (by making reservations), and the service manager's
responsibility to disable tbe service only after the shutdown time. Thus a shutdown

Discussion and Experience 89

can be unexpected only by those clients who have made no reservation (or if the
service manager deliberately ignores outstanding reservations).

A typical use of the Reservation Service would be for clients to include a reservation
request at the start of every program using the available services. The duration of the
reservation sbould be long enough to allow the program to complete, but short enough
to allow the service manager to make a reasonably spontaneous decision to shutdown.
A reservation time of half an hour has proved convenient in practice for many of the
applications making use of our services.

3.2 A problem discovered

The Reservation Service was in use before the start of the current phase of the project,
and its original User Manual has been published previously [1,71. However an error
was discovered during tbe use of the service which was not anticipated during the
design stage. This has led to a small revision in the speciiicat.i.on of one ()f the error
schemas for the service.

The problem arose when a client made a reservation successfully and subsequently
tried to clear it by making a reservation of zero-interval in the nonnal way. However
the service reported that it was "Not AvaiJable" and bence the reservation could not
be removed.

The specification in tbe User Manual was examined. to see how this state of affairs
might transpire. To obtain the "'Not Available" report, the following pref:ondition in
the NotAva i) ab 1e schema had to hold:

shut down < no~ + i nt erva I?

With i nterva l? being zero, this implied that the shutdown time was set earlier than
the current time. Given that the client had earlier successfully made a reservation that
was still in force (and hence needed to be cleared), this implied that the shutdown time
had been brough t forward by the service manager} threatening the pending
reservation. In fact, the client was a laser printing service which was known to always
make balf-hour reservations. Tbe manager had set a shutdown time earlier than the
end of the printing service's reservation time, assuming that it could clear its current
reservation but not make any new reservations. The manager was prepared to wait
until the reservation was cleared as an indication tbat the printer had finished its
current pb - but the reservation was never cleared.

90 The Specification of Network Services

3.3 A probleID solved

To prevent the problem of not being able to cancel reservations after the shutdown

time, two solutions were proposed. The choice between them illustrates the kind of
design choice in which additional complexity in a single operation may be balanced
against the use of an additional operation. A first solution involves adding an extra

precondition to the original NotAva i 1ab 1e schema:

interval? 1- ZeroInterval

This llleans that a call to the Reserve operation with a ZeroInterval can no longer

return with a NotAvailableReport.

This is the solution presented in the previous chapters in which the Reserve operation

serves the dual purpose of making a reservation (when Interval? '# ZeroInterval)
and also clearing a reservation (when i nterva17 = ZeroInterval).

An alternative solution to this would be to provide a new Cancel operation for
clearing a reservation. This complicates the service by providing an extra operation,
which is the reason it was not included in the original version of the service. However

it is likely that its inclusion would have prevented the problem just described from
arising. A specification for this operation is presented overleaf. Note that the
NotAvailable schema need no longer check for a ZeroInterval. A client could still
make a reservation for a zero interval, which would normally clear the reservation
except in the circumstances described above.

An additional error schema is required for use with the Cance 1 operation. This
returns an error report if the client has no outstanding reservation.

NotReserved

=RS

cl ientnum ~ dom resns

report! = NotReservedReport

Discussion and Experience 91

CANCEL

Abstract
Cancel (report 1 Report)

A client can cancel a reservation which has previously been made.

Definition

Cance 1success --------------------"
t.RS

shutdown' = shutdown
resns' = {c 1 i entnum} i1 resns

The shutdown time ill unaffected. The client's reservation is removed.

Reports

Cance 1 ~ (Cance 1success 1\ Success)
• NotReserved

An error is reported if the client does not have an outstanding reservation.

92 The Specification of Network Services

3.4 Re&uvation of individual services

As implemented, the Reservation Service is a separate service in its own right Making
a reservation does not affect any other service, and it is assumed that the client may
wish to make use of any service. However in a larger distributed system, with a greater
number of services to choose from, it may well make sense to include the reservation
operations in individual services so that they may be shutdown independently. To do
this, another la.yer would need to be defined in the "Common Service Framework"
containing the reservation state and operations. This could then be included in any
services requiring their own (standard) reservation and shutdown procedures.

3.5 Proof of correctness

The design in the Implementor Manual has been proven correct with respect to the
User Manual. Due to their length, the proob have been omitted here; they can be
found in a separate document [8J. In addition, the document shows how the opera.tions
can tben be programmed in Dijkstra's guarded comma.nd language to meet the
specifications in the Implementor Manual.

93

Admowledgements

Thank you to the developers of the Z specification language at the PRG for providing

the environment to ma.ke this monograph possible. Carroll Morgan and Tim Gleeson,
both previous members of the project, provided both inspiration in the style of
presentation a.nd perspiration in the production of service manuals and sofiware. They
and Bernard Sufrin made useful comments on later drafts of this monograph.

The Distributed Computing Software Projeet has been funded by a gr:l.ut from the
Science and Engineering Resea.rch Council.

94	 The Specification of Network Services

Referenc:es

1.	 Gimson, R.B., Morgan, C.C. "The Distributed Computing Software Project'"
Technical Monograph PRG-50, Programming Research Group, Oxford

University, (1985).

2.	 Sufrin, B.A. (editor) "z Handbook", Draft 1.1, Programming Research Group,
Oxford University, (1986).

3.	 Spivey, J.M. "Understanding Z: A Specification Language and its Formal
Semantics'" D.Phil. Thesis, Programming Research Group, Oxford
University, (1986).

4.	 Spivey, J.M. lI:The Z Library - A Reference Manual", Programming Research

Group, Oxford University, (1986).

5.	 Woodcock, J. "Structuring Specifications· Notes on the &hema Notation",
Programming Research Group. Oxford University, (1986).

6.	 King, S., S¢rensen, I.H., Woodcock, J. "Z: Concrete and Abstract Syntaxes",
Version 1.0, Programming Research Group, Oxford University, (1987).

7.	 Hayes, I.J. (editor) "Specification Case Studies", Prentice-Hall International

Series in Computer Science, (1987).

8.	 Topp-J!2Irgensen, S. "Reservation Service: Implementation Correctness Proofs",
Des project working paper, Programming Research Group, Oxford

University, (1987).

9.	 Josephs, M.B. "Formal Methods for Stepwise Refinement in the Z Specification
Language", Programming Research Group, Oxford University, (198G).

95

Appendix A

Index or forma] definitions

The following index lists the page numbers on which each formal name is defined in
the text. Those names which are defined twice correspond to duplicated entries in the
User and Implementor Manuals. Names which have a special symbol (.6., $, =, c) as a
prefix are listed after the corresponding base name.

96 The Specification of Ndwork Services

Access
¢lAccess

AccessOps

Accts
¢JAccts

AcctsOps

BadKey
BadOperation

BadServ i ce

46as i cParams
Boolean
Cancel

Canee1su CCE'SS

CheckAccounts

CheckAccount ssuccess
CheckStats

CheckStat ssuccess

C1 i ent

etCl lent

Clock
¢Clock
ClockOps
Cost

¢Cost
CreditAccQunt

Cred i t AccountsucCI?Ss

Disable

Dj sab 1esuccess

ES
lIES
aES

ESA IIOps
ESBasicOps
ESOps
ESServ i ceOps

ESState

ESTariff

¢£STariff
Enable

Enab lesuccess

ErrorTariff

37

37

38

33

34

35

27

28

41

29.56.71

49

91

91

34

34

36

36

45

46

32

32

33

47

48

35

35

38

38

19

19

19

40

31

40

28

39

30

31

38

38

31,64

GetBalance

Get Be 1ancesuccess

GetCl ientld
GetClock
GetC 1oCksuccess

GetCost

Index

InitAccess

InitAccts
InitCl ient
InitClock
InitCost

InitES
InitESState
InitLocalState
InitRS

cIn i tRS
In i tRSState

InitStats
InputError
IsAuthent i c

Localel ientOps

LocalCostOps
LocalOps

loce 1State
Net Error
NetOps

NoCostReports

NotAuthent j c

NotAvailabJe

cNotAva i 1ab 1e
NotEnabled
Not KnOio-lnUser

cNotKnownUser
Not Manager

cNotManager
NotReserved
Null
OP

OPsuccess
<t'Jp

34

34

46

32

32

47

70

37

33

45

32

47

20

39

48

55.69

71

65

36

22

43

46

47

48

48

44

44

47

43

57

72

38

24.58

72

24,58

72

90

31

15

15

28

97

Operation

Operet i onsuccess
Params

4f'arams
R5

~R5

=R5

cR5

~cR5

=cR5
R5AllOps
RSBasicOps

cRSBasicOps

R50ps
RS5erviceOps

cRSServ i ceOps

RSState

RSTariff

¢R5Tariff

RelR5

Reservations

Reserve

cReserva

Reservea",a I 1

cReserve 8 'Jail

ReserveSLJccess
Scavenge

cScavenge
Serv I ceError

22.24,25

20

45

29,64,79

55,69

56

56

70

71

71

65

65

79

66

65

79

65

64

64

80

55,69

60,81

75,81

81

74

60

63

78

39

SetCI ientId 46

Setelock 33

Sete I ocksucces5 33

SetShutdown 61

cSet5hutdown 76

Set Shut downSUCCfi!SS 61

cSet Shutdololnsuccess 76

Stats 36

46tats 36

Stat sOps 37

Status 62

c5tatus 77

St atussucces5 62

cSt atussuccess 77

Success 21,57

cSuccess 72

SvAuthOps 43

SvInitStete 41

SvOps 41

SvState 41

TimeArrey 70

TooManyUsers 57

UserArray 70

Users 56.71

ZeroAccounts 35

Zero Account 5 succ"ss 35

ZeroCost 47

ZeroStats 37

leroSt at ssuccess 36

98 The SpecificatioD of Network Services

Appendix B

GIOllB&ry of Z notation

A glossary of the Z mathematical and schema notation used in this monograph is

included here for easy reference. Readers should note that the definitive concrete and
abstract syntax for Z is available elsewhere [6].

Z Reference Glossary

Mathematical Notation

1. Definitions and dedar.tioDil.

Let X, Xl	 be identifiers, t , t I be terms and

T. TI be sets.

[T l' Tz• ... J Introduction of given sets.
x Q t Definition of x as syntactically

equivalent to t.
x ;:= xl «t 1»1 .". I)(n «tn»

Data type definition (the «t»

tenus are optional).
x : T	 Declaration of x as type T.

xl: T1; ; xn: Tn List of declarations.
xl_ ... , X n : T Declarations of the same

type: ~ xl: T; ... :xn:T.

2. Log;"

Let p. Q be predicates and 0 declarations.

- P Negation: ~ot pl'.

P A Q Conjunction: !If and 0".

P v Q Disjunction: "P or a":

• -(-PA-Q).
P = Q Implication: "P implies on or

"if P then Q": ~ p v Q.

P ... Q	 Equivalence: " is logically
equivalent to Q":

• (P=Q) A(Q=P).
true Logical constant.
false ;;;:: true

V 0 P Universal quantification:
lIfor all D, P holds".

3 0 P Existential quantification:
"there exists 0 such that P".

31 0 • P Unique existence: "there exists
a unique 0 such that P",

VOlp·Q • (V () • P = Q).
301P·Q • (3 () • P A Q).

Glossary 99

P ~ 0 I Q Where clause:
.30 I Q • P

P ~ Xt,:lt 1 ; ... ;xnSt n Where clause:
P holds, with the syntactic
definition(s) defined. locally.

o f- P	 Theorem: • f- V D • P.

3. Sets.

I.e" 5, T and X be setsj t, t
j

termsj P a
predicate and 0 declarations.

= Equality between terms.
t l ; t z Inequality: • -(t, = t z).
t • 5 Set membership: "t is an element

of 5",
t , 5 Non-membership: ~ (t E 5).

t l t z

o Empty sel: • ("X I false}.

5 Set inclusion: " T
• (V x : 5 • x • T).

5	 c T Strict set inclusion:
!Ol 5 l;; T 1\ 5 '10 T.

{tt. t z..... t n } The set containing

t l • t z•.•. and tn'
{ DIP· t } The set of t's slIcb that given

the declarations D, P holds.

{DIP} GivenD~xl:Tl;"';)(n:Tn'

• (0 I P' (xl ")}.
{ 0 • t } • (0 I true' t).

(tl' t z• t n) Ordered n-tuple

oft 1.t2.··· and tn'
TI X T2 X ... X Tn Cartesian product:

the set of all n-tuples such that

the i th component is of type T I •

f 5 Powerset: the set of all subsets
of S.

f , 5 Non-empty powerset:

• ~ 5 \ {0}.
r 5 Set of finite subsets of 5:

• {T: f 5 I T is finite} .

r IS Non-empty finite set;

• r 5 \ {0}.

100	 Gl05sary

S n T	 Set intersection: given S. T: P X,
o {X' X I xeS A X e T} .

S u T Set union: given S, T: P X,
o {X' X I xeS v x e T}.

S \ T Set difference: givenS, T: PX,
o {X' X I	 xeS A X fT}.

n SS	 Distributed set intersection:
given 55, P (P X).
o{X'X I (VS,SS· xeS)}.

U	 SS Distributed set union:
given 55, P (P X).
o {X'X I (35,55, xes)}.

itS Size (number of distinct

elements) of a finite set.
IJ. DIP • t Arbitrary choice from the

.et{DIP·t}.
IJ. 0 • t a IJ. 0 I true· t

4. Relations.

A relation is modelled by a set of ordered
pairs hence operators defined for sets can

be used on relations. Let X, Y. and l be
setsj x:X; y:Y; and R:X +-+ Y.

X +-+ Y	 The set of relations from X to Y:
oP(XxY).

x R y	 x is related by R to y:
a (x, y) E R. (R is often

underlined for clarity.)
x >--. y Maplet: 0 (x. y).

dom R The domain of a relation:
o{X'X I 3y'Y· xRy}.

ran R The range of a relation:
o {y' Y I 3 X' X • x R y}.

R1 ' Rz Forward relational composition:
given R1: X +-+ Y; Rz: Y +-+ l,

o { X' X; z' l I 3 y' Y •
X R1 Y 1\ Y Rz Z }.

R1 0 Rz Relational composition:

aRz,R1•
R-'	 Inverse of relation R:

o {y'Y; X'X I x R y}.

id X	 Identity function on the set X:
~ {x:X· xl--+x}.

R'	 The relation R composed with
itself k times: given R: X+-+ X,
RO ~ id X, R' + ~ R' 0 R.1

R'	 Reflexive transitive closure:
o U {n;N • R"}.

R' Non-reflexive transitive closure:
o U {n' N, • R"}.

RIS! Relational image: given S: P X.
o {y,Y	 I 3,,5, xRy}.

5	 4 R Domain restriction to S:
given 5: P X,
o {x;X; y;Y I xeS A x Ry}.

5 ~ R	 Domain subtraction:
given 5: P X,
o(X\S)4R.

R ~ T Range restriction to T:
given T: P Y,
o {x; X; y; Y I x R yAy e T} .

R	 ~ T Range Bubtraction of T:

given T: P Y,
OR~(Y\T).

R	 Infix relation declaration (often
underlined in use for clarity).

5. FnndioDS.

A function is a relation with the property
that for each element in its domain there is
a unique element in its range related to it.

As functions are relations all the operators
for relations also apply to functions.

X -<+ Y	 The set of partial functions from

X to Y:
o	 {f ; XH Y I V x ; dom f •

(3, y , y. x f y)}.

X --. Y The set of total functions from
X to Y;
o {f ,	 X -<+ Y I dom f = X}.

Glossary 101

X >H Y	 The set of partia.l injective (one­
to-one) functions from X to Y:
• {f , X-++ V I V ~ , ran f •

(3,x,X'fx=~)}.

X >-+ Y	 The set of total injectjve
functions from X to Y:
• (X-V) n (X-+V).

X	 Y The set of partial surjective

functions from X to Y:

• {f' X-V I ran f=Y}.
X	 ---* Y The set of total surjective

functions froro Xto Y:

• (X4V) n (X-+V).

X	 >.- Y The set of total bijective

(injective and surjective)

functions from Xto Y:

• (X -;0 V) n (X >-+ V).

X ~ Y	 The set of finite partial

functions from X to Y:

.(f,X-VI

feF(Xxy)}.

.......>H....,... Partial functions.

---+>-+-it>'- Total functions.

-Hm Finite functions.

(1 • (2 Functional overriding: given

(1' (2: X-+t>¥,

• (dom f 2 <l f ,) u f 2·
Prefix function declarationf
(default if no underlines used).

(_ (_) Infix function declaration (often
underlined in use for clarity).
Postfix function declaration.f
The function f applied to t .

f(t) • f t.

P • t Lambda-abstraction:

f t

AD I
the function that, given an
argument x of type X such
th at P holds, the result is t.

Given O~xl : T1; ... ; Xn: Tn'
• {DIP' (X, •... ,x c) t}.

AD' t • A D I true' t

N

N,

l

succ n

pred n

m + n
m - n

m * n
m d...i.:£ n
mlllQdn

Cm
m • n

m < n

m ~ n
m> n

m.• n

min 5

max 5

6. Numben.

Let m, n be natural numbers.

The set of natural numbers
(non-negative integers).
The set of strictly positive
natural numbers: ~ N \ {O}.
The set of integers (positive,

zero and negative).
Successive ascendwg na.tural

number.
Previous descending na.tural

number: S succ-1 n.

Addition: S succI' m.

Subtraction: Q predn m.

Multiplication: Q. (_ + m)n o.

Integer division.

Modulo arithmetic.

Exponentiation: Q. (_ * m)n 1.

Less tha.n or equal, Ordering:

~ a succ· •

Less than , Strict ordering:

~ m~n""mjlfn.

Greater than or equa.l: a n ~ m.

Greater than: a n <m.

Range: a {k:H I m~k k.l!O:n}.

Minimum of a finite setj

for 5 : F1 H, min S e 5

(Vx:S • X ";l: min 5).

Maximum of a finite set;

for 5 : F1 H, max S E 5

(Vx:S •	 x (max 5).

7. Orden.

part i a l_order X
The set of partial orders on X:
• {R'X....X I V X,Y, z,X •

x R x

xRy yR)(~x=y

xRy"yRz~xRz}.

102 Glossary

total_order X
The set of total orders on X:
~ {R:partial_orderIVx,y:X­

x R y v y R x}.

monotonic X <x The set of fundions
from X to X that are monotonic
with respect to the order <xon X:
• (f,X-++X I ~ x, y'X •

x <, Y ...	 f(x) <, f(y)}.

8. Sequences.

Let a , b be elements of sequences, A, B be
sequences and m, n be natural numbers.

seq X	 The set of sequences whose
elements are drawn from X:

a {A' N-X I
dom A' I..'A}.

(> The empty sequence 0'.

seqt X The set of non-empty sequences:

OseqX\{<>)

(aI' ... , an>
~ {ll-+a1' ...• nl-+a }·

(a1• ... , an> - (b ••• , b >
n

t , m

Concatenation:

~ (at, ...• an' b t •... , bm>,

<> - A • A- <> • A.

head A	 The first element of a
non-empty sequence:

A " <> ... head A • A(I) .
1ast A	 The final element of a

non-empty sequence:

A" <> -- last A • A(.A).
ta i 1 A All but the head of a sequence:

tail«x>-A) • A.

front A All but the 1ast of a sequence:

front(A-<x»' A.

rev (at.	 a2' ... , an> Reverse:

~ (an' ...• a2' 81>'
rev <> = <>.

IAA Distributed concatenation:

givenAA	 , seq(seq(X»,
• AA(l)- __. -AA(oAA),

- 1 <> •	 <>.

IIAR	 Distribu ted relational
composition:
given AR : seq (X +-+ XL
• AR(I) , _ , AR(oAR),

,/<>'idX.
$1AR Distribu ted overriding:

givenA : seq (X -++ Y),

• AR(l)	 $... $ AR(.AR),
$1 <> • ~.

squash f Convert a finite function,
f: N -fi X, into a sequence by

squashing its domain. That is,

squash 0" = <>,

and if f :# 0" then

squash f =

<f(i»-squash({;}~ f)

where i = mln(dom n.
S 1 A Index restriction:

• squash(S q A).
A ~ T Sequence restriction:

• squash(A ~ T).
d i sjo int	 AS Pa.irwise disjoint:

giveDAS, seq (f X),
a (V i p j : dom AS • j:# j

__ AS(i) nAS(j) • ~).

AS pactit ions S

~ disjoint AS "
U ran AS = S.

A ill B Contiguous subsequence:

• (3C,D, seq X •
C-A-D.S).

o. Bags.

bag X	 The set of bags whose elements
are drawn from X: ~ X -++ N1

items s	 The bag of items contained in
thesequences: a {x:rans'
xl-+I*{i :domsls(i}=x}}

Schema N olation

Schema definition: a schema groups

Logether some declarations of variables and

a predicate relating these variables. There

are two ways of writing 6chemas: vertically,

for example
5

)(: N
y seq N

)(" ay

or horizontally, (or the same example

5 • { ., N; Y' seq N I x,oy J.
Use in signatures after 'tI, A.. { ...}, etc.:

(VS • Y • <» • (\lxoN; y' seq N

x<Oy • Y'<».

Schemas as types: when a schema name 5 is

used as a type it stands for the set of all
objects described by the schema, {S}. For
example, I-l : 5 declares a variable I-l with

components x (of type N) and y (of type

seq N) such that x ~ 1:ty.

Projection functions: the component names
of a schema may be used as projection (or

selector) functions. For example l given

I-l : S, 1-1. X is w's x component and 101. y is

its y componentj of course, the following

predicate holds: ~.X ~ .w.y. Additionally,

given I-l : X -++ 5, I-l' (AS. x) is a function

X-++N, etc.

es The tuple formed from a

schema's va.ria.bles: for exa.mple,
es is (x, y). Where there is

no risk of ambiguity, the e is

sometimes omitted, so that just

"5" is written for "(x. y)".

pred 5 The predica.te part of a schema:
e.g. pred 5 is x ~ .y.

Glossary 103

Inclusion	 A schema 5 may be included

within the declarations of a

schema TI in which case the

declarations of 5 are merged

with the other declarations of T
(variables declared in both 5
and T must be of the same type)

and the predicates of 5 and T
are conjoined. For example,

r; ,· ·
z < X

I

is

x. Z : N
y : seq N

x ~ .y 1\ z <)(

5 I P The schema 5 with P conjoined

to its predicate part. E.g.,
(5 I x>O) is

I x; N; y;seq N I "Oy , x>O].

5 o The schema 5 with the

declarations D merged with the

declarations of S. For example,
(5 ; z;N) is

[X.Z:Ni y:seq N I x~l:Iy].

5[ne",/0Id] Renaming of components:

the schema 5 in which the

component 0 1d has been

renamed to ne", both in the

declaration and at its every free

occurrence in the predicate. For

example,S {z/x] is
[z; N; y: seq N I z ~ .y

and SlY/x, x/yJ is
[y' N; x; seq N I y • Ox I.

.....5

104 Glossary

Decoration

SAT

S V T

In the second case above, the
renaming is simultaneous.

Decoration with prime,
subscript, superscript, etc.;
systematic renaming of Ihe
components declared in lhe
schema. For example, 5' is
I x',N; y''SeqN I x'.'y'l.

The schema 5 with its predicate
part negated. E.g.,5 is
["N; y'Seq N I ~(x.'y)J.

1'he schema formed from
schemas 5 and T by merging
their declarations (see inclusion
::!.bove) and conjoining (::!.nd·ing)
their predicates. Given T g [x;
N; z' P N I xezl, SAT m

)(: N
y seq N
z P N

x ~ tty /I. X e z

The schema fanned from
schemas 5 and T by merging

their declarations and disjoining
(or-ing) their predicates. For
example, 5 V T is

x N
y seq N
z P N

x~·Y"xez

5 *+ T

5 \ ("1'

predicate. E.g., 5 =t T is

X : N
y : seq N
z ; P N

x ~ .y :q x e z

The schem::!. formed from
schema.s 5 and T by merging
their declarations and taking
pred 5 *+ pred T 38 the
predicate. E.g., 5 ~ T is

X : N
y : seq N
z ; P N

x ~ .y *+ x e z

"2- - "n)

Hiding: the schema 5 with the

variables "1' "2' • and "n
hidden: the vari::!.bles listed are
removed from the declarations
and are existentially quantified

in the predicate. E.g., 5 \ x is
[yo seq NI (3x;N·x.'y) J. (We
omit the parentheses when only
one variable is hidden.) A
schema may be specified instead
of a list of variables; in thiB case
the va.riables declared in that
schema are hidden. For
example, (5 1\ T) \S is

z ; P N

5 =+ T The schema formed from (3 x' N; y; seq N •
schemas 5 and T by merging x ~ "y /I. X e z)

their declarations and taking
pred 5 =+ pred T as the

Glol5sary 105

5 t (vl'	 v2' ... , v n)

Projection: The 5Chema 5 with
any va.riables that do not occur

in the list	 "1' "2' ... , "n hidden:
the variables removed from the
declarations are existentially
quantified in the predicate. E.g.,
(S A T)t (x, y) is

x N
Y : seq	 N

(3	 z , f N

x ~ ""y II X e z)

As for hiding above, we may

project a single variable with no
parentheses or the variables in a

schema.

The following conventions are used for

variable names in those schemas which

represent operations on some state:

undashed state before,

dashed (" , ") state after,

ending in a:?" inputs to (arguments for),

ending in l(!" outputs from (results of)

the operation.

The following schema operations only
apply to schemas following the above
conven tions.

pre 5	 Precondition: all the state after
components (dashed) and the
outputs (ending in "! ") are

hidden. E.g. given
S	 ---,

x?, 5, 5', y! N

5' = s-)(? 1\ y! = 5

post 5

S • T

,	 -----,
x?, 5	 N

(3.',y"N·
5 = s-x? 1\ y! = 5)

Postcondition: this is similar to

precondition except all the state

before components (undashed)

and inputs (ending in "?") a.re

hidden. (Note that this

definition differs from some

others, in which the

"postcondition" is the predicate

relating a.ll of initial sta.te,

inputs, outputs, and final state.)

Overriding:

e (S A -pre T) V T.

For example, given S above and

1-'-0'-'-,-.,-,N-----,'

5 < x? 1\ s' = 5

----'

5 ., T is

x?, 5, 5', y! N

(s' = s-x? II y! = s 1\

-(3.', N

s < x? II S' = 5))

" (s < x? AS' = 5)

which simplifies to

1 'y'I X 0.• S, 5, . N

(5' = 5-X? II y! S A

5 ~ x?) "
(s < x? 1\ 5' 5)

pre S is

106 Glo88ary

5 I T	 Schema composition: if we
consider an intermediate state
that is both the final state of the
operation 5 and the initial state
of the operation T then the
composition of 5 and T is the
operation which relates the
initial state of 5 to the final
state of T through the
intermediate state. To fonn the
composition of 5 and T we take
the state·a.fter components of 5
and the state-before components
of T that have a basename- in
common, rename both to new
variables, take the schema which
is the "and" (1\) of the resulting
schemas, and hide the new
variables. E.g., 5 I T is

)(? ,9, 5'. y! N

(3 50 ' N
So = 9-)(A y! = 5 A

So <)(? A 9' = So)

- basename is the name with
any decoration (, "I" . ,., "?"
etc.) removed.

fi. '"

5 » T	 Piping: this schema operation is

similar to schema composition;
the difference is that, rather than
identifying the state after
components of 5 with the state
before components of T, the
output components of 5 (ending
in fl.! ") are identified with the
input components of T (ending
in fl.?") with the same basename.

6.5 change of ~ to after state,
=5 no change of state,
ct6 framing schema for definition of

further operations.

For example
~S 5 A 5'

=5 ~ ~S I as = as'
<l>S ~s I y = y'
50p Q <l>S I x'= a

Other Defmitions

Axiomatic definition: introduces global
declarations which satisfy one or more
predicates for use in the entire document.

declaration{s)

predicate(s)

or horizontally: a I P

Generic constant; introduces generic
declarations parameterised by sets A, B,
etc. which satisfy the given predicates.

[A, B, ..J~~~-==

declaration(s)

predicate(s)

Generic schema definition: introduces
generic schema para.meterised by sets A, B,
etc. When used subsequently, the schema
should be instantia.ted (e.g. S[X, Y, ... J).

S[A, S, ...1---_-----,
declaration(s)

predicate(s)
!	 j

The following conven tions are used for
prefixing of schema names:

