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Roger Gimson
Stig Topp-Jergensen

Abstract

The specification langnage Z has beer applied by the Distributed Computing Software
Project to the formal specification of network resource managers or ‘“services’. The use
of a formal language gives a more precise understanding of the behaviour of a service
and is a prerequisite for verification of programs which use or implement the service.
Additionally, the use of Z combined with informal text is sufficiently readable for the
specification to be used for documentation purposea.

An introduction is provided to the style of specification devised for the projct. A
framework for the epecification of a variety of network services has been developed.
The framework is presented, and then incorporated inte an example illustrating the
specification of both the user’s view and the implementor’s view of a simple service. A
discussion of the experience gained from the specification and use of the example
service is also included.
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8  The Specification of Network Services

1 Motivation

It is fundamental to the desigu of any complex artefact, and of computer systems in
particular, that an appropriate means of describing and communicating the design is
used.

A very impertant line of communication is between the desigher and the user of the
system. It is only if this communication is accomplished satisfactorily that the designer
can have any expectation of meeting the requirements of the user and, likewise, the
user have any expectation of being able to make proper use of the finished product.

No less important is the communication from the designer to the maker (or
implementor) of the system. This is necessary to ensure that the finished product does
indeed have the characteristics that the designer epecified.

The aim of the work described here is the improved communication between designer,
user and implementor which can be achieved by the use of formal apecification in the
design and documentation of computer systems.

1.1 Formal specification

Satisfactory communication relies firstly on the production of an unambiguous
description. If a description is sufficiently precise, it can act as a contract between the
designer, user and implementor, to ensure that they agree on what is to be provided.

A fundamental objective of the Distributed Computing Software Project has been to
make use of mathematical techniques for program specification to assist the design,
development and presentation of distributed system services.

The formal rotation used tbroughout the project has been Z (as defined in [2-7]). This
specification langnage, based on mathematical set theory, has been developed at the
Programming Research Group over the past few years. The Distributed Computing
Software Project has been testing the application of the theoretical ideas to a realistic
and practical system. As a result of this, the project has been influential in the
development of notational techniques which have now become a standard part of the Z
style of specification.

The use of formal specification techniques, because of their rigor, tends to guide
designs towards the conceptually simple. This has the advantage of making the
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designs easier to understand, but the possible disadvantage of making them harder to
implement efficiently, since the simplest ideas do not necessarily have the most
straightforward realisation.

Formal techniques encourage a level of abstraction that is important in avoiding the
introduction of unnecessary implementation bias into designs. In the initial design,
implementation bjas simply restricts the range of possible implementations. It is
usually an indication that the designer allowed unnecessary knowledge of a potential
implementation to become visible at the user level.

1.2 Documentation

Conventionally, various pieces of documentation are the main means of communication
between designer and user. In order that the rigor of the specifications should not be
lost, it was felt to be of great importance that the system documentation should
incorporate the full formalism used in the design. However, it was also important to
ensure that, as for any documentation, readability and accessibility were not sacrificed
in the process.

A significant amount of effort has therefore been spent on developing a manual style
which combines informal and formal text. The presentation of the User Manuals
emphasises the effect of each user-invoked operation or a service. The Implementor
Manuals, on the other hand, ¢oncentrate on identifying the subcomponents from which
an implementation of the service can be built.
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2 Service specification

A service of a distributed computing system can be modelled in much the same way as
a component in a centralised system.

A service can be described in terms of a service state and a set of operations which will
change the state in a well-defined way. Congider a service with a state S. The effect
on the service of a given operation OP can be described in terms of the preceding state
S and the subsequent state $° (the dash is used by convention in 7 to dencte the state
after an operation). Thus, at any given time, the current state of the gervice can be
determined from knowledge of the initial service state and of the sequence of
operations executed in the lifetime of the service so far.

Two small but significant differences can exist in a distributed systern, as compared to
a centralised syetem. The first is that the individual services will usually be at least
partly involved in tasks such as accounting, user authentication and access control,
which would be more easily separable in a centralised system. Secondly, it is a
characteristic feature of a distributed system that componen's in the system may
continue to work after others have failed, so that the error notification and handling
provided by services becomes important.

2.1 TUser’s view

A user will io general be interested only in the externally cbservable behaviour of a
service. In the case of a file storage service, for instance, a user will be concerned with
files, filenames and file contents, but will not be interested in detalls of how these
jtems are represented and stored by the service. When specifying the requirements and
the user interface for a service, it is useful to do so in terms of an abstract (i.e. not
implementation specific) service state and corresponding abstract operations.

If the user’a view of the (abstract) service state is AS, then each abstract operation will
be described in terms of the preceding and subsequent abstiract slates AS and AS’.
In order for the state of the service to be defined at all times, the initial state of the
gervice InitAS also needs to be established.
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2.2 Implementor’s view

Unlike a user, an implementor will need a much more detailed view of a service and
will specifically be interested in the internal behaviour of the service. In the case of a
file storage service for instance, the implementor will have to deal with items such as
index blocks and data blocks.

If the implementor’s view of the {concrete) service state is CS, then concrete operations
are expressed in terms of the before and after states CS and C5'. As before, the initial
state of the concrete service InitCS must be well-defined.

2.3 Common framework

In a distributed system consisting of a number of separate servicee connecied by a
network, it is useful for the services to have certain characteristics in common. These
will include such facilities as service access, user authentication, accounting,
accurnulation of atatistics and error reporting. Making the provision of such facilities
the same across the collection of services means that the system ag a whole will appear
more homogenecus to the user and therefore easier to use. Also, the specification and
implementation of the services becomes simpler since some parts are common to all
services,

These common aspects of services have been collected together into a set of definitions
known as the Common Service Framework. When required, these definitions can be
incorporated into specifications of individual services in a standard way.

2.4 Correciness of implementation

In order to verify that the implementor’s view of a service is compatible with the user’s
view of the same service, formal correctness arguments can be used.

These arguments depead on the formal definition of how the concrete and abstract
representations of the service state relate to each other. In the following we will let
Rel denote the relation between CS and AS, and Rel’ the same relation between CS*
and AS’.
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In order for the concrete service state to be capable of reprezenting the state of the
abstract service, it needs to have at least one concrete state for each possible abstract
state:

¥ AS « 3 CS - Rel

And the inital concrete service state must specifically represent the the initial abstract
service state:

InitCS = 3 AS’ - InitAS A Rel’

For each abstract operation AOP, we must supply a corresponding concrete operation
COP which is applicable in the corresponding domain to the abstract operation and
which will produce a result that satisfies the abstract specification. In other words, if
AOP changes the abstract state from AS to AS’, then the corresponding concrete
operation COP must, given an initial state C5 which relates to AS according to Rel,
produce a new state CS’ which relates to AS’ according to Rel”’. This can be
expressed mere formally as:

pre AOP A Rel = pre COP
pre AOP A COP A Rel =+ 3 AS’ « AOP A Rel”

The concrete state is thus considered as a data refinement of the abstract state, and
each of the concrete operations must model the same behaviour on the concrete state
as the corresponding abstract operation does cn the abstract state.

The relationships between the two models can be illustrated as:

ADP
As P A5

User view:

CoP i
Implementor view: g ————Pp 5

Note that operation refinement is also often applied to the concrete operations, so that
each is implemented as a combination of a number of simpler operations.
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3 Service docnmentation

In this section we give an outline of the structure we have adopted for the
documentation of a service, The documentation consists of two main pars, a “User
Manual” and an “Implementor Manual®.

The User Manual describes the service as it appears to the user without giving
unnecessary details regarding the implementation strategies used. The user manual is
presented as a series of formal specifications (written in 7) interleaved with informal
explanations in English prose. Apart from serving as a reference manual to the user of
the finished service, this document normally also serves as the requirements
specification for the service.

The purpose of the Implementor Manual is to present in detail an implementation of
the service. The manual presents a concrete representation of the service state which
is more directly implementable using available and (hopefully} welldocumented
resources, such as programming languages, file systems and databases. For each
abstract operation the manual describes how the corresponding concrete operation can
be refined in terms of a number of simpler operations, each of which is reasonably easy
to implement in a programming language. The manual formally defines the relation
between the concrete and abstract repregentations of the service state, which forma the
basis for proofs of the correctness of each of the implemented operations. Like the
User Manual, the Implementor Mapual is also presented as a series of formal
specifications linked together by prose which may contain additional informal
explanation where required.

The manuals currently use Z throughout, and thus some effort is still required to
transform the presented implementation into final code. Note that an Implementor
Manual presents only one possible implementation, reflecting a particular set of design
decisions. A programmer could choose to implement a service differently, provided it
still satisfied the specification given in the user manual.

3.1 User manual

We have adopled the following outline for the content of user manuals:

1. Introduction — describes the purpose of the service.

2. Service state — presents the service state as observed by the user (abstract
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state) together with possible consiraints on change of state. Also, the initial
state of the service is defined.

3. Operation parameters — defines input/output parameters which are shared by
a number of service operations.

4. Reports — covers the possible reports which service operations may return,
usually “Success” and a number of error cases. Each report is detailed
together with the circumstances under which it will be triggered.

5. Operation definitions — describes in detail each of the operations which the
service provides. The description of each operation consists of three sections:

a. Abstract section — a possible procedure heading for the operation {as it
might appear in some programming language) detailing the explicit
input/output parameters, and a short informal description of the operation.

b. Definition section — formal specification of the successful behaviour of the
operation. This takes the form of a Z schema which imcorporates all the
formal parameters listed in the previous section. The schema may be
accompanied by a short informal explanation where required. Note that the
defined operation I8 partial and does not cater for any error conditiona.

c. Reports section — formal specification of the total operation. The total
operation is formed by combining the partial operation described in the
Definition section with a number of error schemas deacribed in section 4 of
the manual.

6. Service charges — presents a tariff schema defining the charges incurred by
use of each of the service operations.

7. Complete service — shows how the service state and operations defined in
sections 2 and 5 of the manual combine with standard states and operations
defined in the Common Service Framework to form the complete service.

An example of the layout of a manual page defining a service operation is given on the
next page. The formal text will be explained in more detail later.
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op

Abstract
OP (in? : IN;
out ! : OUT;

repart! : Repart)

Informal description of the operation and the parameters.

Definition
OPSUCCESS 1
AS
in? : IN
out!: OUT

POST (in?, 5, 0ut!,5")

Informal text clarifying points in the formal definition of the operation.

Reports

oOF = (0P A Success)
® InputError,
® InputError;

SUCCEsSS

Optional informal text describing error conditiona.

15
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3.2 Implementor manual

The content of Implementor Manuals may vary considerably due to the difference of
complexity in implementing various types of services. However, a typical outline for an
Implementor Manual would be as follows:

1. Introduction — background and averall implementation strategy.

2. Abstract state — extract from the user manual (included to avoid cross-
referencing).

3. Concrete state — defines the concrete (implementation) state together with its
inital value.

4. Reports — each related to the concrete circumstances under which it will be
triggered. Corresponds closely to section 4 of the user manual.

5. Operation implementations — for each of the abstract service operations, the
corresponding concrete operation is defined. The description of each operation
is in three sections, as in the user manual.

6. Complete service — shows how the service state and operations defined in
sections 3 and 5 of the manual combine to form the complete service.

7. Implementation correctness — formally relates the abstract and concrete
states 3s a necessary precursor to any proofs of correctness of the
implementation.
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1 Introduction

When building a distributed operating system, consisting of a number of separate
services comnected to each other and to users by a communications network, there are
a pumber of features that are commen to all (or at least most) network services.

A common framework for the specification of the user interface to services is presented
here, in a way which allows the common features to be factored cut of the
specifications of particular services.

The description is given in terms of an example skeleton service. The state and
operations of this gervice are introduced only in outline. Any actual service description
would provide explicit detail of these components. However, the example does show
how any service can be elaborated to include common features.

The common features include a number of subsystems such as a service clock,
accounting, statistics and access control. Each of these subsystems introduces a
number of extra operations which may be performed by the service. These additional
operations are introduced in separate sections which need not necessarily be absorbed
in detail at a first reading, but are designed to be used for reference when required.
The subsystems combine with the specific service operations to form a complete
service. Thisis illustrated in the diagram below.

Lomplete Serwvice

Lommon Operations

|C1n:k| Iﬂ:cnuntsl |5tat|5t1c5 I |HcceSs|

Service Dperatans

Subsequently, it is shown how a complete distributed system may be defined by
combining the specification of individual services. Each service is identified by a
unique user number. This allows services to act as clients to other services if required.
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Finally, attributes of the network itself and the client’s system are introduced, in as far
as these affect the operation of a service. The ‘metwork’ may be considered to
authenticate clients and can introduce errors. The client program mwust identify itself
to the network and may also wish to keep its own accounting record.

The last section gives details of the following standard sets and data types used in
service specifications. Further gets may be introduced in individual service manuals as

required.

[Boolean, UserNum, Userld, Time, Interval, Money, Op, Report, Key]

1.1 Example service
A service is specified by providing a mathematical model of the state of the service,
and by formally defining the change in state when an operation on the pervice is

invoked by a client of the service.

For our example skeleton service (ES), we model the state of the service asfollows.

ES

state : STATE

INY (state)

Here, STATE is a set which includes all possible states of the gervice. A predicate INY
(the state invariant) is defined to hold in all valid service states.

We introduce the name AES to denote the change in state caused by scme operation,
defined as a relation between the stale (undashed) before and the state (dashed) after
the operation.

AES & ES A ES”

Sometimes an operation leaves the state of the gservice unchanged.

EES 2 AES | BES = BES’

(Tz the following, we will assume for any schema S, unless otberwise stated, that AS
and =5 are defined in an equivalent way.)
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The state of the service is initialised before it is ever used by any operation. The state
of the skeleton service after initialisation is defined.

InitES
ES’

InitPRED (state’)

An operation on the service is thea defined by introducing the input parameters in?
and output parameters out! of the operation and relating them to the change in state
by further predicates. PRE is the precondition which must hold over the current state
and the input parameters in order for the outcome of the operation to be well-defined.
POST is the posicondition which relates the new state and output parameters to the
current atate and input parameters.

Operat 10N ccess 1
AFS
in? : IN
out! : QUT

PRE (state, in?)
POST {state, in?, out!, state’)

{Here we have apecified the precondition only in terms of the initial state and inputs.
In Z, this need not always he sufficient to define the domain of the operation becanse
there may be some hidden implicit preconditions in POST. However in our style of
specification, we try to avoid this for the sake of clarity.)

The sets STATE, IN, and OUT, and the predicates INY, PRE and POST used in the
above definitions clearly depend om the particular operation within the particular
service being specified. We leave them undefined for this example skeleton service.
Additionally, the number of inputs and cutputs will vary depending on the operation.

However, there are a number of attributes of operations and services, and indeed also
of the network acrose which the service operations are invoked and of the invoking
client process, which are common to all service specificationa. The remainder of this
document introduces these common features, and illustrates how they emable the
specification of the example service to be augmented.
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2  Operation attributes

As well as parameters which are particular to the service operation being specified,
there are a number of other attributes common to all operations.
2.1 Reports
We add to each service operation the output parameter
report! : Report

which indicates to the client in a standard way either that the operation succeeded or
why it failed (in most cases, failure will leave the state of the gervice unchanged).

The normal outcome of an operation is Buccess.

Success |
report! : Report
report! = SuccessReport
]

(Note that italics within formal text are used to dencote implementation-specific
constants.})

SuccessReport is the same across all services for simplicity. The specification of a
particular operation on a parficular service may introduce report values which are
returned to indicate that some specific precondition of the operation has pot been
satisfied.

For example, if the specific precondition FRE of the operation on the example service
is not satisfied, a report indicating the reason may be returned as follows.
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InputError
=ES
in? : IN

report! : Report

-PRE {state, in?)
report! = [nputErrorRepart

The state of the service is defined as being unchanged if the error occurs.

We can now define the total effect of the operation in this example as being either
auccess, or an operation-specific error.

Operation % (Operationg, ..., * Success} ¥ InputErraor
If more thau one error report may be produced from an operation invocation, it is
often useful, or even necessary, to specify an ordering of the reports according to the
satisfaction of predicates over subsets of the state and inputs.

For example, if the successful outcome of an operation requires satisfaction of the
predicates contained in two schemas, PRE, and PRE,, then we can specify the total
effect of the operation using schema overriding (assuming error schernas InputError
and InputError; are defined for the negation of the respective predicales, as for
InputError above)

A

Operation 2 (Operation A Success)
@ [nputError

@ [nputError,

success

which can be expanded to give the following.

Operation 2 (({{Operation,, ... » Success)
A PRE,} v InputErreor,)
A PRE;) v InputError;

In other words, from the report produced by calling this operation we could deduce:
Operation | report! = Success = PRE,; » PRE;

QOperation | report! InputErrorReport, = —PRE, » PRE;
Operation | report! = InputErrorReport, = -PRE;,
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Note that if overriding is used to specify the total operation, then it is not necessart to
explicitly include the preconditions in the definition of the successful operation.

At this point it 8 worth noting that, in practice, a cliext will usually invoke a
particular operation on a service by calling a programming language construct, such as
a procedure. The procedure takes input parameters to be passed to the service and
output parameters returned by the service as a result of the call. The output
parameters will include the report value.

We include in the user manual for the service an indication of the format of the
procedure call that would be used in a procedure-oriented interface aa follows.

Operation {in? : IN;
out ! : OUT;
report! : Report)

2.2 Client identification

In order that a service can attribute any resources used in performing an aperation to
a particular user, each client is given a user number which is allocated from the set
UserNum. The allocation is public — that is, it is common for clients t¢ know each
others’ user numbers. It is expected that the user number of a particular client will
change only rarely, if at all. ’

The user number of the client who invoked an operation s assurned to be an implicit
pararmeter of the operation. In other words, the user number is not explicilly passed as
a parameter to the service, but is derived [rom other inforration (see section 4.1 on

Authentication).

We therefore angment the attributes of an operation with the user number of the
client.

clientnum : UserNum

2.3 Sperial clients

Some service operations may behave differently if their invoking client & either one of
two special cases.
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The guest user s an identity which may be assumed by any client who is (usually
only temporarily) lacking their own individual identity. The guest user has the fixed
user number Guest Num which is a special value from the set of all user numbers.

The service manager is a particular user, fixed for any particular service, who is
responsible for the management of the resources provided by the service.

{GuestNum, ManagerNum} c UserNum

Some service operations which need to attribute the use of resources to an identifiable
client may prevent the guest user from successfully performing the operation. The
following schema may be used as an overriding component in an operation definition
to ensure that the client is known, or to produce an appropriate error report atherwise.

Not KnownUser .
clientnum : UserNum
report! : Report

clientnum = GuestNum
report! = NotKnownUserReport

Such an operation would be specified to leave the state of the zervice unchanged if the
user is not properly identified.

o

Operation =& Operation ® {NotKnownUser A =ES}

SyUccess
Similarly, services often include special operations which are invoked to manage the
rescurces provided by the service. Examples of such operations include status
operations to discover the amount of a resource currently being used by each client, or
scavenge operations to reclaim resources that are nmo longer being msed. The service
may restrict successful invocation of these operations to the service manager by using
the following overriding schema.

NotManager
clientnum : UserNum

report! : Report

clientnum # ManagerNum
report! = NotManagerReport
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A management operation would therefore be specified as follows.

~

Operation & Operation @ {NotMenager A sES)

Success

2.4 Current time

Each service has access to the current time (for exarmple via access to a common tirne
service). It is useful to denote this by including as ar implicit atiribute of an operation
the time now at which the operation was invoked.

now : Time

We do not attempt here to specify in more detail the value that this atiribute will
assume, except to informally hint that for successive operations the valte will be
non-decreasing! Later, a standard specification for a service clock is presented, which
may be used in individual services if desired.

2.5 Operation cost

Each service is responsible for charging its clients for their use of the resources
provided by the service. Every operation has an output parameter which indicates the
cosat incurred by the client in performing the operation. (We shall gee later that this
parameter need not be explicitly included in the procedure call when using a
procedure-oriented interface.)

cost! : Money
The value of this parameter will be specified separately (see section 3.1 on Service
charges).
2.8 Key-linked operations
Some operations are designed to operate over a potentially large set of values (such as
block identifiers). Such operations are designed to allow the set to be iraversed in

several operation calls. This may be necessary to limit either the site of output
parameters or the execution time of any particular <call.
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For example, say an Operstion schema requires the traversal of the (potentially
large) set

xs : F X
(For example, X could be the set of all file identifiers.)
The operation itself is designed to iraverse only a subset of xs on each call, and
repeated calls of it may be necessary to construct xs as the union of the individually
traversed parts. The execution of the geparate operations is relaied by passing a key
parameter from one call to the next, taken from the given set Key. Each operation has
an input key parameter (key?) and an output key parameter (key!) and affects a
subset of xs (subxs).
To construct xs, the client first calls the operation with a special key StartKey:

tperation | key? = StartKey

The client then continues to call Op repeatedly, supplying 28 the new key in each case
the key returned by the previous call. The following is an example of the it call:

Operation | key? = key,
key! = key ., A
subxs = subxs,

Finally, the special key EnrdKey will be returned to indicate that no more calls need
be made.

Operation | key! = ErdKey

At that point, providing the set xs has remained constant, and not been affected by
other operations on the service:

xs = U subxs,
1
A key is itself to be regarded as standing for a set of X, using somme implementation-
specific representation (denoted hy the generic conmstant funciion, KeySet). The
special keys, Start{Key and EndKey, denote the set of no X and the set of all X.
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(X}

KeySet : Key = F X

KeySet(StartKey)
KeySet{ EndKey)

2
X

Each key value, passed from one call to the next, stands for all the ids that have been
traversed so far (including passibly many that are not in xs).

The following framing schema (parameterised by an appropriate set X) i3 used to
simplify the definition of such key-linked operations.

PKey{X] .
key? : Key
key! : Key
- : F X
subxs : F X

KeySet (key?) ¢ KeySet(key!)
subxs = (KeySet{key!) \ KeySet{key?})} N xs

[Nate: a framing schema is denoted with the prefix ietter ‘¢’ and consistaof a partial
specification for use as part of a subsequent schema.|

The difference between the sets denoted by the two keys indicates the subset of xs
involved in the particular call.

BadKey indicates that an input key has been provided which does not denote a valid
set. Note that this includes supplying an end key to an operation. This error schema
should always be provided by key-linked operations.

BadKey ,
key? : Key
repart! : Report

key? € {dom KeySet) \ EndKey
report! = BadKeyReport
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2.7 Operation identification

So far, we have only considered the specification of individual operations on the
example service. It is useful to define the effect of any general operation on a service.

Ip order tc select which operation is to be performed, the operations of a service are
each identified by a different value from the set Op, and each call includes an explicit
parameter denoting the operation to be invoked. (When using a procedure-oriented
interface, this parameter is implied by the name of the procedure being called.) We can
define a framing schema for an operation.

p —
op? : Op '

If the individual operations on the example service have been specified as A, B, .., D,
with operation numbers AOp, BOp, .., DOp respectively, then the effect of an
arbitrary choice of one of these operations on the service can be specified as follows.

ESServiceOps 2

(A AgOp | op? = AOp ) ¥
(B AdOp [ op?=BOp 1} v
(D A 4¢0p | op? = DOp )

Apy attempt to invoke a non-existent operation on a particular service is rejected with
an appropriate report, which will be included in a later definition of the complete
service.

BadOperation
report! : Report

report! = BadOperationRepor!

2.8 Operation parameters

Typically, for each operation requested by clients there is an output parameter
reporting the outcome of the operation (report!). Additionally the current time (now}
apd the user number of the client (c1ientnum) are available. It is convenient to define
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a schema containing such parameters in each service user manual.

¢Bas i cParams
report! : Report
oM : Time

clientrnum : UserNum

Additionally, the basic parameters are supplemented by hidden parameters, normally
an operation identifier and the cost of executing the operation.

$dParams .
¢Bas icParams
op? : Op
cost! : Money

Again, it may be convenient to define such a schema in a user manual. Note that these
hidden parameters will not normally appear as parametere to procedures invoked in a
specific user programming language to execute the operation, but will be passed by
some other means. For example, op? will depend on the name of the procedure called
by the user.

Note that since ¢Params includes op?, it may be used instead of ¢0p in the definition
of ESServiceOps if this is convenient in a particular service.
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3 Service attributes

Having specified the effect of individual operations on a service, it is then possible to
consider the atiributes that apply to the service as a whole. These include charges, a
null operation, and four subsystems, each with their own state and operations, which
may be incorporated into the specifications of individual services.

3.1 Service charges

Each service operation will incur some charge on the invoking client. The charge may
be fixed or may be a function of the parameters of the operation. (Some service
operations may sometimes give a credit because of resources returned by the client;
this is indicated by a negative charge.)

A service manual will include a tariff section which defines the walue of the cost!
parameter for any particular invocation of an operation. The details of the tariff will
be speciic to a particular implementation of a service.

For example, a taridf of the following form may be imposed on a client of the example
service who successfully invokes an operation.

ESTariff ,
AES
op? :+ Op
in?g : INH
out!y : OUT,
cost! : Money

op? = AOp = cost! = ABasicCost +
AExtraCost(BES, in?y, cut !y)
BOp = cost! = BBasjcCost + ..

op?

where { ABasicCost, BBasicCost, ...} s Money
AExtraCost € {(AES x IN, x OUT,) -+ Honey
ete.
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The cost when errors occur should also be covered and included in the defintion of a
tariff error schema.

ErrorTariff S —
cost! : Honey

cost! = ErrorCost

dESTariff & Success = ESTariff A
-Success = ErrorTariff

Note that a particular service may specify a more complex set of charges for different
error reports. This tariff framing schema combines with the service operations to

define the basic service;

ESBasicOps ¢ ¢ESTeriff A ESServicelps

3.2 Null operation
A null operation is provided in most services. This operation does not change the state
of the service, but allows any client to check that they can successfully access the

service. A stardard (small) cost is involved.

Null

¢Params
Success

op? = NullOp
cost! = NuliCost

Note that at this stage we do not know the state of the particular service Hence the
fact that the service atate does not change will be recorded when the complete service
is formally defined.

3.3 Service clock subsystem

A service may include its own clock subsystem which maintains the curreat time.
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Clock -

Lnou : Time |

Initially the clock is set to some value (typically using a separate Time Service,
although this is not specified here).

InitClock
inittime : Time
Clock”’

now’' = inittime

The icterval between most service operations as measured by the clock is positive, but
may be zero if the granularity of time measurement is large.

¢Clock .
AClock

NnoH’ = NowW

Note that now is considered to be the time the service operation took place, and now”
will be the time the next operation will take place. Thus now” will not be available in
the specifications of operations in practice.

Two operations are associated with this subsystem. The current time according to the
service can be read by any client. A (small) fixed cost i associated with this operation.

GetClocky, rpeg ——————

$Clock
now! : Time
cost! : Maoney

non! = now
cost! = GetClockCost

GetClock £ GetClock A Success

SUCCess
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When the time is set, the time of the next operation will then be after (or possibly the
same as) the required time.

SetClocky crpgg —
AClock
row? : Time
cost! : Money

nor’ z now?
cost ! = SetClockCost

SetClock 2 (SetClock, caas Success)
@ {NotHManager A ¢Clock A ErrorTariff)

The clock may only be set by the service manager, but may be read by any client.
These clock subsystem operations may be combined as follows:

ClockOps 2
(GetClock » ¢0p | op?
{SetClock A ¢0p | op?

GetTimeOp ) v
SetTimeOp )

3.4 Service accounting subsystem

Each service may keep an accounting record of the accumulated credit ard charges
made to each client for use of that service. Account balances may be positive denoting
a credit or negative dencting a debt. Here we assume that the service can keep a
record for all possible users, so the accounts function is total. (If the number of
possible users were very large, this may not be feasible in practice.)

Accts

accaunts : UserNum — Honey

Initially the accounts are all zerc.
InitAccts & Accts’ | ran eccounts’ = {0}

When a service cperation is performed, the output cost parameter {cost ! )is deducted
from the balance for the appropriate client. The following framing schema will
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therefore be included in the specificaticn of each service operation.

dAccts
AAccts
cost! : Honey

clientnum : UserNum

accounts’ = accounts @
{ciientnum — accounts{clientrnum) - cost!}

A subsystem operation iz provided to allow clients to check the balance of their
account. Note that this operation involves a cost itself (similar o a charge for a bank
statement). The balance is that after deduction of this amount.

GetBalance,, e .
dPAccts

balance! : Honey

clientnum : UserNum

balance! = accounts’{clientnum)
cost! = GetBalanceCost

a

CetBalance 2 (fetBalanca A Success)

SucCCcess

A management operation is provided to check the accounts of those clients with non-
zero balances.

CheckAccounts_ ... .
EAccts
accounts! : UserNum =+ Honey
accounts! = accounts b {0}
1

CheckAccounts 2 (CheckAccounts,, ... » Success)
@ (NotHanager A (hccts A ErrorTariff)

The manager may reinitialise all the accounts if required.
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feroAccounts
AAccts

success 1

ran accounts’ = {0}

ZeroAccounts 2 (ZeroAccounts_ ..... A Success)
@ (NotHanager A ¢hccts A ErrorTeriff)

Finally, a specified account may be credited when a client pays all or part of his bill,
or prepays for use of the service.

CreditAccount

s5UCCess 1
AAccts
clientnum? : UserNum
credit? : Money

accounts’ = accounts @
{clientnum? > accounts{clientnum?) + credit?}

CreditAccount & {CreditAccount _  .oee * Success)
@ (NotHanager A QAccts A ErrorTeriff)

Apart from GetBalance, these operations can only be invoked by the service manager
and no cost is involved, unless a client who is not the service manager atlempts the

operation in which case the error charge will be incurred.

The operations combine to form the accounting subsystem operations:

AcctsOps =
(GetBalance A ¢0p | op? = GetBalanceOp yv
(CheckAccounts A ¢0p | op? = CheckdccountsOp } v
(Zerohccounts A ¢0p | op? = ZeroAccoumtsOp )} Vv
(CreditAccount A ¢0p | op? = CreditAccountsOp }

This subsystem could be augmented to impose a credit limit if desired, but this would
require an extra error report.
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3.5 Service statistics subeystem
Each service may keep a record of the number of invocations of each of its operations.

Stats
calls : Op — OpCount

Initially, the number of calle for all operations is zero.
InitStats 2 Stats’ | ran calls’ = {0}
When a service operation i8 performed, the call count for that operation is

incremented. The following framing schema will therefore be included in the
specification of each service operation.

$Stats
AStets
op? : Op

calls’ = calls @ {op? — (cells op?) + 1}

Management operations are provided on the subsystem to check the non-zerc counts
and to zero the accumulated statistics.

CheckStets_ cqge—
=Stats

calls! : Op + OpCount

calls! = calls p {0}

CheckStets & (CheckStats, ... * Success)
® (NotManager A =Stats)

ZeroStats_ ooc .

AStets

ran calls’ = {0}
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ZeroStats 2 (ZeroStats_ ees ? Success)
® (NotManager A =Stats)

These statistics subsystem operations can only be invoked by the service manager.

StatsOps ¢
(CheckStats ~ ¢0p | op?
(ZeroStats A ¢0p | op?

]

CheckStatsOp ) v
ZeroStatsOp )

38 Service access snbsystem

37

For some sequences of management operations it is important to ensure thil the state
of the service is not changed, or even observed, by other clients between operations. It
is therefore possible in some services for the service manager to enable or disable

access to the service by other clients.

The state of the access subsystem includes an indication of whether service access to

other clienta is enabled or not, Initially service access is not enabled.

Access
enabled : Boolean

InitAccess & Access’ | enabled’ = False

Operations on the basic service can only be performed if it is enabled or if the

operations are performned by the service manager.

dAccess
ZAccess

clientnum : UserNum

enabled = True v
clientnum = ManagerNum

Operations on the basic service will fail with an error report if access is disabled and it

is not the service manager performing them.
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NotEnabled
ZAccess

clientnum : UserNum

ensbled = False
clientnum # ManagerNum
report! = NotEpabledReport

Management operations are provided on the subsystemn to change the state of access.

Enﬁb] ESUCCESS -
AAccess

enabled’ = True

Erable @ (Enable_, ... » Success)
@ (NotMensger A SAccess)

D l sab] BEUCCESS ——
AAccess

enabled’ = False

Disable & (Disable_, ... * Success)
@ (NotManager A =Access)

These operations specific to changing the state of access can caly be invoked by the
service manager.

AccessOps &
{Ensble 4 ¢0p | op?
{Disable A ¢0p | op?

EnableQp ) v
DisableOp )

3.7 Service operations

This completes the definitions of the common operations that may be available on a
service. Not every service need implement the subsyatems for a local clock, accounting,
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statiatics or access control. Every service must implement the null operation.

An operation may occasionally fail, even if its preconditions are satisfied, because of
an underlying nondeterministic fault i its implementation (for example, a hardware
fault or the unavailability of some other service). In this case a standard failure report
is returned.

ServiceError
fault : Boolean
report! : Report

fault = True
report! = ServiceErrorReport

The state of the service should remain nnchanged in this case.

Note that this imposes a heavy, if not impossible, burden on the implementor of the
service to ensure recovery from all such errors without changing the observable service
state. An alternative, but not very useful, specification would allow the service to
assume any valid state after such an error. In the case of a catastrophic error such as
complete disk failure, the implementation could be designed to continually return
ServiceError and sc not have to return the previous state!

We are now in a position to specify all the operations and error conditions fer cur
example service. In this example we shall define a service including a null operation, a
clock, accounting, statistics and access control.
The combined state of the complete gervice is:

ESState & ES A Clock A Accts A Stats A Access

The initial state iz defined as:

InitESStete £
InitES A InitClock A InitAccts A InitStets A [nitAccess

The possible changes of state of the complete service, covering all operations which

can be performed by the service, including the case where the service is notenabled, is
as follows:
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ESAlIOps 2

{ESBasicOps A AES A ¢Clock A PAccts A ¢Stats A QAccess) v
(Null A EES A ¢Clock A PAccts A ¢Stets A dAccess) v
(ClockOps A =ES A ACTock A pAccts A ¢Stats A pAccess) v
(AcctsOps A SES A dClock A AAccts A ¢Stats A dAccess) v
{StatsOps A =ES A ¢Clock A =Accts A AStats A dAccess) v
{AccessOps A =ES A ¢Clock » SAccts A =5tats A AAccess) v
{NotEnabled A SES A ¢Clock A =Accts A =Stats A =Access)

Finally, we include the possibility of a bad operation number (the only possible
conclusion if all the operation preconditions have failed) or a non-deterministic service
EITOT:

ESOps &

{{BadOperation A =ES A ¢Clock A =Accts A sStats A SAccess) @
{ESA110ps A AES A AClock A AAccts A AStats A AAccess))
v

(ServiceError A SES A ¢Clock A =Accts A =Stats A SAccess)

Similar schemas should be defined at the end of each service manual.

3.8 Service identification

Sa far, we have only considered the specification of an individual service. We have
made use of a number of definitions which are apecific to the service in question, such
ag ES, ESTariff and ESBasicOps.

It is usefu] to define the effect of any general operation on the complete collection of
services. Since services may act as clients by invoking operations on other services,
they are given user numbers froin the aame set UserNum as other users.

In order fo select which service s to be affected by a particular operation, the user
number of the service is provided as a parameter. (When using a procedure-oriented
interface, the service to be affected is implied by the name of the procedure heing
called.}

¢Sy

sv? : UserNum




Any atiempt to invoke an operation on a non-existent service is rejected with an
appropriate report,

BadService
I report! : Report

L report! = BadServiceReport

If the individual service states have been specified as H55tate, XS5tate, .., 255tate,
the initial states are HSInitState, XSInitState, .., Z5InitS5tate, and the
combined operations on the services are defined as HS0ps, XSOps, ..., Z250ps, then the
combined state, the initial state and the effeet of an arbitrary operatibn on an
arbitrary service on the network can be specified as follows:

SvState ¢
HS55tate A X5S5tate A .. A ZS5S5tate

SvIinitState =
HSInitState A XSTnitState A .. A ZS5InitState

Svlps 2
{(BadService A =5vState ) &
((HSOps A =SvState\HSS5tate A ¢5v | sv? = WSy ) v
{XS0ps A =SvState\XSState A $Sv | sv? = XSv ) v
{ZS0ps A =5vState\255tate A ¢Sv | sv? = ZSv ))

In other words, any operation on a particular service does not affect the state of any
other service. Note that in the case of services making use of common operations, the
common state components should be renamed uniquely for each service to avoid
name clashes.

(Strictly speaking, the invocation of a service operation may cause operations on gther
gervices to be performed by the invoked service. However, as far as the clent of the
original operation is concerned, those additional operations can be comsidered as
having been perforrmed by other users after the completion of the original operation
and before the client can perform another operation on any affected service. Hence,
because no user has control over the interleaving of other users’ operations between
their own, there is no need to explicitly cater for these secondary effects in the
specification.)
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4 Netwark attributes

There are some features of services that are independent of the particular service upon
which an operation is being performed. We include authentication of clients at this
stage, since it is something which can be considered the respousibility of the network,
rather than of an individual service (otherwise, for example, a service could
impersorate one of its clients), Indeed, it is possible for netwerks to include security
and authentication measures as part of the hardware network interface.

4.1 Authentication

Authentication ensures that the client of a service operation s genuine, so that any
costs incurred in performing the operation can be reliably attributed to a particular
client. A very simple scheme has been chosen which makes it difficult for one client to
impersonate another.

So far, we have presumed that the user number of the client is an Irnplicit parameter of
any service operation. Since user numbers are public, they do not provide a secure
identification of the client.

In order to provide authentication, each registered client also has a user identifier.
User identifiers are allocated privately, from the set UserId; a client should not reveal
his user identifier to anyone else. Since user identifiers may become compromised
(kmown by too many people) or forgotten (known by too few!), it might be necessary to
change aclient’s user identifier from titme to time.

Authentication is achieved by the existence of a {secret) partial funection

l authentic : User]ld -#¥ UserNum

I (Guestld — GuestNum) € suthentic

which for any user identifier gives the user number of the client who should be its scle
possessor. Since the get UserId of user identifiers has been made very large, and the
set {dom euthentic) of authentic user identifiers has been made a relatively small
part of it, it will be hard for clients to guess the user identifiers of others.

We have already introduced the guest user, which some services might recognise as a
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special client, and who has the vser number GuestNum. The guest user has the user
jdentifier Guestfd. This user identifier jg public, and is expected to be used by clients
temporarily without a private user identifier of their own. The guest user i always
authentic.

Each service operation has an explicit input parameter
clientid? : Userld

identifying the client who has invoked the operation. (We will see later that in a
procedure-oriented interface this parameter need not be provided explicitly by the
client on each call.)

The authentication performed by the service-network interface will reject an operation
if the client is not authentic. If authertication is successful, the user number of the
client {c1ientnum) is defined and may be used in apecifying the particular behaviour
of the operation, as already described.

IsAuthentic
ciientid? : Userld
clientnum : UserNum

clientnum = authentic clientid?

NotAuthent ic
clientid? : Userld
report! : Report

clientid? € dom authentic
report! = NotAuthenticReport

We augment the specification of the service operations as follows.

SvAuthOps ¢
(IsAuthentic A Sv0Ops) v
(NotAuthentic A =SvState)
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4.2 Network errors

In rare cases an umexpected network failure may occur durig the transmission of
parameters to or from a service operation. In this case, an error report is returned, but
the client cannot determine from the report whether or not the operation was
executed.

NetError
report! : Report

report! = NetErrorReport

Again the service operations are augmented. (We use the notation 5\(%!) to denote
the schema 5 with all output parameters, ending in !, hidden.)

NetOps =
SvAuthOps v
{(SvAuthOps\(#!) v =SvState) A NetError)

Hence no meaning can be attributed to any output parameters if a network error has
occurred, except the error report! value itself. However we guarantee that the
operation either will or will not have taken place (sometimes known as ‘at-most-once
semantics’).
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& Client attributes

So far, we have defined the following explicit parameters as commen to each operation

invocation.
Params .
clientid? : Userld
sv? : UserNum
op? : Op
cost ! : Money
report! : Report

These parameters, plus the input and output parameters specific to an operation, musi
all be present if we view the interface to a service at a low enough level (for exampie
as data transmitted over a network).

However, in a procedure-oriented interface we have already said that the identification
of the service sv? and the operation op? ia implied by the name of the procedure itself.

In order to reduce the number of parameters that must be explicitly provided on each
procedure call still further, it is convenient to specify that the client’s name and the
accumulated cost incurred are stored locally in the client program.

8.1 Client identification

Since the identification of a client program (or process, or operating system
environtnent) is likely to remain constant over a number of service calls, it is
convenient to allow the user identifier of the current client to be remembered in the
state of the client program.

Client
cliemtid : Userld

Initially, on starting a new client program, the current client is the guest user.

InitClient & Cliemt’ | clientid’ = Guestid
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The current client may he changed or interrogated by operations. (Note that thesz
operations are local to the client program, rather than being performed by a service,
and 3o do not involve the mormal service parameters. Their effect is left non-
deterministic in this specification since their use is completely under the control of the
client.)

SetClientId
AClient
newclientid? : Userld

clientid’ = menclientid?

GetClientId

=Client
currentclientid! : Userld
currentclientid! = clientid

LocalClientOps 2 SetClientId v Cetllientld

When calling a service operation, the input parameter client id? is that of the
current name remembered by the client program. The following framing schema will
therefore be used in the specification of each service operation.

¢Client .
=Client
clientid? : Userld

clientid? = clientid

5.2 Client accounting

It is also convenient to accumulate the cost incurred by the client’s use of a service in
the client program, rather than pass it explicitly as an output parameter on each
procedure call. We therefore allow the client program to accummlate the total costa
incurred over a number of service operations.
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Cost

totalcost : Honey

Initially, on starting a new client program, the accumulated cost is gero.
InitCost & Cost’ | totalcost’ =0

The accumulated cost may be interrogated or reset to gero by operations. (Note that
these operations are local to the client program, rather than being performed by a
service, and so do not invelve the normal service parameters.)

CetCost
=Cost
totalcost! : Money

totalcost! = totalcost

Zerolost
AMost

n
o

totalcost’

LocalCostOps 2 CGetCost v Zerolost

When calling a service operation, the output cost parameter {cost!) is added to the
accumulated cost remembered by the client program. Some reports denote that access
to a service has not been possible, sc no cost has been incurred, and the cost!
parameter is undefined.

mn

NoCostReports {ServiceErrorReport,
BadServiceReport,
NotAuthenticReport,

NetErrorReport}

The following framing achema will then be used in the specification of each service
operation.
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¢lost .
ACost

cost! : Money

report! : Report

(report! ¢ NoCostReports) =>

totalcost’ = totalcost + cost!
(report! € NoCostReports) =
totalecost’ = totalcost

It is possible, if a network error has occurred and if the invoked operation was indeed
performed by the service, that some actual charge may have been incurred by the
client. Clients can check their actual charges by invoking the GetBalance operation
on the appropriate service.

5.3 Client view

The client views the state of the whole system as including the local anthentication
and accounting operations. Note that initially, the state of the network services may be
any valid atate.

LocalState & SvState A Client A Cost

InitLocalStete & SvStete A InitClient A InitCost

>

LocalQps
{NetOps A ASvState A ¢Client A @Cost) v
{Loca!ClientOps A =SvState A AClient A =Cost) v
(LocalCostOps A =5vState A =Client A Alost)
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6 Sets and data types

Service specifications, and the common service framework presented here, make use of
a number of given sets and a data type. These are described in this section.

8.1 DBoolean valuea

A boolean data type is sometimes useful when there is a simple yes/no choice, defined
as follows.

Boolean ::= False | True

6.2 User numbers and user ids

The set UserNum iz a finite set of publicly known ®*mumbers” associated with clients.
The set UserId is a corresponding finite set of private identifiers for clients. (Note
that there may be mnore than one valid UserId associated with a given UserMum.
Also each gervice has a UserNum, and so may act as a client to another service.)

8.3 Time and intervals

The set Time denotes the finite set of all instants of time (to an appropriately small
resolution, such as a second) covering dates relevant to the life of the system.

The set Interval denotes a finite set of non-negative timne intervals, or differences
between pairs of time instanta.

The follow infix operators and constants are assumed to be defined for Time and
Interval:

- Time < Time

(_+ ) : (Time x Interval) — Time
(_=_2 ¢ (Time x Interval}) — Time
ZeroTime : Time

+ W

_2_ € total_order Time
ZeroTime = min Time
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_ 2 _ : Interval & Intarval
(_=_) : (Time x Time) — Interval

Zerolnterval : Interval

_2_ € total_order Interval
Zerolnterval = min Interval
Y t:Time

t + Zerolnterval = t

t - Zerolnterval = t

t - t = Zerolnterval

All these operators are defined to be total, ignoring any problems with error conditions
caused by arithmetic overflow or underflow. Note that the addition of two absolute
Time instants would be meaningless.

6.4 Momey

The set Money denotes a finite set of all (signed) measures of cost. It is used for
operation charges and accounting purposes. The following infix operaters are assumed
to be defined for Honey:

-3 _ : Honey & MNoney
{_+ _) : (Honey x Money} — HMoney
{_ - _) : (Homey x Honey) — Honey

_3_ € total_order Meney

The operators above are defined to be total, again to avoid errors.

6.5 Operation identifiers

The set Op denotes the finite set of possible operation identifiers. These are unique for
different operations within a given service. However, they may he shared across
services since the user number of the service itself may be used to identify on which
service a particular operation is to be performed. Common operations, such as the null
operation, will be given a standard operation identifier across all services to avoid
confusion.
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6.6 Reporis

The set Report demnotes the finite set of possible reports which may be returned by
operationa. As for operation identifiers, reports need only be unique within a
particular service. Again, common reports will be given standard values across all
services.

6.7 Keys

The finite set Key is used for certain operations which are called in a sequence,
passing a key value between successive operations. There are special first and last keys
(StartKey and EndKey) for imitialisation and termination of the sequence of
operations.
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1 Introduction

The Reservation Service allows clients to notify a manager how long they may require
use of other services. A client may make a reservalion for a specified pericd.
Subsequently the reservation may be cancelled by requesting a reservation of zero
interval. Atany one time, there may be a number of client reservations.

The service manager may inspect the reservations whenever required. The manager
may also set a shutdown time after which the availability of services in the distributed
systemn is no longer guaranteed (for example, becanse of maintenance). If any client
reservations are threatened by the shutdown time, the manager will be notified, and
can then negotiate with the clients concerned or set a new shutdown time. Note that a
client cannol make a reservation past the current shutdown time.

Normally a client will make a reservatior for some reasonable period before using any
other services. However a client may still use other services without making a
reservation. In this case there is no guarantee zbout the avajlability of services.
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2 Service state

A reservation tecords the user number (public identity) of the client who made it and
the time at which it will expire. A number of reservations may exist at any one time.
Each user may only have one reservation, and there is a limit on the total number of
reservations.

Reservations 2 { r: UserNum + Time | #r € Capacity }
The state of the Reservation Service records the shutdown time most recently set by
the service manager (shutdown) and the set of current reservaiions {resns). The

guest user cannot make reservations.

RS

shutdown : Time
resns : Reservations

GuestNum € dom resns
N |

Initially the shutdown is set to a default value and there are no reservations.

InitRS
RS

shutdown’ = InitShutdownTime
resns’ = @

The service is in its initial state every time it is powered up.
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3 Operation parameters

For each operation requested by clients there 18 an cutput parameter reporting the
outcome of the operation (report!). Additionally the current time (now) and the user
number of the client (¢1ientnum) are available.

tBasicParams
report! : Report

NoM : Time
clientnum : UserNum

Operations nray change the state of the Reservation Service.
8RS 2 RS ~ RS’ A ¢BasicParams
Some operations may leave the state of the service unchanged.

RS = ARS | BRS = BRS’

Operations can return finite sets of users, so we make the following definition for the
convenience of subsequent specifications.

~

Users 2 { u: F UserNum | #u < Capacity }
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4 Reporia

The report! output parameter of each operation indicates either that the operation

succeeded or suggests why it failed.

Success indicates successful completion of an operation.

Success |
report! : Report
report! = SuccessReport
'

If a reservation cannot be made due to early shutdown, the shutdown time itself is
returned in unt i 1!, Note that a reservation of zero interval will not cause this error.

NotAwvailable |

=RS
interval? : Interval
until! : Time

interval? # Zerolnterval
shutdown < nmow + interval?
until! = shutdown

report! = NotAvailableReport

The service has finite capacity for recording reservations; the report ToolMfanyUsers
occurs when that capacity would be exceeded. The report cannot occur if $he client

has a reservation (since it is averwritten by the new one).

TooHanylsers :
=RS

#resns = Capacity
clientnum ¢ dom resns

report! = TooManyUsersReport
_
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Some operations can only be executed by the service manager.

NotManager
=RS

clientnum # ManagerNum
repert! = NotManagerRepori

Guest users cannot make reservations.

NotKnownlUser
=RS

clientnum = GuestNum
report! = NoitKnownUserReport
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5 Service operations

Four operations are described in this section. Reserve, which may be performed by
any authentic client, SetShutdown and Status, which may be performed only by the
service manager, and Scavenge, which is performed by the service itself.

The description of each operation has three sections, titled Abstract, Definition and
Reports.

The Abstract section gives a procedure heading for the operation, with formal
parameters, as it might appear in some programming language. The correspondence
between this procedure heading and an implementation of it in some real programming
language is designed to be obvious and direct. A short informal description of the
operation may accompany the procedure heading.

The Definitiom section mathematically defines the successful behaviour of the
operation. It does this by giving a schema which includes as a component every formal
parameter of the procedure heading, either explicilly or as components of included
subschemas (such as ARS). A short explanation may accompany the schema.

The Reports section summarises the report values which can be returned by the
operation. This gives the definition of the total operation including the behaviour in
the case of errors.

5.1 Client and manager operations

The following operations are available:

Reserve —  make or clear a reservation
SetShutdown —  set a shutdown time
Status —  obtain current reservations

Only the Reserve operation may be performed by miost clients. The last two
operations may only be performed by the service manager.
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RESERVE
Abstract
Reserve [interval? : Interval;
until! : Time;
report! : Report}

A reservation 18 made for a period of time (interval?), and returns the expiry time of
the new reservation {until!]).

A client can cancel a reservation by making a new reservation in which intervel? is
zero; this will then be removed by the next scavenge.

Definition
ReserveEUDCESS 1
ARS
interval? : Interval
until! : Time
until! = now + interval?
shutdown’ = shutdown
resns’ = resns @ {clientnum — untill}
1
Reports
Reserve 2 (Reserve_, ... » Success)

& ToolanyUsers

® NotAvailable

® NotKnownlUser
The client cannot be a guest user.

The reservation must expire before the shutdown time or be for a zero interval.

There may be no space for new reservations.
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SETSHUTDOWN

Abstract

SetShutdown (shutdown? : Time;
threatens! : Users:
report ! : Report)

The service manager may set a new shutdown time. All clients who have reservations
which are threatened by the new time are returned. It is the responsibility of the
service manager to negotiate with the clients affected.

Definition

SetShutdown, poe ,
ARS
shutdown? : Time
threatens! : Users
shutdown’ = shutdown?
resns’ = resns
threatens! =

dom (resns b { ZeroTime. .shutdown’))
1

The shutdown time is changed to the new value regardless of existing reservations.
Current reservations are unaffected.

Clients with reservations past the new shutdown time are reported.

Reports

SetShutdown 2 {SetShutdown A Success)

® NotMeneger

SUCCESS

This operation may only be perfarmed by the service manager.
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STATUS
Abstract
Status (now! : Time;
shutdown! : Time;
resns! : Reservations;
report! : Report})

The service manager may look at the current status of the service. The current and
shutdown times are returned together with details of the current reservations.

Definition
Statussuccess ]
=RS
row ! : Time
shutdown! : Time
resns ! ¢ Reservations
now ! = now
shutdown! = shutdown
resns! = resns
1
Reports

A Success)
@ NotManager

Status 2 (Status

SUCCess

This operalion may only be performed by the service manager.
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6.2 Internal operation - scavenging

In order to remove reservations which have expired, the service wil perform a
scavenge before each operation. This is in fact the only way in which reservations are
removed.

Scawvenge
RS

RS’
noW : Time

shutdown
resns b (ZeroTime. .now)

shut down’

resns’

Scavenging does not change the shutdown time. A scavenge can remove reservations,
but it never makes new ones. All reservations up to nom are removed.

Performing a scavenge before each operation ensures that the service comtains only
non-expired reservations when the operation itself is performed. Thus, for example,
the Status operation with only return current reservations.
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8 Service charges

The basic parameters are supplemented by two hidden parameters, an operation
identifier and the cosi of executing the operation.

Params —
¢BasicParams

op? : Op
cost! : HMoney

There is a fixed cost for each successful operation. All clients who make a reservation
will also be charged an amount depending on the requested interval. There is no
refund when a reservation is cleared to encourage clients o make reascnable requests.

RSTariff .
$Params
op? = ReserveOp =» cost! = ReserveCost +
{ TimeCost # interval?)
op? = SetShutdownQOp = cost! = SetShutdownCost
op? = StatusOp => cost! = StatusCost

where (_» _) : (Money x Time) — Money is defined appropriately.
If an erroroccurs, a fixed amount may stil] be charged.

ErrorTeriff & ¢Params | cost! = ErrorCost
These two schemas combine to form an overall tariff framing schema.

$RSTariff 2 Success = RSTariff A
=Success = ErrorTariff
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7 Complete service

This section provides a definition of the complete reservation service. This uses
schemas which are defined in the two previous sections as well as seme schemas
defined in the “Common Service Framework®. Each operation is identified by an extra
parameter op? which depends on the procedure name.

A

RSSerwvicelps 2

{Reserve A dParems | op? = ReserveOp ) v
( SetShutdown A ¢Params | op? = SetShutdownOp) v
(Status A ¢Params | op? = StatusOp )

Each of these operations has a tariff associated with it, and they may all be considered
to be preceded by an internal scavenge operation befare the operation is invoked.

RSBasicOps & Scavenge 3 (PRSTariff A RSServiceOps)

The complete state and the initial state of the Reservation Service including a service
clock, accounting and statistics as outlined in the *Common Service Framework™ are:

11

R3State RS A Clock A Accts A Stats

]

InitRSState InitRS A InitClock A ImitAccts A InitStats

The operatiors of the Reservation Service including a null operation and operations
concerned with the service clock, accounting and statistics are as follows:

RSA110ps 2
(Basiclps A ARS A ¢Clock A dAccts A ¢Stats) v
{Nutl A SRS A ¢Llock A dAccts A dStats) v
{ClockOps A SRS A AClock A dAccts A dStats) v
{AcctsOps A SRS A ¢Clock A AAccts A (Stats) v
(StatsOps A SRS A ¢Clock A =Accts A AStats)

Access control is not included since the shutdown time gives a form of access control.
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Finally, the possibility of a bad operation and service error are included:

RSQps &
{{BadOperation » =55 A ¢Clock A =Accts A =Stats) @
{RSA110ps A ASS A AClock A AAccts A AStats))
v

{ServiceError A =55 A ¢Clock A =Accts A =Stats)
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1 Introduction

This document assumes that the reader is familiar with the “Reservation Service - User
Manual” which outlines the abstract specification of the service. Here, this abstract
specification is refined into a concrete specification of a possible implementation of the
service. First the concrete state of the service is defined and then the concrete error
and operalion schemas are defined in terms of the concrete state components.
Opiimisations are included where this is desirable. The justification that the given
concrete specification is a correct implementation of the abstract specification is
discussed.

The specification given here is still not directly implementable. Predicates in schemas
are given broadly in the order which the corresponding statements of a procedure in a
sequential programming language might be written, a3 a hint to the implementor. A
particular programming language must be chosen by the implementor and then this
design must be refined into that language. Even with the advent of the use of formal
specification in the design of computer based systerns, it is anticipated that the job of
the programmer is safe for some time to come.
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2 Abetract state

The abstract state of the Reservation Service, as defined in the “Reservation Service -
User Manual”, includes the shutdown time most recently set by the service manager
{shutdown) and the current reservations (resns). The guest user cannot make
reservations.

i

Reservations { r:UserNum -» Time | #r < Capacity }

RS

shutdown : Time
resns : Reservations

| GuestNum € dom resns
]

Initially the shutdown time has an initial default value and there are no reservations.

InitRS )
RS’
shutdonn’ = InitShutdownTime
resns’ =0
J

Full details of the abstract operations on the service can be found in the User Manual.



70 The Specification of Network Services
3 Concrete state

In the abstract state, the reservations are modelled as a partial function. We shall
assume that the number of clients with reservations at any particular time is relatively
small compared to the total number of clients (i.e. the function is sparse).

Hence in the concrete state, we shall implement this partial function as a pair of arrays
containing matching user numbers and reservation times at corresponding array
indices. Since not all entries in these arrays need be in use at any given moment, we
need a special user number to indicate an empty entry. The guest user is not allowed
to make reservations, and cannot appear as a user number in the reservation table, so
we shall therefore use this number to denote unused entries in the array.

| Unused : UserNum

| Unused = GuestNum
The arrays have indices limited to a maximum upper bound Capacity which
determines the number of clients for whom the service can hold reservations
simultaneously. This limit must be determined by the implementor according to the
estimated wage of the service.

Index 2 1..Capacity

UserArray & Index — UserNum
TimeArray £ Index — Time

The shutdown time may easily be implemented as a single variable (shutd), so that
the concrete implemented service state consists of three components.

cRS

shutd : Time
users : UserArray
times : TimeArray

(users P {Unused}) € (Index > UserNum)
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Each authentic client can have al most one entry in the users array, all other entries
being unused.

Initially the shutdown time has the default value and all the entries in the user array
are unused. (It will not matter what values are held in the time array.)

clnitRS
cRS’

shutd’ = InitShutdownTime
users’ = h s:Index +« Unused

For each operation requested by clients there is an indication of the ouicome of the
operation (report!). Additionally the current time (now) and the user mmber of the
client {¢1ientnum) are available.

¢BasicParams
report! : Report

NoH : Time
clientnum : UserNum

Operations may change the state of the Reservation Service implementation,
AcRS & ¢RS A cRS’ A ¢BasicParams

Some cperations may leave the state of the service unchanged.
EcRS 2 AcRS | cRS = cRS’

Operations can return finite sets of users, so we make the following definition for the
convenience of subsequent specifications.

Users 2 { u:F UserNum | #u s Capacity }
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4 Reports

The report schema definitions are little changed in the implementation because they
mainly do ot involve refined state components,

cSuccess |
AcRS
report! = SuccessReport
1
¢NotManager —
=cRS
clientnum # MapagerNum
report! = NotManagerReport
]
cNotKnounUser :
=cRS
clientpum = GuestNum
report! = NotKnownUserReport
1
¢cNotAvailable :
=cRS
interval? : [nterval
until! : Time
interval? # Zerolnterval
shutd < noW + interval?
until! = shutd
repart! = NotAvailableReport
1

(The TooHanyUsers report schema has been directly incorporated in

implementation of the Reserve operation.)

the
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B Operation implementations

The four service operations are redefined here in terms of the refined concrete state,
As In the “User Manual”, the description of each operation has three sections, titled
Abstract, Definition and Reports.

The Abstract section is included to reduce cross-reference with the “User Manual”. It
gives the procedural interface to the operation for a program running on the client’s
machine. This will of course need to be adapted for a particular programming
language.

The Definition section gives the formal description of the operation in terms of the
concrete state together with informal details to aid the implementor. Extra state
compotents indicate extra variables which will be required in the final program.

The Reporta sections covers error conditions to produce a formal description of the
total operation.

Each schema definition may be conveniently implemented as a procedure in the final
program.
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RESERVE
Abstract
Reserve (interval? : Interval;
until! : Time;
report ! : Report}
Definition

In the concrele form of this operation, the combination of the Success and
TooManylsers report cases are optimised into a combined ‘available” definition.

tReserve_, .
AcRS
interval? : Interval
until! i Time
i, ] : Index

shutd’ = shutd
until! = now + interval?
clientnum € ran users =
users i = ¢lientnum
users’ = users
times’ = times & {i = until!}
report! = SuccessReport
clientnum € ran users =
Unused € ran users =

users J = Unused

users’ = users ® {J V> clientnum}
times’ = times & {j V until!}
report! = SuccessReport

Unused ¢ ran users =
users’ = users
times’ = times
report! = TooManyUsersReport

The shutdown time is unaffected.

A check is made to see whether an entry for the client already exists in the users
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array. If a client already has a reservation entry, then that entry in the array {with
index i) is used. Otherwise, if there are any unused entries in the array, one of them
(with index j) is used.

If the client does not have an existing entry and there are no unused entries, the state
remains unchanged and an error report is given.

Reporta

2
cReserve & cReserve_,

& cNotAvailable
# cNotKnownUser
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SETSHUTDOWN
Abstract
SetShutdown (shutdown? : Time;
threatens! : Users;
report ! : Report)
Definition
cSetShutdown, coce |
AcRS
shutdown? : Time
threatens! : Users

shutd’ = shutdown?

users’ = users
times’ = times
threatens! =

{i:Index | (users i # Unused) A
(times i > shutd’) * users i }

The shutdown time is set but the arrays are left unaffected.

The set of threatened unsers is returned. Each such user must have a valid entry in the
user array and a reservation time past the new shutdown time.

Reports

A cSuccess)
¢ cNotManager

cSetShutdown 2 (cSetShutdown

SuUccess
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STATUS
Abetract
Status (now! : Time;
shutdomn! : Time;
resns! : Reservations;
report! : Report)
Definition
cstatusSUCCESS 1
=¢RS
nowx! : Time;
shutdown! : Time;
resns! : Reservations;
now! = noW
shutdown! = shutd
resns! = {i:Index | usersi # Unused *
(users i V times i) }

The state of the service is not changed.

All the valid user array entries and their corresponding reservation times are returned
as a set of pairs. Threatened reservations may be deduced by the calling program
from the shutdown time.

Reporta

cStatus 2 (cStatus_ ... » cSuccess)

@ cNotManager
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Scavenging

In order to remove reservations which have expired, the service will perform a
scavenge before each operatian. This is in fact the only way in which reservations are
removed.

cScavenge |
cRS

cRS”

now : Time

shutd’ = shutd

¥ i:Index
(users i = Unused) v (times i < now) =
users’ | = Unused
(users i # Unused) A (times i 2 now) =
users’ i = users i

times’ = times

Scavenge does not change the shutdown time.

Valid entries with reservation times in the past are removed from the user array. The
reservation time array is left unchanged. The entries in the time array corresponding
to unused entries in the user array may be ignored.
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68 Complete service

This section provides a combined definition of the operations of the implemented
Reservation Service. It does not include details of the implementation of service
components, such as accounting and statistics, which are incorporated from the
“Common Service Framework”.

Both in the abstract and the concrete model of the service, the basic parameters are
supplemented by two hidder parameters, an operation identifier (op?) and the cost of
executing the operation {cost!).

$Parems
¢BasicParams
op? : Op
cost! : Money

Since all charges for this service depend only on the operation parameters, and not on
the refined state of the service, the definition of the ¢RSTer i ff framing schema given
in the *User Manual” does not require further elaboration for the implementation.
The implemented service operations can then be brought together info a single
definition as follows:

cRSServicelps ¢

{ cReserve A ¢Params | op? = ReserveOp y v
(cSetShutdown A dParams | op? = SetShutdownOp) v
{cStatus A ¢Params | op? = StatusOp )

cRSBasicOps 2 cScavenge 3 (PRSTariff A cRSServiceOps)
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7 Implementation correctnesa

It is necessary to show that the implementation of the Reservation Service as described
in this manual correctly implements the view presented in the user manual. In order to
do this, the state refinement step is expressed as an abatraction relation, and service
initialisaticn and each of the operation implementationa must be shown to achieve the
appropriale change of state with respect to thia relation.

For service initialisaiion, the concrete initial state must be shown io lead to a valid
abstract initial state. For each operation, it must be shown that the concrete operation
may be applied whenever the abstract operation may be applied, and that it will then
produce aresult satisfying the abstract specification.

When a complete definition is constructed by composing a number of schemas, such as
in defining the error behaviour of an operation, the proof can be constructed in an
equivalent manner.

The rest of this section describes what needs to be proved in order to show the
correctness of the implementation. The proofs themselves, because of their length, are
omitted here but are contained in [8].

State refinement

The state refinement step ig expressed by relating the abstract user atate to the
concrete implementation atate in the following abstraction relation.

RelRS
RS
cRS

shutdown = shutd
resns = (users P {Unused})! 3 times

The absiract variable shutdown is exactly implemented by the comcrete variable
shutd. The abstract reservations are found by taking the time entries in the concrete
time array which correspond to each of the ‘used’ eniries in the concrete user array.
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To show that there is a concrete implementation for every abstract state, we must
prove that

F ¥ RS » 3 cRS » RelRS

Initialisation
To show the correctness of the service initialisation we must prove that

cInitRS F 3 RS’ ¢ InitRS 4 RelRS’

Operation implementations

First consider the Reserve operation. In order to show the correctness of the total
operation, we {irst show the correctness of the partial operation in the ‘avaiable’ case.
This corresponds to cReserve,, ,,; in the implementation and the following in the
user manual.

A Success) ® TooManyUsers

Reserve 2 (Reserve

avail success

To show that the partial concrete operation is as applicable as the partial abstract one
we must prove that

pre Reserve A RelRS F pre cReserve

avail avarl

To show that the partial concrete operation correctly implements the partial abstract
operation we must prove that

pre Reserve_ . ; A cReserve

F 3RS + Reserve

avail A RelRS
avarl 4 RelRS’
In order to demomnstirate the correctness of the total operation, we must extend the
‘available’ case to include the other possible error conditions. The total concrete and
abatract definitions are respectively

cReserve cReserve_ . | ® cNotAvailable @ cNotKnownUser

Reserve,,,,; ® NotAvailable ® NotKnownUser

oo

Reserve

In both of the additional error cases, the error schemas depend only on the operatian
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parameters and not on the service state (in either concrete or abstract form). They
both leave the service state unchanged. Hence the refinement of the state does not
change either the applicability or the correctness of the total operations.

The correctness of the SetShutDown and Status operations follow the same pattern
of showing the correctness of the partial operation in the ‘success’ case and then
extending it to the total case.
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1 General

This chapter discusses some of the achievements and of the second phase of the
project. Some changes in the style of specifications contzined in the user manuals have
been made. Implementor manuals have been provided in the same formal style.
Additionally, the Common Service Framework has been developed to simplify service
specification. Experience has been gained using the original services, and this has
increased our confidence in the specifications presented.

1.1 Urer manual format

The style of the User Manuals has been improved during the second phase of the
project. For example, the description of the Reservation Service from the first phase,
presented in [1] and [7], can be compared with that presented here.

Error conditions have been more exactly specified in the Reports section for each
operation, using the schema overriding operator {®) to define an order of checking for
error conditions.

The cost of performing operations has been gathered together in a tariff schema after
the operations themselves have been presented. The cost of an operation is often of
secondary interest to understanding what the operation does, and clutters its
specification.

At the end of each manual, the operations specific to the service are combined with
those incorporated from the Common Service Framework to produce an overall
specification of the operations available in the service.

The initial state is now included formally for each service. The state of a service at any
given time is the result of the initial state being composed with all the operations which
have been performed to date.

1.2  Service implementation
With the jotroduction of luplementor Manuals, it has been possible to present an

implementor’s view of a service, showing how the abstract user’s view can be refined
towards a concrete implementation.
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A significant amount of effort has been spent on the presentation of thes manuals,
since it is all too easy for them to become swamped by detail. The implementor
manual for the Reservation Service, included here, is a relatively straightforward
example because of the simplicity of the service itself,

It has not been possible in the time available on this project to take the refinement of
the implementation of every service all the way down to the code of a particular
programming language. Other work in progress at Oxford has considered this step in
more detail [9] We have concentrated on the ‘architectural’ aspects of system design,
taking a top-down approach in which the structure of the implementation bas been of
greatest concern.

1.3 Representation of parameters

The types of parameters of service operations have been presented as Zsets. These
can be either given sets, assumed to be unstructured, such as Time or Report, or they
can be defined in Z as a set, sequence or other more complicated structure.

We have ignored the issue of how such types will be represented in a apecific
programming language. Clearly, at the lowest level, the parameter values must be
transmitted over tbe network between client and service in scme bit pattern. Since
there i3 no assumption that all client applications and service code will be written in
the same programming language, there would need to be a clear specification of the
representation at this level so that data conversion functions could be applied if
Lecessary.

Take, as an example, the set of Reservations which is returned by the Stetus
operation of the Reservation Service. This consists of a partial function (of [imited
size) from UserNum to Time. Most programming languages would nol be able to
implement this directly. Typically it could be implemented as an array with elements
consisting of a record containing a user number and associated time. The ordering of
the array could be arbitrary, or it may be ordered by user number or time.

Parameter refinement is still a topic under active discussion. It could be considered as
a relation between abstract and concrete parameters in a similar manner to the way
abstract and concrete states are related. It would therefore form a second, orthogonal,
dimension of refinement to that of the implementation of a service.
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2 Common framework

The introduction of the Common Service Framework has allowed a number of
definitions common to several services to be grouped together in one document. This
has also meant that the specifications of individual services have been made that much
gimpler,

The specification of the common framework has also illustrated how separate
subsystems can be defined, with their own state and operations, and then incorporated
into the definition of a complete service. It has addressed, at the specification level, the
issues of errors in the implementation of services or in the network over which they are
accessed,

An Implementoer Manual should be provided for the Common Service Framework,
which refines the state and provides operation implementations for each of the
subsystems and other components introduced in the common framework. This should
be a straightforward exercise, following the same pattern as the manuals provided for
other services.

2.1 Service and network errors

There are two kinds of errors specified in the common framework which are non-
determniistic. In other words, they do not arise because of some predicate which the
client’s parameters have failed to satisfy, but because of an error arising in the
underlying implementation. Service errors are caused by a failure in the service
implementation, such as a disk error in a storage service. Network errors are caused by
a failure in communication over the network.

Both kinds of error have been made visible to the client through the return of
corresponding error report values. It is left to the client’s application to take
appropriate action in the case of such errors arising. At a higher level of abstraction, it
might be possible to hide transient errors from the client by automatically retrying
operations until they achieved a definite result (i.e success, or a specific error report).

The specification of these non-deterministic errors is a problem. When a service error
occurs, we have gpecified that the state of the service remains unchanged. This may be
hard to achieve in practice. For example, if a disk crashes and loses some of its data,
the service will clearly not be able to maintain that part of its state. To keep within its
specification, it would be obliged to return a service error for any subsequent operation
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which depended on information in the lost part of the state, effectively rendering it
invisible to any client.

When a network error occurs, we have specified that either the state of the service
remains unchanged or that the operation has been completed {though the result is not
visible to the client). These two cases correspond to a communication failure in
transmitting the operation request or reply respectively. On receiving such an error
report, the client may re-attempt the operation. However, if the operalion is not
idempotent, such as one which creates or deletes a cornponent in the service state, this
will produce unwanted side-effects. A stricter specification might eliminate the second
case, so that this error could be handled in the same way as a service error. The
network implementation would then be obliged to provide a mechanism to recover
from loss of operation replies.

2.2 Operators on basic seta

One area which is of concern in many Z specifications involves dealing with the partial
nature of some of the underlying operators.

Operators such as addition, subtraction and comparison are assumed to exist for some
of the sets, such as Time and Money, ibtroduced in the Common Service Framework.
These operators are defined to be total in the abstract specification to avoid having to
introduce error checks and reports when they are invoked outside their domain.

Since these sets are to be implemented they must be finite. Hence ‘overflow’ or
‘underflow’ (i.e the required result lies outside the defined range) could eccur when
adding or subtractiog some values. Many arithmetic implementations in hardware
simply wrap round when this occurs, producing undetectable invalid results. A more
sensible approach is to return some standard error value in these cases. Cutput
parameters may be checked for this value by the client if desired.
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3 Reservation Service

The follewing comments refer specifically to the Reservation Service presented in the
previous chapters.

3.1 Design of the service

The design of the Reservation Service reflects ite provision as part of a distributed
system rather than a monolithic system. When building a distributed operating system
from a mumber of services which are largely independent of each other, it is possible
that one service needs to be enabled or disabled while other services and clients
continue to run.

When a service is disabled (shutdown), there should not be any client who is at that
moment involved in some series of interactions with it - because interruption of such a
series could be quite inconvenient for the client. If these series (or transactions) can
be recognised by the service, it is posgible to avoid this inconvenience as follows.

Possible shutdown procedure:

1.  The service manager requests shutdown of the service.
The service rejects any attempt to begin a new transaction, but allows
current transactions to continue.

3. When all transactions have compleled, the service notifies the service
manager that shutdown is complete.

However, there are some problems; for example, a client might fail to complete a
transaction (presumably due to accidental failure of the client’s own software). If this
happened, the service would never shutdown. A second problem is that for some
services (e.g. the low-level block storage service) there is no recognisable transaction
structure, and so the above scheme cannol be used at all.

The Reservation Service presented here does not interact at all with the service or
services it reserves; it interacts only with its own clients, and with the service manager.
It allows clients to state for how long they would like to use the available services, and
it allows the service manager to set a shutdown fime beyond which all reservations
are to be rejected. Tt becomes the clients’ responsibility to protect themselves from
sudden shutdown of the services (hy making reservations), and the service manager’s
responsibility to disable the service only after the shutdown time. Thus a shutdown
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can be unexpected only by those clients who have made no reservation [or if the
service manager deliberately ignores cutstanding reservations).

A typical use of the Reservation Service would be for clients to include a reservation
request at the start of every program using the available services. The duration of the
reservation should be long enough to allow the program to complete, but short enough
to allow the service manager to make a reasonably spontanecus decision toshutdown.
A reservation time of half an hour has proved convenjent in practice for many of the
applications making use of our services.

3.2 A problem discovered

The Reservation Service was in use before the start of the current phase of the project,
and its original User Manual has been published previously [1,7]. However an error
was discovered during tbe use of the service which was not anticipated during the
design stage. This has led to a small revision in the specification of one of the error
schemas for the service.

The problem arose when a client made a reservation successfully and subsequently
tried to clear it by making a reservation of zero-interval in the normal way. However
the service reported that it was “Not Available” and bence the reservation could not
be removed.

The specification in tbe User Manual was examined to see how this state of affairs
might transpire. T'o obtain the “Not Available” report, the following precondition ig
the NotAvailable schema had to hold:

shutdown < now + interval?

With interval? being zero, this implied that the shutdown time was set sarlier than
the current time. Given that the client had earlier successfully made a reservation that
was still in force (and hence needed to be cleared), this implied that the shutdown time
had been brought forward by the service manager, threatening the pending
reservation. In fact, the client was a laser printing service which was known to always
make balf-hour reservations. The manager had set a shutdown time earlier than the
end of the printing service’s reservation time, assuming that it could clear its current
reservation but not make any new reservations. The manager was prepared to wait
uniil the reservation was cleared as an indication tbat the printer had finished its
current job - but the reservation was never cleared.
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3.3 A problem solved

To prevent the problem of not being able to cancel reservatioms after the shutdown
time, two solutions were proposed. The choice between them illustrates the kind of
design choice in which additional complexity in a single operation rmay be balanced
against the use of an additional operation. A first solution involves adding an extra
precondition to the original NotAvailable schema:

interval? # ZeroInterval

This means that a call to the Reserve operation with a ZeroInterval can no longer
return with a Not4vailableReport.

This is the solution presented in the previous chapters in which the Reserve operation
serves the dnal purpose of making a reservation {when interval? # Zerolnterval)
and also clearing a reservation (when interval? = Zerolnterval).

An alternative solution to this would be to provide a new Cancel operation for
clearing a reservation. This complicates the service by providing an extra operation,
which is the reason it was not included in the original version of the service. However
it is likely that its inclusion would have prevented the problem just described from
arising. A specification for this operation is presented overleaf. Note that the
NotAvailable schema need no longer check for a ZeroInterval. A client could still
make a reservation for a zero interval, which would normally clear the reservation
except in the circumstances described above,

An additional error schema is required for use with the Cancel operation. This
returns an error report if the client has no cutstanding reservation.

NotReserved
=RS

clientnum ¢ dom resns
report! = NotReservedReport
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CANCEL

Abstract
Cancel (report! : Report)

A client can cancel a reservation which has previously been made.

Definition
Cancel _  ce |
ARS
shiutdonwn’ = shutdown
resns’ = {clientnum} 4 resns

The shutdown time is unaffected. The client's reservation is removed.

Reports

A

Cancel 2 ({(Cancel_ . ... » Success)

® NotReserved

An error is reported if the client does not have an outstanding reservation.

91
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3.4 Reservation of individual services

As implemented, the Reservation Service is a separate service in its own right. Making
a reservation does not affect any other service, and it iz assumed that the client may
wish to make use of any service. However in a larger distributed system, with a greater
number of services to choose from, it may well make sense to include the reservation
operations in individual services so that they may be shutdown independently. To do
this, another layer would need to be defined in the “Common Service Framework”
containing the reservation state and operations. This could then be included in any
services requiring their own (standard) reservation and shutdown procedures.

3.5 Proof of correctness

The design in the Implementor Manual has been proven correct with respect to the
User Manual, Due to their length, the proofa have been omitted here; they can be
found in a separate document [8]. In additien, the document shows how the operations
can then be programmed in Dijkstra’s guarded command language to meet the
specifications in the Implementor Manual.
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Appendix A

Index of formal definitions

The following index lisis the page numbers on which each formal name s defined in
the iext. Those names which are defined twice correspond to duplicated entries in the
User and Implementor Manuals. Names which have a special symbol (4, ¢, =, ¢)as a
prefix are listed after the corresponding base name.
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Appendix B

Glossary of Z notation

A glossary of the Z mathematical and schema notation used in this monograph is
included here for easy reference. Readers should note that the definitive concrete and
abstract syntax for Z is available elsewhere [6].



Z Reference Glossary
Mathematical Notation
1. Definitions and declarations.

Let x, x, be identifiers, t, t, be terms and
T, T, be sets.

{T,. Tz ..] Introduction of given sets.
x 2t Definition of x as syntactically
equivalent to t.
x 313 xg o<t L | ok <<t >
Data type definition (the <<t>>
terms are opticnal).
x: T Declaration of x as type T.
n List of declarations.
Declarations of the same
type: & xq:T;ix :T.

X3 Tys o x.: T

Xy X 2T

2. Logie.

Let P, Q be predicates and U declarations.

- P Negation: “not P”.
Pad Conjunction: P and Q~.
Pva Disjunction: “F or Q™
2 ~(~-PA-Q).
P = Q0 Implication: “P implies Q” or
“f P then Q7 2 =P v (.
P & Q0 Equivalence: P is logically
equivalent to 0°:
2 (P=0Q) a(@=P).
true Logical constant.
false 2 ~true

¥ D * P Universal quantification:
“for all D,P holds”.
1 0 - P Existential quantification:
“there exists D such that P™.
3, D « P Unique existence: “there exists
a unique D such that P?,
(YD« P =0).
(3D« P A~0Q).

volpP-d
io|p-Q

1

Glossary 09

P where D | Q@ Where clause:
23DlQ-P

P where x;2t;:.:;x 2t Where clause:
P holds, with the syntactic
definition(s} defined locally.

DFP Theorem: ¢ F ¥ D - P,

3. Sets.

Let 5, T and X be sets; t, t terms; P a
predicate and D declarations.

t; = t; Equality between terms.

ty ¥ t; Inequality: & ~(t, = t,).

t €5 Set membership: “ is an element
of 5™

t £S5 Non-membership: 2 ~(t € S).

2 Empty set: £ { x:{ | false }.

s5¢T Set inclusion:
2 (VY x:5+« x€eT).

SeT Strict et inclusion:
eSeTasSal.

{ty. tz . t,}  The sei containing
t,ty .and t .

{D ] P+ t} Thesetof t’s such that given
the declarations D, P holds.

{DIP} GivenDexy:T,; ..

st T,

€ {DIP=(xy,..x)3}.
{D+t} & {D] true - t}.
{ty, tz ., t)) Ordered n-tuple

Oftl, tz, and tn‘

T, xTpx .. xT  Cartesian product:
the set of all n-tuples such that
the ith componentis of type T .

PS Powerset: the set of all subsets
of 5.
P, 5 Non-empty powerset:
2 FS\ {8}.
FS Set of finite subsets of 5:
2 {T: P S | Tisfinite}.
F, 5 Non-empty finite set;
2 FS\ {o).
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SnT Set intersection: given S, T: P X,
2 {x:X | x€5 A x€T}.
SuT Set union: given S, T: P X,
2 {x:X | x€5 v xeT},
SAT Set difference: given 5, T: P X,
g {x:X | x€5 A x€T}.
nss Distributed set intersection:
given SS: P (P X),
2 {x:X | (¥5:55 » x€8)}.
U ss Distributed set union:
given 55: P (P X},
2 {x:X | {35:55 « x€5)}.
BS Size (number of distinct
elernents) of a finite set.
uD | P + t Arbitrary choice from the
seb{D | P+ t}.
uD «t 2uD]|true-t

4. Relations.

A relation 8 modelled by a set of ordered
pairs hence operators defmed for sets can
be used on relations. Let X, Y, and Z be

setg; x:X; y:Y; and R:X & Y,

Xe

x Ry

x /=y
dom R

ran R

Ri1R;

The set of relations from X to Y:
2 P (X xY).
x ig related by K to y:
2 {x,y) €R. {Ris often
underlined for clarity.)
Maplet: 2 (x, y).
The domain of a relation:
2 {x:X | 3y:Y » x Ry},
The range of a relation:
2 {y:Y | 3x:X » x Ry}
Forward relational composition:
givenRy: X ¥; Ry Y & Z,
g {x:X; z:Z | Jy:=Y =

x Ryy AyRyz}.
Relational composition:
¢ R, 5 R,.
Inverse of relation R:

g {y:Y; x:xX | xRyl

idX

RISH

S 4R

S 4R

RPT

RET

Identity function on the set X:

2 {x: X - x—x}.

The relation R composed with
itself k times: given R : X & X,
ROz id X, R*1 2R o R.
Reflexive transitive closure:
2U {n:N+ R"}.
Non-reflexive transitive closure:
e | {r\:N1 « RN}
Relational image: given S: P X,
2 {y:¥ | 3x:5 +« xRyl.
Domain restriction to S:

given 5: P X,

2 {x:X;y:¥Y | x€S A xRy}.
Domain subtraction:

given 5: P X,

2 (X\ S 4R.

Range restriction to T:

given T: P Y,

& {:X5 ysY | xRy A y€T}.
Range subtraction of T:

given T: P Y,

2R P (YNT).

Infix relation declaration (often
underlined in use for clarity).

5. Funetionsa.

A function is a relation with the property

that for each element in its domain there is
a unique element in its range related to it.
As functions are relations all the operators

{or relations also apply to functions.

X oY

The set of partial functions from

XtoY:

2 {f: XY | ¥x: dom f
{(J,y:Y-xf yi}.

The set of total functions from

XtoY:

2 {f: ¥X+Y | dom f=X}.



=1 >3-4
—>—ark

- -8B

flefz
f_
(_f_)
_f

ft
fit)
AD | P -
AD - t

The set of partial injective (one-
to-one} functions from X toY:
g {f:XPY |[Vy:ranf-
(31x-.X-fx=g)}.

The set of total injective
functions from X to Y:
a (X Y) n(X—>Y),
The set of partial surjective
functions from X to Y:
& {f: X+ Y| ranf=Y}
The set of total suriective
functions from X to Y:
2 (X-=Y) n(X=3Y).
The set of total bijective
(injective and surjective)
functions from X to ¥:
a (X—=Y) n(X>Y).

The set of finite partial
functions from X to Y:
g {f: x+»YI

feF (XxY)}

Partial functions.
Total functions.
Finite functions.

Functional overriding: given
f.fz: XY,
2 (dom f, 4f{) U fs.
Prefix function declaration
(default if no underlines used).
Infix function declaration (often
underlined in use for clarity).
Postfix function declaration.
The function f applied tot.
e f t.

t Lambda-abstraction:

the function that, given an
argument x of type X such
that P holds, the result is t.
Given Daxy:Tys s PR
{DIP- (xl,...,xn)‘—'t}.
AD | true-t

w» m
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6. Nuombers.

Let m, n be patural numbers.

N The set of natural oumbers
(non-negative integers).

Ny The set of strictly positive
natural numbers: £ N\ {O}.

Z The set of integers (positive,

sero and negative).

suce n  Successive ascendizg natural
number.

pred n  Previous descending natural
number: 2 suce In.

m+n Addition: 2 succ” m.

m-n Subtraction: & pred” m.

m*n Multiplication: & {_+m)" 0.

m giv n Integer division.

m mod n Modulo arithmetic.

m Exponentiation: & {_#m)" 1.

mEn Less than or equal, Ordering:
_€_ ¢ suce’.

m<n Less than, Strict ordering:

A

2 mgnAam#EN.

m2n Greater than or equal: & n<m.
m>n Greater than: £ n<m.
m..n Range: & {k:N|mskakgn).

min S Minimum of a finile set;
for 5: F; N, min5 € 5
{(Vx:5 = x 2 min S),

max 5 Maximum of a finite set;
forS: Fy N, max5 € 5 A
(¥x:5 » x < max $).

7. Orders.

partial_order X
The set of partial orders on X:
2 {R:XeX | Vg, 2:X -
xRx A
xRy A yRx = x=y »
xRy n yRz = xRz}
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total _order X

The set of total orders on X:

2 {R:pertial _order|¥x, y: X+

xRy v yRx}.
mongtonic X <y The set of functions
from X to X that are monotonic
with respect to the order <y on X:
2 {f:X-pX | ¥x,y:X-
x <y = Flx) < F(u)}s

8. Sequences.

Let a, b be elements of sequsnces, A, B be
sequences and m, n be natural numbers.

seq X The set of sequences whose
elements are drawn from X:
2 {A:N®X |
dom A = 1..8A}.
< The empty sequence @.
seq; X  The set of non-empty sequences:

2 seq X \ {O}
{ay, ., 8p
2 {1—a,, .., n—*a_}.
<@y, o, 8> <by, ., b
Concatenation:
= <31, - an, bl""' brn>P
OTA=ATO = A
The first element of a
non-empty sequence:
A#Z O = head A = A(1).
The final element of a
non-empty sequence:
A# O = last A = A(#A).
All but the head of a sequence:
tail (x> TA) = A.
front A All but the last of a sequence:
front(A ™ <x>) = A.
rev <a,, a; -, 8

head A

last A

tail A

Reverse:

{a,, w~ » 8p 8y,
rev & = O,

FAA Distributed concatenation:

given AA : seq(seq{X)),
2 AA(1) T L T AA(mAA),
/O = O

5/AR Distributed relational
composition:
given AR : seq (X © X),
2 AR(1) 3 .. 3 AR{®AR),
1/ = id X.

@/AR Distribu ted overriding:
given A : seqg (X & Y),
2 AR{1) @ .. ® AR(8AR),
e/ ¢ = @.

squash f Convert a finite function,
f: M- X, into a sequence by
squashing its domain. That is,
squash @ = O,
and if £ # @ then
squash f =
F(i)> squash{{i}q4 f)
where i = min(dom f}.
S 1A Index restriction:
2 squash(S qA).
Sequence restriction:
2 squash(ADT).
disjoint AS Pairwise disjoint:
given AS: seq (P X},
2 (V i, j: dom AS + i#j
= AS(i) nAS{]}) = B).
AS partitions 5
2 disjoint AS A
U ran AS = 5.
Contiguous subsequence:
2 (3C,D: seq X -
CTATD = B).

ALT

A in B

9. Bags.
bag X The set of bags whose elements
are drawn from X: 2 X -» N,
items s The bag of items contained in
the sequence s: & {x:rans-
x—u{i:domsls{i)=x}}



Schema Notation
Schema definition: a schema groups
together some declarations of variables and
a predicate relating these variables. There
are two ways of writing schemas: vertically,
for example
5

x : M
y : seq N

x € #y

or horizontally, for the same example
S 2 { x: N; y: seqN | xguy ].
Use in signatures after ¥, %, {...}, etc.:
(VS » y # {3) 2 (¥x:N; y: seq N |
xsty + y#FED).

Schemas as types: when a schema name S is
used as a type it stands for the set of all
objects described by the schema, {S}. For
example, W : S declares a variable w with
components x (of type N) and y (of type

seq N)such that x < #y,

Projection functions: the component names
of a schema may be used as projection (or
selector) functions. For example, given
WS, W.xis W' x component and w.y is
its y component; of course, the {ollowing
predicate holds: w.x € #w.y. Additionally,
given w : X - S5, W (XS.x) is a function
XN etc.

s The tuple
schema’s variables: for example,
85 is (x,y). Where there is
no risk of ambiguity, the 8 is
sometimes omitted, so that just
“S" i written for “{x,y)".

formed from a

pred S  The predicate part of a schema:

eg. pred S is x g ny.
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Inclusion A schema 5 may be included
within the declarations of a
schema T, in which case the
declarations of S are merged
with the other declarations of T
(variables declared in both S
and T must be of the same type)
and the predicates of S and T
are conjoined. Forexample,

T
S t
: N
z < x
i
B
1
x, z: N
y : seq N

X € By A Z <X

S|P The schema S with P conjoined
to its predicate part. E.g.,
(5] x>0)is

[ x:N:;y:seq N | xsty A x>0 ],

S, D The schema 5 with the
declarations D merged with the
declarations of 5. For example,
(S : z:N) is
[ x,z:N; y:seq N | xs8y ].

S[rew/old] Renaming of components:
the schema S in which the
component old has been
renamed to new both in the
declaration and at its every free
occurrence in the predicate. For
example, 5{z/x] is
[ z:N: yiseq N | z < sy ]
and S{y/x, x/yl is
[ u:N: x:seqg N | y € ux ],
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Decoration

SAT

SVT

Glossary

In the second case above, the
renaming is simultaneous,

Decoration
subscript,
systematic
components

with  prime,

superscript, etc;

renaming of the
declared in the

schema. For example, 5’ is

[« :N;y :seqN | x"<#y’].

The schema 5 with its predicate
part negated. E.g., -5 is
[ x:N: y:seq N | —{xs#ty)].

The schema formed f{rom
schemas S and T by merging
their declarations (see inclusion
above) and conpining (and-ing)
their predicates. Given T & [x:

N; zz: PN | x€z],S A Tis

x : N
y : seq N
z: PN

x £ #y A x € 2

The schema formed {rom
schemas § and T by merging
their declarations and disjoining
{or-ing) their predicates. For
example, 5 ¥ T is

x : N
y : seq N
z: PN

x € #y V x € 2
i

formed from
schemas S and T by merging
their declarations and taking

pred S = pred T as the

The schema

predicate. E.g.,5 = T is

x N
y : seq N
z PN

x € By = x € 2

1
S« T The schema formed from
schemas S and T by merging
their declarations and taking
pred S & pred T as the
predicate. Eg.,.5 & T is
1
x : N
y : seq N
z: PN
x € Hy S x €z
]
SN vy va o, vy)
Hiding: the schema S with the

variables Vi Yzeee s
hidden: the variables listed are
removed from the declarations
and are existentially quantified
in the predicate. Eg., S \ x is
[y:seq NI (Ix:Nexsty)]. (We
omit the parentheses when only
one variable is hidden.) A
schema may be specified instead
of a list of variables; in this case
the wvariables declared in that
schema  are hidden. For
example, (S A T}\S is

and v,

z: PN

{3 x: N; y: seq N ¢
x € By A x € Z)




S r (le vz

WV

Projection: The schema 5 with
any variables that do not occur
in the list v, vs, .., v, hidden:
the variables removed from the
existentially
quantified in the predicate. E.g.,
(SATIMx, y) is

declarations are

x ¢ N
y : seq N

PN-
#y A x € z)

(3 z :

X £

As for hiding above, we may
project a single variable with no
parentheses or the variables in a
schema.

The following conventions are used for

variable names

in those schemas which

Tepresent operations on some state:

undashed state before,
dashed (“’")  state after,
ending in “?” inputs to {(arguments for),

ending in

The following schema operations

1" outputs from (results of}

the operation.

only

apply to schemas following the above
conventions.

pre S

Precondition: all the state after
components (dashed) and the

outputs {ending in “!") are
hidden. E.g. given
S 1
x?, s, s’, y : N
s’ = g-=x7 Ayl = g
}

pre S is

post S

SeT
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x?, s : N

(3 s, y' :N-

s’ = s-x? A y! = g)
- 1

Postcondition: this ia similar to
precondition except all the state
before components (undashed)
and inputs (ending in “?”) are
hidden. (Note  that  this
definition differs from some
others, in which the
“postcondition” is the predicate
of initial state,
inputs, outputs, and final state.)

relating all

Overriding:

2 (SA-preT)VT.

For example, given S above and
T

x?, s, s° N
8 <x? A g’ =g
3
SeTis
1
’
x?, 5, s', y « N
(5 = s=x? Ayl = 5 A
~(Is': N«
s < x7 As’ = 5))
VvV {s < x? A = s)
J

which simplifies to

.
Fx?, s, s, y : N

(s’ =sx? Ayl =5 A
s 2 x?) ¥
(s < x? A s’ = g)
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Schema cotposition: if we
consider an intermediate state
that is both the final state of the
operation S and the initial state
of the operation T then the
cemposition of § and T is the
operation which relates the
initial state of 5 to the final
state of T through the
intermediate state. To form the
composition of S and T we take
the state-after components of S
and the state-before components
of T that have a basename” in
common, rename both to new
variables, take the schema which
is the “and® (A) of the resulting
schemas, and hide the new
variables. E.g.,5 1 T is

x?,s, s, yu' : N

(Is5: N.
sg = a-x Ayl =54

s < x? A 8’ = s4)
1

* basename is the name with

any decoration (“'®, 17 477,
eic.) removed.
S »»> T  Piping: this schema operation is
similar to schema composition;
the difference is that, rather than
identifying the state after
components of S with the state
before components of T, the
output components of S (ending
in “!”} are identified with the
input components of T (ending
in “?”) with the same basename.

The following conventions are used for
prefixing of schema names:

AS change of before to after state,
=5 no change of state,
S framing schema for definition of

further operations.

For example

AS & 5 a5

=5 2 AS | 65 = 85y’
¢S 2 AS | y = g’
SDP a ¢5 I x': 0
Other Definitions

Axiomatic
declarations which satisfy one or more

definition: Introduces global

predicates for use in the entire document.

i declaration(s)

l predicate(s)

or horizontally: DIP

Generic  constant: mtroduces generic
declarations parameterised by sets A, B,
etc. which satisfy the given predicates.

—[A.B, .| ———y

declaration(s)

predicate(s)

Generic

generic schema parameterised by sets A, B,

schema  definition: introduces
etc. When used subsequently, the schema

should be instantiated (e.g. S[X, Y, ..]).

S[AB )
declaration(s)

predicate(s)






