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Specifying System Implementations in Z

Jonathan Bowen
Roger Gimson
Stig Topp-Jgrgensen

Abstract

In an introductory chapter, an outline is presented of some techniques for specifying
the building of systems from subsystems using the formal notation Z. These techniques
have been applied to the specification of implementations for services in a distributed
system.

The major part of the monograph consists of an extended example showing how the
implementalion of a simple file server can he specified using some of the outlined
techniques. The exainple file service is implemented in terms of a lower-level storage
service. The specification includes the bandling of errors that may arise because of this
dependency.
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Introduction

One of the most important steps in the implementation of any system of significant size
is the clear identification of, and separalion of the code into, a number of well-specified
subsystems. Together, the subsystems implement the desired behaviour of the
complete system, but each suhsystem can he implemented separately as.a system-of its
own,

This monograph is concerned with the specification of system implementations
constructed from a number of separate subsystems. The specifications are expressed
in the formal notation Z [1-4]. The first chapter discusses the use of Z to build systems
from subsystems. The second chapter is an extended example showing how the
implementation of a simple file service can be expressed using these techniques.

The Distributed Computing Software Project, from which this work arises, has been
investigating the design, implementation and documentation of distributed system
services using formal methods. Two earlier monographs present and discuss the
general approach to service specification [5], and provide a larger example of the use of
formal specification as a basis for the documentation of a service {6).

Some of the techniques presented in the first chapter have already been used in the
earlier monographs. However, the file service implementation discussed in the second
chapler is wiore complex and requires a different approach. In particular, it relies on a
clear specification of the sequencing of suboperations within the implementation. Some
of the extra complexity arises from the use of a separate lower-level storage service as
part of the implementation. This then leads on to consideration of the behaviour of the
implementation in the case of errors — which were ignored in the earlier examples.
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1 Introduction

An important part of producing an implementation from a system design is the
decomposition of the design into a number of separable subsystems, corresponding to
separately coded parts of the implementation. It is from these subsystems that the
complete implementation design is built.

In Z, the building of the state of a system from the states of a number of separate
subsystems is relatively straighiforward. Building the operations of the complete
system frow operations of the subsystems involves more detailed choices, particularly
concerning the bandling of parameters.

Few of the techniques described here are especially new (see [7] for some related
examples). They have been used by Z practitioners in particular specifications for
some time. However, no single document provides an overview of these techniques.
The purpese of this chapter is to describe and contrast the techniques themselves,
particularly when operation parameters are involved.
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2 Conjoining states
Assume we wish to build a system from two existing subsystems. Let us call the

subsysterns A and B, and the combined system C.

Assume also that we already have models of the two subsystems in Z. In particular,
the subsystems have state components S, and Sg.

The state of the combined system S¢ is simply the conjunction of the states of the
subsystems.

Sc & San S

Note that by use of schema conjunction we also cover the use of schema inclusion,
so that the above definition could equally well have been written as follows.

If the subsystems have been separately specified, we will normally wish the
components of their states to have disjoint names to eliminate unwanted superposition.

names (Sy) N names(Sy) = @

Though superposition of names in conjoined schemas has been found useful in some
specifications, it implies ‘sharing’ of state components between the subsystems, which
is contrary to good information hiding principles in conventional software design. We
ghall assume In the following that the names are disjoint. If necessary, this can be
achieved by appropriate decoration or renaming of the original subsystems.
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3 Operations
The operations which can be performed on the combined system will be built from the

suboperations which are assumed to have already been defined on the subsystems.

Assume that we have operations P, and Qg defined on subsystems A and B
respectively.

PR
Ug

8Sq | .
855 | -

nw w

We assume AS and =S are deflined in the conventional way unless otherwise specified.
In particular, AS denotes an arbitrary change of state and =5 denotes a change of
state where the ‘before’ and ‘after’ states are the same:

4AS
S

S w5
AS | 85" = 65

mnom

0

8.1 Conjoining operations

The simplest way in which to specify an operation that can be applied to the combined
system i to conjoin subsystem operations.

Re 2 Pqalg

This simply says that the effect of the combined operation Rr on S¢ is the same as
performing P, on S, and Qg on Sg. Since the subsystem state compouents are disjoint,
the operations on the subsystems may be thought of as being performed ‘in parallel’
(or, equally well, as being performed one after the other, in either order).

3.2 Operation parameters

In Z, parameters to operations are simply expressed as extra components {additional to
those of the ‘before’ and ‘after’ state) in the signature of the operation schema. By
convention, their names are written with a suffix of “?” or ‘!’ indicating input and
output parameters respectively. However, this does not provide a semantic difference
from other schema components.
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There is nothing to prevent the predicate in an operation schemna frorn mposing a
constraint on the value of an input parameter which may be incompatible with some
values that might be supplied by the ‘calling’ environment. Similarly, there is nothing
which forces the predicate to constrain an output parameter to have a particular value.
(These freedoms are essential for allowing partial or non-deterministic specifications to
be written.)

3.3 Disjoint parameters

It is simple to pass parameters to subsystem operations when the parameters are
disjoint. Take the following suboperation definitions.

2 ASp: t7:T; ut:U |
Qg & ASg: v?:¥; w!:l | s

Since the parameters are non-interfering, the suboperations may be conpined as
before, giving 2 combined system operation with four parameters.

Re 2 PaaQy
8Sc; t2:T; v2:V; ul:U; wl:l |

n

The more common situation, however, is for there to be some sharing of parameters.

3.4 Shared parameters

The sharing may simply allow some parameters to be common inputs or common
outputs to hoth suboperations. Take this example.

PQ
Qg

ASq: t?:T; uw!l:U |
bSg: t?:T; ul:L |

w o

In other words, t? is input to both suboperations, and u! is output from both
suboperations. Again the suboperations may be conjoined, with the parameter names
becoming superposed.

Re @ Pa~ly
= ASg: t?:T; ul:U |

Some care is required to ensure that this combination remains meaningful. The
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precondition of R will be the conjunction of the preconditions of P, and Qg, which
may mean that its domain is restricted. In particular, the combined operation will only
be applicable if any constraints imposed on the value of t? by each suboperation are
both satisfied.

With a shared output parameter, such as u! above, care must also be taken that the
two operations do not simultaneously define incompatible output values. The most
frequent use of such shared outputs is for something like a report value indicating the
outcome of the operation. In this case, a common situation would be for each
suboperation to define the outpu$ value for disjoint parts of the input domain.

3.5 Parameters between suboperations

Another form of sharing parameters is when some output produced by one
suboperation is to be used as input to another suboperation. This normally implies
that, in the implementation, the execution of the first suboperation must be completed
before the second is started. Sequential composition of operation schemas, which we
counsider later, is the obvious way of comhining the operations to reflect this ordering.
However, a more abstract specification, which avoids overspecification of execution
order, can be achieved with operation conjunction, if used with care.

Let us consider an example. Take the following suboperations.

Pﬂ
Ug

8Sqs uliX | .
ASg; v?iX | .

(> (5]

We wish the output of Py to be the input to Qg. This can be expressed using
schema conjunction with renaming as follows.

Re & Pplx/u!l A Qgix/v?]

The correspondence between parameters is achieved by renaming to a common
intermediate name x (in preference to the asymmetric, and possibly confusing,
alternative: Py A Qglu!/v?]).

The intermediate x may be considered as simply a device for describing the parameter

correspondence, in which case it should probably be hidden to avoid clashes in
subsequent operation combinations.

Re & (Palx/u!]l A Qglx/v?)N(x)



Building Systers from Subsystems in Z 13

3.6 Parameter passing cycles

Care must be taken not to imtroduce unimplementable parameter passing structures
containing cycles, the most trivial example being where each suboperation of a pair
provides an output which is input to the other.

Pa & 854 t?:Y: ul:X |
Qg & ASg; v?:X; wh:Y |
Re 2 Paly/t?, x/u!] A Qglx/v?,y/ul] 772

Though there may be nothing wrong with such a non-comstructive specification, it
means that an mplementation cannot be constructed by any meaningful combination
of the two subsystem operations to satisfy this specification.

3.7 Piped parameters

A special schema notation has been suggested for use in situations where parameters
are passed from one suboperation to the next in the style of a pipeline.

Re & Paix!/ul] > Qg[x?/v?]

The renaming is slightly different from the conjoined case, since piping superposes
only matching ‘!’ and ‘?’ parameters, and it includes the hiding of such matched
parameters. With suitable initial choice of parameter names in the subsysterns the
renaming would be unnecessary.
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4 Homogeneous operations

A wider range of operation constructors becomes applicable if the operations to be
composed are homogeneous; in other words, if they are defined over the same state
rather thaneach being defined on a different subsystem state.

We can redefine the subsystem operations to apply to the combined system state,
ensuring in each case that the other subsystern does not change.

Pe 2 Py A =S
G Ug ~ =54

[P

This could also be written in a more general {form, avoiding explicit mention of the
unchanging subsystem (useful when there are several subsystems conjoined in the
combined state), through the use of schema hiding.

Pc
Q¢

Pa A =Sc\AS,
Qg A =Sc\ASy

[D 1)

4.1 Disjoining operations

Once homogeneous forms of the subsystem operations have been defined, schema
disjunction becomes available as an operation combinator.

Rc & Pov Qg

In general, this specifies a non-deterministic choice between performing one
suboperation or the other, leaving the remaining subsystem unchanged.

However, in the situation that the preconditions of the two suboperations are mutually
exclusive, only one of the suboperations is applicable for a given set of input values
and the choice reduces to a deterministic one.
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4.2 Overriding operations

A special case of disjoining operations is when the precondition of Qg is uvsed to
determiue the choice between Pp and Qc. In this case the special notation of schema
overriding becomes applicable.

Re Pe ® Qc
(Pc A ~pre Q¢) v Q

n

N

This is most frequently encountered in the specification of exceptional conditions, or
error reports, where the precondition of Q- is an error condition that must be [alse for
the ‘mormal’ operation Pp to succeed, and where otherwise Q; is used to define the
outcome in the error case.
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5 Sequencing operations

The next form of operation combinator can be seen as introducing a more concrete
view of the consiruction of systems. Tu particular, it iotroduces the idea of operation
seqnencing, so that one suboperation is explicitly specified as following another. In this
sense, it forms the first step towards more implementation-oriented specifications.

5.1 Composing operations

Schema composition can be used to comhine homogeneous subsystem operations. The
combined operation is then writteu iu an explicitly ‘sequential’ form.

Re 2 Pc s Qg or Rc & Q¢ & Pc

If there is no ‘communication’ hetween the iwo subsystems {because they affect
different paris of the state and they have no parameters), the ordering is unimportant
and both alternatives would reduce to the same net effect as the conjunction Py A Og.
Things get more complicated, however, when parameters are introduced.

The same technique of using a hidden variable (as in section 4.5) can be used, with the

advantage that composition makes it easier to see that the suboperation which sets the
value of lhe variable must precede the suboperation which makes use of that value.

Re & (Pelx/ul) s Qc(x/v?])\(x)

5.2 Parameter buffers

An altemative to having a hidden variable to sbow parameter correspondence is to
explicitly include a ‘parameter buffer’ in the combined system state.

XBuf 2 [x:X]
S¢ & Su A S A XBuf
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Each suboperation is extended to explicitly set, or leave unchanged, the value of this
buffer, as well as to leave other subsystems unchanged. Any operation may make use
of the current value of the buffer.

Pe & Palx'/ul] A =S\ASR\AXBUf
Qe 2 Qglx /v?] A =5:\45,
Rc & Po o3 Qc

Here, P sets the value of the buffer, while Q¢ leaves it unchanged but makes use of its
current value. {Both definitions include =S¢, which includes #XBuf, hut in P¢ change
is allowed because AXBuf is hidden from =5¢).

This use of buffers is clearly closer to an implementation-oriented description, ir which
the buffer may be seen as a programming language variable that will retain is value
unless explicitly changed by an assignment {i.e. value-changing operation). Note that
in Z, it is necessary to explicitly state that the value will be left unchanged by some
operations {or, as in the form above, to specify that an operation may changeits value
by hiding AXBuf {rom the =S¢ schema).
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68 Programming in Z

In order to construct more complex operations from suboperations, particularly when
specifying an implementation-oriented view of a system, it is often useful to use the
kind of constructors found in conventional programming languages.

Sequential composition of operations has already been considered. Here we introduce
definitions for conditional, iterative and interleaving constructors.

Further discussion of the transformation of Z specifications into programs can be
found in [3-10].

In the following, we will assume that P and Q are homogeneous operations on a state
S (having undashed and dashed components representing the state before and after
the operation), and B is a schema representing a predicate defined only ou the current
state (involving no change of state).
6.1 Conditional

PifBelseQ =& (BAP)v (-BaQ)

or,if there is no ‘else’ part

P if B

w

(8 A P) v (-Ba =)

6.2 Iieration

Let
-B A =
(BAaP) s 1, ¥ i:N

—
=
won

Il*l

then
P while B 2 IgpvIipviI,v.
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Interleaving
PIlG = (Ps3Q)v(Qa;P)

This may be generalised to ||,y P, where n is a component in the schema P, and
N is a set compatible with n’s type.

If N is the empty set,
”n:N P & =5

otherwise, if N is not empty, ll,.y P represents the logical disjunction of all
possible sequences of P, each with different values of n cbosen from N and with

n hidden. For example, if N2{1, 2, 3}, then:

"mN P e (P1 3P2‘P3)V(P23P1lPa)V(PZSPaiPI)V
(Py3P33P,) V(P33P 3P,) v(P33P,3P )

where  P2(P[n=1)\(n); P,2(PIn=2)\(n); P32(PIn=3)\(n)
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7 Conclusion

The techniques presented in this chapter have heen used in various specifications
produced as part of the Distributed Computing Software Project.

The use of schema conjunction, disjunction and overriding to define an operation from
constituent parts is commonplace in most Z specifications of system components.
Examples of their use, and particularly of overriding to define error behaviour, can be
found in [3).

The Block Storage Service Implementor Manual (contained in {6]) illustrates the
building of systems from subsystems in which the implementations of the operations on
the service make use of conjoined suboperations {denoted by schema inclusion). The
parameter passing techniques described in section 3.4 are used to pass parameters
between the suboperations within an operation implementation.

The following chapter in this monograph illustrates the techniques described in section
5, making use of suboperation sequencing, and explicitly including parameter buffers
as part of the state of the implemented system.
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1 Introduction

To illustrate some of the methods described in the previous chapter, we shall now
consider the implementation of a simple file service, the PageFile Service, so called
because each file consists of a (possibly sparse) array of {ixed-size pages of data.

First the user’s view of the service is presented with just sufficient detail to give a
precise definition of what is to be implemented. Then two simple subsystems, a Page
Store and a Header Store, are identified and the absiract slates of these subsystems
are formally defined. The concrete state of the PageFile Service is defined in terms of
the abstract states of the subsystems and some constraints on the concrele service
state are proposed to ensure the efficiency of the implementation. Also, the
representation relation between the abstract and concrete state of the PageFile
Service is formally defined.

The next step is to consider the implementalion of the concrete service operations.
For the sake of simplicity only the successful outcome of operations are considered
initially. The successful operations on ihe two abstract subsystems are specified and
some further auxiliary operations {not affecting the state of the snbsysters) are
defined. The successful cases of the concrete operations on the file service are then
specified in terms of the operations on the subsystems and the auxiliary operations.

Some of the ahstract service operations have errors associated with them. To allow
the concrete service specification to mirror this, the abstract specifications of the
subsystems and the auxiliary operations are modified to take such errors into account.
The concrete operations on the file service are then redefined in terms of these
operations.

By this stage, Lhe subsystem operations have been specified as ideal in the sense that
they always will return a predictable result. However, if these subsystems are to be
implemented in termis of other services, possibly residing on other hosts in the
distrihuted system, the implementation must allow for errors such as the crash of a
subsystem and network failures. The specifications of the subsystems are modified to
allow such errors to occur. The effect of these changes on the specifications of the
concrete PageFile Service operations is studied. It is shown how consideration of such
errors is Lo some extent incompatihle with the efficiency constraints stated earlier.

Finally the implementations of the Page Store and the Header Store are hoth specified
in terms of the Block Storage Service described in [G].



Implementing a simple File Service 23

The structure of the implementation can be illustrated as:

|PageF|le Service!

|Header Storel [Page Storel

lB]ock Storage Serv icel

The PageFile Service is implemented jn terms of the Header Store and the Page Store
each of which in turn is implemented in terms of the Block Storage Service.

The final design presented in this chapter is not directly implementable but ig
detailed enough for a competent programmer to implement in a chosen imperative
programming language with a minimum of effort.
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2 User view of the service

In this section we shall present the user’s view of tbe PageFile Service in abbreviated
formi. Only sufficient detail is included to give an unambiguons description of what is
to be implemented. The full User Manual follows tbe style of the Block Storage
Service (see [6]).

The PageFile Service provides data storage facilities for pagefiles consisting of a set
of numbered fixed-size pages. It is intended as a simple intermediate service on top of
which more elaborate files (such as files consisting of arbitrary-lengtb sequences of
bytes) could be implemented.

Pagefiles may be created, updated, accessed and destroyed by clients. An identifier,
chosen by the service, is used to identify a particular pagefile. A unique identifier is
given to each pagefile, a new identifier being issued each time a pagefile is changed.
Pagefiles have a limited lifetime, with an expiry time chosen by tbe client, and will be
destroyed without warning on reaching the given expiry time.

The service provides limited security of access to pagefiles. A client may not access a
pagefile without knowing its identity, and pagefile identifiers are hard to guess (since
their values are chosen from a very large set). The identity of any pagefile is initially
known only to its creator; the service will never tell the identity of a pagefile to any
other client. Pagefiles may be updated or destroyed only by their creators, and so
security aJso depends on the proper autheutication of clients.

Implementation-specific constants, which are also not defined further, are sbown in
italics (e.g. PageSize). The following basic sets are also used:

[UserNum, Time, Report, Id, Bytel

2.1 PageFiles

The PageFile Service stores pagefiles on hebalf of its clients. A pagefile is a file
consisting of an indexed sel of pages. Each page is a fixed size array of bytes.

Page 2 0..(PageSize-1) — Byte
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Pages in a pagefile are numbered in sequence.
PageNum 2 0..(MaxPages-1)

The data in a pagefile consists of the numhered pages. Not every numher need have an
associated page of dala at any particular mement.

A

PageFileData 2 PageNum —» Page
As well as containing the client’s data, the pagelile records some general information:
the owner of the pagefile {the identity of the client who created it), the time of its

creation, the time of its last update and the time of its expiry.

Info

oWner : UserNum
created : Time
vpdated : Time
expires : Time

create updsted

d g
created € expires

Whenever a pagefile is created, an expiry fime must be given hy the clieat; it is the
lime until which the service is obliged to store the pagefile. On reaching its expiry
time, a pagefile is said to have expired, and can he discarded hy the service without
notification of the client. A pagefile consists of the information above and its data.

PageFile 2 Info ; data : PageFileDats

An id (identifier) will be issued hy the service when the pagefile is created, taken from
the set Id of all identifiers. This becomes the client’s reference to the pagefile and any
subsequent operalions on the pagefile will require this identity.

2.2 Service state

The service state records all currently stored pagefiles according to their identities. It
also contains a finite set of new pagefile ids which have not yet heen issued. When a
gew id is issued, it is taken from this set. The schema PFS denotes the state of the
PageFile Service at any particular moment.
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PFS

files : Id - Pagefile
nenids : F Id

newids N dom files = @
Nullld € newids U dom files

The service guarantees never to issue Lhe special identity Nulild; this id can therefore
be used by clients’ applications to indicate “no file”.

Initially, when the service is started for the first time, there are no stored pagefiles,
and all ids except the Nulild are available.

InitPFS ;
PFS”
files’ =8
newids’ = Id \ {Nuilid }
J

2.3 Parameters

The general aspects of operations on the PageFile Service, including the client number,
current time and an output report are combined in the following schema, relating the
state of (he service before an operation (PFS) to that after the operation (PFS”).

APFS ,
PFS
PFS’
clientnum : UserNum
now : Time
: report! : Report

nerids” = newids \ dom files’

It is a property of every operation that any id issued by it is removed from the set of
new ids, and so can never be issued again. Sometimes the state of the PageFile Service
is left unaffected by an operation, particularly if an error is detected.
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=PFS = 4PFS | 8PFS’ = OPFS

2.4 PageFile-specific operations

Many operations on the service apply to an existing pagefile stored by the service, and
require tbe id of this pagefile to be supplied as'an imput parameter by the cliest. A
framing schema is used to include this information in a specific operation definition.

¢PageFile -
APFS
file : PageFile
id? : Id

file = files(1d?)

The PageFile stored under the given id (if one exists) is made an implicit paramete;
of such operations. Similarly, some operatious produce a new pagefile and slore it ir
the service, returning its new id as an output parameter. Such a pagefile s always
owned by the current client and its update time is the current time (its creation anc
expiry time, and data, will be given in the particular operation definition). Its id i
taken from the set of new ids. This is denoted by another framing schema.

PNewPageFile

APFS

nenfile : PageFile

id! :+ Id

newf ile.onxner = clientnum

neufile.updated
1d! € newids
nedfile = files’ (id!)

NOKW
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2.5 Error reports

The report! output parameter of each operation mdicates either that the operation
succeeded or suggests why it failed. In all cases, failure leaves the state of the service
unchanged. Success indicates successful completion of the operation.

Success 2 [ report! : Report | report! = SuccessReport |

The total effect of a service operation is in general defined by overriding the
definition of the successful outcome of the operation by one or more error report
schemas. If the precondition in the error schema is satisfied, the corresponding error
report i3 returned. Only if the precondition is not satisfied (usually corresponding to
the satisfaction of a precondition in the successful operation definition) may the
operation succeed.

NoSuchFile is given if there is no pagefile stored with identity id?.
NoSuchFile

=PfS
id? : Id

id? € dom files
report! = NoSuchFileReport

NoSuchPage denotes that there is no page with number pn? in pagefile 1d?.

NoSuchPage
=PfS
¢Pagefile

pn? : PageNum

pn? € dom file.data
report! = NoSuchPageReport

—

NoSpace indicates that a new pagefile cannot be created when the storage capacity of
the service is exhausted. The service capacity is not modelled explicitly here, and so
this error may occur non-deterministically, but it is guaranteed that the state of the
service will be unaffected in this case.
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NoSpace
=PFS
nospace : Boolean

nospace = True
report! = NoSpaceReport

NotOwner indicates an attempt to perform an operation which can destroy a pagefile
by someone other than the owner of the pagefile.

NotOwner
=PFS
tPagefile

file.owner # clientnum
report! = NotOwnerReport

2.6 Service operations

On the following pages appear descriptions of the service operations. Additionally, the
following operation may be invoked at any time to remove expired files.

Scevenge ]
APFS
expired : F Id

expired = {f:domfiles | (files f).expires < now}
files’ = expired 4 files
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CREATEFILE
Abstract
Crestefile ( expires? : Time;
pn? : Pageium;
page? : Page;
id! : Id;
report! : Report )

A new pagefile is created with a specified expiry time, and is stored by the service
under the new pagefile id!. The pagefile contains one page having the given page
number and data.

Definition
Createfile, ccoss —
APFS
expires? : Time
pn? : PageNum
page? : Page

PNewPageFile

newfile.created = now
newfile.expires = max {expires?, now}
newfile.data = {pn? V page?}
files’” = files U {id! M nenfile}

The owner of the pagefile is the client. If an expiry time in the past is given, then the
expiry lime of the pagefile is set to now.

A new identifier is chosen which has never before been issued, and the new pagefile is
stored under that id.

Reports

CreatefFile 2 (CreateFile A Success)

success
® NoSpace
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WRITEFILE
Abstract
HriteFile ( id? : Id;
pn? : PageNum;
page? : Page:
id! : Id;

report! : Report )

An existing pagefile with the given 1d? is replaced by a new pagefile with a new 1d!
which has the new page? at the specified pn?. The old pagefile is destroyed.

Definition
HriteFile coce i
APFS
dPageFile
pn? : PageNum

page? : Page
tNewPageFile

nenfile.created = file.created
nenfile.expires = file.expires

newfile.data = file.deta & {pn? ¥ page?}
files’ = (id? 4 files) U {id! > nenfile}

The creation and expiry times of the new pagefile are the same as the original pagefile.
Only the owner may write to a pagefile.

A new id is chosen which has never previously been issued, and the new pagefile is
stored under that id. The old pagefile is removed from the service.

Reports

HriteFile 2 (HriteFile A Success)

SucCCcess
@& NoSpace
@& NotOwner

& NoSuchFile
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READFILE
Abstract
ReadFile { id? 2 Ids
pn? : PageNum;
page! : Page;

report! : Report )

The page with the specified pn? in the pagefile called 1d? is returned.

Definition
ReadFile jocqae ———
=PFS
¢tPagefile
pn? : PageNum
page! : Page

page! = file.data pn?

The service is unchanged by this operation.

Any client may read a pagefile if they know its pagefile id.

An error report is produced if the pagefile does not have a page of data with the given
page number.

Reports

A Success)

® NoSuchPage
® NoSuchfile

ReadFile 2 (Readfile

SUCCesS
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DESTROYFILE
Abstract
DestroyFile ( id? ¢ Id:
report! : Report )

The pagefile stored under id? is removed from the service.

Definition

DestroyFile
APFS
dPageFile

success ————— 1

files” = {id?} 4 files

A pagefile may be destroyed only by its owner.

Reports

A

DestroyFile 2 (DestroyFile A Success)
® NotOwner

® NoSuchFile

success

33
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SETFILEEXPIRY
Abstract
SetFileExpiry ( id? z Ids
expires? : Time;
id! : Id:
report! : Report )

An existing pagefile stored under id? is replaced by a new pagefile with a new 1d!
and a new expiry time, but having the same data. The old pagefile is destroyed.

Definition

SetFileExpiry, ccess
APFS

¢PagefF 1 1e
expires? : Time
MNenPageFile

nenfile.created = file.created =
nenfile.expires = max {expires?, now}

nenfile.data = file.data

files” = (id? 4 files) U {id! — penfile}

The new pagefile has the same data and creation time as the old pagefile. The client
must be the owner of the file.

If an expiry time in the past is given, then the expiry time of the pagefile is set to now.

Reports

SetFileExpiry 2 (SetFileExpiry_ oo » Success)
® NotOwiner
® NoSuchFile
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3 Implementation subsystems

In order to determine the concrete state and the corresponding operations on it, we
need to determine tbe subcomponents of that state.

An obvious choice of subsystems is'a page store to hold: the data contents of thefiles
and a header store to hold the remaining information, includieg an index to thedata
pages.

3.1 Page Store

The Page Store allows a user 1o create, retrieve and destroy pages. When a page is
created the Page Store assigns a unique Pageld to it. This id is then used in all
{uture references to that page. A special identifier, the NuilPageld, is reserved for
special purposes and will never be issued.

Together with the actual contents of a page, the Page Store will record its expiry time.

Pagelnfo
expires : Time
contents : Page

The state of the Page Store can be defined as:

PS

pages @ Pageld —» Pagelnfo
newpageids : F Pageld

newpageids N dom pages = @
NullPageld € newpageids U dom pages

The state records all currently stored pages according to their identities. It also
maintains a set of page ids wich have not yet been issued.
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Initially, when the service is started, there are no stored pages and all page ids except
the NullPageld are potentially available for issue.

InitPS =
PS*
pages’ = @
newpageids’ = Pageld \ {NullPageld}
S|

The Page Store as described here is very similar to the Block Storage Service [6].
Indeed we shall later see that it js a quite trivial matter to implement the Page Store
in terms of the Block Storage Service.

3.2 Header Store

The conlents of a pagefile can be described in terms of a contiguously numbered
array of Pagelds (corresponding to pages stored hy the Page Store).

PageSeq 2 PageNum — Pageld
A special case is the representation of the empty (ile:
EmptySeq 2 {s:PageSeq | ren s = {NuliPageld} }

Assuming that the actual pages will be held in the Page Store, a pagefile can be
adequately represented by its “header™

Header
Info
filecontents : PageSeq
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Using the new file representation the state of the Header Store can be defined as:

HS

headers : Id -+ Header
newheaderids : F Id

newheaderids N dom headars = @ -

Nullld ¢ nerheaderids U dom headers
1

The state records all currently stored headers according to their identities and
maintains a set of ids which have not yet been issued.

Initially, when the service is started, there are no stored headers and all file ids except
the Nullld are potentially available (or issue.

InitHS
HS*

headers’ = @
newheaderids’ = Id \ {Nulild}

3.3 Combined state

The concrete state of the entire PageFile Service can be expressed by conbining the
iwo subsystems:

cPFS

PS
HS

now : Time

VY pf:ran headers -
of .expires > now =
¥ p:ran of.filecontents -
p = NullPageld v
(pages p).expires 2 pf.expires
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The page ids contained in a non-expired header are those of the NullPageJd and of
pages stored in the Page Store. A page must not expire before the header {rom which
it is referenced.

For the sake of the efficiency of the implementations we should ideally like to impose
some further constraints.

A page expires at the same Lime as the header {rom which it is referenced.

ExpiryConstraint
cPFS

VY pf:ran headers *
pl.expires > now =
V¥ p:ren pf.filecontents \ { NullPageld} -
(pages p).expires = pf.expires

At any given time, the Page Store will only hold pages which are referenced from
headers stored in the Header Store.

CompactnessConstraint
cPFS

V¥ pid:dom pages *
3 pf:ran headers -
pid € ran pf.filecontents

We shali later see that these constraints are incompatible with other requirements of
the service, and they are therefore not a mandatory part of the {inal specification.
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3.4 Representation relation

The relation between the abstract and concrete representation of the PageFile Service
can be defined as:

RelPFS
PFS
cPFS

dom f¢les = dom headers
newids = newheaderids
¥ pf:dom files -
f.expires > now =
f.owner = h.ownner n
f.created = h.created A
f .updsted h.updated
f.expires = h.expires »
f.filecontents =
h.filecontents p{ NullPageld} s pages

a

>

where
(files pf)
(headers pf)

in

For each file in the abstract representation there iz a header in the concrete
representation. The file inlormation is stored directly in the header. The contents of

the file may be found by retrieving the pages whose non-null ids are stored in the
header.



40  Specifying System Implementations in 7

4 Successful operations

This section concentrates on describing the successful behaviour of the concrete

operations whose abstract equivalents were descrihed in section 2.

First a number of suboperations will be defined. These consist of operations on the
two subsystems and a few auxiliary operations. Then it is shown how the service
operations can be described in terms of these suboperations. For the moment, it is

assumed that the suboperations are always successful.

4.1 Abstract operations on the Page Store

Create anew page and return the id of that page.

CreatePage, ccees
APS
page? ¢ Page
expires? : Time
pageid! : Pageld

pageinfo : Pagelnfo

pageinfo.expires = expires?
pagetnfo.contents = page?

pageid! € newpageids

pages’ = pages U {pageid! ' pageinfo}
newpageids’ = newpageids \ {pageid!'}

Read an existing page.

ReadPaQeSUCCESS 1
EPs
pageid? : Pageld
page! : Page

pageid? € dom pages
page! = (pages page1d?).contents
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Destroy an existing page.

DestroyPage
APS
page id? : Pageld

SUCCBSS 1

pageid? € dom pages
pages’ = {pageid?} 4 pages
neWpageids’ = newWpageids

Change the expiry date of a page, leaviog the other page information (including page
id) nochanged.

SetPageExpIry,  cecs
APS

now : Time
pageid? : Pageld
expires? : Time

pageid? € dom pages
{pageid?}d4pages’ = {pageid?}dpages
(pages’ pageid?).contents =

(pages pageid?).contents
(pages’ pageid?).expires = max {nowr, expires?}
newpageids’ = newpageids

The Page Store is automatically scavenged periodically and expired pages removed.

ScavengePages
APS
nor : Time

pages’ = {p:dom pages |
(pages p).expires > nor} 4 pages
newpageids’ = newpageids
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4.2 Abstract operations on Header Store

The operations which may be performed on the Header Store are very similar to those
for the Page Store.

Create a new header and return its id.

CreateHeader . ocs 4
AHS
header? : Header
id! : Id

id! € newheaderids
headers’ = headers U {id! — header?}
newheaderids’ = newheaderids \ {id!}

Read an existing header.

ReadHeader_, ..ccs - -
=HS
id? : Id
header! : Header

id? € dom headers
header! = headers 1d?
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Replace an existing header. The old header is deleted and a new one created {witha
new id).

ReplaceHeader

SUCCeSsSs 1
AHS
id? ¢ Id
header? : Header -
id! : Id

id? € dom headers

id! € newheaderids

headers’ = ({id?}4headers) U {id! ¥ header?}
newhesderids’ = newheaderids \ {id!}

|

Destroy an existing header.

DestroyHeader
AHS
id? : Id

SUCCESS 1

1d? € dom headers
headers’ = {id?} 4 headers
newhesderids’ = newheaderids

The Header Store is scavenged periodically and expired headers removed.

ScavengeHeaders
&HS
non : Time

headers’ = { hd:dom headers |

(headers hd).expires > now } { headers
newheaderids’ = newheaderids
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4.3 Auxiliary operations

Apart from the operations on the subsystems, a aumber of other suboperations are
needed.

Create an empty fileheader (i.e. for a file without any pages)

MakeHeader y
expires? : Time
header! : Header

clientnum : UserNum
now : Time

header!.onner = clientnum
header!.created = now

header! .updated = now
header!.expires = expires?
header!.filecontents = EmptySeq

Extract from 2 header the page id corresponding to 2 given page number.

GetPageld
header? : Header

pn? : PageNum
pegeid! : Pageld

pageid! = header?.filecontents pn?

—
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Insert a page id into a file header.

PutPageld ;
header? : Header
pn? : PageNum
pageid? : Pageld
header! ; Header

nor : Time

heeder!. owner = header?.owner
header!.created = header?.crested

I}

header!.updated NOW
header ! .expires = headar?.expires
header!.filecontents =

header?.filecontents @ {pn? — page1d?}

Change expiry date of a file header.

Set HeaderExpiry
header? : Header
expires? : Time
header! : Header
now : Time

header! . owner = header?.owner
header!.created = header?.created

header! . updated = now

header!.expires = expires?
header!.filecontents = header?.filecontents

4.4 Combining operations

The mpext step is to formy the required service operations by combining the
suboperations. Basically this can be done using schema conjunction or sequential
composition (as discussed in Chapter 1). As we shall Jater want to argue about the
importance of the sequence iu which suboperations are performed, and what happens
when an operation fails inidway through ils execution, we shall choose to use
sequentin]l composition for combining suboperations.
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To pass parameters between suboperations in a sequence it is convenient to introduce
some buflers:

HeaderBuf
header : Header

holds the header of the pagefile currently heing handled.

0ldPageldBuf —
oldpageid : Pageld

holds the id of an existing page (to be read or destroyed).

NewPageldBuf
newpageid : Pageld
|

holds the id of a newly created block in the Page Store.
The progrssion of an operation can now be described in terms of the statcs of the
subsystem: combined with the states of the newly introduced parameter buffers:

cPFS, 2 HeaderBuf A 0ldPageldBuf
NewPageldBuf A HS A PS

In the following, the effect of the individual suboperations on this combined state is
described using hiding and renaming (see Chapter 1, section 5).

Opentions on Page Store

CreatePage; 2 =cPFS \APS\ANewPageldBuf A
CreatePage_ . ..[newpageid’ /pageid!]
ReadPage; & =cPFS\APS A
ReadPage ... [0)dpage1d/pageid?]
DestroyPage; & =cPFS\APS A

DestroyPage [oldpageid/page1d?]

SUCEPESS
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SetPageExpiry; & =cPFS{\4PS A
SetPageExpiry,, cessl0)dpageid/pageid?]

Operationg on Header Store

CreateHeader; 2 =cPFS\&HS A

CreateHeader | ... header/header?]

ReadHeader, & =cPFS|\AHS\AHeaderBuf A
ReadHeade, . ossm [header’ /header! |

ReplaceHeader; & =cPFS)\AHS A

ReplaceHeader .. header/header?]

DestroyHeader; & =cPFS;\AHS A

DestroyHeader . ccs

Auxiliary Operations

MakeHeader 2 =cPFS \AHeaderBuf A
MakeHeader [header’ /header!)
CetPageld, & =cPFS$\AO1dPageldBuf »
CetPageld[header/header?,
oldpageid’/pageid!]
PutPageld, 2 =cPFS,\sHeaderBuf A

PutPageld[header/header?,
newpageid/pageid?,
header’ /header!]

SetHeaderExpiry, ¢ =cPFS|\AHeaderBuf A
SetHeaderExpiry[header/header?,
header ’ /header ! |

Apart from these operations a {urther two slightly more complicated operations are
peeded, one which destroys all pages belonging to a file, and one which changes the
expiry date of all pages belonging to a {ile.

In order to construct these we first introduce two new operations which, given a page
id, will respectively destroy it or change its expiry date. If the id given is the
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NullPageld the operations will have no effect at all.

NotNullld
01dPageldBuf

oldpageid # NullPageld

a

DestroyPage;n, # DestroyPage, if NotNullld
SetPageExpiry;q 2 SetPageExpiry, if NotNullld
(For the definition of the if conditional construct see Chapter 1, section 6.1.)
The two required operations can now he defined as:

DestroyPages; ¢

ll pn?:PageNum ( BetPageIdl ' DEStFOQPageln)

A

SetPagesExpiry, =

o7 pagenum (GetPageld; 3 SetPageExpiryyqs)

(For the deinition of the | interleaving construct see Chapter 1, section 6.3.)

The successful behaviour of the concrete service operations can now be defined by
combining the previously defined suboperations in suitable ways.

cReadFite

success

w

ResdHeader, 3 GetPageld; ¢t ReadPage,

1>

cCreatefile fakeHeader| 3 CreatePage; @

PutPageld, 3 CreateHeader;

SuUcCcess

ReedHeader, 3
(DestroyHeader Il DestroyPages,)

n»

cDestroyFile

success

n

criteFile ReadHeader; 3 GetPageld, 3
(DestroyPage;q |l
(CreatePage, 3+ PutPageld, 3

ReplaceHeader ) )

SUCC PSS
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cSetFileExpiryg ccoss € ReadHeader; 3 SetHeaderExpiry, 3
(ReplaceHeader; Il SetPagesExpiry,)

At this stage the order in which certain of the suboperations are performed is
immaterial, In tbese cases this has been marked by using the || operator rather than
the 3 when combining these to indicate that the order may be reversed if desired.

The Scavenge operation of the PageFile Service need not be iruplemented since both
the Page Store and the Header Store will independently scavenge the appropriate
implementation data.
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5 Error handling

According to the user’s view, the service must be capable of detecting and reporting a
number of different types of errors. These are:

NoSuchFile - occurs if an attempt is made to read, npdate, destroy or
change expiry date for a file which does not exist. In the
implementation this corresponds to an attempt to read a
non-existing header in a sub-operation. Since all concrete
operations manipulating existing files start by reading the
fileheader, it will be snfficient if this sub-operation is
capable of detecting the error (provided that the
subsequent sub-operations are not carried out in this
case).

NoSpace - occurs if an attempt to create a file or to add a page to a
file fails due to lack of storage space. In the concrete
model of the service this corresponds to failure to create a
new page or failure to create a new header.

NoSuchPage - occurs if an attempt is made to read a non-existent page
in an existing {ile. In the implementation this corresponds
to finding the NullPageld rather than a specific page id
in the appropriate position of the header.

NolOwner — occurs when an attempt is made to write to, destroy or
change the expiry date of an existing file by somebody
other that the owner of the file. In the concrete
representation this can be detected by checking the owner
field of the corresponding header.

In the folowing the operations of the subsystems will be redefined, to allow for the
first two lypes of errors. Additionally two new anxiliary operations are introduced to
cope with the last two types of errors. We shall adopt the convention that all
operations on subsystems will return a report indicating whether the operations were
successful or not.
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The successful report can be described by previously defined Success schema:

Success
report! : Report
report! = SuccessReport
L

For the moment, it is assumed that the total operations can be defined by the
idealised ones presented in the following sections, which include the error handling
just described.

5.1 Page Store subsystem redefined

The only Page Store operation which can occasionally fail is the create page
operation, which may return an error report in case the Page Store is full. The
capacity of the store is not modelled here, rather we shall let this be a
nondeterministic attribute of the underlying implementation.

NoPageSpace
zPS
nopagespace : Boolean

report! : Report

nopagespace = True
report! = NoPageSpaceReport

A Success)
& NoPageSpace

CreatePage, yu.; ¢ (CreatePage , o

The remaining operations will always be successful.

n

ReadPage o1 ReadPage A Success

sJyccess

W

DestroyPage DestroyPage »~ Success

1deal success

SetPageExpiry qoop 2 SetPageExpiry, ..ess A Success
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5.2 Header Store subsystem redefined

As with the create page operation, the create header operation will {ajl if the header
store is [ull. Again, we shall not model the capacity here but leave this a
nondeterninistic attribute of the underlying implementation.

NoHeaderSpace
=HS
noheaderspace : Boolean
report! : Report

noheaderspace = True
report! = NoHeaderSpaceReport

CreateHeader 4., ¢ (CreateHeader A Success)

success
& NoHeaderSpace

The read header operation may fail in case an atternpt is made to read a non-existing
header (corresponding to an attempt to access a non-existing file on the abstract
level).

NoSuchHeader
=HS

id? : Id
report! : Report

id? € dom headers
report! = NoSuchHeaderReport
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ReadHeader | 4.1 ¢ (ReadHeader_, ..cc A Success)
& NoSuchHeader

The remaining two operation will always be successful.

ReplaceHeader 4, 2 ReplaceHeader . ... A Success

74

DestroyHeader ,_.; DestroyHeader, A Success

sSuCCcess

5.3 Awuxiliary errors
As mentioned earlier, two new auxiliary operations will be required.

Check that the current client is owner of the file whose header is held in the header
buffer.

CheckOnner £ Success @ NotOwnerError
where

Not OunerError

header? : Header
report! : Report
clientnum : UserNum

header?.onner # clientnum

report! = NotOwperReport
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Check that the page id beld in the old page id buffer is a genuine page id rather than
the Nullld.

CheckPageld & Success @ NoSuchPageError

where

NoSuchPageError
pageid? : Pageld

report! : Report

pageid? = NujlPageld
report! = NoSuchPageReport

The effect of these new auxiliary operations on the combined systemn state ¢PFS; can
be defined as:

[

CheckOuner, =cPFS; A CheckOwner [header/header?]

>4

CheckPageld; =cPFS; A CheckPageld[o!dpsgeid/pageid?]

5.4 Combining operations

As with other suboperation parameters the report parameter will be passed on to the
subsequent suboperations via a parameter buffer.

ErrorState
errorstate : Report

The contents of this buffer will at a given point in time indicate whether any of the
previously executed suboperations failed during the execution of the current service
operation. If one suboperation in a sequence for some reason fails, it is often not
meaninglul to execute the subsequent suboperations. This can be accomplished by
specifying that any suboperation should leave the system state nnchanged if the error
state when the operation is invoked is not SuccessReport, i.e. overriding eacb
suboperation specification with:
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Error
zErrorState
=cPFS,;

errorstate # SuccessReport

As a last action a service operation should conmmmunicate the result of the
operation to the user. This basically consists of translating the content of the error
buffer into a report type which is known to the user.

MakeReport
ECPFSl
=ErrorState

report! : Report

errorstate = NoHeaderSpaceReport =
report! = NoSpaceReport
erroratate = NoPageSpaceReport =
report! = NoSpaceReport
errorstate = NoSuchHeaderReport =
report! = NoSuchFileReport
errorstate = NoSuchPageReport =
report! = NoSuchPageReport
errorstate = NotOwnerReport =
report! = NotOwnerReport

The progression of a service operation can be described in terms of the state of the
error buffer combined with the system state cPFS,, defined in the previous section.

cPFS, 2 ErrorState A cPFS,

Tbe individual suboperations affect tbis combined state as follows.
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Operations on Page Storage Subsystem

CreatePage, 2 CreatePage 4., lerrorstate’/report!] @ Error
ReadPage, 2 ReadPage, .. lerrorstate’ /report!] @ Error
DestroyPage, = DestrogPage,deal[errorstete’/report!] @ Error

SetPageExpiry, o, [errorstate’ /report!] @ Error

n

SetPageExpiry,

Operations on Header Storage Subsvsiem

m

CreateHeader, CreateHeader .. [errorstate’/report!] @ Error

"

ReadHesder, ReadHeader  y,.;[errorstate’ /report!] @ Error

n

ReplsceHeader, ReplaceHeader ., [errorstate’/report!] ® Error

2

DestroyHeader, DestroyHeader 4. (errorstate’/report!] ® Error

Auwxiliary Qperations

MakeHeader, ¢ MakeHeader, ® Error
GetPageld, 2 GetPageld; ® Error
PutPageld, 2 PutPageld; ® Error

SetHeaderExpiry, SetHeaderExpiry, ® Error

CheckOwner, 2 CheckOwuner [errorstate’/report!] ® Error

n

CheckPageld, CheckPageld; [errorstate’ /report!] ® Error
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The special operations to destroy all pages or to change the expiry date for all pages
of 2 file need to be rewritten in terms of the new suboperations, but generally behave
in almost exactly the same way as before.

DestroyPage,, 2
DestroyPage, if NotNullPageld

SetPageExpiry,, 2
SetPageExpiry, if NotNullPageld

DestroyPages, 2
lon7:Pagenun(CetPageld, & DestroyPageyq)

SetPagesExpiry, £
lon:Pagenun(CetPageld; 3 SetPageExpiryyg)

The concrete service operations can now be redefined in terms of the newly defined
suboperations.

cCreatefFile, g,y & Success 3 MakeHeader, 3 CreatePage, 3
PutPegeld, § CreateHeader, 3
HakeReport

[[>d

cHriteFile yoa) Success $ ReadHeader, s CheckONnerz 3
CetPageld, 3 CreatePage, 3
{DestroyPagey, |
(PutPageld, 3 ReplaceHeader,)) 3

HMakeReport

>

cReadFile; .. Success 3 ReadHeader, 5 GetPageld, 3
CheckPageld, 3 ReadPage,

MakeReport

cDestroyFile .. ¢ Success 3 ReadHeader, 3 CheckOwner, 3
(DestroyHeader, Il DestroyPages,)
MakeReport

cSetFileExpiry, a1 & Success & ReadHeader, s CheckOwner, 3
SetHeaderExpiry, 3
(ReplaceHeader, | SetPagestxpiry,) 3
MakeReport
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When constructing a service operation by combining suboperations as above, it is
importani that the concrete state of the system is consistent and corresponds to a well
defined abstract state at any point where a suboperation may “fail” (i.e. not return a
SuccessReport) and thereby in effect ahort the remaining suboperations in the
sequence, Also, this ahstract state must correspond to what the user expects. In most
cases this means that the abstract service state must be unchanged whenever a
suboperaiion may “fail”.

For the last four service operations above this poses no problems at all, since the
precondilions for the entire operations can be {and are) checked hefore any updating
of concrete service state takes place.

The Create operation is not quite so simple, as the CreateHeader suboperation
might fail if the Header Store is full. At this point, however, a new page would have
heen created. This does not affect the abstract view of the service, but it does violate
the compactness constraint stated in section 3. To overcome the problem we might
choose todelete the newly created page.

cCreatefFile

attempt =
Success 3 MakeHesder, 3 CreatePage, %
PutPsgeld, 3 CreateHeader, 3
HakeReport 3
((DestroyPagel[newpageid/pageid?] A
=cPFS,\4PS) if CreateHeaderError)

where

CreateHeaderError £
ErrorState | errorstate = NoHeaderSpaceError
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6 Implementing one service in terms of another

If the suhsystems presented in the previous sections are to be implemented using other
services (which of course may reside on different host computers from the PageFile
Service), the abstract specification of tbe subsystem operations must be extended to be
able to mirror the types of errors which may be caused.directly, or indirectly by the
use of such services.

According to the Common Service Framework [5] any service operation may at any
time return ServiceErrorReport as a result of an operation. This is basically to
allow for errors in both underlying hardware and software. Note that an operation
wbich returr a ServiceErrorReport is required to leave the abstract state of the
service unchanged.

Also, the communications network which connects the services may fail during the
operation. This causes special prohlems since no indication as to the result of. the
operation need he given to the requesting service. We will assume that the network
layer of the implementation provides full error-recovery and that-seen-from a user
point of view, network errors will never happen.

In the following the operations on the two subservices are first redefined to allow for
service errors as described above, and afterwards the impact of these changes on the
construction of the service operation implementations presented so far is studied in

detail.

6.1 Errors in Page Store

In the Page Store subsystem the following error may occur at any time:
PageServiceError

=PS
report! : Report

report! = ServiceErrorReport
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The complete operations on the subsystem can therefore be defined as:

CreatePage 2 CreatePage, ..., v PageServiceError
ReadPage 2 ReadPage,yoq1 v PageServiceError
DestroyPage ¢ DestroyPage, y..) v PageServiceError
SetPageExpiry 2 SetPagefxpiry; .1 v PageServiceError

6.2 Erors in Header Store
In the Header Store subsystem the equivalent errors may occur at any time:

HeaderServicekrror

=HS
report! : Report
report! = ServiceErrorReport
|

The total operations on the subsystem can now be defined as:

CreateHeader 2 CreateHeader;,,, Vv HeaderServiceError
ReadHeader 2 ReadHeadsr .., v HeaderServiceError
ReplaceHeader 2 ReplaceHeader 4., v HeaderServiceError
DestroyHeader 2 DestroyHeader ;.. v HeaderServiceError

6.3 Constructing the service operations

We shall now see what changes will be required to the service operations in order to
handle the newly introduced error types.

The {first change is the obvious one of changing the MakeReport schema, so that the
new errors may be reported to the user of the service. The fact that the PageFile
Service makes use of otber services is transparent to the user. Errors occurring in
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such services or during communications with such services, should therefore be
reported as if they occurred in the PageFile Service itself.

clakeReport —
=cPFS;
=ErrorState
report! : Report

errorstate = NoHeaderSpaceReport =
report! = NoSpaceReport
errorstate = NoPageSpaceReport =
report! = NoSpaceReport
errorstate = NoSuchHeaderReport =
report! = NoSuchFileReport
errorstate = NoSuchPageReport =
report! = NoSuchPageReport
errorstate = NotOwnerReport =

report! = NotOwperReport
errorstate = ServiceErrorReport =
report! = ServiceErrorReport

We shall reconsider each of the specifications of concrete pagefile operatjons
presented in the previous section, taking joto consideration that any operation on a
subsystem may fail, and that correct sequencing of suboperations therefore is even
more crucial than before in order to ensure that the system state is always consistent.

The Readfite operation does not change the system state at any point and can
therefore cause no problems.

cReadFile 2 Success # ReadHeader, 3 GetPageld, 3
CheckPageld, s ReadPage, $ cMakeReport

The Creat ef i 1e operation takes the form:

cCreatefile 2 Success 3 MaskeHeader, 3 CreatePage, 3
PutPageld, 3 CreateHeader, # clakeReport

CreatePage may fail during the CreateHeader operation. In this case a new page
would have been created, which was not referenced from any file. This violates the
compactness constraint. We could of course try to repeat the failed suhoperation, or
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attempt to delete the just created page, but there is no guarantee that we will succeed
in doing so within a reasonable time. We therefore have two choicea: either to suspend
operation indefinitely (i.e. in effect closing down the service] or to ease the
compactness constraint and just state that we will attempt to obtain compactness.

The destroy operation takes the form:

cDestroyFile 2 Success 3 ReadHeader, 3 CheckOwner, 3
(DestroyHeader, |l DestroyPages,) 3

chiakeReport -

atlempt

Here, if the pages are destroyed {irst followed by the header and the latter operation
fails, we will end up with a file header referring to pages which do not exist any
longer (and thus violates the specification). If the header i& destroyed first and tben
the pages, and part of the latter operation fails, we will end up with some pages wbich
no longer correspond to an existing header and thus violate the compactness
constraint as above. In reality what we can do hy ignoring the constraint is to make
the outcome of the operation independent on tbe outcome of DestroyPeges and we
can therefore create the report before this suboperation is performed.
cDestroyFile 2 Success 3 ReadHeader, 3 CheckOwner, 3
DestroyHeader, 1 cHakeReport 3
DestroyPages,
The write operation takes the form:
clriteFile 2 Success 3 ReadHeader, 3 CheckOwner, 3
GetPagald, 3 CreatePage, 3
(DestroyPagez, Il

(PutPageld, 3 ReplaceHeader;)) 3
MakeReport

attemptl

Here we observe the same problem with the compactress constraint as hefore. If
DestroyPage is performed before ReplaceHeader and replace header fails, the old
page hasbeen corrupted whereas the new one has not been completely created yet.
DestroyPage is performed after ReplaceHeader and fails we have again violated
the compactness constraint. Removing the constraint makes the result of the
operation independent of DestroyPage.
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cHriteFile 2 Success 3 ReadHeader, 3 CheckOwsner, 3
GetPageld, 3 CreatePege, 3 PutBlockld, s
ReplsceHeader, # cMakeReport 3
DestroyPage,q

Note that we could use CreateHeader and DestroyHeader instead of the atomic
ReplaceHeader:

.. CrestePage 3 CreateHeader 3§ DestroyHeader 3§ DestroyPage ..

This however presents us with another problem; if DestroyHeader fails we end up
having both the old and the new file in the systemn, which certainly violates the
specification of Hritefile.

Tbe SetfileExpiry operation takes the form:

cSetFileExpiry.iiempt
Success 3 ResdHesder, 3
CheckOwner, 3 SetHeaderExpiry, 3
(ReplaceHeader )l SetPagesExpiry,) 3
cMakeReport

No matter whether we perform the SetPagesExpiry operation before or after the
SetHeaderExpiry operation, if tbe later operation fails, the expiry time of all pages
will not be the same as tbat of the header and we have violated the expiry constrains.
Obviously we have to ignore this constraint.

However this is not enough. The state invariant specifies that the pages belonging to a
header must not expire before the header. This means that if the lifetime of a file is to
be increased, then SetPagesExpiry imust be performed before ReplaceHeader, so
that the state will be consistent should the latter operation fajl. However, if the
lifetime is to be decreased then the operations should be performed in the reverse
order.

Increaselifetime
HeaderBuf
expires? : Time

expires? » header.expires
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a

cSetFileExpiry 2
Success # ReadHeader, 3
CheckOwner, 3 SetHeaderExpiry,
({SetPsgesExpiry, 3 ReplaceHeader;)
if Increaselifetime else
(ReplaceHeader, 3 SetPagesExpiry,)) 3
cHakeReport

6.4 Expiry during operations

The specification we now have derived is quite convincing. There is however still one
outstanding problem which is perhaps not obvious; what happens if a file expires
while it s being read or updated? If we were unfortunate, the components of that file
might be scavenged by the subsystems hefore the operation was completed. In the
specificalion above this might result in ao attempt lo manipulate ao expired entity
which would result in a ServiceErrorReport. This is perhaps not whal one might
expect but it does fulfil the requirements since any service is always allowed to return
ServiceErrorReport as a result.

The other obvious way of coping with this problem is to make sure that it does not
happen. If we assume that the maximum duration of any operation is DeltaTime, we
could get around the problem by specilying that the expiry time of the
subcomponents should be DeltaTime alier the expiry time of the file, and at the
same time change the abstract specification such that no altempt will be made to
access a file after it has expired. To do this the NoSuchF ile schema from section 2.5
should be substituted by:

NoSuchFile
=PFS
ig? : Id

id? € dom files Vv
(files id?).expires < now
report! = NoSuchFileReport

However, as the {requency with which this type of error can occur is negligible we
shall regard service error as an acceptable result under these circumstances.
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7 Implementations of subsystems

In this section we shall present possible implementations of the two subsystems which
were originally defined m section 3 and extended in the subsequent sections.

Both the Header Store and the Page Store will be implemented using' the.Block
Storage Service (6], with state defined by the schema SS. Seen from the Block Storage
Service the owner of the blocks used to represent pagefiles is the PageFile Service
itself. In order to distinguish blocks which are used to represeut pages from blocks
used to represent headers, we shall use the first data byte of each block to indicate to
which of the subservices the block belongs.

Two constants are used to identify the block type

PageBlock  : Byte
HeaderBlock : Byte

| PageBlock # HeaderBlock

Any block belonging to the PageFile Service will be marked as belonging to either the
Page Store subsystem or tbe Header Store subsystem.

MarkedBlocks
SS

¥ biran blocks -
b.owner = PageFileService =
b.deta(1) € {PageBlock, HeaderBlock}

An implementation making use of a subsystem is obliged only to use the subsystem
within its defined scope. If this cannot be guaranteed (i.e. if the implementation
cannot be proven correct with respect to tbe specification of the subsystem), there is
an awkward problemn. The implementor can either ignore the problem (at some risk)
or can perform simple consisteucy checks and at least return some kind of error
reports if obvious incensistencies occur, thus making the debugging of user programs
somewhat easjer.

In the following we shall regard obvious inconsistencies as beiug equivalent to service
errors and treat them as such.
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7.1 TImplementation of the Page Store

Pages and blocks are both defined as sequences of bytes. Provided that the page size
is less that the hlock size (to allow for the byte indicating the hlock type), it is
therefore a trivial matter to represent a page in terms of a block. We shall choose to
let each page he represented by a block and shall let the page be identified by the

name of the hlock representing it.

Pageld 2 B8lockId

Two straightforward operations describe the conversion from pages to blocks and
vice-versa.

PackPage : Page — BlockData
UnPackPage : BlockData —» Page

¥ p:Page -
(PackPage p) for PageSize+l =
PageBlock ~ p

¥ b:BlockData | b(1l) = PageBlock -
UnPackPage b =
b after 1 for PageSize

The representation relation for the page store subsystem can be defined simply as:

RelPS
PS
SS

¥ pi:dom pages -
b.owner = PageFileService
h.expires = p.expires
b.data = PackPage p.contents
where
b 2 (blocks pi)
P (pages p1)
newWpageids = newids

>3 14
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1t should now be fairly obvious that each page store operation can be implemented ir
terms of exactly one corresponding block service operation, together with some data
conversion. Since the implementation of the operations is so straightforward we shall
use simple schema conjunction (see Chapter 1) in defining the concrete operations. In
the following a number of concrete operations will be presented, each corresponding
to one of the earlier defined abstract subsystem operations.

Create a new page:

cCreatePage

Create[blockdsta/date?, expires?/expiry?,
pageid!/id!, report/report!]

page? : Page
expires? : Time
pageid! : Pageld
report ! : Report
blockdate : BlockData
report : Report

blockdata = PackPage page?

report = SuccessReport =
report! = SuccessReport

report = NoSpaceReport =
report! = NoPageSpaceReport

report € {SuccessReport, NoSpaceReport} =
report! = ServiceErrorReport

Note, that if the block storage operation returns with an unexpected error, a
ServiceError report will be returned.



68  Specifying System Implementations in Z

Read a Page:
cReadPage —
Read[page1d?/id?, blockdata/data!,
report/report!]
page1d? : Pageld
page! : Page
report! : Report
blockdata : BlockData
report : Report

page! = UnPackPage blockdata
report = SuccessReport =
blockdata(l) = PageBlock =

report! = SuccessReport
blockdata(l) # PageBlock =
report! = ServiceErrorReport

report # SuccessReport =

report! = ServiceErrorReport

If the block does not exist or it is not a page block, the specification of the
operation has been violated, and a service error is reported.

Remove a page:

cDestroyPage
Destroy[pageid?/id?, report/report!]
pagei1d? : Pageld
report! : Report
report : Report

report = SuccessReport =
report! = SuccessHeport

report # SuccessReport =
report! = ServiceErrorReport
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SetExpiry[pageid?/id?, expires?/expiry?,
report /report!]

pageid? : Pageld

expires? : Time

report! : Report

report : Report

report = SuccessReport =
report! = SuccessRepori

report # SuccessReport =
report! = ServiceErrorReport

7.2 Implementation of the Header Store

Assuming that a header can be represented as a fixed-length sequence of bytes:

HeaderRep 2 0.. HeaderRepSize~1 — Byte

and assuming that

HeaderRepSize < BlockSise
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the concrete representation of the headers can be defined in much the same way as
the representation of the pages.

Of course, the disadvantage of this representation is that the maximum allowed
number of pages in a pagefile, MaxPages, would be fairly smail. For an attempt at a
more advanced and flexible implementation of a header store see [11].

In the following we shall assume the existence of a set of operations to convert to and
from this representation.

HeaderToRep : Header > HeaderRep
RepToHeader : HeaderRep > Header

RepToMeader = HeaderToRep™*
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Given the conversion functions it is a trivial matter to represent a header in terms of a

block and a header can be identified in terms of the block by which it is represented.
Id ¢ Blockld

The conversion functions could be defined as:

PackHeader : Header — BlockData
UnPackHeader : BlockDats —» Header

¥ h:Header -
(PackHeader h) for HeaderRepSize =
HeaderBlock ™ (HeaderToRep h)

¥ b:BlockDsta | b.data{l) = HeaderBlock -
UnPackHeader b =
RepToHeader (b after | for HeaderRepSize)

The representation relation for the Header Store is very much like that for Page Store.

- RelHS
HS
S5

¥ h:dom headers -
hd.owner = PageFileService
hd.expires = b.expires
b.deta = PackHeader hd
rhere
hd
b

[

(heeders h)
(blocks h)

n

newheaderids = newids

The concrete operations on the Header Store resemble very much the corresponding
operations on the Page Store.
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Create a new header:

c¢Creat eHeader
Create(blockdata/data?, expires?/expiry,
id!, report/report!]

header? : Header
expires? : Time

id! : Id
report! : Report
blockdats : BlockDats
report : Report

blockdsta = PackHeader header?
report = SuccessReport =
report! = SuccessReport
report = NoSpaceReport =
report! = NoHeaderSpaceReport
report € {SuccessReport, NoSpaceReport} ==
report! = ServiceErrorReport
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Read a header:

cReadHeader ;
Read[id?, blockdata/data!, report/report!]
id? : Id
header! : Header
report! : Report
blockdata : BlockData
report : Report

header! = UnPackHeader biockdata
report = SuccessReport =
blockdata(l) = HeaderBlock =
report! = SuccessReport
blockdata(l) # PageBlock =
report! = NoSuchHeaderReport
report € {NoSuchBlockReport, NotOwnerReport} =
report! = NoSuchHeaderReport
report € {SuccessReport, NoSuchBlockReport,
NotOwnerReport} =
report! = ServiceErrorReport

If the requested block does not belong to the PageFile Service or if it is not marked as
a header block, it is reported as non-existing.

Remove aheader:

cDestroyHeader
Destroylid?, report/report!]
id? : Id

report! : Report

report : Report

report = SuccessReport =
report! = SuccessReport

report # NetErrorReport =
raport! = ServiceErrorReport
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Replace one header with another:

cReplaceHeader
Replace(id?, blockdata/data?, id!,
report/report!]

id? : 1d
heeder? : Header
id! : Id
report! : Report
blockdata : BlockData
report : Report

blockdata = PackHeader header?
report = SuccessReport =

report! = SuccessReport
report # NetErrorReport =3
report! = ServiceErrorReport

This completes the specification of the concrete operations.
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8 Conclusion

Despite restructuring the implementation specification a number of times during its
development, in an attempt to make it easier to understand, the version presented
here is still by no means straightforward to assimilate.

One of lhe advantages of the schema composition techniques, namely being able to
abstract parl of a specification under a simple name, is also one of its main
disadvanlages. In larger specifications, such as this one, it is all too easy to hide the
detail so well that it is overlooked!

Here, as in the Block Storage Service Implementor Manual (6], we bave tried to
present 3 design in a form suitable for 2 programmer rather than for a proof of
correctness. The refinement steps demonsirate design decisions, and are probably too
large to realistically expect a complete proof to be carried out by hand. In addition,
the notation has been kept within the Z framework, although a small number of extta
schema operators have been added, in particular to handle iteration and interleaving
(see Chapter 1, section 6). For an example of how a Z specification could be further
refined lowards a programming language, see [12).

The provision of computer based tools may help with refinement in the future.
However, even without these tools, the use of a formal notation gives the designer
more confidence and understanding of the internal design of the system before the
coding stage.
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Appendix A

Index of formal definitions

The following index lists the page numbers on which each formal name is defined in
the text. In particular, all schema names are inclnded o aid cross reference. Schemas
names in the index with a “¥” rather than a page number next to them are defined in
the Block Storage Service [6]. Names which have a special symbol (8, ¢, 5, c) as a
prefix are listed after the corresponding base name. Note that for a schema S, unless
otherwise delined, it is assumed that the following definitions exist if required:

AS & S a5’
=5 2 A5 | 85’ =85
Byte 24 cCreateFile goq) 57
CheckOuner 53 CreateFile,,  cos 30
CheckOuner, 5S4 clreateFile, cces 48
CheckOwner, 56 CreasteHeader 60
CheckPageld 54 CreateHeader, 47
CheckPageld, 54 CreateHeader, 56
CheckPageld, S6 CreateReaderError S8
Compact nessConstraint 38 CreateHeader ..., 52
Create * CreateHeader . qss 42
CreateFile 30 CreatePage 60
cCreateFile 61 cCreatePage 67

cCreateFile, \cnot 58 CreatePage, 46
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CreatePage,
CreatePage 4.,
CreatePage
Destroy

SULCESS

DestroyFile
cDestroyFile
cDestroyFile i ompt
cDestroyFile, you

DestroyFile
cDestroyFile

sSuccess

sSuccess

DestroyHeader
cDestroyHeader
DestroyHeader;
DestreyHeader,
DestroyHesder, 4.,
DestroyHeader
DestroyPage

sSuccess

cDestreyPage
DestroyPage,
DestroyPege;y
DestroyPage,
DestroyPage,,
DestroyPsge; oz
DestroyPage, ccese
DestroyPages,
DestroyPages,
EmptySeq
Error
ErrorState
ExpiryConstraint
GetPageld
GetPageld,
GetPageld,
Header
HeaderBlock
HeaderBuf
HeaderRep
HeaderServiceError

S6
51
40

33
62
62
57
33
48
60
72
47
56
53
43
60
68
46
48
56
57
51
41
48
S7
36
55
54
38
44
47
56
36
65
46
69
60

Header ToRep
HS

1d
Increasel i fet ime
Info

InitHS
InitPFS
InitPS
HakeHeader
NakeHeader,
HakeReport
ctlakeReport
MarkedBlocks
PNewPageFile
NewPageldBuf
NoHeaderSpace
NoPageSpace
NoSpace
NoSuchFile
NoSuchHeader
NoSuchPage
NoSuchPageError
NotNullId

Not Owner
NotOwnerError
01dPageldBuf
Page
PackHeader
PackPage
PageBlock
Pageftle
$PageFile
PageF i leDats
Pageld
Pagelnfo
PageNum
PageSeq
PageServiceError

24,

28,

69
37
70
63
25
37
26
36
44
47
55
61
65
27
46
52
51
29
64
52
28
54
48
29
53
46
24
70
66
65
25
27
25
66
35
25
36
59




PFS
APFS
=PFS
cPFS
cPFS
cPFSZ
PS
PutPageld
PutPageld,
PutPageld,
Read
ReadFile
cReadf ile
cReadFile 4.1
ReadFileSUCCESS
cReadFile_  rocc
ReadHeader
cReadHeader
ReadHeader |
ReadHeader ,
ReadHeader
ReadHeader
ReadPage
cReadPage
ReadPage,
ReadPage,
ReadPage  4..1
ReadPage
RelHS
RelPFS
RelPS
Replace

1deal

SUCCESS

Success

RepleceHeader
cReplaceHeader
ReplaceHesder,
ReplaceHeader,
ReplaceHeaderldeﬂ

26
26
27
37
46
55
35
45
47
S6

32
61
57
32
48
60
72
47
56
53
42
60
68
46
S6
Sl
40
70
38
66

60
73
47
56
53

ReplaceHeader
Report
RepToHeader

SucCcess

Scavenge
ScavengeHeaders
ScavengePages
SetExpiry
SetFileExpiry
cSetFileExpiry
cSetFilaExpiry, oo
SetFileExpiry.,ccons
cSetFileExpiry,  cecs
SetHeaderExpiry
SetHeaderExpiry;
SetHeaderExpiry,
SetPageExpiry
cSetPageExpiry
SetPageExpiry,
SetPageExpiry;q
SetPageExpiry,
SetPageExpirysy
SetPageExpiry, goa;
SetPageExpiry,  cess
SetPagesExp iry,
SetPagesExpiry,

Success

)

Time
UnPackHeader
UnPackPage
UserNum
UritefFile
clriteFile
cUriteFi]eanemp1
cHriteFile goq
WriteFile  cess
clriteFile

success

28,

79

43
24
638
29
43
41

34
64
57
34
49
45
47
S6
60
69
47
48
56
57
51
41
48
57
S1

24
70
66
24
31
63
62
57
31
48
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Apperndix B

Glossary of Z notation

A glossary of the Z mathematical and schema notation used in this monograph is
included bere for easy reference. Readers should note that the definitive concrete and
abstract syntax for 2 is available elsewhere [3].




Z Reference Glossary
Mathematical Notation
1. Definitions and declarations.

Let x, x; be identifiers, t, t, be terms and
T, T, be sets.

[Ty, T, ..] Introduction of given sets.
Definition of x as syntactically
equivalent lo t .
x rimoxg <<t >3] | x, <<t >>
Data type definition (the <<t>>
terms are optional).
x: T Declaration of x as type T.
xyt Tyi w5 %4 ¥, List of declarations.
Declarations of the same
type: & x;:T 5%, T.

x &t

Xyp s X 2 T

2. Logic.

Let P, Q be predicates and D declarations.

= P Negation: “not P”.
P AQ Conjunction: “P and Q7.
PvaQ Disjunction: “P or Q™

2 ~(-Pna-Q).

P = Q Implication: “P implies Q" or
“{P then Q" 2 ~PvQ.

P « Q0 Equivalence: “P is logically
equivalent to Q™
2 (P=20)A(0=P).

true Logical constant.

false 2 ~true

¥ D - P Universal quantification:

“for all D,P holds”.

Existential quantification:

“there exists D such that P”.

3,0 + P Unique existence: “there exists
a unique 0 such that P™.

(VD - P = Q).

(3 D-PAQ).

ap-pP

YO|P-Q
301P-Q

0w
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P where D | Q@ Where clause:

230 ]Q-P
P where x;2t,;..ix,2t, Where clause:
P holds, with the syntactic
definition(s) defined locally.
Theorem: ¢ F ¥V D - P.

DFP
3. Sets.

Let S, T and X be sets; t, t, terms; P a
predicate and D declarations.

t; = t, Equality between terms.

ty # t, [Inequality: & ~(t = t,).

t €S Set membership: “t is an element
of 5.

tES Non-membership: 2 ~(t € §).

& Empty set: 2 { x:X | false }.

SeT Set inclusion:
2 (Vx:5 + x€eT),

SeT Strict set inclusion:
285cTAS#T.

{ty: 2 wp b} The set containing

ty,ty and t,.
{D|P-t} Thesetof t’ssuch that given

the declarations D, P holds.
{DIP} GivenDexy:T ;.5 x.:T

n?

2 {0 Pe(xq,.0x) )
{D+t} 2 {0 true « t}.
{ty o wow t3) Ordered n-tuple
of ty,t, .. and t .

Ty x T, x..xT_ Cartesian product:
the set of all n-tuples such that
the i th component is of type T .

PS Powerset: the set of all subsets
of S.
P S Non-empty powerset:
2 PSS\ {g}.
F S Set of finite subsets of S:
2 {T: @S | Tis{injte}.
F, S Non-empty finite set:
2 FS\ {g}.
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SnT Set intersection: given S, T: P X,
2 {x:X | x€S5 A x€eT}.
SuT Sel union: given S, T: P X,
2 {x:X | x€S v xeT}.
SAT Set difference: given S, T: P X,

2 {x:X | x€5 A xgT}.
n ss Distrihuted set intersection:
given SS: P (P X),
2 {x:X | (¥5:55 ¢« x€5)}.
U SS Distributed set union:
given SS: P (P X),
2 {x:X | (35:55 - x€9S)}.
#S Size (number of distinct
elements) of a finite set.
uD | P «t Arbitrary choice from the
et{D | P« t}.
uD <t 2uD| true -t
4. Relations.

A relation is modelled by a set of ordered
pairs hence operators defined for sets can
be used on relations. Let X, Y, and Z be
sets; x:X; y:Y; and R: X & Y.

X & Y  The set of relations from X to Y:
2P (X xXY).
x Ry x ie related by R to y:

2 (x,y) €R. (R is often

underlined for clarity.)

x =y Maplet: 2 (x, y).
dom R The domain of a relation:
2 {x:X | 3yg:Y + xRy}
ran R The range of a relation:
2 {y:¥Y ] Ix:X « xRy}l
R, 3 R,  Forward relational composition:
given R : X 2 Y; Ry: Y & Z,
e {x:X; z:Z | y:Y ¢
x RiyAryRyz}.
Ry © R,  Relational composition:
2 R, 5 Ry.
R Inverse of relation R:

2 {y:Y; x:X | xRy},

idX Identity function on the set X:
e {x:X » xH¥x}.

R' The relation R composed with
itself k times: givenR : X & X,
RO 2 id X, R 2R' o R,

R* Reflexive transitive closure:
gl {n:N « R"}.
R* Non-reflexive transitive closure:

2 U {n:N; - R"}.
R(S) Relational image: given S: P X,
] {g:Y | Ax:5 - XRQ}.
Domain restriction to S:
given S: P X,
2 {x:X; y:Y | xS A xRy}.
Domain subtraction:
given S: P X,
2 (X \3) dR.
RDT Range restriction to T:
given T: P Y,
2 {x:X;y:Y | xRy A yeT}.
RPT Range subtraction of T:
given T: P Y,
2 RD (Y \T).
R Infix relation declaration (often

S 4R

S 4R

underlined in use for clarity).
5. Punctions.

A function is a relation with the property
that for each element in ils domain there is
a unique element in its range related to it.
As functions are relations all the operators
for relaticns also apply to functions.

X -+ Y  The set of partial functions from
XtoY:
2 {f: XY {¥x:dom f -
(3y:Y+xf yl
X — Y  The set of total functions from

XtoY:
2 {f: X-+»Y | dom f=X}.




- r-IBR»
30— >»
=D 2>~ X

flgfz

f_
(_f_)
_f

ft
f(1)
AD | P -
AD -t

The set of partial injective (one-
to-one) functions from X to Y:
2 {f: XY [VYy:ran f-
(3 x: X« fx=y)}.

The set of total injective
functions from X to Y:

2 (X>»Y) n (X—=Y).
The set of partial surjective
functions from X to Y:
s {f: XY | ran f=Y}.
The set of total surjective
functions from X to Y:

2 (X®Y)n (X—>2Y).
The set of total bijective
(injective and surjective)
functions from X to Y:
2 (X—=»Y) n (X=Y).
The set of {inite partial
functions from X to Y:

s {f: X-»Y |

fefF (X xY)}.

Partial functions.

Total functions.

Finite functions.

Fnnctional overriding: given
fy, fo o X-0Y,
2 (dom f, 4 f{) U f,.
Prefix function declaration
{default if no underlines used).
Infix function declaration (ofteu
underlined in use for clarity).
Postfix function declaration.
The function f applied to t.
2 f .

t Lambda-abstraction:

the function that, given an
argument x of type X such
that P holds, the result is t.

Given Dex Ty .5 x,: T,
2 {DIP*(x,...x )t}
2 XD | true + t
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6. Numbers.

Let m, n be natural numbers.

N

max S

7. Oxders.

The set of natural pumbers
(non-negative integers).

The set of strictly positive
natural numbers: 2 N\ {0}.
The set of integers {positive,
zero and negative).
Successive ascending natural
number.

Previous descending natural-

succ la.

a

nnmber: £
Addition: 2
Subtraction: 2 pred" m.
Multiplication: & {_+m)" 0.
Integer division.

Modulo arithmetic.

succ” m.

Exponentiation: 2 (_ % m)" 1.
Less than or equal, Ordering:
_<_ 2 succk.

Less than, Strict ordering:

2 mEnAm#En.

Greater than or equal: ¢ ngm.
Greater than: & n<m,

Range: 2 {k:N|mgk akgn}.
Minimum of a {inite set;

for S: F; N, minS € § &
(¥x:5 « x 2 min S).
Maximum of a finite set;

forS: F; N, maxS € S &
(¥x:5 + x ¢ max S).

partial _order X

The set of partial orders on X:
2 {R:XHXIVX,L__!,Z:X'
xRx 4
xRy A yRx = x=y &
xRy AyRz = xRz}.
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total _order X
The set of total orders on X:
2 {R:partial _order|Vx, y: X+
xRy v yRx}.
monotonic X <y The set of functions
from X to X that are monotonic
with respect to the order <y on X:
2 {f:XoX| Vx,y:Xe
x <y = f(x) <y f(y)}.

8. Sequences.

Let &, b be elements of sequences, A, B be
sequences and m, n be natural numbers.

seq X The set of sequences whose
elements are drawn from X:
s {A:N®X |
dom A = 1..8A 7},
< The empty sequence @.
seq, X  The set of non-empty sequences:
2 seq X \ {OF
{8y, w, a2
¢ {1—a, ., n—a }.
ey, ., 8,0 <by, w, b
Concatenation:
8 <8y, 84 by, s b2,
OTA=ATO = A
The first element of a
non-emply sequence:
A# <O = head A = A(1).
The final element of a

head A

last A

non-empty sequence:

A# O = last A = A(BA).

All but the head of a sequence:

tail(<x> T A) = A.

front A All but the 1ast of a sequence:
front(A7T<x>) = A.

tail A

rev <a;, a; .., 8 Reverse:
2 <a,, .., 8y 8>,
rev & = O.

/AA Distributed concatenation:

given AA : seq(seq(X)),
2 AA(L) T L. TAA(®AA),
TG =

3/AR Distributed relational
composition:
given AR seq (X & X),
2 AR(1) 3 .. 3 AR(®#AR),
3 /O = id X.

®/AR Distributed overriding:
givenA : seq (X + Y),
2 AR(1) @ .. ® AR(#AR),
e/ O = d.

squash f Convert a finite function,
f: N-» X, into a sequence by
squashing its domain. That is,
squash B8 = O,
and if f # @ then
squash f =
F(1)> " squash({1}4 f)
where i = min(dom f).
Index restriction:
2 squash(S qA).
Sequence restriction:
2 squash(ADT).
disjoint AS  Pairwise disjoint:
given AS: seq (P X),
2 (V¥ i,j : dom AS * 1#]
= AS(i)NAS(j) = 9).
AS partitions S
2 disjoint AS A
U ran AS = S.

S 1A

AMT

A in B  Contiguous subsequence:
2 (3C,D: seq X -+
CTATD=B).
9. Bags.
bag X The set of bags whose elements

are drawn from X: & X » N,
items s The bag of items contained in

the sequences: 2 {x:rans-*

x2#{):doms|s(i)=x}}



Schema Notation
Schema definition: a schema groups
together some declarations of variables and
a predicate relating these variables. There
are two ways of writing schemas: vertically,
for example

or horizontally, for the same example
S2 [ x: N; y: seq N | xsey ).
Use in signatures after ¥, ), {..}, etc.:
(VS = y # O) & (¥x:N; y: seq N |
xgry = y#<O).

Schemas as types: when a schema name § is
used as a type it stands for the set of all
objects described by the schema, {S}. For
example, H : S declares a variable W with
components x (of type N) and y (of type

seq N)such that x < #y.

Projection functions: the component names
of a schema nay be used as projection (or
selector) functions. For example, given
Wi S, W.oxis WS x component and K.y is
its y component; of course, the following
predicate holds: w.x < #r.y. Additionally,
given w : X = S w3 (AS.x) is a function
X-9N, etc.

8S The tuple
schema’s variables: for example,
8S is (x,y). Where there is
no risk of ambiguity, the 8 is
sometimes omitted, so that just
“S" is writlen for “(x, y)”.

formed from a

pred S The predicate part of a schema:

e.g. pred S is x € #y.
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Inclusion A schema S may be included

within  the declarations of 3
schema T, in which case the
declarations of S are nierged
with the other declarations of T
(variables declared in both §
and T must be of the same type)
and ibe predicates of S and T

are conjoined. For example,

i =i
S
z : N
z < x
e —_—
is
[ 1
, z: N
y : seqg N
X § By A Z < x
]

The schema S with P conjoined
to its predicate part. E g.,

(S | x>0)is

[ x:N;y:seg N | xs#y a x>0 ] .

S:D The schema S  with the
declarations D merged with the
declarations of S. For example,
(S ; z:N) is
[x, z:N; yrseq N | xgoy ],

S[new/o14d] Renaming of components:
the schema S in which the
component old  has beep
renamed fo new both in the
declaration and at its every free
occurrence i the predicate. For
example, S{z/x] is
[ z:N; y:seq N | z ¢ #y ]
and S{y/x, x/y] is
[ y:N; x:seq N | y < #x ].
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Decoration

SAT

In the second case above, the
renaming is simultaneous.

Decoration  with  prime,
subscript,  superscript, etc;
systematic renaming of the
components declared in the

schema. For example, S’ is
[ x":N;y’:seqN | x"<uy’].

The schema S with its predicate
part negated. E.g., =S is
[ x:N; y:seq N | ~(xsuy)].

The schema formed from
schemas S and T by merging
their declarations (see inclusion
above) and conjoining (and-ing)
their predicates, Given T & [x:

N; z: PN | sz],SATiS

t

x + N
y : seq N
z: PN

x § By A x € 2z
i

The schema formed from
achemas S and T by merging
their declarations and disjoining
(or-ing) their predicates. For

example,S V T is

x : N
y : seq N
z: PN

xQSIngEz
|

The schema formed from
schemas S and T by merging
their declarations and taking

pred S = pred T as the

predicate. Eg.,5 = T is

x : N
y : seq N
z: PN

X ¢ #y = x € 2z

The schema formed {rom
schemas S and T by merging
their declarations and taking
pred S <> pred T as the
predicate. E.g.,5 & T is

x : N
y : seq N
z: PN

x € #y S x € 2

—

SN vy, Vi s vp)

Hiding: the schema S with the
variables vy, v, .. , and v,
hidden: the variables listed are
removed from the declarations
and are existentially quantified
in the predicate. Eg., S \ x is
[y:seq N| (Ix:N-xgny)]. (We
omit the parentheses when only
is hidden.) A
schema may be specified instead
of a list of variables; in this case
the variables declared in that
scbema are  hidden.  For
example, (S A T)\S is

one variable

z: PN

(3 %: N; y: seq N -
x € HYy A x € z)




S P (vy Vo s V)

Projection: The schema S with
any variables that do not occur
in the list v,v,, .., v, hidden:
the variables removed from the
declarations are existentially
quantified in the predicate. E.g.,
(SATM(x,y) is

L
x : N
y: seqN
(3z : PN -
X € #y A x € 2)
i

As for hiding above, we may
project a single variable with no
parentheses or the variables in a
schema.

The following conventions are used for
in those schemas which
represent operations on some state:

variable names

undashed
dashed (“'")
ending in “?”

state before,

state after,

inputs to (arguments for),
outputs from (results of)
the operation.

z|n

ending in

The following schema operations only

apply to schemas following the above

conventions.

pre S Precondition: all the state after
components (dashed) and the
outputs ({ending in “!”) are
hidden. E.g. given
S -1
’ x?, s, s’, yl : N
{s'=s—x?/\g!=s

past S

Glossary 87

1
x?, s : N
(3 s, y : N
s’ = s-x? Ayl = s)
-

Postcondition:.- this is similar to
precondition except alt the state
before components (undashed)
and inputs {ending in “?”) are

hidden.  (Note that  this
definition differs from gome
others, in which the

“postcondition” is the predicate
relating all of initial state,
inputs, outputs, and fina} state.)

Overriding:

2 (S A -pre T) VT

For example, given S above and
T

’ L
x?, s, 8° N

s <x?As" =g

SeTis

x?, s, s, y' : N

(s’ =s-x? Ayl = 5 a
(3 s: N-

s <x?As’ =s))
V(S(x?As’=3)

which simplifies to

x?, s, s’, y!' : N

(s’ = s=x? Ayl = g A
s 2 x?) Vv
(s < x? As’ = g)
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Schema
consider an intermediate state
that is both the final state of the
operation S and the initial state
of the cperation T then the

composition: if we

composition of S and T is the
operation which relates the
initial state of S to the final
state of T  through the
intermediate state. To form the
composition of 5 and T we take
the state-after components of S
and the state-before components
of T that have a basename” in
common, rename both to new
variahles, take the schema which
is the “and”™ (A) of the resulting
schemas, and hide the new
variables. Eig.,S 3 T is

x?,s, s, y' : N

(3 s N.
50=S—XA9|=5A
sp < x? A s’ = sp)

basename is the name with

any decoration (“’”, “!7, “?”
etc.) removed.

S >> T  Piping: this schema operation is
similar to schema composition;
the difference is that, rather than
identifying the state after
compenents of S with the state
before components of T, the
output components of S (ending
in “!") are identified with the
input components of T (ending
in “?") with the same basename.

The following conventions are used for
prefixing of schema names:

AS change of before to after state,
=5 no change of state,
S framing schema for definition of

further operations.

For example

AS 2 S A S
=S 2 AS | 6S = 6S°
¢S & A8S |y =y’
Sgp 2 @S | x'=0
Other Definitions
Axiomatic definition: introdnces glohal

declarations which satisfy one or more
predicates for use in the entire document.

I declaration(s)

‘ predicate(s)

or horizontally: DiP
Generic  constant:  introduces generic

declarations parameterised by sets A, B,
etc. which satisfy the given predicates.

—[A,B, .| ———

declaration(s)

predicate(s)

Generic schema  definition: introduces
generic schema parameterised by sets A, B,
etc. When used subsequently, the schema

should be instantiated (e.g. S{X, Y. ..]).

S(AB L] —
declaration(s)

predicate(s)






