
An Introduction to CSP

by

J.W. Sanders

Techniea.l Monograph PRG-65
ISBN 0-902928-47-1

March 1988

Oxford University Computing Laboratory
Programming Research Group
8-11 Keble Road
Oxford OXI 3QD
England

O~\.~::'I'd t.Jr",··~ .. ~!t:' r~...,... ,",' d:-~'- 1 .'~'" ~.!.~: j

Oxk, L. .:. ~~J

M

0
'
P
~

0

e
,

,
<a

 0
'
::
:~

,

~

~
O

g-

3
~

c
•

3-
"'.

><
 .

3
 ,

:=c

 :
:;'

". •
w

0

'"

D

b..
:::J

~.

tl

m

Q
•

CO

~
0

"
.

S

0;
:

a
~.

o

,

~
'
"

 '" • ". ~
 S .:;

n ,;j

~
 ,. '" @ " ~
 ~
 3i
 • " ~
 , w ~

~

An Introduction to CSP

J.W .Sanders

O. Introduction.

1. What is CSP?
2. PingPong.

2.0 Requirements.
2.1 Players.
2.2 Bats.

2.3 Ball.
2.4 Extensions.

3. Specifications, Implementations and Development

4. Acknowledgements.
5. References.

Programming Research Group

8· 11 Keble Road, OXI 3QD, Oxford

2

O. Introduction

DUTin~ a CSP course (as with any other) it is easy to lose sight of the wood for

the trees; after spending several hOUT5 immersed in the formal properties of an
operator, one is apt to forget why the operator was deemed to have been important in
the first place. It has thus been found convenient to begin CSP courses with a lecture
whose purpose is to provide an overview and informal introduction to the features of
esp. This complements the style of Hoare's textbook (2) (which develops CSP
systematically and gradually) and leaves the lecturer free in the rest of the course to

pursue a more rigorous presentation following the book.

In this paper we attempt to give such an introduction. Particular features are:

(a) the use of a small example to introduce the notation, and demon5tration of
how CSP can be used to model a potentially complex system by building the

specification in small steps;

(b) early emphasis on the combinators for internal and external choice;

(c) contrast between CSP and the notation of finite automata and regular
expressions (a contrast which our experience 5uggests is helpfUl to the a.udience); and

(d) a brief section on the development of systems emphasizing the use of laws.

Several extensions of our example are proposed as exercises. These are not
primarily CSP exercises (a booklet of which i5 available from the publisher to
accompany (2J) but have been included to provide practice in structuring
specifications. Such exercises might form the basis of a workshop held toward5 the end

of the course.

3

1. What is CSP?

esp, a theory of Communicating Sequential Processes, attempts to provide a

notation for expressing and reasoning about systems of concurrent processes. By

expressing we mean designing, specifying a.nd implementing: without a formal

notation it is difficnlt to describe a process precisely enougb to modify it or to contrast
it with contending designs. By reasoning about we mean modifying, developing and

verifying such descriptions correct: the notation must support a body of knowledge
sufficient to enable all this to be done. And in systems of concurrent processes we
iuclude multiprocessing systems, operating systems, distributed systems, systems using
remote procedure calls, and systolic arrays of processors.

To meet these aims, esp offers a succinct mathematical notation (or the
description o(processes and a way (alphahets) o(controlling the level o(abstraction o(
tbese descriptions. Processes can be structured using combinators (or parallel

composition, external cboice, internal choice, communication, abstra.c:tion and
sequential composition: these combinators are introduced in section 2. The resulting
notation is expressive enough to describe tbe range of examples mentioned in the
previous paragrapb, yet circumscribed sufficiently to support a body of fairly simple
laws and a semantic tbeory. The complete semantics is too complex for general use;
fortunately it is approximated by a hierarchy o(simpler semantic models one of which
is usually sufficient to reason about properties of the system under consideration. We

say more about this hierarchy in section 3.

A process can be described either by CSP syntax, using the combinators
mentioned in the previous paragraph, or by semantics, using the simplest model in the

hierarchy which is sufficient to capture the intended behaviour. However for the
purpose of executing a description in esp, a langu<\ge derived from a subset of it,

called occam, has been implemented by INMOS (see /3]). The choice of subset has
naturally beeu determined by matters of efficiency which are absent in the larger
language. Consequently it is convenient to specify, rea~;on about and refine systems in
CSP and encode using occam only at the-very last stage of development.

4

z. PingPong

This section contains the main part of the paper; in it CSP is used to model a

game which can be described informally as follows.

2.0. Reqnirements

Pi ngPong is a game for two players who sit at opposite ends of a small table.
Set into the table is a horizontal video monitor which displays a ball bouncing around
inside a four-walled court. The wall nearest the right-band player, RP, is the goal, LG,

of the len-hand player, LP I and vice versa. To defend his opponent's goal, RP controls
a bat, RB, which can be moved along LG by pressing a "move right" button or a "move
left" button (judged from the viewpoint of RG), or neither. The balt starts in the
middle of the court at a random angle (not parallel to the goals) and collides
el<l.Stically with the bats and walls. But if it reaches a player's goal, that player wins

and the se.csion ends.

L!. R&

@\ II@

&QIl

11@~Il
LC;

I I

Rl:. I
LP

I

RP

P-~Ponj

.'

Our task is to describe Pi ngPong in esp. The first difficulty is to decide at

what level to model the game. We could describe the time at which it starts, the time
it finishes, and the winner. Or we could describe, second by second, the iI'.lensity of
the SCrE,en a.nd the spatial movements of botb players. Evidently the second

description conta.ins far more information than the first which is called more high-level

or more abstract.

We shall endeavour to focus on an intermediate description which ignores time
and most physical attributes of the components of tbe game. We conceive of the game

as proceeding a,g the two players control their bats by button and the bats deflect the
ball which rebounds around the court. Our first step is thus to isolate five interacting

processes:

LP the left-hand player RP the right-hand player

LB the left-band bat RB the right-hand bat
Ba II the haiL

It is our intention to describe the game as proceed.ing with the evolution in

parallel of these processes

PingPong LP II RP II LB II RB II Ba II.

Although II denotes an infix operator with two processes as arguments and a single
process as its result, we have relied on its associativity to omit parentheses. It has yet
to be decided what a process is and bow 1\ should behave; but intuition dictates that
placement of components in parallel ought to be associative and that we ought to be

able to use II to modularise the specification as outlined above. This, after all, is the
principle of top-down description, exploiting concurrency. It is similar to the use of
procedures in structuring a sequential system in top-down fashion, <l.nd indeed

generalises it. If our description is to be successful, II must permit the five
self-contained processes to interact in just the right way!

In ontline, a process is capable of performing certain actions (the left-hand
player can press buttons and the left-hand bat can move up and down) and when two

processes are placed in parallel (LP II LB) tbe components must synchronise ou their
common actions (the left-hand bat respoTLds to the left-hand player's wishes) although

an action wbich can be performed by only one of them occurs whenever that process
permits it to (the bat is insensitive to its player's victory).

But let us first discuss the players, LP and RP.

6

2.1. Players

Think of a process as being a black box. Its internal constitution is concealed
from us hut we can nonetheless describe it by describing its interactions with its
environment. This is a standard expedient in scientific methodology and is
traditionally accompanied by the rather trivial diagram

interact ions

~ ;V'

~I ~
'coo."

.f) ~ \.
Env ironment

The kind of interaction we are interested in determines the level of abstraction of
the model. In Pi ngPong we are Dot concerned with the left-hand player's clothing, his
drinking habits, or even whether he is brea.thing: we simply wish to describe his

inclination to press the two buttons at bis disposal. The relevant events in which LP
can engage are

1eft push the left-band button

right push the right-hand button

ste!:j push neither button.

We sa.y thAt these events constitute the alphabet of LP,

a(LP) • {left, right, stay}.

7

Had we chosen to model the left-hand player's exclamations during the game
then we would have bad to incorporate his vocabulary into this alphabet; had we
elected DOt to model his conscious decision to move the bat neither left nor right, we

would have deleted stay from it.

The left-hand player can push buttons as frequently as be likes and in any order.
The choice of what be does is determined by factors not revealed at this level of
abstraction. So in our model LP can I at any stage, engage in any of the events in its

alphabet.

:exercise. Describe LP using (a) the diagram of a finite automaton;
(b) a grammar and its language.

Answer. (a)
left

right

stay

(b) A regular grammar is

LP = left LP I r;ght LP I stay LP I •

(where ~ denotes the empty string) and its language consists of all finite sequences of
1eft , right and stay

{left. right, stay}-, II

8

The way in which we describe LP using CSP makes apparent that the choice
between the different events in its alphabet is made internally by LP and cannot be
influenced by its environment. Such interpretations (whether a process decides
internally to perform an event or whether it does so in consultation with its

environment) are a.bsent from the notation of finite a.utomata. In CSP we write

LP • (left -+ LP) n (right -+ LP) n (stay -+ LP). (I)

This equation defines LP reCUl"Sively. Some care is obviously necessary to ensure that
such a definition makes sensej for instance LP is not defined by either

LP = LP or LP = LP n LP.

This point must be puri!Ued in tbe body of the CSP course (see [ZJ, page 97).

The infix combinator n combines two processes and yields a process which is an
internal choice between them, that is, made by factors beyond the control of the

environment. It is called internal, or DODdeterministic , choice and the reader's
intuition will almost certainly direct that, whatever its definition, n ought to he
associative, commutative and idempotent. This is seen to be true in the course (see {2},
chapter 3) and a.s usual we have made use of associativity in omitting parentheses in

the right-band side of (1).

Th~ eymbol --+ combines an event and a process and produces a second process
capable of performing the event and subsequently behaving like the first process. This
is called prefixing and --+ is pronounced then.

A process thus described, determines (like the automaton above) the set of finite

sequences of events in which it is prepared to engage. These finite sequences (which
include the empty one) are called the traces of the process LP and their aggregate is

denoted

treces(LP) (= {left, right, stay)'). (2)

We often think of (1) a.s the syntax for LP and (2) as its trace semantics,

So fu we have ignored termination. Let us suppose that although the game need

not terminate, if it does either LP wins or RP wins. 19noring the manner in which they
celebrate this victory, we choose to augment the alphabet of LP with the events

9

{h.. in,	 r in}.

After engaging in eitber of these events LP terminates. We write

SKIP

for a process which models such termination. Although it engages in DO- even' (its only

trace is the empty one), it can be followed in sequence by another process, in which
case the sequential composition behaves like the second process. This means, writing.
for sequential combination and P for an arbitrary process, that provided S~IP and P
are at the same level of abstraction (have the same alphabeh),

SKIP, P = P.

SKIP does not model deadlock (a death after which there is no life?) - this is
done by another process, STOP (see [2}, page 25). SKIP is more like sleeping beauty
awaiting a princely successor, and ita use here enahles the left-band player and his

opponent to play another match.

At the end of the game the left-hand player behaves like either

(IHin --+ SKIP) or (n.. in --+ SKIP).

The choice between these processes is not made by the left-hand player (would he ever
choose the latter event?), so n is an inappropriate combinator. The choiCE is made by
LP's environment because it depends on the position of the ball. We must thus

introduce a new, environment-controlled, choice combinator: it is written ~ and called
external, or deterministic, choice. So at the end of the game LP behaves like

(lwin -) SKIP) n (rwin -) SKIP)

and the choice between such behaviour and nontermination (as described in our
previous version of LP) is again made by LP's environment - it depends on whether
the ball is at a goal. Thus finally

o:(LP) " {left, right, stay, lWln, rl-lin}

LP.	 «left --+ LP) n (right --+ LP) n (stay --+ LP»

U
«IHin --+ SKIP) U (rHin -. SKIP». (3)

10

AHer having completed the specification of LP, we next observe the similarity
between LP and RP.

Exerdse. Define RP in esp. / /

There is a systematic way to exploit such isomorphism, called relabelling.
Let us introduce three new events 1ef t '. right' and stay', and define a function

f a(LP) -+ {left'. right'. stay', lwin. rwin}

by setting

f(lefl) right'

f(right) left I

f(stay) stay'

f(liojin) = lwin

f(rwi n) rwin.

(Would it have made any difference to the model to write f (1eft) = 1ef t' etc. ? It
will become clear in the second exercise of section 2.2 why we make the choice above.)

We define a process named f(LP) as follows: its alphabet is f(a(LP» and it

engages in event f(e) iff LP engages in event e. This "lifts" the function f from
events to processes, and enables us to define

RP' f(LP).

Why are three events in o:(LP) primed and two not? We have decided that

processes in parallel will synchronise on their common events. In parallel, LP and RP
must be able to perform independently the events which control their own bats: hence
the three primed events. However they must together engage in the win event which
terminates the game: and hence 1win and rw i n are common to the alphabets of LP
and RP.

11

2.2. Bats

The left·band bat, LB, starts in the centre of RP's goal and when it moves, does
so in small uniform jumps left or right (directed from the point of view of LP) as far as
the extremes of the court. We deem LB to be capable of at most n moves in either
direction from its initial position, for SOlUe nEN at least 1. In the implementation n

will be quite large, its actual value being determined by matters of graphical and
computational efficiency. But let us abstract from these and treat n as a constant of
the specification.

Exerdse. Describe the position of the left-hand bat using (a) a finite automatoDj

(b) a grammar,

ADIiWer. (a) left. stay

(~
 5t ate n

right left

sta~ state 1~

right

state 0~f ..,"

right (left

'0 stay state -1

{J

right 1eftV

6
 state -n

right,stalJ

12

(b) A grammar for this automaton is

LB ~ LBo

LB 1 :: left LB t + 1 I right LB t - 1 I stay LB t 1 e provided It I~n-l

LB_n = 1eft LB_n+1 I right LB_n I stay LB_n

LB" :: left LBn I right LBn- 1 J stay LBn.

The language of this grammar is of course identical to that for LP. At this level
of abstradion we have made no use of the "position marker" n and were we not to
make use of it later in the specification, our description would be unnece55arily
complicated (not fully absb'aet). / /

In contrast to the specification of LP, we need (in order to keep the bat within
the court) to keep track of the position of the left-hand bat. For convenience we
choose, all we did with LP I to specify LB in two steps. Again the 5econd version

supersedes the first and so we use the same name, LB, in both. The first specification,
following lhe exercise, makes no U8e of the state. We express LB as a process in CSP

a(LB) = {left, right, stoy}

LB = LBo

LBt .= (left --+ LB +I) U (right LB t _l) U (stay ..-..+ LS)
t t

provided -n~t-l A t+l~n, that is, It I ~n-l

LB_n = (1 eft --+ LB_n+1) U (r i ght --+ LB_ n) U (stay --+ LB_n)

LBo = (left --+ LBo) 0 (right --+ LBo_') 0 (stay --+ LBo)· (4)

Equations (4) use mutual reClll'8ion to define LB in terms of processes LS t
(where t~n records the position or "state" of the bat). It is important, and this
distinction does not appear in tbe finite automata for LB and LP, that tbe choice
between events left. rignt and stay is not made by tbe bat - it is an external
choice offered to the environment of LB. Tbat is why we have used tbe combinator U,
representing external choice. CSP provides an alternative notation for such processes,
constructed as tbe external choice of (sub) processes which offer distinct choices of
first event to their environment. As an example of tbis alternative notation, LB t can be

13

expressed

LS t = (left ---+ LB t + 1

Iright ---+ LB t _1

Istay --+ LS t).

Here I, pronounced choice, is a compressed form of n and represents an external
cboice between distinct events. It is used together with a menu of these distinct events
(in this example, 1eft, right and stay), whilst nis a combinator of processes.

We have permitted LB n to engage in the event 1eft, but without changing its
state (that is, its position). The alternative would have been to bar it from performing

a left by instead defining

LB = (r i ght --+ LB n_l) 0 (stay --+ LB). (5)n r

We shall see shortly why this yields a mismatch between LP and LB which can
ultimately lead to deadlock. But first let ue interrupt the design of LB 10 give the
reader an opportunity for revision.

Exerci8e. Define RB.

Answer. If f' = H{left, right, st<3Y) , where f was defined in section 2.1

(here ftE denotes the restriction of function f to set E)I then

RB = f'(LB).

This time it is important that LB and Ra be mirror images of each other in order for
RB to present the correct choice of events to its environment in its extreme states. II

Before making use of the state t of LB t we lleed to discuss parallel combination

in more detail. LP II LB represents the parallel combination of LP and LB: it is the
process which results from LP and LB interacting in parallel. Its alphabet is

Ol(LP 11 La) Q {left, right, stay, hlin, rklin) (= =(LP)u=(LB»

and an event common to both processes is performed by LP II LB when and only
when it is performed by both LP and LB. So, from the start, LP chooses internally
between I eft, right and st<3y, and LB allows it to make this choice and so engages
in the same event. It is, after all, the player who controls the next positi'Jn of the bat,

14

and not the bat whicb determines the next action of the player. The processes proceed
in step, synchronising on their common events.

Had we made the modification to LB suggested by equation (5), LP H LB would
proceed in the same way until LB reached an extreme state - say LBn_ Now if LP
insisted on engaging in the event 1eft then since LB also contains 1eft in its
alphabet but is not prepared to engage in it at this stage, deadlock occurs. On the
other hand lw i n belongs to the alphabet of LP and so it can occur whenever LP is

prepared for it to do 50. This does not lead to deadlock because 1 J.o.l i n is not in the
alphabet of LS, and so LB does not synchronise with it.

In summary, a common event in PliO occurs when and only when it occurs in
both P and 0, and an event in the alphabet of exactly one of P and Q occurs when

that process allows it to, in which case the other process takes no notice, makes no

progress, and in short remains unchanged.

Since we are defining the five processes LP, RP, LB, RB and Ba 11 to he
self-contained, some synchronisation is necessary between them. When the ball
reaches the left-hand goal, for example, it must find out the position of the defending
bat so that it can determine whether the game ends or whether the ball should

rebound. This implies, from the meaning just ascribed to II, that LB must always be
prepared to offer its position (containing the ball) to the environment: an offer which
will be accepted by the ball whenever it reacbes the left-hand goal. For I t I~n we
must thus incorporate in the alphabet of LB the events (to be made common with

those of Be 11)

1pes i t ionto

For reasons which will become apparent in section 2.3, we rewrite these events

lposit ion!t.

The modification to LB is thus to augment its alphabet by the 2n+ 1 new events

{I pos i t ion 1t : It I~n}

and to permit its environment to read them:

15

LB = LBO

LB, = (1 eft --+ LB t +1
Iright --+ LB t _ 1
Istay --+ LB t
Ilposition!t --+ LB) provided It I :!it n-lt

LB_n = (1 eft --+ LB_n+1

I right --+ LB_
n

Istay --+ LB_
n

Ilposition!t --+ LB_n)

LBo = (1eft --+ LBn

I right --+ LBn_1

I stay --+ LBn

11position!t --+ LBn). (6)

What happens when the ball reaches the goal and the bat, only one jump away,
is frantically directed by its player to cover the baWl'! progress? Does the bat respond
to its player's wish or does il reply to the ball's request for its position? The answer is

simple: it performs whichever event reaches it first by virtue of preceding its opponent
in the trace of events from LB's environment.

Exercise. Define RB. JI

16

2.3.	 Ball

It is now convenient to settle upon Borne notation for the court. The set of
possible positions for the ban is

Courl	 0 {(x, y)ER' I 0<x<2 A O<y<l) = [0, 2)x[O, IJ

(0, I) 0, 1) (2, I)

~
LGRG ~all

(
(0,0)	 (1,0) (2,0)

The segments of the bounda.ry of the court wbich interest Utl are:

Wall o {(x,y)ER' I 0<x<2 A yE{O, I}} top and bottom walls;

RG o {(x,y)ER' I x=O A O<y<l} RP's goalj

LG o {(x,y)ER' I x=2 A O<y<l} LP's goal;

(ourtO ~ Court - (Wall u LG u RG) interior of the court.

These definitions have involved a quick executive decision: are the corners
(0,0), (0.1) I (2, 1) and (2.0) to be included in the wall or the goals? Resorting to
the infonnal description does not resolve this point, and this is typical of realistic
requirements documents which ignore such seemingly pedantic issues. In practice,
since these points must be resolved in a formal specification, the user should be
consulted. Here we assume that the user has given us freedom to do what is easiest

and have decided to make the cornerS part of the goal: otherwise we would have had
to describe the ball's reflection from them.

17

In tbis notation, LB starts at (0. 1/2) and is at (0. 1) when it is in its left·most
state. Of course we could have used the position of LB as the subscript in definition
(6), but the ODe given there seems simpler - even in the context of the extensions

suggested in section 2.4.

The ball is to start at (1, 1/2) in a random direction and bounce

elastically (so that angle of incidence equals angle of reflection) from the walle and
bats. Just a.5 the bats move in small jumps, so does the ball. Us subsequent position
depends on its present one, its direction, and (sometimes) on the position of the bats.
Thus the state of the ball is taken to he a pair of vectors

(p. d) where p is the present position of the ball, peCourt, and

d is tbedirection of the hall, dER2, Idl=1.

For convenience we write p :; (Px' Py) and d = (dx' d y)' We are assuming that the
speed of the ball is constant, that there is no friction, that there is no spin imparted to
the ball by the bats, and so on.

Since the ball starts in a random nonvertical direction,

BallI C n Ball ((1,1/2), d)

d)(#O

where is a n prefix form of internal choice, used in exactly the same way that ~ is
used as a prefix form of the infix symbol +. For convenience we have ignored the
discrete nature of dx : it would qualify the predicate dx JI O. So too would any
condition we cared to impose to stop the ball bouncing nearly vertically from the
outset.

Away from the edges of the court the ball moves in the same direction, from state
(p, d) to state (p.... d. d). It penetrates a goal unless deflected by a bat in which case

its state changes from (p,d) to ((Px-dx.py+dy), (-dx.dy))' Similarly at the wall
the ball changes from state (P. d) to state (Px.... dx• Py-dy). (dx' -dy)): this occurs
whenever the ball lies in CourtO but its subsequent position does not.

Thus to define the ball's movement we suppose that it is in state Ball (p, d), with
p E Court 0 , and consider the cases:

18

if p+d e CourtO then the ball moves to state (p+d, d)i

if p+d lies on or OVer the wall then the ball moves to state

«Px+dx' Py-dyL (dx' -d ») j
r

if p+d lies on or past a ba.t then the ball moves to state

((Px-dx' P, +d,). (-dx' d,»;

if p+d lies on or past tbe left-hand goal not covered by a bat then l,..in occurs

and the ball returns to the middle of the courtj

if p+d lies on or past the left-band goal not covered by a bat tben rl-l i n occurs
and ~he baH returns to the middle of the court.

(7)

The CSP syntax for the conditional CODstruct (if B then P else Q) is

P<lBl>Il.

(The case for such an infix notation is made in (IJ.) Thus

if 61 then P1 else if 62 then P2 else P3

becomes

PI <l Bl l> (P2 <l B2 l> P3)

or, in two·dimensional form which is easier to read and write in the case of larger texts,

PI
<I Bl t>

P2

<l B2 l>
P3

Does our omission of brackets here imply that the ternary combinator _ <tj _ t> _
is associative in its extremities? Certainly not: in general

19

PI <l Bl r> (P2 <l B2 r> P3) # (PI <i Bl r> P2) <i B2 r> P3,

although associa.tivity docs bold in the simple case Bl = 82. However in this
document, unless written otherwise I we shall bracket conditionals from the right, and
these correspond with a top· to-bottom reading of the predicates Bi. For example

PI <l Bl r> (P2 <i B2 r> (P3 <i B3 r> P4))

is more legibly displayed

PI

<i Bl r>

P2

<i B2 r>

P3

<i B3 r>

P4

Now we ca.n re-write the ball's change of state expressed by the conditionals (7)

Ball(p,d) 0 Ball (p+d. d)

<i p+d E Caurt° r>

Ba II((p?d., P,-d,). (d., -d,))

<i p+d on/over ~a 11 r>

B.II «p.-d•• P,+d,), (-d•• d,»

<l p+d on/past a bat r>

ll-lin -oJ BallI

<l p+d on/past LG without bat [>

rwin -t BallI) . (8)

20

We must next ensure that the description of Ball is geIC-contained, by
incorporating in it the communica.tions with its environment (the ba.ts) which determine
whether p"'d is on or past the position of a bat. Since, for example, LB determines
which of the events 1pas i t i on! j occurs, Bell must be prepared for any of them.
Sa 11 thus offers a.n external choice between all events in the set

{l pos i t ion!j Ij I !iOn}

and its subsequent beha.viour depends on which j is communicated. To express this ill
the nota~ion introduced so far involves a. daunting proliferation of cases. Fortunately
CSP o((ers abbreviated nota.tioD, by letting the value j be a variable)(and defining
subsequent behaviour jn terms of x. We thus define the complementary half of a
communication event (of which Iposit ion!j is the send, or output, half) to be the
receive (or input) event

Iposition?x

wh~re x is instantiated to whatever value matches the complementary send event.
Here ! stands for output, ? for input, and the two, like particle and antiparticle,
combine to enable the resulting process to progress with a net communication from the
outputting sub-process to the inputting one.

It remains to modify Ba 11 to read the position of the left-hand bat LB when the
ball is in the right-hand goal RG, and symmetrically. Of course we must convert the
state being output by LB

X Ii: {-n, -n+1, ... , -1, 0,1. ... , n-1, n}

to th~ corresponding value

x' • (x+.)/(2.) • [0, I)

req uired by Ba 11. (Recall that we are treating the ball and bat!! simply as points - for
an extension, see increment 3 in section 2.4.) So we have

21

Ball(p.d) " Ball (p+d. d)

<l p+d E CourtO l>

B.ll (p+(dx' -d,). (dx' d_,»

<l p+d on/over lJa 11 t>

LX

<l p+d on/past LG t>

RX (9)

where, with)(' defined as above,

LX ~ lposition?x -+ (Ball«plII-dx.py+dy),(-dX,dy»

<l x I on or past Py 1>

ll-lin -+ Bal1 1),

RX Q rposition?x -+ (Ball«p):-d .py+dy),(-d)(.dy»x

<l x' on or past P t:>y

rwin -+ Balli).

Finally we must record the alpha-bet of Ba 11

a(Bell) Q a(Bsll,) u {lpos it j on?x : Ixl 'n} U {rposit ion?x : Ixl ,n}.

This completes the description of Ba 11 and of fi ngP"ong.

22

Wh..t ha.ppens at the end of the game? If the bal\ penetra.tes say the left-hand
goa.l , the[l it enga.ges in event 11-1 i n with both players (who therafter terminate
succe55fully) and. after returning briefly to its initial position, resumes its movement

around the C<lurt. The bats remain oblivious of the left-hand player's victory, and await
further c~mmunications with their players or the ball.

Exercise. Modify the specification of Pi ngPong 50 that when one of the players wins,
the whole game terminates successfully, to be resumed only after the event money. II

23

2.4. ExteJl8ioWi

The specifica.tion has been presented incrementally. For example a simplified
version of LB (which did not communicate its state) was presented, then replaced with
a more accurate one (which did). This is more a matter of style than of nolation, hut
one which is supported. by esp.

We suggest that the incrementa.! style is one which is genuinely useful in the task
of specification and is not simply to be adopted for pedagogical purposes. Its
justification in terms of abstraction and refinement appears in the next section. The
delightful euphemism mllintenan~e is used (though not intentionally) for this
technique when the mOre abstract specification has already been implemented!

In this section we propose some further increments for the reader to try, of which
the last two are more open and hence more ambitious.

Inaement 1. The digital buttoot! for the left-hand player are replaced by a single
analogue one which inputs a real number in the interval [-1,1] (and simila.rly for the
right-hand player). Each bat remains capable of only the discrete jumps described in
section 2.2, but an input from its player of +1 or -1 moves the bat k jumps (l"k«n) in
the appropriate direction. Modify the specifications of LP and LB appropriately.

Inerement 2. The bats impart spin (..B. 0, +8) to the ball depending on their
direction at the time of impact. The ball's spin lies in

{j8 , jel}.

Think of a reasonable IIrebound. formula ll (incidence need no longer equal reflection)
and modify the specification of Be J1 appropriately. You may assume tha.t the speed
of the ball is constant.

Inoement 3. We are now concerned with how the game appears on a
monochromatic screen. The bats and ball possess a shape and their states are
interpreted spatially. Modify the specification of Pi ngPong accordingly.

Inaement 4. So far we have ignored the time between events. Make the processes in
your specification timed by replacing all events e with pairs e. t in which teR>o
represents the time of occurrence of e. What conditions, on traces of timed processes,
might be imposed by the user to ulake the specification more realistic?

24

3. SpedficatioIUl I Implementations and Development

Having specified Pi ngPong we should DOW confront the problem which always
faces sp<'cifiers of software: how do we know that our description captures all factors
embrac~d in the requirements? In the absence of any way of proving equivalence

between aD informal description and a piece of fannal text, we are compelled to:

(a) Discuss the increments as they are made with the user (the perpetrator of the

requirements document) to ensure agreement. Not only does this enable the specifier
to fill laCllnae in the requirements document (for example the extremities of the goals
in Pi ngPong), but helps to keep him on the right track.

(b) State (and prove!) properties of the specification to check that they are
expected by the user. For instance, Pi ngPong is free from deadlock and will diverge

if the ball never penetrates a goal. Such proofs are typically performed using laws to
manipulate the CSP expressions, and by consideration of their semantics.

The specification of Pi ngPong has been approached as an end in itself: no
attempt has been made to implement it or to do any step-wise refinement. It is, like

any high·level description which abstracts from those factors which determine the
outcomes being described, nondeterministic. Since an implementation is evidently

deterministic, refinement can be viewed as the step-wise removal of nondeterminism.

But when does one process refine another? There are two possible ways to

answer.

(a) Give an algebraic definition of the refinement relation lit between processes.
This can be done with no apparent reference to the semantics of a process. For
example l!i; must be a partial order; moreover both P and Q must refine the less

specific process P n a which behaves like either P or a

P na :!O PI p n a • a.

This syntactic approach offers advantages when automated assistants are used to
prove refinement. However we elect not to follow it in this introduction and to take

instead the following approach.

(b) Define a process in terms of its behaviour and define P :!O a to hold iff a's
behaviour is a special case of that of P. So far we have been describing processes by
giving their alphabet and their definition in esp, and occasionally we have noted the

25

sequences of events (traces) which they are prepared to perform. The set of traces of a
process is prefix-closed:

(t E traces(P) AU a prefix of t) ~ ue traces(P),

Let us now identify P with its alphabet and (prefix-closed) set of traces

(a(P). traces(P»),

For example the process LP defined by equation (1) has

a(P) ~ {left. right. stay}

traces(P) S {left, right. stay}*.

One particular special case of this behaviour is the novice who only pushes the
move-left or stay buttons

a(NP) a {left, right, stay}

NP (left --. NP) n (stay -+ NP)

to which we now ascribe the semantics

a(NP) a {left. right, stay}

traces(NP) a {left. stay}',

The alphabet contains all three events because it re~ords the level of abstraction at
which the process is described. NP knows of the event right but never performs it:
this is a different process from the one which represents a player who is not even
aware that right is available to him.

Another 5pecial case of LP's behaviour is the manic player who again only
pushes the move-left or stay buttons, but does so alternately starting with the
move-left

a(MP) ~ {left. right. stay}

MP left ~ stay ~ MP
traces(MP) { <>. <1 eft>. <Ieft. st ay>. <1 eft. st ay. 1eft>•.. _}

{t e {left. stay}"' I n e dom t ~ (n is odd ~ t n::. left)}.

26

And of course MP'g behaviour is a special case of NP>s. The reason is simple:

traces(MP) , traces(NP) , traces(LP)

and leads us to identify "special case of behaviour" of processes with the inclusion of
their trace sets. Thus we say that process Q refines process P in the tnees model of

CSP 1 written P ~ 0, iff

ot(P) = (((Q) 1\ traces(Q)!;; traces(P).

This only enables us to express safety properties of a process: those which may
occur - we have no way of saying that they must. For example the player who presses
the left-move button and then bas a heart attack

a(HP) a {left. right. stay}

HP Ieft -+ STOP

traces(HP) {<>.<left>}

refines MP (and NP and LP of course), With the traces model we cannot ensure
Iiveness of a process which refines our specification! The extreme case a the process

STOP witll only the empty trace which refines any process having the same alphabet

STOPa. (a.{<»).

Tbus in the traces model of CSP we have no way to prohibit STOP from refining MP: if

the epeci!ier requires MP, the implementor may correctly produce STOP!

It is thus more usually the case that we wish to interpret the process NP as
describing behaviour whkh must eventually occur. For this a strengthening of the

process model is necessary. Examples are the readine88 and failure8 models of CSP.
In these models the definition of refinement enables NP to be expressed in such a way
that no process which terminates will refine it. However this leaves open the question
of how long it is before its events occur: for that we must use a thned model of esp.
Then only processes which react sufficiently quickly, and then with the correct event,
refine a process. But with this definition of a process we have DO way to distinguish
between STOP and a process having only the empty trace but which perpetuallly

undergoes unobservable internal events. For this we must use a divergences model of
esp. Details of the failures and divergences models are given in the course; for the
hierarchy of other models we refer, initially, to [4J.

27

Let us return to the traces model and refinement with respect to it. In a

step-wise refinement PI' ... • P1"1 from specification PI to implementation Pn l we

must have

PI (Pz ~ ••. E: P, :(P 1-+1 :;; ••• ~ Pn'

It is with the development of the processes Pi that noncleterminism is. gradually
removed from the specification PI' In Pi ngPong all noncleterminism arises from the
players' choice of button: from that all else is determined. Ld us see how this

Dondeterminism might be removed.

In reality the players' choices of button depend upon their reactions to the ball's
position, and simulating this would be unnecessarily complex for our present purposes.
Instead we propose the following mock development. First we take a simple version of

the left-hand player

LP, • (left --. LP,) n (right --. LP,) n (stay --. LP,)

in which, with the choice of alphabet

cx(LPd S {left. right, stay},

we have abstracted (rom whatever resolves the choice between the events in 0:(LP t).

The time has come to reveal it.

Suppose that the rather slow-witted left-hand player has an ally, LA, who though

quicker is less coordinatedj nonetheless he winks his left eye, right eye or blinks when

LP is to engage in the events left, right and stay respectively. In between eye
contortions he pauses to sip his favourite beverage

a(LA) Go {s ip, lefteye. righteye, bl ink}

LA. sip --'«laftaya --. LA) n (righteye --. lA) n (blink --. LA».

Taking into account the eye movements of his ally, the left·ha.nd player becomes

.(LPz) • a(LP,) u {lefteye. righteye. bl ink}

LPz ~ (lefteye ---J left ---+ LP)z

U(r ighteye ---+ right ---+ LP Z)

D(bl ink ---t stay ---J LP Z}'

28

Recall that 0 is used because the choice between constituent processes is to be
made by the environment of LPz: (in fact the ally). Our intention is that LA and LPz
interacting in parallel should account for the nondeterminism apparent in LP 1 ,

Exercise. Express LPzlI LA without II.

Answer. LPZ II LA = sip ---+ X where

x:- (lefleye ---+ (left --+ sip -t X

1 sip --+ left ---+ X)

righteye --+ (right --+ sip --+ X

I sip ---+ right --+ X)

bl ink --+ (slay ---+ sip ---+ X

I sip ---+ stay ---+ X». II

What is the relationship between LPI and LP z? We cannot say that LPz refines

LP 1 btcause they have different alphabets. However CSP has an operatoT,

abstrAction (also called hiding or concealment), which conceals certain events of a

process. In this case the abstn.etion of LPz with respect to events

E ~ {lefteye. righteye, bl ink}

is a process, written

LPz\E

with alphabet a(LPZ)-E, and it behaves like LPz but ignoring the events in E. We

thus expect

LPZ\E = LP,.

This is true, and is a consequence of the law:

(P~Q)\E = (p\E)n(Q\E)

which holds provided the events in E are the only events that can occur initially for
both P and Q.

29

We have removed the Dondeterminism (rom LP 1 by enlarging its alphabet to
incorporate those events responsible (or resolving the nondeterminismj thus

LPz\E = LP" where E = .(LPZ)-.(LP1).

Exercise. Prove this equality. / /

From this relationship we can derive the proof obligation accompanying the
technique of incremental specification. Given a specification P and an increment Q of
it with new events F I it has to be shown that Q\F refines P (in general eqmlity is too
stringent a requirement between Q\F and P, even though it does hold in the example

above).

Exercise. Prove that (LPz II LA) \ .(LA) = LP 1.

,. Acknowledgements

I am grateful to Tony Hoare (or his usual influence - (or his encouragement,

suggestions and correctioD!!. Thanks also to Carroll Morgan, Karen Paliwoda and Jim

Woodcock.

s. Reference8

fll	 C.A.R.Bo.re,
A couple of novelties in the propositional calculus l

Journal of Symbolic Logic.

{21	 C.A.R.Boare,
Communicating Sequential Processes.
Prentice-Hall International l 1985.

{31	 INMOS Limited,
occam Programming Manual,
Prentice·Hall In ternational, 1984.

{.til	 E-R.Olderog and C.A.R.Hoare,
Specification-oriented semantics for communicating processes,

Technical Monograph PRG-37, Oxford University Computing Laboralory,
Programming Research Group, 1984.

