Two Papers on CSP

by
AW, Roscoe

Technical Monograph PRG-67
ISBN 0-902928-49-X

July 1988

Oxford University Computing Laboratory
Programming Research Group

8-11 Keble Road

Oxford OX1 3QD

England

Copyright ©)1988 A.W. Roscoe

Oxford University Computing Laboratory
Programming Research Group

8-11 Keble Road

Oxford 0X1 3QD

England

An alternative order for the
failures model

by A.W. Roscoe!

Oxford University Computing Laboratory,
8-11 Keble Road, Oxford OX1 3QD, U.K.

0. Introduction. This paper introduces an alternative, coarser, partial or-
der on the (lmproved) failures model of [BR] (sometimes called the failures-
divergences model). The new order gives ezactly the same semantics to CSP as
the old one. As well as being of intrinsic jnterest for this reason the new order
allows one 1o establish some interesting new results about the semantics of CSP
and also (if desired) to extend the model to encompass certain extra forms of
unbounded nondeterminism.

Tle present failures model A, with its explicit treatment of divergence, was
independently introduced in [R.B] to overcome various technical difficulties in
the “pure” failures model of [HBR, BHR]. In the earlier model we had based
our partial order on nondeterminism

PIQ & PCQ
and so it was natural that this idea should be extended to the improved model;
P3Q & DIPIC DIQ]A F[P] C FIQI .

This order works very well, of course. P J @ just when P “improves” Q, or
when P is more deterministic than @. J is a complete partial order, though

"The author gratefully acknowledges that the work reported in this paper was supported
by ONR grant N00014-87-G-0242.

when the underlying alphabet of communications is infinite the compactness
condition
(VX € p(Y) (s, X) € F[P]) = (s,Y) € FIP]

is necessary for this. (This assumption turns out to be somewhat weaker than
an assumption of finite nondeterminism.) In this paper we will sometimes refer
to this order as the nondeterminism order,

There are good intuitive reasons for expecting all CSP operations to be
monotonic and continuous with respect to J, and so they are. That the order
produces the right semantics for recursion is demonstrated by the congruence of
the failures denotational semantics and its operational semantics [BRW] as well
as the intnitively attractive idea that the recursive term uP.F(P) must, in this
order, always denote the most nondeterministic solution to

P = F(P).

Summary of definitions and notation. The reader should consult earlier
works, particularly [H], for the syntax of CSP and the meaning of its constructs.
This section contains a summary of the technical details of the model A" and the
semantics of CSP in that model. It assumes a knowledge of standard notations
COTCErning traces.

N is defined relative to some non-empty alphabet ¥ of communications which
is fixed for all processes. This parameter will generally be understood rather than
mentioned explicitly. Each syntactic CSP process P will be identified with an
element of Nt. Thus we will not use process alphabets (aP) as part of the se-
mantics, unlike [H]. The use of process alphabets produces a trivially isomorphic
theory where each process is identified with A, p, where o P is the process’ own
alphabet. The advantage of this, essentially typed, theory is that the parallel op-
erator does not require the explicit mention of alphabets, Its disadvantages for
theoretical work like that in this paper are that more mathematical housekeeping
is required and that the theory of mutual recursion becomes rather messy.

N consists of all pairs P = (F, D)} such that F C £* x P(T) and D C E*,
and such that for s, e 2* and X, Y C T

1) F#D A (st,YeF= (s,0)e F
() (HLX)e FAYCX = (#,Y)eF

3 (H{LX)eEFAVaeY(#a),0)¢gF = (t.XUY)E F

(4) (VX'C X X'finite= ({,X')eF) = ({,X)eF

{8) seD = steD

(6) SED = (st,X)€eF.

Let P = {F,D) € N be a process. Define

FP] = F

D[P] = D
traces(P) = {t}(¢,0) € F}
refusals(P) = {X|((},X)€ F)

and for s € traces(P) define
Pafter s = {{(t,B) | (st, B) € F},{t| st € D})
and for s € £* define
R[Pls = {X |(s,X) € F[P]}

so that R[P]s = refusals(P after s) when s € traces(F). For 3 € traces(P),
Pafters is a process.

The determinism order C is defired on A by

PCQ + DLP)2 F[QIA FIP] 2 PIQ)

{M,C) is a complete partial order: L = (T*xP(L),T*)is the least element,
and if A is a directed subset of A/ the least upper bound | JA is

(WUFI{F,D)e AL {D|(F, D)€ A}).

CSP is given a denotational semantics over A as follows.

The atomic processes STOP and SKIP are defined
STOP = {{{{), X) | X CE}.%)
SKIP = ({{{), X) V¢ XJu{liV), X) | X CTL¥) .

Let P = (F,D}, P' = (F’.D') and for b € B C £, P, = (Fp,) all he

processes. Then

Dfa — PJ
Fla — P)

Dlv: D — Py]
Flz: D — P]

olPn P
FIPn P77

D[PO P
FlPa P
D[P Bllc P]

Fle sllc P11

pLe I P
PP
D[P; P']
Fip; P

D[P\a]
F[P\a]

DI[P]]
FLAIPI]

Df~[P]]
FIF P

Each of these

the usual way.

It

Il

it

o

{{a}s]s € D}

{t0h X) e g X}u{{{a)s,X) (s, X) € F}

{{b)s|be BAse Dy}

{({(hX)] BnX =0 u{({b)s,X)|be BA (s, X) € Py}
DD

FuF'

bup
{0, X)e FnFU{(s,X)|s# (YA(s,X) € FUF'}
u{(s, X)|s e D[PO P}

{st|se(BuC)yashBeDA shc e traces(P}
U{st|s € (BUC)* AshB ¢ truces(P) A sMC € D1}
{{s,(XnBYU¥YnClu) Zn{BuUC) =0Ase(BUC)*
AsMB,X) e FA(shC,Y) e FY}

U{(s, X) | s € D[P glic P}

U{merge(s,t) | s € D At € traces(P")}

Ul{merge(s,1) | s € D' At € traces(P)}

{(s,X) | 3t,u. s € merge(t,u} A (t,X) € F A(n,X) € F'}
U{(s,X}| s € DIPII P}

{st|s € DA stick-free}

U{st | s(+/) € traces(P)A 1 € D' A s tick-free}

{5, X1 (8, X U {/}) € F A s tick-free}

U{(st, X) | 8(/) € traces(P) A stick-free A (¢, X) € F'}
U{(s. X} s € DIP, P'T)

{(s\a)t|s € DY u{(s\a)t|¥n.s{a}" € traces(P)}
{(s\a, X) [{s, X U{a}) € F}U{(s,X)| s € D[P\a]}
{(f(s))t] s € D}

{(F(s), X} (s, f71(X)) € FYU{(s, X) | s € D[f[PI]}

{s|f(s) € D}
{(s; X)|(f(8), f(X)) € FYuU {(s,X) s € D[f~'[PII}

operations is continuous with respect to C, and so we may
define the meaning of a recursion (single or mutual) by the least fixed point in

1. The new order. The {ailures model includes the assurmption that once
a process can diverge (ou trace s. say) then we are not interested in what it
can do {or {ail to do) on auy extension of s. This assumption, which we made
for various technical and philosophical reasons, essentially corresponds to an
assumption that a divergent process is undefined. The new order {which we will
call the definedness ovder) is based solely on this principle. P will be weaker

than € just when Q’s divergences are a subset of P’s and all of P’s convergent
behaviour is copied exactly in (. Included in P’s convergent behaviour are
its minimal divergence traces, because the process has completed these traces
before it can diverge. We demand that these be included among (’s traces but
not necessarily among its divergences. If X is any set of traces we define u(X)
to be the mininal elements of X: {s € X| Ate X.t < s}.

P<Q & D[QICD[P]A
s ¢ D[P] = R[P]s = R[Q]s A
w(D[P]) C traces(Q)

Several points are immediately apparent about this order, First, it is coarser
than the old one, in that
P<Q = PLQ,

and sirictly so, in that there are many pairs of processes P, such that
PCQ butnot P<Q.

Secondly, the divergence-free processes (i.e., the ones with DfP] = B) are all
incomparable and maximal in the order. (No process is strictly above a non-
divergent one.) Thirdly, the new order has the same least element as the old
one { L, the immediately divergent process).

The new order is complete and, where appropriate, has identical least upper
bounds for directed sets as the old one. These and some other useful factsabout
the new order are established in the next Lemma.

Lemma 1.1

a) P<Q=PCQ

) 1 = {Z* x P(E),X*) is the least element of A for both orders. The
<-maximal elements are the divergence-free processes.

) fP<Rand PCQC R, then P< Q.

d) Any nonempty subset § of A has greatest lower bounds with Tespect to
both < and C. Tn general, [S QHES.

e) Any subset of A" with any <-upper bound has a least upper bound.
1) Each <-directed set has a least upper bound.

g} If l¢ S is defined then so is i § and the two are equal. Furthermore
U 5= P* = (F*,D*), where F* = ({F | {F,D) € §} and D' =N{D |
(F.D} € 5.

Proof. (a) and (b) and are trivial. For (c), we observe that P < @ if and only
if PE Qand

(i) (s,X) € FIPJAs ¢ D[Pl = (s, X) € F[Q], and
(L) w(DIP]) < traces(Q),

50 to prove the result it will be sufficient to prove (i) and (ii}. If (s, X) € F[P}A
s € D[P] then, since P < R, we know (5, X) € F[R]. Hence (s, X) € F[Q] as
@ C R. Exactly the same argument applies for (if).

The C-greatest upper bound of norempty § C A is always given by (F7, D*},
where F* = [J{F | (F,.D) € S}, D* = U{D | (F,D) € S} and where F is
the closure of F with respect to the compactness axiom (4) (i.e., a pair (s, X)
is inclnded if all (s,Y'} are for finite subsets ¥ of X). The application of this
closure operator is not necessary when § or I is finite. This bound does not work
in geperal for the definedness order <, however, since one does not in general
have P € § = [15 < P. The greatest lower bound of § = {{F;, D;) | i € A}
is constructed so that it diverges as soon as the behaviour of any two elements
of S starts to differ, either by having a different refusal set or a different next
communication. We define <5 to be {F, D), where

o D=U{(Di|i€ Ayu{st| 3,5 (¥ (s Y) € F\ F)V(3a.(s(a),)F \ Fy)}
« F=U{F i€ A)u{(s,X)]s€ D}

It is easy to show that this process is in A and is indeed the < greatest lower
bound of 5. That this greatest lower bound is C-less than the other one follaws
trivially from the fact that < is coarser than L.

(e) follows because, as is fairly well-known, eny partial order which has
greatest lower bounds for nonempty sets has this property. The unsual argument
is repeated here. If 5 is a set with an upper bound, then Ug, the set of upper
bounds of § is nonempty and so z = [/ exists. Since y < z whenevery € §
and z € Us it follows that each y € § is a lower bound for U/s. As z is the
greatest lower bound for S it follows that z > y for all y € § and therefore that
x € Us. Plainly z is the least element of I/5 and is therefore the least upper
bound of §.

We now turn to the proof of (f). Notice that if A is a <-directed set it is
also C-directed. Its C-least upper bound

Lla = ({FIPL| P e a},N{PIF}| P€ A))

is now shown to be an <-upper bound. If P € A then D[P] 2 D[] A] by the
properties of C. If s ¢ D[P] and @ € A, it follows from the esdistence of R suck

that R > P and R > @ that s € D[Q] or R[PJs = R[Q])s. Hence R A}t =
R[P]s. Finally, if s is misimal in D[P] and @ € A it again follows from the
existence of ® > P,() that s € freces(Q). This shows that s € traces(|]A),
which completes the proof that P <[|A. Obviously [| A is the C-least <-upper
bound.

It follows by part (e) from the fact that A has one <-upper bound that it
has a least one | [A. Since < is coamer than C it follows that [}, A C A,
Combining this with the last observation in the previous paragraph proves that
the two are the same, which is what we wanted:

The first sentence of (g) follows easily from the second, which is what we
prove. We show first that if P/ = {F’, D'} is the actual least upper boundon §
then D* = D', where D" is as defined in the statement of the Lemma. Trivially
D' C D* and, since D’ satisfies axiom (5), if D' # D* there is s € (uD*)\ D",
As 5 € pD" there must be some P, = (F,D,) € S such that s € #D;. Since
D, € D' we therefore know that s € traces(P'). It follows that P” = {F", D)
defined

1]

F Fu{(st,X)|t€eT*AX CE}
D" = D'U{st|teL"}

is a process. But it easy to show that P < P” for all P € § (for example, by
part (c) above) and that P” < P'. It follows that P’ cannot be the least upper
bound on 5, a contradiction.

1t is easy to show that P* defined in the statement of the Lemima satisfies
axioms (1), (2}, (5} and (6). We next note that F* 2 F’ since F' is a C-upper
bound for 5. Now by the above paragraph those parts of F* and F implied by
divergence and axiom (5) are equal. Suppose that s ¢ D’ = D*, Then there
is P = {F, D) € § such that s ¢ D. Necessarily R[P]s = R[P]s as P < P’,
It follows that R[P]s 2 R[P*]s. Putting these facts together yields F' 2 F*,
proving that in fact F' = F*. Since D' = D* and F' = F* we have thus proved
that P is the actual least upper bound, as claimed. This completes the proof
of the Lemma. O

It is easy to construct functions which are monotonic in either of our two
orders without being monotonic in the other. However all the usual CSP con-
structs, with their standard definjtions over A, turn out to be monotenic in the
new order as well as the old. Of course one can prove each case separately (and
easily), but this is unenlightening. The underlying reason why they all work is
described in the next paragraph.

With the exception of recursion, a special case which will be dealt with later,
every CSP operator over A is defined by mapping the behaviours {filures and
divergences) of the argument process{es) to the behaviours to which they corre-
spond in the image. An examination of these definitions will reveal that, for each
operator £, all convergent behaviours of F{P) (its behaviours on non-divergent

traces plus the facts that its minimal divergences are traces) are consequences of
the convergent behaviours of P. Hence, if P £ @ and s ¢ D{F(P)], R[F(P)]s
is derived only from the nou-divergent hehaviours of P, each of which is also
possible for ¢ by definition of <. Thus

RIF(P))s € RIF(Q)}s .
The 1everse inclusion follows from C-monatonicity, as does

DIF(P)]) 2 DIF(Q)].

If 5 is minimal in D[F{P)] then the fact that it is a trace of F(P) is derived
from some convergent behaviour of P, necessarily present also in Q; hence s is
a trace of F{Q), completing the proof that F(P) < F(G).

The most interesting operator to look at in conjunction with the preceding
paragraph is sequential compaosition (;). This is the only operator where a min-
imal divergence trace of an argument can contribute to a non-divergent trace of
the result. This bappens in P;Q if P can diverge immediately after terminating

(V-

This non-dependence of the convergent behaviour of F{P) upon the divergent
behaviour of P is closely related to a property of the operational semantics. The
first-step behaviour of F(P) may depend on the behaviour of P or not (the latter
is the case with the prefixing operators, for example). However, if it does and
P can perform an internal action to become, say, P, F(P) can perform an
internal action and become F(P'). Thus, when an gperated-on process is active,
its internal actions occur independently of F': they are outside its control. An
immediate consequence is that, if F has brought P to a point where it can
diverge but is still interested in what it can do, then F(P) can diverge also.

When a function is <-monotonic and C-continuous, it is < -continuous. For
if Dis L-directed, then {F(P)| P € D} is also, with least upper bound
U{F(P)} P € D} as described above. However, since F is [-continuous and D
is necessarily C-directed, we have

F(LID) = | {F(P)I P € D}.

This completes the proof as the least upper bound of D is the same in both
orders.

This means that all CSP constructs other than recursion are continnons in
the new order, and so we may deal with recursion using least fixed points in the
usval way. As is well known, this makes recursion itself a continuous operation in
that if F(P, Q) is continuous, then uP.F(P, Q) represents a continuons function
of Q. Therefore all CSP terms represent continuous functions of their free process
variables.

The fact that the two orders vield the same semantics for CSP (i.e., ascribe
the same value In A to each term) follows very easily by structural induction
once we observe that the only place where the orders are used is recursion, aad
the iwo orders yield identical least upper bounds to all sequences that can appear
there. {Of course, the fact that the two orders have the same bottom is also
used here.)

2. Consequences for proof rules. The existence of the definedness order
has a number of striking consequences for proofs by recursion induction and
unique fixed point rules. T had previously proved some of the following results
from the theorem (of [BRW]) expressing the congruence of the operational and
denotational sernantics for CSP. These earlier proofs, though interesting, were
far more difficult and less natural than the following.

Theorem 2.1. Suppose the recursive CSP term uP.F(P) is divergencefree
(i.e., the least solution to P = F(P) has D[P] = @). Then it is the only solution
to P = F(P).

Proof. We know that any solution § to this equation must satisfy
Q 2 wP.F(P)

but, being divergencefree, pP.F(P) is maximal in A under <. Henee @ =
#P.F(P). O

Of course, this result ig equally true of mutual recursions. Indeed, one does
not need to know that all the mutually defined processes are divergence-free
before one can draw useful conclusions.

Theorem 2.2, Suppose P = F(P) is a CS5P mutual recursion indexed by some
set A, and that in the least solution the A-component is divergence-free. Then
all solutions have identical A-components,

Proof. If P, is divergence-free then
P <P = P =P

where < has been extended to the product space in the usual way (ie., co-
ordinatewise). OO

The above results are useful, for they allow one to extend the use of the
unique fixed point rule to any recursive definition which is known to have a
divergence-free least solution, One application is to the analysis of networks
where internal communication is hidden. These-can-often be proved divergence-
free by specific techniques. In certain circumstances one can show that the se-
mantic value of the network is the same as the appropriate component of the so-
lution to the mutual recursion over its state space obtained by applying snitable

“expansion theorems”. The above theorems show that this “state-recursion”
has only one solution, which is extremely useful when proving equality between
the (state-space of) the network and some other system. More details of these
applications will be found ia [R3].

The rest of the results of this section all have the flavour of the above Theo-
rem: extending to general divergence-free recursions results which were already
known for constructive recursions. They are all couched in terms of functions
that are <-monotonic or <-continuous rather than directly as theorems about
CSP, for reasons that will become apparent in the next section.

Lemma 2.3. Suppose F is a continuous function from A4 to itself, and that in
the least solution to P = F(P) the A-component P, is divergence-free. Then for
each trace s there exists a natural number »n such for any Qe Prandm > a,

s¢ PIF™(Q)] and R[F™Q)]s = R[F]s -

Proof Suppose ¢ and s are as above. We know that the least solution is
LI{F*(12} | n € N}. Thus there is some n such that s @ D[F"(14,

An easy induction shows that FF(13} < F*(Q) for all k, and that
Fr(}) < F™Q) whenn < m,

The definition of < and the fact that F*(14), < P, then easily gives

s € DIF™(Qn] and RIFNQI]s = RIF(1A1ls = R[Als
for m > n, which establishes the Lemma. 0

For a number of years | have been attracted to fixed point induction rules of
the following form.

Proforma rule. If R is a predicate on (vectors of) processes which is satisfiable
(i, R(P) holds for some P) and satisfies some “continuity” condition, and
@ P.F(P) is a recursive definition, satisfying some “well-definedness” condition,
such that
VYP(R(P) = R(F(PY)

then infer R(uP.F(P)). O

These have been discussed before in, for example, [R1,BHR,Re,RR1,RR2].
Two slots need to be filled in: the conditions on predicates and recursions. In

valid versions of the rule one naturally finds that the stronger one condition is,
the weaker the other needs to be.

Up to now, by far the most useful versions of the rule have been based on
cases where F is a contraction map and {P | R(P)} a closed subset in some

10

complete metric space. This applies, for example, over untimed models like A
when F is constructive, that is

VPYn F(Pln)|ln+1 = F(P)ln+1
and R satisfies
(a) ~R(P) = (InNQ.Qln=Pln = ~R(Q))
where P | n represents the n-step behaviour of P. That is, over A,
DIP|n] = D[P]uU {st!|s| = n A 5 € traces(P)}

FIPin] = FIPIu {(s, X} | s € D[P| n}]
Over product spaces N4, P | n is taken co-ordinatewise. See [BHR] for more
details. Over the timed models of [RR1,RR2,Re] F is an arbitrary recursion (for
there all recursions represent contraction maps) and R represents a closed set in
the metric spaces used as models.

The proof of validity in these cases is very simple. We know, by the con-
traction mapping theorem, that F has a unigue fixed point in the space of all
processes; but, as F preserves R it is also a contraction mapping on the complete
metric space {P | R(P)}. As F has g fixed point in the subspace, the unique
fixed point in the whole space must lie in the subspace.

On the assumption that equality with a given process is to be an acceptable
predicate R, it is clear that any acceptable “well-definedness™ coadition on re-
cursions must at least imply uniqueness of fixed points. In the context of the
traces model for CSP I was able to establish (in [R1]) a version of the rule which
relied only upon unique fixed points, and not on anything more concrete, even
continuity of F. Qver any partial order we can define the interval topology to be
the smallest topology in which all the “closed intervals” [z,¥] = {z|z €z < ¢}
are closed sets. Now the interval topology over the traces model is compact (a
very common property for models of computation — see the appendix) so that
the following theorem applies. (For one topology, T, to eztend another, I{, sim-
ply means every set open (closed) in U is open (closed) in T. If T extends I
one sometimes says that T is finer than UW. If, in this case, T is compact then so
must be id: hence the conditions of the following theorem require the compact-
ness of the interval topology fortunately this topology is always compact under
the conditions of the theorem, as is proved in the appendix.)

Theorem 2.4 [R1]. Suppose (X, <} is a complete lattice and that 7 is a
compact topology on X which extends the interval topology. Suppose also that
the monotenic function f : X — X has a unique fixed point 7. Thenif ¥ C X
is nonempty, closed in 7 and such that f(¥) C Y, we can deducez €Y,

Proof. A straightforward transfinite induction establishes that each of the sets
[F(L), F*(T)IN Y (all of which are closed) are all non-empty, where 1 and

11

T are respectively the least and greatest elements of X. (The limit ordiual
case uses the compactness of 7.) But the fact that f has a unique fixed paint
implies that {f=(L), f*(T)] is eventually (i.e., for large enough a) the singleton
set containing the fixed point. The result follows immediately. O

This proof depends crucially on the existence of a top element. Indeed the
theorem is not true of more general partial orders. One need only consider the
flat truth value domain {frue, false, L} and the continuous function . This has
unique fixed point L and maps the closed set {true, false} into itself.

Having observed this it once seemed to me to be unlikely that one could
get an analogue of Theorem 2.4 for the failures model. However, the new order
will aliow us to prove two useful partial analogues, at least, They both have
as preconditions the fact that the unigue fixed point is divergence-free, which is
unlikely to be much of a practical handicap since almost all processes one will
tolerate in practice will satisfy thie constraint.

First we define three more conditions on predicates.

15)] If ~R(P) then there is 2 finite set T of traces such that, for
any @, if

s€ D[P] & s € D[Q] and R[P]s= R[Q]s
for all 5 € T, then ~R(Q).

{1) If ~R(P) then there are finite sets T of traces and F of failures
such that, for any @, if

s € D[P] & s € DIQ)
forall s € T and

(s, X) € F[Pl & (s, X) € F[Q]
for all (s,X) € F thex —R(Q).

(6) If +R(P) then there are finite sets T of traces and F of finite
failures (failures (s, X) with X finite) such that, for any @,
if

se D[P & s e P[Q]

forall s € T and
(s, X} € FIP] & (s, X) € FQ]
for all (s, X) € F then ~R(Q).

These conditions simply say that any failure to satisfy the predicate is de-
tectable from a process’ behaviour on a finite set of traces, of on a finite set of
possible divergences and failures, or on a finite set of possible divergences and
finite failures. (&) says that failure is detectable by some finite length of trace.
(In each case the sets or length can depend on the failing process.)

The definitions of the conditions 3, 7, é can all be extended to predicates of
product spaces A", One simply insists that failure is detectable from a finite set
(or sets) as before from a finite selection of components of the vector of processes.
This is different to the extension of a to product spaces, where failure need enly
be detectable from all components up to some fixed length.

)] If ~R({P) then there are finite sets T' of traces and & of indices
such that, for any Q. if
S E D[P)\]I & SsE 'DHQA]] and Rl[P,\jﬂa = RlIQ,\]]S
for all s € T and A € &, then ~R(Q).

(7} If ~R(P) then there are finite sets & of indices, T of traces
and F of failures such that, for any @, if whenever A € &

seD[P] & s € DIQ]
for all s € T and
(s, X) € F[R] & (5,X) € F[Qa]
for all (s,X) € F then ~R(Q).

(4 If ~R(E) then there are finite sets & of indices, T' of traces
and F of finite failures (failures (s, X) with X finite) such
that, for any @, if whenever A e &

s € DAl & s € PIQ:]
for all s € T and
(s, X) e FIAY® (s, X) € FIQs]
for all (s,X) € F then ~R(Q).

The conditions e, g, 1, § are clearly successively stronger: for example every
B-predicate is an a-predicate. Each of them generates a topology on A or A
where a set is closed precisely when it has the form {P | R(P)} for an allowable
predicate R. Several later results depend on facts about these topologies, but

13

rather than analyse them in detail here we will state results as required and
retegate proofs to the appendix. The following proposition lists some of these.

Proposition 2.5.

a) The conditions f§, 4 and § are equivalent if the underlying alphabet I is
finite, If it is infinite & is strictly stronger than y and 7 is strictly stronger
than 4. e is equivalent to f if the alphabet is finite and the index-set A is
finite. Otherwise f is strictly stronger than a.

b) For all £ € {#,7,6} the £-topalogy on A defined above is well-defined.
The topology generated by £ on A2 is the same as the product topology
where each copy of A is given the topology generated by £,

¢) The é-topology on A is compact, Hausdorfl and zero-dimensional.

d) i P e AP, each of thesets {@ (@ > P}, {@|Q <P}, {Q|Q@ I P} and
{@|@Q C P} are closed ia the é-topology (and hence in the others as well).
a

Having made all these definitions and stated the above proposition we are now
in a position to fulfil the promise made earlier and prove some analogues of
Theorem 2.4. The lower topology on a partial order is defined to be the smallest
topology on which all sets of the form z7= {y| & < y} are closed (see the
appendix for more details).

Theorem 2.6. Let X be a complete partial order and Jet 7 be a compact
extension of its lower topology. Then, if f : X — X i5 a monotonic function
whese least fixed point £ is maximal {and hence unique) and Y, closed in 7T, is
such that f(¥)C Y, we havez €Y.

Proof. This is very similar to that of Theorem 2.4. Transfinite induction
establishes that the (closed) sets { f*(L1))T NY are all non-empty, where L is
the least element of X. But the fact that the least fixed point of f is maxirmal
implies that (f*(L))T eventually (i.e., for Jarge enough @) contains only the
fixed point. The result follows immediately. O

Corollary. If F : A% — A is monotonic with a divergence-free least fixed
point P and R is a satisfiable é-predicate such that VQ.R(Q) = R{F(Q)) then
R(p).

Proof. This follows trivially from Theorem 2.6 and Proposition 2.5 (¢) and (d).
a

This corollary shows that the proforma rule is valid in any case where the
least fixed point can be shown to be divergence free and the predicate satis-
fies §. This and the other version given below show that we can do without
constructiveness for many applications,

14

When the function F is continuous one can, because of Lemma 2.3, weaken
& to .

Theorem 2.7. If F: N — A% js continuous with a divergence-free least fixed
point P and R is a satisfiable §-predicate such that Y@ (R(Q) = R(F(Q))) then
R(E).

Proof. If R(L) did not hold then we could find a finite sets ¢ of indices and T
of traces such that for any @, if for all (A,s) € & x T we had R[Py]s = R[Qa]s
and s ¢ DJQ.], then R(QT would not hold. And we know that there exists
Q € N* such that R(Q), and hence R(F™(Q)) for all n. However, choosing n
to be greater than all the ns chosen by Lemma 2.3 for the {A,s) € & x 7, this
gives a contradiction. O

There is a striking similarity between the proof of Theorem 2.7 and the cor-
responding result for metric spaces and contraction mappings discussed above.
Both rely on the fact that iterations begun from an arbitrary point in the space
{the process known to satisfy the predicate) converge to the fixed point. For a
consequence of Lemma 2.3 is that, if a continuous function F has a divergence-
free least fixed point, then every sequence of the form (F"(Q) | n € N) converges
to the fixed point in the S-topology.

It is mathematically pleasing to have characterisations of when the recursion
induction rule is valid that are independent of a specific metric. Even though
the great majority of recursions included in CSP programs are constructive,
it proves useful to have these abstract forms of the rule when the function is
derived from the process and not the other way round: this will be covered in

3. Unbounded nondeterminism; hiding infinite sets. As stated in the
introduction, the completeness of the determinism order C depends on the com-
pactness axiom (4). As an illustration of this, consider the “processes”

P.= T[] m— STOP

n<m

where 1 represents the nondeterminjstic choice over a possibly infinite set of
indexed processes. The natural interpretation of P, as a set of failures (assuming
its alphabet is N) is

(X H{rn+1,n+2,..} 2 XYU{({(m), X) [m > n)
which does not satisfy the compactness axiom. If these processes were allowed

we would, as one would expect from their definitions, have P, C Pp,;. However
the chain (P, [n € N} would have no upper bound, for if P J P, for all 5 then

15

P can neither communicate on its first step nor refuse the whole alphabet — a
clear contradiction to axiom (3).

The compactness axiom is not as restrictive as one of finite nondeterminism.
The latter would state that, for each s, R[P]s contains a finite number of
maximal elements, with every ¥ € R[P]s contained in one of them. Axiom (4)
allows icfinite nondeterminism provided it is finitely presented in some sense,
for example it allows sets of refusals such as

{X CN|Vi{2i,2i + 1} € X}

where there are uncountably many maximal elements. However, as we see from
the processes P; above it prevents us from expressing many natural processes
properly.

It is clear that if one wants to model unbounded nondeterminism properly,
then weare {ar better off without this compactness axiom. Fortunately the de-
finedness order < does not need it for completeness, and so it may be discarded.
(Note that the P, as defined above are not comparable under <.) I should re-
mark at this point that an alternative, slightly simpler, form of axiom {3) which
is sometimes seen

3) (s, X) € F[P] A (s{a),0) ¢ F[P] = (s, X U {a}) € F[P]}

requires axiom {4) in the sense that (3')+(4) = (3) +(4) but (3"} alone is strictly

weaker than (3). (3') allows such “processes” as P = {{{<>,X)| X C N A X is finite},()
(which cannot refuse the whole set of integers or communicate any). This P is

not acceptable as P\N would not have any traces at all. (See the definition of

the infinite hiding operator below.) Thus (3') is not adequate if axiom (4) is
omitted,

We will denote by Ay the failures model defined without axiom (4) over
some alphabet T. {As before, we will usually suppress the subscript.) Of course
AN’ only differs from A when I is infinite. The orders C and < are defined
exactly as before. < is complete, but if T is infinite C is not (as is illustrated
by the example above}.

All parts of Lemma 1.1 continue to hold in A except that it is now unmnec-
essary (and wrong) to apply the closure operator F when finding the C-greatest
lower hound of a nonempty set. It is interesting to note that, over A", C-greatest
lower bounds are found by unton and <-least upper bounds {where they exist)
are found by intersection, but that neither of the opposite pair of statements
hold in general.

All the operators that were used over A (and defined earlier) may be defined

over N using exactly the same clauses. In proving the operators well-defined
over N, axiom (4) is never used except when proving axiom (4). It follows that

16

they are all weil-defined over A”. We now prove that they are all monotonic and
continuous.

If P e N, define P# as follows:
D[P*] = D[P}

FIP*] = traces(P) x P(T).
This is a process with the same traces as P but which can refuse anything at

any time. Clearly P¥ € A and the function thus represented from (A, <} to
{N,LC) is continuous.

The fact that all operators other than recursion are C-monotonic follows
because in all cases the behaviour of the result of an operator depends in a
direct and positive way on the behaviour of its arguments. The proof of <-
manotonicity is completed by exactly the same argument we used earlier over

N.

The operators’ continuity can he proved by using the # operator. If F is
one of the operations and A € A is directed, we know by a standard argument
using monotonicity that

L [{F(PY I PeA}< F]a).
We also have, since # is continuous from A to & and F is continuous over A:
LI{F(P*) | Pea) = F((L|A)¥).
It follows (using the same observation as in the last paragraph) that

DILHF(P) | P e aYl=DPIF(]A)].

But if P < Q and P[P} = P[Q] it is easy to see that P = @; continuity follows
immedjately.

I think it is virtually certain that all the usual algebraic laws of CSP (from
[BR,H), for example} remain true over the extended model A”, but have not
yet systematically checked this. However we will see below that several natural
extensions of these do not extend to the infinite hiding operator defired below.

As we know, all of the operators dealt with above map A to itself, so there
is little reason to move to the extended model if they are all one wants to
use. However, as hinted earlier, there are interesting operators which we can
define over A that could not be defined before. Firstly we can now define
the nondeterministic composition of an arbitrary nonempty set of processes by
union. If & is any nonempty set of processes

DNs)= | J(P[P]] P € 5)

17

FMs) = U{J—'{[P]i Pe s}
This is continuous in each process argument individually, but not over infinite
vectors of processes. (In considering the monotonicity and continuity of [it is
easier to think of it as a function of vectors rather than sets of processes, for the
latter have no obvious partial order.) For example, if we define vectors P* by

pr = 1 fn<<m
™~] STOP otherwise

we have P" < P but [TP" = | forall n while M(U{P" | n € N}) =
N(sT0PN) = STOP.

The existence of the above operator implies that any satisfiable specification
defined purely as a property of the traces/failures/divergences of a process (ev-
ery individual behaviour satisfies some property) has a most nondeterministic
solution: simply take the nondeterministic composition of all solutions. {Some
properties of this form, like “deadlock-free”, do not have most nondeterministic
solutions over A.)

Perhaps the most annoying restriction imposed by the original model on the
language was the impossibility of hiding an infinite set of events. If we allow
infinite alphabets at all, it is strange only to be able to hide finite sets. There is
no reason not to define it over A”, however.

DIAX] = {(s\X)t|s e D[P}
O{(s\X)t|3s; < s2 <5 = 5 AVi.(5\X = s\ X A 3; € traces(P))}
FIPAX] = {(\X,Y)|{s,XUY)e FIPPUA{(s,Y)}s € D[P\a]}

Notice that in this definition we insist that the sequence of traces yielding di-
vergence are linearly ordered. This is often not done when X is finite because
then Kénig's Lemma proves that, if there are infinitely many s with s\X < s
for alli then there is an infinite ordered sequence of the type above.

It is straightforward to show that this operator is well-defined and 'monotone
with respect to < and C. However it is not continnous, again becanse of the
introduction of unbounded nondeterminism. Consider the sequence (P | 7 € N},
where

P, = (z:{k|k<n} - STOP)D(z:{k|k>n} — L)
These form a <-chain with limit
P =1:N— STOP.
P\N = STOP but, for each n, P,\N= .

Thus we have succeeded in modelling unhoundedly nondeterministic opera-
tors. but with the seemingly inevitable loss of continuity. This means that in

18

genera) the least fixed point might not be reached after only w iterations of the
underlying function. Indeed, one can give a simple if contrived example to show
that any ordinal can be required. Given an ordinal a we takeit (i.e.,, {#|8 < a})
as our alphabet and define

P=pfa=(Plly:8~ STOP\a.
A little thought will revea] that the least fixed point here is
B:0 — STOP

since every execution generates a strictly decreasing sequence of ordinals, which
cannot be infinite. Tt takes precisely iterations to reach this fixed point, vnless
¢ is finite in which case it takes ¢« + 1.

Unbounded nondeterminism seems to appear in two distinct forms: it man;
ifests itself in a finite time, as in

Q1 = N{rn - STOP | n eN}

where the initial refusals of A" capture it, or takes an infinite amount of time
to appear as in

Qg:ﬂ{P,,'neN} where PQ=STOP,P"+]=—"G—‘P".

1 appears to be able to perform any finite number of as, but not to be able
to perform an infinite sequence of them. Thus, intuitively, we would not expect
Qa\a ta diverge. {Note that this form of unbounded nondeterminism canappear
where there is a finite alphabet.} Unfortunately, in the A semantics, Qi\e can
diverge because it interpolates a process’ infinite behaviours from increasing
sequences of its finite behaviours. A" has no means of describing this second,
and perhaps more subtle, form of urbounded nondeterminism. (This example
illnstrates the fact that, in A, hiding (even finite) is not infinitely distributive
over nondeterministic choice.)

The law P\X\Y = P\Y\X fails to hold in general for essentially the same
reason. To see this consider the process

Q=z:N-— P,

where P, are as defined above. If g is hidden tefore N there is no divergence
as there is no infinite execution sequence of as following any natural number:
Q\e\N = STOP. However if N is hidden first this information is st and so
divergence is predicted: Q\N\a = L.

A way around this problem is to introduce a new component into the model

to represent the infinite traces of a process. Thus a process will be described as
a triple (F, D, I, where F and D have the same structure as before and I is the

19

set of infinite traces it can perform. See the sequel [R2] for the construction of
this model. In the sequel we will see that the present model and semantics in
general give a pessimistic view of CSP, in that if P is any CSP term P is the
value ascribed to it by the semantics above and P; is the operationally natural
value then Py < P;. Equality is achieved once one introduces the infinite traces
component. We also recover the desirable algehraic properties that were shown
to have been lost above.

Thus arguably the model A is not really a “proper” model for unhoundedly
nondeterministic CSP, rather an approximation to the correct one. Nevertheless
the fact that it exists and is a complete partial order is certainly interesting. (In
the sequel we will see that when it is extended by infinite traces it is not only an
incomplele partial order but has no complete partial order consistent with CSP.
The existence of the fixed points of recursions becomes much harder to prove.)

Proof rules over A’. Perhaps paradoxically we find that the model A" which
was made possible by < has slightly less of the attractive properties proved in
Section 2 (using <) than does A

Theorems 2.1 and 2.2 and Lemma 2.3 hold over A for exactly the same
reasons as before. One can still define the properties a, 3, v and § exactly as
was dope there. Parts (a) and (h) of Proposition 2.5 still hold. The é-topology
on N s still compact, but since every open {closed) set clearly contains {F, D)
if and only if it contains {F, D) for each (F,D) € A", it fails even to be T},
(Recall that F denotes the closure of F under the compactness axiom.) For this
Teason it fails to be an extension of either lower topology. The «y-topdlogy is
Hausdorff and satisfies all parts of Proposition 2.5 (d). Unfortunately it is not
compact, unless of course T is finite.

All this means that none of a — § satisfies the conditions of Theorem 2.6.
The lower topology is itself compact, as it always is over a consistently complete
cpo (see the appendix), so at least Theorem 6 is not vacuous. Whether there
are any compact extensions of it that are practically useful will be a subject of
further research. '

Since Lemma 2.3 still holds in the extended model it follows that Theorem 2.7
does as well. However, unlike over A/, care is necessary in applying this theorem
over A" since now by no means all functions are continzous. In particular
it will be unsafe to use it whenever the function in question involves infinite
nondeterminism or infinite hiding.

4. Conclusions. We have seen that it is possible for two different orders to
give exactly the same semantics to CSP, at first sight a rather surprising result.
Since I discovered the new order several of my colleagues have pointed out to
me that a very similar alternative order based on definedness has recently been
discovered by Greg Nelson for Dijkstra’s langnage of guarded commands [N]. As

20

in this paper he replaced the nsual refinement order by a new one which treats
all nondivergent behaviour as incomparable: two processes P, are ordered just
when P can diverge whenever can and all of P's nondivergent behaviour is
reflected exactly in @:

(0,L) ¢ P= P(o) = (o).

Just as was the case in CSP, the new order there provided exactly the same
semantics as before but increases the range of constructs that can be considered.

In both of these languages the nondeterminism order must remain the order
of refinement and will therefore continue to play a most important role. However
just because it has that function does not means that it is the best order on which
to base the semantic fixed point theory: we have just seen how by moving to
< we were able to prove a wide range of new results about fixed points and to
extend the model and language.

As I remarked above, the extension A" of the failures model is only able to
cope properly with certain sorts of unbounded nondeterminism. It is perhaps
best viewed as a stepping stone to the model incorporating infinite traces that
will be introduced in [R2], thongh where it is adequate it is certainly simpler
and easier to analyse than the new one,

Now that we have two different orders on the failures model we are faced with
the question of which should be presented as the “standard” order for recursion
to those meeting the model for the first time. If we agree that the restriction to
finitely nondeterministic operators is undesirable there seem to be two options.
Omne could present this new order (over A'), mentioning the important role of
C in refinement. On the other hand one could continue to use C over A’ and
appeal to the existence of < and the results of this paper to assert the existence of
fixed points, even though the order wonld not be complete. This is an inportant
question but at this stage it is too early to decide.

Appendix: the topology of A" and A’ In this section we justify some of the
clzims that were made about the topological properties of the various conditions
on predicates and about the lower and interval topologies. Of necessity we
assume that the reader has a basic knowledge of general topology: essentially
up to product spaces and Tychonoff’s theorem.

First we establish the various parts of 2.5, with a few observations ahout A,
The fact that 3, v and § are equivalent when T is finite is obvious because there
are only finitely many refusal sets and all refusal sets are finite. Thecase when
% is infinite 15 illustrated by setting & = N. Then

Rat P) = Im(<>, {»}) € AF}
is a d-predicate but not a y-predicate, while

R,(P) =Vs.(s,N) & FLP]

21

is a y-predicate but does not satisfy §. (R, is deadlock-freedom, an important
predicate: 6 is the only one of our conditions that does not allow all predicates
that are formed by specifying that all hehaviours must satisfy some condition
on divergences and failures.)

The fact that « is equivalent to J {and hence to v and 4) if the alphabet and
A are both finite follows easily from the fact that there are then only finitely
many traces of any length and & (in the definition of 3) can be equal to A. If A
is infinite the predicate

R P)=13).P,= STOP

satisfies ¢ but not 8. The following predicate of a single process also has these
properties
R:(PY= P #£ STOP

when the alphabet ¥ is infinite.

The fact that 3, v and §, as defined in section 2 (over either model and over
a simple or product space), generate topologies is easily demonstrated. In each
case it is trivial that the whole space and the empty set are closed. That an
arbitrary intersection of closed sets (1{C» | A € I} is closed follows because if
some P fails to be in here then P ¢ C), say. This last fact is witnessed by some
finite set(s) (of traces, or traces and failures, etc.). Exactly the same sets witness
that P cannot be in the intersection. If C and D are closed then s0 is CU D,
for if P ¢ € U D then there are finite sets for each of C and D witnessing this.
The union(s) of these witness that P cannot be in C orin D, and therefore not
in CubD.

To prove that the topologies produced on A (and, indeed on A1) are just
the products of the topologies on the individual spaces it is helpful to consider
bases for the open sets of the tapologies. We deal here with §, the others (4 and
) being very similar indeed. An examination of § (defined respectively over a
single and a product space} reveals that a set U is open {the complement or
negation of an open set) if and only for all P € U there the {T, F'}-ball (respec-
tively (T, F, ®}-ball) about P is contained in U for some finite sets T, F(, ®).
The (T, F)-ball is defined to be those processes which cannot be distinguished
from P by their divergences in T and their finite failutes in F'. The (T, F, &}-
ball sbout P € A™ is similarly defined to be all those vectors which cannot be
distinguished from P by inspecting the divergences in T and finite failures in F
of their A-components for A € &. Denote these balls hy

Nin(P) and Nerpe(Z)

respectively. It is easy to see that if Q € N7 ;(P) then

Nirp(Q) = Nrr(P)

22

and that the same holds over A*, It follows that the balls are in each case a
basis for the respective topology.

A basis for the product topology on A'* generated by § on each component
is formed by taking a finite set § of pairs (A, U/) where I/ is a basis element on
N (and, without loss of geperality, (A, U}, (AU € § = U = U’} and letting
Us={PY(MNU)€E S = P, € U}. Given P € Us, we know that for each
(A, U)€ § there are T, and F) such that Ny, 3 (Py) C U). Define

3 = {M()U)eS}
T = UTh|(xT)e S}
F = UR|(U)ES}.

It is easy to see that Nyrpgy(B) C Us. It follows that the é-topology oo NA
is finer (an extension of} the product topology. The other way round is esier:
given Ny pay(B), set § = ({A, Nep,iy(Pa)) | A € @} It is easy to see that
Us= N ray-

The compactness axiom (4) in the definition of A" means that each element
is completely determined by its divergences and finite failures: there is a unique
element of A corresponding to each pair (ff, D} of finite failures and divergences
satisfying axioms (1-3),(5),(6). This means that the natural projection from A
to the set Ag, of all such pairs is a bijection. If the é-topology is defined on
N in the same way as over A it is clear that this map in a homeomorphism.
Thus if we conld prove that A, is compact under § we would also have proved
that A is.

It is clear that the é-toplogy on Agn is just the subspace topology inherited
from the topology equivalently defined on the set 4 of arbitrary pairs {ff, D} of
finite fajlure and divergence sets (i.e., not necessarily satisfying the axioms). Tt
is easy to prove that the latter is just the product of the two topologies on sets
of finite failures and traces respectively where bases are given by

Nx(f) {1 FnX=FnX} X a finite set of finite failures
Ny(D)y = {D'{D'NnX=DnX} X afinite set of traces

which are in turn homeomorphic to the product of Z* X p(X) and I* copies
respectively of the discrete topology on {0,1} - compact by Tychonoff’s theorem.
It follows that A is compact if and only if it is a closed subset of 4. Since the
intersection of closed subsets 15 closed it will be sufficient to check that the sets
of pairs satisfying each of (1-3),(5),(6) individually are closed. This is implied
by the fact that, in each case, if a pair {ff, D) does not satisfy the axiom then
this fact is discernable from checking if (ff, D} contains each of some finite set of
belaviours. For example, if it fails (1) then either {(<>,0) & ff (one behaviour)
or there are & < t such that (5,0) € ff and (¢,0) € ff (two behaviours). The
most interesting case is axiom (3). Here, because we are restricting ourselves to
finite failures, the set ¥ must (implicitly} be finite itself. Failure to satisfy this

23

axiom would manifest itself by (s, X) € ff, (5, X UY) ¢ § and (s{a},0) ¢ f
for each a € Y. (It is the need to make (3} closed that has forced us down into
finite failnres.)

Since the topalogy on A has been established to be homeomorphic to 2
Hausdorff one it follows trivially that the toplogies on Aga, and hence on A,
are HausdorfT also.

Since A is compact Hausdorff under § it follows from the equivalence of the
§-topology on A and the product topology that the §-topology on A™ is com-
pact Hauvsdorff (Tychonoff’s theorem again). The topology is zero-dimensional
because it has a basis of closed and open (clopen) sets: the ball Nyr ray(E) is
closed because (as is easily checked), the complement of this ball is equal to

UINzre@) | Q & Nz rey @)}

which is an open set. This completes the proof of 2.5 (c).

Each of the predicates described in (d) have the property that their failure
can be demonstrated by at most two behaviours from a single componeat of .
For example, the failure of @ > P is either demonstrated by some divergence of
(2 not being present in Py, (8,0) not being in F[[Q] for some minimal divergence
of Por(s,X)e F[Q)] #& (5, X) € F[P] for some s ¢ D[P]] and X finite. (Here
we use the fact that F[P] and F[Q] are determined by their sets of finite
failures.)

The &-topology on A is not even Tj; because when two processes have the
same set of divergences and finite failures there is no open set that contains one
without the other. In fact it inherits compactuess from Mg, in the same way
as above, since its open sets are precisely the inverse images of Ag.’s open sets
under the natural projection.

When £ is infinite, none of the stronger topologies on A can be compact
because of the theorem that no proper extension of a compact Hausdorff topology
can be compact. The y-topology on A" is easily shown to be Hausdorff (any pair
of distinct processes differ on some behaviour) but turns out not to be compact,
essentially because the infinitary version of axiom (3) is then not closed in the
sense described above.

This concludes our discussion of the a, 8, ¥ and é topologies. We now turn
our attention more generally to the subject of the interval and lower topologies.
(For a much deeper discussion of these, in particular over lattices, see [CCL).)

The interval topology is always T, for each singleton set is closed ([z,z] =

{z}) and the lower topology is always 7. The interval topology often satisfies
stronger separation properties than this {for example compact Hausdorff) but

24

need not, as is demonstrated by the lattice with only an infinite set of incompa-
rable points between top and bottom. The lower topology never satisfies T} in
a nontrivial partial order, for if z < y then every open set containing y contains
x.

QOver a consistently complete cpo X (i.e., one where each finite set of elements
with an upper bound have a least upper bound) the lower topology is always
compact. To prove this we appeal to a theorem of Alexander (see, for example
[K]) that a topology is compact if each cover by elements from some sub-basis
has a finite subcover. Thus in our case it sufficient to prove that if 5 is a subse$
of X such that for all finite F C § the set (1{z {| ¢ € F} is nonempty, then
N{z 1| = € S} is nonempty. The assumptions imply that each finite F C §
has a least upper bound | | F. The set of these as F varies forms a directed set,
the limit of which is the least upper bound of §, proving that (\{zT| z € S} is
nonempty as desired, for it must contain this hmit.

A simple extension of this argument shows that the interval topology over a
consistently complete cpo is compact also. (In fact, one proves that the perhaps
finer topology with sub-basis of closed sets {z 1,z]| z € X} is compact, where
z|={y |y £z}.) Forin that case any subset G of this sub-basis with the finite
intersection property splits into two parts {2 Tz € S} U{ylly € T}. Foras
before, the least upper bound of § exists, and since T Ny J# @ whenz € §
and y € T we know that each y € T is an upper bound for 5, so it follows that
LIS <y for all ¥ € T and hence that | |5 € NG,

Acknowledgements. 1would hike to thank Peter Collins for help in discovering
the Alexander sub-basis theorem used in the Appendix. A number of people,
in particular Tom Verhoell, have helped me by pointing out minor errors and
stylistic improvements. Several people, including Carroll Morgan, have pointed
out the similarity of this work with that of Nelson which was refered toin the
conclusion.

References.

[B] Brookes, S.D., A Model for Communicating Seguential Processes, Oxdord
University D.Phil. thesis, 1983.

[BHR] Brookes, 5.D., Hoare, C.A.R., and Roscoe, A.W., 4 Theory of Communi-
cating Sequential Processes, Journal of the Association for Computing Machin-
ery, vol. 31, no. 3, 560-599.

[BR] Brookes, S.D., and Roscoe A.W., An improved failures model for com-

municating processes , Springer Lecture Notes in Computer Science, vol. 197,
281-305.

25

[BRW)] Brookes, $.D., Roscoe A.W., and Walker, D.J., An operational semantics
for C5P, Submitted for publication.

[CCL] Gierz, G., Hofmann, K.H., Keimel, K., Lawson, J.D., Mislove, M., and
Scott, D.5., A compendium of continuous lgttices, Springer-Verlag (198D).

[H] Hoare, C.A.R., Communicating sequential processes, Prentice-Hall, 1885
[HBR] Hoare, C.A.R.., Brookes, $.D., and Roscoe, AW, A theory of communi-
cating sequential processes, Oxford University Computing Laboratory, Program-
ming Research Group, Technical Report PRG-16.

[K] Kelley, J.L., General Topology, Springer GTIM27 (1975).

[N] Nelson, G., A generalisation of Diskstra’e calculus, Research report 16, Dig-
ital Systems Research Center, 1987.

[R1) Roscoe, A W., A mathematical theory of communicating processes, Oxford
University D.Phil. thesis, 1982.

[R2] Roscoe, A.W., Unbounded nondeterminism in CSP, in this volume.

[R3] Roscoe, A.W., Induction and fizpoint rules for CSP networks, in prepara-
tion.

[Re] Reed, G.M., A uniform mathematical theory for real-time distributed com-
puting, Oxfrod University D.Phil. thesis, 1988.

[RR1)Reed, G.M., and Roscoe, A.W., A timed mode! for communicating sequen-
tial processes, Proceedings of ICALP'86, Springer LNCS 226 (1986), 314-323.

[RRZ] Reed, G.M., and Roscoe, A.W., Metric spaces as models for real-time
concurrency, to appear in the proceedings of MFPLS87 (Springer LNCS).

26

Unbounded nondeterminism

in CSP

by A.W. Roscoe!

Oxford University Computing Laboratory,
8-11 Keble Road, Oxford OX1 3QD, U.K.

0. Introduction

As is well known to the theoretical community, it is generally far easier to model
finite nondeterminism (where a process can only choose between finitely many
options at any one time) than unbounded nondeterminism (where no such re-
striction applies). The difficulties encountered with unbounded nondeterminism
have hitherto forced us to restrict the language and semantics of CSP to avoid
it: the miost obvious restrictions being our inability to define the hiding operator
P\B when D is infinite and the absence of an infinite nondeterminism operator
1S for arbitraty nonempty sets 5 of processes.

Both of these restrictions are inconvenient. If we are to allow infinite alpha-
bets at all (and it is often nseful to have them) it seems unnatural restricting
hiding to finite sets: for example it is impossible to define a piping operator
» where the alphabet of interaction contains the integers. The fact that there
is no infinite noudeterministic composition means that there is sometimes no
niost nondeterministic process satisfying a specification when one might expect

'The author gratefuslly acknowledges that the work repotied in this paper was supported
by ONR grant N00014-87-G-0212.

(%]
|

there would be. This is unfortunate because it becomes impossible to treat such
specifications as though they were (parts of} programs.

In an eatlier paper [R2]1 showed how many of the restrictions on unbounded
nondeterminism could be lifted by separating the nondeterminism order from the
order used for finding fixed points. Unfortunately the structure of the model
used there (failures and divergences using only finite traces) means that the
semantics given by that model to unboundedly nondeterministic operators is
not sufficiently discriminating. That model can successfully model a process
which will, on its first step, nondeterministically choose any integer, but cannot
tell between a process which can communicate any finite number of as and one
which may also choose to communicate an infinite number. One purpose of this
paper is to develop a more refined model which can make this sort of distinction.
This is done in the first section by adding a component of infinite traces so that
any CSF process is represented by (F, D, I} whete F is its set of failures (still
with finite traces), D is its set of (finite} divergence traces and I is the set of
infinite traces it can communicate.

Unfortunately the obvious orders on this new model fail to be complete,
though they do have greatest lower bounds for arbitrary nonempty sets, which
means that the standard iterative technique will produce the least fixed point
of monotone f provided there is any z with f(z) < z. My first reaction to
this failare was to Jook for a new order coarser than the abvious one which was
complete (for this was precisely what I had been able to do in the paper men-
tioned above for the {F,) model without the finite subsets axiom). However
one can prove that no order which gives the right semantics can be complete.
Specifically we find an w—sequence of CSP-definable processes whose semantic
values are provably ordered in any sensible order but which can have no least
upper bound.

H recursions are well defined we must therefore find some special property
of CSP-definable functions which leads them to have fixed points. In a sense
the rest of the paper is devoted to this task, though it achieves far more. The
chosen route was to investigate the connections between the abstract semantics
for CSP given in Section 1 with an operational semantics given in terms of
transition diagrams or synchronisation trees. This had already been done for
standard CSF in [BRW].

The second section develops the abstraction maps between tramnsition systems
and the abstract models described in Section 1, and proves results about them.
It also shows how the map to the infinite traces model can be approximated by
a sequence of maps that are produced by iterating a functional.

In [BRW] the congruence proof was proved in two steps by the introduction
of an intermediate denotational tree semantics between the term-rewriting tree
semantics and the abstract denotational semantics. It turns ont that there is lit-
tle problem in defining an infinitely nondeterministic term-rewriting semantics:
this hardly notices any difference between finite and infinite branching. However

28

the metric theory of trees (plus the contraction mapping theorem) that we used
as the foundation of the intermediate semantics before is now of no use at all,
for the existence of such a theory is dependent on finite branching and Kénig's
Lemma.

It is possible to develop the proof along similar lines by making use of the
theory of infinitely branching trees reported in [R3]. However, the relative com-
plexity of that and the discovery of the partial abstraction functions alluded
to above, which take over an important function of the intermediate semantics,
mean that it is no longer so attractive to do so. Therefore in the present paper
the proof is executed in a single step. The final section is devoted to this. The
structaral induction which proves the congruence simultanecusly proves thatall
CSP-definable functions do indeed have least fixed points. Let ® be the natural
map from synchronisation trees to the infinite traces model, and & be the deno-
tational semantic function mapping CSP terms to it. If P is any CSP term and
p is any binding of the free process variables of P to closed CSP terms (omes
without free process variables) it is shown that

SIPIp = #(O[P]p)

where B[p] = ®(p(p)) for each identifier p and O[P]p is the tree produced by
tlie operational semantics when the free variables of P have been substituted by

tle appropriate gp].

Thus, as well as proving the abstract semantics well defined, we have related
it to the corresponding operational semantics. To the author, one of the most
interesting insights brought by this work has been an understanding of why the
denotational fixed points of noncontinuous operators, which often take longer
than « to reach, are nevertheless operationally correct.

Despite the mathematical complexity of the results alluded to above, the
actual definition of the infinite traces model and the semantics of CSP aver it
are by no means inaccessible. For someone whe is willing to take the justification
of these on trust, there is no need to read beyond the middle of the first section.
Somie technical material from the first section, such as the well-definedness of
the CSP operators, has been relegated to an appendix.

A note on alphabets. The concept of a process’ alphabet is of vital impor-
tance to the definition of the CSP parallel operator: when two processes are
running in parallel, the combination can.communnicate an event in the camhina-
tion alphabet if and only if all processes to whose alphabet it belongs are willing
to communicate that event. There Lave been two ways of presenting this. In
earlier papers [BHR,B,R1] alphabets were introduced as an explicit parameter
of the parallel operator gll> . In some more recent works, particularly [H] they
have been attributed to all processes: in essence this leads to a typed theory of
CSP. The latter (alphabetised) theory leads to a more elegant syntax for the de-
scription of processes and the presentation of algebraic laws, but is messier when
it comes to building abstract models, for there has to be a separate model for

29

every possible alphabet, including the empty one which is an annoying special
case. Since the majority of this paper is concerned with the construction and
analysis of models we here adopt the former (unalphabetised) style and use a
single, nniversal, nonempty alphabet ¥ for all processes. However the two pre-
sentations are trivially equivalent and it is easy to determine the value predicted
in the alphabetised theory from its value in the unalphabetised theory. Thus,
subject to the obvious modifications, everything which is proved in this paper
is equally valid in either.

1. Adding infinite traces to the failures model

We take as our basis the failures/divergence model with the new “definedness”
order developed in [R2] but without the bounded nondeterminism axiom

VY Cir X (s, Y)eF = (5,X)eF

which was needed before that order was developed. This model, as in the eatlier
paper, will be termed A/, Recall that the definedness order < is defined

P<Q < DIQIC DPIP] A
s ¢ P[P} = R[P]s = R[Q]s A
s(DLP]) € traces(Q)

where T denotes the minimal] elements of a set T of finite traces and R{P]s
denotes {X | (s, X) € F[P]}.

As was noted in the introduction, though this model can describe the sort of
unbounded nondeterminism which makes itself apparent in a finite time, such as
a process which can choose any integer on its first step but cannot deadlock, it
cannot describe the type which takes infinitely long to nnfold. This is exemplified
by a process which, though it can perform every finite prefix of some infinite
sequence, cannot perform the whole sequence. Such behaviour cannot arise in
the context of finite nondeterminism, essentially because of Konig’s Lemma: that
any infiuite but finite branching tree (in our case the tree of ways in which the
process can perform a prefix of the infinite trace) has an infinite path. (The fact
that the hiding operator is operationally correct for finitely nondeterministic
CS8P is crucially dependent on this fact.) Thongh one might argue that the
infinite behaviours of a process need not concern us, for they cannot be fully
observed, the application of operators such as hiding can mean that the set of
infinite behaviours influences the finite behaviours. For example, if Py = SKIP
and Ppyy =a — Pp, need (M{P,|n € N})\{c} terminate?

This sort of question arises because, when we model a process by its set
of possible behaviours of one sort, we are often more interested in its ecertain
behaviours of another. Thus, by tecording all situations in which a process can
diverge or refuse a set we can tell when it must accept from a given set in a finite

30

time. And by knowing all possible infinite sequences one can sometimes deduce
that a process will do something in a finite time, as is demonstrated by the
example at the end of the last paragraph. Notice how these ideas are consistent
with the philosophy of the nondeterminism order C: a process improves as it
has less possible behaviours.

QOne cannot really hope to medel this sort of unbounded nondeterminism
without a record of the infinite traces that a process might performm. We therefore
include such a record in a new model.

All the usual trace notations can be extended in the obvious ways to infimite
traces, though of course one cannot concaterate u with s when u is infinite.
From here on u will conventionally denote an infizite trace. The set of all
infinite sequences of elements of any set X will be written X*,

The new model will have the same structure as A" except that it will havean
extra component representing infinite traces. Thus a process P will be a triple
(F,D,I}), where F C £ x P(E), D C £" and I C I¥. F should be nonempty
and the eight axioms must be satisfied. The first seven are tabulated below.

(n (st,0)e F = (s,MeF

(2) (t,X)e FAYCX = (t,Y)eF
@) (L,X)eFAVae Y (t{a),)gF = (1L, XUY)eF
(4) seD = steD

(5) seD = (st,X)eF
(G) suel = (s,PHeF
(7 s€D = sucl

Axioms (6) and (7) are both new but straightforward becaunse they aresimple
extensions to axioms (1) and (4) respectively. One more axiom is required, which
can be thought of as an infinite trace analogue to axiom (3). The latter says
that anything which, on one step, cannot be refused, must be a possible com-
munication. The new axiom will say that when one, from the finite convergent
behaviour, can show that there must be infinite traces, then there are enough
of them.

This axiow is very subtle and, perhaps because it is unlike any of the others,
proved hard to derive.

QOue can often prove from the failures of a nondivergent process that some
infinite trace is possible because one can formulate a strategy for fercing one.
The most simple-minded form of strategy is that based on a single infinite trace
u. If (5,{a}) € F for 2ll s{a) < u then it is intuitively clear that a user single
miudedly striving for the infinite trace u must be successful. However there are
more subtle versions of this. Consider a process whose failure-set is

Fo={(s,X)]|s€{a,5)" A{u,b} € X} .

J1

Imagine always offering this process the set {a,b}: it is never refused, so we can
guarantee that an infinite trace must arise. However we have no finer control over
exactly which jnfinite trace it is, though on further reflection we can observe that,
since every finite sequence s of as and bs is possible there must be an infinite
trace su extending every such s. The necessity of some axiom reflecting the
forcing ofinfinite traces is demonstrated by the definition of the hiding operator
below. Studying this will reveal that if a process P with the above failures did
not have an infinite trace, then P\{a,b} would not have any failures, divergences
or infinite traces!

It was true in all versions of the failures model that, modulo divergence, every
process was identical to the nondeterministic composition of its deterministic
implementations. (There is an extensive discussion of this fact in [B]. An up to
date paper which shows the power of this idea is [Blam].) The intuitive argument
that applied in these models, that on any particular interaction with a process
one cannot tell that it is not deterministic unless it diverges, still applies in
our current situation. This property is a consequence of the principle that an
external observer cannet tell by experimenting on a process just when it makes
a nondeterministic choice. The only circumstances in which an observer could
make such a distinction would be if he could copy a process half way through
an experiment an it. No CSP operator can do this, so in modelling CSP we
generally adopt this principle. It is intimately related to the fact that CSP
aperators are distribntive over nondeterministic choice, for example,

a—=+{(PNQ)=(a—> P)N{e— Q).

Imagine for the moment that we conld take copies of processes in mid execution,
and that this is done with the processes above after a has been communicated.
Ther the various copies of the process on hte left may act variously as P or
(2, since there is no guarantee that the nondeterministic choice has been made
before copying. But all copies of the one on the right must behave the same (all
as P or all as), for there we know the choice has already been made, Thus, if
we could take such copies, the above law wonld not be naturally valid.

One can tell if a process is deterministic by inspecting its set F of failures.
They must satisfy

(s.)eF={(s, X)eF&(Xn{e|(s{e),t)e F} =0).

The infinite traces of a deterministic process are easy to determine: since it can
never refuse any event which it can communicate, one can clearly force it to
communicate any infinite trace 4, all of whose finite prefixes are traces. We can
thus categorically state that, if F satisfies the above condition then

I={u|Vs<u(s0)eF}.

In models involving divergerce ane has the problem that, since no deter-
ministic process can diverge, a process whase set of divergences is nonempty is

32

not the nondeterministic composition of its deterministic implementations. Oxne
can easily get around this by defining a process to be pre-deterministic if it is
deterministic until it diverges (if it does). A process {F, D} or (F, D, I} will be
said to be pre-deterministic if

(s.0)e F = ((s,X)eFeseDVXn{a|(s{a)®)cF}=9).

We can determine the infinite traces of such a process exactly as before: we
must have
I={u|V¥s<uls,d) e F}

for either, when trying to force an infinite sequence, the process eventually di-
verges (in which case the trace should be present by axiom (7) and is in the right
hand side above by axiom (4)) or it does not, in which case the argument is as
for deterministic processes. Even though we do not know what the last axiom
will be, we do now know what the set of pre-deterministic efements of the new
model is.

The nondeterminism order C extends trivially to the new model. If P =
(F\D,I) and P’ = {(F', D', I') are any two triples we say
PCP =FOFADDOD'AIDT.

If P = (F,D,I}is any triple we define the set of its pre-deterministic mplemen-
tations by
imp(P) = {Q |Q 3 P AQ is pre-deterministic}

noting that this is well-defined by the observation above that the set of pre-
deterministic processes is known already.

If § is any nonempty set of processes we define its nondeterministic compo-
sition 1§ to be (F,D,I), where

1

U{F'| (F,D'"\ I e 5}
U{p’| (F", D', I'y € §}
{1 (F, D, I") e §}.

w i m
Il

It

This is just the process which can exhibit any behaviour of any element of 5.

This allows us to state axiom (8).
(8) i{mp(F,D,I) is nonempty and {F, D,I}) = [Timp{F,D,I}.

In other words, every behaviour of a process arises from some pre-deterministic
implementation. One should perhaps note that, as we defined pre-deterministic
processes above, this axiom in fact imiplies axioms (6) and (7). However it
would not be fair to exclude these a5 they were certainly taken inte account
when constructing the definition of pre-deterministic processes. Axiom (8) can
be regarded as a statement about what sets I are allowable for given F and D

33

since, forany F and D satisfying (1)-(5) there are sets I satisfying (1)-(8), for
example the set of all infinite traces all of whose finite prefixes are traces.

Axiom (8) is both complex and, in style, unlike any other published axiom
for a C5P model. The reader who wishes to convince himself that it really is
the “right” axiom should look at the Appendix, where several quite different
formulations are derived and where it is shown that the various CSP operators
defined below preserve the axioms, and also at the proof of Theorem 2.2 where
it 1s shown that every real (i.e., operational) process satisfies it.

The set of all triples satisfying the above eight axioms will be termed I,

The notations of A" and A” are extended to I/ in their obvious ways. If
P = (F.D,I), we define I[P] = I, P[P] = D and F[P] = D. traces{P) will
continue to denote the finite traces of P; Traces(P) will denote traces(PjUI[P].

The main motivation for deriving axiom (8) was to force there to be enough
infinite traces to reconcile with what the failures prove the process can be forced
to do. We have noted that it places no bound on the finite (F, D} bebaviours of
a process. Qune interesting question which is of importance later on is answered
by Lemma 1.1.

Lemma 1.1, If (F, D, I) € U, {F, D, I') satisfies axioms (1) to {7) {the oaly one
that has to be checked is axiom (6)) and I’ 2 I, then {F, D, I} € U4.

Proof. We need to show that there are elements of émp(F, D, I’} containing ev-
ery element of I'\], for every other behaviour is accounted for by an element of
imp{F, D, I}(C imp(F. D, I'}). Since, if u € I'\I, we have imp(F,D,TU{u}} C
imp{F, D, I’} it will be sufficient to show that there exists Py € imp{F,D,ITU {u})
such that 4 € I[P,]. Note that s < @ implies s D (or else u € I).

For each & < 4 and each ¢ € T such that s{a) £ u and (s{a},d) € F, choose
Poay € imp{F, D, I) such that (5{a),0) € F[P,y»] (it must exist as (F, D,)
satisfles axiom (8)). We will construct a pre-deterministic process by offering all
passible options on the next step that {F, D, I} can as long as the trace remains
a prefix of u, but immediately it ceases to be (i.e., has the form s{a} £ u where
s <u) it behaves like Pyrqy. Formally, P, is defined to be (Fy, Dy, L) where

F, = {(s,X)|s<uAXn{a]|(s{a),0)e F} =0}

U{(s{a)s’, X} s <uAsfa) £ un(s{a),0) € FA(s(a)s', X) € F[Puayl}
D, = {s{a)s’| s <uns{a) £ uhl(s{a),p) € FAsla)s’ € D[Fya]}
L = {uU{s{aju'|s <uns{a} £ uA(s(a),0) € FAs{a)u' € D[Pynyl}

It is elementary to check that P, € imp{F,D,IU {u}), which completes the
proof of the Lemma. O

Oune consequence of this result is that we can interpret axiom (8) as saying
that there are enough infinite traces to account for the set of failures: the infinite
traces for divergences are implied by axiom (7) and this Lemma says that adding

34

extra infirlite traces never implies the addition of yet more. In other words axiom
(8) could be replaced by the weaker statement

F=|J{F|{F. DI} € imp(P)}

for all P = {F, D, I). This observation is expanded on in the Appendix.

The reader might like to check that the elements of &/ with failure set Ry
as defined above are precisely {Fy,0, I} where I is a set of nonempty infinite
traces such that every element of {a,b}* is a prefix of some element of J. This
follows in part froan the fact that, if P is a process with the giver failure set and
{) € imp(P), then @ must have an infinite trace as it is easy to prove that it has
arbitrarily long finite traces. Some possible Is are {q, 8}, aud {su | s € {q,b}'}
{for any fixed u € {a,b}~. Some more examples will be seen a Lttle later.

We have already indicated above how the nondeterminism order is extended
to 2{. It is obvious that the maximum elements are precisely the determinis-
tic processes as defined above and that the least element is the immediately
divergent process.

Since divergence {and hence undefinedness) always appears after a finite
length of trace, there is no obvious way of extending the idea of definednes to
infinite traces. e therefore extend < in the same way as above: the order on
the infinite traces being by reverse inclusion.

P<Q » PlQ)c D[P A

s ¢ D[P] = R[P]s = R[Q]s A

u(D[P]) C traces(Q)A

I[P 2 71Q]
At first sight it might seem a more natural extension of < if we made processes
with different infinite traces after convergent behaviour incomparable. However,
such an order would be incomplete in a disturbing way because there would be
sequences with many minimal upper bounds. As weshall see later in examples of
how recursions converge, we do geruinely seem to need the structure of reverse
inclusion here.

The following lemma characterises a few useful elementary properties of the
two partial orders.

Lemma 1.2.

a) PCQif aud ouly if, enpl 1} D imp{Q).
W PLG=PCQ
) L ={Z" x P(T), %, =) is the least element of 2/ for both orders.

Y P<Rand PCQLC R, then P< Q.

e} A process P is pre-deterministic if and only if there is a deterministic
such that P < Q.

1) The C-maximal elements of 2 are precisely the deterministic processes,

Proof. (a), (b) and (<) are trivial. For (d), we observe that P < @ if and only
if PC@and

(i) (s.XVe F[PJA s € D[P] = (s,X) € F[Q], and
(i) u(DLPE) € traces(Q),

80 to prove the result it will be sufficient to prove (i) and {ii). If (s, X) € F{P]A
s & D[P] then, since P < R, we know (3, X) € F[R]. Hence (s, X) € F{Q] as
Q C R. Exactly the same argument applies for (i).

Part (e) is elementary once we observe that if P is not pre-deterministic then
its nondeterministic convergent behaviour must be present in any @ such that
P<q

It is easy to show that if P and Q are both deterministic and P C @ then
P = (. It follows that if P is deterministic then imp{P) = {P}, and, by (a},
that all deterministic processes are maximal. It is easy to see that, for any
P ¢ Y, imp(P) contains a deterministic process) (since any pre-deterministic
process is weaker than some deterministic one by (e)). It follows that P C Q
and hence that no nondeterministic process can be maximal. This proves (f).
a

All the usual operators may be defined over 4. As one would expect, in most
cases the finjte parts of these definitions are exactly the same as before (with
the notable exception of hiding). They are given in full below.

STOP and SKIP are defined

STOP = {{(<>,X)| X C £},8,9)

SKIP = ({(<>X) | VEX}I{{V), X)X CT},8,0) .

Let P = (F,D,I), P' = (F',D',I") and, for b € B, P, = {Fs, Dy, &) be

36

processes. Then

Dle— P] =
I[la— P] =

Fla— P
DPlz: B — EJ
IH:C |
f[a: - P,]]
D[P NP
I[PFIP']]
FIPN P

DIPOF]

I{POP] =
FIPOP] =

DIP gllc P']
I[P allc P']

FIPsllc P

2 il

IrilP] =
Flpie] =

DIP; P']

I[P, P']

FIP; P']

{{a}s| s € D}

{{a}jutue T}

{{<> X)|ag XU {({a)s, X) | (s, X) € F}
{{b)s|b€ B AsE D}

{{u|be BAuve R}

{{<> X} BNnX =0 u{{{b)s, X} beBA(s,X) € Fp}
Dup

fur

FuFr

buD
Iur

(<> X)) {<>,X)e FNFYU{(s,X)}|s #£<> Als, X) e F U F'}
(s, X) | s e P[P P}

{st!sE(BUC); AsdBE DA shC € traces(P")}
U{st|se(BUCY A s} B € traces(P) A shC e D'}

{u€ (BUC)*{u)B € Traces(P) A ubC € Traces(P)}
U{suls € D[P pllc P']}

{(s,(XNBYu(YnC)uZ)lse (BUCY A(shB,X) € FA
(M YYe FIAZN(BUC) =0}

V{(s, X)!s € D[P mllc PT}

U{merge{s,1}| s € D At € traces(P’)}

UlJ{merge(s,1} | s € D' at € traces(P)}

U{merge(s,t)| s € Traces{P) At € Traces(P') A 3 or tis infinite}
{(5,X)|3t.t". s € merge(t, 1Y A (1, X) € FA(Y, X)€E F)
Uis, X)|s € DIPII P}

{st|s € D A stick-free}

U{st|s{y/) € traces(P) At € DA stick-free}

{n|n € Inutick-free}
U{su | s{s/} € traces(P) A u € I' A s tick-free}
U{su|s € DLP; P']}

{(s; X)) (s, X U {/}D € F A stick-free}
U{(st, X) | s{~+/} € traces{ P) A stick-free A {t,X) € F'}
U{(s,X)|s e D[P; P’]}

37

DIPAX] = {(v\X)t|ueTAu\Xis finite} U {(s\X)2|s€ D}
I[AAX] = {u\X|uvelAu\Xisinfinite} U{su|se P[P\X]}
FIPAX] = {(5B\X.Y)|{s,XuY)e Flu{(s,¥)|s € D[PA\XT}

DIfIP] = {(fls))tls € D}
iAP = {fwylue U {(f(s)u|s € D}
FUIPE = AUGLX) (s 71X € FYU{(s, X} | s € DIS[PY]}

DIf Pl = {«|fl{s)e D}
P = {ulfw)eld)
FIUP = A X [{f(s) f(X)) e F}

We have seen above how the nondeterninistic composition of an arbitrary
nonempty collection of processes may be defined by component- wise union.

The only definition here that really requires comment is that of hiding, The
defirition of D{P\X] is rather simpler than before, since a divergence caused
by the hiding now arises from a single infinite behaviour rather than from an
infinite collection of finite ones. Notice that, with this exception, failures and di-
vergences never depend on the infinite traces of the operands. Some fundamental
properties of these operators are summatised in the next theorem.

Theorem 1.3, All the operators above are well defined (i.e., preserve the
axioms) and monotonic with respect to both orders. All operators are both
finitely and irnfinitely distributive: i.e., F([15) = MM{F(P) | P € §} for all
operators # and nonempty § C I,

With the exception of hiding the only term that needs to be checked for
well-definedness and monotonicity is I, for we already know these facts for A”,
In these cases monotonicity is trivial, for infinite traces are always constructed
positively out of behaviours of the operands. Axioms (6) and (7) are generally
easy to check. Some example proofs of axiom (8} are given in the Appendix.
Distributivity is a consequence of the fact that all behaviours of F(P) are always
deducible from single behaviours of P. This is also discussed in the Appendix.
We should perhaps note that no c¢laim has been made for the continuity of the
operators, which is becanse many of them are not continuous as a conseguence
of unbounded nondeterminism. See later examples for discussion of this. The
mair consequence of this lack of continuity is that the fixed points of recursively
defined programs need not have appeared by the wth iteration from L so familiar
to computer scientists. However, once we can show that necessary least upper
bounds exist there is no problem in defiuing the mearing of any recursive term
to be the least fixed point of thie appropriate monotone function: it is giver by
f7(L) for sufficiently large a. Once one can do this, we can define a semantic
function & : E — UFnv — l{. where E is the set of all CSP terms and UEnvis
the set of mappings from process variables to I, in the obvious way. O

38

Properties of the partial orders. We have seen how the partial orders <
and C are defined. We caunot hope that C is complete in general, for it is not
complete over A” when T is infinite. Unfortunately, neither order is complete,
even when T = {a, b}. Itis easy to construct increasing <-sequences of processes,
all with F = F; as defined above and D = @ which can have no upper bound.
As a simple exaimnple, let un = {{a)"(b})* be the infinite trace which has n as
then a b cyclically. It is clear that the sets {sup | s € {a,b}"} aze disjoint as n
varies, and therefore tbat, if weset I, = {sum | s € {a,b}* Am > n}, any upper
bound for the sequence {{Fo,0,1,) | n € N) must have an empty set of infinite
traces. This is impossible for < as, since all the processes are divergence-free,
any upper bound must have failure set Fy. (And we have already observed that
all such elements of ¢/ have nonempty I.) It is alsc impossible for C since any
upper bound must have an implementation @ {necessarily deterministic). @
must also be an implementation of all processes in the sequence and therefore
have an infinite trace - a contradiction.

We will return to this incompleteness shortly and show that it is, to some
extent at least, inevitable. Defore we do this, however, it will be nice to establish
a few positive properties.

Theorem 1.4.

a) Any nonempty subset § of I{ has greatest lower bounds with respect to
both < and C. In general, {1¢§ C Mc 5.

b) In eithier order, any subset of &/ witk any upper bound has a least tpper
bound.

¢) If [1< S is defined then so is [Jc § and the two are equal. Furthermore
Ug S = P* = {F*, D", I*), where F* = [{F [(F,D,I) € 8}, D* =(}{D |
(F.D.1) € S} aud I = ({I | (F, D, 1) € S).

d) If § is a nonempty set then ||z 5 exists if and only if N{imp(P) | P € §}
is nonenipty, and in that case [Jc § = (N{imp(P) | P € S}

e) I f: 14 — U is a function which is monotone with respect to one of the
orders and there is P € If such that f(P) < P (respectively f(P)C P),
then f hias a least fixed point given by f*(1) for some ordinal a.

f) If f:1{ — I{ i5s mnonotone with respect to both orders then any least fixed
point for one order is also the least fixed point for the other.

Proof. It is easy to see that {15 is the C-greatest lower bound of any nonempty
set §. (For an explanation of why [5, as defined above, is in U/, see the
Appeadix.) It does not wark in general for the definedness order <, however,
since one does not in general have P € § = 15 < P. The greatest lower bound
of § = {{F,,D,, I} | i€ A} is, as was the case in A, constructed so that it
diverges as soon as the finite behaviour of any two elements of S starts to differ.
We define [<5 to he {F,D,I), where

39

o D= {D;|1 ¢ AJu{st|3i 7.(IY(s,Y) € Fi\F;)v(3a.(s{a},D) € FI\ F;)}
» Fo|J{F;|ie AU {(s.X)|s€ D}
o I=J{li|ie A}U {sul s D}

It is easy to show that this process is in I/ and is indeed the € greatest lower
bound of §. Trivially [1<§ T35, This completes the proof of (a}.

(b) follows because, as is fairly well known, any partial order which has
greatest lawer bounds for nonempty sets has this property. The usual azgument
is repeated here. If § is a set with an upper bound, then Us, the set of upper
bounds of § is nonempty and so z = [1Us exists. Since y € z whenevery € §
and z € Us it follows that each y € S i5 a lower bound for Us. As z is the
greatest lower bound for S it follows that £ > y for all y € 5 and therefore that
z € Us. Plainly z is the least element of /s and is therefore the least upper
bound of S.

The first part of {c) follows trivially from the formula which is the second
part. However it has an interesting separate proof. Note that, since @ < P =
@ C P,if P =115 exists then it is a C-upper bound for § and hence @ =| |- §
exists and ¢ C P. Whenever R € § we then have RC Q C P and R < P.
Lemma 1.2 {d) above then tells us that £ € Q. It follows that @ is a <-upper
bound for § and hence that @ > P. We then have Q C P and P C . The
result follows immediately.

For the second part, we show first that if P’ = (F’, D, I'} i3 the actual least
upper bound on § then D* = D'. For trivially D’ C D* solet s € uD~ (where
recall D* = N{D | (F,D,I) € §}). Note that there must be P = (F,D, I} ¢ §
such that s € uD. Since P € P’ we must have 5 € traces(P’). If s € D' then
consider P” = (F”, D", I"'} defined

F' = Fu{(st,X)|teE AXCE}
D" = D'U{st|teL"}
I" = Iu{sufuneZv}.

traces(P"") is prefix closed by the observation abave. It is thus easy to see that
P" js a process, that P < P" for all P € § and that P’ £ P". It follows that
P’ cannot be the least upper bound on §, a contradiction. Hence uD* C D'; it
easily follows that D* C D', so the two are equal as desired.

That P* defined in the statement of the theorem satisfies axioms (1), (2),
(4}, (5), (6) and (7} is trivial. We next note that trivially F* 2 F'. Now by
the above paragraph those parts of F* and F' implied by divergence and axiom
(5) are equal. Suppose that s g D' = D*. Then thereis P = (F,D, N € §
such that ¢ € D. Necessarily R[P]s = R[{P'Ja as P € P’. It follows that
R[P'Ts 2 R[P*]s (for the latter is the intersection of a set containing R[FP]s).
Putting these fact together yields F' O F*, proving that in fact F/ = F*. Note
that this implies that P* satisfies axiom (3).

40

Since we have now shown that D* = D' and F* = F’, and it is trivial that
I* 2 I it follows directly from Lemma 1.1 that P* satisfies axiom (8) and is
therefore in (. The fact that it is the <-least upper bound for § is then trivial,
This completes the proof of (c).

(d) follows easily from axiom (8) and (b) above.

(e) is true in any partial order with property (a). By another standard
argument, if f is monotonic and z = F1{P | f(P) £ P} exists in a partial
order then it is the least fixed point of f. We still have to show that the least
fixed point can also be found by iterating f(L). The only place at.which the
standard cpo proof of this could go wrong is where, for. limit ordinals A, one
defines f*(L) = |{{f*(.L) | & € A} since this least upper bound might not he
defined. But it always is, since it is easy to prove by transfinite induction that
all the f*(1L) are bounded above by the least fixed point z constructed above
50 that we can always apply (b) when constructing f*(L).

(f) follows easily from (c) and (e). If f is mopotonic with respect to both
orders and has any fixed point then it follows easily from (e) that it bas least
fixed points f2(L) and fE(L) with respect to these two orders. But one can
prove from (c) that if both of these exist then the value of f7(1) is independent
of whether it was defined using < or C by an easy transfinite induction on 7.
From this it is easily seen that both processes reach the same fixed point, and
do so at the same time.

{f) can altematively be proved by observing that, by (e), if f has a fixed
point then it has a least fixed point with respect to both orders. fr and y
denote the <-least and C-least fixed points respectively, we have z < y and
hence z C % by Lemma 1.2. But we know y C z so it follows that z =y. OJ

We should remark now that all of the properties of the partial orders identi-
fied in Lemuma 1.2 and Theorem 1.4 extend easily (some of them appropriately
amended) to products of I, i.e., WA= A — U) for an arbitrary nonempty set
A, with the order P < @ (or PC @) if and only if Px € @ (or PA C @) for all
) € A. Some of the more useful _p;operties of these product spaces, which are
important in the consideration of mutual recursions and in the definition of the
partial abstraction functions later on, are summarised below. All the proofs are
either standard or straightforward extensions of what we have already seen.

Theorem 1.5.

a) L* is least element of I with respect ta hoth orders.

b) Any nonempty subset § of 4" has greatest lower bounds with respect to
both € and C. In general, M¢§ C TS, In either case the greatest lower
bound’s A-component is gwen by M{Py | P € §}, where I'T here denotes
the greatest lower bound operator over I{ in the appropriate order.

c) In either order, any subset of I with any upper bound bas a least upper
bound. In that case its A-component is given by | {P\ | P € §}.

41

d) If | |, § is defiued then so is |- § and the two are equal. Furthermore
(U<S)n = Py = (F7,D;, If), wheve F} = ({FLPA] | P € S} D =
MHDPAJL P € $Y 15 = NIZ[PA] | B € S}

e) If f:14* = 14" is a function which is monotone with respect to one of the
orders and there is P € U™ such that f(P) < P (respectively f(P) T P),
they § Lias a least fixed point given by f*(L*) for some ordinal .

£y If f: 4* — U is monotone with respect to both orders then any least
fixed point for one order is also the least fixed point for the other. O

These theorenis and what we have shown up to now show that < and C are
axceptionaly well-behaved partial orders. It is interesting to note that C has
its lower bounds givea by union and < has its upper bounds given by intersec-
tion, but that the reverse facts are not true. For example M{a — STOP,b —
STOP} = Lor{a — STOP)N(b — STOP) depending on which order is chosen,
and | {{{a = STOP)N{b — STOP,(a — STOPYN (b — SKIP)} = a — STOP
under C which 35 not the intersection of the two. Indeed even in cases where §
is a chain, | |- § might exist but not be given by component-wise intersection.
If P, is the nth process in the chain seen earlier with no upper bound, then if
we define

Qn = (c —+ STOP) N1 (d — Py)

the least upper bound of this sequence is ¢ - STOP even though ({d},¥) is a
failure of every Q..

The author's first reaction on finding that the two “natural™ partial orders
were incomplete was to try to find another one that was but which gave the same
semantics. After all, that had been one of the main reasons for the development
of the < order over A’ since it gave exactly the same least fixed point semantics
but was complete, showing that all desired fixed points actually exist. I should
perhaps remark at this point that the given orders do actually compute the
correct values for CSP definable recursions and that the least upper bounds
requited to compute them always exist. Of course the proof of these facts will
be the subject of mueh work later, but it is worthwhile seeing same examples
here.

Examples. Define Py = STOP and Pos1 = a — Pn. Set P =M {P. | nc N},
so that P can perform any finite number of as but not an infinite sequence of
them. Operationally we can think of P as a process which, as its first action,
takes a secret decision on exactly how many as to perform. Now consider the
recursively defined process

Q = (e — Qall P

and let F : i — U be the function sssociated with the right hand side of this
recursion. Since the right hand side of the highest level paralle] construct initially
imposes a bound on the nwunber of as ¢ can perform, it is clear that itself

42

cannot perform an infinite sequence of them. On the other hand it is clear that
Q can perform as large a finite number of 45 as it pleases. We would therefore
expect P = (). However, as is easily verified, F~(L) can perform an infinite
sequence of as (it is equal to P M R, where B = ¢ ~ R). On the other hand,
Fotl(1) = (a — (PNRY) 4}l (a} P = P 2nd F(P) = P, so this recursion reaches
the operationally correct fixed point at w-+1. Some more examples of recursions,
their fixed points and the ordinal required to reach them are summarised below.
The reader might enjoy constructing a few of his own.

e If f: L — I is such that f*{a) # f™(a) when n # =t then the recumsion
Q1= §TOPTa = (G elz PIT A1)

{with P as above) reaches its fixed point (which is the same as that of the
recursion P’ = P Ma — f[P'] which converges in w steps), in exactly «w.2
iterations.

s Let a be an infinite ordinal and T = a (the set of all § < a). Then the
recursion

Qz=8:a—-({y: 8-~ STOP)g||z @2\

takes exactly « steps to converge to its fixed point §:a — STOP. Q; is
a process that inputs any element J of @ and then cutputs any element
of A to a copy of itself or deadlocks if 3 = 0. (The faet that this is the
natural fixed point is an easy consequence of the fact that there is no
infinite descending sequence of ordinals.)

Suppose = is some partial order which does all we want: namely give the
samne fixed point theory and make If complete. Clearly it must make all CSP
operators monotonic and have the same minimal element L. To give the same
fixed point theory it must have the property that, when C is a linearly ordered
subset of & with respect to < and one of our existing orders, then a least upper
bound for <X is also a least upper bound for the other. (Note that € and < are
in this relationship.) Tt must also make P/ < @, where @ is defined as in the
example above and P’ = STOPNa — P'. For (] is a fixed point of this recursion
but is distinct from the natural fixed point (by assumption the <-least) which
has the infinite sequence of as. (P’ < @ can also be proved by looking at the
recursion of @}, where P’ is the wth iterate.)

From these simple facts and assumptions we will be able to prove that <
cannot exist: for thereis a sequence of processes in & which are provably ordered
by < but which can have no upper bound. Set £ = {a,b}. Recall that the set
Fyy of faillures was defined

Fo={(5,X)se{a, b} A{a, b} € X}.
The corresponding set where a process can refuse anything at any time is

Fo={(5,X)|se{a,d}"AX C {a,b}}.

43

Itecall that the tripies (Fy, @, I} satisfyving the axioms were those where I contains
an extension of every finite trace. All triples {F,{, I satisfy the axioms.

We will now coustruct some subsets of {a,b}* to go along with Fy and F).
I u e {00}~ and = € N, define r,(u) to be the ratio of the number of as to
the numher of bs plus one in the first » elements of u. (The “plus one” is to
make this always defined.) We shounld perhaps remark that some traces « have
limy, o 7 (1) existing and some do not. (In fact, there are uncountably many
us with any given limit in [0,00).) In the author’s experience the ratios ro(u)
are very useful when it comes to choosing pathological subsets of {a,4}* and
similar,

Forn € {1,2,3,...} we define
Lo = {ue {a,b}”] e > 03mVk > m.e < ri{u) < % —~€}.

Thus u € [, if and only if the ratios eventually stay within (0, -};) and away from
the boundaries of that interval. This last condition means, amongst other things,
that J, contains no sequence with limit 0 or %.’ Notice that © € I, does not
imply that lim,. o 7o{u) exists. The sets In have some interesting properties.
First, the I, all contain elements beginning with ary chosen s € {4,8}" (in fact,
uticountably many). Also Fayy € I, and W, | n € {1,2,...}} = @. Perhaps
the most interesting property is that, if m < n then

U{merge(s,t) |sel.u{a, b} At€l,U{eb}"Asortisinfinite} = I,.

Also, the insertion or deletion of finitely many elements of a sequence # does not
effect membership of any I, since the limiting behaviour #,(u) is not affected
by such manipulations. We can now define some processes

P, = (Fy,0 1) forn € {1,2,3,...}
Qn = (A, 1) forn € {1,2,3,...}
PE’ = (Fg,ﬂ,{a,b}“)

Qo = (F,8,{ab}*)

Qw = (F],@,@)

We will prove that the P, are a <-increasing seguence.

Now if f: T -+ ¥ is defined by f{a) = f(b) = e, we have f~3[P'] = Q¢ and
FHQ) = Qoe, where P’ and @ are as described at the start of this discussion.
Heuce Qu % Qo as f~1 is monotonic.

Now for all 7 it is not too hard tosee that P, |[{|Qo = Py and P |l| Qe = Pi.
It follows that Py < P, for all n > 1 as ||| }s monotonic.

Next, observe that £, 5||g Pa = @ if m < n. (The transition from Fy to F1
arises because one side of the parallel may refuse @ and the other 5.} It {ollows
that Qm = [PO E”S Prn) j (Pn EHE Pm) = er when m S 7.

44

The property of the I, described above implies that P, ||| @, = Pi, where &k
is the lesser of n and m. Hence, when m < n, P = Po || @m % Pa lllQn = Pn.
This completes the proof that the P, form an increasing sequence.

The fact the the P, are <-increasing is unsurprising, since they are increasing
with respect to T and <. We have specified that all < least upper bounds are
also C least upper bounds. Since [{I, | » € N} is empty, any L least upper
bound for this sequence has T = §. But there is no element of & with FC Fy
and T = @. It follows that this sequerce has no upper bound with respect to <.
Therefore < cannot be complete.

We therefore have to give up all bope of a conventional fixed point theory,
though note that, by Theorem 1.4, if we can show every CSP term has some fixed
point then we essentially have one. One of the reasons the author embarked upon
the research set out in the rest of this paper was to prove that every such function
has a fixed point, However, it must also be said that a theory like ours which is
based on monotonic functions and fixed points which are attained at arbitrary
ordinals is by no means abviously right iz an intuitive sense. There is even more
need now to relate this abstract semantics to an operational semantics than
there was for the ¢ousiderably simpler boundedly nondeterministic version if we
are to understand how it works (if, indeed it does). It will turn out that by the
final section we will be able to show that all CSP definable functions have least
fixed points and to prove the congruence result described in the introdection.

Nevertheless it would be very nice to have some simpler argument that every
CSP funection has a fixed point that did not rest on such a large bedy of work
outside the model. For example, if one could find any partial order which was
complete and made all operators monotonic one would be able to show every
function we want has a fixed point. Theorem 1.4 would then emsure that the
fixed point we actually want exists.

2. Abstraction functions

When we come to compare abstract and transition system semantics in the
final sectiou we will need abstraction functions which map one to the other.
The purpose of this section is to introduce and analyse functions from arbitrary
transition systems to If and A, But before we do this we summarise some facts
about transition systems.

Summary of notation, nomenclature and results. A transitfonsystem is a
set of states with a binary relation £+ for each element 6 of the set B* = Zu{r}
of transitions, where T deuotes an internal tramsition. We should note that ©
{(the set of visible actions) is an implicit parameter of almost everything we do
from now on, as indeed it was in the last section.

A morphism [R1,R3] is a function from one transition system to another
which characterises the property of indistinguishability in that no experimenter

45

who can only see transitions (visible or invisible) should be able to tell P from
F(P)if Fiz a morphism. F: C — D is said to he a morphism if and ounly if:

(i) P-LQ = PP)-5 F(Q), and
(i) F(P) -5 X = 3Q.P-LQAF(Q)=X.

Morphisms are closely related to the idea of bisimulation hut differ mainly in
that they treat internal actions in exactly the same rigid way that they treat
visible ones.

The inder of nondeterminism {{C) of a transition system C is the smallest
infinite regular cardinal? which is strictly larger than {Q | P A, QlforalPEC
and é € °F,

The functions. Given an element P of a transition system, we can construct its
sets of fallures, divergence and infinite traces in natural ways which are described
below.

‘We first define two 1nulti-step versions of the transition relation. If P,Q €
Coands = (z;]0<i<n) € (ZF) we say P v @ if there exist Py =
P.P,...,P, = @ such that P, =% P,y for k € {0,1,...,n — 1}. Ualike
this first version, the second ignores rs. For s € &* we write P == @ if there
exists s’ € (Z1)* such that P - Q and & \ 7 = 5. The following properties of
=% and % are all obvious.

Lemma 2.1.

a) PEBpApPS2p
by P=%QAQ=R=P%nr
) PrLgAQraR=>PYLR

4 P R3O P=0NQ="R
e) P R=IQ P QAQ- R

Suppose C' is a transition system and P € C. We say P can diverge, written
P1,if there exist Py = P, Py P,... such that, for all n e N, P, 2y Posy.

divergences(P) = {8t | 3Q.P = Q A Q T}

Notice that we have said that st is a divergence trace whenever s is. This is
motivated by a desire (inspired by our abstract semantics) to make all possihly
divergent processes undefined. (As will he apparent from a careful reading of

24 regular cardinal A is ane which is not the union of less than A sets all of which are of
sizeless than A. There are athitrarily large regular cardinala, since for example every successor
cardinal is regular. The combinatorial praperiies which make regular cardinals the natoral
bounds for nondcterminism are well illustrated in [R3].

46

the proofs below and in the final section, the fact that our semantic models and
functions are strict with respect to divergence is sometimes of great importance. }

Say P € C is stable provided there is no such that P — @ (in other
words, if P cannot make any internal progress). If B C ¥ we say Pref B if
Vae Bu{r}.-3Q € C.P -2 (). Thus P ref B implies that P is stable. We
can now define

failures(PY = {(s.B)|3Q.P == Q A Q ref B}U {(s, B)| s € divergences(P)}.

The point of these definitions is that a process can properly refuse B only when
it is in a stable state, for as long as it is performing internal actions one rannot
be sure that it will not come into a state where a desired event is possible.
On the other hand, when a process diverges it also refuses (in a different sense
perhaps) all communications offered to it. The second part of the definition is
also motivated by the desire to make a divergent process undefined.

I 4w € ¥ is an infinite trace and P € C, we write P == if there are P =
Po, P, Py,... € Cand z; € £% such that VE. Py % Piqand {a; |k € NAap £ 7) =
u. This lets us define

infinites(P) = {e € B¥| P ==} U {su| s € divergences(P) Au € Z*} .

Similacly, if {z.]i€w) = u € (T*)* we can write P~ if there exist
P = Py, P, P,,... such that, for all i, P; LN P

Clearly it is possible to define other functions, and to vary these definitions
for another definition of divergence. However the above are exactly the required
maps to define the abstraction maps into our main ahstract models.

Definition. If C is any transition system then we define abstraction maps
: ¢ — A (the failures/divergences model with no compactness axiom) and
:C - U as follows.

Z(P) = {failures(P}, divergences(P))
${ P} = (fuilures{ P), divergences(P), infinstes{P})

w1

We now prove a theorem wlich establishes some basic properties of & and

Thecrem 2.2. The maps = and $-are well defined, and forthermore

a) If F: C — Dis a morphism then Z(F(P)}) = =(P) and (F(P)) = E(P)
for all P € C.

b) f P € C and C is a sub-system of D (i.e., a subset closed under att the
transition relations) then the values (P) and Z(P) do not depend on
whether we think of P as an element of C or of D.

47

¢) Given any transition system C there is another one C’ such that Cis a
subsystem of C’ and the maps $:C' —= U and =: C — N* are onto.

Proof. Wefirst prove the well definedness of the maps = and ®. Observe that
for any process P, either <>¢ divergences(P) or there exists a stable @ such
that P 52 @. Tlis and Lemma 2.1 (b) easily imply that the traces of Z(P)
and &(P) (finite or finite and infinite) are prefix closed. The other axioms of
follow trivially once one observes that, if § ref B and B' C B then (Q ref B' for
ony stable ¢ € C, hence Z(P) is well defined.

The ouly non-trivial thing which remains to be proved about ®(P) is axiom
(8). We have to prove that every hehaviour of $(P) (failure, divergence or
infinite trace) belongs to some element of imp{$¥(F)). (The reverse inclusion
being trivial.] As we remarked earlier, this axiom is true because on no actual
interaction witl the process can one tell it is nondeterministic. To prove it true
of &{P}it will thus be necessary to isolate the ways in which a process can
appear to act on a particular run and to show that these can be regarded as
pre-deterministic and include every behaviour of $(P). There are two ways in
which a transition system can generate nondeterminism: by executing a r action
and thereby changing the available actions invisibly and by having more than
one possible result from carrying out a given action (visible or invisible) from
some state.

Given P in a transition system C, we will slightly abuse notation and use
the term pre-deterministic subtree of P for what is essentially the record of the
behaviour of P after it has made its internal decisions of the sorts described
above It will be a set T of pairs (s,Q) where 3 € £* and Q@ € C, with the
meaning that ¢ is the state that it might come into immediately on completing
3. It must satisfy the following conditions

(i) (<>, P)eT
(i) (5,Q). (s, QNeT=> Q= Q'
(iif) traces(T) = {s | 3Q.(s,Q) € T} is prefix closed.
(iv) (5,Q), (s{a},QN € T = 3G".Q 22 Q" A Q" %>
(V) {5,Q) € TA-QT=3Q".Q =2 Q'AQ ref {a € T| s{a) & traces(T)}.

Given such a subtree one can define a pre-deterministic process: ®/(T) is defined
to be (F, D, I} where

D o= {st|(5,Q)€TAQT)
F = {(5,X)|setraces(T)A XN {ae E| sle} € troces(T)} =9} U {(s,X) | s € D}
I = {ueB¥|Vs<us€ traces(T)} U {su) s € D}

Lemma 2.2.1. I{ T is a pre-deterministic subtree for P then &(P)C #1{T).

48

Tle proof of this lemuma is easy and uninteresting except for the observation
that because the state associated with each finite trace is unique one can simply
construct a path through the transition system for each required infinite trace
by stitching together the pieces for each of its elements produced by (iv) above.
(m]

Every behaviour exlibited by P (of any of the three types) is exhibited by
one of its pre-deterministic subtrees. This is a consequence of the next lemma.

A path from P_may be defined to be sequences of F; and z; € % such that
Py = P and P; =5 P,,,. A path can cither be finite or infinite. An infinite
path is divergent if the z; are eventually all s.

Lemma 2.2.2. If P = Py =5 P;... is a nondivergent path from P then
there is a pre-deterministic subtree T of P such that

(i) Tz; # 7 then ((z; | 5 < \r, Puyr) € T, and

(i) If F; is stable and s = {z, | j < i}\r then {a | s{a} € traces(T)} = {a |
Q.72 Q1.

The proof of this lernma simply consists of the tedious construction of T
piece by piece. O

It follows from this that $(P) ={&(T) | T is a pre-deterministic suhtree of P}.
This completes our proof that & is well defined.

We now tura to the proof of (a}, namely that the values of the abstractions
are preserved by morpbisms. The following all follow fairly easily from the
definition of a morphism.

P =*» Q = F(P) = F(Q)
F(P)=> R=»3Q.F(Q)=RAP = Q
@ stable & F(Q)stable
QrefBe F(Q)ref B
Qe F(Q)T
Q5 & F(Q) -5
Q =% o F(Q) =% .

For example, suppose F(Q)}7. Then there exist Rg = F(Q), R1, Rs,... such
that 2; —— R,y for all i. Claim that there exist Q¢ = Q,Q1,Q3,... such
that F(Q,) = R; and @; — Q1. These will be constructed inductively, first
setting Qo = (. I we have constructed Q; then, as F((Q:) — Riy1 there exists
Qs such that F(Q,,) = Riyy and Q; — Qi+1. It follows that the desired Q;
extst. This trivially implies Q1.

It is easy to see that the above imply divergences(P) = divergencss{ F(P)),
failures(P) = failures{ F(P)) and infinites(P) = infinites{ F(P)), which in turn
implies part (a).

49

Part (1) is a trivial consequence of (a) since, if € is a subsystem of D, the
obvious iuclusion map is a morphism.

We now turn to the proof of (¢). This is fortunately rather easy given axiom
(8). The pre-deterministic processes (which can be identified with the pairs
(T.D) where, # # T € %* is prefix closed and D € T, may be turned into a
transitionsystem PD:

{T,D} - (T, D} f<>e D
{T.D) -5 {{s | {@)s€ T}, (s} (a)s € D}} if{a) e T.

It is easy to check that ®(T, 1)} is precisely the pre-deterministic element of If
that corresponds to {7, D).

Now ali we have to do is to make up a space C’ consisting of (disjoint copies
of) C, PD and a separate point for each nonempty subset S of PD. The
transitions of elements of C and PD are those inherited from those systems. If
S is one of the subsets then

§ 5T, DY forall (T, D)€ S,

Tle fact that the & : €' — U is onto is now a straightforward consequence
of axiom (8). That Z is onto follows trivially from the fact that & is and the
fact that A is exactly the set of all first two components of elements of I,

This completes the proof of Theoremn 2.2. O
It might seem a little crious that we have gone to the trouble of extending
an arfitrary transition to one on which # is onto, especially when the disjoint

sum coustruction is so trivial. The reason for this will become apperent when
this result is used in the next section,

For reasons which will be apparent in the final section it is useful to have not
only the map & : ¢ — I but also a sequence of approximations to it. We will
define a map &, : C — U for each ordinal o. (Once agair, C is here an arbitraty
transition system.) It is convenient to define &, in terms of a functional

G: (U= (C~U).
¢:C—1Uf and P € C, we define G(T)(P) = {F', D', I'}, where

F' = {{«<>,X)|Pref X}

U{(s, X)[3Q.P -5 Q A (s, X) € F[T(QD}

U{((a}s, X} |3Q.P = Q A (s, X) € FI¥(Q))}
D' = {s{3Q.P -5 Qnrse D[EQ))

U{{a)s 1 3Q.P -2+ Q A s € D[P(Q)}
' = {«|3Q.P 5 QrueI[¥(Q)]}

U{{)u | 3Q.P -2 @ Au e T[T(Q)]}

The following Theorem establishes some useful properties of G.
Theorem 2,3.

50

a) G is well defined and monotonic with respect to both orders.

b) ®, as defined earlier in this section, is a fixed point of .

Proof. The whole of part (a) follows immediately from the fact that G can be
re-written entirely in CSP. The operator P 1> (Q used below is an abbreviation for
{(POQ)NQ (the process which can offer the choice between P and ¢} but which
must eventually make an internal transition to becorse @ if no action occuzs).
It is a useful operator since it allows more conciseness, and has appeared before
in similar citcumstances in the literature, e.g. [].

G(¥)(P)
GENP)

z: P S TH{¥(Q) | P =4 G} it AQ.P 4 Q
((z: PP T{¥Q) | P Q) otherwise
PTH{E(Q) | P — Q)

where P® denotes {a € £} 3Q.P - Q}. Tt is easy to see that our two
definitions of G are equivalent. Note that the overall structure of this CSP
definition depends only on the transitions within €, and is therefore independent
of the value of ¥. [t is this last fact which proves that G is monotone with respect
to both orders.

Part (b) is intuitively obvious. Consider, for example, the divergence compo-
nent. It follows immediately from the definition of @ that P[®(P)] = divergences(P)
is equal to

{st| P -SQAQ = RARTIU{(a)at | P 2 QAQ = EART}
which in turn is equal to
{s| P 5 Q A s € divergences(Q)} U {{a)s | P 2+ Q A s € divergences(Q)}

which is D[G(P) P)] by definition of G. Both the other cases are similar and
depend on this one. The failures case divides into three components rather than
two for obvicus reasons. 1

By Theorem 1.5 applied to the product space € (= C — U), it follows from
the existence of one fixed point that G has a least fixed point which is equal to
¢, for some a where

$olP) = 1L foralPeC
2.P) = U{a(P)|BEp} if uisalimit ordinal
P = G(2a)

since $g is the least element of the product space and $a = GP($y). These $5
will play a crucial role in the main congruence theorem in the next section. This
is essentially because of the next theorem.

Theorem 2.4. ® is the least fixed point of G. Hence there exists o such that
$,=a.

Proof. Let®, be the least fixed point of . We know by the above that ., C $,
50 it wil]l be sufficient to prove the reverse. In other words we should show
that D{0,(P)] C divergences(P), F[&,(P)] C feilures(P) and I[&.(P)} C
infinites(P) all hold. In each case this is done by taking an arbitrary element
of the left hand side and constructing a sequence of processes, either finite or
infinite, whicl demonstrate that it is in the right band side. We define functions

fr i {PI, XN PeCA(s,X) e Fl8a(P)]) — (CxE*x(ExPENUIA)
fa:{(P,9))| P eCAseED[®.(P)]}] — CxE+xI*
fo{(Pu) | PeCAseI[$a(P)}) — CxITtxz

as follows, where A is some new object. If (s, X} € F[$a(P)] = F[C(E.)(P)]
then by definition of G one of the following three clauses must hold according to
which of the clauses of the failures component of the definition of G applies.

(i) P may he stable, s =<> and P ref X. In this case set f;(P,(s,X)) = A.
If not then

{ii) there may exist € such that P - @ and (s, X) € F[8,(Q)]. In this case
set fy(P(s,X)) = (Q,7,(5,X)). 1 not then

(i) there must exist (2, un and &' such that s = (a)s’ and P -5 () and (o', X) €
F[Q]- In this case set fy(P, (s, X)) = (Q,a.(s', X)).

if, in (i) or (iii), there is more than one choice for) an arbitrary choice is made.

If s € D[P,(P)] = D[G($4){P)] then by definition of ¢ one of the follow-
ing two cases must hold according to which of the clauses of the divergences
component of G applies.

(i) There may cxist ¢ such that 7 - () and s € D[$.(Q)]. In this case set
fd(P, s) = (Q. T, S). If not then
(i) there must exist @, o and s such that s = {a)s’ and P - Q and s’ €

DIQR]. In this case set fo{ P.s) = (Q, a,s").

If, in either case, there is niore than one choice for ¢} an arbitrary choice is made.

fueI[®.(Pj] = I[G($a)(P)] then by definition of G one of the following
two cases must hold according to which of the clanses of the infinite traces
component of G applies.

{i) There may exist @ such that P -5 Q and u € I[8,(Q)]. In this case set
fa(Pouy={Q,7,u}. I not then

(1) there must exist @, ¢ and v’ such that » = (g}’ and P > @ and
v’ € Z[Q]- In this case set fa(P, u) = (Q,a,u").

52

If, in either case, there is more than one clhoice for (Q an arbitrary choice is made,

These rather cumbersome functions have been defined in such a way that
we can deterministically define, in each case, an infinite or finite (the latter only
possible in the case of failures) sequence of processes and actions demonstrating
membership of the appropriate component of $(P). For example, given (3,X) €
FlEa(P)] set Po =P and so = 5. Il ever f;(Py,(8a, X)) = A then the sequence
is finished, otherwise f;(Py, (80, X)) =(Q,z,(¢, X)) and we set z, = z, Poy1 =
@ and s,y = t. This process may terminate, in which case the sequence
constructed demanstrates that P == P. A P, ref X, or it may not, ix wvhich
case all but finitely many of the z, are v which demonstrates that there exists
s' < s and n such that P =2 P, A P,1. In either case (s, X) € failures(P), the
second one being because then s € divergences(P). Each of the other twocases
divides into two in just the same way. In those cases, as with the failures one
described here, the strictness of our semantics with respect to divergence is a
crucial part of the proof,

This completes the proof of Theorem 2.4. G

This result sliows the equivalence of the natural operationally defined ab-
straction function and one which it obtained by iterating a CSP definition
through the ordinals. This is exactly what we shall want to do on 2 much
wider scale when we seek to prove the congruence theorem in the final section.
It will turn out that this last result is perhaps the most important component
of the proof of that theorem.

3. Transition system semantics for CSP

This section is devoted to the definjtion of the operational semantics for CSP
and closely related semantics over more general transition systems.

A crucial starting point of the creation of a Plotkin-style semantics is the defi-
nition of the programuming language. The definition we take is just the nsual core
CSP extended by unbounded nondeterminism and infinite hiding. For formal
reasons we must fix ab inditio the range of unbounded nondeterminism allowed.
However this may be as large as we pleage. In particular, it is convenient to
fix it strictly larger than the cardinality of the alphabet ¥. Thus the following
language is implicitly parameterised both by the alphabet ¥ of all possible com-
munications and by the bound A, an infinite regular cardinal on the urbounded
nondeterminisin.

DBecanse the unbounded nondeterminism operator (unavoidably) and the
guarded choice operator (avoidably at a price) are infinitary operators (take
a potentially infinite number of process arguments) one should, for rigour, be
rather careful over the definition of the syntax of this version of C5P. On the

53

one hand we can write down the usual sort of BNF definition.

Pu=p|STOP|SKIP |a— Plz:D —g(z) | POQ | PN |
Pk Q| PIIQ|P;Q| P\B| f[P]| f[P]|pp.P | NS

where ¢ is any function from I (a subset of Z) to processes, S ranges over
nonewmnpty sets of processes smaller than X, f ranges over the set AT of {(not
necessarily finite-to-one) alphabet transformations, p over the set Var of process
variables, etc.

When there are infinitary operators in a syntax, like those in this language,
the idea of what is defined by a syntax like this one is less obvious tban it
usually is and should therefore be discussed hriefly. If we are to have a principle
of structural induction and have a way of defining the semantics of programs we
cannot have a program of the form M5 or ¢ : B — g{z) which is itself in S or
in the range of g. Oune can, of course, regard BNF definitions like the above as
fixed point equations, defining the smallest syntactic class which is ¢losed under
the various operations on the right. For a language with only finitary constructs
this fixel point is reached by w iterations (every program is “born on a finite
day”) bat we have to go further, to cater for programs like n : N — P, where
P, is born on day n. The functional implied by the right hand side of the ahove
BNF definition is clearly monotone (the more programs there are, the more it
delivers) but since it is not operating over a set (rather over the proper Class
of all syntactic objects) it is by no means ohvious it even has a fixed point,
Fortunately it does, and is guaranteed to reach it by A iterations, where A is the
bound on nondeterminism and the size of & already merntioned. (See [BRW] for
some more discussion of this question.) The principle of structural induction is
then perfectly valid and corresponds to the principle of transfinjte induction on
the “birthday” of a term.

To simplify the operational semantics a little it is convenient, as was done in
[BRW], to treat the constructs STOP, SKIP and ¢ — P as special cases of the
consituct = : B — g(x): STOP bas D empty,a — P has B = {a} and g(a) = P,
and SKIP = / — STOP.

Let E he the set of all CSP terms defined by the above. An element of E
may have free process variahles, in which case it is said to be open. If it has
none it is said to be closed; we denote the set of all closed terms hy P. Closed
terms are of importance since their meaning is fully determined; there are no
slots for processes waiting to be filled in.

HP,Q € E and p & Vur then P[(?/p] denotes the term where @ has been
substituted for all free occurrences of p is P. When) is not closed (though for
us it usually will be) some care will be necessary to prevent P hinding any of
Qs free variables.

The Plotkin-style semanties regards the set P of all closed CSP-terms as
a rransition system, since it describes the set of all actions each closed term

can perform and which new tenns it may then become. The clanses of this
operational semantics are given in the usual “natural deduction” style below,

Below, «,b range over T and z,y over Tt = L U {r}. Alphabet transforma-
tions (fuuctions from ¥ to X} are extended to T+ by setting f(r) = 7.

be B)
(z:B — gz)) 2+ g(b) (

PNQ L P PNQ -5 ¢Q

pp-P - Plup.P(p]
PP Q- Q'
POQ -5 POQ POQ D POYQ!
P4 p Q-Lg
PO % P POQ - Q)
rLp Q=g
Pelb Q-5 Palk @ Pple @ = Pl @
pP-% p
Pelk @ S Pl @
Q-5
Pple Q@ = Pyl @
PP g2y
Pplk @ % Pyl @
PP Q=0
Pl -= PlilQ Pllg = Pllig’

P = p
Fg =g 7Y

(ae B~-C)

(a€C—B)

{ae BnC)

ap.p Y pr
PiQ-5Q
P-%p
P\B =+ PA\B
P2 p
P\ -5 pA\B
PP
fiP1-* fPY)

(z € B)

(a e B)

(v = f(z))

55

P I pf
P f1PY)
Pes
ns-Lrp

(fly) =)

Note at this point that the operationally natural element of if corresponding
w each closed tenn P is given by ®(P), where & is as defined in Section 2
and I js cousidered to be an element of the transition system P defined above.
Theoren 2.2 shows that this is equal to (F(P)) for any morphism F. We can
now state the main congruence result that we would like to prove, namely that
for all clesed CSP terms P, $(P) = S[P], where S[P] denotes the value in If
defined by the semantics defined earlier (though we should remember that we
still have an obligation to show the existence of fixed points).

There are two structure clashes between the operational and denotational
semautics. The first is the obvions one that one is given in tetms of transition
systems and the other in terms of the abstract model /. But perhaps the
niore difficult one to resolve is the clash between the term rewriting style of the
operationa] semantics and the denotational style of the other. Of course the
latter mesns that the semantic value of each term is deduced from the semantic
value of its subcomponents in a transparent way and that an abstract fixed
point theory is used. In the earlier paper on the operational semantics of CSP
[BRW)] these two issues were resolved separately by creating an intermediate,
denotational tree semantics. Unfortunately the complete metric spaces of trees
used in that paper no longer exist because of the introduction here of infinite
branching.

The main result of [R3] is that, for each infinite regular cardinal), there
exists a transition system T such that for all transition systems C with {(C) < A,
there exists a unique morphism Hy : € — T, Thus Ty is a final object in the
category of transition systems with torphisms as arrows. Analogues of the
contraction mapping theorem and related results hold which are useful when
one uses these systerns. T can be used to pive an intermediate denotational
semantics to CSP in the style of [BR.‘V]_ However, because of the complexity of
this new theory and thanks mainly to the construction of the &, in the previous
section we do not now need to do so.

It is useful to extend the operational space defined above to include nop-
closed terms with their varialiles instantiated by elements of an arbitrary tran-
sition system.

Definition. ¥ € is any transition system then CY*F is the system of CSP
syntactic terms over C: namely the set of all substitutions by elements of C
for all free variables of general terms in the lanpguage. All terms are distinct.
Note that C%5% contains every closed CSP term and every element of C. The
transitions of each term are those of Pif P € C (i.e., P—é—oQ in COSF if and

onlyif £, @ in C). The transitions of proper syntactic terms are determined

56

from the operational] semantic clauses above (from those of their subterms or
otherwise).

The stipulation that all terms are distinct means that each possible con-
struction of a term leads to a different element of the system. For example,
in (CCSPYYSP for each P € C the terms @ — a — "P', e = "a = P and
@ = 2 - P' are al! different, where the syntactic quotes " dencte the bound-
ary between the inner and outer syntactic construction. However the obvious
map from (CEF PSP 1o CPSF which “forgets” these boundaries is easily shown
to be a morphism.

Note that Theorem 2.2 {a) tells us that the image under & of a closed term
P is independent of whether it is considered to belong to the spaceP of closed

terms or any C°¥F, since there is an obvious morphism embedding P into any
CCS'P_

We are now in a position to begin the proof of the main theorem, namely
that the I semantics for CSP is well defined and congruent to the operational
semantics. We will eventually complete the proof by performing a structural
induction over C¥%% but before we do that it is helpful to prove the operational
and denotational versions of all the non-recursive operators congruent.

Theorem 3.1. The operational versions of the various CSP operators are ail
congruent to the denotational versions over {. In other words, for each operator
@ and each P,Q € CF5F,

P oQ)=2(P)02(Q).

Furthermore all the operators are well behaved with respect to the partial ab-
straction functions &, in the sense that

2.(P ©Q) < 2a(P) O Ta(Q)

for each ar. (The form of these clauses is modified suitably when the operator @
is not binary. The precise statement for each operator in turn can be found in
tbe Lemmas below.)

Proof. This theorem is no more nor less than a convenient grouping of a large
number of similar though separate results. These are stated below, grouped by
operator, plus for each operator a further result which is crucial in the proof of
the full congruence part of the Lemma. In each of these Lemmas it is asaumed
that the given term is an element of C5F of the given form; the immediate

subterms being unrestricted elements of C%SF (i.e., not necessarily elements of
C itself).

The operators break into two classes as far as style of proof is concerned:
prefixing and nondeterministic choice, which are easiest, and-the rest of the
operators, which require very similar though more difficult argnments. As usnal,
recursion is a special case and will be dealt with on its own later. All the Lemmas
are stated below but only a few sample proofs are given.

a7

Lemma 3.1.1 (a).
(1) (2:A~P) 22 Q f Q=(x:A4— F)
(2) Hs={a)s then{z: A — P} = Q iff a€ Aand Py = Q.
(3) (z:4— P)ref D iff AND = 0.
(4} =({r: 4> PIT.
(5) T u={a)u then (z: A — P,) =% iff a € 4 and P, =>.

Proof, Thlese clauses all follow straightforwardly from the operational seman-
tics. O

Lemma 3.1.1 (b). For all terms P denoting functions from A into Y57 we
have

Plz:A-Pi=x: A— §(P).

Proof. This is an easy consequence of part (a) above and the definitions of &
and the prefixing operator over . O

Lemma 3.1.1 {c). For all terms P denoting functions from 4 to C°%% and
all ordinels @ we have

Pz Ao P) < z:A— 0,(F,).
Proof. This is proved by transfinite induction on a. When a = 0 it is trivial,
for the left hand side equals L. I it is true for all J less than some limit ordinal

« then
r:A— $,(P) > &p(z: 4> Pr)

for all # < & as $.,(P) increases with ¥ and prefixing is monotone. Hence
tiA— &a(P) 2| {Bs(z: A P)| A<} = Bu(z: A - P2)
by properties of least upper bounds and definition of &,.

It only remains fo treat the successor ordinal case. Recall that $p4; =
G(Py), which is to say that

o if P is stable (has no internal transitions) then
Bg1(P) = z: P = [{&5(P))| P 52 P'}
wlere P® denotes the initial external transitions possible for P, and
o if P is not stable then
PsiP)=(z: P = O{&(F) | P -5 PY) 0 N{$a(P) | P P}
whkere P () = (PIQ)DQ.

58

Tle definition of the trausitions of £ : A — P, means that
Sop(z: A= P)=z: 4= B,(F)

which, since in general ®.({)) increases with 4 and prefixing is monotone, is less
than z : A — ®,,4(P;) as required. (This was a curious induction, since the
inductive assurmption was only used in the limit ordinal case. In fact it can be
eliminated from that as well, but this proof will serve as a model for later ones
where induction is really needed.} [J

Lemma 3.1.2 (a).

(MNSZB R iff R=MSorIPe §P=3 R.

(2) fs#<> then NS =% R if AP S.P = .

(3) =(M S ref B) (as it is not a stable process).

(4) M1 if 3IPesS.PT.

(5) NSs= iff AP e S.P L.
Proof. These clauses all follow straightforwardly from the operational seman.
tics. O

Lemma 3.1.2 (b). For all § € C%5” (of size less than our bound o1 nonde-
terminisin) we have

2(N8)=M{3(P)|Pe 5}.

Proof. This is an easy consequence of part (a) above and the definitions of &
and that of [l over U. O

Lemma 3.1.2 (c). Forall P, in €C5F and all ordinals o we have

&,(M35) <N{d,(P)|{ P e S}.

Proof. This is very similar to that for prefixing. The reader may notice that,
so far as the structure of their operational semantics is concerned, prefixing and
nondeterministic choice have much in commoen, O

Note that, since binary nondeterministic choice is a special case of the general
variety, corresponding results hold for M as well.

Lemma 3.1.3 (a).

(1) POQ 22U if IP,Q. P2 P, 022 Q' and U= P'0Q"
{(2) Ifs <> then POQ =% U if P UorQ =1U.
(3) POQ ref B iff Pref B and Q ref B.

59

(4) Pogt iff ProrQT.
(5) POO =% iff P=% orQ ==,

Proof. Tlis follows directly from the definition of the transition relation aver
C5”_ Recall that a term of the form P0Q derives its transitions from thase
of P and (using the appropriate rules of the operational semantics. (3) above
follows since these rules mean that PO ref B if and only if (a) P and @ are
both statle and (b) neither P nor @ can perform any action in B. All the others
follow from the observation that, if I/ = P00, then U; =4 Uipp foralli < o
{(er € w+1) if and only if one of the following applies.

(i) Allz, equal 7 and for each 7 there exist P; and @Q; such that, for all i,
U, = P;OQ, and either P; = Piyy and Q, = Qipy or B 2, w41 and
Qa = Q|+!-

(i1} Notall z; equal 7 (and k is minimal such that z; # 7), the U; (¢ £ k) and
; (i < k) satisfy (i) If Ug = PoC1Qk then Pr =% Uryy of Qg —2+ Uigr.
Subsequeut transitions are possible for Uy, is C¥5F,

(1) comes from the case where (i) above applies to a finite sequence of processes
and actions, {2) from the case where {ji) applies to a finite sequence, {(4) from
the case where (i) applies to an infinite sequence and (5) from (i) applied to an
infinite sequence.

Lemma 3.1.3 (b) If P,Q € CY5F then #(POQ) = #(P)O3(Q).

Proof. This follows mare or less immediately from the definition of % and
Lemma 3.1.3 {a) above.

Lemma 3.1.3 {¢) If P,@ € C%5P and a is any ordinal then $.(P0Q) <
P, (PIDFL{Q) (where &, is as defined in Section 2).

Prool. Tlis is a transfinite induction on @, The o = 0 and limit ordinal cases
are tlie same as with prefixing above, the latter following by monotonicity of 0.

It only remains to prove the result for snccessor ordinals &« = 8 + 1. The
proof of this ¢lause for all standard operators other than prefixing and nonde-
terministic choice follows from laws (all theorems of the denatational semanties)
which show how processes in each of the two forms produced by the definition
of G combine under the operators in question to produce one of these forms in
a way more or less directly analogous to how the operational semantics works.
Several laws are required for each operator because of the different cases that
arise. In the case of O there are three. the first for the case where both argu-
Mients are stable, the second for the one where one of the arguments is stable
and one unstable, and one for two unstable arguinents.

Ol (z:4A—= F)0(zB—Qsl=z:A082 = R,,
P, ifzxe A\ B
where R, = Q= ifxre B\ A
0.NP, ifze BnA

GO

02 @ =z:0 — @, then
((z: 4= P) e POQ =(z: AUD - R;) b (P'DQ),
P, ifz€ A\B
where R, = Qs ifze B\A
QNP ifzeBNA

03 fP=(z:A— P,)pPandQ=(z:B— Q) b0, then
POQ =(z:AUEB -~ R) v {(POQ)N(PTQ,
P, ifze A\ B
where R, = Q- ifze B\ A
Q.NF, fzeBNA

These laws show that, in any combination of stable and unstable processes, the
way in which the operational semantics of PDQ are “composed” from thoseof P
and @ is reflected precisely in the abstract semantics, For example consider the
case where both P and € are unstable elements of CY5F, Then the operational
semantics allows us to deduce that Pr1€Q is also unstable and that

P {POQ)
= {(2:POU Qo T{dyR) | P RV R))
PR Es(P'OQ) | P -5 PYU{$s(POQY] Q = Q) 1)
(z: PP QY THSs(R) | P RVQ-T R

A

BI({2s(PID3(Q) | P - PYU{24(P)D25(Q) | Q -= Q') {2)

1A

(z:PPUQY TSR | P = RVQ -5 R})
p1({25(P)O%p+1(Q) | P D PIU{Ssn(P)ORH(Q) Q- QD (3)
= (z:PPUQ° > R.)
BM{Ea(P08 (Q) | P P'INM{25(P)DEHQY 1 Q Q') (4)

N{E4F)| P P} ifze PO\QO

.- MHEQN1Q Q1 ifzeQO\ PO

where
M{2s(P)| P = P}
NA{&s(@)1Q — Q) ifzeQ°nPp°
= Fp(P)O2311(Q) (%)

Line (1) comes by inspecting the transitions of PO and from the definition
of €54, = G(P3). Line (2) comes by induction and the monotonicity of CSP
operators. Line (3) coines {rom the fact that in general $g41(R) > &4(R) and
monotonicity again. The equality of line (4] with line (3) is a consequence of the
fact that if § and T are nonempty sets of processes then [I(SUT) =NSNMT.
The equality of lines (4) and {5) follows from the law 0.3 above and the fact
that O distributes over [1 so that for example

T2, (PYO8(Q) | @ = Q') = B (PYO M{24(Q) | Q Q') .

61

This establishes the most difficult subcase of the result for « = 3+ 1. The other
two follow from (1.1 aud [O0.2 in the same way. This completes the proof of
Lemma 3.1.3 {c).

Lemma 3.1.4 (a).

(1) PAX=5Q if 3.3P. P PAR=P\Xands=1t\X.
(2) P\XrfB if PrefBU X,

(3) P\XT iff 3s€ X3P . P== P'AP'Tordu€ X®. P =fs,
(4) PAX =% iff Ju' e X“. P2b Au'\ X =u

Proaf. The proof is straightforward and is omitted. (There is a characterisation
of the passible execution sequences of P\ X similar in style to that for O.) O

Lemma3.1.4 (b). If P € CC9P then #(P\ X) = (B(P))\ X.

Proof. This is a straightforward consequence of the part (a) above. (N.B. This
particular result is much simpler over this model than over the original failures
model {BRW] because divergences are now inferred from single infinite traces
rather than infinite sets of finite ones.) O

Lemma 3.1.4 (c). If P € C°9F and o is any ordinal then &,(P\ X) <
T (PIVX.

Proof. The central component in this proof is again some laws which show that
the denotational semantics reflects the structure of the operational semantics.

\X.1FANX =0 then
(z:A=PI)\X =2:4— (P \ X)
A\X2HANX # 0 then
(z: A PINX = A\X =2\) p{PE\X |2 ANX]}
VA3
((;c:A—oP;) bP')_X = (I:A\X—-—*P,\){’)
AP AXTU{P A\ X |z E ANX]})

The proof itself is once again a transfinite induction on o The a = 0 and
limit ordinal cases are practically the same as for the other operators we have
seen. The derivation of the ¢ = #- 1 case breaks down into cases depending on
which of P and P\ X are stable (i.e., on which of the laws above applies). We

62

will omit the proof of the easiest case (both stable). The two others (where P\ X
is unstable and P either is stable or not) can be covered by a single argument.

Pps(PAX) = (x: PO\ X = [{B4(P\ X) | P 5 P1)
BI1{3s(P'\ X) | 3z € X U {r}.P -Z+ P'} (1)

S (2 PONX STHELP)\X | P -5 PTY)
BI{(®s(PY)\ X |3z € X U{r}.P = P})

= (z:P°\ X ~TH{&s(PH\X | P-= P
p({1{(@s(P\ X} P P} | P is not stable}
HM{(@a(PN\X P P}z € XN PO (3)

= (z: PO\ X - (MH{&y(P) | P 5 P\ X)
e{{(M{2s(P) | P P'})\ X | P is not stable}
U{(M{2s(P) 1 P2 PY\ X |2 € X1 PO (4)

= B (P\X) (5)

Line (1) comes by inspecting the transitions of P\ X and from the definition of
$541 = G($4). Line (2) comes by induction and monotonicity. Line (3) is equal
to line (2) by associative properties of 1. The set to which the outermost I is
applied after [is guaranteed to be nonempty since we have assumed P\ X to
be unstable, though either of its two components may be empty. Lines {3} and
(4) are equal by distributive properties of \X. Lines (4) and {5) are equal by
law \X.2 if P is stable and by \X.3 if P is not. (In either case the law proves
the equality of G($5)(P) and line (4).) This completes the proof of Lemma 3.1.4
(). O

Lemmas for the rest of the operators are stated below. In each case part (a)
is the major part of the proof of part (b). For part (c) only the laws required
for the successor ordinal case are stated. The proof then follows, as in the
cases of O and hiding, from these laws, the monotonicity and distributivity of
the operator and the fact that one step of the behaviour of the operator never
requires knowledge of more than one step of the operand(s).

Lemma 3.1.5 (a).

(1) Pl Q=% R iff s (BUC)*and IP',Q".P = PPAQ 25 Q' AR =
P gl ', where 5" = s} B and 5" = alC.

(2) Pl Qref X if Pref XNBAQref XNC.

(3) Pelb Q1 iff PTor@t.

(4) Poll: Q =% iff v e (BUC) and P =% AQ 25, where u' = ub B and
u” = w}C. (¥.B. One of u’ and u” may be finite.)

Lemma 3.1.5 (b). X P,Q € C“5P then &(P gl Q) = (P) sl ¥(Q).

63

Lemma 3.1.5 (c). If P,Q € CC5P and « is any ordinal then
%al P gl Q) < Ba(P) Bl #a(Q) -
Laws.
.1 EP=(z:A4— P)and Q@ ={a: A — Q) then
PpleQ=z:4"4 R,
.2 HP=(x:Ad— P) b PandQ=(a:A —@;)then
Pole @ =(2:4" > Itz) v (P8l Q)
3 HP=(z:A—=P)bpPandQ@={v:A4"— Q;) b Q' then
Pale @ =(z: 4" - R:) b {(P el Q)N (Pl Q7))
where in each case 4% = (AN {(B\CNU(A N{C\ B)U(AN A’ BNC)and
Pigle Q@ ifzeAn(B\C)

R,={ Pyl Q, ifzeA'N(C\B)
PoglQ. ifzeAnA'nBnC

Lemma 3.1.6 (a).

(1) PIIQ = 12 iff 355", P Q' P 2 PIAQ2s Q' AR=P'|IQ As €
merge(s’, s"}.

(2) PIQ ref X iff Pref X AQ ref X.

3)PNQT iff PTorQT.

(4) PIIQ =% if 3Fu',w".P 2 AQ 2% A e merge{u’,u"). {One of v’ and
2" may be finite.)

Lemma 3.1.6 (b). If »,Q € C%5F then 3(P Q) = 2(P) I} 2(Q).
Lemma 3.1.8 (¢). If P, € €°5F and a is any ordinal then

‘I’Q(P |”QJ S -Fpn(P) ”l‘fa(Q) -
Laws.

NI HP=(x:4 > P)and @ ={e: 4" — ;) then

PII@=z:AUA - R,

G4

12 HP={(z:A— P.) b P and Q = (a: A’ — () then
Pll@=(z:4ud’ > R) b (P'IIQ)
M3 H¥P=(r:4—P) b PadQ=(a:A = ;) b Q then
PHQ={z:Aud’ = R) e ((P'IlIQ)N(PIIQT)

where in each case

P llQ ifze Ay A’
R = PlQ. ifze A'\A
(W@ (PIQ:) ifze An A’

Lemma 3.1.7 (a).

(1) P;Q == Riff 3P P == P' As/-freeA R = P';Q

or 3s', 5", P'.s’ \/-free A P '—g) P AQ éﬂb RBAs=ss"
(2} P;Q ref X iff Pref XU {/}.
3) P;Q1 if P1or3P.PYS pragt.

(4) P;Q == if P =5 Au-/freecor
ds,u’, P’.P JJ—L/:») P'As flreenq 2 Au = s,

Lemma 3.1.7 (b). If P,Q € C%SP then 3(P;Q) = &(P); 3(Q).
Lemma 3.1.7 (¢). If P,@ € C°5F and a is any ordinal then

$a(P;Q) < 2a{P);24(Q)-
Laws.
i1 HP=(z:4— P;)and / ¢ A then
PiQ=z:4~FP;Q
;2 HP=(z:A— P.)and /€ A4 then
PiQ=(z:A\{V} = P:Q} b Q
;3 HP=(z:4—- P) b P and / € A then

PiQ=(z:4— PiQ) v (P5Q)

G5

4 P=(z:4- P,) b P and /€4 theu
PiQ = (z: AN {V) = P Q) p(QR{P5Q)
Lemma 3.1.8 (a).
(1) f[P}=% R iff 3P/, 9P = P'AR= fIP)As = f(s).
{2) f[Piref X iff Pref f~HX).
(3) fIPIr iff PT.
(4) fIP| =% #f TP % As = f(u).

Lemma3.1.8 (b). If P € C5% then 2(f{P]) = f[#(P)].
Lemma3.1.8 (c). If P € C°5F and «a is any ordinal then

B (fIP]) < fl2a(P)].
Laws.
Fl1 EP=(z:A4- P then
flPi =z f(A) = fP
fll2 ¥P=(z:A— P;) p P then
FIP) = (z : f(A) = f[P:)) v fIP]

Lemma 3.1.9 (a).

(1) f P2k if 3P PLE pAR= P,

(2) f[P]ref X iff Pref f(X).

(8 fPIr i P1.

(4 FP) 2w p XY

Lemma 3.1.9 (b). If P € C%5¥ then ¢(f'[P)) = F[B(P)].
Lemma 3.1.9 {c). If P € C“5F and « is any ordinal then

B,(£71P) € 1 E(P)]-

GG

Laws.
F N1 P =(x:A— P.)then
FUP)=z: fTHA) —» f7YPs]
f2 EP=(x:4— P,) b P then
FUP) =z : fH(A) — P b fTUPY

This completes the proof of Theorem 3.1, O

These results provide the building blocks of the proof of the main result,
and are put together below. The next Theorem is the main result of the paper.
Notice how the well definedness of the denotational semantics, the congruence
theorent and the resuit about the ¢, are proved by a simultaneous structural
induction,

Definitions. Given a CSP term P and a p € OFEnv = Var — CY5% we can
define an operational “semantic function™ Q[P]p € CY5F is defined to be the
result of substituting each free variable pin P by p(p). (Note that P may have
no free variables, finitely many, or infinitely many. This last possibility arises
because of the two infinitary operations 'l and 2 : 4 —» P..) Given g€ OFEny
we can define the corresponding element 5 of UEnv = Var — U by

plrl = 2(p(p))

and also, for each o, an approximation
7lr) = Zale(p)) -

In this theorem we will assume that the basic transition system C is such
that & : € — I{ is onto (following Theorem 2.2 (¢)). This is helpful ip the proof,
since it means that for each & € UEnv there is a p € OFnv such that F= o, but
is not in fact necessary, because of Theorem 2.2 (b) and the fact that ¢ may be
assumed to include any given system as a subsystem.

Theorem 3.2. Suppose P is any CSP term, Then the following all hold.
a) S[P]o is defined for all ¢ € UEnv.
b) S[PI7 = B(O[P]p) for all p € OEnv.
¢} For each ordinal ¢ and each p € OFnv we have S| PJp* > $.{O[P]p).

Proof. This is by structaral induction on P. Given the sequence of Lemmas
above, the cases of all the uon-recursive operators are trivial. There is notbing
1o prove for part (a) since the denotational semantics of the first section only

67

got into potential trouble at recursive terms. Part (b) follows in each case from
the appropriate {b)-Lemma. For example, given a term PO1Q,

S[POQ]F = (S[PIMO(SIQIE) by definition of §
(O[P]p; 1 3(O[Q)p) by induction

¥ O[PleDO[Q]e) by Lemma 3.1.3 (b)
= ¥O[POQR]e) by definition of .

1l

Tact (¢} follows in cach case from the appropriate (c)-Lemma. For example,
given a term POQ, p € OFnv and an ordinal o,

S[PoQppe = (S[PI)0(S[Q1F) by definition of &
> B (C{Ple)0®(O[Q]e) by induction and monotonicity
> $A 0[P OIQ),) by Lemma 3.1.3 (c)
= 3{O[PDQ]Yp) by definition of .

It ouly remains to consider the case of a recursively defined term pp. P, where
the result is known to hold of P. To prove part (a) it is sufficient (by Theorem
1.4 (}) toshow that, given o € UEnv, there is some fixed point of the function
F 1 — I defined

F(X)= $[FP)oiX/p].
Choose psuch that § = o, and let X = $(Oup. P]p). Now, since Of up. P]lp has
the single 7 transition to O[P{up.P/p]]p it follows that

X = 2(Ofup.Ple) = (O[Plup.P/plle} = B(O[Pl{Ofup-Plp/])

since pis not free in Plup. P/p), by properties of substitution. But induction tells
us that che right hand term above equals S[PJo[O[up.P]p/p] which is in tumn
equal to S[PIp[$(Ofup. P]n)/p] = S[Ple[X/p). Hence X = F(X) as required.
This proves part {a) for up.P.

For part (b), abserve that S[P[7 is defined to be the least fixed point of F
and thit X = $(O[up.P]p) has been shown to be a fixed point. It follows that
S{PJ5< X. To prove the opposite inequality we show that, for all ordinals e,

o (OLup.Plp) < F(L).

When o = @ the result is trivial, for the left hand side equals 1. If o is a limit
ordina and the result holds for all # € e then it holds for o since both sides are
sinuply the least upper bounds of their predecessors. So suppose it holds of 5 and
a =+ 1, Then, siuce Ofpp.Plp has the single 7 transition to Q[Plup.P/p|]p,
it follows that

B (Ofrp. Plp) To(O[Pup. £/ pfle)

£ 5 (O] PO nip. P p/p])

il

< S[PROLpPI/il by(e)of P

< S[PIP°[25(O[up.Ple)/p]

< S[PpAlF(L)/p] induction and monotonicity
= FAHI(4) definition of F

G3

This proves the result for all @. However we know by earlier work (Theorem 1.4
and Theorem 2 .4) that there is a such that F*(1) = X and &, = $. It ollows
that X < S[P[@, completing the proof of (b).

It only remains to prove (¢}, in other words that, given p and «,

$a(Ofup-Ple) < S[uep.PYF~ .

Once again we prove this by transfinite induction on a. Again the result is easy
for & = 0 since the left hand side is L and also for the limit ordinal case since
the left hand side at @ is then the least upper bound of the previous left hand
sides, and S[FP] is monotone. So suppose @ = 5+ 1 and that the result holds
at 4. Then

2541 (Ofup. Plp) = 23(OLPlup-P/pllp)
= &5(0[PIp[Olup.Plo/p])
< SIPIOLpPIo/sl by(c)of P
< S[PpP[@s(Olup.Plo)/p|
< S[PIFP[Slep. PIF*p| induction and monotonicity
= Slup.PIp*? as recursions denote fixed points
< S[up PIFPH by monotonicity

which proves it for 8+ 1. This completes the proof of Theorem 3.2. D

On mutual recursion

The reader mnay have noticed that this section has not discussed the subject
of mutual recursion, where finitely or infinitely many processes are defined in
terms of each other. This was for two reasons. First, the formalisation of the
syutax of mutual recursion and its operational semantics are rather complex.
Furthermore, as is apparent from the above, we would have had to repeat much
of the above analysis of single recursion in the mutual case.

Second, there js a simple transformation which converts any mutual recursion
into a single one, which makes it all less necessary. Suppose we arwe defining
processes Py by mutual recursion for all A € A, where without loss of generality
A is disjoint from the alphabet I. In other words we are identifying each P,
(thought of as an elemeut of Var) with a CSP term Fy(P), which may contain
any or all of the variables P, We adjoin A to Z to obtain a new alphabet &’
and define a new function term F involving a single variable P as fallows:

F(P)=Xx:A - Fi(P),

wlere F, is the result of substitating each P, in Fy\(P) by (Pz/||lz s — RENW{u},
where RUN = a : & — RUN is the deterministic process which can always
communicate anything, Thus pP. F{P) denotes a process which on its first step
gives the choice of A and then acts Like the Py which was defined by mutual

G9

recursion. For on each recursive call the correct “component™ of P is selected,
and the process of selection hidden. (Note that (P y|gr RUN) = P for any
process P} Note that this transformation does not use any infinite hiding or
nondeterminisul, and is therefore valid in boundedly nondeterministic CSP as
well.

It is intuitively obvipus, and can easily be proved, that there is a correspon-
dence between the solutions of the mutuvally recursive definition and the vectors
{(Poflp - RUNW{u} € A) for solutions P of the single recursion. Thus
we can assert that all mutual recursions do have solutions. We have not proved
them cougraeut to their operational semantics, for the latter have not been de-
fired. Dut these observations give one great confidence that such a result must
be true for any reasonable semantics.

On N and =

So far this section has concentrated solely on the semanties of CSP in the new
model {f and the corresponding abstraction map €. Given the discussion at the
start of this paper we would not expect to get such good results for A" and
Z since the finer semantics uses infinite traces in a crucial way to determine
the finite belhaviours when computing the hiding operator. This assessment is
correct: we can jn fact prove only an ineguality rather than a full congruence,
though this becomnes an equality in the absence of hiding.

Deiow, T denotes the semantic function mapping CSP into A, so that T :
E — NEnv — N, where NEay = Var — N'. If p € OFEnv, then pis the
corresponding element of NEnw: ppl = Z(p(p)).

Theorem 3.3. If P is any CSP term and p any element of OFnv, then
1P < ZO1P)e.
Ii the definition of P does not involve the hiding operator, then

T{P)s = Z(OLPYp.

Proof. Oue could prove this result from first principles like we had to do for
{d. It is, however, much easier to detive it from Theorem 3.2. For this, we need
maps between A and Y. If (F,D,I} € U, then we define its projection into
N'tabe n{F,D, I} = {F,D}. I (F,D} € N, we define o{F, D} = {F, D, I},
wlhere I = {s] (3,0) € F}. Note that 7 o¢ is the identity map on N’ aud that
o(m(P)) < P forall P el

Under the conditions of the theorem we know, by Theorem 3.2, that
S(O[F]p) = #(&(O[P]p)) = x(S[P]p) -
It will therefore be enough to prave that, for all CSP terms P and all « € UEnv,

TIP]& < #(S[Pe .

i)

where 3[p] = w(o[p]) for each p € Var, and that this inequality may be replaced
by equality when P does not involve hiding. This is a straightforward structural
induction. The clause for each non-Liding operator follows simply from mono-
tonicity and thefact that such operators cummute with the projection function
r. For example

(POQ)=~(P)Ox(Q) for all P,Q € U.

This is just another way of saying that the failures and divergence components
of these operators does not rely on infinite traces. We get a weaker result for
hiding

r(P\X) > n(P\X forall P e Y.
In fact, it is easy to see from the definition that #(PNX = #({«(x(P))\X), since
over A” the hiding operator has to assume that all infinite traces are present all
of whaose finite prefixes are,

The case of recursion follows from the obvious continnity of x. If we are
given a recursive term pp.P and ¢ € UEmv, then if

flX)=TIPJalX/p] F(Y)= S[P]olY/A}

we can prove that x(Fo(L)) > fo{ L) or 7(F*(L)) = f*(L) forall a as
appropriate. The limit ordinal case is by continuity and the successar case by
(structural) induction. The result then follows immediately. D

The inequality for terms involving hiding may well be strict, as is demon-
strated by the process (M{P, | n € N})\{a}, where Py = STOP and Pnyy =
a — P,. This is identified by 7 with 1 , but operationally is identical to STOP.
Tleorem 3.3 at least tells us that the value of the operational process is no worse
than that predicted by the denotational semantics. It would have been much
more dangerous the other way round, since it would then have been pessible for
an implementation to behave in a way that has been “proved” impossible in the
abstract semantics.

4. Conclusions

We have seen a long and technical proof that the semantics of CSP in the infinite
traces model are well defined, and have simultaneously proved their congruence
with an operational semantics. I hope that the fact that these proofs were
difficult will not obscure the fact that the concept behind the mode ~ adding
infinite traces to the existing failures model - is simple and that the semantic
definitions are all straightforward.

In the later sections of this paper alinost all the work was cast in terms of
the coarser definedness order < rather than the nondeterminism order C. The
reason for this was that most of our results, stated in terms of <, trivially imply

71l

the corresponding results for T but not the reverse. (For example consider the
{c)-Lemmas in Theorem 3.1.) In fact all of the work can be recast in terms of
C if desiyed.

This leads to the samne question as was posed in [R2], namely that of which
is the natural order to use when presenting the model and semantics, given that
hoth work. Here the arguments are slightly different. On the one hand now
ucithier order is complete (whereas only < was over). However < does still
liave a nicer theory of least upper bounds than C, for they are always given by
tersection where they exist while this is not even true for directed sets for C.
Ou the otler, C is simpler to define and is pechaps more intuitive, but it does
not have such a claimm over 4 to be the “established” order as over A or A,
This question will be best resolved by time and experience.

Ou the technical side we have seen in this work that completeness and mono-
tonicity are natural casualties of the mtroduction of unbounded nondeterminism,
but that their absence does not matter unduly except in the sense that proofs
become more difficult and require advanced mathematics. To the author the
most iuteresting feature of the proof is the way the approximate abstraction
functions &, show that the least fixed point corresponds with the operationally
natural one via a type of “non-destructiveness” argument.

Future work ou this model must include a much fuller investigation of its al-
gebraic properties. The ones seen in this paper, namely the infinite distributivity
of all operators and the laws of the Lemmas in Theorem 3.1, were simply those
neeided for the rest of the work. Another issue will he the study of other un-
boundedly nondetermimstic constructs such as fair hiding operators. We should
note that it is only permissible to add a new operator (other than one derived
from existing operators) to this version of CSP if it can he given an operational
semantics and Lemmas of the type seen in Theorem 3.1 proved about it. The
work of Darrett [Baz] on the operaticnal semantics of fairness will probahly he
important Lere. It will also be interestiug to see what use can be made of the
infinite traces component in the specifications of processes. For example one
could add a clause to the usual specification of a buffer which stated that the
buffer never does infinitely many inputs without an output, so that anything one
puts in is eventually going to come out (even in the presence of an environment
which eagerly places as much as possible into the buffer at all times).

The difficulties one encounters when dealing with unbounded nondetermin-
ism, particularly the sort which is only detectable from infinite behaviours, are
certainly not restricted to the models seen in this paper. Hopefully some of the
work reported here will transfer to other formalisms for concurrency. One place
where valnable work could be done is in timed CSP (see [RR1, RR2, Re]). The
incorporation of infinite behaviours there {were it possible) would allow more
absuact and general expressions of such modalities as “eventually” which appear
in some forms of termporal lopic.

-
(L3

Appendix: more details of I{

Alternatives to axiom (8).

The version of axiom (8) seen earlier is in a different style from the others, and
from all other axioms of CSP models I have seen. Its discovery was the result
of an evolutionary process in which it passed through various incorrect forms
(all weaker ones which failed to be compositional) and an equivalent but rather
inelegant equivalent formulation. All the earlier forms were expressed in terms
of “games™ played between the experimenter and the process during which the
experimenter tries to force infinite traces out of the process. One incorrect but
interesting earlier attempt is described next to show the difficulties which are
involved here.

An experimenter who sets cut to force an infinite trace out of a process may
have decided in advance what his strategy will be. In this case his strategy can
be deseribed as a prefix closed nonempty set of traces T. At each step, if he has
so far succeeded in communicating t € T with the process, he will next attempt
(T/t)° (the set {a|t(e) € T}). If the process can never refuse any of these sets,
it is clear that an infinite trace in T, the set of all infinite traces all of whose
finite prefixes arein T, must result. This leads to a property analogous to axicm

(8)-

~n (8,8) € F AT a nonempty prefix closed set of finite
&) graacgs such that t € T = (st,(T/t)°) ¢ F = Juelsuel
While this axiom is {or shonld be) self-evidently true of all real processes,
it turns out to be not quite strong enocugh. It seems that some CSP operators
{e.g., both forms of parallel composition} fail to be closed under it, and it is
strictly weaker (even in the context of (1-7)) than (8). Consider the following
example of a process P with D = §§ and E = {a,b,¢,d}. P cannot atany time
refuse {a,b} or{c,d} (or any superset of either) but can communicateany finite
sequence in L°,

F={(sX)|seXZA{a,b}) € X A{c,d} g X).

Forcing strategies of the form seen in (8") are just sets of traces T such that,
whenever t € T then either {t{a}).t{(8)} € T or {t{c},¢t{d}} C T (this starting
from any trace s € £*.) An element of imp(P) is a deterministic process which,
after any trace s, must either be able to do ¢ or b and must either be able
to do ¢ or d. It is possible to include enough infinite traces to satisfy all the
strategies implied by (8') yet leaving imp(P} empty because there is an infinite
trace missing from every single one of them,

This is shown by a set-theoretic copstruction which relies on the facts that
there are exactly ¢ (= 2™, the continuum) strategies (s,T), exactly ¢ possible
iraplementations ¢} and exactly ¢ infinite traces in each such ¢ and satisfying

73

each such (5,T). The sets of strategies and implementations are both ordered
by the initial ordinal ¢ (i.e., the smallest ordinal with this cardinal) and sets
Aq and B, are constructed recursively for all a < ¢ so that A, contains a
tepresentative of each strategy (s, T)s for # < a, B, contains a representative
of each implementation Qp for # < @ and BN A, = 0. Weset Ag = By=10, at
limmit ordinals A, = UaeaAﬁ and B, = U,aea By. Since the A, and B, always
have cardinal less than ¢ for @ < ¢, and the sets of infinite traces of (s,T)q and
of Q4 are both of size c, it is always possible to find distinct infinite traces ¢ and
u’ from these sets which are different from all of A, U B,a. Then 4,4 = AqU{u}
and Boyy = B, U {v'}. Theset J = A, is then such that each (8") strategy is
satisfied but imp(F, B, I} is empty.

Axiom (B') seems to be weaker because it assumes that the user has decided
on his strategy from the start, whereas he might keep on changing his mind.
The fact that he changes his mind about what he is going to offer the process
does not change what has been communicated with him before. My first correct
axioms were (more complex) modifications of this one which took account of
this fact,

On seeing axiom (8) (but not my earlier versions) Stephen Blamey came
up with another one which is essentially the same as my first correct one (cast
in terms of games) but a lot more elegant. It looks like a “classical” model
axiom since it is cast in terms of logic, but the logic is unusual since it has
both infinitely nested quantifiers and infinitary use of propositional connectives.
There are several different presentations of it, one of which is given below.

(8") Vse traces(P)YX CZ(s,Xp) g F =
30]_ € Xo‘(s(al),@) EFA V.Xl Q E.(S(ﬂl),X‘j) g F =
Jda; € Xl.(s(ﬂ],an),w) € FAVX, C S.(S(Ul, az),X:) g F=

= sfe;|i21)eT
This axiom can be read as saying that, from all finite traces that a process
can reach, any infinite sequence of sets offered to the process will either lead
to refusal at some finite stage or to an infinite trace. At first sight this axiom
appears very similar to (8') above, But it is not, because the way the quantifiers
nest mean that consistent families of infinite traces are delivered for all decisions

an experimenter might make on what sets to offer; if two experiments differ at
the nth stage, the infinite traces delivered will not differ before the nth stage.

The (game-theoretic) proof that this axiom is equivalent to our axiom (8)
in the context of the others may be found in [Blam|. The reader may note that
(8"} is easily seen to represent only a lower bound on the set of infinite traces, in
that adding extra infinite traces cannot invalidate it. This was mot so apparent
of {8), where we had to prove Lemma 1.1. (Of course a construction similar to

74

that in the proof of that Lemma is a part of the proof of equivalence of {8) and
(8%))

Blamey has also pointed out that modification of the “modalities” in (8)
above produces a further correct axiom, arguably simpler than either (8) or
(8*). If we let T range over all prefix closed nonempty sets of traces, then this
new version can be stated:

(8" (s.0) e F= 3T (Ve T.(st,{e|t{a) g THe F)AVue Tsue 7

where again T = {u | V8.3 < u = s € T}. This iz closer-im spirit to (8
thas to (87), for the set T represents no more nor less than a deterministic
implementation of P afier s. This axiom is thus easily seen to be implied by
the statement “each finite trace 4 belongs to some deterministic implementation
of P”, which is trivially implied by (8). (For every pre-deterministic process is
weaker than a deterministic one with the same traces.} (8') implies (8) since
au easy consequence of something proved earlier (Lemma 1.1) is that for (8)
to be true it is enough for each failure to be present in some deterministic
implementation. I, for each s € traces(P), T, is given by (81) for s, and (r, X)
is any failure of P = {F, D, I}, the set of traces

{s] s <rju{s{a)t]|s <rAs(a) £ ras{a} € traces(P)At € T,(,)
UU{r{a}t | t € Ty A ria) € tees(P) Ao & X}

can be seen to represent a deterministic implementation of P exhibiting (r, X).
Note that this argument also shows that (8!) is equivalent to the statement that
each trace s belongs to some deterministic implementation.

We observe that, thanks to axioms (4) and (7), the statement of (8!) can be
weakened a little: we can ignore the cases when s is a divergence trace. This
gives

(8Y) ((s,0y € FAsg D) =» AT (Wt € T\(st,{a | t{a) € T} € F)AVe ¢ Tou e I

which sometimes has shorter proofs than the original version.

The alternative versions {8*), (8') and (8!) are probably more concise than
the original (8), when one takes into account all the discussion of pre-deterministic
procesges necessary to set (8) up. However (8*) has the disadvantage that the
meaning of aninfinitary logical expression like the above may be opaque to some.
Also, when one is doing technical analysis of the model such as that seen below
in the well-definedness proofs of the various operators, (8) seems generally easier
to deal with than (8"). We have seen that (8!) and (8!} are technically close in
spirit to (8), and in technical manipulations they are similar to use. Which one
of them should be stated as the axiom {8) will depend on whether one prefers
the conciseness of (8!) or (8%) to the fact that in (8) the trme structure of this
axiom is laid bare rather more clearly.

75

Technical properties of CSP operators

We now turp to the proof of Theorem 1.3, namely that all CSP operators are
well defined and monotonic with respect to both orders. As was noted in the
earlier discussion of Theorem 1.3, with the exception of hiding we can restrict
our attention to the infinite traces component since in each case the other com-
ponents are defined exactly as over the existing model A”. And in each of these
cases monotonicity is trivial, and axioms (6) and (7) elementary. Leaving hiding
on one side temporarily, it will therefore snffice to prove that (a version of) ax-
iom (8) holds in each case. We have already seen (e.g., in the proof of Theorem
2.2) how (8) itself is used in manipulations. Below we prove the equivalent form
(8%), though it convenient to assume the formally stronger statement (8"), which
is of coutse permissible since the two versions are equivalent in the presence of
(1-7).

The proofs for all operators come down to more or less the same thing.
For each operator F' we have to create, for each finite nondivergent trace s of
F(P,...), tke set T required by (8}). In each case the trace s exists in F(P,...)
as a consequence of at most one trace from each of the arpuments P,... of F.
The get T is then constructed from the Ts which are chosen by (8} in the
arguments relative to the traces used to construct s.

The individual cases vary in difficulty. Consider the nondeterministic com-
positiou operator [15, where § C I is nonempty. The validity of axiom (8%)
follows from the observation that, if s € traces(S)\D[[15] thea thereis P€ §
such that s € traces(P) (and necessarily s € P[P]). The T which warks for s
in P will also work in ['15, since the failures and infinite traces of P are subsets
of those of [15.

The communication operator z : B — P. is almost as easy. For any
nonempty trace {a)s, necessarily ¢ € B and s is a trace of P,. Chouse T
for P, relative to 3. For s =<> we simply choose, for each ¢ € B, a T, relative
to Py and <>. Then T = {<>} U {{a)}s | a € B A s € T,}. In either case the
requirements for T are easily shown to be met,

Suppose s is a nondivergent trace of P gl Q. Then shH is a nondivergent
trace of P and shC is a nondivergent trace of @, so there exist prefix-closed
nonempty sets Tp and Tg such that

(Vt € Tp.((shB)t, {a | t{a) & Tp}) € Fp)AVu e Tr.(sbBlu € Ir and

(vt e TQ.((S"C‘)I,{G | t{a}) € Tg}) € FQ)AVu € E.(.BI‘C)“ € ly.
It may be assumed that Tp, Ty C (B U C)*, since whenever si is a minimal
divergence trace of P or Q it is possible to include no extension of t in Tp or
Tq. Define T = {t € (BUC)* | thB € Tp AthC € Ty}. Now, if ¢t € T then

sthB = (sb B)(thB) and sthC = (sPC)(1}C). Tt follows by definition of Tp and
Ty that

(sthB,{a | (thB){a) ¢ Tp}) € Fp and (sthC,{a|(hC)a) ¢ Ty}) € Fq

76

It {follows from the definition of the failures of P gl @ that
(51, (E\(BUC))UXUY) € FIP plk Q]

where X = {a€B|(t}B){a) ¢ Tp} and Y= {acC|(thC){a) ¢ Tq}.

But this is equal to {st, {a | t{a) & T}) by definition of T, so the first requirement
for T' is met.

Secondly, suppose u € T. Whenever ¢ < u we have thB € Tp and the € Tyq.
But {t] 1< ubB A tis finite} = {tFB | t < u} and similarly for C. It follows
that uf‘B € TpUTp and uFC €Tqu E Thus szkBe Traces{ P) and squ'e
Traces(Q), so that su € I[P plb Q] as required.

This was in fact 2 rather straightforward construction: essentially, the im-
plementation of P gll: @ is found by runeing implementations of P and @ in
parallel. This is possible because || is an operator which, like prefixing, never in-
troduces nond eterminism, The only other operator with this property is inverse
image, f![P], where a corresponding construction works.

The interleaving parallel operator requires a little more thought since it can
introduce nondeterminism: run two deterministic implementations together and
the result need not be deterministic. If s is a nondivergent trace of P||Q
then there must exist traces sp,sg of P and () respectively such that s €
merge(sp, g). Choose Tp for P relative to sp and Tg for Q relative to sg. We
now build up T and functions ¢p : T — Tp and ¢g : T — Tg simultaneously by
recursion on thelength of s € T. Initially <>¢ T and pp(<>) = ¢g(<>)=<>.
If s € T then s{a) € T for all a such that ¢p(s){a) € Tp or ¢g(s)a) € Ty. If
$p(s){a) € T but 1ot pg(s)(a) € To then p(s(u)) = dp(s)(a) And do(s(a)) =
$q(s), and vice-versa. If $p(s){a) € Tp and ¢g(s){a} € Ty then an arbitrary
choice is made: without loss of generality we define ¢p(s(a}) = ¢p(s)(a} and
#q(3{a)) = P (s). The important thing is that ¢p and @g are monotonic (with
respect to the prefix order) functions with the property that, for all ¢t € T,
¢p(t) € Tp, ¢q(t) € Tg and t € merge(dp(1),d4(1)). This means that, given
u € T, there are elements of TpUTp and TgU Ty which merge together to form
u (the prefix order least upper hounds of {¢p(s) | s < u} and {Pg(s)| s < u}
respectively). This implies that u € T => su € I[P ||| Q] as required. The way
T is constructed also implies that it satisfies the other (first) requirement of T
relative to s.

This way of resolving the nondeterminiam introduced by ||| which in some
sense, minimises the set T of traces is not in fact the only one: we could have
made the more generous and obvious definition T = |J{merge(tp,ig) | tp €
TpAtg € Tg)}. However the argument that {su ! u € T} is a subset of I[P ||| @]
would then have been a delicate argument using Konig's Lemma: possible in
this case because the nondeterminism introduced by ||| is always finite: choose
left or right. There is the same choice (with easier argurnents) in the cases
of two of the other operators which can intreduce nondeterminism: ; and [O.
The final two: f(P) and P\X are different for they can introduce unbounded

i

nondeterminism: therefore the sort of resolution of nondeterminism seen above
now becomes strictly necessary.

f(P) can introduce unbounded nondeterminism when f is not finite-to-one.
In the case of a nondivergent trace f(s) of f(P), where s is a trace of P, we
choose Tp relative to P and s and comstruct T and a function ¢ by firstly
including <>€ T and setting ¢(<>) =<>. Then, if + € T we inclnde s{f(a)}
in T for all e such that ¢(s){a} € Tp. &(s{f(a)} is then defined to be &(s){a},
an arbitrary choice being made if there is more than one suck a.

As was observed earlier, hiding is unlike the other operators in that the
infinite traces of P influence all components of P\ X rather than just its infinite
traces. It is thus necessary to prove axioms (1)-(5) as well as (6), (7) and
{8). The fact that F[P\X] is nonempty and that Traces(P\ X} is prefix closed
(axioms (1) and (6)) both follow easily from the following Lemma.

Lemma A.1. X s € traces(P) then s\X € traees(P\X).

Proof. Let T be chosen by axiom (8!) relative to s. There are two possibilities
we must consider. Either there exists t € T such that t € X* but {a | t{a} €
T}N X = B, or no such ¢ exists. In the first case we get (st,X) € F[P] and
hence (s\X,#) € F[P\X]. In the second case, since <>€ T N X* there must
exist € X¥ NT and hence su € Z[F] so that \X = su\X € D[P\X]. The
resuit follows immediately. O

Axioms (2), (3), (4), (5) and (7) are all easy to prove. It remains to prove
(8%). T 3 is a nondjvergent trace of P\X then there is a trace sp of P such that
a = sp\X. Choose Tp relative to sp in P. As was the case for ||| and f(P)
we construct T for s together with a function ¢ : T -+ Tp. Inmitially <>€ T
and ¢(<>) =<>. Mt € T then either there is an infinite ¥ € X“ such that
¢(t}u € Tp, in which case we define ¢ ta have no extensions in T, or not, in
which ¢ase we include in T each t{a¢} where ¢ ¢ X and there exists r € X* such
that ¢{t)r{e) € Tp. We define ¢(t{a)} = ¢(t)r{e), once again an arbitrary choice
being made if there is any ambiguity. This function ¢ works in just the same
way as we have seen before: it is trace-monotonic and $(t\X =t forallt e T,
which means that for each u € T we have v = v\ X, where u’ is the least upper
bound of {¢(t) | t < u}. v’ is necessarily in Tp and hence su = (spw’)\X is an
element of I[P\ X] as required. That T also satisfies the first requirement for
axiom (8%) is easily checked.

All the operators are ohviously C-monotone since they all construct the
behaviours of the result process positively from the behaviours of the operand(s).
As was observed when Theorem 1.3 was stated, this implies that all operators
other than hiding are <-monotone since they are <-monctone over A and the
failures/divergence compenents of those operators are defined exactly as over

N,

The only monotonicity result left to prove is the <-monotonicity of P\X.
So suppese P € . Since we know that P\X C Q\X it is enough to prove

78

that, whenever s ¢ D[P\X], R[P\X]s C RIQ\ X]s and that u(D[P\X]) C
traces(f}). The first of these facts follows from the fact that all nondivergent fail-
ures of P\ X are consequences of nondivergent failures of P. If s € u(D[P\X])
then either there is an element ¢ of p(D[P]) such that t\X = s or there is
u € I[P)] such that «\X = s and t < u = t ¢ D[P], which implies there is
t € traces(P)\ D[P]such that t\ X = 5. In either case ¢ € traces(Q} by definition
of < and so s € truces(Q\X) by Lemma A.]l above.

The remaininsg part of Theorem 1.3 is its statement that the CSP operators
are distributive in the sense that F{[1S) =T1{F(P) | P € F} for each operator
F and nonemptyset 5. This is 2 direct consequence of the facts that [1is simply
component-wise union and that, for each operator F', each single behaviour of
F(P) is always attributable to at most one behaviour of each operand of F.
Thus each behaviour of F(I5) is the consequeace of some behaviour of some
element P of &', which means that the same behaviour must be present in Fi(P).
This arbitrary distributive law did not hold over A in the case of hiding [R2]
precisely because the hiding operator there requires more than one behaviour
of P {(in fact, an infinite number) to deduce some behaviours of P\X. A finite
distributive law still holds there by a separate argument which relies on Konig's
Lemma.

Acknowled gements

As will be apparent from the A ppendix, Stephen Blamey has put a lot of work
into analysing, refining and understanding the axioms for /. In addition this
work has been assisted by conversations with a number of colleagnes, notably
Paul Gardiner, Alan Jeffrey and David Walker.

References

[B] Brookes, S.D., A Model for Communicating Sequential Processes, Oxford
University D.Phil. thesis, 1983.

[Bar] Barrett, G., The semantics and implementation of oceam, Oxford Univer-
sity I).Phil. thesis, forthcoming.

[Blam] Blamey, S.R., The soundness and completeness of azioms for CSP pro-
cesses, forthcoming.

[BHR] Brookes, 5.1., Hoare, C.AR., and Roscoe, A.W., A theory of communi-
cating sequential processes, JACM Vel. 31, No. 3 (July 1984) 560-599.

[BRW] Brookes, 5.D., Roscoe A.W., and Walker, D.J., An operational semantics
Jor CSP, Submitted for publication.

|H] Hoare, C.A.R., Communicating sequcntial processes, Prentice-Hall, 1985

79

[R1] Roscoe, A.W., A mathematieal theory of communicating processes, Oxford
Uriversity D.Phil. thesis, 1982.

[R2] Roscoe, A.W.. An alternative order for the failures model, in this volume.
[R3] Roscoe, A.W., Analysing infinitely branching trees, in preparation.

[Re] Reed, G.M., A uniform mathematical theory for real-time distributed com-
puting, Oxford University D.Phil. thesis, 1988.

[RR1] Reed, G.M., and Roscoe, A W., A timed model for communicating sequen-
tial processes, Proceedings of ICALP’86, Springer LNCS 226 (1986), 314-323.

[RR2] Reed, G.M., and Roscoe, A W., Metric spaces a5 models for real-time
concurrency, to appear in the proceedings of MFPLS87 (Springer LNCS).

80

