
On the

Refinement Calculus

by

Carroll Morgan, Ken Robinson

and Paul Gardiner

Techllical Monograph PRG-70
ISBN 0-902928-52-X

October 1988

Oxford University Computing La.bora.tory
Programming Research Group
8-1I Keble Road
Oxford OXl 3QD
England

Copyright © 1988 Carroll Morgan, except where indicated otherwise for
individua.l artide&.

Programming Research Group
Oxford University Computing Laboratory
8-11 Keble Road
Oxford OX! 3QD
UK

3 CONTENTS

Contents

Introduction 5

The specification statement
Carroll Morgan T

Specification statements and refinement
Carroll Morgan and Ken Robi""on 31

Procedures, parameters, and abstraction: separate con
cerns
Carroll Mo rgan 58

Data refinement by miracles
Carroll Mo rgan T2

Auxiliary variables in data refinement
Carroll Morgan TO

Data refinement of predicate transformers
Paul Gardiner and Carroll Morgan 86

Data refinement by calculation
Carroll Morgan and Paul Gardiner 103

4 CONTENTS

Laws of program refinement: a summary
Carroll Morgan 135

References 147

Authors' addresses 151

5 INTRODUCTION

Introduction

The refinement calculus is a notation and set of rules for deriving programs
from their specifications. It is distinguished from earlier methods (though
based on them) because the derivations are carried out within a single Ilpro

gramming" language: there is no separate language of specifications.

That does not mean that specifications are executable; it meaDS rather
that "not all programs are executable" [2]. Some are written too abstractly
for any computer to execute, and they are the opposite extreme to those
which, though executable, are too complex for any human to understand.
Program derivation is the activity that transforms one into the other.

This refinement calculus is distinguished from some other "wide spec
trum" approaches (e.g., [9, 17]) by its origins and &cale: it is a simple pre?
gramming language to which specifications have been added. The extension
is modest and unpredjudiced, and one can sit back to see where it leads.
So far, it has uncovered "miracles" [35, 41, 33], novel techniques of data
refinement [3, 40, 13, 36J, a simpler treatment of procedures [34, 6, 39L and
"conjunction" of programs [32, 13, 36].

R.-J. Back [3] first extended Dijkstra's language of guarded commands
with specifications, and is still active [4, 6, 5J. Joe Morris also does signif
icant research in this area {41, 4OJ. This document collects only the work
done at Oxford. The three approaches are strongly related, though not iden
tical: Back does not have miraclesj neither Back nor Morris use program
conjunctionj both of those authors address the calculus at a more theoretical
level than we do.

Our work was motivated by the quickening interest at Oxford in devel
oping programs from Z specifications (18,38, 48], and it was surprising (to
some) that we do it by adding Z to a programming language rather than by
adding programming constructs to Z.

The specification statement introduces specification to Dijkstra'g lan
guage of guarded commands, and explores the consequences: increased ex
pressive power, the new prominence of the refinement relation, miracles, and
a surprising factorisation of that language into smaller pieces.

6 INTRODUCTION

Specijitation statements and refinement gives our first collection of "'laws
of refinement". (They appear again in Laws of program refinement: (1 8um
mary, where they have been simplified by program conjunction 136].)

Procedures, parameters, and abstraction: separate concerns shows how
specifications in a programming language allow the COPlI rule of ALGOL 60,
once again, to give the meaning of procedures. A side effect of that is the
parametrization of program fragments which are not procedures.

Dato refinement using miracles and Au:riliarr vari4bles in data refine
ment describe small aspects of data refinement, independently of the refine
ment calculus. The former uses the Gries and Prins data refinement rule
[16] in order to be self contained.. Data refinement is dealt with more gen
erally in Data ,.efinement of p,.edicate t,.ansf0,.me,.s and Data ,.efinement 6J1
calculat1·on. The first gives a more theoretical, the second a more practi
cal exposition DC the way data refinement and the refinement calculus can
interact.

LaID' of p,.ogrom n:finement: a summa'l' collects for reference some laws
used in practical derivations. No effort haa been spent on their completeness.

A reasonable overview can be gained by reading Spec1jication statements
and ,.efinement and Data n:finement by calculation.

There is some overlap between the papers: the introduction to Speci
fication statements and ,.efinement repeats material from The specification
statement; A u:rilia"JI variables in data ,.efinement amplifies a section of Data
,.efinement bJl ealculationj and various laws of program refinement appear in
three places: in Specification statements and ,.efinementJ as an appendix to
Data refinement by calculation, a.nd finally in Laws of p,.og,.am ,.efinement:
a summary. The last oC those is the latest and most comprehensive.

Carroll Morgan
July 1988

The specification statement

Carroll Morgan

Abstract

Dijkstra's programming language is extended by ,peci~4tlo", date
mu,t", which specify parts DC a program ·yet to be developed.· A
weakest precondition semantics is given (or these statements l so that
t.he extended language has a meaning as precise as the originaL

The goal is to improve the dnelopmefl,~ oC programs, making it
more as it should be: manipulations within a sinsLe calculus. The
extension does this by providing one semantic framework Cor speci
fications and programa alike - developments begin with a program
(a sinSle specification statement), and end with a program (in the
executable language). And the notion DC refinement or 8ati3jadion,
which normally relates a Bpeci6.catioD to its possible implementations,
is automatically generalised to act between specifications and between
progr&ma ae well.

A surprising con.sequence of the exteoeioo is the appearance of mir
at:le8: program fragments that do not satisfy Dijketra's Law of the
Ezduded Mirad~. Uses for them are suggested.

Categories and Subject Deecriptore: D.2.1 [Software Engineer
ing]: RequirementejSpecificatione---Methodologit:8; D.2.2 [Software
Engineering]: Tools and Techniquee-Top~downprogramming; D.2.4
[Software Engineeringl: Program Verification-Correctness proofsj
F.3.1 ILogics and MeaulD.p of Programa}: Sp~cifying and Verify
inS and Reasoning about ProsraIlUl-Pre- and pod-conditions, Speci
fiudion tet:Aniquu

General Terme: Theory, Verification
Additional Keywords and Phraee8: Program refinement, procedu

ral abstractiou, development calculus, weakeet preconditions, guarded
commands, mira.c:les

oAppeared in TOPLAS 10, 3 (July 1988). @Copyright 1988 by Associa.tion for Com
putins Machinery.

7

8 THE SPECIFICATION STATEMENT

1 Introduction

Dijkstra in [12] introduces the weahst precondition of a program P with
respect to a postcondition post; renawing [20] we will write this P < post>.
In this style, a specification of a program P is written

pre => P < post> .

This means uif activated in a state {or which pre holds, the program P must
terminate in a state for which post holds. I)

In traditional top-down developments, we build algorithmic structure
around a collection oC ever-decreasing program fragments Uyet to be irnple
mented,1I and at any stage we have specifications for those fragments. Thus
one finds the dictions

p.,

where pre => P < pOBt >.

The letter P stand8 for the missing fragment, and the where clause gives
its specification. But in our approach, we write instead

[pre, postl; (1)

We write tbe specification itself at the point to be occupied by its imple
mentation. More significantly, by giving a weakest precondition semantics
to [pre,post], we make this intermediate stage (1) into a program - albeit
an abstract one.

Program development we see 88 analogous to solving equations: one
transforms an abstract program into a concrete one, just as one transforms
a complex equation (e.g.} %2 - :z: - 1 = 0) into a simple equality (e.g.,
z:=: (1 +v'5)/2). For such {ormulre, the manipulations are mediated by the
relation of implication: the simple equality implies the complex equation.

SpeciEcation statements 9

The abstract-to-concrete transformation of programs is mediated by a
relation ~ of rejint:rm:nt, which is defined so that P ~ Q means "any spec
ification satisfied by P is satisfied by Q also." This relation can appear
between abstract programs (specifications), between concrete programs, or
between one and the other. AB we write

%2 _ % _ 1 = O¢;% = Hi.,!!,

so we will write with complete rigor

z: [z'-z-l=OJ [:; %:= !±L!, .

An unexpected consequence of our extension is the introduction of ab
stract programs that do not obey Dijkstra's Law of tAt: t:zduded miracle.
These correspond to specifications that have no concrete solution, just as
negative numbers stand for insoluble equations in elementary arithmetic ("3
from 2 won't go"). An example is the statement Itrru,fal~eli we will see that
the following holds:

true => [tr•• JalBe] < jaIB. > .

But just as negative numbers simplify arithmetic, miracles simplify program
derivation.

Our overall contribution is uniformity: we place program development
within reach - in principle - of a Bingle calculus. We expect this to be
useful not only at the level of small intricacies, but in the larger scale also.
Modules, for example, can be written using specification statements instead
of concrete constructions: thus we have ~pecification~of modules. Because
of the generality of our approach, any structuring facility offered by the
target progra.mming language is offered to specifications also.

2 Specification statements

We introduce the syntax and weakest precondition semantics of specification
statemente, moving from simple to more general forms.

10 THE SPECIFICATION STATEMENT

2.1 The simple form

The simple specification statement [pre, post} comprises two predicates over
the program variables v. Informally, it means "assuming an initial state
satisfying pre, establish a final state satisfying post. Jl Its precise definition
is (using == for "is defined to he")

Definition 1 [pre, post] < R > '" pre /\ (V ii. post ~ R) "
For example, assuming 11 is just the single variable X, we have

[tr•• ,% = I] < R >

~ tr•• /\(V%.%=l~R)

~ R[%\l].

The 8ubetitution [%\1] denotes syntactic replacement of:r by 1 in the usual
way.

2.2 Confining change

We allow the changing of variables to be confined to those of interest. For
any 8ubvector wof V, the statement iii : [pre, postj has the following informal
meaning:

88l!Iuming an initial state satisfying pre', establish a final state
satisfying post while changing only variables in iii.

The precise definition of iii: [pre, post] is

Definition 2 iii: [pr., post] < R > '" pre /\ (V iii. post => R) "

The only change from definition 1 is that the vector of quantified variables
is now tV rather than v. Taking v to be "x,,", we have

% : [tr•• , % = y] < R >

= tr•• /\ (V %. % = Y~ R)

= R[%\y].

Specification statements 11

Since (:z := y) < R> equals R{:z\yJ also, we have shown that %: [trut',Z' =
y] and :z := y have the same meaning. If we allow both %and y to change,
this is no longer true:

%,y : [true,% = y] < R >

= true /\ (V"y.• =Y~ R)

(Vy. R[.\y]).

The statement %JY: [true, % = y] can set y to:z, % to y, or hoth:z and y to
some third value.

2.3 Referring to the initial state

Occurrences of O-subscripted variables ib in post refer to the values held
by those variables initially. We reserve O-subscripts for this purpaJe, and
assume that they do not occur as ordinary variables in programs. We now
have the following informal meaning for w: (pre, post]:

assuming an initial state satisfying pre, change only variahles in
w to establish post, in which O-subscnpted variables refer to the
values those variables held initially.

The precise definition appears below. In practice, however, we usually
apply the simpler version given in lemma 1 following.

Definition 3

w: [pre,post] < R > '" pre/\ (VW. post[ii>VI ~ R)[!V]

where! is some fresh vector of variables.
<;>

The use of fresh variables! in definition 3 is only to avoid interference with
possible occurrences of i:b in R, which are rare in practice. Usually we can
apply the simpler construction below:

12 THE SPECIFICATION STATEMENT

Lemma 1 1/ R contains no O-suhscripted variables,

w: [p«,pool] < R > = pre 1\ (\;Iw. pool => R)[i;,\ii]

Proof: Immediate from definition 3.
<;)

Notice that if post contains no ib, then both definition 3 and lemma 1 reduce
to definition 2.

For example, taking ii to be "'2:,~" as before we have from lemma 1

Z' : [true, % = 2'() + Yo] < R >
= tr•• 1\ (\;I •.• = <0 + Yo => R)[<o, YO\', y]

= R[.\<o + Yoll<o, Yo\', y]

= R[.\. + y].

2.4 The implicit precondition

We allow the omission of the precondition in a specification statement. The
informal meaning of tV : (post] is

assuming it is possible to do so) change only variables in iii to
establish post, in which O-subscripted variables refer to the values
those variables held initially.

The meaning is given syntactically - we make the missing precondition
explicit:

Definition 4 w: [pool] £ w: I «3 w • pool))[",\iI], post] <;)

For example, we can write

m: [I"; m ,.; h] for m: [I,.; h • I ::<:: m ,.; hi
and i: [a[i] = vJ for i: [((3 i • aj [1] = vj , a[il = vi

The first statement places m between I and h; the second locates an index
i of value tI in array a. If in either case the result is not achievable (e.g.) if
I exceeds h, or tI does not occur in al, the statement can abort.

13 The implementation ordering

2.5 Generalised assignment

We generalise assignment by giving the following meaning to the statement
% :0 e, for any binary relation 0:

assuming it is possible to do 80, assign to % a value bearing the
relation 0 to the expression e, wbere occurrences of % in e refer
to ite initial value.

Ordinary assignment statements are now the special case in which 0 is "=".
But we can also write, for example,

:r :E s for if possible, clarJrJlJe % frrJm s
and ft:< ft, for decreo.se ft.

The definition is given syntactically:

Definition 1\ %:0 e "" %: [% 0 e[%\%OJ] "
With this definition, our abbreviations above become respectively

%: [. E8J (that is, • : [8 # n" E 8])

and ,,: I" < "oJ.

The syntax for generalised assignment was suggested (long ago) by Jean
Raymond Abrial.

3 The implelllentation ordering

For programs P and Q, we give P ~ Q the informal meaning: "every
specification satiefied by P is satisfied by Q also." This means that Q is an
acceptable replacement for P. Our precise definition is

Definition 6 P c; Q iff for all predicates R,

P < R >;} Q < R > .

"

14 THE SPECIFICATION STATEMENT

The following theorem shows definition 6 to have the property we require:

Theorem 1 If pre => P < post> and P ~ Q I then 0.180

pre::::} Q < post> .

Proof: Since P ~ Q, we have P < post >=> Q < post >. The result
follows immediately.
o

As aD example of refinement between program8, let P be

if 21z _ % := % div 2
D 31< ~ %:= %div 3

fI,

and let Qbe

if 2j% - % := % div 2
D ~(21%) ~ %:= %div3

Ii,

where 21: means "2 divides z exactly" I and div denotes integer division. We
have P ~ Q because

P<R> =	 (21z V 31%) f\

(21% '" R[%\% div 2]) f\

(31% '" R[%\% div 3])

and

Q<R>	 (21% '" R[%\% div 2]) /\
(~(21%) '" R[%\z div 3]).

Thus P < R >'" Q < R > lor any R. But Q differs from P in that Q will
always terminate, even when z = 7. And Q is deterministic: if z = 6, Q will
establish z = 3. In spite of these differences) Q is an acceptable substitute

Sujtabiljty of the definitions 15

for P, and that is why we can implement P as IF 21z THEN :r := :div 2
ELSE. := • div 3 END.

We now state the well-known but crucial fact that the program con
structors are monotonic with respect to ~; only this ensures that refining
a fragment (say P above) "in placet" in some larger program, refines that
larger program overall.

Theorem 2 If F(P) is a program tontaining the program fragment P, and
for another program fragment Q we have P ~ Q, then

F(P) C; F(q)

Proof: Structural induction, over the program constructors ";", "if") and
"do".
<;)

4 Suitability of the definitions

We now show the suitability of our definitions by proving that

pre =>- P < po.t > iff [pre, po.tj C; P.

In fact, we prove a stronger result1 dealing with the general form of section
2.3.

In long formulre, we will sometimes "stack" conjunctions for clarity, writ
lDg

this) for (thi. /\ that).(that

Our theorem (s a consequence of the following two lemmas,

Lemma 2 If 11 and iii partition the vutor v of program variables, then

pre/\ v= ib iii : [pre, post] < post /\ 1i' = Uo >=

16 THE SPEC1FlCAT10N STATEMENT

Proof: Here we must use definition 3 rather thaD lemma I, since the post
condition contains itl. We have

(pre 1\ Ii = &oj = w: [pre, p08t] < p08t 1\ u= iio >

if	 by definition 3,

(pre 1\ Ii = &oj = pre 1\ ('I iii. p08t[i\,V] => ~P08~) [1\"1
u = UO

if Ii = ill = ('I w. p08t[i\,\11 => /~8~) [1\"]

if Ii = i\, = ('I w. p08t[&o\I] => UP~8~) [1\&0]

if Ii= i\, = ('1w. P08t => f08~)

u = UO

IJ	 since u, wpartition v

true.

<:>

Le:mma 3 1/ pre 1\ ti = i:b => P < post 1\ u= Uo > then

iii: [pre,po8t] i;; P

whue wand ii partition the program variables v.

17 Suitability of the definitions

Proof:

pre A if = ib =:> P < post A ii = ito >

hence by distributivity 0(:::> over weakest preconditions)

pre /\ ii = i1J /\ (If ii. ~pos: '* R)
11 = UO

= P<R>

hence pre /\ ii = i1J/\ (lfw. post '* R)lij\iio] = P < R >
hence pre/\ ii = i1J /\ (lfw. post,* R) = P < R >

hence Bince pre and P < R > do not contain ~,

pre /\ (If w. post '* R)li1J\ii] = P < R >

hence by lemma 1,
w: [pre,postl < R >= P < R > .

Since R was arbitrary, we conc:lude from definition 6 that 10 : {pre, post] ~ P
as required.

"
Those two lemm&8 give us our theorem inunediately:

Theorem 3 If .0, i partition the program variables V, then

pre A v -= ib ===> P < P08t 1\ i = iio >

;/ and only ;/

w: [pre, post] ~ P.

Proof: "If" (ollows from lenuna 2 and theorem Ij "only if" is lemma 3
exactly.

"

18 THE SPECIFICATION STATEMENT

5 Using specification statements

For illustration we take the simplest of examples: we are given an array
a[O.. N - 11 and must find an index i at which the value v occurs. And we
may assume there is such an i. The program is

'. [O'Oi<N] (2)•. a ['J1 = V

This is a program) though abstract, and perhaps we can execute it directly
(see further below). But for now, we assume not - and so we "solve" it,
refining it to statements we can execute.

First we use definition 4, rewriting

O<i<N]i: [(3 i.O 'O i < N A a[i] = _), (3)a[i] = _

We take as invariant

0", i < N
Inv == (3j. i 'O j < N A ali] = -J

The variant is N - i. With these and theorem 3, we can prove that (3)

r; i: f(3i.O'Oi<NAa[i]=_), In_] ;

doatil/ - ~
. lnv io < i]
t: ali] I _) Inv

od
Notice that the fragments "to be developed" are written in-line, and that
the above mixture of abstract and concrete is still a program. The first
component we can refine to i := 0; and the second we can refine to i := i +1.
For illustration, we show the second refinement in more detail: by theorem
3 we need

O'Oi<N] (io<i<N)
(3j.i 'OJ < N Aa[jJ= -) =- i:= i+l (3j.i 'OJ < N AaIiJ=-J

[0[.]1
i = ~

19 Using specmcation statements

By the semantics of assignment [12], the consequent is

io<i+I<N

(3j. i + 1 ~ j < N 1\ ali] = oj.

That follows easily from the antecedent.

Having our development, we may wish to collect it and others intoa small
"database module," based on arrays. As is typical in modern programming
languages, the implementation

i:= 0;
do ali] i 0 ~ i:= i + 1 od

would be hidden within the "implementation part" of the module. What
should appear in the definition part? We suggest (using the syntax of
Modula-2 [49])

module Database;

export Find. N i

CODSt N =?;

var a: array [O•. N - I] of?;

procedure Find(o: ?; var i: [O..N - 1]);

beg~[O~i<N]
•. a '.J1 = v

end Find

end Database

This is not informal. Except for the fl.?,'" the module contains only construc
tions whose semantics are known precisely. Now a programmer wishing to
implement (2) can do so directly, using the copy rule of Algol-50 (suitably
extended for modules). He just writes Find(v,i), whose meaning is given
hy substituting the procedure body from the definition module. This is
discussed further in [34].

Thus we show that our approach applies not only to small constructions,
and in particular that it supports the view that the "definition module"
specifies the "implementation module."

20 THE SPECIFICATION STATEMENT

6 Miracles

In [12] it is stated that for all programs p.

P < false> = false. (4)

This is no longer true: we have for example

[true,false] < false>

= t,ue 1\ ('0' v. false => false)

= true.

The statement [true,lalseJ is called a miracle, because it implements any
thing: we have for all R that P < R >=> [true,/alseJ < R >, and 90 for any
P whatsoever,

Pc: [true,false].

Although [true,lalse] implements anything, it cannot itself be imple~

mented by anything free of miracles. This is because"P is free of miracles"
implies by (4) that P < falst! >= false, and so taking R = false in definition
6, we have [true,/alseJ!l P.

A program which cannot be rid of miracles is infeasible in the following
precise wa.y:

Definition 7 We say that a program P is feasible if!

P < false >= false.

Otherwise it 1S infeasible, or miraculous. <:;)

Clearly, all programs free of specification statements are by (4) feasible:
indeed, they are "implementations" already. For specifications, however, we
have the following

Theorem 4: w: [pre, post] is feasible if!

pre => ((3 iii • P08t))[iIJ\V].

Proof: Definitions 3, 7, and predicate calculus.
<:>

21 Guarded commandB are miracles

Miracles can arise "accidentally" in program development if we make an
incorrect design stepi this is discussed in more detail in [25] and 137]. For
the present, we take a trivial example: we (mistakenly) want to implement
z : [% = 0] as a sequential composition whose second component is % := y.
That is, we want to solve the following formula for P:

z: [z = 0] c; Pi %:= y	 (5)

By theorem 3, we have (5)

if!	 z = '" 1\ Y= Yo =? (P; z := y) < z = 01\ Y= Yo >

iff	 by sequential composition
z = %() /\ Y = Yo:::::> P < %:= y < %= 0/\ Y = Yo»

if!	 z = '" 1\ Y= Yo =? P < J = Jo = 0 >

if!	 by theorem 3 again
z : [true, y = OJ c; P

We have found our solution P, showing unconditionally that

%: [z = 0] c; z: [true, y = 0]; z:= y

In fact, the above shows that % : [true, y = OJ is the most general solution of
(5), and so we take it 88 representative of them all, calling it "the" solution.
This development technique, in which fonnulae like (5) are so solved, is the
subject of [25].

But, after all, the statement z: Itrue , y = OJ is infeasible; and the im
portance of the example is its illustration of that consequence of mistaken
design steps. The fonnula (5) is not insoluble, but we cannot develop exe
cutable code from its solution.

Guarded commands are miracles

Miracles are a strict extension of our programming capabilities - clearly,
since they cannot be executed. We now show how close miracles are, never
theless, to being in the original language.

7

22 THE SPECIFICATION STATEMENT

A guarded command has the syntactic form

B_P,

where B is a boolean expression and P is the command guarded. Orjginally~

these occurred only within It and do constructions. Here we give meaning
to guarded commands standing alone.

Informally, we say that a "naked" guarded command cannot be executed
unless its guard is true. More precisely, we have

DefinItion 8 (B - P) < R > ;: B ~ P < R > <:>

If B is true, then B --+ P behaves like P. But if B is false, we consider
B --+ P to be miraculous: we may as well, since in this case we cannot
execute it to check.

Thus we have a compact notation for miracles: they are naked guarded
commands whose guards are not identically true. For example, our first
miracle [true,false] can be written for any program P

101•• - P.

The following theorem shows that in fact every miracle can be written this
way_ We have

Theorem 5 For any program p} feasible or not} there is a guard B and a
fea8ibk program Q such that

P=B- Q

Proof: We take

B = ~P < lalB. >

Q = IfB_ PIl..

Definition 7 shows that Q is feasible, and definition 8 shows that the equality
holds.
<:>

23 Guarded commands are miracles

We can also define also a non-deterministic composition ~ and a "guard
less If ," achieving correspondence with the original meaning of theae con
structs. We have

Definition 9 For any program8 P and Q, the program PDQ u defined

(P ~ Q) < R > ~ P < R > /\Q < R > .

o

Definition 10 For any program P, the program if P fi i8 defined

if P 8 < R > ~ ~P < false > /\p < R > .

o

Definition 9 is simple non-deterministic choice; in fact

P ~ Q = If true ~ P 0 true ~ Q 8.

Definition 10 i8 an extension of Dijkstra's language (necessarily, since
it is not monotonic with respect to ~ i it is in fact the "+" operator of
[25]). Nevertheless, the meaning that definitions 8, 9, and 10 give to the if
construction if (Oi. Bi --+ Pi) fi is exactly as before. We have

TheorelD 6 If Pi are feasible program8, then

if (Oi. B i ~ Pi) 8 < R > = (Vi. B;) /\ (/\i. Bi "'" Pi <' R ».
Proof: Let P be (Oi. Bi ~ Pi). By definitions 9 and 10,

P < R > = (Ai. Bi "'" Pi < R ». (6)

Hence hecause the Pi are feasible,

~P < false > = ~(/\i. Bi "'" 'aIBe) = (Vi. Bol. (7)

The result now follows from (6), (7), and definition 10.
o

Unfortunately, we must note in conclusion that because the construction
If ... fi is not monotonic, we have in general

PC;Q doe8 not imply if P Ii C; If Q Ii.

This limits its use in program development.

24 THE SPECIFICATION STATEMENT

8 Positive applications of miracles

By definitions 7 and 6, miracles refine only to other miracles - and hence by
Dijkstra's law never to programs. Thus if a specification ot/erall is miraculous
(we can check using theorem 4) I the development is doomed.

In VDM, where specifications are written as predicate pairs like ours, the
check for miracles is the "implemeotahility test" [26, p. 1341. In Z [18], [381,
[48), where specifications are single predicates corresponding to our implicit
form of section 2.4, miracles cannot be written: definition 4 and theorem 4
show that single predicate specification statements are always feasible.

From a feasible beginning, miracles can arise through mistaken refine
ment tactics. As shown in section 6, the "improper division" of:r: := 0 by
% := y gives the miraculous 1:: [true J Y= 0]. If we recognise the miracle
then, we could stop there and try some other tacticj if we don't, we'll be
stuck later. But the rules for such division (the weakest prespecification of
[25]) are simpler now that soundness has been delegated to the unimple
mentable miracles: there is less need for "applicability conditions."

There is other potential for the deliberate use of miracles. Consider the
following assignment, in which I is some function hard to calculate but easy
to invert:

• :=f(c) (8)
And suppose in a variahle y we might have the desired answer already.
We can make the following refinements, in whicb both right hand sides are
miracles:

z:= f(c) ~ c = r1(y) ~ z:= y (9)
z:= f(c) ~ c ¥ r1(y) ~ z:= f(c) (10)

Neither (9) not (10) can be implemented on its own. Case (9) can be exe
cuted only when y does contain the desired answer already; case (10) can be
executed only when it doesn't. But their il combination is not miraculous,
and can always be executed:

(c = r1(y) ~.:= y) il (c ¥ r1(y) ~.:= fCc)) (11)

Since P ~ Q and P ~ R implies P ~ QilR (easily shown from definitions 6
and 9L we have refined (8) to (11). Such developments are treated also in
[I] and [43].

25 Positive applications of miracles

Another application is as foUows. Ordinarily we limit the syntax of our
concrete programming language so that miracles cannot be written in it: no
specifications can appear, nor naked guarded commands. If we relax thiB
restriction, allowing naked guarded commands, then operational reasoning
suggests a backtracking implementation. For example, consider the following
backtracking strategy for finding the position i of a value tI in an array
a[O .. N - 1]:

Choose l' at random from the range O..N -1, and evaluate ali] ==
tI. If equality holds, then terminatej otherwise, backtrack and
try again.

We have this refinement:

i: [ali] = v]

c; if
i := aD· .. Di := N - 1;
ali] = v ~ skip

Ii

We are using the generalised if··· fi of section 6, which here allow!! a.bortion
if its body is miraculousj and the body is miraculous only when no branch
of the alternation can avoid the miraculous behaviour to follow. In this
context if ... fi. resembles the "cut" of Prolog, allowing failure (preventing
backtracking) if no solution is found within (beyond). If there is a successful
branch, however, the implementation is obliged to find it: only then can it
execute the second statement - which we could syntactically sugar, writing
force ali] = v. Note that the first statement can be written i: [05 i < N].

A third opportunity for exploiting miracles is in novel proof rules. We
introduce for a moment the weaker relation .$ between programs, which
holds if for all predicates R

P < R > /\Q < true >=> Q < R >

This is simply partial correctness. Now in the style of VOM we can consider
a loop invariant to be a statement, rather than an assertion: any number
of iterations of the loop body must refine the inVlLriant statement 1. The

26	 THE SPECIFICATION STATEMENT

advantage is that we have easy reference to the initial state; our development
law is

If I7'OI;G~S

and X ~ Ij forc::e...,G

then X :5 I; do G ---t Sad

We "explain" this rule as follows (but it is proved using weakest precondition
semantics). The first condition requires preservation of the effect of I by
one more execution of the body G _ S. If G holds, the body behaves like
S; but if G fails (and therefore we should not execute 8), the first condition
still holds because G _ S in that case is miraculous, refining anything
(and skip in particular).

Similar reasoning applies to the second condition. For the result, we
argue informally that

X
5.	 Ii forc::e-.G

~	 by induction over the first condition

Ii G - S; ... ; G - S; force-.G

~	 Ii do G ---t S ad

Take for example the following program) in which we calculate the sum
8 of an array a indexed by °~ i < N.

x	 = B, n: IB = (2: i : 0 ~ i < N : ali]))
I	 = B, n: [B = (2: i : 0 7'0 i < n : ali]) 1\ 0 7'0 i 7'0 N]

G	 = nfoN
S	 = 8,n:=8+a(nl,n+l

Because I ~ 8, n := 0, °(this is the initialisation), and because we can prove
the conditions hold (using definitions and theorem 3), we ha.ve by our rule
above

x	 ~ I; donfoN~B,i:=B+alnJ,n+lod

~	 8,n :=O,Oj

don foN ~ B,i:= B+alnJ,n+l od

25 Positive applications of miracles

Another application is as follows. Ordinarily we limit the syntax of our
concrete programming language so that miracles cannot be written in it: no
specifications can appear, nor naked guarded commands. If we relax this
restriction, allowing naked guarded commands, then operational reasoning
suggests a ba~ktrad:ing implementation. For example, consider the following
backtracking strategy for finding the position i of a value v in an array
a[O.. N - I]:

Cboose i at random from the range O..N -I, and evaluate a[i] =
v. If equality holds, then terminate; otherwise, backtrack and
try again.

We have this refinement:

i: [a[i] = v]

!;; If
i := a ~ ... ~ i := N - 1;
a[i] = v --+ skip

Ii

We are using tbe generalised if··· fi of section 6, which here allowll abortion
if its body is miraculous; and the body is miraculous only when no branch
of the alternation can avoid the miraculous behaviour to follow. In tbis
context if '" fi resembles the "cut" of Prolog, allowing failure (preventing
backtracking) if no solution is found within (beyond). If there is a successful
branch, however, the implementation is ohliged to find it: only then can it
execute the second statement - which we could syntactically sugar, writing
force ali] = v. Note that the first statement can be written 1: [0 ~ 1 < N].

A third opportunity for exploiting miracles is in novel proof rules. We
introduce for a moment the weaker relation .$ between programs, which
holds if for all predicates R

P < R > /\Q < Irue >* Q < R >

This is simply partial correctness. Now in the style of YDM we can consider
a loop invariant to be a statement, rather than an assertion: any number
of iterations of the loop body must refine the invariant statement J. The

26	 THE SPECIFICATION STATEMENT

advantage is that we have easy reference to the initial statej our development
law is

If I., I; G ~ S

and X :$ I; torce-.G

then X :$ Ij doG -+ Sod

We "explain" this rule as follows (but it is proved using weakest precondition
semantics). The first condition requires preservation of the effect of I by
one more execution of the body G -+ S. If G holds, the body behaves like
S; but if G fails (and therefore we should 'Jot execute S), the first condition
still holds hecau8e G ---t S in that case is miraculous, refining anything
(and skip in particular).

Similar reasoning applies to the second condition. For the result, we
argue informally that

x
~	 I; force...,G

~	 by induction over the first condition

Ii G -+ S; ... ; G -+ S; force-.G

$	 Ii do G --. Sad

Take for example the following programJ in which we calculate the sum
8 of an array tI indexed by a '$. i < N,

x	 = B,n: [B = (2:.: 0", < N :B['1lI
I	 = B, n: [B = (2:. : 0" • < n : al']) A 0., • ., N)
G	 = nof.N
S	 = B,n:=B+a[nJ,n+!

Because I ~ 8," := 0, °(this is the initialisation), a.nd because we can prove
the conditions hold (using definitions and theorem 3), we have by Our rule
above

x	 ., I; donof.N~8,':=8+a[nl,n+lod

:$	 B,n :=0,0;

do n of. N ~ B,' := 8 + aln), n +! od

Conclusion	 27

9 Conclusion

We have extended Dijkstra's programming language with a construct allow
ing abstract programs, as predicate pairs, to be written within otherwise
conventional "concrete" programs. The advantages are:

•	 Program development takes on the character of solving equations
well-established in mathematics generally. The transformation from
abstract to concrete occurs within a single semantic framework.

•	 As lambda-expressions allow us to write functions without names (rather
than the laboured "f where f(%) = ...") so we can write specifica
tions directly, avoiding "P where··· => P < ... >." Instead of a
lambda calculus, this leads to a refinement calculus.

•	 We gain m;raclesas an artefact of our extension, and there is increasing
evidence that they simplify the development process. In [37] it is
shown that applicability conditions for refinement can be simplified
- or even removed altogether - because mistaken development steps
simply lead to miracles from which eventually progress must cease.
Also in [1), [251, [41), and more recently [43] it is argued that miracles
simplify the theory. In [33] it is shown that miracles allow proof of
certain data· refinements that were not provahle previously,

•	 The lack of distinction between abstract and concrete progra.ms allows
their treatment as procedures to be made more uniform, in the sense
of ALGOL-60: a procedure call, whether abstract or not, is equivalent
to its text substituted in-line. This and the resulting treatment of
parameters is explored in [34].

•	 The programmer's repertoire is increased by providing easy access to
non-constructive idioms, for example: i: [ali] = tI] finds the index i of
value tI in array a; m: [I S m S hI chooses m between land h.

•	 A ready connection is made with state-based specifications such as
those of Z [18], [38], [48), allowing their systematic development into
code.

A refinement calculus would be a collection of laws, each proved directly
from weakest precondition definitions. They could be used, without further

28 THE SPECIFICATION STATEMENT

proof, in program developments - just as one uses a table of integrals in
engineering. For example, one such law is

Assignment law: w: [post [w \ Ell~ \.] . postJ

~ w:= E

It is easily proved from definitions 3 and 6. A comprehensive collection of
such laws is given and demonstrated in practice in [37].

Such 8. development style would be very close to VDM [261, where spec
ifications a.re predicate pairs just as here. But Jones does not ba:ge VDM on
the weakest precondition calculus, Dar does be present a general refinement
relation operating uniformly between all programs whether abstract or con
crete (although be could do so). Another difference is our use of classical
logic rather than the logic of partial functions [26/, [8]. Jones does not treat
miracles.

In the Z specification technique, specifications are given as single pred
icates corresponding to our oIlimplicit preconditions". Thus where we write
n: [0 ~ 11 < no] for "decrease 11, but not below 0," in Z one would write
(omitting types)

I ft, ft'
A _ •

In Z there is no commitment to a fUed state {our v)j deliberately not,
because this gives it the flexibility needed to build large specifications from
their smaUer components. Examples of large-scale Z specifications can be
found in [18]. But when algorithmic structures are introduced - i.e., once
development begins - this lack of commitment becomes a hindrance.

Therefore one aim of our work is to provide a development method specif
icaUy for Z, by identifying the two specifications above then using the weak
est precondition calculus to reach a concrete program. Another approach to
Z development - derived from ours - is given in [27].

Acknowledgements 29

10 AcknowledgeITIents

Back [4] first embedded specifications within programs using the weakest
precondition calculus. His specifications - like those of Z - consist of one
predicate only, and so he cannot take advantage of miracles. More recently
Morris [41] presents independently the same extension of Back's work as
we do; we have had useful discussions since discovering each other. Our
refinement relation ~ is the same as theirs.

Meertens [30] also has developed these ideas, using predicate pairs, but
gave them a different meaning: (in our notation) he defines

[pre, pootl < R > '" pre =? (3 •. poot)

1\ (V •. poot =? R)

But Meertens' definition does not have the property of lemma 2, which we
consider to be fundamental; in general, for Meertens

[pre, pootl < poot > i pre.

Hehner [201 uses predicate pairs for specification.s as we use specification
statements, but he does not integrate the approach hy giving them a weakest
precondition semantics. He also uses the refinement ordering ~.

The earliest example of a formulation like ours for the weakest precon
dition of a specification seems to be Hoare's [22], where it is given as the
axiomatic meaning of procedure calls. But he did not separate abstraction
from procedure calling, as We have done (and discuss further in [34]). In [14,
p. 153] also the definition can be found, again coupled to procedure calls.

The idea of using pre- and post-conditions to describe program behaviour
is widespread, and its use in VOM is notable. In fact our approach is very
close to VDM, aod I hope identical in spirit. Jones does not however make
his specifications "first-class citizens" as we do. An advantage of Jones's
natural deduction style is perhaps its appeal to the wider audience of prac
tising programmers, just as natural deduction in logic is so-called because
it's more "natural." But we prefer the increased freedom of the axiomatic
approach directly (in logic, too): it offers more scope to the experienced
user, who can construct new laws (meta-theorems) to suit his taste and
skill.

30 THE SPECIFICATION STATEMENT

[25) provided the direct inspiration for treating specifications as pro
gramsj there similar results are obtained in the relational calculus. Miracles
appear as partial relations, but are not discussed in detail.

Moot recently, Nelson [43] has integrated specifications and programs)
but his ordering over these objects differs from ours. In particular, it does
not allow the reduction of non-determinism - an essential idea in program
development. He discusses miracles at some length.

Much of this work was done in collaboration with Ken Robinson. I thank
Rick Hehne!, Joe Morris, Doaitse Swierstra, members of IFIP 2.1, and the
referees for their very useful comments.

Specification statements and refinement

Carroll Morgan Ken Robinson

Abstract

We discuss the development of executable programs from state
based specifications written in the language of lint-order predicate
calculus. Notable examplee of such specificatioDs a.re those written
using the techniques Z and VDMj but our interest will be in the rigor
ous derivation of the algorithms from which they deliberately abstract.
This is of course the role of a development method.

Here we propose a development method bued OD speci~ationstate
mentl with which specifications are embedded in programs - standing
in for developments "yet to he done." We show that specification state
ments allow description, development, a.nd eXe(;ution to be carried out
within a single language: prograrna/speci6catioDS become hybrid con
structioDs in which hoth predicates and directly executable operations
can appear.

The use of a single language - embracing both high- and low-level
constructs - has a very considerable influence on the development
style, and it is that influence we will discuss: the specification state
ment is deeaibed, its associated calculus of refinement is givenl and
the DBe of that calculns is illustrated.

Introduction

In the Z [18, 38, 48J and VDM [26J specification techniques, descriptions
of external behaviour are given by relating the Gbefore" and Mafter" values
of variables in a hypothetical program state. It is conventional to assume

oAppeared in IBM Jn1. Ru. Dev. 51(5) (Sept. 1987). ©Copyright 1987 by Interna
tional Business Machines Corporation.

31

1

32 SPECIFICATION STATEMENTS AND REFINEMENT

that the ezternal aspects are treated by designating certain variables as
containing initially the input values, and certain others as containing finally
the output values. As development proceeds, structure is created in the
program - and the specifications, at that stage more "abstract algorithms,"
come increasingly to refer to internal program variables as well. For example,
we may at some stage wish to describe the operation of taking the square
root of some integer variable "j adopting the convention that n refers to the
value of that variable after the operation, and no to its value before, this
description could be written:

,,2::::; no (1)

Ordinarily, we would call the above a specification, because "conventional"
computers do not execute (i.e., find a valuation making true) arbitrary for
mul88 or predicate logic (logic programming languages deal only with a
restricted language of predicates).

Two notable features of our specification (1) above are its non-determinism
and that it is partial. It is non-deterministic in the sense that for some ini
tial values no (e.g., 4) there may be several appropriate final values n (±2
in this case). It is partial in the sense that for some initial values (e.g., 3)
there are no appropriate final values. We will see below that our proposed
development method makes this precise in the usual way (e.g., of [12]): the
non-determinism allows an implementation to return either result (either
consistently or even varying from one execution to the next) j and the im
plementor can assume that the initial value is a perfect square, providing a
program whose behaviour is wholly arbitrary otherwise.

In presenting a development technique, we are not ignorant of the fact
that VDM already has (or even is) onej rather we are concentrating our
attention on Z, where development has been less well worked out. In this our
aim is most definitely to propose a light-weight technique - as Z is itself
in which existing material is used 8B mucb as possible. Dijkstra's language
[12] therefore was chosen as the target, because it has a mathematically
attractive and above all simple semantic basis, and because it includes non
determinism naturally.

The J:eU to a smooth development process - the subject of tbis paper
is we believe the integration of description and execution in one language.
This is not achieved, as is so often proposed, by restricting our language to
those specifications which are executable, and thus treating specifications

Introduction 33

as programsj instead we extend the language to allow ourselves to write
programs which we cannot see at first how to execute: in effect we treat
programs as specifications. It is precisely the lack of semantic distinction
between the two that allows finally our smooth transition from abstract
description to executable algorithm.

We will assume some familiarity with Dijkstra's weakest pre-condition
concept aDd its associated guarded command programming language [12].

1.1 Weake.t pre-condition. and .pecification.

In [12], Dijkstra introduces for program P and predicate R over the program
variables, the weakest pre-condition of R with respect to Pi he writes it

wp(P, R)

This weakest pre-condition is intended to describe exactly those states from
which execution of P is guaranteed to establish R, and Dijkstra goes on to
develop a small language by defining for its every construct precise syntactic
rules for writing wp(P, R) as a predicate itself. For example, the meaning
of assignment in this language is defined as follows for variable :r, expression
E, and poet-condition R:

wp("z := E", R) = R[x\EI

The notation [:r\E] here denotes syntactic replacement in R of z by E in
the usual way (avoiding variable capture etc.). Thus

wp("% := :r -1", %?: 0)
= (x ~ O)[x\x -11 (2)

(x-I) ~O

= z> 0

We can specify a program P by giving 60th a pre-condition (not neces
sarily weakest) and a post-condition; our pre-condition and post-condition
predicates we will usually call pre and post:

pre => wp(P, p08t) (3)

34 SPECIFICATION STATEMENTS AND REFINEMENT

Informally, this is read lIif pre is true) then execution of P must establi9h
post" i formally, we regard the above as admitting only program texts P for
which it is valid. Either way, it is a specification in the sense that it directs
the implementor to develop a program with the required property.

Our point of divergence from the established style (3) is to write instead

[pre, postj i;;; P (4)

We take (3) and (4) as identical in meaning, but in (4) the constituents are
exposed more clearly: [pre, post] is the specification; ~ is the relation of
refinement; and P is the program to be found. Thus we will read (4) as "the
specification [pre, post) is refined by P."

The principal advantage of the alternative style is that jpre , post] can
take on a meaning independent of its particular use in (4) above: we will
give it a weakest pre-condition semantics of its own. It is just this which
removes the distinction between specification and program - not that they
both are executable, but that they both are predicate transformers, being
Buitable first arguments to wp(,). Programs are jmlt those specifications
which we can execute directly.

The refinement relation 1; is likewise generalised, and we do thi9 imme
diately helow.

1.2 Refinement

In (4) we have introduced an explicit symbol Ilfb " for refinement, and we
now give its precise definition (as given e.g., in [20]):

DeflDitloD 1 For proflTams P and Q, we Bay that P is refined by Q, written
P ~ q, iff for all post-conditions post:

wp(P, post) => wp(Q, post).

<::i

We justify the ahove informally by noting that any occurrence of P
in a (proved correct) program is justified by the truth of wp(P, post) at

35 Introduction

that point, for some predicate post. No matter what post it is, the relation
P !; Q gives us wp(Q, post) as well, so that Q is similarly justified: thus Q
can replace P. Operationally, P ~ Q whenever Q resolves non-determinism
in P, or terminates when P might not.

This refinement relation is independent of the notion of specification , and
can be evaluated for afty two constructs whose weakest pre-condition seman
tics are known. For example, we have in the guarded command language of
[12)

if a:$6 -I' a:= a-6
U 6 ~ a ~ 6:= 6 - a
Ii

!; !fa$6 -I' a:= a-II
U a 'i 6 ~ 6:= 6 - a
II

The first program is non-deterministic, executing either branch when a = bi
the second program is a proper {i.e.} non-identical) refinement of it because
this non~detenninismhas been removed. Such refinement relatione between
programs allow us to implement the non-deterministic program above in
more conventional (deterministic) languages; we transcribe the deterministic
refinement as follows:

IF a<-b THEN a:- a-b
EUlE b:· b-a

END

1.3 Spedfieation statements

From section 1.2 above, we can see that in formal terms we should have
[pre, post1!; P iff for all R

wp([pre , post], R) ===> wp(P, R) (5)

But for this to have meaning, we must define its antecedent; as in the defini
tion (2) above for assignment statements, we will express wp([prt J post], R)

36 SPECIFICATION STATEMENTS AND REFINEMENT

as a syntactic transformation of the predicate R. We do this below, moving
from simple to more general cases.

1.4 The simple case

In the simplest case we have two predicates pre and P08t each over the
program variables in a single state. We have

Definition 2 Let the vector of currently declared program v4f'iable8 be V;
/01' any pf'edicate8 preJ post, and R, we define

wp([pre, po.t], R) = pre/\ (V ii . po.t => R)

<:>

Note that our quantifiers always extend in scope to the first enclosing paren
theses (V.' ..J. AB indicated, we will use v to refer to the vector of all pro
gram variables, and will not concern ourselves very much with how they are
declared.

Section 2 discusses the consistency of definition 2 and formula (5); here
we will justify the definition only informally. We regard [pre, post] as a
statement, and its first component pre describes the states in which its ter
mination is guaranteedj thus pre is a necessary feature of our desired weakest
pre-condition, and in fact appears as the first conjunct there. But the weak
est pre-condition must guarantee more than termination: it must ensure
that on termination, R holds. From the second component of [pre, post].
we know that post describes the states in which it terminates - and so we
require only that in all states described by post the desired R holds as well:
this is the second conjunct.

We now continue with some notational extensions and a.bbreviations.

1.4.1 Confining change

We allow a list of variables W. in which appear all the variables which the
statement can change; variables not in wmust retain their initial values.
The precise definition of w: [pre, postJ is

37 Introduction

Definition 3 Let the vector 0/ currently declared progr4m v4riablel! be V,
4nd ld iii be a sub-vector 0/ ii; for 4ny predic4tes pre, post, 4nd R, we
definc

wp(,;;: (pre, post], R) = pre A ('I';; , post ='> R)

e>

The only change from definition 2 is that the vector of quantified variables
is now iii rather than V. Taking for example ii to be "z, y" I we have

wp(z : [trve, z = V], R)

= true A ('I z , z = V ='> R)

= R(z\vl,

Since also wp(z := V, R) = Rlz\v], we have shown ·z : [trve, z = y]" and
"z := y" to have the Bame meaning.

1.4.2 InItial values

So far, we can specify only that a certain relationship (e.g., post) is to hold
between the find values of variables. We now adjuet oW' definition 80 that
D-subscripted variables in the second component of a specification statement
can be taken 8.8 referring to the initial values of variables.

Definition 4: Let the vector 0/ currently ded4red progr4m v4riables be ii,
4nd let iii he a sub-vector of Vj let pre 4nd R as be/ore be 4rbitr4ry predicates,
4nd let post be 4 predic4te referring opt1'on4llv to O.subscripted tJariables ~

4S well. We define

wp(,;;: (pre, post], R) = pre A ('I';;. post ='> R)[~\iIJ

- provided R cont4ins no O·subacnpted vBnablea &:I.
e>

By our definition we have reserved the use of D-subscnpts to denote initial
values, and so must forego their use for other purposes: this is why R

38 SPECIFICATION STATEMENTS AND REFINEMENT

should contain no ib. It is pOBBible, however, to take the view that in R
also the variables i:b refer to initial values; this leads in fact to the weakest
pre-Bpecificatioa of Hoare and He [25]. Joseph. [27J h.. investig.ted this.

We note that if post does Dot refer to initial values, then definition 4
reduces to definition 3.

The substitution [~\iil may require renaming of the bound variables w,
but this is often unnecessary; for example, taking Ii to be ":r, y" as before,
we have

",p(. : [true,. = zo + Yo], R)

~ tr.e/\ (V < .• =zo + '0 =0- R)[zo, Yo\', ,]

~ R[.\zo + ,ol[zo, '0\<, 'J

~ R[.\. + ,].

This is oC course wp(z := z + y, R), as one would hope.

1.4.3 Impllcit pre-condItion.

If the pre-condition is omitted, we will supply a default condition for it as
follows:

Definition .6 Let the vector of currently declared program variable. be ii,
and let W be a sub-vector of Ii; let post be a predicate re/err1"ng oplionClllu to
O-subscripted variables th. We define

iii: [pOBt) ahbreviate. iii: [(3iii • P08t) [iiJ\;;J , POBt]

<:>

Thus the implicit pre-condition is simply "it is possible to establish the post
condition". This is exactly the view taken in Z specifications generally, where
only a single predicate is givenj in our original square-root example (1)
writing it a: [a' = aoJ - the implicit precondition is (3 a . a' = nollno\aj
which we can simplify to (3 I. . 1.2 = n). That is, termination is guaranteed
only if n is a perfect square.

39 Introduction

1.4.4 Generalised assignment

The assignment statement % := E establishes the post-condition: = E
while changing only % - it has the same meaning, therefore, 88 the 8Peci.6.·
cation statement z; [z = E[z\%OlI (in which the renaming [z\%OJ is nec....ry
because occurrences of % in E are initial values). Exploiting this, we define
below a generoliled assignment statement in which the binary relation::; of
ordinary assignment can be replaced by any binary relation desired.

Definition 8 If «<II' iI a binar, relation. symbol, then. for an, variable %

and e%premon E ,

• ;~ E abbreviate. z: [z ~ E[z\%OlJ.

<:>

Thus we have that

%:< % decreases % j and that
m:E 8 chooses a member m from the set 8.

Note that in the second case, our implicit pre--condition is "the set 8 is not
empty":

m:E 8

= m: [mE.]

= m: [(3m'. m'Eo). mEo]

= m: [.;t {} • mE 0]

This abbreviation was suggested by Jean-Raymond Abrial.

1.4.5 Invariants

Often a formula appears as a conjunct in both the pre- and the post
conditions, thus making it an in.variant of the statement. The following
convention, suggested in [20], allows us to write it only oncej we abbreviate
[pre /\ I • 1/\ po'll by

[pre • I • po'l]

40

2

SPECIFICATION STATEMENTS AND REFINEMENT

Thus [pre, I , post] I; Q iff

pre /\ 1 =* VIp (Q. 1/\ post).

The above convention is useful when developing loops, as we will see in
section 3.

The refinement theorems

The following theoreIIUI justify our choice of semantics for the specification
statement. (Their full proofs may be found in [351.) The first theorem shows
that for every specification there is a specification statement that satisfies it
triviaUy.

Theorem 1 1/ it and iU partitioJl the vector 1i of pNgt'am vaf'ia.61u, theft

for aft' predicates pre and poet

pre 1\ ;; = ib VIp (w: [pre, postl, post /\ ii = 00)=*

Proof (ovUine): The result follows 611 straightforward application of def
inition -I and predicate calculus, e:tcept for the pos8ible occurrences of 0
lIv63cripted variables in post A it = VO. Since these are ftot program vari
ables (we never declare e.g. :to in a program), we can avoid the problem by
a lIYlltematic renaming, proving ift8tead that

pre/\';; = 'VJ. =* Vlp(iO: [pre,post], postl~\~J /\ il = iltl

Thill technique ill und alllo in the proof of theorem 9 in lIection 5.1, given in
full.
o

The consistency mentioned in section 1.4 follows easily frOID the above, tak
ing 10 = ;; and p03t free of ~j clearly other specialisations are profitable as
well.

The complementary problem is refining further a given specification
statementj the following theorem shows how this can be done.

41

3

The reBnement calculus

Theorem 2 1/ oW and i partition the p"0gram variables ii, and i/

pf'e/\ ii = ~ => wp(P, po.t /\ u= iio)

then

iii: [pre. po.tj !;; P

Proof (outline): The proof again simplll applies definitions, thi8 time deft
nitioM 1 and 4i the O-subscripu are avoided as be/ore.
o

To summarise: theorem 1 shows that w: {pre, post) is always a solution
to the specification (of P):

pre /\ ii = ib => wp(P, po.t/\ u= iio)

Theorem 2 shows it to be more general than any other solutionj thus overall
we have that is it the most general solution.

The refinement calculus

We now move to our main concern. With the definitions of section 1 we
can mix specifications and executable constructs freely, and program de
velopment becomes a process of transformation within the one framework.
But this is only the beginning - the definitions supply the "first princi
ples" from which more specialised techniques spring, and we call; use these
derived law8 0/ refinement directly in our development of progr&rrul. Each
law is designed to introduce a particular feature into our final program)
and the process overall comes to resemble the natural deduction style of for~

mal proof) where our goals are not axioms but rather directly executable
constructs (the Vienna Development Method 126/ has a similar flavour).

We will present the laws in the form.

before-refinement
side·condition

after.refinement

42 SPECIFICATION STATEMENTS AND REFINEMENT

and by this we mean: lei! Bide-condition is universally valid, then

6eJore.refinement ~ aJter-refinemenf'

Often, there is no side-condition - this indicates that the stated refinement
always obtains.

3.1 Strengthening the specification

Generally speaking, refinement BtrengthenB a specification, and it is charac
teristic of our refinement calculus that DO check is made against strengthen
ing a specification too much (a notable difference from VDM). The advan
tage ofthis is simplicity of the laws (law 11 provides a striking example)j
a disadvantage is that unproductive refinement steps may go longer unno
ticed. But there is no danger of invalidity resulting from over-strengthened
specific&tioDS. for we will see that they can never provably be refined to
executable code.

There is a simple feasibility test that can be applied to any specification,
and its failure predicts the failure of the refinement process: we simply check
that the specification satisfies Dijkstra's Law of the EzcltJded Miracle [12, p.
18J (paraphrased)

"For all executable programs p)

wp(P, /al8.) = fal••

If tbe specification failed this law, then so would any refinemen t of it; and
since no ezectJtable program fails the law, we are forced to conclude that
such a specification can never be refined to an executable program. For
specifications) direct calculation yields tbat iii: [pre, post] is feasible iff
pre => (3;;;. po.t)[i!\&». This WBB 6rst pointed out by Robinson [471.

The essence of our advantage is therefore tbat our laws do not Corce us
implicitly to apply a feasibility test at their every applica.tion: very often
the correctness of a development step is obvious. Further discussion on this
topic can be found in [351.

43 The refinement calculus

Our first two laws deal with weakening the pre--condition and/or strength.
ening the postcondition of a specification.

Law 1 Weakening the pre-condition; the new specificatt'on is more robust
than the old (i.e., it terminates more often):

w: Ipre , P08t]
pre * pre'w: [pre' , p08tl

\?

For example, ft: 1ft > 0 • ft = "0 - I] ~ ft: 1ft ~ O. ft = fto - I].

Law 2 Strengthening the post-condition; the new specification allows less
choice than the old:

w: Ipre , P08t]
pre*(Vw. P08t'*P08t)I~\v]w: [pre, post']

\?

For example, n: [true 1 n ~ O} ~ n: [true, n> 0]

It is worth noting that a special case of law 2 occurs when vand iii are
the same; then we have for the side.condition

pre == (V iI • P08t' * P08t) I~\ V]

Renaming ii to i:\l throughout, this is equivalent to

prelV\~J ==.. (Vii. P08t' * P08t) 1~\illIi1\~]

which "'e may simplify to

pre[V\~] ==.. (Vii. P08t' * P08t)

The quantifier V ii can be discarded since the antecedent contains no ii, and
propositional calculus then gives us as our special case the appealing

prel ii\~I /\ P08t' ==.. P08t

44 SPECIFICATION STATEMENTS AND REFINEMENT

Law 3 Restricting change; the new specification can change fewer variables
than the old:

w, z:: [pre post]I

ii: [pre , post I

<:;)

For example, x, y: [x = Yo] G <: [x = Yo].

In I... 4 below • we use the compact .ymbcls I[and]1, in.tead of the
more <:onventional begin and end 1 to delimit the scope of local variable
declara.tioDs.

Law 4 Introducing fresh local variables (where IrJresh ll medns not otherwise
occurring free):

ii: [pre, post I
% is a fresh variable

IIvar x; ii, <: Ipre , post] II

<:;)

For example, f: If = n!l G I[var i; f,i: 1/ = nil JI·

3.2 Introducing executable constructs

The following laws allow us to introduce constructs from our target pro-
gramming language.

Law 5 Introducing abort:

ii: [f.l8< , post]
abort

<:;)

Since abort ~ P for any P, we can by transitivity of ~ ha.ve any program
as the target of law 5. Thus for any predicate difficult{n}, we still have the
ea.y refinement n: [n < 0/\ n > 0, diffie.lt(n)] G n:= 17.

45 The relinement calculus

Law 6 Introducing skip:

ai: [poBt[il>\ii] , post]

skip

<y>

For example, :<, y: [:< = y , :< = YO] i; skip.

Law T Introducing assignment:

~poBt[il>,ai\ii,EJ, postt
ai:- E

<y>

For exampleJ z: [true, %== 2'.Q + ~l (;;;; %:== %+ ~.

The next two laws are the weakest pre· specification and weakest post
specification constructions of Hoare and He [25], with which one can lldivide"
one specification A hy another B, leaving a specification q such that

A i; q; B (law 8: weakest pre-specification)
A i; B; q (lsw 9: weakest poot-specification)

Law 8 Introducing sequentia.l composition (wecl:est pre.specification):

ai:	 [P" , postl
ai: [true] i; P

ai:	 [P'" wp(P, post)]; P

<y>

The side condition w: (true] (;;;; P can be read II P changes only w". For
example, we have

:<,y: [true, :< = y+ 1]

b	 %, y: [true, z == 2j j

y:= 1

46 SPECIFICATION STATEMENTS AND REFINEMENT

Law 9 Introducing sequential composition (weakest post-specification):

iii: [pre. post]
mid, post contain no free it!

iii: [pre, midi;
iii: [mid, post]

<;?

For example,

%: [true. % = Y+ 1]

~ z: [true, % = ,.1;
%: [% = Y , %= Y+ I]

Law 9 can be generalised to the case in which variables ~ do appear
(as shown in [32]); in that case, one has effectively supplied in mid the first
component of the sequential composition. For our larger example to follow
(section 4L we need only the simpler version.

In laws 10 and II, we use a quanti.6.er~like notation for generalised
disjunction and alternation: if J for example were the Bet {1..n}, then
(V i: I .G,) would abbreviate G1 v··· V G•• and If (0 i .G; ~ So) Ii would
abbreviate

if G1 -I' 81

~
~ Gn --+ Sri
Ii

Law 10 Introducing alternation (if):

w: [pre i\ (Vi: I .G;) • post]

If (0 i: I .G; ~ w: [pre i\ G, • post]) Ii

<;?

The predicate pre is that part of the pre-condition irrelevant to the case
distinction being made by the guards OJ: it is passed on to the branches of

Square root	 47

the alternation. For example, taking pre to be true, we have

y: [:r~OV%~I, %+y~11

c;	 If% =0 ~ y: [%=0, %+y~I)

U % = I ~ y: [% ~ I , %+ Y~ IJ

Ii

c;	 If :r = 0 ~ y:= I

U:r=I~y:~O

Ii

Law 11 Introducing iteration (do):

iii: [true, in. , ~(V;: I .G;)]

do

(a i:I.G,--+ w: [G" inv, O~ var< varoD
od

(;>

The predicate inv is of course the loop invariant, and the expression var is
the variant. We use va,o to abbreviate var[V\ itJ].

An example of law 11 is given in section 4j for now, we note that inv can
be any predicate and var any integer-valued expression. Surprisingly, there
are no sid&"conditions - a bad choice of inv or var or indeed Gj simply
results in a loop body from which no executable program can be developed
(see the remarks in section 3.1).

Law 11 is proved in section 5.

4 An example: square root

For an example, we take the square-nx>t development of [12, pp. 61-65li but
our development here will be deliberately terse, because we are illustrating
not how to find such developments (properly the subject of a whole book),
but rather how experienced programmers could record such a development.

48 SPECIFICATION STATEMENTS AND REFINEMENT

4.1 Specification

We ale given a non~negative integer 6q; we must Bet the integer variable rt
to the greatest integer not exceeding y'iq, where the function ..; takes the
non-Degative square root of its argument.

4.2 Specification

rt:= ly"iiJ

l%J - the "floor" of Z' - is the greatest integer not exceeding Z'.

4.3 Refinement

We 888ume of course that V is unavailable to UB, and proceed as follows
to eliminate it from our specification; we eliminate l J also. "Stacked"
predicates denote conjunction.

rt:= ly"iiJ

= rt: [rt = ly"iij] definition 6

= rt: [sq?: 0, rl = ly"iiJ] definition 5

= rl: [sq?: O. rt 75y"ii< rt+1] definition of l J

o<rt]
~ law 2 rt: [sq?: O. rt' 75 sq ::: (rt +1)'

4.4 Refinement

Using laws 4 and 2, we introduce a new variable "U, and strengthen the
post-condition; our technique will be to approach the result from above (f'u)

49 Square root

and below (rl):

[;	 I[varru _

0< rl]
Tt,TU: 0 , [.q ~ Tt2 5 ;q < TU2

Tt + 1 = ru

]I

We now work on the inner part.

4.5 Refinement

Anticipating	 use of rt + 1 i- ru as a loop guard we concentrate on the

- d f b <Ii - - 1 9 - b -d (0 < rl< ru)remam er 0 t e post-con tIon, usmg 8W WIt m. = I' - ,
r :$sq<ru

to proceed:

o<rl<ru]_
~ Tt, TU: [sq ~ 0, rt2 Ssq < ru2 , (6)

o<rl<ru]O<rl<ru 2
Tt, TU: [Tt2 S sq < TU% , rt2 :$ aq < ru

rt+l=ru

Using laws 1 and 7, we can show that for the first component of the
sequential composition above - establishing mid, to become the loop in
variant - we have

~ Tt, TU:= O,aq+ 1

We now concentrate on the second component.

4.6 Refinement

We now introduce the loop, rewriting the second component of the sequential
composition (6) to bring it into the form required by law 11; writing inu

50 SPECIFICATION STATEMENTS AND REFINEMENT

now for our mid above, we have

= rt, ru: [true) inti I rt + 1 = ru]

and then by 11, with variant ru - ,t, we proceed

~ dort+l#ru-.
rt, ru: [rt + 1:f:. ru , inti, 0 ~ ru - rt < ruo - rto]

od

4.7 Refinement

For the loop body, we use law 4 again to introduce a local variable rm to
"chop· the interval rt.. ru in which the result lies:

l;	 II var rm;
rt, ru, rm: [rt + 1 f:. ru , inti, 0 ~ ru - ,t < rUQ - rtol

II
We first choose rm between ,t and rv, using law 9 then law 3 twice to
develop:

b	 rm: ['t+l#ru, inti, rt<rm<ru]i

,t, ,u: [rt < rm < ru , inti, 0 ~ ru - rt < ruo - rto]

Then with laws 1 and 7, we quickly dispose of the first component, deciding
to make our choice of rm divide the interval evenly:

l; rm:= (rt + ru) div2

We proceed with the second component.

4.8 Refinement

The natural Case analysis is now to consider rm2 ~ sq versus rm2 > 1Jf[j

accordingly, with law 10, we so divide our task and immediately apply law

Square lOot 51

3 to each case; we have

rt<rm<ru2~ if rm ~ s9 - rt: in. , 0 ~ - rt < 'uo - rt o][rm':$ s9

U rm2 > s9 -+ rt: [rt < rm < ru in. , 0 ~ ru - rt < ruo - ,to]
fi rm' > s9

For the first branch, we have by law 7

~ rt:= rm

For the second branch, we have similarly

~ru:= rm

This completes our development.

4.9 Consolidation: the implementation

Developments in this style generate a tree structure in which children collec
tively refine their parents; to obtain the program .lIneat/' we simply Batten
the tree. For the square root program, the result is 8.8 follows:

II var ru;

rt,ru:= 0,s9+ 1;

do rt + 1 =I ru

I[var rm;

rm:= (rt+ru)div2;
if rm' ~ S9 - rt:= rm
U rmz > S9 - ru:= rm
Ii

II
ad

]I

It ;.. to be titre titled that this consolidated presentation is not to be carried
off as the only relic 0/ our development. The development itself must remain

52 SPECIFICATION STATEMENTS AND REFINEMENT

as a record of design steps taken and their justifications (and in industrial
practice, of who took them!). Mistakes will still be made, and corrections
applied; only when a complete record is kept can we make those corrections
reliably, without introducing further errors - and learn from the process.

5 Derivation of laws

In this section we will prove the laws 2 and 11 of section 3. We do this for
several reasons: to reassure the reader, who may doubt their validity; to
demonstrate the use of the weakest pre-condition formula for specificatioDs;
and to suggest that the collection of laws can easily be extended by similar
proofs.

5.1 Proof of law 2

Law 2 allows us to strengthen the post-condition of a specificationj in sim
plest terms1 this means replacing post by post' as long as we know that
post' ::::} post. The side-condition is weaker than this, however: it takes both
the pre-condition and changing variables into account, making the law more
widely .pplicable.

In the proof below, we will assume that free-standing formulae are closed
- that is, that their free variahles are implicitly quantified (universally). It
is this that will allow us to rename variables when necessary.

Theore:m. 3 Proof of law e: if the following side-condition haids

pre => (V iii • P08t' ~ P08t) [ill\OJ
then 8C1 does this refinement:

iii: (pre, p08t) [;; iii: [pre, p08t'l

proor By theorem 2, we need only show

pre A ii = t:b ==> wp(w; [pre, post'], post A ii = iio)

Derivation of laws 53

Since in definition 4 the predicate R must not contain tt,J we rename those
above to iiJ. (we may do this because the formula i8 cl08ed)j we must show

pre A ii = ih ==> wp(w: [pre, post'], P08t A ii = iiI)

Definition 4 is now appliedj we must 8how

pre" iT = .. ==* pre" (V iii • post' ~ past" - = -I) [",\iil

Clearlll we can remove the conjunct pre 1"n the con8equent J because it occurs
in the antecedentj we can remove iI = iIt because ii and the quantified to are
disjointJ and v = iiJ. appears in the antecedent. It remain8 to prove

pre" ii = .. ==* (Viii. past' ~ past) [",\ii'J

And thi8/011ow8 directl,l/rom the side~cond1'h'on"

Q

5.2 Proof of law 11

We will deal with the following restricted version of law 11, in which we
consider a single guard only and take ii and w the samej we must show

[true, 1"nll I """'Iguo.rd]
do

guard [guard I inv I 0 ~ var < varo]

od

Our proof is based on the loop semantics given in [12]i we will show that for
k ~ 1

inv A (guard ~ var < 1:) ==> HJ:(1"nv A -,guard) (7)

From this will follow

In"
in"" (guard ~ (3 k ~ 1 • var < k))

= (3 k ~ 1 • inv" (guard ~ var < k))

~ (3 k • H,(inv" ~guard))

= wp(do···od, inv A-,guard)

Thus by theorem 1 we will have as required that

[inv, inv A -,guard] ~ do··· od

54 SPECIFICATION STATEMENTS AND REFINEMENT

It remains therefore to prove (7), and this we will do by induction over
k. We note first that Ho = inti 1\ guard, and continue by direct calculation
(writing pre' for prelV\"'] rtr., and H. for H.(inv/\ ~guard)}:

HI

guard)
~ Hov (guard A inti

(V V • inv /\ 0 $ var < varo ~ Ho} [v,,\ VJ

Ii (guard /\ inv)
o V (V V' • inti' A 0 ~ var' < var => HJ)

¢' (~guard /\ inv) V (guard /\ inv /\ var < 1)
= inti 1\ (guard => var < 1)

OUf inductive step now concludes the argument:

H1+1

(guard /\ inv)= Ho V (V ii' • inti' A 0 :S var' < var => HD

(guard /\ inv)))
¢"

Ho V (V",. inv' /\ 0$ var' < var ~ (guard' ~v~ar' < k

¢" (guard /\ inv)

Hov var < (k+l)

~ inv /\ (guard ~ var < (k + 1))

<:'

The puzzling thing about law 11 is that it has DO side-condition, wherea.s
one might expect to find the condition

guard A inti => a:S var

But closer inspection reveals that whenever the above formula. fails, the loop
body is infeasible: it must terminate (since guard A inti holds initially) and

55

6

Conclusion

must establish 0 S tlar < 0 (since 0 'i tlar holds initially). By the law of
the excluded miracle (see [12]), no executable program can do this - the
refinement, though valid, is barren.

For the practising developer, perhaps the side-condition should be ex
plicit; indeed, law 11 can be rewritten this way, with the 0 S tlar dropped
from the post-condition of the loop body. For the historical record of our
development however, we want to prove the very minimum necessary
and feasibility is of no interest. There would be no program, and hence no
record, if a feasibility check would have failed.

Conclusion

We have claimed that the integration of specifications and executable pro
grams improves the development process. In earlier work [35], the point
was made that all the established techniques of refinement are of course still
applicable; their being based on weakest pre-condition semantics automat
ically makes them suitable for any construct so given meaning. Indeed an
immediate but modest application of this work is our writing for example
"choose e from s" directly in our development language as "e:E 8".

The refinement calculus is a step further. We are not claiming that it
makes algorithms easier to discover, although we hope that this will be so;
but it clearly does make it easier to avoid trivial mistakes in development
and to keep a record of the steps taken there. A professional approach to
software development must record the development process, and it must do
so with mathematical rigor. We propose the refinement calculus for that at
least.

Another immediate possibility is the systematic treatment of Z "case
studies" as exercises in development, and we hope to learn from this. (There
are a large number of case studies collected in [37].) Such systematic devel
opment is already underway for example at the IBM Laboratories at Hursley
Park, UK 144).

The techniques of data refinement, in which high-level data structures
(sets, bags, functions ...) are replaced with structures of the programming

56 SPECIFICATION STATEMENTS AND REFINEMENT

language (arrays, trees",), fit extremely well into this approach. Also fa
cilitated is the introduction of procedures and functions into a development:
the body of the procedure is simply a specification statement "yet to be
refined," and the meaning of procedures can once more be given by the el
egant copy rule of Algol-60. These ideas are explored in [32] and [47], and
we hope to publish them more widely.

7 Acknowledgements

It is clear our approach owes its direction to the steady pre88ure exerted by
the work of Abrial, Back, Dijkstra, Hoare, and Jones. More direct inspi
ration came from the weakest pre-specification work of Hoare and He [25],
who provide a relational model and a calculus for developmentj they strongly
advocate the calculation of refinements 8S an alternative to refinements pro
posed then proved. Robinson [47] has done earlier work on the refinement
calculus specifically.

We believe the earliest emhedding of specifications within Dijkstra's lan
guage or weakest pre-conditions to be that reported in Back's thesis (4], and
to him we freely give the credit for it. His descriptions are single predicates,
rather that the predicate pairs we use here, and he gives a very clear and
comprehensive presentation of the resulting refinement calculus. Our work
extends his in that we consider predicate pairs, as does VDM, but - unlike
VDM - we do not require those pairs always to describe fea.sible specifica
tions. Because of this, we obtain a significant simplification in the laws of
our refinement calculus.

In [30J L. Meertens explores similar ideas, and we are grateful to bim for
making us aware of Back's work.

We have henefited from collahoration with the IBM Laboratory at Hurs
ley Parki the joint project [44] aims to transfer research results directly from
university to development teams in industry.

Morris [41] independently has taken a similar approach to ours (even
to aUowing infeasible prescriptions); we recommend his more abstract view,
which complements our own.

57 Acknowledgements

To the referees, and to Stephen Powell of IBM, we are grateful for their
helpful suggestions.

Procedures, parameters, and abstraction:
separate concerns

Carroll Morgan

Abstract

The notions of prol:ld1lre". parameters, and abstraction are by con
vention treated together in methods of imperative program develop
ment. Rules for preserving correctneBS in such developments can be
complex.

We show that the three concerns can be separated, and we give
simple rules for each. Crucial to this i.e the ability to embed specifi
cation - representing abstraction - directly within programsj with
this we can use the elegant copy rule of ALGOL-50 to treat procedure
calls. whether abstract or Dot.

OUT contribution i.e in simplifying the use of the three featuree,
whether separately or together, and in the proper location of any dif
ficulties that do arise. The aliQ.8ing problem, fOT example, is identified
88 a llloss of monotonicity" with respect t.o program refinement.

Keywo:rds: Programming methodology; procedure call; parametersj
apedfication; aliasing.

Introduction

In developing imperative programs one identifies points of procedural ab
straction, where the overall task can be split into subtasks each the subject

I}Appeared in Sei. Compo Prog. 11 (1988) @Copyright 1988, Elsevier Science Publishers
B. V. (North Holland)

58

1

Procedure call 59

of its own development subsequently. Integration of the subtasks is ac
complisbed ultimately by parametrized procedure calls in the target pro
gra.mming language. We argue here that these concerns - procedures,
parametrization, and abstraction - can be separated, and that the result is
of practical utility.

Abstraction identifies a coherent algorithmic activity that can be split
from the main development process; conventionally, a procedure call is left
at the point of abstraction, and its necessary properties become the speci~

fication of the procedure body. Instead, we leave the specification itself at
the point of abstraction, with no a priori commitment to a procedure call.

Procedure call we treat as simple substitution of text for a name, not
caring whether we substitute programming language code (as we would in
the final program) or a specification (as we would in a high-level design).

Parametrization we treat as a substitution mechanism that can be ap
plied uniformly to specifications or to program language code, whether or
not a procedure call occurs there.

The aim is to give a simple orthogonal set of rules for treating each
concern. Existing practice is in most cases easily realised by appropriate
combinations of the rulesi but the independence allows greater freedom than
before.

2 Procedure call

We return to the simple view, taken in the ALGOL-50 (revised) report [42],
that procedure calls are to he understood via a copy rule: a program that
calls a procedure is equivalent to one in which the procedure name is replaced
by the text of the procedure body. In the examples to follow, we declare
(para.meterless) procedures using

procedure name ~ body

60 PROCEDURES, PARAMETERS, AND ABSTRACTION

With the copy rule, therefore, we have the equality indicated in the following
example:

procedure Inc == %:= % + 1

::=0;
Inc;
write .z

% :=0;
.z := .z + 1;
write :z:

=

(1)

The technique has impeccable credentials; it is for example strongly (and
deliberately) related to the following one-point rule of predicate calculus:

(Vuz= T~P) ~ P[z\TI

We write quantifications within parentheses 0 which delimit their scope, and
use 8 spot. to separate the binding variable from the body. In the formula
above) T is some term not containing .z free, P a predicate, and P[:z:\ TJ the
result ofreplacing .z by Tin P. We assume that the substitution [:z:\T] is
defined 80 that it avoids variable capturej similar care is needed with the
copy rule.

But the copy rule gives the meaning only of programs written entirely in
a programming language. In contrast) the modern "step-wise" approach to
program development introduces hybrid programs in which names denote
program fragments "yet to be implemented". One understands the effect of
these fragments in terms of their specification - abstracting from the detail
of implementation - using rules specifically for procedure call such as those
given in [221, 1141, and [15]. The simple copy rule cannot be applied, for
there is not yet program text to copy.

In l22J, for example, one finds a Rule of adaptation, in the style of the
rules of [21], with which procedures specified by pre- and post-conditions
can be proved to have been used correctly in a calling program. There is
also given in [22] a Rule of substitution for dealing separately with the effects
of parameter passing. In the more recent [15] and [14], combined rules treat
procedures - as specifications - with their parameters, all at once.

Here we reverse the trend, not only retaining the earlier view [22], which
separates procedure calling (adaptation) from parameter passing (substitu
tion), but also splitting procedure call from procedural abstraction. For

Procedural abstraction 61

procedure calls, therefore, we retain only the copy rule of ALGOL 60 [42,
4.7.3.3]:

... the procedure body ... is inserted in place of the procedure
statement ... If the procedure is called from a place outside
the scope of any non-local quantity of the procedure body, the
conflicts between the identifiers inserted through this process
of body replacement and the identifiers whose declarations are
valid at the place of the procedure statement ... will be avoided
tbrough suitable systematic changes of the latter identifiers.

3 Procedural abstraction

We take the axiomatic view: a procedural abstraction is described by a
predicate pair comprising a pre-condition and a post-condition, both built
(mainly) from program variables. We write such specifications using the
notation [pre, post}. In the style of [12] a program P satisfies such a specifi
cation iff

pre =? wp(P, post) (2)

Paraphr88ing [12, p. 16], we say that

pre characterises a set of initial states such that activation of
the mechanism P in anyone of them will certainly result in
a properly terminating happening leaving the system in a final
state satisfying post.

But we adopt a different style (35) (similarly [4J, [41]), writing more
directly but equivalently

[pre, post] !; P (3)

This we read "the specification [pre, post] is satisfied by P"'. And we make
specifications "first--class citizens", giving their semantics in the same way
as all other programming constructs are defined in 112].

62 PROCEDURES. PARAMETERS, AND ABSTRACTION

Definltion 1 Let pre, post, and R 6e predicates over the program variables
v. We define the weakest pre-condition 0/ the specification [pre, post] with
respect to the post-condition R as follows:

wp([pre, post], R) = pre /\ (V •. post => R)

<:>

In that definition and below, single letters tI refer to a vector of va.riables
(possibly.ingleton). Definition 1 is discuBBed in detail in [41] and [35]; tbe
latter allows a more general form in which post can refer to the initial state
as well.

For the present, we give an informal justification of definition 1: we
regard [pre,post] BB a statement, and its first component pre describes the
initial states in which its termination is guaranteed; this is the first con
junct. Its second component P08t describes the 6nal states in which that
termination occurs, and so we require also that in all states described by
post the desired R holds as well; this is the second conjunct.

We now define the relation "is satisfied by~ - that is, !;;;; - as in [4], [41],
[35], [20]:

Definition 2 For programs or specifications PI and P2, we say that PI is
satisfied by P2, or equivalenU71 that P2 refines PI, iff for all post-conditions
R we have

wp(Pl, R) => wp(P2, R)

We tmit, thu. PI c; P2.
<:>

With definitions I and 2 we can prove that (2) and (3) are equivalent
(see (351). Tbat equivalence allows us to take [pre, post] as the trivial and
most genera.! solution for P in (2). Further, definition I agrees with the Rule
0/ adaptation [22[and with tbe procedure call rule [14,12.2.1] in the special
case where the abstraction is in fact a procedure.

But we are not necessarily linking procedure call and procedural abstrac
tion: procedure call is useful even when the procedure body is executable

63 Procedural abstraction

We 8S8ume below that a and 6 are fixed.

Ib' - 4ac ~ 0, ..' + b% + c = 0]

-H~]~	 [6 2
- 4ae ~ 0, % ,. (standard mathematics)

~	 [62 - 4ac ~ 0, %2 = 62 - 4ac]; (sequential composition)

x:= (x - b)!2a

~	 procedure Sqrt ~ [6 2 - 4ac ~ 0, %2 = 62 - 4ac]i (copy rule)
Sqrt;
x:= (x- b)!2a

Figure 1: Development of quadratic-solver

code; and procedural abstraction is useful even if the implementation ulti
mately is "in-line". Consider the example of figure 1, in which we introduce
a parameterless procedure Sqrt. There we use specifications [pre, post] as
fully.fiedged program constructs, as indeed definition 1 allows us to do.

The conclusion of this exercise would be to refine the remaining specifi
cation, but the fact that it is the body of a procedure is now irrelevant:

Ib' - 4ac ~ O,x' = b' - 4ac]

C;	 x:=yb'-4ac

Thus we see that by allowing procedural abstractions - specifications
- to mingle with ordinary program constructs, we can with the copy rule
accommodate calls to procedures for which we do not yet have the executable
code. The specification itself is the text we copy, and definition 1 gives
meaning to the result.

64 PROCEDURES, PARAMETERS, AND ABSTRACTION

4 Parameters

Parameters used to adapt a general program fragment to a particular pur~

pose - whether or not that fragment is a procedure. Historically, proce
dures and parametrization are closely linked, and parameter passing means
40lparametrizing a procedure caU".

Apparently the simplest example of parametrization is ordinary textual
substitution. When substituting into programs, much the same rules apply
as for substitution into formulae: only global (compare free) occurrences of
% are affeetedj and capture of I must be avoided by systematic renaming
of local (compare bound) variables. And if we are replacing a variable by a
term, then that variable cannot appear on the left of :=.

In example (1), we could use substitution to write instead

... :=0;
11 := 11 + 1;
write ...

11 := 0; (parametrization)

« := < + 1)[<\V];

write 11

=	 procedure Inc == % := x + 1; (copy rule)

Y := 0;

Inc[<\v];

write V

In the final step above, the substitution suggests - intentionally - supply
ing an actual parameter'll for a formal parameter % in the call of procedure
Inc. But in the previous step, we see [%\11] as a simple substitution.

That style of parametrization, known as call by name, is unfortunately
not as simple as it appears. Not only is it difficult to implement (requiring
"thunks"), but it can be difficult to reason about, as well. If the actual
parameters p8.88ed lead to distinct names within the procedure for the Bome

variable, then the parametrization may lose the crucial property of mana
tonicity: we won't have that PI [;; P2 implies Pl[<\T] [;; P2[<\T].

Parameters 65

That phenomenon is known as aliasing, and is traditionally associated
with procedure call; writers on program development advise us to avoid it.
Because of aliasing, call by name (and similarly call by reference: Pascal's
var) must be used with care. But, in fact, aliasing loses monotonicity- and
that is why we should avoid it. We can separate the problem from procedure
call.

Below we show by example that aliasing loses even equality (trivially,
monotonicity also): we have

(% := 0; ,:= 1) = (,:= 1; %:= 0)

but

(% := 0; ,:= 1)[%\,]
= ,:=0; ,:=1
= ,:= 1
f- ,:= 0
= ,:= 1; ,:= 0

= (,:= 1; %:= 0)[%\,1

In the following sections, we define "substitution by value", Gby result" ,
and Gby value/result"; and we prove that, unlike simple substitution, they
are monotonic.

4.1 Substitution by value

For any program P, we write the substitution by value in P of tenn T for
variable % as follows:

P[value %\T]

For simplicity in tbe following sections, we use the notation P < R >
for wp(P, R) (following [20]).

Definition 3 SubBtitution by value: if x doel1 not occur free in R, then

P[value %\T] < R > "" P < R > [%\T]

<:;i

66 PROCEDURES, PARAMETERS, AND ABSTRACTION

Note that the substitution on the right above is ordinary substitution into
the predicate P < R >: the we&kest precondition is calculated first, then
the substitution is made. That convention applies everywhere below.

Substitution by value caD be implemented with the well-known call by
value technique of asaignment to an anonymous local variable. It is easily
shown that for any program P, variable %, term T, and fresh local variable
1, we have

P[value .\T]

= begin var 1;
1:= T;

PI·\I]

end

That implementation) by using ordinary substitution only in a restricted
way, avoids the probleJll8 we encountered above. First, since the variables
1 are fresh and distinct, there is no aliasingj second, since the replacing
expressions are variables rather than general terms, there is no difficulty
when the replaced variables occur on the left of :=.

But our main interest is in monotonicity:

Theorem 1 Substitution 6y tlalul!l i8 monotonic: if P i; Q then

P[value .\TJ c; Qlv.alue .\T]

Proof: Immediate from definitions 3, 1 and the monotonicity (over =» of

substitution into predicates: if for predicates X and Y we have X ~ Y 1

then ronny va.riable e and term T we bove also X[e\T] => Y[v\TJ.

<:>

4.2 Substitution by result

For any program P 1 we write substitution 6y rl!l8ult in P of variable y for
variable 2: as follows:

P[result .\y]

Parameters 67

This is a more restricted form of Bubstitution than substitution by value,
because we substitute a variable 11 rather than a term T. It is defined 8B

follows:

Definition 4. Sub8titution b1l re8ult: if x doe8 not occur free in R, then

Plre.uIt %\YI < R> '" (V %. P < Rly\%] »

<;:>

Substitution by result can be implemented by the call by result technique
of assignment from an anonymous local variable. It can be shown that for
any program P, variable %) term T, and fresh local variable I, we have

P[result %\YI

= begin var Ij
PI%\I);
y:= I

end

For monotonicity, we have

Theorem 2 SubBtitution 611 reBult i8 monotonic: if P b: Q then

Plre.ult %\yJ C; qlre.ult %\y]

Proof: Immediate from definition 4) as for theorem l.
<;:>

4.3 Substitution by value/result

For any program P, we write the substitution 611 value/re8ult in P of term
11 for variable % as follows:

P[value result %\y]

Substitution by value/result is a combination of the two substitutions above,
and is well-behaved in the same way. We have

68 PROCEDURES, PARAMETERS, AND ABSTRACTION

Definition 5 Substitution by value/result: il x does not ote.,,. free ift R,
then

P[value r""ult x\,] < R > ~ P < R[,\xJ > [x\,]

"
Theorem 3 Substitution II, l1alve/renlt is monotonic: il P ~ Q then.

Plvalue r""ult x\,1 ~ Q[value result x\,1

Proof: Immediate from definition 5, &8 Cor theorem 2.

"
The equivalent program fragment is given by

P[value r""ult x\ T]

= begin var I;
l:= Yj

P[x\I];

,:= 1

end

4.4 Apparent limitations

Each of the definitions 3, 4, 5 contains the limitation uif % does not occur
free in R". ThuB with them we cannot calculate

(, := x)[value x\OJ < x = °> (4)

It'e clear that the weakest precondition in (4) above should be % = O. But
calculation (using definition 3 erroneously) reveals instead

(, := x)[value x\O] < x = °>

(, := x) < x = 0> [x\O]

= (x = O)[x\OJ

(0 = 0)

= t,.u('

We avoid such problems by extending definitions 3-5 uniformly.

69 Parameters

Definition 6 II the substit"tion t,pe sub ill value, result, or value re
sult, we have

P[sub %\TJ < R > '" P[%\llIsub I\TI < R>

where I is a fresh variable, not appearing in P, T, x, or R.
'V

The monotonicity properties persist, and for (4) we now have

(, := %)[vaJue %\0) < %= °>

= (,:= l)[vaJue 1\0] < • = °>

= (,:= I) < • = 0> [1\0]

= (% = 0)[1\0]

= (% = 0)

A second limitation is that we have not treated multiple parametrization.
For example, we cannot calculate

(,:=. + l)[vaJue .,result ,\z,z] (5)

We use the normal notation for multiple substitutions: in the above, z re~

places % by value and, by result.

We proceed as for simple (multiple) substitutions: for formula P, distinct
variables %, ", and terms T, U we know that

P[%,Y\T, V] = P[.\III,\mlll\TlIm\VJ

for fresh variables I and m. Our definition is therefore

Definition 7 For an, s"bstitution t,pes sub! and 8ub2, di8tinct variables
x and y, and terms T, U we have

P[subl %,suM ,\T, VI '" P[.\III,\mllsubll\TlIsub2 m\VJ

where I, mare Iresh variables.
'V

70 PROCEDURES, PARAMETERS, AND ABSTRACTION

The definition is easily generalised to more than two simultaneous substitu
tioDS. In (5) above, we now proceed

(,:=. + l)[value .,result ,\z,z] < R >

= (m:= 1+ IJivalue I\z][result m\z] < R>

= (II m. (m := 1+ l)[value I\z] < R[z\mJ »

= (IIm.(m :=1+1) < R[z\m][l\zJ »

= (II m. R[z\m][m\l + l][l\z])

= Rlz\z + I]

= z:=z+l<R>

Hence the program fragment increments z, 88 expected.

4.5 Real limitations

Unfortunately, we cannot treat the general cases of "'suhstitution by name"
or even lIIsubstitution by var". As we have seenJ simple substitution (i.e.,
by narne) does not respect equality of programs modulo wp unless severe
restrictions are made on its use. Those very restrictions, whatever they
might bel, are necessary to achieve mODotonicity and can be studied 8.8

such. With monotonicity, they can be treated 88 were the substitutions in
section 4 above.

Finally, Dote that in multiple result parametrization an apparent ali8IJing
can occur if two a.ctual parameters are the same, as in [result X, y\Zl z].
The effect of this must agree with that of multiple assignments z, z := X, y
and multiple simple substitutions [z, z\x, yJ: usually, they are considered
syntactically invalid.

5 Conclusion

Ru]e9 for parametrized procedural abstraction are complex. We have argued
that they are simplified by considering parametrization, procedure call, and
specification sep&I'ately. The result is a more uniform and orthogonal treat
ment, in which difficulties are properly located: aliasing for example shown
to be a non-monotonic construction.

IThey va.ry from writer to writer.

Acknowledgements 71

Combined rules, sucb as those of 114] and (22], can be derived from ours.
It is the program developer's choice whether to use them) or the more basic
rules here, or perhaps some other combination especially relevant to his
problem.

The separation we bave achieved relies essentially on the embedding of
specifications witbin programs: only this allows ALGOL's copy rule to give
the meaning of procedure calls independently of tbe level of abstraction in
the procedure body.

We have not treated the call-by-name and call-by-reference parameter
passing techniques because they do not fit easily into the standard axiomatic
framework of [21J and [12]. In [46, pp. 160-161], for example, call-by-name i.
treated in a slightly augmented logic in which one can state as a precondition
that aliasing is not to occur. That sbortcoming of the standard approach,
however, we separate from procedures; as we have shown, the real problem
is that in general

P =~. Q ~ P[z\T] =.". Q[z\T].

That is, equality as predicate transformers "=1IIp IJ is too coarse lor these
substitutions.

6 Acknowledgements

The work here depends on the original ideas of Hoare [22) and Gries and
Levin [15] for the axiomatic treatment of procedure parameters. I believe
Back [4] to have been the first to generalise wp in a way similar to ours
[35}. He uses single predicates, however, rather than pairs as we do, thus
foregoing the advantage of miracles [37].

I am grateful for the very thorough comments of the referees,

1

Data refinement by miracles

Carroll Morgan

AbBtract

Data refinement. is the trans(onnation in 8. computer program ofone
data type to another. Usually, we call tbe original dat.a type "'abstract",
and the final data type ·concrete'll. The concrete data type is said to
r~p,ueflt the abstra.ct.

In spite of recent advances, there remain obvioU6 data refinements
tha.t are difficult to prove. We give such a refinement; and we present
a new technique that avoids the difficulty.

Our innovation is the use of program fragments that do Dot sat
isfy Dijkstra's Law of the udud~d mi'4d~. These of course caD never
be implemented, and 80 they must be eliminated before the final pro
gram is reached. But in the intermediate stages of development, they
simplify the calculatione.

Keywords: Programming methodologYi data refinementj weakest
preconditions; laws of programming.

Introduction

Data refinement is increasingly becoming a central feature of the modern
programming method. Although it is a long-established technique, well
explained for example in [26], it is still developing. Recently it has been
extended ([45], [19], [16] and elsewhere) to allow a larger class of refinements
than had before been thought desirable. In this paper, we extend it slightly
further.

DAppeared in In/. P,o~. Lett. 16(S} (Jan. 1988). @Copyright 1988, Elsevier Science
Publishers B.V. (Norlh-Holland)

72

An abstract program 73

Given two program fragments A and C, we say that C refine• .A iff: C
terminates whenever A does; and every result of C is also a possible reBult
of A. In many cases the abstract fragment is a block (or module) uaing
some local (or hidden) variable a, say, and the concrete fragment is to use e
instead. The technique of data refinement allows the algorithmic structure
of the abstract fragment to be carried over into the concrete fragment: that
is, if we apply data refinement to the eomponents of the abstract fragment,
replacing them one--by-one with concrete components, then the concrete
fragment refines the abstract fragment overall.

We exhibit an "obvious" refinement, in which the abstract algorithmic
structure is reproduced in the concrete program, but whose corresponding
components cannot be data-refined using existing techniques. The inade-
quacy is due to the required data refinement's being valid only in certain
conditions rather than universally. Furthermore, these conditions cannot be
expressed in terIllB of the abstract variables.

Dijkstra'. law of the excluded miracle [12, p. 18J states

For all programe P, Ulp(P, /_I.oe) = /_I.e.

Recent work has suggested that derivation of programs is simplified if mira
de. - statements not satisfying the above - are allowed in the intermediate
development steps ([41], [I], [35], [43)). We demonstrate a specific applica
tion of miraclee by showing that they allow conditional data refinement to
proceed even when the condition involves concrete variables. The price paid
is that some reuoning is then necessary at the concrete level so that the
miracles - which can never be executed - are eliminated.

We use the weakest precondition calculus of Dijkstra ([12], [141l and its
associated programming language.

2 An abstract program

Figure 1 contains a program for summing a bag of integers. Bag comprehen
sions are indicated by "-< ... ;'-", and "+" is bag (as well as integer) addition.
We a86ume also that variable baghas size N. The statement z: E h stores in

74

3

DATA REFINEMENT USING MIRACLES

var	 6a,: bag of Integer;
".m : Integer;
".mmea : bag of Integer;

"urn, "mmea:= 0, -<~ ;
do ".mmea #- bag --+

II var z: Integer;
z:E (bag - Bummed);
Bum:= 8um + :r;
Bummed:= 8ummed+ -< :t' >

II
od
F'Igure I: Summing a bag of mtegers

the variable z an arbitrary element of bag 6; it is defined

lOp(Z:E 6,R) ~ (6#-<>-)"(V'Z:ZE6:R)

A difficult data refinement

We now transfonn the abstract program of figure 1 into a concrete program,
replacing the bage bag and Bummed by an array a and an integer n. An
ab8traction invariant will provide the link between the tWOj it is

OnN
" 60g=-< i :iEO..N-I: o[i]>- (1)
A Bummed =-< i : i E O..n-l : ali] >

We now use the fonnulation from [16] for proving a data refinement
correct, paraphrased below:

An abstract fragment A is data-relined by a concrete fragment
cunder abstraction invariant I iff the following holds:

[" lOp(A, true) =? lOp(C, ~lOp(A, ~[» (I)

Miraculous programs 75

With (1) &Dd our chosen abstraction invariant 1, we can show the fol
lowing data refinements:

Abstract Conude

summed :=-<> n.:= 0
summed #- bag .. #- N
<:E (bag - .vmmrd) %:= .[nl

But we cannot data-refine summed ;= summed+ -< Z' >-, for to do 80 we
would need C 98.tisfying

11\ top (summed := summed + -< % >-, true)
(2)

;00 wp(C, ~wp(.vmmrd:= .vmmrd + -< % >-, ~1))

It can be shown that no assignment to n satisfies (2); in particular,
C = "n:= n + I" does not.

4 Miraculous programs

We introduce tbe guarded command as follows, for condition G and state
ment s:

wp(G ~ S, R) '" G "" wp(S, R)

Guarded commands can neverl be implemented by real programs, because
they violate Dijbtra's law. Like complex numbenl, they can appea.r during
calculation, but must be eliminated if a real (compare implemented) solution
is to be reached. The worst offender is false -+ skip, because we have
Wp(jaI88 ~ skip, R) = I,vr, for sny R.

Nevertheless, the following statement does satisfy requirement (2):

(n#-N 1\ .[nl=%) ~ n:=n+1 (3)

I .•. w.ll, ha.rdly ever. on Iy when the guard i, rru~.

76

5

DATA REFINEMENT USING MIRACLES

Eliminating miracles

Although guarded commands violate the law of the excluded miracle, they do
obey other laws (distributivity of conjunctioD, for example). In particular,
we have tbe following:

Law 1 Assignment can he distributed through guarding:

v := ezp; B -Jo S

= -,wp(v:= ezp, ...,0) ---+ v:= ezp; S

Proof: For all postconditioDS R, we have

IUp(.lIV := ezp; B -Jo S· R)I

= de/(ezp) 1\ (B ~ Vlp(S, R))[_\ezp]

= de/(exp) 1\ (B[_\exp] ~ Vlp(S, R)[_\expll

= (de/(exp) ~ B[_\ezpll ~ (de/(exp) 1\ Vlp(S, R)[_\expll

= Vlp(~Vlp(_ := exp, ~B) -> _ := exp; S, R)

(end of law)

With law 1, we can eliminate the miracle; we have in the concrete loop
body:

,:= a[aJ;
,um:= Bum + Zj

(atN 1\ a[a)=x) ---+ a:=a+l

But this equals

,:= a[a];
(a t N 1\ a[a] = x) ---+ BUm:= Bum + x;

n:= n+l

For our final step, we Dote that

~Vlp(X := a[a], ~(a t N 1\ a[a] = x))

= ~(O ~ a < N 1\ ~(a t N 1\ a[a] = ala]))

= true

77

6

Conclusion

var	 a: array [O•• N -11 or 1alege,;
Bum: Integerj
a: [O•• NJ;

Bam, n := 0, OJ

doa'lN ~

II var %: 1alege,;
%:= a[aJ;
Bum:= nm+Sj
a:=a+l

]I
od

,(I'lgure 2: Summing an array of integers

With this, a.nd law 1 again, we reach the promising

true........	 %:= 4[nJj

Bam:= Bam + %j

a:=	 a+l

But (I,ue ~ S) = S for all S (another law), and 110 the guard can be
eliminated altogether. We a.re left with the concrete program of figure 2.

Conclusion

In our example, a proof of correctness of the concrete operation ft := n + 1
requires the precondition a[n] = s, which cannot be expressed 80lely in
terms of the abstract variables. Hence the proof method of [16] cannot be
used. Allowing concrete variables in the precondition is not the solution, for
that would destroy our ability to reason at the abstract level independently
of possible representations.

It is possible to rearrange our example program, and then to data.-refine
as a whole the compound statement

%: E (bag - .ummed);

Bummed := ,ummed+ ..0(% ;.

78

7

DATA REFINEMENT USING MIRACLES

In this ease concrete variables in preconditions are no longer necessary. But
then those two statements must alwaW8 appear adjacent: a severe restriction.
We would have lost the important technique of distributing data refinement
through program structure.

Guarded commands are useful also when stating rules for algorithmic
refinement, in many cases making them simpler by widening their applica
bility. Mistaken refinements - normally prevented by failure of an applica
bility condition - instead are allowed to proceed, but generate "infe8Bible"
programs from which the guards cannot be eliminated. The disadvantage
of this is that such mistakes can go long unnoticed; but the overwhelming
advant"l!' is the decreased proof ohligation faced by the developer [37].

Guarded commands were first introduced by Dijkstra [12], who used
them only within alternation and iteration constructs. As explained in [35],
we "discovered" miracles while extending Dijkstra's language to accommo
date embedded specifications.

Acknowledgements

The connection between infeasible specifications and guarded cornmandB was
pointed out by Tony Hoare, who together with He Jifeng and Jeff Sanders
demonstrates in [24] that the standard relational model of programs can
give a very elegant formulation of data refinement. They show easily that
data refinement is a correctness-preserving technique and that it distributes
through the ordinary program constructors. Infeasibility occurs naturally
within their work as relations whose domains are partial.

The work reported here falls within the larger context of joint research
with Jean-Raymond Abrial [1], Paul Gardiner, Mike Spivey, and Trev Vick
erSj I am grateful to British Petroleum for supporting our collaboration.

I am grateful also to the painstaking and perceptive referees, and to
Jean-Raymond Abrial, Paul Gardiner. David Gries, and Jeff Sanders. Their
suggestions have improved the paper significantly.

1

Auxiliary variables in data refinement

Carroll Morgan

15 February 1988

Abetrad

A set of local variables in a program il!I auxiliary if its memben
occur only in assignments to members of the same set. Data refinement
trans(oTJIU!J a program, replacing one set of local variablea by another
set, in order to move towards a more efficient representation of data.

Most techniques of data refinement give a direct trantlformation.
But there is an indirect techniqne, uing auxi1Ury variables, that pro
ceeds in several stages. Usua.lly, the two techniques are cODsidenld
separately.

It is shown that the several IItalee of the indirect technique are
themselves special cases of the direct, thus unifying the separate ap
proaches. Removal of auxiliary variables is formalised incidentally.

Kt:vworrh: Programming methodology, auxiliary variables, data
refinement, weakest preconditions, program tra.nsformation.

Introduction

Data refinement transforms & program so that certain local variables
called abstract - are replaced by other local variables - called concrete.
Usually the abstract variables range over mathematically abstract values,
such as sets, functions etc. The concrete variables take values more efficiently
represented in a computer, such as arrays.

°To appear in 1n/. Prot.. Lett. ©CopyriiJht Elsevier Science Publi8he~ B.V. (North
Holland)

79

80 AUXILIARY VARIABLES IN DATA REFINEMENT

There are many formalisations of data refinement, all more Or less equally
powerful. In each a rule is given for producing the concrete statements that
correspond to given abstract ones. We call 8ucb methods direct.

An indirect but equally effective appr08.ch uses auxiliary va.riables. First,
the concrete variables are introduced -in parallel with the abstract variables
they ultimately replace. The program is tben Umssssged'" (i'£'J algorith.
mically refined) to make those abstract variables auxiliary. Then they are
removed.

Our contribution is to show that the auxiliary variable technique is a
special case of the direct technique: in fact, it is a composition of direct
data refinements. That brings tbe two styles together, and a more uniform
view is gained.

2 The direct technique

Data refinement is described in [23, 26, 16]. An invariant is chosen that
relates the abstract variables to the concrete variables, and it applies to
the whole transformation. Using tbe invariant, each abstract statement is
replaced directly by a concrete statement. We use a recent formulation,
taken from [40, 13J.

Definition 1 Direct d.t. re/inement: Let A (C) be the abstract (concrete)
statement, a (c) the abstract (concrete) variables, and I the invariant. Then
we say that

A is data-refined to C by (1,.,0)

if for all predicates tP not containing concrete variables c

(3.:: 1/\ wp(A,4>)) '* wp(C,(3.:: 1/\4>)).

<;I

We M9ume that the concrete variables c do not appear in the abstract
program A.

81 The auxiliary variable technique

3 The auxiliary variable technique

This use ofauxiliary variables is described in [29J, [46, Ch.5], and 112, pp.64
65]. An invariant is chosen, as above. Concrete variables are added to the
program: their declarations are made in parallel with the existing a.bstract
declarations; and abstract statements are extended 80 that they maintain
the invariant. For example, an abstract assignment a := AE, where the
expreBSion AE involves abstract variables, is extended to a J C := AE, E by
an assignment to the concrete variables. The new expression E may contain
variables of either kind, as long as the new statement preserves the invariant
I:

I=> wp('a, c := AE, E', 1). (1)

In the next step, the program is algorithmically refined to ma.ke the
abstract variables auxiliary in this sense:

Definition 2 Auziliary varia6les: A set ollocal variables is auxiliary if the
only executable statements in which its members appear are assignments to
members of the same set.
<;)

Thus abstract variables must be eliminated from expressions E a.bove and
from the guards of alternations and iterations. Finally, the abstract variables
are removed from the program entirely; what remains is a data refinement
of the original.

4 The correspondence

First, we relate the data refinement (I, a, c) to the composition of two other
data refinements.

LemIll.8 1 Composition 0/ data refinements: Let e be the empty list of
variables. If A is data-relined to M by (I,e,c) and M to C by (true,a,e),
then A is data-refined to C by (1, a, e).

82 AUXILIARY VARIABLES IN DATA REFINEMENT

Proof: Note that empty quantifications (3£ :: ...) are super8uous. From
the assumption and Definition 1, we have for all 4> not containing c

I/I wp(A,</» ~ wp(M, I /1</», (2)

and for all.p (not containing e)

(3 a:: wp(M,.p)) ~ wp(C,(3a:: .p)). (3)

Now We have for all 4> Dot containing c

(3 a :: I/I wp(A, </>))

heAce (3 a :: wp(M, I /I </>)) from (2)

hence wp(C, (3 a :: I /I </>)) from (3)

That establish.. data refinement by (I,a,c).
<;)

The correspondence is this: the data refinement (I, Eo, c) corresponds to
the introduction in parallel of the concrete variables, while preserving Ii
and the data refinement (true, 4 J e.) corresponds to the elimination of the
auxiliary variables a. We Bupport that view with the following two lemmas.

Lemma 2 Introducing concrete variables: A is data-refined to M by (I, Eo, c)
if

1. for all</> not containing c, wp(A,</» ~ wp(M,</»; and

2. I /I wp(A,true) ~ wp(M,I).

Proof: For all 4> not containing c~

I/I wp(A,</»
hence I /I wp(A, </» /I wp(A,true) wp calculus
hence wp(M,</» /I wp(M, I) assumptions
hence wp(M, I /I </» wp calculus

<;)

83The correspondence

Assumption 1 of Lemma 2 states that M ,over dBtrad variables, is an
algorithmic refinement of A. Assumption 2 states that the invaria.nt, linking
II and c, is maintained provided A terminates. The eX&Inple (1) in section
3 is an instanc.e of this.

Lemma 3 Eliminating lIuril'/lr, "/I"'ables: M is data·refined to C by (trtle, a, e)
if for all ~ not containing /I,

1. wp(M,.p) ~ wp(C,4»; and

2. wp(M,.p) contains no a.

Proof: For all '"

(3 a:: wp(M,"'))
hence
hence
hence

(3 a :: wp(M, (3 a :: ",m
wp(M, (3 a:: "'))
wp(C, (3 a:: "'))

wp calculus
888umption 2
888umption 1

'V

Assumption 1 of Lemma 3 states that C ,over concrete variables, is an
algorithmic refinement of M. Assumption 2 states that in M final values of
c do not depend on initial values of /I - that is, /I is auxiliary.

As a final illustration, we apply (3) when a is not auxiliary, Taking
c := II for M J we must find C such that for all Y;

(3 a:: "'_,) ~ wp(C, (3 a :: "')). (4)

But there can be no such C J since

fal••

iff wp(C,' = 01\. # 0) excluded miracle
iff wp(C, (3 a :: • = 0)) 1\ wp(C, (3 a :: • # 0)) wp calculus
if (3 a :: a = 0) 1\ (3 a :: a # 0) assumption
iff true

Therefore that data refinement cannot succeedj such failures underlie the
soundness of the method.

84 AUXILIARY VARIABLES IN DATA REFINEMENT

Note that a variable that appears auxiliary in one place might not he
auxiliary in another. For example, in II := a + Ii ". i C := a we can
transform the first statement to skip (indeed, that transformation is always
possible). But (3) cannot succeed on the second statement: overall, the
transformation still failB.

5 Conclusion

We have shown that the two stages of the auxiliary variable technique are
data refinements themselves (Lemmas 2, 3), and we have confirmed that
the overall result is a data refinement also (Lemma 1). In passing, we have
formalised the removal of auxiliary variables.

Data. refinement increasingly seema more than a technique for refin
ing data.. The transformation (true, (I, E) - removing auxiliary variables
4 - has long been used in programming generally. And the transforma
tion (1, E, c) introduces new variables c which might remain in the program,
affording an alternate representation of the structure a.

The transformation (I ~ E, E), applied to the exported operations ofa mod
ule, allows their preconditions to be strengthened (by a8SUming 1)j it is
successful (compare tbe failure of (4)) only if each operation establishes I
finally. Thus data refinement can also formalise the strengthening of the in
variant within a module, though no variables are added or removed. Finally,
algorithmic refinement ("massaging") is a special case of that: (tru~, E, E).

Definition 1 is slightly more general than 140]: without restriction, we
allow free variables in 1 that do not necessarily appear in 4 or c. That allows
us our empty lists of variables: (I, E, E) is an extreme example. It also allows
invariants that refer to global variables unaffected. by the transformation.

We have not discussed the effect of our transformations on guards nor on
initialisations. Details are in [40], in [13] where a more theoretical and gen
eral approach is taken, and in [36] where it is shown how the transformations
allow data refinements to be calculated. in practice.

85 Acknowledgements

Acknowledgements

I thank Cliff Jones and Ed8ger W. Dijkstra for the auxiliary ~&riable tech
nique, the former also for reference [29], and Richard Bird, memben of IFIP
WG 2.3, and the referee for constructive criticism.

1

Data Refinement of Predicate Transformers

P.B.B. Gardiner' c.c. Morgan

29 February 1988

Abstract

Data refinement ill the systematic lubstihltion of one data type for
a.nother in a. program. UnaUy, the new data type is more efficient than
the old. hat alao more complexj the purpose of the data refinement in
that. cue is to make progress in a program design from more abstract
to more concrete formulations.

A particnb.dy l!IUnple definition of data retinement is possible when
programs are taken to be predicate transformers in the sense of Dijk
stn. Central to the definition is a fanction taking abstract predicates
to e.oncrete ones, and this CDodioD - a generalisation of the abstrac
tion function - therefore is a predicate transformer as well

Advantages of the approach are: proofs about data refinement are
simplified; more general techniques of data refinemeut are suggested;
aDd a style of program development i8 encollraged in which data re
finements are calculated directly without proof obligation.

Introduction

In many situations, it is more simple to describe the desired result of a task
than to describe how a task should be performed. This is particularly true
in computer science. Computer programs are very complex, both in their

·Snpported by British Petroleum Ltd.
°Submitted 1;0 TAtar. Camp. Sc.
°Copyrigbt © 1988, Paul Gardiner and Carroll Morgan.

86

87 Introduction

operation and in their repre8entation of information. Yet the task a prDgram
performs is often simple to describe.

More confidence in a program's correctness can be gained by describing its
intended task in a formal notation. Such specific:atiofUJ can then be used as a
basis for a provably correct development of the program. The development
can be conducted in small steps, thUB allowing the unavoidahle complexity
of the final program to be introduced in manageable pieces.

The process, called ~efinement, by which specifications are transformed into
programs has received much study in the past. [n particular [23)[12)[26) have
laid down much of the theory and have recognised two forms of refinement.
Firstly, algorithmic refinement: where one makes more explicit the way in
which a program operates, usually introducing an algorithm where before
there was just a statement of the desired result. And secondly, data re
finement: where one changes the structures for storing information, usually
replacing some abstract structure that is easily understood, by some more
concrete structure that is more efficient.

More recently the emphasis has turned towards providing a unuonn the
ory of program development, in which specifications and programs have
equal status. Such a theory is needed to provide the proper setting both
for further theoretical work on refinement and for conducting refinement in
practice. This goal has been achieved in [41 41, 35, 37J by extending Dijk
stra's language of guarded commands with a 8pedfic:ation statement. The
extended language, by encompassing both programs and specifications, re
duces in theory the process of modular program development to program
transformation. [41, 35, 37] cover only algorithmic refinement. In this paper
we carry on in the same style to include data refinement, and thus give a
more complete framework for software development. [40] has made a similar
extension.

An important part of our approach is the use of predicate transformers, as
in 112), which seem to have several advantages over the relations used. in
[25]. One is that predicate transformers can represent a form of program
conjunction not representable in the relational modeL This form of COD

junction behaves well under data refinement and can be used to simplify
the application of data refinement to specifications. Also, since recursion
can be re-expreS5ed in terms of conjunction, this good behaviour allows rea
soning about recursion without assuming bounded non-determinism - an

88 DATA REFINEMENT OF PREDICATE TRANSFORMERS

unwanted assumption in a theory of programs which includes specifications.
But probably the greatest advantage of using predicate transformers is that
the theoretical results are 80 easily applied in practice. In particular, we use
a predicate transformer to represent the relationship between abstract and
concrete states of a data refinement, and this predicate transfonner can be
used to calculate directly the concrete program from the abstract program.
The calculation maintains the algorithmic structure aftbe program and adds
very little extra complication. Moreover, these calculations do not have any
"'applicability conditions". No extra proof of correctness is necessary.

2 Predicate transformers

Following [12], we model programs as functions taking predicates to predi
cates. We blur intentionally the distinction hetween predicates and the sets
of states satisfying them, and therefore we think also of programs as taking
sets of (final) states to sets of (initial) states. In any case, for program P
a.nd predicate tf, called the pOlltcondition, the application of P to tf is writ
ten P tf and yields a predicate ,p, called the weakest precondition of 1/1 with
respect to P. We say that P trans/ormll1/1 into,p. This predicate ,p is the
weakest one whose truth initiall1l guarantees proper termination of P in a
state satisfying tf (finally). The expression P1/1 can also be read simply as
"P establishes 1/1" .

The purpose of predicates in the model is to specify sets of states. For this
reason, when giving the meaning of a program as a predicate transformerl
we will consider only predicates whose free variahles are drawn from the
programls set of state variables. We will call this set of state variables
the program's alphabet (written crP), and call the predicate!! whose free
variables are drawn from a given set of variables % "the predicates on :r;".

Thus, a predicate transformer P can be defined by giving the value of P1/1
for all predicates tf on crP. Of course, we will have to take care not to apply
predicate transformers outside their domains.

For clarity, we will sometimes distinguish between program texts and their
corresponding predicate transformers, writing [T] for the predicate trans
former denoted by the program text T.

• •

AlgoritbmJc refinement of predicate transformers	 89

We define an order ~ on predicates as follows

4> ~ t/J iff F 4> ~ t/J

The order ~ permits least upper and greater lower bounds of collections of
predicates r/Ji for which we write respectively

v 4>; and A 4>;.. ,
Also the order has a top and bottom

T and-L

which correspond to true and false.

The order on predicates is promoted to predicate transformers in the usual
way; (or predicate transformers P and Q such that aP = aq:

P [; Q iff lor all predicate. 4> on ",P, P 4> ~ Q 4>

This promoted order has least upper and greatest lower bounds as well as a
top and bottom element, and they satisfy the following equations:

(~P;) 4> = '{(P; 4», ,
(n P;) 4> = ~(P; 4»

.L4>=-L
T 4>= T

All the predicate transformers P we will consider are monotonic: for any
predicates 4> and t/J, 4> ~ t/J will imply P '" ~ P t/J.

3	 Algorithmic refinement of predicate transform
ers

In general, one mechanism is refined by another exactly when every spec
ification satisfied by the first is satisfied also by the second. For predicate
transformers we take specifications and satisfaction as follows: a specifica
tion. is a predicate pair [pre) post) comprising the initial assumptions pre

90 DATA REFINEMENT OF PREDICATE TRANSFORMERS

and the final requirement post; and a program P satisfies {pre, Plut] exactly
when

pre => P post

It is now.ssy to show thst P is refined hy Q exactly when P i;; Q.

4 Data refinement of predicate transfonners

During algorithmic refinement, local variables are usually introduced. And
when considering the external behaviour of a program, we ignore the effect
it has on its local variables. This gives us a new degree of freedom in
refining such programs: we can replace local variables by new ones, 80 long
as the overall effect on the global variables is preserved. This is called data
refinement.

The following syntax is used to hide (make local) a list of variables z:

Ilvar z I Ie PI!

The predicate I states the initialisation of %, and P is the program within
which the variables z may be used. This construct is used only if the alpha
bet of P contains z. The alphabet of the result is that of P with % removed.
The meaning of the construct is as follows: for any predicate t/J on (crP - %)

~!Ivarz I Ie PilI'" ~ (\Ix. 1 '* [PI"')

We now define data refinement. Let us supp08e we wish to replace the list
of varia.bles a (the abstract variables) in

Ilvar _II • PI!

by some other list of variables c (the concrete variables), and let the variables
of QP, other than 0, be 9 (the global variables). We choose any predicate
transformer rep that takes predicates on the variables 0, 9 to predicates on
the variables c, g. Then for programs P and pI, we write P :5 P' to mean
that P i. data-refined hy P'.

91 Data relinement of predicate transfortnen

Definition 1

P ~ P' iff repoP ~ P'orep

where the operator 0 is functional composition (of predicate trauforrners).

We will see that Cor data refinement to be well behaved, we must restrict
our choice Cor rep. We choose rep satisfying the following two properties:

• rep i. monotonic: (\I •• ~ ~,p) ~ (\I e • rep ~ ~ rep ,p);

• rep is V-distributive: rep ('{ ~;) = '{ (rep ~;). ,

Note that strictness is a special case oC V-distribu.tion (Le. rep.l = 1..).
Note also that this Conn oC monotonicity is stronger than the usual. Further
properties that Collow from these are proven below. In these proofs and
others we will make use or the fact that the two lists of variables a and 9
are, by definition, disjoint and so the variables a do not occur free in the
predicates on g.

Lemm.a 1 If t/J is a predicate on g, then

rep ~ ::; '"

proof:

~~~ (\f •• ~~1-) since a is not free in ~ 

~ ~ ~ (rep ~ ~ rep 1-) monotonicity of rep 

~ ~~ (rep ~~ 1-) strictness of rep 

~ ~~ ~ rep ~ predicate aJculU8 

rep <P ~ <P predicate cl.llculus 

Q 

Lemma 2 If t/J is a predicate on 4 , 9 and t/J is a predicate on g, the. 

(rep ~) 1\ ,p ::; rep(~ I\,p) 



92 DATA REFINEMENT OF PREDICATE TRANSFORMERS 

proof: 

t/J => (V- • </> of> </> 1\ t/J) since a is not /ree in t/J 
t/J => (rep </> of> rep(</> 1\ t/J)) monotonicit, of rep 

(rep </» 1\ t/J of> rep(</> 1\ t/J) predicate calculus 

<;I 

In subsequent sections we will discuss a particularly convenient choice for 
rep, and will show how to calculate suitable P'. For now, we give the fun
damental theorem of data refinement: 

Theorem 1 If for Buitable rep (aB defined above) we have Bhown that P :5 
pI, then 

I[var _I I. PH c; I[var e I rep I. P'll 

proof: Let t/J be any predicate on g, then 

~I[vara I I. PHIt/J 

= (Va. I of> ~Plt/J) semantics 

~ (Ve • rep I of> rep ~Plt/J) monotonicity of rep 

~ (Ve. rep I of> ~P'lrep t/J) hypotheBis 

~ (Ve • rep I of> ~pllt/J) lemma 1 and monotonicity of P' 

= ~ Ilvar eI rep I. P'111t/J semantics 

<;I 

The programming language 

The programmin.g lan.guage is the syntax with which we describe predicate 
transformers. Here we will use Dijkstra's language [12] with several exten
sions. 

5 



• • 

• • 

The progranuning language 93 

5.1 ExtensioDs 

All of the predicate transformers P which can be described by Dijkstra's 
original language satisfy the following properties: 

strictness P..L = .1; 

DlOnotoDidty '" ~ .p implies P '" ~ P .p; 

"-diBtributivity P (".p;J = "(P .p;), for any non-empty family {.p;};; 

continuity P (v.p;) = v(P .p;), for any cilain {.p;};. 

We will see that some of these properties fail in our extended la.nguage. 

The first extension was given in section 4 above: the introduction of 100
cal va.riables I[ var z I I • P]I. It preserves strictness, monotonicity, 1\

distributivity, and continuity. 

The second extension is the specification. It is written [pre,post] (88 in 
section 2, but here we add it to the programming language). The mea.ning 
of this construct depends on the alphabet. It is defined for alphabet z as 
follows: 

Definition 2 For any predicate ,p on z, 

[[pre,postl J.p ~ pre" (Vz. post =>.p) 

Specifications are monotonic and A-distributive, but [T,..l] is not strict, and 
IT, TI is not continuous (take any chain {.p;}; with v.p; = T but.pi # T

•
for any i). 

The third extension is con.junction of programs, written t Pi for any family 
; 

{Pili of programs. Its meaning is given 88 follows: 

Deflnltlon 3 

[t P;] ~ ,,[P;]
• 



94 DATA REFINEMENT OF PREDICATE TRANSFORMERS 

Thus the wnjunction of & family of progra.rns is the worst program that is 
better tha.n each member of the family. Conjunction preserves strictness, 
monotonicity, and continuity, but not A.distributivity: consider 

n[U>]t[T, ~?/>] I(?/>" ~?/» 

Conjunction is an important counterpart of the specification, since the spec
ification as it stands in definition 2 does not allow the post-condition to 

refer to the state before execution. Using conjunction and specification to
gether, we can rectify this problem. For example, the assignment statement 
11.	 := 11. +1 can be expressed as t[n = 1', n = .. + 1]. 

; 

This completes the extension of Dijkstra's language. We can now see that the 
only property retained from the original language is monotonicity, since each 
of the other properties is violated by at least one of the program constructors. 

5.2 Generalisations 

Having accepted the loss of strictness, continuity and A-distributivity, we are 
able to make other generalisations of the language. Choice and guarding 
need not be restricted to use within the do··· od and if· .. fl constructs. 
They can instead be defined as language constructs in their own right. 

DefinltloD 4- Choice: For any family {Pi} of programs we define their 
choice as follows: 

H',n - nn8;R
; • 

Definition 5 Guarding: For predicate G and program P, we define the 
guarded command G --+ P as follows: 

[G ~ PI?/> ~ G => nPI?/> 

Definition 6 Recursion: We must consider program contexts, which denote 
fundions from predicate transformers to predicate transformers. If C is a 
program context and P a program, then C(P) is a program also. The context 



Distribution of data rennement 95 

C should be thou.ght of as a program stru.cture into which program fragments 
(for example, P) can be embedded. We have 

[I' X • C(XlD '" fix[Cl 

where fix takes the least fixed point of a function (from predicate transform. 
ers to predicate transformcrs in this case). 

With these definitions, we can if we wish define the conventional if ... :6. 
and do ... od constructors as appropriate combinations. We have 

Definition 7 Alternation: 

if G, ~ P, 

~ 
IT G. ~ p. 
Ii 

is an abbreviation for 

• 
( IT G; ~ P;) IT~ (v G;) ~ abort 
i=l I 

Definition 8 Iteration: 

do GI --+ PI 

IT
 
U Gn --+ P,.
 

od
 

is an abbreviation for 

•
(I'X. ( [ G; ~ P;; X) [~(v G;) ~ skip) 

i=l ' 

6 Distribution of data refinement 

Mter theorem 1, the most important property of data refinement is that it 
distributes through the algorithmic constructors of our programming lan
guage. Only then can one carryover the algorithmic structure of the ab
stract program onto the concrete program. We prove this distribution for 
each constructor below: 



96 DATA REFINEMENT OF PREDICATE TRANSFORMERS 

LeDJID.a 3 Sequential composition: If P ::5 P' and Q ~ Q' then P; Q ::5 
P'j Q' 

proof: 

repo[P; QI 
= rep 0 [PI 0 [QI semantics 

!;; [P'lo rep 0 [QI Jaupothesis 

!;; [P'I 0 [Q'lo rep /aJlpotheeis an.d monotonidtll of pi 

= [P'; Q'I 0 rep semantic8 

<;I 

Lemma <I Sop: skip ~ skip 

proof: 

rep 0 'skiPI 
= rep 0 Id semantics 

= rep property 0/ Id 

= Id 0 rep property 0/ Id 

= [skipi 0 rep semantics 

<;I 

Lemma 5 Abort: abort ~ abort 

proof: 

rep 0 [abortI 
= rep o..L semantics 

=.L strictness of rep 

=..L 0 rep property 0/ .L 

= [abortl 0 rep semantics 

<;I 



97 Distribution of data rennement 

LeIDJDa 6 Guarding: To deal with guarded commands we will nee. another 
/unction from abstraet predicates to concrete predicates. 

rep.p ~ ,(rep'.p) 

We	 then have the following result for guarded commands. If P ,j pI then 
(G --+ P) ~ ((rep G) --+ PI) 

proof: 

rep	 IG ~ P! .p 
= rep (G =? [P].p) semantics 

= rep (~ G viP) .p) predicate calculus 

= (rep, G) V (rep IP).p) V-distributivity of rep 

= ~ (l'lJi G) V (rep IP! .p) definition ofnp 

= (rep G) =? (rep IP] .p) predicate calculus 

$ (rep G) =? ([PI] rep .p) h1lPothesis 

= IT( rep G) - PI! rep .p semantics 

Q 

LeIDJDa 7 Ghoice: If for each i Pi ~ PI then ~ Pi ~ ~ P: 
i i 

proof: 

repolOP;] 
; 

= rep 0 (r)IP;])	 semantics
• 

C; f}(rep 0 IP,!)	 monotonicity of rep
• 

C; f}(IPIl 0 rep)	 hypothesis
• 

= (1}IPi!) 0 rep	 property oln
• 

= [	 ~Pi ]orep semantics, 
Q 

Lemma 8 Gonia-netion: If for each i Pi ~ P: then t Pi ~ t PI 
i i 



98 DATA REFINEMENT OF PREDICATE TRANSFORMERS 

proof: 

rep 0 If,P,I 

=rep 0 (u[P,I) semantic8 

= u(rep 0 [P,I) V ~di8tf'ibutt'vity 0/ rep 

c: u([P!1 0 rep) hypothesis 

= (u[P:J) 0 rep property o/u 
= [fP,lorep semantics 

; 

~ 

Le:m.ma 9 Recursion: We fint promote data refinement to program con
tezu: we '0' that C ~ C' f:zoctl, when for all pairs 01 program. P and P' 
Buch that P ~ P', we have C(P) ~ C'(P') as well. The reBult for recursion 
is then as follow8: 

II C :5 C', then 

("X. C(X)):5 ("X. C'(X)) 

proof: The Koaster-Tarski theorem asserts the existence of an ordinal "1 
such that fix F = F"r 1.., where 

F' X=X
 
Fa+1 X = F(F" X)
 
r X = u (FP X)


p<, 

Hence, it is sufficient to prove nCr' 1.. j Ke'p 1.. for all 'Yo This can be 
proven by induction, The base case follows from Lemma 5, the step case 
follows from C j C' and the limit case follows from Lemma 8. V' 

7 Data refinement of specifications 

In the preceding section, we showed that data refinement can be performed 
piecewise (3 term we borrow from [40]), tbus maintaining the algorithmic 



Data re.finement of speci.fications 99 

structure of a program. We now consider the pieces lying within the struc
ture. 

There are two constructs to consider, the specification and the a.ssi.gnment. 
In fact, we can ignore the assignment statement since it is readily trane
Cormed into a simple specification. 

The following theorems provide a method for calculating the data refinement 
of specifications, and show that this method produces the IIlO8t general data 
refinement. 

In both theorems we will, again, write a Cor the list of abstract variables, c 
for the list of concrete variables, 9 for the remaining (global) variables and 
rep Cor the representation predicate transfonner. 

Theorem. 2 

[pre,post] ~ [",p pre, rep post[ 

proof: Let t/J be any predicate on g, a, then 

rep [ [pre,post] ) .;, 

= rep (pre II (Y g, •• post =? .;,)) semantics 

:'0 (rep pre) II rep (Y g, •• post =?.;,) monotonicity 0/ rep 

:'0 (rep pre) II (Yg, •• post =?.;,) lemma 1 

:'0 (rep pre) II (Yg, e. rep post =? rep';') monotonicity 0/ rep 

= [ [rep pre, rep postl ) rep .;, semantics 

<;> 

Theorem 3 If [pre, post] ~ P the. [rep pre, rep post)!; P. 

proof: Let t/J be any predicate on g, c, then 

[ [rep pre, rep postll';' 

= (rep pre) II (Yg,e. rep post=?';') semantics 

:'0 (rep pre) II (Yg, •• post =? V %) properties 0/ V 
Vg,cerep s=>jl 

:'0 rep (pre II (Y g, • • post =? V %)) lemma e 
Vg,c.rr:p s=>jl 



8 

1(]() DATA REFINEMENT OF PREDICATE TRANSFORMERS 

= rtp ([ [prt, pOBt11 V .) 8emQftttC8 
v f,c:erq '1Ii~. 

$P(rtp V .) hrpoth..ie 
v f,U"P _=>. 

=P( V rtp.) V -distribvtiw1/ 0/ rep
Vf,e_rep .=>1 

$Pt/J prtJperties o/V and monotonicitv 0/ P 

o 

Data refinement in practice 

So far we have given no indication as to how one chooses a suitable repre
sentation transformer rep. In fact, there may be many classes of program 
transformation that can be supported by the theory of the proceeding sec
tiODS. We can, though, cite one example that proves very useful in practice. 
This definition of rep) which is described below, gives the same form of 
data refinement as that in [16], [40) and also, under the name of downward 
simulation, in [24]. 

When performing data refinement, one always intends that the abstract and 
concrete states should correspond in some way. This correspondence can be 
expressed as a predicate over the two sets of state variables. From such a 
predicate (I say) the representation transformer can be defined 8.B foUows. 

rep 4> ~ (3 •• I A 4» 

It is easy to verify that this choice of rep has the required properties (i.e. 
monotonicilr and V -dislribulitJitr). 

np also has a simple form. 

rep 4> = (V •• I '* 4» 

Now that we have a definition for rep with such a simple form, we can see how 
easily data refinements can be calculated. The two simple transformers, rep 
and rep can be applied directly to the predicates of any abstract program 
so as to calculate a concrete refinement. In the abstract program all the 
pre and post conditions of specifications are replaced by their image under 



ConclufOOns 101 

rep and the guards by their image under "'flJf thUB leaving the algorithmic 
structure unchanged. The result is guaranteed correct by the theorems of 
the previoUB sections. 

9 Conclusions 

We have presented the familiar technique of data refinement in the novel 
context of predicate transformers. In doing 80 we have drawn on other re
cent work in program development: the factoring of Dijkstra's language into 
smaller pieces (Definitions 7 and 8); the use of recursion in practice rather 
than iteration as the basis for unbounded computations in Dijkstra's lan
guage [11); and the mixing of specification and program [4, 41, 35,37]. And 
in Definition 3 we give a further factorisation: with program conjunction, 
the technique of Glogical" variables is formalised. AJI of this comes together 
to promote a style of program design in which steps are made by calculation 
rather than via proof obligations. 

It is clear, though, that proof cannot be avoided altogetherI In practice, 
the necessary truths of predicate calculus are drawn on when strengthening 
postconditions and weakening preconditions - and virtually nowhere else. 
In this respect perhaps the proofs have moved rather than disappeared. 
Their confineTIlent though makes the other rules easier to apply in practice. 
Certainly they are easier to remember: the formulation of data refinement 
in theorem 2 is simpler than any other of which we are aware. 

Using predicate transformers as a model, rather than the relations of [24], 
affords several advantages. One is that the dependence on continuity is more 
easily broken. That allowed us to extend the work of [24] 80 that it applies to 
a language that includes constructs for specification as well as programming. 
Another advantage is the ease with which the theoretical results are applied 
in practice. Both these advantages are related to our conjunction, which 
can not be represented in the relational model. Conjunction simplifies the 
expression of specifications in our language; and this, in turn, permits the 
very simple method of refinement calculation. In contrast, the method of 
calculation in [24], although theoretically simple, gives rise to very large and 
unwieldy expressions in practice. 

Our relaxing of Dijkstra's "'healthiness" conditions has left us only with 



102 DATA REFINEMENT OF PREDICATE TRANSFORMERS 

mODotonicity: continuity, strietne88, and /\-diBtributivity are gone. That is 
similar to [41], where con tinuity and strictne88 are dropped so that tbe guard 
and choice symbols can be given meaning as operators in their own right. 
We too proposed this in [35], but have taken the process further, dropping 
also /\-diBtributivity, so that we can define the conjunction operator which 
is the key to simplifying the calculation of data refinements. 

Our results are potentially more general than those or(40] , since we recognise 
how the abstraction condition is, itself, applied as a predicate transformer, 
and base all are proofs on two properties of it. By doing this we make the 
structure of the proofs more explicit, and also leave open the possibility 
of finding other predicate transformers with these properties which can, 
therefore, also be used for data refinement. 

We also prove several results that [40] does not. Theorem 1 forms the 
important link between data refinement of local variables and operational 
refinement. Theorem 3 shows that our method of calculation yields the 
weakest program that is a data refinement of the original and thus that no 
1088 of choice is incurred by calculation. 

10 Acknowledgements 

An early description of data refinement appeared in [231, and it later was 
made part of the Vienna Development Method [26]. Specifications were 
embedded within programs by {41, who also treated data refinement. The 
first connection between data refinement and weakest preconditions was 
made by [4J. though it had heen earlier presented by [12J as a technique 
based on auxiliary variables. ( [31] explains the connection between these.) 
Most recently, [40] has given the same formulation as section 8 above, and 
his work has improved ours in several ways. 

Our own work owes much to collaboration with Jean-Raymond Abrial and 
Mike Spivey who have been a constant source of new and exciting ideas. 
Much of our contact with other researchers has been made possible by the 
generosity of British Petroleum Ltd. 



1 

Data refinement by calculation 

Carroll Morgan P.H.B. Gardiner· 

9 July 1988 

AbBtract 

Data re6nement is the systematic 8ubatitution of one da.ta. type for 
another in a program. Usually, the new data type is more efficient than 
the old, but possibly more complexj the purpoee of the data refinement 
in that case is to make progreu in program construction from more 
abetrad to more concrete formulatioDs. 

A recent trend in program con.traction is to calculate programs 
from their 8pecmc.atioIUlj that contruts with proving that a given pro
gn.rn satisfies some specificatiou. We investigate to what. extent the 
trend ca.n be applied to data refinement. 

Introduction 

In [3L Back proposed an extension of Dijkstra's calculus [12] where specifi
cations and programs are given equal status during program construction. 
Later interest in specifications generally h88 led quite recently to further 
work on such constructions [41) 35, 37, 5, 34, 6, 39]. The style is now known 
as the refinement calculus. 

Characteristic of any calculus is that it is used for calculation, Dot just 
description. The refinement calculus, therefore, should allow prograIJUJ to 

·Supporled by Britilh Petroleum Ltd.
 
°SubmiUed $:0 Add In/ormtJtied.
 
°Copyright © 1988, Carroll Morgan and Paul Gardiner.
 

103 



104 DATA REFINEMENT BY CALCULATION 

be calculated from their specifications. It does indeed allow presentations in 
which each intermediate design follows from a previous design according to 
BOrne law 0/ refinement. That contrasts with the more well-known style in 
which intermediate designs are first proposed and then proved to follow from 
their antecedents. OUf hope is that constructions in the refinement calculus 
will proceed more smoothly, and that proof obligations will be reduced. That 
is the point of a calculus, and it can be observed elsewhere: for example, in 
the differential calculus one uses laws of differentiation, not proofs from first 
principles. For differentiation, the process is now mechanical. In the integraJ 
calculus, we have laws too - but there, as in the refinement calculus, success 
is Dot guaranteed. 

Data. refinement is a special case of refinement: one replaces an abstract 
type by II. more concrete type in a program while preserving its algorithmic 
structure. Abstract operations are similarly replaced by corresponding con
crete operations. It is a well-established technique, with its own specialised 
proof rule. [23, 26J. 

OUf principal contribution is to draw data refinement into the calculaa 

tionalltyle: we show how to calculate data refinements rather than prove 
them. Our emphasis here is on practice, in contrast to our earlier [13]: 
this paper gives applications of that theory, though for convenience we have 
presented afresh some proofs which are corollaries by specialisation of [13]. 
Recent work by Morris [40] addresses the same concerns that we do. 

In passing we formalise logical constants, long used in program deriva
tion, but not until now treated rigorously. Their use in progra.rna loses the 
property of conjunctivity, another of Dijkstra's healthiness laws [12]. (The 
law of the excluded miracle, and continuity, have already been abandoned 
[35,41,43, 11].) 

This work relies on the ideas of the refinement calculus, reviewed in 
Sections 2 and 3 below. More detail can be found in [35, 37, 41, 4]. 



Refinement 105 

2 Refinement 

We consider Dijkstra's programming language [12], whose meaning is given 
by predicate tranB!ormerB. For any program P, we write [PD for its meaning; 
and that meaning is a function from (desired) 6nal assertions to (necessary) 
initial ones: 

For any formula ¢ over 8tate variables, and program P, [PI~ is 
the wea.ke,t formula whose truth in an initial state ensures that 
activation of P will lead to a 6nal 8tate in which ¢ is true. 

ThWl we write [PI¢ Cor Dijkstra's wp(P, ¢l. 

2.1 Algorithmic refinement 

A program P is algorithmicaUy refined by another P' whenever every speci
fication satisfied by P is satis6ed by P' also. We restrict our specifications, 
however, to formulae ,p::::} [P]¢ which 8tate "the program P must be such 
that its activation in a state in wbich ,p is true will lead to a state in which 
¢ is true." We do not, for example, specify time or space constraints. 

Definition 1 Algorithmic refinement: Program P is algorithmically re6ned 
by program pI precisely when, for all formulae ,p and t/J over the program 
variables, 

<P ~ [P]¢ implies <p ~ [P'D¢. 

We write P ~ P' for tbat relation8hip. 

" 
The following is an easy consequence of Definition I, and is what we will 

use in practice: 

Lemma 1 Algorithmic refinement: For programs P and P', we have P ~ 

pI precisely when 



106 DATA REFINEMENT BY CALCULATION 

[PI" =>- [P'It/> for &11 formulae t/> over the program variable•. 

Proof: For if, note that ~ =>-IPJt/> and [PIt/> =>- [P'It/> imply'" =>- IP'It/> as 
required; for only if. take ~ to be [PIt/> it.elf. 
<:> 

We assume that in Lemma 1 we may limit our choice DC fonnulae ,p to 
those containing only variables free either in P or P' or both. 

2.2 Data refinement 

Data refinement arises as a special case of algorithmic refinement. A pro
gram P is data-refined to another program P' by a traolll£ormation in which 
some so-called abstract data-type in P is replaced by a concrete data-type 
in P'. The overall effect is an algorithmic refinement DC the block in whicb 
the abstract data type is declared. 

For that, we add loeal variables to Dijkstra's language in the following 
(.tandard) way: 

DeflnllloD 2 Local ••ri.ble., For (Ii.t of) variable. I, formula I (the ini
tialisation), and program P, the construction 

Ilvar Ii I. Pil 
is a local blode in which the local variables I are introduced Cor the uee of 
program P; they are first assigned initial values such that I holde. We 
define, for t/J not containing: I, 

~ II var II I. PJlIt/> '" (VI. I=>- [PItf) 

<:> 

Note that the scope of quantifiers is indicated explicitly by parentheses 
(V. 00); the spot. reads "such thatJt 

• 

Where a postcondition t/J does contain the local variable I, Definition 2 
can be applied after systematic change of the local I to some fresh 1'0 We 
assume therefore that such clashes do not occur. 



Re.ti..aeme.nt	 107 

Where appropriate, we consider types to be simply setH of values, and 
will write II var I: T I I. P]I for II var 1 I (I E T 1\ 1) • P]I; tbus a variable 
is initialised to some value in its type. And if 1 is just true we may omit it, 
writing II var I. P)I or II var I: T. PII .. appropriate. 

Now data-refinement transforms an ahetract block II var a I I. P]I to 
a concrete blode I[ var ell'. P'1I. We assume that the concrete variables 
c do not occur in the abstract program 1 and P, and vice versa. The 
transfonnation has these characteri.stics: 

1.	 The concrete block algorithmically refines the abstract block: 

IIvaraII.P)I!; l[varrII'.P']I. 

2.	 The abstra.ct variable declarations var a are replaced by concrete vari 
able declarations var c. 

3.	 The abstract initialisation 1 is repla.ced by a concrete initialisation I'. 

4.	 The abstract program P, referring to variables a but Dot c, is replaced. 
by a concrete program P' referring to variables c but not a; moreover, 
the algorithmic structure of P is reproduced in P' (see below). 

The four characteristics are realised as follows. An abstraction invariant 
Al is chosen which links the abstract variables a and the concrete variables 
c. It may be any formula, but usually will refer to a and c at least. (See 
Section 4.1 below for a discussion of the impracticality of choosing false as 
the abstra.ction invariant.) The concrete initialisation l' must be such that 
l' ~ (3 a • AlA 1). For the concrete program we define a relation :5 of 
data.refinement: 

Definition 3 Data refinement: A program P is said to be data-refined by 
another program P', using abstra.ction invariant AI, abstract variables a 
and concrete variables c, whenever for all formulae t/J not containing c free 
we have 

(3 a • AII\ [Pj"') => [P'j (3 a • AII\ "') 

We write this relation P ~Al,G,C P', and omit the subscript Al,G,C when it is 
understood from context. 
<;) 



108 DATA REFINEMENT BY CALCULATION 

Definition 3 is appropriate for two reasons. The first is that it guarantees 
characteristic I, as we now show. 

Theorem 1 Souftdftc.. 0' d.t.-rtjiftcmcftt: If I' '* (3 •• AI/\ I) ftnd 
P:s pI, then 

II var.1 I. PJI I; II var c I I'. pIli 

Proof: Consider aoy t/J not containing a or c free. We have 

III var • I I • PIli" 
= (V • • I '* IPI,,) Definition 2 

(V C, • • 1,* [PI,,) C Dot free in above 

=> (V C, • • AI /\ I '* AI /\ [Pj,,) 

=> (V C • (3 •• AI /\ I) '* (3 •• AI/\ IP),,)) 
=> (V C • I' '* (3 •• AI/\ IPj,,)) 8S8umption 

=> (V C • I' '* [PII (3 •• AI /\ ,,)) assumption; Definition 3 

=> (V c • I' => [Plj,,) monotonicity; a not free in t/J 
[II var c I I'. pIli I" Definition 2 

<;;> 

The second reason our Definition 3 is appropriate is that it distributes 
through program composition. This is shown in [40, 13], aDd we refer the 
reader there for details. Here, for illustration, we treat sequential composi
tiODj alternation and iteration are dealt with in Sections 4 and 6 below. 

Lemma 2 Data-refinement distributes through seq.ential compoBt°tion: If 
P ~ p' ftnd Q ~ Q' then (P; Q) ~ (PI; Q'). 

Proof: Let t/J be any formula not containing c. Then 

(3 •• AI/\ [Pi Qj,,) 
= (3 •• AI/\ [PJ(I Qj,,)) semantics of "j:D 

=> [1"1(3 •• AI/\ IQ)"j P ~pl 

=> [Plj(IQ/1 (3 •• AI /\ "J) Q ~ Q'; monotonicity 

= [1"; Q'I (3 •• Al/\ ,,) semantics of "j:D 



Language extensions 109 

Q 

It is the distributive property illustrated by Lemma 2 that accounts 
for characteristic 4 above: if for example P is P1i P2i ••• P,. then we can 
construct P' with P ~ pI simply by taking P' = Pf; P~j ... P~ withPi ~ P: 
for each i. It is in this sense tbat the structure of P is preserved in pl. We 
will see in Section 4 below tbat this carries through for alternations and 
iterations also. 

3 Language extensions 

We extend Dijkstra'slanguage in two ways. With the specification statement 
we allow specifications and executable program fragments to be mixed, thus 
promoting a more uniform development style. With program conjunction 
we make more rigorous the use of so-called logical constants, which appear 
in specifications but not in executable programs. 

3.1 Specification statements 

A specification statement is a list of changing variables called the frame 
(say w), a formula called the precondition (say pre), and a formula. called 
the postcondition (say post). Together they are written 

w: [pre, post). 

Informally this construct denotes a program which, 

if pre is true in tbe initial state, will establish post in the fina.l 
state by changing only variables mentioned in the list w. 

For the precise meaning, we have 



110 DATA REFINEMENT BY CALCULATION 

D4:!fi.nition 4: Specification statement: For Cormulae pre, post over the pro
gram variables, and list of variables w, 

Kw: [pre. post) 10/> '" pre/\ (V w • post,* 0/» 

<:> 

The symbol:::: is read "is defined to be equal to" . 

Specification statements allow program development to proceed at the 
level of refinement steps 1;; rather than directly in terms of weakest pre
conditions, and are discussed in detail in [35, 37]. They are similar to the 
deseriptions of [4] and the prescriptions of [41]. For DOW we extract from 
the above works Ii collection of refinement laws, given in the appendix to 
this paper. We illustrate their use with the following small program devel
opment: 

"&Ssign to r the absolute value of %" 

=	 y: [true. y = 1%11 

y:	 1(% $ 0) V (% ~ 0) • y = 1%1 ] 

(;	 Law 13 

If< $ 0 ~ y: [% $ 0 • y = 1%1] 
~ %~ 0 ~ y: [% ~ 0 • y = 1%1] 
fi 

=	 If %$ 0 ~ y: [-% = 1%1 , y = 1%1 ]
 
~ %~ 0 ~ y: [% = 1%1 • y = 1%1]
 
fi 

~	 Law 12 twice 

llz$O-I/':=-z 
~%~O~y:=% 

fi 



Language extensions 111 

3.2 Program eonjunetion 

Given a program P we write the generalised program conjunction of P over 
some variable i as I{con i • P]I. We call it conjunction because that new 
program is a refinement!;: of the original program P for all values of the log
tcal constant i. For example, conBider the Btatement z: [z = i Z = i + 1],I 

and suppose our variables range over the natural numbers. Its generalised 
conjunction over i refines all of the following: 

z: [x=O, x=l] 
x: [x = 1 , x = 2] 
x: Ix = 2 , x= 3J 

Each of those programs deals with a specific value of Z', and can abort for all 
others. Yeti as Definition 5 will show, that generalised conjunction equalB 
the statement z := z + 1, which is guaranteed to terminate. 

Definition 5 Program conjunction: For program P and variable l' not free 
in t/J, 

[II eon;. P]I N'" (3; • [PI"') 

'V 

As in Definition 2, llIyBtematic renaming can deal with occurrences of i in t/J. 

Thus for the example above we can calculate 

[ II con; .;: Ix = ; , x = ; + IJ III'" 
= (3;. [;: Ix =; • x = ; + 1] It/» Definition 5 

= (3;. x=;"(Vx. x=;+I~"')) Definition .. 

= (3;. x=;""'[x\;+I]) 

= "'[x\; + 1][;\xl 
= "'Ix\x + 1] t not free in t/J 
= [x:= x + lit/> 



112 DATA REFINEMENT BY CALCULATION 

The notation [z\i + 1] indicates syntactic replacement of % by • + 1 with 
any changes of bound variable necessary to avoid capture. 

Variables declared by con we call logical constants. They usually appear 
in program developments where BOrne initial value must be fixed, in order 
to allow later reference to it. For example in the Hoare style [21], we might 
write "find a program P, changing only %, such that {% = X} P {% = X + I}" . 
Here the upper case X makes use of a convention that such variables are 
not to appear in the final program: it is not z := X + 1 that is Bought, but 
z := z +1. We would just write 

l[conXoz: [%=X, %=X+lIJl, 

it being understood that we are looking for a refinement of that. Since 
our final programming language does not allow declarations con, we are 
forced to use refinements whoBe effect is to eliminate X. We do not need an 
upper-case convention. 

It is interesting that program conjunction is the dual of local variable 
declaration (compare Definitions 2 and 5)j thus logical constants are in 
that Bense dual to local variables. It is shown in [13] that data refinement 
distributes through program conjunction. 

4 Data refinement calculators 

In Section 2 we defined the relation ~ of data-refinement between two state
ments Sand S'. We gave there also a sufficient relation between the abstract 
initialisation I and the concrete initialisation I'. 

In this section we show how the extensions of Section 3 allow us to 
calculate data-refinements S' and I' which satisfy the sufficient relatione 
automatically. Following [28], we call these techniques eaIculatorB. 

For the rest of this section. we will assume that the data-refinement is 
given by 

abstract variables: a 
concrete variables: e 
abetraction invariant: AI 



Data refinement calculatol'B 113 

Moreover, we assume that the concrete variables c do not appear free in the 
abstract program. 

4.1 The initialisation calculator 

For concrete initialisation l'to data-refine the abstr&Ct I we know from 
Theorem 1 that r => (3 a • A I A I) is !SUfficient; therefore we define l' to 
be (3 a • AI 1\ I) itself. Law 5 (appendix) shows tbat we 10.. no general
ity, since any concrete initialisation I', where r => (3 a • A I 1\ I), can be 
reached in two stages: first replsce I hy the calculated (3 a • AI" I); then 
strengthen that, by Law 5, to I'. 

If AI is fals~) tben the calculated I' will be false alsoj indeed, Law 5 
allows a refinement step to fals~ initialisation directly. That is valid, though 
impractical, for the following reason: Definition 2 shows that the resulting 
program is miraculous: 

[ I[var I Ilalse. P Jll/aloe = true. 

It can never be implemented in a programming language. (And that is why 
programming languages do not have empty types.) 

4.2 The Bpeoifi<ation calculator 

Lemma 3 to follow gives us a calculator for the data-refinement of any 
abstract statement of the form a,z: [pre, post], where a and % are dis
joint (and either may be empty). Lemma 4 shows that taking tha.t data
refinement loses no generality. The two results are combined in Theorem 2. 
Finally, we give as a corollary a calculator for statements b,z: [pre, post] 
wbere b is a 9ubset of aj that is an abstract statement which may require 
some abstract variables not to change. 

Lemma 3 Validity: The following data-refinement is always valid: 

a, z: Ipre , post] 



114 DATA REFINEMENT BY CALCULATION 

~ e,"' [(3 •• Al A pre) , (3 •• Al A post)] 

Proof: We take any fonnula 1/1 containing no free t:, &Dd proceed as follows: 

(3 •• Al A I " %: [pre, postj N) 
= (3 •• Al A pre A (V" % • post => .p)) Definition 4 

= (3 •• Al A pre) A ('Ie,', % • post =>.p) e not free in post, .p 
=> (3 •• AIApre)A(Ve,%,'. AIApost=>AIA.p) 

=> (3 •• AIApre)A(Ve,%. (3 •• AIApre)=> (3 •• AIA.p)) 

= Ie,.: [(3 •• Al A pre) , (3 •• AI A post)]](3 a • Al A.p) 

<;I 

Le:mma 4 Generality: For all programs CP, if (I, %: [pre, post] ~ CP 
then 

e,%: [(3 •• AI A pre) , (3 •• AI A post)] [;; CP 

Proof: We take any 1/1 containing no free (I, and proceed as follows: 

[ e, %: [(3 •• Al A pre) , (3 •• AI A post)]I.p 

= (3 •• Al A pre) Definition 4 

A ('Ie, % • (3 •• Al A post) => .p) 
= (3 a • Al/\ pre) c not free in post, 

A ('1.,% • post => ('Ie. Al =>.p)) a not free in .p 
= (3 •• Al A pre A (V., % • post => ('Ie. Al => .p))) 
= (3 •• AlAI.,%: [pre, post]I(Ve. AI=>.p)) Definition 4 

~ ICPJ(3 •• Al A ('Ie. Al =>.p)) 88BumptioD, Definition 3 

~ IT CPD1/J (I not Cree in 1/1, monotonicity 

<;I 

We now have the specification calculator we require: Lemma 3 states 
that it is a data refinementj Lemma 4 states that any other data-refinement 



of the abstract specification is an algorithmic refinement of the calculated 
one. We SUIIlIIlar1se that in Theorem 2: 

TheoreIn 2 The spccification calculator: For all programs CP, 

D, z: [pre, P08t] ::'! CP 

if and only if 

c, z: [(3 D • AII\ pre) , (3 D • AII\ p08t)] !; CP 

Proof: From Lemmas 3 and 4. 

" 
Note that the quantifieatioD.8 (3 a ...) ensure that the abstract variables a 
do not appear in the concrete program 

We conclude this section with a corollary of Lemma 3; it calculates the 
data-refinement of an ahstract specification in which not all variables are 
changing. In its proof we are able to reason at the higher level of the 
relations ~ and ~; weakest preconditions are not required. 

This corollary is the first occasion we have to use logical constants in 
data refinement. Like local variables, logical constants are bound in a pro
gram; and it is the con declaration which binds the abstract variables (I in 
Corollary 1, since the quantification (3 b···J alone may leave some abstract 
variables free. 

Corollary 1 For any subset (not necessarily proper) b of the abstract vari
ables (I, the a.bstract specification b, z: [pre, post] is data-refined by 

I[ COD a.
 
c, z: [AI 1\ pre, (3 b • AI 1\ P08t)]
 

]1
 

Proof: Let band 11 partition a, and let Band Y partition A correspond
ingly. Then 



116 DATA REFINEMENT BY CALCULATION 

6, z: [pre, post] 

Law 9 

l[eoD Y. 6,y,<: [pre/\y= Y, post/\y= Y]JI 

~ Lemma 3 

II COD Y. 
c, <: [(36, y • AI /\ pre /\ y = Y) , (36, y • AI/\ post /\ Y= Y)J 

]1 

= l[eoD Y.
 
c, <: 1(36 • AI/\ pre)[y\ Y], (36 • AI/\ post) [y\ Y]]
 

JI 

= Law 8
 

lI eoD y.
 
c, <: [(36 • AI/\ pre) , (36 • AI/\ post)]
 

][ 

= Law 6 

II COD •• 

c, <: [AI/\ pre, (36 • AI/\ post)] 

][ 

<:> 

4.3 The guard calculator 

We saw in Corollary 1 that the specification calculator introduces COD a and 
existentially quantifies over changing abstract variables only. For guards, 
changing nothing, we would expect that quantification to be empty. We 
have 

Theorem 3 The guard calculator: If Si ~ Sl for each i, then the following 
refinement is valid: 

if(D;. G; - S,) II 



117 

5 

The nmean!l .module 

~IICOD"-

If (D. - AI II G; ~ SI) ft 
II 

Proof: For any tP not containing t:, we have 

(3 a _ AI II [ If (Oi • G, ~ S,) ft l.p) 

= definition [if ... fiD 
(3 a _ AI II (V i_ G,) II (II i_ G, => [S;I.p)) 

= (3 a 0 (Vi _ AI II G;) II (II i_AI II G; => AI II (S,N») 

=> (3a. (VioAIIIG;)II(lIi-AIAG,=>(3a - AIII[S,D.p») 
=> since Si ~ SI 

(3 .. (Vi. AI II G;) II (iii _ AI II G, => [SiD(3 a _ AIII.p)))0 

= [I[ COD a_ ···11 D(3a - AIII.p) 

<:;) 

A similar construction is possible for do ... od, but in this general 
setting it is better to use If ... fi and recursion. There are special cases for 
do, however, and they are discussed in Section 6. 

Example of refinement: the "mean" module 

We can present a data refinement independently of its surrounding program 
text by collecting together all the statements that refer to the abstract vari
ables or to variables in the abstraction invariant. Such a collection is called 
a module, and we can confine our attention to it for this reason: statements 
which do not refer to abstract variables, or to the ahstraction invariant, are 
refined by themselves and we need not change them. 

Consider the module of Figure 1 for calculating the mean of a sample of 
numbers. We write hag comprehensions hetween brackets -< ~, and use 1: 6 
and #6 for the sum and size respectively of bag 6. The operator + is used 
for bag addition. The statement error is some definite error indication, and 
we assume that error ~ error. The initialisation is 6 E bag of Real. 



118 DATA REFINEMENT BY CALCULATION 

module Calculator ;:;
 
var b: bag oC Real;
 

procedure Clear == b :=-<~ j
 

procedure Enter (value r) ;:; b := b+ -< r >- ;
 
procedure Mean (result m) ==
 

if b#-<>- - m := I: b/#b 
o b =-<>- - error 
II 

end 

Figure 1: The "mean" module 

The module is operated by: first clearing; then entering the sample 
values, one at a time; then finally taking the mean of all those values. 

For the data refinement, we represent the bag by it:.s sum 8 and size n at 
any time. 

abstract variables: b
 
concrete variables: 8, n
 
abstraction invariant: 8 = I:b A n = #b
 

We data-refine the module by replacing the abstra.ct variables b by the 
concrete variables 8, n and applying the calculations of Section 4 to the 
initialisation and the three procedures. Stacked formulae below denote their 
conjunction. 

• For the initialisation, we have from Section 4.1 for the concrete initial
isation 

b E bag or R,.I ) 
• 8=I:b(3 b 

n = #b 



119 The -meu· Dlodule 

'EReal ) 
= " E No.tursl

( n=O=>.=O 

• For the procedure Clear, we have from Section 4.2 

6 :=-<>

= 6: [true. 6=-<>-1
 
~ Lenuna3 

• = E 6) ( •= E 6)]
.... : [(36. "=#6 • 36. ~::: 

[; Law 1 

.J n: Itrue, • = 0" ft = OJ
 

[; Law 12
 

8,n :=0,0 

• For the procedure Enter, we have from Section 4.2 

6 := 6+ -< , >

= I! con B • 6: [6 = B • 6 = B+ -< , >-111
 
~ Lemma 3
 

'=EB • = E (B+ -< , >-) ] IIl[conB ••• ": ["=#B , "= #(B+ -< , >-) 
~ Laws 12, 7 

8," :=.+r,n+l 

• For Mean we have first that from Section 4.2 

m :=Eb/#6
 
= m: [#b;o!O, m=E6/#61
 
~ Corollary 1 (noting the quantification is empty) 

I[ con 6 •
 

#6;O!O m=E6/#6]
 
m,8,n: .=E6 .=E6

[ 
J 

"= #6 "= #6 
II 



120 DATA REFINEMENT BY OALCULATION 

~ Laws la, 2, 3, 1 

II can b • m: In i 0 • m=Bini II 
!;	 Laws 12, 7
 

m:= Bin
 

Then we conclude from Theorem 3 that 

If b i-<>- ---> m := ~ bl#b 
o b =-< >- ---> error
 
fI
 

~	 II COD. be 
bi-<>-


Ifl B = ~ b 1---> m := Bin
 
n=#b
 
b =-<>

oIB=~b I--->error
 
n=#b 

fI 

II 

To make further progrese with Mean, we need to eliminate the abstract 
variable b from the guards; then Law 7 applies. That is assisted by the 
following lemma (which is generally applicable to the refinement or alterna
tions, whether or not they occur within data refinements): 

Lemma .5 Refining guards: Given the conditions 

1.	 (V;. Gi) => (V; • G:J 
2.	 (V i • G;) => (Gi => Gi ) for each; 

the following refinement is valid: 

It (0; • G; ---> S;) fI ~ If (0; • Gi ---> S;) fI 

proor: By Lemma 1 and ~If ..• iii we mu.t .how ror all formulae ,p that 



121 Tbe -mean- nxxluJe 

(V; • G;) A (II; • G; ~ [8;11/» 

~	 (V;. G:J A (II; • G; ~ 08;11/» 

That follows by propositional calculus from assumptions 1 and 2 above. 
<;) 

We have immediately the following corollary: 

Corollary 2 Weakening guard... The following refinement is valid for an, 
formula X: 

If (0; • G; A X - 8;) Ii !; if (0;. G; - 8;) Ii 

<;) 

Now we can continue the refinement of Mean: 

~	 Lemma 5, Law 7
 

If .. t- a --+ m:= _/..
 
o n = 0 --+ error
 
Ii
 

In Figure 2 we give the resulting data refinement for the whole module. 

To see the need for the initialisation, consider this alternative definition 
of Clear: 

procedure Clear =:.
 
If b 01-<>- - b :=-<>

o b =-<>- - skIp
 
Ii
 

That is semantically identical to the original, in Figure I, but might be 
cheaper overall if the operation b :=-<>- were expensive. Its calculated data 
refinement is 



122 DATA REFINEMENT BY CALCULATION 

IDodule Calculator ==
 
var s: Real; n: Natural;
 

procedure Clear == 8," := 0,0;
 
procedure Enter(value r) :::::: 8, n := B + n , " + 1;
 
procedure M....(result m) ==
 

If .. f- 0 ~ m := 8/" 
o ,,= a error---t 

II 

initially .. = 0* 8 = 0
 
end
 

Figure 2: The "mean" module, after da.ta refinement 

procedure Clear ==
 
if" #- 0 --+ 8, " := 0, a
 
D .. =O~.kip
 

II
 

That would not work correctly if used immedia.tely a.fter an initialisation, 
say, of B =1 A n =O! So our stated initialisation is necessary, after all; note 
however that since initialisations can always be strengthened (Law 5), we 
could use the simpler B == 0 if desired. 

6 Specialised techniques 

Now we specialise the techniques of Section 4: we consider guards, functional 
data-refinement, a.nd the use of auril1"arll variables. 



Specialised techniques 123 

6.1 Data-refining guard. 

We have seen that data refinement takes an abstract guard G to a concrete 
guard G 1\ AI, where A I is the abstraction invariant. The occunences of 
abstract variables in this concrete guard must then be eliminated, We use 
Lemrn.& 5 for that: we replace each of the calculated guards Gi 1\ AI by the 
guard (V 4 • AI => Gi ), which does not contain 4 free. By that lemma, we 
must show 

t. (Vi. Go A AI) ='> (Vi. (Va. AI ='> Gi )) 

2. (V i. G; A AI) ='> «Va. AI ='> Gi ) ='> G i A AI) for each i 

The validity of 2 is evident; and by rewriting 1 we can see that it requires 
only that the data-refined di8iunetion of the abstract guards implies the 
disjunction of the concrete guards. Thus we have the following 

Le:mm.a 6 Data refinement of alternations: Given abstraction invariant 
AI, abBtract guards Gi , and abstract statements Si, let the concrete guards 
G: and concrete statements S; be such that 

t. G!=(Va. AI='> Gi ) 

2. Si ~ S; 

Then provided (3 a • A I A (V i • Gi )) ='> (V i • Gil. the following data 
refinement is valid: 

If (Di. G, - Si) II ~ If (Di. Gi - Sf) II 

<:> 

For iterations the result is the same: we use the recursive formulation 

do (Di • Gi - Si) od ~ (,. P • If (Di. Gi - Si; P) 

D ~(Vi • Gi) - .kip 
Ii) 

and hence must determine the conditions under which 



124 DATA REFINEMENT BY CALCULATION 

If W. AI 1\ G; --+ S;; P) 
o AI 1\ ,(V i • Gi ) --+ .kip
 
Ii
 

!; If mi • Gi --+ S:; P) 
o ~(V i • GD --+ .kip
 
Ii
 

.AB before we have defined G: to be (Va. AI:;:} Gi ). Straightforward ap
plication of Lemma 5 gives us 

Lemma T Data refinement 0/ iterations: Under the same conditions as 
Lemma 6, the following refinement is valid: 

do (Oi • G; --+ S;) od ~ do (Oi • Gi --+ S/) od 

I;) 

OUf choice of G: is used also in [40], where those two rules are proved 
from first principles (that is, from Definition 3). We have shown therefore 
how that technique is an instance of our Theorem 3. 

6.2 Functional refinement 

In many cases, the abstraction invariant is functional in the sense that for 
any concrete value there is at moat one corresponding abstract value. In 
[26], for example, this is the primary form of data-refinement considered. 

Functional abstraction invariants can always be written as a conjunction 

a=AF(e) 
CIte) 

where AF we call the abstraction function and OJ the concrete invariantj 
the formula OJ of course contains no occurrences of abstract variables a. 
We assume that C/(c) implies well-definedneBB of AF at c. 



125 Specialised techniques 

Functional data-refinements usually lead to simpler calculation!, First, 
the concrete formula (3 a • AI A tfI) - where tfI is pre or post in theabstra.ct 
specification - is simplified: 

(3 < 0 AI 1\ 4»
 
(3< 0 (a= AF(e)) 1\ CI(e) 1\ 4»
 
CIt c) 1\ 4>[a\AF(e)]
 

Thus in this case data-refinement calculations are no more than simple sub
stitutions. Note also that the resulting concrete formula contains no free 
abstract variables, and this allows any I[ COD a ••.. ]I to be eliminated 
immediately. We have this coronary of Theorem 2: 

Corollary 3 Functional data-refinement: Given an abstraction invariant 
a = AF(c) A CI(c)J the following data-refinement is always valid: 

a, z: (pre, post] 

pre[a\AF(e)] post[a\AF(e)] ]::5 c, z: [ CIte) CIte) 

Moreover, it is the most general. 
<:? 

A second advantage is in tbe treatment of guards, as is shown also in 
[40]. We replace as before G, by G, A AI, which becomes 

G,I\ (a = AF(e)) 1\ CIte) 

G,[a\AF(e)] 1\ (a = AF(e)) 1\ CIte) 

Now by Corollary 2, we can eliminate the conjunct a = AF(c) immediately, 
and hence the endOfling I[ COD a •... ]1 as well. (And we can eliminate the 
CI(c), but that is optional: it contains no a.) So we have the roHowing 
result for the functional data-refinement of alternations: 



126 DATA REFINEMENT BY CALCULATION 

LeIImla 8 Functional da.tll-refinement 0/ alternations: Given abstraction 
invariant (a = AF(c»1\ Cl(c), abetract guards Gil and abstract statements 
B'J let concrete guards GJ and concrete statements SI be such that 

1. G:~ Gi I4\AF(e)] II CIte) 

2. 5i j S; 

Then the following data refinement is always valid 

ifmi. G; -> S;) fI :=! If CDi. G: -> SiJ II 

'V 

The same remarks apply to iteration (and again1 the conjunct Cl(c) is 
optional in the concrete guards): 

LeIDDl.8 9 Functional data-refinement 0/ iterations: Under the same con
ditions as Lemma 8~ the following data refinement is valid 

do (~i • G; -> S;) od :=! do (~i • G: -> SiJ od 

'V 

6.3 Auxiliary variables 

A set of local variables is auriliary if its members occur only in statements 
which assign to members of that set. They caD be used for data refinement 
as follows. 

There are three stages. In the first, an abstraction invariant is cho
Ben, relating abstract variables to concrete. Declarations of those concrete 
variables are added to the program, but the declarations of the abstract 
variables are not removed. The initialisation is strengthened so that it im
plies the abstraction invariant; every guard is strengthened by conjoining 
the abstraction invariantj and every assignment statement is extended, if 
necessary, by assignments to concrete variables which maintain the the ab
straction invariant. 



127 Specialised techniques 

In the second stage, the program is algorithmically refined so that the 
abstract variables become auxiliary. In the third stage, the (now) auxiliary 
abstract variables are removed (their declarations too), leaving only the 
concrete - and the data-refinement is complete. 

That technique was proposed by [29], and a simple example is given in 
[12, p.64.]. It is a special case of our present technique, as we now show. 
Suppose our overall aim is the following data-refinement: 

abstract variables: a 
concrete variables: c 
abstraction invariant: AI 

We decompose this into two data-refinements, applied in succession. In the 
first) there are no abstract variables: 

abstract variables: (none) 
concrete variables: c 
abstraction invariant: AI 

Clearly this removes no declarations, and from Definition 3 requires for 
5 ~ 5' (remembering that the quantification (3 a •.•.) is empty) only 
that for all 1/1 not containing c free, we have 

AI A [5]'" ~ [S](AI A.p) 

That is precisely the first stage explained informally ahove. 

The second stage remains: it is only algorithmic refinement. For the 
third stage) we use the following data refinement in which there are no 
concrete variahIes: 

abstract variables: • 
concrete variables: (none) 
abstraction invariant: true 

From Definition 3, here for 5 ~ 5' we must show that for all formulae 1/1 

(3 •• [S].p) ~ [5'1 (3 •• .p) 



128 DATA REFINEMENT BY OALCULATION 

And this holds only when the abstract variables a are auxiliary. 

We illustrate the auxiliary technique with two lemmas, derived from our 
general rules for data refinement: 

Lemm.a 10 Introducing concrete variables while maintaining the invariant: 
Let the abstract variables be none, the concrete variables be c, and the 
abstraction invariant AI. Then for abstract expression AE and concrete 
expression GE, we have 

a:= AE ~ a,e:= AE,CE 

provided AI => la, c:= AE, CE!AI. 

Proof: 

AI/\ [a:= AE!", 

= AI /\ ",ra\AE] by semantics of := 

=> [a, c := AE, CE)AI /\ "'[a\AE] by assumption 

=> AI[a, c\AE, CEI /\ "'[a\AE] by semantics of := 

= AI[a, c\AE, CEI /\ ",ra, c\AE, CEJ since t/J contains no c 

= [a, c := AE, CEJ(AI /\ "') by semantics of := 

" 
Lemma 11 Eliminating auxiliary variables: Let the abstra.ct variables he 
a, the concrete variables he none,and the abstraction invariant true. Then 

1. a := AE :> skip 

2. , := CE :> c := CE 

provided CE contains no occurrence of a. 

Proof: For 1 we have 

(3 a • [a:= AE!",) 



Specialised techniques 129 

= (3 •• ,p[.\AEIJ by semantics of := 

~ (3 •• ,p) predicate calculus 

= !skiP! (3 •• ,p) 

For 2 we have 

(3 •• [e:= GE),p) 

= (3 •• ,p[e\GEIJ by semantics of := 

= (3 •• ,p) [e\GE] 9ince CE contains no 0 

=!e:= GEJ(3 • • ,p) 

(Note that in case 2 we did not a88ume that 1jJ contained no c.) 
Q 

If the abstract statement is a specification 0: [pre, post], then in the 
first stage we replace it by 0, c: [pre A Al , post A AI]. If by the third 
stage (after algorithmic refinement) we still have a specification - say 
0, c: [pre'. POBt'jJ then the removal of 0 as an auxiliary variable leaves 
us with e: [(3" • pre') , (3 •• po.t')]. 

Let us 8.S a final illustration try to remove a variable which is not auxil
iary: we take the data-refinement as for the third stage, and suppose that 
c := a ~ CP for some concrete program CP. We expect this to fail l since 0 

is clearly not auxiliary in c := o. Now we have for all constants I'l that 

true 

=(3e. e=n) predicate calculus 

= (3 •• (e = nJle\olJ renaming bound variable c to 0 

= (3 0 • !e:= o!(e= n)) by semantics of := 

~ [GP! (3 0 • e = n) by assumption 

= !GP!(e= n) 

Since the above holds for any I'l, we have that CP always establishes both 
c = 0 and c = 1. Because no executable program can do this, we have 
shown that there is no such CP - 88 hoped. 0 cannot be eliminated from 
c := a. But what if we write c := a as a specification? In that case, we 
have 



130	 DATA REFINEMENT BY CALCULATION 

c:= a 

=	 e: [true, e = aJ 

~	 Corollary 1 (noting the quantification is empty)
 

II COD a. e: Itrue, e= a]]1
 

So here we havt a data-refinement, after all. But that is consistent with the 
above in the following way: there is no executable program CP (whether 
containing a or not) such that c: [true, e = a] c; CPo Thus the II COD a • 
...II still cannot be eliminated. 

In [31] the auxiliary variable technique is presented independently of the 
refinement calculus. 

7 Conclusions 

Our calculators for data refinement make it possible in principle to see that 
activity as the routine application of laws. The example of Section 5 is a 
demonstration for 8 simple case. It is important in practice, however, to 
take advantage of the specialised techniques of Section 6; otherwise, the 
subsequent algorithmic refinement will simply repeat the derivation of the 
techniques themselves, again and again. 

That suhsequent algorithmic refinement is in fact a lingering problem. 
In many cases, particularly with larger and more sophisticated refinements, 
the refined operations present fearsome coBections of formulae concerning 
data structures for which we do not have an adequate body of theory. Their 
subsequent manipulations in the predicate caJculus resemble programming 
in machine code. FortunatelYl there is work on such theories (and their 
calculi, for example [10]), and we see little difficulty in taking advantage of 
them. 

Our work on data refinement has heen aided and improved hy collabo
ration with Morris and Back , who present their work in [40] and [4] respec
tively. We extend Morris's approach by our use of logical constants (which, 
however, he has discovered in another context [39]). A second extension is 



Acknowledge.ments 131 

our "if and only if" result in Theorem 2. That is necessary, we reel, for 
a data refinem.ent to be called a calculator: P ~ Q is a calculator only if 
taking Q loses no generality. And Morris retains some restrictions on ab
straction invariants which we believe are unnecessary. Conversely, Morris's 
specialised alternation calculator [40, Theorem 4] improves ours (Lemma 6) 
by introducing a miracle as the refined program [33]j his rule needs no proof 
obligation. Our work extends Back'a by our emphasis on calculation, and 
our use of logical constants. 

8 Acknowledgements 

We are grateful to have had the opportunity to discuBB our work with Ralph 
Back and Joe Morris, and for the comments made by members of IFIP WG 
2.3. Much of our contact with other researchers has been made possible by 
the generosity of British Petroleum Ltd. 

9 Appendix: refinement laws 

Below is a collection of laws which can in principle take most specification 
statements through a series of refinements into executable code. We have 
not tried to make them complete. "Executable code" means program text 
which does not include either specification statements or logical constants. 

Clln principle" means that these basic rules, used alone, will in many cases 
give refinement sequences which are very long indeed - rather like calcu
lating derivatives from first principles. But with experience, one collects a 
repertoire of more powerful and specific laws which make those calculations 
routine. 

Some of the lawa below are equalities = j some are proper refinements!;; . 
In all cases they have been proved using the weakest precon.dition. semantics 
of the constructs concerned. 

Section 9.2 contains notes relating to the laws of Section 9.1. 



132 DATA REFINEMENT BY CALCULATION 

9.1 Laws of program refinement 

Most of these laws are extracted from [37], retaining only those used in this 
paper. Logical constant laws have been added. 

1.	 Weakening the precondition: If pre => pft! then 

111: [pre, post] ~ 111: [pre' , pos~ 

2. Strengthening the postcondition: If pOBt' => pOBt then 

111: [pre, post] ~ 111: [pre. post'] 

See Note 1. 3. Assuming the precondition in the postcondition: 

111: [pre. (3111 • pre) 1\ post] = 111: [pre, post] 

4.	 Introducing local lJaria~le8: If :r does not appear free in pre or POBt, 

then 

111: [pre, post] ~ II var x I I. 111, z: [pre. post]] I 

5.	 Strengthening the initialisation: If [' => I, then 

l[varxII,S]1 ~ l[varxjI',S]1 

See Note 2. 6. Introducing logical constants: If z does not appear free in POBt, then 

111:	 [(3 x • pre) • post] = I[ con x • 111: [pre. postl]1 

See Note 3. 7. Eliminating logical CORstants: If:r does not appear free in P, then 

IIconx'P]1 = P 

8.	 Renaming logical con8taftt.: If y is disjoint from w, and does not occur 
free in pre or pOBt, then 

I[ con x • 111: [pre, post]] I 
= I[ con y • 1II[x\y]: [pre[x\y] , post[x\yll]1 



133 Refinement laws 

9.	 Expanding the frame: If x and yare fresh variables, disjoint from each 
other, then 

to: [pre, post] = I[conr. w," [pr<"z=r, postAz = r]]l 

10. Contrach·ng the frame: If w and ~ are disjoint, then 

w, z: [pre, P08t] b w: [pre 1 P08t] 

11. Introducing skip: 

to: [post, post] c; skip 

12. Introduc1·ng lUJaignment: If E is an expression, then See Note .... 

to: [post[ w\ E] , post) c; w:= E 

13. Introducing alternation: 

w: [pre" (V i. G;) , post]
 

= If (U i. G, ~ w: [pr<" G; , postD ft
 

9.2 Notes 

1.	 Law 3 applies when information from the precondition is needed in the 
postcondition. We use it below to derive a stronger version of Law 2: 

If ((3 w • pre)" pose) '* post, then 

w:	 [pre, post] 
~	 by Law 2 and the assumption 

w: [pre, (3 w • pre)" post']
 
E::; by Law 3
 

w:	 [pre, pose] 

2.	 Usually Law 6 is used to introduce an equality into the precondition 
which "saves an initial va.lue for later." That is summa.rised in the 
following derived law: 



134 DATA REFINEMENT BY CALCULATION 

If )' is disjoint from W J and does not occur free in pre or post, 
then 

tv: [pre, post] 
>; by Law 1 

tv: 1(3, • % = , 1\ pre) , poBtl 
>; by Law 6 

II con, • tv: [% = ,1\ pre, pOBt11l 

3.	 Logical cOR8tantB, introduced by con, are variables which we can use 
during program development but not in final programs. Usually they 
are used to fix initial values, &8 in 

IIconX. %: !%=X, %=X+IJ]I
 
I;; by Law 12
 

Ilcon X. %:= %+ 1][
 
I;; by Law 7
 

%:= %+1
 

Since the keyword con is does not occur in our executable program4 

ming language - just &8 specification statements do not - it must 
be eliminated (using Law 7 88 above) during the development process. 
Thus logical constants never appear in the final program, since they 
ea.nnot be declared there. 

4.	 Law 12 ie uBually applied together with Laws 10 and 1, 8S in the 
following derived rule: 

If the variables w and % are disjoint, E is an expression, and 
pre => pOBt[ tv \ E], then 

W l %: [pre I post] 
>; by Law 10 

tv: [pre, POBt] 
!;; by Law 1 and the assumption 

tv: [poBt[tv\E] • POBt] 
>; by Law 12 

tv := E 



1 

Laws of program refinement: 
a summary 

Carroll Morgan 

1 December 1987 

Introduction 

In Section 2 below is 8 collection of laws which can in principle take most 
specification statements through a series of refinements into "executable 
code.~ Executable code means program text which does Dot include either 
specification statements or logical constants (see below). 

"In principle" means that these basic rules, used alone, will in mBny cases 
give refinement sequences which are very long indeed - rather like calcu
lating derivatives from first principles. But with experience) one collects a 
repertoire of more powerful Bod specific laws which make these calculations 
routine. 

Some of the laws below are equalities =; Borne are proper refinements ~ . 
In all cases they have been proved using the weakest precondition calculus 
of Dijkstra, as explained in [12), [141, and [7). This means in particular that 
specification statements too have a weakest precondition semantics. 

Section 3 contains notes relating to the laws of Section 2. Section 4 
presents a small example. Section 5 gives some useful abbreviahons, and 
Section 6 some examples of derived laws. Section 7 gives weakest precondi
tion semantics for the language extensions, 

°Taken from {32}. 

135 



136 LAWS OF PROGRAM REFINEMENT 

2 Laws 

1.	 Weakening the precondition: If pre => pr' then 

w, [pre, post] i;; w' [pro' , post] 

2. Strengthening the postcondition: If post' => post then 

w' [pre, post] i;; w: [pre. post'] 

See Note 1. 3. Assuming the precondition in the postcondition: 

w' [pre, (3 w • pre) /\ post] = w, [pre. post] 

See Note 2. 4.	 Introducing local variables: If:r does not appear free in pre or post, 
then 

w' [pre,	 post] = II var x I I • w, x: [pre. post] II 

5.	 Strengthening the initialisation: If I' => I, then 

l[varxII.811 i;; IIvar x lI'.8JI 

6. Ezport1'ng the initialisation: 

I[var x I (3 x • I'j /\ I • 8II I[varx 11'.1, [I', 1); 811 

See Note 3. 7.	 Renaming local tlariables: If y is disjoint from w, and does not occur 
free in pre or post, then 



Laws	 137 

I[var %II. VI: [pre, pOBt]]1
 

= I[var y I I[%\,J • VI[%\,I: [pre[%\,), POBt[%\,]] II
 

8. Introducing logical con.stanu: If % does not appear free in post, then See Notu 4., 5. 

VI:	 [(3" • pre) , pOBt] = I[ can %• VI: Ipre, pOBt]1I 

9. Eliminating logical constants: If % does not appear free in P, then See Note 6. 

I[con" .PJI = P 

10.	 Renaming logical constants: If JI is disjoint from w, and does not occur
 
free in pre or post, then
 

I[con" • VI: [pre, posllli 

II can y • VI[%\,]: [pre[%\,) , pOBt[%\,J] JI 

11.	 E%panding the frame: If % and II are fresh variables, disjoint from each See Notes 1, 8. 
other, then 

VI: [pre, pOBt] = II can ,. VI,%: [pre A %=" pOBtA% =,]11 

12.	 Contracting the frame: If wand % are disjoint, then 

VI,%: [pre, POBt] [;; VI: [pre, POBt] 

13.	 Introducing sldp: 

VI:	 [pOBt, pOBt] [;; .klp 



138	 LAWS OF PROGRAM REFINEMENT 

It Introducing abort: 

til: [false, P08t] = abort 

15. Introducing u8ignment: If E iii an expression, then See Note 9. 

til: [po8t[U/\E] , P08t] !; tII:= E 

See Note 10. 16. Introducing 8equential composition: 

U/: [pre, P08t) !; til: [pre, mid); til: [mid, P08t] 

17. Introducing alternation: 

til: [pre" (V i. Gi) , pOBt] 

= if (D i. G; ~ til: [pre" G; , p08tll B. 

See Notel 11, 12. 18. lntrodut.ing iteration: 

til: [inv, inv" ~(V i. Gi)] 

!; do 
(Di. G;~ l[eoD v. til: [inv" Gi"v = E, inv"O~ E < v]]I) 

ad 

The predicate inti is the invariant; the expreseion E is the integer
valued variant; and the logical constant tI' is fresh. 

3 Notes 

1.	 Law 3 applies when information from the precondition is needed in the 
postcondition. We use it below to derive a stronger version of Law 2: 

If ((3 til • pre)" p08t') ~ P08t, then 



w: [pre. po.t] 
~ by Law 2 and the assumption 

w:	 [pre. (3", • pre)" po.t1 
!;;	 by Law 3 

." [pre, po81'] 

2.	 In setting out derivations we allow the following abbreviation to Law.: 
"': [pre. po81J
 

!; var %
 

"',:z;: [pre, po.t] 

Note .. is similar. 

3.	 We say Udisjoint" rather than Ifdistinct" because we allow variable 
names to stand for veetor8 of variables 88 well. 

4.	 In setting out derivations we allow the following abbreviation to Law 
8: 

"':	 [(3 % • pre) • po.tl 

~	 COD % 

w:	 [pre, po.tI 
Note 2 is similarj Note 5 gives an example. 

5. Usually Law 8 is used. to introduce an equality into the precondition 
which u saves an initial value for later." This is summarised in the 
following derived law: 

If JI is disjoint from w, and does not occur free in pre or p08t, 
then 

w: [pre. po.t]
 
!;; by Law 1
 

w: [(3 y • % = y" pre) • pod]
 

~ COD ~
 

w:	 [% = y" pre. po.t] 



140 LAWS OF PROGRAM REFINEMENT 

6.	 Logical constants, introduced by COD, are variables which we can use 
during program development but not in final programs. Usually they 
are used to fix initial values (but see Note 7), 88 in 

IlconX. z: Iz=X, z=X+IJlI
 

~ by Law 15
 

II con X • z := z + 111
 

~ by Law 9
 

z:= z + 1
 

Since the keyword COD does not occur in our executable programming 
language - just as specification statements do not - it must be elim
inated (using Law 9 88 above) during the development process. Thus 
logical constants never appear in the :final program, since they cannot 
be declared there. 

7.	 The idiom Ilcon y. w,z: [prel\Z = y, post]]l, where post refers to 
" (that is, to the initial value of %), is 80 common that we adopt the 
following convention: 

II a specification statement contains O.sub8cripted 'Variables 
- 84, %() - in its postcondition, then equalities % = :z:o 
are assumed in its precondition together with an enclosing 
deelaration IIcon"" • ' .. 11 0' "" as a logieal eonstant. 

We will reserve O-subscripts for variables used in this way. 

8. With	 the convention of Note 7, the right-hand side of Law 11 can be 
simplified to 

w, %: [pre, post" % = :z:ol 

9.	 La.w 15 is usually applied together with Laws 12 and 1, as in the 
following derived rule: 

If the variahles w and % are disjoint, E is an expression, and 
pre * postlw\E), then 

w,z: (pre, postJ 



Notes 141 

~ by Law 12 

a" [pre. pOoll 

~ by Law 1 and the 8SlIumption 

a" [po8tlw\EJ • po.tl 
~ by Law 15 

III :=E 

10. Often Law 16 will introduce logical ooD8tanta which are not the simple 
equalities of Note 7. Consider for example the following: 

II can X ••: [. = X •• = log sin XJ II 
~ by Law 16 

II can X. 
" I'=X, .=sinX];
" I. = sin X •• = log sin X! 

II 
~ by Note 9 twice 

II can X • r:= sin.; r:= log. II 
~ by Law 9 

% := sin %j Z':=:::; log % 

11. With the convention of Note 7, the right--hand side of Law 18 can be 
simplified to 

do 
(~i. G; ~ w: [in. II G; • i... 11 0 :S E < Eoll 

ad 

The O-subscripted c%pre.,.ion Eo i8 obtained by O-subscripting all ita 
Cree variables. 

12. The inequality in this rule can be seen by taking inv and G - a single 
guard - both /.I.e. 



142 LAWS OF PROGRAM REFINEMENT 

4 An example 

Below we present a derivation of a greatest common divisor algorithm. The 
steps taken are large, 88 an experienced developer would make them. 

To save space, we will on occasion indicate with a dagger t the part 
of a program that is to be refined in the next step. In that case the text 
surrounding the refined part will not be repeated in subsequent steps. 

%,y: 1% '" 1 Ay '" 1, %= ged(:ro,Yo)] 

!;; by Note 7, Law 10 

l[eoD X'[:; 1 ]
 
y", 1
 

%,y: %=X ,%=gcd(X,Y) t 
y= Y 

II 
!;; by Law I, Law 2 

% ~ 1 ]
% '" 1 y ~ 1


%,y: 1I~1
 
'ged(%,y) =ged(X, Y)

[ ged(%, y) = ged(X, Y) %=, 

[;; by Law 18, Law 1, Note 7 

'" ~ 1 ]% > Y> 1 1/>1 
do %> Y~ %, y: ged (%,y) = g-;;d (X, Y) ged(%, y) = ged(X, Y)

[ 

I
O~ %+ Y < :ro+yo 

y>%~1 !/>I" '" 1 
Y > %~ %,y: ged(%,y) = gcd(X, Y) ged(x, y) = ged(X, Y)

[ 
O~%+y<:ro+Yo 

od 

!: by Note 7, Note 9 



Abbreviatio.DB	 143 

do%>,-%:=%-P
 
p>z-p:=,-%
 

od 

5 Abbreviations 

The following notations abbreviate commonly occuring idioms. 

5.1	 Generalised assignment 

If 11.<1' is a binary relation symbol, then w : <3 E for some expression E, 
abbreviates 

w: [w 4 E[w\woll 

The variable w' is «esh, not appearing in E. 

For example. <: E s abbreviates .: [s l' {} .• E sl. 

5.2	 Invariants 

For predicates pre, inti and post we have 

~r<	 post]w: [pre, inti J post] abbreviates w: [IflU J IflU 

This allows for example the rule for iteration introduction (Law 18, Note 8) 
to be written 

w: [true • in•• ~(V i. Gi)l 

C;	 do
 
(Oi. G;~w: [Gi • in•• 05E<Eo])
 

od 



144	 LAWS OF PROGRAM REFINEMENT 

6 Derived laws 

In this section we give some examples of derived laws. 

6.1 Introducing assignment 

This law applies directly to a specification whose postcondition contains 
()..subscripted variables (that is, refers to initial values): 

If pre => poot[w\e][",,\v], where the variable(s) v are thooe ap
pearing ().suhscripted (free) in poot, then 

w, z: [pre, post] ~ w:= e 

6.2 Introducing skip 

This law also applies directly to a specification whose postcondition contains 
Q-subscripted variables: 

If pre => poot[",,\_I, where the variable(s) _ are those appearing 
O-suhscripted (free) in pOBt, then 

w:	 [P'" pOol] i;; skip 

6.3 Introducing initial assignments 

This law introduces an assignment statement before a given Bpecification. 

If w is disjoint from %, then for any expression E 

w, z: [pre[w\E] , pOBt[wo\Eoli 

~	 w:=E;
 
w, z: [pre, P08tj
 



6.4 Introducing final assignments
 

This law introduces an assignment statement after a given specification.
 

If to is disjoint from 2: I then for any expression E
 

'IV, z: [pre, post]
 

[; "',:1:: [pre, p08t[",\EJ];
 
w :=E
 

6.5 Removing invariants 

This law alloW'S an invariant to be removed from a specification whenever it 
contains no changing variables. 

If w does not occur free in i,llI, then 

w: Ipre, i,UI, poet] ~ 'II: [pre, post] 

7 Semantics of the extensions 

1.1 Local variables 

For variable :r:, program P, and postcondition R not containing :r free, 

[I[var:l: I I. PIIIR '" (lfz • I ~ IPIR) 

1.2 Logical constants
 

For variable :r:, program P, and postcondition R not containing :r free,
 

[I[COD:I: • PIIIR '" (3z • [PIR) 



146 LAWS OF PROGRAM REFINEMENT 

7.3 Specification. 

For variable w, predicates pre and post, and postcondition R, 

[w: [pre. pOBtlJR ~ pre/\ (\I UI • post '* R) 



REFERENCES	 147 

References 

[1]	 J.-R. Abrial. Generalised subetitution8. 26 Rue des Plant.., Paris 
75014, France. 

[21	 J.-R. Abrial, P.H.B. Gardiner, C.C. Morgan, and J.M. Spivey. Aformal 
approach to large software construction. 1988. 

[3]	 R.-J. Back. On the correctness of refinement steps in program develop
ment. Report A.1978-4, Department of Computer Science, University 
of Helsinki, 1978. 

{4]	 R.-J. Back. Correctness preserving program refinements: proor the
ory and applications. Tract 131, Mathematisch Centrum, Amsterdam, 
1980. 

[5]	 R.-J. Back. A calculus of refinemnet for program derivations. Report 
Ser.A 54, Departments of Information Processing and Mathematics, 
Swedish University of Abo, Abo, Finland, 1987. 

[6]	 R.-J. Back. Procedural abstraction in the refinement calculus. Report 
Ser.A 55, Departments of Information Processing and Mathematics, 
Swedish University of Abo, Abo, Finland, 1987. 

/71	 R. Backhouse. Program construction and 1J~rifit:ation. Prentice-Hall, 
1986. 

18]	 H. Barringer, J.H. Cheng, and C.B. Jones. A logic covering undefined
ness in program proofs. Acta Informatica, 21:251-269, 1984. 

[9]	 F.L. Bauer, M. Broy, R. Gnatz, W. Hesse, and B. Krieg-BrUckner. 
A wide spectrum language for program development. In 9rd 
Int. Symp. Programming, Paris, pages 1-15/ 1978. 

[10J	 R.S. Bird. An introduction to the theory of lists. Technical mono
graph PRG-56, Programming Research Group, 8-11 Keble Road, Ox
ford OXl 3QD, U.K., October 1986. 

[11]	 H. Boom. A weaker precondition for loops. Trans. Prog. lAJng. Sya., 
4:668-677. 1982. 

[12]	 E.W. Dijkstra. A Disc1plin~ of Programming. Prentice-HaIl, Englewood 
Cliffs, 1976. 



148 REFERENCES 

[13] P.H.B. Gardiner and C.C. Morgan. Data refinement oCpredicate trans
formers. Submitted to Theoretical Computer Science. Reprinted in this 
collection. 

[14]	 D. Gries. The Science 0/ Programming. Springer, 1981. 

{IS]	 D. Gries and D. Levin. Assignment and procedure call proof rules. 
Tra.s. Prog. Lang. Sys., 2(4), October 1980. 

{I6]	 D. Gries and J. Prins. A new notion oC encapsulation. In S,mp. Lan
guage IS8ues in Programming Environments. SIGPLAN, June 1985. 

[17J	 J.Y. Guttag, J.J. Homing, and J.M. Wing. Larch in five easy pieces. 
Technical Report 5, Digital Systems Research Center, July 1985. 

[18]	 I.J. Hayes. Specification Case Studies. Prentice-Hall, 1987. 

[19J	 J.F. He) C.A.R. Hoare, and Sanders J.W. Data refinement refined. 
Programming Research Group, Oxford. 

[20J	 E.C.R. Hehner. The Logic 0/ Programming. Prentice-Hall, London, 
1984. 

[21]	 C.A.R. Hoare. An axiomatic basis for computer programming. Comm. 
ACM, 12(10):576-580, 583, October 1969. 

[22]	 C.A.R. Hoare. Procedures and parameters: An axiomatic approach. In 
E. Engeler, editor, Lecture Notes in Mathematics 188. Springer, 1971. 

[23]	 C.A.R. Hoare. Proof of correctness of data representatioll5. Acta In
!ormah"ca, 1:271-281, 1972. 

[24J	 C.A.R. Hoare, J.F. He, , and J.W. Sanders. Prespecification in data 
refinement. In/. Proc. Lett., 25(2), May 1987. 

[25]	 C.A.R. Hoare and J.F. He. The weakest prespecification. Fundamenta 
Informaticae, IX:51-84, 1986. 

[26]	 C.B. Jones. Systematic Software Development using VDM. Prentice
Hall, 1986. 

[27]	 M.B. Josephs. Formal methods for stepwise refinement in the Z speci
fication language. Programming Research Group, Oxford. 



149 REFERENCES 

[281	 M.B. Josephs. The data refinement calculator for Z specifications. In/. 
Proc. Lett., 27:29-33, 1988. 

[29]	 P. Lucas. Two constructive realizations of the block concept and their 
equivalence. Technical Report TR 25.085, IBM Laboratory Vienna, 
1968. 

(301	 L. Meertens. Abstracto 84: The next generation. In Annual Conl 
ACM,1979. 

[311	 C.C. Morgan. Auxiliary variables in data refinement. Accepted by In! 
Prot. Lett. Reprinted in this collection. 

[32]	 C.C Morgan. Software engineering course notes. In draft. 

[33J	 C.C. Morgan. Data refinement using miracles. In! Proc. Lett., 
26(5):243-246, January 1988. Reprinted in this coUection. 

[34]	 C.C Morgan. Procedures, parameters, aDd abstraction: Separate con
cerns. Science 0/ Computer Pf'ogramming, 11, 1988. Reprinted in this 
collection. 

[35]	 C.C. Morgan. The specification statement. Trans. Prog. Lang. 81/s., 
10(3), July 1988. Reprinted in this collection. 

[36]	 C.C. Morgan and P.H.B. Gardiner. Data refinement by calculation. 
Submitted to Acta Informatica. Reprinted in this collection. 

[37]	 C.C Morgan and K.A. Robinson. Specification statements and refine
ment. IBM Jnl. Res. Deo., 31(5), September 1987. Reprinted in this 
collection. 

[38]	 C.C Morgan and B.A Sufrin. Specification of the UNIX filing system. 
IEEE Trans. Soft. Eng., SE-1O(2), March 1984. 

[39]	 J.M. Morris. Invariance theorems for recursive procedures. In draft. 

[40]	 J.M. Morris. Laws of data refinement. Submitted to Acta Informatica. 

[41]	 J.M. Morris. A theoretical basis Cor stepwise refinement and the pro
gramming calculus. 8cience of Computer Programming, 9(3):298-306, 
December 1987. 



150 REFERENCES 

~
[421	 P. Naur (Ed.). Revised report on the algorithmic langua.ge Algol 60. 
Com.... ACM, 6(1):1-17, January 1963. 

[43]	 G. Nelson. A generalization of dijkstra's calculus. Technical Report 16, 
Digital Systems Research Ceoter, April 1987. 

[44]	 J.E. Nicholls and SllJrensen I.H. Collaborative project in software devel
opment. IBM Hursley Park and Programming Research Group Oxford. 

[451	 T. Nipkow. Non-deterministic data types. Acta Infor...atiea, 22:629
661,1986. 

[461	 J.e. Reynolds. The Craft of Programming. Prentic...Hall, London, 1981. 

[47J	 K.A. Robinson. From specificatioDs to programs. Department of Com~ 

pnter Science, University of New South Wales, Australia. 

[48]	 J.M. Spivey. Understanding Z: a Specification Language and its Formal 
Semantics. Cambridge University Press, 1988. 

[49]	 N. Wirth. Programming in Modula-f. Springer, 1982. 



AUTHORS' ADDRESSES 151 

Authors' addresses 

Paul Gardiner and Carroll Morgan Programming Research Group, 8
11 Keble Road, Oxford OXI 3QD, U.K. 

Ken Robinson Dept. oCComputer Science, University of New South Wales, 
P.O. Box 1, Kensington 2033, Austra.lia. 

nnd 

Ralph Back Dept. of Computer Science, Abo Akademi, Lemminki.i.inengatan 
14, SF-20500 Abo, Finland. 

Joe Morris Dept. of Computing, Glasgow Unlversity, Glasgow G12 8QQ, 
U.K. 



OXFORD UNIVERSITY COMPUTING LABORATORY
 

PRG-2 

PRG-3 

PRG-5 

PRG-6 

PRG-9 

PRG-IO 

PRG-17 

PRG-18 

PRG -20 

PRG-22 

PRG-23 

PRG-26 

PRG-29 

PRG-32 

PRG-34. 

PROGRAMMING RESEARCH GROUP
 
8-11 Keble Road, Oxford OXl 3QD, England
 

Technical Monographs to September 23, 1988 

Outline of 80 Mathemaficai Theory of Computatiou
 
by Dana Scott. November 1970,24 p., £0.50
 

The Lattice of Flow Dia~allls
 

by Dana. Scott. November 1970, 51 p., £1.00
 

Data Types as LatticE'S
 
by Dana Scott. September 1976, 65 p., £2.00
 

7bward a Mathematical Semantics for Computer La.o.guage8
 
by Dana Swtt and Christopher Stra.chey. AugtUlt 1971, 43 p., £0.60
 

The Text of OSPub
 
by Christopher Strachey and Jo~pb Stoy. July 1972, 2v. 126, 151 p., £3.50
 

The Varieties of Programming Language
 
by Christopher Stf8.Chey. March 1973, 20 p., £0.50
 

Report on the Programming Notation 3R
 
by Andrew P. Black. August 1980,58 p., £2.30
 

The Spt.'CmcatioD of Abstract Mappings and their Implementation &l B+ fiees
 
by Elizabeth Fielding. September 1980, 74 p. + Appendix, £1.30
 

Partial Corrednf'ss of Communicating Processes aud Protoco18
 
by Zhou Chao Chen and C.A.R. Hoare. May 1981, 23 p., £1.75
 

A Modd for Communicating Sf'quf'ntial Procf'sse,
 
by C.A.R. Hoare. Jlme 1981, 26 p., .£'1.30
 

A Calculw of Total COJTf'Ctness for Communicating Processes
 
by C.A.R. Hoare. April 1981. 31 p., £1.75
 

Thf' Cousistf'ncy of thf' Calculus of Total Gon-et"tnes8 for GOllimun.iCII.tWg Sequential 
ProC'f>s..~f'S 

by Zhou Chao Chen. February 1982,38 p., £1.80 

Speciii.cotious, Programs &lId Implemf'Dtatious 
by C.A.R. Hoare. June 1982, 29 p., £1.75 

Tne Lispkjt Manual 
by Pet.er Hendl'ntoD, G,'raint A, JOD~ and Simon B. JODeg, 1983. 2v., 127, 1313 p .. 
.£'4..00 for botb 901uml'g 

Ab,,;trad Macnine Suppurt fur Plirdy Flwctjonal OperatiJJ~ Systems 



PRG-36 

PRG-37 

PRG-38 

PRG-39 

PRG-40 

PRG-42 

PRG-44 

PRG-45 

PRG-46 

PRG-47 

PRG-48 

PRG-49 

PRG-50 

PRG-51 

PRG-52 

PRG-53 

by Simon B. Jones. August 1983,33 p. + Appendi:J:, £1.75 

The Formal Spedfication of a Con/el'f'"nce Organising System 
by Tim Clement. August 1983, 52 p. + Appendix, £1.75 

SptXifkation-Oriented Semantics {or Communicating Processes 
by E.R. Olderog and C.A.R. Hoare. February 1984, 81 p., £1.50 

Making Nets AbstrMt an<:l Structured and Nets and their Relation to CSP 
by Ludwik Czaja. January/June 1984, 23, 26 p., £1.30 

I£FP • An Algebraic VLSI Design Language 
by Mary Sheeran. Ph.D. thesis November 1983, 139 p., £2.50 

The Design and Implementation o{ Programming Languagetl 
by John Hughes. Ph.D. thesis July 1983, 130 p. + Appendix, £2.50 

A Range of Operating Systems Written in a Purely Functional Style 
by Simon B. Jones. Febru80ry 1985. 44 p., £ 1.30 

The Wt>akest Prespedfication 
by C.A.R. Hoare and He Jifeng. June 1985, 60 p., £0.85 

Laws of Programming. A TutoriaJ Paper
 
by C.A.R. Hoare, HI' Jifeng, I.J. H8oyl's, C.C. Morgan, J.W. Sa.nde~,
 

I.H. S~reWlen, J.M. Spivey, B.A. Sufrin, A.W. Roawe. 
May 1985, 43 p., £2.35 

Specification Casl' Studies 
by Ian Hi\yes. July 1985, 68 p., £2.50 

Spt>eifying the CICS Application Programmer's futerlace 
by tan Hayes. July 1985, 82 p., £3.10 

CAVIAR: A Case Study in Specification 
by Bill Flinn and Ib Holm S~renst'n. July 1985, 46 p., £2.00 

Specification DirtXted Module TC"sting 
by Ian Hayes. July 1985, 30 p., £0.90 

TIle Distributed COmplltill~ Software Project 
by RO~t'r GiIll~on and Carroll Morgan. July 1985, 85 p., £4.00 

JSD Expnssed in GSP 
by K.T. Sridhar and C.A.R. Hoare. July 1985.40 p., £1.45 

Algebrai/" Specification and Proof of Properties of Communicating St'ljuelltial 
Pr(Jces,~es 

by C.A.R. Hoare and HI;' Jift>ug-. Novt'mber 1985.72 p .. £0.90 

The Laws of On'am Programming 
hy A.W. Ros("oe and G.A.R. HOllon'. Ft'imlary 198G. 8G p .. £2.50 



PRG-54 

PRG-55
 

PRG-56
 

PRG-57
 

PRG-58
 

PRG-59
 

PRG-60
 

PRG-61
 

PRG-62
 

PRG-63
 

PRG-64
 

PRG-65
 

PRG-66
 

PRG-67
 

PRG-68
 

Exploiting Parallelism in the Graphics Pipeline 
by Theoharis A. Theoharill. June 1986, 101 p., £2.50 

Functional Programming with Side-Effects 
by Mark B. Josephs. Ph.D. thesis, June 1986, 101 p., £3.00 

An Introduction to the Theory of Lists 
by Richard S. Bird. October 1986, 28 p., £1.50 

The Pursuit of Deadlock Frefflom 
by A.W. Roscoe a.nd Naiem Dathi. November 1986, 38 p., £1.50 

Formal Methods Applied to a Floating Point Number System
 
by Geoff Barrett. Ja.nuary 1987, 47 p., £1.60
 

Not yet allocated 

The Formal Specification of a Microproce88or Instruction Set
 
by Jonatha.n Bowen. Ja.nuary 1987, 72 p., £2.00
 

The Specification of Net'illOrk Services 
by Jonathan Bowen, Roger Gimson, Stig Topp-Jl!lrgeDSeD.. August 1987, 
100 p., £2.60 

The Formal Documentation of a Block Storage System 
by Roger GimBOD. August 1987, 112 p., £2.90 

Specifying System Implementations in Z 
by J onatba.n Bowen, Roger Gimson, Stig Topp-J0rgensen. February 1988, 
88 p., £2.00 

A Calculus ·of Functions for Program Derivation
 
by Richard S. Bird. December 1987, 21 p., £1.00
 
An Introduction to CSP
 
by J. W. Sa.udenl. 1988, 29 p., £1.20
 

The Sljdin.g- Window Protocol in CSP 
by K. Paliwoda, J.W. SlWdenl. 1988,26 p., £1.20 

Two Papers on CSP
 
by A. W. Roscoe. 1988, 80 p., £2.20
 

Z: Grammar and Concn'te and Abstract Syntaxes
 
by Steve King, Ib Holm Sprensen, Jim Woodcock. 1988, 48 p., £l.liO
 




