
Combinator Graph Reduction: 

A Congruence and its Applications 

by 

David Lester 

A thesis submitted to the Fa.culty of Mathematical Sciences for the degree 
of Doctor of Philosophy, July 1988 

._--~~-_... ,--,-_._. _. - .....'-'... -_._-------...-,., 

Technical Monograph PRG) AC'::N~;J. 25 ~E~{~0021 i,ISBN 0-902928-55-4 
April 1989 ..--..-,--.--------, ~ - : :...-..." ! 
~~;::~::;r~:e;:c~p~:~:~ LaboratOryo X :' _._~.. :;,.o·

8-11 Keble Roa.d '1 r. I ,) I 
Oxford OXI 3QD l----. ----IEngland 

I~IIIIIIIIIII
 
303387025W 



Copyright @1989 David Lester 

Oxford University Computing Laboratory 
Programming Resea.rch Group 
8·11 Kehle Road 
Oxford OXI 3QD 
England 

ii 



ABSTRACT 

David Lester
 
The King's Hall and College of Brasenose
 

and
 
Programming Research Group
 

A thesis submitted to the Faculty of Mathematics
 
for the degree of Dodor of Philosophy
 

July 1088
 

Combinator Graph Reduction: 
A Congruence and its Applications 

The G-ma.chine is a.n efficient implementa.tion of lazy functional languages 
developed by Augustsson and JOh06800. Tills thesis ma.y be read ali a. for
mal ma.thematical proof that the G-machlne is correct with respect to a 
denotational semantic specifica.tion of a simple langua.ge. It also hiS more 
general implica.tions. A simple lazy functional language is defined both de
Rota.tionally and operationaJly; both are defined to handle erroneous results. 
The opera.tional semantics models combina.tor gra.ph reduction, and is based 
on reduction to weak head normal form. The two semantic definitions are 
shown to be congruent. 

Because of error handling the language is not confluent. Complete strict 
ness is shown to be a necessary and sufficient condition for changing lazyI 
function calls to strict ones. As strictness analyses are usually used with 

~ confluent languages, methods are discussed to restore this property. 
The operational semantic model uses indirection nodes to implement 

sharing, An alternative, which is without indirection nodes, is shown to be 
opera.tionally equivalent for terminating programs. 

The G-ma.c.h.ine is shown to be a representation of the combinator graph 
reduction opera.tional model. It may be represented by the composition of a. 
sma.ll set of combinators which correspond to an abstract machine instruc
tion set. Using a modified form of graph isomorphism, alternative sequences 
of instructions are shown to be isomorphic, and hence may be used inter
changeably. 

iii 



Contents 

1 Introduet ion 1
 
1.1 Functional Programming. 2
 
1.2 Denotational Sema.ntics 3
 
1.3 Overview . . . . . . . . . 5
 

I Congruence 7
 

2 Semantic Models 9
 
2.1 A Simple Functional Language 9
 
2.2 Notations for Denotational Semantics 11
 
2.3 Standard Semantics ... 12
 
2.4 An Operational Sema.ntics 13
 
2.5 Related Work 20
 
2.6 Conclusion ... 21
 

3 Congruen~ Proof 23
 
3.1 The Congruence Proof . 23
 
3.2 Analysis of the In terpreter . 26
 
3.3 Predica.tes for a. Structural Induction 35
 
3.4 Analysis of the Denotational Semantics 44
 
3.5 Related Work 47
 
3.6 Conclusion 48
 

4 Extending The Language 49
 
4.1 Extended Denotational Semantics. 49
 
4.2 Extended Operational Semantics . 51
 
4.3 Congruence for the Extended Language 55
 
4.4 Related Work . 60
 

v 



4.5 Conclusion 

II Applications 

5 Using Strictness Information 
5.1 Re-ordering Evaluations 1n Sequential Machines 
5.2 Related Work 
5.3 Conclusion 

6 Sharing Mechanisms 
6.1 A Spine Cycle Theorem . 
6.2 A Weak Head Normal Form Theorem 
6.3 Copying Shared Nodes ..... 
6.4 Indirections Without Chaining 
6.5 Related Work 
6.6 Conclusion . 

7 Deriving the G.Machine 
7.1 Another Interpreter . 
7.2 Fast Unwinding . 
7.3 Continuations From Combinators
 
7,4 The G·machine Printer Mechanism
 
7.5 Related Work 
7.6 Conclusion 

8 Store-level Optimizations 
8.1 Graph, State and Continuatiou Isomorphism 
8.2 Reducing the Amount of Graph Constructed 
8.3 A Stack for Basic Values. 
8.4 Related Work 
8.5 Conclusion 

9 Condusion and Further Work 
9.1 Results .... 
9.2 Further Work 

Bibliography 

vi
 

61 

63
 

65
 
66
 
68
 
69
 

71
 
72
 
74
 
76
 
78
 
79
 
80
 

81
 
82
 
85
 
91
 

101
 
103
 
103
 

105
 
105
 

108
 
116
 
121
 
121
 

123
 
123
 
125
 

126
 



List of Figures
 

2.1 Syntactic Categories .	 10 
2.2 Abstract Syntax: .	 10 
2.3 Standard List Operations	 13 
2.4 Value Doma.im for Denotational Semantics	 14 
2.5 Sema.ntic Functions. . . . . . . . . . . ..	 14
 
2.6 Value Domains for Operational Semantics	 15 
2.7 Example of a. Graph	 16 
2.8 Interpreter .	 17 
2.9 AuxHiary Defini tioRS	 17 
2.10	 Compiling Functions 19 

3.1	 OutlinE of the Proof Structure 24 

4.1	 Value Domains for Denotational Semantics (Extended for 
Constructors) . . . . . . . . . . . . . . . . . . . . . . 50 

4.2	 The initial environment Pbasic . 51 
4.3	 Value Doma.ins for Operational Semantics (Extended for Con

structors) . . . . 51 
4.4	 The Dump and Dump. functions 52 
4.5	 Exa.mple of a Gra.ph . 53 
4.6	 The Step function . 53 
4.7	 The Built-in Reductions: .Step 54 
4.8	 Auxiliary Functions for .Step Functions 54 

6.1	 Example of a Graph 75 

7.1	 The Step' function 83 
7.2	 The Built-in Reductions: .Slepl . 83 
7.3	 Value Domains ..... 86 
7.4	 Instructions for Function Call and Return 87 

vH 



7.5 The ArgsGM function . 88
 
7.6 The eual and restore Instructions . 88
 
7.7 The unwinlh and unwinch Instructions 90
 
7.8 The unwind4 Instruction . 92
 
7.9 Stack Semantic Functions C a.nd £ 93
 
7.10 Instructions to Compile User Defined Combinators 93
 
7.11 Instructions for Built-in Functions 94
 
7.12 The unwind Instruction ..... 99
 
7.13 The Stack Semantic Function V .. 99
 
7.14 The Initial Environment Anit ... 99
 
7.15 A Printer for the Standard Sema.ntics 101
 
7.16 The G·ma.chine print instruction 101
 

8.1 The call a.nd slide Instructjons .. 109
 
8.2 Instructions for Built-in Functions (using V) 116
 

viii
 



Acknowledgements 

1 would like to thank my supervisors, PbH Wadler and Richard Bird, for 
their encoura.gement. Phil, my supervisor from January 1985 to Ja.nuary 
1988, agreed tha.t a proof of the correctness of the G·machine would con
stitute a useful project in the world of functional programming. The use 
of equational reasoning in Chapter 8 was suggested by Phil. Richard then 
explained what equational. reasoning was. Both spent considerable time 
checking the congruence proof of Chapter 3. Any remaining problems are 
purely my own work. The layout of the congruence proof of Cha.pter 3 was 
suggested by Micha€l Goldsmith. 

Chapter 8 owes a lot to the paper presented at the third Functional Pro
gramming La.nguages and Computer Architecture conference. This benefited 
considera.bly from the helpful comments of Simon Peyton Jonee and three 
other reviewers. The interest shown by attendees of FPCA '87 ma.de the 
process of writing up easier. 

The final. months of writing up were made more comforta.ble by Geoff 
Burn, who made many useful observations on the work. He has been tireless 
in exposing points where the mathematics were not obvious. Thanks go to 
Juliet Shearma.n and Evelyn Lester for proof reading the completed \Vork so 
promptly. 

Finally to the Science and Engineering Research Council, without whom 
this work would not have been started; and GEC Hirst Research Centre, 
withou t whom this work would not have been completed so easily. 

ix 



Chapter 1 

Introduction 

The simple denotationa.l semantics ofla.zy functional programming langua.ges 
allows powerful program transformation techniques to be used when develop
ing progra.ms. If the objective, when using these methods, is the production 
of a. working system, then the implementation of the language should also 
be correct with respect to the denotational semantics. In this case the whole 
system may be said to meet its specification. 

The G-machine is an efficient implementation of lazy functional lan
guages which has been developed by Augustsson and Johnsson in a series 
of pa.pers [1983, 1984], culminating in their theses [1987, 1987]. The work 
presented in this thesis may be read as a formal mathematical proof that the 
G·machine is correct with respect to a denotational semantic specification 
of a simple language. In fact the work is more general. Combinator graph 
reduction to weak head normal form will be shown to successfully implement 
lazy functional languages. This remains true even though the 6-rules that 
are selected in this thesis make the language non-confluent. The confiuence 
of the pure A-calculus is shown by the Church-Rosser Theorem, and for this 
reason confluence is often referred to as the Church-Rosser Property. In
formally, it states that all reduction orders tha.t tenninate reach the same 
normal form. 

This is important because most implementations oflazy functional pro
grammjng languages are based on combinator graph reduction, where graphs 
are reduced to weak head normal form. Prevjously. results from the A
calculus, such as The Church-RosseT Theorem, have been used in proofs 
about the operational properties of programs written in these languages. 
This thesis puts both the implementations and the program proof techniques 

1 



2 CHAPTER 1. INTRODUCTlON 

onto a. firm mathematical founda.tion. 

1.1 Functional Programming 

The language examined in this thesis has its orlgm in notations devel
oped for mathematical logic in the 1930's. These are: Church's A-calculus 
[1936, 1941}; Kleene's general recursive equations [1936, 1950]; and com
binatory logic, independently discovered by Schonfinkel [1924] and Curry 
[1930]. Each of these notations is at once both powerful and simple. For this 
reasoD, terms writ ten in these notations are often easily shown to be equiv~ 

alent. The problem with such powerful notations has always been efficient 
implementation. 

The first practical realisation of these languages occurred in the early 
1960'" when John McCarthy et al. developed LISP [1962]. Although thi, 
was based on the A-calculus, it differed in two important respects. Firstly, 
the scope rules were dynamic rather than static. Secondly, the evaluation 
order chosen was applicative rather than normal. If a >..-term had a nor
mal form then normal order reduction would find that normal form, see 
[Curry And Feys 581. Unfortunately, applicative order reduction is less pow
erful, in the sense that it is not able to reduce all >"-terms with a normal 
form to that fonn. When tills occurs the applicative order reduction fails 
to terminate. It therefore produces a.n approximation to the required result, 
rather than a contradictory one. In spite of the deviation from the pure 
A-calculu" LISP is still popular. 

During the early 1960's, Landin developed a virtual machine to imple
ment sta.tically scoped LISP. Because this machine used four registers; Sta.ck, 
Environment, Code and Dump; it is called the SECD machine. It is de
scribed in [1964]. In fact, with a small modification this machine could be 
adapted to perform normal order reduction, but it would be hopelessly in
efficient. The problem was that each use of an argument within a function 
required repeated evaluation of that argument. 

Lazy evaluation is an attempt to overcome this difficulty. The result of 
evaluating an argument is preserved, so that subsoequent uses of the argu
ment benefit from the original evaJuaOon. Landjn's SECD machine may be 
made to perform this operation by using the concept of closures to represent 
unevalua.ted arguments. A closure is a pair consisting of som.e representa
tion of the function and an environment where the function may access its 
local variables. This was developed by Henderson and Morris in the context 



1.2. DENOTATIONAL SEMANTICS 3 

of data structures [1976]. A description of the general method occurs in 
[Henderson 80, Henderson et al. 82]. 

An alternative representation for closures was devised by Wadsworth 
[1971]. In place of the function and environment pair, a piece of graph is 
constructed. This graph represents the function body, with the varia.bles of 
the environment bound into the correct places of the body. In Wadsworth's 
thesis [1971] graph reduction is used to evaluate the pure >.-calculus using 
reduction to head normal form. Turner [1979a, 1979b] showed how graph 
reduction could be used to evaluate combinatory logic terms efficiently, Gen
eral recursive equations may be converted to pure combinators. Supercom
binators [Hughes 82b] and lambda-lifting [Johnsson 83] are two methods de
scribed in the literature. It is programs that have been transformed to either 
of these forms, and now require reduction to weak head normal form, that 
we shall be concerned with in this thesis. 

Graph reduction has proved to be important as it underlies the most 
efficient implementations of la.zy functional languages known. Johllsson's 
G-ma.chine was the first really efficient implementation based on gn.ph re
duction and providing la.zy semantics. Further refinements to the graph 
reduction machine include Burn, Robson and Peyton Jones' Spineless G
machine [1988] and Fairhurn and Wray's TIM [19871. Another ad"lltage 
of graph reduction is that it may easily be performed in parallel. This is 
because it has no global environment structure. 

A number of introductory texts on functional programming exist. Burge 
[1975] describes recursive techniques in some detail, although he is not in
terested in reduction orders. Henderson [1980] describes LispKit, a simple 
language based on Lisp. It includes the development of the compiler, based 
on Landin's SEeD machine (1964). The techniques involved in developing 
algorithms written in lazy functional languages js described by Bird and 
Wadler [1988J. 

A good general introducHon to the techniques of graph reduction occurs 
in Peyton Jones' textbook: "The Implementation of Functional Program
ming Languages" [1987]. 

1.2 Denotational Semantics 

Denotational semantics is only one of a number of approaches to the spec
ification of programming language semantics. It was developed at the Pro
gramming Research Group by Strachey [1966] and given a formal basis by 



4 CHAPTERl. INTRODUCTION 

Scott's work on models for the ),·calculus [1970]. 

The approach ta.ken in this thesis is that the semantics should be specified 
denotationally. This has advantages over the other two common specification 
methods. With an operational semantics we could arrange things so that 
no work is performed to establish whether graph reduction correctly imple
ments our langnage. The problem is that the language is then over-specified. 
Other implementation methods would be precluded unless we could estab· 
lish some form of operational equivalence between the states used in each 
implementation. A particular example in this context would be the SEeD 
machine, suitably adapted to perform lazy evaluation. 

An axiomatic semantics is usually provided for languages with state, and 
specifies a relationship between initial and final states, after executing a com
mand. This immediately raises problems in a language without commands. 
Josephs [1986J ha.s presented an axiomatic semantics for a lazy functional 
language with side effects. A similar axiomatic specification occurs in term 
rewriting systems, From an expression and a set of rewrite rules, we may de
duce a new expression. The problem with this approach is that termination 
of the term rewriting system will normally be proven separately. 

The most important advantage of denotational semantics for spedfying 
lazy functional languages is that it is simple. This is not surprising; the 
A-calculus is the basis of both denotational semantics and lazy functional 
languages. 

The problem is then to show that graph reduction successfully imple~ 

ments the language specified. Of course we must also specify graph reduc
tion. In this thesis we do so operationally, although an equivalent denota
tional version could be formulated. As the operational semantics of graph 
reduction provides a specification of an implementation it must contain more 
detail, and its semantics becomes correspondingly more complicated. 

Although the notation used in this work is based on [Stoy 77], there are 
other texts which could be used as an introduction to this work. Milne and 
Strachey [1976] is a presentation of a congruence proof; this proof is used 
to motivate the investigation of denotational semantics. Gordon [1979] and 
Tennent [1983] are simple introductions, but perhaps too superficial. A re
cent textbook on denotational semantics, by Schmidt [1986], brings sections 
of StOj"S book up to date. 



1.3. OVERVIEW 5 

1.3 Overview 

The work described in this thesis falls conveniently into two parts. 
In Part I, a congruence result for a simple lazy functional languages is 

established. The syntax of this language is given in Figures 2.1 and 2.2. The 
remainder of Chapter 2 provides a denotational semantics a.nd an operational 
semantics for this language. The denotationa.l semantics is directly related 
to that for the -'-calculus given in [Stay 771. The opera.tional. semantics 
chosen is based on graph reduction. This model uses indirection nodes to 
implement sharing, but is otherwise similar to typical real implementations 
of graph reduction. 

Chapter 3 proves that the two semantics given in Chapter 2 are con
gruent. The congruence of the two semantic definitions means tha.t they 
agree upon the result of executing a program, whenever this is a base value. 
This relation is not equality as the results are drawn from different do
mains; the denotationaJ. semantics produces a result in the domain E where 
E = [E _ E] + H; the operational semantics produces an interpreter state. 
A further complication emerges because the operational semantics is able to 
equivalence more functions than the denotational semantics. This is the full 
abstraction problem, which we circumvent by considering congruence rather 
than equivalence. 

The congruence proof js outlined in Figure 3.1 on page 24. It follows 
the classic pattern of such proofs, by establishing that each semantics ap
proximates the other. Usjng Schmidt's terminology [1986], we may say that 
the operational semantics is both faithful and terminating with respect to 
the denotational semantics. Faithfulness is demonstrated by a fixpoint in
duction; the termlnation property by structural induction using inclusive 
predicates. 

Tbe language is extended in Chapter 4 to implement typical built-in 
functions such as additjon, equality and data structuring functions. The 
operational sem.antics is extended so that there are no explicit recursive calls 
to the interpreter. The congruence result js then extended. This involves 
showing that the reduction steps associated with the built· in functions are 
faithful. Next we demonstrate that a new set of predicates, including one 
for comparing da.ta-structure nodes, are inclusive. From this we are able to 
deduce that there is a congruence for the extended language. 

Part II is devoted to applications of the congruence. The conditions 
under which we may re-order the evaluation of arguments to functions are 
deduced in Chapter 5. We may evaluate the argument oX first, in the expres



6 CHAPTER 1. INTRODUCTION 

sian f Xl if and only jf f is completely strict, i.e. f.L == .1. and f 1.;:;;: 1. This 
is a stronger condition than tha.t generally supplied by atTic tne-;s a.bstract 
interpreta.tions. An interesting observation is that the language with which 
we are working is not confluent. The confluence of the A-calculus is shown 
to hold by the Church-Rosser Theorem [Barendregt 81, Theorem 11.1.10, 
page 2821. We are unable to show a similar theorem for our language 35 

there exist two possible reductions of 1. + l..j it ma.y be either 1 or .l-
In the operational semantics of Chapters 2 and 4, indirection nodes are 

inserted at the end of each reduction step. This preserves sharing. Other 
methods have been proposed to avoid the use of indirection nodes, and we 
investiga.te these in Chapter 6. In the process of proving the alternative 
methods equivalent it will be observed that individual reduction steps may 
fa.il to terminate. A necessary and sufficient condition for this to occur is 
that there is a spine cycle, and it is not then possible to determine the root 
of the next reduction. 

In Cha.pter 7 we show that the G-machine is equivalent to the operational 
semantics of Chapter 4. Because the operational semantics is congruent to 
the denotational semantics, we may say that the G-ma.chine is a correct 
implementation of the language specified by the denotational semantics. 

One of the principal areas of optimization in the G-machine is its use of 
the V stack to hold temporary basic values. In Chapter 8 some of these opti
mized continuations are shown to be equivalent to the original, unoptimized, 
continuations. This process involves showing a form of operational equiva
lence holds; this is related to graph isomorphism. The modified definition of 
graph i80morphism allows us to relate graphs that differ only on unreachable 
nodes within the graph or which differ by having indirection nodes elided. 
Graph isomorphism is extended to allow us to refer to G-machine states and 
continuations that are graph isomorphic. 

A summary of the results derived in this thesis appear in Chapter 9. 





Chapter 2 

Semantic Models 

In this cha.pter we define the syntax of the language and informally describe 
its intended semantics. Next a. denotationa.l sema.ntics is given. Proofs a.bout 
the results produced by a. program would typically be proved in a. denota
tional setting. An operational semantics for gra.ph reduction is then given. 
This can be viewed as an implementa.tion of the language. Operational prop
erties of tbe progra.m, such as space and time complexity, would typically 
be investigated using the opera.tional semantics. We prove the congruence 
of the denotational and opera.tional semantic specifica.tions in Chapter 3. 

2.1 A Simple Functional Language 

In this thesis we shall consider a. very simple lazy functional programming 
la.nguage. Its abstract syntax is given in Figures 2.1 and 2.2. A program in 
this language is then an expression IE] and a set of rewrite rules I~]' Each 
rewrite rule associates a combinator [f] with an identifier. The combinator 
[f] is a function of at least one argument and has a body [E]. The inten
tion is that a free va.riable of the rewrite rule [I = f] should be the name 
of another rewrite rule. This means that we may treat each rewrite rule as 
a combinator as its free variables are in fact constants. It is this important 
property tha.t allows combinator gra.ph reduction to occur without closures. 
Another observation is that each definition is a function and not a constant. 
This is because a combinator reducer would treat constant definitions differ
ently, see [Peyton Jones 87, Section 18.6, page 311]. Since we are interested 
in the operation of combinator reduction it seems reasonable to simplify our 
language to a minimum. 

9 



10 

I 

CHAPTER 2. SEMANTIC MODELS 

Il E Prog (Progra.ms)
 
tJ. E Dels (Function Definitions)
 
rEComb (Com binator Bodies)
 
E EExp (Expression)
 
B E Basic (Basic Values)
 

E Ide (Identifiers) 

Figure 2.1: Syntactic Categories 
IT ;:=	 E where li. 

tJ. ;0;	 tJ.u and tJ., 
I; r 

r ;0;	 >.l.E 
>.l.r 

E ;0;	 I 
B
 
Eu (Ed
 

Figure 2.2: Abstract Syntax 

In passing we note there exist transformations that allow the translation 
of general functional programs into the restricted fonn we present here. The 
two well known ones are those of Hughes [19823, 1982bJ and Johnsson [1985], 
both of which are described in more detail by Peyton Jones [1987]. The 
aim of both techniques is to reduce a program to the restricted form of 
combinatofs, as there exist efficient implementations of 6uch languages. 

In Figure 2.1, the names of the syntactic domains and typical elements of 
these domains are given. In Figure 2.2 the syntax is defined. A program [II] 
is an expression [E] and a set of combinator definitions [6.]. The combinator 
definitions introduce bindings 01 the form [I == rD. [I] is an identifier and [f] 
is the combinator that is bound to [I]. Each combinator takes at least one 
argument because r is defined as either ).I.r or ALE. An expression is either 
an identifier [I]j a basic value [B] or an application of two subexpressions 

iEuEd· 
It can be seen, in Figure 2.2, there has to be at least one function defi

nition. This may be overcome by amending the syntax with a second pro



2.2. NOTATIONS FOR DENOTATlONAL SEMANTICS 11 

duction for II,. of II ::= E. We have not done this as OUI proofs in Chapter 3 
will become even more complex. 

2.2 Notations for Denotational Semantics 

The notation used in denotationaJ aemantics varies from author to author. In 
some ways the notation used by Stay [1977] is cumbersome, and occasionally 
amhiguous, {or the material presented in this thesis. Therefore whilst the 
majority of the notation comes from [Stay 771, other parts are derived from 
functional. prognrnming notation. 

Syntactic objects are denoted by Greek capitals (E, B, ... ) and a.re ele
ments of domains denoted by short names (Exp, Basic, ... ). Corresponding 
lower case Greek letters (t, 13, ... )denote appropriate semantic values l which 
come from domains denoted by (E, B, ... )i large curly letters (£, B, ... ) 
are used for the "'valuation" functions which map syntactic objects to the 
values they denote. 

We shall presume that the domains are defined using complete partial 
orders. A presentation of this model is available (Schmidt 86, Section 6.5J. 
The results derived in this paper will of course hold for the alternative defi
nition of the domains as a complete lattice with an element T. Each domain 
includes an error element, denoted by 1.. As usuall.. ~ 1., but 1. is incompa
rable with all other elements. If an el;meut is projected intoaBubdomain 
where it doesn't belong, it is mapped to 1.; conversely, the 1. element of each 
subdomain is mapped to 1. in the sum. -We shall refer to- l.. and 1as im
proper elements of a domaIn; the predicate Proper(x) will be true provided 
x is neither .L nor? 

D o+D 1 denote; the separated sum of the domains Do and D}. [f D is the 
separated sum of Do and D 1 , with fJ E Do, then fJ in D is the corresponding 
element of the sum domain D. If fJ E D then fJlDo denotes the following 
element of Do: 

• if 6 '" 1- D tben (6IDo) '" 1- D ,; 

• if fJ corresponds to an element fJo of Do then (fJIDo) == fJo; 

• otherwise (fJ]Do) == boo' 

If fJ E D then t5 E Do is the following element of the truth value domain T: 

• if 6 '" 1- D tbeD (6' Do) '" 1- T; 



12 CHAPTER 2. SEMANTIC MODELS 

• if 0 corresponds to an element 60 of Do then (15 E Do) == true; 

• otherwise (6 E Do) == false. 

For T E T (the domain of truth values) and 60,61 ED, the expression 

60 if T is true 

6 6 h al 6, if T is false
 
T -- 0, 1 as v ue ...L D if T is.L T


{ 
~ D ifTis~ T 

The ma.jor change of nota.tion is in the representation of elements of 
composite domains. Borrowing from functional programmlng nota.tion we 
represent a.n element of the cartesia.n product domain (D 1 x ... XD D) by 
(011 ... IOn), a.nd we can access the m th component by 1st 0 snJ"i. Similarly 
we provide a. new nota.tion for lists of elements of some domain D. The list 
domain is represented by D· which can be expressed as the solution to the 
following domain equa.tion!: 

D' = (D X DO) + {nil}. 

Elements of this domain can be represented by either of the two notations 
used by Turner in SASL [1976]. If i E n and Ijl En· then we can represent 
Ct,4» in n· by I : Ijl. Alternatively, a. finite list may be represented by 
[io, ... ,inJ, which is equivalent to (1'0: (... (in: n;I) .. .)). 

As list domains form a significant part of the definition of the operational 
semantics, we define a selection of useful continuous functions over lists in 
Figure 2.3. 

Theother change of notation is to represent the updating of environments 
by p III {I >-0 e} which is defined by 

pfl) {I >-0 e} = >J'.((I' = I) ~ E, p[I']). 

Notice that ffi is associative. An arid environment is defined by P arid 

ALL. 

2.3 Standard Semantics 

1 As solutions to recnrsive domain equations are unique only np LO isomorphism, we 
could ~ ~ instead of = to ell:press the equation. This notation is not used in this 
thesis, asit connicts with Stoy's notation, and we will make considerable use of 8!: in other 
contexts. 



13 2.4. AN OPERATIONAL SEMANTICS 

0* ys = ys 
(x:xs)* ys = x::U*1I8 

(x: xs)!O = x 
(x : xs) ! (n +1) = %3! n 

#[] = 0 

#(X:Xs) = 1 +#XS 

takeO zs = [] 
lake(n +1) (x : xs) = x:takenu 

dropOxs = xs 
drop(n + 1) (x: xs) = dropn %8 

map! [] = [] 
map!(x: xs) = Ix: map/z8 

lastza = xs!(#xs-1) 

Figure 2.3: Standard List Operations 

The object of a denotational semantics is to map syntactic. objects to ele.
ments of the value domains we wish to use. Figure 2.4 shows that we have 
a very simple set of domains. The domain B is the domain of basic val
ues, which might represent any simple data types we want. For example, 
B = Z +T would be suitable if we wanted to use integer and boolean values. 
The domain E is then defined to be the separa.ted sum of Band F, where 
F is the domain of fUDctions from E to E. We define one more domain, U, 
which maps identifiers to expressions. 

As the language is a sugared version of the A-calculus with base val
ues, the semantic functions of Figure 2.5 are straightforward, and are based 
on Stoy's work [1982). In Chapter 4 we consider the addition of primitive 
operations, such as addition, to this semantic definition. 

2.4 An Operational Semantics 



14 CHAPTER 2. SEMANTIC MODELS 

< E E = B+F (Expression Values) 
E F = IE_E) (Function Values)
 

(J'" E B (Primitive Values)
 
p E U = [Ide - E) (Environments)
 

Figure 2.4: Value Domains for DenotationaJ Semantics 
P:Prog_E
 
P [E where Ll.] = E [E] jiz(V [Ll.])
 

V:Defs_U_U
 
V [Ll., and Ll.,] p = V [Ll.oJp E!I V 1Ll.,]p
 
V[I=f]p = {1~C[f]p}
 

C : Comb- U - E
 
C Pl.E] p = ~<.E[E](p E!I {I ~ <}) in E
 
CPU] p = kC [f](p E!I {I ~ <}) in E
 

E:Exp_U_E 
E[I]p p [I]
 
<[B]p 8[B) in E
 
E [F" (Ed] p = «0 EF) - «0 IF)«,). 1
 

wbere <; = E [E;! p - for i = 0,1 

Figure 2.5: Semantic Functions 

In this section we define a.n operational semantics for the language. This 
operational semantics will also be referred to as an interpreter for the lan
guage or an implementation of the language. Because we wish to implement 
the language described in Section 2.3, we use the same syntactic ca.tegories 
and abstract syntax. The operational semantics is defined 80 that it mod
els graph reduction. It is this important technique that is the basis for 
the most efficient implementations of lazy functional languages known. See 
[Johns8on 83, Johnsson 84] and (Fairburn and Wray 87] for further details. 

The domains used to define the operational semantics are given in Fig
ure 2.6. We will use the same letters to represent these domains as we did 
for the denotational semantics of the previous section, although we are now 
using them to refer to different domains. Each state in S has two compo
nents; a rooted graph (with elements in G x L) and a global environment 



15 2.4. AN OPERATIONAL SEMANTICS 

<1 E S - (G x L) x D (States) , E G = [L~NJ (Grapbs) 
y E N = A+I+B+lde (Nodes) 

A LxL (Application Nodes) = 
I L (Indirection Nodes) = 

(3 E B (Basic Values) 
p E U = [Ide ~ L] (Local Environments) 
6 E D = [Ide~ Combl (Global Environments) 
l E L (Node Labels) 
¢ E LO (Spines) 
K E K = [(G X L) ~ (G xL)] (Continuations) 

Figure 2.6: Value Domains for Operational Semantics 

(with elements in D). The graphs we wish to consider have the following 
properties: 

directed This is so that the edges point in one direction only. Such a. graph 
is often referred to as a digraph. 

labelled The doma.in structure we have chosen uses the labels to represent 
edges. 

finite Both the set of vertices and the set of edges are finite. 

rooted We need to maintain the distinction of the root node. 

A finite labelled digrapb is defined in [Harary 69, pages 8-13]. Our rooted 
graphs are represented by a graph (G), from node labels (in L) to nodes (in 
N), and a root node from L. This represents the root node of our evaluation. 

Nodes are represented by node labels. These are represented by the fla.t 
dorna..in L, which is not further defined. We can think of them informally 
as pointers into the heap. The contents of a node (from domain N) may be 
one of four types, represented by A, I, B and Ide. The domain A represents 
the application nodes, I represents the indirection nodes, whilst B and Ide 
have been encountered in Section 2.3. 

This nota.tion to represent graphs may not be immediately obvioos. It is 
similar to the way the store is modelled in a typical denotationaJ. semantics. 
An example of a graph is given in Figure 2.7, and we would model this by 
the graph "'I and root 4J where 



16 CHAPTER 2. SEMANTIC MODELS 

i o :@ 

/"' 
ll:i Is:a2 

"'-i,: @
 

i 3 
/"' 

: f i, : ., 

Figure 2.7: Example of a Graph 

-y:{ io~(i"i,)inN, £1 - /'1 in N, i, ~ (i3 , i,) in N, 
£3 1--+ f in N. t 4 ....... 41 inN, Is_a2 inN} 

In the pictorial. representation @ represents an application node; i represents 
an indirection node and f, at and a2 are identifiers. Each node is labelled 
i o .. . i,. 

Informally the interpreter performs reductions on a state 0 (using the 
function Step) nnW a state is reached in which no further reductions ace 
possible (tested by Done). Of course it is possible that there is no fina.! state 
and that the interpreter "loops for ever". This is why the EvaJ function 
of Figure 2.8 is defined in terms of the least fixed point of the sequence of 
reductions. 

Both Step and Done are defined in terms of a spine wbkh is constructed 
by the function Spine. Informally Spine produces a list of poin ters to appli
cation nodes and a pointer to either a function or a basic value. In the graph 
drawn in Figure 2.7 the spine is [i3 • £2, io]. Notice that the indirection node 
is not included. 

A state a is terminal when Done(a) holds. This occurs if the first and 
only element of the spine is a basic value or if the spine represents a function 
with insufficient arguments to be reduced. Peyton Jones refers to sucll a state 
as being in weak head normal form (subsequently referred to as WHNF) in 
his book [Peyton Jones 87, page 198J. The number of arguments required 



17 2.4. AN OPERATIONAL SEMANTICS 

Eval =	 fi;x(AKAI1.Done(I1) ~ 11, K(Step(I1m 

Step«i,io), 6) =	 «i' Ell {(,p! (Ary8[r) - 1» _I' in N},Io),.) 
where	 (l:,p) = Spine(i,Io) 

[r) = 6«il) I Ide) 
(;', l') = C[f] P arid ,p (i, l) 

Done«i,Io),6) =	 (v EB 1\ #,p = O)V 
«v E Ide) 1\ (Ary8(6 (v I Ide)) > # ,p» 

where (l:,p) = Spine(i,Io) 
v = il 

Spine(;, l) = (v. A) 
(v. I) 

~ 
~ 

Spine(i, '8t(V I A)) * [t], 
Spine(i, Elide(i, (v I I»), 

(v E B) ~ ft], 
(v. Ide) ~ It], 

1 
where II = it 

Arys(AI.E] = 1 
Ary8!AI.r] = 1 + Arys!r) 

Figure 2.8: Interpreter 

New (i) ••li,fies i(New (;)} = L 1\ New (At.L) = 10 E L 

Elide(i,l) = (ii. I) ~ Elide(i, (;ll I»,i 

Ary(;, l) (v. A) ~ 8nd(V IA),l 
wherev=;l 

Figure 2.9: Auxiliary Definitions 

by a function is determined by the auxiliary function Args. If a. atate is 
non-terminal then a. reduction step is performed on that state, using Step. 
A reduction step consists of the following operations. 

•	 Detennining the combinator r associated with the identifier 3.t the 
head of the spine. 



18 CHAPTER 2. SEMANTIC MODELS 

•	 Associating the local varia.bles It ... In of the combinator All' _. >'In.E 
with the arguments on the spine. 

•	 Constructing an instance of r in the hea.p. This has root ('. 

•	 Overwriting the root of the original redex (¢ ! Argsr - 1) with an 
indirection to the root (tf 

) of the newly constructed instance of r. 

The initial state of the interpreter, for program II, is produced by con
structing an initial gra.ph from the expression part of the program, and a. 
global environment from the definition part of the program. This might be 
regarded as a. primitive compilation for the progra.m n. One could instead 
use the G-machine as the basis for the opera.tional semantics. We would 
then have to show that the theorems of Chapter 3 will rema.in true with this 
new operational semantic specifica.tion. Alternatively, and probably more 
simply, we can establish an equivalence between the states of the interpreter 
presented here and those produced by the G-machine. This is done in Chap
ter 7. 

We now describe tbe compilation functions. 

P This function evaluates an initial state which is constructed from E and 
f1 using £ and D. 

D This constructs a global environment in D from .1.. It maps identifiers to 
combinators, which are represented as syntactic objects. 

This is done because we need to determine hoth the arity of each r 
and the substitution to be performed jf the combinator is reduced. 

C Should the combinator r be reduced C performs this reduction. It builds 
up a local environment pin U from the stack ¢. When it has acquired 
sufficient arguments it uses £ to construct the graph. 

£ This bujJds a graph to correspond to the expression E. If we have an 
identifier we must determine whether it is locally or globally defined. 
The function dom is used to test whether [ is bound in p. If it is we 
return the original graph and a pointer to the node associated with 
the local identifier 1. Alternatively, in the case of an identifier bound 
globally. we add a new node to the graph containing the identifier I, 
alld return this new graph and a pointer to the newly created piece of 
graph. 



19 2.4. AN OPERATIONAL SEMANTICS 

P: Prog_ S 
PIE where AI = Eval(f(EDp aridU inil) 

where U il,;, = «n, .L), VIA)) 

V: Defs-+ D
 
V[Ao and AID = V [<laD ffi V (A,)


{I _ [r)}V[I=rD 

C:Comb-+U-L--K 
C[>'I.E)p(l :1» = f(E)pffi{I-i} 
C[>'I.r]p(l :1» = Clr)pffi{I_i}q, 

[:Exp_U_K 
E[I) p h,l) (I E dom(p» ~ h, Ary(p 11])), 

h ffi {i' - III in N}, i') 
where i' = Newh) 

E[B) Ph, l) (1 ffi {l' - 8 [B) in N}, i') 
where i' = Newh) 

[[Eo (E,)] ph" i,) = ho ffi {i' - (lv, i , ) in N}, i') 
where h;, ii) = [[E;Dph'+l' i;tI) 

for i == 0,1 
i' = Newho) 

Figure 2.10: Compiling Functions 

If the expression is the syntactic representation of a basic value we build 
a new node in the graph and return both this graph and a p(linter to 
the new node. 

Finally, for an application we recursively invoke the semantic function 
[ on the subexpressions and then construct a new node that represents 
an application of the two subexpressioDs. We then return this graph 
along with a pointer to the application. 

Notice that every reduction is performed with an indirection node over
writing the root node. This is not necessary for lazy reductjon, 6Ild one 
improvement incorporated in Johnsson's G-machine is to overwrite tbe orig



20 CHAPTER 2. SEMANTIC MODELS 

inal application node with the contents of tbe new one, whenever the function 
body is an application. On balance, I feel that the simplicity of the current 
machine assists the understanding of the correctness proofs. We return to 
this su bject in Chapter 6. 

To model shared computations properly we require a store. In the oper
ational semantics this is labelled 'Y E G, and informally it corresponds to the 
heap in a. graph reduction implementation. It is interesting to note that the 
store we use is less complicated than the general model provided in [Stoy 77, 
Chapter 12]. We have no need to use Map and Area, because the store is 
used in a restricted way by the operational semantics. This implies that 
we may use a simple version of the function New, defined in Figure 2.9. It 
produces new node labels, in L, that do not clash with any that are present 
in the cnrrent grapb 'Y. In a real programming environment the function 
New would be a heap allocator of some kind. In this specification we ignore 
the particular choice of heap allocation algorithm, provided that it can cre~ 

ate new node labels for us. The function Elide removes indirection nodes 
which may be used to refer to a node. The function A'!l is used to select the 
argument component of an application node. 

2.5 Related Work 

Denotational semantics for lazy functional languages have been given by 
Stoy in [1981]. This definition is in some ways too general for our proposed 
implementation method as it has general definitions within expressions. In 
other ways it lacks some of the features we wish to explore; such as higher~ 

order built-in functions and structured data objects. Another denotational 
semantics is provided by Meira for KRC in his thesis [1985]. This incor~ 

porates a printer mechanism for structured data objects and higher~order 

built~in functions. 
In his thesis [1987J, Augustsson provides a denotational semantics for a 

lazy functional language which includes used~defined structured data types 
and pattern~matching. This makes the language definition quite complicated 
and he therefore omits a congruence proof to establish the correctness of the 
G-macbjne. 

Formal operational semantics for lazy functional programming languages 
are easily given for normal order reduction semantics in a term rewriting 
system. Graph reduction for tbe >.~calculus is explored by Wadsworth in 
his thesis [1971]. A formal operational semantics for a language similar to 



2.6. CONCLUSION 21 

tha.t investiga.ted in tbis thesis is provided in Johnsson's thesis [1987]. It is 
a simplified version of Johnsson's opera.tional semantiCl5 tha.t we investiga.te 
in Chapter 7. An alterna.tive definition, based on a. fixed set of combinatonl. 
is provided by Turner in [1979a., 1979bJ. 

2.6 Conclusion 

We ha.ve presented both a. denotational a.nd a.n operational semantic model 
for a. simple lazy functional programming langua.ge. The language is 8uffi~ 

dentIy simple that both semantics are reasonably straightforward. At the 
same time the language is sufficiently powerful that we would hope to be 
a.ble to progra.m with it, provided built in functions are included. 

We now wish to esta.blish the equivalence or congroence of these two 
definitions. This is the subject of the next cha.pter. 



Chapter 3 

Congruence Proof 

In this chapter we esta.blish a. congruence between the results produced by 
the denotationaJ. and operational semantics. This congruence is not equality 
since the results of each semantics a.re from different domains, and these 
domains are not isomorphic. As we shall see, there is a way to convert 
final sta.tes from the operational semantics to values in the denotational 
semantics domain. This is not sufficient to make the denotational semantics 
fully abstra.c t; this is a. consequence of Plotkin '8 counter-example [1977]. 

In Figure 3.1 we present the proof structure in tabular form, as a guide to 
the dependencies within the proof. In the text of this chapter each theorem 
is stated first; any lemmas or subsidiary results a.re stated and proved; and 
finally a. proof is given. 

3.1 The Congruence Proof 

We wish to show that the operational semantics of Section 2.4 implements 
the language defined by the denotational semantics in Section 2.3. Before 
doing so we introduce the diacritical convention. Because the two speci
fications under consideration wiU often use the same names for the same 
concepts, we distinguish them by accenting them. The more abstract item 
is normally denoted by an acute accent, whilst the more concrete uses a 
grave accent. The pair (6:, a) is represented by the shorthand 0:. 

Because the results from the denotational semantics and the interpreter 
are from different domains, we introduce a. derepresentation function E from 
S to E. 

23 



24 CHAPTER 3. CONGRUENCE PROOF 

Theorem 3.3 This proves that 1> (II) = E(1) (III), provided that 1> (III E 

B. It is established by fixpoint induction on the state. It requires 

Theorem 3.4 This proves that 1> [II) ;) E(1) [II)). It requires 

Theorem 3.7 This proves that an individual reduction step 
on a. state will produce a. new state that approximates the 
old ane t under derepresentation. It requhes 

Lemma 3.8 Indirection Node Equivalence Lemma. 

Lemma 3.9 Spine Derepresentation Lemma. 

Lemma 3.10 Combinator Substitution Lemma. 

Theorem 3.12 This proves that 1> (III!;; E(1)(II]), provided 
P(II] E B. It is established by structural induction on the 
program, using inclusive predicates. It requires 

Lemma 3.2 Proves that derepresentation of a. combinator 
name in the operational semantics is the same value as 
that supplied by the denotational semantics. for a given 
syntactic structure ~. 

Theorem 3.17 This proves that the predicates e and f exist. 
It requires 
Lemma 3.18 Partial Predicate Projection Lemma. 

Lemma 3.19 Partial Predicate Injection Lemma. 

Corollary 3.20 Proves that the predicates establish the re
quired approximatjon. 

Theorem 3.21 Proves that all initial expressions satisfy the 
predicates. It requires 

Lemma 3.22 Proves that the predjcates imply the correct 
behaviour for application nodes. 

Figure 3.1: Outline of the Proof Structure 



25 3.1. THE CONGRUENCE PROOF 

Definition 3.1 

E«t, 1), 6) = (v Elde) 
(v E B) 

~ 
~ 

acute6(v I Ide), 
(v IB) ioE, 

(vet) ~ E«t, v I I), 6), 
(v E A) " (to E F) ~ (to IF)(t,), 

~ 
where it = t1 

t, = E«"'t, 4), 6) 
(10 ,1,) = (v I A) 

ac~le(6) = fir(ac~te'(6)) 

acule'6plIJ = C(6(I])p 

The auxiliary function acute is used to construct the denotatianal se
mantics' environment from the interpreter's environment. That th.i8 is true 
is shown by Lemma 3.2. 

Lemma 3.2 

For all .6. in Dels 

fizCfJ Ill)) = ae~le(t> Ill)). 

ProoC oC Lemma 3.2 

A simple structural induction, on 6, establishes that 

tJ = acute' 0 V, 

Irom which we have 

fiz 0 D =p 0 acute' 0 iJ = acute 0 V. 

o 



26 CHAPTER 3. CONGRUENCE PROOF 

The function E will produce a value within the domain t for any in
terpreter stale (J' in S. SO we say that (1 and (J' have the same meaning if 
and only if E(<7) = E(a'). Notice that this is a. denotational equivalence, 
and that different algorithms for computing the same function will be equal 
under this equivalence. An operational equivalence is defined and used in 
Chapter 8. 

We may now state the congruence condition as Theorem 3.3. 

Theorem 3.3 

For all II in Prog, with P[II] E B, 

P[III ~ E(1' [II]). 

Wewill see later in this chapter that the restriction to programs which re
turn base values, is associated with the full abstraction problem [Plotkin 77]. 
The proof of Theorem 3.3 appears to require two separate proofs, each show
ing that one definition approximates the other l . The reason why such a 
duplica.tion of effort is necessary is that the two techniques used do not gen
eralize to give the complete congruence of Theorem 3.3. It iii instructive to 
consider where the use of complete, rather tha.n partial congruence causes 
each method to break down, and this is included in the respective proofs. 

3.2 Analysis of the Interpreter 

The most obvious method to use to prove Theorem 3.3 is fixpoint induction 
on the interpreter. For this method we use the derepresen tation function 
E, that takes an interpreter state to a value in the denotational semantics' 
domain. Thus we would hope that during the execution of a program by 
the interpreter, the derepresentation of the interpreter states would remain 
constant. From this we would like to conclude that the interpreter aJways 
produces the same answer as the denota.tionaJ semantics. The snag occurs 
when the interpreter fails to produce an answer, presumably when it is in 
an "jnfinite loop". In this case, will the denotational semantics provide the 
answer 1.., or do there exist programs which cause the interpreter to loop 
forever, but whicb give proper values in the denota.tional semantics? 

lWe say "appears" because, in the absence of a meta-proof, we are unable lo stale 
categorically that we need two sepazate proofs. 



27 3.2. ANALYSIS OF THE INTERPRETER 

To avoid these hard questions (at least, until Section 3.3) we shall can· 
sider a weaker version of Theorem 3.3. 

Theorem 3.4 

For all II in Prog 

P [TI) ;;) E(1) [TI]). 

That is, for all programs that our syntax of Figure 2.2 defines, the inter
preter of Section 2.4 will produce an answer that approximates the 5eII1antic 
values given by the denotatiouaJ semantics of Section 2.3. One way to para
phrase Theorem 3.4 is to say that the interpreter of Section 2.4 is heading in 
the right direction, because it never produces an answer that disagrees with 
that of the denotationaJ semantics. Obviously this is a useful result to have 
about an interpreter, as it aJ.lows U6 to believe any result it may produce. 

The method we wHl use to establish Theorem 3.4 is fixpoint indudion on 
the interpreter [Manna et 0/. 73J. For fixpoint induction to work we require 
tha.t the predicate be inclusive, see [Stay 77, page 216]_ 

Definition 3.5 

An assertion q(x) is inclu6ive, if and only if, for all directed X 

!\{q(x),x E X} => q(UX). 

We recall from [Manna et 01. 73] that, for any indusive predicate q and 
monotone function H, with: 

1. q(-L) and 

2. q(K) => q(H(K)), 

it is the case that q(jix(H)) also holds. 
After looking at the definition of the interpreter, we define q and H_ 

Definition 3.6 

q(K) = EOK~E 

H = AKAO'.Done(O') ~ 0', K(Step(O')) 



28 CHAPTER 3. CONGRUENCE PROOF 

With these definitions in mind we now seek to prove that Theorem 3.4 
holds. In order to establish this we will eventually need to show that E(u) ~ 

E(Step(q)) whenever a is non-terminal. In fact we can show the equivalence 
of these values. That is: performing a single reduction step on a non-terminal 
state will not change the meaning of a graph. 

Theorem 3.7 

Far all a in 5:, such that Done(u) does not hold: 

E(a);;) E(Step(a)). 

A reduction step, implemented by the function Step, consists of two parts. 
In the first part we construct a graph to represent the body of the function 
we are reducing. The second part consists of overwriting the original root of 
the reduction with an indirection node to the root of the new piece of graph. 
This means that the proof of Theorem 3.7 can be split into two parts, the 
first shows that the use of indirection nodes does not change the meaning of 
the graph, and the second, shows that the use of t makes a piece of graph 
with the same meaning a.s the original graph. 

Lemma 3.8 

If E«?, f), 0) = E(7, f'). 0) then: 

£«7 (j) {f ~ f' in N), f), 0) I:;; E«7, f), 0). 

This says that given two nodes in a graph whh the same denotational 
meaning under E, we may replace one of them by an indirection node to 
the other. Lemma 3.8 js a general result about indirection nodes under such 
circumstances, and includes the case where a node is overwritten with a 
pointer to itself. The uew meaning of the overwritten node is clearly .1, 
although this may not have been the original meaning of the node. 

Proof of Lemma 3.8 

Let " = , Ell {i ..... i' in N}. If we redefine E in terms of an explicit 
fixpoint. so that E = ji:t(E' ), we have: 



29 3.2. ANALYSIS OF THE INTERPRETER 

E' e«'1, i), b) =	 (v. Ide) - acuteb (v I Ide), 
(VE B) - (v I B) inE, 
(VE I) -- e «'I, v I I), b), 
(v. A) - (to'F)

(to I F) t" b' 
Z 

where	 v = 'ri 
t; = e « 'I, i,l, J) 
(io, i,) = (v I A). 

We may now show that the lemma holds by fixpoint induction. 

Let q be defined as: 

q(e) .,Vr.e«-y', r), b) [;: E«-y, r), b). 

As the	 base case is trivially sa.tisfied we consider the inductive step. 
Let £ = e « -y', r), b) ""d <' = E' e « T, r), b). Assume inductively 
that e«-y', i), b) [;: E«-y', i), b) for alii E L. Consider the cases of 
v="('r: 

1.	 (v E Ide)
 
then e = aculeb (v I Ide) = e'.
 

2.	 (v E B)
 
then e = (v IB) in t = e'.
 

3.	 (vel) 
We now consider two cases {or r: 

(a) (r=i)Then-y'r=i'inN. But 
e' = e «-y', t), b) [;: E«-y', n, b), 

by our inductive hypothe,i,. But e' [;: E«-y, i), b) by hy
pothesis of lemma.. 

(b) (r i i) In this case e' = e«-y', v I I), b), which satisfies the 
inductive hypothesis. 

4.	 (v E A) 
This is the same as case 3, only we need not consider the case 
where r = i. 

o 



30 CHAPTER 3. CONGRUENCE PROOF 

The r~a.son that we have not proved equality in Lemma 3.8 is that when 
l. = t W~ create a cycle where none existed before. This results in the 
left hand side of the lemma statement being .i, while the right hand side 
remains unchanged. Of course, all of OUf indirection nodes are inserted so 
that this can not happen, but the statement of our revised lemma. would 
have to include restrictions. 

Before proving our assertion that rewriting a function body preserves the 
meaning of a graph, we first establish a derepresentation lemma for a state 
in terms of its spine. 

LemmaS.9 

Suppose that [t~, "., t:'J = Spine(1, t:.) and that to = snd(1t: I A) 
forI ::; i ~ m. Then 

E«-y, em), e) = (E«-y, t;,), e)) (E«1, ttl, ell '" 
(E«1, tm ), e)). 

Proof of Lemma 3.9 

By induction on the length of the spine. m. 

o 

We now state and prove the graph rewriting lemma. 

Lemma 3.10 

Suppase that [t~, "., t:'J = Spine(1, t:.) and that to = snd(1ti I A) 
far! <:; i <:; m. Suppose lhat 6(1t~ I Ide) = If] and f = >'h. ,,>.In.E 
with m ? n. Then 

E «(-y, t~), eJ = E«C [r) p on" [t;, " . , t:"](1, t~»), 6). 

Proof of Lemma 3.10 

We first observe from the spine derepresentation lemma., Lemma 3.9, 
that the left hand side becomes 



31 3.2. ANALYSIS OF THE INTERPRETER 

(acute(6)bi~ I Ide)) (E«I', i l ),6» ... (E«I', i.),6». 

But acute(6)(l'i~ I Ide) = CIr](acute (6», which mak.. the left hand 
side t [E](acute (6) $ p) where 

p = (II - E«I', i l )6), ... , I. _ E«I', i.)6)}. 

The right hand side becomes E(t[E]i>b,e,,), 6), where i> = {iI 
l~, ... , In ....,. l~}. A structural induction, on E, now suffices to show 
the equivalence. 

1.	 E = [1]/1 I E dom(.I» 
Without loss of generality. I ;;;; Iii then by substitution, both sides 
become E(b, Ii), 6). 

2.	 E = [I] /I I 11' dom(P) 
The left hand side becomes acute 6 [I], whilst the right hand side 
is E(b $ {I' _ I in N}, I'), 6), where i' = Neu6), which i. 
acute6 [I]. 

3. E = [B] 
The left hand side becomes 8 [B] in E, whilst the right hand side 
is E «I' $ {I' _ 8 [B] in N}, I'), 6), where i' = Ne",I'), which is 
8[B] in E. 

4.	 E = [Eo (EI )] 

Suppose inductively tha.t the Lemma. is true for Ei for i = 0, 1. 
i.e.	 for all '1 and all r, and for i = 0, 1: 

e;	 = t[E;](acute(6)$p)
 
= E(t [E;Ii>(I', r), 6).
 

Then the left hand side becomes (eo E F) ~ (eo I F)el,:!.' The 
right hand side is 

E«I", r), 6) 
where	 (I'o,ro) = t[EoIi>bI,i) 

bl,r,) = t[Elli>b,i) 
r = New(l'l) 
1" = 1'0 $ {r - (ro, r,) in N.) 

But Ei = E({;', ri), 6), for i = 0, 1, beca.use of the properties of 
New. Hence we ha.ve the result. 



32 CHAPTER 3.	 CONGRUENCE PROOF 

o 

We have now shown how to relate the derepresented values of indirection 
nodes by Lemma. 3.8 and the relationship between the graph before and 
after the construction of a. combinator body. We now combine these results 
to prove Theorem 3.7, which states that for any non-terminal state (1: 

E(a);) E(Step(a)). 

Proof of Theorem 3.7 

Suppose (J = (b, f~), ~). Then, to satisfy Done(O') := false, we must 
have: 

1. [£~, ... I I:.,] = Spine(;, l:n). 
2. l,; sndhf; I A), for 1 ~ i ~ m. 

3. [r); 0 hl~ I Ide). 

4. A rys Ir) ; n, with n ~ m. 

We recall that E«('"(, l~). 6) can be expressed as 

(E(h, l~), 0))	 (E«" ed, 0)) ...
 
(E«" lm), 0)).
 

Let h', f) ; C[rIp arid Ie;, ... , e:.,)(" e:.,), then, by Lemma 3.10, 

E(h, l~), 0); E«,', fn), 6); E(h', f), 6). 

So by Lemma 3.8 we may deduce 

E(h, l~), 0);) E«,' Ell {e~ _ f in N}, e~), 0). 

But E(a) ; (E«" e~), o))(E«" en+1 ), 0)) ... (E«" (m), 6)), and 

E(Step(a)) ;
 
(E«,", l~), o))(E«,", en+d, 6)) ... (E«,", em), 0)),
 

where '"'(" = '"'(/ EB {l~ 1-+ f.' in N}. So provided E(("f, t~),6) is mono
tonic, we have E(a) ;) E(Step(a)). But E(h, e~),o) is monotonic 
because jt has been derepresented to have a. value in E, which includes 
only contjnuous functions. 



33 3.2. ANALYSIS OF THE INTERPRETER 

o 

Finally we are in a position to prove, by fixpoint induction, tllat the 
interpreter approximates the denotational value for a program, which is the 
main re6Ult of this section. This theorem is of general use for all interpreters 
defined using Done and Step. If, for some E, E(Step(u» ~ E(u) then the 
operational semantics will satisfy a. partial congruence. 

Recall that we defined q and H in Definition 3.6 as 

q(,,) = Eo,,~E
 

H = A"Au.Done(u) -~ u, ,,(Step(un
 

and that Theorem 3.4 states that for all IT in Prog, 

Plnn E(P[IT). 

Proof of Theorem 3.4 

There are two parts. We first establish that q(fiz(H» hold•. 

First we vedfy the base case and then we must prove the inductive 
step. 

I.	 Because E( .1(u)) = .1 for all u, q(.1) holds triviallY. Notice that it 
is at this point that the proof would break down jf we attempted 
to establish total congruence by this method. We would need to 
show that E(.1(u» = E(u) for all u, which does not define a very 
useful programming langua.ge. 

2.	 Consider q(H(,,)). This holds if and only if E(H "u) (; E(u), 
which, expanrung H, is E(Done(u) ~ u, ,,(Step(uj)) (; E(u). 
We must consider the alternative values that Done(a) may have. 

(a) Done(u) = .1 or Done(u) =I. 
Both these cases trivially hoW. 

(b) Done(u) is true. 
Substituting for Done(u), we have H K.a == at and so 

E(H "u) = E(u). 
(c) Done(u) is false. 

Substituting for Done(a), we have that 

E(H "u) = E(,,(Step(uj)). 
But, E(,,(Step(uj)) ~ E(Step(u»), by the inductive hypothe
sIs q(,,). Furthermore, E(Step(ull ~ E(u), from Theorem 3.7. 



34 CHAPTER 3. CONGRUENCE PROOF 

Hence we may conclude q(fix(H». This can be restated as 

For all a in S E(Eval(a)) [; E(a). 

501 to prove Theorem 3.4, we must show that the initial state 

t [E] I> arid <i" iN" 

satisfies the approximation condition 

t [EJ fix (i> [,:;)) ;;) E( t [E) I> arid U ;ru.). 

By Lemma 3.2, we may relate the two environments, as they are both 
created from.6.. A consequence of this is that the derepresentation 
function E now maps the initial state to the denotational value re
quired. This is a corollary of the structural induction of Lemma 3.10, 
when both p and I> are arid. 

o 

At this point we know that P[IIJ ;;) E(1) [II)), although we could have 
proved something slightly stronger, namely: 

Proposition 3.11 

For all II in Prog, if E (1) [IIJ) =e and e ~ 1- then 

p[II) = e. 

In [Schmidt 86, Section 10.7] this property is referred to as the faithful
ness of the operational semantics with respect to the denotational semantics. 
However, this is still not strong enough to show complete congruence. The 
reason becomes clear if we define P [II] ::; .l... Then every program is given 
the semantic value .l.. by the interpreter, which certainly satisfies Proposi
tion 3.11, but does not satisfy the complete congruence of Theorem 3.3. A 
more subtle problem occurs when we consider whether an applicative order 
operational semantics would correctly implement our denotational seman
tics. It clearly does not, although it does satisfy Proposition 3.11. It is only 
when we can show that our jnterpreter does not produce .l.. when the deno
tatjonal semantics give a proper value, that we can feel confident about the 
implementation of the interpreter. This is the object of the next sectlon. 



3.3. PREDICATES FOR A STRUCTURAL INDUCTION 35 

3.3 Predicates for a Structural Induction 

We DOW wish to prove that the denotational semantia approxima.tes the 
result provided by the interpreter. We will see later that it is only possible 
to compa.re base values, a.nd 50 the formal statement of Theorem 3.12 is 
restricted to this case. 

Theorem 3 ..12 

For all II in Prog, with P[II]. B, 

P (II) 1; n.P [II)). 

The inductive principle used in this section is that of domain induction. 
In this way the denotational semantics progressively gives better and better 
approximations to the correct value. Informally the first approxima.tion to 
the domain E is Eo = .1 + B. We therefore represent all functions by >.z ..1, 
although the basic values in B continue to be mapped to the correct element 
in B. The next approximation is E 1 = (Eo - Eo] + B. With this domain 
we are able to represent functions from B to B accurately, but higher order 
functions are still only represented by an approximation. 

There are two common models of domains. The :first is Scott's explicit 
construction [1973], which will result in something like the D oo model. In 
this case we must make explicit the projections a.nd injections between E j 
and Ei+h so that Ej is correctly embedded in Ei+1' The alternative is the 
Pw model where this detail has been taken care of by using retracts. The 
Pw model [Scott 76] has a lattice theoretic domain structure. It therefore 
also has a T element. Barendregt [1981] shows how to derive a model based 
on algebraic c(lrnplete partial orders instead of complete lattices. As Baren
dregt's model has less clutter we use his model. For a comparison (If the D oo 
and Pw models when D = [D - DJ see [Wadsworth 76]. 

The technique used is that of Milne [1974], although another equivalent 
solution is provided by Gordon (1973]. The method developed by Milne 
involves the definition of inclusive predicates, that specify a relation between 
values produced by each definition. It is usual to have one predicate for each 
domain in the denotational definition, but we dispense with the one for 
the domain B because B Occurs as a result for tbe interpreter too. Tbey 
state that the approximation condition holds for particular classes of objects 
produced by the interpreter. 



36 CHAPTER 3. CONGRUENCE PROOF 

Thefirst thing to do is define a predica.te e on f.. The intention is that e(i) 
will hold whenever t !;; E (t) and E EB. This is estahlished hy Corollary 3.20. 

Definition 3.13 

e(i) ~ (t" .l) -----+ t:= 1., 

(t" ~) ---+ t l;;;;;; 1,
 
(IsBasie(t )) ~ (t E II) i\ t!;; E(t),
 
(IsFunetion(t)) ~ (t E F) i\ f(V I F), t),
 
false
 

f(t) ~ t-,{e(t(a), Eoal(t.)) IApplied(t., t,lt) 
i\ e(a, Eval(a))} 

IsB..ie {(1, i), 6) = 
(Spine (1, i) = [il) i\ (1i EB) 

IsFunetion «(1, i), 6) = 
(Spine(1,i) = (l': <1>)) i\ (1i' E Ide) 

Applied«(1o(.), io(.)), 6)«(1o,io), 6)«(1., i.), 6) = 
(Vi E L . {(vo =~) i\ vo(.) = v.)V 

«v. =~) i\ Vo(.) = vo) V 
«vo = v.) i\ vo(.) = vol) 1\ 

(1</(.) (Elide(io(.))) = (io' i.)) 
wbere ve = 1e i e for ~ = <I>(a), <1>, a 

The compa.rison of non-functional results is straightforward. For com
paring two functional results there are two alternative stra.tegies. The first is 
to define a. predica.te to compare two environments, one in the denotational 
sema.ntics a.nd one in the interpreter. This is the solution adopted hy Stoy 
in [1977J. If we were required to prove correct a.n SEeD machine or Curlen's 
CAM [1986], we would proba.bly adopt this approach, because the interpreter 
environment then corresponds quite closely to that of the denotational se
mantics. We note that as we would still be dealing with a reflexive domain, 
we would still need to use an inclusive predicate method. The alternative, 
used by Stoy in [1981J, is to define an auxiliary predicate tha.t expresses the 
approximation condition between functional values in terms of their value 



37 3.3. PREDTCATES FOR A STRUCTURAL INDUCTTON 

when applied to arguments that satisfy the approximation condition. This is 
a natural wa.y to express the approximation condition for a graph reduction 
interpreter. 

We must prove the existence of e and f, since they are not necessarily 
well defined. This is done by construction. First define a sequence of ap
proximations to e and f, using retractions to lima the domains over which 
the approximate predicates are defined. 

We recall from [Stay 77, Chapter 7] that the solution to a domain equa
tion can be found by using retractions on the Pw model. If this is done for 
the equation E = [E - E} +B we obtain the following retraction 

E = fix (>.E.(E O~ E) Ell B), 

and the domain E is then the range or retract of the function E on 'Pw. 
Instead of working directly with elements of Pw, we may use the alterna

tive definitions of the operators 181, ffi and 0_, given in [Stay 77, Chapter 7] 
as Theorems 7.44, 7.45 and 7.46 respectively. We note that ffi is being 
used here to represent a different function from that described in Chapter 2. 
These results are now reproduced. 

Definition 3.14 

Suppose that E and F are retractions on the domains E a.nd F respec
tively. Then the following equivalences are observed: 

(E 0 F).. = (.. = (e, ¢)) - E(e) x F(¢)... 
(E Ell F)u = (uEE) _ E(u I E) in E +F, 

(uEF) _ F(u I F) in E +F, " 
(E H F)¢ .kF(<P(E(em 

Let us define 

En = Fn Ell B 
Fo =.L 

Fn+J = En 0_ En 

Then we note that (AE.(E 0_ E) ffi B)n :;::; En and so E = ~=o En i.e., 
foralleEE 

~ 

U En(e) =e 
n=O 



38 CHAPTER 3. CONGRUENCE PROOF 

The sequences of approximate predicates, e", and In, are defined on the 
retra.ctions of E and F specified by En and Fn respectively. If ( satisfies en, 
then it is intended that the projection of t into En sa.tisfies e(E",(t), l). 

Definition 3.15 

en(t) ... (E=.1) 
(E=l) 
(IsBasic(t)) 
(IsFunetion(t)) 
lalse 

~ 

~ 

-~ 
~ 

{=.1, 
0;;1, 
(t EII) A ( r;;; E(t), 
({ E F) A In( Fn ({), t), 

lo(t) true 
In+l(t) l\{en((Fn+l({)) (En(6)), Eval(E.)) I 

Applied(t., E, a) 
A en (En (6), Eval(am 

These predica.tes, in contrast to the definitions of e and f, are clearly 
well defined as there is no recursion involved in their definition. 

We now define~. If ~(P, Q) holds, then P and Q satisfy the definitions 
of e and f respectively. And in Theorem 3.17 we will be showing tha.t there 
are equivalent alternative definitions of e and f. 

Definition 3.16 

t(P,Q) ... 'It.P(t) ... 
(E = .1) ~ {=.1, 
(t =1) ~ 0;;1, 
(IsBasic(E)) ~ ({EIIlM!:E(t), 
(IsFunetion(E)) ~ ({EF)AQ(({I F),E), 
lalse 

A '1¢.Q(¢)'" 
I\{P({(6), Eval(t.)) I 

Applied(E., E, a) 
A P(6, Eval(am 

We now claim that 

= = 
elt) = 1\ en(En(t), t) and I(¢) = 1\ In(Fn(¢), 4» 

,.,.=0 ,.,.=0 



39 3.3. PREDICATES FOR A STRUCTURAL INDUCTION 

satisfy the definitions of e and f given in Definition 3.13, and hence that these 
predicates exist by construction. This is sta.ted formally a.s Theorem 3.17. 

Theorem 3 .. 17 

~	 ~ 

"'(Af. A en(En(t), E), >,¢. A !n(Fn(¢), ¢)). 
"=0 n=O 

Before we can prove Theorem 3.17, we establish the (obvious) rela.tion_ 
ship between the partial predicates en and fn and the predica.tes en+! and 
1"'+1' We observe that this is really an induction over the complexity of the 
domain E. As the value of n increases, the predicate en is able to accurately 
relate more of the values from the domain E. This is because En restricts the 
complexity of the elements we may consider at any stage. Any more com
plica.ted element, €, is represented by the best approxima.tion in E satisfying 
En(e) ~ e' and En(e') ~ e'. 

Lemma 3.18 

For all i, ¢ and n ~ 0 

en(f) => en+l(En(t), l) 
fn(¢) => !n+l(Fn(¢), ¢). 

Notice that it is at this pojnt that geueralizing the predicates e and f 
to denote equivalence, rather than approximation, would fail. H en(En(t, l) 
were to imply En(t) I B ~ E(E) I B then we would be unable to prove the 
base ease, which requires that fl(AX.l.,¢) holds for all;P. There would then 
be only one function a.llowed in the language: ,\:c.l.. As Stoy remarks in a 
similar context, this does not define a particularly useful language. 

Proof of Lemma 3.18 

By induction on n. 

1.	 Bases cases. Weftrst observe that !o(¢) i. true, and that Fo(¢) ~ 
1.. But 

h(l., t) ¢> i\{eo((F1(1.)(Eo(6»), Eva/(Eo)) I 
Applied(Eo , E, ir) 

1\ eo(Eo(6), Eval(ir))}, 



40 CHAPTER 3. CONGRUENCE PROOF 

which is 

t\{eo(1-, Eval«.))IApplied(e., e, 0) 
i\ eo(Eo(li), Eval(o))}, 

But eo(.l, e) is always true. Notice that it is here that the Lemma 
would break down if we wished to express equality, rather than 
approximation, with the predicates e and f. 
Now suppose that eo(€) holds. Then by considering the cases of 
e, we 'ee that e,(Eo(t), <). 

2. Suppose, inductively. that the Lemma is true for some value n. 
Then 

!n+l(t) ~ t\{en«Fn+,(t))(En(li)), Eva/(t a )) I 
App/ied«., e, 0) 

i\ en(En(li), Eva/(a))}. 

But, by the inductive hypothesis: 

=> t\{en+,«En(Fn+,(t))(En(li))), Eval(e a )) I 
Applied(e., e, 0) 
i\ en+l(En(En(6)), Eval(o))). 

However, En(Fn+1(t) En(li)) = Fn+,(t) En(li), '0 we have 

!ndFn+l(t), E). 

Similarly, 

en+,(t) 
~ «=1-) t == .1, 

(e =1) -- t ~ 1.,
 
(lsBasic«) ) ~ (tEB)i\t[;; E(€),
 
(lsFunction(€)) ~ (t E F) i\ !n+l(Fn+,(t), e),
 
false. 

Which by the above result is 

~	 «=1-) -- t ==.1, 
«=J) -- t!;;;;l, 
(lsBasic«)) ~ (tEB)i\t[;; E(E), 
(lsFunction«)) ~ (t E F) i\ !n+,(Fn+l(t), E), 
false. 



41 3.3. PREDICATES FOR A STRUCTURAL INDUCTION 

But thi, i, en+7(En+I(t), t). 

o 

What we now wish to investigate is the relationship between en and em 
for particular elements, t in E. Because of the projective nature of Ei , and 
the approximation result we have just demonstrated, we are able to conclude 
that the predicates are well hehaved in the sense of Lemma 3.19. 

Lemma 3.19 

Foralle,~andn~O 

en+I(t) '* 'n(En(t). t)
 
fn+I(~) '* In(Fn(~), 01».
 

Proof of LelDma 3.19 

By induction on n. 

1. Bases cases. We first observe that fD(~) is true, and so trivially 
h(4)) '* lo(Fo(.j,), 01». 
Now suppose that fl(l) holds. Then by considering the cases of 
t. we see that eo(Eo(t), t). 

2. Suppose, inductively, that the Lemma is true for some vuue n. 
Then 

In+7(£) .. A{en+l((Fn+7(t))(En+1(a)). Ev.l(t,)) I 
App/ied(ta• t. It) 
Aen+I(En+1(a). Eva/(It))}. 

But, by the inductive hypothesis: 

'* A{en«En(Fn+7(t))(En+,(Q))), Ev.l(ta )) I 
App/ied(ta• t, a) 

Aen(En(a), Evo/(a))}. 

However. En(Fn+7(t) En+l(a)) = Fn+1(t) En(a). '0 we h.ve 

In+l(Fn+I(t), t). 



42 CHAPTER 3. CONGRUENCE PROOF 

Similarly, 

en+2(t) 
<>	 (E=.L) ~ t ==.1, 

(E =1) ---+ t!; 1. 
(!sB;'ic(1:)) - (tEll) t\t ~ E(t), 
(IsFunction(1:)) - (t E F) 1\ fn+2(Fn +2(t), 1:), 
false. 

Which by the above result is 

<> (I: = .L) ---+ t == .1, 

(I: =1) ---+ t !;l,
 
(IsB;'ic(1:)) - (tElI)l\e~E(I:),
 
(IsFunction(1:)) - (eE F) 1\ fn+l(Fn +1(t), 1:),
 
false.
 

But this is en +1(En+1(e),I:). 

o 

We can now prove Theorem 3.17, by substituting for P and Q the values 
A::':oen(E(e), 1:) and 1I::':ofn(Fn(¢), ¢) which we hope will sa.tisfy <1'. 

Prool of Theorem 3.17 

We may establish the first part by direct substitution for P and Q into 
the definition of I): 

~ 

P(t)<>I\{ (I:=.L) ---+ t=.1, 
n=O (I: =l) - t~l, 

(IsBasic(1:)) - (tE II) t\t ~ E(I:), 
(IsFunction(1:)) - (ee F) 1\ Q«t I F), 1:), 
false }. 

So we must establish that 

~ 

Q(e IF, 1:) =	 1\ Q(En(t) IF, 1:),
 
n=O
 



43 3.3. PREDICATES FOR A STRUCTURAL INDUCTION 

which follows immediately from Lemma 3.19. We now wish to establish 
the second part: 

Q(J,) = l\':.':ofn(Fn(¢),;P) 
1\::":01\{e.( Fn(¢) a, Eva/{ ;p.)) I Applied(;P., ;p, it) /I 

en(En(a), Eval(it)).} 

Now let Pn = en(En(a). Eval(l>)) and qn = en(Fn+1(¢)a, Eval(;Pa». 
SO Q(J,) = Vi> . Applied(;P., 4>, it) /I 1\::"~o{Pn ~ qn}. However,substi
tuUng for the left hand side of the second part we have: 

I\{P(Fn(¢) a, Eval(4).)) IApplied{;P.,;P, 1»/\ 
P(E.(a), Eva/{am 

= Vi>. Applied(4>., ;p, 1» /I {I\::"~o Pn} ~ {I\':.':o q.}. 

The equivalence 

on ~ ~ 

1\ {Po ~ q.} = 1\ P. ~ 1\ q. 
n=O n=O n=O 

may now be established by domain induction. Suppose that for some 
m, Em(it) = a and Fm+1(¢) = ¢. Then, hy Lemma 3.19, 

on on ~ 

1\ {Po ~ q.} = {Pm ~ qm} = { 1\ P. => 1\ P.}· 
n=O n=O n=O 

Thus provided our induction principle works we have the required re~ 

suIt. The induction principle is guaranteed by U:'=o En(t);;: t. 

o 

Notice that we immediately have Corollary 3.20. 

Corollary 3.20 

For all t, if e(t) and to B. then 

t~ E(t). 



44 CHAPTER 3. CONGRUENCE PROOF 

We are una.ble to deduce tha.t e(f) implies t ~ E(t), because of the 
following counter·ex.mple (due to Plotkin [1977]). 

Let 

I, = },g·;1 (g True.L) and (g .L True land (not (g False False)))i.L, 

where and and not are defined as usual. Informally, Ii 9 is bottom, unless 9 
is para.lleI.or, in which case Ii 9 is i. In the operational semantics we have 
no way to represent para.llel,oI and so, for all i and j, 

.L = I, 9 ~ l; g. 

However, in the denotationa! semantics, 11 and 12 are distinct elements of 
E. Thi8 is because parallel-or is certainly an element of E, and therefore it 
and 12 must be distinguishable when applied to parallel-or. U the predicate 
e were a.ble to express the congruence of functions, we would be able to 
generate the contradictory result that 11 = l1.' 

To conclude this section, we have defined a. predicate e to compare results 
in the two semantics we are investigating, This predicate is well defined 
by construction. The reader may wonder why we went to the trouble of 
defining e and f I when we could have used the alternatives I\~=o erl(E(0, l) 
and 1\:=0 fn(Fn(¢), ~), The reason is that in the next section we would have 
to have shown this equivalence anyway, as the alternative predicates are too 
cumbersome to use directly. We now make use of the predicates e and f to 
investigate the partial congruence of our two semantics. 

3.4 Analysis of the Denotational Semantics 

FinallYl we wish to show that Theorem 3,21 holds. 

Theorem 3.21 

For all n in Prog, 

e(P [II), 1" [II)). 

We notice that by Corollary 3.20, this will imply the partial congruence 
P [II) ~ E(1" [m), of Theorem 3.12, provided P [III E B. Before proving 
Theorem 3.21, we state and prove a lemma that will be useful in the main 
theorem. It is a general observation about the nature of application in 
the two definitions of the language. It allows us to prove easily all of the 
structural inductions that involve the E = [Eo (Et )] case. 



45 3.4. ANALYSIS OF THE DENOTATIONAL SEMANTICS 

Lemma 3.22 

Suppose that, i E A and that, i IA = (£0, i,). Suppose further that 
e(ld holds for i = 0, I, where 

£; = Eval«" i;), 6). 

Then e(n, where 

t =	 (to d') - (to I F)t" ~ 
and 

£	 IsFunction(to) _ Eval«" i), <I), 
(IsBasic«o) V(£0 = ~)) l, .1. 

Put a.nother way, suppose that we have two subgraphs with roots fo and 
iI, and that to a.nd t 1 approximate the reduced graphs. Then Lemma 3.22 
states tha.t the result of reducing the a.pplication of these two graphs (which 
we represent as Eual«(j, f), 6» will be a.pproximated by the value obtained 
by a.pplying the two values to and t). 

This is wha.t we would expect to ha.ppen. 

Proof of Lemma 3.22 

Consider the sequence of states Un a.nd 11~, where 

Un = Stepn«" i), <I) and <T~ = Stepn«" io), 6). 

We now prove tha.t the following relation holds between elements of 
these two reduction sequences. 

If u~ = «,n, io), <I) then <Tn = «,n, i), 6). 

This is proved by induction on n.
 

We see immediately that
 

Spinehn, i) = Spine(,n, io) * [Elide(i)J. 

And hence that not(Done(u~)) implies not(Done(u".), (although the 
converse js not necessarily true). 

Now consider the four values for lo. 



46 CHAPTER 3. CONGRUENCE PROOF 

1.	 to =' .L 

If to -== .1., then either Spinebn' fo) == l.. for all i greater than 
some m, or there is no m such that Done(O":.J holds.
 

In the first case we see that Spinebi, £) = .1. for all i greater than
 
m, as well.
 
In the second, our second observation shows that there can be no 
terminal state satisfying Done(CTm). 

2.	 to =' ~, IsBask( to) and IsFunctiQnUo1 
In these cases, suppose that to = (h, £0),6) = O"~ for some n. 
But in this case l. = Eva~b, f), 6), from the above relation on 
states. 

o 

We may now establish Theorem 3.21 by structural induction. 

Proof of Theorem 3.21 

Substituting for P, P and II, we have: 

For all E in Exp and all 6 in Defs: 

e(t [E]fix(V [6)), Eual(i: [EI{} "init, V [6))). 

This is proved by structural induction on the expression E. 

I.E=II)
 
Firstly t [I) fix (V [61) = fix(V [6]) [I). Next
 

E(l: [I] {} "init, V [6]) = acute(V [6]l [II, 

But, by Lemma 3.2, fix(V [6)) = acute(V [6)). 

2.	 E = IBI 
Let t = Eual(i: [B] {} "init, [6)). Then IsBasicU) and EU) 
equals BIB] in E. But t [B]fix(V [6)) = BIB) in E. 

3.	 E = lEu (E,l] 
By Inductive Hypothesis, and Lemma 3.22. 

o 



3.5. RELATED WORK 47 

We have now proved Theorem 3.12 by the obvious application of Corol
lary 3.20 to Theorem 3.21. \Vith the completion of the proofof this theorem, 
we have proved the main result of this chapter - the complete congruence of 
Theorem 3.3. Schmidt refers to an operational semantics which is completely 
congruent to a denotational semantics as both faithful and terminating with 
respect to the denotational semantics [Schmidt 86, Section 10.7]. 

We summarize the route that has been taken to establish congruence. 
First the proof broke down into two separate parts: Theorem 3.4 which says 
that the operational semantics approximates the denotational semantics and 
Theorem 3.12 which says that the denotational semantics approximates the 
operational semantics. 

To prove Theorem 3.4 we establish that a single reduction step does not 
change the meaning of the gra.ph (Theorem 3.7) and from that used fixpojot 
induction to deduce that the meaning of the initial graph wa.s approximated 
by tha.t of the final one. A structural induction was sufficient to show that 
the initial graph was congruent to the denotational semantics. 

To prove Theorem 3.12 we first estabJjsh that the predicates required to 
express the partial congruence exist. This is the result of Section 3.3. In 
Section 3.4 we used structural induction to show that e(P (II], P[II]) holds 
for all programs ll. 

3.5 Related Work 

The use offixpoint induction to prove partial congruence follows immediately 
from the work of Manna, Ness and Vuillemin [1973] on fixpoint properties. 
The tecbnique of structural jnduction, which we have used repeatedly, was 
first described by Burstall in [1969]. 

The use of inclusive predicates was first described by Milne in [1974] to 
describe mode declarations in Algol 60. With Strachey, he used this process 
again to prove compiler correctness in [Milne and Strachey 76]. Reynolds 
has used directed complete predicates in a similar way in (1974] and Gordon 
uses a related technique in [1973]. Further use of the inclusive predicate 
st,ategy is made in [Stay 77, Chapt« 131 and [Stay 81J. 

An alternative domain construction for E, related to Scott's D oo model 
[1981], can be used to prove tbat the inclusive predicates e and J exist. 
The relationship between the Doc> and P w mOdels of the pure ~-calculus is 
discussed in [Wadsworth 76]. In [1976}, Scott presents relationships between 
projection functions and retracts. 



48 CHAPTER 3. CONGRUENCE PROOF 

Thefull a.bstraction problem for the typed lambda. calculus was first dis· 
covered by Plotkin [1977]. His solution was to extend the language with 
which he was working, so that it included parallel-or. Other approaches 
have been undertaken, by Milner (1977] and Mulmuley [1984, 1986] a.mongst 
others. These have heen restrictive, in that the domain E includes only se
quentially implementable functions. Gog [1988] gives a. fully abstract model 
of the lazy lambda calculus, using bisimulation logical relations. 

A similar result to that obtained in this chapter has been derived by 
Klop [1980]. His work on combinatory reduction systems Is based on a. 
syntactic model of reduction systems, rather than the domain based model 
investigated in this thesis. 

3.6 Conclusion 

We have uow shown that the operational semantics we have defined in Chap
ter 2, correctly implements the standard denotational semantics. There are 
a number of other ways to state this result. We may regard t he operational 
semantics as a graph reWTiting system, in which case we ha.ve provided a 
termination result; alternatively, we may regard the congruence proof as a 
validatiou of the weak head normal reduction mechanism of Peyton Jones 
[1987]. Stated simply: graph reduction implements functional languages 
correctly. 

One worry we have is that this language has no built-in functions or data 
structuring facilities. We address this problem in the next cha.pter. 



Chapter 4 

Extending The Language 

In this chapter we extend the result of Cha.pter 3 to cover a. language with 
structured da.ta. and built-in functions. We consider various wa.ys to represent 
data. structures and select the simplest. We also implement a representative 
sample of built-in functions. 

4.1 Extended Denotational Semantics 

The first question we face is whether we intend to model a typed or untyped 
language. The majority of modern functional languages ha.ve strong poly
morphic typing, but to introduce this into our language we would need to 
provide a. type-checking function Pr : Prog -+ T. Such a. function would be 
used to provide a denotational semantics along the lines 

17 [IT) ~ P lIT), ~ 

The problem with such an approach is that to typecheck IT we need to carry 
out a dependency analysis. In this analysis we transform the program so 
that all mutually recursive definitions are really mutually recursive. Failure 
to do this may make it impossible to type-check a program, see [Mycroft 84]. 

As such source-level translations are against the spirit of denotational 
semantics, we now consider an alternative definition of programs. In this al
ternative we allow general local definitions in any expression, subject only to 
the criterion that mutually recursive definitions must satisfy our dependency 
criterion. The problem with this approach is that our operational semantics 
must incorporate alambda.-lifter or similar mechanism to translate back to 

49 



50 CHAPTER 4. EXTENDING THE LANGUAGE 

, E E = F+C+B (Expression Values) 
¢ E F = IE-E] (Function Values) 

X E C = ExE (Constructors) 

13 E B (Primitive Values) 
p E U = [Ide - E] (Environments) 

Figure 4.1: Value Domains for Denotalional Semantics 
(Extended for Constructors) 

the form we currently have for programs. We note that as a result of this, 
our operational semantics is indifferent to the existence of a typing scheme. 

The conclusion of this discussion is that for simplicity we shall consider 
an untyped language. After all, we can translate a typed language into our 
untyped la.nguage. 

We now move on to consider how we wish to represent constructors. The 
alternatives are to have a. single constructor akin to the LISP CONS, or to 
extend the language to dea.l with arbitrary constructors. The example of 
LISP shows that a single constructor is sufficient for programming purposes. 
The G-machine constructors may be represented, at least in abstract, as 
elements of the domain C == Ide xL·, where the identifier models the "tag" 
and each l. E L represents the pointers into the heap for each argument. The 
problem with this approach is that we need a number of selectors for each 
constructor along with a tag testing function. For this reason we consider 
a single constructor cons, with selectors head and tail and a tag testing 
function null and constant nil. As tail is very similar to head we will omit 
it from further discussion. 

Wenext consider which adthmetic, comparison and conditional functions 
we require. We shall presume that arithmetic is defined over some suitable 
representatjon of the integers or a subset of them. This domain will be called 
Z. The comparison operations are defined only over Z. Structural equality 
will h..l.Ve to be defined separately. FinallYl we have a single conditional 
function, if, which behaves in the appropriate way on the domain T. We 
can summarise this jnformation by providing the standard semantics for such 
operations in Figures 4.1 and 4.2. 

We will also allow expressions to construct cyclic graphs, although we 
note that as far as the denotational semantics is concerned we do not bave 
any notion of cyclic definitions. 



51 4.2. EXTENDED OPERATIONAL SEMANTICS 

Ph..ic[null] Ad£ = nil)
 
Ph..iclheadl >.£.(£ E C) - jst(£ I C), I
 
Ph..iclcons] A€O>'cI.(£O, Cl) in E 


= >'CO>'CI.(eQ E Z) ----tPh..ic!+1 
(£1 E Z) - (£0 I Z +<1 I Z) in E, 1), I 

A£oA£I-(£o E Z) _ - Ph..ic!=1 = 
((£1 E Z) - (£0 I Z = £1 I Z) in E, I), I 

Pb..ic!i!] = A£OA£IA£2.(£0 ET) - «£0 IT) - £1, £2), f -
Figure 4.2: The initial environment Phasic 

u E S = (G x L) x D -(States) 

1 E G = IL~ N] (Graphs) 
v E N = A + I + B + Ide + C (Nodes) 

A = LxL (Application Nodes) 
I = L (Indirection Nodes) 

X E C = LxL (Constructor Nodes) 
f3 E B (BMit Values) 
P E U = [Ide ~ L] (Local Environments) 
6 E D = [Ide ~ Comb] (Global Environments) 
l E L (Node Labels) 
¢ E LO (Spines) 

E K = [(G x L) ~ (G xL)) (Continua.tions)" 
Figure 4.3: Value Domains for Operational Semantics 

(Extended for Constructors) 

We note that we now wish to make explicit the basic value domain B, 
as B = Z + T + {nil}. We will dispense with projections, injections and 
membership tests associated with B as they can clearly be inferred froID the 
context. 

The resulting language thus resembles a lambda-lifted form of LispKit, 
which is described in [Henderson 80J and [Henderson et al. 82]. 

4.2 Extended Operational Semantics 

The operational semantics of our extended language is now defined. In 



52 CHAPTER 4. EXTENDING THE LANGUAGE 

Dump(~) = Done(u) ~ [i: 4>], 
(I = [null)) ~ Dump Null (e : 4» u, 
(I = [he.d) _ Dump H,ad (i: 4» u, 
(I = [cons) - Dump Cons {l : ¢) (1, 

(I = [+) - Dump PI~ (i: 4» u, 
(1=[=) - Dump Eo </»u, 
(I = [if) - Dump lI(l : 4» u, 

[i : 4>] 
where	 (i:4» = Spine (" r)

«" r), 6) = u 
1 = (, l) I Ide 

Dump Null 4>«" r), 6) = (Done(uo,) ~ D, Dump(uo,» * [4>] 
where u o, = «" Arg(" (</> ! 1»),6) 

Dump Heod 4> «" r), 6) = (Done(uo ,) - D, Dump (uo , » * [4>] 
where u o, = «" Arg(" (</> ! 1»),6) 

Dump co~4>«" r), 6) = (4)] 
Dump PI~4>«" r), 6) = (Done(uo ,) ~ (Done(uo ,) ~ n, 

Dump(uo,», Dump(uo,» * [4>1 
where uo; = «" Arg(" (4) ! i»), 6) 

Dump Eo 4>«" r), 6) = (Done(uo ,) _ (Done(uo ,) ~ n, 
Dump(uo,», Dump (uo , » * [4>] 

where uo, = «" Arg(;, (</>! i»), 6) 
Dump H4>«" r), 6) = (Done(uo,) ~ D, Dump (uo , » * [4>1 

where uo, =«" Arg(" (</> ! 1»), 6) 

Figure 4.4: The Dump and Dump. functions 

Figure 4.3, we redefine the domain of nodes, N, to include a constructor 
type. This is represented by C. We let B = Z + T + {nil}, and as we did 
in the denotational sema.ntics, we will infer from the context the va.rious 
projections, injections a.nd membership tests associated with B. 

The principal difference between the operational semantics of Chapter 2 
and the ODe presented here is that we now work with a. list of spines, rather 
than a single spine. 

In this thesis we will refer to such a structure as a dump. This terminoI



53 4.2. EXTENDED OPERATIONAL SEMANTICS 

io: @ 

i, : @/'"e. :3 

/'"
i,:+ i3:@ 

/'"
l4:inc f~:2 

Figure 4.5: Example of a Graph 

~Step(.) ~ (I ~ [null]) Nul/Step q, u, 
(I ~ [head]) ~ HeadStepq,u, 
(I : [cons]) ~ ConsStep ¢J u, 
(I: [+]) ~ PlusStep¢Ju, 
(I~ H) ~ EqStep q, u, 
(I ~ Ii!]) ~ IfStep q, u, 

OtherStep( ~ [I]) q,u 
where (i: q,) : 1/J : Dumpu 

((-y, r), ~) U~ 

I : (-y i) I Ide 

Figure 4.6: The Step function 

ogy conflicts with that of the G-machine papers [Joh0660n 83], [JohnsBon 84] 
and [Johnsson 87], where a dump is a list of pairs, each pair being a cantin· 
nation and a spine. 

In figure 4.4 we construct the dump of a state by first determining the 
spine of the state. If this is a built-in function and it has enough argument;, 

1It may be possible to ignore this condition and reduce strict a.rguments immediately. 
Such. a IICheme i9 in general incorred; the conditions under which it ca.n be fudged are 
beyond the 5Cope of this thesis. This form oC reduction was proposed by Peyton Jones a.nd 



54 CHAPTER 4. EXTENDING THE LANGUAGE 

NullStep (i : <Piu 

HeadStep(i: 4»u 

Co""Slep(io : i, : 4»u 

Plu.Slep(io : i, : 4»u 

EqStep(io : i, : <I»u 

IfStep(io : i, : i 2 : <1» u 

OtherStep[r) <1>«" i), c) 

UpdGtel v (J 

where 1I=:;:( Valuel (1) == nil in N 
= VEC~ Updatei(fs/(v»u,l 

where v = Valuelu -
= Updatei, ((lb, i;) in N) u 

where «" r),c) = u 
i: = Ary(" i;) 

1'b E Z 1\ VI E Z --+ Updatelt V(1.~ 

where Vi :;:: Value li U 

v = ""IZ+v,IZ 
=:: lIoEZl\v1EZ- Updateltvu,1. 

where Vi == Valuel;u -
v = VOIZ=VIIZ 

lIET--+ Updatel(l' in N)cr,1. 
where l' = (Valuelou) ~ i" i, 

= Updateql' in N)(,', i), c) 
where (,',l') = C[r)p.nd<l>(,,l) 

i. = <I>!(Arg.[rj-l) 

Figure 4.7: The Built-in Reductions: .Step 

Updaleiv«"r),c) = «,${i~v},r),c) 

Valuer«" i), c) = ,(Elidq(Arg(" r») 

Figure 4.8: Auxiliary Functions for .Step Functions 

we will test the strict arguments to see whether their evaluation has been 
completed. U there is a strict argument that has not been evaluated, we 
construct a. dump of that argument and append the singleton list of the 
spine. We illustrate this in Figure 4.5. The dump of this state will be 
[[i" i,), [i2 , i" io]]. 

Mter determining the dump, we are able to perform a reduction step. 
This 1s performed by the function Step defined in Figure 4.6. This will 
operate only on the top element of the dump and we will refer to this as 
the head of the dump or the redex spine. If a. built-in function is a.t the 

is intermediate in power between his weak head normal reducer and Wadsworth's head 
normal reducer. 



55 4.3. CONGRUENCE FOR THE EXTENDED LANGUAGE 

head afthe redex spine, then its strict arguments must be evaluated and the 
reduction of the built-in function can proceed on tha.t basis. If the function 
at the head of the redex spine is not a built-in function then the reduction 
proceeds in the same way that it did in the original operational semantics 
of Chapter 2. 

4.3 Congruence for the Extended Language 

In the previous sections we have a.mended the denotational semantics 
a.nd opera.tional semantics to realise constructor and other built-in opera
tions. The proof that these definitions of the langua.ge a.re congruent [onows 
the same pa.ttern as that of Cha.pter 3. The stra.tegy we used then is now 
repeated and therefore we repeat Figure 3.1. As the last congruence proof 
of Chapter 3 was presented in considerable deta.i.l, we will omit some of the 
detail in the congruence proof of this chapter, and only prove those theorems 
that have changed. 

In order to establish congruence we must again use the technique of 
Chapter 3. First we redefine acute so that the identifiers corresponding to 
the built-in functions are defined to have the same derepresentation value 
as that given by the denotational semantics. From this we establish that 
Lemma 3.2 still holds and this establishes that the two environments are 
congruent. Now, because the built·in reduction steps in Figure 4.7, satisfy 
Theorem 4.1, they do not change the meaning of the derepresented graph. 

Theorem 4.1 

For all (J in 5, such that Done«(J) does not hold: 

E(<7);;) E(Step(<7)). 

We are therefore able to deduce that each reduction step does not change 
the meaning of the graph thus establishing a result like Theorem 3.7. From 
this we are able to deduce by fix:point induction tha.t the interpreter approx
imates the denotationaI result; this corresponds to Theorem 3.4. 

To prove that the denotational result approximates that of the opera.
tional semantics (Theorem 3.12) we are required to re-prove that the new 
predica.tes exist for the new domain E. When this is proved, because we 
have established that Lemma 3.2 holds for the new definition of acute, we 



56 CHAPTER 4. EXTENDING THE LANGUAGE 

Theorem 3.3 This proves that P [II) = E(P [III), provided that P [IIJ. 
B. It is established by fixpoint induction on the state. It requires 

Theorem 3.4 This proves that P[II) ;) E(P [II)). It requires 

Theorem 3.7 This proves that an individual reduction step 
on a state will produce a new state that approximates the 
old one, under derepresentation. It requires 

Lemma 3.8 Indirection Node Equivalence Lemma. 

Lemma 3.9 Spine Derepresentation Lemma. 

Lemma 3.10 Combinator Substitution Lemma. 

Theorem 3.12 This proves that P [III [;; E(P [IIJ), provided 
P[II] E B. It is established by structural induction on tbe 
program, using inclusive predicates. It requires 

Lemma 3.2 Proves that derepresentation of a. combinator 
name in the operational semantics is the same value as 
that supplied by the denotational semantics, for a given 
syntactic structure .6.. 

Theorem 3.17 This proves that the predicates e and f exist. 
It requires 

Lemma 3.18 Partial Predicate Projection Lemma. 

Lemma 3.19 Partial Predicate Injection Lemma. 

Corollary 3.20 Proves that the predicates establish the re
quired approximation. 

Theorem 3.21 Proves that all initial expressions satisfy the 
predicates. It requires 

Lemma 3.22 Proves that the predicates imply the correct 
behaviour for application nodes. 

Figure 3.1: Outline of the Proof Structure 

have proved that the denotational result approximates the operational (The
orem 3.12). Notice that the language bas not changed, only the initial envi
ronment in which programs are executed. 

We now redefine the predicates e and f to incorporate c. 



57 4.3. CONGRUENCE FOR THE EXTENDED LANGUAGE 

Definition 4.2 

e(t) .. (t" .L) E == .i, 
(i "1) t t; 1,
 
(IsB;;sic(m ~ (E Ell) A Es E(i),
 
(IsFunction(t )) ~ (E. F) A f«{ I F), i),
 
(IsCons(i)) (t E 6) A c«E I (:), i),
 
false
 

f(t) .. l\{e(E(o), Eual(to)) IApplied(to, i, it) 
Ae(o, Eval(o))) 

c(x) .. (X" .L) V (e(to) A S(£,)) 
where (b, l), 0) = x 

(EO, El) = X 
(lo,l,) , (Elide(" l)) I C 

[sCoTl8(b, l), 0) = 
(Spineb, l) = Il]) A (,l. C) 

The predicates we require may not exist. To prove that they do we must 
use induction on the complexity of the domains that they are specified on. 
This time the domain E is specified as the range of the retraction E where 
E = fix(~E.«E O~ E) ill (E 0 E) ill B)). We may define E so that numeric 
induction is valid by using En, Fn and en. 

En = Fn ill Cn ill B 
Fo = .L 

Fn +1 = En 0_ En 
Co -. .L0.L 

Cn +1 = En ® En 

The partial predicates en, In and en are defined on the sub domains En(E) 
for, E E, Fn(¢) for ¢ E F and Cn(X) for X E C. 

They are defined in the obvious way c.f. Chapter 3, Definition 3.15. 
Again the following conditions may be derived from them. 

Lemma 4.3 

For-aUt, ¢, X andn~ 0 



58 CHAPTER 4. EXTENDING THE LANGUAGE 

en(€) => en+l(En(t), e)
 
en+l(i) => en(En(t), l)
 

fn(4)) => fn+I(F n(4»,4»
 
fn+l(4)) => fn(F n(¢),4»
 

cn(Xl => Cn+l((n(X), X)
 
Cn+l(Xl => Cn((n(Xl, X)·
 

From this we ma.y immedia.tely conclude Corollary 4.4. 

Corollary 4.4 

For all €J ¢J X and n ~ 0 

=> {e.( E.( t), l), ifi:$n
en(En(t), e) 

e,(En(t), l), iIi 2: n 

ifi:$nfn(Fn(,j,), 4» => {f,(F.(¢), *),
fi(F n(4»,4», iIi ~ n 

iIi :$ ncn((n(Xl, X) => {",((.(Xl, Xl,
"'((n(;l'), Xl, ifi?: n 

The existence of the predica.tes e , f a.nd c must now be proved. We 
again use a. predica.te to to express the condition tha.t these predica.tes are 
equi valent to the sequences of pa.rtial predica.tes. 

Definition 4.5 

t(P, Q, R) 
.. \/t.P(t)""
 

(l'" .L) t == .1.,
 

(l '" 1) t !: 1..
 
(JsBa-:'ic(l) ~ (to B) 1\ t [; E(l), 
(IsFunction( e)) ~ (t E F) 1\ Q((t I F), l), 
(JsCons(E) (t E C) 1\ R((t I C). l), 
false 



59 4.3. CONGRUENCE FOR THE EXTENDED LANGUAGE 

A	 'tJ,.Q(J,)~ 
I\{P(t(a), Eva/(Eo)) IApp/ied(E" E, n)
 

A P(a, Eva/(n))}
 
A	 'tX.R(X) ~
 

(X" 1-) V (P(ta, Eval(€,)) A P(t!, Eva~El)))
 

where	 ((-y, i), 6) = X 
(to, t,) = X 
E, = ((-y, ii), 6) 
(io, i , ) =, (Elide(" i)) IC 

We may now prove the existence of the required predicates by substi
tuting the predica.te sequences into ~. This then demonstrates that the 
predicates exist by construction. 

Theorem 4.6 

<I>	 (,l.t. 1\::':0 en(En(t), E),
 
>.J,. 1\::':0 fn(Fn (¢), J,),
 
>'X· 1\::'=0 c,,(Cn(X), X))
 

is true. 

Proof of Theorem 4.6 

We demonstrated in the previous chapter that we could substitute the 
predicate sequences for P and Q. 

As an aside we should really prove that the new definition of en still 
satisfies I) when we are dealing with constructors. This is trivially 
demonstrated as we are able to distribute A~o through /I.. 

Although most of the proof foUow~ from Theorem 3.17. we still have 
to verify 



60	 CHAPTER 4. EXTENDING THE LANGUAGE 

R(X) 1I;:'=ocn(Cn(X), X) 

1I;:'=0{(X '" 1-) V en(En(to), Eval«o)) 
en(En(t,), Eval«,))} 

(X '" 1-) V	 11;:'=0 en(En(to), Eval«o)) f\ 
11;:'=0 en(En(t,), Eval«,)) 

(* '" 1-) V P(to, Eva~<o)) f\ P(t" Eval«,)) 
where (b, i), b) ~ X 

(to, t,)	 ~ Ji: 
<0	 ~ (b, ii), b) 
(io, i,)	 ~,(Elide(" i)) IC 

o 

This completes the proof that the predicates exist. We may confirm that 
these predicates do indeed imply the approximation condition by re-proving 
Corollary 3.20. Again, we aTe unable to compare functions because of the 
full abstraction problem with domains associated with the denotational se
mantics. 

The struct ural induction required to prove the partial congruence that 
the denotational semantics approximates the operational semantics has been 
completed in Chapter 3 as Theorem 3.12. This is sufficient because the 
syntax of the language has not changed, only the initial en\'ironment. 

4.4 Related Work 

The schemes to translate more complicated languages to the one presented 
here are described in detail by Peyton Jones in [1987]. Hughes' super
combinator abstraction algorithm was first described in [1982a] and fur
ther renned in [1983J. Johnsson's lambda-lifter was originally described 
in [1985] and the translation of pattern-matching for LML is described in 
[Augustsson 85]. The dependency analysis required for type-checking is out
lined in [Peyton Jones 87, pages 118-121]. Polymorphic type checking of the 
form we have assumed here is described by Hancock in [Peyton Jones 87, 
Chapters 8-9J. 

The previous work related to the congruence proof and denotational se
mantic language definition was identified in the last chapter. 



4.5 CONCLUSION 61 

4.5 Conclusion 

This concludes our survey of the denotational semantic definition of func
tional programming langnages; operational realizations of these languages; 
and the relationship between them. We reiterate that the result we have ob
tained is the complete congruence between the denotational and operational 
semantic models we have formally described. 

In Part 2, we investigate the practical applications of the extended The
orem 3.3. In Chapter 5 we show that the evalua.tion order ma.y be changed, 
in suitahle circumstances, without changing the result of the program. In 
Chapter 6, we consider alternative operational semantics a.nd prove that 
these machines preserve sharing. Finally we prove that the G-machine com
piler for our language is correct in Chapters 7 and 8. 



'"d> '"d ....

 
 n a
 ....

 

o l:l
 

t1.
l 



Chapter 5 

Using Strictness Information 

Much work on efficient compilation of lazy functional programming Ian· 
guages has focused on analysis of programs to determine which functions 
are strict. Various analyses have been proposed to determine such informa.
tion, which is usually referred to as strictness information. In tms chapter 
we dhiCUSS the problems associated with using strictness information in our 
liUlguage. 

Abstract interpretations are generally defined in terms of the >.-calculus. 
In the ~*calcuIus the Second Church-Rosser Theorem [Stay 77, page 68] pro
vides the relationship between the denotational and operational properties t 

that is required in abstract interpretation work. The languages to which 
they are most often applied is that of combinators, with constants and 0
rules. The evaluation mechanism is generally reduction to weak head normal 
form [Peyton Jones 87, page 198]. This is exactly the language and opera.
tionalsemantics we proved congruent in Chapter 4, and so we may extend 
the results of abstract interpretations to this language from the more normal 
A-calculus with constants. 

Typically, an abstract interpretation for strictness will determine whkh 
arguments of a user defined function are definitely required to be evaluated. 
There are a number of gains that may be achieved through using the infor
mation provided by strictness analysis. Firstly we are able to improve the 
space complexity of some algorithms. Consider the function length defined 
with an accumulation parameter. 

length a [] = a 
length a (x; I) = length (a + 1) I 

In Lisp the advantage of this definition over the simple definition is that 

65 



66 CHAPTER 5. USING STRICTNESS INFORMATION 

it runs in constant space. Unless we know that length is strict in both 
parameters the lazy version will run in (:) (n) space, as the addi tions are not 
performed until the end of the list is reached. 

The second improvement occurs because we need not CTeate objects on 
the heap that will immedia.tely be reduced. In functional language imple· 
mentations heap allocation, with the consequent garbage collection, is often 
considerably more expensive than sta.ck or register allocation. Any attempt 
to allocate storage from a stack is therefore likely to be of benefit. 

The gain occurs when we have 

/ x = 9 (z + 3) x 2) 

and 9 is strict. Then instead of constructing the graph assodated with 
«x +3) x 2) we may go ahead and evaluate it and then proceed with the 
reduction of g. 

5.1	 Re-ordering Evaluations in Sequential Ma
chines 

We begin with a definition of strictness. 

Definition 5.1 

A function / is strict whenever 

/1-=1

It is normal in abstract interpretation work to use complete partially 
ordered sets, rather than complete lattices, to model domains and to treat 
the error element as bottom. In the lattice theoretic domain construction 
we define complete strictness in the following way, after [Stoy 77, page 178]. 

Definition 5.2 

A function / is completely strict whenever 

{ t	if x = l
if x = 1. 

/T ~ if x = T 
otherwise 



5.1. HE-ORDERING EVALUATIONS IN SEQUENTIAL MACHINES 67 

We first define some notation with which to represent the problem. 

Definition 5.3 

We define t :::;:: t if, and only if 

t:;J E(t) and e(t). 

A result from Part I, is that 

E(i) '" Eval (t); 

this follows from Theorems 3.4 and 3.12. From Lemma 3.22, we also have 
that 

t;'" t; /\ Applied(t, to, tIl ~ tot, '" t. 

The sequential reordering theorem, Theorem 5.4, says that when a com
pletely strict function is applied to an argument it is permissible to evaluate 
that argument hefore evaluating the function body. On a parallel machine 
we may wish to evaluate the argument in parallel, and this would not change 
the meaning of the progra.m. 

Theorem 5.4 

Suppose we have some state (f ;::: «-r, l), 6) with 

,(Elide(-y, i)) I A ~ (to, i,). 

Let t; = E((-y, i;), Ii), and t ~ E(a). If E((-y, to), Ii) is completely 
strict, then 

E(Eval(a)) '" Eval((-y', i), Ii), 

where -y' ~ fst(fst(Eval((-y, ill, Ii))). 

We may prove Theorem 5.4 by considering cases for the graph " after 
the evaluation of the argument corresponding to il. 

Proof of Theorem 5.4 

By cases on the value of I': 



68 CHAPTER 5. USING STRICTNESS INFORMATION 

j' =.1. or j' == 1 In this case Eval (tI ) = 1', hence both e' and t 1 are 
also j'. But to is completely strict, so t. is T, thus 

t" {'. 

otherwise In this case, to:::::; (b', lo), 6) and £1 ~ (h', ed, 6). From 
this we may conclude t:::::; El)ol (('y', f), 6). 

o 

Because of the full abstraction problem it might appear that we have 
produced a result that is insufficiently powerfulj this is not the case. Provided 
that the program result is not a function, we have shown that either of the 
operational techniques for reduction will give the same answer. 

The result we have proved in Theorem 5.4 is a dynamic strictness re
sult. This is because we need to determine the strictness of E((;, lo), 6) 
at fun-time. This is not in general possible, as we would need to solve the 
halting problem. Instead we determine a conservative approximation of the 
strictness, statically, during compilation. Then if t[EoRfi is strict we may 
produce swtable code for t [Eo Ellp. 

It is iInporta.n t to note that Theorem 5.4 is defined in terms of complete 
strictness. Strktness abstract interpretations determine only a conservative 
approJcimation to the strictness of Definition 5.1. This mis-match in the 
types of strictness used and provided causes problems when we consider the 
"program": 

Q(I(O) where fix =fix 

In this case n is strkt (although not completely strict), but we may not 
reorder the evaluations, as this will result in 1 instead of .1.. We note that 
this occurs because our language no longer h~ confluence, i.e. the Church
Rosser property. 

5.2 Related Work 

The use of abstract interpretation to deduce approximations to fixed points 
jn lattkes was first suggested by the Cousots in [1977]. This general work on 
lattice fixed points was applied to functional programs by 1-Iycroft in [1981a] 
and [1981b]. This work was fairly Iim.ited, to the extent that the approximate 
result it produced was fairly weak. Subsequent work has devoted attention 
to improving on the quality and range of the information derived. Extending 



5.3. CONCLUSION 69 

the analysis to cover higher-order functions is described in [Burn et al. 86}. 
Further refinements to cover data structures are described in [Wadler 87J. 
All of these works are justified because of an appeal to the Church-Rosser 
Theorems for the A-calculus. This provides the relationship between oper
ational and denotational semantic models. This is needed as the analysis 
occurs by variation of the denotational semantics value domains and the use 
of this information occurs in the operational semantics. 

5.3 Conclusion 

The most important observation is that the language with which we are 
working is not confluent, i.e. it does not have the Church-Rosser Property. 
This occurs because there are circumstances where both bottom and error 
could be returned, depending on which reduction order is chosen. Confluence 
is lost when bottom is returned for error. 

There are two simple wayt; that we may recover the property of conflu
ence. The first is to remove the distinction between error and bottom, so 
that we do not report errors at all. This has the advantage that the un
derlying A-calculus model behaves in a t;imilar manner. Using the normal 
definition of division in the A-calculus meant; that division by zero is repre
sented by non-termination. The second solution is to introduce a new node 
type to represent error. In this case an error is slowly propagated up to 
become the final result. This is precisely how erroneous values in the dena
tationaJ semantics are handled, so we should not be too surprised by this 
solution. This has an advantage when the propagation process is blocked by 
non~termination, thus providing the correct result. As an example we can 
consider the reordered evaluation of Ax ..L1. mentioned earlier in this chapter, 
which under the proposed new scheme produces the correct result. The main 
drawback of the second solution is that we are generally unable to represent 
error in the V stack, and so correct error handling by the optimizations of 
Chapter 8 becomes quite complicated. 

Even though the language is non-confluent, we may reorder the evalu
ation of any completely strict function, as a result of Theorem 5.4. This 
causes a problem as most abstract interpretation work does not derive com
plete strictness information. Again the solutions proposed above will retrieve 
the situation. 



Chapter 6 

Sharing Mechanisms 

Sharing is that property of graph reduction that makes the implementation 
oflazy functional programming languages practicable. Without sharing, we 
must rEcompute the value of an argument each time it is used, because 
we are performing call-by- name evaluation. Such a reduction strategy is 
unacceptably slow on a sequential machine, although it may be a.dequate for 
a parallel one, see {Downey and Sethi 76]. 

The simplest example of sharing occurs in the following program: 

f (1+ 2) 
wherefx=x+x. 

If the function f does not share hs argument X, then we will need to 
evaluate the expression (1 +2) twice. Sharing is accomplished in the imple
mentation we defined in Chapter 2 by using a. graph to represent the state 
of the computation. In the case we are currently considering, a single node 
will represent (1 + 2) and upon its reduction the result 3 will be used to 
overwrite the node. Any references to the expresl'iion (1 +2) will be via this 
node, Uld thus all such references will benefit from the reduction of (1 +2) 
to 3. 

We. call this property sharing. Any reduction that is performed without 
the remlt overwriting the root node may cause sharing to be lost. We note 
that as the operational semantics is currently defined in Chapter 2, or the 
modified version in Chapter 4, this can never happen; the reason is that 
all reduction steps write out the result to the root node at the end of the 
Step fmction. As we shall l'iee in the chapters on the G-machine, there are 
optimization techniquel'i which will be available whenever we are allowed 

71 



72	 CHAPTER 6. SHARING MECHANISMS 

to omit the updating of root nodes. This is also the key observation in 
the Spineless G-machine. where optimizatioll8 are proposed to reduce heap 
accesses by omitting the unnecessary updating of nodes. In the spineless 
G-machine npdating occnrs only when sharing is possible. 

6.1	 A Spine Cycle Theorem 

In this section we diSClUiS a resnlt which relates the fonn of the spine for 
a state and the meaning of the state when derepresented by E. We wish 
to show that a node can appear only once in the dnmp. if the program 
is to tennina.te. Informally this arises because a node can only appear on 
the dump when we are attempting to reduce it to WHNF. ThIl8 when a 
node appearB twice, its reduction requires that it already be in WHNF. This 
process can not terminate. 

This result is required when we wish to show that the whole of the dump 
need not be reconstructed for each step. Without this result, the updating 
a&84Xia.ted with reduction steps might affect the way that the dump was 
constructed. Another application, which we use in this chapter, is to show 
that we may postpone the updating until the body of the combinator has 
reached WHNF. 

We m.t define the function lWJa which calculates the root of the indi
rection node that will be created at the end of the next step. 

Delinition 8.1 

/Iedu(u) =	 (I = [null) (l:,p)! 1,
 
(I = [head) ~ (l:,p)! 1,
 
(I = [rons) ~ (l:,p)! 2,
 
(1= [+)) ~ (I: ,p)! 2,
 
(I = [=) ~ (1:,p)!2,
 
(I = [if]) ~ (1:,p)!3,
 

(l:,p) ! (Arys(6 pm 
where	 (l:,p):.p Dump(u) 

1 -yillde 
((-y, r), 6) u 

The result we shall prove is that the spine of a state a will have no 
cycles whenever E(O') is not .l.. This arises because if a has spine cycles. 
Step(u) = i. This is formally stated a.o; Theorem 6.2. 



73 6.1. A SPINE CYCLE THEOREM 

Theorem 6.2 

Let 

O"n+l = Done(an) -- an, Step(un) == «(7"+11 r), h), 

1/;n:= Dump(O'n) and On = Redex(aJ1)' Then i/o" is overwritten with 
an indireetion node to T, 0"1'"1+) = .i. 

We note that as OUf extended machine is defined, there are no cycles 
in the graph. This a.utomatically ensures that there axe no cycles in the 
spines. If cycles in graphs are permitted we would be able to appeal to the 
typechecker to eliminate all cycles except the trivial ones corresponding to 
the programs like: 

x whererec x = x
 
x whererec x == x + 1
 

Although we have restricted the range of programs which exhibit cycles in 
the spine, we have not eliminated them from consideration. For this reason 
we prove Theorem 6.2 in aJl its generality, by showing that dump(un+l) = .1 
whenever 0''1 has a spine cycle. We notice that the redex will be an initial 
sequence of the first element of the dump. Because the dump is constructed 
from the root to the redex, we must have both that # 11'''+1 ::f:. 1. and that 
# (head 11',,+1) :/; 1. in order for Dump (an+l) to terminate. 

Proof of Theorem 6.2 

We consider four cases: whether the dump is a singleton list or not; 
and whether the redex is the last element of the current stack or not. 
We note that only cases 1 and 3 are permissible in a typechecked 
implementation. 

1. "'n = [</>" * [on]] In this case On = r and we have "'n+1 = [.L]. 
Thus # (head¢n+!) = 1., which implies that we have an+! = 1.. 

2. "'n = [41' * [0.1 * </>' * [rlJ In this case 

"'n+l = [head"'.+! * ¢! * [rlJ 

and so again # (head 1Pn+I) = 1., which implies that we have 
an +l = 1.. 



74 CHAPTER 6. SHARING MECHANISMS 

3. ,p. = [4>" * [o.1J * ,p' * [4>''' * [T]J In this case
 

,p.+1 = ,p.+l * ,p' * [4>''' * [T]J
 

This time # tPn+l :;::. .l..j the result is that O"n+1 = l.. 
4, ,p. = [4>" * [Onl * 4>'J * til * [4>''' * [TIJ In this case 

,p.+l =,p" *,p' * [4>''' * [TIJ 

where til' = til' * ,p' * [4>'" * [TJ * 4>'1, which again implies 
O"n+l ::::; .1, because # tPn+1 = .1.. 

o 

We conclude this section by restating the result. In a terminating pro
gram there are no cycles in the spine or dump for any initial, intermediate 
or final state representing the execution of that program. 

6.2 A Weak Head Normal Form Theorem 

We now wish to demonstrate that the operational semantics has the following 
property: any node on the dump of a state may be evaluated before the 
remainder of the evaluation is performed, and the result will be the same. 
Informally this is because every node on a dump is reduced to weak head 
normal form before it is released from the dump. First we define a function 
Eva/Frvm which evaluates from the node provided in its first argument, using 
the state supplied by the second. 

Definition 6.3 

EvalFroml (b. T), 6) = (b', T), 6) 
where ((,', e), <I) = Eval(b, e), <I) 

We may now formally sta.te our theorem as Theorem 6.4. 

Theorem 6.4 

Suppose that L occurs in Dump(u). Then 

Eval(<7) = Eval(EvaIFrom£<7) 



75 6.2. A WEAK HEAD NORMAL FORM THEOREM 

i o : @ 

/""
i, : @ 4J : 3 

/""
I, : + i, : @ 

/""
l4,:inc l5:2 

Figure 6.1: Example of a Graph 

Consider the example of the graph in Figure 6.1. This has as a dump 
[[I., I,), Ii" i" 4>1J. If we attempt to reduce any of the'e node' to WHNF 
before proceeding with the evaluation of the whole graph l our theorem says 
tha.t we will get the same resulting state as we would by evalua.ting the whole 
gra.ph in the normal way. We prove this result by showing that there is a 
stepwise correspondence between the execution of the two functions on a 
given state. 

Proof of Theorem 6.4 

We consider two cases of EvalFroml (1: 

= 1- Let 

H = Ax>.u.Done(o) _ 0", x(Step(O")), 

and 0", = (('Y, i), 6). Then, either 
,En	 with en 1. u( = Hn+11. rT( In this case f-ln with Hn1. (J :;:: 

Hn,+I1. (1. 

3n with H",+1 1. Ut = 1. This occurs because Dump (Rn 1. O'() = 

1-. But this mean, that Dump (Hn 1- 0) = 1- also. 

:/: 1. In this case execution of EvalFrom must termina.te after some 
finite number of steps. Let us denote this number by n, a.nd 
define H as 



76 CHAPTER 6. SHARING MECHANISMS 

H = .xKM.Done(u) ~ u, K(Slep(u)) 

Then EvalFroml(b, r), 6) = (1', r), 6) where 

(b', i), 6) = H n+1 (M.u)(b, i), 6) 

But Eval(q) = H f1+1 Evald, and we must now show that the 
individua.lsteps associated with each H are the same. This follows 
from the observation that Redez(l1t} ::;:; Redez(O') and that the 
graphs are the same. Observe that we are using the Spine Cycle 
Theorem (Theorem 6.2) to establish this. 

o 

This is an important result. We sha.ll use it to allow us to reorder eval· 
uations in this chapter as well as Cha.pter 7. 

6.3 Copying Shared Nodes 

We now wish to demonstrate tha.t we may use an alternative algorithm to 
maintain the sharing information in the state. This algorithm first evaluates 
the body of a function definition and then updates the original root of the 
redex with the correct value. The potential problem with this approach is 
that there is a "hole" in the graph I until evaluation is completed. This js 
because we have not updated the value of the root for all the intermediate 
steps. We will fall into the hole in the graph only when there is a cycle in 
the spine. From Theorem 6.2 we know that the result of the evaluation in 
this case will be 1... We would like to show that our reordered evaluation will 
also produce the same value. It does; although it converts call-by-need into 
call-by-name, when there is a cycle. InformallY, we may say that the original 
operational semantics evaluates a state with a spine cycle more rapidly than 
the new operational semantics whh copying. Formally we have Theorem 6.5. 

Theorem 6.5 

LeI u, = «1', r), 6) with Done (uo) false, and U'+1 = Step(u,). Then 
we define Vi ::::: Ii 00 where 00 ::::: Redex(uo). Let VI = £ in N, be 
the indiredion node associated with the reduction, and define 1'; ::::: 
11 Ell {ao 1-+ vo}, so that I: differs from 11 only in that the indirection 
associated with the reduction has not been perfoN1led. Then 



77 6.3. COPYING SHARED NODES 

Eval(uo) = Eva/(h' Ell {oo ~ VI}, r), /j), 

where (h', au), /j) = Eval((-r;, 00), /j). 

The proof is straightforward. As the two graphs differ only in the value 
they assign to 00, we use fixpoint induction on the uses of Eval to show 
that this is unimportant unless there is a cycle - in which case it remains 
unimportant because we have non-termination. 

Proof or Theorem 6.5 

We first observe that 

Eva/(uo) = Eva/(h, r), /j) 

where (h, au), /j) = Eval(h" "0), /j). But 

Eva/(h;, au), /j) = Eval((1" au), /j), 

by fixpoint induction and using the spine cycle theorem, Theorem 6.2. 

o 

This does not provide a realistic implementation method, although it 
does perform the correct function. If, instead of creating an indirection 
node on. the completion of the evaluation, we make a copy of the result 
over tbe original root node, we have another implementation. Although this 
loses sharing, it is not significant sharing. Sharing is significant if its loss 
results in more reductions being performed. By this measure the copying 
of a node that has been evaluated to WHNF is non-significant. Thls is 
because no further reductions of it are possible and thus fresh attempts to 
reduce either the copy or the original will cause no further reduction to 
be performed. We have therefore justified the copying implementation of 
graph reduction, whlch is used in SKIM [Stoye et al. 84] and the G-ma.chine 
[Johosson 83, Johnsson 87P. 

1 A weaker form of the graph-isomorphism propCl'Jed in Chapter 8 can be deviAed. It 
would allow 1I6 to "common up" separate occurrences of WHNF uodes which were graph
isomorphic. As this property onJy occur6 in the current di6Cllllsion, and would have no 
further ~ractical applicalioU6, it has been omitted. 



78	 CHAPTER 6. SHARING MECHANISMS 

Although our original operational semantics is defined using indirection 
nodes throughout, we would not suggest this method as a practical real 
implementation method. The main modification that should be made is to 
copy base values, and use indirection nodes only when the returned value 
may be a function. The result of this section (Theorem 6.5) justifies the use 
of this composite scheme. 

This modified copying and indirection updating scheme is still suitable 
for implementing Hughes' lazy memo-functions [1985]. 

6.4 Indirections Without Chaining 

It is difficult to prove anything concerning the relative efficiencies of the 
copying update and the composite indirection and copying schemes. The 
reason is that the relative merits of the schemes depends on the style of 
programming used. If functions are predominantly used wi th base values 
then the copying scheme is better. If heavy use is made of higher order 
functions, then the indirection and copying scheme will work best. 

The problem for the purely copying updating scheme, occurs when a 
functional valued result is obtained. In this case we have the overhead of 
stack frame creation and deletion, when compared with the indirection node 
updating method. For the indirection node method there is the well known 
problem associated with the accumulation of indirection node chains. Here 
access times to function arguments may be slowed, because we must search 
along a. chain of indirection nodes to find the argument. 

In an attempt to avoid chains of indirection nodes occurring, we outline 
the following scheme. We also avoid the stack overheads associated with the 
body reduction discussed in the previous section. There are two principal 
observations. 

1.	 We may invert the direction that indirection nodes point. We are, after 
iill, using indirection nodes to equivalence two nodes in the graph. So 
the direction of the indirection node is unimportant. 

2.	 Only two sorts of indirection nodes exist: those pointing to nodes that 
are in WHNF, and those pointing to nodes that are being evaluated, 
but have not rea.ched WHNF yet. 

Imagine, then, tha.t we have reached a stage in the computation in which 
we a.re about to replace a redex with its result and consider the three possible 
states for the body: 



6.5. RELATED WORK	 79 

WHNF We may copy the root of the body to the root of tbe redex. 

non_WHNF, unevaluated Because no attempt 11M been made to reduce 
it, this node has no indirection node pointing to it. 

non-WHNF being-evaluated In this case the state will eventually be
come .1. We will ignore the creation of chains of indirection nodes in 
non- terminating programs. 

This suggests a different definition of the Update function. 

Updatell'(-r, T), 0) 
= Done((" I'), 0) ~	 (-r (jJ {l ~ ,£'}, T), 0), 

(-r (jJ {l ~ ,I', I' ~ I in N}, T), 0) 

Tha.t is, an indirection node is only inserted when further reduction ofthe 
body can occur. Of courSe the overwriting of for l' or both may sometimes 
be omitted. but this will depend on the results of a sharing analysis. 

The important points about this technique are: 

1.	 Chains of indirection nodes do not accumulate during the execution 
of terminating programs, although they may do so for some non
terminating one6. 

2.	 Higher order functions are dealt with in a completely natural way. In 
the G-machine stack operations cause a significant overhead for the 
correct sharing of higher order functions. 

The equivalence of this scheme to the original indirection node model is 
guaranteed because both alternatives in the conditional have been shown to 
provide the same result. The operational aspect6 of the new scheme have 
been justified by appealing to the various situations in which indirection 
nodes can arise. 

6.5 Related Work 

The SKIM machine [Clarke et aJ. 80] was the first description of a machine 
in which reduction of the body of a fuuction was proposed a.s a 60lution to 
the problem of sharing in projection functions [Stoye et a1. 84]. The problem 
for SKI reduction is particularly acute as most reductions are of projection 



80 CHAPTER 6. SHARJNG MECHANISMS 

functions l and the gra.nularity of reductions is alot finer than those described 
in this thesis. It was taken up independently by Augustsson and Johnsson 
in their G-machine [Johnsson 83] a.nd [Johnsson 84]. The equivalence of this 
technique to the tail recursive scheme described in this thesis is proved in a. 
G-machine setting in [Lester 85] and {Lester 87]. 

Analysing programs to detect sharing is described in [Goldberg 87] where 
an abstract interpretation is used to find a. superset of the nodes that will 
be shared during reduction. Burn, Peyton Jones and Robson describe the 
use of such informa.tion within a. G-ma.chine setting in [19S8]i they call the 
resulting machine a. Spineless G-machine. 

6.6 Conclusion 

The final proposal for reduction was inspired by Hancock's observation that 
higher order function reduction in a G-machine can be slow and that the 
judicious USe of indirection nodes might reduce the overheads. The fact tha.t 
we have no chaining of indirection nodes means that this is the method of 
choice for higher order functions, although copying will work best for base 
type remIts. 

It appears that the the use of indirection nodes will be of less value 
within a. Spineless G-machine, although further work is required to provide 
a definitive answer. 



Chapter 7 

Deriving the G-Machine 

In this chapter we show how the G-machine [JohnssoD 83] may be derived 
from the operational semantics that we defined in Chapter 4. Viewed as 
an implementation method this operational semantics has disadvantages. 
lnitially the main problem is that it calculates the next redex in its reduction 
strategy by starting at the root of the graph. This is unnecessary if we keep 
a stack of separate frames to record the current depth in the recursive calls 
to the interpreter. The equivalence of these two definitions is established in 
Section 7.1. The new reduction strategy is obviously more efficient, but it 
may be further refined by observing that part of the stack rema.i.ns unchanged 
during a reduction step. This is the part that is above the root of the redex 
- a result that is another application of the Spine Cycle Theorem. This 
improvement is derived in Section 7.2. 

In Section 7.3 we show how individual reduction steps may be per
fonned using compiled code rather than using an interpretive technique, 
of Chapter 3. In the interpreter a syntactic representation of the combina.
tor is included in the environment. The details are in Chapter 3, and the 
method is essentially similar to template instantiation which is described in 
[Peyton Jones 87]. 

Finally we show that the G·machine print instruction may be added. 
This is important if the program result may be a structured data object, as 
we need to provide a driver to initiate demand in the program. 

81 



82 CHAPTER 7. DERIVING THE G-MACHINE 

7.1 Another Interpreter 

Before we derive the G-machine we re-cast the definition of the operational 
semantics. The definition we have been using so far has the pleasing prop
erty that we can restrict the number of reductions performed easily. This 
leads to clean proofs by fixpoint induction, which we have used extensively. 
We would now like to transform this definition to a form more suitable for 
a real implementation. The cha.nge tha.t is introduced in this section is to 
define Step and the associated built-in step functions .Step in terms of the 
spine rather than the dump. To do this we must evaluate strict arguments 
to built-in functions recursively. It is this explicit recursion whjch compli
cates fixpoint induction proofs were we to use such a definition. There is, 
after all, no limit to the depth of such recursion unles's we invoke the Spine 
Cycle Theorem. The new Step and .Step functions are defined in Figures 
7.1 and 7.2. 

We must now show the congruence of these definitions; this is done in 
Theorem 7.1. 

Theorem 7.1 

Eval' = Eval
 

where Eval'(u) = Done(u) - u, Eval(Step'(u)).
 

We are unable to show the stepwise equivalence of this new definition with 
the old, because Step' may perform a considerable number of reductions in 
reducing a built-in fUDction. It is clear that Step and Step' differ only in 
their treatment of strict built-in functions. We therefore consider the five 
'special cases that arise. 

Proof of Theorem 7.1 

We first observe that: EvaI' (u) = Eval (u) if and only jf 

Eval (Step' (u)) = Eval (u). 

Clearly, two cases are trivial: 

ConsStep¢u } = Step (u). 
Step' (u) = { OtherStep (6 [I]) ¢ u 



83 7.1. ANOTHER INTERPRETER 

~Step' (.) - (I - [null]) NullStep' ¢u, 
~(I = Ihead]) HeadStep' ,pu, 

(I = Icons]) ~ CansStep¢a, 
(I=I+]) PlusStep' ¢ a,~ 

~(I = 1=]) EqStep' ,pa, 
~(I = !ifJ) IIStep' ¢u, 

OtherStep (611]) ¢ u 
where (l:¢) = Spineb, r) 

(b. r), 6) = u 
I = (, i) I Ide 

Figure 7.1: The Step' function 

NulLStep' (l : ¢) NuIlStep(l: ¢) 0 EvalA'!Il 
HeadStep' (l : ¢) HeadStep(l: ¢) 0 EvalA'!Il 
PlusStep' (lo : l, : ¢) = PlusStep(lo: l, : ¢) 0 EvalA'!Il, 

o EvalArglo 
EqStep'(iD: l, : ¢) EqStep(lD: l, : ¢) 0 EvalA'!Il, 

o EvalArgla 
l!Step' (io : l, : l, : ¢) = IIStep(lD: l, : l, : ¢) 0 EvalArglo 

EvolA'!Il ((" r), 6) = EvaIFrom(A'!I(" l»)(b'. r). 6) 

Figure 7.2: The Buj}t~in Reductions: .Step' 

There a.re five other cases, which we divide into two groups according 
to the number of strict arguments. 

1.	 Suppose that Step'(u) = NuIlStep'(l: ¢)u. Then 

Nul/Step' (l : ¢) u = EvalFrom l u. 

But l occurs in the dump of the state a, and hence by the WHNF 
Theorem (6.4), we have: Evalu = Eval(EvaIFromlu). And thus 

Eval'(u) = Eva I (u). 

The steps for HeadStep' and I/Step' a.re similar. 

2. We	 DOW consider the built-in functions that are strict in two ar
guments. In this case we must perform the reduction to weak 
head normal form twke. Let £~ = Arg (j, ii), and assume that 



84 CHAPTER 7. DERIVING THE G-MACHINE 

(h, r), 6) ~ 17. Let 170 ~ (h,l~), 6) and 17, ~ (h'A), 6) where
 
(h',l;), 6) ~ EooIFroml~l7.
 

Suppose that the built-in function is addition. Then Eval' be

comes Eool 0 (PlosStep' (to : l, : ,p)). This may be further ex

panded to Eoalo PlosSlep(lo: l, :,p) 0 EoalArgl, 0 EoalArglo.
 
These steps follow from the definitions of EvaI' and PlusStep',
 
Again we would like to show that Eval' (7 = Eval q. This is 
achieved by appealing to the WHNF Theorem. 
We first consider the possible values that Done (0'0) may have. If 
the value is improper then the complete strictness of EvalArya.nd 
PlusStep ensures that this improper value is propagated through 
the composition of functions. We therefore consider the proper 
values: 

(a)	 Done (0'0) is true. This means that the first argument is 
already in WHNF. Thus EvaI' becomes 
Eoalo PlusSlep (lo : l, : ,p) 0 EoalArgl,. 

(b)	 Done (0'0) is false. In this case the first argument must be 
reduced to WHNF. But lh is in the dump of CT, and by the 
WHNF Theorem Eval u = Eval u l where u' = EvalFrom lh (I. 

We must DOW show that Eval' fT is
 
(Evalo PlosSlep(lo: 11:,p) 0 EoalArgll) 17'.
 

This result follows from a second case analysis; this time on the 
proper values that Done ((It) may return. 

(a)	 Done ((ld is true. This means that the second argument is 
already in WHNF. Thus Eval' ((I') now becomes 
(Eval 0 PlosStep (eo: II : ,p)) 17'. 

(b)	 Done ((ld is false. In this case the second argument must be 
reduced to WHNF. But l~ is in the dump of CT, and by the 
WHNF Theorem 
Eval (I' = Eval (I" where (I" = EvalFrom l~ (I'. 

As we have now shown that 

Eoal'(l7) ~ (Eoal 0 PlosStep (to : II : ,p)) 17" 

and 
Eoal(l7) ~ (Eoal 0 PlosStep(lo: l, : ,p))I7" 
we are able to conclude that the functions Eval and EvaI' are the 
same, when the built-in function is addition. 
The proof of the equivalent result for EqStep is similar. 



7.2. FAST UNWINDING 85 

o 

We have now introduced a distinction between reduction steps used to 
reduce the current stack function, and those Dsed to reduce strict arguments 
required by the stack function. We now consider ways to improve the UD

winding operation. This calculates the root of the next redex and makes the 
arguments to the function accessible through the stack. 

7.2 Fast Unwinding 

In this section we show how the unwinding operation may be made more 
efficient. We currently recompute the spine of a graph for each reduction 
step; this is unnecessary because most of it will remain constant between 
steps. In Figure 7.2 the domain of a G-machine state is defined. This 
includes components with which we are currently not interested, such as 
the 0 and V components. However l by using the more general state, we 
need not redefine the combinators that represent instructions each time we 
expand the state to use these components. 

In this section we shall be especially concerned with the unwind instruc
tion. We would like to show that it implements the house-keeping detail 
a.ssociated with the spine. In Figure 7.4 we give the first definition of unwind 
which we label unwindJ • Notice that it uses a subsidiary instruction unwingi 
to unwind the stack and that the argument check is performed by the entry 
instruction. Also notice that it does not re-arrange the stack to make a~ 
to the function's arguments more direct. This contrasts with the unwind 
instruction defined by Johnsson [1983J and Peyton Jones [1987]. 

Note that we shall use p as the variable name for an element of tJ for 
the original operational semantics global environment. Because the states 
are obtained from two separate domains we define an eqwvalence condition. 
We define this equivalence as ~ in Definition 7.2. We recall that the accent 
convention allows us to refer to similar objects in two different implementa
tions. We will now accent the operational semantics obj€cts with an acute 
accent and the corresponding G-machine objects with a grave accent. 

Definition 7.2 

Suppose U ~ ((i, T), fJ) and" ~ (0, ¢,,p, ", p, 0). Then If '" ", if and 
only if, i ~ ", fJ ~ Pand T ~ last(last(¢: 0)). 



86 CHAPTER 7. DERIVING THE G-MACHINE 

u E 5 = 
a E 0 = 
,p E V = 
'Y E G = 
v EN = 

A = 
I = 
Z = 
T = 
C = 

p E U = 
6 ED = 
</> E L" 

" E K = 
f3 E B = 
l E L 

Ox L" x V x G x U x D
 
Z"
 
(Z + T)"
 
[L~N] 

A + I + Ide + Z + T + C + {nil) 
LxL 
L 
{... , -1,0, I, ...h 
{true, false} ~ 

LxL
 
[Ide ~ Comb]
 
L"' 

[5 ~ 5] 
[Ide ~ Z] 

Figure 7.3: Value Domains 

(States)
 
(Output)
 
(Value Sta<:k)
 
(Graph Maps)
 
(Nodes)
 
(Application Nodes)
 
(Indirection Nodes) 
(Integers) 
(Truth Values) 
(Constructor Nodes) 
(Environments) 
(Dumps) 
(Stack.) 
(ContinuatioDs) 
(Bindings) 
(Node Labels) 

We now establish Theorem 7.3. Informally this demonstra.tes that the 
concept of evaluation in both semantics is an equivalence preserving opera
tion. 

Theorem 7.3 

1JI1 = (a, </>,,p, 'Y, p, 6) and f1 ~ 11, then 

EvalFrom (last </» f1 ~ fiz( unwindj ) 11 

Before this is proved we must establish that the Spine function and 
~ create the same stack from equivalent states. 

Lemmll7.4 

Sllppose that 6 = (CJ, r), p), that b = (0, <P, 1/J, /1 p, 5), and that a~ 

11 Then Spine('Y, last </» = </>', if and only if 



87 7.2. FAST UNWINDING 

entrynKu #¢J~n- K.U, 

u 
where (0, l :</>,.p", p, 6) = u 

unwind1K.u = (vElde)_K.'cr,cr 
where".' = entry n(,.. 0 l!:£P. n 0 step) 

n = ArgsGM (v I Ide)p 
v = ,l 
u' = fiz(unwinrf,)u 
(0, l : </>, .p", p, 6) =u' 

unwin",,,u = (vEl) -~ "(0,(vII):</>,.p,,,p,6), 
(ve A) ~ "(0, 1st (v I A): </>,.p", p, 6), 

(0, l: </>, .p", p, 6) 
where v = "'( l 

(0, l : </>, .p, " p, 6) = u 

popna = (0, dropn </>, .p, " p, 6) 
where (0, 4J, W, II p, 6) u 

stepa (0, </>, .p, ,', p, 6) 
where (b', r), p) = Step'((" r), p) 

r = last(q,) 
(0, 4>, ,p, "t I p, 6) :;:;: u 

Figure 7.4: Instructions for Function Call and Return 

fiz(unwintt;)(iT) = (0, </>',.p", p, 6). 

This is a simple example of fixpoint induction. There are two loops 
in the operational semantics. The outer one performs steps until a. Weak 
Head Normal Form is reached; the inner one performs the spine unwinding 
operation for each step. Both of these are defined using a fixpoint. In 
Lemma. 7.4, we are showing that the inner loop of the operational model of 
graph reduction is equivalent in hath implementations. 

Proof of Lemma 7.4 

Simple dual fixpoint induction. 



88 CHAPTER 7. DERIVING THE G-MACHINE 

ArgsGMIp (I  [nuU)) 
(I; [head]) 
(I ; [con']l 
(I; [+]) 
(I;H) 
(I ; [if]) 

~ 
~ 

~ 
~ 

~ 

~ 

I, 
1. 
2. 
2. 
2. 
3, 
(Arg8(pII])) 

Figure 7.5: The Arg8GM funclion 

eval. ; (~o fix(ununnd,))(o. [lJ.1/J, 1. P. </>: 6) 
where (0, I: 4>,1/1, "1, P, 6) ;; a 

re8torea ; (0, la8t</>: </I.1/J, 1. P, 6) 
where (0, <P, 1/1, i, P, 4>': 6):;;; (1 

Figure 7.6: The ~ and ~ Instructions 

o 

We will now establisb that a sequence of reduction steps in each sema.ntics 
preserves the equivalence condition S!!. Informally it is the outer loop of tbe 
interpreters that we are now showing to be equivalent. The proof is a fixpoint 
induction. 

Proofof Theorem 7.3 

Suppose Ihal <7 ; (h, r), p) and Ihal/asl </>; i. Then 

EvaIFromltJ-; Roolr(Eva/(h.l). p)) where
 

Roolr«1.1). p); «1. r). p)
 

But we may expand Eval 10 fixeR) where
 

D; ),K),a.Done(a) ~ a. K(Step(a)). 

This can now be proved by dual fixpoint induction. 

Base Case Rootr(l.a);:; 1. ~ 1. = loa 
Inductive Step Suppose that at ;; Root Lir and tha.t for all fJ witb 

6 ~ u: Roolr(ttut) ~ ita. 
We wish to demonstrate tha.t Root r (H It Crl) ~ untpind1 it a. 
We consider four ca.c;es for Done(ul): 



89 7.2. FAST UNWINDING 

True Then H k", = ",. If Spine (fsl("e)) = ¢ then 

fix(unwin~)i7= iT' = (a, ¢, Ij;, 1, p, b) 
by Lemma 7.4. Ther€fore 

unwind! k a = entry n (k 0 popn 0 step) a' 
But #¢ < n +1, so this becomes (I. Therefore Rootr6l ::: 

6 3!! rI, and because a and 0' differ only to the extent that 
the stack is unwound, we have the required result. 

False We first observe that the left hand side of the equation is 
Root r (k(Step'("e))). Next we discover that the right hand 
side is 

(k 0 popn 0 step) il
 
But this is k a" where
 

a" = popn 0 step (I
 

=	 papn 0 step(a, iJ : ¢,,p, 1, p, b) 
popn(o~W, ,', P, 0) 
~1>', 1j.J, ,', p, 0) 

And <I! = drop(n - 1) ¢ and (h', i), p) = Step' (",). 
Hence Rootr(Step'(6i )) 3'! step(I And frOID this we have 
result, by induction. - 

J In this case if = ~ and a= b' which implies Root r (N KG) =~ 

and unwind! k. a = l . 
.1 Trus condition occurs when 6' ::: .1 or when the inner loop 

of the operational semantics fails to terminate. In the first 
case & = .1 with the result that Root r (H X; 6') = .1. and 
unwind1 k& =.1. In the second case we may use Lemma 7.4 
to show that inner loop failure to terminate occurs in both 
semantics at the same time. 

o 

We are now able to demonstrate, as a simple corollary, that the eval 
instruction is equivalent to performing an EvalFrom l where l is the eJem~mt 

on top of the stack. 

Corollary 7.5 

[/" '" 17, with 17 = (a, i: ¢, 1/', 1, p, b), then 

EvalFromf.6 ~ €vol(&). 



90 CHAPTER 7. DERIVING THE G-MACHINE 

unwin4.l (] (1/ E Ide) __ entry n ,..1 (1' I (T' 

wh~re,..,' = unwind-z 0 popn 0 8tep 
n = ArgsGM(VlIde)p
v = rl 
u' = fix (unwina;) 0

(0, l: ,p, ,p, r, p, 6) = 0' 

unwind, (] (II E Ide) __ entryn,..,' a', U 
where ",' ;-;nwind3 0 popn 0 step 0 unpackn 

n = ArgsGM(vllde)p 
1I :;;;; "f l 
(7' ;:::. jix(unwiM1)u 
(0, l : ,p, ,p, r, p, 6) = 0' 

Figure 7.7: The unwind-z and tJnwind~ Instructions 

The proof is a simple re~a.rra.ngement of the equations defining restore 
and eval. 

Proof of Corollary 7.5 

By the definition of =1(u) as 

(re8'ore o fix(unwind,))(o, [t],,p, r, p, (,p: 6)), 

and the definition of restore. 

o 

Finally we may perform some rearrangement to the unwind instruction to 
elimina.te the explicit fixpoint, and to unpack the arguments to the function. 
Let us define unwind.. == fix (.Y!lY!illiid· Then we observe (by expanding 
the fixpoint) that unwin41 = unwindl unwinlb, which by substituting into 
the definition of unwindl allows us to deduce the alternative definition of 
unwind, given in Figure 7.7. 

Informally we are substituting a constant continuation for K in the def
initjon of J.Ullil.ind1 . This is important because we will find that K is indeed 
COnstant during execution of the program. This contrasts with the situation 
during the proof of Theorem 7.3, where we were successively constructing 
better approximations to unwind2 • 



91 7.3. CONTINUATIONS FROM COMBINATORS 

Finally, to produce an unwinth instruction that mimics the unwind in
struction described in [Peyton Jones 87\ page 3231. we must unpack the ar
guments from the vertibr<E. This operation is performed by the unpack 
instruction. It is allowed because step does not currently access its argu
ments from the sta.ck, but instead r~putes the locations of its arguments 
at €ach step. 

We now consider ways to adapt this definition into something that is 
nearer to that of the G-rnachine. 

7.3 Continuations From Combinators 

In this section we will perform a. series of transformations to the stack se
mantics we have derived in Section 7.2. We first demonstrate how the con
tinuations associated with each combinator in the program text may be rep
resented by the compositjon of a small number of simple instructions. This 
fixed set of instructions, which we represent as combinators, will correspond 
to the instruction set of the abstract machine we will derive. 

We wish to eliminate the use of Step' from our stack semantics. Our 
approath will be to show that in every case the continuation corresponding 
to Step' can be constructed by composing combinators from the abstract 
machines architecture. These instructions will work directly with the G
machine state, rather than invoking Step'. 

To do this we define a new unwind instruction called unwind4 • This 
appears in Figure 7.8. This instruction generates the sequence 

update no"," 

in plate of step. To do this a compilation of the combina.tor r takes place 
for user defined functions. This compilation is defined in Figure 7.9. The 
auxiliary functions that are used are referred to as instructions and they are 
defined in Figure 7.10. We must show that the two continuations are the 
same. This is done in Theorem 7.6. 

Theorem 7.6 

For aU (J' in S: 

unwind? (J' = unwind4 (7. 



92 CHAPTER 7. DERIVING THE G-MACHINE 

unwind4 a _ (v E Ide) _ entry n ti' 0", cr' 
where K,' = unwind4 0 popn 0 updaten 0".,// 0 unpackn 

n = ArgsGMlp -- -

v = ji 
v I Ide 

a' = fix (IJn1Vind~J a 
(0, e: 4>, .p, 1, p, <5) = 0' 

t\," = I = [null] _ null 0 eval 0 push 0, 
I = [head] ~ hd 0 eval 0 pushO, 

I = [cons] cons 0 push~push 1, 

1= [H add 0 evalo push 2 
o evalo pushO. 

1= [=1 ~ eq 0 eval 0 push-2
- 0 evalo pushO , 

[ = [if] (if(push I )(push 2))~ 

- --0 eva' 0 pushO, 
C(p [) Parid 0 

Figure 7.8: The unwindd Instruction 

We first consider the case of the built~in functions, because for each of 
them ;;,/1 iii a constant. We can state the required equivalence formally as 
Theorem 7.7. The built-in function instructions are defined in Figure 7.11. 

Theorem 7.7 

[f I = [null] then step = update 1 0 null 0 eva/o push 0 
[f 1= [headl then = update 1 0 hd 0 evalo push 0~ 
If! = [cons] then step = update2 0 ~ 0 push 1 0 push 1 
If! = [+] then step = update 2 0 add 0 evalo push 2 

o~o push 0 
If[=[=] then step = update 2 0 £!I 0 evalo push2 

o eval 0 push 0 
If I = [if] then = update 3 0 (jJ(pushl) (push2))~ 

o eval 0 pushO 

Before we can prove this theorem, we require the following results for ar
gument evaluation. They are both established by rearranging the equations 
defining EvalArg, and applying the result of Corollary 7.5. 



93 7.3. CONTINUATIONS FROM COMBINATORS 

C:Comb_B_Z-+K 
C[.J.I.rJI1 n = C [rJ(I1 al {I ~ n})(n + 1) 
C[.J.I.E]l1n = I:[EJ(l1al {I ~ n}) 

E:Exp_B_K 
qI111 = (I E dom(l1)) ~ push (11 [I)),

PuShvalue ([I) in N) 
qB111 = pushvalue (8 [BJin N) 
qEa(E1)J11 = mkapo (QEaI(.J.x.x +1 o il)) 0 (I:(E1Iil) 

Figure 7.9: Stack Semantic Functions C and E 

pushooluevl7 = (0, l : <P, ¢, 1 al {l ~ v}, p, 6) 
wne« l = New(7) 

(0, <P, ¢, 1, p, 6) = " 

pushnu = (0, (<p! n) : <P, ¢, 1, p, 6) 
where (0,4>, ,pI 1', P, 6) :::::: (1 

mkapu = pushvalue((lo, l,) in N)(o, <P, ¢, 1, P, 6) 
where (0,1.0: /1: 4>,,p, "'f, P, tS) = a 

Figure 7.10: Instructions to Compile User Defined Combinators 

Lemma 7.8 

IfuO!U'=(0,<P,¢,1,P,6), andl;=<p!(i-I) then
 

EvalAryl; 6- O! (eval 0 push (i - 1))<7'.
 

Proof of Lemma 7.8 

This is demonstrated by expanding the push instruction and then ap
plying Corollary 7.5. - 

o 

Lemma 7,9 



94 CHAPTER 7. DERIVING THE G-MACHINE 

nullu = pushvalUe(v  nil) (0, <P, tP, 7, p,h) 
where v = ,(Elidq i) 

(0, i, <p,,p,,, p, 6) =" 

hd" V E C ~ (0, lsi (v 1 C), <p,,p, " p, 6),1 
where v = ,(Elidq i) -

(0, i , <P, ,p, " p, 6) = " 

~(J pu.shvalue«io, itl in N)(o, <P, ,p, "p, 6) 
where (0, to 'i, ,<p,,p,,, p, 6) = " 

addu (vo E Z A v, E Z) ~ pu.shvaluev(a, <p,,p,,, p, 6),J, 
where v = (.... 1 Z +VI I Z) in N 

v, = ,(Elidqi;) 
(o,i, ,io '<p,,p,,,p,6)=,, 

eq" = (&10 E Z 1\ Vl E Z) _ pushvalue II (0, <P, tPl " 
where v = (.... 1 Z-vil Z)inN 

v, = ,(Elidqi,) 
(0, i, : io ' <p,,p,,, p, 6) =" 

p, 0), ~ 

!lKTKFU liE T -- (&I I T ----4 K,T, K.F) (0, <P, tPl '1, p, 6).1 
where v = ,(Elidq i) -

(oJ, <p, ,p", p, 6) = " 

Figure 7.11: Instructions for Built-in Functions 

If u '" II = (0, <p, ,p, "p, 6), and i, = <p! (i - 1) then 

(EvalAryi, 0 EvalAry i,)& '" (~o push2 0 ~ 0 push 1)iT' 

Proof of Lemma 7.9 

This is demonstra.ted by expanding the push ifi6tructions a.nd then 
applying Corollary 7.5 twice. 

o 

We are now able to establish the result of Theorem 7.7. 



95 7.3. CONTINUATIONS FROM COMBINATORS 

Proof ofTheorem 7.7 

By cases of the built~in function. 

[null] By the definition of Step' as NullStep 0 EvalAryfl, we ma.y use 
Lemma 7.8 to deduce that 

0' ::;:: EvalArg i 1 6 S!!' u" ::; (eval 0 push 0) <I. 

But Nul/Step,y '" (update! 0 nulO i1". 

[head] This case is proved in a similax way to that of [null]' 

[cons] This follows directly from the definition of cons and ConsStep. 

[+1 By the definition of Step' as PlusStep 0 EvalArgf'l 0 EvalArg et, 
we may use Lemma 7,9 to deduce that 

&' = EvalArgf2 0 EvalAryllO' ~ if", 

where 0" ::;: (eval 0 push 20 evolo push 0) (r', But 

PlusStep tl ~ (update 2 0 !lilJl) u". 
IT=] This case is proved in a similac way to that of [+).
 

[iij This case is proved in a similar way to that of [null).
 

o 

Finally we wish to show that an analogous transforma.tion to that of the 
previou~ step may be performed for user defined functions. Before we do this 
we define a predicate b whkh allows us to compare the local bindings for 
variables from the two implementations. The original operational semantics 
bound local variables to the application nodes where the relevant argument 
was. The G-machine binding /J binds an identifier to a stack offset. For a 
given J and ¢ we may therefore express the equivalence of the binding.s u.sing 
bh'40)(~)' which is defined in Definition 7.10. 

Definition 7.10 

For any I and ¢ define 

bb, oj (,0) ... \lLA ry b ,,0 II]) = <I> ! (13 [II) 



96 CHAPTER 7. DERIVING THE G·MACHINE 

We now relate the combinator compilations, Cand C, in the two imple
mentations, using Theorem 7.11. 

Theorem 7.11 

Suppose that (0, l : cP, tP, I, p, b) = jiz(1.lnwincld (1. Assume that "'I £ E 
Ide with I =,llide in dom (p) and lelf =p (I). Let n = ArgsGM I p 
and a' = (Q, 4J', tP, 1', p, b) = unpackn(o, 4>,.,p. /, p, b). 

Then, for all r in Comb, all /3 in B with h(o, /oj (/3) and all m with 
OS m < n: 

C[r]~(dropm.p)(" i) = (,', l') 

if, and only if
 

C[r)/Jmo-' = (0, 1': .p',,p, ,', p, <5).
 

The proof obviously involves a structural induction. One of the com
ponents of the syntax of Comb is an expression in E, and we will need a 
subsidiary result for this syntactic object as well. This is given as Theo
rem 7.12. The theorem states that for congruent states, with equivalent 
bindings /3, the expression compilations t and t transform the initial. states 
to new congruent states. 

Theorem 7.12 

For any II = (o,.p,,p,,, p, <5), E in Exp, and fj in B with hb.') (/3): 

t[E]~(-r, i) = (,', 1')
 

I}, and only if
 

t[E]tlo-' = (0, l':.p,,p, ,', p, <5).
 

This result also requires a structural induction to complete the proof. 

Proof of Theorem 7.12 

By a structural induction on E. 



97 7.3. CONTINUATIONS FROM COMBINATORS 

[I] There are two cases to consider: either I is a local variable or it is 
a global function. We consider them separately. 

1. If I is a local variable it occurs in dom (/3) and hence also in 
dom (tl). We observe that [[I] ~h, i) i' h, Aryh, ilII]». 
If we now consider t, we observe that: 

til]P11' = push (P II]) 11', 

which i, (0, 4>! P(IJ: 4>, ,p, 1, p, 5). But 

Aryh, P(1]) = 4>! P!I]. 
2.	 If I i, not in dom (P), and hence also not in dom (P), then 

[ [I] Ph, i) i, h Ell {i' ~ II] in N}, i'), where i' = New (1). 
Also t [f] PiY =push"alue «(r) in N) II, which i, 

(0, i': 4>, ,p, 1 Ell {l' ~ [I] in N}, p, 5). 

IHI	 We ob,erve that [[B]Ph, i) is hEll {i' ~ (B[B]) in N}, i'), 
where i' = New (1). Also t [B] P11' = push"alue (B (B] in N) II 
which is 

(0, i' : 4>, ,p, 1 Ell {i' ~ (B [B]) in N}, p, 5). 

lEo (Ed] We first ob,erve that [[Eo (E, )] Ph" i,) is 

h. Ell {i' ~ (i" i,) in N}, l'), 

where (1., ii) = [!Eol Ph.+" iiH)' for i = 0,1 and i' = 
Newh.)·
 
AI,o flEo (EI)]P = mkap 0 (t lEo] (>...x + loP) 0 (£[E,]Pl.
 
Assume inductively that the theorem hold' for (EoD and [E,J. In
 
particular, therefore, 

[[E, ] Ph" i,) = (1" i , ) 

and 

t [E,]P(o, 4>, ,p, 1', p, 5) = (0, i , : 4>, ,p, 1" P, 5). 

We now notice that b(o.</)(P) ¢> b(o.(l.</»(P, (Ax.x + loP», and 
hence we may use the inductive hypothesis to conclude that 

t (E.] Ph" id = h., in). 

and 

t [E.IP (0, i, : 4>, ,p, 1" p, 5) = (0, i o : i, : ¢>, ,p, 10, P, 5). 



98 CHAPTER 7. DERIVING THE G-MACHINE 

But 
&[£.o(E,)1 (J b" i,) = bo8J {i_ (io, t,) in N}, i) wbere 
i = Newbo). And 
t[£.o(Edll1(o, </>,.p, i', p, 6) = rnkap(o, to: i, : <I>,,p, io, p, 0) 
which is -

(0, t: </>,.p, io 8J {i_ (io, i,) in N}, p, 6), 

where i = Newbo). 

o 

We may now continue to prove tha.t the combinator compila.tion functions 
Ca.nd Care equivalent. 

Proof of Theorem 7.11 

A structural induction on f. 

[AI.f) Ob.erve that 

C[AI.r)(J (dropm</» =Clf)(J' (drop(rn + I) <I>} 

where r3' = r3 8J {I_ </>! m}. However 

C[A!.f)11 m u' =CIf) 11' (rn + 1k' 
where 11' = 118J {I - m}. But bh,ol «(J'), a.nd 50 by inductive 
hypothesis we conclude the required result. 

[ALE) Ob.erve that 

C[ALE) r3 (drop m </» =C[E) r3' (drop (m + I) <1» 

where (J' = r3 8J {I _ </> ! m}. However 

ClAI.E) I1mo' = C [E) 11' (rn +1)0' 

where 11' = 118J {I - m}. But bh,o) «(J'), so we conclude that the 
base case of our induction holds l by appealing to Theorem 7.12. 

o 

This completes the proof that the user defined functions are compiled 
in the same way. Together with the result of Theorem 7.7, we are able to 
demonstrate that Theorem 7.6 holds. 



99 7.3. CONTINUATIONS FROM COMBINATORS 

unwind. _ (v E Ide) ~ p(v I Ide) a', a' 
where v == 7t 

tI = fix(unwina;)a 
(0, t : ,p, .p, 7, p, 6) = a' 

llii n = unwind 0 pop n 0 update n 

Figure 7.12: The unwind Instruction 

V:Defs_U 
V [60 and 6,D V [60DEll V [6 11 
V[I =rD {I _ enl'1ln~} 

where n = Args[r) 
~ = gjjnoClrlOO 

Figure 7.13: The Stack Semantic Function V 

~, Inull) ent'1l1(exitl 0 nullo evalo pushO)
 
~ru' Ihd] = entryl(.uill oMomo pushO)
 
~, Icon'l enl'1l2(£m2 0 = 0 push I 0 push I)
 
~.Iaddl ent'1l2(erit2 0 add 0 evalo push 2 0 evalo push 0)
 
~ru.leq] = ent'1l2(£m2 0 go ~o push2 o~o push 0)
 
~ru.lil] ent'1l3(ent 3 0 !l(push I )(push 2) 0 evalo push 0)
 

Figure 7.14: The Initial Environment Amt 

Proof of Theorem 7.6 

The proof is effectively a proof by fixpoint induction, although as there 
are no longer explicit fixpoints in the definitions of either unwind, or 
~, we will use an equational reasoning argument to esta.blish the 
required result. 

Assume that u' = fix(unwirufi)u = (0, l: ¢,,p, I, p, 6), and let v = 
1t. If II !fIde then trivially unwind. = unwind._ Alternatively assume 
that v E Ide, and that ArgsGM(v Ilde)p = n. If #,p < n then again 
the result is trivial. 

Assume therefore that # ¢ ~ n. Then u" = unpack" (1'. We must now 
show that 



100	 CHAPTER 7. DERIVING THE G·MACHINE 

stepa" = updaten 0 K". 

1.	 If the identifier represents a. buHt-in function, then from Theo
rem 7.7, we know tha.t 

step q" = updaten 0 ",". 

2.	 Otherwise the identifier must be a user defined function, i.e. "./1 = 
C(p(v Ilde)),ilaridO. 

But~" = (0, 4/', 1/J, ,', p, hL where r = last¢", and 

«(?', r), p) = Step'«(?, r), pl. 

By Lemma. 7.4, we know tha.t l.: ¢;;: Spineb, r), so expanding 
Step' further, we have 

«,', r), p) = «(?" III {(4)! (n - 1)) ~ l'), r), p), 

where 

(1', l') = C(p(v I lde)),ilarid4> (?, i). 

But this is merely a special case of Theorem 7.11. 

o 

The major a.dvance that the unwind4 instruction has over unwintb is that 
we may change the domain of the environment, U, from 

[Ide ~ Comb] 

to [Ide _ K]. When we do this we wHl need to change the definition of 
unwinding again, so tha.t it looks up a. continuation in the environment. We 
must also ensure tha.t the relevant continuations are entered into the envi
ronment. Figure 7.12 defines the final version of the unwinding instruction. 
In Figure 7.13 a. compilation of the programmers environment 6 is defined. 
The initial environment is Pinit which provides continuations for the built in 
functions. 

This concludes the derivation of a simple G-machine frOID our original 
opera.tional semantics. We make one final modifica.tion to the language in 
the next section, where a. printer mechanism is added, before we consider 
some of the optimiza.tions which make the G-machine efficient. 



101 7.4. THE G·MACHINE PRINTER MECHANISM 

print(,)	 (e_niIVeET) !I, 
(n Z) Ie I Z), 
(nC) - prints(e IC), ~ 

prints(x) = print(eo) * print(e,) 
where (eo, e,) = X I (E x E) 

Figure 7.15: A Printer for the Standard Semantics 

print(o,l : <p, .p, -y, p, 6) = 
- Iv E Z) _ (0 * (v I Z), <p, ,p, -y, p, 6), 

(v E T V v = nil) _ (0, <p,.p, -y, p, 6), 
(v E C) _ ~(o, l': l": <p,,p, -y, p, 6)),:b 

where v = 7£ 
K. = print 0 eval 0 print 0 m 
(i', l") = (v IC) -

Figure 7.16: The G-machine print instruction 

7.4 The G-machine Printer MechanisIll 

To complete the description of tbe G-ma.chine we must consider how the 
addition of a printer mechanism affects tbe semantic definitions of the lan
guage. If the result of the program is a basic value we are able to show tha.t 
the denotational semantics and the G-machine produce the same result. But 
what happens if we produce a structured data. object, such as a list? The 
denotational semantics is defined to produce the list, but the G·machine 
wHl only reduce the initial graph to weak head normal form. Thus we must 
recursively reduce the elements of the list to weak head normal form. We 
must also consider these results in the light of the full abstraction problem 
that was discussed in Chapter 3. 

In perfonning the recursive printing operation, we must consider the 
possibility that an element of the list is 1.. With the G-machine the recursive 
reduction to WHNF stops, and thus no more reduction occurs. Thatis, when 
printing the list I : .1 : ¢, the G-machine will print £ and then halt. This 
occurs even if the remainder of the list elements in ¢ are all non-1.. 

We will therefore have to modify the denotational semantics to ensure 
that the example above is gjven the value £: .1. We do this by defining print 



102 CHAPTER 7. DERIVING THE G-MACHINE 

in Figure 7.15. 
The corresponding G·macmne instruction is defined in Figure 7.16. This 

is a tail-recursive implementation of the print function operating on the G
machine state - a result that we demonstrate in Theorem 7.14 To make the 
proof easier we shall use the G-mou:hine definition in which the environment 
is a function from identifiers to the syntactic representation of combinators. 
This allows us to easily form the derepresentation function. In the modified 
G-machlne with continuations in the environment, we would need an inverse 
function from K to Comb. This certa.lnly exists, but would be difficult to 
define. 

Definition 7.13 

For all t in E, with t E Z, t ET or t E Cj we say that 

t ~ t:T 

if, and only if, 

t ;;! E« 7, last (last (4) : om, p) 

and 

e(t, Eval«7, last (last (4): om,p)). 

We now state that the printer mechanisms are congruent. 

Theorem 7.14 

For all t in 1:\ Z and C; with u in Sand t ~ u; 

print (t) = 1st ((print 0 evaD 0-). 

The proof is a structural induction on the structure of the output object. 

Proof of Theorem 7.14 

We first observe tha.t t 3!! uimplies t 3!! eval u, by the congruence result 
of Part 1. As a consequence of this we need only consider proper values 
for either semantics result. 



7.5. RELATED WORK	 103 

(t = .1 V t = nilv t ETV t E Z) In these cases the values of i rare 
respectively .1; nilin Nj tiT and t I Z. And hence the printers 
produce the same value, i.e . .1; 0; 0 and [t IZ). 

(n C) Suppose that (ro, rIl ~,r I C, and 

(to, t 1 ) ~ X I (E X E). 
Assume inductively that the theorem holds for the respective sub
components, i.e. 

print (t;) ~ fst «print 0 evaD ire,), 

where or, = (0, Tj : ¢, 1/J, 7, p, 0). Then 

print (t) ~ print (to) -It print (tIl· 

But 

fst «print 0 evaD ir) ~	 fst «(print 0 evaD ire.) * 
fst ((print 0 evaO ire,). 

o 

We are thus able to show that the printer mechanism, which acts as a 
demand driver for a functional program, is implemented in a congruent way 
by both the G-machine and the denotational semantics. This concludes our 
survey of the basic operations of a G-ma.chine. 

7.5 Related Work 

The G-machine is described in a series of papers [Johnsson 83, Johnsson 84] 
and Augustsson and Johnssons' theses [Augu5tsson 87, Johnsson 87] provide 
the latest, definitive work. Similar material is also presented by Peyton Jones 
in [1987]. A proof of the material in Sections 7.2 and 7.3 occnrs in [Lester 85}. 

RepresenHng the abstract machine instruction set by combinators is sug
gested by Wand in [1982]. He also shows how these combinators may be 
derived from the continuation semantics. A practical use of this technique 
occurs in [Clinger 84). 

7.6 Conclusion 

In this chapter we have derived a. simple G-machine from the opera.tional 
semantics. This has been achieved by representing the operational. semantics 



104 CHAPTER 7. DERIVING THE G-MACHINE 

by sequences of combinators, each of which represents an abstract machine 
instruction. We recall that since we have established the congruence of 
Chapter 4, we are able to conclude that this machine correctly implements 
the language, as specified by the denotational semantics. 

In the final chapter we show that a selection of the code improvements, 
proposed by Peyton Jones [1987], Jobnsson [1983] and AUgustsBon [1987] are 
correct. 



Chapter 8 

Store-level Optimizations 

In this chapter we establish a stronger form of state equivalence than that 
of the denotational equivalence given by the derepresentation function E. 
Under E we are able to equivalence the functions representing quicksort 
and insertion sort. This is hecause both functions return a sorted list, and 
hence are functionally or denotationally equivalent. We would like to be 
able to talk about the operational equivalence of the evaluation of functions. 
The intention is that two graphs should satisfy the equ.iva.lence, if they are 
essentially the same. To do this we formally introduce the notion of graph 
isomorphism. 

8.1 Graph, State and Continuation Isomorphism 

Informally, two graphs are isomorphic if they have the same structure. The 
graphs with which we deal W€r€ defined in Chapter 2, and we recall that 
they were finite, labeled, rooted digraphs. Harary gives a general d€finition 
of graph isomorphism in [Harary 69, Page 10], which is r€pea.t€d h€r€. In
formally two graphs are isomorphic if they possess th€ same structur€. This 
is just the property we r€quire wh€n we wish to €stablish the operational 
equivalence of two graphs. 

Definition 8.1 

Two graphs G and H are isomorphic (writt~m G ~ H or 
sometimes G = H) if there exists a one to one correspon
dence between th€ir point sets which pr€serves a.djacency. 

105 



106	 CHAPTER 8. STORE-LEVEL OPTIMIZATIONS 

[... ] It goes without saying that isomorphism is an equiva
lence relation on graphs. 

Two rooted graphs G and H are isomorphic, if in a.d.dition, the one to 
one correspondence maps the root of G to the root of H. 

To serve as a model of operational equivalence we would like to include 
further graphs in the equivalence classes induced by the isomorphism. For 
example we would like to ignore any indirection nodes that may exist in the 
graph, and we are not interested when the graphs 10 and 11 differ only at 
unreachable nodes. For this reason we will ignore both these features. We 
first define a. function to remove indjrection nodes from a. graph. This is 
achieved by generating a. map from node labels to node labels. Notice that 
essential indirection nodes are not elided. 

Definition 8.2 

elide = elide' 0 
where 

elide' IS11 = (11 E I) _ 
«(7 II I) E Is) 

last Is, 
elide'«711 I): Ish (71 I Ijj, 

I. 

From a given set of root nodes, only part of the graph may be accessible. 
We define that set mark ("'f, R) to be the set of accessible nodes in "'f from 
R. 

Definition 8.3 

For a given set of root nodes R in L and graph 'Y in G, the set 
mark(7, R), is defined as follows: 

1. If I is a label in R, then I is in the set mark("'f, R). 

2. If I is in mark(7, R), then let v = 11. 

(a)	 If v E A, then I' and ttl are in mark(-r, R), where (L', l") ;::: 
(v I A). 

(b)	 1£ v E I, then I is in mark(7, Rj, where I =(v I I). 



8.1. GRAPH, STATE AND CONTINUATION ISOMORPHISM 107 

(c)	 If 1I E C, then i' and t" are in mark(-r, R), where (If, r') = 
(v I C). 

3. No other labels are in the set mark(,! R). 

Using the definition of mark (" R), we may assign ...L to all non-reachable 
nodes of the graph. This is performed by the function garbage. 

Definition 8.4 

garbage R, ;::: 
Ai.(i E mark(;, R)-~ 

( (;iE A) ~ ( elidq(fst(iil A», 
elid'i(snd(iil A))), 

(ii_C) ~( elid'i(j,t(iil C», 
elid'i(snd(;i I C»), 
elid'ii), .L). 

We are now able to define Our extended form of gra.ph-isomorphism, using 
the function garbage and Haxary's definition. 

Definition 8.5 

Let " = garbage R; Ii- Then we say that two graphs, 10 and 111 
are isomorphic, modulo the root sets, 1lQ and RII if and only jf i~ is 
isomorph.k to i'~ under Harary's definition of isomorphism [1969]. We 
denote this relation by 

10 mod ilQ ~ 11 mod R I · 

We are now a.ble to extend this definition of graph-isomorphism, so that 
it provides a way to compare states and continua.tions. InformallY, two states 
are isomorphic if we may relabel the nodes in each garbage collected graph 
to obta.i.n the other. 

Definition 8.6 

Let G, = (0, <Pi, 1/J. "'(i. P. 6il and let Ri be the labels contained in <pj: 
6j • The states Go and al are then state isomorphic, if and only if 
10 mod Ro ~ "'(I mod R1 and, if f : L --+ L relabels nodes in "'(0 with 
the equivalent node la.bels in "'(1, tben 



108 CHAPTER 8. STORE-LEVEL OPTIMIZATIONS 

map (map f) (</>0 : 60 ) = (,p, : 6, ), 

We write this as 

D'O~O'I' 

Similarly, we can extend state isomorphism so tha.t we can compare two 
continua.tions. In this case they are continuation-isomorphic if they produce 
state-isomorphic results wben applied to any sta.te. 

Definition 8.7 

Two continuations,lC and ,,' in K, are continuation isomorphic, if and 
only, if (or all u in S 

IC U S!! ,,' u. 

We are unable to use equality for opera.tional equivalence as this is too 
strong. In Chapter 6 we were a.ble to use equality to establish the oper
a.tional equivalence, beca.use we alwa.ys constructed the same graph in the 
end. When we move on to consider wa.ys to a.void constructing graphs, we 
will find that the function New ma.y not return the same label for nodes we 
wish to equivalence. 

8.2 Reducing the Amount of Graph Constructed 

One of the main observations that Johnsson made in [1983), is that we can 
transform the code sequences so that less graph is constructed. Consider the 
conditional expression [ifEo E1 E2], and suppose we wish to evaluate this. 
Depending on the result of the eva.1uation oC [f<J] we need only construct 
graph to represent one of [E1D or (E:I). Furthermore, this graph will also be 
immediately eva.1uated, leading to further possible savings. 

To assist in the exposition, we will borrow Johnsson's £-scheme and 1l
scheme notation. These are defined, in terms of £ from Chapter 7, which 
correspond to Johusson's C-scheme. We will therefore refer to it as £c in 
this chapter. 

Definition 8.8 



8.2. REDUCING THE AMOUNT OF GRAPH CONSTRUCTED 109 

callI no=: 

slideno = 

(eval 0 slide n 0 It')u 
where p[I) = entryn(exit n 0 It' 0 unpackn) 

(0, i: ¢, t/J,;, p, 6) =" --

(0, i: dropn¢, t/J,;, p, 6) 
where (0, l : ¢, tPl [. P, 6) = u 

Figure 8.1: The call and slide Instructions 

[RIE] 11 n = exitn 0 [[E]11 
[EiE!11 = evalo[/EII1 
[c!EII1 = [!EII1 

To a.bbreviate some of the notation we define {1+n. This allows us to 
adjust stack offsets in a simple manner. 

Definition 8.9 

Define 

l1+n = (~z.z + n) 0 11. 

The first theorem that we will prove is that we need not construct the 
spine wtLen we reduce a CUDctjon I, of arity n, when it is applied to n argu
ments. To specify the problem exactly, we introduce two new instructions: 
call and slide in Figure 8.1. The callI n instruction applies the function I to 
n arguments on top of the stack, leaving the result on the top of the stack. 
The sliden instruction squeezes out n arguments from the stack and leaves 
the top of the stack unchanged. 

Theorem 8.10 

For a function I, of arily n, 

[ElIEl ... En]I19<£JIlllno[c[El]l1+(n-l) 0 ••• o [C!En]I1. 

This is proved by substituting for the instructions in the alternative code 
sequences. 



110 CHAPTER 8. STORE-LEVEL OPTIMIZATIONS 

Proof of Theorem 8.10 

w~ first observe fE[I E1 ••• En] (j 1s defined as 

£JlJli 0 mkap 0 •.. 0 mkap 0 pushvalue (1 in N) 
o fc[E,]Ii+ln I) 0 ••• 0 fc[Enlli. 

Therefore, let 

0"1	 = (0, i 1 : .•• : in: 4>, t/J, II P, 0) 
= (fc[E,]Ii+('-I) 0 fdE.IIi) <T.••• 0 

We are therefore required to show that 

evalo mkap 0 ••• 0 mkap 0 pushvalue (I in N) = calLI n. 

But 

62 = (mkap 0 ••• 0 mkap 0 pushvalue (I in N)) Ut 

(0, l~ : ¢, t/J, / $ / spine. P, 6), 

where / spine is 

{l~ 1-+ (1~_1' in) in N, "', l~ t-+ (l~, ld in N, t:J 1--+ I in N}. 

Now eval6"2 is 

(restore 0 exitno/'t')(o, [ill ... ,In,£'n],,p, fEB, 8pine,P, ¢:6), 

so consider the evaluation of callI n 0"1. We can expand t his to 

(~o sliden 0 ~') 0'"1. 

We notice that the same graph labels occupy the top n spaces of the 
stack in each case. Also the graphs 12 and 12 differ only in the assign
ment of lh .. .l~ labels in 'h. 
Thus 

63 = ,..,' <12 = (0, [l, It. ... , In, l~], t/J, '1'3, p, q,: b), 



8.2. REDUCING THE AMOUNT OF GRAPH CONSTRUCTED III 

where '1'3 = 1'3 Ell '7 9pine. Also 

(,3 = tt' U2 = (0. l : II : .. , : in : (n : 4J, ,p, 13, p, 6). 

We now observe tha.t we ma.y expa.nd exit n to unwind 0 ]XJP n 0 

update n, so that 

&,	 = (popn 0 updaten) &3 
= (O,[l~l,,p,'j, Ell {l~ >-+ l in N}, p, 4>: 0), 

a.nd this is 

eval(o, l~ : 4>, ,p, 13 Ell {l~ >-+ lin N}, p, 0). 

Notice tha.t 

slide n (0, l : II : ... : in : l~ : 4J, ,p, 13, P, 6) 
= (0, l: 4>, ,p, 'YJ, p, 0). 

But 

(0, l~ : 4>, ,p, 13 Ell {l~ >-+ lin N}, p, 0) £<! (0, l: 4>, T/J, 'YJ, p, 0). 

o 

We IDay now demonstrate further improvements in the particular case of 
the built-in functions. These are sta.ted in Theorem 8.11. 

Theorem 8.11 

For all E, Eo, E1 and E2 in E:ocp and all (3 in B: 

cEinull EI,8 ~ nullo cElEI,8 
cE[hdEI,8 ~ ~oMocElEI,8 

£ElconsEoE, I,8 ~ cons 0 £0[£01,8+1 0 £0[£:.]/1 
£Eladd Eo E, I/1 S! .«ill/o £El£o),8+' 0 £ElE,],8 
£EleqEo E,],8 ~ eqo £ElEoI,8+' 0 £E!E, ],8 
£Elif£o E, E21,8 S; Y(cE~E,I,8)(CE[E,],8) 0 £E[£oI,8 



112 CHAPTER 8. STORE-LEVEL OPTIMIZATIONS 

We must first prove Lemma. 8.12. This states that the body of a. combi
na.tor may be reduced before updating. This is analogous to the result we 
proved for Theorem 6.5, in Chapter 6. 

Lemma8.1Z 

For all E in Exp, all {3 in B, and all n > 0 

fR[E) Ii n '" exitn 0 fdE) Ii. 

This follows from Theorem 6.5. 

Proof of Lemma 8.12 

Corollary from Chapter 6, on alterna.tive sharing mechanisms. 

Q 

To prove the final isomorphism, we will also require Lemma. 8.13. 

Lemma 8.13 

For all KT and "'F, and completely strict K in K, 

"0 1"T"F '" 1(" 0 "T)(" 0 "Fl· 

Notice that we need the complete strictness of the continua.tion It. This 
condition is guaranteed because all of the instructions we have defined are 
completely stricti thus the composition of an a.rbitrary number of instruc
tions is also completely strict. 

Proof of Lemma 8.13 

Cases on the state: 

(J = .1 or u = ~ In these cases we observe that jfKT KF U' = u, for all 
KT and KF. We also note that, for aJ.l completely strict Kj K (J = (J. 

Thus both alternatives are equivalent to the identity functjon on 
these improper states. 



8.2. REDUCING THE AMOUNT OF GRAPH CONSTRUCTED 113 

(J = (0, i: q" ,p, 1'. p, 6) We now assume that we ha.ve a. proper sta.te. 
There axe two cases to consider, depending on the truth value on 
top of the stack. Notice that if produces an error if this is not 
the case, and we may appeal tathe result of the previous case to 
demonstrate the equivalence. 

/ i I T holds In this case ifrtT K.F (J = ""T 0 ' , where iT ;:::. pop 1 (J. 

We are thus able to sh~w that 

K.	 0 ijK.TftF 0 (J = (It 0 ItT)ql 
- ; il(~ 0 ~T)(~ 0 ~F) (T. 

Il I T does not hold In a similar way jJK.TK.F(J is now ""FO', 

and so 

K.	 0 ifKTKF 0 (J = (It 0 ItF)<I 
- il(~O~T)(~o~F)(T. 

o 

We may now prove Theorem 8.11 by ca.ses. 

Proof of Theorem 8.11 

These theorems are proved using Theorem 8.10, and by observing that 
we may rearrange stack operations, provided the eValuation of graphs 
occurs in the same order. 

[null] In this case ,.;' is 

null 0 eval 0 push O. 

We therefore observe tha.t call[null~ 1 is evalo slide 1 0 ",'. Thus 

callinullll 0 [clE!iJ	 ; evalo nail 0 eval 0 [cIE!iJ 
; nail 0 [EIE!iJ. 

Notice that the second ~ is redundant because the mill. instruc
tion lea.ves its result in WHNF. 

[hd] In this case ,,;' is 

hd 0 evalo pushO. 

We therefore observe that calJ[hd] 1 is evalo slide 10 ",'. Thus 

call IhdJ! 0 [clEI iJ	 ; evalo hd 0 evalo [alE! iJ 
; fl1l!I 0 M 0 [EIEI.i1· 



114 CHAPTER 8. STORE-LEVEL OPTIMIZATIONS 

(cons) In this case K' is 

£Q!!! 0 push 1 0 push 1. 

We therefore observe that call [cons) 2 is evalo slide 2 0 K'. Thus 

call Icons) 20""00 K] = eval O..!:Q!!:! 0 ~ 0 1"01 

= Canso ""0 0 1';1, 

where K, ;:: £clEi],B+(l-i). Notice that the e.val instruction is 
redundant because the~ instruction leaves its result in WHNF. 

ladd) In thi. cas. ,,' is 

add 0 eval 0 push 2 0 eoolo push 0 

We therefore observe that callRadd)2 is evalo slide2 0 K' . Thus 

£lIllladd) 20 Ec[E<>] iJ+' 0 EolE,) iJ 
;:: evalo slide! 0 add 0 evalo push2 0 eoolo 

EclE<»iJ+I 0 t:c1E,DiJ 
~ evalo add 0 evalo EcDE,D iJ+I 0 evalo t:cDE<>D iJ. 

But the eval instruction immediately following the add instruction 
is redundant. 

leq) In thi. case ,,' ,. 

eqo ~o push 2 o~o puskO. 

The proof is therefore identical to that of i!!l!l.
 
(if) In this case K,' is
 

!!(push 1)(push 2) 0 eval 0 pushO. 

We therefore observe that cal/(if) 3 is evalo slide 3 a ",'. Thus 

call1if]3 0 EclE<>]iJ+2 Ec[E1DiJ+I 0 t:cDE,)iJ0 

= ~o slide2 0 !!(puS~1)(push2) 0 

EEIE<>DiJ+ Ec[E,DiJ+I 0 t:cDE,DiJ0 

~ ~ 0 !!(EcDE,)iJ) (Ec[E,)iJ) 0 EE/E<>D {3. 

But the eval instruction, being completely strict, may be dis
tributed through the .!linstruction by Theorem 8.13i this gives 

!!(EdE,DiJ) (EEIE,)iJ) 0 EdE<>DiJ· 

o 



115 8.3. A STACK FOR BASIC VALUES 

Finally, we can demonstrate that tail recursion distributes through COD

ditional expressions. This is done in Corollary 8.14. 

Corollary 8.14 

For all E, EOJ E] and E1 in Exp, all f3 in B and all n > 0: 

I:R[ifEo E, E,I iJ n ;,. .!!( I:R[E, I iJ n)( I:R[E,I iJ n) 0 l:E[EoI iJ· 

This is a straightforward application of Theorem 8.11 and Lemmas 8.12 
and 8.13. 

Prool of Corollary 8.14 

By Theorem 8.12,
 

I:R[ifEo E, E,liJ n;" ezitn 0 l:s[ifEo E, E,liJ.
 

But, by Theorem 8.11, 

I:ElifEo E, E,liJ;" .!!(I:EIE,liJ)(I:s[E,liJ) oI:E[Eo]iJ. 

Now I by Theorem 8.13, we have 

I:RlifEo E, E,liJ n;" 
.!!(ezitn 0 I:ElE,liJ)(ezitn 0 I:EIE,liJ) 0 I:ElEoliJ. 

Now, by applying Theorem 8.12 again, we have 

I:R[ifEo E, E,I iJ n ;,. .!!(I:R[E,I iJ n)(I:R[E,I iJ n) 0 l:E!EoI iJ. 

o 

Using Johnsson's notation, we have analysed the e and 'R..-schemes and 
shown the required isomorphisms for these proposed compilation methods. 
]n the next section we consider graph-isomorphic code that performs oper
ations on a value stack, V. 



116 CHAPTER 8. STORE-LEVEL OPTIMIZATIONS 

nulluCT 

adduCT 

TtJ 

ijv"T K.p (J' 

manta 

mkboolu 

; (0, <P, (,l_ nil):,p, 1, p, 6) 
where (1 ;;: (0, l: <P, 1/1, 1, P, d) 

; «0' Z" (I' Z) ~ (0, <P, (:,p, 1, P, 6),1. 
where ( ; (0 I Z + (, I Z -

u = (0, <P, (I : (0 : ,p, 1, P, 6) 

= «0' Z " (I • Z) ~ (0, <P, r : .p, 1, P, 6), 1. 
where r = (0 I Z = (I I Z -

u ; (0, <p, (, : (0 : .p, 1, P, 6) 

(r. T) ~ «r I T) ~ "T, "F) (0, <p, .p, "(, P, 6), I 
where (J ;; (0, <p, T :,p. 1, p, d) -

= «. Z) ~ pushval.e« in N)(o, <p, .p, 1, p, 6), J. 
where u _ (0, <p, ( :,p, 1, P, 6) 

(r' T) ~ pushval.e(r in N)(o, <p,.p, 1, p, 6), I 
where (J - (0, <p. T : 1/;,1, P, .5) -

get. ; (v. Z) ~ (0, <p, (v IZ) :.p, 1, P, 6) 
- (v, T) ~ (0, <p, (v IT) :.p, 1, P, 6), 1. 

where v ;;: Ii -

u; (0, l: <p,.p, 1, P, 6) 

getlu = (get 0 get)(o, lo : II : <p, .p, " P, 6) 
where 1I = ,l 

u = (0, II : lo : <p, .p, 1, P, 6) 

Figure 8.2: Instructions for Built-in Functions (using V) 

8.3 A Stack for Basic Values 

So far we ha.ve not used the third component of the sta.te at all, this is now 
remedied. It is intended tha.t this component should he a stack of inte
ger or boolean vaJues, and 50 we now provided instructions and alterna.tive 
compilations for this use. 

Before in vestigating graph-isomorphic continuations, we digress a little to 



117 8.3. A STACK FOR BASIC VALUES 

mention typing. We will presume that our language is polymorphically typed 
in the ma.nner described by Milner in [1978]. We shall presume that we have 
a, function T tha.t returns the type of a.n expression. For most compilation 
purposes we are only interested in these types if they are Integer or Boolean. 

Definition 8.15 

If r[E/] = Integer or T [EB] = Boolean, define £B so that 

£B[E/]Il get 0 £dE/]Il
 
£B[EB]Il get 0 £dEB ] Il
 

We would now like to show that we may use the alternative continuations 
produced by the new compilation rule £B- The selection we consider is given 
in Theorem 8.16. 

Theorem 8.16 

For all well-typed programs, the following pairs of continuation.!l are 
equivalent: 

[B[nullE]Il '" nullv 0 £e[E]Il 
[B[add Eo E,]Il ~ addv 0 £B [EI] Il 0 £B [Eol Il 
[B[eqEoE,]Il '" eqv 0 £B[EI]Il 0 £B[Eolll 
[R[ifEo E, E,]Il n ~ ijv(£R[E1Ill n)(£R[E,]Il n) 0 £B[Eo]Il 
[E[ifEoEI E,]Il '" ifv(£e[E1]Il)(£E[E,]Il) 0 £B[Eo]Il 
[B[ifEo EI E,]Il ~ ifv(£B[E1]Il)(£B[E,]Il) 0 £B[Eolll 

It is interesting to notice that the "obvious" isomorphism 

mkint 0 £B[E/]Il ~ £,,[E/]Il, 

is not, in general true. This is because the mkint instruction has created a 
copy of a nOde, and hence the structure of the two graphs is no longer the 
same. We note that this occurs only when the odginal node was shared, and 
so we are able to prove a. result of sufficient power, by considering only the 
unshared case. 

Lemma 8.17 

get 0 mkint 0 addu ~ addu
 
get 0 mkboolo equ eqv
~ 

get 0 mkboolo millJ! nulIv'" 



118 CHAPTER 8. STORE-LEVEL OPTIMIZATIONS 

Notice that in all cases the built-in instruction lea.ves a.n unshared node 
on top of the stack. We use this property to prove Lemma 8.17. 

Proof of Lemma 8.17 

Suppose add"" = (0, 4>, ( : ~" 'Y, p, 6). Then 

(get 0 mkint)(0, 4>, ( : ,p, 'Y, p, 6) = 
- get (0, l : 4>, ,p, 'Y III {l ~ ( in N}, p, 6). 

But this is (0, ¢, (: 1/;. '"'f Ell {ll-+ (in N}, p, 6). However, 

(0,4>, ( : ~" 'Y III {l ~ (in N}, p, 6) '"
 
(0,4>, ( : ,p, 'Y, p, 6),
 

because then:! is no longer a reference to the new node labelled by l. 

By a similar argument, we may show that 

(get 0 mkbooD (0,4>, T : ~" 'Y, p, 6) = 
- (0, 4>, T : ,p, 'Y III {l ~ T in N}, p, 6). 

Again, there are no longer references to the new nodes labelled l, and 
this allows us to deduce the last two isomorphisms. 

o 

We will also need to demonstrate the relationship between tbe angI
nal built-in instructions and their V-stack equivalents. This is done in 
Lemma 8.18. 

Lemma 8.18 

mkboolo nullv null
 
mkint a addu 0 get2 add
 
mkboolo eqv 0 get2
 ~ 
ifuKT K.F 0 get ilKT KF 

The proof is by straightforward substitution. 

Proof of Lemma 8.18 



119 8.3. A STACK FOR BASIC VALUES 

By direct substitution for the instructions mkint, mkboo~ addv, equ, 
nullv, i/v, get and get2. 

o 

Finally, we show the relationship between the sequencing of two graph 
evaluations, under the [E and £8 compila.tion schemes. 

Lemma 8.19 

For all E'<J and E1 in Exp and all {J in B: 

get20 [E[E,]I1+l 0 [E[Eo] 11 = [B[E,]11 0 [B[Eo] 11· 

Again, the proof is direct substitution. 

Proof of Lemma 8.19 

Apart from checking the stack order, this proof is simple. Suppose 
tha.t 

[E[Eo] 11 " = (0, to : ¢, ,p, ,0, p, 0). 

Then 

[E[E,] 11+1 (0, to: ¢,,p, '0, p, 0) = (0, t, : to: ¢, ,p, '" P, 0). 

However, 

(get 0 [E[E,]11 0 get) (0, to : ¢, ,p, ,0, p, 0) = 
- (0, ¢, ('-:(0 : ,p, ", P, oj, 

where (; = II I; I Z. But this is precisely 

get2(0, t, : to: 4>,,p. ", P, oj. 

o 

We ma.y now prove Theorem 8.16. 

Proof of Theorem 8.16 



120 CHAPTER 8. STOR&LEVELOPTIMnATIONS 

\Ve prove this by cases: 

I.'B[null E]11 Firstly, 

I.'B[nullE]I1; get 0 I.'E[nullE]I1. 

But, by Theorem 8.11, we have 

I.'E[nullE]11 ; nullo [dE] 11· 

Also null = mkbool 0 nullvand hence, by Lemma 8.17, get 0 

null ~ nullv. Thus 

I.'B!nullE]11 '" nullvo I.'E[E] 11. 

I.'B[add Eo EIlI1 Firstly, 

I.'B[add En E1]11 ; get 0 I.'E[add En E,]I1. 

But, by Theorem 8.11, we have 

I.'dadd Eo EIlI1 ; add 0 I.'dEl]l1+' 0 [dEn] {3. 

Also, by Lemmas 8.18 and Im:8-3, add = mkint 0 addu 0 get2 and 
get 0 mkint 0 addl} ~ addu. Hence -

I.'B[addEoE,]11 S!! 

addvo get20 I.'E[Et] 11+1 oI.'E[En]{3. 

But, by Lemma. 8.19, 

get20 I.'dE1]11+1 
0 I.'E[Eo]11 ; I.'B[Etll1 o 1.'8 [Eo] 11· 

from which we obtain the result. 

t'deq Eo E1D (J This is proved in the same way as the previous case. 

£R[ifEo E1 E2ll.B n This case follows immediately from Theorem 8.14 
and Lemma 8.18. 

t'E[ifEo E1 E2ll.B Thjs case follows immectiately from Theorem 8.11 
and Lemma 8.18. 

£B[if.Eo E 1 ~] {3 This case follows immediately from the previous case 
and Lemma 8.13, which allows us to propagate the get into both 
branches of the conditional. 

o 

This concludes our brief survey of some of the code improvement tech
niques used in the G-ma.chine. 



8.4. RELATED WORK 121 

8.4 Related Work 

Most of the material in this chapter can be found in Sections 2 and 3 of 
[Lester 87], where graph·isomorphism and its uses are described. In [1987], 
Augustsson provides souTce·level transformations for his G·ma.chine and its 
related denotational semantics. His proofs are made using denotational se· 
mantics. 

In a paper on the Scheme 311 compiler [1984], Clinger performs a similar 
set of transformations, but as he remarks, transformations 8uch as 

[(lambda (x) x) 31 => [31 

ma.y not be valid. The storage requirements may change. This is precisely 
the problem graph-isomorphism is introduced to solve. We note, however, 
that Clinger is correct when he states that store-semantics congruences are 
far messier than the corresponding direct-semantics congruences. The direct 
denotational semantics for Scheme with which he works is more complex than 
the one presented in this thesis, but his operational semantics is of similar 
complexity to that which we describe. This provides yet another reason 
why we would like to work with the denotationaJ semantics rather than the 
operationa.l semantics jf at all possible. 

The optimizations we discuss here were first proposed by Johnsson in 
[1983]. He proposes separation of the two functions of the dump in his thesis 
[John"on 87). 

8.5 Conclusion 

The useful operational equivalence of graph-isomorphism is defined in Sec~ 

tion 8.1. It is used in Section 8.2, where we have seen how we may avoid the 
construction of unnecessary graph. This is accomplished by reducing built-in 
functions directly, if their result will necessarily be required. A more accu
rate strictness abstract interpretation could be used to improve the quality 
of the generated code. In Section 8.3 we extend this idea, so that interme
diate results of built-in functions are retained in V instead of being written 
out to the heap only to be retrieved later. Both of these ideas were originally 
described in [Johnsson 83]. 



Chapter 9 

Conclusion and Further 
Work 

To conclude, we briefly summarize the main results presented in this thesis. 

9.1 Results 

Underlying this thesis is the desire to present an implementation of a lazy 
functional language, and to show that this implementation satisfies the 
declarative properties that we expect. 

We have chosen to use graph reduction as the basis of our implementa.
tion. This is because both TIM [Fairburn and Wray 87] and the G-ma.chine 
[Johnsson 83j, two of the most efficient implementations of lazy functional 
languages, are based on the graph reduction model. We have presented a 
formal model of graph reduction. This model was intended to accurately rep· 
resent the method of implementation used by most current graph reduction 
implementations offunctionallanguages. For this reason, error handling was 
included in the definition of the model. The model used indirection nodes to 
maintain sharing, and because of this the model was naturaJ.ly tail-recU1'sive. 

The model of gra.ph reduction was then shown to be congruent to the 
standard denotational semantics, which provides a definition of the declar
ative properties of a lazy functional program. Although both models define 
the same language, the operational model has the additional property that 
its operational behaviour is specified. As a result of the existence of the 
congruence, we are a.ble to state that the graph reduction model is correct 
with respect to the denota.tional semantics. The congruence proof follows 

123 



124 CHAPTER 9. CONCLUSION AND FURTHER WORK 

the usual pa.ttern of such proofs, by establishing that each semantics ap
proximaLes the other. The novelty of the congruence proof presented in 
Cha.pters 3 and 4 is that the language we present has lazy rather than the 
strict function application semantics presented by Stay in [1981]. 

The first application of the congruence is to discover the condition under 
which the evaluation order may be re-arranged. This condition is complete 
strictness which is a. stronger condition than that typically determined by 
strictness analyses for the A-calculus. 

It was then discovered that the language was not confluent because of 
a. design decision for the implementation of addition and equality. Tech
niques to restore the property of confluence to the language are discussed in 
Chapter 5. 

We investigated alternative sharing mechanisms in Chapter 6. The con
clusion was reached that copying an evaluated graph preserved sharing, and 
thus is a. legitimate strategy. To prove this we had to prove Theorem 6.2, 
which concerns cycles in the spine of a graph. It was shown that a state 
with a spine cycle was necessarily non-terminating. Implicit in the original 
operational semantics was the existence of two fixpoints. The first or outer 
one controls the sequence of reduction steps, and the inner one is part of 
the specification of the spine unwinding process. We observe that either 
may cause non-termination. There is an important difference between them 
however. A spine cycle causes a detectable 1.-, because the graph is finite. 
A non-termination occurring because we reach no final state remains unde
tectahle because it is equivalent to the halting problem. 

A new sharing scheme was proposed which combines the indirection and 
copying (orms o( sharing, so that chains of indirection nodes do not ac
cumulate and also we do not create new stack frames to evaluate partial 
applications to weak head normal form. 

In Chapter 7 we demonstrated that the operational seman tics may be 
represented by a small set of combinators. These combinators correspond to 
the instruction set of a G-machine ahstract machine. We are therefore able 
to conclude that the G-machine also provides a correct implementation with 
respect to the language spedfied by the denotational semantics. 

The G-machine includes some interesting optimizations. After we define 
a modified form of graph isomorphism, we are able to demonstrate that 
some of the alternative code sequences generated by the optimizations are 
isomorphic to the original code sequences. This is done in Chapter 8. 

This concludes the work covered in this thesis and we now consider work 
which could usefully be done to extend it. 



9.2. FURTHER WORK 125 

9.2 Further Work 

Although this thesis has answered some of the basic questions arising from 
the use of graph reduction to implement functional programming languages, 
there are a number of extensions and open problems that remain. 

The langnage used in this thesis is distinctly minimal. Many modern 
languages have additional features, such as local definitions, list compre
hensions and pattern matching. These features could be compiled into the 
language we have used. Source to source translation is not usually used in 
denotationa.l semantics, a.s the meaning of a program fragment is then not 
easily discovered. This problem is carried over into the programmers model 
for the language, making programs more difficult to rea.son about. When we 
consider the operational semantics of the new language features, we see that 
it is usual. to provide more efficient implementations than those produced by 
the simple translations. It would therefore be interesting to know whether 
these extensions to the language lead to complications when a congruence 
proof is attempted. 

The transformational development of the G-machine, provided in Chap
ter 7, could usefully be adapted to derive other abstract machine models, 
such a.c; TIM [Fairburn and Wray 87]. Unfortunately it is not possible to 
investigate the relative efficiency of these two implementations, other than 
statistically. This serves as a warning that we should not expect to be able to 
derive the "best" abstract machine from the operational semantics of graph 
reduction. One attempt to provide a more efficient model is the Spineless 
G-Machine [Burn et al. 88] which includes a transformational derivation of 
TIM. Another is Argo's G-TIM [Argo 88]. Argo ha.o; investigated the relative 
merits of the G-machine and TIM, and then incorporated the best features 
of each in the G-TIM. It would still be interesting to know of other useful 
implementations to be found in the space of possible derivations. 

As an alternative to the operational semantics provided in Chapters 
2 and 4, it would be interesting to consider a parallel operational seman
tics. There is an important difference between the parallel and sequential 
models of graph reduction. The sequential algorithm has no real choice 
about which redex to reduce at each step. With a parallel implementation, 
not only is there a choice of redexes, but this choice can be non-deterministic. 
There are therefore many parallel operational models for graph reduction, 
whilst there is essentially only one sequential model. It follows from this 
that a transformational development, like that of Chapter 7, is not likely to 
generate all of the interesting parallel models. 



Bibliography 

[1988J	 G. Argo. 
The G~TIM: A refined three instruction machine. 
Technical report, Glasgow University, 1988. 
To appear. 

[1984J	 L. Augustsson. 
A compiler for lazy ML. 
In Proceedings of the 1984 A eM Symposium on Lisp and Functional 

Programming, pages 218-227, Austin, Texas, August 1984. 

[1985J	 1. Augustsson. 
Compiling pattern matching. 
In J.-P. Jouannaud, editor, Proceedings of the Conference on 

Functional Programming Languages and Computer Architecture, 
pages 368-381, Nancy, France, September 1985. 

[1987) 1. Augustsson. 
Compiling Lazy FUnctional Languages, Part II. 
Doctoral thesis, Chalmers Tekniska HOgskola, Goteborg, Sweden, 

1987. 

[1981J H.P. Barendregt. 
The Lambda Calculus, volume 105 of Studies in Logic and the Foun

dations 0/ Mathematics. 
Elsevier Science Publishers B.V., P.O. Box 1991, 1000 HZ Amster

dam, The Netherlands, 1981. 
ISBN 0-444-87508-5. 

[1988J	 R.J. Bird and P.L. Wadler. 
A n Introduction to Functional Programming. 
Prentice Hall Series in Computer Science. Prentice Hall Interna

tional (UK) Ltd., Hemel Hempstead, Hertfordshire, England, 

127 



128 BIBLIOGRAPHY 

1988. 
ISBN 0-13-484189-1. 

11975] W.H. Burge. 
Recursive Programming Techniques. 
The Systems Programming Series. Addison- Wesley Publishing Com

pany, Inc., 1975. 
ISBN 0-201-14450-6. 

[1986] G.L. Burn, C.L. Hankin, and S. Abram,ky. 
Strictness analysis of higher-order functions. 
Science of Computer Programming, 7:249-278, Novern.ber 1986. 

[1988] G.L. Burn, S.L. Peyton Jone', and J.D. Rob,on. 
The spineless G-machine. 
In Proceedings of the 1988 AeM Symposium on Lisp and Functional 

Programming, Snowbird, Utah, 1988. 

[1969] R.M. Burstali. 
Proving properties of programs by structural induction. 
The Computer Journal, 12(1):41-48, February 1969. 

[1936J A. Church. 
An unsolvable problem in elementary number theory. 
American J01JmaI 0/ Mathematics, 58:345-363, 1936. 

[1941J A. Church. 
The Calculi 0/ Lambda-Conversion. 
Princeton University Press, Princeton, N.J., 1941. 

[1980) T.J.W. Clarke, P.J.S. Glad,tone, C.D. Maclean, and A.C. Norman. 
SKIM - the SKI reduction machine. 
In Proceedings of the ACM Lisp Conference) Stanford, 1980. 

[1984] W. Clinger. 
The Scheme 311 Compiler. An exercise in denotational semantics. 
In Proceedings of the ACM Symposium on Lisp and Functional Pro

gramming, pages 356-364, Austin, Texas, August 1984. 

[1977] P. Courot and R. COUSOI. 
Abstract interpretation: A unified lattice model for static analysis 

of programs by construction or approximation of fixed points. 
In Proceedings of the Fourth A CM Symposium on Principles of Pro

gramming Languages, pages 238-252, Los Angeles, 1977. 



129 BIBLIOGRAPHY 

[1986J	 P.-L. Curien. 
Categorical Combinators l Sequential Algorithms A nd Functional 

Programming. 
Research Notes in Theoretical Computer Science series. Pitman 

Publishing Limited, London, 1986. 
ISBN 0-470·20290-4. 

[1930)	 H.B. Cuny. 
Grundlagen der kombinatorischen logik. 
American JournaL of Mathamalics, 52:509--536 and 789--834, 1930. 

[1958J	 H.B. Curry and R. Feys.
 
Combinatory Logic, volume 1.
 
North Holland Publishing Company, Amsterdam, 1958.
 

[1976]	 P.J. Downey and R. Sethi.
 
Correct computation rules for recursive languages.
 
SIAM Journal on Computing, 5(3):378--401, September 1976.
 

[19871	 J. Fairburn and S. Wray. 
TIM: A simple, lazy abstra.ct machine to execute supercombinators. 
In G. Kahn, editor, Proceedings of the Functional Programming 

Languages and Computer A rchitecture Conference, pages 34-45. 
Springer-Verlag, September 1987. 

[1987]	 B. Goldberg. 
Detecting sharing of partial applications in functional languages. 
In G. Kahn, editor, Proceedings o/the Functional Programming Lan

guages and Computer A rchiteeture Conference, pages 408--425. 
Springer-Verlag, September 1987. 

[19731	 M.J.C. Gordon. 
Models of pure LISP (a worked example in semantics). 
Experimental Programming Reports 31, Department of Machine In

telligence, University of Edinburgh, 1973. 

[1979J M.J. Gordon, R. Milner. and C,P. \f\.'adsworth. 
Edinburgh LeF, volume 78 of Lectur'e Notes In Computer Science. 
Springer Verlag, Berlin, 1979. 

[19691 F. Harary. 
Graph Theory. 
Addison- Wesley Publishing Co., Reading, Massachusetts, 1969. 

[19801 P. Henderson. 



130 BIBLIOGRAPHY 

Functional Programming: AppLication and Implementation. 
Prentice-Hall International Series in Computer Science. Prentice

Hall International (UK) Ltd., London, 1980.
 
ISBN 0·13·331579·7.
 

[1976]	 P. Henderson and J.M. Morris. 
A lazy evaluator. 
In Proceedings of the Third POPL Symposium, pages 95-103, At

lanta. Georgia., January 1976. 

[1982]	 P. Henderson, G.A. Jones, and S.B. Jones. 
The li,pkit manual. 
Technical Monograph PRG-32, Oxford University Computing Lab

oratory, Programming Research Group, 1982. 

[1982.] R.J.M. Hughes. 
Graph reduction with super-combinators. 
Technical Monograph PRG-28, Oxford University Computing Lab

oratory, Programming ReseaTth Group, June 1982. 

[1982bj R.J.M. Hughe,. 
Super-combinators: a new implementation method for applicative 

languages. 
In Proceedings of the 1982 AeM Symposium on Lisp and Functional 

Languages, pages 1-10, August 1982. 

[1983]	 R.J.M. Hughes. 
The Design and Implementation of Programming languages. 
Doctoral thesis, Oxford University Computing Laboratory, Pro

gra.mming Research Group, July 1983. 
Also published as Technical Monograph PRG·40. 

[1985] R.J .M. Hughe,. 
Lazy memo-functions. 
In J.-P. Jouannaud, editor, Proceedings of the Conference on Func~ 

tional Programming Languages and Computer A rchitecture Con
ference, pages 129-146, Nancy, France, September 1985. 

[1983]	 T. Johnsson. 
The G-machine. An abstract machine for graph reduction. 
In Declarative Programming Workshop, pages 1-20, University Col

lege London, April 1983. 

[19841 T. John55on. 



131 BIBLIOGRAPHY 

Efficient compila.tion of lazy evaluation. 
In PrOC£t'Aings of the SIGPLAN '84 Symposium on Compiler Con

stnJction, pages 58-69, Montreal, Ca.nada., June 1984. 

[1985J	 T. Johnsson. 
La.mbda. lifting: Transforming progra.ms to recursjve equa.tions. 
In J.-P. Jouannaud, editor, Proceedings of the Conference on 

Functional Programming Languages and Computer Architecture, 
pa.ges 190-203, Nancy. Fra.nce, September 1985. 

[1987J	 T. Johnsson. 
Compiling Lazy Functional Languages. 
Doctoral thesis, Chalmers Tekniska. Hogskola., Goteborg, Sweden, 

1987. 

[1986]	 M.B. Josephs. 
Functional Programming with Side-effects. 
Doctoral thesis, Oxford University Computing La.boratory, Pro-

gramming Research Croup, 1986. 
Also published .. Technical Monograpb PRG-55. 

[1936]	 S.C. Kleene. 
General recursive functions of na.tural numbers. 
Mathematical Annals, 112:727-742, 1936. 

[1950]	 S.C. Kleen•. 
Introduction to Metamathematics. 
Von Nostrand, Princeton, 1950. 

11980J J W. Klop. 
Combinato11J Reduction Systems, volume 127 of Mathematical Cen

tre Tracts. 
Mathematischen Centrum, 413 Kruislaan, Amsterda.tl1, 1980. 
ISBN 90-6190-200-5. 

[1964J	 P.J. Landin. 
The mechanical evaluation of expressions. 
Compu'er Journal, 6(4):308-320, January 1964. 

[1985]	 D.R. Lester. 
The correctness of a g-ma.chine compiler. 
Transfer dissertation, Programming Research Group, Oxford, De· 

cember 1985. 

11987)	 D. Lester. 



132 BIBLIOGRAPHY 

The G·machine as a. representa.tion of stack semantics. 
In	 G. Kahn, editor, Proceedings of the Functional Progromming 

Languages and Computer Architecture Conference, pages 46-59. 
Springer-Verla.g, September 1987. 

[1973J	 Z. Mann., S. Ness, and J. Yuillemin. 
Inductive methods for proving properties of programs. 
Communications of the ACM, 16(8):491-502, August 1973. 

[1962] J. McCarthy, P.W. Abraha.rns, D.J. Edwards, T.P. Hart, and 
M. Levin. 

LISP 1.5 Programmers Manual. 
MIT Press, Cambridge, Massachusetts, 1962. 

[1985]	 S.R. de Lemos Meir•. 
On the Efficiency 0/ Applicative Algorithms.
 
Doctoral thesis, The University of Kent a.t Canterbury, March 1985.
 

[19741	 R.E. Milne. 
The Fonnal Semantics 0/ Computer Languages and Their Imple

mentation. 
Doctoral thesis, University of Cambridge, 1974. 

[1976)	 R.E. Milne and C. Strachey. 
A Theory 0/ Programming Language Semantics. 
Chapman and Hall, London, 1976. 

[1977J R. Milner. 
Fully a.bstract models of typed la.mbda-calculi. 
Theoretical Computer Science, 4(1):1-23, February 1977. 

[1978J	 R. Milner. 
A theory of type polymorphism in programming. 
Journal of Computer and System Science, 17(3):348-375, 1978. 

[1984]	 K. Mulmuley. 
A sema.ntic characteriza.tion of full a.bstra.ction. 
Technical report, Ca.rnegie-Mellon University, 1984. 

[1986]	 K. Mulmuley. 
Fully a.bstra.ct submodels of typed lambda. calculus. 
Journal 0/ Computer and System Sciences, 33:2-46, 1986. 

[198b] A. Mycroft. 
Abstract Interyretation and Optimising Transformations for Ap

plicative Programs. 



133 BIBLIOGRAPHY 

Doctoral thesis, University of Edinburgh, Department of Computer 
Science, December 1981. 

A~o published as CST-15-8!. 

[1981b] A. Mycroft. 
The theory a.nd practice of transforming ca.ll-by-need into call-by. 

value. 
IDternal Report CSR-88-81, Univeniity of Edinburgh, Department 

of Computer Science, July 1981. 

[1984J A. Mycroft. 
Polymorphic type schemes and recursive definitions. 
In	 Proceedings of the International Symposium on Programming, 

pages 217-239\ Toulouse, France, 1984. Springer Verlag. 
LNCS no 167. 

[1988J C.-H. Luke Ong. 
The Lazy Lambda Calculus: An Investigation into the Foundations 

of Functional Programming. 
Doctoral thesis, University of London, 1988. 
To appear. 

[19871 S.L. Peyton Jones. 
The Implementation of Functional Programming Languages. 
Prentice-Hall Interna.tional Series in Computer Science. Prentice

Hall Intern.tional (UK) Ltd, London, 1987.
 
ISBN 0-13-453333-x.
 

[1977J G. Plotkin. 
LCF considered as a programming language. 
Theorelical Compater Science, 5(3):223--256, 1977. 

[1974J J.C. Reynolds. 
On the rela.tion between direct and continuation semantics. 
In	 Proceedings of the Second Colloquium on A utomata, Languages 

and Progmmming, pages 141-156, Saarbrucken, 1974. Springer
Verlag. 

[1986] D.A. Schmidt. 
Denotational Semantics. 
Allyn and BacoD, Inc., 7 Wells Avenue, Newton, Massachusetts, 

1986.
 
ISBN 0-205-08974-7.
 



134 BIBLIOGRAPHY 

[1924J M. SchonfinkeL 
Uber die bausteine der mathematischen logik. 
Mathamatische Annalen, 92:305-316, 1924. 

[19701 D.S. Scott. 
Outline of mathematical theory of computation. 
Technical Monograph PRG.2, Oxford University Computing Labo

ratory, Programming Research Group, 1970. 

[1973J D.S. Scott. 
Models for various type-free calculi. 
In P. Suppes, L. Henkin, A. Joja, and G.C. Maisil, editors, Logic, 

Methodology and Philosophy of Science, pages 157-187. North
Holland, Amsterdam, 1973. 

[1976J D.S. Scott. 
Data types as lattices. 
SIAM Journal on Computing, 5(3):522-587, September 1976. 

[1981] D.S. Scott. 
Lectures on a. ma.thematical theory of computation. 
Technical Monogra.ph PRG-19, Oxford University Computing Lab

ora.tory, Programming Research Group, 1981. 

[1977J J .E. Stay. 
Denotational Semantics: The Scott-Strachey Approach to Program

ming Language Theory. 
The MIT Press Series in Computer Science. MIT Press, Ca.mbridge, 

Massachusetts, 1977. 

[1981) J.E. Stay. 
The congruence of two programming language definitions. 
Theoretical Computer Science, 13(2):151-174, February 1981. 

[1982] J .E. Stay. 
Some mathematical aspects of functional programming. 
In J. Darlington, P. Henderson, and D.A. Turner, editors, Func

tional Programming and its Applications: An Advanced Course, 
pages 217-252. Cambridge University Press, Cambridge, Eng
land, 1982. 

ISBN 0-521-24503-6. 

[19841 W.R. Stoye, T.J.W. Clarke, and A.C. Norman. 
Some practical methods for rapid combinator reduction. 



135 BIBLIOGRAPHY 

In PrOC£edings of the 1984 ACM Symposium on Lisp and FUnctional 
Programming, pages 159-166, Austin, Texas, 1984. 

[1966]	 C. Strachey. 
Towards a formal semantics. 
In T.B. Steel, editor, Formal Language Description Languages for 

Computer Programming. North-Holland, Amsterdam, Nether
lands, 1966. 

[1983] R..D. Tennent. 
Principles 0/ Programming Languages. 
Prentice-Hall Intemational Series in Computer Science. Prentice

Ha.ll International (UK) Ltd., London, 1983.
 
ISBN 0-13-709873-1.
 

[1976]	 D.A. Turner. 
SASL language manual. 
Technical Report CS/75/1, Department of Computational Science, 

Unhersity of St. Andrews, 1976. 

[1979a] D.A. Turner. 
Another algorithm for bracket abstraction. 
Journal of Symbolic Logic, 44(2), June 1979. 

[1979bl D.A. Turner. 
A new implementation technique for applicative languages. 
Software Practice and Experience, 9(1):31-49, January 1979. 

[1987]	 P.L. Wadler. 
Strictness analysis on non-flat domains (by abstract interpretation 

over finite domains). 
In S. Abra.msky and C.L. Hankin, editors, Abstract Interpretation of 

Declarative Languages, chapter 12, pages 266-275. Ellis Horwood 
Ltd., Chichester, West Sussex, England, 1987. 

ISBN 0-7458-0109-9. 

[1971] C.P. Wadsworth. 
Semantics and Pragmatics of The Lambda Calculus. 
Doctoral thesis, University of Oxford, 1971. 

[19761 C.P. Wadsworth. 
The relation between computational and denotational. properties for 

Scott's Dco-models of the lambda-calculus. 
SIAM Journal on Computing, 5(3):488-521, September 1976. 



136 BIBLIOGRAPHY 

[1982] M. Wand. 
Deriving target code as a representation of continua.tion semantics. 
ACM Transactions on Progrnmming Languages and Systems, 

4(3):496-517, July 1982. 




