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ABSTRACT

David Lester
The King’s Hall and College of Brasenose
and
Programming Research Group

A thesis submitted to the Faculty of Mathematics
for the degree of Doctor of Philosophy
July 1088

Combinator Graph Reduction:
A Congruence and its Applications

The G-machine is an efficient implementation of lazy functional languages
developed by Augustsson and Johnsson. This thesis may be read as a for-
mal mathematical proof that the G-machine is correct with respect to a
denotational semantic specification of a simple language. It also ha more
general implications. A simple lazy functional language is defined hoth de-
notationally and operationally; both are defined to handle erroneous results.
The operational semantics models combinator graph reduction, and is based
on reduction to weak head normal form. The two semantic definitions are
shown to be congruent.

Because of error handling the language is not confluent. Complete strict-
ness is shown to be a necessary and sufficient condition for changing lazy
function calls to strict ones. As strictness analyses are usually used with
confluent languages, methods are discussed to restore this property.

The operational semantic model uses indirection nodes to implement
sharing. An alternative, which is without indirection nodes, is shown to be
operationally equivalent for terminating programs.

The G-machine is shown to be a representation of the combinator graph
reduction operational model. It may be represented by the composition of a
small set of combinators which correspond to an abstract machine instruc-
tion set. Using a modified form of graph isomorphism, alternative sequences
of instructions are shown to be isomerphic, and hence may be used inter-
changeably.
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Chapter 1

Introduction

The simple denotational semantics of lazy functional programming languages
allows powerful program transformation techniques to be used when develop-
ing programs. If the objective, when using these methods, is the production
of 2 working system, then the implementation of the language should also
be correct with respect to the denotational semantics. In this case the whole
system may be said to meet its specification.

The G-machine is an efficient implementation of lazy functional lan-
guages which has been developed by Augustsson and Johnsson in a series
of papers [1983, 1984], culminating in their theses [1987, 1987]. The work
presented in this thesis may be read as a formal mathematical proof that the
G-machine is correct with respect to a denotational semantic specification
of a simple language. In fact the work is more general. Combinator graph
reduction to weak head normal form will be shown to successfully implement
lazy functional languages. This remains true even though the é-rules that
are selected in this thesis make the language non-confluent. The confluence
of the pure A-calculus is shown by the Church-Rosser Theorem, and for this
reason confluence is often referred to as the Church-Rosser Property. In-
formally, it states that all reduction orders that terminate reach the same
normal form.

This is important because most implementations of lazy functional pro-
gramming languages are based on combinator graph reduction, wheregraphs
are reduced to weak head normal form. Previously, results from the A-
calculus, such as The Church-Rosser Theaorem, have been used ir proofs
about the operational properties of programs written in these languages.
This thesis puts both the implementations and the program proof techniques

1



2 CHAPTER 1. INTRODUCTION

onto a firm mathematical foundation.

1.1 Functional Programming

The language examined in this thesis has its origin in notations devel-
oped for mathematical logic in the 1930’s. These are: Church’s A-calculus
[1936, 1941); Kleene’s general recursive equations [1936, 1950]; and com-
binatory logic, independently discovered by Schénfinkel [1924] and Curry
[1930]. Each of these notations is at once both powerful and simnple. For this
reason, lerms written in these notations are often easily shown to be equiv-
alent. The problem with such powerful notations has always been efficient
implementation.

The first practical realisation of these languages occurred in the early
1960’s, when John McCarthy et al. developed LISP [1962). Although this
was based on the A-calculus, it differed in two important respects. Firstly,
the scope rules were dynamic rather than static. Secondly, the evaluation
order chosen was applicative rather than normal. If a A-term had a nor-
mal form then normal order reduction would find that normal form, see
[Curry and Feys 58]). Unfortunately, applicative order reduction is less pow-
erful, in the sense that it is not able to reduce all A-terms with a normal
form to that form. When this occurs the applicative order reduction fails
to terminate. It therefore produces an approximation to the required result,
rather than a contradictory one. In spite of the deviation from the pure
A-calculus, LISP is still popular.

During the early 1960’s, Landin developed a virtual machine to imple-
ment statically scoped LISP. Because this machine used four registers; Stack,
Enviroument, Code and Dump; it is called the SECD machine. [t is de-
scribed in [1964]. In fact, with a small modification this machine could be
adapted to perform normal order reduction, but it would be hopelessly in-
efficient, The problem was that each use of an argument within a function
required repeated evaluation of that argument.

Lazy evaluation is an attempt to overcome this difficulty. The result of
evaluating an argument is preserved, so that subsequent uses of the argu-
ment benefit from the original evaluation. Landin’s SECD machine may be
made to perform this operation by using the concept of closures to represent
unevaluated arguments. A closure is a pair consisting of some representa-
tion of the function and an environment where the function may access its
local variables. This was developed by Henderson and Morris in the context
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of data structures [1976]. A description of the general method occurs in
[Henderson 80, Henderson et al. 82].

An alternative representation for closures was devised by Wadsworth
[1871]. In place of the function and environment pair, a piece of graph is
constructed. This graph represents the function body, with the variables of
the environment bound into the correct places of the body. In Wadsworth’s
thesis [1871] graph reduction is used to evaluate the pure A-calculus using
reduction to head normal form. Turner [1979a, 1979b] showed how graph
reduction could be used to evaluate combinatory logic terms efficiently. Gen-
eral recursive equations may be converted to pure combinators. Supercom-
binators [Hughes 82b] and lambda-lifting [Johnsson 83)] are two methods de-
scribed in the literature. 1t is programs that have been transformed to either
of these forms, and now require reduction to weak head normal form, that
we shall be concerned with in this thesis.

Graph reduction has proved to be important as it underlies the most
efficient implementations of lazy functional languages known. Johmsson’s
G-machine was the first really efficient implementation based on graph re-
duction and providing lazy semantics. Further refinements to the graph
reduction machine include Burn, Robson and Peyton Jones’ Spineless G-
machine [1988] and Fairburn and Wray’s TIM [1987]. Another advantage
of graph reduction is that it may easily be performed in parallel. This is
because it has no global environment structure.

A number of introductory texts on functional programming exist. Burge
[1975] describes recursive techniques in some detail, although he is not in-
terested in reduction orders, Henderson [1980] describes LispKit, a simple
language based on Lisp. It includes the development of the compiler, based
on Landin’s SECD machine {1964]. The techniques involved in developing
algorithms written in lazy functional languages is described by Bird and
Wadler [1988].

A good general introduction to the techniques of graph reduction occurs
in Peyton Jones’ textbook: “The lmplementation of Functional Program-
ming Languages” [1987].

1.2 Denotational Semantics
Denotational semantics is only one of a number of approaches to the spec-

ification of programming language semantics. It was developed at the Pro-
gramming Research Group by Strachey [1966] and given a formal basis by
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Scott’s work on models for the A-calculus [1970].

Theapproach taken in this thesis is that the semantics should be specified
denotationally. This has advantages over the other two common specification
methods. With an operational semantics we could arrange things so that
no work is performed to establish whether graph reduction correctly imple-
ments our langnage. The problem is that the language is then over-specified.
Other implementation methods would be precluded unless we could estab-
lish some form of operational equivalence between the states used in each
implementation. A particular example in this context would be the SECD
machine, suitably adapted to perform lazy evaluation.

An axiomatic semantics is usually provided for languages with state, and
specifies a relationship between initial and final states, after executing a com-
mand. This immediately raises problems in a language without commands.
Josephs [1986) has presented an axiomatic semantics for a lazy functional
language with side effects. A similar axiomatic specification occurs in term
rewriting systems. From an expression and a set of rewrite reles, we may de-
duce anew expression. The problem with this approach is that termination
of the term rewriting system will normally be proven separately.

The most important advantage of denotational semantics for specifying
lazy functional languages is that it is simple. This is not surprising; the
A-calculus is the basis of both denotational semantics and lazy functional

languages.

The problem is then to show that graph reduction successfully imple-
ments the language specified. Of course we must also specify graph reduc-
tion. In this thesis we do so operationally, although an equivalent denota-
tional version could be formulated. As the operational semantics of graph
reduction provides a specification of an implementation it must contain more
detail, and its semantics becomes correspondingly more complicated.

Although the notation used in this work is based on [Stoy 77|, there are
other texts which could be used as an introduction to this work. Milne and
Strachey [1976] is a presentation of a congruence proof, this proof is used
to motivate the investigation of denotational semantics. Gordon [1979] and
Tennent [1983] are simple introductions, but perhaps too superficial. A re-
cent textbook on denotatjonal semantics, by Schmidt [1986], brings sections
of Stoy’s book up to date.
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1.3 Overview

The work described in this thesis falls conveniently into two parts.

In Part I, a congruence result for a simple lazy functional Janguages is
established. The syntax of this language is given in Figures 2.1 and 2.2. The
remainder of Chapter 2 provides a denotational semantics and an operational
semantics for this language. The denotational semantics is directly related
to that for the A-calculus given in [Stoy 77]. The operational semantics
chosen is based on graph reduction. This model uses indirection nodes to
implement sharing, but is otherwise similar to typical real implementations
of graph reduction.

Chapter 3 proves that the two semantics given in Chapter 2 are con-
gruent. The congruence of the two semantic definitions means that they
agree upon the result of executing a program, whenever this is a base value.
Thie relation is not equality as the results are drawn from different do-
mains; the denotational semantics produces a result in the domain E where
E = |[E — E] + B; the operational semantics produces an interpreter state.
A further complication emerges because the operational semantics is able to
equivalence more functions than the denotational semantics. This is the full
abstraction problem, which we circumvent by considering congruence rather
than equivalence.

The congruence proaf is outlined in Figure 3.1 on page 24. It follows
the classic pattern of such proofs, by establishing that each semantics ap-
proximates the other. Using Schmidt’s terminology [1986], we may say that
the operational semantics is both faithful and terminating with respect to
the denotational semantics. Faithfulness is demonstrated by a fixpoint in-
duction; the termination property by structural induction using inclusive
predicates.

Thbe language is extended in Chapter 4 to implement typical built-in
functions such as addition, equality and data structuring functions. The
operational semantics is extended so that there are no explicit recursive calls
to the interpreter. The congruence result is then extended. This involves
showing that the reduction steps associated with the built-in functions are
faithful. Next we demonstrate that a new set of predicates, including one
for comparing data-structure nodes, are inclusive. From this we are able to
deduce that there is a congruence for the extended language.

Part 11 is devoted to applications of the congruence. The conditions
under which we may re-order the evaluation of arguments to functions are
deduced in Chapter 5. We may evaluate the argument z first, in the expres-
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sion fz,if and only if f is completely strict, f.e. fL = 1 and f2=2. This
is a stronger condition than that generally supplied by strictness abstract
interpretations. An interesting observation is that the Janguage with which
we are working is rot confluent. The confluence of the A-calculus is shown
to hold by the Church-Rosser Theorem [Barendregt 81, Theorem 11.1.10,
page 282). We are unable to show a similar thecrem for our language as
there exist two possible reductions of 2 + L; it may be either Z or L.

In the operational semantics of Chapters 2 and 4, indirection nodes are
inserted at the end of each reduction step. This preserves sharing. Other
methods have been proposed to avoid the use of indirection nodes, and we
investigate these in Chapter 6. In the process of proving the alternative
methods equivalent it will be observed that individual reduction steps may
fail to terminate. A necessary and sufficient condition for this to occur is
that there is a spine cycle, and it is not then possible to determine the raot
of the next reduction.

In Chapter 7 we show that the G-machine is equivalent to the operational
semantics of Chapter 4. Because the operational semantics is congruent to
the denotational semantics, we may say that the G-machine is a correct
implementation of the language specified by the denotational semantics.

One of the principal areas of optimization in the G-machine is its use of
the V stack to hold temporary basic values. In Chapter 8 some of these opti-
mized continuations are shown to be equivalent to the original, unoptimized,
continuations. This process involves showing a form of cperational equiva-
lence holds; this is related to graph isomorphism. The modified definition of
graph isomorphism allows us to relate graphs that differ only on unreachable
nodes within the graph or which differ by having indirection nodes elided.
Graph isomorphism is extended to allow us to refer to G-machine states and
continuvations that are graph isomorphic.

A summary of the results derived in this thesis appear in Chapter 9.



Part T

Congruence



Chapter 2

Semantic Models

In this chapter we define the syntax of the Janguage and informally describe
its intended semantics. Next a denotational semantics is given. Proofi about
the results produced by a program would typically be proved in a denota-
tional setting. An operational semantics for graph reduction is then given,
This can be viewed as an implementation of the language. Operational prop-
erties of the program, such as space and time complexity, would typically
be investigated using the operational semantics. We prove the congruence
of the denotational and operational semantic specifications in Chapter 3.

2.1 A Simple Functional Language

In this thesis we shall consider a very simple lazy functional programming
Janguage. Its abstract syntax is given in Figures 2.1 and 2.2. A program in
this language is then an expression [E] and a set of rewrite rules [A]. Each
rewrite rule associates a combinator [['] with an identifier. The combinator
[T] is a function of at least one argument and has a body [E]. Theinten-
tion is that a free variable of the rewrite rule [I = I['] should be the name
of another rewrite rule. This means that we may treat each rewrite rule as
a combinator as its free variables are in fact constants. It is this important
property that allows combinator graph reduction to occur without closures.
Another observation is that each definition is a function and not a constant.
This is because a combinator reducer would treat constant definitions differ-
ently, see [Peyton Jones 87, Section 18.6, page 311]. Since we are interested
in the operation of combinator reduction it seems reasonable to simplify our
language to a minimum.



10 CHAPTER 2. SEMANTIC MODELS

II € Prog (Programs)

A €Defs  (Function Definitions)
T € Comh (Combinator Bodies)
E c¢Exp (Expression)

B € Basic (Basic Values)

I elde (Identifiers)

Figure 2.1: Syntactic Categories

II = E where A
A = Agand A,
| I=T

r := JMLE
| ALT
E =1
| B
| Ea(E1)

Figure 2.2: Abstract Syntax

In passing we note there exist transformations that allow the translation
of general functional programs into the restricted form we present here. The
two well known ones are those of Hughes [1982a, 1982b] and Johnsson [1985],
both of which are described in more detail by Peyton Jones [1987]. The
aim of both techniques is to reduce a program to the restricted form ol
combinators, as there exist efficient implementations of such languages.

In Figure 2.1, the names of the syntactic domains and typical elements of
these domains are given. In Figure 2.2 the syntax is defined. A program [II]
is an expression [E] and a set of combinator definitions [A]. The combinator
definitions introduce bindings ol the form [I = ). [I] is an identifier and [I]
is the combinator that is bound to [I]. Each combinater takes at least one
argurment because I' is defined as either ALl or ALLE. An expression is either
an identifier [I]; a basic value [B] or an application of two subexpressions
[Eq E4].

It can be seen, in Figure 2.2, there has to be at least one function defi-
nition. This may be overcome by amending the syntax with a second pro-
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duction for 11, of Il ::= E. We have not done this as our proofs in Chapter 3
will become even more complex.

2.2 Notations for Denotational Semantics

The notation used in denotational semantics varies from author to author. In
some ways the notation used by Stoy [1977] is cumbersome, and occasionally
amhiguous, for the material presented in this thesis. Therefore whilst the
majority of the notation comes from [Stoy 77}, other parts are derived from
functional programming notation.

Syntactic ohjects are denoted by Greek capitals (E, B, ... ) and are ele-
ments of domains denoted by short names (Exp, Basic, ...). Corresponding
Tower case Greek letters (¢, f, ... ) denote appropriate semantic values, which
come from domains denoted by (E, B, ...); large curly letters (£, 8, ...)
are used for the “valuation” functions which map syntactic objects to the
values they denote.

We shall presume that the domains are defined using complete partial
orders. A presentation of this model is available [Schmidt 86, Section 6.5).
The results derived in this paper will of course hold for the alternative defi-
nition of the domains as a complete lattice with an element T. Each domain
includes an error element, denoted by ?. As wsual L C 1, but ? is incompa-
rable with all other elements. If an elemeut is pro_]ected into a subdomain
where it doesn’t belong, it is mapped to ?; conversely, the ? elementof each
subdomain is mapped to ? in the sum. We shall refer to L and ! as im-
proper elements of a domam the predicate Proper(z) will be true pmv:ded
T is neither 1 mor 7,

Do+Iy denotes the separaied sum of the domains Dy and D,. [f D is the
separated sum of I}y and Dy, with § € Dy, then & in D is the corresponding
element of the sum domain D. If § € D then 6§Dy denotes the following
element of Dyg:

e ifé=1 p then (§|Dp)= L Dos
» if § corresponds to an element 8y of Dy ther (§|Dg) = bg;
e otherwise (§|Dg) =1 [ o

If 6 € D then 6 € Dy is the following element of the truth valve domain T:

eifé=1 p then (6EDg)=1 T
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* if { corresponds to an element & of Dg then (§ € Dy) = true;
s otherwise (§ E Dq) = false.

For 7 € T (the domain of truth values) and &g, é; € D, the expression

bo if 7 is true

& if T is false
- al e
7= bo, b1 has value 1L pifrisy 1

? ifris?

I p Hrisl o

The major change of notation is in the representation of elements of
composite domains. Borrowing from functional programming notation we
represent an element of the cartesian product domain (D ; x...xD 4 )by
{61, ...,6,), and we can access the m th component by fst o snd™. Similarly
we provide a new notation for lists of elements of some domain D. The list
domain is represented by D* which can be expressed as the solution to the
following domain equation’:

D* = (D x D*) + {nsl}.

Elements of this domain can be represented by either of the two notations
used by Turner in SASL [1976]. If £€ D and ¢ € D* then we can represent
(£, ¢) in D* by £ : ¢. Alternatively, a finite list may be represented by
[£o, - ... £,], which is equivalent to (& : (... (€n : nsl)...)).

As list domains form a significant part of the definition of the operational
semantics, we define a selection of useful continuous functions over lists in
Figure 2.3.

Theother change of notation is to represent the updating of environments
by p @& {I — £} which is defined by

p® {1} = AU((I' = 1) — &, p{I].

Notice that @ is associative. An arid environment is defined by p 50 =
ALL.

2.3 Standard Semantics

TAs solutions to recnrsive domain equations are unique only np to isomorphism, we
could use 2 instead of = to express the equation. This notation is mot used in this
thesis, asit conflicts with Stoy's notation, and we will make considerable use of 22 in other
contexts,
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[+ ys = ys

(z:29)H ys = z:z5 4 ys

(z:28)10 = z

(z:58)!1(n+1) = zs!n

#|) = 0

#(z:z8) = 1+#zs

take0 zs =

take(n+1)(x:28) = z:takenzs

drop0 zs = zs

drop(n4 1)z :z8) = dropnzs

map /[ = [

map f (z : z5) = fz:mapfzs

lastzs = zsl{f#zs-1)
Figure 2.3: Standard List Operations

The object of a denotational semantics is to map syntactic objects to ele-
ments of the value domains we wish to use. Figure 2.4 shows that we have
a very simple set of demains. The demain B is the domain of basie val-
ues, which might represent any simple data types we want. For example,
B = Z + T would be suitable if we wanted to use integer and boolean values.
The domain E is then defined to be the separated sum of B and F, where
F is the demain of functions from E to E. We define one more domain, U,
which maps identifiers to expressions.

As the language is a sugared version of the A-calculus with base val-
ues, the semantic functions of Figure 2.5 are straightforward, and are based
on Stoy’s work [1982]. Ir Chapter 4 we consider the addition of primitive
operations, such as addition, to this semantic definition.

2.4 An Operational Semantics
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B+F {Expression Values)

= [E = E] (Function Values)
(Primitive Values)

[Ide — E] (Environments)

w WH .
M M Mmm
cwHm

Figure 2.4: Value Domains for Denotational Semantics
P:Prog—+ E
PIE where A] = £[E]fz(P[A]D
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C:Comb—+ U—-E
C [ALE] p
CIALT]»

Acl[E](pp{I—¢€}) in E
AeL[TM){pD{I—c}) in E

E:Exp—U-SE

M = pli]
£ [Bl» — B[B]in E
E[Eo (E1)] p = (c0EF) = (60| F)(&), L

where &; = £[B]p  fori = 0,1

Figure 2.5: Semantic Functions

In this section we define an operational semantics for the language. This
operational semantics will also be referred to as an interpreter for the lan-
guage or an implementation of the language. Because we wish to implement
the language described in Section 2.3, we use the same syntactic categories
and abstract syntax. The operational semantics is defined so that it mod-
els graph reduction. It is this important technique that is the basis for
the most efficient implementations of lazy functional languages known. See
[Johnsson 83, Johnsson 84] and [Fairburn and Wray 87] for further details.

The domains used to define the operational semantics are given in Fig-
ure 2.6. We will use the same letters to represent these domains as we did
for the denotational semantics of the previous section, although we are now
using them to refer to different domains. Each state in S has two compo-
nents; a rooted graph (with elements in G x L) and a global environment
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o € §8 = (GxL)xD {States)
¥y € G = [L—=Nj (Grapbs)
v € N = A+4I+B+1Ide (Nodes)
A = LxL (Application Nodes)
I =1L (Indirection Nodes)
B € B {Basic Values)
p € U = [lde—1L) (Local Environments)
6§ € D = [lde - Comb] (Global Environments)
t ¢ L (Node Labels)
¢ € L* (Spines)
x € K = [([GxL)—-(GxL)] (Continuations)

Figure 2.6: Valte Domains for Operational Semantice

(with elements in D). The graphs we wish to consider have the following
properties:

directed This is so that the edges point in one direction only. Sucha graph
is often referred to as a digraph.

labelled The domain structure we have chosen uses the labels to represent
edges.

finite Both the set of vertices and the set of edges are finite.
rooted We need to maintain the distinction of the root node.

A finite labelled digraph is defined in [Harary 69, pages 8-13]. Our rooted
graphs are represented by a graph (G), from node labels (in L) to nodes (in
N), and a root node from L. This represente the rcot node of our evaluation.

Nodes are represented by node labels. These are represented by the flat
domain L, which is not further defined. We can think of them mformally
as pointers into the heap. The contents of a node (from domain N) may be
one of four types, represented by A, I, B and Ide. The domain A represents
the application nodes, I represents the indirection rodes, whilst B and Ide
have been encountered in Section 2.3.

This notation to represent graphs may not be immediately obvious. It is
similar to the way the store is modelled in a typical denotational semantics.
An example of a graph is given in Figure 2.7, and we would model this by
the graph v and root £y where
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fo:@
7N\
£H T £s :az
AN
£ @
VRN
£:f

£4 a1

Figure 2.7: Example of a Graph

‘/:{ fo'—‘ (fl, f_-,) ill N., fl "-'22 in N, fg H(f3, f.‘,) in N,
£3HfinN, f,;""ﬂlinN, szagiﬂN}

In the pictorial representation @ represents an application node; T represents
an indirection node and f, @y and a; are identifiers. Fach node is labelled
by ... b

Informally the interpreter performs reductions on a state o (using the
function Step) until a state is reached in which no further reductions are
possible (tested by Done). Of course it is possible that there is no final state
and that the interpreter “loops for ever”. This is why the Ewval function
of Figure 2.8 is defined in terms of the least fixed point of the sequence of
reductions.

Both Step and Done are defined in terms of a spine which is constructed
by the function Spine. Informally Spine produces a list of pointers to appli-
cation nodes and a pointer to either a function or a basic value. In the graph
drawn in Figure 2.7 the spine is [£3, €2, £5]. Notice that the indirection node
is not included.

A state o is terminal when Done(c) holds. This occurs if the first and
only element of the spine is a basic value or if the spine represents a function
with insufficient arguments to be reduced. Peyton Jones refers to such a state
as being in weak head normal form (subsequently referred to as WHNF) in
his book [Peyton Jones 87, page 198]. The number of arguments required
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Eval = fe(Akdo.Dane(g) — o, x(Step(e)))}
Step((1,£0), 6) = (v & {(¢!(Args[l'] - 1)) = ¢ in N}, L), §)
where (£:¢) = Spine(7, fo)
[f] = 6((y¢)|Ide)

o, ) CIr)p ariaé(7, 8)
Done((7, %), 8) = (VEBA#S=0)
(v € 1de) A (Args(8 (v | Tde)) > # ¢))
where (£:¢) = .S';;'ne('y, L)
v = 7

1l

Spine(7, £) = (veA) — Spine(y, fst(v | A)) # [4],
(vel) — Spine(y, Elide(y, (v | I))),
(veB) — g,
(vElde) — [4],
?
where v = 4 f
Args[J1LE] =1
Args[[ALT] = 1+ Args[T]

Figure 2.8: Interpreter

New (1) satifies Y(New(y))=1 A New(ML)=fH €L

Elide(7, £) (7£€ I) — Elide(y, (2| I)), 2

(veA)— snd(v | A),L
where v = 7 {

Arg(1, 0)

Figure 2.9: Auxiliary Definitions

by a function is determined by the auxiliary function Args. If a state is
non-terminal then a reduction step is performed on that state, nsing Step.
A reduction step consists of the following operations.

¢ Detiermining the combinator T' associated with the identifier at the
head of the spine.
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s Associating the local variables 1;...I, of the combinator Al ... AIL.E
with the arguments on the spine.

e Constructing an instance of T in the heap. This has root #.

¢ Overwriting the root of the original redex (¢ ! ArgsD — 1) with an
indirection to the root {£') of the newly constructed instance of T'.

The initial state of the interpreter, for program II, is produced by con-
structing an initial graph from the expression part of the program, and a
global environment from the definition part of the program. This might be
regarded as a primitive compilation for the program I1. One could instead
use the G-machine as the basis for the operational semantics. We would
then have to show that the theorems of Chapter 3 will remain true with this
new operational semantic specification. Alternatively, and probably more
simply, we can establish an equivalence between the states of the jnterpreter
presented here and those produced by the G-machine. This is done in Chap-
ter 7.

We now describe tbe compilation functions.

P This function evaluates an initial state which is constructed from E and
A using £ and D.

‘D This constructs a global environment in D from A. It maps identifiers to
combinators, which are represented as syntactic objects.

This is done because we need to determine both the arity of each T'
and the substitution to be performed if the combinator is reduced.

C Should the combinator T be reduced C performs this reduction. It builds
up a local environment p in U from the atack ¢. When it has acquired
sufficient arguments it uses £ to construct the graph.

& This builds a graph to correspond to the expression E. If we have an
identifier we must determine whether it is locally or globally defined.
The function dom is used to test whether [ is bound in p. If it is we
return the original graph and a pointer to the node associated with
the local identifier 1. Alternatively, in the case of an identifier bound
globally, we add a nrew node to the graph containing the identifier I,
and return this new graph and a pointer to the newly created piece of
graph.
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P:Prog— S
P [E where A] = Eval(E[E]p aid & init)
where & init = (({}, L), D EA])
D :Defs -+ D
D& and Aq] = D[As]® PIA]
pli=T1] = {1~ [T

C:Comb - U—-L"=K
C[M.E]p(£:¢)
C[M.I]p(€:4)

E[Elp & {1~ &)
clhlpe {16 ¢

£:Exp—-U—-K

EMe(r,8) = (L€ dom(p)) — (7, Arg(p{I])),
{(v@ {¢’ —~ [I}in N}, &)

where # = New(y)
E[B1p (1, &) — (1®{¢~ B[B]inN}, &)

where ! = New(y)
ETEo (B p (12, 62) = (0@ (& (to, &) in N}, &)

where (7, &) = E[E]s (vix, bin)

fori = 0,1
v = New(yo)

Figure 2.10: Compiling Fanctions

If the expression is the syntactic representation of a basic value we build
a new node in the graph and return both this graph and a pointer to
the new node.

Finally, for an application we recursively invoke the semantic function
£ on the subexpressions and then construct a new node that represents
an application of the two subexpressions. We then return this graph
along with a pointer to the application.

Notice that every reduction is performed with an indirection node over-
writing the root node. This is not necessary for lazy reduction, and one
improvement incorporated in Johnsson’s G-machine is to overwrite the orig-
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inal application node with the contents of the new one, whenever the function
body is an application. On balance, I feel that the simplicity of the current
machine assists the understanding of the correctness proofs. We return to
this subjeect in Chapter 6.

To model shared computations properly we require a store. In the oper-
ational semantics this is labelled ¥ € G, and informally it corresponds to the
heap in a graph reduction implementation. It is interesting to note that the
store weuse is less complicated than the general model provided in [Stoy 77,
Chapter 12]. We have no need to use Map and Area, because the store is
used in a restricted way by the operational semantics. This implies that
we may use a simple version of the function New, defined in Figure 2.9. It
produces new node labels, in L, that do not clash with any that are present
in the current grapb 7. In a real programming environment the function
New would be a heap allocator of some kind. In this specification we ignore
the particular choice of heap allocation algorithm, provided that it can cre-
ate new node labels for us. The function Elide removes indirection nodes
which may be used to refer to a node. The function Argis used to select the
argument component of an application node.

2.5 Related Work

Denotational semantics for lazy functional languages have been given by
Stoy in [1981]. This definition is in some ways too general for our proposed
implementation method as it has general definitions within expressions. In
other ways it lacks some of the features we wish to explore; such as higher-
order built-in functions and structured data objects. Another denotational
semantics is provided by Meira for KRC in his thesis [1985]. This incor-
porates a printer mechanism for structured data objects and higher-order
built-in functions.

In his thesis {1987], Augustsson provides a denotational semantics for a
lazy functional language which includes used-defined structured data types
and pattern-matching. This makes the language definition quite complicated
and he therefore omits a congruence proof to establish the correctness of the
G-machine.

Formal operational semantics for lazy functional programming languages
are easily given for normal order reduction semantics in a term rewriting
system. Graph reduction for tbe A-calculus is explored by Wadsworth in
his thesis [1971]. A formal operational semantics for a language similar to
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that investigated in this thesis is provided in Johnsson’s thesis [1987]. It is
a simplified version of Johnsson's operational semantics that we investigate
in Chapter 7. An alternative definition, based on a fixed set of combinators,
i provided by Turner ia [1979a, 1979b].

2.6 Conclusion

We have presented both a denotational and an operational semantic model
for a simple lazy functional programming language. The language is suffi-
ciently simple that both semantics are reasonably straightforward. At the
same time the language is sufficiently powerful that we would hope to be
able to prograrn with it, provided built in functions are included.

We now wish to establish the equivalence or congruence of these two
definitions. This is the subject of the next chapter.



Chapter 3

Congruence Proof

In this chapter we establish a congruence between the results produced by
the denotational and operational semantics. This congruence is not equality
since the results of each semantics are from different domains, and these
domains are not isomorphic. As we ghall see, there is a way to convert
final states from the operational semantics to values in the denotational
semantics domain. This is not sufficient to make the denotational semantics
fully abstract; this is a consequence of Plotkin’s counter-example [1977].

In Figure 3.1 we present the proof structure in tabular form, a8 aguide to
the dependencies within the proof. In the text of this chapter each theorem
is stated first; any lemmas or subsidiary results are stated and proved; and
finally a proof is given.

3.1 The Congruence Proof

We wish to show that the operational semantics of Section 2.4 implements
the language defined by the denotational semantics in Section 2.3. Before
doing so we introduce the diacritical convention. Because the two speci-
fications under consideration will often use the same names for the same
concepts, we distinguish them by accenting them. The more abstract item
is normally denoted by an acute accent, whilst the more concrete uses a
grave accent. The pair (4, &) is represented by the shorthand é.

Because the results from the denotational semantics and the interpreter
;re frgm different domains, we introduce a derepresentation function E from

to E.

23
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Theorem 3.3 This proves that P [II] = E( [II]), provided that P [II] €
B. It is established by fixpoint induction on the state. It requires

Theorem 3.4 This proves that P [[I] I E(P[I1]). It requires

Theorem 3.12 This proves that P[] C E(P[I]), provided

Theorem 3.7 This proves that an individual reduction step
on a state will produce a new state that approximates the
old one, under derepresentation. It requires

Lemma 3.8 Indirection Node Equivalence Lemma.
Lemma 3.8 Spine Derepresentation Lemma.
Lemma 3.10 Combinator Substitution Lemma.

P[] £ B. It is established by structural induction on the

program, using inclusive predicates. It requires

Lemma 3.2 Proves that derepresentation of a combinator
name in the operational semantics is the same value as
that supplied by the denotational semantics, for a given
syntactic structure A,

Theorem 3.17 This proves that the predicates ¢ and f exist.
It requires
Lemma 3.18 Partial Predicate Projection Lemma.
Lemma 3.19 Partial Predicate Injection Lermma.

Corollary 3.20 Proves that the predicates establish the re-
quired approximation.

Theorem 3.21 Proves that all initial expressions satisfy the
predicates, It requires
Lemma 3.22 Provesthat the predicates imply the correct

behaviour for application nodes.

Figure 3.1: Qutline of the Proof Structure
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Definition 3.1

E((y, 8,8 = (relde) — acuted(¥|Ide),
(bEB) — (¥|B)inE,
(“"E I_) _— -’E((:T! v I I)! :;)s
(PEA) A (oEF) — (& | F) (&),
7

where I = 3¢
& = B
(o, i) = (v|A)
acute(b) = fir(acutd(§))
acutd$5[1] = CEMDs

The auxiliary function acute is used to construct the denotational se-
mantics’ environment from the interpreter’s environment. That this is true
is shown by Lemma 3.2,

Lemma 3.2

For all A in Defs

fix(D[AD = eeute(D [A)).

Proof of Lemma 3.2
A simple structural induction, on A, establishes that
T = acute' o D,
frem which we have

fix oD = fix o acute’ o D = acute o D.
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The function E will produce a value within the domain E for any in-
terpreter state ¢ in 5. So we say that ¢ and o' have the same meaning if
and only if E(g) = E(0¢’). Notice that this is a denotational equivalence,
and that different algorithms for computing the same function will be equal
under this equivalence. An operational equivalence is defined and used in
Chapter 8.

We may now state the congruence condition as Theorem 3.3.

Theorem 3.3

For all TI in Prog, with P[II]E B,

PN} = E(P[]).

Wewill see later in this chapter that the restriction to programs which re-
turn base values, is associated with the full abstraction problem [Plotkin 77).
The proof of Theorem 3.3 appears to require two separate proofs, each show-
ing that one definition approximates the other!. The reason why such a
duplication of effort is necessary is that the two techniques used do not gen-
eralize to give the complete congruence of Theorem 3.3. It is instructive to
consider where the use of complete, rather than partial congreence causes
each method to break down, and this is included in the respective proofs.

3.2 Analysis of the Interpreter

The most obvious method to use to prove Theorem 3.3 is fizpoint induction
on the interpreter. For this method we use the derepresentation function
E, that takes an interpreter state to a value in the denotational semantics’
domain. Thus we would hope that during the execution of a program by
the interpreter, the derepresentation of the interpreter states would remain
constant. From this we wounld like to conclude that the interpreter always
produces the same answer as the denotalional semantics. The snag occurs
when the interpreter fails to produce an answer, presumably when it is in
an “infinite loop™. In this case, will the denotational semantics provide the
answer 1, or do there exist programs which cause the interpreter to loop
forever, but which give proper values in the denotational semantics?

1We say “appears” because, in the absence of a meta-proof, we are unable Lo stale
categorically that we need two separate proolfs.
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To avoid these hard questions (at least, until Section 3.3) we shall con-
sider a weaker version of Theorem 3.3.

Theorem 3.4

For all II in Prog

P [n}2 E(P0]).

That is, for all programs that our syntax of Figure 2.2 defines, the inter-
preter of Section 2.4 will produce an answer that approximates the ssmantic
values given by the denotatioual semantics of Section 2.3. One way to para-
phrase Theorem 3.4 is to say that the interpreter of Section 2.4 is heading in
the right direction, because it never produces an answer that disagrees with
that of the denotational semantics. Obviously this is a useful result to have
about an interpreter, as it allows us to believe any result it may produce.

The method we will use to establish Theotem 3.4 is firpoint induction on
the interpreter (Manna et al. 73). For fixpoint induction to work werequire
that the predicate be inclusive, see [Stoy 77, page 216].

Definition 3.5

An assertion g(z) is inclusive, if and only if, for all directed X

Ada(z)z € X} = o | X).

We recall from [Manna ef al. 73] that, for any inclusive predicate ¢ and
monotone function A, with:

1. ¢{1) and
2. q(x) = q(H(x)),

it is the case that g(fir{ H)) also holds.
After looking at the definition of the interpreter, we define ¢ and H.

Definition 3.6

EokCE
Akdg. Done(e) — o, k{Step(o))

g(x)
H
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With these definitions in mind we now seek to prove that Theorem 3.4
holds. In order to establish this we will eventually need to show that E{s) 2
E( Step(s)) whenever o is non-terminal. In fact we can show the equivalence
of thesevalues. That is: performing a single reduction step on a non-terminal
state will not change the meaning of a graph.

Theorem 3.7

For all @ in S, such that Done(o) does not hold:

E(g) 3 E(Step{0)).

A reduction step, implemented by the function Step, consists of two parts.
In the first part we construct a graph to represent the body of the function
we are reducing. The second part consists of overwriting the original root of
the reduction with an indirection node to the root of the new piece of graph.
This means that the proof of Theorem 3.7 can be split into two parts, the
first shows that the use of indirection nodes does not change the meaning of
the graph, and the second, shows that the use of ¢ makes a piece of graph
with the same meaning as the original graph.

Lernma 3.8
IfE(('Tv £)1 6) = E(('}‘, Z,)) 6) then:
E(v@{£— ¢ in N}, £, §) C E(7, £), 8).

This says that given two nodes in a graph with the same denoctational
meaning under E, we may replace one of them by an indirection node to
the other. Lemma 3.8 is a general result about indirection nodes under such
circumstances, and includes the case where a node is overwritten with a

pointer to itself. The uew meaning of the overwritten node is clearly 1,
although this may not have been the original meaning of the node.

Proof of Lemma 3.8

Let v = v @ {£ — # in N}. If we redefine E in terms of an explicit
fixpoint, so that E = fir(E'), we have:
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E'e((y, 8,8 = (vElde) — acuted(d|Ide),
(#EB) — (¢|B)inE,
(Pel)  — el(3,21D),9),
(fIEA) - (L“QEF)—-—L
(b | P&, L,
?
where & = 3%}
éi e((:Y: ‘él')'n j)
(b0, &) = (¥ |A).

We may now show that the lemma holds by fixpoint induction.

Let g be defined as:

Q(e) Aad Vr'e((?"v r)! 6) C E({(7, r)! 6)'

As the base case is trivially satisfied we consider the inductive step.
Let ¢ = e((7',r),6) and £/ = E'e((7, r), §). Assume inductively
that e ({7, £), ) C E((7", £), é) for all £ € L. Consider the cases of
v=+4'r:

1.

(v E Ide)
then £ = acuted (v | Ide) = ¢’

. (v EB)

thene=(v|B)inE=¢.

.(VEI)

We now consider two cases for r:
(a) (r=£) Then y'r = £ in N. But
e =e((y' ), 6)C E((+, '), ),
by our inductive hypothesis. But ¢’ C E((v, £), 6) by hy-
pothesis of lemma.
(b) (r # £) In this case &’ = e((y', v | I), 6), which satisfies the
inductive hypothesis.

.(vEA)

This is the same as case 3, only we need not consider the case
where r = £.
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The reason that we have not proved equality in Lemma 3.8 is that when
¢ = # we create a cycle where none existed before. This results in the
left hand side of the lemma statement being L, while the right hand side
remains wunchapged. Of course, all of our indirection nodes are inserted so
that this can not happen, but the statement of our revised lemma would
have to include restrictions.

Before proving our assertion that rewriting a function body preserves the
meaning of a graph, we first establish a derepresentation lemma for a state
in terms of its spine.

Lemma 3.9

Suppose that [£, ..., £,.] = Spine(y, £.) and that t; = snd(v | A)
forl <i<m. Then

E((‘T: tlm)1 6) = (E(('}’, %)a '5)) (E((7’ ll)i 6)) LR
(E((7) tm), 6))-

Proof of Lemma 3.9

By induction on the legth of the spine, m.

We now state and prove the graph rewriting lemma.
Lemma 3.10
Suppose that [, ..., &,] = Spine(y, .} and that &; = snd(7 ¢} | A)

Jorl < i < m. Suppose that §{(y ¢} | Ide) = [TY and T = A} ... M,.E
with m > n. Then

E((7, &), §) = E(CITp wia[8}, .-, €] (7, £)), 6).

Proof of Lemma 3.10

We first observe from the spine derepresentation lemma, Lemma 3.9,
that the left hand side becomes
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(acute(8)(vLh | 1de)) (E((1, £1),6)) ... (E((7, &), 5))-

But acute(8)(v¢, | Ide) = ¢ [T](acute (4)), which makes the left hand
side £ [E]{acute(§) ® ) where

A= (L= E{(v, 1)8), ..., In = E((7, £a)8)}.

The right hand side becomes E(€ [E](7,£,), §), where p = {I; —
&, ..., La— £;}. A structural induction, on E, now suffices to show
the equivalence.

1. E = [I] AL € dom(p)
Without loss of generality, I = I;, then by substitution, beth sides
become E{(7, &), 6).

2. E = [[JAL¢ dom(p)
The left hand side becomes acule § [I], whilst the right hand side
is E(v® {' — I in N}, #), §), where ¢ = New(y), which is
acutes [1].

3. E=[B]
The left hand side becomes 8 [B] in E, whilst the right hand side
is E((y® {¢' —~ B[B]in N}, #), §), where # = Neuf), which is
B[B]in E.

4. E = [E(Ey)}
Suppose inductively that the Lemma i8 true for E; for i = 0, 1.
i.e. for all v and all r, and for i =0, 1:

g = E[E} acute(8)® p)
= E(IE])(, ) 9)

Then the left hand side becomes (g € F') — (£q | F) &1, 2. The
right hand side is

E((', 1), §) _
where (y0,70) = f,"[E(,]] p(m, )
(m,n) = E[Eds(r, 9
r = New(m)
¥ = 7%®{r—(rg,n)inN}

But & = E((«, ri), §), for £ = 0, 1, because of the properties of
New. Hence we have the result.
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We have now shown how to relate the derepresented values of indirection
nodes by Lemma 3.8 and the relationship between the graph before and
after the construction of a combinator body. We now combine these results
to prove Theorem 3.7, which states that for any non-terminal state o:

E(0) 2 E(Step (o).
Proof of Theorem 3.7

Suppose 0 = ((v, £.), ). Then, to satisfy Done(o) = false, we must
have:

1. [€, ..., &,] = Spine(y, &,).

2. Li=snd(y & | A} for1 £i<m,
3. [T)=6(v 45 | Ide).

4. Args[I] = n, with n < m.

We recall that E((7, £,), §) can be expressed as

(E((7, ), §)) (E((7, &), 8)) ...
(E((7, £m), 6))-

Let (7', £) = C[F)p asalll, ---» £.) (7, £4), then, by Lemma 3.10,
E((v, £,), §) = B((Y, £.), 6) = B((7', £), §).

So by Lemma 3.8 we may deduce
E((7,£,), 6) 2 E((Y @ {£, ~ £ in N}, £), §).

But E{o) = (E((1, £.), ) E((7, £ns1), 8)) .. - (E((7, £m), £)), and

E(Step(0)) =
(E((7", £2), SNE((Y" Enr), 8)) - .- (E((Y", £m), ),

where 4" = 4" & {£/, — £ in N}. So provided E{(y, £,,),§) is mono-
tenic, we have E{o) O E(Step(o)). But E({7, £,),6) is monotonic
becanse it has been derepresented to have a value in E, which includes
only continuous functions.
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[w]

Finally we are in a position to prove, by fixpoint induction, that the
interpreter approximates the denotational value for a program, which is the
main resuit of this section. This theorem is of general use for all interpreters
defined using Done and Step. If, for some E, E(Step(e)) T E(e) then the
operational sernantics will satisfy a partial congruence.

Recall that we defined g and H in Definition 3.6 as

g(k) = EoskLCE
H = Xxdo.Done(o) —— o, k(Step(o))

and that Theorem 3.4 states that for all I in Prog,
P 3 E(P 1))
Proof of Theorem 3.4

There are two parts. We first establish that ¢(fir(H)) holds.

First we wverify the base case and then we must prove the inductive
step,

1. Because E(L(z)) = L for all &, g( L) holds trivially. Notice that it
is at this point that the proof would break down if we attempted
to establish total congruence by this method. We would need to
show that E(1(c)) = E(c) for all ¢, which does not definea very
useful programming language.

2. Consider g(H(x)). This holds if and only if E(H xo) C E(o),
which, expanding H, is E{Done(c) — o, s(Step{z))) C E(0o).
We must consider the alternative values that Done{s) may have.
(a) Done(g)= 1 or Done(c) = 1.

Both these cases trivially hold.
(b) Dome(o) is true.
Substituting for Done(c), we have H ko = o, and so
E(H ko) = E(o).
(¢) Done(c) is false.
Substituting for Done(e), we have that
E(H s o) = E(x(Step(a))).
But, E(s(Step(g))) C E(Step(e)), by the inductive hypothe-
sis g(x). Furthermore, E(Step(o)) C E(o), from Theorem 3.7.
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Hence we may conclude g fiz{ H)). This can be restated as
For all o in § E(Eval(0)) C E(o).

So, to prove Theorem 3.4, we must show that the initial state
£ [ED2 acid 2 init>

satisfies the approximation condition
£ [E)fir(PLAD) 2 E(E [EDP asia & init).

By Lemma 3.2, we may relate the two environments, as they are both
created from A. A consequence of this is that the derepresentation
function E now maps the initial state to the denotational value re-
quired. This is a corollary of the structural induction of Lemma 3.10,
when both § and p are arid.

At this point we know that P[] 2 E(P[II]), although we could have
proved something slightly stronger, namely:

Proposition 3.11
For all I in Prog, if E(P[]) =€ and e # L then

75[II] =€

In [Schmidt 86, Section 10.7] this property is referred to as the faithful-
riess of the operational semantics with respect to the denotational semantics.
However, this is still not strong enough to show complete congruence. The
reason becomes clear if we define P[II] = L. Then every program is given
the semantic value L by the interpreter, which certainly satisfies Proposi-
tion 3.11, but does not satisfy the complete congruence of Theorem 3.3. A
more subtle problem occurs when we consider whether an applicative order
operational semantics would correctly implement our denotational seman-
tics. It clearly does not, although it does satisfy Proposition 3.11. It is only
when we can show that our interpreter does not produce L when the deno-
tational semantics give a proper value, that we can feel confident about the
implementation of the interpreter. This is the object of the next section.
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3.3 Predicates for a Structural Induction

We now wish to prove that the denotational semantics approximates the
result provided by the interpreter. We will see later that it is only possible
to compare base values, and so the formal statement of Theorem 3.12 is
restricted to tbis case.

Theorem 3.12

For all TI ¢n Prog, with P[] € B,

Pyc P [m)).

The inductjve principle used in this section is that of domain induction.
Ip this way the denotational semantics progressively gives better and better
approximations to the correct value. Informally the first approximation to
the domain E is E; = L + B. We therefore represent all functions by Az. L,
although the basic values in B continue to be mapped to the correct element
in B. The next approximation is E; = [Eg — Eg] + B. With this domain
we are able to represent functions from B to B accurately, but higher order
functions are still only represented by an approximation.

There are two common models of domains. The first is Scott’s explicit
construction [1973], which will result in something like the Do, model. In
this case we must make explicit the projections and injections between E;
and E,4,, 50 that E; is correctly embedded in E,,. The alternative is the
P w model where this detail has been taken care of by using retracts. The
P w model [Scott 76) has a lattice theoretic domain structure. It therefore
also has a T element. Barendregt [1981] shows how to derive a model based
on algebraic camplete partial orders instead of complete lattices. As Baren-
dregt’s model has less clutter we use his model. For a comparison of the D
and Pw models when D = [D — D] see [Wadsworth 76].

The technique used is that of Milne [1974], although another equivalent
solution is provided by Gordor [1973). The method developed by Milne
involves the definition of inclusive predicates, that specify a relation between
values produced by each definition. It is usual to have one predicate for each
domain in the denotational definition, but we dispense with the one for
the domain B because B occurs as a result for the interpreter too. They
state that the approximation condition holds for particular elasses of ob jects
produced by the interpreter.
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Thefirst thing to dois define a predicate e on £. The intention is that e(£)
will hold whenever ¢ C E(2)and ¢ € B. Thisis established by Corollary 3.20.

Definition 3.13

e(é8) & (¢=1) — =1,
(=1 — £C7,
(IsBasic(2))  — (¢EB)A<T E(2),
(IsFunction(2)) — (€EF) A f((¢]| F), &),
false

f(&) & Ale(é(8), Eval(¢,))| Applied(Ea, ¢, &)
A e(&, Eval(&))}

IsBasic((v, £), §) =
(Spine(y, &) =[€]) A (v£EB)

IsFunction ((7, £), §) =
(Spine(y, £) = (£ : ¢)) A (¥ E1de)

App!£6d((7¢(a)1 £¢(G])1 6)((7@? E¢)1 6) ((701 Eﬂ): 6) =
Vel . ((bpy=2) A Vya) =¥a)V
(va=D) A vya) = ve}V
((vg = va) A vya) = Va)) A
(7¢(a) (Eﬁde(tﬂa))) = (£¢v fa))
where v = v £ for £ = ¢(a), ¢, o

The comparison of non-functional results is straightforward. For com-
paring two functional results there are twa alternative strategies. The first is
to define a predicate to compare two environments, one in the denotational
semanlics and one in the interpreter. This is the solution adopted hy Stoy
in [1977]. If we were required to prove correct an SECD machine or Curien’s
CAM [1986], we would probably adopt this approach, because the interpreter
environment then corresponds quite closely to that of the denotational se-
mantics. We note that as we would still be dealing with a reflexive domain,
we would still need to use an inclusive predicate method. The alternative,
used by Stoy in [1981), is to define an auxiliary predicate that expresses the
approximation condition between functional values in terms of their value
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when applied to arguments that satisfy the approximation condition. This is
a natural way to express the approximation condition for a graph reduction
interpreter.

We must prove the existence of ¢ and f, since they are not necessarily
well defined. This is done by construction. First define a sequence of ap-
proximations to e and f, using retractions to limit the domains over which
the approximate predicates are defined.

We recall from [Stoy 77, Chapter 7] that the solution to a domain equa-
tion can be found by using retractions on the Pw model. If this is done for
the equation E = [E — E] + B we obtain the following retraction

E = fir (AE.(E o— E) @ B),

and the domain E is then the range or retract of the function E on Puw,

Instead of working directly with elements of Pw, we may use thealterna-
tive definitions of the operators ®, @ and o—, given in [Stoy 77, Chapter 7)
as Theorems 7.44, 7.45 and 7.46 respectively. We note that & is being
used here to represent a different function from that described in Chapter 2.
These results are now reproduced.

Definition 3.14

Suppose that E and F are retractions on the domains E and F respec-
tively. Then the following equivalences are observed:

(E@F)r = (r=(,¢) — E(E)xF(¢),x
(E&@F)e = (cEE) —+ E(¢|E)inE+F,

(ceF) — Fo|F)})inE+F,r
(Eo—F)p = AcF(HE()))

Let us define

Ey, = F.B
Fa = 1
Frer = Eno— Ey,

Then we note that (AE.(E o— E}& B)" = E,, and s0 E = | 2 E, i.e.,
foralleE E

D En.(e)=¢
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The sequences of approximate predicates, e, and f,, are defined on the
retractions of E and F specified by E;, and F,, respectively. If £ satisfies ey,
then it is intended that the projection of £ into E, satisfies e( En(£), &).

Definition 3.15

en(£) & (8=1) — =1,
(¢=1) — €L1
(IsBasic(2)) ~—— (fEBYAELC E(2),
(IsFunction(2)) — (£EF)A fu(Fu(£), 2),

false

fo(é) < Irue
farr(€) ¢ Aen((Fapa(€)) (En(d)), Eval(éa))|
Applied(2,, &, &)
A en(En(d), Eval(a))}

These predicates, in contrast to the definitions of € and f, are clearly
well defined as there is no recursion involved in their definition.

We now define ®. If (P, Q) holds, then P and @ satisfy the definitions
of e and f respectively. And in Theorem 3.17 we will be showing that there
are equivalent alternative definitions of e and f.

Definition 3.16

(P, Q) & VEPE)®

(¢=1) — £=1,
=1 — £C2
{IsBasic(e)) — (£EB)AELC E(2),
(IsFunction(¢)) — (€EF}YAQ((¢]| F), 2),
false

A VE.Q(g)

A P(é(&), Eval(éa))]
Applied(¢,, &, &)
A P(é&, Fval(a))}

We now claim that

(=]

e(6) = N ea(Ea(¢), 2) and f(B) = A fa(Fai$), &)
n=0

n=0
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satisfy the definitions of e and f given in Definition 3.13, and hence that these
predicates exist by construction. This is stated formally as Theorem 3.17.

Theorem 3.17

o =]

B(2é. A en(Enal£), &), M.

n=0

fa(Fa($), 8)).

>

Before we can prove Theorem 3.17, we establish the (obvious) relation-
ship between the partial predicates e, and f, and the predicates e,;; and
fo+1. We observe that this is really an induction over the complexity of the
domain E. As the value of n increases, the predicate ey, is able to accurately
relate more of the values from the domain E. This is because E,, restricts the
complexity of the elements we may consider at any stage. Any more com-
plicated element, ¢, is represented by the best approximation in E satisfying
En(e) = &' and E, (') = &".

Lemma 3.18

Forall £, andn >0

enl) = enni(En(é), )
Fo@) > Sarr(Fa(8), §).

Notice that it is at this point that geueralizing the predicates ¢ and f
to denote equivalence, rather than approximation, would fail. If e,(E,.(£, &)
were to imply E(£) | B = E(2) | B then we would be unable to prove the
base case, which requires that fl(,\::.J_,:;‘b) holds for all d: There would then
be only one function allowed in the language: Az.L. As Stoy remwks in a
similar context, this does not define a particularly useful language.

Proof of Lemma 3.18

By induction on n.

1. Bases cases. We first observe that fo{¢) is true, and that Fo(¢) =
1. But

A(L,28) & Afeo((Fi(L))(Eo(d)), Eval(2a))]
Applied(2,, &, &)
A eg(Eg(c), Eval( &)},
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which is

A{eo{ L, Eval(é,))|Applied(2,, &, &)
A eo(Eo(d), Eval(&))},

But eg( L, 2)is always true. Notice that it is here that the Lemma
would break down if we wished to express equality, rather than
approximation, with the predicates e and f.

Now suppose that eq{¢) holds. Thern by considering the cases of
2, we see that e;(Eo(), ).

. Suppose, inductively, that the Lemma is true for some value n.

Then

fn+1(€) = A{en((FM-l(é‘))(En(d))r Eva[(éa))l
Applied(,, &, &)
A en(En(d), Eval(&))}.

But, by the inductive hypothesis:

= A{ens1((En(Frt1(€))(Ea(d))), Eval(a))|
Applied(2,, &, &)
A fn+l(Eu(Eu(d))’ Eva((d))}'

However, En{Fn41({£)En(d)) = Fuy1(£)En{d), so we have
Jnra(Faga(€), ).

Simijlarly,

ent1(£)
« (¢=1) — £=1,
=1 — ecy,
(IsBasic(2))  — (€€ B)A€ELC E(2),
{(IsFunction(¢)) — (£€F)A for1(Fry1(€), 2),
false.

Which by the above result is

& (¢=1) — £
=2 — ¢C?
{(IsBasic(¢)) — (£EB)}AELC E(2),
(IsFunction{¢)) — (£EF)A fay2(Fnpra(€), ),
false.

4,
7

au
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But this is eqy2(Ens1(€), 2)-

What we now wish to investigate is the relationship between e, and e,
for particular elements, £ in E. Because of the projective nature of £;, and
the approximation result we have just demonstrated, we are able to conclude
that the predicates are well hehaved in the sense of Lemma 3.19.

Lemma 3.19

Forall &, d andn > 0

en+l(€) = en(Ea(¢), é‘)
fari(8) = fa(Fald), ).

Proof of Lemma 3.18

By induction on n.

1. Bases cases. We first observe that fo(@) is true, and so trivially
fi() = fo(Fo(d), ¢).
Now suppose that e;(¢) holds. Then by considering the cases of
&, we see that eq(En(€), 2).

2. Suppose, inductively, that the Lemma is true for some value n.
Then

fora(€) @ Alens1((Fas2(€)) (Ens1(4)), Evai(2,)) |
Applied(2,, 2, &)
A en1(Eny1(d), Evai(a))}.

But, by the inductive hypothesis;

= Alen((En(Frai2(€)) (Enya(d))), Eval(2a)) |
Applied(2,, 2, &)
A en(En(&), Eval{&)}}.

However, E,.(Fnt2(€)Ent1(d)} = Fay1(€) En(d), so we have
frp1(Fasr(€), 2).
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Similarly,
en+'2(€)
& (2=1) — é=1,
(¢=2) — ¢LC%,
(IsBasic(2)) — (€EB)AELC E(2),
(IsFunction(2)) — (¢EF)A fop2(Fny2(€), &),
false.
Which by the above result is
& (¢=1) — é=1,
(IsBasic(2)) — (£(EB)AELC E(2),
{IsFunction(2)) — (€EF)A fap1(Fpea(€), &),
false.

But this is ep41(En+1(€), &).

We can now prove Theorem 3.1’7, ‘t{y substituting for P and ¢ the values
oo oen(E{€), &) and A, fu(Fn(#), ¢) which we hope will satisfy &.

Proof of Theorem 3.17

We may establish the first part by direct substitution for P and @ into
the definition of ®:

P& e R{(EE_L) — é=1,
n=0 (2= __'Z) — £C 1’
{IsBasic(2)) — (£EB)AELC E(8),
(IsFunction(2)) — (FEF)AQ((< | F), &),
false}.

S0 we must establish that

Q(é | F, ‘é) = /\ Q(En(é) | F, é)’

n={
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which follows immediately from Lemma 3.19. We now wish to establish
the second part:

Q) = AZofa(Fu(#), 9) : -
n=0 /\{e,,( Fn(¢) &, E”ﬂ[(¢a))l APP1i3d(¢av $, &) A
eﬂ(En(d), Eﬂﬂ((‘]))}

Now let pn = en(En(d), Fval2)) and gn = en(Fnp1($) &, Evil{da)).
So Q(@) = Va. Applied(@a, $, @) A A o{Pn = go)}. However,substi-
tuting for the left hand side of the second part we have:

MP(Fo($) &, Eval(d,))| Applied(da, &, &)A
P(En(4), Eval( %))}
= Va.Applied(@a, &, &) A {AZgPn} = {A04n}-

The equivalence

R{Pnaqn}':?‘ﬂn:’ ?\Qﬂ

”R=0 n=p n=0
may now be established by domain induction. Suppose that for some
m, E,(c) = ¢ and Fny1(@) = &. Then, by Lemma 3.19,
/\{pa=>qn} {Pm:’qm}-'{/\Pn:’ /\Pn}

n=0 n=0

Thus provided our induction principle works we have the required re-
sult. The induction principle is guaranteed by [ |32, E,(£) = &

Notice that we immediately have Corollary 3.20.
Corollary 3.20

For all €, ife(£) and £ € B, then

£C H3).
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We are unable to deduce that e(¢) implies ¢ € E(¢), because of the
following counter-example (due to Plotkin [1977]).
Let

fi=Ag.if ((g True L) and (g L True)and (not (g False False)))i L,

where and and not are defined as usual. Informally, f; g is bottom, unless g
is parallel-or, in which case f; g is i. In the operational semantics we have
no way to represent parallel-or and so, for all ¢ and j,
L= fiy=f;2.

However, in the denotational semantics, f1 and f; are distinct elements of
E. Thisis because parallel-or is certainly an element of E, and therefore f;
and f, must be distinguishable when applied to parallel-or. If the predicate
e were able to express the congruence of functions, we would be able to
generate the contradictory result that f; = fz.

To conclude this section, we have defined a predicate e to compare results
in the two semantics we are investigating, This predicate is well defired
by construction. The reader may wonder why we went to the trouble of
defining ¢ and f, when we could have used the alternatives ASS , en(E(€), 2)
and A%, fa(Fa(@), #). The reason is that in the next section we would have
to haveshown this equivalence anyway, as the alternative predicates are too
cumbersome to use directly, We now make use of the predicates e and f to
investigate the partial congruence of our two semantics.

3.4 Analysis of the Denotational Semantics

Finally, we wish to show that Theorem 3.21 holds.
Theorem 3.21
For all Il in Prog,

e(P 1), 7 [10]).

We notice that by Corollary 3.20, this will imply the partial congruence
P C E(P[I]), of Theorem 3.12, provided P [II] € B. Befote proving
Theorem 3.21, we state and prove a lemma that will be useful in the main
theorem. It is a general observation about the nature of application in
the two definitions of the language. 1t allows us to prove easily all of the
structural inductions that invalve the E = [Eq (E,)] case,
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Lemma 3.22

Suppose that v£E A and that v¢ | A = (£, £1). Suppose further that
e(¢;) holds for i = 0, 1, where

&= EUGI((T1 ci)a 6)
Then e(£), where

£

($0EF) — (& | F)é, 2
and

& IsFunetion(2g) —  Ewval{(~, £), §),

(IsBasic(&o} V(20 =2)) — 2, L.

Put another way, suppose that we have two subgraphs with roots £; and
£,, and that £y and #, approximate the reduced graphs. Then Lemma 3.22
states that the result of reducing the application of these two graphs (which
we represent as Eval((7, £), §)) will be approximated by the value obtained
by applying the two values £y and £,.

This is what we would expect to happen.

Proof of Lemma 3.22

Consider the sequence of states ¢, and o], where
o, = Step™((7, £}, §) and 7, = Step™((7, fo), 6)-

We now prove that the following relation holds between elements of
these two reduction sequences.

fo;, = ((n, ), &) then on = ((7n, £), 6).
This is proved by induction on n.
We see immediately that

Spine(+n, £) = Spine(vn, o) + [Elide (£)].

And hence that not( Done(o),)) implies not( Done(a,)), (although the
converse is not necessarily true).

Now consider the four values for 2q.



46 CHAPTER 3. CONGRUENCE PROQOF

L 2p=L
If 20 = L, then either Spine(y,, &) = L for all i greater than
some m, or there is no m such that Done(e¢])) holds.

In the first case we see that Spine(y;, £) = L for all { greater than
m, as well.
In the second, our second observation shows that there can be no
terminal state satisfying Done{d,,).

2. 29 =2, IsBasic(2o) and IsFunction(2o)
In these cases, suppose that & = ((v, £y), §) = o/, for some n.
But in this case 2 = Ewal(7y, £), §), from the above relation on
states.

We may now establish Theorem 3.21 by structural induction.
Proof of Theorem 3.21

Substituting for P, P and II, we have:
For all E in Exp and all A in Defs:

e(€ [E] fiz(D [A)), Eval(£ [E1{} oypit, D [AD).
This is proved by structural induction on the expression E.

1L E=[I]
Firstly £ [1) fiz(D [A]) = fir(D[A])[I]. Next
E(¢ [11{} oyt D[A]) = acute(D[A])[1],
But, by Lemma 3.2, fiz(D [A]) = acute(D[A]).
2. E = [B]
Let 2 = Fval(€ [B]{} o5p;e, [Al). Then IsBasic(2) and E(2)
equals B [B] in E. But £[B] fizs(P{A]) = B[B] in E.
3. E=[Eo(En)]
By Inductive Hypothesis, and Lemma 3.22.
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We have now proved Theorem 3.12 by the obvious application of Corol-
lary 3.20 to Theorem 3.21. With the completion of the proofof this theorem,
we have proved the main result of this chapter — the complete congruence of
Theorem 3.3. Schmidt refers to an operational semantics which is completely
congruent to a denotational semantics as both faithful and terminating with
respect to the denotational semantics [Schmidt 86, Section 10.7).

We summarize the route that has heen taken to establish congruence,
First the proof broke down into two separate parts: Theorem 3.4 which says
that the operational semantics approximates the denotational semantics and
Theorem 3.12 which says that the denotational semantics approximates the
operational semantics.

To prove Theorem 3.4 we establish that a single reduction step does not
change the meaning of the graph (Theorem 3.7) and from that used fixpoint
induction to deduce that the meaning of the initial graph was approximated
by that of the final one. A structural induction was sufficient to show that
the initial graph was congruent to the denotational semantics.

To prove Theorern 3.12 we first establish that the predicates required to
express the partial congruence exist. This is the result of Section 3.3. In
Section 3.4 we used structural induction to show that e(P [II], P [II]) holds
for all programs IL.

3.5 Related Work

The use of fixpoint induction to prove partial congruence follows immediately
from the work of Manna, Ness and Vuillemin [1973] on fixpoint properties.
The technique of structural induction, which we have used repeatedly, was
first described by Burstall in [1969].

The use of inclusive predicates was first described by Milne in [1974] to
describe mode declarations in Algol 60. With Strachey, he used this process
again to prove cotpiler correctness in [Milne and Strachey 76]. Reynolds
has used directed complete predicates in a similar way in [1974] and Gordon
uses a related technique in [1973). Further use of the inclusive predicate
strategy is made in [Stoy 77, Chapter 13] and [Stoy &1].

An alternative domain construction for E, related to Scott's D, model
[1981], can be used to prove tbat the inclusive predicates e and f exist.
The relationship between the D, and P w models of the pure A-calculus is
discussed in [Wadsworth T6]. In [1976], Scott presents relationships between
projection functions and retracts,
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The full abstraction problem for the typed lambda calculus was first dis-
covered by Plotkin [1977). His solution was to extend the language with
which he was working, so that it included parallel-or. Qther approaches
have been undertaken, by Milner [1977] 2nd Mulmuley [1984, 1986] amongst
others. These have heen restrictive, in that the domain E includes only se-
quentially implementable functions. Ong [1988] gives a fully abstract model
of the lazy lamhda calculus, using bisimulation logical relations.

A similar result to that obtained in this chapter has heen derived hy
Klop [1980]. His work on combinatory reduction systems is based on a
syntactic model of reduction systems, rather than the domain hased model
investigated in this thesis.

3.6 Conclusion

We have uow shown that the operational semantics we have defined in Chap-
ter 2, correctly implements the standard denotational semantics. There are
a number of other ways to state this result. We may regard the operational
semantics as a graph rewriting system, in which case we have provided a
termination result; alternatively, we may regard the congruence proof as a
validation of the weak head normal reduction mechanism of Peyton Jones
[1987]. Stated simply: graph reduction implements functional languages
correctly.

One worry we have is that this language has no built-in functions or data
structuring facilities. We address this problem in the next chapter.



Chapter 4

Extending The Language

In this chapter we extend the result of Chapter 3 to cover a language with
structuted data and built-in functions. We consider various ways to represent
data structures and select the simplest, We also implement a representative
sample of built-in functions.

4.1 Extended Denotational Semantics

The first question we face is whether we intend to mode! a typed or untyped
language. The majority of modern functional languages have strong poly-
morphic typing, but to introduce this into our language we would need to
provide a type-checking function Pr : Prog — T. Such a function would be
used to provide a denotational semantics along the lines

Pr] — P[], 2

The problem with such an approach is that to typecheck Il we need to carry
out a dependency analysis. In this analysis we transform the program so
that all mutually recursive definitions are really mutually recursive. Failure
to do this may make it impossible to type-check a program, see [Mycroft 84].

Ag such source-level translations are against the spirit of denotational
semantics, we now coasider an alternative definition of programs. In this al-
ternative we allow general local definitions in any expression, subject only to
the criterion that mutually recursive definitions must satisfy our dependency
criterion. The problem with this approach is that our operational semantics
must jgcorporate a lambda-lifter or similar mechanism to translate back to

49



50 CHAPTER 4. EXTENDING THE LANGUAGE

F+ C+ B (Expression Values)
[E — E] (Function Values)
ExE (Constructors)
(Primitive Values)
[Ide » E} (Environments)

il
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cmamm
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Figure 4.1: Value Domains for Denotational Semantics
{Extended for Constructors)

the form we currently have for programs. We note that as a result of this,
our operational semantics is indifferent to the existence of a typing scheme.

The conclusion of this discussion is that for simplicity we shall consider
an untyped language. After all, we can translate a typed language into our
untyped language.

We now move on to consider how we wish to represent constructors. The
alternatives are Lo have a single constructor akin to the LISP CONS, or to
extend the language to deal with arbitrary constructors. The example of
LISP shows that a single constructor is sufficient for programming purposes.
The G-machine constructors may be represented, at least in abstract, as
elements of the domain C = Ide x L™, where the identifier models the “tag”
and each £ € L represents the pointers into the heap for each argument. The
problem with this approach is thalt we need a number of selectors for each
constructor along with a tag testing function. For this reason we consider
a single constructor cons, with selectors head and tail and a tag testing
function null and constant nil. As tail is very similar to head we will omit
it from further discussion.

Wenext consider which arithmetic, comparison and conditional functions
we require. We shall presume that arithmetic is defined over some suitable
representation of the integers or a subset of them. This domain will be called
Z. The comparison operations are defined only over Z. Structural equality
will have to be defined separately. Finally, we have a single conditional
function, if, which behaves in the appropriate way on the domain T. We
can summarise this information by providing the standard semantics for such
operations in Figures 4.1 and 4.2,

We will also allow expressions to construct cyclic graphs, although we
note that as far as the denotational semantics is concerned we do not have
any notion of cyclic definitions.
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Ppasiclnull] = Ae.(e = nil)
Phasiclhead] = Ae(eEC) — fst(e [ C), L
Phasicleons] = Aeprerfep, £1) in E
Phasicl+] = AcpAerleg EZ) —
((c1EZ) — (e0]Z+€, | Z)in E, 1), 2
pba.sic“:=] Aearer(ep EZ) —
f(£182) —(00|Z2=61Z)inE2),2
Pba.sitﬁif] = AgpAg AEQ.(SO E T) —_— ((Eu | T) —r £, E';), ;
Figure 4.2: The initial environment py,, 4.
c €8 = (GxL)xD {States)
T € G = [L—=N] {Graphs)
v € N = A+I+B+1de+C (Nodes)
A = LxL {Application Nodes)
I =1L (1ndirection Nodes)
x € C = LxL {Constructor Nodes)
B ¢ B (Basic Values)
p € U = [lde— L] {Local Environments)
§ € D = [lde —+ Comb] (Global Environments)
£ ¢ L {Node Labels)
¢ ¢ L* {Spines)
£k € K = [(GxL)—(GxL)] (Continvations)

Figure 4.3: Value Domains for Operational Semantics
{Extended for Constructors)

We note that we now wish to make explicit the basic value domain B,
as B = Z4 T + {nil}. We will dispense with projections, injections and
membership tests associated with B as they can clearly be inferred from the

context.

The resulting langnage thus resembles a lambda-lifted form of LispKit,
which is described in [Henderson 80) and [Henderson et al. 82].

4.2 Extended Operational Semantics

The operational semantics of our extended language is now defined. In
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Dump(s) = Dene(o) —[{: ¢],
(1={null]} — Dump nun({:¢)o,
(1 = [head])} — Dump Head (£:¢)0,
(I=fcons]) — Dump cons(£: P)o,
I=[+D — Dump pus ({: ¢) o,
(1=]=]) — Dumpgq¢)o,
(1= (i) —+ Dump y(£:¢)o,

[€: ¢)
where (£:¢) = Spine(y, 1)
((ri7),8) = o
1 = (7€)] Ide
Dump nau ¢{(7, 7). 6) = (Done(ga,) — [I, Dump(as,)) 4 [4]

where 0,, = (1, Arg(7, (| 1))), 6)
(DOHE(U,,,) — I Dump(a,,)) + (4]
: ]where o, = ({7, Arg(7. (@ ' 1)), )
¢
(Done(a,,) — (Done(aa,) — |],

Dump(04,)), Dump (04,)) + (4]

where aﬂv‘ = ((’T! A"Q’('T, (¢ 1 i)))'- '5)
(Done(oa, ) — (Doneo,,) — [],

Dump(e,,)), Dump(a,,)) + (4]

Dump Head ¢ (7, ), 6)

Dump Com¢((7’ r)! 6)
Dump pra ¢ ((7, 7), 8)

It

Dump gq ¢ ((v, r), §)

where a,, = {(7, Arg(y, (¢! 1)), 6)
Dump y¢((v,7),8) = (Done(os,) — [|, Dump(oa, )) + [¢]
where Tyy = ((71 A"Q(’Tv (¢ ! 1)))1 6)

Figure 4.4: The Dump and Dump. functions

Figure 4.3, we redefine the domain of nodes, N, to include a constructor
type. This is represented by C. Welet B = Z + T + {nil}, and as we did
in the denotational semantics, we will infer from the context the various
projections, injections and membership tests associated with B.

The principal difference between the operational semantics of Chapier 2
and the one presented here is that we now work with a list of spines, rather
than a single spine.

In this thesis we will refer to such a structure as a dump. This terminol-
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/\
/\
/\

£4:

Figure 4.5: Example of 2 Graph

Steplo) = (I=[aull]) — NullStepoo,
(I = [head]) — HeadStepdo,
(1 ={lcons]) — ConsStep¢o,

d=[+D —+ PlusStepd o,
(I=[=) — EqgStepsa,
1=00  — IfStepdo,

OtherStep (6] ¢ o
where (£:¢):9 = Dumpeo
((71 rh,é) = o
I = (v£)|Ide

Figure 4.6: The Step function

ogy conflicts with that of the G-machine papers [Johnsson 83], [Johnsson 84]
and [Johnsson 87], where a dump is a list of pairs, each pair being a contin-
uation and a spine.

In Figure 4.4 we construct the dump of a state by first determining the
spine of the state, If this is 2 built-in function and it kas enough arguments®,

'It may be possible Lo ignore this condition and reduce strict arguments immediately.
Such a scheme is in general incorrect; the conditions under which it can be fudged are
beyond the scope of this Lhesis, This form of reduction was proposed by Peyten Jones and



54 CHAPTER 4. EXTENDING THE LANGUAGE

Updstefv o

where v = (Valuefo)= nilinN
vEC ~— Updatef(fsi(v))a, ?
where v = Valuelo N
Updatef, (£, £]) inN) o

NullStep(£: ¢) o

HeadStep(£ : ¢)o

ConsStep(£o: £y : ¢)o

where ({y,r),8) = ¢
14 = Arg(r, &)
PlusStep{(o : 61 : @) o = wEZAnEZ — Updatety vo,?
where v; = Valuel;o
v = w|Z+wn|2
EqStep(y : £y : ¢)o = weZAnh€Z — lUpdatefyvo,?
where v; = Valueé;o
v = ilZ=v|Z

IfStep(do : &y 1 &3 : @) O vET — Updatef(f'in N)a, 7
where £/ = (Valuefpo) — A A
Updatef. (£ in N){(+', £), &)

where (7,8 = C[I)pana®({7,8)

¢ = ¢! (Argsfl]-1)
Figure 4.7: The Built-in Reductions: *Step

It

OtherStep[T] ¢ ((7. £), §)

(r@{fr v}, 1), 8)
v (Elidey (Arg(7, 7))

Figure 4.8: Auxiliary Functions for *Step Functions

Update £ v ((y, 7), 6)
Valuer (v, ¢), §)

we will test the strict arguments to see whether their evaluation has been
completed. If there is a strict argument that has not been evaluated, we
copstruct a dump of that argument and append the singleton list of the
spine. We illustrate this in Figure 4.5. The dump of this state will be
[[¢4, £}, [£2, &1, &o])-

After determining the dump, we are able to perform a reduction step.
This is performed by the function Step defined in Figure 4.6. This will
operate only on the top element of the dump and we will refer to this as
the hesd of the dump or the redez spine. If a built-in function is at the

is intermediate in power between his weak head normal reducer and Wadsworth’s head
normal reducer.
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head of the redex spine, then its strict arguments must be evaluated and the
reduction of the built-in function can proceed on that basis. If the function
at the head of the redex spine is not a built-in function then the reduction
proceeds in the same way that it did in the original operational semantics
of Chapter 2.

4.3 Congruence for the Extended Language

In the previous sections we have amended the denotational semantics
and operational semantics to realise constructor and other built-in opera-
tions. The proof that these definitions of the langnage are congruent follows
the same pattern as that of Chapter 3. The strategy we used then is now
repeated and therefore we repeat Figure 3.1. As the last congruence proofl
of Chapter 3 was presented in considerable detail, we will omit some of the
detail ir the congruence proof of this chapter, and only prove those theorems
that have changed.

In order to establish congruence we must again use the technique of
Chapter 3. First we redefine acute so that the identifiers corresponding to
the built-in functions are defined to have the same derepresentation value
as that given by the denotational semantics. From this we establish that
Lemma 3.2 still holds and this establishes that the two environments are
congruent. Now, because the built-in reduction steps in Figure 4.7, satisfy
Theorem 4.1, they do not change the meaning of the derepresented graph.

Theorem 4.1

For all o in 8, such that Done(c) does not hold:

E(o) 2 E(Step(o)).

We are therefore able to deduce that each reduction step does not change
the meaning of the graph thus establishing a result like Theorem 3.7. From
this we are able to deduce by fixpoint induction that the interpreter approx-
imates the denotational result; this corresponds to Theorem 3.4.

To prove that the denotational result approximates that of the opera-
tional semantics (Theorem 3.12) we are required to re-prove that the new
predicates exist for the new domain E. When this is proved, because we
have established that Lemma 3.2 holds for the new definition of acute, we
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Theorem 3.3 This proves that 2 [[I] = E(? [[}), provided that P [II] &
B. It is established by fixpoint induction on the state. It requires

Theorem 3.4 This proves that # [I1] 2 E(® [1]). It requires

Theorem 3.7 This proves that an individual reduction step
on a state will produce a new state that approximates the
old one, under derepresentation. It requires
Lemma 3.8 Indirection Node Equivalence Lemma.
Lemma 3.9 Spine Derepresentation Lemma.

Lemma 3.10 Combinator Substitution Lemma.
Theorem 8.12 This proves that PIO] C E(P[O]), provided

P[] € B. It is established by structural induction on the

program, using inclusive predicates. It requires

Lemma 3.2 Proves that derepresentation of a combinator
name in the operational semantics is the same value as
that supplied by the denotational semantics, for a given
syntactic structure A.

Theorem 3.17 This proves that the predicates ¢ and f exist.
It requires
Lemma 3.18 Partial Predicate Projection Lemma.
Lemma 3.19 Partial Predicate Injection Lemma.

Corollary 3.20 Proves that the predicates establish the re-
quired approximation.

Theorem 3.21 Proves that all initial expressions satisfy the
predicates. It requires
Lemma 3.22 Proves that the predicates imply the correct

behaviour for application nodes.

Figure 3.1: Outline of the Proof Structure

have proved that the denotational result approximates the operational (The-
orem 3.12). Notice that the language bas not changed, only the initial envi-
ronment in which programs are executed.

We now redefine the predicates € and f to incorporate c.
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Definition 4.2

e(é) & (¢=s1) — €= 1,
{IsBasic(2)) — ((eEB)A£C E(2),
(IsFunction(2)) — (FEF)A f((£ | F), 2),
(IsCons(2)) — (FeEC)A (€] C), 2),
false

(&) & Ale(¢(a), Eval(éa)}}| Applied{éa, ¢, &)
Ae(é, Foal{a))}

o(x) o (x=1)V (eléo) A s(£1))
where ((7,£),8) = x
(doré) = X
(o, b} = v(Eiide(v, £))| €

IsCons ((v, £), 6) = ‘
(Spine(r, £) = (@) A (7€ &)

The predicates we require may not exist. To prove that they do we must
use induction on the complexity of the domains that they are specified on.
This time the domain E is specified as the range of the retraction E where
E = fz(AE.((E o— E)® (E® E)® B)). We may define E so that numeric
induction is valid by using E,,, F,, and C,,.

En = Fn 53] Cu @ B
Fg = 1

Fu+1 = En a— En
Co = 1@1

Cn+1 = En & Eﬂ

The partial predicates en, f, and ¢, are defined on the sub domains E.{e)
for e e E, F (¢) for ¢ & F and C,(x) for x EC.

They are defined in the obvious way ¢.f. Chapter 3, Definition 3.15.
Again the following conditions may be derived from them.

Lemma 4.3

Forallé, ¢, % andn >0
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en(2) = enpr{Enld), 2)
e“+1(5.) = en(En(é)J g)
@) = fan(Faé) ¢)
fn+1(¢) = fn(Fn(¢)7 4’)
en(X) = ent1{Ca(X), %)
enp1(X) = enlCa(X), X)-

From this we may immediately conclude Corollary 4.4.

Corollary 4.4

Foralig, ¢, ¥ andn >0

en(En(€), 2)

Ja(Fa(@), ) = {

ea(CalX), X) = {

=

ei(Ei(€), 2}, ifi<n
ei(En(€), &), ifi>n
fi(Fi(ﬁf’} 42’\)1 fi<n
filFn(9), #), ifizn
ai(Ci(¥) X ifi<n
ci(CalX), X), ifizn

The existence of the predicates ¢, f and ¢ must now be proved. We
again use a predicate ¢ to express the condition that these predicates are
equivalent to the sequences of partial predicates.

Definition 4.5

3(P, Q, R)

& VE.P(E)e
(2= L)
(¢=2)
(IsBasic(e})
(IsFunetion(2))
(IsCons(£))
false

£=1

L‘EL

(€€ B)AEC ER),
(EEF)AQ((¢]|F), 2),

(EEC)AR((£) C), 2),
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AN Yo.Q(4) &
A{P(£(a), Eval(2,))| Applied(24, ¢, &)
A P(&, Eval(2))}
A Vi R(x) &
{(x = L) V (P{éo, Eval(21)} A P(£1, Eval(21)))
where ((v,£),4) = X

(€0, €1) = X
: - (8
(lo, £) = ~(Elide(v, 0))1C

We may now prove the existence of the required predicates by substi-
tuting the predicate sequences into . This then demonstrates that the
predicates exist by construction.

Theorem 4.8

P ({E-Aﬁioen(En(’éL ‘?)v
A¢ Af:o fﬂ(Fn(¢)’ ¢)a
Ax- Ao en(Ca(X), X))

15 true.

Proof of Theorem 4.6

We demonstrated in the previcwvs chapter that we could substitute the
predicate sequences for P and Q.

As an aside we shouid really prove that the new definition of e, still
satisfies & when we are dealing with constructors. This is trivially
demonstrated as we are able to distribute A, through A.

Although most of the proof {follows from Theorem 3.17, we still have
to verify
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R(f() = A?:OCH(CH(XI)! X)

AZo{(X = 1) v en(En(o), Evalito))
en(En(é1), Eval(2y))}

(x=41)v AL oen(En(éU)a Eval(g)) A
AvZoen(Bn(€y), Eval(dy))

(= 1) V P(éo, Eval(20)) A P(&, Eval(})))

where ((v,£),8) = %
(5‘0| &‘1) = X
2 = (n 8.6
(fo ) = ~(Elide(y, £)) | &

This completes the proof that the predicates exist. We may confirm that
these predicates do indeed imply the approximation condition by re-proving
Corollary 3.20. Again, we are unable to compare functions because of the
full abstraction problem with domains associated with the denotational se-
mantics,

The structural induction required to prove the partial congruence that
the denotational semantics approximates the operational semantics has been
completed in Chapter 3 as Theorem 3.12. This is sufficient because the
syntax of the language has not changed, only the initial environment.

4.4 Related Work

The schemes to translate more complicated languages to the one presented
here are described in detail by Peyton Jones in [1987]. Hughes’ super-
combinator abstraction algorithm was first described in [1982a] and fur-
ther refined in [1983]. Johnsson’s lambda-lifter was originally described
in [1985] and the translation of pattern-matching for LML is described in
[Augustsson 85]. The dependency analysis required for type-checking is out-
lined in [Peyton Jones 87, pages 118-121). Polymorphic type checking of the
form we have assumed here is described by Hancock in [Pevton Jones 87,
Chapters 8-9].

The previous work related to the congruence proof and denotational se-
mantic language definition was identified in the last chapter.
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4.5 Conclusion

This concludes our survey of the denotational semantic definition of func-
tional programming langnages; operational realizations of these Janguages;
and therelationship between them. We reiterate that the result we have ob-
tained is the complete congruence between the denotational and operational
semantic models we have formally described.

In Part 2, we investigate the practical applications of the extended The-
orem 3.3. In Chapter 5 we show that the evaluation order may be changed,
in suitable circumstances, withont changing the result of the program. In
Chapter 6, we consider alternative operational semantics and prove that
these machines preserve sharing. Finally we prove that the G-machine com-
piler for our language is correct in Chapters 7 and §.



Part 11

Applications
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Chapter 5

Using Strictness Information

Much work on efficient compilation of lazy functional programming lan-
guages has focused on analysis of programs to determine which functions
are strict. Various analyses have been proposed to determine such informa-
tion, which is usually referred to as strictness information. In this chapter
we discuss the problems associated with using strictness information in our
language.

Abstract interpretations are generally defined in terms of the A-calculus.
In the A-calculus the Second Church-Rosser Theorem {Stoy 77, page 68] pro-
vides the relationship between the denotational and operational properties,
that is required in abstract interpretation work. The langunages to which
they are most often applied is that of combinators, with constants and é-
rules. The evaluation mechanism is generally reduction to weak head normal
form [Peyton Jones 87, page 198]. This is exactly the langnage and opera-
tional semantics we proved congruent in Chapter 4, and so we may extend
the results of abstract interpretations to this language from the more normal
A-calculus with constants.

Typically, an abstract interpretation for strictness will determine which
arguments of a user defined function are definitely required to be evaluated.
There are a number of gains that may be achieved through using the infor-
mation provided by strictness analysis. Firstly we are able to improve the
space complexity of some algorithms., Cousider the function length defined
with an accumulation parameter.

length a || =a
length a (z:0) =length(a+ 1)1

In Lisp the advantage of this definition over the simple definition is that

65
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it runs in constant space. Unless we know that length is strict in both
parameters the lazy version will run in (’(n) space, as the additions are not
performed until the end of the list is reached.

The second improvement occurs because we need not create objects on
the heap that will immediately be reduced. In functional langnage imple-
mentations heap allocation, with the consequent garbage collection, is often
considerably more expensive than stack or register allocation. Any attempt
to allocate storage from a stack is therefore likely to be of benefit.

The gain occurs when we have

fr=g((z+3)x2)

and ¢ is strict. Then instead of constructing the graph associated with
({z + 3) x 2) we may go ahead and evaluate it and then proceed with the
reduction of g.

5.1 Re-ordering Evaluations in Sequential Ma-
chines

We begin with a defirition of strictness.
Definition 5.1
A function f is strict whenever
fL=1
It is normal in abstract interpretation work to use complete partially
ordered sets, rather than complete lattices, to model domains and to treat

the error element as bottom. In the Jattice theoretic domain construction
we define complete striciness in the following way, after [Stoy 77, page 178].

Definition 5.2

A function f is completcly strict whenever

L ifr=1

7 ifz=12
fu= T ifz=T

fz otherwise
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We first define some notation with whick to represent the problem.
Definition 5.3
We define ¢ =~ ¢ if, and only if
£ E(2) and e(€).
A result from Part I, is that
E(¢) = Eval (2}

this follows from Theorems 3.4 and 3.12. From Lemma 3.22, we also have
that

imEi A Appﬁed(f, &o, 91) => dpéy = 2.

The sequential reordering theorem, Theorem 5.4, says that when a com-
pletely strict function is applied to an argument it is permissible to evaluate
that argument before evaluating the function body. On a parallel machine
we may wish to evaluate the argument in parallel, and this would not change
the meaning of the program.

Theorem 5.4
Suppose we have some state o = ({=y, £), &) with
v(Etide (v, &) | A = (&, &)

Let ¢; = E((v, &), 8), and € = E{(o). If E((v, fo), §) is completely
striet, then

E(Eval o)) = Eval((¥, £), §),

where v’ = fat(fst(Eval((y, {1), 6))).

We may prove Theorem 5.4 by considering cases for the graph v’ after
the evaluation of the argument corresponding to £;.

Proof of Theorem 5.4

By cases on the value of v';
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¥'= L1 or ¥ =1 In this case Eval{2,) = 7', hence hoth 2 and ¢ are
also 4". But &g is completely strict, so £ is v/, thus

fm @,

otherwise In this case, &p =~ ((¥', &), 6) and £ = ({7, &), §). From
this we may conclude & = Eval ((¥', £), 6).

Because of the full abstraction problem it might appear that we have
produced a result that is insufficiently powerful; this is not the case. Provided
that the program result is not a function, we have shown that either of the
operational techniques for reduction will give the same answer.

The result we have proved in Theorem 5.4 is a dynamic strictness re-
sult. This is because we need to determine the strictness of E({7, &), §)
at run-time. This is not in general possible, as we would need to solve the
halting problem. Instead we determine a conservative approximation of the
strictness, statically, during compilation. Then if £ [Eg] is strict we may
produce suitable code for £ [Es Ev] 6.

It is important to note that Theorem 5.4 is defined in terms of complete
strictness. Strictness abstract interpretations determine only a conservative
approximation to the strictness of Definition 5.1. This mis-match in the
types of strictness used and provided causes problems when we consider the
“program™:

(1/0) where Qz =z

In this case Q is strict (although not completely sttiet), but we may not
reorder the evaluations, as this will result in ? instead of L, We note that
this occurs because our language no longer has confluence, i.e. the Church-
Rosser property.

3.2 Related Work

The use of abstract interpretation to deduce approximations to fixed points
in lattices was first suggested by the Cousots in [1977]. This general work on
lattice fixed points was applied to functional programs by Mycroft in [1981a]
and |1981b]. This work was fairly limited, to the extent that the approximate
result it produced was fairly weak. Subsequent work has devoted attention
to improving on the quality and range of the information derived. Extending
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the analysis to cover higher-order functions is described in [Burn et al. 86].
Further refinements to cover data structures are described in [Wadler 87].
All of these works are justified because of an appeal to the Church-Rosser
Theorems for the A-calculus. This provides the relationship between oper-
ational and denotational semantic models. This is needed as the analysis
oceurs by variation of the denotational semantics value domains and the use
of this information occurs in the operational semantics.

5.3 Conclusion

The most important observation is that the language with which we are
working is not confluent, i.e. it does not have the Church-Rosser Property.
This occurs because there are circumstances where both bottom and error
could bereturned, depending on which reduction order is chosen. Confluence
is lost when bottom is returned for error.

There are two simple ways that we may recover the property of conflu-
ence. The first is to remove the distinction between error and bottom, so
that we do not report errors at all. This has the advantage that the un-
derlying A-calculus model behaves in 2 similar manner. Using the normal
definition of division in the A-calculus means that division by zero is repre-
sented by non-termination. The second solution is to introduce a new node
type to represent error. In this case an error is slowly propagated up to
become the final result. This is precisely how erroneous values in the deno-
tational semantics are handled, so we should not be too surprised by this
solution. This has an advantage when the propagation process is blocked by
non-termination, thus providing the correct result. As an example we can
consider the reordered evaluation of Az.L ! mentioned earlier in this chapter,
which under the proposed new scheme produces the correct result. The main
drawback of the second solution is that we are generally unable to represent
error in the V stack, and so correct error handling by the optimizations of
Chapter 8 becomes quite complicated.

Even though the language is non-confluent, we may reorder the evalu-
ation of any completely strict function, as a result of Theorem 5.4. This
causes a problem as most abstract interpretation work dees not derive com-
plete strictness information. Again the solutjons proposed above will retrieve
the siteation.



Chapter 6

Sharing Mechanisms

Sharingis that property of graph reduction that makes the implementation
of lazy functional programming languages practicable. Without sharing, we
must recompute the value of an argument each time it is used, because
we are performing call-by-name evaluation. Such a reduction strategy is
unacceptably slow on a sequential machine, although it may be adequate for
a paralkl one, see [Downey and Sethi 76].

The simplest example of sharing occurs in the following program:

F(1+2)
where fz =z +z.

If the function f does not share its argument z, then we will need to
evaluale the expression (1 +2) twice. Sharing is accomplished in the imple-
mentation we defined in Chapter 2 by using a graph to represent the state
of the computation. In the case we are currently considering, a single node
will represent (1 + 2} and upon its reduction the result 3 will be used to
overwrite the node. Any references to the expression (1 + 2) will be via this
node, and thus all such references will benefit from the reduction of {1 + 2)
to 3.

We call this property sharing. Any reduction that is performed without
the result overwriting the root node may cause sharing to be lost. We note
that as the operational semantics is currently defined in Chapter 2, or the
modified version in Chapter 4, this can never happen; the reason is that
all reduction steps write out the result to the root node at the end of the
Step function. As we shall see in the chapters on the G-machine, there are
optimization techniques which will be available whenever we are allowed
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to omit the updating of root nodes. This is also the key observation in
the Spineless G-machine, where optimizations are proposed te reduce heap
accesses by omitting the unnecessary updatiag of nodes. In the spineless
G-machine updating occars only when sharing is possible.

6.1 A Spine Cycle Theorem

In this section we discuss a resnlt which refates the form of the spine for
a state and the meaning of the state when derepresented by E. We wish
to show that a node can appear only once in the domp, if the program
is to terminate. Informally this arises because a node can only appear on
the dump when we are attempting to reduce it to WHNF. Thns when a
node appears twice, its reduction requires that it already be in WHNF. This
process can not terminate.

This result is required when we wish to show that the whole of the dump
need not be reconstructed for each step. Without this result, the updating
associated with reduction steps might aflect the way that the dump was
constructed. Another application, which we use in this chapter, is to show
that we may postpone the updating until the body of the combinator has
reached WHNF.

We first define the function Reder which calculates the root of the indi-
rection node that will be created at the end of the next step.

Definition 6.1

Redez(c) = (I=[uall]) — (£:9)!1,
(1=[head]) — (£:¢)11,
(I=feons]) — (£:4)12,
A= — (912
U=[=h) — @:9)12,
I=0) — (£:4)!3,
(£: ) ! (Args(6 1))

where (£:¢):y = Dump(o)
I = £ |Ide
(1, 7). 6) = o

The result we shall prove is that the spine of a state ¢ will have no
cycles whenever E(o) is not 1. This arises because if o0 has spine cycles,
Step{o) = 1. This is formally stated as Theorem 6.2.
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Theorem 6.2

Let

Ony1 = Done(an) — an, Step(aa) = ((7n+1, 1), ),

iy, = Dump(ay) and o, = Redez{c,). Then if o, is overwritten with
an indirection node lo v, dppy = L.

We note that as our extended machine is defined, there are no cycles
in the graph. This antomatically ensures that there are no cycles in the
spines. If cycles in graphs are permitted we wouid be able to appeal to the
typechecker to eliminate all cycles except the trivial ones corresponding to
the programs like:

r whererec z = =z
r whererec z = z+1

Although we have restricted the range of programs which exhibit cycles in
the spine, we have not eliminated them from consideration. For this reason
we prove Theorem 6.2 in all its generality, by showing that dump(og41) = L
whenever g,, has a spine cycle. We notice that the redex will be an initial
sequence of the first element of the dump. Because the dump is constructed
from the root to the redex, we must have both that # ¢,,1 % 1 and that
# (headnpa )} # L in order for Dump (¢,41) to terminate.

Proof of Theorem 8.2

We consider four cases: whether the dump is a singleton list or not;
and whether the redex is the last element of the current stack or not.
We note that only cases 1 and 3 are permissible in a typechecked
implementation.

1. ¥, = [¢" 4 [on]] In this case o, = r and we have 41 = [L].
Thus # (headn41) = L, which implies that we have g,y = L.
2. %0 = [¢" # [on] # ¢ 4 {r]] In this case
U1 = [head a4 & + [7]

and so again # (head Yny1) = 1, which implies that we have
Tnyl = 1.
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3. ¥n = [¢" 4 lon]] H ¥ # [¢" # [r]] In this case
Yrt1 = Y1 H ¥ 4 [0 H [7])
This time # ¥ny1 = L; the result is that onyy = L.
4 ¥ = [¢" H [0a] H ¢'] W ' H [¢™ 4 [r]) In this case
Vo1 = ¥ H ¢ H [¢"7 H 7]}

where ¢ = ¢ 3 ¢ 4 [¢" + [r] + ¢'], which again implies
Ony1 = L, becanse # ¢4 = L.

We conclude this section by restating the result. In a terminating pro-
gram there are no cycles in the spine or dump for any initial, intermediate
or final state representing the execution of that program.

6.2 A Weak Head Normal Form Theorem

We now wish to demonstrate that the operational semantics has the following
property: any node on the dump of a state may be evaluated before the
remainder of the evaluation is performed, and the result will be the same.
Informally this is because every node on a dump is reduced to weak head
normal form before it is released from the dump. First we define a function
EvalFrom which evaluates from the node provided in its first argument, using
the state supplied by the second.

Definition 8.3

EvalFrom{((y, r), 6} = ({7, 7)., )
where ((7', £), §) = Eval((y, £), §)

We may now formally state our theorem as Thearem 6.4.
Theorem 8.4
Suppose that £ ocrurs in Dump(a). Then

Eval(o) = Eval({ FvalFrom{a)
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eo:@
RN
¢ @ €3
VRN
&+ £:Q
VRN
£y 1ine f5:2

Figure 6.1: Example of a Graph

Consider the example of the graph in Figere 6.1. This has as 2 dump
([¢q, €3}, [€2, 1, £o])- If we attempt to reduce any of these nodes to WHNF
before proceeding with the evaluation of the whole graph, our theorem says
that we will get the same resulting state as we would by evaluating the whole
graph iz the normal way. We prove this result by showing that there is a
stepwise correspondence between the execution of the two functicns on a
given state.

Proof of Theorem 8.4

We consider two cases of FvalFromfo:
= 1 Let
H = hxdo.Done(c) — o, x(Step(0)),

and o¢ = ((7, £), §). Then, either
An with H™ Lo, = H"! Loy In this case An with H"l¢ =
H™41 | o,
In with ™! Lo, = 1 This occurs because Dump (H™ Loy) =
1. But this means that Dump (H™ Leoj = L also.
# L In this case execution of FvalFrom must terminate after some

finite number of steps. Let us denote this number by n, and
define X as
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H = Axdo.Done(o) — o, &{Step(o))
Then EvalFrom£((v, r}, 6} = ((¥', r), §) where
(', ), 6) = B™! (Aa.0)((7, 0), 6)

But Eval (o) = H™!! Evalo, and we must now show that the
individual steps associated with each H are the same. This follows
from the observation that Redez (s} = Redez(o) and that the
graphs are the same. Observe that we are using the Spine Cycle
Theorem (Theorem 6.2) to establish this.

This is an important reanlt. We shall use it to allow us to reorder eval-
uations in this chapter as well as Chapter 7.

6.3 Copying Shared Nodes

We now wish to demonstrate that we may use an alternative algorithm to
maintain the sharing information in the state. This algorithm first evaluates
the body of a function definition and thep updates the original root of the
redex with the correct value. The potential problem with this approach is
that there is a “hole” in the graph v until evaluation is completed. This is
because we have not updated the value of the root for all the intermediate
steps. We will fall into the hole in the graph only when there is a cycle in
the spine. From Theorem 6.2 we know that the result of the evaluation in
this case will be 1. We would like to show that our reordered evaluation will
also produce the same value. It does; although it converts call-by-need into
call-by-name, when there is a cycle. Informally, we 1nay say that the original
operational semantics evaluates a state with a spine cycle more rapidly than
the new operational semantics with copying. Formally we have Theorem 6.5.

Theorem 8.5

Let a; = ((71i, 7), 8) with Done(oy) false, and o;yy = Step{o,). Then
we define v; = 7yjop where o = Redex(og). Let vy = £ in N, be
the indirection node associated with the reduction, and define 7, =
1 & {60 — o}, s0 that ] differs from v only in that the indirection
assoctated with the reduction has not been performed. Then
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Eval(og) = Eval((¥ & {09 — w1}, 1), §),

where ((7,1 00)1 6) = E‘b‘ﬂl(("r;, 00)! 6)'

The proof is straightforward. As the two graphs differ only in the value
they assgn to op, we use fixpoint induction on the uses of Eval to show
that this is unimportant unless there is a cycle — in which case it remains
unimportant because we have non-termination.

Proof of Theorem 8.5

We first observe that
Eval(og) = Eval((7, r), §)
where {(v, o), §) = Eval{(7:, op), 4). But

E”“’(('r;a 00)1 <f) = Eval((‘!li 00)! 6)5

by fixpoint induction and using the spine cycle theorem, Theorem 6.2,

This does not provide a realistic implementation method, although it
does perform the correct function. If, instead of creating an indirection
node o the completion of the evaluation, we make a copy of the result
over the original root node, we have another implementation. Aithough this
loses sharing, it is not significant sharing. Sharing is significant if its loss
resultsin more reductions being performed. By this measure the copying
of a node that has been evaluated to WHNTF is non-significant. This is
because no further reductions of it are possible and thus fresh attempts to
reduce either the copy or the original will cause no further reduction to
be periormed. We have therefore justified the copying implementation of
graph reduction, which is used in SKIM [Stoye et al. 84] and the G-machine
[Johnsson 83, Johnsson 87[.

'A weaker form of the graph-isomorphism proposed m Chapter 8 can be devised. It
would alow as to “common up” separate occurrences of WHNF uodes which were graph-
isomorphic. As thia property only occurs in the current discussion, and would have no
further practical applicalious, it has been omitted.
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Although our original operational semantics is defined using indirection
nodes throughout, we would not suggest this method as a practical real
implementation method. The main modification that should be made js to
copy base values, and use indirection nodes only when the returned value
may be a function. The result of this section (Theorem 6.5) justifies the use
of this composite scheme.

This modified copying and indirection updating scheme is still suitable
for implementing Hughes” lazy memo-functions {1985].

6.4 Indirections Without Chaining

It is difficult to prove anything concerning the relative efficiencies of the
copying update and the composite indirection and copying schemes. The
reason is that the relative merits of the schemes depends on the style of
programming used. If functions are predominantly used with base values
then the copying scheme is better. If heavy use is made of higher order
functions, ther the indirection and copying scheme will work best.

The problem for the purely copying updating scheme, occurs when a
functional valued result is obtained. In this case we have the overhead of
stack frame creation and deletion, when compared with the indirection node
updating method. For the indirection node method there is the well known
problem associated with the accumulation of indirection node chains. Here
access times to function arguments may be slowed, because we must search
along a chain of indirection nodes to find the argument.

In an attempt to avoid chains of indirection nodes occurring, we outline
the following scheme. We also avoid the stack overheads associated with the
body reduction discussed in the previous section. There are two principal
observations.

1. We may invert the direction that indirection nodes point. We are, after
all, usirg indirection nodes to equivalence two nodes in the graph. So
the direction of the indirection node is unimportant.

2, Only two sorts of indirection nodes exist: those pointing to nodes that
are in WHNF, and those pointing to nodes that are being evaluated,
but have not reached WHNF yet.

Imagine, then, that we have reached a stage in the computation in which
we are about to replace a redex with its result and consider the three possible
states for the body:
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WHNF We may copy the root of the body to the root of tbe redex.

non-WHNF, unevaluated Because no attempt has been made to reduce
it, this node has no indirection node pointing to it.

non-WHNF being-evaluated In this case the state will eventually be-
come 1. We will ignore the creation of chains of indirection nodes in
non-terminating programs.

This suggests a different definition of the Update function.

Updatel ¢’ ((, 1), §)
= Done((v, ¢),8) — (7@ {£~ 1}, 7),6),
(@ {f~ 8,0 —~Lin N}, 1), 6)

That is, an indirection node is only inserted when further reduction of the
body can occur. Of course the overwriting of £ or £ or both may sometimes
be omitted, but this will depend on the results of a sharing analysis.

The important points about this technique are:

1. Chains of indirection nodes do not accumulate during the execution
of terminating programs, although they may do so for some non-
terminating ones.

2. Higher order functions are dealt with in a completely natural way. In
the G-machine stack operations cause a significant overhead for the
correct sharing of higher order functions.

The equivalence of this scheme to the original indirection node model is
guaranteed because both alternatives in the conditional have been shown to
provide the same result. The operational aspects of the new scheme have
been justified by appealing to the various situations in which indirection
nodes can arise.

6.5 Related Work

The SKIM machine [Clarke et al. 80] was the first description of a machine
in which reduction of the body of a function was proposed as a solution to
the problem of sharing in projection functions [Stoye et al. 84]. The problem
for SKI reduction is particularly acute as most reductions are of projection
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functions, and the granularity of reductions is a lot finer than those described
in this thesis. It was taken up independently by Augustsson and Johnsson
in their G-machine [Johnsson 83) and [Johnsson 84). The equivalence of this
technique to the tail recursive scheme desctibed in this thesis is proved in a
G-machine setting in [Lester 85] and [Lester 87).

Analysing programs to detect sharing is described in [Goldberg 87] where
an abstract interpretation is used to find a superset of the nodes that will
be shared during reduction. Burn, Peyton Jones and Robson describe the
use of such information within a G-machine setting in [1988]; they call the
resulting machine a Spineless G-machine.

6.6 Conclusion

The final proposal for reduction was inspired by Hancock’s observation that
higher order function reduction in a G-machine can be slow and that the
judicious use of indirection nodes might reduce the overheads. The fact that
we have no chaining of indirection nodes means that this is the method of
choice for higher order functions, although copying will work best for base
type resalts.

It appears that the the use of indirection nodes will be of less value
within 2 Spineless G-machine, although further work is required to provide
a definitive answer.



Chapter 7

Deriving the G-Machine

In this chapter we show how the G-machine {Johnsson 83] may be derived
from the operational semantics that we defined in Chapter 4. Viewed as
an implementation method this operational semantics has disadvantages.
Initially the main problem is that it calculates the next redex in its reduction
strategy by starting at the root of the graph. This is unnecessary if we keep
a stack of separate frames to record the current depth in the recursive calls
to the interpreter. The equivalence of these two definitions is established in
Section 7.1. The new reduction strategy is obviously more efficient, but it
may befurther refined by observing that part of the stack remains unchanged
during a reduction step. This is the part that is above the root of the redex
— a result that is another application of the Spine Cycle Theorem. This
improvement is derived in Section 7.2.

In Section 7.3 we show how individual reduction steps may be per-
formed using compiled code rather than using an interpretive techzique,
of Chapter 3. In the interpreter a syntactic representation of the combina-
tor is included in the environment. The details are in Chapter 3, and the
method is essentially similar to template instantiation which is described in
[Peyton Jones 87].

Finally we show that the G-machine prin{ instruction may be added.
This is important if the program result may be a structured data object, as

we need to provide a driver to initiate demand in the program.

81



82 CHAPTER 7. DERIVING THE G-MACHINE

7.1 Another Interpreter

Before we derive the G-machine we re-cast the definition of the operational
semantics. The definition we have been using so far has the pleasing prop-
erty that we can restrict the number of reductions performed easily. This
leads to dean proofs by fixpoint induction, which we have used extensively.
We would now like to transform this definition to a form more suitable for
a real implementation. The change that is introduced in this section is to
define Step and the associated built-in step functions *Step in terms of the
spine rather than the dump. To do this we must evaluate strict arguments
to built-in functions recursively. It is this explicit recursion which compli-
cates fixpoint induction proofs were we to use such a definition. There is,
after all, no limit to the depth of such recursion unless we invoke the Spine
Cycle Theorem. The new Step and *Step functions are defined in Figures
7.1 and 7.2.

‘We must now show the congruence of these definitions; this is done in
Theorem 7.1.

Theorem 7.1

Fval’ = Eval
where Eval’ (o) = Done{o) — o, Eval(Step’ ().

Weare unable to show the stepwise equivalence of this new definition with
the old, because Step’ may perform a considerable number of reductions in
reducing a built-in function. It is clear that Step and Step’ differ only in
their treatment of strict built-in functions. We therefore consider the five
special cases that arise.

Proof of Theorem 7.1
We first observe that: Eval’ (¢) = Eval(o) if and only if
Fval (Step’ () = Fval (a).

Clearly, two cases are trivial:

P _ | ConsStepoo _
Step (o) = { OtherStep (§[1]) ¢ o } = Step (o).
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Step’(¢) = (I=[nudl]) — NullStep’ do,
(I = [head]) — HeadStep’ ¢ o,
(I = fcons})) — CoansStepéo,
(I=[+]) —  PlusStep' o,
(I = R:]l) —_— EqStep’qﬁa,
(1= l]fﬂ) — IfStEp'(ﬁU.

OtherStep (6[1]) 0 0
where (£:¢) = Spine(y, r)
((r,1),8) = o
1 = (y£)|Ide

Figure 7.1: The Step’ function

NullStep’ (£ : @)
HeadStep' (£ : ¢)
PlusStep’ (€p: £, : ¢)

NuliStep (£ : ¢) o EvalArgé
HeadStep (€ : ¢) o EvalArgf
PlusStep(€g: £y : ¢) o FralArg £y
o Evaldrg éq
EqgStep(ty : £ : ¢} o EvalArgty
o Evaldrgfy
IfStep(€g : £y : £3 : ) o EvalArgéo

EqStep’ (8o : € : ¢)

1l

IfStep’ (€9 : &y : €2 : @)

EvalArgf((7y, 1), 8)

i

FvalFrom (Arg(y, O)Y({(7', 1), 8)

Figure 7.2: The Built-in Reductions: «Step’

There are five other cases, which we divide into two groups according
to the number of strict arguments.

1. Suppose that Step’ (¢) = NullStep’ (£: ¢)o. Then
NullStep' (£ : ¢)o = EvalFrom £ a.
But ¢ occurs in the dump of the state ¢, and hence by the WHNF
Theorem (6.4), we have: Fuvalo = Eval (EvalFrom £7). And thus
Fval' (a) = Eval(o).
The steps for HeadStep' and IfSlep’ are similar.

2. We now consider the built-in functions that are strict in two ar-
guments. In this case we must perform the reduction to weak
head normal form twice. Let £ = Arg(y, &), and assume that
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{((9, ), 8) = 0. Let o9 = ((7.43), 6) and &1 = ((7', €} ), §) where

{((+',4)), 6) = EwlFrom £, 0.

Suppose that the built-in function is addition. Then FEwval’ be-

comes Eval o (PlusStep’ (£g : £1 : ¢)). This may be further ex-

panded to Fval o PlusStep{{y : ) : $) o FvalArg &y o EvalArg{,.

These steps follow from the definitions of Eval’ and PlusStep’.

Again we would like to show that Eval'c = Evalo. This is

achieved by appealing to the WHNF Theorem.

We first consider the possible values that Done (0p) may have. If

the value is improper then the complete strictness of EvalArgand

PlusStep ensures that this improper value is propagated through

the composition of functions. We therefore consider the proper

values:

{a) Done(ay) is true. This means that the first argument is
already in WHNF. Thus Eval’ becomes
E'val o PlusStep ({y : &y : ¢) o EvalArg{;.

(b) Done (oo} is false. In this case the first argument must be
reduced to WHNF. But £, is in the dump of &, and by the
WHNF Theorem Eval ¢ = Eval ¢’ where ¢’ = FvalFrom € 0.

We must now show that Fval’ o’ is

{Eval o PlusStep(£o: 41 : ¢) o Evaldrgfy) o',

This result follows from a second case analysis; this time on the

proper values that Done (o) may return.

{(a) Done (o) is true. This means that the second argument is
already in WHNF. Thus Eval’ (¢’} now becomes
(Evalo PlusStep (£a: 8y : ¢)) o',

(b) Dome(o;) is false. In this case the second argument must be
reduced to WIHNF. But #] is in the dump of &, and by the
WHNF Theorem
Eval o' = Eval 0" where ¢" = EvalFrom {} o’

As we have now shown that

Eval'(0) = (Eval o PlusStep (& : £, : ¢))o"

and

Eval(o) = (Eval o PlusStep (& : & : ¢))o”

we are able to conclude that the functions Fval and Eval’ are the

same, when the built-in function is addition.

The proof of the equivalent result for EgStep is similar.
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a

We lave now introduced a distinction between reduction steps used to
reduce the current stack function, and those nsed to reduce strict arguments
required by the stack function. We now consider ways to improve the un-
windingoperation. This calculates the root of the next redex and makes the
arguments to the function accessible through the stack.

7.2 Fast Unwinding

In this section we show how the unwinding operation may be made more
efficient. We currently recompute the spine of a graph for each reduction
step; this is unnecessary because most of it will remain constant between
steps. [n Figure 7.2 the domain of 2 G-machine state is defined. This
includes components with which we are currently not interested, such as
the O and V components. However, by using the more general state, we
need not redefine the combinators that represent instructions each time we
expand the state to use these components.

In this section we shall be especially concerned with the unwind instruc-
tion. We would like to show that it implements the house-keeping detail
associated with the spine. In Figure 7.4 we give the first definition of unwind
which we label urnwind,. Notice that it uses a subsidiary instruction unwind;
to unwind the stack and that the argument check is performed by the eniry
instruction. Also notice that it does not re-arrange the stack to make access
to the function’s arguments more direct. This contrasts with the unwind
instruction defined by Johnsson [1983] and Peyton Jones [1987].

Note that we shall use p as the variable name for an element of D for
the original operational semantics global environment. Because the states
are oblained from two separate domains we define an equivalence condition,
We define this equivalence as 2 in Definition 7.2. We recall that the accent
convention allows us to refer to similar objects in two different implementa-
tions. We will now accent the operational semantics abjects with an acute
accentand the corresponding G-machine objects with a grave acecent.

Definition 7.2

Suppose 6 = ((%, r), p) and & = (o0, ¢, ¥, ¥, p, 6). Then & = &, if and
only if, ¥ = 4, p = p and r = last (last (¢ : 6)).
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g €8 = OxL*"xVxGxUxD (States)
e €0 = 2Z° (Output)
v €V = (Z4+T) (Value Stack)
7 € G = [L—N] (Graph Maps)
v €N = A+I+Ide+Z+ T+ C+ {nil} (Nodes)
A = LxL (Application Nodes)
I =L (Indirection Nodes)
z = {..,-1,0,1,..} (Integers)
T = {true, false}, (Truth Values)
C = LxL (Constructor Nodes)
p € U = [Ilde— Comb] (Environments)
§ eD = L* (Dumps)
¢ €L° (Stacks)
k eK = [S—8] {Continuations)
B B = [lde— Z] (Bindings)
¢ eL {Node Labels)
Figure 7.3: Value Domains

Wenow establish Theorem 7.3. Informally this demonstrates that the
concept of evaluation in both semantics is an equivalence preserving opera-
tion.

Theoremn 7.3

Iie = (0,4, %, 1, p,6) and 6 X &, then

EvalFrom (last ¢) 6 ¥ fiz{unwind,) &

Before this is proved we must establish that the Spine function and
ynurind create the same stack from equivalent states.

Lemm 7.4

Suppose that ¢ = ((7, r), p), that & = (o, ¢, ¥, 7, p, &), and that ¢ =
&. Then Spine(7, last ¢$) = ¢, if and only if
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entrynxo #é2>2n— kKo,

o

where (0, £:¢, 9,7, 0,8) = o

unwind, X o

(vElde) — &k'0’, o’

where &' = entryn(x o popn o step)
n = ArgsGM (v |lde)p
v = ~v{
o' = fiz{unwind))o

(0, 8:¢,9,7,p,8)=0

unwind ko (vel) — ko, (v|I}: ¢, %, 7, p 8),
(VE A) i K(O, th(V l A) Y, T P 6)-
(01 L:8, 9,7, p, 6)
where v = +¢£

(O!£:¢!¢v7yp,6)=0'

popna = (o, dropng, ¥, 7, p, §)
where (01 ¢v ‘bs T Py 6) =0

stepe

{01 ¢1 'ib’ T’l P1 6)
where ((¥, 7). p) Step’ (7, 1), p)
T last (¢)

(O, b, 9,7, P 6) =g
Figure 7.4: Instructions for Function Call and Return

nn

M(M)(&) = (01 ‘ya U1 P 15)

This is a simple example of fixpoint induction. There are two loops
in the operational semantics. The outer one performs steps until a Weak
Head Normal Form is reached; the inner one performs the spine unwinding
operation for each step. Both of these are defined using a fixpoint. In
Lemma 7.4, we are showing that the inner loop of the operational model of
graph reduction is equivalent in hoth implementations.

Proof of Lemma 7.4

Simple dual fixpoint lnduction.
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ArgsGM1Ip = (I=[null]) — 1,
(I = [head]) — 1,
(I = [cons]) — 2,
I=+p — 2
I=[=D — 2,
1= — 3

(Args(p{1]))
Figure 7.5: The ArgsGM function

evalg = (restoreo fir(unwind, ))(e, [f], ¥, v, p, ¢: 6)
where (ou £: ¢| "f’. Y P 6) = 0

(o, lostd: ¢/, ¥, v, p, 8)
where (o, 6, ¥, 7, 0, ¢ :6) = 0

Figure 7.6: The gpgl and restore Iustructions

g
3
Q
!

Wewill now establisb that a sequence of reduction steps in each semantics
preserves the equivalence condition 2. Informally it is the outer loop of tbe
interpreters that we are now showing to be equivalent. The proof is a fixpoint
induction.

Proofof Theorem 7.3

Suppose that & = ({7, 7), p) and that last ¢ = £. Then
EvalFrom £ 6 = Root v (Eval((v, £}, p}) where

oot ((7v, &), p) = ((71, 7). P}

But we may expand Evel! to fir( H) where

B = Ardo.Done (o) — o, &{Step ().

This can now be proved by dual fixpoint induction.

Base Case Hootr(L6)=L 2L =1%

Inductive Step Suppose that 6; = Root£é and that for all & with
&2 ¥: Roolr(ké,) k.
We wish to demonstrate that Rootr (H & d,) & unyind, k .
We consider four cases for Done(é;):
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True Then H 4 &, = ;. H Spine (fst(é¢}) = ¢ then
.ﬁ-’c(m‘_{])é =& = (Oa d)’ ’qby T P J)
by Lemma 7.4. Therefore
unwind; k& = entryn (k o popn o step)d’
But #¢ < n + 1, so this becomes &'. Therefore Rootrad, =
& = ¥ and because & and &' differ only to the extent that
the stack is unwound, we have the required result.

False We first observe that the left hand side of the equation is
Root r (#(5tep’(6,))). Next we discover that the right hand
side is

(ko popn o step) &'
But this is 5 &” where

o = popn o stﬁ)&’

popn o step(o, &5 : ¢, ¥, 7, p, §)

popn(e, ¢, ¥, 7, p, 6)

(o, ¢y ¥, 7', p, 6)

And ¢ = drop(n—1)¢ and ((7', £}, p) = Step’ (d¢).
Hence Rootr(Step’(d4)) = stepd And from this we have
result, by induction. —

I In this case & = 7 and & = !, which implies Root r (H £ d) =1
and unwind, k& = I

1 This condition occurs when ¢ = 1 or when the inner loop
of the operational semantics fails to terminate. In the first
case & = 1 with the result that Rootr{H Aé) = L and
unwind k& = L. In the secord case we may use Lemma 7.4
to show that inner loop failure to terminate occurs in both

semantics at the same time,

il

We are now able to demonstrate, as a simple corollary, that the eval
instruction is equivalent to performing an EvalFrom { where £ is the element
on top of the stack.

Corollary 7.5
[fé = b! with & = (0, £: éa ¢’, T Py 6): then

EvalFrom £ & 2 eval(d).
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(velde) — entrynk’o’, o
where k' = tunwind; o popn o atep
n ArgsGM (v | 1de) p
v ye
o' = fir{(unwind))o
(0,€: ¢, 9,7, p.6)=0

unwind, ¢

il

untind, 0 = (vETde) — entrynk’o’, o’

where ' = unwind; o popn o stepo unpackn
n = ArgsGM (v|1de)p
v = ¢
o' = fiz(unwind))o

(01£:¢1 ﬂh‘hp,ﬁ):a"

Figure 7.7: The ynwind, and snwind, Instructions

The proof is a simple re-arrangement of the equations defining restore
and eval.

Proof of Corollary 7.5

By the definition of eyel(&) as
{restore o fir{unwind, )) (o, {¢], ¥, 7, #, (¥ : §)),

and the definition of restore.

Finally we may perform some rearrangement to the ynwind instruction to
eliminate the explicit fixpoint, and to unpack the arguments to the function.
Let us define unwind, = fir(unwind,). Then we observe (by expanding
the fixpoint) that ynwind, = unwind, unwind,, which by substituting into
the definition of unwind, allows us to deduce the alternative definition of
unwind, given in Figure 7.7.

Informally we are substituting a constant continuation for x in the def-
inition of ynpwind,. This is important because we will find that s is indeed
constant during execution of the program. This contrasts with the situation
during the proof of Theorem 7.3, where we were successively constructing
better approximations to unwind,.
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Finally, to produce an unwind; instruction that mimics the unwind in-
struction described in [Peyton Jones 87, page 323], we must unpack the ar-
guments from the vertibree. This operation is performed by the unpack
instruction. It is allowed because step does not currently access its argu-
ments from the stack, but instead re_c;nputes the locations of its arguments
at each step.

We now consider ways to adapt this definition into something that is
nearer fo that of the G-machine.

7.3 Continuations From Combinators

In this section we will perform a series of transformations to the stack se-
mantics we have derived in Section 7.2. We first demonstrate how the con-
tinuations associated with each combinator in the program text may be rep-
resented by the composition of a small number of simple instructions. This
fixed set of instructions, which we represent as combinators, will correspond
to the instruction set of the abstract machine we will derive.

We wish to eliminate the use of Step’ from our stack semantics. Our
approach will be to show that in every case the continuation corresponding
to Step’ can be constructed by composing combinators from the abstract
machines architecture. These instructions will work directly with the G-
machine state, rather than invoking Step’.

To do this we define a new unwind instruction called unurnd,. This
appears in Figure 7.8. This instruction generates the sequence

updaten o x"

in place of step. To do this a compilation of the combinator I' takes place
for user defined functions. This compilation is defined in Figure 7.9. The
auxiliary functions that are used are referred to as instructions and they are
defined in Figure 7.10. We must show that the two continuations are the
same. This is done in Theorem 7.6.

Theorem 7.8

Foralle in S:

unwind, ¢ = unwind, .
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unwind, o = (v € [de} — entrynx’o’, ¢’

where k' = wunwind, o popn o updater o k" o unpackn
n = ArgsGMIp
v = ¢
I = vilde
¢ = fz(unwind))o
(o £: ¢,¢.7.p. )—o
" = I={oul] null o cval o push0,

I =[head] — Ado evalo pushD,
I={cons] — conso pushl o pushl,
I=[4} —— add o eval o push?

I=[=] —+ ego evalo push?2

I = [if] — (if(push1)(push2))

Figure 7.8: The unwind, Instruction

‘We first consider the case of the built-in functions, because for each of
them «” is 2 constant, We can state the required equivalence formally as
Theorem 7.7. The built-in function instructions are defined in Figure 7.11.

Theorem 7.7
Ifl=[null] then step = updatel o nullo evalo push(
If1=[head] then @ = upda!el o Aid o eval o push(
If1=[cons] then step = ‘update?2 o cons sh 1o pushl
If1=1[+] then slep = update2o _aﬁo eval o push?2
T - o epalo push

F1=[=] then step = wupdate2o cqo evalo push?
c eval o push0

update 3 o (if (push1) (push2))

o eval o push(

IfI1=[if] then step

Before we can prove this theorem, we require the following results for ar-
gument evaluation. They are both established by rearranging the equations
defining KvalArg, and applying the result of Corollary 7.5.
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C:Comb - B -+ 2~ K
CALT)gn = CITI(B&{I— n})(n+1)
C[ALE]gn = E[E](B®{l—n})
£ Exp—-+B-K
£[113 = (I € dom(B8)) — pusk(A[I]),
pushualue [1] in N)
£[B]8 = pushvalue (B[B]in N)
E[Eq (E1)]8 = mkapo (£ [Eq](Az.z + 10 ) o (£[E4]8)
Figure 7.9: Stack Semantic Functions C and £
pushwlueve = (o, l:¢, ¥, 7@ {L—~ v}, p, 8
where £ = New(y)
(0, ¢| 'r”v Y 2 6) =a
pushao = (o, (¢!'n): .4, 7,08
where (0, ¢, ¥, 7,9, 8) =0
mkapo = pushvalue((Lp, &) in N) (e, ¢, ¥, 1, £, 8)
where (o, fp: 1 9, ¢, 7,0, 8) =2
Figure 7.10: Instructions to Compile User Defined Combinators

Lemma 7.8
¥ =(o,¢. 9,7, p6),and i =d!(i—1) then

EvalArgt; 6  (eval o push (i — 1)}&'.

Proof of Lemma 7.8

This is demonstrated by expanding the push instruction and then ap-
plying Corollary 7.5.

)

Lemma 7.9
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nulls = pushvalue(v = nil} (o, ¢, ¥, 7, 2, 6)
where v = -+ (Elidev{)
(0,£:¢, ¢,7aP»5)=C’

bdo = UEC—*(O,fS:(VIC)Jé,ﬁb,’r,p,&),;
where v =~y (Elidey f)
(0, 8:¢, 9,7, p8) =0

Lonsr = pushvalue(({o, 4) in N)(o, ¢, ¥, 7, p, 6)
where (0, &y : &y, ¥, 1, p, 8) =0
addo = (voEZAw EZ)— pushvaluev(o, &, ¥, 7, p,8), 1
where v = (w|Z+wn|Z)inN
v; = ~{Elidey£;)
(0,(1 :£ﬂ:¢$¢171 s 5)=0’
ego = (v€ZAwv €Z) — pushvaluev(o, $, ¥, 7, p, 8), L
where v ({Z=v1|Z)in N

i v (Elidev £;)
(O,f] 130345"«5’,71#1 6)20

vE T_-’(V | T — &, NF)(O, &P Py 6)11
where v = 7 (Elidev{)

(O,fiﬁb,'ﬂ;‘r,Pa&):U

Figure 7.11: Instructions jor Built-in Functions

ifrrRpa

If&e&’:(a,qb,w,'r,p,ﬁ), andf.=¢'!(l—1) thflﬂ

(Evaldrg €y o EvalArg £1)¢ = (eval o push2 o evaf o Eushl)b"’

Proof of Lemma 7.9

This is demonstrated by expanding the push instructions and then
applying Corollary 7.5 twice.

We are now able to establish the result of Theorem 7.7.
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Proof of Theorem 7.7
By cases of the built-in function.

[null] By the definition of Step’ as NullStep ¢ Evaldry £;, we may use
Lemma 7.8 to deduce that
8" = FualArmg £, 6 2 &" = (eval o push D) &'.
But NullStep &' = (update]l o null) a'l.
[head] This case is proved in a similazr way to that of [null].
[cons] This follows directly from the definition of cons and ConsStep.
[+] By the definition of Step’ as PlusStep o EvalArgt; o Evaldrg ¢y,
we may use Lemma 7.9 to deduce that
&' = EvalArg {3 o FvalAmg £, 6 > &",
where & = (eval o push2 o eval o push0)&’. But
PlusStep &' = (update?2 o add) &".
{=] This case is proved in a similar way to that of [+].

[iff This case is proved in a similar way to that of [null].

Finally we wish to show that an analogous transformation to that of the
previous step may be performed for user defined functions. Before we do this
we define a predicate b which allows us to cornpare the local bindings for
variables from the two implementations. The original operational semantics
bound local variables to the application nodes where the relevant argument
was. The G-machine binding 3 binds an identifier to a stack offset. For a
given 7 and ¢ we may therefore express the equivalence of the bindings using
b(, 4y (8), which is defined in Definition 7.10.

Definition 7.10

For any 7y and ¢ define

by ey (B) & VLA (7.4 [1]) = ¢ ' (B[1D)
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We now relate the combinator compilations, ¢ and &, in the two imple-
mentations, using Theorem 7.11.

Theorem 7.11

Suppose that (0, £ : @, ¥, 7, p, §) = fix(unwind,)o. Assume that yLE
Ide with1 = v £ | Ide in dom(p) and letT = p(I). Leltn = ArgsGM Ip

ﬂﬂd O" = (ol ¢': ¢’ 71 7 5) = unpackn (0) ¢1 11’1 RIS 5)'

Then, for all T in Comb, all § in B with b, 4 (3) and all m with
0<m < n:

CIr 4 (dropm) (v, &) = (7', £)
if, and only if

Cir1Bm e = (0, £ : ¢/, ¥, 7', . 8).

The proof obviously involves a structural induction. One of the com-
ponents of the syntax of Comb is an expression in E, and we will need a
subsidiary result for this syntactic object as well. This is given as Theo-
rem 7.12. The theorem states that for congruent states, with equivalent

bindings 3, the expression compilations £ and & transform the initial states
to new congruent states.

Theorem 7.12
For any & = (0, ¢, 1, 7, p, &), E in Exp, and § in B with by, 4 (3):
ETENB (v, )= (', &)
if, and only if
EIEIBY = (o, £: 6, 9.7, p, 6).
This result also requires a structural induction to complete the proof.

Proof of Theorem 7.12

By a structural induction on E.
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01} There are two cases to consider: either I is a local variable or it is
a global function. We consider them separately.

1. If I is a local variable it occurs in dom (3) and hence also in

dom (3). We observe that & [1] 4 (v, £) is (v, Arg(y, S[I)).
If we now consider £, we observe that:

EMM)3o" = push (B D',
which is (o, ¢! 5[} : ¢, ¥, 1, p, §). But
Arg(y, B[ = ¢! 811)-
2. If I is not in dom (), and hence also not in dom (), then
EMB(y, L is (1@ {¢ = [} in N}, &), where & = New (4).
Also £ [lj # &' = pushvalue ([1] in N) &', which is

(0,8 :d, ¢, @ { — [[] in N}, p, 6).

[B] We observe that £[B)4(y, £) is (v ® {£ — (B[B}]) in N}, ),
where £ = New (7). Also £[B]3¢& = pushvalue (B [B] in N)&
which is

(0, € : ¢, %, y@ {£' = (B[B]) in N}, p, 6).

[Eo (E1)] We first observe that £ [Eo(E)] A (72, &) is

(Yo ® {€ — (&1, £2) in N}, ),

where (v, &) = E[E)B(viq, fiyr), for i = 0,1 and £ =
New(vp).

Also £ [Eo (E1)] A = mkap o (£ [Eo] (Az.z + 1 o ) o (£ [E:] B).
Assume inductively that the theorem holds for [Eg]] and {E;]. In
particular, therefore,

EMEJ B (92, &2) = (m, &)
and
2 IIE'l]lB(Ov ‘;b-: "f", Y25 Py 6) = (01 tl :f,b, "103 T+ Py 6)

We now notice that b(.,,‘,,)([i) & by, (l=¢))(ié’ (Azx+ 10 ﬁ)), and
hence we may use the inductive hypothesis to conclude that

EQE] A (m, &) = (70, Lo)-

and

2 IEOJ]B(Os zl . ¢3 i,"J. T, £ 6) = (Os tD :fl : ¢, ¢1 Yo, ‘5)-
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But
éﬂEO(El)ﬂ B2, 2) = (0 ® {f — (£, &) in N}, £) wbere
¢ = New{vg). And
EI[EO (El)nﬁ (01 ¢’ 'J"’ Y24 Py 6) = mkap(ov lO :ll : ¢1 v, Yo, Py 6)
which is
(0, L: ¢: 1}’: Yo 53] {l — (t(h t]) il‘l N}v P, 6),
where £ = New(vq).

Wemay now continue to prove that the combinator compilation functions
C and { are equivalent.

Proof of Theorem 7.11
A structural induction on T'.

[M.T] Observe that
CIALT] S (dropm ¢) = C[T) 5 (drop(m + 1) @)
where 4/ = f & {I— ¢!m}. However
ST mo’ = T)H (m+1)o’

where ' = 3 & {I — m}. But b(,,‘d,)(ﬁ—’), and so by inductive
hypothesis we conclude the required result.

[\L.E] Observe that
C¢IALE)A (dropm ) = ¢ [E] 4 (drop (m + 1) ¢)
where & = f & {I — ¢ ! m}. However
CIALE]Bmo’ = CLE)H (m + 1)o’

where 8’ = A & {1~ m}. But by, ) ('), so we conclude that the
base case of our induction holds, by appealing to Theorem 7.12.

This completes the proof that the user defined functions are compiled
in the same way. Together with the result of Theorem 7.7, we are able to
demonstrate that Theorem 7.6 holds.
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unwinde = (v Elde) — p(v]Ilde)o’, o’
where v = ~¢

o = fiz(unwingd))o
(0, 8:,9,7,0,8)=0

eritn = unwind o popn o updaten

Figure 7.12: The pnwind Instruction

D :Defs - U
DlAcand Ay] = D[Ad@D[A)]

D=1] {L— entryn«x}
where n = Args[TI]
k = ezitnoCIC]{}0
Figure 7.13: The Stack Semantic Function D
finit fonll] = entryl(ezitl o nullo gval o push0)
P [Md] = entryl(ezit] o Ado evalo push0)
Pinit [cons] = entry2(ezit2 o conso pushl o push1)
finin [add] = entry2(ezit2 o addo evalo push2 o evalo push0)
pnin[eal = entry2(ezit2 o ego evalo push2 o gvalo push0)
pclfl = entry3(esitd o if(push)(push?2) o evalo push0)

Figure 7.14: The Initial Environment gy

Proof of Theorem 7.6

The proof is effectively a proof by fixpoint induction, although as there
are no longer explicit fixpoints in the definitions of either pnwind; or
untyind,, we will use an equational reasoning argnment to establish the
required result.

Assume that ¢’ = fir{unwind|)e = (0, £ : ¢, ¥, 7, p, ), and let v =
v8. If v ¥Ide then trivially unwind, = ynwind,. Alternatively assume
that » € Ide, and that ArgsGM (v | Ide)p = n. If # ¢ < n then again
the result is trivial.

Assume therefore that # ¢ > n. Then ¢ = unpgckno’. We must now
show that
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stepo” = upduten o x”.

1. If the identifier represents a built-in function, then from Theo-
rem 7.7, we know that

stepo” = updaten o &”.

2. Otherwise the identifier must be a user defined function, i.e. K’ =
€ (p(v | 1de)) faria 0.
But steps” = (o, ¢", ¥, 7', p, §), where r = last 4", and
((7'! ‘l'), ,0) = SteP'(('Ta r)i P)-
By Lemma 7.4, we know that £ : ¢¢ = Spine (v, r), so expanding
Step’ further, we have

(Vi) =((" 8 {(é!(n- 1)~ £}, 1), p),

where

(7”, E') - é(p(u | lcle)) ﬁmd¢(71 ﬂ).

But this is merely a special case of Theorem 7.11.

The major advance that the unwind, instruction has over unwind, is that
we may change the domain of the environment, U, from

[lde — Comb]

to [Ide — K]. When we do this we will need to change the definition of
unwinding again, so that it locks up a continuation in the environment. We
must also ensure that the relevant continuations are entered into the envi-
ronment, Figure 7.12 defines the final version of the unwinding instruction.
In Figure 7.13 a compilation of the programmers environment A is defined.
The initial environment is gpiy which provides continuations for the built in
functions.

This concludes the derivation of a simple G-machine from our original
operational semantics. We make one final modification to the language in
the next section, where a printer mechanism is added, before we consider
some of the optimizations which make the G-machine efficient.
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printic) = (e=niveeT) — [],

(E E Z) h— [E | Z]7

{¢EC) — prints(e | C), 1
prints(x) = print(g) H print(e)

where (g9, 1) = x | (E x E)

Figure 7.15: A Printer for the Standard Semantics

print(o, £: ¢, %, v, p, 6) =

(vez) — (o (12D, b, by 8, ),
(VET VY =nil) — (0,9, %, 7,p,6),
(vEC) — k(o €8 .7, p8)) 2
where v = 74

K = print o gval o print o gval

(&, ¢ = (#10)

Figure 7.16: The G-machine print instruction

7.4 The G-machine Printer Mechanism

To complete the description of tbe G-machine we must consider how the
addition of a printer mechanism affects the semantic definitions of the lan-
guage. If the result of the program is a basic value we are able to show that
the denotational semantics and the G-machine produce the same result. But
what happens if we produce a structured data object, such as a list? The
denotational semantics is defined to produce the Iist, but the G-machine
will only reduce the initial graph to weak head normal form. Thus we must
recursively reduce the elements of the list to weak head normal form. We
must also consider these results in the light of the full abstraction problem
that was discussed in Chapter 3.

In performing the recursive printing operation, we must consider the
possibility that an element of thelist is L. With the G-machine the recursive
reduction to WHNTF stops, and thus no more reduction occurs. That is, when
printing the list £ : L : ¢, the G-machine will print £ and then halt. This
occurs even if the remainder of the list elements in ¢ are all non- 1.

We will therefore have to meodify the denctational semantics to ensure
that the example above is given the value £: L. We do this by defining print
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in Figure 7.15.

The corresponding G-machine instruction is defined in Figure 7.16. This
is a tail-recursive implementation of the print function operating on the G-
machine state - a result that we demonstrate in Theorem 7.14 To make the
proof easier we shall use the G-machine definition in which the environment
is a function from identifiers to the syntactic representation of combinators.
This aliows us to easily form the derepresentation function. In the modified
G-machine with continuations in the environment, we would need an inverse
function from K to Comb. This certainly exists, but would be difficult to
define.

Definition 7.13
For all £ in E, with £€Z, £€T or £€ C; we say that
-
if, and only if,
¢ 2 E((7, last (lust (¢ 6))),p)

and

e(¢, Eval((~y, last (last (¢ : §))),p)).
We now state that the printer mechanisms are congruent.
Theorem 7.14

Forallé inT, 2 and C; with & in S and £ &:
print (&) = fst ((print o eval) &).

The proof is a structural induction on the structure of the output object.
Proofof Theorem 7.14

We first observe that ¢ = & implies ¢ = evalé, by the congruence result
of Part 1. As a consequence of this we need only consider proper values
for either semantics result.
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(=1veé=nivEETV EE Z) In these cases the values of 77 are
respectively 1; nilin N; ¢ | T and ¢ | Z. And hence the printers
produce the same value, i.e. L;[); [] and [¢ | Z].

(¢ € C) Suppose that (rg, 1) =vr| C, and
(éo, tl]) =X | (E x E)

Assume inductively that the theorem holds for the respective sub-
components, f.e.

print (¢) = fot ((print o eval) &),
where &,, = (o, r; : &, 9, v, p, §). Then

print (¢} = print (¢5) H print (£,).
But

fst{{printo eval) &) = fst ((print o eval) &,,) H
fot ((print o eval) &y, ).

We are thus able to show that the printer mechanism, which acts as a
demand driver for a functional program, is implemented in a congruent way
by both the G-machine and the denctational semantics. This concludes our
survey of the basic operations of a G-machine.

7.5 Related Work

The G-machine is described in a series of papers [Johnsson 83, Johnsson 84]
and Augustsson and Johnssons’ theses [Augustsson 87, Johnsson 87] provide
the latest, definitive work. Similar material is also presented by Peyton Jones
in [1987). A proof of the material in Sections 7.2 and 7.3 ocenrs in [Lester 85].

Representing the abstract machine instruction set by combinators is sug-
gested by Wand in [1982]. He also shows how these combinators may be
derived from the centinuation semantics. A practical use of this technique
occurs in [Clinger 84].

7.6 Conclusion

In this chapter we have derived a simple G-machine from the operational
semantics. This has been achieved by representing the operational semantics
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by sequences of combinators, each of which represents an abstract machine
instruction. We recall that since we have established the congruence of
Chapter 4, we are able to conclude that this machine correctly implements
the language, as specified by the denotational semantics.

In the final chapter we show that a selection of the code improvements,
proposed by Peyton Jones {1987], Johnsson [1983] and Augustsson [1987] are
correct.



Chapter 8

Store-level Optimizations

In this chapter we establish a stronger form of state equivalence than that
of the denotational equivalence given by the derepresentation function E,
Under £ we are able to equivalence the functions representing quicksort
and insertion sort. This is hecause both functions return a sorted list, and
hence are functionally or denotationally equivalent. We would like to be
able to talk about the operational equivalence of the evaluation of functions.
The intention is that two graphs should satisfy the equivalence, if they are
essentially the same. To do this we formally introduce the notion of graph
isomorphism.

8.1 Graph, State and Continuation Isomorphism

Informally, two graphs are isomorphic if they have the same structure. The
graphs with which we deal were defined in Chapter 2, and we recall that
they were finite, labeled, rooted digraphs. Harary gives a general definition
of graph isomorphism in [Harary 69, Page 10], which is repeated here. In-
formally two graphs are isomorphic if they possess the same structure. This
is just the property we require when we wish to establish the operational
equivalence of two graphs.

Definition 8.1
T'wo graphs G and H are isomorphic (written G = H or
sometimes G = H) if there exists a one to one correspon-

dence between their point sets which preserves adjacency.

105
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[...] It goes withaut saying that isomorpkism is an equiva-
lence relation on graphs.

Two rooted graphs G and H are isomorphic, if in addition, the one to
one correspondence maps the root of G to the root of H.

To setve as a model of operational equivalence we would like to include
farther graphs in the equivalence classes induced by the isomorphism. For
example we would like te ignore any indirection nodes that may exist in the
graph, and we are not interested when the graphs v and v, differ only at
unreachable nodes. For this reason we will ignore both these features. We
first define a function to remove indirection nodes from a graph. This is
achieved by generating a map from nade labels to node labels. Notice that
essential indirection nodes are not elided.

Definition 8.2

elide = elide’ [}

where

elide’ ts4l = (yLEl) —
(((v¢1 D) ets) —
last £3,
elide’ (v ¢ | 1) : ts)y (v£ | I)),

From a given set of root nades, only part of the graph may be accessible.
We define that set mark (4, R) to be the set of accessible nodes in ¥ from
R.

Definition 8.3

For a given set of root nodes R in L and graph v in G, the set
mark(y, R), is defined as follows:

1. If £ is a label in R, then £ is in the set mark(y, R).
2. if ¢ is in mark(y, R), then let v = +£.
{a) f v & A, then & and ¢” are in mark(y, R), where (#, £") =
(v ] A).
(b) v E I, then £ is in mark(y, R), where £ = (v | I).
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(c) If v & C, then £ and £7 are in mark(y, R), where (&, £7) =
(v C}
3. No other labels are in the set mark(y, R).

Using the definition of mark (y, R}, we may assign L to all non-reachable
nodes of the graph. This is performed by the function garbage.

Definition 8.4

garbage Ry =
AL (£ € mark{y, R) ——
((vLEA) — ( elidey(fst(v£] A)),
elidey(snd (v £ | A))),
(¢EC) — ( elidey(fst(y£] C)),
elidey{snd (v £ | C))),
elidey £), L).

‘We are now able to define ocur extended form of graph-isomor phism, using
the function garbage and Harary’s definition.

Definition 8.5

Let 4, = garbage B;y;. Then we say that two graphs, 7 and 4,
are isomorphic, modulo the root sets, By and R, if and only if v is
isomorphic to 4§ under Harary's definition of isomorphism [1969]. We
denote this relation by

10 mod By = 4, mod R;.

We are now able to extend this definition of graph-isomorphism, so that
it provides a way to compare states and continuations. Informally, two states
are isomorphic if we may relabel the nodes in each garbage collected graph
to obtain the other.

Definition 8.8

Let 0; = (0, &, ¥, 7i\ P, §;) and let R; be the labels contained in ¢, :
6. The states ¢q and oy are then state isomorphic, if and only if
70 mod Rp = 41 mod Ry and, if f : L — L relabels nodes in 4o with
the equivalent node labels in ¥, then
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map (map f) (¢o : bo) = (¢1 : &)
We write this as

op = &y.

Similarly, we can extend state isomorphism so that we can compare two
continvations. In this case they are continuation-isomorphic if they produce
state-isomorphic results when applied to any state.

Definition 8.7

Two continuations,x and &' in K, are continuation isomorphic, if and
only, if for all o in S

ro> g o

‘We are unable to use equality for operational equivalence as this is too
strong. In Chapter 6 we were able to use equality to establish the oper-
ational equivalence, because we always constructed the same graph in the
end. When we move on to consider ways to avoid constructing graphs, we
will find that the function New may not return the same label for nodes we
wish to equivalence.

8.2 Reducing the Amount of Graph Constructed

One of the main observations that Johnsson made in [198]], is that we can
transform the code sequences so that less graph is constructed. Consider the
conditional expression JifEq E; E3], and suppose we wish to evaluate this.
Depending on the result of the evaluation of [Eo] we need only construet
graph to represent one of [E,] or [E,]. Furthermore, this graph will also be
immediately evaluated, leading to further possible savings.

To assist in the exposition, we will borrow Johnsson's £-scheme and R-
scheme notation. These are defined, in terms of £ from Chapter 7, which
correspond to Johusson’s C-scheme. We will therefore refer to it as £ in
this chapter.

Definition 8.8
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calllne = (evalo sliden o k')o
where p[I] = entryn(ezitn o &' o unpackn)
(o, £:¢, 9,7, p,8)=0

slidenoe = (o, :dropnd, ¥, v, p, §}
where (0, £: ¢, ¥, v, p,8) =0

Figure 8.1: The call and slide Instructions

Er[E]Bn = ezitn o £[E}S
E£e[BYf = cevalo E[E)B
EcfElS = £[E]B

To abbreviate some of the notation we define . This allows us to
adjust stack offsets in a simple manner.

Definition 8.9

Define

B =(Az.z4n)o 4.

The first theorem that we will prove is that we need not construct the
epine when we reduce a function I, of arity n, when it is applied to n argu-
ments. To specify the problem exactly, we introduce two new instructions:
call and slide in Figure 8.1. The callIn instruction applies the function I to
n arguments on top of the stack, leaving the result on the top of the stack.
The sliden instruction squeezes out = arguments from the stack and leaves
the top of the stack unchanged.

Theorem 8.10

For a function 1, of arity n,

EpflE) ... E.]B 2 callln o Ec[F, ] BTN o ... o £c[En}B.

This is proved by substitutiog for the instructions in the alternative code
sequences.
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Proof of Theorem 8.10

We first observe £g[IE, ... E,] 8 is defined as

eval o mkapo ... o mkap o pushvalue(Iin N)
o EcﬂElﬂﬁ"'("_l) o...0 Ec[En]B.

Therefore, let

(0,-81 HIERR :fn :¢| /e N 6)
(Ec[E] 8V o ... 0 Ec[En] B) o

01

We are therefore required to show that
eval o mkap o ... o mkap o pushvalue (Iin N) = callil n.

But

{mkap o ... o mkap o pushvalue (I in N)) o,
(O, f:.l 1, ¢, 7 D Y spine, P, 8),

&y

where ¥ qpine 18
{6~ 1, )Iin N, ... £ = (£, 4H)inN, § — 1in N}.
Now evaldy is
(restoreo ezitn o ') (0, [&1, ..., &) 6], ¥, Y B Y spine P, ¢ : ),
so consider the evaluation of caliln oy. We can expand this to
(eval o sliden o &) 0.
We notice that the same graph labels occupy the top n spaces of the

stack in each case. Also the graphs 4, and %, differ only in the assign-
ment of £ ... £ labels in 4,

Thus

6'3 = K'r62 = (O, [£1 'el: ---1£n1 K‘l]a ‘bv "73, 2, ¢:‘5)’
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where 43 = ¥ @7 spine- Also

Fy=x'Fy=(o, l:ly:...: & L ¥, T3, p, 6)

We now observe that we may expand ezitn to unwind o popn o
updaten, so that

&¢ = (popn o updalen)éy
(o, [t7), ¥, 13 {tn — tin N}, p, ¢: 6),

and this is
eval{o, &, : ¢, ¥, Ta @ {£, = £ in N}, p, §).
Notice that

sliden(o, 8:8 ;... 6, &L : ¢, %, ¥a, p, 8)
= (O, £: ¢1 \b, '\731 Ps 6)'

Bug

(o!£:|:¢1 fl), 'i3@{£:1H£inN}v Py J)E(O,fié, ¢! '\731 I 6)

‘We may now demonstrate further improvements in the particular case of
the built-in functions, These are stated in Theorem 8.11.

Theorem 8.11

ForallE, Eq, £y and Ey inExp and all 3 in B:

fe[nullE]S = nulle E[E]S

EofhdE]S = eualohdo E5[E)B

fefcons B EqlB & comso Ec[Eg] At o Ec[Eq] A
EeladdEoEq]8 = adde Eg[Eo) 81 o EE[E1] B
Ee[eqEoE B = eqo £p[Fal B! o Ex[E(] B

ExlifEoE, Ea] 8 = H(Ex(E1]8) (ExlEa] B) o ££IEo) 8
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We must first prove Lemma 8.12. This states that the body of a combi-
nator ay be reduced before updating. This is analogous to the result we
proved for Theorem 6.5, in Chapter 6.

Lemma8.12

Forall E in Exp, allf in B, andalln > 0

ER[E] B n = ezitn o E[E]S.

This follows from Theorem 6.5.
Proof of Lemma 8.12

Corollary from Chapter 6, on alternative sharing mechanisms.

To prove the final isomorphism, we will also require Lemma 8.13.

Lemma 8.13

For all kt and kg, and completely strict x in K,

ko ifkrkp 2 if(k o KT} (K 0 KF).

Notice that we need the complete strictness of the continuation &. This
condition is guaranteed because all of the instructions we have defined are
completely strict; thus the composition of an arbitrary number of instruc-
tions is also completely strict.

Proof of Lemma 8.13
Cases on the state:

o= 1 or ¢ =] In these cases we observe that ifxr xp o = &, for all
&t and xp. We also note that, for all completely strict &; ke = o,
Thus both alternatives are equivalent to the identity function on
these improper states.
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o={0,£:¢, ¥,7, p, §) We now assume that we have a proper state.

There are two cases to consider, depending on the truth value on
top of the stack. Notice that if produces an error if this is not
the case, and we may appeal to the result of the previous case to
demonstrate the equivalence.
~£]T holds In this case ifsr kp o = k7 o', where ¢’ = poplo.

We are thus able to show that

koifskrapoc = (Koxr)o
- = if(rokr){kokF)o.

7£| T does not hold In a similar way kT rFpo i8 now kp o,

and so

(%o rrp)d’

ko ifsrkpoc
if(kokr}{raKF) O,

We may now prove Theorem 8.11 by cases.
Proof of Theorem 8.11

These theorems are proved using Theorem 8.10, and by observing that
we may rearrange stack operations, provided the evaluation of graphs
occurs in the same order.
[oull] In this case &’ is

nullo eval o push0.

We therefore observe that call[null]1 is evale slide1 o x'. Thus

call[null] 1 0 £[Ef A eval o null o eval o £c[E] 3

= nulio £5[E}P.

Notice that the second evalis redundant because the pullinstruc-
tion leaves its result in WHNF,

[hd] In this case «' is
Ad o eval o push0.
‘We therefore observe that call[hd] 1 is eval o slide 1 o x’. Thus

call[bd]1 o Ec[E}S = evalo hdo evalo EJE]F
= evafo hdo EgE] 3.
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[cons] In this case »' is
conso pushl o pushl,
We therefore observe that callfcons] 2 is eval o slide?2 o x’. Thus
callfeons]2o0 kpox; = cvaloconse kgo Ky
= CORso© Kp O Ky,
where x; = EcfE;] 109, Notice that the eval instruction is
redundant because the consinstruction leaves its result in WHNF.
[sdd] In this case x' is
add o eval o push2o evalo _;lus_hﬂ

We therefore observe that calladd] 2 is eval o slide?2 o &'. Thus
call[add] 2 o Ec[Eo) 81! o Ec[Eq] B

= evalo slidel o add ¢ eval o push?2 o eval o
Ec[Eo) 31! o EclE]
& evalo gdd o evalo EG[E,] 81! o eval o Ec[Fo] A.

But the evalinstruction immediately following the add instruction
is redundant.

[eq] In this case &' 13
eqo evalo push2 o evalo push(.
The proof is therefore identical to that of add.
[if] In this case « is
if(push1) (push2) o eval o push0.
‘We therefore observe that caf{[if] 3 is eval o slide 3 o k. Thus
<allfif]3 o EcEo} 41 o £C[E} A+ o EG[E2) B
= evalo shide? og(&sl} 1) (push2} o

EBlEo] BT o £GEL} 81! 0 Ec[Ea] B
> evalo f(EclE1)B) (EclEq] B) o E[Ea] B.

But the gval instruction, being completely strict, may be dis-
tributed through the if instruction by Theorem 8.13; this gives

H(EE[E:] B) (E5[E2)B) o E[Eo] .
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Finally, we can demonstrate that tail recursion distributes through con-
ditional expressions. This is done in Corollary 8.14.

Corollary 8.14

For all E, Eg, Ey and Eg in Exp, all 8 in B and alln > 0:

Er[ifEo Ex Ez} 8n 2 if(ER[Eq] B n) (Er[E2] B n) o £E[Fo) B-

This is a straightforward application of Theorem 8.11 and Lemmas 8.12
and 8.13.
Proof of Corollary 8.14

By Theorem 8.12,

Er[ifEqE1 Eg] B n 2 exitn o £gfif Eo Eq E] 8.
But, by Theorem 8.11,

£efifEo Ey E2] 8 2 if(E[Er] 8) (£e(Ea) B) o EE[Eo] 8.
Now, by Theorem 8.13, we have

ER[ifEq Ey Eo] Bn
if(exitn o E5[E1] B) (ezitn o ExfE2]B) o ExlEolB.

Now, by applying Theorem 8.12 again, we have

Er[IfEg E B2} fn = f(ER[EL] B n) (ER[Es] Bn) o Ee[Eo] 8.

Using Johnsson’s notation, we have analysed the £ and R-schemes and
shown the required isomorphisms for these proposed compilation methods.
In the next section we consider graph-isomorphic code that performs oper-
ations on a value stack, V.
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nllls = (o, % (10=ni) %, 7, 7, 9)
where o = (0, £: ¢, ¥, 7, p, 6)

Ma - (COEZACIEZ)__'(O'¢,<.:¢'|7’P,6)’;
where { = (H|Z4+G |2

a=(0,¢aC11C0:¢'.71P,‘5}

equa = (CDEZACIEZ)—_’(O’¢yf:w)7$p!6)5;
where 1 = {|Z=( |2

o={0,8C:C:% 7 p0)

iJKTKFU = (TET) i ((T | T)__’ KTy KF)(°}¢r 'J’u ¥ P 6):;
where ¢ = (0, ¢, T 19, v, p, §)

mkinto = ({€Z) — pushvalue({ in N)(o, &, ¥, 7, p, 6}, 1
where 0 = (0, ¢, : 9, 7, p, §)

mkbool o = (r€T) — pushvalue(r in N}(o, ¢, ¥, 7, £, ), 1
where o = (0, ¢, T 1 9, 7, p, §)

gete = (veZ) — (0,6,(v|2): %75, 6)

(VET) — (0,6 (V| T)i%, 7,0, 6), 2
where v = ~£
0=(°;£=¢’;¢’;7;Pvﬁ)
getio = (getoget)(o, £o: b1z, ¥, 7, p, 6)

where v = ¢
U=(01!1:£0:¢3¢‘1 ‘Y’P!G)

Figure 8.2: Instructions for Built-in Functions {(using V)

8.3 A Stack for Basic Values

So far we have not used the third component of the state at all, this is now
remedied. It is intended that this component should he a stack of inte-
ger of boolean values, and s0 we now provided instructions and alternative
combpilations for this use.

Before investigating graph-isomorphic continuations, we digress alittle to
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mentjontyping. We will presume that our language is polymorphically typed
in the manner described by Milner in [1978]. We shall presume that we have
a function 7 that retnrns the type of an expression. For most compilation
purposes we are only interested in these types if they are Integer or Boclean.

Definition 8.15

I T[Ef] = Integer or T [Eg] = Boolean, define £g so that

EglE)S = getoExfE(]B
£g[EB]B = geto EE[ER]S

We would now like to show that we may use the alternative continnations
produced by the new compilation rule £g. The selection we consider is given
in Theorem 8.16.

Thecrem 8.16

For all well-typed programs, the following pairs of continuations are

equivalent:

£p[null E] 8 > nullyo £5[F]

tpladdEqE(§ & addvo E[E1]B o £5[Eo) B

{sleqEqg Eq] 8 2 equo Eg[E1] 8 o £5[E0] B

ERlIfEQEL Eg Bn = ifp(ER[Er]B n)(Er[Ea]Bn) o Ep[E] S
(EMfEEr ER] 8 = ifp(Ee[El]B) (Ee[E2]B) o E[Ea] B

£p[lif Eo Ey E2] 8 i (£n[E]B) (E[E2]B) o E5[Eo} B

It is interesting 1o notice that the “obvious” isomorphism

mkint o Ep{Ef] 8 = £[E[] 5,

is not, in general true. This is because the mkint instruction has created a
copy of a node, and hence the structure of the two graphs is no longer the
same. We note that this oceurs only when the original node was shared, and
50 we are able to prove a result of sufficient power, by considering only the
unshared case.

Lemma 8.17
geto mkint o gddvy = addy
get o mkbool o egu = egu
getl o mkboolo pully =  pully
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Notice that in all cases the built-in instruction leaves an unshared node
on top of the stack. We use this property to prove Lemma 8.17.

Proof of Lemma 8.17

Suppose addve = (o, ¢, { : ¥, v, p, 6). Then

(get o mkint) (0, &, {1 ¥, 7, 0, 8) =
get(o, £: ¢, ¥, 7B {{ = {in N}, p, §).

But this is (0, &, { : 9, 7 {{ — { in N}, p, §). However,

(0,9, :%,7®{— ¢in N}, p, §) =
(O" ¢FC :wi 7" P’ 6)‘
because there is no longer a reference to the new node labelled by £.

By a similar argument, we may show that

(get o mkbool) {0, &, T : ¥, 7, p, §) =
(0,6, 7y y@ {£ — 7in N}, p, 6)

Again, there are no longer references to the new nodes labelled £, and
this allows us to deduce the last two jsomorphisms.

We will also need to demonstrate the relationship between tbe origi-
nal built-in instructions and their V-stack equivalents. This is done in
Lemma 8.18.

Lemma 8.18
mkbool o nully = null
mkint o addy o get? = add
mkbool o equo get2 = eq
tfurt KF o get = ifkT Kp

The proof is by straightforward substitution.

Proof of Lemma 8.18
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By direct substitution for the instructions mkint, mkbool, addy, eqv,
nully, ifv, get and get2.

Finally, we show the relationship between the sequencing of two graph
evaluations, under the £& and £g compilation schemes.

Lemma 8.16
For all Eq and E; in Exp and all 3 in B:
get2 o Eg[Ei] 51! o Eg[Eo] 8 = £5[E1] 8 o £s[Ec] 8.
Again, the proof is direct substitution.

Proof of Lemma 8.19

Apart from checking the stack order, this proof is simple. Suppose

that

Eg[Eo] 8o = (0, bo : ¢, %1 70, p, 6)-
Then

EE[E]5* (0,80 : 8, %, Yo, 0. 6} = (0, &1 : Lo 2 b, %, 11y 2, 6)-
However,

(get o E[EA]B o get) (o, bo : &, %, 70, p. &) =
(DI ¢1 C] : CD : d)l Tis P 6)1

where (; = v, £; | Z. But this is precisely

get2{o, &y 1€ : ¢, Y, 71, p, 8).

We may now prove Theorem 8.16.

Proof of Theorem 8.16
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We prove this by cases:

Eg[null E] 3 Firstly,
Ep[nullE]S = get o Ex[null E] 5.
But, by Theorem 8.11, we have
Eplnull E} 3 = nullo £5{E] 5.

Also null = mkbool o nully and hence, by Lemma 8.17, get o
null™ puliv. Thus

Ep[nullE] 3 & nullv o £E[E] 3.
Epladd Eg E,]|J Firstly,
Epladd EgE1] 8 = get o Egfadd Ep Eq] 5.
But, by Theorem 8.11, we have
£gfadd Ep Ey] 3 = add o £g[E1] 8%} o £E[Ea] 5.

Also, by Lemmas 8.18 and Im:8-3, add = mkint ¢ addv o get? and
gel o mkint o addy = gddv. Hence

£p[2dd Eo Eq]) 3 &
addv o get2 o EE] 8" o £x[Fol 8.
But, by Lemma 8.15,
get2 o Eg[Ea] B o £5fEq] 3 = £B[E] S o £n[Eo] 4.

from which we obtain the result.

Epleq Eo Eq] 3 This is proved in the same way as the previous case.
ErifEgEy Eg]l3n This case follows immediately from Theorem 8.14
. and Lemma 8.18.
EEfitEg Eq E2] A This case follows immediately from Theorem 8.11
and Lemma 8.18.

Eplif Eo E; E2] 8 This case follows immediately from the previous case
and Lemma 8.13, which allows us to propagate the get into both
branches of the conditional,

This concludes our brief survey of some of the code improvement tech-
niques used in the G-machine.
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8.4 Related Work

Most of the material in this chapter can be found in Sections 2 and 3 of
[Lester 87], where graph.isomorphism and its uses are described. In [1987],
Augustsson provides source-level transformations for his G-machine and its
related denotational semantics, His proofs are made using denotational se-
mantics.

In apaper on the Scheme 311 compiler [1984], Clinger performs a similar
set of transformations, but as he remarks, transformations such as

[(lambda (x} x) 3] = [3]

may not be valid. The storage requirements may change. This is precisely
the problem graph-isomorphism is introduced to solve. We note, however,
that Clinger is correct when he states that store-semantics congruences are
far messter than the corresponding direct-semantics congruences. The diract
denotational semantics for Scheme with which he works is more complex than
the one presented in this thesis, but his operational semantics is of similar
complexity to that which we describe. This provides yet another reason
why we would like to work with the denotational semantics rather than the
operational semantics if at all possible.

The optimizations we discuss here were first proposed by Johnsson in
[1983]. He proposes separation of the two furctions of the dump in his thesis
[Johnsson 87].

8.5 Conclusion

The useful operational equivalence of graph-isomorphism is defined in Sec-
tion 8.1. It is used in Section 8.2, where we have seen how we may avoid the
construction of unnecessary graph. This is accomplished by reducing built-in
{unctions directly, if their result will necessarily be required. A more accu-
rate strictness abstract interpretation could be wsed to improve the quality
of the generated code. In Section 8.3 we extend this idea, so that interme-
diate resolts of built-in functions are retained in V instead of being written
out to the heap only to be retrieved later. Both of these ideas were originally
described in [Johnsson 83].



Chapter 9

Conclusion and Further

Work

To conclude, we briefly summarize the main results presented in this thesis.

9.1 Results

Underlying this thesis is the desire to present an implementation of a lazy
functional language, and to show that this implementation satisfies the
declarative properties that we expect.

We have chosen to use graph reduction as the basis of our implementa-
tion, This is because both TIM [Fairburn and Wray 87] and the G-machine
[Johknsson 83), two of the most efficient implementations of lazy functional
languages, are based on the graph reduction model. We have presented a
formal model of graph reduction. This model was irtended to accurately rep-
resent the method of implementation used by most current graph reduction
implementations of functional languages. For this reason, error handling was
included in the definition of the model. The model used indirection nodes to
maintain sharing, and because of this the model was naturally tail recursive.

The model of graph reduction was then shown to be congruent to the
standard denotational semantics, which provides a definition of the declar-
ative properties of a lazy functional program. Although both models define
the same language, the operational model has the additional property that
its operational behaviour is specified. As a result of the existence of the
congruence, we are able to state that the graph reduction model is correct
with respect to the denotational semantics. The congruence proof follows

123
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the usual pattern of such proofs, by establishing that each semantics ap-
proximales the other. The novelty of the congruence proof presented in
Chapters 3 and 4 is that the language we present has Iazy rather than the
strict function application semantics presented by Stoy in [1981].

The first application of the congruence is to discover the condition under
which the evaluation order may be re-arranged. This condition is complete
strictness which is a stronger condition than that typically determined by
strictness analyses for the A-calculus.

It was then discovered that the language was not confluent because of
a design decision for the implementation of addition and equality. Tech-
niques to restore the property of confluence to the language are discussed in
Chapter 5.

‘We investigated alternative sharing mechanisms in Chapter 6. The con-
clusion was reached that copying an evalnated graph preserved sharing, and
thus is a legitimate strategy. To prove this we had to prove Theorem 6.2,
which concerns cycles in the spine of a graph. It was shown that a state
with a spine cycle was necessarily non-terminating. Implicit in the original
operational semantics was the existence of two fixpoints, The first or ocuter
one controls the sequence of reduction steps, and the inner one is part of
the specification of the spine unwinding process. We observe that either
may cause non-termination. There is an important difference between them
however. A spine cycle causes a detectable 1, because the graph is finite.
A non-termination occurring because we reach no final state remains unde-
tectahle because it is equivalent to the halting problem.

A new sharing scheme was proposed which combines the indirection and
copying forms of sharing, so that chains of indirection nodes do not ac-
cumulate and also we do not create new stack frames to evaluate partial
applications to weak head normal form.

In Chapter 7 we demonstrated that the operational semantics may be
represented by a small set of combinators. These combinaiors correspond to
the instruction set of a G-machine ahstract machine. We are therefore able
to conclude that the G-machine also provides a correct implementation with
respect to the language specified by the denotational semantics.

The G-machine includes some interesting optimizations. After we define
a modified form of graph isomorphism, we are able to demonstrate that
some of the alternative code sequences generated by the optimizations are
isomorphic to the original code sequences. This is done in Chapter 8.

This concludes the work covered in this thesis and we now consider work
which could usefully be done to extend it.
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9.2 Further Work

Although this thesis has answered some of the basic questions arising from
the useof graph reduction to implement functional programming languages,
there are a number of extensions and open problems that remain.

The langnage used in this thesis is distinctly minimal. Many modern
tanguages have additional features, such as local definitions, list compre-
hensions and pattern matching. These features could be compiled into the
language we have used. Source to source translation is not usually used in
denotational semantics, as the meaning of a program fragment is then not
easily discovered. This problem is carried over into the programmers model
for the language, making programs more difficult to reason about. When we
consider the operational semantics of the new language features, we see that
it is usual to provide more efficient implementations than those produced by
the simple translations. It would therefore be interesting to know whether
these extensions to the language lead to complications when a congruence
proof is attempted.

The transformational development of the G-machine, provided in Chap-
ter 7, could usefully be adapted to derive other abstract machine models,
such as TIM [Fairburn and Wray 87). Unfortunately it is not possible to
investigate the relative efficiency of these two implementations, other than
statistically. This serves as a warning that we should not expect to be able to
derive the “best™ abstract machine from the operational semantics of graph
reduction. One attempt to provide a more efficient model is the Spineless
G-Machine [Burn et al. 88] which includes a transformational derivation of
TIM. Another is Argo’s G-TIM [Argo 88]. Argo has investigated the relative
merits of the G-machine and TIM, and then incotporated the best features
of eachin the G-TIM. It would still be interesting to know of other useful
implementations to be found in the space of possible derivations.

As an alternative to the operational semantics provided in Chapters
2 and 4, it would be interesting to consider a parallel operational seman-
tics. There is an important difference between the parallel and sequential
models of graph reduction. The sequential algorithm has no real choice
about which redex to reduce at each step. With a parallel implementation,
not only is there a choice of redexes, but this choice can be non-deterministic.
There are therefore many parallel operational models for graph reduction,
whilst there is essentially only one sequential model. It follows from this
that a transformational development, like that of Chapter 7, is not Likely to
generate all of the interesting parallel models.
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