
FORMAL SPECIFICATION OF

WINDOW SYSTEMS

by

Jonathan Bowen

Technical Monograph PRG-74
ISBN 0-902928-56-2

June, 1989

Oxford University Computing Laboratory
Programming Research Group
8-11 Keble Road
Oxford OX1 3QD
England

Copyright © 1989 Jonathan Bowen

Oxford University Computing Laboratory
Programming Research Group
8-11 Keble Road
Oxford OX1 3QD
England

Electronic mail: bowen<Ouk.ac . oxford. prg (JANET)

FORMAL
SPECIFICATION
OF
WINDOW
SYSTEMS

e-
Jonathan Bowen

Blit

example

WM

x

To Alice, Emma and Jane

"Oll! I do so wish I could see that bit!"

Lewis Canol!, Through the Looking-Glass

Formal Specification of Window Systems

Jonathan Bowen

Summary

Window management systems are now used extensively for user interfaces
to computer systems. Part I of this monograph introduces some of the fun
damental ideas in window systems using a formal notation. Part II outlines
three real systems and attempts to ca.pture the essence of each system using
the same formal notation and ideas introduced in Part 1. Low-level detail is
avoided to keep the length to a, manageable size.

In Part I, chapter 1 introduces general concepts useful for specifying
pixel maps and window systems. Chapter 2 defines the raster-op function
which is fundamental to many graphics operations and chapter 3 introd \lees
a simple example window system. In Part II, chapters 4-6 detail three
particular window systems. Chapter 7 remarks on experience gained by
formally specifying the three window systems.

The formal notation used, Z, is based on set theory, and has been devel
oped at the Programming Research Group in Oxford.

Contents

I An Introduction to Window Systems I

1 Basic Concepts 3

1.1 Pixel positions 3

1.2 Pixel maps 5

1.3 Windows ... 7

2 Raster-Op Functions 10

2.1 Operations on Pixel Values 10

2.2 Operations on Pixel Maps . 11

2.3 Display Operations 14

2.4 An Example - Swapping Pixel Maps 15

2.5 Conclusion 16

3 An Example Window System 18

3.1 State of the Window System 18

3.2 Operations on Windows 19

3.3 Error Conditions ... 21

3.4 Sta.tus Operations .. 22

3.5 Upgraded Opera.tions . 24

3.6 Conclusion 25

ii	 CONTENTS

II A Comparison of Three Real Window Systems 27

Introd.uction	 29

4	 The ITC 'WM' Window Manager (eMU) 30

4.J State....... . .	 30

4.2 Window Creation and Deletion	 34

4.3 Window Size	 35

4.4 Windows Visibility 36

4..5 Other Window Operations. 37

46 Errors 38

4.7 The ITC Network .	 40

4.8 Simplifications and Assnmptions	 42

4.9 Comments.. .	 42

5	 Blit Windows (AT&T) 44

').1 State 44

5.2 New Layers	 47

5.3 !'few Processes ..	 48

5.4 Mouse Operations	 50

5.5 The 'mux' Multiplexer	 51

5.6 Errors .,	 52

5.7 Simplifications, Assumptions and Comments.	 53

6	 X Window System (MIT) 54

6.1 State. . .	 54

6.2 Creating and Destroying Windows	 57

6.3 Manipulating Windows	 59

6.4 Other Window Operations.	 64

6.5 Errors .	 65

6.6 Simplifications and Assumptions	 66

6.7 Comments and Inconsistencies	 67

..,	 Conclusions 69

7.1 Comparison of Window Systems	 69

7.2 Formal Specification of Existing Systems.	 70

7.3 General Conclusions .	 71

CONTENTS iii

Acknowledgements T2

References 73

Appendices 74

A Glossary of Z notation TT
A.l Abbreviated names . 77

A.2 Horizontal paragra.phs 78

A.3 Vertical paragraphs . . 78

A.4 Decla.rations and operators 78

A.5 Expressions 78

A.6 Predicates 79

A.7 Schema expressions. 79

A.8 Sets ... 80

A.9 Relations 80

A.I0 Functions 81

A.ll Numbers and finiteness 81

A.12 Sequences . 82

A.13 Bags 82

A.14 Conventions 83

B Index of formal definitions 84

~

0
"'C
~

.....

~

 0

....
~

 s [/J

~

+>
(J)

l-o
0.....

~

~

[/J

~
~

u
~

::lo

o

"'C
0 >-t
~

l=:
~

<
 ~

Chapter 1

Basic Concepts

Before we start to attempt to specify a window system formally, it is helpful
to introduce a few fundamental and generally applicable ideas. This section
gives a formal framework to aid the description of pixels, their organisation
into pixel maps and a number of windQ'fJ./s.

The specification language used. throughout this monograph is the Z no
tation [HayeS?, Kiug8S, LoomBS, Spiv88a, Spiv89]. This is a. typed language
based on set theory and first order predicate calculus. It has beeIl devel
oped at Oxford over the past few years. The nota.tion here conforms almost
entirely to the notation described in [Spiv89]. The only extension is the use
of the schema piping operator ('>') which is included in [King8S].

1.1 Pixel positions

A raster graphics display is made up of a. set of pixels with positions or
coordinates. These are normally defined in X-Y coordinate space. The
display is a fixed size bounded rectangle in the X-Y plane.

I Xsize, Ysize : N)

The offset in a particular direction js specified from zero up by conven
tion. The position of a pi.xel may be specified by a pair of X-Y coordinates.

Xmnge 0 .. Xsize - 1
Ymnge 0 .. Ysize - 1

Pixel X range X Yrange

The pixel at (0,0) is normally at the lower left-hand corner of the display
and the yLxel at (Xsize - 1, Ysize - 1) is at the top right by convention.

3

4 CHAPTER 1. BASIC CONCEPTS

Mauy operations are applied to pairs of pixels.

PixelPair--=-:--:- _
pix., piX2 : Pixel
XI, X2 : Xrange
YI, yz : Yrange

pIXI = (x" y,)

p"" = (X"112)I

The '+', '-' and'S;' operators may be overloaded to apply to pixel
positions. '+' and '-' may be used for moving pixel areas around the, display.
'::;.' <:au be used to define pixel ordering from the bottom left to top right.

- +
_: (Pixel X Pixel) -+t Pixel

_ ~ _: Pixel t-t Pixel

V PixelPair •

(Xl + X2 < Xsize 1\ YI + 1/2 < Ysize) ~

pix! + pi$z = (Xl +X2,Yl + Y2) 1\

(X2 ::; Xl 1\ Y2 ::; YI) ::}

pixi - piX2 = (Xl - X2,Yl -!h) 1\

pix. ::; p~ {::} Xl :$ X2 1\ YI ::; Y2

We can define the offset between any two pixel positions as a pixel offset.
This is defined to wrap round the edge of the pixel area and thus is a total
function.

offset: Pixel - Pixel _ Pixel

V PixelPair _

offset piXl p~ =

«x, +x,) mod Xsize, (YI + y,) mod Ysize)

We can also overload the' 'operator to define a rectangular area of
:pixels.

I _ .. _: (Pixel X Pixel) ~ F Pixel

'tJ PixelPair •
pix, .. pix-, = (Xl .. x,) X (y, .. !h)

5 1.2. PLXEL MAPS

pix}, pix2 : Pixel I-- pix} ., P'ix2 = {p : Pixel I pix} ~ pAp ~ pU-z}

A rectangular area of pixels ca.n defined using any two opposing corners
(e.g. returned using an a.ttached mouse to sweep between the two). The
following functions rcturn the lower left and upper right pixel positions from
two such pixel positions respectively.

_ min _,

_ ~ _ : (Pixel X Pixel) _ Pixel

VPixelPair •
piXI minpiX2 = (min {xbZ2},min {YIdh}) A

pix, maxp;", ~ (max {ZI>z,},max {YI,Y'})

1.2 Pixel maps

A raster graphics displa.y has a. number of bit-planes. This ma.y be considered
as the Z direction of the display.

I Z$ize: 1\1 1

Each bit in a bit-pla.ne has one of two values (cleared or set).

Clear -- 0
Set 1

Bit {Clear, Set}

The value of a. pixel at a particular position may be modelled as a. func
tion from bit-planc number to bit value.

Zrange O.. Zsize-l

Value Zrange _ Bit

If all the bits are I Clear' the' Value' is considered'Bla.ck' and if they are
all 'Set l it is considered' White'.

Black (I' val: Value I ran val ~ {Clear))

White (I' val: Value I ran val ~ {Set))

Note that if there is only one bit-plane (Le. Zsize = 1) then pixel values
can only be Black or White.

f- Zsize ~ 1 ~ Value ~ {Black, White}

G CHAPTER 1. BASIC CONCEPTS

A pixel map consists of a (partial) function from pixel positions to the
value of the pixel contents. This can be used to describe part of a display,
such as a window.

Pixmap ::;::::: Pixel -+t Value

Non-empty pixel maps may be of interest.

Pixmap! ~~ Pixmap \ {I2l)

Pixel maps are often rectangular in area. We can define such pixel maps
using their bottom left and top right pixel positions.

Rectangle :=;::::

{map: Pixmapl I 31 PI. P2 : Pixel - dom map:::: PI .. 1>2}

Sometimes it is desirable to set all the range of a pixel map to a particular
value,for example when clearing a window down to the background colour.
A function to set the range of a relation to a particular value is useful for
this.

IP, Vl~~~~~~~~~~~~~~

setval: V ~ (P - V) ~ (P _ V)

Vv: Vi p:P-++ V.
setval fl p::; (J-lffl: P -+t V I (domm;:: domp 1\

ra.nm~{v)))

The following laws apply:

p : Pizmap; v: Value I- (setval v)+ P :::;: setval v P

v : Value I- setval v Q) = Q)

Two pixel maps may overlap. For exa.mple, one window may obscured
by another. This can be captured as a relation between pixel maps:

IP, Vl~~~~~~~~~~~~=
overlaps : (P _ V) H (P _ V)

Vpl.1'2: P -+t V.
PI overlaps 1'2 ¢::> dom PI n dom 1'2 ~ Q)

A sequence of pixel maps may be overlaid in the order given by the
sequence. It is convenient to define a distributed overriding operator for
this.

7 1.3. WINDOWS

[P, V]~~~~~~~~~~~~~
fIJ/:seq(P_ V)_ (P_ V)

ffi/O = 0

'1s,seq(P~ V); p:P_ V.
tfl/(s ~ (p)) = (fIJ/5) fIJ P

Distributed overriding is particularly useful for defining the view on a screen
of a display, given a sequence of possibly overlapping pixel maps.

The following laws apply for the distributed overriding operator:

~ ffi/0 = 0
p: Pixmap ~ fIJ/(p) =p

81, 52 : seq Pixmap ~ fIJ/(s, ~..,) = (ffi/s,) fIJ (fIJ/..,)

PI , P2 : Pixmap ~ fIJ/(PI,P,)=PlfIJP,

s : seq Pixmap ~ ffi/s = (fIJ/(front 5)) fIJ (last S),

= (head s) fIJ (fIJ/(tail s))

s : seq Pu,map ~ dom(ffi/s) = dom(U<ran s))

s : seqPixmap ~ ran(fIJ/s) <; ran(U(rans))

s :seqPu,map ~ n(rans) = 0 '* fIJ/s = U(rans)

Note that the first three laws above provide at alternative way of defining
lffi/'.

1.3 Windows

A series of windows on a. display screen may be viewed as a sequence in
which each window is laid on the screen in the order defined by the sequence
(bottom first, top last). If some ofthe windows are removed from a sequence,
it is sometimes desirable to 'compact' the remaining windows into a. sequence
again.

[Wl=============
compact, (III ~ W) _ seq W

compact 0 = 0
'1/,111- W; i:III [i=min(domf).

compact / = (/(i») ~ compact({i} <If)

If the windows in a sequence overlap, it is useful to be able to move
selected windows 50 that their contents may be viewed (or hidden). This is

8 CHAPTER 1. BASIC CONCEPTS

analogous to shuffling a. pile of sheets of paper (windows) on a desk (screen).
Note that the sheets of paper may be of different sizes and in different
posi tions on the desk.

For example, the following function may be used to move a. selected
window number in the sequence (if it exists) to the top of the pile (i.e. the
end of the sequence).

[WJ~~~~~~~~~~~~~

top: N seq W seq W

'rIn : "I; s : seq W •
nEdoms=>

top n s ~ compact({n} .. s) - (s(n)) "

nf/.doms=>
top n s ::= S

More generally, we can define functions to 'select' and 'remove' a set of
windows from a 5equence using their identifiers rather than their position in
the pile.

[W]~~~~~~~~~~~~~~

_ select _,
~:seqWxPW seqW

'Vs:seq W; w:P w.
s select w = compact (s f> w) 1\

s~w= compact (8e. w)

We can then 'raise' or 'loVler' these windows to the end or beginning of the
sequence as required.

[W]~======~~~~~~
_ raise _,
~;seqWxPW.......... seqW

'V s : seq W; w : P W •
s mise w ~ (s ~ w) '"' (s select w) 1\

s lower w :::= (s select w)"'" (s ~ w)

Every window in a. system usually has an identifier, denoted 'Window',
which allows it to be accessed uniquely.

9 1.3. WINDOWS

(Window]

The generic functions defined in this section will normally be applied to such
identifiers.

Windows often contain text. Thus, a text string is needed sometimes
(e.g. for a title of a window). This is denoted as 'String'. The string may
be empty.

(String]

I ": String

This concludes the basic definitions which will be used as required in the
rest of this monograph.

Chapter 2

Raster-Op Functions

Raster.op functions are useful when moving areas of pixels (e.g. parts of
windows) around the screen on graphics display systems. Raster-op is now
widely used in graphics systems, in particular for window systems. This
chapter formally specifies raster-op functions and gives an example of its
use. Readers not familiar with 'raster-op' may prefer to do some background
reading first [Fole82, Newm81].

2.1 Operations on Pixel Values

Given two pixel values, we may perform a bit-wise 'NAND' ('not and') on
the two values to produce a new value. IT both bits are set then the result
is clear; if either bit is dear then the result is set.

_ lfAlfJ2 _: (Value x Value) ~ Value

'V val}, vah, val: Value •
vall NAND vah = val ¢}

(Vn: Zrange.
(vall n = Set /I. va12 n = Set) =>

val n = Clear /I.

(vall n = Clear V vah n = Clear) ::::}
valn=Set)

All the other binary and unary logical functions may be defined in terms of
this function. For example, we can define a unary 'NOT' function.

NOT: Value _ Value

V val : Value_
NOT val = val NAND val

10

11 2.2. OPERATIONS ON PIXEL MAPS

\Ve can also define binary' AND', 'OR' and I XOR' functions.

_ AND _,
_ OR _,
_ XQ!1., _: (Value x Value) -+ Value

Vvall, vah : Value.
vall AND val,; NOT(val, NAND val,) A

val, OR val, ; (NOT val,) NAND (NOT val,) A

val, XOR val, ; (val, Qll val,) AND (val, NAND val,)

2.2 Operations on Pixel Maps

A pixel map is consjdered to have the same shape as another if it can be
'moved' using a unique one-to-one function «offset pixo) in the definition
below) to give it the same domain. Intuitively this implies that each of the
pixel maps could be moved en masse about the domain space so that its
domajn is exactly the same as the other map.

sameshape _: Pirmap +-+ Pizmap

Vmap! , maPl : Pixmap •
map! sameshape maPl ¢>

(3 pir" : Pixel.
dom«offset pixo); rnapJl ; dom map,)

Consider a pair of (possibly overlapping) pixel maps which have the same
shape.

MapPair _

mapl,
map2 : Pirmap

mapl sameshape maPl

Two pixels in a pair of pixel maps with the same shape are considered
to have the same position if the same offset function which relates the two
maps also relates the two pixels. This is ca.ptured in 'sameposl relation
below. If the relation is true then it implies that the two pixels are ill- the
same relative position within two pixel maps with the same shape. That is
to say, if one of the pixel maps were to be moved on top of the other then
one pixel would be exactly on top of the other.

12 CHAPTER 2. RASTER·OP FUNCTIONS

samepos : (Pixel X Pixmap) +-+ (Pixel X Pixmap)

Vpixl, piX2 : Pixel; MapPair I
piXt Edam rnapl 1\ pix2 E dom maP2 •

(piXI' mapl) samevos (pix2, map2) ¢:>

(3 pix<J : Pixel.
dom((offset pi:r;J); maPl) ~ dom map, 1\

pixt >-+ pix-z E 0 JJset pixo)

We may define operations similar to the bit-wise operations on values
to apply to pixel maps. In this case by convention, the last opera.nd of the
function has the same domain as the result of the function. We start by
defining the 'nand' function.

_ mm4 _ : (Pixmap x Pixmap) Pixmap

VMapPair; map: Pixmap _

maPl nand maP'l :::: map ¢:>

dom map :::: dom maP2 "

(VpixI : dom mapl; piIiz : dom maP2 I
(pixi. maPl) samepos (p~, maP2) •

map,(p;x,) NAND map,(pix,) ~ map pix,)

Note that this operation is not commutative, unlike 'NAND' since the second
operand defines the domain of the result of the function. Specifically, if the
domains of the pixel maps differ, the ordering is important. If the domains
are the same then the ordering is unimportant.

MapPair I-- dom map! :::= dom maP2 ::::}

map] nand map'l = maP2 nand mapl

Using the basic 'nand' function T we may define1i:£teen further operations.
Four of these degenerate to monadic functions. 'noop' leaves a pixel map
unaffected, 'not' inverts all bits, 'clear' dears all the bits and' set' sets all
the bits.

13 2.2. OPERATIONS ON PIXEL MAPS

noop,

not,

clear,

set: Pixmap _ Pixmap

V map : Pixmap •
noop map = map 1\

not map = map nand map 1\

clear map = map nand (not map) 1\

set map = note clear map)

There are five more important operators. These correspond to standard
logical operations except 'copy' which is extremely useful for moving pixel
maps.

_ and _,
_ or _,

_ xor _,
_ nor _,

_ Q!I!JJ.. _: (Pi:emap x Pizmap) -++ Pizmap

V MapPair _

mapl and map2 =
note map! nand map2) 1\

map1 or maP2 =

(not map!) nand (not map,) /\

mapl ElI:.. maP2 =
(map! or map2) and (map! nand maP2) 1\

mapt nor maP2 =

note map! or maP2) 1\

mapl~maP2 =
mapl or (clear maP2)

The rest of the operations are used less often but are detailed here for
completeness.

14 CHAPTER 2. RASTER·OP FUNCTIONS

_ cop1Jlnverted _,
_ andReverse _,
_ andlnverted _,
_ orReverse _,
_ orInverted _,
_ ~ _: (Pixmap x Pixmap) -++ Pixmap

VMapPair.
map) copyInverted map2 :;::: (not map]) or (dea.r maP'.!) A

map! andReverse map'l = map, and (not maP'll /\

mapi andbwerted map'l ~ (not maP:L) and map2 /\

mapi orR ever,'ie map'l = muP:L Q!. (not maP2) /\

mapl orInverted maP2 = (not maPJ,) Q!. maP2 /\

mapl equiv maP2 :::: (not map]) xor muP2

This covers the sixteen possible raster-op boolean functions on two values.

2.3 Display Operations

A display screen consists of a pixel map.

Display _

[screen : Pi:xmap

DUIing changes to the screeD, its size does not change although the pixel
values displayed on the screen may be updated.

LlDisplay _

Display
Display'

dom screen' = dom screen

The screen may be updated using one of the raster-op functions previ
ously defined. Some functions require a source and destination area whilst
others degenerate into a single area.

15 2.4. AN EXAMPLE - SWAPPING PIXEL MAPS

RasterOpl _

!J.Display
area? : P Pixel
op? ; Pixmap - Pixmap

screen' ::= screenffi op?(area? <J screen)

RasterOPl, _

LiDisplay
area? : P Pixel
from? : Pixel
op? : (Pixmap x Pixmap) -++ Pixmap

screenl
0:::: screen $

op? «(offset from?Harea?~)<J screen, area? <l screen)

2.4 An Example - Swapping Pixel Maps

Consider two separate non-overlapping pixel maps with the same shape.

SepPair _

MapPair

..., map! overlaps map1

!J.SepPair E:: SepPair 1\ SepPair'

\Ve may swap a pair of pixel ma.ps with the same shape using the 'copy'
operation.

CopySwap _

ti.SepPair

map~ = maP';! Qm!l mapl

map~ = map! ~ maP2

16 CH.~PTER 2. RASTER-OP FUNCTIONS

In practice, these two 'copy' operations cannot be carried out simulta
neollsly. A third copy is necessary and additionally a temporary pixel map
area is required. This can easily be expressed by using three schemas, one
for each opera,tion, and then combining them using the schema composition
operator (';'). This is left as a exercise for the reader.

Alternatively, the' xor' raster-op function may be used. Three sequential
operations are still necessa.ry, but the use of a temporary buffer area. is
eliminated. The following two schemas 'xor' one or other of a pair of pixel
maps with its opposite number.

Xorl _

6.SepPair

map~ = maP2 T,or map.

map~ =: maPl

Xor2 _

b..SepPair

map{ = mapI

map~ = maP:l xor maP2

A swap may be achieved between the two pixel maps by applying to
kenxor three times sequentially as follows.

XorSwap :S: Xorl; Xor'l ; Xorl

By symmetry, the following is also tree.

6.SepPair l- XorSwap ¢} (X07'l ; XO'1) j XOT:.l)

The XorSwap operation has exactly the same effect as using the 'copy'
opera.tor twice simultaneously, as in the CopySwap operation.

6.SepPair l- CopySwap ¢} XorSwap

2.5 Conclusion

\Ve have formally specified the raster-op function and how this may be ap
pli€d to a graphics display. We have given an example of its use for swapping

17 2.5. CONCLUSION

areas of a display. By defining operations performed on rectangular areas,
we have specified some of the underlying operations necessary for a window
system.

Chapter 3

An Example Window
System

Window management systems are now used extensively for user interfaces to
computer systems. This cha.pter outlines an example window system using
fOTmaJ specification techniques. An abstract view of the system is developed
and some basic opera.tions are given.

3.1 State of the Window System

The window display may be modelled as a sequence of windows against a
background 'window' which is the size of the displa.y itself. The order of
the sequence defines which windows are on top in the case of overlapping
windows, in ascending order. Only parts of windows which are contained
within the background area. are displa.yed.

SYS _

windows ". seq Pixmap
scrern, background: Pixmap

screen = background ffi (dom background <l ffi/windows)

In this simple example, we shall ignore the complication of window iden
tifiers. We shall simply use the position of the window in the sequence to
identify it, assuming that the user of the system keeps track of which window
is which.

Note that the user can only see the display screen.

View == S YS \ (windows, background)

18

19 3.2. OPERATIONS ON WINDOWS

Initially there are no windows and thus only the background is displa.yed.

InitSYS '" [SYS' I window8' =0]

InitSYS I-- screen' == background'

During changes to the display, the background and hence the size ofthe
display always remain the same.

t;.SYS '" [SYS; SYS' I background' = background]

Some operations may leave the state of the system unchanged. for example
during a status operation or if an error in the input is detected.

=.SYS '" [t;.SYS I 9SYS' = 9SYS I

3.2 Operations on Windows

hi order to use the system, we must have the ability to create windows.
These are <:reated on top of all the existing windows. We specify that they
must fit wi thin the display background.

AddWindo1l\l _

t;.SYS
window? : Pixmap

dom window? ~ dam background

windows' 0: windows"'" (window?)

The ability to update windows is very useful. This may involve changing
the size of the window or its contents or moving it about the screen. Again,
the updated window must still fit wjtWn the display area.

_ Update Wind.,'ll _

t;.SYS
which?:N

window? : Pixmap

which? E dom windows

dom window? s: dom background

windows' = windows ffi {which? l-Jo window?}

20 CHAPTER 3. AN EX.4MPLE WINDOW SYSTEM

It is desirable to be able to uncover a window which is partially or even
totally obscured by other windows. Thjs can be done by moving the window
to the end of the sequence of displayed windows.

ExposeWindoutJ _

C,SYS
which? : N

which? E dom windows

ulindows' = top which? window.'!

Sometimes it is useful to simply rotate the order of the displayed win
dows, one at a. time, moving the bottommost window to the top.

Rotate WindowSo _

t:.SYS

windows I ()

windows' = top 1 windows

We also wish to be able to delete windows. For instance, we could delete
the topmost window.

RemoveToA:l _

t:.SYS

windows I ()

windows' = front windows

Alternatively, we may wish to specify which window is to be removed.

RemoveWind°utJ _

t:.SYS
whieh? : N

which? E dom windows

windows' '= compaet({which?} <E3 windows)

3.3 ERROR CONDITIONS	 21

3.3 Error Conditions

The operations covered so far detail what should happen in the event of no
errors. We wish to be able to report the status of an operation.

Report	 'OK'

'Not a vindov'

'No vindovs'

'Invalid window'

We must report the fa.ct that the operation wa.s successful if this is the
case.

Success _

[rep! : Repmt

[rep! :::: 'OK'

If errors do occur, then these need to be reported as well. For example,
an invalid window may be specified.

_NotAWindow	 _

=.SYS
which? : N

rep! : Report

which? ~ dom windows

rep! :::: 'Not	 a window'

It is possible that there are no windows displayed when one is required.

NoWindows	 _

=.SYS
rep! : Report

windows = 0

rep! :::: 'No windalia'

A specified window may not be within the background area..

22 CHAPTER 3. AN EXAMPLE WINDOW SYSTEM

B<UJWindow _

:=SYS
window? : Pizmap
rep! : Report

..., (dom window? ~ dom background)

rep! = 'Invalid window'

We may include these errors with the previously defined operations which
ignored error conditions, to produce total operations.

AddWindoWJ. =: (AddWindoun 1\ Success)
V DadWindow

UpdateWindowl = (Update Windo"" to. Success)
V BadWindow V NotA Window

Expose Windowt ::: (Ezpose WindoUQ 1\ Success)
V NotA Window

RotateWindows] S (Rotate Windowso 1\ Success)
V NoWindows

RemoveToPI == (RemoveTol'J 1\ Success)
V NoWindows

RemoveWindoulJ. =: (RemoveWindo'Utl/\ Success)
V NotA Window

3.4 Status Operations

The contents of an existing window may be of interest.

GetWindo"" _

iSYS
which? : N
window! : Pixmap

which? E dom windows

window! = windows which?

We can make this operation total as well.

23 3.4. STATUS OPERATIONS

GetWindoUi ~ (GetWindo% 1\ Success) V NotA Window

It is useful to know which window a. given pixel position is in, for example
when pointing at a position on the screen with a mouse driven cursor. Given
the position, the sequence number of the window is required. There may be
several windows at the specified position but we are only interested in the
topmost one.

Which WindoUJo _

SYS
position? : Pixel
which!: N

position? E dom(EElJwindows)

which! ::::: max {n : dom windows 1

position? E dom(windows n)}

However, it is possible that the cursor position may not be in a valid
window. In this case we simply record this {act by making 'which!'iovalid.
This is because this schema will be combined with others to produce an
appropriate error message later.

Invalid == 0

NotlnWindow _

SYS
pOlfition? : Pixel
which! : N

po~ition? ~ dom(ffijwindows)

which! ;:: Invalid

To mak€ the operation total, we combine these two operations.

Which Window == Which Windo~ V NotIn Window

24 CH.4PTER 3. AN EXAMPLE WINDOW SYSTEM

3.5 Upgraded Operations

Often when a window is updated, we wish to modify the original window
rather than completely replacing it. Sometimes we wish to change the shape
of the window by either enlarging it or reducing it, or a combination of the
two. Any new area exposed may be given any deshed background pixel
values.

Reshape _

area? ,

window?,

window! ; Pixmap

window! = area? EB (dom area?) <I window?

This schema is a general operation concerning the input and output of a
window and hence the change in state of the window system need not be
recordBd.

Oft.en we want to move a window. We can define a one-ta-one mapping
to do this. If the window cannot be moved in its entirety using the mapping
given, then it is left unaffected.

Move _

mapping? : Pixel H+ Pixel
window? 1

window! : Pixmap

dom window? S;; ran mapping? ::::}
window! = mapping?; window?

..., (dom window? ~ ran mapping?) ::::}
window! = window?

At other times we simply wish to modify the contents of the window. We
ignore any modifications outside the area of the window.

Madify _

mods?,

window?,

window! : Pixmap

window! = window? EB (dom window?) <l mods?

25 3.6. CONCLUSION

Again the two previous schemas have nothing to do with the state ofthe
Willdo'w system. However by combining the last three schemas with a record
of the change of state, we can then combine them with previous operations
to produce some new window operations.

ReshapeWindow =- GetWindotLI >- Reshape ~ Update Windotltl

Move Window == GetWindQw:;» Move:;» UpdateWindotltl

ModifyWindow '" Get Window > Modify ~ UpdateWindovtJ

Each of these operations selects a. particular window from the system, trans
forms the window in some way, and then updates the system with the new
window.

To bring a window to the t.op, we point at it using the mouse cursor
and click a button to execute the operation. This can be modelled using a
combination of previously de-fined operations.

Expose Window == Which Window> EzposeWindOWJ.

We may want a process associated with a particular window to decide
whether a given operation may be executed, using some unknown protection
criterion.

Decide _

allowed? : P 1\1
which? ,
which! : I\l

which? E allowed? => which! = which?

which? ¢ allowed? => which! = Invalid

Thus a process may decide whether a user is allowed to remove a window.

Remove Window :: WhichWindow ~ Decide >- RemoveWindoW}

3.6 Conclusion

We have introduced a model for a simple window system together with
some basic operations which may be performed. We have shown how some
of these operations may be combined to produce a set of useful windowing

26 CHAPTER 3. AN EXAMPLE WINDOW SYSTEM

operations. \Ve have used the schema piping operator ('>') to combine
some of the operations rather than the more normal method of using schema.
inclusion since this giYes a better idea. of how the operations might be joined
together in practice.

Noth.ing has been said about the nature of pixels in this chapter. Little
has been said about the contents of windows. However these issues could
be expanded using the model given to produce a complete specification for
a windowing system.

~
-
-
-
-
-

Introduction

In Part 11 of this monograph, Z [Haye87, King88, LoomBS, Spiv883" Spiv89]
is used to describe parts of three window systems, WM [Neuw85, Rose85],
the Blit [Pike84, Unix85] and X [Gett85, Gett86, 5che861. These systems
ha.ve been developed independently at Carnegie-Mellon University, AT&T
Bell Laboratories a.t Murra.y Hill and Massa.chusetts Institute of Technology.
All the systems use bit-mapped raster displays with a keyboard and mouse
for user input.

A high level description of the sta.te of each system and a. selection of win
dow operations is presented to give a fla.vour of each and to allow them to be
compared. The opera.tions covered are those a.vailable to applications pro
grams via, library proced1ue calls. In general, similar operations are available
to the user under mouse control. Some background reading may be helpful
for readers not familiar with windowing techniques [Fole82, Newm81].

Only operations directly concerned with windOWing are covered. The
systems described also include many other operations such as graphics,
raster-op, mouse and cursor routines 1 etc. Ea.ch description covers the fol
lowing:

• State of the system and initialisation.

• Windowing operations, ignoring error conditions.

• Error conditions and status reports.

• Simplifications and assumptions in the specification.

• General comments on the system.

Menu facilities axe not covered in detail for the sake of brevity. Addi
tionally, the parameters supplied to some operations have been simplified to
aid clari ty in the brief descriptions given.

Graphics facilities within windows are not included. However Z is suit
able for this. For example, it has been to specify parts of the graphics
standard GK5 [Arn087J.

29

Chapter 4

The ITC 'WM' Window
Manager (CMU)

WM [Neuw85. Rose851, part of the 'Andrew' distributed system, is a win
dow manager developed at the Information Technology Center (ITC) at
Ca.rnegie-Mellon University [Saty84, West85]. This runs on UNIX· based
workstations designed eventually to be networked on a very large scale
(c5,OOO-1O,000 nodes). Because of the distributed file system, any autho
rised person may also use any other workstation on the network, and indeed
create \\'indows on other workstations remotely.

4.1 State

The sta.te of the system is introduced iu stages. In this model we consider a
single machine (or simplicity since we are concerned with how the window
manager works rather than how the network operates. Operations over the
network will be detailed later.

Each window has a number of pieces of information associated with it.
These include a header area for titles and other information, and a separate
body area to hold the actual contents of the window. These do not overlap
and together they make up the pixel map of the displayed window. In
practice, the header is a thin rectangular area just above its associated
body.

'UNIX i~ a trademark of AT&T Bell Laboralories.

30

31 4.1. STATE

Map_-:-__--::-:- _

header, body, map : Pixmap
area : P Pixel

(header, body) partition map

area = dom map

The user can request a window to lie within a specified range of dimen
sions and can also explicitly ask (or a window body to be hidden from view
or exposed on the screen. Ea<:h window has a title which can be set by
the user. This informa.tion is used by the window manager to layout the
window on tlle screen, although there is no guarantee tha.t what the user
asks for is what the user gets!

HideExpose :::::: Hide I Expose

Con'rol _

title: String
control: HideExpose
xylimits : Pixel x Pixel

first xylimits ~ second xylimits

Together these make up the infonnation describing a particular window.

Info == Map 1\ Control

There are a finite number of windows on a. particulax screen. One of these
is considered to be the currently selected window. This may be 'undefined'
sometimes. Most WM library functions take effect on the currently selected
window. Each window has information, including a pixel map, associated
with it.

Undefined: Window

32 CHAPTER 4. THE fTC 'WM' WINDOW MANAGER (CAW)

WM _

windows : F Window
CUTTent : Window
contents: Window -++ Info

Undefined ~ windows

windows == dam contents

CUTTent E windows U { Undefined}

The display screen consists of the background overlaid with windows.
The window pixel ma.ps do not overlap. All windows are contained within
the background area.

WM _

WM
maps: Window -++ Pixmap
areas: Window -++ (P Pixel)
screen, background: Pixmap

maps = contents; (.>. Info • map)

areas == contents; (A Info. area)

disjoint areas

U(ra.n areas) >:: dom background

screen == background EB U(ran maps)

You can have as many windows as you need, subject to the restriction
that the WM process can handle a.t most 20 windows, including hidden
windows and windows requested by other programs, at one time.

Max Windows : N

Max Windows == 20

We can include tms limitation in OUI model of the state.

WM " [WM I #unndows 5 MaxWindows I

The size of a window on the user's displa.y is one of the resources that
the Window Mana!ler allocates. A program can request a given size, and

33 41. STATE

WM will take the requested size into account when making decisions, but it
does Dot guarantee a particular size. This process is modelled as a function
of the system. The number of windows is not changed by this function.
Additionally. control infonnation supplied by the user is left unchanged.

WINDOWS == Window _ Info

WM _

WM
adjust: WINDOWS ~ WINDOWS

Vw, w': WINDOWS I Wi = adjust w.

#w'= #w A

Wi ; (A Info. (j Control) :::: w ; (A Info. 9Control)

Initially there are no windows and the current window is undefined.

InitWM _

WM'

windows':::: 12)

current':::: Undefined

Operations cbange the state of the system. However the background and
hence the size of the screen remains constant. Additionally the algorithm
to adjust the size of windows does not change.

C>WM _

WM
WM'

background' = background

adjust' = adjust

Sometimes the state of the system is unaffected during an operation.

::OWM =' [~WM IOWM' = OWM]

3~ CHAPTER 4. THE ITC 'WM' WINDOW MANAGER (CMU)

Many operations are concerned with the current window. Hence we
define a schema giving a partial specification covering ill common aspects
of such operations. This can be used to shorten subsequence specifications
of these operations and reduce repetition. The names of such schemas are
prepended with '~' to distinguish these from actual operations.

~Current _

Ll.WM
Info
Info'

current E windows

current' = C'U rrent

9Info := contents current

contents' = adjust (contents ffi {current I--t (} Info'})

This leaves a valid current window the same, but updates the information
associated with it in some (as yet unspecified) way.

4.2 Window Creation and Deletion

When a window is created, the system adjusts all the windows in the system
appropriately. The window body is exposed when it is created. In practice,
the operation also takes the name of a host as input since a window may be
created anywhere on the network of workstations. However this is detailed
later.

NewWindOttU _

Ll.WM
w!: Window
Info

#windows < MaxWindoW5

w! ¢ windows U {Undefined}

current' = w!

control:::: Expose

contents' ::: adjust (contents U {w! (} Info})

35 -13. WINDOW SIZE

The curren tly selected window can be deleted.

Delete WindoU\! _

~WM

current E windows

current' = Undefined

contents' = adjust ({ cutTent} -EI contents)

4.3 Window Size

A program can request a given size range, and WM will take the requested
size into account when making decisions, but it does not guarantee a partic
ular size. The rest of the window information is unaffected. The windows
will he adjusted by the system as necessary (i.e. any or all of the displayed
windows may change shape as a result of setting the size of one particular
window).

SetDimensiQrntl _

C}Current
minxy?, maxxy? : Pixel

map' = map

title' = title

control' = control

xylimits' = (minxy?, many?)

The size of the body of the currently selected window c;m be returned. If
the window is actually hidden (i.e. WM has adjusted the window to display
the header only), then the returned size is empty.

36 CHAPTER 4. THE ITC 'WM' WINDOW MANAGER (CMU)

GetDimensiQflSo

I4lCurrent
I wh!: Pixel

X1/1 • XY2 : Pixel

BIn!o' = OIn!o

dom body := XYI .. XY2

wh! := XY2 - XYI

4.4 Windows Visibility

Aindow is considered 'visible' when both its header and its body are
displayed and 'hidden' when only its header is displayed. Windows are
visible when they are first created and remain 60 unless the user hides them.
A program can also control window visibility. A visible window may be
hidden,

HideMe,, _

lJ>Current

map'::: map

title' = title

control' ::: Hide

xylimits' = xylimits

Sjmila.rly, a hidden window may be exposed.

Expo8eMe,, _

.pCurrent

map' = map

title' = title

control' ::: Expose

xylimits' = xylimits

37 -1.5. OTHER WINDOW OPERATIONS

Note that the state of 'control' before the operation has not been checked
above, so HideMeo wil11eave a hidden window hidden and ExposeMf'.{) will
leave a visible window ex:posed.

4.5 Other Window Operations

A window may be explicitly selected as the current window, until another
window is selected or created. All output will be sent to the selected window.

Select WindolLb _

c,WM
w?: Window

w? E Ul'indows

current' :::: w?

con tents' == contents

The title of a. window may be set. This involves placing a. text string in
the header section of the window contents.

Set Tit1eo _

'l'Cummt
57 : String

map' == map

title' :::: 5?

control' :::: control

rylimits' ::;: xylimits

The body of the currently selected window may be set to white.

38 CHAPTER 4. THE fTC 'WM' WINDOW MANAGER (CMU)

ClearWindoUb _

lflCUTTent

header' ::: header

body' ::: setval White body

title' ::: title

control' = control

I rylimih.~'::: xylimits

Other operations supplied by the WM library include line, text and
string drawing, raster operations, operations to save and restore parts of
the picture, input ha.ndling, menus, mouse input, etc. In a.ddition, new
operations ma.y be added; a.t the time that thls specification was formulated
WM are still under development.

4.6 Errors

There is a Null window identifier which is never a valid window,

I Null: Window

WM " [WM I Null ~ windows I

6. WM and:::: WM are redefined appropriately.
Some operations return a window identifier. If this is Don-null then the

operation is successful.

~~-:;:w!: Window

w! l' Null

Alternatively a error may occur. There is a limit on the number of windows
which WM can handle. This could cause an error when creating a new
window.

39 -1.6. ERRORS

I TooManyWindows

I ='WM

I w!: Window

#windows 2: Max Windows

w! = Null

\Ve can now make the operation to create a new window total.

New WindoWJ. :::: (New WindotL\) /\ Success)

V TooManyWindows

The current window may be undefined when one is required. t~~;fTentWindow

current = Undefined

Delete WindoW]. :2: DeleteWindoutl V NoCufT'etlt Window

SetDimensionsl :2: SetDimensionso V NoCurrent Window

GetDimensioTuh == GetDimensionso V NoCufTent Window

Set Titlel == SetTitleo V NoCufTentWindow

Clear WindoW) =- ClearWindotttl V NoCufTentWindow

A window may always be hidden or exposed, even if this does not affect
its state.

An invalid window may be selected.

Invalid Window
='WM
tv?: Window

w? ¢ windows

SeledWindoW] == SelectWindoU\J V Invalid Window

40 CHAPTER 4. THE ITC 'WM' WINDOW MANAGER (CMU)

4.7 The ITC Network

hl pra.ftice, a.'i mentioned previously, there are many window managers, each
running on a host. workstation on a large network. Some hosts are running
WM. All workstations have unique host names and all windows have unique
IDs across the network.

ITC _

hosts: P String
toms : String -+) WM

dem wms ~ hosts

disjoint (wms; (>. WM. windows»

To start with there are no hosts (and hence no window managers) on
the network.

I",tITC = r lTC' I hosts' = "' J

Operations cause changes on the network.

MTC = ITC A lTC'

Hosts can be added to the system (e.g. booting up) and removed (e.g.
crashing or powering down).

AddHost _

t>ITC

host,? : String

host? ~ hosts u {")

hosts' = hosts U {host?}

11ImS' = wms

RemoveHost _

t>ITC
host? : String

host? E hosts

hosts' '= hosts \ {host?}

umlS' = {host?} <l wms

41 4.,. THE ITC NETWORK

Operations ("an be initiated on a particular 'local' host. These do not
affect the host names on the network.

iIIHost _

!C>.ITC
localhost : String

hosts' :::::: hosts

localhost E hosts

For example, WM may be executed on a, host, and may be subsequently
killed.

ExecWM _

C}Host

initwm: InitWM

localhost ~ dam wm.s

wms' = wms U {localhost 1-+ initwm}

KiIlWM _

C}Host

localhost E dom urrns

wm.s' = {localhQst} <EI wms

WM operations can be modelled in the global context of the network
by upda,ting the state of WM on a particular local host which is already
running WM.

ill WM _

ep Host
b..WM
hos! : String

9 WM = wms host

9WM' = wms' host

~2 CH.4PTER 4. THE ITC 'WM' WINDOW MANAGER (CMU)

Tle Window Manager on the local host can be requested to create new
windows on any machine on the fTC network that is running a WMprocess
by supplying the a.ppropriate host name. Alternatively, specifying a null
host parameter results in a request for a window on the local machine. This
is the normal mode of operation.

New WindowITC _

NewWindowl
4>WM
host? : String

host? := " '* host := {acalhast

host? 1:- <' ::::} host = host?

Other window operations discussed previously may be described in the
global network context. For example:

Delete WindowITC =. Delete Windowt /\ cf> WM

If the current window is on the local machine, then the operation is
executed locally, otherwise it is carried out over the network.

4.8 Simplifications and Assumptions

For the purposes of brevity, the pop-up menus supplied by WM have been
ignored in the description given. These could easily be added to the state
specifica.tion by including them as extra window information in a schema
called Menu.

Info ::: Info 1\ Menu

In practice, windows are not adjusted immediately, but when the Win
dow Manager next ma.kes a size decision (e.g. when the user requests WM
to proportion the windows). This is not modelled here. In addition, the
way in which the windows are proportioned is not specified since this is not
(Oovered in the documentation used to formulate this specifica.tion [Neuw85].

4.9 Comments

The WM window manager provides a simple system with non-overla,pping
.....indows. Hence no notion of window ordering is required. The idea of a

43 4.9. COMMENTS

'current' window for each process using WM means that this information is
held as part of the state of the system and need not be specified as input
to many window operations. Windows are automatically reduced in size by
the system when there is not enough space on the screen. This simplifies
the task of organising windows for the user.

Chapter 5

Blit Windows (AT&T)

The Dlit [Pike84, Unix85], developed at Bell Labs, Murray Hill, is more like
an intelligent terminal than a workstation. It is diskless and interacts with
a remote host running the Dell Labs Eighth Edition UNIX via a 9600 baud
(slow) RS-232 serial line. It has its own simple process scheduler and a bit
mapped display. Programs can be run on the Blit (downloaded from the
remote host), on the remote host itself using a standard window terminal
emulator process on the Blit, or on both using two special purpose programs
which interact with each other over the serial line. Deciding how to split
a program between the Blit and remote host is a tricky but interesting
problem.

5.1 State

The Blit contains 'layers' which arc analogous to windows on most other
systems. However there is no protection between layers. Ea.ch layer ha.<>
an rectangular region on the screen associated with it. Here we model this
simply as a partial function from pLxel points to values.

Layer Window

Point Pixel

Each pixel point is two-valued - i.e. each window is a simple bit map.

Zsize :::; 1

Several layers (with associated rectangular windows) may exist sjmnlta
neously. The layers are ordered as a sequence for reasons that will be seen
in a moment. There is an invalid null layer for error returns (see later).

44

45 5.1.	 STATE

I NulLLaycr: Layer

8lit	 _

layers: S€q Layer
windows : Layer .- Rectangle
reets : seq Rectangle

ran layers =: dam windows

NuliLayer ~ ran layers

reets =: layers; windows

Several processes may also exist simultaneously in the Blit. Ea.ch process
has an associated program and state. A process ma.y be disabled or enabled.
However the rest of this specification is not concerned with the state of
processes, but it is included here for completeness. Each process is normally
associated with a layer. Creating a, process without a layer or vice versa is
dangerous.

[Program, State)

Proc _

prog : Program
state : State

[_ 1 : Layer

The Blit includes no window 'manager' a.'i such since any process has
access to the entire screen. There are a series of processes in the system
each identified uniquely by a process id. There is a null invalid id which is
returned by opera.tions to indicate an error. One of the processes may be
assigned to receive mouse and keyboard events.

[ld J

NulUd: ld

46 CHAPTER 5. nUT WINDOWS (AT&T)

Blit _

Hlit
procs : Id Proc-H

receiver: Id

Nullld ~ dorn procs

re.-::eiver E dorn pTOCS U {NullEd}

Vproc : ran procs •
proc.l E ran layers U {NullLayer}

A process may be associated with a default terminal emulation program
if desiroo.

Blit '" [Blit; default: Program)

The background may be considered as another layer which defines the
size of the screen. The display consists of all the layers overlaid on top of
the background. All layers are contained within the background. The order
is determined from the position in the sequence (first at the bottom, last on
top).

Blit _

Blit
screen, background; Rectangle

dom(tB/rectsJ ~ dom background

.'creen = background tB (tB / rects)

Initially there are no layers Of processes in the system.

InitBlit _

Blit l

layers' = ()

procs' ::: Ql

receiver' ::: Nulild

Operations do not change the default terminal program or the back
groun.d of the display.

47 5.2. NEW LAYERS

IlBIit _

Blit
Blit'

default' = default

background' = background

Some operations do Dot affect the state of the Blit.

"Blit = [IlBIit 18BIit' = 8BIit I

Often operations only affect layers and all the processes in the system
are left unaffected.

if1Layer _

IlBiit

procs' = procs

receiver' = receiver

Similarly, processes are often changed whilst leaving all the layers in the
system unaffected.

<J;Proc _

IlBIit

layers' = layers

windows' = windows

5.2 New Layers

A layer may be created in a. specified rectangle in the physical display bit
map. The address of the layer is returned.

48 CHAPTER 5. BLIT WINDOWS (AT&T)

NewLayefb _

lJILayer

r? : Rectangle

I! : Layer

dom r? ~ doro background

i! r;. ran layers

layers' = layers" (I!)

windows' = windows U {I! I-t r?}

A layer ma.y also be de-allocated. The associated process should also be
freed for safety, but this is a sepi\Tate operation.

DeILayeTb _

cJlLayer
L? : Layer

l? E ran layers

layers' = layers ~ {I?}

windows' = {l?} <EI windows

5.3 New Processes

A new process can be allocated. A handle on the process is returned. Note
that the associated layer is undefined. The process program is often the
default terminal emulation program and in practice this is specified using a
null argument.

NewProco _

i1!Proc
/1: Progmm
id! : Id
proc: Proc

proc.prog = f?

procs' = procs U {id! 1--+ proc}

receiver' = receiver

49 5.3. NEW PROCESSES

A process may be created using the standard user interface to select the
rectangle for the process's layer. This associates the process with the layer.

NewWindotLtl ::: NewProC{j; NewLayero

NewWindoWo '" [NewWindoWo II! = proc.l)

A layer may be selected so that the process in that layer becomes the
receiver of mouse and keyboard events.

ToLayero _

~Proc

I? : Layer
proc: Proc

proc E ran procs

l? = proc.l

procs' =procs

receiver' = procs"" proc

The process whose layer is indicated by the mouse may be returned.

GetProco _

SBlit
l? : Layer
prod: Proc

proc! E tan procs

proc!.I = l?

Alternatively, a handle on all the processes in the system may be returned.

[~;;;;-,.,

:rocs! ;ld ~ Proc

procs! = procll

50 CHAPTER 5. BUT WINDOWS (AT&T)

5.4 Mouse Operations

The Elit includes a mouse. This controls the position of a cursor on the
screen. Additionally, any combination of the three buttons on the mouse
may be pressed at any time.

Button ::= Button! I Button2 I Button3

Mouse _

xy : Point
[buttons : P Button

Some pixel positions on the display screen may be associated with a
particular layer. This is the layer which is visible at that particular pixel.
Otherwise the background is visible at that point. The gun-sight cursor is
used to find a particular layer.

Gunsight _

SBlit
pos? : Mouse
I! : Layer

poS?xy E dom(lll/rects) =>
I! = layers(max {n : dom reets I

pOs?xy E dom(rects n)})

pos?xy ¢ dom(lll/rects) =>
I! =: NullLayer

We can now give a more complete definition for GetProc',

GetProct ::= Gunsight ~ GetProco

The box cursor is used to pick out a rectangular area. This is done by
sw~ping out a rectangle whilst button 3 is depressed.

51 5.5. THE 'MUX' MULTIPLEXER

Box _

=:Blit
posl?,pos2?: Mouse
r! : Rectangle

posl?but.tons = {Button3}

pos2? . buttons = l2l

dom r! = dom background n
«pos1?xy min pos2?xy) .. (pos1? .xy=pos2?xy))

5.5 The 'mux' Multiplexer

The underlying library routines a.vailable for the Blit do not include all
the basic operations necessary for a. complete window mana.ger. However
a. program called mux may he downloaded from the host system. This
manages asynchronous windows, or layers, on the Blit terminal. Each layer is
essen tially a separate terminal. Layers are created, deleted, and rearranged
using the monse. Depressing mouse button 3 activates a menu of layer
operations and releasing the button selects an operation. Some of these
operations are covered here.

A new layer containing a terminal emulator process may be created by
sweeping out a rectangle with the mouse whilst button 3 is depressed.

Newa == Box> New Windou\l

The size and location of a layer on the screen may be changed. A gun
sight cursor to select the layer and a box cursor to select the new position
are presented to the user. The domain of the layer's rectangular area is
updated.

Reshapeo 2 (Gunsight:'l> DeLLaye'll); (Box :'I> NewLayero)

A non-current layer may be selected using button 1. The layer is pulled
to the front of the screen and made the current layer for keyboard and mouse
input.

,2 CHAPTER 5. BLIT WINDOWS (AT&T)

T.I'J---- _

tLayer
[? : Layer

layers' = layers raise {l?}

windows' = windows

Cum:nt&Tol'J = Gunsight» (ToLaye",; Tol'J)

5.6 Errors

Successful operations can be reported.

Success _

dBlit
I! : Layer

l! I' NullLayer

Similarly, failures can also be reported. This could be because there is not
enough memory for example.

~~~~" 
/!: Layer 

I! NullLayer 

A rectangle not within the background area could be given in error. 

InvalidRect _ 

"Blit 
r? : Rectangle 

-, (dam r? ~ dam background) 

For example, the operations to create a new layer or process may fail 
beca.use of an invalid rectangle or lack of memory. 



53 5.7. SIMPLIFICATIONS, .4SSUMPTIONS AND COMMENTS 

NewLayer}	 .;::: (NewLayero" Success) V
 

(InvalidRed " Failure) V Failure
 

NewPrlJCl 2 (NewProeo" Success) V Failure
 

NewWindowt =:: (Ne'wWindoWo" Success) V Failure
 

Sometimes an invalid layer may be specified as input.
 

InvalidLayer	 _ 

~Blit 

l? : Layer 

n ~ r an layers 

A layer must Exist to delete it or make it the current receiver. 

DelLaye1'] DelLayero V InvalidLayer 

TOLayerl ToLayeTb V InvalidLayer 

Some operations return no errors. 

GetProcTabt :::: GetProcTabo 

5.7 SiUlplifications, Assumptions and Comments 

Many cursor and mouse operations and other graphics operations have been 
ignored for brevi ty. 

The documentation [Unix85] states that the associated process must be 
freed when a layer is de-allocated. However it does not make it clear how to 
do this so this has not been specified. 

The Blit is different froIn most other window systems in that it is a 
diskless intelligent tenninal which interacts with a remote host in normal 
operation. In addition there is no protection between processes and layers 
within the Blit. Hence care must be execised when programming it. but in 
return this allows greater flexibility and versatility. 



Chapter 6 

X Window System (MIT) 

X [Gett85, Gett86, Sc1lC86j is a network transparent wjndowing system de
veloped at MIT and designed to run under UNIX. The X display server 
distributes user input to, and aHcpts output requests from various client 
programs either on the same machine or over a network. 

6.1 State 

The state of the X system is introduced in simple stages in order to build up 
the concepts involved. This is done by redefining a state schema called X in 
terms of itself and a series of manageably sized state definition fragments. 

All the windows ill an X server are arranged in a strict hierarchy. At the 
top of the hicrarcl1J is the 'root' window. Each window has a parent except 
the root window. Child windows may in turn have their own children. Each 
window, including the root window, may be considered to consist of a. pixel 
map iu this simple description. 

x _ 
root; Window 
children: P Window 
parents: Wmdow --++ Window 
subwindows : Wmdow +-+ Window 
windows: Window --++ Pixmap 

root fI- children 

children = dom pa~nt.s 

subwindows = pa~nts-

dom windows = children U {root} 

54 



----

55 6.1. STATE 

Subwindows are displayed in a particular order within their patent win
dow. This m.ay be modelled as a sequence of windows in ascending order of 
display. These consist of all the child windows. 

X	 _ 

X 
order: Window -++ iseq Window
 

dom order = dom windows
 

('t/ wt,W;t; domorder I WI :f- W2. 

ran(order w,)nran(order w,l = e) 

U{ w : dom order. ran( order w)} = children 

( 1/ w : dom windows oran( order w) = BubwindowBH wH) 

Windows must be 'mapped' before they can be displayed. The root 
window is always mapped. All of a window's ancestors (if any) must also 
be mapped for it to be viewable on the display. Unviewable windows are 
mapped but have some ancestor which is unmapped. 

I; 
I	 mapped,
 

viewable,
 
unviewable : P Window
 

mapped ~ dom windows 

root E mapped 

viewable = {c: children Iparen~"HcH ~ mapped} u {root} 

unttiewable = {c : children ICE (mapped \ viewable)} 

Each viewable window has an associated visible pixel map which consists 
of the pixel map of the window overlaid with its subwindows (in order) if 
any. Tbese are 'clipped' to the size of the parent window. 

The root window covers the entire background of the display screen. The 
screen displays the pixel map visible from the root window. 



56 CHAPTER 6. X WINDOW SYSTEM (MIT) 

X _ 

X 
lrisible : Window -++ Pixmap 
screen, background: Pix-map 

dom visible = viewable 

( V w : viewable. 
visible w ::::: (windows w) ffi (dom(urindows w)<J 

ffJ / (compact((order w); visible))) ) 

background :::: windows root 

screen ::::: visible root 

Initially there are no children and only the root window is mapped. 
Hence only the background is displayed. 

InitX _ 

X' 

windows' :::: {root' t-+ background'}
 

order' ::::: {root' t-+ {}}
 

mapped' :::: {Toot'}
 

Consider changes in the window system. The root Wbldow identifier and 
the background of the screen do not change. 

tJ.X _ 

X 
X' 

root' :::: root 

background' :::: background 

SOlnetimes the state of the system is una.ffected during an operation. 

~X '" [tJ.X Iex' = ex ] 
We can now consider operations on the state of the system; initially, 

enor-free operations MIl be presented for simplicity. Error conditions are 
covered later. 



57 6.2. CREATING AND DESTROYING WINDOWS 

6.2 Creating and Destroying Windows 

Firstly, we wish to be able to crea.te windows. For these operations we ha.ve 
to supply the parent window under which the new window is to reside in the 
window hierarchy. The posiUon, size and ba.ckground of the window must 
also be specified. Here these are defined by 'bgnd?' for simplicity. Note tha.t 
the created window will not actually be displa.yed until it is 'ma.pped' (see 
later). 

CreateWindoutl _ 

AX 
parent? : Window 
bgnd? : Pixmap 
w!: Window 

parent? E dom windows 

w! ~ dom windows 

windollls'::: windows U {w! l--t bgnd?} 

order' ::: order ffi {parent? l--t (order parent?) '"' (w!)} 

mapped' = mapped 

Note tha.t the predicates in the schema. above fully define the state after 
the operation since all the other state components may be derived from those 
given above. The other components are included in the state definition to 
allow us to have different views of the system, depending on the manner in 
which we wish to access the state. 

Sometimes it is convenient to crea.te several windows at once under a 
single parent window. Note that not all the willdows requested may be 
created, but this is indicated by the information returned. This consists of a 
pa.rtial injection obtained from the sequence numbers of the windows which 
are actually created to the window identifiers which they are allocated. 



58 CHAPTER 6. X WINDOW SYSTEM (MIT) 

CreateWindowso _ 

t.X 
parent? : Window 
defs? : seq Pixmap 
defs! : N HI+ Window 

parent? E dom windows
 

dom defs! ~ dom de/s?
 

ra.n de/s! n dom windows = 12'
 

windows' = windows U (defs! ..... ; de/5?)
 

order' =
 
order EEl {parent? 1--+ (order parent?) '"' (eomp-let de/s1)} 

mapped' = mapped 

We also wish to destroy windows. Given a particular window, we may 
wish to destroy a set of windows which are associated with it. We can define 
a partial specification to do this as a schema. Exactly which windows are 
to be destroyed is not specified for the present. 

<I> Destroy _ 

C;.X 

w?: Window 
destroy: P Window 

w? E children 

windows' :::: destroy -EI windows 

(Vw: domwindows. 
order' w = (order w) remove destroy ) 

mapped' = mapped \ destroy 

We may wish all subwindows, as well as the window itself, to be de
stroyed. 

Destroy Windotlb 
[<I>Destroy I destroy = subwindows'Hw?H I
 

Alternatively, we may wish to just destroy the subwindows under the spec
ified window. 



6.3. MANIPULATING WINDOWS 59 

DestroySubwindowso ;:
 
[ ;Z>Destroy I destroy = subwindows+Hw?H J
 

Not~ that the 'root' background window cannot be destroyed using these 
operations. Only child windows may be destroyed. 

6.3 Manipulating Windows 

A window} and all its ancestors, must be 'mapped' to be visible on the 
screen. However a ma.pped window may still be invisible if it is obscured by 
a sibling window. 

Mapping operations require a child window to be specified. The hierar
chical relationships between windows and the contents of the windows are 
left unaffec ted. 

<)~ap 

w? : Window 

w? E children 

window.'l' = windows ~ 
Mapping a window raises the window and all its subwindows which have 

ha.d map requests. Mapping a window which is already mapped has no effect 
on the screen -it does not raise it. 

MapWindo"" _ 

<)Map 

parent: Window 

parent = parents w? 

w? tJ. mapped => 
order' = order ffi {parent 1--+ (( order parent) raise {w?})} 

w? E mapped => 
order' = order 

mapped' = mapped U {w?} 

All the unmapped subwindows of a given window can be mapped together. 
The order in which they are mapped is chosen by the system rather than 
the caller. 



GO CHAPTER 6. X WINDOW SYSTEM (MIT) 

MapSubwindotllSQ _ 

~Map 

neworder : iseq Window 
newmapped : P Window 

newmapped = subwindowsHw?H \ mapped 

ran neworder = newmapped 

order' = order ffi 
{w? 1--+ (( order w?) remove newmapped) '"' neworder} 

mapped' = mapped U newmapped 

A window can be unma,pped, The window will disappear from view if it 
was visible. 

Unmap Windoutl _ 

~Map 

order' = order
 

mapped' = mapped \ {w?}
 

All subwindows of a specified window can be unmapped. 

UnmapSubwindowso _ 

~Map 

order' = order 

mapped' = mapped \ subwindows Hw?H 

Windows may be manipulated in various ways. Given a window, its pixel 
map may be updated. It is also raised to the top of the display. We can 
define a general schema to simplify the definition of such operations. 



-----

-----

61 6.3. MANIPULATING WINDOWS 

~Window _ 

D,X 
w? : Window 
map: Pixmap 
parent: Window 

parent = parents w? 

window.'/ = windows EB {w? ....... map}
 

order = order Ell {parent ~ ((order parent) raise {w?))J
 

mappedl = mapped 

A window ma.y be moved and raised without changing its size. Moving 
a ma.pped window mayor ma.y not lose its contents, depending OD various 
circumstances. 

MoveWindo~ _ 

~Window 

;cy? : Pixel
 

dam map = dom((offset xy?); (windows w?»
 

The size of a. window may be changed without changing its upper left 
coordinate. A new width and height are given, The window is always raised. 
Changing the size of a mapped window loses its contents. 

Change WindOl1tl _ 

~Window 

wdht? : Pixel 
pix! •p~ : Pixel 

dom( 1Ui.ndows w?) = pix1 .. piX2 

dom map :::: pixt •• (pixt + wdht?) 

The size and location of a window may be configured together by com
bining the last two opera.tions. The window is raised and the contents are 
loot. 

Configure WindotL.l:J ::
 
(MoveWindou~ r D,X); (ChangeWindo% r LlX)
 



62 CHAPTER 6. X WINDOW SYSTEM (MIT) 

Some operations explicitly affect the order in which the windows are dis· 
played. A child window is specified, and window relationships, the windows 
themselves and the set of ma.pped windows remain unchanged. 

<liOrder _ 

I1X 
w?: Window 
parent: Window 
sWorner, suborder' : seq Window 

parent = parents w? 

windows' = windows 

suborder = order parent 

order' ;:: order @ {parent l---+ suborder'} 

mapped' = mapped 

A window may be 'raised' 50 that no sibling window obscures h, If the 
windows are regarded as overlapping sheets afpaper stacked on a desk, then 
raising a window is analogous to moving the sheet to the top of the stack, 
whilst leaving its poshion on the desk the same. 

RaiseWindoUb == [ifJOrder I S1.Jborner' = suborder raise {w?} ] 

A window may also be 'lowered' in a complementary fashion. If the 
windows are regarded as overlapping sheets of paper stacked on a desk, 
then lowering a window is analogous to moving the sheet to the bottom of 
the stack, whilst leaving its position on the desk the same. 

LowerWindo~ =: [if>Order I suborder' = suborder lower {w?}] 

Overlapping mapped subwmdows of a particular window may be raised 
or lowered in a circular manner. The set of these windows is identified. If 
it is non-empty, the ordering of the window's children is updated; otherwise 
it is left unchanged. 



63 6.3. MANIPULATING WINDOWS 

<l'Circ _ 

toX 
w? : Window 
subTnopped, cire : P Window 
suborner, suborder' : seq Window 

w? E children 

subrnapped :::: subwindows Hto? Hn mapped 

cire = {to : 8ubtnlJpped I ( 3 W2 : submapped • 
"" # w ~ (visible "") overlaps (visible w) )} 

windo1/Js1 = windows 

suborner = order w? 

cire :f; 0 :::> order' = order EB {w? ...... suborder/} 

cire = 0 :::> order' = order 

mapped' =:: mapped 

For a particular window, the lowest mapped child that is partially ob
scured by another child may be raised. Repeated executions lead to round 
robin raising. 

Cire WindowU1\l _ 

epCirc 

cire =10 :::> 
suborder' :::: suborder raise 

{suborder( min(dom( suborder reire)))) 

Similarly, the highest mapped child of a particular window that (partially) 
obscures another child may be lowered. Repeated executions lead to round 
robin lowering. 

Cire WindowDowtlo _ 

q.Circ 

circ::j;0:::> 
suborder' ::::: suborder lower 

{suborder(max(dom(suborder I eire)))) 



64 CHAPTER 6. X WINDOW SYSTEM (MIT) 

6.4 Other Window Operations 

We can ask for information about a particular window. As well as the size, 
position, etc. of the window, details about the mapped state of the win
dow are returned. '[sUnmapped' indicates that the window is unmapped, 
'IsMapped'indicates tha.t it is mapped and displayed (Le. all of its ances
tors are also mapped), a.nd 'IsInvisible' implies that it is mapped but some 
ancestor is not mapped. 

MappedState ::= I,Unmapped I I,Mapped I I,Invisible 

QueryWindoU<J _ 

2X 
111? : Window 
info! : Pixmap 
mapped! : M appedState 

w? E children 

info! = windows w? 

w? rI. mapped q. 

mapped! = ]sUnmapped 

parents"Hw?H <; mapped => 
mapped! = IsMapped 

w? E mapped 1\ ...., (parents+Htil?H ~ mapped) =? 

mapped! = IsInvisible 

We can also find out the window identifiers of the parent and all the 
children (and hence the number of children) for a particular window. The 
children are listed in current stacking order, from bottommost (first) to 
topmost (last). 

Query1Teeo _ 

3X 
w?: Window 
parent! : Window 
children! : seq Window 

parent! :=: parents w? 

children! :=: order w? 



6.5. ERRORS 65 

The X sys tern includes many other operations. These include more de
tailed window opera.tions, mouse operations, graphics for line drawing and 
fill operations, screen raster operations, moving bits and pixels to and from 
the screen, storing and freeing bit maps and pixel maps, cursor definition, 
colour operations, font manipulation routines, text output to a window, 
and so OD. However the operations covered give an indication of the ba.sic 
windowing facilities available under the X system. 

6.5 Errors 

Many operations return a status report signalling success or failure of the 
operation. Let this be denoted 'Status'. Often a 'NULL' status indicates 
success and a non-NULL status indicates failure. 

[ Status I 

I NULL: Status 

The operations covered 60 far detail what should happen in the event of 
no errors. In this case we also wish to report the fact that the operation was 
successful. 

Success _ 

status! : Status 

stat1J...~! = NULL 

U errors do occur, then these need to be reported as well. For example, 
an invalid parent window may be specified. 

InvalidParent _ 

=:X 
parent? : Window 
status! : Status 

parent? ~ dom tuindows 

status! # NULL 



66 CHAPTER 6. X WINDOW SYSTEM (MIT) 

Alternatively, an invalid child window could be given as input. 

InvalidWindow _ 

2X 
107: Window 
status! ; Status 

to? t. children 

,'at...,! oF NULL 

We may include these errors with the previously defined operations which 
ignored error conditions, to produce total operations. 

Create WindoW} == (Create Windoutl /\ Success) V InvalidParent 

All the other operations covered take the following form. 

DestroyWindoW:1 S (De~~troyWindoutll\ Success) V InvalidWindow 

6.6 Simplifications and Assumptions 

In the description given, only 'opaque' windows have been considered. The 
actual X system includes 'transparent' windows, mainly used for menus, 
and 'icon l windows which may be associated with opaque windows, but 
these have been ignored in this description for simplicity. These could be 
included in the state of the system. The operation specifications would need 
to be updated appropriately. 

X _ 

X 
transparent, opaque: P Window 
icon: Window WindowH10 

(transparent, opaque, ran icon) partition children 

dom icon ~ opaque 

Windows have other infonnation associated with them besides their pixel 
maps and their mapping status, such as border information. However this is 
not covered here. Exposure events that result from window operations are 
also ignored. 



6.7. COMMENTS AND INCONSISTENCIES	 67 

The informal description llsed to formulate this specification [Gett85] 
was not coIDpletely clear on a number of points. For example, the exact 
ordering of windows and their subwindows is not made explicitly clear after 
operations which affect this. In particular, it has been assumed here that 
raising and lowering a window implies that all its subwindows are also raised 
or lowered. Where necessary, an educated guess has been made a.c; to the 
behaviour of the system. 

6.7 COInments and Inconsistencies 

The X window system is relatively complicated. It includes a number of 
basic concepts, several of which could Dot be included here fully beca.use of 
lack of space. The hierarchical structure makes it very versatile. 

Perhaps surprisingly, X has no notion of a. 'current' window. Hence a 
large number of the library routines need a window identifier as input (in
cluding all those covered here). Tltis is rather cumbersome and could intro~ 

duce some unnecessary overhead in application programs using the system. 
However this is advantageous if a number of windows are being updated 
simultaneously since then there are effectively several current windows. 

An earlier version of this specification was sent to MIT with a.nnota~ 

tions, raising questions about areas which were not well understood from 
the original documentation (Gett85]. A number of inconsistencies in the 
formal specification (compared to the implementation of X) were discovered 
from the feedback obtained. The major errors were as follows: 

•	 Children are always on top of their parent, and the hierarchies of 
two siblings never interleave. In the original specification, an overall 
order (order: seq Window) was included as part of the state; it did 
not preclude the above. Here the ordering is defined on a per window 
basis, for just the immediate children . 

•	 The contents of unmapped and invisible parts of windows are lost. For 
example, in the schema ~Map, the predicate 'windows' = windows' is 
actually incorrect since the contents of the window w? will be lost if it 
is unmapped. However the specification has not been changed in this 
respect since exposure events are ignored here, and these would typ
ically restore the contents of re-exposed windows. If exposu~ events 
were added to this specification then this should be changed. 

These points were missed from the original documentation. They would 
probably have been discovered if an implementation of X had been available 



68 CHAPTER 6. X WINDOW SYSTEM (MIT) 

for 'testing' purposes. The documenta.tion could be improved in these areas 
to avoid misunderstanding. 

The original version of X specified here was Version 9 [Gett85]. Docu
mentation for Version 10 [Gett86] and Version 11 [Sche86] were also ava.i.lable 
subsequently. Any further work on formalising X should use Version 11 doc
umeD tatiOll since this is now becoming an industry standard. 



Chapter 7 

Conclusions 

A high level description of three window systems has been presented. Only 
a few operations for each system have been covered. A complete description 
would require a manual for each of the systems; a formal specification does 
not necessarily reduce the size of a. description using informal methods. 
However it does make it much more precise. Because of this, it is possible to 
reason abou t a. system and detect inconsistencies in it far more easily than 
the case where only an informal specification is available. Even if formal 
specification is not used in the final documentation, its use will clarify points 
which can then be described informally to the user. 

7.1 Comparison of Window Systems 

Of the three window systems investigated, X provides the most comprehen
sive fea.tures. WM is a much simpler system with no overlapping windows 
or hierarchical structure. However it does automatically adjust the size of 
windows when necessary. The Blit is a 'raw' machine onto which window 
management functions CaII be loaded if desired. The following table gives a 
comparison of the features available on each system. 

Window 
system 

WM 
Blit 
X 

Overlapping Hierarchical Automatic Current 
windows structure sizing window 

X X .; .; 
.; X .;X 

X.; .; X 

Most of the original specification in the monograph was undertaken jn 

1986. Of the three window systems, X was investigated first. It turned out 
to be the most complicated system and took a signlficant amount of time to 

69 



70 CHAPTER 7. CONCLUSIONS 

formalise. Subsequently, the specification of WM and the Blit system were 
comparatively easy. 

Since the original specification, Version 11 of X (or Xl1 as it is normally 
known) has become an industry standard and is available on many work
stations. The other two systems are not so widely used. X now includes a 
library interface built on top of the main X interface that implements almost 
all of WM. Hence most WM applications will run under X without source 
modification. 

1.2 Formal Specification of Existing Systems 

This work was undertaken as part of the Distributed Computing Software 
(DeS) Project at the Programming Research Group. As well as designing 
and documenting network services using a formal notation, part of the brief 
of the DeS project was to undertake case studies of existing systems and to 
formally specify parts of them in Z to gain a greater understanding of their 
operation. 

This monograph is the result of one case study on the DeS project. 
Originally it had been hoped to compare parts of a number of distributed 
systems using Z. However, the authors of potential systems for investigation 
could only supply academic papers (not enough information) or the source 
code (too much information). What was required was some form of informal 
documentation for the system. Because window systems are used directly 
by users, there seems to be more readable documentation for such systems. 

In each case, omissions and ambiguities in the documentation were dis
covered by attempting to formalise the system. Where necessary, intelligent 
guesses were made about the actual operation. These were usually correct, 
bu t not always. 

Subsequently, the formal specifications could be used to update the ex
isting documentation, or even rewrite it from scratch. Although Z has been 
developed as a design tool, it is also well suited for post hoc specifications of 
existing systems, and for detecting and correcting errors and anomalies in 
the documentation of such systems [Bowe88]. 

The most important stage of formalising a system is selecting the right 
level of abstraction for modelling its state. This is normally an iterative pro
cess. On attempting to specify an operation one often needs to backtrack to 
change the abstract state of the system. In particular, extra state compo
nents can be convenient to provide different views of the system depending 
on the operation involved. 

There are likely to be some inconsistencies between the specifications 



7.3. GENERAL CONCLUSIONS 71 

given here and the actual operation of the systems described. This is due 
to impreciseness and misundersta.nding of the informal documentation used 
to formulate these specifications. This illustrates one of the reasons for 
using formal specification techniques - to avoid ambiguity or vagueness 
and to aid precise communication of ideas. Because of this, formal nota
tion forces issiles to the surface much earlier in the design process than 
when using informal description techniques such as natural language and 
diagrams. Difficult a.reas of the design cannot be ignored until the imple
mentation stage. This reduces the number of backtracks necessary round 
the design/implementation cycle. 

Additionally, using formal specification techniques sbould reduce maln
tenance costs since more of the errors in a system will be discovered before 
it is released into the field. Although specification and design costs will be 
increased, implementation and maintenance costs should be lower, reducing 
overall costs. 

Formally specifying an existing system could be particula.rly useful if 
it is to be re-engineered to comply with modern software engineering stan
dards. In such cases there could be costs benefits by taking sucb an approach 

[Nix881· 

7.3 General Conclusions 

Z can be used to succinctly specify real systems. The examples given here 
and other case sturu£'s undertaken at the Programming Research Group and 
elsewhere lend support to this assertion. 

Z may be used to produce readable specifications. It has been designed 
to be read by humans rather than computers. Thus it can form the basis 
for documentation. 

Large specifications are manageable in Z, using the schema notation for 
structuring. It is possible to produce hierarchical specifications. A part of a 
system may be specified in isolation, and then this may be put into a global 

context. 



Acknowledgements 

This work was prompted by a trip to Carnegie-Mellon University, AT&T 
Bell Laboratories at Murray Hill and Massachusetts Institute of Technol
ogy where each of the window systems described were viewed in opera
tion during October and November of 1985, The author is indebted to 
the developers of each of the systems who made the relevant documenta
tion and other references freely available; in particular, Mahadev Satya
narayanan [Neuw85, Rose85, Saty84, West85], Rob Pike [Unix85], Dave 
Presotto [PikeS4J, Dob ScheiRer [GettSS]' Dill Weihl [GettS6] and Jim Get
tys [Sche8GJ. Additionally I would like to thank Mahadev Satyanarayanan 
(eMU), Dave Presotto (AT&T Bell Labs) and Bill Weihl (MIT) for acting 
as hosts on the trip. 

Bernard Suffin, Roger Gjmson and Tim Gleeson at the PRG provided 
helpful suggestions and corrections on early drafts. Bob Schcifl.er and Bill 
Weihl of MIT answered questions raised by the formal specification of the X 
wjndow manager. Jim Gettys noted a clash jn nomenclature with Version 
11 of Xon a subsequent trip to DEC Western Research Laboratory and the 
new nomenclature has been incorporated here. 

This monograph has been produced using the DTEX document prepa.
ration system [Lamp86]. The Z specifications have been fOI"matted and 
type-checked using the fuzz package [Spiv88bJ. 

The Distrjbuted Computing Software project was funded by a grant 
from the Science and Engineering Research Council (SERC). The author 
is currently working on the Software Engineering project at the PRG, also 
funded by the SERC. The author is grateful for their support. 

72 



References
 

[Arn087] AInold, D. J., Duce, D. A., and Reynolds, G. J., An Approach 
to the Fot'mal Specification of Configurable Models oj Graphics 
Systef"f'l.3, Proc. Eurographics 87, North Holland, 1987. 

[Bowe88] Bowen, J. P., Formal Specification in Z as a Design and Docu
mentation Tool, Proc. 2nd IEE/DCS Conference, Software Engi
neering 88, Liverpool, UK, pp. 164-168, July 1988. 

[Gett85] Gettys, J. and Newman, R., Xlib - C Language X Interface, (Ver
sion 9), MIT Project Athena, Massachusetts Institute of Tech
nology, USA, 1985. 

[Gett86] Gettys, J., Newman, R. and Della Fera, A., Xlib - C Language 
X Interface, (Version 10), MIT Project Athena, Massachusetts 
Institute of Technology, USA, 1986. 

[Fole82) Foley, J. D. and van Dam, A., Fundamentals oj Computer Graph
ics, Addjson Wesley, 1982. 

[Haye87] Hayes, I. J. (Editor), Specification Case Studies, Prentice-Hall 
International Series in Computer Science, 1987. 

[King88] King,S., S0rensen, I. and Woodcock, J., Z: Grammar and Con
crete and Abstract Syntaxes, Technical Monograph PRG-68, Pro
gramming Research Group, Oxford University, UK, 1988. 

[Lamp86] Lamport, 1.. D.TEX: A Document Preparation System, Addison
Wesley Publishing Company, 1986. 

[Loom88] Loomes, M. and Woodcock, J. C. P., Software Engineering Math
e-matics: Formal Methods Demystified, Pitman Publishing Ltd, 
London, UK, 1988. 

73 



74 REFERENCES 

[Neuw85]	 Neuwirth, C., Programmer's Guide to the Window Manager: An 
Introduction for the Uninitiated, Information Technology Center 
(ITC), Carnegie-Mellon University, USA, 1985. 

[Newm81]	 Newman, W. M. and Sproull, R. F., Principles of Interactive 
Computer Graphics, 2nd edition, McGraw Hill, 1981. 

(Nix88]	 Nix, C. J. and Collins, B. P.~ The Use of Software Engineering, 
including the Z Notation, in the Development of GICS, Quality 
Assurance, 14(3), pp. 103-110, 1988. 

[Pike84]	 Pike, R., The Dli!: a Multiplexed Graphics Terminal, AT&T Bell 
La.boratories Technical Journal, 63(8), part 2, pp. 1607-1631, 
October 1984. 

[Rosc85]	 Rosenthal, D. S. H.. A Programmer's Guide to "WM" or How 
do I get into this Window Stuff, Information Technology Center 
(ITC), Carnegie-Mellon University, USA, October 1985. 

[Saty84]	 Satyanarayanan, M., The ITC Project: An Experiment in Large
Scale Distributed Personal Computing, CMU Report CMU-ITC
035, Information Technology Center (LTC), Carnegie-Mellon 
University, USA, October 1984. 

[Sche86]	 Scheifler, R., X WindoUJ System Protocol, Version 11, (Draft 4), 
Massachusetts Institute of Technology, USA, 1986. 

[Spiv88a]	 Spivey, J. M., Understanding Z: A Specification Language and 
its Formal Semantics, Cambridge University Press, 1988. 

[Spiv88b]	 Spivey, J. M., The fuzz Manual, Computing Science Consul
tancy,2 \Villow Close, Garsington, Oxford, UK, 1988. 

[SpivS9]	 Spivey, J. M., The Z Notation - A Reference Manual, Prentice
Hall International Series in Computer Science, 1989. 

[Unix85]	 UNIX™ Time-sharing System, Programmer's Manual, Eighth 
Edition, Volume 1, AT&T Bell Laboratories, Murray Hill, New 
Jersey, USA, 1985. 

[\Vest85]	 West, M., Nichols, D., Howard, J., Satyanarayanan, M. and Side
botham, R., The ITC Distributed File System: Principles and 
Design CMU Report CMU-ITC-039, Information Technology 
Center (ITC), Carnegie-Mellon University, USA, March 1985. 





Appendix A 

Glossary of Z notation 

A glossary of the Z mathematical and schema notation used in this mono
graph is included here for easy reference. The complete notation is not cov
ered. For more information, the grammar and concrete and abstract syntax: 
for Z and a reference manual are available elsewhere [King88, Spiv89]. 

A.I Abbreviated names 

i, iI, ~ 

E,EI,~ 

d 
P,Pl,P2 
D 
S,S1>~ 

N 
N' 
f,ft.J, 
R,R1 ,R2 

X,Xl,x2 

X,X1 ,X2 

A 
n, nl, 112 
9.9},51 

q 
Z 

B,B1 ,B2 

Identifiers 
Expressions 
Declaration 
Predicates 
Declaration and optional predicate ( d or diP) 
Schema expressions 
Schema name with optional decoration (e.g. H') 
Decorated schema name (all components dashed) 
Functions 
Relations 
Elements of sets 
Sets 
Set of sets ( P X ) 
Integer expressions 
Sequences ( seq X ) 
Sequence of sequences ( seq(seqX) ) 
Set of integers 
Indexed family of sets ( P(I ~ P X) ) 
Bags 

77 

I 



78 APPENDIX A. GLOSSARY OF Z NOTATION 

A.2 Horizontal paragraphs 

[i, ...J 
== E 

i =: S 
i ::= i} I i2 I ... 
P 

Introduction of given set(s) 
Abbrevia.tion definition 
Horizontal schema definition 
Data type definition 
Predicate (extra. constraint) 

A.3 Vertical paragraphs 

New lines denote ';'. Predicates are conjoined by default. 

E 
~ 

EE
 

Vertical schema definition. The schema name and 
predicate part a.re optional. The schema may subse
quently be referenced by name with optional decora
tion in the document. 

Axiomatic definition. The definitions may be non
unique. The predicate part is optional. The defini
tions apply globally in the document. 

Generic definition. The definitions must be unique. 
The generic parameters are optional. The definitions 
apply globally in the document. 

A.4 Declarations and operators 

i: E 
it: E1: ~: ~ 

il,~, .. ': E 
_ i _:E 
i _: E 
_ i: E 
N 

Basic declaration 
Multiple declarations 
Declarations of same type ( i 1 : E; i:z : E; ... ) 
Infix operator declaration 
Prefix operator declaration 
Postfix operator declaration 
Schema reference a.s a declaration 

A.S Expressions 

(E"S" ... ) Ordered tuple 



E.i 

79 A.6. PREDICATES 

PE Power set (set of subsets) 
E1xE,x ... Ca.rtesian product 
{EI. E" ... } Set displa.y 
{D. E} Set comprehension (or {D})
 
AD.E La.mbda-expression (function, given D returns E)
 
Ji D • E Definite description (value E if D unique)
 
E, E, Function application
 

Selection ((AD. i)(E)) 
9S Binding formation 
N Schema reference as an expression ( {N • 9N} ) 
E, f E, Infix function expression 
Ef Postfix function expression 
(E) Expression grouping 
n Number 

A.6 Predicates 

E, =E, Equality (or E, = E, = ...) 
E, E E, Membership 
,P Logical negation 
PI 1\ P2 Logical conjunction 
PI V P2 Logical disjunction 
PI:::::} P3 Logical implication ( ..., PI V P2 ) 
PI ¢} P2 Logical equivalence ( PI ::::} P2 1\ P2 ::::} PI ) 
'ID.P Universal quantification 
3D. P Existential quantifica.tion 
3, D. P Unique existential quantjfication 
N Schema reference as a predicate 
E, R E, Infix relation 
RE Prefix relation 
true True predica.te 
false False predicate ( ..., true) 
(P) Predicate grouping 

A.7 Schema expressions 

[D] Horizontal schema. te>.."t 
N Schema reference 



80 

~5 

51 1\ 52 
51 V 52 

SI => S3 
51 ¢:> 51 
'1D.S 
3D.S 
5 \ (i"i" ... ) 
51 r 50, 
pre S 
5,;50, 
5, > S, 
(5) 

A.8 Sets 

Xl'" X, 
x ¢X 

'" 
Xl S;;;X2 

Xl C X2 

Xl UX2 

Xl nX2 

X, \ X, 
P,X 
UA
nA 
first(xI' .,,) 
second( Xl , Xz) 

APPENDIX A. GLOSSARY OF Z NOTATION 

Schema. negation 
Schema. conjunction 
Schema disjunction 
Schema implication 
Schem.a equivalence 
Universal schema quantification 
Existentjal schema quantifica.tion 
Schema hiding of component(s) 
Schema. projection (hiding of components not in 52) 
Precondition of schema. 
Schema composition (first 51, then 52) 
Schema piping (SI outputs combine with 52 inputs) 
Schema grouping 

Inequality ( ~ (X, = X,) ) 
Non-membership ( ~ (x EX) ) 
Empty set ( {e : X I false} ) 

Subset relation 
Proper subset rela.tion ( Xl ~ X2 1\ Xl 'I- X 2 ) 

Set union 
Set intersection 
Set difference
 
Non-empty suh'ets ( P X \ {0} )
 
Generalised union 
Generalised intersection 
Projection function of first co-ordina.te ( Xl ) 

Projection function of second co-ordina.te ( Z2 ) 

A.9 

Xl -X2 

Xl ....... X2
 

damR 
ranR 
idX 
R1 ; R2 

Relations 

Binary relation ( P(X, X X,) )
 
Maplet ( (Xl,"'))
 
Domain of relation
 
Range of relation
 
Identity relation ( {e: X. e ...... e} )
 
Relational composition
 



81 A.lO. FUNCTIONS 

X<lR 
X<>R 
X<lR 
X"R 
R
R~A~ 
R+ 

R" 

A.10 

Xl -++ X2 

Xl - X2 

X t - X2 

XtJ-t X2 
Xl -++ X 2 

Xl -+ X2 

Xl >---. X2 

h (fJ I, 

A.ll 

l 
III 
nl +nz 
nl - nz 
nl .. nz 
nl div n2 

nl mod 112 
-n 
nl < nz 
nl ~ nz 
nl ~ nz 
nl> nz 
III, 
succ n 
iter n R 
R" 

Domain restriction 
Range restriction 
Domain anti-restriction 
Range anti-restriction 
Relational inversion 
Relational image 
Transitive closure 
Reflexive- transitive closure 

Functions 

Partial function 
Total function 
Partial injection 
Total injection 
Partial surjection 
Total surjection 
Bijection 
Function ov€rrirung ( (dom h <l f,) Uh ) 

Numbers and finiteness 

S€t ofjnt€g€rs ({ ... ,-2,-1,O,1,2, ...}) 
Set of natural numbers ( {G, 1, 2 l ••• } ) 

Integer addition infix total function 
Integer subtraction infix total function 
Integer multiplication infix total function 
Integer division infix partial function 
Integer modulo infix partial fUDction 
Integer negation prefix total function 
Less than relation 
Less than or equal relation 
Greater than or equal relation 
Greater than relation 
Strictly positive numbers ( III \ {OJ ) 
Successor function ( n + 1 ) 
Iteration (R composed n times) 
Short form for iteration ( iter n R ) 



82 APPENDIX A. GLOSSARY OF Z NOTATION 

nl .. n2 Number range ({i:Z I n, ~ i ~ ""j) 
FX Set of finite subsets 
F,X Non-empty finite subsets ( F X n PIX) 
#X Number of members of a set 
X t -ll+X2 Finite partial function 
Xl ~X2 Finite partial injection 
min Z Minimum of a set of numbers 
max Z Maximum of a set of numbers 
#X Size of a finite set 

A.12 Sequences 

seqX Set of finite sequences 
seq1 X Set of non-empty finite sequences 
iseqX Set of finite injective sequences 

(E" E" ...) Notation for a sequence ({l f-Io E1 ,2 ......... &, ...}) 
o Empty sequence ( "" ) 
51 82 Sequence concatenation 
head s First element of sequence ( 5(1) ) 
last s Last element of sequence ( s( #8) ) 
tail s All but head of a sequence 
front s All but last element of a sequence 
rev s Reverse a sequence 
8 r X Sequence filtering 
~ I q Distributed sequence concatenation 
disjoint I Disjoint (Vi,,;,,: domI I i, # i,. I(id n 1(;") = "") 
I partition A Partitions (disjoint I A U{i: domI. I(i)) = A) 

A.13 Bags 

bagX Dag ( X ~ N, )
 

IE"E" ... ) Notation for a bag ( {E, ~ n" E, ~ ,.." ... j )
 
II Empty bag ( "" )
 
count B Multiplicity ( ,\ x : X • 0) Ell B )
 
x in B Bag membership ( x E domB )
 
B1 I;!;IB2 Bag union
 
items s Bag of elements of a sequence
 



83 A.14. CONVENTIONS 

A.14 Conventions 

E,l E, Infix function underlined for clarity 
E, II E, Infix relation underlined ( (E" E,) E (-1l.-l ) 
i? Inpu t to an operation 
·0.. Output from an operation 
i' State component after an operation (i before) 
N' State schema after an operation (N before) 
t>.N Change of state (normally N 1\ N ' ) 
:oN No change of sl.le (normally [t>.N ION = ON'] ) 
~N Partial specification of an operation 
~p Theorem 
d ~ P Theorem(~Vd.Pl 



Appendix B 

Index of formal definitions 

This index gives the pages on which Z identifiers and symbols are defined. 
Schema names are indicated by bold page numbers, state declarations are 
indicated by italic page numbers, and Z symbols are indicated by underlined 
page numbers. 

84 



85 INDEX OF FORMAL DEFINITIONS 

+,4 
-,4 
:», 80
 

'Invalid window" 21
 
"No 1il indoW's', 21
 
'Not a windov', 21
 
'OK',21 
", 9
 
~, 4
 
. _,4
 

$/,7
 
~, 83
 
0, 79
 
..\, 79
 
1', 79
 

Ll, 83
 
LlBli!, 46
 
LlDisplay, 14
 
LlITC,40
 
tlSepPair, 15
 
LlSYS,19
 
Ll WM, 33
 
LlX,56
 
'11, 83
 
~Circ, 62
 
WCurrent, 34
 
TDestroy,58
 
TRost, 41
 
~Layer, 47
 
~Mapl 59
 
~Order, 62
 
TPrOC, 47
 
.p Window, 60
 
'I1WM,41
 
=:, 83
 
=:Bli!, 47
 
=:SYS,19
 
=:WM,33
 
=:X,56
 

AddHos!,40 

AddWindoUb, 19
 
AddWindow" 22
 
adjust, 33
 
AND, 11
 
and, 13
 
andlnverted, 14
 
andReverse, 14
 
area, 31
 
arOO3, 32
 

background, 18, 32, 46, 56
 
BadWindoliJ,21 
Bit, 5
 
Black,S
 
Blit, 45, 46
 
body, 31
 
Box, 50
 
Button, 50
 
Buttonl, 50
 
Button2, 50
 
Button3, 50
 
buttons, SO
 

ChangeWindo~, 61
 
children, S4
 
cire, 6!1
 
Cire WindowDotuTl(l. 63
 
Cire WindowUPJ, 63
 
Clear, 5
 
clear, 13
 
ClearWindoutl, 37
 
ClearWindoW:L,39
 
compact, 7
 
ConfigureWindoutJ. 61
 
contents, 32
 
Control, 31
 
control, 91
 
copy, 13
 
copylnverted, 14
 
CopySwap, 15
 
count, .8.2.
 



86 APPENDIX B. INDEX OF FORMAL DEFINITIONS 

CreateWindoU\:l,51
 
Create lVindotl':l, 66
 
CreateWindowSo,51
 
current., 32
 
Current& T0Po, 52
 

Decide, 25
 
default, 46
 
Delete Windo~, 35
 
Delete Windotl'l., 39
 
Delete WindowITC, 42
 
DelLayero1 48
 
DeLLayer" 53
 
destroy, 58
 
DestroySubwindowSf), 59
 
Destroy Windotl\) , 58
 
Destroy Windotl':l, 66
 
Display, 14
 

equiv, 14
 
ExecWM,41
 
Expose, 31
 
ExposeMftJ. 36
 
ExposeWindow, 25
 

ExposeWindoutl,20
 
ExposeWindotl't 1 22
 

Failure, 52
 
false, 79
 

first, W
 
front, 82
 

GetDimensiofL'1Q, 35
 
GetDimemionsl, 39
 
GetPrOC(j,49
 
GetProcl, 50
 
GetProcTabo, 49
 
GetProcTab:., 53
 
Get Window, 23
 
GetWindotL\l,22
 
Gumight, 50
 

head,~ 

header, 31
 
Hide, 31
 
HideExpose, 31
 
HideM"",36
 
host, 41
 
hosts, 40
 

icon, 66
 
Id,45
 
Info, 31, 42
 
InitBlit, 46
 
InitITC,40
 
InitSYS, 19
 
InitWM,33
 
InitX , 56
 
Invalid, 23
 
InvalidLayer. 53
 
InvalidParent, 65
 
InvalidRect, 52
 
InvalidWindow, 39, 66
 
IsInvisible, 64
 
IsMapped, 64
 
IsUnmapped, 64
 
lTC, 40
 
items, 82
 
iter, .8l
 

KillWM,41 

I, 45
 
last, ~
 

Layer, 44
 

layers, 45
 
lomlhost, 41
 
lower, 8
 
LowerWindou~, 62
 

Map, 31
 
map, 31, 61
 
mapt, 11
 
map2, 11
 
MapPair, 11
 



87 INDEX OF FORMAL DEFINITIONS 

mapped, 55
 
MappedState, 64
 
maps, 32
 
MapSubwindowBo,59
 
MapWindoUlQ,59
 
ma.::r:, 5, 82
 
MaxWindow8,32
 
Menu, ./2
 
min, 5, 82
 
Modify, 24
 
ModifyWindo1U,25
 
Mouse, 50
 
Move, 24
 
Move Window, 25
 
Move Windowo, 61
 

NAND,lO 
nand,12 

Ne~, 51
 
NewLayero. 47
 
NewLayel1. 53
 
NewPTOCo, 48
 
NewPTocl,53 
NewWindowQ. 34, 49
 
New Window}, 39, 53
 

NewWindowITc,42
 
NoCurrentWindow, 39
 
noop, 13
 
nor, 13
 
NOT,10
 
not, 13
 
NotA Window, 21
 
NotInWindow, 23
 
No Windows, 21
 
NULL,65
 
Null, 38
 
NullId, ,5 
NulLLayer, .. 5
 

offset, 4
 
opaque, 66
 

OR,ll 
or,13
 
order, 55
 
orInverted, 14
 
orReverse, 14
 
overlaps, 6
 

parent, 61, 62
 
parents, 5-1
 
pix-" ,
 
pix." ,
 
Pixel, 3
 
PixeLPair, 4
 
Pixmap,6 
Pixmapl,6 
Point, 44
 
Proc, 45
 
procs, ./6
 
prog, ,5
 
Progmm,45 

QueryTreeo, 64
 

Query Windo"<J,64
 

raise, 8
 
Raise WindotLtJ, 62
 
RasterOP1, 14
 
RasterOP2, 15
 
receiver, .. 6
 
Rectangle, 6
 
reets, ..5
 
TeTnOVe, 8
 
RemoveHost, 40
 

RemoveToPo, 20
 
Remove ToP1, 22
 
Remove Window, 25
 
RemoveWindoUb, 20
 
RemoveWindoWJ.,22
 
rep!, 21
 
Report, 21
 
Reshape, 24
 
Reshapeu, 51
 



88 APPENDIX B. 

Reshape Window, 25
 

rev, 82
 
root, 54
 
Rotate lVindowSQ, 20
 
RotateWindowsI, 22
 

samepos, 12
 
sameshlJpe, 11
 
screen, I" 18, 32, ,6, 56
 
second, 80
 
select, 8
 
Select WindotltJ, 37
 
Select WindotJ1:l, 39
 
SepPair, 15
 
Set, 5
 
set, 13
 
SetDimensionso, 35
 
SetDimensions\, 39
 
SetTitlf:{j,37 
Set Title}, 39
 
setval,6
 
State, 45
 
state, ,(5
 
Status, 65
 
status!. 65
 

StM"!!, 9
 
submapped, 63
 
suborder, 62, 63
 
subwindows, 54
 
succ, ~
 

Success, 21, 38, 52, 65
 
SYS,18
 

tail, &
 
title, 31
 
ToLayeTo, 49
 
ToLaye"l"] , 53
 
Tookf~nylVindows,38 

top, 8
 
Top>, 51
 
transplrent, 66
 

INDEX OF FORMAL DEFINITIONS 

true, 79
 

Undefined, 31
 
UnmapSubwindowSo. 60
 
Unmap Windowo. 60
 
un-viewable, 55
 
Update WindoUU, 1 9
 
Update Window, , 22
 

Value, 5
 
View, 18
 
viewable, 55
 
visible, 56
 

w?, 58, 59, 61-63
 
Which Window, 23
 
Which Windouu, 23
 
White, 5
 
Window, 9
 
WINDOWS, 33
 
windows, 18, 32, 45, 54
 
WM, 31-33, 38
 

turnS,40 

X, 54,55,66 

XI, 4
 
x" , 

XOR,l1 
:z::or,13 
Xo'), 16
 
XOT2,16
 

XorSwap, 16
 
Xrange, 3
 
Xsize, 9
 
xy,50
 
zylimits, 31
 

V], , 
112, ,
 
Ymnge, 3
 
Ysize, S
 

Zrange, 5
 




