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To Alice, Emma and Jane

“Oh! I do so wish I could see that bit!”
Lewis Carroll, Through the Looking-Glass




Formal Specification of Window Systems

Jonathan Bowen

Summary

Window management systems are now used extensively for user interfaces
to computer systems. Part I of this monograph introduces some of the fun-
damental ideas in window systems using a formal notation. Part ITontlines
three real systems and attempts to capture the essence of each system nsing
the same formal notation and ideas introduced in Part 1. Low-Tevel detail is
avoided to keep the length to a manageable size.

In Part I, chapter 1 introduces general concepts useful for specifying
pixel maps and window systems, Chapter 2 defines the raster-op function
which is fundamental to many graphics operations and chapter 3 introduces
a simple example window system. In Part II, chapters 4-6 detail three
particular window systems. Chapter 7 remarks on experience gained by
formally specifying the three window systems.

The formal notation used, Z, is based on set theory, and has been devel-
oped at the Programming Research Group in Oxdord.
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Part 1

An Introduction to Window
Systems



Chapter 1

Basic Concepts

Before we start to attempt to specify a window system formally, it is helpful
to introduce a few fundamental and generally applicable ideas. This section
gives a formal framework to aid the description of pizels, their organisation
into pizel maps and a number of vindows.

The specification language used throughout this monograph is the Z no-
tation [Haye87, King88, Loom88, Spiv88a, Spiv89). This is a typed language
based on set theory and first order predicate calculus. It has been devel-
oped at Oxford over the past few years. The notation here conforms almost
entirely to the notation described in [Spiv89). The only extension is the nse
of the schema piping operator () which is included in [King88].

1.1 Pixel positions

A raster graphics display is made up of a set of pixels with positions or
coordinates. These are normally defined in X-Y coordinate space. The
display is a fixed size bounded rectangle in the X-Y plane.

| Xsize, Ysize : Ny

The offset in a particular direction is specified from zero up by conven-
tion. The position of a pixel may be specified by a pair of X-Y coordinates.

Xrange == 0..Xstze ~ 1
Yrange == 0.. Ysize - 1
Pizel == Xrange x Yrange

The pixel at (0,0) is normally at the lower left-hand corner of the display
and the pixel at ( Xsize — 1, Ysize — 1} is at the top right by convention.
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Mauy cperations are applied to pairs of pixels.

—_ PizelPair

piny, pizy - Pizel

2,22 + Xrange
Y, ¥2 1 Yrange

pirt = (z1,91)
PLT:E = (I?) yz)
The *+°, *—* and ‘<’ operators may be overloaded to apply to pixel

positions. ‘+’ and ‘' may be used for moving pixel areas around the display.
‘<" eay be used to define pixel ordering frorn the bottom left to top right.

-+ .
~ — —: (Pizel x Pizel) + Pizel
- < _: Pizel «+ Pizel
V PizelPair
(21 + 22 < Xsize Ay + 12 < Yaize) >
patpm = (ot o, + 1w A
(m<aAnsn=>
pizy — pizy = (21 ~ 23,31 — 1) A
pim Spime n SnAnSy

We can define the offset between any two pixel positions as a pixel offset.
This js defined to wrap round the edge of the pixel area and thus is a total

function.

offset : Pizel — Pizel ~» Pizel

V PizelPair

offset piz; pir; =
({z1 + z2) mod Xsize, (1 + ¥;) mod Ysize)

We can also overload the ‘.." operator to define a rectangular area of
Pixels.
. —: (Pizel x Pizel) — F Pizel

¥ PizelPair »
pizy . pizg = (&1 .. T2 ) % (.. e}
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pin, piny = Pizel & piz) .. piz; = {p: Pizel | pizy € p A p < pizy}

A rectangular area of pixels can defined using any two opposing comers
(e.g. returned using an attached mouse to sweep between the two). The
following functions return the lower left and upper right pixel positions from
two such pixel positions respectively.

— min _,
— maz _: (Pizel x Pizel) — Pizel
¥ PizelPair »

pim min piz; = (min {2],2:2},7111:11 {yla !h}) A
piz, maz piz; = (maz {2, 5}, mazr {y1., 12})

1.2 Pixel maps

A raster graphics display has a number of bit-planes. This may be considered
as the Z direction of the display.

| Zsize : Ny

Each bitin a bit-plane has one of two values (cleared or set).

Clear ==
Set == 1
Bit == {Clear, Set}

The value of a pixel at a particular position may be modelled as a func-
tion from bit-plane number to bit value.

Zrange == (.. Zsize — 1
Value == Zrange — Bit

If all the bits are ‘Clear’ the ‘ Value' is considered ‘Black’ and if they are
all ‘Set’ it is considered ‘ White'.

Black == ( pval: Value|ranval = {Clear} )
White == ( pval: Value | ran val = {Set} )

Note that if there is only one bit-plane (i.e. Zsize = 1) then pixel values
can only be Black or White.

b Zsize = 1 = Value = { Black, White}
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A pixel map consists of 2 (partial) function from pixel positions to the
value of the pixel contents. This can be used to describe part of a display,
such as a window.

Pumap == Pizel » Value
Non-empty pixel maps may be of interest.
Pizmap, == Pizmap \ {@)}

Pixel maps are often rectangular in area, We can define such pixel maps
using their bottom left and top right pixel positions.

Rectangle ==
{map : Pirmap, | 3, p1,p2 : Pizel w dommap = p1 . . p2}

Sometimes it is desirable to set all the range of a pixel map to a particular
value, for example when clearing a window down to the background colour.
A function to set the range of a relation to a particular value is useful for
this.

=[P, V]
getval : Vo (P V)= (Pw V)
Vv:Vip:PwVa

setval vp=(pum:P +w» V| (domm = domp A
ranm = {v}) )

The following laws apply:

p: Pizmap; v: Value F (setval v)t p = setval v p
v: Value F setval v @ =0

Two pixel maps may overlap. For example, one window may obscured
by another. This can be captured as a relation between pixel maps:

=[P, V]
—gverlagpe _ (P v V) o (P V)

Vpupa: Pn Ve
pr overlaps p3 & dom py Ndom p; # @

A sequence of pixel maps may be ogverlaid in the order given by the
sequence. It is convenient to define a distributed overriding operator for
this,
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[P, V]
B :seq(P-w» V) (P V)

@) =0

Vs:seq(P+ V), p: P+ Ve
®/(s” {p)) = (@/s)@p

Distributed overriding is particularly useful for defining the view on a streen
of a display, given a sequence of possibly overlapping pixel maps.
The following laws apply for the distributed overriding operator:

- 8/ =2
p: Piemap + @/(p}=p
3,8 :seq Pizmap F @f(1 " %) = (D/5) 6 (D)%)
P, Piamap b @f{p.m)=1Op
s st]aqPi:cmap F @fs = (B/(front ))& (last s)

= (head 3) D (P/(tail 5))
3 :seq Pismap + dom(®/s) = dom(U{ran £))
s :seq Pizmap F ran(®/s) C ra.u(U(ra.n 8))
3 :seq Pizmap + ﬂ(ra.ns) =g = Bfs= U(ran 8}
Note that the first three laws above provide at alternative way of defining
‘b f .

1.3 Windows

A series of windows on a display screen may be viewed as a sequence in
which each window is laid on the screen in the order defined by the sequence
{bottom first, top last). If some of the windows are removed from a sequence,
it is sometimes desirable to ‘compact’ the remaining windows into a sequence
again.

(W]
compact : (N + W) — seq W

compact & = ()
VYf:N-» W;i:N|i=min{domf)e
compact f = {f(i)) ~ compact({i} < f)

If the windows in a sequence overlap, it is useful to be able to move
selected windows so that their contents may be viewed (or hidden). This is
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analogous to shuffling a pile of sheets of paper (windows) on a desk (screen).
Note that the sheets of paper may be of different sizes and in different
positions on the desk.

For example, the following function may be used to move a selected
window number in the sequence (if it exists) to the top of the pile (i.e. the
end of the sequence).

=(W]
top : N = seq W - seq W

Yn:N; s:seqWe
n € doms =
top n s = compact({n} 4 3) " {s(n)) A

n ¢ doms =
topnns=s

More generally, we can define functions to ‘select’ and ‘remove’ a set of
windows from a sequence using their identifiers rather than their position in
the pile.

=[W]

— select _,

_ remove _:seq W X P W — seq W
Vs:seq W, w:P We

s select w = compact (s b w)} A

$ remove w = compact (35 w)

We can then ‘raise’ or lower’ these windows to the end or beginning of the
sequence as required.

_ raise _,

- lower _:seqW XPW - seqW
Vsiseq W, w:P We

s ruise w = (s remove w) " {5 select w) A

s lower w = (s select w) ~ (8 remove w)

Every window in a system usunally has an identifier, denoted * Window’,
which allows it to be accessed uniguely.
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[ Window |

The generic functions defined in this section will normally be applied tosuch
identifiers.

Windows often contain text. Thus, a text string is needed sometimes
(e.g. for a title of a window). This is denoted as ‘String’. The string may
be empty.

[ String |

| v String

This concludes the basic definitions which wili be used as required in the
rest of this monograph.



Chapter 2

Raster-Op Functions

Raster-op functions are useful when moving areas of pixels (e.g. parts of
windows) around the screen on graphics display systems. Raster-op is now
widely used in graphics systems, in particular for window systems. This
chapter formally specifies raster-op functions and gives an example of its
use. Readers not familiar with ‘raster-op’ may prefer to do some background
reading first [Fole82, Newm®81].

2.1 Operations on Pixel Values

Given two pixel values, we may perform a bit-wise ‘NAND’ (*not and’) on
the two values to produce a new value. H both bits are set then the result
is clear; if either bit is clear then the result is set.

— NAND _:(Value x Value) —» Value

Y val, valy, val : Value »
val) NAND val, = val &
(Vn:Zrange o
{vah n = Set A vah n = Set) =
val n = Clear A

(vah n = Clear V valy n = Clear) =
val n = Set )

Ali the other binary and unary logical functions may be defined in terms of
this function. For example, we can define a unary ‘NOT' function.

NOT : Value - Value

Vval : Value o
NOT val = val NAND val

10
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We can also define binary ‘AND’, ‘OR’ and ‘XOR’ functions.

_ AND _,
- @ —y
- XOR _:{Value x Value) = Value

Yual), val; : Value s
val) AND val; = NOT(valy NAND vab) A

val; OR valy = (NOT valy) NAND (NOT val) A
valy XOR valy = (vah OR valy) AND (vah NAND vab)

2.2 Operations on Pixel Maps

A pixel map is considered to have the same shape as another if it can be
‘moved’ using a unique one-to-one function ((offset pizo) in the definition
below) to give it the same domain. Intuitively this implies that each of the
pixel maps could be moved en masse about the domain space so that its
domain is exactly the same as the other map.

— sameshape _: Pizmap « Pizmap

YV map , map; : Pizrap »
map, sameshape map; &
( Apizg : Pizel s
dom({{ offset pixy) ; map; ) = dom map; )
Consider a pair of (possibly overlapping) pixel maps which havethe same

shape.

MapPair
Mapy,
tnap; : Pizmap

map, sameshape maps

Two pixels in a pair of pixel maps with the same shape are considered
to have the same position if the same offset function which relates the two
maps also relates the two pixels. This is captured in ‘samepos’ relation
below. If the relation is true then it implies that the two pixels are in the
same relative position within two pixel maps with the same shape, That is
to say, if one of the pixel maps were to be moved on top of the other then
one pixel would be exactly on top of the other.
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_ samepos _ : (Pizel X Pizmap) — (Pizel x Pizmap)
¥ piz), pin; : Pizel; MapPair |
piz; € dom map; A pizz € dom map; »
{piz1, map ) samepos (picz, maps) &
{ 3pirg : Pizel »
dom({offset pizg) ; map ) = dom maps A

piz, — piny € offset pizy )

‘We may define operations similar to the bit-wise operations on values
to apply to pixel maps. In this case by convention, the last operand of the
function has the same domain as the result of the function. We start by
defining the ‘nand’ function.

- nand _ : (Pizmap X Picmap) - Pizmap
¥ MapPair; map : Pizmap e
map, nand mop; = maep &
dom map = dom map; A

( ¥ piz; : dom mmap,; piz; : dom mapy |

{pit1, map, ) samepos (pizz, maps) »
map (pir ) NAND mapy(piz;) = map piz; )

Note that this operation is not commutative, unlike ‘NAND' since the second
operand defines the domain of the result of the function. Specifically, if the
domains of the pixel maps differ, the ordering is important. If the domains
are the same then the ordering is unimportant.

MapPair + dom map; = dom map; =
map; nand map; = map; nand map,

Using the basic ‘rnand’ function, we may defire fifteen further operations.
Four of these degenerate to monadic functions. ‘noop’ leaves a pixel map
unaffected, ‘not’ inverts all bits, ‘clear’ clears all the bits and ‘set’ sets all
the bits.
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noop,
not,
clear,
set : Pizmap — Pirmap
Yrmap : Pizmap s
noeop map = map A

not map = map nand map A

cleer map = map nand (not map) A

set map = not(clear map)

There are five more important operators. These correspond to standard
logical operations except ‘copy’ which is extremely useful for moving pixel
maps.

— topy _: (Pizmap x Pizmap) + Pizmap
¥ MapPuair e

map; and map; =

not{map, nand mapy) A

map, or map; =
(not map, ) nand (not mapy) A

mnap; zor map; =
(map1 or mapz) and (maep: nand map) A
Tap; nor map; =

not(map or map;} A

map; copy mapz =
map; or ( clear map,)}

The rest of the operations are used less often but are detailed here for
completeness.
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- copylnverted _,
_ andReverse _,
_ andinverted _,
_ orReverse _,
- orfnverted _,
— equiv _: (Pizmap x Pizmap) + Pizmap
¥ MapPair e
map, copyInverted map; = (not map) or { clear mapy) A
map, sndReverse map, = map; and (not maps) A
map; andlnverted map; = (not map, ) and maps A

mapy orReverse map; = map, or (not mapy) A

map, prinverted map; = (not map, ) or maps A

mapy equiv mapy = (not map; ) zor map,

This covers the sixteen possible raster-op boolean functions on two values.

2.3 Display Operations

A display screen consists of a pixel map.

Display
rsaeen : Pizmap

During changes to the screen, its size does not change although the pixel
values displayed on the screen may be updated.

A Display
Display
Display’

dom screen’ = dom screen

The screen may be updated using one of the raster-op functions previ-
ously defined. Some functions require a source and destination area whilst
others degenerate into a single area.
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RasterOp,
A Desplay
area? : P Pizel

op? ;. Pirmap — Pizmap

screen’ = screen @ op?(area’ Q screen)

__ RasterOp;
A Display
area? : P Pirel
from? : Pizel
op? : (Pizmap x Pizmap) - Pizmap

screen’ = screen B
op? { ((offset from?)(area?)) < screen , area? <1 screen )

2.4 An Example — Swapping Pixel Maps
Consider two separate non-overlapping pixel maps with the same shape,

__Sep Pair
MapPair

- fnap, overlaps map;y

ASepPair = SepPair A SepPair’

We may swap a pair of pixel maps with the same shape nsing the ‘copy’
operation.

— CopySwap
ASepPair

map| = map, copy map;

Tmaph = map, copy Mmap;
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In practice, these two ‘copy’ operations cannot be carried out simulta-
neonsly. A third copy is necessary and additionally a temporary pixel map
area is required. This can easily be expressed by using three schemas, one
for cach gperation, and then combining them using the schema composition
operator (;"). This is left as a exercise for the reader.

Altematively, the ‘zor’ raster-op function may be used. Three sequential
operations are still necessary, but the use of a temporary buffer area is
climinated. The following two schemas ‘zor’ one or other of a pair of pixel
maps with its opposite number.

....XOTI
ASepPair

map; = Map; TOr map;

map} = map,

Xor;
A SepPair

map] = tnap

meph = mapy Tor map;

A swap may be achieved between the two pixel maps by applying to-
kenxor three times sequentially as follows.

XorSwap £ Xor ; Xory ; Aomy
By symmetry, the following is also true.
ASepPair + XorSwap & {Xorm ; Xor ; Xom)

The XorSwap operation has exactly the same effect as using the ‘copy
operator twice simultaneously, as in the CopySwap operation.

ASepPair + CopySwap & XorSwap

2.5 Conclusion

‘We have formally specified the raster-op function and how this may be ap-
plied to a graphics display. We have given an example of its use for swapping
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areas of a display. By defining operations performed on rectangular areas,
we have specified some of the underlying operations necessary for a window

syatem,



Chapter 3

An Example Window
System

Windowmanagement systems are now used extensively for user interfaces to
computer systems. This chapter outlines an example window system using
formal specification techniques. An abstract view of the system is developed
and some basic operations are given.

3.1 State of the Window System

The window display may be modelled as a sequence of windows against a
background ‘window’ which is the size of the display itself. The order of
the sequence defines which windows are on top in the case of overlapping
windows, in ascending order. Only parts of windows which are contained
within the background area are displayed.

—5YS
windows < seq Pizmap
screen, background : Pizmap

screen = background @ (dom background <1 & /windows )

In this simple example, we shall ignore the complication of window iden-
tifiers. We shall simply use tbe position of the window in the sequence to
identify it, assuming that the user of the system keeps track of which window
is which.

Note that the user can only see the display screen.

View = SYS\ (windows, background)

18
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Initially there are no windows and thus only the background is displayed.

I

IntSYS = [ SYS' | windows' = {} |

InitSYS b screen’ = background’

During changes to the display, the background and hence the size of the
display always remain the same.

ASYS = [ SYS; SYS' | backgrourd' = background )

Some operations may leave the state of the system unchanged, for example
during a status operation or if an error in the input is detected.

Z5YS = [ASYS|8SYS' = 9SYS |

3.2 Operations on Windows

In order to use the system, we must have the ability to create windows.
These are created on top of all the existing windows. We specify that they
must fit within the display background.

— AddWindouy
ASYS

window? : Pizmap

dom window? C dom background

windows’ = windows ~ {window?)

The ability to update windows is very useful. This may involve changing
the size of the window or its contents or moving it about the screen. Again,
the updated window must still fit within the display area.

—_ Update Windowy,
ASYS
which? : N

window? | Pizmap
which? € dom windows

dom windew? C dom background

windows' = windows & {which? — window?)
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It is desirable to be able to uncover a window which is partially or even
totally chscured by other windows. This can be done by moving the window
to the end of the sequence of displayed windows.

Expose Windouy
["asys
which? : N

vhich? ¢ dom windows

windows’ = top whkich? windows

Sometimes it is useful to simply rotate the order of the displayed win-
dows, one at a time, moving the bottommost window to the top.

__Rotate Windowsy
ASYS

windows # ()

windows’ = top 1 windows

We also wish to be able to delete windows. For instance, we could delete
the topmost window.

Remove Topy
ASYS

windows # {}

windows' = front windows

Alternatively, we may wish to specify which window is to be removed.

RemoveWindouy
|_A 5YS
whieh? : N

which? € dem windows

windows’ = compact({which?} 9 windows)
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3.3 Error Conditions

The operations covered so far detail what should happen in the event of no
errors. We wish to be able to report the status of an operation,

inxs

Report ==
| ‘Not a window’
|
|

‘No windows'
‘Invalid window’

We must report the fact that the operation was successful if this is the
case.

_ Success
rep! : Report
rep! = ‘0K’

If errors do occur, then these need to be reported as well. For example,
an invalid window may be specified.

~ NotAWindow
=5YS
which? : N
rep! : Report

which? ¢ dom windows

rep! = ‘Not a window’

It is possible that there are no windows displayed when one is required.

NoWindows
=8YS
rep! : Report

unindows = {}

rep! = ‘No windows’

A specified window may not be within the background area,
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— Bad Window

CHAPTER 3. AN EXAMPLE WINDOW SYSTEM

Z5YS

rep! : Report

window? : Pizmap

- (dom window? C dom background)

rep! = ‘Invalid window’

We may include these errors with the previously defined operations which
ignored error conditions, to produce total operations.

AddWindoun

Update Windoun

Erpose Window,

Rotate Windows,;

RemoveTom

Remove Windouy

n

I

1

n

i

(AddWindouy A Success)
vV DadWindow

{ UpdateWindoun A Success)
vV BadWindow V NotAWindow

( Ezpose Windoug A Success)
V Notd Window

(Rotate Windowsy A Success)
vV NoWindows

(RemoveTopy A Success)
vV NoWindows

(Remove Windouy A Success)
V NotAWindow

3.4 Status Operations

The contents of an existing window may be of interest.

_ GetWindouy
5YS
which? : N

window! : Pizmap

which? € dom windows

window! = windows which?

We can make this operation total as well.



3.4. STATUS OPERATIONS 2

GetWindow = (GetWindowy A Success) vV NotAWindow

It is useful to know which window a given pixel position is in, for example
when pointing at a position on the screen with a mouse driven cursor. Given
the position, the sequence number of the window is required. There may be
several windows at the specified position but we are only interested in the
topmost one.

_ Which Windowy
SYS

posgition? : Pizel
which! : N

position? € dom(®/ windows)

which! = maz {n : dom windows |
position? € dom(windows n)}

However, it is possible that the cursor position may not be in a valid
window. In this case we simply record this fact by making ‘which? invalid.
This is because this schema will be combined with others to produce an

appropriate error message later.

Invalid ==

_ NotInWindow
SYS5
pogition? : Pizel
which! : N

position? ¢ dom(& [ windows)

which! = Mmvalid

To make the operation total, we combine these two operations.

Which Window = WhichWindouwy V NotInWindow
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3.5 Upgraded Operations

Often when a windew is updated, we wish to modify the original window
rather than completely replacing it. Sometimes we wish to change the shape
of the window by either enlarging it or reducing it, or a combination of the
two. Any new area exposed may be given any desired background pixel
values.

Reshape
|—area?,
window?,
window! : Pizmap

window! = area? ¢ (dom area?) < window?

This schema is a general operation concerning the input and output of a
window and hence the change in state of the window system need not be
recorded.

Often we want to move a window, We can define a one-to-one mapping
to do this. If the window cannot be moved in its entirety using the mapping
given, then it is left unaffected.

Move
"mapping? : Pizel v Pizel
window?,
window! : Pizmnap

dom window? C ran mapping? =
window! = mapping? ; window?

- (dom window? C ran mapping?) =
window! = window?

At other times we simply wish to modify the contents of the window. We
ignore any modifications outside the area of the window.

— Modify
mods?,
window?,

window! : Pizmap

window! = window? @ {dom window?) < mods?
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Again the two previous schemas have nothing to do with the state of the
window system. However by combining the last three schemas with a record
of the change of state, we can then combine them with previous operations
to produce some new window operations.

Reshape Window = GetWindow 3 Reshape > Update Windouy
Move Window GetWindow > Move 3> Update Windouy

ModifyWindow = GetWindow > Modify 3> UpdateWindowy

1

Each of these operations selects a particular window from the system, trans-
forms the window in some way, and then updates the system with the new
window.

To bring a window to the top, we point at it using the mouse cursor
and click a button to execute the operation. This can be modelled using a
combination of previously defined operations.

EzposeWindow = WhichWindow » ErposeWindow

We may want a process assaciated with a particular window to decide
whether a given operation may be executed, using some unknown protection
criterion.

_ Dectde
allowed? : PN
which?,
which!: N
which? € allowed? = which! = which?

which? ¢ allowed? = which! = Invalid

Thus a process may decide whether a user is allowed to remnove a window.

Remove Window = WhichWindow > Decide > Remove Window,

3.6 Conclusion

We have introduced a model for a simple window system together with
some basic operations which may be performed. We have showa how some
of these operations may be combined to produce a set of useful windowing
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operations. We have used the schema piping operator (*»’) to combine
some of the operations rather than the more normal method of using schema
inclusion since this gives a better idea of how the operations might be joined
together in practice.

Nothing has been said about the nature of pixels in this chapter, Little
has been said about the contents of windows. However these issues could
be expanded using the model given to produce a complete specification for
a windowing system.



Part 11

A Comparison of Three
Real Window Systems
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Introduction

In Part 11 of this monograph, Z [Haye87, King88, Loom88, Spiv88a, Spiv8d)
is used to describe parts of three window systems, WM [Neuw85, Rose85],
the Blit [Pike84, Unix85] and X {Gett85, Gett86, Sched6]. These systems
have been developed independently at Carnegie-Mellon University, AT&T
Bell Laboratories at Murray Hill and Massachusetts Institute of Technology.
All the systems use bit-mapped raster displays with a keyboard and mouse
for user input.

A high level description of the state of each system and a selectior of win-
dow operations is presented to give a flavour of each and to allow them to be
compared. The operations covered are those available to applications pro-
grams via library procedure calls. In general, simjlar operations are available
to the user under mouse control. Some backgrourd reading may be helpful
for readers not familiar with windowing techniques [Fole82, Newmgl1].

Only operations directly concerned with windowing are covered. The
systems described also inclnde many other operations such as graphics,
raster-op, mouse and cursor routines, etc. Each description covers the fol-
lowing:

o State of the system and initialisation.

¢ Windowing operations, ignoring error conditions.

» Error conditions and status reports.

« Simplifications and assumptions in the specification.
+ General comments on the system.

Menu facilities are not covered in detail for the sake of brevity. Addi-
tionally, the parameters supplied to some operations have been simplified to
aid clarity in the brief descriptions given.

Graphics facilities within windows are not included. However Z is suit-
able for this. For example, it has been to specify parts of the graphics
standard GKS [Arno87].
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Chapter 4

The ITC ‘WM’ Window
Manager (CMU)

WM [Neuw85, Rose85], part of the ‘Andrew’ distributed system, is a win-
dow manager developed at the Information Technology Center (ITC) at
Carnegie-Mellon University [Saty84, West85]. This runs on UNIX* based
workstations designed eventually to be networked on a very large scale
(¢5,000-10,000 nodes). Because of the distributed file system, any autho-
rised person may also use any other workstation on the network, and indeed
create witdows on other workstations remotely.

4.1 State

The state of the system is introdnced in stages. In this model we consider a
single machine for simplicity since we are concerned with how the window
manager works rather than how the network operates. Operations over the
network will be detailed later.

Each window has a number of pieces of information associated with it.
These include a header area for titles and other information, and a separate
body area to hold the actual cortents of the window. These do not overlap
and together they make up the pixel map of the displayed window. In
practice, the header is a thin rectangular area just above its associated
body.

"un1x is & trademark of AT&T Bell Laboralories.
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— Map
header, body, map : Pizmap
area : P Pizel

{header, body) partition map

area = dom map

The user can request a window tao lie within a specified range of dimen-
stons and can also explicitly ask for a window body to be hidden from view
or exposed on the screen. Each window has a title which can be set by
the user. This information is used by the window manager to lay out the
window on the screen, although there is no guarantee that what the user
asks for is what the user gets!

HideEzrpose ::= Hide | Ezpose

Control
title : String

control . HideExpose
sylimits : Pizel X Pizel

first zylimits < second zylimits

Together these make up the information deseribing a particular window.
Info = Map A Control

There are a finite number of windows on a particular sereen. One of these
is considered to be the currently selected window. This may be ‘undefined’
sometimes. Most WM library functions take effect on the currently selected
window. Each window has information, including a pixel map, associated
with it.

| Undefined : Window
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— WM
windows : F Window

current : Window
contents : Window » Info

Undefined ¢ windows

vindows = dom confents

current € windows U { Undefined)

The display screen consists of the background overlaid with windows.
The window pixel maps do not overlap. All windows are contained within

the background area.

_ WM
WM
maps : Window -+ Pizmap

areas : Window «+ (P Pizel)
screen, background : Pizmap

| maps = contents; (A Info « map)
areas = condents; (A Info & area)
disjoint areas

(J(ran areas) C dom background

sereen = background & ((ran maps)

You can have as many windows as you need, subject to the restriction
that the WM process can handle at most 20 windows, including hidden
windows and windows requested by other programs, at one time.

MazWindows : N
MazWindows = 20
We can include this limitation in our model of the state.

WM = [ WM | #windows < MazWindows |

The size of a window on the user’s display is one of the resources that
the Window Manager allocates. A program can request a given size, and
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WM will take the requested size into account when making decisions, but it
does not guarantee a particular size. This process is modelled as a function
of the system. The number of windows is not changed by this function.
Additionally, control information supplied by the user is left unchanged.

WINDOWS == Window + Info

— WM
WM
adjust : WINDOWS — WINDOWS

Yuw,w : WINDOWS | v’ = adjust w e
#uw' = #w A
w’ ; (A Info ¢ 8 Control) = w ; (A Info e 8Control)

Initially there are no windows and the current window is undefined.
_ InitWM

WAL
windows’ = &

current’ = Undefined

Operations change the state of the system. However the background and
hence the size of the screen remains constant. Additionally the algorithm
to adjust the size of windows does not change.

— AWM

WM

WM’
background’ = background

adjust’ = adjust

Sometimes the state of the system is unaffected during an operation.

SWM = [AWM |0WM' = 6WM |
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Miny operations are concerned with the current window. Hence we
define & schema giving a partial specification covering all common aspects
of such operations. This can be used to shorten subsequence specifications
of these operations and reduce repetition. The names of such schemas are
prepended with ‘@’ to distinguish these from actual operations.

~ & Current
AWM
Info

Info'

current € windows

current’ = current
fInfo = contents current

contents’ = adjust (contents @ {current — 8 Info’})

This leaves a valid current window the same, but updates the information
associated with it in some (as yet unspecified) way.

4.2 Window Creation and Deletion

‘When a window is created, the system adjusts all the windows in the system
appropriately. The window body is exposed when it is created. In practice,
the operation also takes the name of a host as input since a window may be
created anywhere on the network of workstations. However this is detailed
later.

— NewWindow,

AWM

w! : Window

Info
#windows < MaxWindows

w! ¢ windows U { Undefined )

current’ = w!

control = Ezpose

contents’ = adjust (contents U {w!— 8Info})
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The currently selected window can be deleted.

Delete Windouy
AWM

current € windows

current’ = Undefined

contents' = adjust ({current} 4 contents)

4.3 Window Size

A program can request a given size range, and WM will take the requested
size into account when making decisions, but it does not guarantee a partic-
ular size. The rest of the window information is unaffected. The windows
will be adjusted by the system as necessary {i.e. any or all of the displayed
windows may change shape as a result of setting the size of one particular
window).

__SetDimensionsg
P Current
minzy?, mazry? : Pizel

map’ = map
title’ = title

control’ = control

zylimits’ = (minzy?, mazzy?)

The size of the body of the currently selected window can be returned. If
the window is actually hidden (i.e. WM has adjusted the window to display
the header only), then the returned size is empty.
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_ GetDimensionsg
¢ Current

wh! : Pizel
1.2y : Pizel

éimfo’ = 8 Info
dom body = zipy .. Ty

wh! = Iz — I

4.4 Windows Visibility

A window is considered ‘visible’ when both its header and its body are
displayed and ‘hidden’ when only its header is displayed. Windows are
visible when they are first created and remain so unless the user hides them.
A program can also control window visibility. A visible window may be
hidden.

— HideMey
& Current

map' = map
title' = title
control’ = Hide

zylimits’ = zylimils

Similarly, a hidden window may be exposed.

__ EzposeMey
P Current

map' = map

title’ = title
control’ = Erpose

zylimits’ = zylimits
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Note that the state of ‘conirol’ before the operation has not been checked
above, so HideMey will leave a hidden window hidden and EzposeMe; will
leave a visible window exposed.

4.5 Other Window Operations

A window may be explicitly selected as the current window, until another
window is selected or created. All output will be sent to the selected window.

_ Select Windouy,
AWM
w? : Window

w? € windows

current’ = w?

contents’ = contents

The title of a window may be set, This involves placing a text string in
the header section of the window contents.

Set Titley
|_ & Current
s? : String

map’ = map
title’ = s?

control’ = control

zylimits’ = zylimits

The body of the currently selected window may be set to white.
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_. Clear Windouy
$Current

header’ = header
body’ = setval White body
title’ = title

control’ = control

sylimits’ = zylimits

Other operations supplied by the WAM library include line, text and
string drawing, raster operations, operations to save and restore parts of
the picture, input handling, menus, mouse input, etc. In addition, new
operations may be added; at the time that this specification was formulated
WM are still under development.

4.6 Errors

There is a Null window identifier which is never a valid window.

] Null : Window

WM = [ WM ) Null ¢ windows |

AWM and EWM are redefined appropriately.
Some operations return a window identifier. If this is non-null then the
operalion is successful.

__ Success
AWM
w! : Window

w! # Null

Alternatively a error may occur. There is a limit on the number of windows
which WM can handle. This could canse an error when creating a new
window.



4.6. ERRORS 39

TooM any Windows
WM

w!: Window
#winmdows > MazWindows
w! = Null

We can now make the operation to create a new window total.

NewWindow, = (NewWindowy A Success)
Vv TooMany Windows

The current window may be undefined when one is required.

_ NoCurrentWindow
TWM

current = Undefined

Delete Window, = DeleteWindouy V NoCurrent Window

SetDimensions; = SetDimensionsg V NoCurrent Window

GetDimensions, = GetDimensionsy V NoCurrent Window
Set Title; SetTitleg V NoCurrentWindow

Clear Windouw, Clear Windouy V NoCurrent Window

I

L}

A window may always be hidden or exposed, even if this does not affect
its state,
An invalid window may be selected.

__ Invalid Window
TWM
w? : Window

w? ¢ windows

Select Window, = Select Windoup vV nvalid Window
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4.7 The ITC Network

Iu practice, as mentioned previously, there are many window managers, each
running on a host workstation on a large network. Some hosts are running
WM. All workstations have unique host names and all windows have unique
IDs across the network,

rc
Fhosts : P String
wms : String » WM

dom wms C hosts
lisjoint (wms ; (A WM e windows))

To start with there are no hosts {and hence no window managers) on
the network.

ItITC = [ITC' | hosts = @)
Operations cause changes on the network.
AITC = ITC A ITC

Hosts can be added to the system (e.g. booting up) and removed {e.g.
crashing or powering down).

AddHost
F AITC
host? : String

host? ¢ hosts U {*}
hosts’ = hosts U { host?}

ums' = wms

__ RemoveHost
AITC
host? : String

host? € hosts
hosts' = hosts \ {host?}

wms’ = {host?) < wms
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Operations can be initiated on a particular ‘local’ host. These do not
affect the host names on the network.

& Host
AITC
localhost : String

hosts” = hosts

localhost € hosts

For example, WM may be executed on a host, and may be subsequently
killed.

__Ezec WM
¢ Host
nitwm : InitWM

localhost ¢ dom wms

wms’ = wms U {localhost — initwm)

_ KillWM
$ Host

localhost € dom wms

wms' = {localhost} @ wms

WM operations can be modelled in the glabal context of the network
by updating the state of WM on a particular local host which is already
running WM.

— P WM
% Host
AWM
host ; String

8 WM = wms host
WM’ = wms' host
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Tle Window Manager on the local host can be requested to create new
windowson any machine on the ITC network that is running a WM process
by supplying the appropriate host name. Alternatively, specifying a null
host parameter results in a request for a window on the local machine. This
is the pormal mode of operation.

__NewWindowyrc
NewWindow,
WM

host? ; String

host? = > = host = localhost

host? £ = host = host?

Other window operations discussed previously may be described in the
global network context. For example:

DeleteWindowire = DeleteWindow, A 8 WM

If the current window is on the local machire, then the operation is
executed locally, otherwise it is carried out over the network.

4.8 Simplifications and Assumptions

For the purposes of brevity, the pop-up menus supplied by WM have been
ignored in the description given. These could easily be added to the state
specification by including them as extra window information in a schema
called Menu.

Info = Info A Menu

In practice, windows are not adjusted immediately, but when the Win-
dow Manager next makes a size decision (e.g. when the user requests WM
to proportion the windows). This is not modelled here. In addition, the
way in which the windows are proportioned is not specified since this is not
covered in the documentation used to formulate this specification [Neuw8§5].

4.9 Comments

The WM window manager provides a simple system with non-overlapping
windows. Hence no notion of window ordering is required. The idea of a
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‘current’” window for each process using WM means that this information is
held as part of the state of the system and need not be specified as input
to many window operations. Windows are auntomatically reduced in size by
the system when there is not enough space on the screen. This simplifies
the task of organising windows for the user.
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Blit Windows (AT&T)

The Blit [Pike84, Unix85], developed at Bell Labs, Murray Hill, is more like
an intelligent terminal than a workstation. It is diskless and interacts with
a remote host running the Bell Labs Eighth Edition uUNIX via a 9600 baund
{(slow) R5-232 serial line. It Lias its own simple process scheduler and a bit-
mapped display. Programs can be run on the Blit (downleaded from the
remote host), on the remote host itself using a standard window terminal
emulater process on the Blit, or on both using two special purpose programs
which interact with cach other over the serial line., Deciding how to split
a prograin between the Blit and remote host is a tricky but interesting
problem.

5.1 State

The Blit contains ‘layers’ which are analogous to windows on most other
systems. However there is no protection between layers. Each layer has
an rectangular region on the screen associated with it. Here we model this
simply as a partial function from pixel points to values.

Layer == Window

Point == Pizel
Each pixel point is two-valued - i.e. each window is a simple bit map.
Zsize = 1

Several layers (with associated rectangular windows) may exist simnlta-
neously. The layers are ordered as a sequence for reasons that will be seen
in a moment. There is an invalid null layer for error returns (see later).
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I NullLayer : Layer

— Blit
layers : seq Layer
uindows : Layer + Rectangle
rects : seq Reclangle

ran layers = dom windows
NullLayer ¢ ran layers

rects = layers ; windows

Several processes may also exist simultaneously in the Blit. Each process
has an associated program and state. A process may be disabled or enabled.
However the rest of this specification is not concerned with the state of
processes, but it is included here for completeness. Each process is normally
associated with a layer. Creating a process without a layer or vice versa is
dangerous.

[Program, State}

Proc
prog : Program
state : State

1 : Layer

The Blit includes no window ‘manager’ as such since any process has
access to the entire screen. There are a series of processes in the system
each identified uniquely by a process id. There is a null invalid id which is
returned by operations to indicate an error. One of the processes may be
assigned to receive mouse and keyboard events.

(1]

| Nullld : Hd
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__Blit
Blit
grocs : Id « Proc
receiver : Id
Nullid ¢ dom procs
recesver € dom procs U { Nullld}

¥ proc:ranprocs e
proc.l € ran layers U { NullLayer}

A process may be associated with a default terminal emulation program
if desired.

Bt = [ Biit; defauit . Program |

The background may be considered as another layer which defines the
size of the screen. The display consists of all the layers overlaid on top of
the background. All layers are contained within the background. The order
is detenmined from the position in the sequence (first at the bottom, last on
top).

Blit
[ Blit
sereen, background : Rectangle

dom(@/ rects) C dom background

screen = background @ (& rects)

Initially there are no layers or processes in the system.

— InitBhLt
Bht'

" lagers' = ()
procs’ = @
receiver’ = Nullld

Operations do not change the default terminal program or the back-
ground of the display.
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A Blit
Biit
Biit!
default’ = default

background' = background

Some operations do not aflect the state of the Blit.
EBlit = [ ABlit | 8Blit’ = 8Blit |

Often operations only affect layers and all the processes in the system
are left unaffected.

P Layer
ABlit

procs’ = procs

recetver’ = receiver

Similarly, processes are often changed whilst leaving all the layers in the
system unaffected.

& Proc
|_ ABlit

layers’' = layers

windows' = windows

5.2 New Layers

A layer may be created in a specified rectangle in the physical display bit-
map. The address of the layer is returned.
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__NewLayer
$Layer

r? : Rectangle
I': Layer

dom r? C dom background
! ¢ ran layers

layers' = layers ~ (11

windows' = windows U {I! — r?}

A layer may alse be de-allocated. The associated process should also be
freed for safety, but this is a separate operation.

DelLayemn,
& Layer
{? : Layer

{? € ran layers
layers’ = layers remove {17}

windows’ = {17} < windows

5.3 New Processes

A new process can be allocated. A handle on the process is returned. Note
that the associated layer is undefined. The process programn is often the
default terminal emulation program and in practice this is specified using a
null argument.

NewProcy

& Proc

f1: Program

id!: Id

proc : Proc

proc.prog = f7

procs’ = procs U {id! — proc}
receiver’ = receiver
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A process may be created using the standard user interface to select the
rectangle for the process’s layer. This associates the process with the layer.

NewWindowy = NewProc ; NewLayer
NewWindowy = [ NewWindouy | I! = proc.i )

A layer may be selected so that the process in that layer becomes the
receiver of mouse and keyboard events.

_ ToLayerg
& Proc

17 : Layer
proc : Proc

proc € ran procs
{7 = proc.l
procs’ = procs

recetver’ = proes™ proc

The process whose layer is indicated by the mounse may be returned.

__ GetProcey

ZBiit

17 : Layer
proc!: Proc

proc! € ran procs

procl.l=17

Alternatively, a handle on all the processes in the system may be returned.

— GetProc Taby
=Bht
procs! : Id + Proc

procs! = procs
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5.4 Mouse Operations
The Blit includes a mouse. This controls the position of a cursor on the
screen. Additionally, any combination of the three buttons on the mouse

may be pressed at any time.

Button 1= Buttonl | Button2 | Button3

Mouse

zy : Point
buttons : P Buiton

Some pixel positions on the display screen may be associated with a
particular layer. This is the layer which is visible at that particular pixel.
Otherwise the background is visible at that point. The gun-sight cursor is
used to find a particular layer.

— Gunsight
EBht
pos? : Mouse
i': Layer
posT.zy € dom(@/rects) =
' = layers{maz {n : domrects |
pos?.zy € dom(rects n)})

post.zy € dom(d/rects) =
! = NullLayer

We can now give a more complete definition for GetProc.
GetProc, = Gunsight 3 GetProg

The box cursor is used to pick out a rectangular area. This is done by
sweeping ont a rectangle whilst button 3 is depressed.
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— Boz
ZBlit
posl?, pos2? : Mouse
r! : Rectangle

posl?. buttons = {Button3}
pos2?.buttons = &

dom r! = dom background N
((posl?.zy min pos2?.zy) .. (posl?.zy maz pos2?.zy))

5.5 The ‘mux’ Multiplexer

The underlying lihrary routines available for the Blit do not include all
the hasic operations necessary for a complete window manager. However
a program called muz may he downloaded from the host system. This
manages asynchronous windows, or layers, on the Blit terminal. Eachlayer is
essentially a separate terminal. Layers are created, deleted, and rearranged
using the mouse. Depressing mouse button 3 activates a menwu of layer
operations and releasing the button selects an operation. Some of these
operations are covered here.

A new layer containing a terminal emulator process may be created by
sweeping out a rectangle with the mouse whilst button 3 is depressed.

Neuyy = Boz » NewWindouy

The size and location of a layer on the screen may be changed. A gun-
sight cursor to select the layer and a box cursor to select the new position
are presented to the user. Tle domain of the layer’s rectangular area is
updated.

Reshapey = (Gunsight > DelLayeny) ; (Boz » NewLayen)

A non-current layer may be selected using button 1. The layer is pulled
to the front of the screen and made the current layer for keyboard and mouse
input.
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— Topy
$Layer
17 Layer

layers’ = layers raise {17}

windows' = windows

Current& Topn = Gunsight » ( ToLayery ; Top)

5.6 Errors
Success{ul operations can be reported.

Success
ABlit
{!: Layer

i'# NullLayer

Similarly, failures can also be reported. This could be because there is not
enough memory for example.

__ Failure
=Bt
& Layer

' = NullLayer

A rectangle not within the background area could be given in error.

InvalidRect
rEBﬁE

r? : Rectangle

= {dom r? C dom background)

For example, the operations to create a new layer or process may fail
because of an invalid rectangle or lack of memory.
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5.7. SIMPLIFICATIONS, ASSUMPTIONS AND COMMENTS

NewLayen = (NewLayery A Success) V
(InvalidRect A Failure) v Failure

( NewProcy A Success) v Failure

i

NewProc,

NewWindow, = (NewWindowo A Success) V Failure

Sometimes an invalid layer may be specified as input.

Invalidlayer
ZBiit
{? : Layer

{? ¢ ran layers

A layer must exist to delete it or make it the current receiver.

DelLayery = DelLayery V InvalidLayer
ToLayer; = TolLayery V InvalidLayer

Some operations return no errors.

GetProcTah, = GetProcTaly

53

5.7 Simplifications, Assumptions and Comments

Many cursor and mouse operations and other graphics operations have been

ignored for brevity.

The documentation [Unix85] states that the associated process must be
freed when a layer is de-allocated. However it does not make it clear how to

do this so this has not been specified.

The Blit is different from most other window systems in that it is a
diskless intelligent terminal which interacts with a remote host in pormal
operation. In addition there is no protection between processes and layers
within the Blit. Hence care must be execised when programining it. but in

return this allows greater flexibility and versatility.
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X Window System (MIT)

X [Gett85, Gett86, Sched6] is a network transparent windowing system de-
veloped at MIT and designed to run under vniX. The X display server
distributes user input to, and acecepts output requests from various client
programs either on the same machine or over a network.

6.1 State

The state of the X system is introduced in simple stages in order to build up
the concepts involved. This is done by redefining a state schema, called X in
terms of itself and a series of manageably sized state definition fragments.

All the windows in an X server are arranged in a striet hierarchy. At the
top of the hierarchy is the ‘root’ window. Each window has a parent except
the root window. Child windows may in turn have their own children. Each
window, including the root window, may be considered to consist of a pixel
map in this simple description.

¢
root . Window

children : P Window

parents : Window + Window

subuindows : Window —« Window

windows : Window -+ Pizmap

root ¢ children
children = dom parents

subwindows = parents™

dom windows = children U {root)

34
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Subwindows are displayed in a particular order within their parent win-
dow. This rnay be modelled as a sequence of windows in ascending order of
display. These consist of all the child windows.

—X
X
order : Window -+ iseq Window

dom order = dom windows

(V¥ un,wn : domorder | uwy # wy w
ran{order wy) Nran{order un) = @ )

({20 : dom order e ran{order w)} = children

( ¥ w : dom windows e ran{order w) = subwindows{{w]) )

Windows must be ‘mapped’ before they can be displayed. The root
window is always mapped. All of a window’s ancestors (if any) must also
be mapped for it to be viewable on the display. Unviewable windows are
mapped but have some ancestor which is unmapped.

X
X
mapped,
viewable,
unviewable : P Window

B mapped C dom windows
root € mapped
viewable = {c : children | parents*{{c}) C mapped} U {root}

untriewable = {c : children | ¢ € (mapped \ viewable)}

Each viewable window has an associated visible pixel map which consists
of the pixel map of the window overlaid with its subwindows (in order) if
any. Tbese are ‘clipped’ to the size of the parent window.

The root window covers the entire background of the display screen. The
screen displays the pixel map visible from the root window.



56

CHAPTER 6. X WINDOW SYSTEM (MIT)

— X
X
visible : Window + Pizmap
screen, background : Pizmap

dom wistble = viewable

(¥ 1w : triewable »
visible w = (windows w) @ (dom(windows w)<
& /(compact((order w); visible))) )

background = windows root

screen = mstble rool

Initially there are no children and only the root window is mapped.

Hence only the background is displayed.

_ InitX
XJ
windows' = {root’ = background”}

order’ = {root’ — {}}

mapped’ = {root’}

Consider changes in the window system. The root window identifier and

the background of the screen do not change.

%
XJ‘

root’ = root

background’ = background

Somelimes the state of the system is unaffected during an operation.

=X = [AX |8X' =6X ]

We can now consider operations on the state of the system; initially,

error-free operations will be presented for simplicity. Error conditions are
cavered later.
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6.2 Creating and Destroying Windows

Firstly, we wish to be able to create windows. For these operations we have
to supply the parent window under which the new window is to reside in the
window hierarchy. The position, size and background of the window must
also be specified. Here these are defined by ‘bgnd?’ for simplicity. Note that
the created window will not actuaily be displayed until it is ‘mapped’ (see
later).

_ CreateWindouy
AX

parent? : Window
bgnd? . Pizmap
w!: Window

parent? € dom windows

w! ¢ dom windows
windows’ = windows U {w! — bynd?}

order’ = order @ {parent? — (order parent?) ™ {uw!}}

mapped’ = mapped

Note that the predicates in the schema above fully define the state after
the operation since all the other state components may be derived from those
given above. The other components are included in the state definition to
allow us to have different views of the system, depending on the manner in
which we wish to access the state,

Sometimes it is convenient to rreate several windows at once under a
single parent window. Note that not ail the windows requested may be
created, but this is indicated by the information returned. This coasists of a
partial injection obtained from the sequence numbers of the windows which
are actually created to the window identifiers which they are allocated.
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__ Create Windowsg
AX

parent? : Window
defs? : seq Pizmap
defs! : N ow Window

mom windows

dom defs! C dom defs?

ran defs! N dom windows = @
windows’ = windows U (defs!™ ; defs?)

order’ =
order @& {parent? — (order parent?) ” (eompact defs!)}

mapped’ = mapped

We also wish to destroy windows. Given a particular window, we may
wish to destroy a set of windows which are associated with it. We can define
a partial specification to do this as a schema. Exactly which windows are
to be destroved is not specified for the present.

— & Destroy
AX
w? : Window
destroy : P Window

w? € children

windows’ = destroy 4 windows

( ¥ w: dom windows
order’ w = (order w) remove destroy )

mapped’ = mapped \ destroy

We may wish all subwindows, as well as the window itself, to be de-
stroyed.

DestroyWindoup =
[ @ Destroy | destroy = subwindows* ({w?}] |

Alternatively, we may wish to just destroy the subwindows under the spec-
ified window.
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DestroySubwindowsy =
[ & Destroy | destroy = subwindows™ ({w?}) |

Note that the ‘root’ background window cannot be destroyed using these
operations. QOuly child windows may be destroyed.

6.3 Manipulating Windows

A window, and all its ancestors, must be ‘mapped’ to be visible on the
screen. However a mapped window may still be invisible if it is obscured by
a sibling window.

Mapping operations require a child window to be specified. The hierar-
chical relationships between windows and the contents of the windows are
left unaffected.

& Map
AX
w? : Window

w? € children

unndows' = windows

Mapping a window raises the window and all its subwindows which have
had map requests. Mapping a window which is already mapped has 1o effect
on the screen - it does not raise it.

— Map Windoug

¥ Map
parent : Window

parent = parents w?

w? ¢ mapped =
order’ = order @ {parent — ((order parent) raise {w?}}}

w? € mapped =
order’ = order

mapped’ = mapped U {w?}

All the unmapped subwindows of a given window can be mapped together.
The order in which they are mapped is chosen by the system rather than
the caller.
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MepSuburindowsy
F-@an

nevorder ; iseq Window
newmapped : P Window

newmapped = subwindows({w?}) \ mapped

ran neworder = newmapped

order’ = order &
{w? — ((order w?) rernove newmapped) ~ neworder}

mapped’ = mapped U newmapped

A window can be unmapped. The window will disappear from view if it
was visible.

_ Unmap Windouy
& Map

order’ = order

mapped’ = mapped \ {w?}

All subwindows of a specified window can be unmapped.

— UnmapSubuwindowsy
& Map
order’ = order

mapped’ = mapped \ subwindows |{w?})

Windows may be manipulated in various ways. Given a window, its pixel
map may be updated. It is also raised to the top of the display. We can
define a general schema to simplify the definition of such operations.
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d Window
[ ax
w? : Window
map : Pirmap
parent : Window

parent = parents w7

windows' = windows & {w? — map)

order’ = order @ {parent — {{order parent) raise {w?}})
mapped’ = mapped

A window may be moved and raised without changing its size. Moving

a mapped window may or may not lose its contents, depending on various
circumstances,

__ Move Windouy
¢ Window
zy? : Pizel

dom rmap = dom((offset zy?) ; (windows w?))

The size of a window may be changed without changing its upper left
coordinate. A new width and height are given. The window is always raised.
Changing the size of a mapped window loses its contents.

Change Windowg
$ Window
wdhi? : Pizel
pizy , pizg - Pizel

dom( windows w?) = pizy . . pizy
dom map = piz; .. (pizg + wdhi?)

The size and location of a window may be configured together by com-

bining the last two operations. The window is raised and the contents are
lost.

Configure Windouy =
(MoveWindoun [ AXY}; (ChangeWindowy [ AX)
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Some operations explicitly affect the order in which the windows are dis.
played. A child window is specified, and window relationships, the windows
themselves and the set of mapped windows remain unchanged.

— & Order
AX
w? : Window
parenit : Window
suborder, suborder’ : seq Window

perent = parents w?

vindows' = windows

suborder = order parent

erder’ = order & {parent — suborder'}
mapped’ = mapped

A window may be ‘raised’ so that no sibling window obscures it. If the
windows are regarded as overlapping sheets of paper stacked on a desk, then
raising a window is analogous to moving the sheet to the top of the stack,
whilst leaving its position on the desk the same.

RawseWindowy = [ ®Order | suborder’ = suborder raise {w?} ]

A window may also be ‘lowered’ in a complementary fashion. If the
windows are regarded as overlapping sheets of paper stacked on a desk,
then lowering 2 window is analogous to moving the sheet to the bottom of
the stack, whilst leaving its position on the desk the same.

LowerWindoup = [ ®Order | suborder’ = suborder lower {w?} ]

Overlapping mapped subwindows of a particular window may be raised
or lowered in a circular manner. The set of these windows is identified. If
it is non-empty, the ordering of the window’s children is updated; otherwise
it isleft unchangad.
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__$%rce
AX
w? : Window

subrnapped, circ : P Window
suborder, suborder' ; seq Window

w? € ehaldren
subrnapped = subwindows ({w?}) N mapped

circ = {w : submapped | ( 3wy : submapped o
wy # w A (visible un) overlaps (visible w) )}

windows' = windows

suborder = order w?

circ £ @ = order’ = order @ {w? — suborder’}
circ = @ = order’ = order

mapped’ = mapped

For a particular window, the lowest mapped child that is partialy ob-
scured by another child may be raised. Repeated executions lead to round
robin raising.

Circ WindowUpy
3 Circ
circ 9 =

suborder’ = suborder raise
{suborder(min(dom{suborder | circ)))}

Similarly, the highest mapped child of a particular window that (partially)
obscures another child may be lowered. Repeated executions lead to round
robin lowering.
r— Cire WindowDowng
3 irc
circ 29 =

suborder’ = suborder lower

{suborder{ maz(dom(suborder [ eirc)))}
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6.4 Other Window Operations

We can ask for information about a particular window. As well as the size,
position, etc. of the window, details about the mapped state of the win-
dow are returned. ‘fsl'nmapped’ indicates that the window is unmapped,
‘IsMapped’ indicates that it is mapped and displayed (i.e. all of its ances-
tors are also mapped), and ‘IsInvisible’ implies that it is mapped but some
ancestor is not mapped.

MappedState = IsUnmapped | sMapped | IsInvisible

__ Query Windowy
X

v? : Window
info! : Pizmap
mapped! : MappedState

w? € children

info! = windows w?

w? ¢ mapped =
mapped! = IsUnmapped

parents™({u?}) C mapped =
mapped! = IsMappal

w? € mapped A - (parentst ({w?}) € mapped) =
mapped! = IsInvisible

We can also find out the window identifiers of the parent and all the
children (and hence the number of children) for a particular window. The
children are listed in current stacking order, from bottommost (first) to
topmost (last).

— Query Treep
=X

w? : Window

parent! : Window
children! : seq Window

parent! = parents w?

children! = order w?
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The X system includes many other operations. These in¢lude more de-
tailed window operations, mouse operations, graphics for line drawing and
fill operations, screen raster operations, moving bits and pixels to and from
the screen, storing apd freeing bit maps and pixel maps, cursor definition,
colour operations, font manipulation routines, text output to a window,
and so on. However the operations covered give an indication of the basic
windowing facilities available under the X system.

6.5 Errors

Many operations return a status report signalling success or failure of the
operation. Let this be denoted ‘Status’. Often a ‘NULL’ status indicates
success and a non-NULL status indicates failure.

[ Status |

j NULL : Status

The operations covered so far detail what should happen in the event of
no errors. In this case we also wish to report the fact that the operation was
successful.

Success
status! : Status

status! = NULL

If errors do occur, then these need to be reported as well. For example,
an invalid parent window may be specified.

__ InvalidParent
=X

parent? : Window
status! . Status

parent? ¢ dom windows
status! £ NULL
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Alternatively, an invalid child window could be given as input.

__ Invalid Window

=X

w? : Window

status! : Status
w? ¢ children

status! # NULL

We may include these errors with the previously defined operations which
ignored error conditions, to produce total operations.

Create Window, = (CreateWindoun A Success) V Invelid Parent
Al the other operations covered take the following form.

DestroyWindow, = (DestroyWindouwg A Suecess) V Invalid Window

6.6 Simplifications and Assumptions

In the description given, only ‘opaque’ windows have been considered. The
actual X system includes ‘transparent’ windows, mainly used for menus,
and ‘icon’ windows which may be associated with opaque windows, but
these have been ignored in this description for simplicity. These could be
included in the state of the system. The operation specifications would need
to be updated appropriately.

X
[ x
transparent, opague : P Window
icon : Window v Window

{transparent, opaque,tan icon) partition children

dom icon C opaque

Windows have other information associated with them besides their pixel
maps and their mapping status, such as border information. However this is
not covered here. Exposure events that result from window operations are
also ignored.



6.7. COMMENTS AND INCONSISTENCIES 67

The informal description used to formulate this specification [Gett85]
was not completely clear on a number of points. For example, the exact
ordering of windows and their subwindows is not made explicitly clear after
operations which affect this. In particular, it has been assumed here that
raising and lowering a window implies that all its subwindows are alsoraised
or lowered. Where necessary, an educated guess has been made as to the
behaviour of the system.

6.7 Comments and Inconsistencies

The X window system is relatively complicated. It includes a number of
basic concepts, several of which could not be included here fully because of
lack of space. The hierarchical structure makes it very versatile.

Perhaps surprisingly, X has no notion of a ‘current’ window. Hence a
large number of the library routines need a window identifier as input (in-
cluding all those covered here). This is rather cumbersome and could intro-
duce some unnecessary overhead in application programs using the system.
However this is advantageous if a2 number of windows are being updated
simultaneously since then there are effectively several current windows.

An earlier version of this specification was sent to MIT with annota-
tions, raising questions about areas which were not well understood from
the original documentation {Gett85]. A number of inconsistencies in the
formal specification (compared to the implementation of X) were discovered
from the feedback obtained. The major errors were as follows:

o Children are always on top of their parent, and the hierarchies of
two siblings never interleave. In the original specification, an overall
order {order : seq Window) was included as part of the state; it did
not preclude the above. Here the ordering is defined on a per window
basis, for just the immediate children.

e The contents of unmapped and invisible parts of windows are lest. For
example, in the schema ®Map, the predicate ‘windows’ = windows’ is
actually incorrect since the contents of the window w? will be lost if it
is nnmapped. However the specification has not been changed in this
respect since exposure events are ignored here, and these would typ-
ically restore the contents of re-exposed windows. If exposure events
were added to this specification then this should be changed.

These points were missed from the original documentation. They would
probably have been discovered if an implementation of X had been available
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for ‘testing’ purposes. The documentation could be improved in these areas
to avoid misunderstanding.

The original version of X specified here was Version 9 [Gett85]. Docu-
mentation for Version 10 [Gett86] and Version 11 [Sche86] were alsa available
subsequently. Any further work on formalising X should use Version 11 doc-
umentation since this is now becoming an industry standard.
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Conclusions

A high level description of three window systems has been presented. Only
a few operations for each system have been covered. A complete description
would require a manual for each of the systems; a formal specification does
not necessarily reduce the size of a description using informal methods.
However it does make it much more precise. Because of this, it is possible to
reason abont a system and detect inconsistencies in jt far more easily than
the case where only an informal specification is available. Even if formal
specification is not used in the final documentation, its use will clarify points
which can then be described informally to the user.

7.1 Comparison of Window Systems

Of the three window systems investigated, X provides the most comprehen-
sive features. WM is a much simpler system with no overlapping windows
or hierarchical structure. However it does automatically adjust the size of
windows when necessary, The Blit is a ‘raw’ machine onto which window
management functions can be loaded if desired. The following table gives a
comparison of the features available on each system.

Window | Overlapping Hierarchical Automatic Current

system windows structure stzing window
WM X X v v
Blit Vv X X v

X v v X X

Most of the original specification in the monograph was undertaken in
1986. Of the three window systems, X was investigated first. It turned out
to be the most complicated system and took a significant amount of time to
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formalise. Subsequently, the specification of WM and the Blit system were
comparatively easy.

Since the original specification, Version 11 of X (or X11 as it is normally
known) has become an industry standard and is available on many work-
stations. The other two systems are not so widely used. X now includes a
library interface built on top of the main X interface that implements almost
all of WM. Hence most WM applications will run under X without source
modification.

7.2 Formal Specification of Existing Systems

This work was undertaken as part of the Distributed Computing Software
(DCS) Project at the Programming Research Group. As well as designing
and documenting network services using a formal notation, part of the brief
of the DCS project was to undertake case studies of existing systems and to
formally specify paris of them in Z to gain a greater understanding of their
operation,

This monograph is the result of one case study on the DCS project.
Originally it had been hoped to compare parts of a number of distributed
systems using Z. However, the authors of potential systems for investigation
could only supply academic papers {not enough information) or the source
code [too much information). What was required was some form of informal
documentation for the system. Because window systems are used directly
by users, there seems to be more readable documentation for such systems.

In cach case, omissions and ambiguities in the documentation were dis-
covered by attempting to formalise the system. Where necessary, intelligent
guesses were made about the actual operation. These were usually correct,
but not always.

Subsequently, the formal specifications could be used to update the ex-
isting documentation, or even rewrite it from scratch. Although Z has been
developed as a design tool, it is also well suited for post hoc specifications of
existing systems, and for detecting and correcting errors and anomalies in
the documentation of such systems [Bowe88].

The most important stage of formalising a system is selecting the right
levelof abstraction for modelling its state. This is normally an iterative pro-
cess. On attempting to specify an operation one often needs to backtrack to
change the abstract state of the system. In particular, extra state compo-
nents can be convenient to provide different views of the system depending
on the operation involved.

There are likely to be some inconsistencies between the specifications
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given here and the actual operation of the systems described. This is due
to impreciseness and misunderstanding of the informal documentation used
to formulate these specifications. This illustrates one of the reasons for
using formal specification techniques — to avoid ambiguity or vagueness
and to aid precise communication of ideas. Because of this, formal nota-
tion forces issues to the surface much earlier in the design process than
wlen using informal description techniques such as natural language and
diagrams. Difficult areas of the design cannot be ignored until the imple-
mentation stage. This reduces the number of backtracks necessary round
the design/implementation cycle.

Additionally, using formal specification techniques sbould reduce main-
tenance costs since more of the errors in a system will be discovered hefore
it is released into the field. Although specification and design costs will be
increased, implementation and maintenance costs should be lower, reducing
averall costs.

Formally specifying an existing system could be particularly useful if
it is to be re-engineered to comply with modern software engineering stan-
dards. In such cases there could be costs benefits by taking sucb an approach
[Nix88].

7.3 General Conclusions

Z can be used to succinctly specify real systems. The examples given here
and other case studies undertaken at the Programming Research Group and
elsewhere lend support to this assertion.

Z may be used to produce readable specifications. It has been designed
to be read by humans rather than computers. Thus it can form the basis
for documentation.

Large specifications are manageable in Z, using the schema notation for
structuring. It is possible to produce hierarchical specifications. A part of a
systern may be specified in isolation, and then this may be put into 2 global
context,
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Appendix A

Glossary of Z notation

A glossary of the Z mathematical and schema notation used in this mono-
graph is ineluded here for easy reference. The complete notation is not cov-
ered. For more information, the grammar and concrete and abstract syntax
for Z and a reference mannal are available elsewhere [King88, Spivad].

A.1 Abbreviated names

i|"’11£’2
E,E]..E)
d
P1P1|P2
D
5,5,5%
N

N'
fafl»fi
R1R13R2
I,Z,23
X1X15X2
A
n,m,m
3.51.%

q
y4

I
Bth BZ

Identifiers

Expressions

Declaration

Predicates

Declaration and optional predicate ( d or d | P )
Schema expressions

Schema name witk optional decoration (e.g. N')

Decorated schema name (all components dashed)
Functions

Relations

Elements of sets

Sets

Set of sets { P X }

Integer expressions

Sequences ( seq X )

Sequence of sequences [ seq(seq X} )

Set of integers

Iudexed family of sets ( P(J + P X))

Bags

7



78

AFPPENDIX A. GLOSSARY OF Z NOTATION

A.2 Horizontal paragraphs

ll>l:.
cI]I.'_.

(4,

'

i

i u= fl@g]...
P

Introduction of given set(s)
Abbreviation definition
Horizontal schema definition
Data type definition
Predicate {extra constraint)

A.3 Vertical paragraphs

New lizes denote *;'. Predicates are conjoined by default.

1
d
P

Vertical schema definition. The schema name and
predicate part are optional. The schema may subse-
quently be referenced by name with optional decora-
tion in the document.

Axiomatic definition. The definitions may be non-
unique. The predicate part is optional. The defini-
tions apply globally in the document.

Generic definition. The definitions must be unique.
The generic parameters are optional. The definitions
apply globally in the document.

A.4 Declarations and operators

1 E
h:E;: 5 B
il,?:z,...IE
—-i_:FE
i_:E
—i:FE

N

Basic declaration

Multiple declarations

Declarations of same type ( 4 : E; : E; ...}
Infix operator declaration

Prefix operator declaration

Postfix operator declaration

Schema reference as a declaration

A.5 Expressions

(£1,5,...)

Ordered tuple



A.6. PREDICATES

PE

El XEQX...
{E1, Bz, .-}
{DeE}
ADsE
Do E
BB

E.i

85

N

L
Ef

(£)

n

79

Power set (set of subsets)

Cartesian product

Set display

Set comprehension (or {D})
Lambda-expression (function, given D returns E)
Definite description (valne E if D unique)
Function application

Selection ( (A D a §){E))

Binding formation

Schema reference as an expression { {N ¢ #N} )
Infix function expression

Postfix function expression

Expression grouping

Number

A.6 Predicates

b =E
E c k&
- P
PyA Py
Py= P
P1¢>P‘2
YDeP
3DeP
3,DeP
N
E R E
RE
true
false
(P)

Equality (or By = By =...)
Membership

Logical negation

Logical conjunction

Logical disjunction

Logical implication { = Py V Py )
Logical equivalence ( Py = P, A Py = Pp)
Universal quantification
Existential gnantification
Unique existential quantification
Schema reference as a predicate
Infix relation

Prefix relation

True predicate

False predicate ( - true )
Predicate grouping

A.7T Schema expressions

(D]
N

Horizontal schema text
Schema reference
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-5
Sl.’\52
5‘1\"52
S51=85
51¢>Sg
YDeS§
FD e S
S\ (a,1,...)
SH1 %
pre §
513 %
S5
(5)

A.8 Sets

X1 # X

t g X

74}

Xickh
Xl C Xg
X, U X,
XHnk
VX

P X

U4

NA
ﬁf‘St(Zh I?)
second(z;, Tz}

APPENDIX A. GLOSSARY OF 2 NOTATION

Schema negation

Scltema conjunction

Schema disjunction

Schema implication

Schema equivalence

Universal schema quantification

Existential schema quantification

Schema hiding of component(s)

Schema projection (hiding of components not in S3)
Precondition of schema

Schema compasition (first 5;, then 5,)

Schema piping (5) outputs combine with S; inputs)
Schema grouping

Inequality ( = (X7 = X3))

Non-membership ( - (z € X) )

Empty set ( {e: X | false} )

Subset relation

Proper subset relation ( X T X; A Xy # X )
Set union

Set intersection

Set difference

Non.empty subsets { P X \ {&} )

Generalised union

Generalised intersection

Projection function of first co-ordinate ( z; )
Projection function of second co-ordinate { 3 )

A.9 Relations

Xl sz
I
dom R
ran R
idx
Ryi Ry

Binary relation { P(X; X X3) )
Maplet ( (21,2,) )

Domain of relation

Range of relation

Identity relation { {e: X e e — e} )
Relational composition



A.10. FUNCTIONS

XanR Domain restriction

Xr R Range restriction

Xakh Domain anti-restriction

X R Range anti-restriction

R~ Relational inversion

R{A4) Relational image

Rt Transitive closure

bl Reflexive-transitive closure

A.10 Functions

X - X Partial function

X1 —= X; Total function

Xy Xy Partial injection

X=Xy Total injection

Xy = X, Partial surjection

X1 —» X; Total surjection

X1+ Xo Bijection

het Function overriding ( (dom @ fi)U )

A.11 Numbers and finiteness

z Set of integers { {...,-2,-1,0,1,2,...} )
N Set of natural numbers ( {0,1,2,...})
m+ ng Integer addition infix total function

n; — ng Integer subtraction infix total function
n, « ng Integer multiplication infix total function
ny div ng Integer division infix partial function

n; mod ny Integer modulo infix partial function

-n Integer negation prefix total function

n < ng Less than relation

m <y Less than or equal relation

ny > N Greater than or equal relation

ny > Ny Greater than relation

Ny Strictly positive numbers ( N\ {0} )
suce n Successor function (n + 1)

iter n R Iteration (R composed n times)

R" Short form for iteration ( ster n R )
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] ..ny
FX
F, X
#X
Xl-HXz
XIHRXQ
min Z
maz Z

#X

APPENDIX A. GLOSSARY OF Z NOTATION

Number range ( {i:Z|m <i < m})
Set of finite subsets

Non-empty finite subsets (FX NP, X )
Number of members of a set

Finite partial function

Finite partial injection

Minimum of a set of numbers

Maximum of a set of numbers

Size of a finite set

A.12 Sequences

seq X

seq; X
iseq X

{(Er, By,...)
O

31 L))
head s

last 5

tail s
front s

rev s

s X

“fq
disjoint I

I partition A

A.13 Bags

bag X
[E1L B, .. ]
t

count B
zin B

By By
itemns s

Set of finite sequences

Set of non-empty finite sequences

Set of finite injective sequences

Notation for a sequence ( {L — E,2— E3,...})
Empty sequence ( & )

Sequence concatenation

First element of sequence { s(1} )

Last element of sequence ( s(#3) )

All but head of a sequence

All but last element of a sequence

Reverse a sequence

Sequence filtering

Distributed sequence concatenation

Disjoint { Vig, 5 :dom /I | i #ize [(3) NI(5) =@ )
Partitions ( disjoint I A |J{i:dom T e I({)} = 4)

Bag (X -+ Ny )

Notation for a bag ( {E ~ my, B2 — ng, ...} )
Empty bag { &}

Multiplicity ( Az : X » 0) @& B )

Bag membership ( ¢ € dom B )

Bag union

Bag of elements of a sequence



A.14, CONVENTIONS

A.14 Conventions

EfE
E RE
17
!

it

Nl’
AN
EN
N
FP
d- P

Infix function underlined for clarity

Infix relation underlined { {E,E)e (_R_))
Input to an operation

Output from an operation

State component after an operation (i before)
State schema after an operation (N before)
Change of state (normally N A N )

No change of state (normally [AN |§N = 4¥'] )
Partial specification of an aperation

Theorem

Theorem { F¥d e P)



Appendix B

Index of formal definitions

This index gives the pages on which Z identifiers and symbols are defined.
Schema names are indicated by bold page numbers, state declarations are
indicated by italic page numbers, and Z symbols are indicated by underlined
page nembers.

84



INDEX OF FORMAL DEFINITIONS

+, 4 AddWindouy, 19
-, 4 AddWindouw,, 22
>, 80 adjust, 33
*Invalid window’, 21 AND, 11
‘No windows’, 21 and, 13
‘Not a window’, 21 andnverted, 14
‘0K, 21 andHReverse, 14
9 area, 31
<, 4 areas, 32
R )
&/, 7 background, 18, 32, 46, 56
+, 83 BadWindow, 21
?,79 Bit, 5
A, 79 Black, 5
K, 79 Blit, 45, 48
body, 81
A, 83 Y,
. Boz, 50
ABHt, 46
X Buttor, 50
ADisplay, 14
Buttonl, 30
AITC, 40
. Button2, 50
ASepPair, 15
Buttond, 50
ASYS, 19 buttons, 50
AWM, 23 !
AX, 56 ChangeWindowy, 61
2,83 children, 54
& Cire, 62 circ. 63
:gu"e"t’ 34 Circ WindowDoung, 63
estroy, 58 Circ WindowUpy, 63
dHost, 41
’ Clear, 5
& Layer, 47
5 Man. clear, 13
ap, 59 ClearWindouy, 37
& Order, 62 ClearWindow,, 39
& Proc, 47 compact, 7 o
¢ Window, 60 Configure Windouy, 61
WM, 41
= 83 contents, 32
== [, 31
=Hiit, 47 gj‘:‘ti:; g
=5Y5,19 copy 1:,1
=WM, 33 :
=X, 56 copyinverted, 14

CopySwap, 15
AddHost, 40 count, 82



86 APPENDIX B. INDEX OF FORMAL DEFINITIONS

Create Windouy, 57 header, 31
Create Windowy, 66 Hide, 31
Create Windowsy, 57 HideEzpose, 31
current, 32 HideMeg, 36
Current&: Topy, 52 host, {1
' hosts, 40
Deride, 25
default, {6 icon, 66
Delete Windouy, 35 Id, 45
Delete Windouy, 38 Info, 31, 42
Delete Windowyre, 42 InitBlit, 46
DelLayery, 48 InitiTC, 40
DelLayer,, 53 InitSYS, 19
destroy, 58 InitWM, 33
DestroySubwindowsy, 59 InitX, 56
DestroyWindouy, 58 Invalid, 23
DestroyWindow, 66 InvalidLayer, 53
Display, 14 InvalidParent, 65
. InvalidRect, 52
equiv, 14 ’

InvalidWindow, 39, 66

g:ef,:%iﬂ IsInvisible, 64
pose IsMapped, 64

EzposeMey, 36

) IsUnmapped, 64
FEzrposeWindow, 25

: ITC, 40
Ezpose Windouyp, 20 " 42
EzposeWindoun, 22 " £TRS, 22

tter, 81
Failure, 52 i
false, 19 KillWM, 41
7 ==
first, 80
: I, 45
front, 82 last, 82
GetDimensionsg, 35 Layer, 44
GetDimensions;, 39 layers, {5
GetProcg, 49 localhost, {1
GetProcy, 50 lower, 8
GetProcTaly, 49 Lower Windoup, 682
GetProcTab,, 53
GetWindow, 23 Map, 31
GetWindouy, 22 map, 31, 61
Gunsight, 50 map, 11
mapy, 11

head, 82 MapPair, 11



INDEX OF FORMAL DEFINITIONS

mapped, 55
MauappedState, 64
maps, 32
MapSubuindows,, 89
Map Windowy, 59
mazr, 5, 82
MarWindows, 32
Menu, {2

min, b, 82

Modify, 24
ModifyWindow, 25
Mouse, 50

Move, 24

Move Window , 25
Move Windowg, 61

NAND, 10

nand, 12

Neuy, 51

NewLayem, 47
NewlLayery, 53
NewProg, 48
NewProc;, 53
NewWindowp, 34, 49
NewWindow,, 39, 53
NevwWindowjreo, 42
NoCurrent Window, 39
noop, 13

nor, 13

NOT, 10

not, 13
NotAWindow, 21
NotInWindow, 23
NoWindows, 21
NULL, 65

Null, 38

Nullld, {5
NullLayer, {5

offset, 4
opagque, 66

OR, 11

or, 13

order, 55
orlnverted, 14
orlteverse, 14
overlaps, 6

parent, 61, 62
parents, 54
pirL, 4

pizra, 4
Pizel, 3
PizelPair, 4
Pizmap, 6
Pizmap;, 6
Point, 44
Proc, 45
procs, 46
prog, {5
Program, 45

QueryTreey, 64
QueryWindowuy, 64

raise, 8

Raise Windowy, 62
RasterOm, 14
RasterOp,, 15
receiver, 46
Rectangle, 6

rects, {5

remove, 8
RemoveHost, 40
RemoveTopy, 20
RemoveTop, 22
RemoveWindow, 25
Remove Windouy, 20
RemoveWindow,, 22
rep!, 21

Report, 21

Reshape, 24
Reshapey, 51

87



88 APPENDIX B. INDEX OF FORMAL DEFINITIONS

Reshape Window, 25
rev, 82
rogt, 54
Rotate Windowsg, 20
RotateWindows,, 22

samepos, 12
sameshape, 11
screen, 14, 18, 32, 46, 56
second, §0

select, 8
SelectWindouy, 37
SelectWindouy, 39
SepPair, 15

Set, 5

set, 13
SetDimensionsg, 35
Set Dimensions;, 39
SetTitleg, 37
SetTitle,, 39
setval, 6

State, 45

state, {§

Status, 65

status). 65

String, 9
submapped, 65
suborder, 62, 63
suburindows, 54
succe, §1

Success, 21, 38, 52, 65
575,18

tail, 82

title, §1

ToLayery, 49
ToLayer,, 53
TooMinyWindows, 38
top, 8

Topy, 51

transparent, 66

true, 79

Undefined, 51
UnmeapSubwindowsy, 60
Unmap Windouy, 60
unviewable, 55

Update Windouy, 19
UpdateWindouy, 22

Value, 5
View, 18
viewable, 55
visible, 56

w?, 58, 59, 61-63
WhichWindow, 23
Which Windouy, 23
White, 5

Window, 9
WINDOWS, 33
windows, 18, 32, 45, 54
WM, 31-33, 38

wms, {0

X, 54, 55, 86
1, 4

72, 4

XOR, 11
zor, 13
Xory, 18
Xory, 16
XorSwap, 16
Xrange, 3
Xsize, 8

zy, 50
zylimits, 51

yls*

Y2, 4
Yrange, 3
Ysize, 3

Zrange, 5





